perf_counters: make software counters work as per-cpu counters
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243 }
244
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247 {
248 hrtimer_cancel(&rt_b->rt_period_timer);
249 }
250 #endif
251
252 /*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256 static DEFINE_MUTEX(sched_domains_mutex);
257
258 #ifdef CONFIG_GROUP_SCHED
259
260 #include <linux/cgroup.h>
261
262 struct cfs_rq;
263
264 static LIST_HEAD(task_groups);
265
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
271
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
283
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
288 struct rt_bandwidth rt_bandwidth;
289 #endif
290
291 struct rcu_head rcu;
292 struct list_head list;
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
297 };
298
299 #ifdef CONFIG_USER_SCHED
300
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
303 {
304 user->tg->uid = user->uid;
305 }
306
307 /*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312 struct task_group root_task_group;
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
328
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
331 */
332 static DEFINE_SPINLOCK(task_group_lock);
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
340
341 /*
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
351
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
354
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
357 */
358 struct task_group init_task_group;
359
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
362 {
363 struct task_group *tg;
364
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
376 }
377
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
380 {
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
385
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
390 }
391
392 #else
393
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
396 {
397 return NULL;
398 }
399
400 #endif /* CONFIG_GROUP_SCHED */
401
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
407 u64 exec_clock;
408 u64 min_vruntime;
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
420 struct sched_entity *curr, *next, *last;
421
422 unsigned int nr_spread_over;
423
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
437
438 #ifdef CONFIG_SMP
439 /*
440 * the part of load.weight contributed by tasks
441 */
442 unsigned long task_weight;
443
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
451
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
461 #endif
462 #endif
463 };
464
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
481
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
490 };
491
492 #ifdef CONFIG_SMP
493
494 /*
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
501 */
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
507 /*
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
524 };
525
526 /*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
530 static struct root_domain def_root_domain;
531
532 #endif
533
534 /*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561 u64 nr_migrations_in;
562
563 struct cfs_rq cfs;
564 struct rt_rq rt;
565
566 #ifdef CONFIG_FAIR_GROUP_SCHED
567 /* list of leaf cfs_rq on this cpu: */
568 struct list_head leaf_cfs_rq_list;
569 #endif
570 #ifdef CONFIG_RT_GROUP_SCHED
571 struct list_head leaf_rt_rq_list;
572 #endif
573
574 /*
575 * This is part of a global counter where only the total sum
576 * over all CPUs matters. A task can increase this counter on
577 * one CPU and if it got migrated afterwards it may decrease
578 * it on another CPU. Always updated under the runqueue lock:
579 */
580 unsigned long nr_uninterruptible;
581
582 struct task_struct *curr, *idle;
583 unsigned long next_balance;
584 struct mm_struct *prev_mm;
585
586 u64 clock;
587
588 atomic_t nr_iowait;
589
590 #ifdef CONFIG_SMP
591 struct root_domain *rd;
592 struct sched_domain *sd;
593
594 /* For active balancing */
595 int active_balance;
596 int push_cpu;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
601 unsigned long avg_load_per_task;
602
603 struct task_struct *migration_thread;
604 struct list_head migration_queue;
605 #endif
606
607 #ifdef CONFIG_SCHED_HRTICK
608 #ifdef CONFIG_SMP
609 int hrtick_csd_pending;
610 struct call_single_data hrtick_csd;
611 #endif
612 struct hrtimer hrtick_timer;
613 #endif
614
615 #ifdef CONFIG_SCHEDSTATS
616 /* latency stats */
617 struct sched_info rq_sched_info;
618 unsigned long long rq_cpu_time;
619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620
621 /* sys_sched_yield() stats */
622 unsigned int yld_exp_empty;
623 unsigned int yld_act_empty;
624 unsigned int yld_both_empty;
625 unsigned int yld_count;
626
627 /* schedule() stats */
628 unsigned int sched_switch;
629 unsigned int sched_count;
630 unsigned int sched_goidle;
631
632 /* try_to_wake_up() stats */
633 unsigned int ttwu_count;
634 unsigned int ttwu_local;
635
636 /* BKL stats */
637 unsigned int bkl_count;
638 #endif
639 };
640
641 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642
643 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 {
645 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
646 }
647
648 static inline int cpu_of(struct rq *rq)
649 {
650 #ifdef CONFIG_SMP
651 return rq->cpu;
652 #else
653 return 0;
654 #endif
655 }
656
657 /*
658 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
659 * See detach_destroy_domains: synchronize_sched for details.
660 *
661 * The domain tree of any CPU may only be accessed from within
662 * preempt-disabled sections.
663 */
664 #define for_each_domain(cpu, __sd) \
665 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666
667 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
668 #define this_rq() (&__get_cpu_var(runqueues))
669 #define task_rq(p) cpu_rq(task_cpu(p))
670 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671
672 inline void update_rq_clock(struct rq *rq)
673 {
674 rq->clock = sched_clock_cpu(cpu_of(rq));
675 }
676
677 /*
678 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 */
680 #ifdef CONFIG_SCHED_DEBUG
681 # define const_debug __read_mostly
682 #else
683 # define const_debug static const
684 #endif
685
686 /**
687 * runqueue_is_locked
688 *
689 * Returns true if the current cpu runqueue is locked.
690 * This interface allows printk to be called with the runqueue lock
691 * held and know whether or not it is OK to wake up the klogd.
692 */
693 int runqueue_is_locked(void)
694 {
695 int cpu = get_cpu();
696 struct rq *rq = cpu_rq(cpu);
697 int ret;
698
699 ret = spin_is_locked(&rq->lock);
700 put_cpu();
701 return ret;
702 }
703
704 /*
705 * Debugging: various feature bits
706 */
707
708 #define SCHED_FEAT(name, enabled) \
709 __SCHED_FEAT_##name ,
710
711 enum {
712 #include "sched_features.h"
713 };
714
715 #undef SCHED_FEAT
716
717 #define SCHED_FEAT(name, enabled) \
718 (1UL << __SCHED_FEAT_##name) * enabled |
719
720 const_debug unsigned int sysctl_sched_features =
721 #include "sched_features.h"
722 0;
723
724 #undef SCHED_FEAT
725
726 #ifdef CONFIG_SCHED_DEBUG
727 #define SCHED_FEAT(name, enabled) \
728 #name ,
729
730 static __read_mostly char *sched_feat_names[] = {
731 #include "sched_features.h"
732 NULL
733 };
734
735 #undef SCHED_FEAT
736
737 static int sched_feat_show(struct seq_file *m, void *v)
738 {
739 int i;
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 if (!(sysctl_sched_features & (1UL << i)))
743 seq_puts(m, "NO_");
744 seq_printf(m, "%s ", sched_feat_names[i]);
745 }
746 seq_puts(m, "\n");
747
748 return 0;
749 }
750
751 static ssize_t
752 sched_feat_write(struct file *filp, const char __user *ubuf,
753 size_t cnt, loff_t *ppos)
754 {
755 char buf[64];
756 char *cmp = buf;
757 int neg = 0;
758 int i;
759
760 if (cnt > 63)
761 cnt = 63;
762
763 if (copy_from_user(&buf, ubuf, cnt))
764 return -EFAULT;
765
766 buf[cnt] = 0;
767
768 if (strncmp(buf, "NO_", 3) == 0) {
769 neg = 1;
770 cmp += 3;
771 }
772
773 for (i = 0; sched_feat_names[i]; i++) {
774 int len = strlen(sched_feat_names[i]);
775
776 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
777 if (neg)
778 sysctl_sched_features &= ~(1UL << i);
779 else
780 sysctl_sched_features |= (1UL << i);
781 break;
782 }
783 }
784
785 if (!sched_feat_names[i])
786 return -EINVAL;
787
788 filp->f_pos += cnt;
789
790 return cnt;
791 }
792
793 static int sched_feat_open(struct inode *inode, struct file *filp)
794 {
795 return single_open(filp, sched_feat_show, NULL);
796 }
797
798 static struct file_operations sched_feat_fops = {
799 .open = sched_feat_open,
800 .write = sched_feat_write,
801 .read = seq_read,
802 .llseek = seq_lseek,
803 .release = single_release,
804 };
805
806 static __init int sched_init_debug(void)
807 {
808 debugfs_create_file("sched_features", 0644, NULL, NULL,
809 &sched_feat_fops);
810
811 return 0;
812 }
813 late_initcall(sched_init_debug);
814
815 #endif
816
817 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
818
819 /*
820 * Number of tasks to iterate in a single balance run.
821 * Limited because this is done with IRQs disabled.
822 */
823 const_debug unsigned int sysctl_sched_nr_migrate = 32;
824
825 /*
826 * ratelimit for updating the group shares.
827 * default: 0.25ms
828 */
829 unsigned int sysctl_sched_shares_ratelimit = 250000;
830
831 /*
832 * Inject some fuzzyness into changing the per-cpu group shares
833 * this avoids remote rq-locks at the expense of fairness.
834 * default: 4
835 */
836 unsigned int sysctl_sched_shares_thresh = 4;
837
838 /*
839 * period over which we measure -rt task cpu usage in us.
840 * default: 1s
841 */
842 unsigned int sysctl_sched_rt_period = 1000000;
843
844 static __read_mostly int scheduler_running;
845
846 /*
847 * part of the period that we allow rt tasks to run in us.
848 * default: 0.95s
849 */
850 int sysctl_sched_rt_runtime = 950000;
851
852 static inline u64 global_rt_period(void)
853 {
854 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 }
856
857 static inline u64 global_rt_runtime(void)
858 {
859 if (sysctl_sched_rt_runtime < 0)
860 return RUNTIME_INF;
861
862 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 }
864
865 #ifndef prepare_arch_switch
866 # define prepare_arch_switch(next) do { } while (0)
867 #endif
868 #ifndef finish_arch_switch
869 # define finish_arch_switch(prev) do { } while (0)
870 #endif
871
872 static inline int task_current(struct rq *rq, struct task_struct *p)
873 {
874 return rq->curr == p;
875 }
876
877 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
878 static inline int task_running(struct rq *rq, struct task_struct *p)
879 {
880 return task_current(rq, p);
881 }
882
883 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 {
885 }
886
887 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 {
889 #ifdef CONFIG_DEBUG_SPINLOCK
890 /* this is a valid case when another task releases the spinlock */
891 rq->lock.owner = current;
892 #endif
893 /*
894 * If we are tracking spinlock dependencies then we have to
895 * fix up the runqueue lock - which gets 'carried over' from
896 * prev into current:
897 */
898 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899
900 spin_unlock_irq(&rq->lock);
901 }
902
903 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
904 static inline int task_running(struct rq *rq, struct task_struct *p)
905 {
906 #ifdef CONFIG_SMP
907 return p->oncpu;
908 #else
909 return task_current(rq, p);
910 #endif
911 }
912
913 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 {
915 #ifdef CONFIG_SMP
916 /*
917 * We can optimise this out completely for !SMP, because the
918 * SMP rebalancing from interrupt is the only thing that cares
919 * here.
920 */
921 next->oncpu = 1;
922 #endif
923 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 spin_unlock_irq(&rq->lock);
925 #else
926 spin_unlock(&rq->lock);
927 #endif
928 }
929
930 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 {
932 #ifdef CONFIG_SMP
933 /*
934 * After ->oncpu is cleared, the task can be moved to a different CPU.
935 * We must ensure this doesn't happen until the switch is completely
936 * finished.
937 */
938 smp_wmb();
939 prev->oncpu = 0;
940 #endif
941 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
942 local_irq_enable();
943 #endif
944 }
945 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946
947 /*
948 * __task_rq_lock - lock the runqueue a given task resides on.
949 * Must be called interrupts disabled.
950 */
951 static inline struct rq *__task_rq_lock(struct task_struct *p)
952 __acquires(rq->lock)
953 {
954 for (;;) {
955 struct rq *rq = task_rq(p);
956 spin_lock(&rq->lock);
957 if (likely(rq == task_rq(p)))
958 return rq;
959 spin_unlock(&rq->lock);
960 }
961 }
962
963 /*
964 * task_rq_lock - lock the runqueue a given task resides on and disable
965 * interrupts. Note the ordering: we can safely lookup the task_rq without
966 * explicitly disabling preemption.
967 */
968 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
969 __acquires(rq->lock)
970 {
971 struct rq *rq;
972
973 for (;;) {
974 local_irq_save(*flags);
975 rq = task_rq(p);
976 spin_lock(&rq->lock);
977 if (likely(rq == task_rq(p)))
978 return rq;
979 spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981 }
982
983 void curr_rq_lock_irq_save(unsigned long *flags)
984 __acquires(rq->lock)
985 {
986 struct rq *rq;
987
988 local_irq_save(*flags);
989 rq = cpu_rq(smp_processor_id());
990 spin_lock(&rq->lock);
991 }
992
993 void curr_rq_unlock_irq_restore(unsigned long *flags)
994 __releases(rq->lock)
995 {
996 struct rq *rq;
997
998 rq = cpu_rq(smp_processor_id());
999 spin_unlock(&rq->lock);
1000 local_irq_restore(*flags);
1001 }
1002
1003 void task_rq_unlock_wait(struct task_struct *p)
1004 {
1005 struct rq *rq = task_rq(p);
1006
1007 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1008 spin_unlock_wait(&rq->lock);
1009 }
1010
1011 static void __task_rq_unlock(struct rq *rq)
1012 __releases(rq->lock)
1013 {
1014 spin_unlock(&rq->lock);
1015 }
1016
1017 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1018 __releases(rq->lock)
1019 {
1020 spin_unlock_irqrestore(&rq->lock, *flags);
1021 }
1022
1023 /*
1024 * this_rq_lock - lock this runqueue and disable interrupts.
1025 */
1026 static struct rq *this_rq_lock(void)
1027 __acquires(rq->lock)
1028 {
1029 struct rq *rq;
1030
1031 local_irq_disable();
1032 rq = this_rq();
1033 spin_lock(&rq->lock);
1034
1035 return rq;
1036 }
1037
1038 #ifdef CONFIG_SCHED_HRTICK
1039 /*
1040 * Use HR-timers to deliver accurate preemption points.
1041 *
1042 * Its all a bit involved since we cannot program an hrt while holding the
1043 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1044 * reschedule event.
1045 *
1046 * When we get rescheduled we reprogram the hrtick_timer outside of the
1047 * rq->lock.
1048 */
1049
1050 /*
1051 * Use hrtick when:
1052 * - enabled by features
1053 * - hrtimer is actually high res
1054 */
1055 static inline int hrtick_enabled(struct rq *rq)
1056 {
1057 if (!sched_feat(HRTICK))
1058 return 0;
1059 if (!cpu_active(cpu_of(rq)))
1060 return 0;
1061 return hrtimer_is_hres_active(&rq->hrtick_timer);
1062 }
1063
1064 static void hrtick_clear(struct rq *rq)
1065 {
1066 if (hrtimer_active(&rq->hrtick_timer))
1067 hrtimer_cancel(&rq->hrtick_timer);
1068 }
1069
1070 /*
1071 * High-resolution timer tick.
1072 * Runs from hardirq context with interrupts disabled.
1073 */
1074 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1075 {
1076 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1077
1078 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1079
1080 spin_lock(&rq->lock);
1081 update_rq_clock(rq);
1082 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1083 spin_unlock(&rq->lock);
1084
1085 return HRTIMER_NORESTART;
1086 }
1087
1088 #ifdef CONFIG_SMP
1089 /*
1090 * called from hardirq (IPI) context
1091 */
1092 static void __hrtick_start(void *arg)
1093 {
1094 struct rq *rq = arg;
1095
1096 spin_lock(&rq->lock);
1097 hrtimer_restart(&rq->hrtick_timer);
1098 rq->hrtick_csd_pending = 0;
1099 spin_unlock(&rq->lock);
1100 }
1101
1102 /*
1103 * Called to set the hrtick timer state.
1104 *
1105 * called with rq->lock held and irqs disabled
1106 */
1107 static void hrtick_start(struct rq *rq, u64 delay)
1108 {
1109 struct hrtimer *timer = &rq->hrtick_timer;
1110 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1111
1112 hrtimer_set_expires(timer, time);
1113
1114 if (rq == this_rq()) {
1115 hrtimer_restart(timer);
1116 } else if (!rq->hrtick_csd_pending) {
1117 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1118 rq->hrtick_csd_pending = 1;
1119 }
1120 }
1121
1122 static int
1123 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124 {
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hrtick_clear(cpu_rq(cpu));
1135 return NOTIFY_OK;
1136 }
1137
1138 return NOTIFY_DONE;
1139 }
1140
1141 static __init void init_hrtick(void)
1142 {
1143 hotcpu_notifier(hotplug_hrtick, 0);
1144 }
1145 #else
1146 /*
1147 * Called to set the hrtick timer state.
1148 *
1149 * called with rq->lock held and irqs disabled
1150 */
1151 static void hrtick_start(struct rq *rq, u64 delay)
1152 {
1153 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1154 }
1155
1156 static inline void init_hrtick(void)
1157 {
1158 }
1159 #endif /* CONFIG_SMP */
1160
1161 static void init_rq_hrtick(struct rq *rq)
1162 {
1163 #ifdef CONFIG_SMP
1164 rq->hrtick_csd_pending = 0;
1165
1166 rq->hrtick_csd.flags = 0;
1167 rq->hrtick_csd.func = __hrtick_start;
1168 rq->hrtick_csd.info = rq;
1169 #endif
1170
1171 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1172 rq->hrtick_timer.function = hrtick;
1173 }
1174 #else /* CONFIG_SCHED_HRTICK */
1175 static inline void hrtick_clear(struct rq *rq)
1176 {
1177 }
1178
1179 static inline void init_rq_hrtick(struct rq *rq)
1180 {
1181 }
1182
1183 static inline void init_hrtick(void)
1184 {
1185 }
1186 #endif /* CONFIG_SCHED_HRTICK */
1187
1188 /*
1189 * resched_task - mark a task 'to be rescheduled now'.
1190 *
1191 * On UP this means the setting of the need_resched flag, on SMP it
1192 * might also involve a cross-CPU call to trigger the scheduler on
1193 * the target CPU.
1194 */
1195 #ifdef CONFIG_SMP
1196
1197 #ifndef tsk_is_polling
1198 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1199 #endif
1200
1201 static void resched_task(struct task_struct *p)
1202 {
1203 int cpu;
1204
1205 assert_spin_locked(&task_rq(p)->lock);
1206
1207 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1208 return;
1209
1210 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1211
1212 cpu = task_cpu(p);
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /* NEED_RESCHED must be visible before we test polling */
1217 smp_mb();
1218 if (!tsk_is_polling(p))
1219 smp_send_reschedule(cpu);
1220 }
1221
1222 static void resched_cpu(int cpu)
1223 {
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long flags;
1226
1227 if (!spin_trylock_irqsave(&rq->lock, flags))
1228 return;
1229 resched_task(cpu_curr(cpu));
1230 spin_unlock_irqrestore(&rq->lock, flags);
1231 }
1232
1233 #ifdef CONFIG_NO_HZ
1234 /*
1235 * When add_timer_on() enqueues a timer into the timer wheel of an
1236 * idle CPU then this timer might expire before the next timer event
1237 * which is scheduled to wake up that CPU. In case of a completely
1238 * idle system the next event might even be infinite time into the
1239 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1240 * leaves the inner idle loop so the newly added timer is taken into
1241 * account when the CPU goes back to idle and evaluates the timer
1242 * wheel for the next timer event.
1243 */
1244 void wake_up_idle_cpu(int cpu)
1245 {
1246 struct rq *rq = cpu_rq(cpu);
1247
1248 if (cpu == smp_processor_id())
1249 return;
1250
1251 /*
1252 * This is safe, as this function is called with the timer
1253 * wheel base lock of (cpu) held. When the CPU is on the way
1254 * to idle and has not yet set rq->curr to idle then it will
1255 * be serialized on the timer wheel base lock and take the new
1256 * timer into account automatically.
1257 */
1258 if (rq->curr != rq->idle)
1259 return;
1260
1261 /*
1262 * We can set TIF_RESCHED on the idle task of the other CPU
1263 * lockless. The worst case is that the other CPU runs the
1264 * idle task through an additional NOOP schedule()
1265 */
1266 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1267
1268 /* NEED_RESCHED must be visible before we test polling */
1269 smp_mb();
1270 if (!tsk_is_polling(rq->idle))
1271 smp_send_reschedule(cpu);
1272 }
1273 #endif /* CONFIG_NO_HZ */
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393 /*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402 };
1403
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1416
1417 #ifdef CONFIG_CGROUP_CPUACCT
1418 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 #endif
1422
1423 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1424 {
1425 update_load_add(&rq->load, load);
1426 }
1427
1428 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1429 {
1430 update_load_sub(&rq->load, load);
1431 }
1432
1433 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1434 typedef int (*tg_visitor)(struct task_group *, void *);
1435
1436 /*
1437 * Iterate the full tree, calling @down when first entering a node and @up when
1438 * leaving it for the final time.
1439 */
1440 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1441 {
1442 struct task_group *parent, *child;
1443 int ret;
1444
1445 rcu_read_lock();
1446 parent = &root_task_group;
1447 down:
1448 ret = (*down)(parent, data);
1449 if (ret)
1450 goto out_unlock;
1451 list_for_each_entry_rcu(child, &parent->children, siblings) {
1452 parent = child;
1453 goto down;
1454
1455 up:
1456 continue;
1457 }
1458 ret = (*up)(parent, data);
1459 if (ret)
1460 goto out_unlock;
1461
1462 child = parent;
1463 parent = parent->parent;
1464 if (parent)
1465 goto up;
1466 out_unlock:
1467 rcu_read_unlock();
1468
1469 return ret;
1470 }
1471
1472 static int tg_nop(struct task_group *tg, void *data)
1473 {
1474 return 0;
1475 }
1476 #endif
1477
1478 #ifdef CONFIG_SMP
1479 static unsigned long source_load(int cpu, int type);
1480 static unsigned long target_load(int cpu, int type);
1481 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1482
1483 static unsigned long cpu_avg_load_per_task(int cpu)
1484 {
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1487
1488 if (nr_running)
1489 rq->avg_load_per_task = rq->load.weight / nr_running;
1490 else
1491 rq->avg_load_per_task = 0;
1492
1493 return rq->avg_load_per_task;
1494 }
1495
1496 #ifdef CONFIG_FAIR_GROUP_SCHED
1497
1498 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1499
1500 /*
1501 * Calculate and set the cpu's group shares.
1502 */
1503 static void
1504 update_group_shares_cpu(struct task_group *tg, int cpu,
1505 unsigned long sd_shares, unsigned long sd_rq_weight)
1506 {
1507 unsigned long shares;
1508 unsigned long rq_weight;
1509
1510 if (!tg->se[cpu])
1511 return;
1512
1513 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1514
1515 /*
1516 * \Sum shares * rq_weight
1517 * shares = -----------------------
1518 * \Sum rq_weight
1519 *
1520 */
1521 shares = (sd_shares * rq_weight) / sd_rq_weight;
1522 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1523
1524 if (abs(shares - tg->se[cpu]->load.weight) >
1525 sysctl_sched_shares_thresh) {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long flags;
1528
1529 spin_lock_irqsave(&rq->lock, flags);
1530 tg->cfs_rq[cpu]->shares = shares;
1531
1532 __set_se_shares(tg->se[cpu], shares);
1533 spin_unlock_irqrestore(&rq->lock, flags);
1534 }
1535 }
1536
1537 /*
1538 * Re-compute the task group their per cpu shares over the given domain.
1539 * This needs to be done in a bottom-up fashion because the rq weight of a
1540 * parent group depends on the shares of its child groups.
1541 */
1542 static int tg_shares_up(struct task_group *tg, void *data)
1543 {
1544 unsigned long weight, rq_weight = 0;
1545 unsigned long shares = 0;
1546 struct sched_domain *sd = data;
1547 int i;
1548
1549 for_each_cpu(i, sched_domain_span(sd)) {
1550 /*
1551 * If there are currently no tasks on the cpu pretend there
1552 * is one of average load so that when a new task gets to
1553 * run here it will not get delayed by group starvation.
1554 */
1555 weight = tg->cfs_rq[i]->load.weight;
1556 if (!weight)
1557 weight = NICE_0_LOAD;
1558
1559 tg->cfs_rq[i]->rq_weight = weight;
1560 rq_weight += weight;
1561 shares += tg->cfs_rq[i]->shares;
1562 }
1563
1564 if ((!shares && rq_weight) || shares > tg->shares)
1565 shares = tg->shares;
1566
1567 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1568 shares = tg->shares;
1569
1570 for_each_cpu(i, sched_domain_span(sd))
1571 update_group_shares_cpu(tg, i, shares, rq_weight);
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * Compute the cpu's hierarchical load factor for each task group.
1578 * This needs to be done in a top-down fashion because the load of a child
1579 * group is a fraction of its parents load.
1580 */
1581 static int tg_load_down(struct task_group *tg, void *data)
1582 {
1583 unsigned long load;
1584 long cpu = (long)data;
1585
1586 if (!tg->parent) {
1587 load = cpu_rq(cpu)->load.weight;
1588 } else {
1589 load = tg->parent->cfs_rq[cpu]->h_load;
1590 load *= tg->cfs_rq[cpu]->shares;
1591 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1592 }
1593
1594 tg->cfs_rq[cpu]->h_load = load;
1595
1596 return 0;
1597 }
1598
1599 static void update_shares(struct sched_domain *sd)
1600 {
1601 u64 now = cpu_clock(raw_smp_processor_id());
1602 s64 elapsed = now - sd->last_update;
1603
1604 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1605 sd->last_update = now;
1606 walk_tg_tree(tg_nop, tg_shares_up, sd);
1607 }
1608 }
1609
1610 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 {
1612 spin_unlock(&rq->lock);
1613 update_shares(sd);
1614 spin_lock(&rq->lock);
1615 }
1616
1617 static void update_h_load(long cpu)
1618 {
1619 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1620 }
1621
1622 #else
1623
1624 static inline void update_shares(struct sched_domain *sd)
1625 {
1626 }
1627
1628 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 {
1630 }
1631
1632 #endif
1633
1634 /*
1635 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1636 */
1637 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(this_rq->lock)
1639 __acquires(busiest->lock)
1640 __acquires(this_rq->lock)
1641 {
1642 int ret = 0;
1643
1644 if (unlikely(!irqs_disabled())) {
1645 /* printk() doesn't work good under rq->lock */
1646 spin_unlock(&this_rq->lock);
1647 BUG_ON(1);
1648 }
1649 if (unlikely(!spin_trylock(&busiest->lock))) {
1650 if (busiest < this_rq) {
1651 spin_unlock(&this_rq->lock);
1652 spin_lock(&busiest->lock);
1653 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1654 ret = 1;
1655 } else
1656 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1657 }
1658 return ret;
1659 }
1660
1661 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(busiest->lock)
1663 {
1664 spin_unlock(&busiest->lock);
1665 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1666 }
1667 #endif
1668
1669 #ifdef CONFIG_FAIR_GROUP_SCHED
1670 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1671 {
1672 #ifdef CONFIG_SMP
1673 cfs_rq->shares = shares;
1674 #endif
1675 }
1676 #endif
1677
1678 #include "sched_stats.h"
1679 #include "sched_idletask.c"
1680 #include "sched_fair.c"
1681 #include "sched_rt.c"
1682 #ifdef CONFIG_SCHED_DEBUG
1683 # include "sched_debug.c"
1684 #endif
1685
1686 #define sched_class_highest (&rt_sched_class)
1687 #define for_each_class(class) \
1688 for (class = sched_class_highest; class; class = class->next)
1689
1690 static void inc_nr_running(struct rq *rq)
1691 {
1692 rq->nr_running++;
1693 }
1694
1695 static void dec_nr_running(struct rq *rq)
1696 {
1697 rq->nr_running--;
1698 }
1699
1700 static void set_load_weight(struct task_struct *p)
1701 {
1702 if (task_has_rt_policy(p)) {
1703 p->se.load.weight = prio_to_weight[0] * 2;
1704 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1705 return;
1706 }
1707
1708 /*
1709 * SCHED_IDLE tasks get minimal weight:
1710 */
1711 if (p->policy == SCHED_IDLE) {
1712 p->se.load.weight = WEIGHT_IDLEPRIO;
1713 p->se.load.inv_weight = WMULT_IDLEPRIO;
1714 return;
1715 }
1716
1717 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1718 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1719 }
1720
1721 static void update_avg(u64 *avg, u64 sample)
1722 {
1723 s64 diff = sample - *avg;
1724 *avg += diff >> 3;
1725 }
1726
1727 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1728 {
1729 sched_info_queued(p);
1730 p->sched_class->enqueue_task(rq, p, wakeup);
1731 p->se.on_rq = 1;
1732 }
1733
1734 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1735 {
1736 if (sleep && p->se.last_wakeup) {
1737 update_avg(&p->se.avg_overlap,
1738 p->se.sum_exec_runtime - p->se.last_wakeup);
1739 p->se.last_wakeup = 0;
1740 }
1741
1742 sched_info_dequeued(p);
1743 p->sched_class->dequeue_task(rq, p, sleep);
1744 p->se.on_rq = 0;
1745 }
1746
1747 /*
1748 * __normal_prio - return the priority that is based on the static prio
1749 */
1750 static inline int __normal_prio(struct task_struct *p)
1751 {
1752 return p->static_prio;
1753 }
1754
1755 /*
1756 * Calculate the expected normal priority: i.e. priority
1757 * without taking RT-inheritance into account. Might be
1758 * boosted by interactivity modifiers. Changes upon fork,
1759 * setprio syscalls, and whenever the interactivity
1760 * estimator recalculates.
1761 */
1762 static inline int normal_prio(struct task_struct *p)
1763 {
1764 int prio;
1765
1766 if (task_has_rt_policy(p))
1767 prio = MAX_RT_PRIO-1 - p->rt_priority;
1768 else
1769 prio = __normal_prio(p);
1770 return prio;
1771 }
1772
1773 /*
1774 * Calculate the current priority, i.e. the priority
1775 * taken into account by the scheduler. This value might
1776 * be boosted by RT tasks, or might be boosted by
1777 * interactivity modifiers. Will be RT if the task got
1778 * RT-boosted. If not then it returns p->normal_prio.
1779 */
1780 static int effective_prio(struct task_struct *p)
1781 {
1782 p->normal_prio = normal_prio(p);
1783 /*
1784 * If we are RT tasks or we were boosted to RT priority,
1785 * keep the priority unchanged. Otherwise, update priority
1786 * to the normal priority:
1787 */
1788 if (!rt_prio(p->prio))
1789 return p->normal_prio;
1790 return p->prio;
1791 }
1792
1793 /*
1794 * activate_task - move a task to the runqueue.
1795 */
1796 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1797 {
1798 if (task_contributes_to_load(p))
1799 rq->nr_uninterruptible--;
1800
1801 enqueue_task(rq, p, wakeup);
1802 inc_nr_running(rq);
1803 }
1804
1805 /*
1806 * deactivate_task - remove a task from the runqueue.
1807 */
1808 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1809 {
1810 if (task_contributes_to_load(p))
1811 rq->nr_uninterruptible++;
1812
1813 dequeue_task(rq, p, sleep);
1814 dec_nr_running(rq);
1815 }
1816
1817 /**
1818 * task_curr - is this task currently executing on a CPU?
1819 * @p: the task in question.
1820 */
1821 inline int task_curr(const struct task_struct *p)
1822 {
1823 return cpu_curr(task_cpu(p)) == p;
1824 }
1825
1826 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1827 {
1828 set_task_rq(p, cpu);
1829 #ifdef CONFIG_SMP
1830 /*
1831 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1832 * successfuly executed on another CPU. We must ensure that updates of
1833 * per-task data have been completed by this moment.
1834 */
1835 smp_wmb();
1836 task_thread_info(p)->cpu = cpu;
1837 #endif
1838 }
1839
1840 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1841 const struct sched_class *prev_class,
1842 int oldprio, int running)
1843 {
1844 if (prev_class != p->sched_class) {
1845 if (prev_class->switched_from)
1846 prev_class->switched_from(rq, p, running);
1847 p->sched_class->switched_to(rq, p, running);
1848 } else
1849 p->sched_class->prio_changed(rq, p, oldprio, running);
1850 }
1851
1852 #ifdef CONFIG_SMP
1853
1854 /* Used instead of source_load when we know the type == 0 */
1855 static unsigned long weighted_cpuload(const int cpu)
1856 {
1857 return cpu_rq(cpu)->load.weight;
1858 }
1859
1860 /*
1861 * Is this task likely cache-hot:
1862 */
1863 static int
1864 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1865 {
1866 s64 delta;
1867
1868 /*
1869 * Buddy candidates are cache hot:
1870 */
1871 if (sched_feat(CACHE_HOT_BUDDY) &&
1872 (&p->se == cfs_rq_of(&p->se)->next ||
1873 &p->se == cfs_rq_of(&p->se)->last))
1874 return 1;
1875
1876 if (p->sched_class != &fair_sched_class)
1877 return 0;
1878
1879 if (sysctl_sched_migration_cost == -1)
1880 return 1;
1881 if (sysctl_sched_migration_cost == 0)
1882 return 0;
1883
1884 delta = now - p->se.exec_start;
1885
1886 return delta < (s64)sysctl_sched_migration_cost;
1887 }
1888
1889
1890 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1891 {
1892 int old_cpu = task_cpu(p);
1893 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1894 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1895 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1896 u64 clock_offset;
1897
1898 clock_offset = old_rq->clock - new_rq->clock;
1899
1900 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1901
1902 #ifdef CONFIG_SCHEDSTATS
1903 if (p->se.wait_start)
1904 p->se.wait_start -= clock_offset;
1905 if (p->se.sleep_start)
1906 p->se.sleep_start -= clock_offset;
1907 if (p->se.block_start)
1908 p->se.block_start -= clock_offset;
1909 #endif
1910 if (old_cpu != new_cpu) {
1911 p->se.nr_migrations++;
1912 new_rq->nr_migrations_in++;
1913 #ifdef CONFIG_SCHEDSTATS
1914 if (task_hot(p, old_rq->clock, NULL))
1915 schedstat_inc(p, se.nr_forced2_migrations);
1916 #endif
1917 }
1918 p->se.vruntime -= old_cfsrq->min_vruntime -
1919 new_cfsrq->min_vruntime;
1920
1921 __set_task_cpu(p, new_cpu);
1922 }
1923
1924 struct migration_req {
1925 struct list_head list;
1926
1927 struct task_struct *task;
1928 int dest_cpu;
1929
1930 struct completion done;
1931 };
1932
1933 /*
1934 * The task's runqueue lock must be held.
1935 * Returns true if you have to wait for migration thread.
1936 */
1937 static int
1938 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1939 {
1940 struct rq *rq = task_rq(p);
1941
1942 /*
1943 * If the task is not on a runqueue (and not running), then
1944 * it is sufficient to simply update the task's cpu field.
1945 */
1946 if (!p->se.on_rq && !task_running(rq, p)) {
1947 set_task_cpu(p, dest_cpu);
1948 return 0;
1949 }
1950
1951 init_completion(&req->done);
1952 req->task = p;
1953 req->dest_cpu = dest_cpu;
1954 list_add(&req->list, &rq->migration_queue);
1955
1956 return 1;
1957 }
1958
1959 /*
1960 * wait_task_inactive - wait for a thread to unschedule.
1961 *
1962 * If @match_state is nonzero, it's the @p->state value just checked and
1963 * not expected to change. If it changes, i.e. @p might have woken up,
1964 * then return zero. When we succeed in waiting for @p to be off its CPU,
1965 * we return a positive number (its total switch count). If a second call
1966 * a short while later returns the same number, the caller can be sure that
1967 * @p has remained unscheduled the whole time.
1968 *
1969 * The caller must ensure that the task *will* unschedule sometime soon,
1970 * else this function might spin for a *long* time. This function can't
1971 * be called with interrupts off, or it may introduce deadlock with
1972 * smp_call_function() if an IPI is sent by the same process we are
1973 * waiting to become inactive.
1974 */
1975 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1976 {
1977 unsigned long flags;
1978 int running, on_rq;
1979 unsigned long ncsw;
1980 struct rq *rq;
1981
1982 for (;;) {
1983 /*
1984 * We do the initial early heuristics without holding
1985 * any task-queue locks at all. We'll only try to get
1986 * the runqueue lock when things look like they will
1987 * work out!
1988 */
1989 rq = task_rq(p);
1990
1991 /*
1992 * If the task is actively running on another CPU
1993 * still, just relax and busy-wait without holding
1994 * any locks.
1995 *
1996 * NOTE! Since we don't hold any locks, it's not
1997 * even sure that "rq" stays as the right runqueue!
1998 * But we don't care, since "task_running()" will
1999 * return false if the runqueue has changed and p
2000 * is actually now running somewhere else!
2001 */
2002 while (task_running(rq, p)) {
2003 if (match_state && unlikely(p->state != match_state))
2004 return 0;
2005 cpu_relax();
2006 }
2007
2008 /*
2009 * Ok, time to look more closely! We need the rq
2010 * lock now, to be *sure*. If we're wrong, we'll
2011 * just go back and repeat.
2012 */
2013 rq = task_rq_lock(p, &flags);
2014 trace_sched_wait_task(rq, p);
2015 running = task_running(rq, p);
2016 on_rq = p->se.on_rq;
2017 ncsw = 0;
2018 if (!match_state || p->state == match_state)
2019 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2020 task_rq_unlock(rq, &flags);
2021
2022 /*
2023 * If it changed from the expected state, bail out now.
2024 */
2025 if (unlikely(!ncsw))
2026 break;
2027
2028 /*
2029 * Was it really running after all now that we
2030 * checked with the proper locks actually held?
2031 *
2032 * Oops. Go back and try again..
2033 */
2034 if (unlikely(running)) {
2035 cpu_relax();
2036 continue;
2037 }
2038
2039 /*
2040 * It's not enough that it's not actively running,
2041 * it must be off the runqueue _entirely_, and not
2042 * preempted!
2043 *
2044 * So if it wa still runnable (but just not actively
2045 * running right now), it's preempted, and we should
2046 * yield - it could be a while.
2047 */
2048 if (unlikely(on_rq)) {
2049 schedule_timeout_uninterruptible(1);
2050 continue;
2051 }
2052
2053 /*
2054 * Ahh, all good. It wasn't running, and it wasn't
2055 * runnable, which means that it will never become
2056 * running in the future either. We're all done!
2057 */
2058 break;
2059 }
2060
2061 return ncsw;
2062 }
2063
2064 /***
2065 * kick_process - kick a running thread to enter/exit the kernel
2066 * @p: the to-be-kicked thread
2067 *
2068 * Cause a process which is running on another CPU to enter
2069 * kernel-mode, without any delay. (to get signals handled.)
2070 *
2071 * NOTE: this function doesnt have to take the runqueue lock,
2072 * because all it wants to ensure is that the remote task enters
2073 * the kernel. If the IPI races and the task has been migrated
2074 * to another CPU then no harm is done and the purpose has been
2075 * achieved as well.
2076 */
2077 void kick_process(struct task_struct *p)
2078 {
2079 int cpu;
2080
2081 preempt_disable();
2082 cpu = task_cpu(p);
2083 if ((cpu != smp_processor_id()) && task_curr(p))
2084 smp_send_reschedule(cpu);
2085 preempt_enable();
2086 }
2087
2088 /*
2089 * Return a low guess at the load of a migration-source cpu weighted
2090 * according to the scheduling class and "nice" value.
2091 *
2092 * We want to under-estimate the load of migration sources, to
2093 * balance conservatively.
2094 */
2095 static unsigned long source_load(int cpu, int type)
2096 {
2097 struct rq *rq = cpu_rq(cpu);
2098 unsigned long total = weighted_cpuload(cpu);
2099
2100 if (type == 0 || !sched_feat(LB_BIAS))
2101 return total;
2102
2103 return min(rq->cpu_load[type-1], total);
2104 }
2105
2106 /*
2107 * Return a high guess at the load of a migration-target cpu weighted
2108 * according to the scheduling class and "nice" value.
2109 */
2110 static unsigned long target_load(int cpu, int type)
2111 {
2112 struct rq *rq = cpu_rq(cpu);
2113 unsigned long total = weighted_cpuload(cpu);
2114
2115 if (type == 0 || !sched_feat(LB_BIAS))
2116 return total;
2117
2118 return max(rq->cpu_load[type-1], total);
2119 }
2120
2121 /*
2122 * find_idlest_group finds and returns the least busy CPU group within the
2123 * domain.
2124 */
2125 static struct sched_group *
2126 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2127 {
2128 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2129 unsigned long min_load = ULONG_MAX, this_load = 0;
2130 int load_idx = sd->forkexec_idx;
2131 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2132
2133 do {
2134 unsigned long load, avg_load;
2135 int local_group;
2136 int i;
2137
2138 /* Skip over this group if it has no CPUs allowed */
2139 if (!cpumask_intersects(sched_group_cpus(group),
2140 &p->cpus_allowed))
2141 continue;
2142
2143 local_group = cpumask_test_cpu(this_cpu,
2144 sched_group_cpus(group));
2145
2146 /* Tally up the load of all CPUs in the group */
2147 avg_load = 0;
2148
2149 for_each_cpu(i, sched_group_cpus(group)) {
2150 /* Bias balancing toward cpus of our domain */
2151 if (local_group)
2152 load = source_load(i, load_idx);
2153 else
2154 load = target_load(i, load_idx);
2155
2156 avg_load += load;
2157 }
2158
2159 /* Adjust by relative CPU power of the group */
2160 avg_load = sg_div_cpu_power(group,
2161 avg_load * SCHED_LOAD_SCALE);
2162
2163 if (local_group) {
2164 this_load = avg_load;
2165 this = group;
2166 } else if (avg_load < min_load) {
2167 min_load = avg_load;
2168 idlest = group;
2169 }
2170 } while (group = group->next, group != sd->groups);
2171
2172 if (!idlest || 100*this_load < imbalance*min_load)
2173 return NULL;
2174 return idlest;
2175 }
2176
2177 /*
2178 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2179 */
2180 static int
2181 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2182 {
2183 unsigned long load, min_load = ULONG_MAX;
2184 int idlest = -1;
2185 int i;
2186
2187 /* Traverse only the allowed CPUs */
2188 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2189 load = weighted_cpuload(i);
2190
2191 if (load < min_load || (load == min_load && i == this_cpu)) {
2192 min_load = load;
2193 idlest = i;
2194 }
2195 }
2196
2197 return idlest;
2198 }
2199
2200 /*
2201 * sched_balance_self: balance the current task (running on cpu) in domains
2202 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2203 * SD_BALANCE_EXEC.
2204 *
2205 * Balance, ie. select the least loaded group.
2206 *
2207 * Returns the target CPU number, or the same CPU if no balancing is needed.
2208 *
2209 * preempt must be disabled.
2210 */
2211 static int sched_balance_self(int cpu, int flag)
2212 {
2213 struct task_struct *t = current;
2214 struct sched_domain *tmp, *sd = NULL;
2215
2216 for_each_domain(cpu, tmp) {
2217 /*
2218 * If power savings logic is enabled for a domain, stop there.
2219 */
2220 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2221 break;
2222 if (tmp->flags & flag)
2223 sd = tmp;
2224 }
2225
2226 if (sd)
2227 update_shares(sd);
2228
2229 while (sd) {
2230 struct sched_group *group;
2231 int new_cpu, weight;
2232
2233 if (!(sd->flags & flag)) {
2234 sd = sd->child;
2235 continue;
2236 }
2237
2238 group = find_idlest_group(sd, t, cpu);
2239 if (!group) {
2240 sd = sd->child;
2241 continue;
2242 }
2243
2244 new_cpu = find_idlest_cpu(group, t, cpu);
2245 if (new_cpu == -1 || new_cpu == cpu) {
2246 /* Now try balancing at a lower domain level of cpu */
2247 sd = sd->child;
2248 continue;
2249 }
2250
2251 /* Now try balancing at a lower domain level of new_cpu */
2252 cpu = new_cpu;
2253 weight = cpumask_weight(sched_domain_span(sd));
2254 sd = NULL;
2255 for_each_domain(cpu, tmp) {
2256 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2257 break;
2258 if (tmp->flags & flag)
2259 sd = tmp;
2260 }
2261 /* while loop will break here if sd == NULL */
2262 }
2263
2264 return cpu;
2265 }
2266
2267 #endif /* CONFIG_SMP */
2268
2269 /**
2270 * task_oncpu_function_call - call a function on the cpu on which a task runs
2271 * @p: the task to evaluate
2272 * @func: the function to be called
2273 * @info: the function call argument
2274 *
2275 * Calls the function @func when the task is currently running. This might
2276 * be on the current CPU, which just calls the function directly
2277 */
2278 void task_oncpu_function_call(struct task_struct *p,
2279 void (*func) (void *info), void *info)
2280 {
2281 int cpu;
2282
2283 preempt_disable();
2284 cpu = task_cpu(p);
2285 if (task_curr(p))
2286 smp_call_function_single(cpu, func, info, 1);
2287 preempt_enable();
2288 }
2289
2290 /***
2291 * try_to_wake_up - wake up a thread
2292 * @p: the to-be-woken-up thread
2293 * @state: the mask of task states that can be woken
2294 * @sync: do a synchronous wakeup?
2295 *
2296 * Put it on the run-queue if it's not already there. The "current"
2297 * thread is always on the run-queue (except when the actual
2298 * re-schedule is in progress), and as such you're allowed to do
2299 * the simpler "current->state = TASK_RUNNING" to mark yourself
2300 * runnable without the overhead of this.
2301 *
2302 * returns failure only if the task is already active.
2303 */
2304 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2305 {
2306 int cpu, orig_cpu, this_cpu, success = 0;
2307 unsigned long flags;
2308 long old_state;
2309 struct rq *rq;
2310
2311 if (!sched_feat(SYNC_WAKEUPS))
2312 sync = 0;
2313
2314 #ifdef CONFIG_SMP
2315 if (sched_feat(LB_WAKEUP_UPDATE)) {
2316 struct sched_domain *sd;
2317
2318 this_cpu = raw_smp_processor_id();
2319 cpu = task_cpu(p);
2320
2321 for_each_domain(this_cpu, sd) {
2322 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2323 update_shares(sd);
2324 break;
2325 }
2326 }
2327 }
2328 #endif
2329
2330 smp_wmb();
2331 rq = task_rq_lock(p, &flags);
2332 update_rq_clock(rq);
2333 old_state = p->state;
2334 if (!(old_state & state))
2335 goto out;
2336
2337 if (p->se.on_rq)
2338 goto out_running;
2339
2340 cpu = task_cpu(p);
2341 orig_cpu = cpu;
2342 this_cpu = smp_processor_id();
2343
2344 #ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2347
2348 cpu = p->sched_class->select_task_rq(p, sync);
2349 if (cpu != orig_cpu) {
2350 set_task_cpu(p, cpu);
2351 task_rq_unlock(rq, &flags);
2352 /* might preempt at this point */
2353 rq = task_rq_lock(p, &flags);
2354 old_state = p->state;
2355 if (!(old_state & state))
2356 goto out;
2357 if (p->se.on_rq)
2358 goto out_running;
2359
2360 this_cpu = smp_processor_id();
2361 cpu = task_cpu(p);
2362 }
2363
2364 #ifdef CONFIG_SCHEDSTATS
2365 schedstat_inc(rq, ttwu_count);
2366 if (cpu == this_cpu)
2367 schedstat_inc(rq, ttwu_local);
2368 else {
2369 struct sched_domain *sd;
2370 for_each_domain(this_cpu, sd) {
2371 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2372 schedstat_inc(sd, ttwu_wake_remote);
2373 break;
2374 }
2375 }
2376 }
2377 #endif /* CONFIG_SCHEDSTATS */
2378
2379 out_activate:
2380 #endif /* CONFIG_SMP */
2381 schedstat_inc(p, se.nr_wakeups);
2382 if (sync)
2383 schedstat_inc(p, se.nr_wakeups_sync);
2384 if (orig_cpu != cpu)
2385 schedstat_inc(p, se.nr_wakeups_migrate);
2386 if (cpu == this_cpu)
2387 schedstat_inc(p, se.nr_wakeups_local);
2388 else
2389 schedstat_inc(p, se.nr_wakeups_remote);
2390 activate_task(rq, p, 1);
2391 success = 1;
2392
2393 out_running:
2394 trace_sched_wakeup(rq, p, success);
2395 check_preempt_curr(rq, p, sync);
2396
2397 p->state = TASK_RUNNING;
2398 #ifdef CONFIG_SMP
2399 if (p->sched_class->task_wake_up)
2400 p->sched_class->task_wake_up(rq, p);
2401 #endif
2402 out:
2403 current->se.last_wakeup = current->se.sum_exec_runtime;
2404
2405 task_rq_unlock(rq, &flags);
2406
2407 return success;
2408 }
2409
2410 int wake_up_process(struct task_struct *p)
2411 {
2412 return try_to_wake_up(p, TASK_ALL, 0);
2413 }
2414 EXPORT_SYMBOL(wake_up_process);
2415
2416 int wake_up_state(struct task_struct *p, unsigned int state)
2417 {
2418 return try_to_wake_up(p, state, 0);
2419 }
2420
2421 /*
2422 * Perform scheduler related setup for a newly forked process p.
2423 * p is forked by current.
2424 *
2425 * __sched_fork() is basic setup used by init_idle() too:
2426 */
2427 static void __sched_fork(struct task_struct *p)
2428 {
2429 p->se.exec_start = 0;
2430 p->se.sum_exec_runtime = 0;
2431 p->se.prev_sum_exec_runtime = 0;
2432 p->se.nr_migrations = 0;
2433 p->se.last_wakeup = 0;
2434 p->se.avg_overlap = 0;
2435
2436 #ifdef CONFIG_SCHEDSTATS
2437 p->se.wait_start = 0;
2438 p->se.sum_sleep_runtime = 0;
2439 p->se.sleep_start = 0;
2440 p->se.block_start = 0;
2441 p->se.sleep_max = 0;
2442 p->se.block_max = 0;
2443 p->se.exec_max = 0;
2444 p->se.slice_max = 0;
2445 p->se.wait_max = 0;
2446 #endif
2447
2448 INIT_LIST_HEAD(&p->rt.run_list);
2449 p->se.on_rq = 0;
2450 INIT_LIST_HEAD(&p->se.group_node);
2451
2452 #ifdef CONFIG_PREEMPT_NOTIFIERS
2453 INIT_HLIST_HEAD(&p->preempt_notifiers);
2454 #endif
2455
2456 /*
2457 * We mark the process as running here, but have not actually
2458 * inserted it onto the runqueue yet. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
2462 p->state = TASK_RUNNING;
2463 }
2464
2465 /*
2466 * fork()/clone()-time setup:
2467 */
2468 void sched_fork(struct task_struct *p, int clone_flags)
2469 {
2470 int cpu = get_cpu();
2471
2472 __sched_fork(p);
2473
2474 #ifdef CONFIG_SMP
2475 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2476 #endif
2477 set_task_cpu(p, cpu);
2478
2479 /*
2480 * Make sure we do not leak PI boosting priority to the child:
2481 */
2482 p->prio = current->normal_prio;
2483 if (!rt_prio(p->prio))
2484 p->sched_class = &fair_sched_class;
2485
2486 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2487 if (likely(sched_info_on()))
2488 memset(&p->sched_info, 0, sizeof(p->sched_info));
2489 #endif
2490 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2491 p->oncpu = 0;
2492 #endif
2493 #ifdef CONFIG_PREEMPT
2494 /* Want to start with kernel preemption disabled. */
2495 task_thread_info(p)->preempt_count = 1;
2496 #endif
2497 put_cpu();
2498 }
2499
2500 /*
2501 * wake_up_new_task - wake up a newly created task for the first time.
2502 *
2503 * This function will do some initial scheduler statistics housekeeping
2504 * that must be done for every newly created context, then puts the task
2505 * on the runqueue and wakes it.
2506 */
2507 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2508 {
2509 unsigned long flags;
2510 struct rq *rq;
2511
2512 rq = task_rq_lock(p, &flags);
2513 BUG_ON(p->state != TASK_RUNNING);
2514 update_rq_clock(rq);
2515
2516 p->prio = effective_prio(p);
2517
2518 if (!p->sched_class->task_new || !current->se.on_rq) {
2519 activate_task(rq, p, 0);
2520 } else {
2521 /*
2522 * Let the scheduling class do new task startup
2523 * management (if any):
2524 */
2525 p->sched_class->task_new(rq, p);
2526 inc_nr_running(rq);
2527 }
2528 trace_sched_wakeup_new(rq, p, 1);
2529 check_preempt_curr(rq, p, 0);
2530 #ifdef CONFIG_SMP
2531 if (p->sched_class->task_wake_up)
2532 p->sched_class->task_wake_up(rq, p);
2533 #endif
2534 task_rq_unlock(rq, &flags);
2535 }
2536
2537 #ifdef CONFIG_PREEMPT_NOTIFIERS
2538
2539 /**
2540 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2541 * @notifier: notifier struct to register
2542 */
2543 void preempt_notifier_register(struct preempt_notifier *notifier)
2544 {
2545 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2546 }
2547 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2548
2549 /**
2550 * preempt_notifier_unregister - no longer interested in preemption notifications
2551 * @notifier: notifier struct to unregister
2552 *
2553 * This is safe to call from within a preemption notifier.
2554 */
2555 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2556 {
2557 hlist_del(&notifier->link);
2558 }
2559 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2560
2561 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 {
2563 struct preempt_notifier *notifier;
2564 struct hlist_node *node;
2565
2566 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2567 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2568 }
2569
2570 static void
2571 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2572 struct task_struct *next)
2573 {
2574 struct preempt_notifier *notifier;
2575 struct hlist_node *node;
2576
2577 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2578 notifier->ops->sched_out(notifier, next);
2579 }
2580
2581 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2582
2583 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 }
2586
2587 static void
2588 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2589 struct task_struct *next)
2590 {
2591 }
2592
2593 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2594
2595 /**
2596 * prepare_task_switch - prepare to switch tasks
2597 * @rq: the runqueue preparing to switch
2598 * @prev: the current task that is being switched out
2599 * @next: the task we are going to switch to.
2600 *
2601 * This is called with the rq lock held and interrupts off. It must
2602 * be paired with a subsequent finish_task_switch after the context
2603 * switch.
2604 *
2605 * prepare_task_switch sets up locking and calls architecture specific
2606 * hooks.
2607 */
2608 static inline void
2609 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2610 struct task_struct *next)
2611 {
2612 fire_sched_out_preempt_notifiers(prev, next);
2613 prepare_lock_switch(rq, next);
2614 prepare_arch_switch(next);
2615 }
2616
2617 /**
2618 * finish_task_switch - clean up after a task-switch
2619 * @rq: runqueue associated with task-switch
2620 * @prev: the thread we just switched away from.
2621 *
2622 * finish_task_switch must be called after the context switch, paired
2623 * with a prepare_task_switch call before the context switch.
2624 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2625 * and do any other architecture-specific cleanup actions.
2626 *
2627 * Note that we may have delayed dropping an mm in context_switch(). If
2628 * so, we finish that here outside of the runqueue lock. (Doing it
2629 * with the lock held can cause deadlocks; see schedule() for
2630 * details.)
2631 */
2632 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2633 __releases(rq->lock)
2634 {
2635 struct mm_struct *mm = rq->prev_mm;
2636 long prev_state;
2637
2638 rq->prev_mm = NULL;
2639
2640 /*
2641 * A task struct has one reference for the use as "current".
2642 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2643 * schedule one last time. The schedule call will never return, and
2644 * the scheduled task must drop that reference.
2645 * The test for TASK_DEAD must occur while the runqueue locks are
2646 * still held, otherwise prev could be scheduled on another cpu, die
2647 * there before we look at prev->state, and then the reference would
2648 * be dropped twice.
2649 * Manfred Spraul <manfred@colorfullife.com>
2650 */
2651 prev_state = prev->state;
2652 finish_arch_switch(prev);
2653 perf_counter_task_sched_in(current, cpu_of(rq));
2654 finish_lock_switch(rq, prev);
2655 #ifdef CONFIG_SMP
2656 if (current->sched_class->post_schedule)
2657 current->sched_class->post_schedule(rq);
2658 #endif
2659
2660 fire_sched_in_preempt_notifiers(current);
2661 if (mm)
2662 mmdrop(mm);
2663 if (unlikely(prev_state == TASK_DEAD)) {
2664 /*
2665 * Remove function-return probe instances associated with this
2666 * task and put them back on the free list.
2667 */
2668 kprobe_flush_task(prev);
2669 put_task_struct(prev);
2670 }
2671 }
2672
2673 /**
2674 * schedule_tail - first thing a freshly forked thread must call.
2675 * @prev: the thread we just switched away from.
2676 */
2677 asmlinkage void schedule_tail(struct task_struct *prev)
2678 __releases(rq->lock)
2679 {
2680 struct rq *rq = this_rq();
2681
2682 finish_task_switch(rq, prev);
2683 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2684 /* In this case, finish_task_switch does not reenable preemption */
2685 preempt_enable();
2686 #endif
2687 if (current->set_child_tid)
2688 put_user(task_pid_vnr(current), current->set_child_tid);
2689 }
2690
2691 /*
2692 * context_switch - switch to the new MM and the new
2693 * thread's register state.
2694 */
2695 static inline void
2696 context_switch(struct rq *rq, struct task_struct *prev,
2697 struct task_struct *next)
2698 {
2699 struct mm_struct *mm, *oldmm;
2700
2701 prepare_task_switch(rq, prev, next);
2702 trace_sched_switch(rq, prev, next);
2703 mm = next->mm;
2704 oldmm = prev->active_mm;
2705 /*
2706 * For paravirt, this is coupled with an exit in switch_to to
2707 * combine the page table reload and the switch backend into
2708 * one hypercall.
2709 */
2710 arch_enter_lazy_cpu_mode();
2711
2712 if (unlikely(!mm)) {
2713 next->active_mm = oldmm;
2714 atomic_inc(&oldmm->mm_count);
2715 enter_lazy_tlb(oldmm, next);
2716 } else
2717 switch_mm(oldmm, mm, next);
2718
2719 if (unlikely(!prev->mm)) {
2720 prev->active_mm = NULL;
2721 rq->prev_mm = oldmm;
2722 }
2723 /*
2724 * Since the runqueue lock will be released by the next
2725 * task (which is an invalid locking op but in the case
2726 * of the scheduler it's an obvious special-case), so we
2727 * do an early lockdep release here:
2728 */
2729 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2730 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2731 #endif
2732
2733 /* Here we just switch the register state and the stack. */
2734 switch_to(prev, next, prev);
2735
2736 barrier();
2737 /*
2738 * this_rq must be evaluated again because prev may have moved
2739 * CPUs since it called schedule(), thus the 'rq' on its stack
2740 * frame will be invalid.
2741 */
2742 finish_task_switch(this_rq(), prev);
2743 }
2744
2745 /*
2746 * nr_running, nr_uninterruptible and nr_context_switches:
2747 *
2748 * externally visible scheduler statistics: current number of runnable
2749 * threads, current number of uninterruptible-sleeping threads, total
2750 * number of context switches performed since bootup.
2751 */
2752 unsigned long nr_running(void)
2753 {
2754 unsigned long i, sum = 0;
2755
2756 for_each_online_cpu(i)
2757 sum += cpu_rq(i)->nr_running;
2758
2759 return sum;
2760 }
2761
2762 unsigned long nr_uninterruptible(void)
2763 {
2764 unsigned long i, sum = 0;
2765
2766 for_each_possible_cpu(i)
2767 sum += cpu_rq(i)->nr_uninterruptible;
2768
2769 /*
2770 * Since we read the counters lockless, it might be slightly
2771 * inaccurate. Do not allow it to go below zero though:
2772 */
2773 if (unlikely((long)sum < 0))
2774 sum = 0;
2775
2776 return sum;
2777 }
2778
2779 unsigned long long nr_context_switches(void)
2780 {
2781 int i;
2782 unsigned long long sum = 0;
2783
2784 for_each_possible_cpu(i)
2785 sum += cpu_rq(i)->nr_switches;
2786
2787 return sum;
2788 }
2789
2790 unsigned long nr_iowait(void)
2791 {
2792 unsigned long i, sum = 0;
2793
2794 for_each_possible_cpu(i)
2795 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2796
2797 return sum;
2798 }
2799
2800 unsigned long nr_active(void)
2801 {
2802 unsigned long i, running = 0, uninterruptible = 0;
2803
2804 for_each_online_cpu(i) {
2805 running += cpu_rq(i)->nr_running;
2806 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2807 }
2808
2809 if (unlikely((long)uninterruptible < 0))
2810 uninterruptible = 0;
2811
2812 return running + uninterruptible;
2813 }
2814
2815 /*
2816 * Externally visible per-cpu scheduler statistics:
2817 * cpu_nr_switches(cpu) - number of context switches on that cpu
2818 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2819 */
2820 u64 cpu_nr_switches(int cpu)
2821 {
2822 return cpu_rq(cpu)->nr_switches;
2823 }
2824
2825 u64 cpu_nr_migrations(int cpu)
2826 {
2827 return cpu_rq(cpu)->nr_migrations_in;
2828 }
2829
2830 /*
2831 * Update rq->cpu_load[] statistics. This function is usually called every
2832 * scheduler tick (TICK_NSEC).
2833 */
2834 static void update_cpu_load(struct rq *this_rq)
2835 {
2836 unsigned long this_load = this_rq->load.weight;
2837 int i, scale;
2838
2839 this_rq->nr_load_updates++;
2840
2841 /* Update our load: */
2842 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2843 unsigned long old_load, new_load;
2844
2845 /* scale is effectively 1 << i now, and >> i divides by scale */
2846
2847 old_load = this_rq->cpu_load[i];
2848 new_load = this_load;
2849 /*
2850 * Round up the averaging division if load is increasing. This
2851 * prevents us from getting stuck on 9 if the load is 10, for
2852 * example.
2853 */
2854 if (new_load > old_load)
2855 new_load += scale-1;
2856 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2857 }
2858 }
2859
2860 #ifdef CONFIG_SMP
2861
2862 /*
2863 * double_rq_lock - safely lock two runqueues
2864 *
2865 * Note this does not disable interrupts like task_rq_lock,
2866 * you need to do so manually before calling.
2867 */
2868 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2869 __acquires(rq1->lock)
2870 __acquires(rq2->lock)
2871 {
2872 BUG_ON(!irqs_disabled());
2873 if (rq1 == rq2) {
2874 spin_lock(&rq1->lock);
2875 __acquire(rq2->lock); /* Fake it out ;) */
2876 } else {
2877 if (rq1 < rq2) {
2878 spin_lock(&rq1->lock);
2879 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2880 } else {
2881 spin_lock(&rq2->lock);
2882 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2883 }
2884 }
2885 update_rq_clock(rq1);
2886 update_rq_clock(rq2);
2887 }
2888
2889 /*
2890 * double_rq_unlock - safely unlock two runqueues
2891 *
2892 * Note this does not restore interrupts like task_rq_unlock,
2893 * you need to do so manually after calling.
2894 */
2895 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2896 __releases(rq1->lock)
2897 __releases(rq2->lock)
2898 {
2899 spin_unlock(&rq1->lock);
2900 if (rq1 != rq2)
2901 spin_unlock(&rq2->lock);
2902 else
2903 __release(rq2->lock);
2904 }
2905
2906 /*
2907 * If dest_cpu is allowed for this process, migrate the task to it.
2908 * This is accomplished by forcing the cpu_allowed mask to only
2909 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2910 * the cpu_allowed mask is restored.
2911 */
2912 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2913 {
2914 struct migration_req req;
2915 unsigned long flags;
2916 struct rq *rq;
2917
2918 rq = task_rq_lock(p, &flags);
2919 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2920 || unlikely(!cpu_active(dest_cpu)))
2921 goto out;
2922
2923 /* force the process onto the specified CPU */
2924 if (migrate_task(p, dest_cpu, &req)) {
2925 /* Need to wait for migration thread (might exit: take ref). */
2926 struct task_struct *mt = rq->migration_thread;
2927
2928 get_task_struct(mt);
2929 task_rq_unlock(rq, &flags);
2930 wake_up_process(mt);
2931 put_task_struct(mt);
2932 wait_for_completion(&req.done);
2933
2934 return;
2935 }
2936 out:
2937 task_rq_unlock(rq, &flags);
2938 }
2939
2940 /*
2941 * sched_exec - execve() is a valuable balancing opportunity, because at
2942 * this point the task has the smallest effective memory and cache footprint.
2943 */
2944 void sched_exec(void)
2945 {
2946 int new_cpu, this_cpu = get_cpu();
2947 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2948 put_cpu();
2949 if (new_cpu != this_cpu)
2950 sched_migrate_task(current, new_cpu);
2951 }
2952
2953 /*
2954 * pull_task - move a task from a remote runqueue to the local runqueue.
2955 * Both runqueues must be locked.
2956 */
2957 static void pull_task(struct rq *src_rq, struct task_struct *p,
2958 struct rq *this_rq, int this_cpu)
2959 {
2960 deactivate_task(src_rq, p, 0);
2961 set_task_cpu(p, this_cpu);
2962 activate_task(this_rq, p, 0);
2963 /*
2964 * Note that idle threads have a prio of MAX_PRIO, for this test
2965 * to be always true for them.
2966 */
2967 check_preempt_curr(this_rq, p, 0);
2968 }
2969
2970 /*
2971 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2972 */
2973 static
2974 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2975 struct sched_domain *sd, enum cpu_idle_type idle,
2976 int *all_pinned)
2977 {
2978 /*
2979 * We do not migrate tasks that are:
2980 * 1) running (obviously), or
2981 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2982 * 3) are cache-hot on their current CPU.
2983 */
2984 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2985 schedstat_inc(p, se.nr_failed_migrations_affine);
2986 return 0;
2987 }
2988 *all_pinned = 0;
2989
2990 if (task_running(rq, p)) {
2991 schedstat_inc(p, se.nr_failed_migrations_running);
2992 return 0;
2993 }
2994
2995 /*
2996 * Aggressive migration if:
2997 * 1) task is cache cold, or
2998 * 2) too many balance attempts have failed.
2999 */
3000
3001 if (!task_hot(p, rq->clock, sd) ||
3002 sd->nr_balance_failed > sd->cache_nice_tries) {
3003 #ifdef CONFIG_SCHEDSTATS
3004 if (task_hot(p, rq->clock, sd)) {
3005 schedstat_inc(sd, lb_hot_gained[idle]);
3006 schedstat_inc(p, se.nr_forced_migrations);
3007 }
3008 #endif
3009 return 1;
3010 }
3011
3012 if (task_hot(p, rq->clock, sd)) {
3013 schedstat_inc(p, se.nr_failed_migrations_hot);
3014 return 0;
3015 }
3016 return 1;
3017 }
3018
3019 static unsigned long
3020 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3021 unsigned long max_load_move, struct sched_domain *sd,
3022 enum cpu_idle_type idle, int *all_pinned,
3023 int *this_best_prio, struct rq_iterator *iterator)
3024 {
3025 int loops = 0, pulled = 0, pinned = 0;
3026 struct task_struct *p;
3027 long rem_load_move = max_load_move;
3028
3029 if (max_load_move == 0)
3030 goto out;
3031
3032 pinned = 1;
3033
3034 /*
3035 * Start the load-balancing iterator:
3036 */
3037 p = iterator->start(iterator->arg);
3038 next:
3039 if (!p || loops++ > sysctl_sched_nr_migrate)
3040 goto out;
3041
3042 if ((p->se.load.weight >> 1) > rem_load_move ||
3043 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3044 p = iterator->next(iterator->arg);
3045 goto next;
3046 }
3047
3048 pull_task(busiest, p, this_rq, this_cpu);
3049 pulled++;
3050 rem_load_move -= p->se.load.weight;
3051
3052 /*
3053 * We only want to steal up to the prescribed amount of weighted load.
3054 */
3055 if (rem_load_move > 0) {
3056 if (p->prio < *this_best_prio)
3057 *this_best_prio = p->prio;
3058 p = iterator->next(iterator->arg);
3059 goto next;
3060 }
3061 out:
3062 /*
3063 * Right now, this is one of only two places pull_task() is called,
3064 * so we can safely collect pull_task() stats here rather than
3065 * inside pull_task().
3066 */
3067 schedstat_add(sd, lb_gained[idle], pulled);
3068
3069 if (all_pinned)
3070 *all_pinned = pinned;
3071
3072 return max_load_move - rem_load_move;
3073 }
3074
3075 /*
3076 * move_tasks tries to move up to max_load_move weighted load from busiest to
3077 * this_rq, as part of a balancing operation within domain "sd".
3078 * Returns 1 if successful and 0 otherwise.
3079 *
3080 * Called with both runqueues locked.
3081 */
3082 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3083 unsigned long max_load_move,
3084 struct sched_domain *sd, enum cpu_idle_type idle,
3085 int *all_pinned)
3086 {
3087 const struct sched_class *class = sched_class_highest;
3088 unsigned long total_load_moved = 0;
3089 int this_best_prio = this_rq->curr->prio;
3090
3091 do {
3092 total_load_moved +=
3093 class->load_balance(this_rq, this_cpu, busiest,
3094 max_load_move - total_load_moved,
3095 sd, idle, all_pinned, &this_best_prio);
3096 class = class->next;
3097
3098 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3099 break;
3100
3101 } while (class && max_load_move > total_load_moved);
3102
3103 return total_load_moved > 0;
3104 }
3105
3106 static int
3107 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3108 struct sched_domain *sd, enum cpu_idle_type idle,
3109 struct rq_iterator *iterator)
3110 {
3111 struct task_struct *p = iterator->start(iterator->arg);
3112 int pinned = 0;
3113
3114 while (p) {
3115 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3116 pull_task(busiest, p, this_rq, this_cpu);
3117 /*
3118 * Right now, this is only the second place pull_task()
3119 * is called, so we can safely collect pull_task()
3120 * stats here rather than inside pull_task().
3121 */
3122 schedstat_inc(sd, lb_gained[idle]);
3123
3124 return 1;
3125 }
3126 p = iterator->next(iterator->arg);
3127 }
3128
3129 return 0;
3130 }
3131
3132 /*
3133 * move_one_task tries to move exactly one task from busiest to this_rq, as
3134 * part of active balancing operations within "domain".
3135 * Returns 1 if successful and 0 otherwise.
3136 *
3137 * Called with both runqueues locked.
3138 */
3139 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3140 struct sched_domain *sd, enum cpu_idle_type idle)
3141 {
3142 const struct sched_class *class;
3143
3144 for (class = sched_class_highest; class; class = class->next)
3145 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3146 return 1;
3147
3148 return 0;
3149 }
3150
3151 /*
3152 * find_busiest_group finds and returns the busiest CPU group within the
3153 * domain. It calculates and returns the amount of weighted load which
3154 * should be moved to restore balance via the imbalance parameter.
3155 */
3156 static struct sched_group *
3157 find_busiest_group(struct sched_domain *sd, int this_cpu,
3158 unsigned long *imbalance, enum cpu_idle_type idle,
3159 int *sd_idle, const struct cpumask *cpus, int *balance)
3160 {
3161 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3162 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3163 unsigned long max_pull;
3164 unsigned long busiest_load_per_task, busiest_nr_running;
3165 unsigned long this_load_per_task, this_nr_running;
3166 int load_idx, group_imb = 0;
3167 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3168 int power_savings_balance = 1;
3169 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3170 unsigned long min_nr_running = ULONG_MAX;
3171 struct sched_group *group_min = NULL, *group_leader = NULL;
3172 #endif
3173
3174 max_load = this_load = total_load = total_pwr = 0;
3175 busiest_load_per_task = busiest_nr_running = 0;
3176 this_load_per_task = this_nr_running = 0;
3177
3178 if (idle == CPU_NOT_IDLE)
3179 load_idx = sd->busy_idx;
3180 else if (idle == CPU_NEWLY_IDLE)
3181 load_idx = sd->newidle_idx;
3182 else
3183 load_idx = sd->idle_idx;
3184
3185 do {
3186 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3187 int local_group;
3188 int i;
3189 int __group_imb = 0;
3190 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3191 unsigned long sum_nr_running, sum_weighted_load;
3192 unsigned long sum_avg_load_per_task;
3193 unsigned long avg_load_per_task;
3194
3195 local_group = cpumask_test_cpu(this_cpu,
3196 sched_group_cpus(group));
3197
3198 if (local_group)
3199 balance_cpu = cpumask_first(sched_group_cpus(group));
3200
3201 /* Tally up the load of all CPUs in the group */
3202 sum_weighted_load = sum_nr_running = avg_load = 0;
3203 sum_avg_load_per_task = avg_load_per_task = 0;
3204
3205 max_cpu_load = 0;
3206 min_cpu_load = ~0UL;
3207
3208 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3209 struct rq *rq = cpu_rq(i);
3210
3211 if (*sd_idle && rq->nr_running)
3212 *sd_idle = 0;
3213
3214 /* Bias balancing toward cpus of our domain */
3215 if (local_group) {
3216 if (idle_cpu(i) && !first_idle_cpu) {
3217 first_idle_cpu = 1;
3218 balance_cpu = i;
3219 }
3220
3221 load = target_load(i, load_idx);
3222 } else {
3223 load = source_load(i, load_idx);
3224 if (load > max_cpu_load)
3225 max_cpu_load = load;
3226 if (min_cpu_load > load)
3227 min_cpu_load = load;
3228 }
3229
3230 avg_load += load;
3231 sum_nr_running += rq->nr_running;
3232 sum_weighted_load += weighted_cpuload(i);
3233
3234 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3235 }
3236
3237 /*
3238 * First idle cpu or the first cpu(busiest) in this sched group
3239 * is eligible for doing load balancing at this and above
3240 * domains. In the newly idle case, we will allow all the cpu's
3241 * to do the newly idle load balance.
3242 */
3243 if (idle != CPU_NEWLY_IDLE && local_group &&
3244 balance_cpu != this_cpu && balance) {
3245 *balance = 0;
3246 goto ret;
3247 }
3248
3249 total_load += avg_load;
3250 total_pwr += group->__cpu_power;
3251
3252 /* Adjust by relative CPU power of the group */
3253 avg_load = sg_div_cpu_power(group,
3254 avg_load * SCHED_LOAD_SCALE);
3255
3256
3257 /*
3258 * Consider the group unbalanced when the imbalance is larger
3259 * than the average weight of two tasks.
3260 *
3261 * APZ: with cgroup the avg task weight can vary wildly and
3262 * might not be a suitable number - should we keep a
3263 * normalized nr_running number somewhere that negates
3264 * the hierarchy?
3265 */
3266 avg_load_per_task = sg_div_cpu_power(group,
3267 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3268
3269 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3270 __group_imb = 1;
3271
3272 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3273
3274 if (local_group) {
3275 this_load = avg_load;
3276 this = group;
3277 this_nr_running = sum_nr_running;
3278 this_load_per_task = sum_weighted_load;
3279 } else if (avg_load > max_load &&
3280 (sum_nr_running > group_capacity || __group_imb)) {
3281 max_load = avg_load;
3282 busiest = group;
3283 busiest_nr_running = sum_nr_running;
3284 busiest_load_per_task = sum_weighted_load;
3285 group_imb = __group_imb;
3286 }
3287
3288 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3289 /*
3290 * Busy processors will not participate in power savings
3291 * balance.
3292 */
3293 if (idle == CPU_NOT_IDLE ||
3294 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3295 goto group_next;
3296
3297 /*
3298 * If the local group is idle or completely loaded
3299 * no need to do power savings balance at this domain
3300 */
3301 if (local_group && (this_nr_running >= group_capacity ||
3302 !this_nr_running))
3303 power_savings_balance = 0;
3304
3305 /*
3306 * If a group is already running at full capacity or idle,
3307 * don't include that group in power savings calculations
3308 */
3309 if (!power_savings_balance || sum_nr_running >= group_capacity
3310 || !sum_nr_running)
3311 goto group_next;
3312
3313 /*
3314 * Calculate the group which has the least non-idle load.
3315 * This is the group from where we need to pick up the load
3316 * for saving power
3317 */
3318 if ((sum_nr_running < min_nr_running) ||
3319 (sum_nr_running == min_nr_running &&
3320 cpumask_first(sched_group_cpus(group)) >
3321 cpumask_first(sched_group_cpus(group_min)))) {
3322 group_min = group;
3323 min_nr_running = sum_nr_running;
3324 min_load_per_task = sum_weighted_load /
3325 sum_nr_running;
3326 }
3327
3328 /*
3329 * Calculate the group which is almost near its
3330 * capacity but still has some space to pick up some load
3331 * from other group and save more power
3332 */
3333 if (sum_nr_running <= group_capacity - 1) {
3334 if (sum_nr_running > leader_nr_running ||
3335 (sum_nr_running == leader_nr_running &&
3336 cpumask_first(sched_group_cpus(group)) <
3337 cpumask_first(sched_group_cpus(group_leader)))) {
3338 group_leader = group;
3339 leader_nr_running = sum_nr_running;
3340 }
3341 }
3342 group_next:
3343 #endif
3344 group = group->next;
3345 } while (group != sd->groups);
3346
3347 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3348 goto out_balanced;
3349
3350 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3351
3352 if (this_load >= avg_load ||
3353 100*max_load <= sd->imbalance_pct*this_load)
3354 goto out_balanced;
3355
3356 busiest_load_per_task /= busiest_nr_running;
3357 if (group_imb)
3358 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3359
3360 /*
3361 * We're trying to get all the cpus to the average_load, so we don't
3362 * want to push ourselves above the average load, nor do we wish to
3363 * reduce the max loaded cpu below the average load, as either of these
3364 * actions would just result in more rebalancing later, and ping-pong
3365 * tasks around. Thus we look for the minimum possible imbalance.
3366 * Negative imbalances (*we* are more loaded than anyone else) will
3367 * be counted as no imbalance for these purposes -- we can't fix that
3368 * by pulling tasks to us. Be careful of negative numbers as they'll
3369 * appear as very large values with unsigned longs.
3370 */
3371 if (max_load <= busiest_load_per_task)
3372 goto out_balanced;
3373
3374 /*
3375 * In the presence of smp nice balancing, certain scenarios can have
3376 * max load less than avg load(as we skip the groups at or below
3377 * its cpu_power, while calculating max_load..)
3378 */
3379 if (max_load < avg_load) {
3380 *imbalance = 0;
3381 goto small_imbalance;
3382 }
3383
3384 /* Don't want to pull so many tasks that a group would go idle */
3385 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3386
3387 /* How much load to actually move to equalise the imbalance */
3388 *imbalance = min(max_pull * busiest->__cpu_power,
3389 (avg_load - this_load) * this->__cpu_power)
3390 / SCHED_LOAD_SCALE;
3391
3392 /*
3393 * if *imbalance is less than the average load per runnable task
3394 * there is no gaurantee that any tasks will be moved so we'll have
3395 * a think about bumping its value to force at least one task to be
3396 * moved
3397 */
3398 if (*imbalance < busiest_load_per_task) {
3399 unsigned long tmp, pwr_now, pwr_move;
3400 unsigned int imbn;
3401
3402 small_imbalance:
3403 pwr_move = pwr_now = 0;
3404 imbn = 2;
3405 if (this_nr_running) {
3406 this_load_per_task /= this_nr_running;
3407 if (busiest_load_per_task > this_load_per_task)
3408 imbn = 1;
3409 } else
3410 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3411
3412 if (max_load - this_load + busiest_load_per_task >=
3413 busiest_load_per_task * imbn) {
3414 *imbalance = busiest_load_per_task;
3415 return busiest;
3416 }
3417
3418 /*
3419 * OK, we don't have enough imbalance to justify moving tasks,
3420 * however we may be able to increase total CPU power used by
3421 * moving them.
3422 */
3423
3424 pwr_now += busiest->__cpu_power *
3425 min(busiest_load_per_task, max_load);
3426 pwr_now += this->__cpu_power *
3427 min(this_load_per_task, this_load);
3428 pwr_now /= SCHED_LOAD_SCALE;
3429
3430 /* Amount of load we'd subtract */
3431 tmp = sg_div_cpu_power(busiest,
3432 busiest_load_per_task * SCHED_LOAD_SCALE);
3433 if (max_load > tmp)
3434 pwr_move += busiest->__cpu_power *
3435 min(busiest_load_per_task, max_load - tmp);
3436
3437 /* Amount of load we'd add */
3438 if (max_load * busiest->__cpu_power <
3439 busiest_load_per_task * SCHED_LOAD_SCALE)
3440 tmp = sg_div_cpu_power(this,
3441 max_load * busiest->__cpu_power);
3442 else
3443 tmp = sg_div_cpu_power(this,
3444 busiest_load_per_task * SCHED_LOAD_SCALE);
3445 pwr_move += this->__cpu_power *
3446 min(this_load_per_task, this_load + tmp);
3447 pwr_move /= SCHED_LOAD_SCALE;
3448
3449 /* Move if we gain throughput */
3450 if (pwr_move > pwr_now)
3451 *imbalance = busiest_load_per_task;
3452 }
3453
3454 return busiest;
3455
3456 out_balanced:
3457 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3458 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3459 goto ret;
3460
3461 if (this == group_leader && group_leader != group_min) {
3462 *imbalance = min_load_per_task;
3463 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3464 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3465 cpumask_first(sched_group_cpus(group_leader));
3466 }
3467 return group_min;
3468 }
3469 #endif
3470 ret:
3471 *imbalance = 0;
3472 return NULL;
3473 }
3474
3475 /*
3476 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3477 */
3478 static struct rq *
3479 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3480 unsigned long imbalance, const struct cpumask *cpus)
3481 {
3482 struct rq *busiest = NULL, *rq;
3483 unsigned long max_load = 0;
3484 int i;
3485
3486 for_each_cpu(i, sched_group_cpus(group)) {
3487 unsigned long wl;
3488
3489 if (!cpumask_test_cpu(i, cpus))
3490 continue;
3491
3492 rq = cpu_rq(i);
3493 wl = weighted_cpuload(i);
3494
3495 if (rq->nr_running == 1 && wl > imbalance)
3496 continue;
3497
3498 if (wl > max_load) {
3499 max_load = wl;
3500 busiest = rq;
3501 }
3502 }
3503
3504 return busiest;
3505 }
3506
3507 /*
3508 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3509 * so long as it is large enough.
3510 */
3511 #define MAX_PINNED_INTERVAL 512
3512
3513 /*
3514 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3515 * tasks if there is an imbalance.
3516 */
3517 static int load_balance(int this_cpu, struct rq *this_rq,
3518 struct sched_domain *sd, enum cpu_idle_type idle,
3519 int *balance, struct cpumask *cpus)
3520 {
3521 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3522 struct sched_group *group;
3523 unsigned long imbalance;
3524 struct rq *busiest;
3525 unsigned long flags;
3526
3527 cpumask_setall(cpus);
3528
3529 /*
3530 * When power savings policy is enabled for the parent domain, idle
3531 * sibling can pick up load irrespective of busy siblings. In this case,
3532 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3533 * portraying it as CPU_NOT_IDLE.
3534 */
3535 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3536 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3537 sd_idle = 1;
3538
3539 schedstat_inc(sd, lb_count[idle]);
3540
3541 redo:
3542 update_shares(sd);
3543 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3544 cpus, balance);
3545
3546 if (*balance == 0)
3547 goto out_balanced;
3548
3549 if (!group) {
3550 schedstat_inc(sd, lb_nobusyg[idle]);
3551 goto out_balanced;
3552 }
3553
3554 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3555 if (!busiest) {
3556 schedstat_inc(sd, lb_nobusyq[idle]);
3557 goto out_balanced;
3558 }
3559
3560 BUG_ON(busiest == this_rq);
3561
3562 schedstat_add(sd, lb_imbalance[idle], imbalance);
3563
3564 ld_moved = 0;
3565 if (busiest->nr_running > 1) {
3566 /*
3567 * Attempt to move tasks. If find_busiest_group has found
3568 * an imbalance but busiest->nr_running <= 1, the group is
3569 * still unbalanced. ld_moved simply stays zero, so it is
3570 * correctly treated as an imbalance.
3571 */
3572 local_irq_save(flags);
3573 double_rq_lock(this_rq, busiest);
3574 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3575 imbalance, sd, idle, &all_pinned);
3576 double_rq_unlock(this_rq, busiest);
3577 local_irq_restore(flags);
3578
3579 /*
3580 * some other cpu did the load balance for us.
3581 */
3582 if (ld_moved && this_cpu != smp_processor_id())
3583 resched_cpu(this_cpu);
3584
3585 /* All tasks on this runqueue were pinned by CPU affinity */
3586 if (unlikely(all_pinned)) {
3587 cpumask_clear_cpu(cpu_of(busiest), cpus);
3588 if (!cpumask_empty(cpus))
3589 goto redo;
3590 goto out_balanced;
3591 }
3592 }
3593
3594 if (!ld_moved) {
3595 schedstat_inc(sd, lb_failed[idle]);
3596 sd->nr_balance_failed++;
3597
3598 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3599
3600 spin_lock_irqsave(&busiest->lock, flags);
3601
3602 /* don't kick the migration_thread, if the curr
3603 * task on busiest cpu can't be moved to this_cpu
3604 */
3605 if (!cpumask_test_cpu(this_cpu,
3606 &busiest->curr->cpus_allowed)) {
3607 spin_unlock_irqrestore(&busiest->lock, flags);
3608 all_pinned = 1;
3609 goto out_one_pinned;
3610 }
3611
3612 if (!busiest->active_balance) {
3613 busiest->active_balance = 1;
3614 busiest->push_cpu = this_cpu;
3615 active_balance = 1;
3616 }
3617 spin_unlock_irqrestore(&busiest->lock, flags);
3618 if (active_balance)
3619 wake_up_process(busiest->migration_thread);
3620
3621 /*
3622 * We've kicked active balancing, reset the failure
3623 * counter.
3624 */
3625 sd->nr_balance_failed = sd->cache_nice_tries+1;
3626 }
3627 } else
3628 sd->nr_balance_failed = 0;
3629
3630 if (likely(!active_balance)) {
3631 /* We were unbalanced, so reset the balancing interval */
3632 sd->balance_interval = sd->min_interval;
3633 } else {
3634 /*
3635 * If we've begun active balancing, start to back off. This
3636 * case may not be covered by the all_pinned logic if there
3637 * is only 1 task on the busy runqueue (because we don't call
3638 * move_tasks).
3639 */
3640 if (sd->balance_interval < sd->max_interval)
3641 sd->balance_interval *= 2;
3642 }
3643
3644 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3646 ld_moved = -1;
3647
3648 goto out;
3649
3650 out_balanced:
3651 schedstat_inc(sd, lb_balanced[idle]);
3652
3653 sd->nr_balance_failed = 0;
3654
3655 out_one_pinned:
3656 /* tune up the balancing interval */
3657 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3658 (sd->balance_interval < sd->max_interval))
3659 sd->balance_interval *= 2;
3660
3661 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3662 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3663 ld_moved = -1;
3664 else
3665 ld_moved = 0;
3666 out:
3667 if (ld_moved)
3668 update_shares(sd);
3669 return ld_moved;
3670 }
3671
3672 /*
3673 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3674 * tasks if there is an imbalance.
3675 *
3676 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3677 * this_rq is locked.
3678 */
3679 static int
3680 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3681 struct cpumask *cpus)
3682 {
3683 struct sched_group *group;
3684 struct rq *busiest = NULL;
3685 unsigned long imbalance;
3686 int ld_moved = 0;
3687 int sd_idle = 0;
3688 int all_pinned = 0;
3689
3690 cpumask_setall(cpus);
3691
3692 /*
3693 * When power savings policy is enabled for the parent domain, idle
3694 * sibling can pick up load irrespective of busy siblings. In this case,
3695 * let the state of idle sibling percolate up as IDLE, instead of
3696 * portraying it as CPU_NOT_IDLE.
3697 */
3698 if (sd->flags & SD_SHARE_CPUPOWER &&
3699 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3700 sd_idle = 1;
3701
3702 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3703 redo:
3704 update_shares_locked(this_rq, sd);
3705 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3706 &sd_idle, cpus, NULL);
3707 if (!group) {
3708 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3709 goto out_balanced;
3710 }
3711
3712 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3713 if (!busiest) {
3714 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3715 goto out_balanced;
3716 }
3717
3718 BUG_ON(busiest == this_rq);
3719
3720 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3721
3722 ld_moved = 0;
3723 if (busiest->nr_running > 1) {
3724 /* Attempt to move tasks */
3725 double_lock_balance(this_rq, busiest);
3726 /* this_rq->clock is already updated */
3727 update_rq_clock(busiest);
3728 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3729 imbalance, sd, CPU_NEWLY_IDLE,
3730 &all_pinned);
3731 double_unlock_balance(this_rq, busiest);
3732
3733 if (unlikely(all_pinned)) {
3734 cpumask_clear_cpu(cpu_of(busiest), cpus);
3735 if (!cpumask_empty(cpus))
3736 goto redo;
3737 }
3738 }
3739
3740 if (!ld_moved) {
3741 int active_balance = 0;
3742
3743 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3744 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3746 return -1;
3747
3748 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3749 return -1;
3750
3751 if (sd->nr_balance_failed++ < 2)
3752 return -1;
3753
3754 /*
3755 * The only task running in a non-idle cpu can be moved to this
3756 * cpu in an attempt to completely freeup the other CPU
3757 * package. The same method used to move task in load_balance()
3758 * have been extended for load_balance_newidle() to speedup
3759 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3760 *
3761 * The package power saving logic comes from
3762 * find_busiest_group(). If there are no imbalance, then
3763 * f_b_g() will return NULL. However when sched_mc={1,2} then
3764 * f_b_g() will select a group from which a running task may be
3765 * pulled to this cpu in order to make the other package idle.
3766 * If there is no opportunity to make a package idle and if
3767 * there are no imbalance, then f_b_g() will return NULL and no
3768 * action will be taken in load_balance_newidle().
3769 *
3770 * Under normal task pull operation due to imbalance, there
3771 * will be more than one task in the source run queue and
3772 * move_tasks() will succeed. ld_moved will be true and this
3773 * active balance code will not be triggered.
3774 */
3775
3776 /* Lock busiest in correct order while this_rq is held */
3777 double_lock_balance(this_rq, busiest);
3778
3779 /*
3780 * don't kick the migration_thread, if the curr
3781 * task on busiest cpu can't be moved to this_cpu
3782 */
3783 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3784 double_unlock_balance(this_rq, busiest);
3785 all_pinned = 1;
3786 return ld_moved;
3787 }
3788
3789 if (!busiest->active_balance) {
3790 busiest->active_balance = 1;
3791 busiest->push_cpu = this_cpu;
3792 active_balance = 1;
3793 }
3794
3795 double_unlock_balance(this_rq, busiest);
3796 /*
3797 * Should not call ttwu while holding a rq->lock
3798 */
3799 spin_unlock(&this_rq->lock);
3800 if (active_balance)
3801 wake_up_process(busiest->migration_thread);
3802 spin_lock(&this_rq->lock);
3803
3804 } else
3805 sd->nr_balance_failed = 0;
3806
3807 update_shares_locked(this_rq, sd);
3808 return ld_moved;
3809
3810 out_balanced:
3811 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3812 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3813 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3814 return -1;
3815 sd->nr_balance_failed = 0;
3816
3817 return 0;
3818 }
3819
3820 /*
3821 * idle_balance is called by schedule() if this_cpu is about to become
3822 * idle. Attempts to pull tasks from other CPUs.
3823 */
3824 static void idle_balance(int this_cpu, struct rq *this_rq)
3825 {
3826 struct sched_domain *sd;
3827 int pulled_task = 0;
3828 unsigned long next_balance = jiffies + HZ;
3829 cpumask_var_t tmpmask;
3830
3831 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3832 return;
3833
3834 for_each_domain(this_cpu, sd) {
3835 unsigned long interval;
3836
3837 if (!(sd->flags & SD_LOAD_BALANCE))
3838 continue;
3839
3840 if (sd->flags & SD_BALANCE_NEWIDLE)
3841 /* If we've pulled tasks over stop searching: */
3842 pulled_task = load_balance_newidle(this_cpu, this_rq,
3843 sd, tmpmask);
3844
3845 interval = msecs_to_jiffies(sd->balance_interval);
3846 if (time_after(next_balance, sd->last_balance + interval))
3847 next_balance = sd->last_balance + interval;
3848 if (pulled_task)
3849 break;
3850 }
3851 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3852 /*
3853 * We are going idle. next_balance may be set based on
3854 * a busy processor. So reset next_balance.
3855 */
3856 this_rq->next_balance = next_balance;
3857 }
3858 free_cpumask_var(tmpmask);
3859 }
3860
3861 /*
3862 * active_load_balance is run by migration threads. It pushes running tasks
3863 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3864 * running on each physical CPU where possible, and avoids physical /
3865 * logical imbalances.
3866 *
3867 * Called with busiest_rq locked.
3868 */
3869 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3870 {
3871 int target_cpu = busiest_rq->push_cpu;
3872 struct sched_domain *sd;
3873 struct rq *target_rq;
3874
3875 /* Is there any task to move? */
3876 if (busiest_rq->nr_running <= 1)
3877 return;
3878
3879 target_rq = cpu_rq(target_cpu);
3880
3881 /*
3882 * This condition is "impossible", if it occurs
3883 * we need to fix it. Originally reported by
3884 * Bjorn Helgaas on a 128-cpu setup.
3885 */
3886 BUG_ON(busiest_rq == target_rq);
3887
3888 /* move a task from busiest_rq to target_rq */
3889 double_lock_balance(busiest_rq, target_rq);
3890 update_rq_clock(busiest_rq);
3891 update_rq_clock(target_rq);
3892
3893 /* Search for an sd spanning us and the target CPU. */
3894 for_each_domain(target_cpu, sd) {
3895 if ((sd->flags & SD_LOAD_BALANCE) &&
3896 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3897 break;
3898 }
3899
3900 if (likely(sd)) {
3901 schedstat_inc(sd, alb_count);
3902
3903 if (move_one_task(target_rq, target_cpu, busiest_rq,
3904 sd, CPU_IDLE))
3905 schedstat_inc(sd, alb_pushed);
3906 else
3907 schedstat_inc(sd, alb_failed);
3908 }
3909 double_unlock_balance(busiest_rq, target_rq);
3910 }
3911
3912 #ifdef CONFIG_NO_HZ
3913 static struct {
3914 atomic_t load_balancer;
3915 cpumask_var_t cpu_mask;
3916 } nohz ____cacheline_aligned = {
3917 .load_balancer = ATOMIC_INIT(-1),
3918 };
3919
3920 /*
3921 * This routine will try to nominate the ilb (idle load balancing)
3922 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3923 * load balancing on behalf of all those cpus. If all the cpus in the system
3924 * go into this tickless mode, then there will be no ilb owner (as there is
3925 * no need for one) and all the cpus will sleep till the next wakeup event
3926 * arrives...
3927 *
3928 * For the ilb owner, tick is not stopped. And this tick will be used
3929 * for idle load balancing. ilb owner will still be part of
3930 * nohz.cpu_mask..
3931 *
3932 * While stopping the tick, this cpu will become the ilb owner if there
3933 * is no other owner. And will be the owner till that cpu becomes busy
3934 * or if all cpus in the system stop their ticks at which point
3935 * there is no need for ilb owner.
3936 *
3937 * When the ilb owner becomes busy, it nominates another owner, during the
3938 * next busy scheduler_tick()
3939 */
3940 int select_nohz_load_balancer(int stop_tick)
3941 {
3942 int cpu = smp_processor_id();
3943
3944 if (stop_tick) {
3945 cpumask_set_cpu(cpu, nohz.cpu_mask);
3946 cpu_rq(cpu)->in_nohz_recently = 1;
3947
3948 /*
3949 * If we are going offline and still the leader, give up!
3950 */
3951 if (!cpu_active(cpu) &&
3952 atomic_read(&nohz.load_balancer) == cpu) {
3953 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3954 BUG();
3955 return 0;
3956 }
3957
3958 /* time for ilb owner also to sleep */
3959 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3960 if (atomic_read(&nohz.load_balancer) == cpu)
3961 atomic_set(&nohz.load_balancer, -1);
3962 return 0;
3963 }
3964
3965 if (atomic_read(&nohz.load_balancer) == -1) {
3966 /* make me the ilb owner */
3967 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3968 return 1;
3969 } else if (atomic_read(&nohz.load_balancer) == cpu)
3970 return 1;
3971 } else {
3972 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3973 return 0;
3974
3975 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3976
3977 if (atomic_read(&nohz.load_balancer) == cpu)
3978 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3979 BUG();
3980 }
3981 return 0;
3982 }
3983 #endif
3984
3985 static DEFINE_SPINLOCK(balancing);
3986
3987 /*
3988 * It checks each scheduling domain to see if it is due to be balanced,
3989 * and initiates a balancing operation if so.
3990 *
3991 * Balancing parameters are set up in arch_init_sched_domains.
3992 */
3993 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3994 {
3995 int balance = 1;
3996 struct rq *rq = cpu_rq(cpu);
3997 unsigned long interval;
3998 struct sched_domain *sd;
3999 /* Earliest time when we have to do rebalance again */
4000 unsigned long next_balance = jiffies + 60*HZ;
4001 int update_next_balance = 0;
4002 int need_serialize;
4003 cpumask_var_t tmp;
4004
4005 /* Fails alloc? Rebalancing probably not a priority right now. */
4006 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4007 return;
4008
4009 for_each_domain(cpu, sd) {
4010 if (!(sd->flags & SD_LOAD_BALANCE))
4011 continue;
4012
4013 interval = sd->balance_interval;
4014 if (idle != CPU_IDLE)
4015 interval *= sd->busy_factor;
4016
4017 /* scale ms to jiffies */
4018 interval = msecs_to_jiffies(interval);
4019 if (unlikely(!interval))
4020 interval = 1;
4021 if (interval > HZ*NR_CPUS/10)
4022 interval = HZ*NR_CPUS/10;
4023
4024 need_serialize = sd->flags & SD_SERIALIZE;
4025
4026 if (need_serialize) {
4027 if (!spin_trylock(&balancing))
4028 goto out;
4029 }
4030
4031 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4032 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4033 /*
4034 * We've pulled tasks over so either we're no
4035 * longer idle, or one of our SMT siblings is
4036 * not idle.
4037 */
4038 idle = CPU_NOT_IDLE;
4039 }
4040 sd->last_balance = jiffies;
4041 }
4042 if (need_serialize)
4043 spin_unlock(&balancing);
4044 out:
4045 if (time_after(next_balance, sd->last_balance + interval)) {
4046 next_balance = sd->last_balance + interval;
4047 update_next_balance = 1;
4048 }
4049
4050 /*
4051 * Stop the load balance at this level. There is another
4052 * CPU in our sched group which is doing load balancing more
4053 * actively.
4054 */
4055 if (!balance)
4056 break;
4057 }
4058
4059 /*
4060 * next_balance will be updated only when there is a need.
4061 * When the cpu is attached to null domain for ex, it will not be
4062 * updated.
4063 */
4064 if (likely(update_next_balance))
4065 rq->next_balance = next_balance;
4066
4067 free_cpumask_var(tmp);
4068 }
4069
4070 /*
4071 * run_rebalance_domains is triggered when needed from the scheduler tick.
4072 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4073 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4074 */
4075 static void run_rebalance_domains(struct softirq_action *h)
4076 {
4077 int this_cpu = smp_processor_id();
4078 struct rq *this_rq = cpu_rq(this_cpu);
4079 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4080 CPU_IDLE : CPU_NOT_IDLE;
4081
4082 rebalance_domains(this_cpu, idle);
4083
4084 #ifdef CONFIG_NO_HZ
4085 /*
4086 * If this cpu is the owner for idle load balancing, then do the
4087 * balancing on behalf of the other idle cpus whose ticks are
4088 * stopped.
4089 */
4090 if (this_rq->idle_at_tick &&
4091 atomic_read(&nohz.load_balancer) == this_cpu) {
4092 struct rq *rq;
4093 int balance_cpu;
4094
4095 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4096 if (balance_cpu == this_cpu)
4097 continue;
4098
4099 /*
4100 * If this cpu gets work to do, stop the load balancing
4101 * work being done for other cpus. Next load
4102 * balancing owner will pick it up.
4103 */
4104 if (need_resched())
4105 break;
4106
4107 rebalance_domains(balance_cpu, CPU_IDLE);
4108
4109 rq = cpu_rq(balance_cpu);
4110 if (time_after(this_rq->next_balance, rq->next_balance))
4111 this_rq->next_balance = rq->next_balance;
4112 }
4113 }
4114 #endif
4115 }
4116
4117 /*
4118 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4119 *
4120 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4121 * idle load balancing owner or decide to stop the periodic load balancing,
4122 * if the whole system is idle.
4123 */
4124 static inline void trigger_load_balance(struct rq *rq, int cpu)
4125 {
4126 #ifdef CONFIG_NO_HZ
4127 /*
4128 * If we were in the nohz mode recently and busy at the current
4129 * scheduler tick, then check if we need to nominate new idle
4130 * load balancer.
4131 */
4132 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4133 rq->in_nohz_recently = 0;
4134
4135 if (atomic_read(&nohz.load_balancer) == cpu) {
4136 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4137 atomic_set(&nohz.load_balancer, -1);
4138 }
4139
4140 if (atomic_read(&nohz.load_balancer) == -1) {
4141 /*
4142 * simple selection for now: Nominate the
4143 * first cpu in the nohz list to be the next
4144 * ilb owner.
4145 *
4146 * TBD: Traverse the sched domains and nominate
4147 * the nearest cpu in the nohz.cpu_mask.
4148 */
4149 int ilb = cpumask_first(nohz.cpu_mask);
4150
4151 if (ilb < nr_cpu_ids)
4152 resched_cpu(ilb);
4153 }
4154 }
4155
4156 /*
4157 * If this cpu is idle and doing idle load balancing for all the
4158 * cpus with ticks stopped, is it time for that to stop?
4159 */
4160 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4161 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4162 resched_cpu(cpu);
4163 return;
4164 }
4165
4166 /*
4167 * If this cpu is idle and the idle load balancing is done by
4168 * someone else, then no need raise the SCHED_SOFTIRQ
4169 */
4170 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4171 cpumask_test_cpu(cpu, nohz.cpu_mask))
4172 return;
4173 #endif
4174 if (time_after_eq(jiffies, rq->next_balance))
4175 raise_softirq(SCHED_SOFTIRQ);
4176 }
4177
4178 #else /* CONFIG_SMP */
4179
4180 /*
4181 * on UP we do not need to balance between CPUs:
4182 */
4183 static inline void idle_balance(int cpu, struct rq *rq)
4184 {
4185 }
4186
4187 #endif
4188
4189 DEFINE_PER_CPU(struct kernel_stat, kstat);
4190
4191 EXPORT_PER_CPU_SYMBOL(kstat);
4192
4193 /*
4194 * Return any ns on the sched_clock that have not yet been banked in
4195 * @p in case that task is currently running.
4196 */
4197 unsigned long long __task_delta_exec(struct task_struct *p, int update)
4198 {
4199 s64 delta_exec;
4200 struct rq *rq;
4201
4202 rq = task_rq(p);
4203 WARN_ON_ONCE(!runqueue_is_locked());
4204 WARN_ON_ONCE(!task_current(rq, p));
4205
4206 if (update)
4207 update_rq_clock(rq);
4208
4209 delta_exec = rq->clock - p->se.exec_start;
4210
4211 WARN_ON_ONCE(delta_exec < 0);
4212
4213 return delta_exec;
4214 }
4215
4216 /*
4217 * Return any ns on the sched_clock that have not yet been banked in
4218 * @p in case that task is currently running.
4219 */
4220 unsigned long long task_delta_exec(struct task_struct *p)
4221 {
4222 unsigned long flags;
4223 struct rq *rq;
4224 u64 ns = 0;
4225
4226 rq = task_rq_lock(p, &flags);
4227
4228 if (task_current(rq, p)) {
4229 u64 delta_exec;
4230
4231 update_rq_clock(rq);
4232 delta_exec = rq->clock - p->se.exec_start;
4233 if ((s64)delta_exec > 0)
4234 ns = delta_exec;
4235 }
4236
4237 task_rq_unlock(rq, &flags);
4238
4239 return ns;
4240 }
4241
4242 /*
4243 * Account user cpu time to a process.
4244 * @p: the process that the cpu time gets accounted to
4245 * @cputime: the cpu time spent in user space since the last update
4246 * @cputime_scaled: cputime scaled by cpu frequency
4247 */
4248 void account_user_time(struct task_struct *p, cputime_t cputime,
4249 cputime_t cputime_scaled)
4250 {
4251 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4252 cputime64_t tmp;
4253
4254 /* Add user time to process. */
4255 p->utime = cputime_add(p->utime, cputime);
4256 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4257 account_group_user_time(p, cputime);
4258
4259 /* Add user time to cpustat. */
4260 tmp = cputime_to_cputime64(cputime);
4261 if (TASK_NICE(p) > 0)
4262 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4263 else
4264 cpustat->user = cputime64_add(cpustat->user, tmp);
4265 /* Account for user time used */
4266 acct_update_integrals(p);
4267 }
4268
4269 /*
4270 * Account guest cpu time to a process.
4271 * @p: the process that the cpu time gets accounted to
4272 * @cputime: the cpu time spent in virtual machine since the last update
4273 * @cputime_scaled: cputime scaled by cpu frequency
4274 */
4275 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4276 cputime_t cputime_scaled)
4277 {
4278 cputime64_t tmp;
4279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4280
4281 tmp = cputime_to_cputime64(cputime);
4282
4283 /* Add guest time to process. */
4284 p->utime = cputime_add(p->utime, cputime);
4285 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4286 account_group_user_time(p, cputime);
4287 p->gtime = cputime_add(p->gtime, cputime);
4288
4289 /* Add guest time to cpustat. */
4290 cpustat->user = cputime64_add(cpustat->user, tmp);
4291 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4292 }
4293
4294 /*
4295 * Account system cpu time to a process.
4296 * @p: the process that the cpu time gets accounted to
4297 * @hardirq_offset: the offset to subtract from hardirq_count()
4298 * @cputime: the cpu time spent in kernel space since the last update
4299 * @cputime_scaled: cputime scaled by cpu frequency
4300 */
4301 void account_system_time(struct task_struct *p, int hardirq_offset,
4302 cputime_t cputime, cputime_t cputime_scaled)
4303 {
4304 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4305 cputime64_t tmp;
4306
4307 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4308 account_guest_time(p, cputime, cputime_scaled);
4309 return;
4310 }
4311
4312 /* Add system time to process. */
4313 p->stime = cputime_add(p->stime, cputime);
4314 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4315 account_group_system_time(p, cputime);
4316
4317 /* Add system time to cpustat. */
4318 tmp = cputime_to_cputime64(cputime);
4319 if (hardirq_count() - hardirq_offset)
4320 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4321 else if (softirq_count())
4322 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4323 else
4324 cpustat->system = cputime64_add(cpustat->system, tmp);
4325
4326 /* Account for system time used */
4327 acct_update_integrals(p);
4328 }
4329
4330 /*
4331 * Account for involuntary wait time.
4332 * @steal: the cpu time spent in involuntary wait
4333 */
4334 void account_steal_time(cputime_t cputime)
4335 {
4336 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4337 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4338
4339 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4340 }
4341
4342 /*
4343 * Account for idle time.
4344 * @cputime: the cpu time spent in idle wait
4345 */
4346 void account_idle_time(cputime_t cputime)
4347 {
4348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4349 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4350 struct rq *rq = this_rq();
4351
4352 if (atomic_read(&rq->nr_iowait) > 0)
4353 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4354 else
4355 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4356 }
4357
4358 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4359
4360 /*
4361 * Account a single tick of cpu time.
4362 * @p: the process that the cpu time gets accounted to
4363 * @user_tick: indicates if the tick is a user or a system tick
4364 */
4365 void account_process_tick(struct task_struct *p, int user_tick)
4366 {
4367 cputime_t one_jiffy = jiffies_to_cputime(1);
4368 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4369 struct rq *rq = this_rq();
4370
4371 if (user_tick)
4372 account_user_time(p, one_jiffy, one_jiffy_scaled);
4373 else if (p != rq->idle)
4374 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4375 one_jiffy_scaled);
4376 else
4377 account_idle_time(one_jiffy);
4378 }
4379
4380 /*
4381 * Account multiple ticks of steal time.
4382 * @p: the process from which the cpu time has been stolen
4383 * @ticks: number of stolen ticks
4384 */
4385 void account_steal_ticks(unsigned long ticks)
4386 {
4387 account_steal_time(jiffies_to_cputime(ticks));
4388 }
4389
4390 /*
4391 * Account multiple ticks of idle time.
4392 * @ticks: number of stolen ticks
4393 */
4394 void account_idle_ticks(unsigned long ticks)
4395 {
4396 account_idle_time(jiffies_to_cputime(ticks));
4397 }
4398
4399 #endif
4400
4401 /*
4402 * Use precise platform statistics if available:
4403 */
4404 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4405 cputime_t task_utime(struct task_struct *p)
4406 {
4407 return p->utime;
4408 }
4409
4410 cputime_t task_stime(struct task_struct *p)
4411 {
4412 return p->stime;
4413 }
4414 #else
4415 cputime_t task_utime(struct task_struct *p)
4416 {
4417 clock_t utime = cputime_to_clock_t(p->utime),
4418 total = utime + cputime_to_clock_t(p->stime);
4419 u64 temp;
4420
4421 /*
4422 * Use CFS's precise accounting:
4423 */
4424 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4425
4426 if (total) {
4427 temp *= utime;
4428 do_div(temp, total);
4429 }
4430 utime = (clock_t)temp;
4431
4432 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4433 return p->prev_utime;
4434 }
4435
4436 cputime_t task_stime(struct task_struct *p)
4437 {
4438 clock_t stime;
4439
4440 /*
4441 * Use CFS's precise accounting. (we subtract utime from
4442 * the total, to make sure the total observed by userspace
4443 * grows monotonically - apps rely on that):
4444 */
4445 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4446 cputime_to_clock_t(task_utime(p));
4447
4448 if (stime >= 0)
4449 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4450
4451 return p->prev_stime;
4452 }
4453 #endif
4454
4455 inline cputime_t task_gtime(struct task_struct *p)
4456 {
4457 return p->gtime;
4458 }
4459
4460 /*
4461 * This function gets called by the timer code, with HZ frequency.
4462 * We call it with interrupts disabled.
4463 *
4464 * It also gets called by the fork code, when changing the parent's
4465 * timeslices.
4466 */
4467 void scheduler_tick(void)
4468 {
4469 int cpu = smp_processor_id();
4470 struct rq *rq = cpu_rq(cpu);
4471 struct task_struct *curr = rq->curr;
4472
4473 sched_clock_tick();
4474
4475 spin_lock(&rq->lock);
4476 update_rq_clock(rq);
4477 update_cpu_load(rq);
4478 curr->sched_class->task_tick(rq, curr, 0);
4479 perf_counter_task_tick(curr, cpu);
4480 spin_unlock(&rq->lock);
4481
4482 #ifdef CONFIG_SMP
4483 rq->idle_at_tick = idle_cpu(cpu);
4484 trigger_load_balance(rq, cpu);
4485 #endif
4486 }
4487
4488 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4489 defined(CONFIG_PREEMPT_TRACER))
4490
4491 static inline unsigned long get_parent_ip(unsigned long addr)
4492 {
4493 if (in_lock_functions(addr)) {
4494 addr = CALLER_ADDR2;
4495 if (in_lock_functions(addr))
4496 addr = CALLER_ADDR3;
4497 }
4498 return addr;
4499 }
4500
4501 void __kprobes add_preempt_count(int val)
4502 {
4503 #ifdef CONFIG_DEBUG_PREEMPT
4504 /*
4505 * Underflow?
4506 */
4507 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4508 return;
4509 #endif
4510 preempt_count() += val;
4511 #ifdef CONFIG_DEBUG_PREEMPT
4512 /*
4513 * Spinlock count overflowing soon?
4514 */
4515 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4516 PREEMPT_MASK - 10);
4517 #endif
4518 if (preempt_count() == val)
4519 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4520 }
4521 EXPORT_SYMBOL(add_preempt_count);
4522
4523 void __kprobes sub_preempt_count(int val)
4524 {
4525 #ifdef CONFIG_DEBUG_PREEMPT
4526 /*
4527 * Underflow?
4528 */
4529 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4530 return;
4531 /*
4532 * Is the spinlock portion underflowing?
4533 */
4534 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4535 !(preempt_count() & PREEMPT_MASK)))
4536 return;
4537 #endif
4538
4539 if (preempt_count() == val)
4540 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4541 preempt_count() -= val;
4542 }
4543 EXPORT_SYMBOL(sub_preempt_count);
4544
4545 #endif
4546
4547 /*
4548 * Print scheduling while atomic bug:
4549 */
4550 static noinline void __schedule_bug(struct task_struct *prev)
4551 {
4552 struct pt_regs *regs = get_irq_regs();
4553
4554 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4555 prev->comm, prev->pid, preempt_count());
4556
4557 debug_show_held_locks(prev);
4558 print_modules();
4559 if (irqs_disabled())
4560 print_irqtrace_events(prev);
4561
4562 if (regs)
4563 show_regs(regs);
4564 else
4565 dump_stack();
4566 }
4567
4568 /*
4569 * Various schedule()-time debugging checks and statistics:
4570 */
4571 static inline void schedule_debug(struct task_struct *prev)
4572 {
4573 /*
4574 * Test if we are atomic. Since do_exit() needs to call into
4575 * schedule() atomically, we ignore that path for now.
4576 * Otherwise, whine if we are scheduling when we should not be.
4577 */
4578 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4579 __schedule_bug(prev);
4580
4581 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4582
4583 schedstat_inc(this_rq(), sched_count);
4584 #ifdef CONFIG_SCHEDSTATS
4585 if (unlikely(prev->lock_depth >= 0)) {
4586 schedstat_inc(this_rq(), bkl_count);
4587 schedstat_inc(prev, sched_info.bkl_count);
4588 }
4589 #endif
4590 }
4591
4592 /*
4593 * Pick up the highest-prio task:
4594 */
4595 static inline struct task_struct *
4596 pick_next_task(struct rq *rq, struct task_struct *prev)
4597 {
4598 const struct sched_class *class;
4599 struct task_struct *p;
4600
4601 /*
4602 * Optimization: we know that if all tasks are in
4603 * the fair class we can call that function directly:
4604 */
4605 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4606 p = fair_sched_class.pick_next_task(rq);
4607 if (likely(p))
4608 return p;
4609 }
4610
4611 class = sched_class_highest;
4612 for ( ; ; ) {
4613 p = class->pick_next_task(rq);
4614 if (p)
4615 return p;
4616 /*
4617 * Will never be NULL as the idle class always
4618 * returns a non-NULL p:
4619 */
4620 class = class->next;
4621 }
4622 }
4623
4624 /*
4625 * schedule() is the main scheduler function.
4626 */
4627 asmlinkage void __sched schedule(void)
4628 {
4629 struct task_struct *prev, *next;
4630 unsigned long *switch_count;
4631 struct rq *rq;
4632 int cpu;
4633
4634 need_resched:
4635 preempt_disable();
4636 cpu = smp_processor_id();
4637 rq = cpu_rq(cpu);
4638 rcu_qsctr_inc(cpu);
4639 prev = rq->curr;
4640 switch_count = &prev->nivcsw;
4641
4642 release_kernel_lock(prev);
4643 need_resched_nonpreemptible:
4644
4645 schedule_debug(prev);
4646
4647 if (sched_feat(HRTICK))
4648 hrtick_clear(rq);
4649
4650 spin_lock_irq(&rq->lock);
4651 update_rq_clock(rq);
4652 clear_tsk_need_resched(prev);
4653
4654 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4655 if (unlikely(signal_pending_state(prev->state, prev)))
4656 prev->state = TASK_RUNNING;
4657 else
4658 deactivate_task(rq, prev, 1);
4659 switch_count = &prev->nvcsw;
4660 }
4661
4662 #ifdef CONFIG_SMP
4663 if (prev->sched_class->pre_schedule)
4664 prev->sched_class->pre_schedule(rq, prev);
4665 #endif
4666
4667 if (unlikely(!rq->nr_running))
4668 idle_balance(cpu, rq);
4669
4670 prev->sched_class->put_prev_task(rq, prev);
4671 next = pick_next_task(rq, prev);
4672
4673 if (likely(prev != next)) {
4674 sched_info_switch(prev, next);
4675 perf_counter_task_sched_out(prev, cpu);
4676
4677 rq->nr_switches++;
4678 rq->curr = next;
4679 ++*switch_count;
4680
4681 context_switch(rq, prev, next); /* unlocks the rq */
4682 /*
4683 * the context switch might have flipped the stack from under
4684 * us, hence refresh the local variables.
4685 */
4686 cpu = smp_processor_id();
4687 rq = cpu_rq(cpu);
4688 } else
4689 spin_unlock_irq(&rq->lock);
4690
4691 if (unlikely(reacquire_kernel_lock(current) < 0))
4692 goto need_resched_nonpreemptible;
4693
4694 preempt_enable_no_resched();
4695 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4696 goto need_resched;
4697 }
4698 EXPORT_SYMBOL(schedule);
4699
4700 #ifdef CONFIG_PREEMPT
4701 /*
4702 * this is the entry point to schedule() from in-kernel preemption
4703 * off of preempt_enable. Kernel preemptions off return from interrupt
4704 * occur there and call schedule directly.
4705 */
4706 asmlinkage void __sched preempt_schedule(void)
4707 {
4708 struct thread_info *ti = current_thread_info();
4709
4710 /*
4711 * If there is a non-zero preempt_count or interrupts are disabled,
4712 * we do not want to preempt the current task. Just return..
4713 */
4714 if (likely(ti->preempt_count || irqs_disabled()))
4715 return;
4716
4717 do {
4718 add_preempt_count(PREEMPT_ACTIVE);
4719 schedule();
4720 sub_preempt_count(PREEMPT_ACTIVE);
4721
4722 /*
4723 * Check again in case we missed a preemption opportunity
4724 * between schedule and now.
4725 */
4726 barrier();
4727 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4728 }
4729 EXPORT_SYMBOL(preempt_schedule);
4730
4731 /*
4732 * this is the entry point to schedule() from kernel preemption
4733 * off of irq context.
4734 * Note, that this is called and return with irqs disabled. This will
4735 * protect us against recursive calling from irq.
4736 */
4737 asmlinkage void __sched preempt_schedule_irq(void)
4738 {
4739 struct thread_info *ti = current_thread_info();
4740
4741 /* Catch callers which need to be fixed */
4742 BUG_ON(ti->preempt_count || !irqs_disabled());
4743
4744 do {
4745 add_preempt_count(PREEMPT_ACTIVE);
4746 local_irq_enable();
4747 schedule();
4748 local_irq_disable();
4749 sub_preempt_count(PREEMPT_ACTIVE);
4750
4751 /*
4752 * Check again in case we missed a preemption opportunity
4753 * between schedule and now.
4754 */
4755 barrier();
4756 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4757 }
4758
4759 #endif /* CONFIG_PREEMPT */
4760
4761 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4762 void *key)
4763 {
4764 return try_to_wake_up(curr->private, mode, sync);
4765 }
4766 EXPORT_SYMBOL(default_wake_function);
4767
4768 /*
4769 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4770 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4771 * number) then we wake all the non-exclusive tasks and one exclusive task.
4772 *
4773 * There are circumstances in which we can try to wake a task which has already
4774 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4775 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4776 */
4777 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4778 int nr_exclusive, int sync, void *key)
4779 {
4780 wait_queue_t *curr, *next;
4781
4782 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4783 unsigned flags = curr->flags;
4784
4785 if (curr->func(curr, mode, sync, key) &&
4786 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4787 break;
4788 }
4789 }
4790
4791 /**
4792 * __wake_up - wake up threads blocked on a waitqueue.
4793 * @q: the waitqueue
4794 * @mode: which threads
4795 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4796 * @key: is directly passed to the wakeup function
4797 */
4798 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4799 int nr_exclusive, void *key)
4800 {
4801 unsigned long flags;
4802
4803 spin_lock_irqsave(&q->lock, flags);
4804 __wake_up_common(q, mode, nr_exclusive, 0, key);
4805 spin_unlock_irqrestore(&q->lock, flags);
4806 }
4807 EXPORT_SYMBOL(__wake_up);
4808
4809 /*
4810 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4811 */
4812 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4813 {
4814 __wake_up_common(q, mode, 1, 0, NULL);
4815 }
4816
4817 /**
4818 * __wake_up_sync - wake up threads blocked on a waitqueue.
4819 * @q: the waitqueue
4820 * @mode: which threads
4821 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4822 *
4823 * The sync wakeup differs that the waker knows that it will schedule
4824 * away soon, so while the target thread will be woken up, it will not
4825 * be migrated to another CPU - ie. the two threads are 'synchronized'
4826 * with each other. This can prevent needless bouncing between CPUs.
4827 *
4828 * On UP it can prevent extra preemption.
4829 */
4830 void
4831 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4832 {
4833 unsigned long flags;
4834 int sync = 1;
4835
4836 if (unlikely(!q))
4837 return;
4838
4839 if (unlikely(!nr_exclusive))
4840 sync = 0;
4841
4842 spin_lock_irqsave(&q->lock, flags);
4843 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4844 spin_unlock_irqrestore(&q->lock, flags);
4845 }
4846 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4847
4848 /**
4849 * complete: - signals a single thread waiting on this completion
4850 * @x: holds the state of this particular completion
4851 *
4852 * This will wake up a single thread waiting on this completion. Threads will be
4853 * awakened in the same order in which they were queued.
4854 *
4855 * See also complete_all(), wait_for_completion() and related routines.
4856 */
4857 void complete(struct completion *x)
4858 {
4859 unsigned long flags;
4860
4861 spin_lock_irqsave(&x->wait.lock, flags);
4862 x->done++;
4863 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4864 spin_unlock_irqrestore(&x->wait.lock, flags);
4865 }
4866 EXPORT_SYMBOL(complete);
4867
4868 /**
4869 * complete_all: - signals all threads waiting on this completion
4870 * @x: holds the state of this particular completion
4871 *
4872 * This will wake up all threads waiting on this particular completion event.
4873 */
4874 void complete_all(struct completion *x)
4875 {
4876 unsigned long flags;
4877
4878 spin_lock_irqsave(&x->wait.lock, flags);
4879 x->done += UINT_MAX/2;
4880 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4881 spin_unlock_irqrestore(&x->wait.lock, flags);
4882 }
4883 EXPORT_SYMBOL(complete_all);
4884
4885 static inline long __sched
4886 do_wait_for_common(struct completion *x, long timeout, int state)
4887 {
4888 if (!x->done) {
4889 DECLARE_WAITQUEUE(wait, current);
4890
4891 wait.flags |= WQ_FLAG_EXCLUSIVE;
4892 __add_wait_queue_tail(&x->wait, &wait);
4893 do {
4894 if (signal_pending_state(state, current)) {
4895 timeout = -ERESTARTSYS;
4896 break;
4897 }
4898 __set_current_state(state);
4899 spin_unlock_irq(&x->wait.lock);
4900 timeout = schedule_timeout(timeout);
4901 spin_lock_irq(&x->wait.lock);
4902 } while (!x->done && timeout);
4903 __remove_wait_queue(&x->wait, &wait);
4904 if (!x->done)
4905 return timeout;
4906 }
4907 x->done--;
4908 return timeout ?: 1;
4909 }
4910
4911 static long __sched
4912 wait_for_common(struct completion *x, long timeout, int state)
4913 {
4914 might_sleep();
4915
4916 spin_lock_irq(&x->wait.lock);
4917 timeout = do_wait_for_common(x, timeout, state);
4918 spin_unlock_irq(&x->wait.lock);
4919 return timeout;
4920 }
4921
4922 /**
4923 * wait_for_completion: - waits for completion of a task
4924 * @x: holds the state of this particular completion
4925 *
4926 * This waits to be signaled for completion of a specific task. It is NOT
4927 * interruptible and there is no timeout.
4928 *
4929 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4930 * and interrupt capability. Also see complete().
4931 */
4932 void __sched wait_for_completion(struct completion *x)
4933 {
4934 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4935 }
4936 EXPORT_SYMBOL(wait_for_completion);
4937
4938 /**
4939 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4940 * @x: holds the state of this particular completion
4941 * @timeout: timeout value in jiffies
4942 *
4943 * This waits for either a completion of a specific task to be signaled or for a
4944 * specified timeout to expire. The timeout is in jiffies. It is not
4945 * interruptible.
4946 */
4947 unsigned long __sched
4948 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4949 {
4950 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4951 }
4952 EXPORT_SYMBOL(wait_for_completion_timeout);
4953
4954 /**
4955 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4956 * @x: holds the state of this particular completion
4957 *
4958 * This waits for completion of a specific task to be signaled. It is
4959 * interruptible.
4960 */
4961 int __sched wait_for_completion_interruptible(struct completion *x)
4962 {
4963 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4964 if (t == -ERESTARTSYS)
4965 return t;
4966 return 0;
4967 }
4968 EXPORT_SYMBOL(wait_for_completion_interruptible);
4969
4970 /**
4971 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4972 * @x: holds the state of this particular completion
4973 * @timeout: timeout value in jiffies
4974 *
4975 * This waits for either a completion of a specific task to be signaled or for a
4976 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4977 */
4978 unsigned long __sched
4979 wait_for_completion_interruptible_timeout(struct completion *x,
4980 unsigned long timeout)
4981 {
4982 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4983 }
4984 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4985
4986 /**
4987 * wait_for_completion_killable: - waits for completion of a task (killable)
4988 * @x: holds the state of this particular completion
4989 *
4990 * This waits to be signaled for completion of a specific task. It can be
4991 * interrupted by a kill signal.
4992 */
4993 int __sched wait_for_completion_killable(struct completion *x)
4994 {
4995 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4996 if (t == -ERESTARTSYS)
4997 return t;
4998 return 0;
4999 }
5000 EXPORT_SYMBOL(wait_for_completion_killable);
5001
5002 /**
5003 * try_wait_for_completion - try to decrement a completion without blocking
5004 * @x: completion structure
5005 *
5006 * Returns: 0 if a decrement cannot be done without blocking
5007 * 1 if a decrement succeeded.
5008 *
5009 * If a completion is being used as a counting completion,
5010 * attempt to decrement the counter without blocking. This
5011 * enables us to avoid waiting if the resource the completion
5012 * is protecting is not available.
5013 */
5014 bool try_wait_for_completion(struct completion *x)
5015 {
5016 int ret = 1;
5017
5018 spin_lock_irq(&x->wait.lock);
5019 if (!x->done)
5020 ret = 0;
5021 else
5022 x->done--;
5023 spin_unlock_irq(&x->wait.lock);
5024 return ret;
5025 }
5026 EXPORT_SYMBOL(try_wait_for_completion);
5027
5028 /**
5029 * completion_done - Test to see if a completion has any waiters
5030 * @x: completion structure
5031 *
5032 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5033 * 1 if there are no waiters.
5034 *
5035 */
5036 bool completion_done(struct completion *x)
5037 {
5038 int ret = 1;
5039
5040 spin_lock_irq(&x->wait.lock);
5041 if (!x->done)
5042 ret = 0;
5043 spin_unlock_irq(&x->wait.lock);
5044 return ret;
5045 }
5046 EXPORT_SYMBOL(completion_done);
5047
5048 static long __sched
5049 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5050 {
5051 unsigned long flags;
5052 wait_queue_t wait;
5053
5054 init_waitqueue_entry(&wait, current);
5055
5056 __set_current_state(state);
5057
5058 spin_lock_irqsave(&q->lock, flags);
5059 __add_wait_queue(q, &wait);
5060 spin_unlock(&q->lock);
5061 timeout = schedule_timeout(timeout);
5062 spin_lock_irq(&q->lock);
5063 __remove_wait_queue(q, &wait);
5064 spin_unlock_irqrestore(&q->lock, flags);
5065
5066 return timeout;
5067 }
5068
5069 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5070 {
5071 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5072 }
5073 EXPORT_SYMBOL(interruptible_sleep_on);
5074
5075 long __sched
5076 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5077 {
5078 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5079 }
5080 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5081
5082 void __sched sleep_on(wait_queue_head_t *q)
5083 {
5084 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5085 }
5086 EXPORT_SYMBOL(sleep_on);
5087
5088 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5089 {
5090 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5091 }
5092 EXPORT_SYMBOL(sleep_on_timeout);
5093
5094 #ifdef CONFIG_RT_MUTEXES
5095
5096 /*
5097 * rt_mutex_setprio - set the current priority of a task
5098 * @p: task
5099 * @prio: prio value (kernel-internal form)
5100 *
5101 * This function changes the 'effective' priority of a task. It does
5102 * not touch ->normal_prio like __setscheduler().
5103 *
5104 * Used by the rt_mutex code to implement priority inheritance logic.
5105 */
5106 void rt_mutex_setprio(struct task_struct *p, int prio)
5107 {
5108 unsigned long flags;
5109 int oldprio, on_rq, running;
5110 struct rq *rq;
5111 const struct sched_class *prev_class = p->sched_class;
5112
5113 BUG_ON(prio < 0 || prio > MAX_PRIO);
5114
5115 rq = task_rq_lock(p, &flags);
5116 update_rq_clock(rq);
5117
5118 oldprio = p->prio;
5119 on_rq = p->se.on_rq;
5120 running = task_current(rq, p);
5121 if (on_rq)
5122 dequeue_task(rq, p, 0);
5123 if (running)
5124 p->sched_class->put_prev_task(rq, p);
5125
5126 if (rt_prio(prio))
5127 p->sched_class = &rt_sched_class;
5128 else
5129 p->sched_class = &fair_sched_class;
5130
5131 p->prio = prio;
5132
5133 if (running)
5134 p->sched_class->set_curr_task(rq);
5135 if (on_rq) {
5136 enqueue_task(rq, p, 0);
5137
5138 check_class_changed(rq, p, prev_class, oldprio, running);
5139 }
5140 task_rq_unlock(rq, &flags);
5141 }
5142
5143 #endif
5144
5145 void set_user_nice(struct task_struct *p, long nice)
5146 {
5147 int old_prio, delta, on_rq;
5148 unsigned long flags;
5149 struct rq *rq;
5150
5151 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5152 return;
5153 /*
5154 * We have to be careful, if called from sys_setpriority(),
5155 * the task might be in the middle of scheduling on another CPU.
5156 */
5157 rq = task_rq_lock(p, &flags);
5158 update_rq_clock(rq);
5159 /*
5160 * The RT priorities are set via sched_setscheduler(), but we still
5161 * allow the 'normal' nice value to be set - but as expected
5162 * it wont have any effect on scheduling until the task is
5163 * SCHED_FIFO/SCHED_RR:
5164 */
5165 if (task_has_rt_policy(p)) {
5166 p->static_prio = NICE_TO_PRIO(nice);
5167 goto out_unlock;
5168 }
5169 on_rq = p->se.on_rq;
5170 if (on_rq)
5171 dequeue_task(rq, p, 0);
5172
5173 p->static_prio = NICE_TO_PRIO(nice);
5174 set_load_weight(p);
5175 old_prio = p->prio;
5176 p->prio = effective_prio(p);
5177 delta = p->prio - old_prio;
5178
5179 if (on_rq) {
5180 enqueue_task(rq, p, 0);
5181 /*
5182 * If the task increased its priority or is running and
5183 * lowered its priority, then reschedule its CPU:
5184 */
5185 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5186 resched_task(rq->curr);
5187 }
5188 out_unlock:
5189 task_rq_unlock(rq, &flags);
5190 }
5191 EXPORT_SYMBOL(set_user_nice);
5192
5193 /*
5194 * can_nice - check if a task can reduce its nice value
5195 * @p: task
5196 * @nice: nice value
5197 */
5198 int can_nice(const struct task_struct *p, const int nice)
5199 {
5200 /* convert nice value [19,-20] to rlimit style value [1,40] */
5201 int nice_rlim = 20 - nice;
5202
5203 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5204 capable(CAP_SYS_NICE));
5205 }
5206
5207 #ifdef __ARCH_WANT_SYS_NICE
5208
5209 /*
5210 * sys_nice - change the priority of the current process.
5211 * @increment: priority increment
5212 *
5213 * sys_setpriority is a more generic, but much slower function that
5214 * does similar things.
5215 */
5216 SYSCALL_DEFINE1(nice, int, increment)
5217 {
5218 long nice, retval;
5219
5220 /*
5221 * Setpriority might change our priority at the same moment.
5222 * We don't have to worry. Conceptually one call occurs first
5223 * and we have a single winner.
5224 */
5225 if (increment < -40)
5226 increment = -40;
5227 if (increment > 40)
5228 increment = 40;
5229
5230 nice = PRIO_TO_NICE(current->static_prio) + increment;
5231 if (nice < -20)
5232 nice = -20;
5233 if (nice > 19)
5234 nice = 19;
5235
5236 if (increment < 0 && !can_nice(current, nice))
5237 return -EPERM;
5238
5239 retval = security_task_setnice(current, nice);
5240 if (retval)
5241 return retval;
5242
5243 set_user_nice(current, nice);
5244 return 0;
5245 }
5246
5247 #endif
5248
5249 /**
5250 * task_prio - return the priority value of a given task.
5251 * @p: the task in question.
5252 *
5253 * This is the priority value as seen by users in /proc.
5254 * RT tasks are offset by -200. Normal tasks are centered
5255 * around 0, value goes from -16 to +15.
5256 */
5257 int task_prio(const struct task_struct *p)
5258 {
5259 return p->prio - MAX_RT_PRIO;
5260 }
5261
5262 /**
5263 * task_nice - return the nice value of a given task.
5264 * @p: the task in question.
5265 */
5266 int task_nice(const struct task_struct *p)
5267 {
5268 return TASK_NICE(p);
5269 }
5270 EXPORT_SYMBOL(task_nice);
5271
5272 /**
5273 * idle_cpu - is a given cpu idle currently?
5274 * @cpu: the processor in question.
5275 */
5276 int idle_cpu(int cpu)
5277 {
5278 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5279 }
5280
5281 /**
5282 * idle_task - return the idle task for a given cpu.
5283 * @cpu: the processor in question.
5284 */
5285 struct task_struct *idle_task(int cpu)
5286 {
5287 return cpu_rq(cpu)->idle;
5288 }
5289
5290 /**
5291 * find_process_by_pid - find a process with a matching PID value.
5292 * @pid: the pid in question.
5293 */
5294 static struct task_struct *find_process_by_pid(pid_t pid)
5295 {
5296 return pid ? find_task_by_vpid(pid) : current;
5297 }
5298
5299 /* Actually do priority change: must hold rq lock. */
5300 static void
5301 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5302 {
5303 BUG_ON(p->se.on_rq);
5304
5305 p->policy = policy;
5306 switch (p->policy) {
5307 case SCHED_NORMAL:
5308 case SCHED_BATCH:
5309 case SCHED_IDLE:
5310 p->sched_class = &fair_sched_class;
5311 break;
5312 case SCHED_FIFO:
5313 case SCHED_RR:
5314 p->sched_class = &rt_sched_class;
5315 break;
5316 }
5317
5318 p->rt_priority = prio;
5319 p->normal_prio = normal_prio(p);
5320 /* we are holding p->pi_lock already */
5321 p->prio = rt_mutex_getprio(p);
5322 set_load_weight(p);
5323 }
5324
5325 /*
5326 * check the target process has a UID that matches the current process's
5327 */
5328 static bool check_same_owner(struct task_struct *p)
5329 {
5330 const struct cred *cred = current_cred(), *pcred;
5331 bool match;
5332
5333 rcu_read_lock();
5334 pcred = __task_cred(p);
5335 match = (cred->euid == pcred->euid ||
5336 cred->euid == pcred->uid);
5337 rcu_read_unlock();
5338 return match;
5339 }
5340
5341 static int __sched_setscheduler(struct task_struct *p, int policy,
5342 struct sched_param *param, bool user)
5343 {
5344 int retval, oldprio, oldpolicy = -1, on_rq, running;
5345 unsigned long flags;
5346 const struct sched_class *prev_class = p->sched_class;
5347 struct rq *rq;
5348
5349 /* may grab non-irq protected spin_locks */
5350 BUG_ON(in_interrupt());
5351 recheck:
5352 /* double check policy once rq lock held */
5353 if (policy < 0)
5354 policy = oldpolicy = p->policy;
5355 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5356 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5357 policy != SCHED_IDLE)
5358 return -EINVAL;
5359 /*
5360 * Valid priorities for SCHED_FIFO and SCHED_RR are
5361 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5362 * SCHED_BATCH and SCHED_IDLE is 0.
5363 */
5364 if (param->sched_priority < 0 ||
5365 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5366 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5367 return -EINVAL;
5368 if (rt_policy(policy) != (param->sched_priority != 0))
5369 return -EINVAL;
5370
5371 /*
5372 * Allow unprivileged RT tasks to decrease priority:
5373 */
5374 if (user && !capable(CAP_SYS_NICE)) {
5375 if (rt_policy(policy)) {
5376 unsigned long rlim_rtprio;
5377
5378 if (!lock_task_sighand(p, &flags))
5379 return -ESRCH;
5380 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5381 unlock_task_sighand(p, &flags);
5382
5383 /* can't set/change the rt policy */
5384 if (policy != p->policy && !rlim_rtprio)
5385 return -EPERM;
5386
5387 /* can't increase priority */
5388 if (param->sched_priority > p->rt_priority &&
5389 param->sched_priority > rlim_rtprio)
5390 return -EPERM;
5391 }
5392 /*
5393 * Like positive nice levels, dont allow tasks to
5394 * move out of SCHED_IDLE either:
5395 */
5396 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5397 return -EPERM;
5398
5399 /* can't change other user's priorities */
5400 if (!check_same_owner(p))
5401 return -EPERM;
5402 }
5403
5404 if (user) {
5405 #ifdef CONFIG_RT_GROUP_SCHED
5406 /*
5407 * Do not allow realtime tasks into groups that have no runtime
5408 * assigned.
5409 */
5410 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5411 task_group(p)->rt_bandwidth.rt_runtime == 0)
5412 return -EPERM;
5413 #endif
5414
5415 retval = security_task_setscheduler(p, policy, param);
5416 if (retval)
5417 return retval;
5418 }
5419
5420 /*
5421 * make sure no PI-waiters arrive (or leave) while we are
5422 * changing the priority of the task:
5423 */
5424 spin_lock_irqsave(&p->pi_lock, flags);
5425 /*
5426 * To be able to change p->policy safely, the apropriate
5427 * runqueue lock must be held.
5428 */
5429 rq = __task_rq_lock(p);
5430 /* recheck policy now with rq lock held */
5431 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5432 policy = oldpolicy = -1;
5433 __task_rq_unlock(rq);
5434 spin_unlock_irqrestore(&p->pi_lock, flags);
5435 goto recheck;
5436 }
5437 update_rq_clock(rq);
5438 on_rq = p->se.on_rq;
5439 running = task_current(rq, p);
5440 if (on_rq)
5441 deactivate_task(rq, p, 0);
5442 if (running)
5443 p->sched_class->put_prev_task(rq, p);
5444
5445 oldprio = p->prio;
5446 __setscheduler(rq, p, policy, param->sched_priority);
5447
5448 if (running)
5449 p->sched_class->set_curr_task(rq);
5450 if (on_rq) {
5451 activate_task(rq, p, 0);
5452
5453 check_class_changed(rq, p, prev_class, oldprio, running);
5454 }
5455 __task_rq_unlock(rq);
5456 spin_unlock_irqrestore(&p->pi_lock, flags);
5457
5458 rt_mutex_adjust_pi(p);
5459
5460 return 0;
5461 }
5462
5463 /**
5464 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5465 * @p: the task in question.
5466 * @policy: new policy.
5467 * @param: structure containing the new RT priority.
5468 *
5469 * NOTE that the task may be already dead.
5470 */
5471 int sched_setscheduler(struct task_struct *p, int policy,
5472 struct sched_param *param)
5473 {
5474 return __sched_setscheduler(p, policy, param, true);
5475 }
5476 EXPORT_SYMBOL_GPL(sched_setscheduler);
5477
5478 /**
5479 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5480 * @p: the task in question.
5481 * @policy: new policy.
5482 * @param: structure containing the new RT priority.
5483 *
5484 * Just like sched_setscheduler, only don't bother checking if the
5485 * current context has permission. For example, this is needed in
5486 * stop_machine(): we create temporary high priority worker threads,
5487 * but our caller might not have that capability.
5488 */
5489 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5490 struct sched_param *param)
5491 {
5492 return __sched_setscheduler(p, policy, param, false);
5493 }
5494
5495 static int
5496 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5497 {
5498 struct sched_param lparam;
5499 struct task_struct *p;
5500 int retval;
5501
5502 if (!param || pid < 0)
5503 return -EINVAL;
5504 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5505 return -EFAULT;
5506
5507 rcu_read_lock();
5508 retval = -ESRCH;
5509 p = find_process_by_pid(pid);
5510 if (p != NULL)
5511 retval = sched_setscheduler(p, policy, &lparam);
5512 rcu_read_unlock();
5513
5514 return retval;
5515 }
5516
5517 /**
5518 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5519 * @pid: the pid in question.
5520 * @policy: new policy.
5521 * @param: structure containing the new RT priority.
5522 */
5523 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5524 struct sched_param __user *, param)
5525 {
5526 /* negative values for policy are not valid */
5527 if (policy < 0)
5528 return -EINVAL;
5529
5530 return do_sched_setscheduler(pid, policy, param);
5531 }
5532
5533 /**
5534 * sys_sched_setparam - set/change the RT priority of a thread
5535 * @pid: the pid in question.
5536 * @param: structure containing the new RT priority.
5537 */
5538 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5539 {
5540 return do_sched_setscheduler(pid, -1, param);
5541 }
5542
5543 /**
5544 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5545 * @pid: the pid in question.
5546 */
5547 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5548 {
5549 struct task_struct *p;
5550 int retval;
5551
5552 if (pid < 0)
5553 return -EINVAL;
5554
5555 retval = -ESRCH;
5556 read_lock(&tasklist_lock);
5557 p = find_process_by_pid(pid);
5558 if (p) {
5559 retval = security_task_getscheduler(p);
5560 if (!retval)
5561 retval = p->policy;
5562 }
5563 read_unlock(&tasklist_lock);
5564 return retval;
5565 }
5566
5567 /**
5568 * sys_sched_getscheduler - get the RT priority of a thread
5569 * @pid: the pid in question.
5570 * @param: structure containing the RT priority.
5571 */
5572 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5573 {
5574 struct sched_param lp;
5575 struct task_struct *p;
5576 int retval;
5577
5578 if (!param || pid < 0)
5579 return -EINVAL;
5580
5581 read_lock(&tasklist_lock);
5582 p = find_process_by_pid(pid);
5583 retval = -ESRCH;
5584 if (!p)
5585 goto out_unlock;
5586
5587 retval = security_task_getscheduler(p);
5588 if (retval)
5589 goto out_unlock;
5590
5591 lp.sched_priority = p->rt_priority;
5592 read_unlock(&tasklist_lock);
5593
5594 /*
5595 * This one might sleep, we cannot do it with a spinlock held ...
5596 */
5597 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5598
5599 return retval;
5600
5601 out_unlock:
5602 read_unlock(&tasklist_lock);
5603 return retval;
5604 }
5605
5606 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5607 {
5608 cpumask_var_t cpus_allowed, new_mask;
5609 struct task_struct *p;
5610 int retval;
5611
5612 get_online_cpus();
5613 read_lock(&tasklist_lock);
5614
5615 p = find_process_by_pid(pid);
5616 if (!p) {
5617 read_unlock(&tasklist_lock);
5618 put_online_cpus();
5619 return -ESRCH;
5620 }
5621
5622 /*
5623 * It is not safe to call set_cpus_allowed with the
5624 * tasklist_lock held. We will bump the task_struct's
5625 * usage count and then drop tasklist_lock.
5626 */
5627 get_task_struct(p);
5628 read_unlock(&tasklist_lock);
5629
5630 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5631 retval = -ENOMEM;
5632 goto out_put_task;
5633 }
5634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5635 retval = -ENOMEM;
5636 goto out_free_cpus_allowed;
5637 }
5638 retval = -EPERM;
5639 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5640 goto out_unlock;
5641
5642 retval = security_task_setscheduler(p, 0, NULL);
5643 if (retval)
5644 goto out_unlock;
5645
5646 cpuset_cpus_allowed(p, cpus_allowed);
5647 cpumask_and(new_mask, in_mask, cpus_allowed);
5648 again:
5649 retval = set_cpus_allowed_ptr(p, new_mask);
5650
5651 if (!retval) {
5652 cpuset_cpus_allowed(p, cpus_allowed);
5653 if (!cpumask_subset(new_mask, cpus_allowed)) {
5654 /*
5655 * We must have raced with a concurrent cpuset
5656 * update. Just reset the cpus_allowed to the
5657 * cpuset's cpus_allowed
5658 */
5659 cpumask_copy(new_mask, cpus_allowed);
5660 goto again;
5661 }
5662 }
5663 out_unlock:
5664 free_cpumask_var(new_mask);
5665 out_free_cpus_allowed:
5666 free_cpumask_var(cpus_allowed);
5667 out_put_task:
5668 put_task_struct(p);
5669 put_online_cpus();
5670 return retval;
5671 }
5672
5673 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5674 struct cpumask *new_mask)
5675 {
5676 if (len < cpumask_size())
5677 cpumask_clear(new_mask);
5678 else if (len > cpumask_size())
5679 len = cpumask_size();
5680
5681 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5682 }
5683
5684 /**
5685 * sys_sched_setaffinity - set the cpu affinity of a process
5686 * @pid: pid of the process
5687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5688 * @user_mask_ptr: user-space pointer to the new cpu mask
5689 */
5690 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5691 unsigned long __user *, user_mask_ptr)
5692 {
5693 cpumask_var_t new_mask;
5694 int retval;
5695
5696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5697 return -ENOMEM;
5698
5699 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5700 if (retval == 0)
5701 retval = sched_setaffinity(pid, new_mask);
5702 free_cpumask_var(new_mask);
5703 return retval;
5704 }
5705
5706 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5707 {
5708 struct task_struct *p;
5709 int retval;
5710
5711 get_online_cpus();
5712 read_lock(&tasklist_lock);
5713
5714 retval = -ESRCH;
5715 p = find_process_by_pid(pid);
5716 if (!p)
5717 goto out_unlock;
5718
5719 retval = security_task_getscheduler(p);
5720 if (retval)
5721 goto out_unlock;
5722
5723 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5724
5725 out_unlock:
5726 read_unlock(&tasklist_lock);
5727 put_online_cpus();
5728
5729 return retval;
5730 }
5731
5732 /**
5733 * sys_sched_getaffinity - get the cpu affinity of a process
5734 * @pid: pid of the process
5735 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5736 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5737 */
5738 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5739 unsigned long __user *, user_mask_ptr)
5740 {
5741 int ret;
5742 cpumask_var_t mask;
5743
5744 if (len < cpumask_size())
5745 return -EINVAL;
5746
5747 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5748 return -ENOMEM;
5749
5750 ret = sched_getaffinity(pid, mask);
5751 if (ret == 0) {
5752 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5753 ret = -EFAULT;
5754 else
5755 ret = cpumask_size();
5756 }
5757 free_cpumask_var(mask);
5758
5759 return ret;
5760 }
5761
5762 /**
5763 * sys_sched_yield - yield the current processor to other threads.
5764 *
5765 * This function yields the current CPU to other tasks. If there are no
5766 * other threads running on this CPU then this function will return.
5767 */
5768 SYSCALL_DEFINE0(sched_yield)
5769 {
5770 struct rq *rq = this_rq_lock();
5771
5772 schedstat_inc(rq, yld_count);
5773 current->sched_class->yield_task(rq);
5774
5775 /*
5776 * Since we are going to call schedule() anyway, there's
5777 * no need to preempt or enable interrupts:
5778 */
5779 __release(rq->lock);
5780 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5781 _raw_spin_unlock(&rq->lock);
5782 preempt_enable_no_resched();
5783
5784 schedule();
5785
5786 return 0;
5787 }
5788
5789 static void __cond_resched(void)
5790 {
5791 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5792 __might_sleep(__FILE__, __LINE__);
5793 #endif
5794 /*
5795 * The BKS might be reacquired before we have dropped
5796 * PREEMPT_ACTIVE, which could trigger a second
5797 * cond_resched() call.
5798 */
5799 do {
5800 add_preempt_count(PREEMPT_ACTIVE);
5801 schedule();
5802 sub_preempt_count(PREEMPT_ACTIVE);
5803 } while (need_resched());
5804 }
5805
5806 int __sched _cond_resched(void)
5807 {
5808 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5809 system_state == SYSTEM_RUNNING) {
5810 __cond_resched();
5811 return 1;
5812 }
5813 return 0;
5814 }
5815 EXPORT_SYMBOL(_cond_resched);
5816
5817 /*
5818 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5819 * call schedule, and on return reacquire the lock.
5820 *
5821 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5822 * operations here to prevent schedule() from being called twice (once via
5823 * spin_unlock(), once by hand).
5824 */
5825 int cond_resched_lock(spinlock_t *lock)
5826 {
5827 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5828 int ret = 0;
5829
5830 if (spin_needbreak(lock) || resched) {
5831 spin_unlock(lock);
5832 if (resched && need_resched())
5833 __cond_resched();
5834 else
5835 cpu_relax();
5836 ret = 1;
5837 spin_lock(lock);
5838 }
5839 return ret;
5840 }
5841 EXPORT_SYMBOL(cond_resched_lock);
5842
5843 int __sched cond_resched_softirq(void)
5844 {
5845 BUG_ON(!in_softirq());
5846
5847 if (need_resched() && system_state == SYSTEM_RUNNING) {
5848 local_bh_enable();
5849 __cond_resched();
5850 local_bh_disable();
5851 return 1;
5852 }
5853 return 0;
5854 }
5855 EXPORT_SYMBOL(cond_resched_softirq);
5856
5857 /**
5858 * yield - yield the current processor to other threads.
5859 *
5860 * This is a shortcut for kernel-space yielding - it marks the
5861 * thread runnable and calls sys_sched_yield().
5862 */
5863 void __sched yield(void)
5864 {
5865 set_current_state(TASK_RUNNING);
5866 sys_sched_yield();
5867 }
5868 EXPORT_SYMBOL(yield);
5869
5870 /*
5871 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5872 * that process accounting knows that this is a task in IO wait state.
5873 *
5874 * But don't do that if it is a deliberate, throttling IO wait (this task
5875 * has set its backing_dev_info: the queue against which it should throttle)
5876 */
5877 void __sched io_schedule(void)
5878 {
5879 struct rq *rq = &__raw_get_cpu_var(runqueues);
5880
5881 delayacct_blkio_start();
5882 atomic_inc(&rq->nr_iowait);
5883 schedule();
5884 atomic_dec(&rq->nr_iowait);
5885 delayacct_blkio_end();
5886 }
5887 EXPORT_SYMBOL(io_schedule);
5888
5889 long __sched io_schedule_timeout(long timeout)
5890 {
5891 struct rq *rq = &__raw_get_cpu_var(runqueues);
5892 long ret;
5893
5894 delayacct_blkio_start();
5895 atomic_inc(&rq->nr_iowait);
5896 ret = schedule_timeout(timeout);
5897 atomic_dec(&rq->nr_iowait);
5898 delayacct_blkio_end();
5899 return ret;
5900 }
5901
5902 /**
5903 * sys_sched_get_priority_max - return maximum RT priority.
5904 * @policy: scheduling class.
5905 *
5906 * this syscall returns the maximum rt_priority that can be used
5907 * by a given scheduling class.
5908 */
5909 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5910 {
5911 int ret = -EINVAL;
5912
5913 switch (policy) {
5914 case SCHED_FIFO:
5915 case SCHED_RR:
5916 ret = MAX_USER_RT_PRIO-1;
5917 break;
5918 case SCHED_NORMAL:
5919 case SCHED_BATCH:
5920 case SCHED_IDLE:
5921 ret = 0;
5922 break;
5923 }
5924 return ret;
5925 }
5926
5927 /**
5928 * sys_sched_get_priority_min - return minimum RT priority.
5929 * @policy: scheduling class.
5930 *
5931 * this syscall returns the minimum rt_priority that can be used
5932 * by a given scheduling class.
5933 */
5934 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5935 {
5936 int ret = -EINVAL;
5937
5938 switch (policy) {
5939 case SCHED_FIFO:
5940 case SCHED_RR:
5941 ret = 1;
5942 break;
5943 case SCHED_NORMAL:
5944 case SCHED_BATCH:
5945 case SCHED_IDLE:
5946 ret = 0;
5947 }
5948 return ret;
5949 }
5950
5951 /**
5952 * sys_sched_rr_get_interval - return the default timeslice of a process.
5953 * @pid: pid of the process.
5954 * @interval: userspace pointer to the timeslice value.
5955 *
5956 * this syscall writes the default timeslice value of a given process
5957 * into the user-space timespec buffer. A value of '0' means infinity.
5958 */
5959 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5960 struct timespec __user *, interval)
5961 {
5962 struct task_struct *p;
5963 unsigned int time_slice;
5964 int retval;
5965 struct timespec t;
5966
5967 if (pid < 0)
5968 return -EINVAL;
5969
5970 retval = -ESRCH;
5971 read_lock(&tasklist_lock);
5972 p = find_process_by_pid(pid);
5973 if (!p)
5974 goto out_unlock;
5975
5976 retval = security_task_getscheduler(p);
5977 if (retval)
5978 goto out_unlock;
5979
5980 /*
5981 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5982 * tasks that are on an otherwise idle runqueue:
5983 */
5984 time_slice = 0;
5985 if (p->policy == SCHED_RR) {
5986 time_slice = DEF_TIMESLICE;
5987 } else if (p->policy != SCHED_FIFO) {
5988 struct sched_entity *se = &p->se;
5989 unsigned long flags;
5990 struct rq *rq;
5991
5992 rq = task_rq_lock(p, &flags);
5993 if (rq->cfs.load.weight)
5994 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5995 task_rq_unlock(rq, &flags);
5996 }
5997 read_unlock(&tasklist_lock);
5998 jiffies_to_timespec(time_slice, &t);
5999 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6000 return retval;
6001
6002 out_unlock:
6003 read_unlock(&tasklist_lock);
6004 return retval;
6005 }
6006
6007 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6008
6009 void sched_show_task(struct task_struct *p)
6010 {
6011 unsigned long free = 0;
6012 unsigned state;
6013
6014 state = p->state ? __ffs(p->state) + 1 : 0;
6015 printk(KERN_INFO "%-13.13s %c", p->comm,
6016 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6017 #if BITS_PER_LONG == 32
6018 if (state == TASK_RUNNING)
6019 printk(KERN_CONT " running ");
6020 else
6021 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6022 #else
6023 if (state == TASK_RUNNING)
6024 printk(KERN_CONT " running task ");
6025 else
6026 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6027 #endif
6028 #ifdef CONFIG_DEBUG_STACK_USAGE
6029 free = stack_not_used(p);
6030 #endif
6031 printk(KERN_CONT "%5lu %5d %6d\n", free,
6032 task_pid_nr(p), task_pid_nr(p->real_parent));
6033
6034 show_stack(p, NULL);
6035 }
6036
6037 void show_state_filter(unsigned long state_filter)
6038 {
6039 struct task_struct *g, *p;
6040
6041 #if BITS_PER_LONG == 32
6042 printk(KERN_INFO
6043 " task PC stack pid father\n");
6044 #else
6045 printk(KERN_INFO
6046 " task PC stack pid father\n");
6047 #endif
6048 read_lock(&tasklist_lock);
6049 do_each_thread(g, p) {
6050 /*
6051 * reset the NMI-timeout, listing all files on a slow
6052 * console might take alot of time:
6053 */
6054 touch_nmi_watchdog();
6055 if (!state_filter || (p->state & state_filter))
6056 sched_show_task(p);
6057 } while_each_thread(g, p);
6058
6059 touch_all_softlockup_watchdogs();
6060
6061 #ifdef CONFIG_SCHED_DEBUG
6062 sysrq_sched_debug_show();
6063 #endif
6064 read_unlock(&tasklist_lock);
6065 /*
6066 * Only show locks if all tasks are dumped:
6067 */
6068 if (state_filter == -1)
6069 debug_show_all_locks();
6070 }
6071
6072 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6073 {
6074 idle->sched_class = &idle_sched_class;
6075 }
6076
6077 /**
6078 * init_idle - set up an idle thread for a given CPU
6079 * @idle: task in question
6080 * @cpu: cpu the idle task belongs to
6081 *
6082 * NOTE: this function does not set the idle thread's NEED_RESCHED
6083 * flag, to make booting more robust.
6084 */
6085 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6086 {
6087 struct rq *rq = cpu_rq(cpu);
6088 unsigned long flags;
6089
6090 spin_lock_irqsave(&rq->lock, flags);
6091
6092 __sched_fork(idle);
6093 idle->se.exec_start = sched_clock();
6094
6095 idle->prio = idle->normal_prio = MAX_PRIO;
6096 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6097 __set_task_cpu(idle, cpu);
6098
6099 rq->curr = rq->idle = idle;
6100 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6101 idle->oncpu = 1;
6102 #endif
6103 spin_unlock_irqrestore(&rq->lock, flags);
6104
6105 /* Set the preempt count _outside_ the spinlocks! */
6106 #if defined(CONFIG_PREEMPT)
6107 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6108 #else
6109 task_thread_info(idle)->preempt_count = 0;
6110 #endif
6111 /*
6112 * The idle tasks have their own, simple scheduling class:
6113 */
6114 idle->sched_class = &idle_sched_class;
6115 ftrace_graph_init_task(idle);
6116 }
6117
6118 /*
6119 * In a system that switches off the HZ timer nohz_cpu_mask
6120 * indicates which cpus entered this state. This is used
6121 * in the rcu update to wait only for active cpus. For system
6122 * which do not switch off the HZ timer nohz_cpu_mask should
6123 * always be CPU_BITS_NONE.
6124 */
6125 cpumask_var_t nohz_cpu_mask;
6126
6127 /*
6128 * Increase the granularity value when there are more CPUs,
6129 * because with more CPUs the 'effective latency' as visible
6130 * to users decreases. But the relationship is not linear,
6131 * so pick a second-best guess by going with the log2 of the
6132 * number of CPUs.
6133 *
6134 * This idea comes from the SD scheduler of Con Kolivas:
6135 */
6136 static inline void sched_init_granularity(void)
6137 {
6138 unsigned int factor = 1 + ilog2(num_online_cpus());
6139 const unsigned long limit = 200000000;
6140
6141 sysctl_sched_min_granularity *= factor;
6142 if (sysctl_sched_min_granularity > limit)
6143 sysctl_sched_min_granularity = limit;
6144
6145 sysctl_sched_latency *= factor;
6146 if (sysctl_sched_latency > limit)
6147 sysctl_sched_latency = limit;
6148
6149 sysctl_sched_wakeup_granularity *= factor;
6150
6151 sysctl_sched_shares_ratelimit *= factor;
6152 }
6153
6154 #ifdef CONFIG_SMP
6155 /*
6156 * This is how migration works:
6157 *
6158 * 1) we queue a struct migration_req structure in the source CPU's
6159 * runqueue and wake up that CPU's migration thread.
6160 * 2) we down() the locked semaphore => thread blocks.
6161 * 3) migration thread wakes up (implicitly it forces the migrated
6162 * thread off the CPU)
6163 * 4) it gets the migration request and checks whether the migrated
6164 * task is still in the wrong runqueue.
6165 * 5) if it's in the wrong runqueue then the migration thread removes
6166 * it and puts it into the right queue.
6167 * 6) migration thread up()s the semaphore.
6168 * 7) we wake up and the migration is done.
6169 */
6170
6171 /*
6172 * Change a given task's CPU affinity. Migrate the thread to a
6173 * proper CPU and schedule it away if the CPU it's executing on
6174 * is removed from the allowed bitmask.
6175 *
6176 * NOTE: the caller must have a valid reference to the task, the
6177 * task must not exit() & deallocate itself prematurely. The
6178 * call is not atomic; no spinlocks may be held.
6179 */
6180 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6181 {
6182 struct migration_req req;
6183 unsigned long flags;
6184 struct rq *rq;
6185 int ret = 0;
6186
6187 rq = task_rq_lock(p, &flags);
6188 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6189 ret = -EINVAL;
6190 goto out;
6191 }
6192
6193 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6194 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6195 ret = -EINVAL;
6196 goto out;
6197 }
6198
6199 if (p->sched_class->set_cpus_allowed)
6200 p->sched_class->set_cpus_allowed(p, new_mask);
6201 else {
6202 cpumask_copy(&p->cpus_allowed, new_mask);
6203 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6204 }
6205
6206 /* Can the task run on the task's current CPU? If so, we're done */
6207 if (cpumask_test_cpu(task_cpu(p), new_mask))
6208 goto out;
6209
6210 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6211 /* Need help from migration thread: drop lock and wait. */
6212 task_rq_unlock(rq, &flags);
6213 wake_up_process(rq->migration_thread);
6214 wait_for_completion(&req.done);
6215 tlb_migrate_finish(p->mm);
6216 return 0;
6217 }
6218 out:
6219 task_rq_unlock(rq, &flags);
6220
6221 return ret;
6222 }
6223 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6224
6225 /*
6226 * Move (not current) task off this cpu, onto dest cpu. We're doing
6227 * this because either it can't run here any more (set_cpus_allowed()
6228 * away from this CPU, or CPU going down), or because we're
6229 * attempting to rebalance this task on exec (sched_exec).
6230 *
6231 * So we race with normal scheduler movements, but that's OK, as long
6232 * as the task is no longer on this CPU.
6233 *
6234 * Returns non-zero if task was successfully migrated.
6235 */
6236 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6237 {
6238 struct rq *rq_dest, *rq_src;
6239 int ret = 0, on_rq;
6240
6241 if (unlikely(!cpu_active(dest_cpu)))
6242 return ret;
6243
6244 rq_src = cpu_rq(src_cpu);
6245 rq_dest = cpu_rq(dest_cpu);
6246
6247 double_rq_lock(rq_src, rq_dest);
6248 /* Already moved. */
6249 if (task_cpu(p) != src_cpu)
6250 goto done;
6251 /* Affinity changed (again). */
6252 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6253 goto fail;
6254
6255 on_rq = p->se.on_rq;
6256 if (on_rq)
6257 deactivate_task(rq_src, p, 0);
6258
6259 set_task_cpu(p, dest_cpu);
6260 if (on_rq) {
6261 activate_task(rq_dest, p, 0);
6262 check_preempt_curr(rq_dest, p, 0);
6263 }
6264 done:
6265 ret = 1;
6266 fail:
6267 double_rq_unlock(rq_src, rq_dest);
6268 return ret;
6269 }
6270
6271 /*
6272 * migration_thread - this is a highprio system thread that performs
6273 * thread migration by bumping thread off CPU then 'pushing' onto
6274 * another runqueue.
6275 */
6276 static int migration_thread(void *data)
6277 {
6278 int cpu = (long)data;
6279 struct rq *rq;
6280
6281 rq = cpu_rq(cpu);
6282 BUG_ON(rq->migration_thread != current);
6283
6284 set_current_state(TASK_INTERRUPTIBLE);
6285 while (!kthread_should_stop()) {
6286 struct migration_req *req;
6287 struct list_head *head;
6288
6289 spin_lock_irq(&rq->lock);
6290
6291 if (cpu_is_offline(cpu)) {
6292 spin_unlock_irq(&rq->lock);
6293 goto wait_to_die;
6294 }
6295
6296 if (rq->active_balance) {
6297 active_load_balance(rq, cpu);
6298 rq->active_balance = 0;
6299 }
6300
6301 head = &rq->migration_queue;
6302
6303 if (list_empty(head)) {
6304 spin_unlock_irq(&rq->lock);
6305 schedule();
6306 set_current_state(TASK_INTERRUPTIBLE);
6307 continue;
6308 }
6309 req = list_entry(head->next, struct migration_req, list);
6310 list_del_init(head->next);
6311
6312 spin_unlock(&rq->lock);
6313 __migrate_task(req->task, cpu, req->dest_cpu);
6314 local_irq_enable();
6315
6316 complete(&req->done);
6317 }
6318 __set_current_state(TASK_RUNNING);
6319 return 0;
6320
6321 wait_to_die:
6322 /* Wait for kthread_stop */
6323 set_current_state(TASK_INTERRUPTIBLE);
6324 while (!kthread_should_stop()) {
6325 schedule();
6326 set_current_state(TASK_INTERRUPTIBLE);
6327 }
6328 __set_current_state(TASK_RUNNING);
6329 return 0;
6330 }
6331
6332 #ifdef CONFIG_HOTPLUG_CPU
6333
6334 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6335 {
6336 int ret;
6337
6338 local_irq_disable();
6339 ret = __migrate_task(p, src_cpu, dest_cpu);
6340 local_irq_enable();
6341 return ret;
6342 }
6343
6344 /*
6345 * Figure out where task on dead CPU should go, use force if necessary.
6346 */
6347 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6348 {
6349 int dest_cpu;
6350 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6351
6352 again:
6353 /* Look for allowed, online CPU in same node. */
6354 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6355 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6356 goto move;
6357
6358 /* Any allowed, online CPU? */
6359 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6360 if (dest_cpu < nr_cpu_ids)
6361 goto move;
6362
6363 /* No more Mr. Nice Guy. */
6364 if (dest_cpu >= nr_cpu_ids) {
6365 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6366 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6367
6368 /*
6369 * Don't tell them about moving exiting tasks or
6370 * kernel threads (both mm NULL), since they never
6371 * leave kernel.
6372 */
6373 if (p->mm && printk_ratelimit()) {
6374 printk(KERN_INFO "process %d (%s) no "
6375 "longer affine to cpu%d\n",
6376 task_pid_nr(p), p->comm, dead_cpu);
6377 }
6378 }
6379
6380 move:
6381 /* It can have affinity changed while we were choosing. */
6382 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6383 goto again;
6384 }
6385
6386 /*
6387 * While a dead CPU has no uninterruptible tasks queued at this point,
6388 * it might still have a nonzero ->nr_uninterruptible counter, because
6389 * for performance reasons the counter is not stricly tracking tasks to
6390 * their home CPUs. So we just add the counter to another CPU's counter,
6391 * to keep the global sum constant after CPU-down:
6392 */
6393 static void migrate_nr_uninterruptible(struct rq *rq_src)
6394 {
6395 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6396 unsigned long flags;
6397
6398 local_irq_save(flags);
6399 double_rq_lock(rq_src, rq_dest);
6400 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6401 rq_src->nr_uninterruptible = 0;
6402 double_rq_unlock(rq_src, rq_dest);
6403 local_irq_restore(flags);
6404 }
6405
6406 /* Run through task list and migrate tasks from the dead cpu. */
6407 static void migrate_live_tasks(int src_cpu)
6408 {
6409 struct task_struct *p, *t;
6410
6411 read_lock(&tasklist_lock);
6412
6413 do_each_thread(t, p) {
6414 if (p == current)
6415 continue;
6416
6417 if (task_cpu(p) == src_cpu)
6418 move_task_off_dead_cpu(src_cpu, p);
6419 } while_each_thread(t, p);
6420
6421 read_unlock(&tasklist_lock);
6422 }
6423
6424 /*
6425 * Schedules idle task to be the next runnable task on current CPU.
6426 * It does so by boosting its priority to highest possible.
6427 * Used by CPU offline code.
6428 */
6429 void sched_idle_next(void)
6430 {
6431 int this_cpu = smp_processor_id();
6432 struct rq *rq = cpu_rq(this_cpu);
6433 struct task_struct *p = rq->idle;
6434 unsigned long flags;
6435
6436 /* cpu has to be offline */
6437 BUG_ON(cpu_online(this_cpu));
6438
6439 /*
6440 * Strictly not necessary since rest of the CPUs are stopped by now
6441 * and interrupts disabled on the current cpu.
6442 */
6443 spin_lock_irqsave(&rq->lock, flags);
6444
6445 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6446
6447 update_rq_clock(rq);
6448 activate_task(rq, p, 0);
6449
6450 spin_unlock_irqrestore(&rq->lock, flags);
6451 }
6452
6453 /*
6454 * Ensures that the idle task is using init_mm right before its cpu goes
6455 * offline.
6456 */
6457 void idle_task_exit(void)
6458 {
6459 struct mm_struct *mm = current->active_mm;
6460
6461 BUG_ON(cpu_online(smp_processor_id()));
6462
6463 if (mm != &init_mm)
6464 switch_mm(mm, &init_mm, current);
6465 mmdrop(mm);
6466 }
6467
6468 /* called under rq->lock with disabled interrupts */
6469 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6470 {
6471 struct rq *rq = cpu_rq(dead_cpu);
6472
6473 /* Must be exiting, otherwise would be on tasklist. */
6474 BUG_ON(!p->exit_state);
6475
6476 /* Cannot have done final schedule yet: would have vanished. */
6477 BUG_ON(p->state == TASK_DEAD);
6478
6479 get_task_struct(p);
6480
6481 /*
6482 * Drop lock around migration; if someone else moves it,
6483 * that's OK. No task can be added to this CPU, so iteration is
6484 * fine.
6485 */
6486 spin_unlock_irq(&rq->lock);
6487 move_task_off_dead_cpu(dead_cpu, p);
6488 spin_lock_irq(&rq->lock);
6489
6490 put_task_struct(p);
6491 }
6492
6493 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6494 static void migrate_dead_tasks(unsigned int dead_cpu)
6495 {
6496 struct rq *rq = cpu_rq(dead_cpu);
6497 struct task_struct *next;
6498
6499 for ( ; ; ) {
6500 if (!rq->nr_running)
6501 break;
6502 update_rq_clock(rq);
6503 next = pick_next_task(rq, rq->curr);
6504 if (!next)
6505 break;
6506 next->sched_class->put_prev_task(rq, next);
6507 migrate_dead(dead_cpu, next);
6508
6509 }
6510 }
6511 #endif /* CONFIG_HOTPLUG_CPU */
6512
6513 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6514
6515 static struct ctl_table sd_ctl_dir[] = {
6516 {
6517 .procname = "sched_domain",
6518 .mode = 0555,
6519 },
6520 {0, },
6521 };
6522
6523 static struct ctl_table sd_ctl_root[] = {
6524 {
6525 .ctl_name = CTL_KERN,
6526 .procname = "kernel",
6527 .mode = 0555,
6528 .child = sd_ctl_dir,
6529 },
6530 {0, },
6531 };
6532
6533 static struct ctl_table *sd_alloc_ctl_entry(int n)
6534 {
6535 struct ctl_table *entry =
6536 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6537
6538 return entry;
6539 }
6540
6541 static void sd_free_ctl_entry(struct ctl_table **tablep)
6542 {
6543 struct ctl_table *entry;
6544
6545 /*
6546 * In the intermediate directories, both the child directory and
6547 * procname are dynamically allocated and could fail but the mode
6548 * will always be set. In the lowest directory the names are
6549 * static strings and all have proc handlers.
6550 */
6551 for (entry = *tablep; entry->mode; entry++) {
6552 if (entry->child)
6553 sd_free_ctl_entry(&entry->child);
6554 if (entry->proc_handler == NULL)
6555 kfree(entry->procname);
6556 }
6557
6558 kfree(*tablep);
6559 *tablep = NULL;
6560 }
6561
6562 static void
6563 set_table_entry(struct ctl_table *entry,
6564 const char *procname, void *data, int maxlen,
6565 mode_t mode, proc_handler *proc_handler)
6566 {
6567 entry->procname = procname;
6568 entry->data = data;
6569 entry->maxlen = maxlen;
6570 entry->mode = mode;
6571 entry->proc_handler = proc_handler;
6572 }
6573
6574 static struct ctl_table *
6575 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6576 {
6577 struct ctl_table *table = sd_alloc_ctl_entry(13);
6578
6579 if (table == NULL)
6580 return NULL;
6581
6582 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6583 sizeof(long), 0644, proc_doulongvec_minmax);
6584 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6585 sizeof(long), 0644, proc_doulongvec_minmax);
6586 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6587 sizeof(int), 0644, proc_dointvec_minmax);
6588 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6589 sizeof(int), 0644, proc_dointvec_minmax);
6590 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6591 sizeof(int), 0644, proc_dointvec_minmax);
6592 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6593 sizeof(int), 0644, proc_dointvec_minmax);
6594 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6595 sizeof(int), 0644, proc_dointvec_minmax);
6596 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6597 sizeof(int), 0644, proc_dointvec_minmax);
6598 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6599 sizeof(int), 0644, proc_dointvec_minmax);
6600 set_table_entry(&table[9], "cache_nice_tries",
6601 &sd->cache_nice_tries,
6602 sizeof(int), 0644, proc_dointvec_minmax);
6603 set_table_entry(&table[10], "flags", &sd->flags,
6604 sizeof(int), 0644, proc_dointvec_minmax);
6605 set_table_entry(&table[11], "name", sd->name,
6606 CORENAME_MAX_SIZE, 0444, proc_dostring);
6607 /* &table[12] is terminator */
6608
6609 return table;
6610 }
6611
6612 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6613 {
6614 struct ctl_table *entry, *table;
6615 struct sched_domain *sd;
6616 int domain_num = 0, i;
6617 char buf[32];
6618
6619 for_each_domain(cpu, sd)
6620 domain_num++;
6621 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6622 if (table == NULL)
6623 return NULL;
6624
6625 i = 0;
6626 for_each_domain(cpu, sd) {
6627 snprintf(buf, 32, "domain%d", i);
6628 entry->procname = kstrdup(buf, GFP_KERNEL);
6629 entry->mode = 0555;
6630 entry->child = sd_alloc_ctl_domain_table(sd);
6631 entry++;
6632 i++;
6633 }
6634 return table;
6635 }
6636
6637 static struct ctl_table_header *sd_sysctl_header;
6638 static void register_sched_domain_sysctl(void)
6639 {
6640 int i, cpu_num = num_online_cpus();
6641 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6642 char buf[32];
6643
6644 WARN_ON(sd_ctl_dir[0].child);
6645 sd_ctl_dir[0].child = entry;
6646
6647 if (entry == NULL)
6648 return;
6649
6650 for_each_online_cpu(i) {
6651 snprintf(buf, 32, "cpu%d", i);
6652 entry->procname = kstrdup(buf, GFP_KERNEL);
6653 entry->mode = 0555;
6654 entry->child = sd_alloc_ctl_cpu_table(i);
6655 entry++;
6656 }
6657
6658 WARN_ON(sd_sysctl_header);
6659 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6660 }
6661
6662 /* may be called multiple times per register */
6663 static void unregister_sched_domain_sysctl(void)
6664 {
6665 if (sd_sysctl_header)
6666 unregister_sysctl_table(sd_sysctl_header);
6667 sd_sysctl_header = NULL;
6668 if (sd_ctl_dir[0].child)
6669 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6670 }
6671 #else
6672 static void register_sched_domain_sysctl(void)
6673 {
6674 }
6675 static void unregister_sched_domain_sysctl(void)
6676 {
6677 }
6678 #endif
6679
6680 static void set_rq_online(struct rq *rq)
6681 {
6682 if (!rq->online) {
6683 const struct sched_class *class;
6684
6685 cpumask_set_cpu(rq->cpu, rq->rd->online);
6686 rq->online = 1;
6687
6688 for_each_class(class) {
6689 if (class->rq_online)
6690 class->rq_online(rq);
6691 }
6692 }
6693 }
6694
6695 static void set_rq_offline(struct rq *rq)
6696 {
6697 if (rq->online) {
6698 const struct sched_class *class;
6699
6700 for_each_class(class) {
6701 if (class->rq_offline)
6702 class->rq_offline(rq);
6703 }
6704
6705 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6706 rq->online = 0;
6707 }
6708 }
6709
6710 /*
6711 * migration_call - callback that gets triggered when a CPU is added.
6712 * Here we can start up the necessary migration thread for the new CPU.
6713 */
6714 static int __cpuinit
6715 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6716 {
6717 struct task_struct *p;
6718 int cpu = (long)hcpu;
6719 unsigned long flags;
6720 struct rq *rq;
6721
6722 switch (action) {
6723
6724 case CPU_UP_PREPARE:
6725 case CPU_UP_PREPARE_FROZEN:
6726 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6727 if (IS_ERR(p))
6728 return NOTIFY_BAD;
6729 kthread_bind(p, cpu);
6730 /* Must be high prio: stop_machine expects to yield to it. */
6731 rq = task_rq_lock(p, &flags);
6732 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6733 task_rq_unlock(rq, &flags);
6734 cpu_rq(cpu)->migration_thread = p;
6735 break;
6736
6737 case CPU_ONLINE:
6738 case CPU_ONLINE_FROZEN:
6739 /* Strictly unnecessary, as first user will wake it. */
6740 wake_up_process(cpu_rq(cpu)->migration_thread);
6741
6742 /* Update our root-domain */
6743 rq = cpu_rq(cpu);
6744 spin_lock_irqsave(&rq->lock, flags);
6745 if (rq->rd) {
6746 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6747
6748 set_rq_online(rq);
6749 }
6750 spin_unlock_irqrestore(&rq->lock, flags);
6751 break;
6752
6753 #ifdef CONFIG_HOTPLUG_CPU
6754 case CPU_UP_CANCELED:
6755 case CPU_UP_CANCELED_FROZEN:
6756 if (!cpu_rq(cpu)->migration_thread)
6757 break;
6758 /* Unbind it from offline cpu so it can run. Fall thru. */
6759 kthread_bind(cpu_rq(cpu)->migration_thread,
6760 cpumask_any(cpu_online_mask));
6761 kthread_stop(cpu_rq(cpu)->migration_thread);
6762 cpu_rq(cpu)->migration_thread = NULL;
6763 break;
6764
6765 case CPU_DEAD:
6766 case CPU_DEAD_FROZEN:
6767 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6768 migrate_live_tasks(cpu);
6769 rq = cpu_rq(cpu);
6770 kthread_stop(rq->migration_thread);
6771 rq->migration_thread = NULL;
6772 /* Idle task back to normal (off runqueue, low prio) */
6773 spin_lock_irq(&rq->lock);
6774 update_rq_clock(rq);
6775 deactivate_task(rq, rq->idle, 0);
6776 rq->idle->static_prio = MAX_PRIO;
6777 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6778 rq->idle->sched_class = &idle_sched_class;
6779 migrate_dead_tasks(cpu);
6780 spin_unlock_irq(&rq->lock);
6781 cpuset_unlock();
6782 migrate_nr_uninterruptible(rq);
6783 BUG_ON(rq->nr_running != 0);
6784
6785 /*
6786 * No need to migrate the tasks: it was best-effort if
6787 * they didn't take sched_hotcpu_mutex. Just wake up
6788 * the requestors.
6789 */
6790 spin_lock_irq(&rq->lock);
6791 while (!list_empty(&rq->migration_queue)) {
6792 struct migration_req *req;
6793
6794 req = list_entry(rq->migration_queue.next,
6795 struct migration_req, list);
6796 list_del_init(&req->list);
6797 spin_unlock_irq(&rq->lock);
6798 complete(&req->done);
6799 spin_lock_irq(&rq->lock);
6800 }
6801 spin_unlock_irq(&rq->lock);
6802 break;
6803
6804 case CPU_DYING:
6805 case CPU_DYING_FROZEN:
6806 /* Update our root-domain */
6807 rq = cpu_rq(cpu);
6808 spin_lock_irqsave(&rq->lock, flags);
6809 if (rq->rd) {
6810 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6811 set_rq_offline(rq);
6812 }
6813 spin_unlock_irqrestore(&rq->lock, flags);
6814 break;
6815 #endif
6816 }
6817 return NOTIFY_OK;
6818 }
6819
6820 /* Register at highest priority so that task migration (migrate_all_tasks)
6821 * happens before everything else.
6822 */
6823 static struct notifier_block __cpuinitdata migration_notifier = {
6824 .notifier_call = migration_call,
6825 .priority = 10
6826 };
6827
6828 static int __init migration_init(void)
6829 {
6830 void *cpu = (void *)(long)smp_processor_id();
6831 int err;
6832
6833 /* Start one for the boot CPU: */
6834 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6835 BUG_ON(err == NOTIFY_BAD);
6836 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6837 register_cpu_notifier(&migration_notifier);
6838
6839 return err;
6840 }
6841 early_initcall(migration_init);
6842 #endif
6843
6844 #ifdef CONFIG_SMP
6845
6846 #ifdef CONFIG_SCHED_DEBUG
6847
6848 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6849 struct cpumask *groupmask)
6850 {
6851 struct sched_group *group = sd->groups;
6852 char str[256];
6853
6854 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6855 cpumask_clear(groupmask);
6856
6857 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6858
6859 if (!(sd->flags & SD_LOAD_BALANCE)) {
6860 printk("does not load-balance\n");
6861 if (sd->parent)
6862 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6863 " has parent");
6864 return -1;
6865 }
6866
6867 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6868
6869 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6870 printk(KERN_ERR "ERROR: domain->span does not contain "
6871 "CPU%d\n", cpu);
6872 }
6873 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6874 printk(KERN_ERR "ERROR: domain->groups does not contain"
6875 " CPU%d\n", cpu);
6876 }
6877
6878 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6879 do {
6880 if (!group) {
6881 printk("\n");
6882 printk(KERN_ERR "ERROR: group is NULL\n");
6883 break;
6884 }
6885
6886 if (!group->__cpu_power) {
6887 printk(KERN_CONT "\n");
6888 printk(KERN_ERR "ERROR: domain->cpu_power not "
6889 "set\n");
6890 break;
6891 }
6892
6893 if (!cpumask_weight(sched_group_cpus(group))) {
6894 printk(KERN_CONT "\n");
6895 printk(KERN_ERR "ERROR: empty group\n");
6896 break;
6897 }
6898
6899 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6900 printk(KERN_CONT "\n");
6901 printk(KERN_ERR "ERROR: repeated CPUs\n");
6902 break;
6903 }
6904
6905 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6906
6907 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6908 printk(KERN_CONT " %s", str);
6909
6910 group = group->next;
6911 } while (group != sd->groups);
6912 printk(KERN_CONT "\n");
6913
6914 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6915 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6916
6917 if (sd->parent &&
6918 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6919 printk(KERN_ERR "ERROR: parent span is not a superset "
6920 "of domain->span\n");
6921 return 0;
6922 }
6923
6924 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6925 {
6926 cpumask_var_t groupmask;
6927 int level = 0;
6928
6929 if (!sd) {
6930 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6931 return;
6932 }
6933
6934 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6935
6936 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6937 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6938 return;
6939 }
6940
6941 for (;;) {
6942 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6943 break;
6944 level++;
6945 sd = sd->parent;
6946 if (!sd)
6947 break;
6948 }
6949 free_cpumask_var(groupmask);
6950 }
6951 #else /* !CONFIG_SCHED_DEBUG */
6952 # define sched_domain_debug(sd, cpu) do { } while (0)
6953 #endif /* CONFIG_SCHED_DEBUG */
6954
6955 static int sd_degenerate(struct sched_domain *sd)
6956 {
6957 if (cpumask_weight(sched_domain_span(sd)) == 1)
6958 return 1;
6959
6960 /* Following flags need at least 2 groups */
6961 if (sd->flags & (SD_LOAD_BALANCE |
6962 SD_BALANCE_NEWIDLE |
6963 SD_BALANCE_FORK |
6964 SD_BALANCE_EXEC |
6965 SD_SHARE_CPUPOWER |
6966 SD_SHARE_PKG_RESOURCES)) {
6967 if (sd->groups != sd->groups->next)
6968 return 0;
6969 }
6970
6971 /* Following flags don't use groups */
6972 if (sd->flags & (SD_WAKE_IDLE |
6973 SD_WAKE_AFFINE |
6974 SD_WAKE_BALANCE))
6975 return 0;
6976
6977 return 1;
6978 }
6979
6980 static int
6981 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6982 {
6983 unsigned long cflags = sd->flags, pflags = parent->flags;
6984
6985 if (sd_degenerate(parent))
6986 return 1;
6987
6988 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6989 return 0;
6990
6991 /* Does parent contain flags not in child? */
6992 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6993 if (cflags & SD_WAKE_AFFINE)
6994 pflags &= ~SD_WAKE_BALANCE;
6995 /* Flags needing groups don't count if only 1 group in parent */
6996 if (parent->groups == parent->groups->next) {
6997 pflags &= ~(SD_LOAD_BALANCE |
6998 SD_BALANCE_NEWIDLE |
6999 SD_BALANCE_FORK |
7000 SD_BALANCE_EXEC |
7001 SD_SHARE_CPUPOWER |
7002 SD_SHARE_PKG_RESOURCES);
7003 if (nr_node_ids == 1)
7004 pflags &= ~SD_SERIALIZE;
7005 }
7006 if (~cflags & pflags)
7007 return 0;
7008
7009 return 1;
7010 }
7011
7012 static void free_rootdomain(struct root_domain *rd)
7013 {
7014 cpupri_cleanup(&rd->cpupri);
7015
7016 free_cpumask_var(rd->rto_mask);
7017 free_cpumask_var(rd->online);
7018 free_cpumask_var(rd->span);
7019 kfree(rd);
7020 }
7021
7022 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7023 {
7024 unsigned long flags;
7025
7026 spin_lock_irqsave(&rq->lock, flags);
7027
7028 if (rq->rd) {
7029 struct root_domain *old_rd = rq->rd;
7030
7031 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7032 set_rq_offline(rq);
7033
7034 cpumask_clear_cpu(rq->cpu, old_rd->span);
7035
7036 if (atomic_dec_and_test(&old_rd->refcount))
7037 free_rootdomain(old_rd);
7038 }
7039
7040 atomic_inc(&rd->refcount);
7041 rq->rd = rd;
7042
7043 cpumask_set_cpu(rq->cpu, rd->span);
7044 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7045 set_rq_online(rq);
7046
7047 spin_unlock_irqrestore(&rq->lock, flags);
7048 }
7049
7050 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7051 {
7052 memset(rd, 0, sizeof(*rd));
7053
7054 if (bootmem) {
7055 alloc_bootmem_cpumask_var(&def_root_domain.span);
7056 alloc_bootmem_cpumask_var(&def_root_domain.online);
7057 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7058 cpupri_init(&rd->cpupri, true);
7059 return 0;
7060 }
7061
7062 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7063 goto out;
7064 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7065 goto free_span;
7066 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7067 goto free_online;
7068
7069 if (cpupri_init(&rd->cpupri, false) != 0)
7070 goto free_rto_mask;
7071 return 0;
7072
7073 free_rto_mask:
7074 free_cpumask_var(rd->rto_mask);
7075 free_online:
7076 free_cpumask_var(rd->online);
7077 free_span:
7078 free_cpumask_var(rd->span);
7079 out:
7080 return -ENOMEM;
7081 }
7082
7083 static void init_defrootdomain(void)
7084 {
7085 init_rootdomain(&def_root_domain, true);
7086
7087 atomic_set(&def_root_domain.refcount, 1);
7088 }
7089
7090 static struct root_domain *alloc_rootdomain(void)
7091 {
7092 struct root_domain *rd;
7093
7094 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7095 if (!rd)
7096 return NULL;
7097
7098 if (init_rootdomain(rd, false) != 0) {
7099 kfree(rd);
7100 return NULL;
7101 }
7102
7103 return rd;
7104 }
7105
7106 /*
7107 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7108 * hold the hotplug lock.
7109 */
7110 static void
7111 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7112 {
7113 struct rq *rq = cpu_rq(cpu);
7114 struct sched_domain *tmp;
7115
7116 /* Remove the sched domains which do not contribute to scheduling. */
7117 for (tmp = sd; tmp; ) {
7118 struct sched_domain *parent = tmp->parent;
7119 if (!parent)
7120 break;
7121
7122 if (sd_parent_degenerate(tmp, parent)) {
7123 tmp->parent = parent->parent;
7124 if (parent->parent)
7125 parent->parent->child = tmp;
7126 } else
7127 tmp = tmp->parent;
7128 }
7129
7130 if (sd && sd_degenerate(sd)) {
7131 sd = sd->parent;
7132 if (sd)
7133 sd->child = NULL;
7134 }
7135
7136 sched_domain_debug(sd, cpu);
7137
7138 rq_attach_root(rq, rd);
7139 rcu_assign_pointer(rq->sd, sd);
7140 }
7141
7142 /* cpus with isolated domains */
7143 static cpumask_var_t cpu_isolated_map;
7144
7145 /* Setup the mask of cpus configured for isolated domains */
7146 static int __init isolated_cpu_setup(char *str)
7147 {
7148 cpulist_parse(str, cpu_isolated_map);
7149 return 1;
7150 }
7151
7152 __setup("isolcpus=", isolated_cpu_setup);
7153
7154 /*
7155 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7156 * to a function which identifies what group(along with sched group) a CPU
7157 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7158 * (due to the fact that we keep track of groups covered with a struct cpumask).
7159 *
7160 * init_sched_build_groups will build a circular linked list of the groups
7161 * covered by the given span, and will set each group's ->cpumask correctly,
7162 * and ->cpu_power to 0.
7163 */
7164 static void
7165 init_sched_build_groups(const struct cpumask *span,
7166 const struct cpumask *cpu_map,
7167 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7168 struct sched_group **sg,
7169 struct cpumask *tmpmask),
7170 struct cpumask *covered, struct cpumask *tmpmask)
7171 {
7172 struct sched_group *first = NULL, *last = NULL;
7173 int i;
7174
7175 cpumask_clear(covered);
7176
7177 for_each_cpu(i, span) {
7178 struct sched_group *sg;
7179 int group = group_fn(i, cpu_map, &sg, tmpmask);
7180 int j;
7181
7182 if (cpumask_test_cpu(i, covered))
7183 continue;
7184
7185 cpumask_clear(sched_group_cpus(sg));
7186 sg->__cpu_power = 0;
7187
7188 for_each_cpu(j, span) {
7189 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7190 continue;
7191
7192 cpumask_set_cpu(j, covered);
7193 cpumask_set_cpu(j, sched_group_cpus(sg));
7194 }
7195 if (!first)
7196 first = sg;
7197 if (last)
7198 last->next = sg;
7199 last = sg;
7200 }
7201 last->next = first;
7202 }
7203
7204 #define SD_NODES_PER_DOMAIN 16
7205
7206 #ifdef CONFIG_NUMA
7207
7208 /**
7209 * find_next_best_node - find the next node to include in a sched_domain
7210 * @node: node whose sched_domain we're building
7211 * @used_nodes: nodes already in the sched_domain
7212 *
7213 * Find the next node to include in a given scheduling domain. Simply
7214 * finds the closest node not already in the @used_nodes map.
7215 *
7216 * Should use nodemask_t.
7217 */
7218 static int find_next_best_node(int node, nodemask_t *used_nodes)
7219 {
7220 int i, n, val, min_val, best_node = 0;
7221
7222 min_val = INT_MAX;
7223
7224 for (i = 0; i < nr_node_ids; i++) {
7225 /* Start at @node */
7226 n = (node + i) % nr_node_ids;
7227
7228 if (!nr_cpus_node(n))
7229 continue;
7230
7231 /* Skip already used nodes */
7232 if (node_isset(n, *used_nodes))
7233 continue;
7234
7235 /* Simple min distance search */
7236 val = node_distance(node, n);
7237
7238 if (val < min_val) {
7239 min_val = val;
7240 best_node = n;
7241 }
7242 }
7243
7244 node_set(best_node, *used_nodes);
7245 return best_node;
7246 }
7247
7248 /**
7249 * sched_domain_node_span - get a cpumask for a node's sched_domain
7250 * @node: node whose cpumask we're constructing
7251 * @span: resulting cpumask
7252 *
7253 * Given a node, construct a good cpumask for its sched_domain to span. It
7254 * should be one that prevents unnecessary balancing, but also spreads tasks
7255 * out optimally.
7256 */
7257 static void sched_domain_node_span(int node, struct cpumask *span)
7258 {
7259 nodemask_t used_nodes;
7260 int i;
7261
7262 cpumask_clear(span);
7263 nodes_clear(used_nodes);
7264
7265 cpumask_or(span, span, cpumask_of_node(node));
7266 node_set(node, used_nodes);
7267
7268 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7269 int next_node = find_next_best_node(node, &used_nodes);
7270
7271 cpumask_or(span, span, cpumask_of_node(next_node));
7272 }
7273 }
7274 #endif /* CONFIG_NUMA */
7275
7276 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7277
7278 /*
7279 * The cpus mask in sched_group and sched_domain hangs off the end.
7280 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7281 * for nr_cpu_ids < CONFIG_NR_CPUS.
7282 */
7283 struct static_sched_group {
7284 struct sched_group sg;
7285 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7286 };
7287
7288 struct static_sched_domain {
7289 struct sched_domain sd;
7290 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7291 };
7292
7293 /*
7294 * SMT sched-domains:
7295 */
7296 #ifdef CONFIG_SCHED_SMT
7297 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7298 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7299
7300 static int
7301 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7302 struct sched_group **sg, struct cpumask *unused)
7303 {
7304 if (sg)
7305 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7306 return cpu;
7307 }
7308 #endif /* CONFIG_SCHED_SMT */
7309
7310 /*
7311 * multi-core sched-domains:
7312 */
7313 #ifdef CONFIG_SCHED_MC
7314 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7315 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7316 #endif /* CONFIG_SCHED_MC */
7317
7318 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7319 static int
7320 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7321 struct sched_group **sg, struct cpumask *mask)
7322 {
7323 int group;
7324
7325 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7326 group = cpumask_first(mask);
7327 if (sg)
7328 *sg = &per_cpu(sched_group_core, group).sg;
7329 return group;
7330 }
7331 #elif defined(CONFIG_SCHED_MC)
7332 static int
7333 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7334 struct sched_group **sg, struct cpumask *unused)
7335 {
7336 if (sg)
7337 *sg = &per_cpu(sched_group_core, cpu).sg;
7338 return cpu;
7339 }
7340 #endif
7341
7342 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7343 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7344
7345 static int
7346 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7347 struct sched_group **sg, struct cpumask *mask)
7348 {
7349 int group;
7350 #ifdef CONFIG_SCHED_MC
7351 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7352 group = cpumask_first(mask);
7353 #elif defined(CONFIG_SCHED_SMT)
7354 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7355 group = cpumask_first(mask);
7356 #else
7357 group = cpu;
7358 #endif
7359 if (sg)
7360 *sg = &per_cpu(sched_group_phys, group).sg;
7361 return group;
7362 }
7363
7364 #ifdef CONFIG_NUMA
7365 /*
7366 * The init_sched_build_groups can't handle what we want to do with node
7367 * groups, so roll our own. Now each node has its own list of groups which
7368 * gets dynamically allocated.
7369 */
7370 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7371 static struct sched_group ***sched_group_nodes_bycpu;
7372
7373 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7374 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7375
7376 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7377 struct sched_group **sg,
7378 struct cpumask *nodemask)
7379 {
7380 int group;
7381
7382 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7383 group = cpumask_first(nodemask);
7384
7385 if (sg)
7386 *sg = &per_cpu(sched_group_allnodes, group).sg;
7387 return group;
7388 }
7389
7390 static void init_numa_sched_groups_power(struct sched_group *group_head)
7391 {
7392 struct sched_group *sg = group_head;
7393 int j;
7394
7395 if (!sg)
7396 return;
7397 do {
7398 for_each_cpu(j, sched_group_cpus(sg)) {
7399 struct sched_domain *sd;
7400
7401 sd = &per_cpu(phys_domains, j).sd;
7402 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7403 /*
7404 * Only add "power" once for each
7405 * physical package.
7406 */
7407 continue;
7408 }
7409
7410 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7411 }
7412 sg = sg->next;
7413 } while (sg != group_head);
7414 }
7415 #endif /* CONFIG_NUMA */
7416
7417 #ifdef CONFIG_NUMA
7418 /* Free memory allocated for various sched_group structures */
7419 static void free_sched_groups(const struct cpumask *cpu_map,
7420 struct cpumask *nodemask)
7421 {
7422 int cpu, i;
7423
7424 for_each_cpu(cpu, cpu_map) {
7425 struct sched_group **sched_group_nodes
7426 = sched_group_nodes_bycpu[cpu];
7427
7428 if (!sched_group_nodes)
7429 continue;
7430
7431 for (i = 0; i < nr_node_ids; i++) {
7432 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7433
7434 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7435 if (cpumask_empty(nodemask))
7436 continue;
7437
7438 if (sg == NULL)
7439 continue;
7440 sg = sg->next;
7441 next_sg:
7442 oldsg = sg;
7443 sg = sg->next;
7444 kfree(oldsg);
7445 if (oldsg != sched_group_nodes[i])
7446 goto next_sg;
7447 }
7448 kfree(sched_group_nodes);
7449 sched_group_nodes_bycpu[cpu] = NULL;
7450 }
7451 }
7452 #else /* !CONFIG_NUMA */
7453 static void free_sched_groups(const struct cpumask *cpu_map,
7454 struct cpumask *nodemask)
7455 {
7456 }
7457 #endif /* CONFIG_NUMA */
7458
7459 /*
7460 * Initialize sched groups cpu_power.
7461 *
7462 * cpu_power indicates the capacity of sched group, which is used while
7463 * distributing the load between different sched groups in a sched domain.
7464 * Typically cpu_power for all the groups in a sched domain will be same unless
7465 * there are asymmetries in the topology. If there are asymmetries, group
7466 * having more cpu_power will pickup more load compared to the group having
7467 * less cpu_power.
7468 *
7469 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7470 * the maximum number of tasks a group can handle in the presence of other idle
7471 * or lightly loaded groups in the same sched domain.
7472 */
7473 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7474 {
7475 struct sched_domain *child;
7476 struct sched_group *group;
7477
7478 WARN_ON(!sd || !sd->groups);
7479
7480 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7481 return;
7482
7483 child = sd->child;
7484
7485 sd->groups->__cpu_power = 0;
7486
7487 /*
7488 * For perf policy, if the groups in child domain share resources
7489 * (for example cores sharing some portions of the cache hierarchy
7490 * or SMT), then set this domain groups cpu_power such that each group
7491 * can handle only one task, when there are other idle groups in the
7492 * same sched domain.
7493 */
7494 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7495 (child->flags &
7496 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7497 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7498 return;
7499 }
7500
7501 /*
7502 * add cpu_power of each child group to this groups cpu_power
7503 */
7504 group = child->groups;
7505 do {
7506 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7507 group = group->next;
7508 } while (group != child->groups);
7509 }
7510
7511 /*
7512 * Initializers for schedule domains
7513 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7514 */
7515
7516 #ifdef CONFIG_SCHED_DEBUG
7517 # define SD_INIT_NAME(sd, type) sd->name = #type
7518 #else
7519 # define SD_INIT_NAME(sd, type) do { } while (0)
7520 #endif
7521
7522 #define SD_INIT(sd, type) sd_init_##type(sd)
7523
7524 #define SD_INIT_FUNC(type) \
7525 static noinline void sd_init_##type(struct sched_domain *sd) \
7526 { \
7527 memset(sd, 0, sizeof(*sd)); \
7528 *sd = SD_##type##_INIT; \
7529 sd->level = SD_LV_##type; \
7530 SD_INIT_NAME(sd, type); \
7531 }
7532
7533 SD_INIT_FUNC(CPU)
7534 #ifdef CONFIG_NUMA
7535 SD_INIT_FUNC(ALLNODES)
7536 SD_INIT_FUNC(NODE)
7537 #endif
7538 #ifdef CONFIG_SCHED_SMT
7539 SD_INIT_FUNC(SIBLING)
7540 #endif
7541 #ifdef CONFIG_SCHED_MC
7542 SD_INIT_FUNC(MC)
7543 #endif
7544
7545 static int default_relax_domain_level = -1;
7546
7547 static int __init setup_relax_domain_level(char *str)
7548 {
7549 unsigned long val;
7550
7551 val = simple_strtoul(str, NULL, 0);
7552 if (val < SD_LV_MAX)
7553 default_relax_domain_level = val;
7554
7555 return 1;
7556 }
7557 __setup("relax_domain_level=", setup_relax_domain_level);
7558
7559 static void set_domain_attribute(struct sched_domain *sd,
7560 struct sched_domain_attr *attr)
7561 {
7562 int request;
7563
7564 if (!attr || attr->relax_domain_level < 0) {
7565 if (default_relax_domain_level < 0)
7566 return;
7567 else
7568 request = default_relax_domain_level;
7569 } else
7570 request = attr->relax_domain_level;
7571 if (request < sd->level) {
7572 /* turn off idle balance on this domain */
7573 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7574 } else {
7575 /* turn on idle balance on this domain */
7576 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7577 }
7578 }
7579
7580 /*
7581 * Build sched domains for a given set of cpus and attach the sched domains
7582 * to the individual cpus
7583 */
7584 static int __build_sched_domains(const struct cpumask *cpu_map,
7585 struct sched_domain_attr *attr)
7586 {
7587 int i, err = -ENOMEM;
7588 struct root_domain *rd;
7589 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7590 tmpmask;
7591 #ifdef CONFIG_NUMA
7592 cpumask_var_t domainspan, covered, notcovered;
7593 struct sched_group **sched_group_nodes = NULL;
7594 int sd_allnodes = 0;
7595
7596 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7597 goto out;
7598 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7599 goto free_domainspan;
7600 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7601 goto free_covered;
7602 #endif
7603
7604 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7605 goto free_notcovered;
7606 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7607 goto free_nodemask;
7608 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7609 goto free_this_sibling_map;
7610 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7611 goto free_this_core_map;
7612 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7613 goto free_send_covered;
7614
7615 #ifdef CONFIG_NUMA
7616 /*
7617 * Allocate the per-node list of sched groups
7618 */
7619 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7620 GFP_KERNEL);
7621 if (!sched_group_nodes) {
7622 printk(KERN_WARNING "Can not alloc sched group node list\n");
7623 goto free_tmpmask;
7624 }
7625 #endif
7626
7627 rd = alloc_rootdomain();
7628 if (!rd) {
7629 printk(KERN_WARNING "Cannot alloc root domain\n");
7630 goto free_sched_groups;
7631 }
7632
7633 #ifdef CONFIG_NUMA
7634 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7635 #endif
7636
7637 /*
7638 * Set up domains for cpus specified by the cpu_map.
7639 */
7640 for_each_cpu(i, cpu_map) {
7641 struct sched_domain *sd = NULL, *p;
7642
7643 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7644
7645 #ifdef CONFIG_NUMA
7646 if (cpumask_weight(cpu_map) >
7647 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7648 sd = &per_cpu(allnodes_domains, i).sd;
7649 SD_INIT(sd, ALLNODES);
7650 set_domain_attribute(sd, attr);
7651 cpumask_copy(sched_domain_span(sd), cpu_map);
7652 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7653 p = sd;
7654 sd_allnodes = 1;
7655 } else
7656 p = NULL;
7657
7658 sd = &per_cpu(node_domains, i).sd;
7659 SD_INIT(sd, NODE);
7660 set_domain_attribute(sd, attr);
7661 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7662 sd->parent = p;
7663 if (p)
7664 p->child = sd;
7665 cpumask_and(sched_domain_span(sd),
7666 sched_domain_span(sd), cpu_map);
7667 #endif
7668
7669 p = sd;
7670 sd = &per_cpu(phys_domains, i).sd;
7671 SD_INIT(sd, CPU);
7672 set_domain_attribute(sd, attr);
7673 cpumask_copy(sched_domain_span(sd), nodemask);
7674 sd->parent = p;
7675 if (p)
7676 p->child = sd;
7677 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7678
7679 #ifdef CONFIG_SCHED_MC
7680 p = sd;
7681 sd = &per_cpu(core_domains, i).sd;
7682 SD_INIT(sd, MC);
7683 set_domain_attribute(sd, attr);
7684 cpumask_and(sched_domain_span(sd), cpu_map,
7685 cpu_coregroup_mask(i));
7686 sd->parent = p;
7687 p->child = sd;
7688 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7689 #endif
7690
7691 #ifdef CONFIG_SCHED_SMT
7692 p = sd;
7693 sd = &per_cpu(cpu_domains, i).sd;
7694 SD_INIT(sd, SIBLING);
7695 set_domain_attribute(sd, attr);
7696 cpumask_and(sched_domain_span(sd),
7697 &per_cpu(cpu_sibling_map, i), cpu_map);
7698 sd->parent = p;
7699 p->child = sd;
7700 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7701 #endif
7702 }
7703
7704 #ifdef CONFIG_SCHED_SMT
7705 /* Set up CPU (sibling) groups */
7706 for_each_cpu(i, cpu_map) {
7707 cpumask_and(this_sibling_map,
7708 &per_cpu(cpu_sibling_map, i), cpu_map);
7709 if (i != cpumask_first(this_sibling_map))
7710 continue;
7711
7712 init_sched_build_groups(this_sibling_map, cpu_map,
7713 &cpu_to_cpu_group,
7714 send_covered, tmpmask);
7715 }
7716 #endif
7717
7718 #ifdef CONFIG_SCHED_MC
7719 /* Set up multi-core groups */
7720 for_each_cpu(i, cpu_map) {
7721 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7722 if (i != cpumask_first(this_core_map))
7723 continue;
7724
7725 init_sched_build_groups(this_core_map, cpu_map,
7726 &cpu_to_core_group,
7727 send_covered, tmpmask);
7728 }
7729 #endif
7730
7731 /* Set up physical groups */
7732 for (i = 0; i < nr_node_ids; i++) {
7733 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7734 if (cpumask_empty(nodemask))
7735 continue;
7736
7737 init_sched_build_groups(nodemask, cpu_map,
7738 &cpu_to_phys_group,
7739 send_covered, tmpmask);
7740 }
7741
7742 #ifdef CONFIG_NUMA
7743 /* Set up node groups */
7744 if (sd_allnodes) {
7745 init_sched_build_groups(cpu_map, cpu_map,
7746 &cpu_to_allnodes_group,
7747 send_covered, tmpmask);
7748 }
7749
7750 for (i = 0; i < nr_node_ids; i++) {
7751 /* Set up node groups */
7752 struct sched_group *sg, *prev;
7753 int j;
7754
7755 cpumask_clear(covered);
7756 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7757 if (cpumask_empty(nodemask)) {
7758 sched_group_nodes[i] = NULL;
7759 continue;
7760 }
7761
7762 sched_domain_node_span(i, domainspan);
7763 cpumask_and(domainspan, domainspan, cpu_map);
7764
7765 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7766 GFP_KERNEL, i);
7767 if (!sg) {
7768 printk(KERN_WARNING "Can not alloc domain group for "
7769 "node %d\n", i);
7770 goto error;
7771 }
7772 sched_group_nodes[i] = sg;
7773 for_each_cpu(j, nodemask) {
7774 struct sched_domain *sd;
7775
7776 sd = &per_cpu(node_domains, j).sd;
7777 sd->groups = sg;
7778 }
7779 sg->__cpu_power = 0;
7780 cpumask_copy(sched_group_cpus(sg), nodemask);
7781 sg->next = sg;
7782 cpumask_or(covered, covered, nodemask);
7783 prev = sg;
7784
7785 for (j = 0; j < nr_node_ids; j++) {
7786 int n = (i + j) % nr_node_ids;
7787
7788 cpumask_complement(notcovered, covered);
7789 cpumask_and(tmpmask, notcovered, cpu_map);
7790 cpumask_and(tmpmask, tmpmask, domainspan);
7791 if (cpumask_empty(tmpmask))
7792 break;
7793
7794 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7795 if (cpumask_empty(tmpmask))
7796 continue;
7797
7798 sg = kmalloc_node(sizeof(struct sched_group) +
7799 cpumask_size(),
7800 GFP_KERNEL, i);
7801 if (!sg) {
7802 printk(KERN_WARNING
7803 "Can not alloc domain group for node %d\n", j);
7804 goto error;
7805 }
7806 sg->__cpu_power = 0;
7807 cpumask_copy(sched_group_cpus(sg), tmpmask);
7808 sg->next = prev->next;
7809 cpumask_or(covered, covered, tmpmask);
7810 prev->next = sg;
7811 prev = sg;
7812 }
7813 }
7814 #endif
7815
7816 /* Calculate CPU power for physical packages and nodes */
7817 #ifdef CONFIG_SCHED_SMT
7818 for_each_cpu(i, cpu_map) {
7819 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7820
7821 init_sched_groups_power(i, sd);
7822 }
7823 #endif
7824 #ifdef CONFIG_SCHED_MC
7825 for_each_cpu(i, cpu_map) {
7826 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7827
7828 init_sched_groups_power(i, sd);
7829 }
7830 #endif
7831
7832 for_each_cpu(i, cpu_map) {
7833 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7834
7835 init_sched_groups_power(i, sd);
7836 }
7837
7838 #ifdef CONFIG_NUMA
7839 for (i = 0; i < nr_node_ids; i++)
7840 init_numa_sched_groups_power(sched_group_nodes[i]);
7841
7842 if (sd_allnodes) {
7843 struct sched_group *sg;
7844
7845 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7846 tmpmask);
7847 init_numa_sched_groups_power(sg);
7848 }
7849 #endif
7850
7851 /* Attach the domains */
7852 for_each_cpu(i, cpu_map) {
7853 struct sched_domain *sd;
7854 #ifdef CONFIG_SCHED_SMT
7855 sd = &per_cpu(cpu_domains, i).sd;
7856 #elif defined(CONFIG_SCHED_MC)
7857 sd = &per_cpu(core_domains, i).sd;
7858 #else
7859 sd = &per_cpu(phys_domains, i).sd;
7860 #endif
7861 cpu_attach_domain(sd, rd, i);
7862 }
7863
7864 err = 0;
7865
7866 free_tmpmask:
7867 free_cpumask_var(tmpmask);
7868 free_send_covered:
7869 free_cpumask_var(send_covered);
7870 free_this_core_map:
7871 free_cpumask_var(this_core_map);
7872 free_this_sibling_map:
7873 free_cpumask_var(this_sibling_map);
7874 free_nodemask:
7875 free_cpumask_var(nodemask);
7876 free_notcovered:
7877 #ifdef CONFIG_NUMA
7878 free_cpumask_var(notcovered);
7879 free_covered:
7880 free_cpumask_var(covered);
7881 free_domainspan:
7882 free_cpumask_var(domainspan);
7883 out:
7884 #endif
7885 return err;
7886
7887 free_sched_groups:
7888 #ifdef CONFIG_NUMA
7889 kfree(sched_group_nodes);
7890 #endif
7891 goto free_tmpmask;
7892
7893 #ifdef CONFIG_NUMA
7894 error:
7895 free_sched_groups(cpu_map, tmpmask);
7896 free_rootdomain(rd);
7897 goto free_tmpmask;
7898 #endif
7899 }
7900
7901 static int build_sched_domains(const struct cpumask *cpu_map)
7902 {
7903 return __build_sched_domains(cpu_map, NULL);
7904 }
7905
7906 static struct cpumask *doms_cur; /* current sched domains */
7907 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7908 static struct sched_domain_attr *dattr_cur;
7909 /* attribues of custom domains in 'doms_cur' */
7910
7911 /*
7912 * Special case: If a kmalloc of a doms_cur partition (array of
7913 * cpumask) fails, then fallback to a single sched domain,
7914 * as determined by the single cpumask fallback_doms.
7915 */
7916 static cpumask_var_t fallback_doms;
7917
7918 /*
7919 * arch_update_cpu_topology lets virtualized architectures update the
7920 * cpu core maps. It is supposed to return 1 if the topology changed
7921 * or 0 if it stayed the same.
7922 */
7923 int __attribute__((weak)) arch_update_cpu_topology(void)
7924 {
7925 return 0;
7926 }
7927
7928 /*
7929 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7930 * For now this just excludes isolated cpus, but could be used to
7931 * exclude other special cases in the future.
7932 */
7933 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7934 {
7935 int err;
7936
7937 arch_update_cpu_topology();
7938 ndoms_cur = 1;
7939 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7940 if (!doms_cur)
7941 doms_cur = fallback_doms;
7942 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7943 dattr_cur = NULL;
7944 err = build_sched_domains(doms_cur);
7945 register_sched_domain_sysctl();
7946
7947 return err;
7948 }
7949
7950 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7951 struct cpumask *tmpmask)
7952 {
7953 free_sched_groups(cpu_map, tmpmask);
7954 }
7955
7956 /*
7957 * Detach sched domains from a group of cpus specified in cpu_map
7958 * These cpus will now be attached to the NULL domain
7959 */
7960 static void detach_destroy_domains(const struct cpumask *cpu_map)
7961 {
7962 /* Save because hotplug lock held. */
7963 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7964 int i;
7965
7966 for_each_cpu(i, cpu_map)
7967 cpu_attach_domain(NULL, &def_root_domain, i);
7968 synchronize_sched();
7969 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7970 }
7971
7972 /* handle null as "default" */
7973 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7974 struct sched_domain_attr *new, int idx_new)
7975 {
7976 struct sched_domain_attr tmp;
7977
7978 /* fast path */
7979 if (!new && !cur)
7980 return 1;
7981
7982 tmp = SD_ATTR_INIT;
7983 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7984 new ? (new + idx_new) : &tmp,
7985 sizeof(struct sched_domain_attr));
7986 }
7987
7988 /*
7989 * Partition sched domains as specified by the 'ndoms_new'
7990 * cpumasks in the array doms_new[] of cpumasks. This compares
7991 * doms_new[] to the current sched domain partitioning, doms_cur[].
7992 * It destroys each deleted domain and builds each new domain.
7993 *
7994 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7995 * The masks don't intersect (don't overlap.) We should setup one
7996 * sched domain for each mask. CPUs not in any of the cpumasks will
7997 * not be load balanced. If the same cpumask appears both in the
7998 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7999 * it as it is.
8000 *
8001 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8002 * ownership of it and will kfree it when done with it. If the caller
8003 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8004 * ndoms_new == 1, and partition_sched_domains() will fallback to
8005 * the single partition 'fallback_doms', it also forces the domains
8006 * to be rebuilt.
8007 *
8008 * If doms_new == NULL it will be replaced with cpu_online_mask.
8009 * ndoms_new == 0 is a special case for destroying existing domains,
8010 * and it will not create the default domain.
8011 *
8012 * Call with hotplug lock held
8013 */
8014 /* FIXME: Change to struct cpumask *doms_new[] */
8015 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8016 struct sched_domain_attr *dattr_new)
8017 {
8018 int i, j, n;
8019 int new_topology;
8020
8021 mutex_lock(&sched_domains_mutex);
8022
8023 /* always unregister in case we don't destroy any domains */
8024 unregister_sched_domain_sysctl();
8025
8026 /* Let architecture update cpu core mappings. */
8027 new_topology = arch_update_cpu_topology();
8028
8029 n = doms_new ? ndoms_new : 0;
8030
8031 /* Destroy deleted domains */
8032 for (i = 0; i < ndoms_cur; i++) {
8033 for (j = 0; j < n && !new_topology; j++) {
8034 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8035 && dattrs_equal(dattr_cur, i, dattr_new, j))
8036 goto match1;
8037 }
8038 /* no match - a current sched domain not in new doms_new[] */
8039 detach_destroy_domains(doms_cur + i);
8040 match1:
8041 ;
8042 }
8043
8044 if (doms_new == NULL) {
8045 ndoms_cur = 0;
8046 doms_new = fallback_doms;
8047 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8048 WARN_ON_ONCE(dattr_new);
8049 }
8050
8051 /* Build new domains */
8052 for (i = 0; i < ndoms_new; i++) {
8053 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8054 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8055 && dattrs_equal(dattr_new, i, dattr_cur, j))
8056 goto match2;
8057 }
8058 /* no match - add a new doms_new */
8059 __build_sched_domains(doms_new + i,
8060 dattr_new ? dattr_new + i : NULL);
8061 match2:
8062 ;
8063 }
8064
8065 /* Remember the new sched domains */
8066 if (doms_cur != fallback_doms)
8067 kfree(doms_cur);
8068 kfree(dattr_cur); /* kfree(NULL) is safe */
8069 doms_cur = doms_new;
8070 dattr_cur = dattr_new;
8071 ndoms_cur = ndoms_new;
8072
8073 register_sched_domain_sysctl();
8074
8075 mutex_unlock(&sched_domains_mutex);
8076 }
8077
8078 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8079 static void arch_reinit_sched_domains(void)
8080 {
8081 get_online_cpus();
8082
8083 /* Destroy domains first to force the rebuild */
8084 partition_sched_domains(0, NULL, NULL);
8085
8086 rebuild_sched_domains();
8087 put_online_cpus();
8088 }
8089
8090 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8091 {
8092 unsigned int level = 0;
8093
8094 if (sscanf(buf, "%u", &level) != 1)
8095 return -EINVAL;
8096
8097 /*
8098 * level is always be positive so don't check for
8099 * level < POWERSAVINGS_BALANCE_NONE which is 0
8100 * What happens on 0 or 1 byte write,
8101 * need to check for count as well?
8102 */
8103
8104 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8105 return -EINVAL;
8106
8107 if (smt)
8108 sched_smt_power_savings = level;
8109 else
8110 sched_mc_power_savings = level;
8111
8112 arch_reinit_sched_domains();
8113
8114 return count;
8115 }
8116
8117 #ifdef CONFIG_SCHED_MC
8118 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8119 char *page)
8120 {
8121 return sprintf(page, "%u\n", sched_mc_power_savings);
8122 }
8123 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8124 const char *buf, size_t count)
8125 {
8126 return sched_power_savings_store(buf, count, 0);
8127 }
8128 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8129 sched_mc_power_savings_show,
8130 sched_mc_power_savings_store);
8131 #endif
8132
8133 #ifdef CONFIG_SCHED_SMT
8134 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8135 char *page)
8136 {
8137 return sprintf(page, "%u\n", sched_smt_power_savings);
8138 }
8139 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8140 const char *buf, size_t count)
8141 {
8142 return sched_power_savings_store(buf, count, 1);
8143 }
8144 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8145 sched_smt_power_savings_show,
8146 sched_smt_power_savings_store);
8147 #endif
8148
8149 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8150 {
8151 int err = 0;
8152
8153 #ifdef CONFIG_SCHED_SMT
8154 if (smt_capable())
8155 err = sysfs_create_file(&cls->kset.kobj,
8156 &attr_sched_smt_power_savings.attr);
8157 #endif
8158 #ifdef CONFIG_SCHED_MC
8159 if (!err && mc_capable())
8160 err = sysfs_create_file(&cls->kset.kobj,
8161 &attr_sched_mc_power_savings.attr);
8162 #endif
8163 return err;
8164 }
8165 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8166
8167 #ifndef CONFIG_CPUSETS
8168 /*
8169 * Add online and remove offline CPUs from the scheduler domains.
8170 * When cpusets are enabled they take over this function.
8171 */
8172 static int update_sched_domains(struct notifier_block *nfb,
8173 unsigned long action, void *hcpu)
8174 {
8175 switch (action) {
8176 case CPU_ONLINE:
8177 case CPU_ONLINE_FROZEN:
8178 case CPU_DEAD:
8179 case CPU_DEAD_FROZEN:
8180 partition_sched_domains(1, NULL, NULL);
8181 return NOTIFY_OK;
8182
8183 default:
8184 return NOTIFY_DONE;
8185 }
8186 }
8187 #endif
8188
8189 static int update_runtime(struct notifier_block *nfb,
8190 unsigned long action, void *hcpu)
8191 {
8192 int cpu = (int)(long)hcpu;
8193
8194 switch (action) {
8195 case CPU_DOWN_PREPARE:
8196 case CPU_DOWN_PREPARE_FROZEN:
8197 disable_runtime(cpu_rq(cpu));
8198 return NOTIFY_OK;
8199
8200 case CPU_DOWN_FAILED:
8201 case CPU_DOWN_FAILED_FROZEN:
8202 case CPU_ONLINE:
8203 case CPU_ONLINE_FROZEN:
8204 enable_runtime(cpu_rq(cpu));
8205 return NOTIFY_OK;
8206
8207 default:
8208 return NOTIFY_DONE;
8209 }
8210 }
8211
8212 void __init sched_init_smp(void)
8213 {
8214 cpumask_var_t non_isolated_cpus;
8215
8216 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8217
8218 #if defined(CONFIG_NUMA)
8219 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8220 GFP_KERNEL);
8221 BUG_ON(sched_group_nodes_bycpu == NULL);
8222 #endif
8223 get_online_cpus();
8224 mutex_lock(&sched_domains_mutex);
8225 arch_init_sched_domains(cpu_online_mask);
8226 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8227 if (cpumask_empty(non_isolated_cpus))
8228 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8229 mutex_unlock(&sched_domains_mutex);
8230 put_online_cpus();
8231
8232 #ifndef CONFIG_CPUSETS
8233 /* XXX: Theoretical race here - CPU may be hotplugged now */
8234 hotcpu_notifier(update_sched_domains, 0);
8235 #endif
8236
8237 /* RT runtime code needs to handle some hotplug events */
8238 hotcpu_notifier(update_runtime, 0);
8239
8240 init_hrtick();
8241
8242 /* Move init over to a non-isolated CPU */
8243 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8244 BUG();
8245 sched_init_granularity();
8246 free_cpumask_var(non_isolated_cpus);
8247
8248 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8249 init_sched_rt_class();
8250 }
8251 #else
8252 void __init sched_init_smp(void)
8253 {
8254 sched_init_granularity();
8255 }
8256 #endif /* CONFIG_SMP */
8257
8258 int in_sched_functions(unsigned long addr)
8259 {
8260 return in_lock_functions(addr) ||
8261 (addr >= (unsigned long)__sched_text_start
8262 && addr < (unsigned long)__sched_text_end);
8263 }
8264
8265 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8266 {
8267 cfs_rq->tasks_timeline = RB_ROOT;
8268 INIT_LIST_HEAD(&cfs_rq->tasks);
8269 #ifdef CONFIG_FAIR_GROUP_SCHED
8270 cfs_rq->rq = rq;
8271 #endif
8272 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8273 }
8274
8275 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8276 {
8277 struct rt_prio_array *array;
8278 int i;
8279
8280 array = &rt_rq->active;
8281 for (i = 0; i < MAX_RT_PRIO; i++) {
8282 INIT_LIST_HEAD(array->queue + i);
8283 __clear_bit(i, array->bitmap);
8284 }
8285 /* delimiter for bitsearch: */
8286 __set_bit(MAX_RT_PRIO, array->bitmap);
8287
8288 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8289 rt_rq->highest_prio = MAX_RT_PRIO;
8290 #endif
8291 #ifdef CONFIG_SMP
8292 rt_rq->rt_nr_migratory = 0;
8293 rt_rq->overloaded = 0;
8294 #endif
8295
8296 rt_rq->rt_time = 0;
8297 rt_rq->rt_throttled = 0;
8298 rt_rq->rt_runtime = 0;
8299 spin_lock_init(&rt_rq->rt_runtime_lock);
8300
8301 #ifdef CONFIG_RT_GROUP_SCHED
8302 rt_rq->rt_nr_boosted = 0;
8303 rt_rq->rq = rq;
8304 #endif
8305 }
8306
8307 #ifdef CONFIG_FAIR_GROUP_SCHED
8308 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8309 struct sched_entity *se, int cpu, int add,
8310 struct sched_entity *parent)
8311 {
8312 struct rq *rq = cpu_rq(cpu);
8313 tg->cfs_rq[cpu] = cfs_rq;
8314 init_cfs_rq(cfs_rq, rq);
8315 cfs_rq->tg = tg;
8316 if (add)
8317 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8318
8319 tg->se[cpu] = se;
8320 /* se could be NULL for init_task_group */
8321 if (!se)
8322 return;
8323
8324 if (!parent)
8325 se->cfs_rq = &rq->cfs;
8326 else
8327 se->cfs_rq = parent->my_q;
8328
8329 se->my_q = cfs_rq;
8330 se->load.weight = tg->shares;
8331 se->load.inv_weight = 0;
8332 se->parent = parent;
8333 }
8334 #endif
8335
8336 #ifdef CONFIG_RT_GROUP_SCHED
8337 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8338 struct sched_rt_entity *rt_se, int cpu, int add,
8339 struct sched_rt_entity *parent)
8340 {
8341 struct rq *rq = cpu_rq(cpu);
8342
8343 tg->rt_rq[cpu] = rt_rq;
8344 init_rt_rq(rt_rq, rq);
8345 rt_rq->tg = tg;
8346 rt_rq->rt_se = rt_se;
8347 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8348 if (add)
8349 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8350
8351 tg->rt_se[cpu] = rt_se;
8352 if (!rt_se)
8353 return;
8354
8355 if (!parent)
8356 rt_se->rt_rq = &rq->rt;
8357 else
8358 rt_se->rt_rq = parent->my_q;
8359
8360 rt_se->my_q = rt_rq;
8361 rt_se->parent = parent;
8362 INIT_LIST_HEAD(&rt_se->run_list);
8363 }
8364 #endif
8365
8366 void __init sched_init(void)
8367 {
8368 int i, j;
8369 unsigned long alloc_size = 0, ptr;
8370
8371 #ifdef CONFIG_FAIR_GROUP_SCHED
8372 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8373 #endif
8374 #ifdef CONFIG_RT_GROUP_SCHED
8375 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8376 #endif
8377 #ifdef CONFIG_USER_SCHED
8378 alloc_size *= 2;
8379 #endif
8380 /*
8381 * As sched_init() is called before page_alloc is setup,
8382 * we use alloc_bootmem().
8383 */
8384 if (alloc_size) {
8385 ptr = (unsigned long)alloc_bootmem(alloc_size);
8386
8387 #ifdef CONFIG_FAIR_GROUP_SCHED
8388 init_task_group.se = (struct sched_entity **)ptr;
8389 ptr += nr_cpu_ids * sizeof(void **);
8390
8391 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8392 ptr += nr_cpu_ids * sizeof(void **);
8393
8394 #ifdef CONFIG_USER_SCHED
8395 root_task_group.se = (struct sched_entity **)ptr;
8396 ptr += nr_cpu_ids * sizeof(void **);
8397
8398 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8399 ptr += nr_cpu_ids * sizeof(void **);
8400 #endif /* CONFIG_USER_SCHED */
8401 #endif /* CONFIG_FAIR_GROUP_SCHED */
8402 #ifdef CONFIG_RT_GROUP_SCHED
8403 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8404 ptr += nr_cpu_ids * sizeof(void **);
8405
8406 init_task_group.rt_rq = (struct rt_rq **)ptr;
8407 ptr += nr_cpu_ids * sizeof(void **);
8408
8409 #ifdef CONFIG_USER_SCHED
8410 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8411 ptr += nr_cpu_ids * sizeof(void **);
8412
8413 root_task_group.rt_rq = (struct rt_rq **)ptr;
8414 ptr += nr_cpu_ids * sizeof(void **);
8415 #endif /* CONFIG_USER_SCHED */
8416 #endif /* CONFIG_RT_GROUP_SCHED */
8417 }
8418
8419 #ifdef CONFIG_SMP
8420 init_defrootdomain();
8421 #endif
8422
8423 init_rt_bandwidth(&def_rt_bandwidth,
8424 global_rt_period(), global_rt_runtime());
8425
8426 #ifdef CONFIG_RT_GROUP_SCHED
8427 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8428 global_rt_period(), global_rt_runtime());
8429 #ifdef CONFIG_USER_SCHED
8430 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8431 global_rt_period(), RUNTIME_INF);
8432 #endif /* CONFIG_USER_SCHED */
8433 #endif /* CONFIG_RT_GROUP_SCHED */
8434
8435 #ifdef CONFIG_GROUP_SCHED
8436 list_add(&init_task_group.list, &task_groups);
8437 INIT_LIST_HEAD(&init_task_group.children);
8438
8439 #ifdef CONFIG_USER_SCHED
8440 INIT_LIST_HEAD(&root_task_group.children);
8441 init_task_group.parent = &root_task_group;
8442 list_add(&init_task_group.siblings, &root_task_group.children);
8443 #endif /* CONFIG_USER_SCHED */
8444 #endif /* CONFIG_GROUP_SCHED */
8445
8446 for_each_possible_cpu(i) {
8447 struct rq *rq;
8448
8449 rq = cpu_rq(i);
8450 spin_lock_init(&rq->lock);
8451 rq->nr_running = 0;
8452 init_cfs_rq(&rq->cfs, rq);
8453 init_rt_rq(&rq->rt, rq);
8454 #ifdef CONFIG_FAIR_GROUP_SCHED
8455 init_task_group.shares = init_task_group_load;
8456 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8457 #ifdef CONFIG_CGROUP_SCHED
8458 /*
8459 * How much cpu bandwidth does init_task_group get?
8460 *
8461 * In case of task-groups formed thr' the cgroup filesystem, it
8462 * gets 100% of the cpu resources in the system. This overall
8463 * system cpu resource is divided among the tasks of
8464 * init_task_group and its child task-groups in a fair manner,
8465 * based on each entity's (task or task-group's) weight
8466 * (se->load.weight).
8467 *
8468 * In other words, if init_task_group has 10 tasks of weight
8469 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8470 * then A0's share of the cpu resource is:
8471 *
8472 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8473 *
8474 * We achieve this by letting init_task_group's tasks sit
8475 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8476 */
8477 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8478 #elif defined CONFIG_USER_SCHED
8479 root_task_group.shares = NICE_0_LOAD;
8480 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8481 /*
8482 * In case of task-groups formed thr' the user id of tasks,
8483 * init_task_group represents tasks belonging to root user.
8484 * Hence it forms a sibling of all subsequent groups formed.
8485 * In this case, init_task_group gets only a fraction of overall
8486 * system cpu resource, based on the weight assigned to root
8487 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8488 * by letting tasks of init_task_group sit in a separate cfs_rq
8489 * (init_cfs_rq) and having one entity represent this group of
8490 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8491 */
8492 init_tg_cfs_entry(&init_task_group,
8493 &per_cpu(init_cfs_rq, i),
8494 &per_cpu(init_sched_entity, i), i, 1,
8495 root_task_group.se[i]);
8496
8497 #endif
8498 #endif /* CONFIG_FAIR_GROUP_SCHED */
8499
8500 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8501 #ifdef CONFIG_RT_GROUP_SCHED
8502 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8503 #ifdef CONFIG_CGROUP_SCHED
8504 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8505 #elif defined CONFIG_USER_SCHED
8506 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8507 init_tg_rt_entry(&init_task_group,
8508 &per_cpu(init_rt_rq, i),
8509 &per_cpu(init_sched_rt_entity, i), i, 1,
8510 root_task_group.rt_se[i]);
8511 #endif
8512 #endif
8513
8514 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8515 rq->cpu_load[j] = 0;
8516 #ifdef CONFIG_SMP
8517 rq->sd = NULL;
8518 rq->rd = NULL;
8519 rq->active_balance = 0;
8520 rq->next_balance = jiffies;
8521 rq->push_cpu = 0;
8522 rq->cpu = i;
8523 rq->online = 0;
8524 rq->migration_thread = NULL;
8525 INIT_LIST_HEAD(&rq->migration_queue);
8526 rq_attach_root(rq, &def_root_domain);
8527 #endif
8528 init_rq_hrtick(rq);
8529 atomic_set(&rq->nr_iowait, 0);
8530 }
8531
8532 set_load_weight(&init_task);
8533
8534 #ifdef CONFIG_PREEMPT_NOTIFIERS
8535 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8536 #endif
8537
8538 #ifdef CONFIG_SMP
8539 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8540 #endif
8541
8542 #ifdef CONFIG_RT_MUTEXES
8543 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8544 #endif
8545
8546 /*
8547 * The boot idle thread does lazy MMU switching as well:
8548 */
8549 atomic_inc(&init_mm.mm_count);
8550 enter_lazy_tlb(&init_mm, current);
8551
8552 /*
8553 * Make us the idle thread. Technically, schedule() should not be
8554 * called from this thread, however somewhere below it might be,
8555 * but because we are the idle thread, we just pick up running again
8556 * when this runqueue becomes "idle".
8557 */
8558 init_idle(current, smp_processor_id());
8559 /*
8560 * During early bootup we pretend to be a normal task:
8561 */
8562 current->sched_class = &fair_sched_class;
8563
8564 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8565 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8566 #ifdef CONFIG_SMP
8567 #ifdef CONFIG_NO_HZ
8568 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8569 #endif
8570 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8571 #endif /* SMP */
8572
8573 scheduler_running = 1;
8574 }
8575
8576 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8577 void __might_sleep(char *file, int line)
8578 {
8579 #ifdef in_atomic
8580 static unsigned long prev_jiffy; /* ratelimiting */
8581
8582 if ((!in_atomic() && !irqs_disabled()) ||
8583 system_state != SYSTEM_RUNNING || oops_in_progress)
8584 return;
8585 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8586 return;
8587 prev_jiffy = jiffies;
8588
8589 printk(KERN_ERR
8590 "BUG: sleeping function called from invalid context at %s:%d\n",
8591 file, line);
8592 printk(KERN_ERR
8593 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8594 in_atomic(), irqs_disabled(),
8595 current->pid, current->comm);
8596
8597 debug_show_held_locks(current);
8598 if (irqs_disabled())
8599 print_irqtrace_events(current);
8600 dump_stack();
8601 #endif
8602 }
8603 EXPORT_SYMBOL(__might_sleep);
8604 #endif
8605
8606 #ifdef CONFIG_MAGIC_SYSRQ
8607 static void normalize_task(struct rq *rq, struct task_struct *p)
8608 {
8609 int on_rq;
8610
8611 update_rq_clock(rq);
8612 on_rq = p->se.on_rq;
8613 if (on_rq)
8614 deactivate_task(rq, p, 0);
8615 __setscheduler(rq, p, SCHED_NORMAL, 0);
8616 if (on_rq) {
8617 activate_task(rq, p, 0);
8618 resched_task(rq->curr);
8619 }
8620 }
8621
8622 void normalize_rt_tasks(void)
8623 {
8624 struct task_struct *g, *p;
8625 unsigned long flags;
8626 struct rq *rq;
8627
8628 read_lock_irqsave(&tasklist_lock, flags);
8629 do_each_thread(g, p) {
8630 /*
8631 * Only normalize user tasks:
8632 */
8633 if (!p->mm)
8634 continue;
8635
8636 p->se.exec_start = 0;
8637 #ifdef CONFIG_SCHEDSTATS
8638 p->se.wait_start = 0;
8639 p->se.sleep_start = 0;
8640 p->se.block_start = 0;
8641 #endif
8642
8643 if (!rt_task(p)) {
8644 /*
8645 * Renice negative nice level userspace
8646 * tasks back to 0:
8647 */
8648 if (TASK_NICE(p) < 0 && p->mm)
8649 set_user_nice(p, 0);
8650 continue;
8651 }
8652
8653 spin_lock(&p->pi_lock);
8654 rq = __task_rq_lock(p);
8655
8656 normalize_task(rq, p);
8657
8658 __task_rq_unlock(rq);
8659 spin_unlock(&p->pi_lock);
8660 } while_each_thread(g, p);
8661
8662 read_unlock_irqrestore(&tasklist_lock, flags);
8663 }
8664
8665 #endif /* CONFIG_MAGIC_SYSRQ */
8666
8667 #ifdef CONFIG_IA64
8668 /*
8669 * These functions are only useful for the IA64 MCA handling.
8670 *
8671 * They can only be called when the whole system has been
8672 * stopped - every CPU needs to be quiescent, and no scheduling
8673 * activity can take place. Using them for anything else would
8674 * be a serious bug, and as a result, they aren't even visible
8675 * under any other configuration.
8676 */
8677
8678 /**
8679 * curr_task - return the current task for a given cpu.
8680 * @cpu: the processor in question.
8681 *
8682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8683 */
8684 struct task_struct *curr_task(int cpu)
8685 {
8686 return cpu_curr(cpu);
8687 }
8688
8689 /**
8690 * set_curr_task - set the current task for a given cpu.
8691 * @cpu: the processor in question.
8692 * @p: the task pointer to set.
8693 *
8694 * Description: This function must only be used when non-maskable interrupts
8695 * are serviced on a separate stack. It allows the architecture to switch the
8696 * notion of the current task on a cpu in a non-blocking manner. This function
8697 * must be called with all CPU's synchronized, and interrupts disabled, the
8698 * and caller must save the original value of the current task (see
8699 * curr_task() above) and restore that value before reenabling interrupts and
8700 * re-starting the system.
8701 *
8702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8703 */
8704 void set_curr_task(int cpu, struct task_struct *p)
8705 {
8706 cpu_curr(cpu) = p;
8707 }
8708
8709 #endif
8710
8711 #ifdef CONFIG_FAIR_GROUP_SCHED
8712 static void free_fair_sched_group(struct task_group *tg)
8713 {
8714 int i;
8715
8716 for_each_possible_cpu(i) {
8717 if (tg->cfs_rq)
8718 kfree(tg->cfs_rq[i]);
8719 if (tg->se)
8720 kfree(tg->se[i]);
8721 }
8722
8723 kfree(tg->cfs_rq);
8724 kfree(tg->se);
8725 }
8726
8727 static
8728 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8729 {
8730 struct cfs_rq *cfs_rq;
8731 struct sched_entity *se;
8732 struct rq *rq;
8733 int i;
8734
8735 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8736 if (!tg->cfs_rq)
8737 goto err;
8738 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8739 if (!tg->se)
8740 goto err;
8741
8742 tg->shares = NICE_0_LOAD;
8743
8744 for_each_possible_cpu(i) {
8745 rq = cpu_rq(i);
8746
8747 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8748 GFP_KERNEL, cpu_to_node(i));
8749 if (!cfs_rq)
8750 goto err;
8751
8752 se = kzalloc_node(sizeof(struct sched_entity),
8753 GFP_KERNEL, cpu_to_node(i));
8754 if (!se)
8755 goto err;
8756
8757 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8758 }
8759
8760 return 1;
8761
8762 err:
8763 return 0;
8764 }
8765
8766 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8767 {
8768 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8769 &cpu_rq(cpu)->leaf_cfs_rq_list);
8770 }
8771
8772 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8773 {
8774 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8775 }
8776 #else /* !CONFG_FAIR_GROUP_SCHED */
8777 static inline void free_fair_sched_group(struct task_group *tg)
8778 {
8779 }
8780
8781 static inline
8782 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8783 {
8784 return 1;
8785 }
8786
8787 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8788 {
8789 }
8790
8791 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8792 {
8793 }
8794 #endif /* CONFIG_FAIR_GROUP_SCHED */
8795
8796 #ifdef CONFIG_RT_GROUP_SCHED
8797 static void free_rt_sched_group(struct task_group *tg)
8798 {
8799 int i;
8800
8801 destroy_rt_bandwidth(&tg->rt_bandwidth);
8802
8803 for_each_possible_cpu(i) {
8804 if (tg->rt_rq)
8805 kfree(tg->rt_rq[i]);
8806 if (tg->rt_se)
8807 kfree(tg->rt_se[i]);
8808 }
8809
8810 kfree(tg->rt_rq);
8811 kfree(tg->rt_se);
8812 }
8813
8814 static
8815 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8816 {
8817 struct rt_rq *rt_rq;
8818 struct sched_rt_entity *rt_se;
8819 struct rq *rq;
8820 int i;
8821
8822 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8823 if (!tg->rt_rq)
8824 goto err;
8825 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8826 if (!tg->rt_se)
8827 goto err;
8828
8829 init_rt_bandwidth(&tg->rt_bandwidth,
8830 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8831
8832 for_each_possible_cpu(i) {
8833 rq = cpu_rq(i);
8834
8835 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8836 GFP_KERNEL, cpu_to_node(i));
8837 if (!rt_rq)
8838 goto err;
8839
8840 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8841 GFP_KERNEL, cpu_to_node(i));
8842 if (!rt_se)
8843 goto err;
8844
8845 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8846 }
8847
8848 return 1;
8849
8850 err:
8851 return 0;
8852 }
8853
8854 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8855 {
8856 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8857 &cpu_rq(cpu)->leaf_rt_rq_list);
8858 }
8859
8860 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8861 {
8862 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8863 }
8864 #else /* !CONFIG_RT_GROUP_SCHED */
8865 static inline void free_rt_sched_group(struct task_group *tg)
8866 {
8867 }
8868
8869 static inline
8870 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8871 {
8872 return 1;
8873 }
8874
8875 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8876 {
8877 }
8878
8879 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8880 {
8881 }
8882 #endif /* CONFIG_RT_GROUP_SCHED */
8883
8884 #ifdef CONFIG_GROUP_SCHED
8885 static void free_sched_group(struct task_group *tg)
8886 {
8887 free_fair_sched_group(tg);
8888 free_rt_sched_group(tg);
8889 kfree(tg);
8890 }
8891
8892 /* allocate runqueue etc for a new task group */
8893 struct task_group *sched_create_group(struct task_group *parent)
8894 {
8895 struct task_group *tg;
8896 unsigned long flags;
8897 int i;
8898
8899 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8900 if (!tg)
8901 return ERR_PTR(-ENOMEM);
8902
8903 if (!alloc_fair_sched_group(tg, parent))
8904 goto err;
8905
8906 if (!alloc_rt_sched_group(tg, parent))
8907 goto err;
8908
8909 spin_lock_irqsave(&task_group_lock, flags);
8910 for_each_possible_cpu(i) {
8911 register_fair_sched_group(tg, i);
8912 register_rt_sched_group(tg, i);
8913 }
8914 list_add_rcu(&tg->list, &task_groups);
8915
8916 WARN_ON(!parent); /* root should already exist */
8917
8918 tg->parent = parent;
8919 INIT_LIST_HEAD(&tg->children);
8920 list_add_rcu(&tg->siblings, &parent->children);
8921 spin_unlock_irqrestore(&task_group_lock, flags);
8922
8923 return tg;
8924
8925 err:
8926 free_sched_group(tg);
8927 return ERR_PTR(-ENOMEM);
8928 }
8929
8930 /* rcu callback to free various structures associated with a task group */
8931 static void free_sched_group_rcu(struct rcu_head *rhp)
8932 {
8933 /* now it should be safe to free those cfs_rqs */
8934 free_sched_group(container_of(rhp, struct task_group, rcu));
8935 }
8936
8937 /* Destroy runqueue etc associated with a task group */
8938 void sched_destroy_group(struct task_group *tg)
8939 {
8940 unsigned long flags;
8941 int i;
8942
8943 spin_lock_irqsave(&task_group_lock, flags);
8944 for_each_possible_cpu(i) {
8945 unregister_fair_sched_group(tg, i);
8946 unregister_rt_sched_group(tg, i);
8947 }
8948 list_del_rcu(&tg->list);
8949 list_del_rcu(&tg->siblings);
8950 spin_unlock_irqrestore(&task_group_lock, flags);
8951
8952 /* wait for possible concurrent references to cfs_rqs complete */
8953 call_rcu(&tg->rcu, free_sched_group_rcu);
8954 }
8955
8956 /* change task's runqueue when it moves between groups.
8957 * The caller of this function should have put the task in its new group
8958 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8959 * reflect its new group.
8960 */
8961 void sched_move_task(struct task_struct *tsk)
8962 {
8963 int on_rq, running;
8964 unsigned long flags;
8965 struct rq *rq;
8966
8967 rq = task_rq_lock(tsk, &flags);
8968
8969 update_rq_clock(rq);
8970
8971 running = task_current(rq, tsk);
8972 on_rq = tsk->se.on_rq;
8973
8974 if (on_rq)
8975 dequeue_task(rq, tsk, 0);
8976 if (unlikely(running))
8977 tsk->sched_class->put_prev_task(rq, tsk);
8978
8979 set_task_rq(tsk, task_cpu(tsk));
8980
8981 #ifdef CONFIG_FAIR_GROUP_SCHED
8982 if (tsk->sched_class->moved_group)
8983 tsk->sched_class->moved_group(tsk);
8984 #endif
8985
8986 if (unlikely(running))
8987 tsk->sched_class->set_curr_task(rq);
8988 if (on_rq)
8989 enqueue_task(rq, tsk, 0);
8990
8991 task_rq_unlock(rq, &flags);
8992 }
8993 #endif /* CONFIG_GROUP_SCHED */
8994
8995 #ifdef CONFIG_FAIR_GROUP_SCHED
8996 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8997 {
8998 struct cfs_rq *cfs_rq = se->cfs_rq;
8999 int on_rq;
9000
9001 on_rq = se->on_rq;
9002 if (on_rq)
9003 dequeue_entity(cfs_rq, se, 0);
9004
9005 se->load.weight = shares;
9006 se->load.inv_weight = 0;
9007
9008 if (on_rq)
9009 enqueue_entity(cfs_rq, se, 0);
9010 }
9011
9012 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9013 {
9014 struct cfs_rq *cfs_rq = se->cfs_rq;
9015 struct rq *rq = cfs_rq->rq;
9016 unsigned long flags;
9017
9018 spin_lock_irqsave(&rq->lock, flags);
9019 __set_se_shares(se, shares);
9020 spin_unlock_irqrestore(&rq->lock, flags);
9021 }
9022
9023 static DEFINE_MUTEX(shares_mutex);
9024
9025 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9026 {
9027 int i;
9028 unsigned long flags;
9029
9030 /*
9031 * We can't change the weight of the root cgroup.
9032 */
9033 if (!tg->se[0])
9034 return -EINVAL;
9035
9036 if (shares < MIN_SHARES)
9037 shares = MIN_SHARES;
9038 else if (shares > MAX_SHARES)
9039 shares = MAX_SHARES;
9040
9041 mutex_lock(&shares_mutex);
9042 if (tg->shares == shares)
9043 goto done;
9044
9045 spin_lock_irqsave(&task_group_lock, flags);
9046 for_each_possible_cpu(i)
9047 unregister_fair_sched_group(tg, i);
9048 list_del_rcu(&tg->siblings);
9049 spin_unlock_irqrestore(&task_group_lock, flags);
9050
9051 /* wait for any ongoing reference to this group to finish */
9052 synchronize_sched();
9053
9054 /*
9055 * Now we are free to modify the group's share on each cpu
9056 * w/o tripping rebalance_share or load_balance_fair.
9057 */
9058 tg->shares = shares;
9059 for_each_possible_cpu(i) {
9060 /*
9061 * force a rebalance
9062 */
9063 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9064 set_se_shares(tg->se[i], shares);
9065 }
9066
9067 /*
9068 * Enable load balance activity on this group, by inserting it back on
9069 * each cpu's rq->leaf_cfs_rq_list.
9070 */
9071 spin_lock_irqsave(&task_group_lock, flags);
9072 for_each_possible_cpu(i)
9073 register_fair_sched_group(tg, i);
9074 list_add_rcu(&tg->siblings, &tg->parent->children);
9075 spin_unlock_irqrestore(&task_group_lock, flags);
9076 done:
9077 mutex_unlock(&shares_mutex);
9078 return 0;
9079 }
9080
9081 unsigned long sched_group_shares(struct task_group *tg)
9082 {
9083 return tg->shares;
9084 }
9085 #endif
9086
9087 #ifdef CONFIG_RT_GROUP_SCHED
9088 /*
9089 * Ensure that the real time constraints are schedulable.
9090 */
9091 static DEFINE_MUTEX(rt_constraints_mutex);
9092
9093 static unsigned long to_ratio(u64 period, u64 runtime)
9094 {
9095 if (runtime == RUNTIME_INF)
9096 return 1ULL << 20;
9097
9098 return div64_u64(runtime << 20, period);
9099 }
9100
9101 /* Must be called with tasklist_lock held */
9102 static inline int tg_has_rt_tasks(struct task_group *tg)
9103 {
9104 struct task_struct *g, *p;
9105
9106 do_each_thread(g, p) {
9107 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9108 return 1;
9109 } while_each_thread(g, p);
9110
9111 return 0;
9112 }
9113
9114 struct rt_schedulable_data {
9115 struct task_group *tg;
9116 u64 rt_period;
9117 u64 rt_runtime;
9118 };
9119
9120 static int tg_schedulable(struct task_group *tg, void *data)
9121 {
9122 struct rt_schedulable_data *d = data;
9123 struct task_group *child;
9124 unsigned long total, sum = 0;
9125 u64 period, runtime;
9126
9127 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9128 runtime = tg->rt_bandwidth.rt_runtime;
9129
9130 if (tg == d->tg) {
9131 period = d->rt_period;
9132 runtime = d->rt_runtime;
9133 }
9134
9135 #ifdef CONFIG_USER_SCHED
9136 if (tg == &root_task_group) {
9137 period = global_rt_period();
9138 runtime = global_rt_runtime();
9139 }
9140 #endif
9141
9142 /*
9143 * Cannot have more runtime than the period.
9144 */
9145 if (runtime > period && runtime != RUNTIME_INF)
9146 return -EINVAL;
9147
9148 /*
9149 * Ensure we don't starve existing RT tasks.
9150 */
9151 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9152 return -EBUSY;
9153
9154 total = to_ratio(period, runtime);
9155
9156 /*
9157 * Nobody can have more than the global setting allows.
9158 */
9159 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9160 return -EINVAL;
9161
9162 /*
9163 * The sum of our children's runtime should not exceed our own.
9164 */
9165 list_for_each_entry_rcu(child, &tg->children, siblings) {
9166 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9167 runtime = child->rt_bandwidth.rt_runtime;
9168
9169 if (child == d->tg) {
9170 period = d->rt_period;
9171 runtime = d->rt_runtime;
9172 }
9173
9174 sum += to_ratio(period, runtime);
9175 }
9176
9177 if (sum > total)
9178 return -EINVAL;
9179
9180 return 0;
9181 }
9182
9183 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9184 {
9185 struct rt_schedulable_data data = {
9186 .tg = tg,
9187 .rt_period = period,
9188 .rt_runtime = runtime,
9189 };
9190
9191 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9192 }
9193
9194 static int tg_set_bandwidth(struct task_group *tg,
9195 u64 rt_period, u64 rt_runtime)
9196 {
9197 int i, err = 0;
9198
9199 mutex_lock(&rt_constraints_mutex);
9200 read_lock(&tasklist_lock);
9201 err = __rt_schedulable(tg, rt_period, rt_runtime);
9202 if (err)
9203 goto unlock;
9204
9205 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9206 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9207 tg->rt_bandwidth.rt_runtime = rt_runtime;
9208
9209 for_each_possible_cpu(i) {
9210 struct rt_rq *rt_rq = tg->rt_rq[i];
9211
9212 spin_lock(&rt_rq->rt_runtime_lock);
9213 rt_rq->rt_runtime = rt_runtime;
9214 spin_unlock(&rt_rq->rt_runtime_lock);
9215 }
9216 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9217 unlock:
9218 read_unlock(&tasklist_lock);
9219 mutex_unlock(&rt_constraints_mutex);
9220
9221 return err;
9222 }
9223
9224 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9225 {
9226 u64 rt_runtime, rt_period;
9227
9228 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9229 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9230 if (rt_runtime_us < 0)
9231 rt_runtime = RUNTIME_INF;
9232
9233 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9234 }
9235
9236 long sched_group_rt_runtime(struct task_group *tg)
9237 {
9238 u64 rt_runtime_us;
9239
9240 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9241 return -1;
9242
9243 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9244 do_div(rt_runtime_us, NSEC_PER_USEC);
9245 return rt_runtime_us;
9246 }
9247
9248 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9249 {
9250 u64 rt_runtime, rt_period;
9251
9252 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9253 rt_runtime = tg->rt_bandwidth.rt_runtime;
9254
9255 if (rt_period == 0)
9256 return -EINVAL;
9257
9258 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9259 }
9260
9261 long sched_group_rt_period(struct task_group *tg)
9262 {
9263 u64 rt_period_us;
9264
9265 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9266 do_div(rt_period_us, NSEC_PER_USEC);
9267 return rt_period_us;
9268 }
9269
9270 static int sched_rt_global_constraints(void)
9271 {
9272 u64 runtime, period;
9273 int ret = 0;
9274
9275 if (sysctl_sched_rt_period <= 0)
9276 return -EINVAL;
9277
9278 runtime = global_rt_runtime();
9279 period = global_rt_period();
9280
9281 /*
9282 * Sanity check on the sysctl variables.
9283 */
9284 if (runtime > period && runtime != RUNTIME_INF)
9285 return -EINVAL;
9286
9287 mutex_lock(&rt_constraints_mutex);
9288 read_lock(&tasklist_lock);
9289 ret = __rt_schedulable(NULL, 0, 0);
9290 read_unlock(&tasklist_lock);
9291 mutex_unlock(&rt_constraints_mutex);
9292
9293 return ret;
9294 }
9295 #else /* !CONFIG_RT_GROUP_SCHED */
9296 static int sched_rt_global_constraints(void)
9297 {
9298 unsigned long flags;
9299 int i;
9300
9301 if (sysctl_sched_rt_period <= 0)
9302 return -EINVAL;
9303
9304 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9305 for_each_possible_cpu(i) {
9306 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9307
9308 spin_lock(&rt_rq->rt_runtime_lock);
9309 rt_rq->rt_runtime = global_rt_runtime();
9310 spin_unlock(&rt_rq->rt_runtime_lock);
9311 }
9312 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9313
9314 return 0;
9315 }
9316 #endif /* CONFIG_RT_GROUP_SCHED */
9317
9318 int sched_rt_handler(struct ctl_table *table, int write,
9319 struct file *filp, void __user *buffer, size_t *lenp,
9320 loff_t *ppos)
9321 {
9322 int ret;
9323 int old_period, old_runtime;
9324 static DEFINE_MUTEX(mutex);
9325
9326 mutex_lock(&mutex);
9327 old_period = sysctl_sched_rt_period;
9328 old_runtime = sysctl_sched_rt_runtime;
9329
9330 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9331
9332 if (!ret && write) {
9333 ret = sched_rt_global_constraints();
9334 if (ret) {
9335 sysctl_sched_rt_period = old_period;
9336 sysctl_sched_rt_runtime = old_runtime;
9337 } else {
9338 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9339 def_rt_bandwidth.rt_period =
9340 ns_to_ktime(global_rt_period());
9341 }
9342 }
9343 mutex_unlock(&mutex);
9344
9345 return ret;
9346 }
9347
9348 #ifdef CONFIG_CGROUP_SCHED
9349
9350 /* return corresponding task_group object of a cgroup */
9351 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9352 {
9353 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9354 struct task_group, css);
9355 }
9356
9357 static struct cgroup_subsys_state *
9358 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9359 {
9360 struct task_group *tg, *parent;
9361
9362 if (!cgrp->parent) {
9363 /* This is early initialization for the top cgroup */
9364 return &init_task_group.css;
9365 }
9366
9367 parent = cgroup_tg(cgrp->parent);
9368 tg = sched_create_group(parent);
9369 if (IS_ERR(tg))
9370 return ERR_PTR(-ENOMEM);
9371
9372 return &tg->css;
9373 }
9374
9375 static void
9376 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9377 {
9378 struct task_group *tg = cgroup_tg(cgrp);
9379
9380 sched_destroy_group(tg);
9381 }
9382
9383 static int
9384 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9385 struct task_struct *tsk)
9386 {
9387 #ifdef CONFIG_RT_GROUP_SCHED
9388 /* Don't accept realtime tasks when there is no way for them to run */
9389 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9390 return -EINVAL;
9391 #else
9392 /* We don't support RT-tasks being in separate groups */
9393 if (tsk->sched_class != &fair_sched_class)
9394 return -EINVAL;
9395 #endif
9396
9397 return 0;
9398 }
9399
9400 static void
9401 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9402 struct cgroup *old_cont, struct task_struct *tsk)
9403 {
9404 sched_move_task(tsk);
9405 }
9406
9407 #ifdef CONFIG_FAIR_GROUP_SCHED
9408 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9409 u64 shareval)
9410 {
9411 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9412 }
9413
9414 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9415 {
9416 struct task_group *tg = cgroup_tg(cgrp);
9417
9418 return (u64) tg->shares;
9419 }
9420 #endif /* CONFIG_FAIR_GROUP_SCHED */
9421
9422 #ifdef CONFIG_RT_GROUP_SCHED
9423 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9424 s64 val)
9425 {
9426 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9427 }
9428
9429 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9430 {
9431 return sched_group_rt_runtime(cgroup_tg(cgrp));
9432 }
9433
9434 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9435 u64 rt_period_us)
9436 {
9437 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9438 }
9439
9440 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9441 {
9442 return sched_group_rt_period(cgroup_tg(cgrp));
9443 }
9444 #endif /* CONFIG_RT_GROUP_SCHED */
9445
9446 static struct cftype cpu_files[] = {
9447 #ifdef CONFIG_FAIR_GROUP_SCHED
9448 {
9449 .name = "shares",
9450 .read_u64 = cpu_shares_read_u64,
9451 .write_u64 = cpu_shares_write_u64,
9452 },
9453 #endif
9454 #ifdef CONFIG_RT_GROUP_SCHED
9455 {
9456 .name = "rt_runtime_us",
9457 .read_s64 = cpu_rt_runtime_read,
9458 .write_s64 = cpu_rt_runtime_write,
9459 },
9460 {
9461 .name = "rt_period_us",
9462 .read_u64 = cpu_rt_period_read_uint,
9463 .write_u64 = cpu_rt_period_write_uint,
9464 },
9465 #endif
9466 };
9467
9468 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9469 {
9470 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9471 }
9472
9473 struct cgroup_subsys cpu_cgroup_subsys = {
9474 .name = "cpu",
9475 .create = cpu_cgroup_create,
9476 .destroy = cpu_cgroup_destroy,
9477 .can_attach = cpu_cgroup_can_attach,
9478 .attach = cpu_cgroup_attach,
9479 .populate = cpu_cgroup_populate,
9480 .subsys_id = cpu_cgroup_subsys_id,
9481 .early_init = 1,
9482 };
9483
9484 #endif /* CONFIG_CGROUP_SCHED */
9485
9486 #ifdef CONFIG_CGROUP_CPUACCT
9487
9488 /*
9489 * CPU accounting code for task groups.
9490 *
9491 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9492 * (balbir@in.ibm.com).
9493 */
9494
9495 /* track cpu usage of a group of tasks and its child groups */
9496 struct cpuacct {
9497 struct cgroup_subsys_state css;
9498 /* cpuusage holds pointer to a u64-type object on every cpu */
9499 u64 *cpuusage;
9500 struct cpuacct *parent;
9501 };
9502
9503 struct cgroup_subsys cpuacct_subsys;
9504
9505 /* return cpu accounting group corresponding to this container */
9506 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9507 {
9508 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9509 struct cpuacct, css);
9510 }
9511
9512 /* return cpu accounting group to which this task belongs */
9513 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9514 {
9515 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9516 struct cpuacct, css);
9517 }
9518
9519 /* create a new cpu accounting group */
9520 static struct cgroup_subsys_state *cpuacct_create(
9521 struct cgroup_subsys *ss, struct cgroup *cgrp)
9522 {
9523 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9524
9525 if (!ca)
9526 return ERR_PTR(-ENOMEM);
9527
9528 ca->cpuusage = alloc_percpu(u64);
9529 if (!ca->cpuusage) {
9530 kfree(ca);
9531 return ERR_PTR(-ENOMEM);
9532 }
9533
9534 if (cgrp->parent)
9535 ca->parent = cgroup_ca(cgrp->parent);
9536
9537 return &ca->css;
9538 }
9539
9540 /* destroy an existing cpu accounting group */
9541 static void
9542 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9543 {
9544 struct cpuacct *ca = cgroup_ca(cgrp);
9545
9546 free_percpu(ca->cpuusage);
9547 kfree(ca);
9548 }
9549
9550 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9551 {
9552 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9553 u64 data;
9554
9555 #ifndef CONFIG_64BIT
9556 /*
9557 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9558 */
9559 spin_lock_irq(&cpu_rq(cpu)->lock);
9560 data = *cpuusage;
9561 spin_unlock_irq(&cpu_rq(cpu)->lock);
9562 #else
9563 data = *cpuusage;
9564 #endif
9565
9566 return data;
9567 }
9568
9569 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9570 {
9571 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9572
9573 #ifndef CONFIG_64BIT
9574 /*
9575 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9576 */
9577 spin_lock_irq(&cpu_rq(cpu)->lock);
9578 *cpuusage = val;
9579 spin_unlock_irq(&cpu_rq(cpu)->lock);
9580 #else
9581 *cpuusage = val;
9582 #endif
9583 }
9584
9585 /* return total cpu usage (in nanoseconds) of a group */
9586 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9587 {
9588 struct cpuacct *ca = cgroup_ca(cgrp);
9589 u64 totalcpuusage = 0;
9590 int i;
9591
9592 for_each_present_cpu(i)
9593 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9594
9595 return totalcpuusage;
9596 }
9597
9598 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9599 u64 reset)
9600 {
9601 struct cpuacct *ca = cgroup_ca(cgrp);
9602 int err = 0;
9603 int i;
9604
9605 if (reset) {
9606 err = -EINVAL;
9607 goto out;
9608 }
9609
9610 for_each_present_cpu(i)
9611 cpuacct_cpuusage_write(ca, i, 0);
9612
9613 out:
9614 return err;
9615 }
9616
9617 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9618 struct seq_file *m)
9619 {
9620 struct cpuacct *ca = cgroup_ca(cgroup);
9621 u64 percpu;
9622 int i;
9623
9624 for_each_present_cpu(i) {
9625 percpu = cpuacct_cpuusage_read(ca, i);
9626 seq_printf(m, "%llu ", (unsigned long long) percpu);
9627 }
9628 seq_printf(m, "\n");
9629 return 0;
9630 }
9631
9632 static struct cftype files[] = {
9633 {
9634 .name = "usage",
9635 .read_u64 = cpuusage_read,
9636 .write_u64 = cpuusage_write,
9637 },
9638 {
9639 .name = "usage_percpu",
9640 .read_seq_string = cpuacct_percpu_seq_read,
9641 },
9642
9643 };
9644
9645 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9646 {
9647 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9648 }
9649
9650 /*
9651 * charge this task's execution time to its accounting group.
9652 *
9653 * called with rq->lock held.
9654 */
9655 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9656 {
9657 struct cpuacct *ca;
9658 int cpu;
9659
9660 if (!cpuacct_subsys.active)
9661 return;
9662
9663 cpu = task_cpu(tsk);
9664 ca = task_ca(tsk);
9665
9666 for (; ca; ca = ca->parent) {
9667 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9668 *cpuusage += cputime;
9669 }
9670 }
9671
9672 struct cgroup_subsys cpuacct_subsys = {
9673 .name = "cpuacct",
9674 .create = cpuacct_create,
9675 .destroy = cpuacct_destroy,
9676 .populate = cpuacct_populate,
9677 .subsys_id = cpuacct_subsys_id,
9678 };
9679 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.219414 seconds and 6 git commands to generate.