Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-nvram
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 }
214
215 static inline int rt_bandwidth_enabled(void)
216 {
217 return sysctl_sched_rt_runtime >= 0;
218 }
219
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 {
222 ktime_t now;
223
224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241 }
242
243 #ifdef CONFIG_RT_GROUP_SCHED
244 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245 {
246 hrtimer_cancel(&rt_b->rt_period_timer);
247 }
248 #endif
249
250 /*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254 static DEFINE_MUTEX(sched_domains_mutex);
255
256 #ifdef CONFIG_GROUP_SCHED
257
258 #include <linux/cgroup.h>
259
260 struct cfs_rq;
261
262 static LIST_HEAD(task_groups);
263
264 /* task group related information */
265 struct task_group {
266 #ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css;
268 #endif
269
270 #ifdef CONFIG_USER_SCHED
271 uid_t uid;
272 #endif
273
274 #ifdef CONFIG_FAIR_GROUP_SCHED
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
280 #endif
281
282 #ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
286 struct rt_bandwidth rt_bandwidth;
287 #endif
288
289 struct rcu_head rcu;
290 struct list_head list;
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
295 };
296
297 #ifdef CONFIG_USER_SCHED
298
299 /* Helper function to pass uid information to create_sched_user() */
300 void set_tg_uid(struct user_struct *user)
301 {
302 user->tg->uid = user->uid;
303 }
304
305 /*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310 struct task_group root_task_group;
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313 /* Default task group's sched entity on each cpu */
314 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315 /* Default task group's cfs_rq on each cpu */
316 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317 #endif /* CONFIG_FAIR_GROUP_SCHED */
318
319 #ifdef CONFIG_RT_GROUP_SCHED
320 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_RT_GROUP_SCHED */
323 #else /* !CONFIG_USER_SCHED */
324 #define root_task_group init_task_group
325 #endif /* CONFIG_USER_SCHED */
326
327 /* task_group_lock serializes add/remove of task groups and also changes to
328 * a task group's cpu shares.
329 */
330 static DEFINE_SPINLOCK(task_group_lock);
331
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 #ifdef CONFIG_USER_SCHED
334 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
335 #else /* !CONFIG_USER_SCHED */
336 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
337 #endif /* CONFIG_USER_SCHED */
338
339 /*
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
347 #define MIN_SHARES 2
348 #define MAX_SHARES (1UL << 18)
349
350 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351 #endif
352
353 /* Default task group.
354 * Every task in system belong to this group at bootup.
355 */
356 struct task_group init_task_group;
357
358 /* return group to which a task belongs */
359 static inline struct task_group *task_group(struct task_struct *p)
360 {
361 struct task_group *tg;
362
363 #ifdef CONFIG_USER_SCHED
364 rcu_read_lock();
365 tg = __task_cred(p)->user->tg;
366 rcu_read_unlock();
367 #elif defined(CONFIG_CGROUP_SCHED)
368 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
369 struct task_group, css);
370 #else
371 tg = &init_task_group;
372 #endif
373 return tg;
374 }
375
376 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
377 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
378 {
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
381 p->se.parent = task_group(p)->se[cpu];
382 #endif
383
384 #ifdef CONFIG_RT_GROUP_SCHED
385 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
386 p->rt.parent = task_group(p)->rt_se[cpu];
387 #endif
388 }
389
390 #else
391
392 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
393 static inline struct task_group *task_group(struct task_struct *p)
394 {
395 return NULL;
396 }
397
398 #endif /* CONFIG_GROUP_SCHED */
399
400 /* CFS-related fields in a runqueue */
401 struct cfs_rq {
402 struct load_weight load;
403 unsigned long nr_running;
404
405 u64 exec_clock;
406 u64 min_vruntime;
407
408 struct rb_root tasks_timeline;
409 struct rb_node *rb_leftmost;
410
411 struct list_head tasks;
412 struct list_head *balance_iterator;
413
414 /*
415 * 'curr' points to currently running entity on this cfs_rq.
416 * It is set to NULL otherwise (i.e when none are currently running).
417 */
418 struct sched_entity *curr, *next, *last;
419
420 unsigned int nr_spread_over;
421
422 #ifdef CONFIG_FAIR_GROUP_SCHED
423 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
424
425 /*
426 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
427 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
428 * (like users, containers etc.)
429 *
430 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
431 * list is used during load balance.
432 */
433 struct list_head leaf_cfs_rq_list;
434 struct task_group *tg; /* group that "owns" this runqueue */
435
436 #ifdef CONFIG_SMP
437 /*
438 * the part of load.weight contributed by tasks
439 */
440 unsigned long task_weight;
441
442 /*
443 * h_load = weight * f(tg)
444 *
445 * Where f(tg) is the recursive weight fraction assigned to
446 * this group.
447 */
448 unsigned long h_load;
449
450 /*
451 * this cpu's part of tg->shares
452 */
453 unsigned long shares;
454
455 /*
456 * load.weight at the time we set shares
457 */
458 unsigned long rq_weight;
459 #endif
460 #endif
461 };
462
463 /* Real-Time classes' related field in a runqueue: */
464 struct rt_rq {
465 struct rt_prio_array active;
466 unsigned long rt_nr_running;
467 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
468 int highest_prio; /* highest queued rt task prio */
469 #endif
470 #ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 int overloaded;
473 #endif
474 int rt_throttled;
475 u64 rt_time;
476 u64 rt_runtime;
477 /* Nests inside the rq lock: */
478 spinlock_t rt_runtime_lock;
479
480 #ifdef CONFIG_RT_GROUP_SCHED
481 unsigned long rt_nr_boosted;
482
483 struct rq *rq;
484 struct list_head leaf_rt_rq_list;
485 struct task_group *tg;
486 struct sched_rt_entity *rt_se;
487 #endif
488 };
489
490 #ifdef CONFIG_SMP
491
492 /*
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
497 * object.
498 *
499 */
500 struct root_domain {
501 atomic_t refcount;
502 cpumask_t span;
503 cpumask_t online;
504
505 /*
506 * The "RT overload" flag: it gets set if a CPU has more than
507 * one runnable RT task.
508 */
509 cpumask_t rto_mask;
510 atomic_t rto_count;
511 #ifdef CONFIG_SMP
512 struct cpupri cpupri;
513 #endif
514 };
515
516 /*
517 * By default the system creates a single root-domain with all cpus as
518 * members (mimicking the global state we have today).
519 */
520 static struct root_domain def_root_domain;
521
522 #endif
523
524 /*
525 * This is the main, per-CPU runqueue data structure.
526 *
527 * Locking rule: those places that want to lock multiple runqueues
528 * (such as the load balancing or the thread migration code), lock
529 * acquire operations must be ordered by ascending &runqueue.
530 */
531 struct rq {
532 /* runqueue lock: */
533 spinlock_t lock;
534
535 /*
536 * nr_running and cpu_load should be in the same cacheline because
537 * remote CPUs use both these fields when doing load calculation.
538 */
539 unsigned long nr_running;
540 #define CPU_LOAD_IDX_MAX 5
541 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
542 unsigned char idle_at_tick;
543 #ifdef CONFIG_NO_HZ
544 unsigned long last_tick_seen;
545 unsigned char in_nohz_recently;
546 #endif
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
549 unsigned long nr_load_updates;
550 u64 nr_switches;
551
552 struct cfs_rq cfs;
553 struct rt_rq rt;
554
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 /* list of leaf cfs_rq on this cpu: */
557 struct list_head leaf_cfs_rq_list;
558 #endif
559 #ifdef CONFIG_RT_GROUP_SCHED
560 struct list_head leaf_rt_rq_list;
561 #endif
562
563 /*
564 * This is part of a global counter where only the total sum
565 * over all CPUs matters. A task can increase this counter on
566 * one CPU and if it got migrated afterwards it may decrease
567 * it on another CPU. Always updated under the runqueue lock:
568 */
569 unsigned long nr_uninterruptible;
570
571 struct task_struct *curr, *idle;
572 unsigned long next_balance;
573 struct mm_struct *prev_mm;
574
575 u64 clock;
576
577 atomic_t nr_iowait;
578
579 #ifdef CONFIG_SMP
580 struct root_domain *rd;
581 struct sched_domain *sd;
582
583 /* For active balancing */
584 int active_balance;
585 int push_cpu;
586 /* cpu of this runqueue: */
587 int cpu;
588 int online;
589
590 unsigned long avg_load_per_task;
591
592 struct task_struct *migration_thread;
593 struct list_head migration_queue;
594 #endif
595
596 #ifdef CONFIG_SCHED_HRTICK
597 #ifdef CONFIG_SMP
598 int hrtick_csd_pending;
599 struct call_single_data hrtick_csd;
600 #endif
601 struct hrtimer hrtick_timer;
602 #endif
603
604 #ifdef CONFIG_SCHEDSTATS
605 /* latency stats */
606 struct sched_info rq_sched_info;
607 unsigned long long rq_cpu_time;
608 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
609
610 /* sys_sched_yield() stats */
611 unsigned int yld_exp_empty;
612 unsigned int yld_act_empty;
613 unsigned int yld_both_empty;
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
633 {
634 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
635 }
636
637 static inline int cpu_of(struct rq *rq)
638 {
639 #ifdef CONFIG_SMP
640 return rq->cpu;
641 #else
642 return 0;
643 #endif
644 }
645
646 /*
647 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
648 * See detach_destroy_domains: synchronize_sched for details.
649 *
650 * The domain tree of any CPU may only be accessed from within
651 * preempt-disabled sections.
652 */
653 #define for_each_domain(cpu, __sd) \
654 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
655
656 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
657 #define this_rq() (&__get_cpu_var(runqueues))
658 #define task_rq(p) cpu_rq(task_cpu(p))
659 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
660
661 static inline void update_rq_clock(struct rq *rq)
662 {
663 rq->clock = sched_clock_cpu(cpu_of(rq));
664 }
665
666 /*
667 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
668 */
669 #ifdef CONFIG_SCHED_DEBUG
670 # define const_debug __read_mostly
671 #else
672 # define const_debug static const
673 #endif
674
675 /**
676 * runqueue_is_locked
677 *
678 * Returns true if the current cpu runqueue is locked.
679 * This interface allows printk to be called with the runqueue lock
680 * held and know whether or not it is OK to wake up the klogd.
681 */
682 int runqueue_is_locked(void)
683 {
684 int cpu = get_cpu();
685 struct rq *rq = cpu_rq(cpu);
686 int ret;
687
688 ret = spin_is_locked(&rq->lock);
689 put_cpu();
690 return ret;
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 filp->f_pos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819
820 /*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825 unsigned int sysctl_sched_shares_thresh = 4;
826
827 /*
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
830 */
831 unsigned int sysctl_sched_rt_period = 1000000;
832
833 static __read_mostly int scheduler_running;
834
835 /*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839 int sysctl_sched_rt_runtime = 950000;
840
841 static inline u64 global_rt_period(void)
842 {
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844 }
845
846 static inline u64 global_rt_runtime(void)
847 {
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852 }
853
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
860
861 static inline int task_current(struct rq *rq, struct task_struct *p)
862 {
863 return rq->curr == p;
864 }
865
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
868 {
869 return task_current(rq, p);
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 }
875
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 {
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
889 spin_unlock_irq(&rq->lock);
890 }
891
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
894 {
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 #ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
917 }
918
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 {
921 #ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
933 }
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 void task_rq_unlock_wait(struct task_struct *p)
973 {
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
978 }
979
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
982 {
983 spin_unlock(&rq->lock);
984 }
985
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
988 {
989 spin_unlock_irqrestore(&rq->lock, *flags);
990 }
991
992 /*
993 * this_rq_lock - lock this runqueue and disable interrupts.
994 */
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
997 {
998 struct rq *rq;
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1003
1004 return rq;
1005 }
1006
1007 #ifdef CONFIG_SCHED_HRTICK
1008 /*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
1018
1019 /*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024 static inline int hrtick_enabled(struct rq *rq)
1025 {
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031 }
1032
1033 static void hrtick_clear(struct rq *rq)
1034 {
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037 }
1038
1039 /*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044 {
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1053
1054 return HRTIMER_NORESTART;
1055 }
1056
1057 #ifdef CONFIG_SMP
1058 /*
1059 * called from hardirq (IPI) context
1060 */
1061 static void __hrtick_start(void *arg)
1062 {
1063 struct rq *rq = arg;
1064
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1069 }
1070
1071 /*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076 static void hrtick_start(struct rq *rq, u64 delay)
1077 {
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080
1081 hrtimer_set_expires(timer, time);
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1088 }
1089 }
1090
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093 {
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108 }
1109
1110 static __init void init_hrtick(void)
1111 {
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113 }
1114 #else
1115 /*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120 static void hrtick_start(struct rq *rq, u64 delay)
1121 {
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1123 }
1124
1125 static inline void init_hrtick(void)
1126 {
1127 }
1128 #endif /* CONFIG_SMP */
1129
1130 static void init_rq_hrtick(struct rq *rq)
1131 {
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1134
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1139
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1143 }
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1146 {
1147 }
1148
1149 static inline void init_rq_hrtick(struct rq *rq)
1150 {
1151 }
1152
1153 static inline void init_hrtick(void)
1154 {
1155 }
1156 #endif /* CONFIG_SCHED_HRTICK */
1157
1158 /*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165 #ifdef CONFIG_SMP
1166
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1170
1171 static void resched_task(struct task_struct *p)
1172 {
1173 int cpu;
1174
1175 assert_spin_locked(&task_rq(p)->lock);
1176
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1178 return;
1179
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190 }
1191
1192 static void resched_cpu(int cpu)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1201 }
1202
1203 #ifdef CONFIG_NO_HZ
1204 /*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214 void wake_up_idle_cpu(int cpu)
1215 {
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242 }
1243 #endif /* CONFIG_NO_HZ */
1244
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1247 {
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1250 }
1251 #endif /* CONFIG_SMP */
1252
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1255 #else
1256 # define WMULT_CONST (1UL << 32)
1257 #endif
1258
1259 #define WMULT_SHIFT 32
1260
1261 /*
1262 * Shift right and round:
1263 */
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1265
1266 /*
1267 * delta *= weight / lw
1268 */
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1272 {
1273 u64 tmp;
1274
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1281 }
1282
1283 tmp = (u64)delta_exec * weight;
1284 /*
1285 * Check whether we'd overflow the 64-bit multiplication:
1286 */
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1289 WMULT_SHIFT/2);
1290 else
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1292
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1294 }
1295
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1297 {
1298 lw->weight += inc;
1299 lw->inv_weight = 0;
1300 }
1301
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1303 {
1304 lw->weight -= dec;
1305 lw->inv_weight = 0;
1306 }
1307
1308 /*
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1315 */
1316
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1319
1320 /*
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1325 *
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1331 */
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1341 };
1342
1343 /*
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1345 *
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1349 */
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1359 };
1360
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1362
1363 /*
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1367 */
1368 struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1372 };
1373
1374 #ifdef CONFIG_SMP
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1380
1381 static int
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1385 #endif
1386
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389 #else
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391 #endif
1392
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394 {
1395 update_load_add(&rq->load, load);
1396 }
1397
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399 {
1400 update_load_sub(&rq->load, load);
1401 }
1402
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1405
1406 /*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 {
1412 struct task_group *parent, *child;
1413 int ret;
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425 up:
1426 continue;
1427 }
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1438
1439 return ret;
1440 }
1441
1442 static int tg_nop(struct task_group *tg, void *data)
1443 {
1444 return 0;
1445 }
1446 #endif
1447
1448 #ifdef CONFIG_SMP
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1452
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1454 {
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1457
1458 if (nr_running)
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
1460 else
1461 rq->avg_load_per_task = 0;
1462
1463 return rq->avg_load_per_task;
1464 }
1465
1466 #ifdef CONFIG_FAIR_GROUP_SCHED
1467
1468 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1469
1470 /*
1471 * Calculate and set the cpu's group shares.
1472 */
1473 static void
1474 update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
1476 {
1477 unsigned long shares;
1478 unsigned long rq_weight;
1479
1480 if (!tg->se[cpu])
1481 return;
1482
1483 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1484
1485 /*
1486 * \Sum shares * rq_weight
1487 * shares = -----------------------
1488 * \Sum rq_weight
1489 *
1490 */
1491 shares = (sd_shares * rq_weight) / sd_rq_weight;
1492 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1493
1494 if (abs(shares - tg->se[cpu]->load.weight) >
1495 sysctl_sched_shares_thresh) {
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&rq->lock, flags);
1500 tg->cfs_rq[cpu]->shares = shares;
1501
1502 __set_se_shares(tg->se[cpu], shares);
1503 spin_unlock_irqrestore(&rq->lock, flags);
1504 }
1505 }
1506
1507 /*
1508 * Re-compute the task group their per cpu shares over the given domain.
1509 * This needs to be done in a bottom-up fashion because the rq weight of a
1510 * parent group depends on the shares of its child groups.
1511 */
1512 static int tg_shares_up(struct task_group *tg, void *data)
1513 {
1514 unsigned long weight, rq_weight = 0;
1515 unsigned long shares = 0;
1516 struct sched_domain *sd = data;
1517 int i;
1518
1519 for_each_cpu_mask(i, sd->span) {
1520 /*
1521 * If there are currently no tasks on the cpu pretend there
1522 * is one of average load so that when a new task gets to
1523 * run here it will not get delayed by group starvation.
1524 */
1525 weight = tg->cfs_rq[i]->load.weight;
1526 if (!weight)
1527 weight = NICE_0_LOAD;
1528
1529 tg->cfs_rq[i]->rq_weight = weight;
1530 rq_weight += weight;
1531 shares += tg->cfs_rq[i]->shares;
1532 }
1533
1534 if ((!shares && rq_weight) || shares > tg->shares)
1535 shares = tg->shares;
1536
1537 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1538 shares = tg->shares;
1539
1540 for_each_cpu_mask(i, sd->span)
1541 update_group_shares_cpu(tg, i, shares, rq_weight);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
1550 */
1551 static int tg_load_down(struct task_group *tg, void *data)
1552 {
1553 unsigned long load;
1554 long cpu = (long)data;
1555
1556 if (!tg->parent) {
1557 load = cpu_rq(cpu)->load.weight;
1558 } else {
1559 load = tg->parent->cfs_rq[cpu]->h_load;
1560 load *= tg->cfs_rq[cpu]->shares;
1561 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1562 }
1563
1564 tg->cfs_rq[cpu]->h_load = load;
1565
1566 return 0;
1567 }
1568
1569 static void update_shares(struct sched_domain *sd)
1570 {
1571 u64 now = cpu_clock(raw_smp_processor_id());
1572 s64 elapsed = now - sd->last_update;
1573
1574 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1575 sd->last_update = now;
1576 walk_tg_tree(tg_nop, tg_shares_up, sd);
1577 }
1578 }
1579
1580 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1581 {
1582 spin_unlock(&rq->lock);
1583 update_shares(sd);
1584 spin_lock(&rq->lock);
1585 }
1586
1587 static void update_h_load(long cpu)
1588 {
1589 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1590 }
1591
1592 #else
1593
1594 static inline void update_shares(struct sched_domain *sd)
1595 {
1596 }
1597
1598 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1599 {
1600 }
1601
1602 #endif
1603
1604 /*
1605 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1606 */
1607 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1608 __releases(this_rq->lock)
1609 __acquires(busiest->lock)
1610 __acquires(this_rq->lock)
1611 {
1612 int ret = 0;
1613
1614 if (unlikely(!irqs_disabled())) {
1615 /* printk() doesn't work good under rq->lock */
1616 spin_unlock(&this_rq->lock);
1617 BUG_ON(1);
1618 }
1619 if (unlikely(!spin_trylock(&busiest->lock))) {
1620 if (busiest < this_rq) {
1621 spin_unlock(&this_rq->lock);
1622 spin_lock(&busiest->lock);
1623 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1624 ret = 1;
1625 } else
1626 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1627 }
1628 return ret;
1629 }
1630
1631 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1632 __releases(busiest->lock)
1633 {
1634 spin_unlock(&busiest->lock);
1635 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1636 }
1637 #endif
1638
1639 #ifdef CONFIG_FAIR_GROUP_SCHED
1640 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1641 {
1642 #ifdef CONFIG_SMP
1643 cfs_rq->shares = shares;
1644 #endif
1645 }
1646 #endif
1647
1648 #include "sched_stats.h"
1649 #include "sched_idletask.c"
1650 #include "sched_fair.c"
1651 #include "sched_rt.c"
1652 #ifdef CONFIG_SCHED_DEBUG
1653 # include "sched_debug.c"
1654 #endif
1655
1656 #define sched_class_highest (&rt_sched_class)
1657 #define for_each_class(class) \
1658 for (class = sched_class_highest; class; class = class->next)
1659
1660 static void inc_nr_running(struct rq *rq)
1661 {
1662 rq->nr_running++;
1663 }
1664
1665 static void dec_nr_running(struct rq *rq)
1666 {
1667 rq->nr_running--;
1668 }
1669
1670 static void set_load_weight(struct task_struct *p)
1671 {
1672 if (task_has_rt_policy(p)) {
1673 p->se.load.weight = prio_to_weight[0] * 2;
1674 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1675 return;
1676 }
1677
1678 /*
1679 * SCHED_IDLE tasks get minimal weight:
1680 */
1681 if (p->policy == SCHED_IDLE) {
1682 p->se.load.weight = WEIGHT_IDLEPRIO;
1683 p->se.load.inv_weight = WMULT_IDLEPRIO;
1684 return;
1685 }
1686
1687 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1688 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1689 }
1690
1691 static void update_avg(u64 *avg, u64 sample)
1692 {
1693 s64 diff = sample - *avg;
1694 *avg += diff >> 3;
1695 }
1696
1697 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1698 {
1699 sched_info_queued(p);
1700 p->sched_class->enqueue_task(rq, p, wakeup);
1701 p->se.on_rq = 1;
1702 }
1703
1704 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1705 {
1706 if (sleep && p->se.last_wakeup) {
1707 update_avg(&p->se.avg_overlap,
1708 p->se.sum_exec_runtime - p->se.last_wakeup);
1709 p->se.last_wakeup = 0;
1710 }
1711
1712 sched_info_dequeued(p);
1713 p->sched_class->dequeue_task(rq, p, sleep);
1714 p->se.on_rq = 0;
1715 }
1716
1717 /*
1718 * __normal_prio - return the priority that is based on the static prio
1719 */
1720 static inline int __normal_prio(struct task_struct *p)
1721 {
1722 return p->static_prio;
1723 }
1724
1725 /*
1726 * Calculate the expected normal priority: i.e. priority
1727 * without taking RT-inheritance into account. Might be
1728 * boosted by interactivity modifiers. Changes upon fork,
1729 * setprio syscalls, and whenever the interactivity
1730 * estimator recalculates.
1731 */
1732 static inline int normal_prio(struct task_struct *p)
1733 {
1734 int prio;
1735
1736 if (task_has_rt_policy(p))
1737 prio = MAX_RT_PRIO-1 - p->rt_priority;
1738 else
1739 prio = __normal_prio(p);
1740 return prio;
1741 }
1742
1743 /*
1744 * Calculate the current priority, i.e. the priority
1745 * taken into account by the scheduler. This value might
1746 * be boosted by RT tasks, or might be boosted by
1747 * interactivity modifiers. Will be RT if the task got
1748 * RT-boosted. If not then it returns p->normal_prio.
1749 */
1750 static int effective_prio(struct task_struct *p)
1751 {
1752 p->normal_prio = normal_prio(p);
1753 /*
1754 * If we are RT tasks or we were boosted to RT priority,
1755 * keep the priority unchanged. Otherwise, update priority
1756 * to the normal priority:
1757 */
1758 if (!rt_prio(p->prio))
1759 return p->normal_prio;
1760 return p->prio;
1761 }
1762
1763 /*
1764 * activate_task - move a task to the runqueue.
1765 */
1766 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1767 {
1768 if (task_contributes_to_load(p))
1769 rq->nr_uninterruptible--;
1770
1771 enqueue_task(rq, p, wakeup);
1772 inc_nr_running(rq);
1773 }
1774
1775 /*
1776 * deactivate_task - remove a task from the runqueue.
1777 */
1778 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1779 {
1780 if (task_contributes_to_load(p))
1781 rq->nr_uninterruptible++;
1782
1783 dequeue_task(rq, p, sleep);
1784 dec_nr_running(rq);
1785 }
1786
1787 /**
1788 * task_curr - is this task currently executing on a CPU?
1789 * @p: the task in question.
1790 */
1791 inline int task_curr(const struct task_struct *p)
1792 {
1793 return cpu_curr(task_cpu(p)) == p;
1794 }
1795
1796 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1797 {
1798 set_task_rq(p, cpu);
1799 #ifdef CONFIG_SMP
1800 /*
1801 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1802 * successfuly executed on another CPU. We must ensure that updates of
1803 * per-task data have been completed by this moment.
1804 */
1805 smp_wmb();
1806 task_thread_info(p)->cpu = cpu;
1807 #endif
1808 }
1809
1810 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1811 const struct sched_class *prev_class,
1812 int oldprio, int running)
1813 {
1814 if (prev_class != p->sched_class) {
1815 if (prev_class->switched_from)
1816 prev_class->switched_from(rq, p, running);
1817 p->sched_class->switched_to(rq, p, running);
1818 } else
1819 p->sched_class->prio_changed(rq, p, oldprio, running);
1820 }
1821
1822 #ifdef CONFIG_SMP
1823
1824 /* Used instead of source_load when we know the type == 0 */
1825 static unsigned long weighted_cpuload(const int cpu)
1826 {
1827 return cpu_rq(cpu)->load.weight;
1828 }
1829
1830 /*
1831 * Is this task likely cache-hot:
1832 */
1833 static int
1834 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1835 {
1836 s64 delta;
1837
1838 /*
1839 * Buddy candidates are cache hot:
1840 */
1841 if (sched_feat(CACHE_HOT_BUDDY) &&
1842 (&p->se == cfs_rq_of(&p->se)->next ||
1843 &p->se == cfs_rq_of(&p->se)->last))
1844 return 1;
1845
1846 if (p->sched_class != &fair_sched_class)
1847 return 0;
1848
1849 if (sysctl_sched_migration_cost == -1)
1850 return 1;
1851 if (sysctl_sched_migration_cost == 0)
1852 return 0;
1853
1854 delta = now - p->se.exec_start;
1855
1856 return delta < (s64)sysctl_sched_migration_cost;
1857 }
1858
1859
1860 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1861 {
1862 int old_cpu = task_cpu(p);
1863 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1864 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1865 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1866 u64 clock_offset;
1867
1868 clock_offset = old_rq->clock - new_rq->clock;
1869
1870 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1871
1872 #ifdef CONFIG_SCHEDSTATS
1873 if (p->se.wait_start)
1874 p->se.wait_start -= clock_offset;
1875 if (p->se.sleep_start)
1876 p->se.sleep_start -= clock_offset;
1877 if (p->se.block_start)
1878 p->se.block_start -= clock_offset;
1879 if (old_cpu != new_cpu) {
1880 schedstat_inc(p, se.nr_migrations);
1881 if (task_hot(p, old_rq->clock, NULL))
1882 schedstat_inc(p, se.nr_forced2_migrations);
1883 }
1884 #endif
1885 p->se.vruntime -= old_cfsrq->min_vruntime -
1886 new_cfsrq->min_vruntime;
1887
1888 __set_task_cpu(p, new_cpu);
1889 }
1890
1891 struct migration_req {
1892 struct list_head list;
1893
1894 struct task_struct *task;
1895 int dest_cpu;
1896
1897 struct completion done;
1898 };
1899
1900 /*
1901 * The task's runqueue lock must be held.
1902 * Returns true if you have to wait for migration thread.
1903 */
1904 static int
1905 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1906 {
1907 struct rq *rq = task_rq(p);
1908
1909 /*
1910 * If the task is not on a runqueue (and not running), then
1911 * it is sufficient to simply update the task's cpu field.
1912 */
1913 if (!p->se.on_rq && !task_running(rq, p)) {
1914 set_task_cpu(p, dest_cpu);
1915 return 0;
1916 }
1917
1918 init_completion(&req->done);
1919 req->task = p;
1920 req->dest_cpu = dest_cpu;
1921 list_add(&req->list, &rq->migration_queue);
1922
1923 return 1;
1924 }
1925
1926 /*
1927 * wait_task_inactive - wait for a thread to unschedule.
1928 *
1929 * If @match_state is nonzero, it's the @p->state value just checked and
1930 * not expected to change. If it changes, i.e. @p might have woken up,
1931 * then return zero. When we succeed in waiting for @p to be off its CPU,
1932 * we return a positive number (its total switch count). If a second call
1933 * a short while later returns the same number, the caller can be sure that
1934 * @p has remained unscheduled the whole time.
1935 *
1936 * The caller must ensure that the task *will* unschedule sometime soon,
1937 * else this function might spin for a *long* time. This function can't
1938 * be called with interrupts off, or it may introduce deadlock with
1939 * smp_call_function() if an IPI is sent by the same process we are
1940 * waiting to become inactive.
1941 */
1942 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1943 {
1944 unsigned long flags;
1945 int running, on_rq;
1946 unsigned long ncsw;
1947 struct rq *rq;
1948
1949 for (;;) {
1950 /*
1951 * We do the initial early heuristics without holding
1952 * any task-queue locks at all. We'll only try to get
1953 * the runqueue lock when things look like they will
1954 * work out!
1955 */
1956 rq = task_rq(p);
1957
1958 /*
1959 * If the task is actively running on another CPU
1960 * still, just relax and busy-wait without holding
1961 * any locks.
1962 *
1963 * NOTE! Since we don't hold any locks, it's not
1964 * even sure that "rq" stays as the right runqueue!
1965 * But we don't care, since "task_running()" will
1966 * return false if the runqueue has changed and p
1967 * is actually now running somewhere else!
1968 */
1969 while (task_running(rq, p)) {
1970 if (match_state && unlikely(p->state != match_state))
1971 return 0;
1972 cpu_relax();
1973 }
1974
1975 /*
1976 * Ok, time to look more closely! We need the rq
1977 * lock now, to be *sure*. If we're wrong, we'll
1978 * just go back and repeat.
1979 */
1980 rq = task_rq_lock(p, &flags);
1981 trace_sched_wait_task(rq, p);
1982 running = task_running(rq, p);
1983 on_rq = p->se.on_rq;
1984 ncsw = 0;
1985 if (!match_state || p->state == match_state)
1986 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1987 task_rq_unlock(rq, &flags);
1988
1989 /*
1990 * If it changed from the expected state, bail out now.
1991 */
1992 if (unlikely(!ncsw))
1993 break;
1994
1995 /*
1996 * Was it really running after all now that we
1997 * checked with the proper locks actually held?
1998 *
1999 * Oops. Go back and try again..
2000 */
2001 if (unlikely(running)) {
2002 cpu_relax();
2003 continue;
2004 }
2005
2006 /*
2007 * It's not enough that it's not actively running,
2008 * it must be off the runqueue _entirely_, and not
2009 * preempted!
2010 *
2011 * So if it wa still runnable (but just not actively
2012 * running right now), it's preempted, and we should
2013 * yield - it could be a while.
2014 */
2015 if (unlikely(on_rq)) {
2016 schedule_timeout_uninterruptible(1);
2017 continue;
2018 }
2019
2020 /*
2021 * Ahh, all good. It wasn't running, and it wasn't
2022 * runnable, which means that it will never become
2023 * running in the future either. We're all done!
2024 */
2025 break;
2026 }
2027
2028 return ncsw;
2029 }
2030
2031 /***
2032 * kick_process - kick a running thread to enter/exit the kernel
2033 * @p: the to-be-kicked thread
2034 *
2035 * Cause a process which is running on another CPU to enter
2036 * kernel-mode, without any delay. (to get signals handled.)
2037 *
2038 * NOTE: this function doesnt have to take the runqueue lock,
2039 * because all it wants to ensure is that the remote task enters
2040 * the kernel. If the IPI races and the task has been migrated
2041 * to another CPU then no harm is done and the purpose has been
2042 * achieved as well.
2043 */
2044 void kick_process(struct task_struct *p)
2045 {
2046 int cpu;
2047
2048 preempt_disable();
2049 cpu = task_cpu(p);
2050 if ((cpu != smp_processor_id()) && task_curr(p))
2051 smp_send_reschedule(cpu);
2052 preempt_enable();
2053 }
2054
2055 /*
2056 * Return a low guess at the load of a migration-source cpu weighted
2057 * according to the scheduling class and "nice" value.
2058 *
2059 * We want to under-estimate the load of migration sources, to
2060 * balance conservatively.
2061 */
2062 static unsigned long source_load(int cpu, int type)
2063 {
2064 struct rq *rq = cpu_rq(cpu);
2065 unsigned long total = weighted_cpuload(cpu);
2066
2067 if (type == 0 || !sched_feat(LB_BIAS))
2068 return total;
2069
2070 return min(rq->cpu_load[type-1], total);
2071 }
2072
2073 /*
2074 * Return a high guess at the load of a migration-target cpu weighted
2075 * according to the scheduling class and "nice" value.
2076 */
2077 static unsigned long target_load(int cpu, int type)
2078 {
2079 struct rq *rq = cpu_rq(cpu);
2080 unsigned long total = weighted_cpuload(cpu);
2081
2082 if (type == 0 || !sched_feat(LB_BIAS))
2083 return total;
2084
2085 return max(rq->cpu_load[type-1], total);
2086 }
2087
2088 /*
2089 * find_idlest_group finds and returns the least busy CPU group within the
2090 * domain.
2091 */
2092 static struct sched_group *
2093 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2094 {
2095 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2096 unsigned long min_load = ULONG_MAX, this_load = 0;
2097 int load_idx = sd->forkexec_idx;
2098 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2099
2100 do {
2101 unsigned long load, avg_load;
2102 int local_group;
2103 int i;
2104
2105 /* Skip over this group if it has no CPUs allowed */
2106 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2107 continue;
2108
2109 local_group = cpu_isset(this_cpu, group->cpumask);
2110
2111 /* Tally up the load of all CPUs in the group */
2112 avg_load = 0;
2113
2114 for_each_cpu_mask_nr(i, group->cpumask) {
2115 /* Bias balancing toward cpus of our domain */
2116 if (local_group)
2117 load = source_load(i, load_idx);
2118 else
2119 load = target_load(i, load_idx);
2120
2121 avg_load += load;
2122 }
2123
2124 /* Adjust by relative CPU power of the group */
2125 avg_load = sg_div_cpu_power(group,
2126 avg_load * SCHED_LOAD_SCALE);
2127
2128 if (local_group) {
2129 this_load = avg_load;
2130 this = group;
2131 } else if (avg_load < min_load) {
2132 min_load = avg_load;
2133 idlest = group;
2134 }
2135 } while (group = group->next, group != sd->groups);
2136
2137 if (!idlest || 100*this_load < imbalance*min_load)
2138 return NULL;
2139 return idlest;
2140 }
2141
2142 /*
2143 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2144 */
2145 static int
2146 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2147 cpumask_t *tmp)
2148 {
2149 unsigned long load, min_load = ULONG_MAX;
2150 int idlest = -1;
2151 int i;
2152
2153 /* Traverse only the allowed CPUs */
2154 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2155
2156 for_each_cpu_mask_nr(i, *tmp) {
2157 load = weighted_cpuload(i);
2158
2159 if (load < min_load || (load == min_load && i == this_cpu)) {
2160 min_load = load;
2161 idlest = i;
2162 }
2163 }
2164
2165 return idlest;
2166 }
2167
2168 /*
2169 * sched_balance_self: balance the current task (running on cpu) in domains
2170 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2171 * SD_BALANCE_EXEC.
2172 *
2173 * Balance, ie. select the least loaded group.
2174 *
2175 * Returns the target CPU number, or the same CPU if no balancing is needed.
2176 *
2177 * preempt must be disabled.
2178 */
2179 static int sched_balance_self(int cpu, int flag)
2180 {
2181 struct task_struct *t = current;
2182 struct sched_domain *tmp, *sd = NULL;
2183
2184 for_each_domain(cpu, tmp) {
2185 /*
2186 * If power savings logic is enabled for a domain, stop there.
2187 */
2188 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2189 break;
2190 if (tmp->flags & flag)
2191 sd = tmp;
2192 }
2193
2194 if (sd)
2195 update_shares(sd);
2196
2197 while (sd) {
2198 cpumask_t span, tmpmask;
2199 struct sched_group *group;
2200 int new_cpu, weight;
2201
2202 if (!(sd->flags & flag)) {
2203 sd = sd->child;
2204 continue;
2205 }
2206
2207 span = sd->span;
2208 group = find_idlest_group(sd, t, cpu);
2209 if (!group) {
2210 sd = sd->child;
2211 continue;
2212 }
2213
2214 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2215 if (new_cpu == -1 || new_cpu == cpu) {
2216 /* Now try balancing at a lower domain level of cpu */
2217 sd = sd->child;
2218 continue;
2219 }
2220
2221 /* Now try balancing at a lower domain level of new_cpu */
2222 cpu = new_cpu;
2223 sd = NULL;
2224 weight = cpus_weight(span);
2225 for_each_domain(cpu, tmp) {
2226 if (weight <= cpus_weight(tmp->span))
2227 break;
2228 if (tmp->flags & flag)
2229 sd = tmp;
2230 }
2231 /* while loop will break here if sd == NULL */
2232 }
2233
2234 return cpu;
2235 }
2236
2237 #endif /* CONFIG_SMP */
2238
2239 /***
2240 * try_to_wake_up - wake up a thread
2241 * @p: the to-be-woken-up thread
2242 * @state: the mask of task states that can be woken
2243 * @sync: do a synchronous wakeup?
2244 *
2245 * Put it on the run-queue if it's not already there. The "current"
2246 * thread is always on the run-queue (except when the actual
2247 * re-schedule is in progress), and as such you're allowed to do
2248 * the simpler "current->state = TASK_RUNNING" to mark yourself
2249 * runnable without the overhead of this.
2250 *
2251 * returns failure only if the task is already active.
2252 */
2253 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2254 {
2255 int cpu, orig_cpu, this_cpu, success = 0;
2256 unsigned long flags;
2257 long old_state;
2258 struct rq *rq;
2259
2260 if (!sched_feat(SYNC_WAKEUPS))
2261 sync = 0;
2262
2263 #ifdef CONFIG_SMP
2264 if (sched_feat(LB_WAKEUP_UPDATE)) {
2265 struct sched_domain *sd;
2266
2267 this_cpu = raw_smp_processor_id();
2268 cpu = task_cpu(p);
2269
2270 for_each_domain(this_cpu, sd) {
2271 if (cpu_isset(cpu, sd->span)) {
2272 update_shares(sd);
2273 break;
2274 }
2275 }
2276 }
2277 #endif
2278
2279 smp_wmb();
2280 rq = task_rq_lock(p, &flags);
2281 update_rq_clock(rq);
2282 old_state = p->state;
2283 if (!(old_state & state))
2284 goto out;
2285
2286 if (p->se.on_rq)
2287 goto out_running;
2288
2289 cpu = task_cpu(p);
2290 orig_cpu = cpu;
2291 this_cpu = smp_processor_id();
2292
2293 #ifdef CONFIG_SMP
2294 if (unlikely(task_running(rq, p)))
2295 goto out_activate;
2296
2297 cpu = p->sched_class->select_task_rq(p, sync);
2298 if (cpu != orig_cpu) {
2299 set_task_cpu(p, cpu);
2300 task_rq_unlock(rq, &flags);
2301 /* might preempt at this point */
2302 rq = task_rq_lock(p, &flags);
2303 old_state = p->state;
2304 if (!(old_state & state))
2305 goto out;
2306 if (p->se.on_rq)
2307 goto out_running;
2308
2309 this_cpu = smp_processor_id();
2310 cpu = task_cpu(p);
2311 }
2312
2313 #ifdef CONFIG_SCHEDSTATS
2314 schedstat_inc(rq, ttwu_count);
2315 if (cpu == this_cpu)
2316 schedstat_inc(rq, ttwu_local);
2317 else {
2318 struct sched_domain *sd;
2319 for_each_domain(this_cpu, sd) {
2320 if (cpu_isset(cpu, sd->span)) {
2321 schedstat_inc(sd, ttwu_wake_remote);
2322 break;
2323 }
2324 }
2325 }
2326 #endif /* CONFIG_SCHEDSTATS */
2327
2328 out_activate:
2329 #endif /* CONFIG_SMP */
2330 schedstat_inc(p, se.nr_wakeups);
2331 if (sync)
2332 schedstat_inc(p, se.nr_wakeups_sync);
2333 if (orig_cpu != cpu)
2334 schedstat_inc(p, se.nr_wakeups_migrate);
2335 if (cpu == this_cpu)
2336 schedstat_inc(p, se.nr_wakeups_local);
2337 else
2338 schedstat_inc(p, se.nr_wakeups_remote);
2339 activate_task(rq, p, 1);
2340 success = 1;
2341
2342 out_running:
2343 trace_sched_wakeup(rq, p, success);
2344 check_preempt_curr(rq, p, sync);
2345
2346 p->state = TASK_RUNNING;
2347 #ifdef CONFIG_SMP
2348 if (p->sched_class->task_wake_up)
2349 p->sched_class->task_wake_up(rq, p);
2350 #endif
2351 out:
2352 current->se.last_wakeup = current->se.sum_exec_runtime;
2353
2354 task_rq_unlock(rq, &flags);
2355
2356 return success;
2357 }
2358
2359 int wake_up_process(struct task_struct *p)
2360 {
2361 return try_to_wake_up(p, TASK_ALL, 0);
2362 }
2363 EXPORT_SYMBOL(wake_up_process);
2364
2365 int wake_up_state(struct task_struct *p, unsigned int state)
2366 {
2367 return try_to_wake_up(p, state, 0);
2368 }
2369
2370 /*
2371 * Perform scheduler related setup for a newly forked process p.
2372 * p is forked by current.
2373 *
2374 * __sched_fork() is basic setup used by init_idle() too:
2375 */
2376 static void __sched_fork(struct task_struct *p)
2377 {
2378 p->se.exec_start = 0;
2379 p->se.sum_exec_runtime = 0;
2380 p->se.prev_sum_exec_runtime = 0;
2381 p->se.last_wakeup = 0;
2382 p->se.avg_overlap = 0;
2383
2384 #ifdef CONFIG_SCHEDSTATS
2385 p->se.wait_start = 0;
2386 p->se.sum_sleep_runtime = 0;
2387 p->se.sleep_start = 0;
2388 p->se.block_start = 0;
2389 p->se.sleep_max = 0;
2390 p->se.block_max = 0;
2391 p->se.exec_max = 0;
2392 p->se.slice_max = 0;
2393 p->se.wait_max = 0;
2394 #endif
2395
2396 INIT_LIST_HEAD(&p->rt.run_list);
2397 p->se.on_rq = 0;
2398 INIT_LIST_HEAD(&p->se.group_node);
2399
2400 #ifdef CONFIG_PREEMPT_NOTIFIERS
2401 INIT_HLIST_HEAD(&p->preempt_notifiers);
2402 #endif
2403
2404 /*
2405 * We mark the process as running here, but have not actually
2406 * inserted it onto the runqueue yet. This guarantees that
2407 * nobody will actually run it, and a signal or other external
2408 * event cannot wake it up and insert it on the runqueue either.
2409 */
2410 p->state = TASK_RUNNING;
2411 }
2412
2413 /*
2414 * fork()/clone()-time setup:
2415 */
2416 void sched_fork(struct task_struct *p, int clone_flags)
2417 {
2418 int cpu = get_cpu();
2419
2420 __sched_fork(p);
2421
2422 #ifdef CONFIG_SMP
2423 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2424 #endif
2425 set_task_cpu(p, cpu);
2426
2427 /*
2428 * Make sure we do not leak PI boosting priority to the child:
2429 */
2430 p->prio = current->normal_prio;
2431 if (!rt_prio(p->prio))
2432 p->sched_class = &fair_sched_class;
2433
2434 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2435 if (likely(sched_info_on()))
2436 memset(&p->sched_info, 0, sizeof(p->sched_info));
2437 #endif
2438 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2439 p->oncpu = 0;
2440 #endif
2441 #ifdef CONFIG_PREEMPT
2442 /* Want to start with kernel preemption disabled. */
2443 task_thread_info(p)->preempt_count = 1;
2444 #endif
2445 put_cpu();
2446 }
2447
2448 /*
2449 * wake_up_new_task - wake up a newly created task for the first time.
2450 *
2451 * This function will do some initial scheduler statistics housekeeping
2452 * that must be done for every newly created context, then puts the task
2453 * on the runqueue and wakes it.
2454 */
2455 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2456 {
2457 unsigned long flags;
2458 struct rq *rq;
2459
2460 rq = task_rq_lock(p, &flags);
2461 BUG_ON(p->state != TASK_RUNNING);
2462 update_rq_clock(rq);
2463
2464 p->prio = effective_prio(p);
2465
2466 if (!p->sched_class->task_new || !current->se.on_rq) {
2467 activate_task(rq, p, 0);
2468 } else {
2469 /*
2470 * Let the scheduling class do new task startup
2471 * management (if any):
2472 */
2473 p->sched_class->task_new(rq, p);
2474 inc_nr_running(rq);
2475 }
2476 trace_sched_wakeup_new(rq, p, 1);
2477 check_preempt_curr(rq, p, 0);
2478 #ifdef CONFIG_SMP
2479 if (p->sched_class->task_wake_up)
2480 p->sched_class->task_wake_up(rq, p);
2481 #endif
2482 task_rq_unlock(rq, &flags);
2483 }
2484
2485 #ifdef CONFIG_PREEMPT_NOTIFIERS
2486
2487 /**
2488 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2489 * @notifier: notifier struct to register
2490 */
2491 void preempt_notifier_register(struct preempt_notifier *notifier)
2492 {
2493 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2494 }
2495 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2496
2497 /**
2498 * preempt_notifier_unregister - no longer interested in preemption notifications
2499 * @notifier: notifier struct to unregister
2500 *
2501 * This is safe to call from within a preemption notifier.
2502 */
2503 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2504 {
2505 hlist_del(&notifier->link);
2506 }
2507 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2508
2509 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510 {
2511 struct preempt_notifier *notifier;
2512 struct hlist_node *node;
2513
2514 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2515 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2516 }
2517
2518 static void
2519 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
2521 {
2522 struct preempt_notifier *notifier;
2523 struct hlist_node *node;
2524
2525 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2526 notifier->ops->sched_out(notifier, next);
2527 }
2528
2529 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2530
2531 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2532 {
2533 }
2534
2535 static void
2536 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2537 struct task_struct *next)
2538 {
2539 }
2540
2541 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2542
2543 /**
2544 * prepare_task_switch - prepare to switch tasks
2545 * @rq: the runqueue preparing to switch
2546 * @prev: the current task that is being switched out
2547 * @next: the task we are going to switch to.
2548 *
2549 * This is called with the rq lock held and interrupts off. It must
2550 * be paired with a subsequent finish_task_switch after the context
2551 * switch.
2552 *
2553 * prepare_task_switch sets up locking and calls architecture specific
2554 * hooks.
2555 */
2556 static inline void
2557 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2558 struct task_struct *next)
2559 {
2560 fire_sched_out_preempt_notifiers(prev, next);
2561 prepare_lock_switch(rq, next);
2562 prepare_arch_switch(next);
2563 }
2564
2565 /**
2566 * finish_task_switch - clean up after a task-switch
2567 * @rq: runqueue associated with task-switch
2568 * @prev: the thread we just switched away from.
2569 *
2570 * finish_task_switch must be called after the context switch, paired
2571 * with a prepare_task_switch call before the context switch.
2572 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2573 * and do any other architecture-specific cleanup actions.
2574 *
2575 * Note that we may have delayed dropping an mm in context_switch(). If
2576 * so, we finish that here outside of the runqueue lock. (Doing it
2577 * with the lock held can cause deadlocks; see schedule() for
2578 * details.)
2579 */
2580 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2581 __releases(rq->lock)
2582 {
2583 struct mm_struct *mm = rq->prev_mm;
2584 long prev_state;
2585
2586 rq->prev_mm = NULL;
2587
2588 /*
2589 * A task struct has one reference for the use as "current".
2590 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2591 * schedule one last time. The schedule call will never return, and
2592 * the scheduled task must drop that reference.
2593 * The test for TASK_DEAD must occur while the runqueue locks are
2594 * still held, otherwise prev could be scheduled on another cpu, die
2595 * there before we look at prev->state, and then the reference would
2596 * be dropped twice.
2597 * Manfred Spraul <manfred@colorfullife.com>
2598 */
2599 prev_state = prev->state;
2600 finish_arch_switch(prev);
2601 finish_lock_switch(rq, prev);
2602 #ifdef CONFIG_SMP
2603 if (current->sched_class->post_schedule)
2604 current->sched_class->post_schedule(rq);
2605 #endif
2606
2607 fire_sched_in_preempt_notifiers(current);
2608 if (mm)
2609 mmdrop(mm);
2610 if (unlikely(prev_state == TASK_DEAD)) {
2611 /*
2612 * Remove function-return probe instances associated with this
2613 * task and put them back on the free list.
2614 */
2615 kprobe_flush_task(prev);
2616 put_task_struct(prev);
2617 }
2618 }
2619
2620 /**
2621 * schedule_tail - first thing a freshly forked thread must call.
2622 * @prev: the thread we just switched away from.
2623 */
2624 asmlinkage void schedule_tail(struct task_struct *prev)
2625 __releases(rq->lock)
2626 {
2627 struct rq *rq = this_rq();
2628
2629 finish_task_switch(rq, prev);
2630 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2631 /* In this case, finish_task_switch does not reenable preemption */
2632 preempt_enable();
2633 #endif
2634 if (current->set_child_tid)
2635 put_user(task_pid_vnr(current), current->set_child_tid);
2636 }
2637
2638 /*
2639 * context_switch - switch to the new MM and the new
2640 * thread's register state.
2641 */
2642 static inline void
2643 context_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
2645 {
2646 struct mm_struct *mm, *oldmm;
2647
2648 prepare_task_switch(rq, prev, next);
2649 trace_sched_switch(rq, prev, next);
2650 mm = next->mm;
2651 oldmm = prev->active_mm;
2652 /*
2653 * For paravirt, this is coupled with an exit in switch_to to
2654 * combine the page table reload and the switch backend into
2655 * one hypercall.
2656 */
2657 arch_enter_lazy_cpu_mode();
2658
2659 if (unlikely(!mm)) {
2660 next->active_mm = oldmm;
2661 atomic_inc(&oldmm->mm_count);
2662 enter_lazy_tlb(oldmm, next);
2663 } else
2664 switch_mm(oldmm, mm, next);
2665
2666 if (unlikely(!prev->mm)) {
2667 prev->active_mm = NULL;
2668 rq->prev_mm = oldmm;
2669 }
2670 /*
2671 * Since the runqueue lock will be released by the next
2672 * task (which is an invalid locking op but in the case
2673 * of the scheduler it's an obvious special-case), so we
2674 * do an early lockdep release here:
2675 */
2676 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2677 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2678 #endif
2679
2680 /* Here we just switch the register state and the stack. */
2681 switch_to(prev, next, prev);
2682
2683 barrier();
2684 /*
2685 * this_rq must be evaluated again because prev may have moved
2686 * CPUs since it called schedule(), thus the 'rq' on its stack
2687 * frame will be invalid.
2688 */
2689 finish_task_switch(this_rq(), prev);
2690 }
2691
2692 /*
2693 * nr_running, nr_uninterruptible and nr_context_switches:
2694 *
2695 * externally visible scheduler statistics: current number of runnable
2696 * threads, current number of uninterruptible-sleeping threads, total
2697 * number of context switches performed since bootup.
2698 */
2699 unsigned long nr_running(void)
2700 {
2701 unsigned long i, sum = 0;
2702
2703 for_each_online_cpu(i)
2704 sum += cpu_rq(i)->nr_running;
2705
2706 return sum;
2707 }
2708
2709 unsigned long nr_uninterruptible(void)
2710 {
2711 unsigned long i, sum = 0;
2712
2713 for_each_possible_cpu(i)
2714 sum += cpu_rq(i)->nr_uninterruptible;
2715
2716 /*
2717 * Since we read the counters lockless, it might be slightly
2718 * inaccurate. Do not allow it to go below zero though:
2719 */
2720 if (unlikely((long)sum < 0))
2721 sum = 0;
2722
2723 return sum;
2724 }
2725
2726 unsigned long long nr_context_switches(void)
2727 {
2728 int i;
2729 unsigned long long sum = 0;
2730
2731 for_each_possible_cpu(i)
2732 sum += cpu_rq(i)->nr_switches;
2733
2734 return sum;
2735 }
2736
2737 unsigned long nr_iowait(void)
2738 {
2739 unsigned long i, sum = 0;
2740
2741 for_each_possible_cpu(i)
2742 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2743
2744 return sum;
2745 }
2746
2747 unsigned long nr_active(void)
2748 {
2749 unsigned long i, running = 0, uninterruptible = 0;
2750
2751 for_each_online_cpu(i) {
2752 running += cpu_rq(i)->nr_running;
2753 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2754 }
2755
2756 if (unlikely((long)uninterruptible < 0))
2757 uninterruptible = 0;
2758
2759 return running + uninterruptible;
2760 }
2761
2762 /*
2763 * Update rq->cpu_load[] statistics. This function is usually called every
2764 * scheduler tick (TICK_NSEC).
2765 */
2766 static void update_cpu_load(struct rq *this_rq)
2767 {
2768 unsigned long this_load = this_rq->load.weight;
2769 int i, scale;
2770
2771 this_rq->nr_load_updates++;
2772
2773 /* Update our load: */
2774 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2775 unsigned long old_load, new_load;
2776
2777 /* scale is effectively 1 << i now, and >> i divides by scale */
2778
2779 old_load = this_rq->cpu_load[i];
2780 new_load = this_load;
2781 /*
2782 * Round up the averaging division if load is increasing. This
2783 * prevents us from getting stuck on 9 if the load is 10, for
2784 * example.
2785 */
2786 if (new_load > old_load)
2787 new_load += scale-1;
2788 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2789 }
2790 }
2791
2792 #ifdef CONFIG_SMP
2793
2794 /*
2795 * double_rq_lock - safely lock two runqueues
2796 *
2797 * Note this does not disable interrupts like task_rq_lock,
2798 * you need to do so manually before calling.
2799 */
2800 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2801 __acquires(rq1->lock)
2802 __acquires(rq2->lock)
2803 {
2804 BUG_ON(!irqs_disabled());
2805 if (rq1 == rq2) {
2806 spin_lock(&rq1->lock);
2807 __acquire(rq2->lock); /* Fake it out ;) */
2808 } else {
2809 if (rq1 < rq2) {
2810 spin_lock(&rq1->lock);
2811 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2812 } else {
2813 spin_lock(&rq2->lock);
2814 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2815 }
2816 }
2817 update_rq_clock(rq1);
2818 update_rq_clock(rq2);
2819 }
2820
2821 /*
2822 * double_rq_unlock - safely unlock two runqueues
2823 *
2824 * Note this does not restore interrupts like task_rq_unlock,
2825 * you need to do so manually after calling.
2826 */
2827 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2828 __releases(rq1->lock)
2829 __releases(rq2->lock)
2830 {
2831 spin_unlock(&rq1->lock);
2832 if (rq1 != rq2)
2833 spin_unlock(&rq2->lock);
2834 else
2835 __release(rq2->lock);
2836 }
2837
2838 /*
2839 * If dest_cpu is allowed for this process, migrate the task to it.
2840 * This is accomplished by forcing the cpu_allowed mask to only
2841 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2842 * the cpu_allowed mask is restored.
2843 */
2844 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2845 {
2846 struct migration_req req;
2847 unsigned long flags;
2848 struct rq *rq;
2849
2850 rq = task_rq_lock(p, &flags);
2851 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2852 || unlikely(!cpu_active(dest_cpu)))
2853 goto out;
2854
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p, dest_cpu, &req)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct *mt = rq->migration_thread;
2859
2860 get_task_struct(mt);
2861 task_rq_unlock(rq, &flags);
2862 wake_up_process(mt);
2863 put_task_struct(mt);
2864 wait_for_completion(&req.done);
2865
2866 return;
2867 }
2868 out:
2869 task_rq_unlock(rq, &flags);
2870 }
2871
2872 /*
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2875 */
2876 void sched_exec(void)
2877 {
2878 int new_cpu, this_cpu = get_cpu();
2879 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880 put_cpu();
2881 if (new_cpu != this_cpu)
2882 sched_migrate_task(current, new_cpu);
2883 }
2884
2885 /*
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2888 */
2889 static void pull_task(struct rq *src_rq, struct task_struct *p,
2890 struct rq *this_rq, int this_cpu)
2891 {
2892 deactivate_task(src_rq, p, 0);
2893 set_task_cpu(p, this_cpu);
2894 activate_task(this_rq, p, 0);
2895 /*
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2898 */
2899 check_preempt_curr(this_rq, p, 0);
2900 }
2901
2902 /*
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904 */
2905 static
2906 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907 struct sched_domain *sd, enum cpu_idle_type idle,
2908 int *all_pinned)
2909 {
2910 /*
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2915 */
2916 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2917 schedstat_inc(p, se.nr_failed_migrations_affine);
2918 return 0;
2919 }
2920 *all_pinned = 0;
2921
2922 if (task_running(rq, p)) {
2923 schedstat_inc(p, se.nr_failed_migrations_running);
2924 return 0;
2925 }
2926
2927 /*
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2931 */
2932
2933 if (!task_hot(p, rq->clock, sd) ||
2934 sd->nr_balance_failed > sd->cache_nice_tries) {
2935 #ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(sd, lb_hot_gained[idle]);
2938 schedstat_inc(p, se.nr_forced_migrations);
2939 }
2940 #endif
2941 return 1;
2942 }
2943
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(p, se.nr_failed_migrations_hot);
2946 return 0;
2947 }
2948 return 1;
2949 }
2950
2951 static unsigned long
2952 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953 unsigned long max_load_move, struct sched_domain *sd,
2954 enum cpu_idle_type idle, int *all_pinned,
2955 int *this_best_prio, struct rq_iterator *iterator)
2956 {
2957 int loops = 0, pulled = 0, pinned = 0;
2958 struct task_struct *p;
2959 long rem_load_move = max_load_move;
2960
2961 if (max_load_move == 0)
2962 goto out;
2963
2964 pinned = 1;
2965
2966 /*
2967 * Start the load-balancing iterator:
2968 */
2969 p = iterator->start(iterator->arg);
2970 next:
2971 if (!p || loops++ > sysctl_sched_nr_migrate)
2972 goto out;
2973
2974 if ((p->se.load.weight >> 1) > rem_load_move ||
2975 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976 p = iterator->next(iterator->arg);
2977 goto next;
2978 }
2979
2980 pull_task(busiest, p, this_rq, this_cpu);
2981 pulled++;
2982 rem_load_move -= p->se.load.weight;
2983
2984 /*
2985 * We only want to steal up to the prescribed amount of weighted load.
2986 */
2987 if (rem_load_move > 0) {
2988 if (p->prio < *this_best_prio)
2989 *this_best_prio = p->prio;
2990 p = iterator->next(iterator->arg);
2991 goto next;
2992 }
2993 out:
2994 /*
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2998 */
2999 schedstat_add(sd, lb_gained[idle], pulled);
3000
3001 if (all_pinned)
3002 *all_pinned = pinned;
3003
3004 return max_load_move - rem_load_move;
3005 }
3006
3007 /*
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3011 *
3012 * Called with both runqueues locked.
3013 */
3014 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015 unsigned long max_load_move,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *all_pinned)
3018 {
3019 const struct sched_class *class = sched_class_highest;
3020 unsigned long total_load_moved = 0;
3021 int this_best_prio = this_rq->curr->prio;
3022
3023 do {
3024 total_load_moved +=
3025 class->load_balance(this_rq, this_cpu, busiest,
3026 max_load_move - total_load_moved,
3027 sd, idle, all_pinned, &this_best_prio);
3028 class = class->next;
3029
3030 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031 break;
3032
3033 } while (class && max_load_move > total_load_moved);
3034
3035 return total_load_moved > 0;
3036 }
3037
3038 static int
3039 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040 struct sched_domain *sd, enum cpu_idle_type idle,
3041 struct rq_iterator *iterator)
3042 {
3043 struct task_struct *p = iterator->start(iterator->arg);
3044 int pinned = 0;
3045
3046 while (p) {
3047 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048 pull_task(busiest, p, this_rq, this_cpu);
3049 /*
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3053 */
3054 schedstat_inc(sd, lb_gained[idle]);
3055
3056 return 1;
3057 }
3058 p = iterator->next(iterator->arg);
3059 }
3060
3061 return 0;
3062 }
3063
3064 /*
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3068 *
3069 * Called with both runqueues locked.
3070 */
3071 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle)
3073 {
3074 const struct sched_class *class;
3075
3076 for (class = sched_class_highest; class; class = class->next)
3077 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078 return 1;
3079
3080 return 0;
3081 }
3082
3083 /*
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3087 */
3088 static struct sched_group *
3089 find_busiest_group(struct sched_domain *sd, int this_cpu,
3090 unsigned long *imbalance, enum cpu_idle_type idle,
3091 int *sd_idle, const cpumask_t *cpus, int *balance)
3092 {
3093 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095 unsigned long max_pull;
3096 unsigned long busiest_load_per_task, busiest_nr_running;
3097 unsigned long this_load_per_task, this_nr_running;
3098 int load_idx, group_imb = 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance = 1;
3101 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102 unsigned long min_nr_running = ULONG_MAX;
3103 struct sched_group *group_min = NULL, *group_leader = NULL;
3104 #endif
3105
3106 max_load = this_load = total_load = total_pwr = 0;
3107 busiest_load_per_task = busiest_nr_running = 0;
3108 this_load_per_task = this_nr_running = 0;
3109
3110 if (idle == CPU_NOT_IDLE)
3111 load_idx = sd->busy_idx;
3112 else if (idle == CPU_NEWLY_IDLE)
3113 load_idx = sd->newidle_idx;
3114 else
3115 load_idx = sd->idle_idx;
3116
3117 do {
3118 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119 int local_group;
3120 int i;
3121 int __group_imb = 0;
3122 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123 unsigned long sum_nr_running, sum_weighted_load;
3124 unsigned long sum_avg_load_per_task;
3125 unsigned long avg_load_per_task;
3126
3127 local_group = cpu_isset(this_cpu, group->cpumask);
3128
3129 if (local_group)
3130 balance_cpu = first_cpu(group->cpumask);
3131
3132 /* Tally up the load of all CPUs in the group */
3133 sum_weighted_load = sum_nr_running = avg_load = 0;
3134 sum_avg_load_per_task = avg_load_per_task = 0;
3135
3136 max_cpu_load = 0;
3137 min_cpu_load = ~0UL;
3138
3139 for_each_cpu_mask_nr(i, group->cpumask) {
3140 struct rq *rq;
3141
3142 if (!cpu_isset(i, *cpus))
3143 continue;
3144
3145 rq = cpu_rq(i);
3146
3147 if (*sd_idle && rq->nr_running)
3148 *sd_idle = 0;
3149
3150 /* Bias balancing toward cpus of our domain */
3151 if (local_group) {
3152 if (idle_cpu(i) && !first_idle_cpu) {
3153 first_idle_cpu = 1;
3154 balance_cpu = i;
3155 }
3156
3157 load = target_load(i, load_idx);
3158 } else {
3159 load = source_load(i, load_idx);
3160 if (load > max_cpu_load)
3161 max_cpu_load = load;
3162 if (min_cpu_load > load)
3163 min_cpu_load = load;
3164 }
3165
3166 avg_load += load;
3167 sum_nr_running += rq->nr_running;
3168 sum_weighted_load += weighted_cpuload(i);
3169
3170 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3171 }
3172
3173 /*
3174 * First idle cpu or the first cpu(busiest) in this sched group
3175 * is eligible for doing load balancing at this and above
3176 * domains. In the newly idle case, we will allow all the cpu's
3177 * to do the newly idle load balance.
3178 */
3179 if (idle != CPU_NEWLY_IDLE && local_group &&
3180 balance_cpu != this_cpu && balance) {
3181 *balance = 0;
3182 goto ret;
3183 }
3184
3185 total_load += avg_load;
3186 total_pwr += group->__cpu_power;
3187
3188 /* Adjust by relative CPU power of the group */
3189 avg_load = sg_div_cpu_power(group,
3190 avg_load * SCHED_LOAD_SCALE);
3191
3192
3193 /*
3194 * Consider the group unbalanced when the imbalance is larger
3195 * than the average weight of two tasks.
3196 *
3197 * APZ: with cgroup the avg task weight can vary wildly and
3198 * might not be a suitable number - should we keep a
3199 * normalized nr_running number somewhere that negates
3200 * the hierarchy?
3201 */
3202 avg_load_per_task = sg_div_cpu_power(group,
3203 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3204
3205 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3206 __group_imb = 1;
3207
3208 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3209
3210 if (local_group) {
3211 this_load = avg_load;
3212 this = group;
3213 this_nr_running = sum_nr_running;
3214 this_load_per_task = sum_weighted_load;
3215 } else if (avg_load > max_load &&
3216 (sum_nr_running > group_capacity || __group_imb)) {
3217 max_load = avg_load;
3218 busiest = group;
3219 busiest_nr_running = sum_nr_running;
3220 busiest_load_per_task = sum_weighted_load;
3221 group_imb = __group_imb;
3222 }
3223
3224 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225 /*
3226 * Busy processors will not participate in power savings
3227 * balance.
3228 */
3229 if (idle == CPU_NOT_IDLE ||
3230 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3231 goto group_next;
3232
3233 /*
3234 * If the local group is idle or completely loaded
3235 * no need to do power savings balance at this domain
3236 */
3237 if (local_group && (this_nr_running >= group_capacity ||
3238 !this_nr_running))
3239 power_savings_balance = 0;
3240
3241 /*
3242 * If a group is already running at full capacity or idle,
3243 * don't include that group in power savings calculations
3244 */
3245 if (!power_savings_balance || sum_nr_running >= group_capacity
3246 || !sum_nr_running)
3247 goto group_next;
3248
3249 /*
3250 * Calculate the group which has the least non-idle load.
3251 * This is the group from where we need to pick up the load
3252 * for saving power
3253 */
3254 if ((sum_nr_running < min_nr_running) ||
3255 (sum_nr_running == min_nr_running &&
3256 first_cpu(group->cpumask) <
3257 first_cpu(group_min->cpumask))) {
3258 group_min = group;
3259 min_nr_running = sum_nr_running;
3260 min_load_per_task = sum_weighted_load /
3261 sum_nr_running;
3262 }
3263
3264 /*
3265 * Calculate the group which is almost near its
3266 * capacity but still has some space to pick up some load
3267 * from other group and save more power
3268 */
3269 if (sum_nr_running <= group_capacity - 1) {
3270 if (sum_nr_running > leader_nr_running ||
3271 (sum_nr_running == leader_nr_running &&
3272 first_cpu(group->cpumask) >
3273 first_cpu(group_leader->cpumask))) {
3274 group_leader = group;
3275 leader_nr_running = sum_nr_running;
3276 }
3277 }
3278 group_next:
3279 #endif
3280 group = group->next;
3281 } while (group != sd->groups);
3282
3283 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3284 goto out_balanced;
3285
3286 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3287
3288 if (this_load >= avg_load ||
3289 100*max_load <= sd->imbalance_pct*this_load)
3290 goto out_balanced;
3291
3292 busiest_load_per_task /= busiest_nr_running;
3293 if (group_imb)
3294 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3295
3296 /*
3297 * We're trying to get all the cpus to the average_load, so we don't
3298 * want to push ourselves above the average load, nor do we wish to
3299 * reduce the max loaded cpu below the average load, as either of these
3300 * actions would just result in more rebalancing later, and ping-pong
3301 * tasks around. Thus we look for the minimum possible imbalance.
3302 * Negative imbalances (*we* are more loaded than anyone else) will
3303 * be counted as no imbalance for these purposes -- we can't fix that
3304 * by pulling tasks to us. Be careful of negative numbers as they'll
3305 * appear as very large values with unsigned longs.
3306 */
3307 if (max_load <= busiest_load_per_task)
3308 goto out_balanced;
3309
3310 /*
3311 * In the presence of smp nice balancing, certain scenarios can have
3312 * max load less than avg load(as we skip the groups at or below
3313 * its cpu_power, while calculating max_load..)
3314 */
3315 if (max_load < avg_load) {
3316 *imbalance = 0;
3317 goto small_imbalance;
3318 }
3319
3320 /* Don't want to pull so many tasks that a group would go idle */
3321 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3322
3323 /* How much load to actually move to equalise the imbalance */
3324 *imbalance = min(max_pull * busiest->__cpu_power,
3325 (avg_load - this_load) * this->__cpu_power)
3326 / SCHED_LOAD_SCALE;
3327
3328 /*
3329 * if *imbalance is less than the average load per runnable task
3330 * there is no gaurantee that any tasks will be moved so we'll have
3331 * a think about bumping its value to force at least one task to be
3332 * moved
3333 */
3334 if (*imbalance < busiest_load_per_task) {
3335 unsigned long tmp, pwr_now, pwr_move;
3336 unsigned int imbn;
3337
3338 small_imbalance:
3339 pwr_move = pwr_now = 0;
3340 imbn = 2;
3341 if (this_nr_running) {
3342 this_load_per_task /= this_nr_running;
3343 if (busiest_load_per_task > this_load_per_task)
3344 imbn = 1;
3345 } else
3346 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3347
3348 if (max_load - this_load + busiest_load_per_task >=
3349 busiest_load_per_task * imbn) {
3350 *imbalance = busiest_load_per_task;
3351 return busiest;
3352 }
3353
3354 /*
3355 * OK, we don't have enough imbalance to justify moving tasks,
3356 * however we may be able to increase total CPU power used by
3357 * moving them.
3358 */
3359
3360 pwr_now += busiest->__cpu_power *
3361 min(busiest_load_per_task, max_load);
3362 pwr_now += this->__cpu_power *
3363 min(this_load_per_task, this_load);
3364 pwr_now /= SCHED_LOAD_SCALE;
3365
3366 /* Amount of load we'd subtract */
3367 tmp = sg_div_cpu_power(busiest,
3368 busiest_load_per_task * SCHED_LOAD_SCALE);
3369 if (max_load > tmp)
3370 pwr_move += busiest->__cpu_power *
3371 min(busiest_load_per_task, max_load - tmp);
3372
3373 /* Amount of load we'd add */
3374 if (max_load * busiest->__cpu_power <
3375 busiest_load_per_task * SCHED_LOAD_SCALE)
3376 tmp = sg_div_cpu_power(this,
3377 max_load * busiest->__cpu_power);
3378 else
3379 tmp = sg_div_cpu_power(this,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 pwr_move += this->__cpu_power *
3382 min(this_load_per_task, this_load + tmp);
3383 pwr_move /= SCHED_LOAD_SCALE;
3384
3385 /* Move if we gain throughput */
3386 if (pwr_move > pwr_now)
3387 *imbalance = busiest_load_per_task;
3388 }
3389
3390 return busiest;
3391
3392 out_balanced:
3393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3394 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3395 goto ret;
3396
3397 if (this == group_leader && group_leader != group_min) {
3398 *imbalance = min_load_per_task;
3399 return group_min;
3400 }
3401 #endif
3402 ret:
3403 *imbalance = 0;
3404 return NULL;
3405 }
3406
3407 /*
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409 */
3410 static struct rq *
3411 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412 unsigned long imbalance, const cpumask_t *cpus)
3413 {
3414 struct rq *busiest = NULL, *rq;
3415 unsigned long max_load = 0;
3416 int i;
3417
3418 for_each_cpu_mask_nr(i, group->cpumask) {
3419 unsigned long wl;
3420
3421 if (!cpu_isset(i, *cpus))
3422 continue;
3423
3424 rq = cpu_rq(i);
3425 wl = weighted_cpuload(i);
3426
3427 if (rq->nr_running == 1 && wl > imbalance)
3428 continue;
3429
3430 if (wl > max_load) {
3431 max_load = wl;
3432 busiest = rq;
3433 }
3434 }
3435
3436 return busiest;
3437 }
3438
3439 /*
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3442 */
3443 #define MAX_PINNED_INTERVAL 512
3444
3445 /*
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3448 */
3449 static int load_balance(int this_cpu, struct rq *this_rq,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *balance, cpumask_t *cpus)
3452 {
3453 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454 struct sched_group *group;
3455 unsigned long imbalance;
3456 struct rq *busiest;
3457 unsigned long flags;
3458
3459 cpus_setall(*cpus);
3460
3461 /*
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3466 */
3467 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469 sd_idle = 1;
3470
3471 schedstat_inc(sd, lb_count[idle]);
3472
3473 redo:
3474 update_shares(sd);
3475 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476 cpus, balance);
3477
3478 if (*balance == 0)
3479 goto out_balanced;
3480
3481 if (!group) {
3482 schedstat_inc(sd, lb_nobusyg[idle]);
3483 goto out_balanced;
3484 }
3485
3486 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487 if (!busiest) {
3488 schedstat_inc(sd, lb_nobusyq[idle]);
3489 goto out_balanced;
3490 }
3491
3492 BUG_ON(busiest == this_rq);
3493
3494 schedstat_add(sd, lb_imbalance[idle], imbalance);
3495
3496 ld_moved = 0;
3497 if (busiest->nr_running > 1) {
3498 /*
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3503 */
3504 local_irq_save(flags);
3505 double_rq_lock(this_rq, busiest);
3506 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507 imbalance, sd, idle, &all_pinned);
3508 double_rq_unlock(this_rq, busiest);
3509 local_irq_restore(flags);
3510
3511 /*
3512 * some other cpu did the load balance for us.
3513 */
3514 if (ld_moved && this_cpu != smp_processor_id())
3515 resched_cpu(this_cpu);
3516
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned)) {
3519 cpu_clear(cpu_of(busiest), *cpus);
3520 if (!cpus_empty(*cpus))
3521 goto redo;
3522 goto out_balanced;
3523 }
3524 }
3525
3526 if (!ld_moved) {
3527 schedstat_inc(sd, lb_failed[idle]);
3528 sd->nr_balance_failed++;
3529
3530 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3531
3532 spin_lock_irqsave(&busiest->lock, flags);
3533
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3536 */
3537 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3538 spin_unlock_irqrestore(&busiest->lock, flags);
3539 all_pinned = 1;
3540 goto out_one_pinned;
3541 }
3542
3543 if (!busiest->active_balance) {
3544 busiest->active_balance = 1;
3545 busiest->push_cpu = this_cpu;
3546 active_balance = 1;
3547 }
3548 spin_unlock_irqrestore(&busiest->lock, flags);
3549 if (active_balance)
3550 wake_up_process(busiest->migration_thread);
3551
3552 /*
3553 * We've kicked active balancing, reset the failure
3554 * counter.
3555 */
3556 sd->nr_balance_failed = sd->cache_nice_tries+1;
3557 }
3558 } else
3559 sd->nr_balance_failed = 0;
3560
3561 if (likely(!active_balance)) {
3562 /* We were unbalanced, so reset the balancing interval */
3563 sd->balance_interval = sd->min_interval;
3564 } else {
3565 /*
3566 * If we've begun active balancing, start to back off. This
3567 * case may not be covered by the all_pinned logic if there
3568 * is only 1 task on the busy runqueue (because we don't call
3569 * move_tasks).
3570 */
3571 if (sd->balance_interval < sd->max_interval)
3572 sd->balance_interval *= 2;
3573 }
3574
3575 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3576 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3577 ld_moved = -1;
3578
3579 goto out;
3580
3581 out_balanced:
3582 schedstat_inc(sd, lb_balanced[idle]);
3583
3584 sd->nr_balance_failed = 0;
3585
3586 out_one_pinned:
3587 /* tune up the balancing interval */
3588 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3589 (sd->balance_interval < sd->max_interval))
3590 sd->balance_interval *= 2;
3591
3592 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 ld_moved = -1;
3595 else
3596 ld_moved = 0;
3597 out:
3598 if (ld_moved)
3599 update_shares(sd);
3600 return ld_moved;
3601 }
3602
3603 /*
3604 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3605 * tasks if there is an imbalance.
3606 *
3607 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3608 * this_rq is locked.
3609 */
3610 static int
3611 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3612 cpumask_t *cpus)
3613 {
3614 struct sched_group *group;
3615 struct rq *busiest = NULL;
3616 unsigned long imbalance;
3617 int ld_moved = 0;
3618 int sd_idle = 0;
3619 int all_pinned = 0;
3620
3621 cpus_setall(*cpus);
3622
3623 /*
3624 * When power savings policy is enabled for the parent domain, idle
3625 * sibling can pick up load irrespective of busy siblings. In this case,
3626 * let the state of idle sibling percolate up as IDLE, instead of
3627 * portraying it as CPU_NOT_IDLE.
3628 */
3629 if (sd->flags & SD_SHARE_CPUPOWER &&
3630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3631 sd_idle = 1;
3632
3633 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3634 redo:
3635 update_shares_locked(this_rq, sd);
3636 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3637 &sd_idle, cpus, NULL);
3638 if (!group) {
3639 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3640 goto out_balanced;
3641 }
3642
3643 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3644 if (!busiest) {
3645 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3646 goto out_balanced;
3647 }
3648
3649 BUG_ON(busiest == this_rq);
3650
3651 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3652
3653 ld_moved = 0;
3654 if (busiest->nr_running > 1) {
3655 /* Attempt to move tasks */
3656 double_lock_balance(this_rq, busiest);
3657 /* this_rq->clock is already updated */
3658 update_rq_clock(busiest);
3659 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3660 imbalance, sd, CPU_NEWLY_IDLE,
3661 &all_pinned);
3662 double_unlock_balance(this_rq, busiest);
3663
3664 if (unlikely(all_pinned)) {
3665 cpu_clear(cpu_of(busiest), *cpus);
3666 if (!cpus_empty(*cpus))
3667 goto redo;
3668 }
3669 }
3670
3671 if (!ld_moved) {
3672 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 return -1;
3676 } else
3677 sd->nr_balance_failed = 0;
3678
3679 update_shares_locked(this_rq, sd);
3680 return ld_moved;
3681
3682 out_balanced:
3683 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3686 return -1;
3687 sd->nr_balance_failed = 0;
3688
3689 return 0;
3690 }
3691
3692 /*
3693 * idle_balance is called by schedule() if this_cpu is about to become
3694 * idle. Attempts to pull tasks from other CPUs.
3695 */
3696 static void idle_balance(int this_cpu, struct rq *this_rq)
3697 {
3698 struct sched_domain *sd;
3699 int pulled_task = 0;
3700 unsigned long next_balance = jiffies + HZ;
3701 cpumask_t tmpmask;
3702
3703 for_each_domain(this_cpu, sd) {
3704 unsigned long interval;
3705
3706 if (!(sd->flags & SD_LOAD_BALANCE))
3707 continue;
3708
3709 if (sd->flags & SD_BALANCE_NEWIDLE)
3710 /* If we've pulled tasks over stop searching: */
3711 pulled_task = load_balance_newidle(this_cpu, this_rq,
3712 sd, &tmpmask);
3713
3714 interval = msecs_to_jiffies(sd->balance_interval);
3715 if (time_after(next_balance, sd->last_balance + interval))
3716 next_balance = sd->last_balance + interval;
3717 if (pulled_task)
3718 break;
3719 }
3720 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3721 /*
3722 * We are going idle. next_balance may be set based on
3723 * a busy processor. So reset next_balance.
3724 */
3725 this_rq->next_balance = next_balance;
3726 }
3727 }
3728
3729 /*
3730 * active_load_balance is run by migration threads. It pushes running tasks
3731 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3732 * running on each physical CPU where possible, and avoids physical /
3733 * logical imbalances.
3734 *
3735 * Called with busiest_rq locked.
3736 */
3737 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3738 {
3739 int target_cpu = busiest_rq->push_cpu;
3740 struct sched_domain *sd;
3741 struct rq *target_rq;
3742
3743 /* Is there any task to move? */
3744 if (busiest_rq->nr_running <= 1)
3745 return;
3746
3747 target_rq = cpu_rq(target_cpu);
3748
3749 /*
3750 * This condition is "impossible", if it occurs
3751 * we need to fix it. Originally reported by
3752 * Bjorn Helgaas on a 128-cpu setup.
3753 */
3754 BUG_ON(busiest_rq == target_rq);
3755
3756 /* move a task from busiest_rq to target_rq */
3757 double_lock_balance(busiest_rq, target_rq);
3758 update_rq_clock(busiest_rq);
3759 update_rq_clock(target_rq);
3760
3761 /* Search for an sd spanning us and the target CPU. */
3762 for_each_domain(target_cpu, sd) {
3763 if ((sd->flags & SD_LOAD_BALANCE) &&
3764 cpu_isset(busiest_cpu, sd->span))
3765 break;
3766 }
3767
3768 if (likely(sd)) {
3769 schedstat_inc(sd, alb_count);
3770
3771 if (move_one_task(target_rq, target_cpu, busiest_rq,
3772 sd, CPU_IDLE))
3773 schedstat_inc(sd, alb_pushed);
3774 else
3775 schedstat_inc(sd, alb_failed);
3776 }
3777 double_unlock_balance(busiest_rq, target_rq);
3778 }
3779
3780 #ifdef CONFIG_NO_HZ
3781 static struct {
3782 atomic_t load_balancer;
3783 cpumask_t cpu_mask;
3784 } nohz ____cacheline_aligned = {
3785 .load_balancer = ATOMIC_INIT(-1),
3786 .cpu_mask = CPU_MASK_NONE,
3787 };
3788
3789 /*
3790 * This routine will try to nominate the ilb (idle load balancing)
3791 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3792 * load balancing on behalf of all those cpus. If all the cpus in the system
3793 * go into this tickless mode, then there will be no ilb owner (as there is
3794 * no need for one) and all the cpus will sleep till the next wakeup event
3795 * arrives...
3796 *
3797 * For the ilb owner, tick is not stopped. And this tick will be used
3798 * for idle load balancing. ilb owner will still be part of
3799 * nohz.cpu_mask..
3800 *
3801 * While stopping the tick, this cpu will become the ilb owner if there
3802 * is no other owner. And will be the owner till that cpu becomes busy
3803 * or if all cpus in the system stop their ticks at which point
3804 * there is no need for ilb owner.
3805 *
3806 * When the ilb owner becomes busy, it nominates another owner, during the
3807 * next busy scheduler_tick()
3808 */
3809 int select_nohz_load_balancer(int stop_tick)
3810 {
3811 int cpu = smp_processor_id();
3812
3813 if (stop_tick) {
3814 cpu_set(cpu, nohz.cpu_mask);
3815 cpu_rq(cpu)->in_nohz_recently = 1;
3816
3817 /*
3818 * If we are going offline and still the leader, give up!
3819 */
3820 if (!cpu_active(cpu) &&
3821 atomic_read(&nohz.load_balancer) == cpu) {
3822 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3823 BUG();
3824 return 0;
3825 }
3826
3827 /* time for ilb owner also to sleep */
3828 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 if (atomic_read(&nohz.load_balancer) == cpu)
3830 atomic_set(&nohz.load_balancer, -1);
3831 return 0;
3832 }
3833
3834 if (atomic_read(&nohz.load_balancer) == -1) {
3835 /* make me the ilb owner */
3836 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3837 return 1;
3838 } else if (atomic_read(&nohz.load_balancer) == cpu)
3839 return 1;
3840 } else {
3841 if (!cpu_isset(cpu, nohz.cpu_mask))
3842 return 0;
3843
3844 cpu_clear(cpu, nohz.cpu_mask);
3845
3846 if (atomic_read(&nohz.load_balancer) == cpu)
3847 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3848 BUG();
3849 }
3850 return 0;
3851 }
3852 #endif
3853
3854 static DEFINE_SPINLOCK(balancing);
3855
3856 /*
3857 * It checks each scheduling domain to see if it is due to be balanced,
3858 * and initiates a balancing operation if so.
3859 *
3860 * Balancing parameters are set up in arch_init_sched_domains.
3861 */
3862 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3863 {
3864 int balance = 1;
3865 struct rq *rq = cpu_rq(cpu);
3866 unsigned long interval;
3867 struct sched_domain *sd;
3868 /* Earliest time when we have to do rebalance again */
3869 unsigned long next_balance = jiffies + 60*HZ;
3870 int update_next_balance = 0;
3871 int need_serialize;
3872 cpumask_t tmp;
3873
3874 for_each_domain(cpu, sd) {
3875 if (!(sd->flags & SD_LOAD_BALANCE))
3876 continue;
3877
3878 interval = sd->balance_interval;
3879 if (idle != CPU_IDLE)
3880 interval *= sd->busy_factor;
3881
3882 /* scale ms to jiffies */
3883 interval = msecs_to_jiffies(interval);
3884 if (unlikely(!interval))
3885 interval = 1;
3886 if (interval > HZ*NR_CPUS/10)
3887 interval = HZ*NR_CPUS/10;
3888
3889 need_serialize = sd->flags & SD_SERIALIZE;
3890
3891 if (need_serialize) {
3892 if (!spin_trylock(&balancing))
3893 goto out;
3894 }
3895
3896 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3897 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3898 /*
3899 * We've pulled tasks over so either we're no
3900 * longer idle, or one of our SMT siblings is
3901 * not idle.
3902 */
3903 idle = CPU_NOT_IDLE;
3904 }
3905 sd->last_balance = jiffies;
3906 }
3907 if (need_serialize)
3908 spin_unlock(&balancing);
3909 out:
3910 if (time_after(next_balance, sd->last_balance + interval)) {
3911 next_balance = sd->last_balance + interval;
3912 update_next_balance = 1;
3913 }
3914
3915 /*
3916 * Stop the load balance at this level. There is another
3917 * CPU in our sched group which is doing load balancing more
3918 * actively.
3919 */
3920 if (!balance)
3921 break;
3922 }
3923
3924 /*
3925 * next_balance will be updated only when there is a need.
3926 * When the cpu is attached to null domain for ex, it will not be
3927 * updated.
3928 */
3929 if (likely(update_next_balance))
3930 rq->next_balance = next_balance;
3931 }
3932
3933 /*
3934 * run_rebalance_domains is triggered when needed from the scheduler tick.
3935 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3936 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3937 */
3938 static void run_rebalance_domains(struct softirq_action *h)
3939 {
3940 int this_cpu = smp_processor_id();
3941 struct rq *this_rq = cpu_rq(this_cpu);
3942 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3943 CPU_IDLE : CPU_NOT_IDLE;
3944
3945 rebalance_domains(this_cpu, idle);
3946
3947 #ifdef CONFIG_NO_HZ
3948 /*
3949 * If this cpu is the owner for idle load balancing, then do the
3950 * balancing on behalf of the other idle cpus whose ticks are
3951 * stopped.
3952 */
3953 if (this_rq->idle_at_tick &&
3954 atomic_read(&nohz.load_balancer) == this_cpu) {
3955 cpumask_t cpus = nohz.cpu_mask;
3956 struct rq *rq;
3957 int balance_cpu;
3958
3959 cpu_clear(this_cpu, cpus);
3960 for_each_cpu_mask_nr(balance_cpu, cpus) {
3961 /*
3962 * If this cpu gets work to do, stop the load balancing
3963 * work being done for other cpus. Next load
3964 * balancing owner will pick it up.
3965 */
3966 if (need_resched())
3967 break;
3968
3969 rebalance_domains(balance_cpu, CPU_IDLE);
3970
3971 rq = cpu_rq(balance_cpu);
3972 if (time_after(this_rq->next_balance, rq->next_balance))
3973 this_rq->next_balance = rq->next_balance;
3974 }
3975 }
3976 #endif
3977 }
3978
3979 /*
3980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3981 *
3982 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3983 * idle load balancing owner or decide to stop the periodic load balancing,
3984 * if the whole system is idle.
3985 */
3986 static inline void trigger_load_balance(struct rq *rq, int cpu)
3987 {
3988 #ifdef CONFIG_NO_HZ
3989 /*
3990 * If we were in the nohz mode recently and busy at the current
3991 * scheduler tick, then check if we need to nominate new idle
3992 * load balancer.
3993 */
3994 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3995 rq->in_nohz_recently = 0;
3996
3997 if (atomic_read(&nohz.load_balancer) == cpu) {
3998 cpu_clear(cpu, nohz.cpu_mask);
3999 atomic_set(&nohz.load_balancer, -1);
4000 }
4001
4002 if (atomic_read(&nohz.load_balancer) == -1) {
4003 /*
4004 * simple selection for now: Nominate the
4005 * first cpu in the nohz list to be the next
4006 * ilb owner.
4007 *
4008 * TBD: Traverse the sched domains and nominate
4009 * the nearest cpu in the nohz.cpu_mask.
4010 */
4011 int ilb = first_cpu(nohz.cpu_mask);
4012
4013 if (ilb < nr_cpu_ids)
4014 resched_cpu(ilb);
4015 }
4016 }
4017
4018 /*
4019 * If this cpu is idle and doing idle load balancing for all the
4020 * cpus with ticks stopped, is it time for that to stop?
4021 */
4022 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4023 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4024 resched_cpu(cpu);
4025 return;
4026 }
4027
4028 /*
4029 * If this cpu is idle and the idle load balancing is done by
4030 * someone else, then no need raise the SCHED_SOFTIRQ
4031 */
4032 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4033 cpu_isset(cpu, nohz.cpu_mask))
4034 return;
4035 #endif
4036 if (time_after_eq(jiffies, rq->next_balance))
4037 raise_softirq(SCHED_SOFTIRQ);
4038 }
4039
4040 #else /* CONFIG_SMP */
4041
4042 /*
4043 * on UP we do not need to balance between CPUs:
4044 */
4045 static inline void idle_balance(int cpu, struct rq *rq)
4046 {
4047 }
4048
4049 #endif
4050
4051 DEFINE_PER_CPU(struct kernel_stat, kstat);
4052
4053 EXPORT_PER_CPU_SYMBOL(kstat);
4054
4055 /*
4056 * Return any ns on the sched_clock that have not yet been banked in
4057 * @p in case that task is currently running.
4058 */
4059 unsigned long long task_delta_exec(struct task_struct *p)
4060 {
4061 unsigned long flags;
4062 struct rq *rq;
4063 u64 ns = 0;
4064
4065 rq = task_rq_lock(p, &flags);
4066
4067 if (task_current(rq, p)) {
4068 u64 delta_exec;
4069
4070 update_rq_clock(rq);
4071 delta_exec = rq->clock - p->se.exec_start;
4072 if ((s64)delta_exec > 0)
4073 ns = delta_exec;
4074 }
4075
4076 task_rq_unlock(rq, &flags);
4077
4078 return ns;
4079 }
4080
4081 /*
4082 * Account user cpu time to a process.
4083 * @p: the process that the cpu time gets accounted to
4084 * @cputime: the cpu time spent in user space since the last update
4085 */
4086 void account_user_time(struct task_struct *p, cputime_t cputime)
4087 {
4088 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4089 cputime64_t tmp;
4090
4091 p->utime = cputime_add(p->utime, cputime);
4092 account_group_user_time(p, cputime);
4093
4094 /* Add user time to cpustat. */
4095 tmp = cputime_to_cputime64(cputime);
4096 if (TASK_NICE(p) > 0)
4097 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4098 else
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 /* Account for user time used */
4101 acct_update_integrals(p);
4102 }
4103
4104 /*
4105 * Account guest cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in virtual machine since the last update
4108 */
4109 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 {
4111 cputime64_t tmp;
4112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4113
4114 tmp = cputime_to_cputime64(cputime);
4115
4116 p->utime = cputime_add(p->utime, cputime);
4117 account_group_user_time(p, cputime);
4118 p->gtime = cputime_add(p->gtime, cputime);
4119
4120 cpustat->user = cputime64_add(cpustat->user, tmp);
4121 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4122 }
4123
4124 /*
4125 * Account scaled user cpu time to a process.
4126 * @p: the process that the cpu time gets accounted to
4127 * @cputime: the cpu time spent in user space since the last update
4128 */
4129 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4130 {
4131 p->utimescaled = cputime_add(p->utimescaled, cputime);
4132 }
4133
4134 /*
4135 * Account system cpu time to a process.
4136 * @p: the process that the cpu time gets accounted to
4137 * @hardirq_offset: the offset to subtract from hardirq_count()
4138 * @cputime: the cpu time spent in kernel space since the last update
4139 */
4140 void account_system_time(struct task_struct *p, int hardirq_offset,
4141 cputime_t cputime)
4142 {
4143 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4144 struct rq *rq = this_rq();
4145 cputime64_t tmp;
4146
4147 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4148 account_guest_time(p, cputime);
4149 return;
4150 }
4151
4152 p->stime = cputime_add(p->stime, cputime);
4153 account_group_system_time(p, cputime);
4154
4155 /* Add system time to cpustat. */
4156 tmp = cputime_to_cputime64(cputime);
4157 if (hardirq_count() - hardirq_offset)
4158 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4159 else if (softirq_count())
4160 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4161 else if (p != rq->idle)
4162 cpustat->system = cputime64_add(cpustat->system, tmp);
4163 else if (atomic_read(&rq->nr_iowait) > 0)
4164 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4165 else
4166 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4167 /* Account for system time used */
4168 acct_update_integrals(p);
4169 }
4170
4171 /*
4172 * Account scaled system cpu time to a process.
4173 * @p: the process that the cpu time gets accounted to
4174 * @hardirq_offset: the offset to subtract from hardirq_count()
4175 * @cputime: the cpu time spent in kernel space since the last update
4176 */
4177 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4178 {
4179 p->stimescaled = cputime_add(p->stimescaled, cputime);
4180 }
4181
4182 /*
4183 * Account for involuntary wait time.
4184 * @p: the process from which the cpu time has been stolen
4185 * @steal: the cpu time spent in involuntary wait
4186 */
4187 void account_steal_time(struct task_struct *p, cputime_t steal)
4188 {
4189 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4190 cputime64_t tmp = cputime_to_cputime64(steal);
4191 struct rq *rq = this_rq();
4192
4193 if (p == rq->idle) {
4194 p->stime = cputime_add(p->stime, steal);
4195 account_group_system_time(p, steal);
4196 if (atomic_read(&rq->nr_iowait) > 0)
4197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4198 else
4199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4200 } else
4201 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4202 }
4203
4204 /*
4205 * Use precise platform statistics if available:
4206 */
4207 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4208 cputime_t task_utime(struct task_struct *p)
4209 {
4210 return p->utime;
4211 }
4212
4213 cputime_t task_stime(struct task_struct *p)
4214 {
4215 return p->stime;
4216 }
4217 #else
4218 cputime_t task_utime(struct task_struct *p)
4219 {
4220 clock_t utime = cputime_to_clock_t(p->utime),
4221 total = utime + cputime_to_clock_t(p->stime);
4222 u64 temp;
4223
4224 /*
4225 * Use CFS's precise accounting:
4226 */
4227 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4228
4229 if (total) {
4230 temp *= utime;
4231 do_div(temp, total);
4232 }
4233 utime = (clock_t)temp;
4234
4235 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4236 return p->prev_utime;
4237 }
4238
4239 cputime_t task_stime(struct task_struct *p)
4240 {
4241 clock_t stime;
4242
4243 /*
4244 * Use CFS's precise accounting. (we subtract utime from
4245 * the total, to make sure the total observed by userspace
4246 * grows monotonically - apps rely on that):
4247 */
4248 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4249 cputime_to_clock_t(task_utime(p));
4250
4251 if (stime >= 0)
4252 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4253
4254 return p->prev_stime;
4255 }
4256 #endif
4257
4258 inline cputime_t task_gtime(struct task_struct *p)
4259 {
4260 return p->gtime;
4261 }
4262
4263 /*
4264 * This function gets called by the timer code, with HZ frequency.
4265 * We call it with interrupts disabled.
4266 *
4267 * It also gets called by the fork code, when changing the parent's
4268 * timeslices.
4269 */
4270 void scheduler_tick(void)
4271 {
4272 int cpu = smp_processor_id();
4273 struct rq *rq = cpu_rq(cpu);
4274 struct task_struct *curr = rq->curr;
4275
4276 sched_clock_tick();
4277
4278 spin_lock(&rq->lock);
4279 update_rq_clock(rq);
4280 update_cpu_load(rq);
4281 curr->sched_class->task_tick(rq, curr, 0);
4282 spin_unlock(&rq->lock);
4283
4284 #ifdef CONFIG_SMP
4285 rq->idle_at_tick = idle_cpu(cpu);
4286 trigger_load_balance(rq, cpu);
4287 #endif
4288 }
4289
4290 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291 defined(CONFIG_PREEMPT_TRACER))
4292
4293 static inline unsigned long get_parent_ip(unsigned long addr)
4294 {
4295 if (in_lock_functions(addr)) {
4296 addr = CALLER_ADDR2;
4297 if (in_lock_functions(addr))
4298 addr = CALLER_ADDR3;
4299 }
4300 return addr;
4301 }
4302
4303 void __kprobes add_preempt_count(int val)
4304 {
4305 #ifdef CONFIG_DEBUG_PREEMPT
4306 /*
4307 * Underflow?
4308 */
4309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4310 return;
4311 #endif
4312 preempt_count() += val;
4313 #ifdef CONFIG_DEBUG_PREEMPT
4314 /*
4315 * Spinlock count overflowing soon?
4316 */
4317 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4318 PREEMPT_MASK - 10);
4319 #endif
4320 if (preempt_count() == val)
4321 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4322 }
4323 EXPORT_SYMBOL(add_preempt_count);
4324
4325 void __kprobes sub_preempt_count(int val)
4326 {
4327 #ifdef CONFIG_DEBUG_PREEMPT
4328 /*
4329 * Underflow?
4330 */
4331 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4332 return;
4333 /*
4334 * Is the spinlock portion underflowing?
4335 */
4336 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4337 !(preempt_count() & PREEMPT_MASK)))
4338 return;
4339 #endif
4340
4341 if (preempt_count() == val)
4342 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4343 preempt_count() -= val;
4344 }
4345 EXPORT_SYMBOL(sub_preempt_count);
4346
4347 #endif
4348
4349 /*
4350 * Print scheduling while atomic bug:
4351 */
4352 static noinline void __schedule_bug(struct task_struct *prev)
4353 {
4354 struct pt_regs *regs = get_irq_regs();
4355
4356 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4357 prev->comm, prev->pid, preempt_count());
4358
4359 debug_show_held_locks(prev);
4360 print_modules();
4361 if (irqs_disabled())
4362 print_irqtrace_events(prev);
4363
4364 if (regs)
4365 show_regs(regs);
4366 else
4367 dump_stack();
4368 }
4369
4370 /*
4371 * Various schedule()-time debugging checks and statistics:
4372 */
4373 static inline void schedule_debug(struct task_struct *prev)
4374 {
4375 /*
4376 * Test if we are atomic. Since do_exit() needs to call into
4377 * schedule() atomically, we ignore that path for now.
4378 * Otherwise, whine if we are scheduling when we should not be.
4379 */
4380 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4381 __schedule_bug(prev);
4382
4383 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4384
4385 schedstat_inc(this_rq(), sched_count);
4386 #ifdef CONFIG_SCHEDSTATS
4387 if (unlikely(prev->lock_depth >= 0)) {
4388 schedstat_inc(this_rq(), bkl_count);
4389 schedstat_inc(prev, sched_info.bkl_count);
4390 }
4391 #endif
4392 }
4393
4394 /*
4395 * Pick up the highest-prio task:
4396 */
4397 static inline struct task_struct *
4398 pick_next_task(struct rq *rq, struct task_struct *prev)
4399 {
4400 const struct sched_class *class;
4401 struct task_struct *p;
4402
4403 /*
4404 * Optimization: we know that if all tasks are in
4405 * the fair class we can call that function directly:
4406 */
4407 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4408 p = fair_sched_class.pick_next_task(rq);
4409 if (likely(p))
4410 return p;
4411 }
4412
4413 class = sched_class_highest;
4414 for ( ; ; ) {
4415 p = class->pick_next_task(rq);
4416 if (p)
4417 return p;
4418 /*
4419 * Will never be NULL as the idle class always
4420 * returns a non-NULL p:
4421 */
4422 class = class->next;
4423 }
4424 }
4425
4426 /*
4427 * schedule() is the main scheduler function.
4428 */
4429 asmlinkage void __sched schedule(void)
4430 {
4431 struct task_struct *prev, *next;
4432 unsigned long *switch_count;
4433 struct rq *rq;
4434 int cpu;
4435
4436 need_resched:
4437 preempt_disable();
4438 cpu = smp_processor_id();
4439 rq = cpu_rq(cpu);
4440 rcu_qsctr_inc(cpu);
4441 prev = rq->curr;
4442 switch_count = &prev->nivcsw;
4443
4444 release_kernel_lock(prev);
4445 need_resched_nonpreemptible:
4446
4447 schedule_debug(prev);
4448
4449 if (sched_feat(HRTICK))
4450 hrtick_clear(rq);
4451
4452 spin_lock_irq(&rq->lock);
4453 update_rq_clock(rq);
4454 clear_tsk_need_resched(prev);
4455
4456 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4457 if (unlikely(signal_pending_state(prev->state, prev)))
4458 prev->state = TASK_RUNNING;
4459 else
4460 deactivate_task(rq, prev, 1);
4461 switch_count = &prev->nvcsw;
4462 }
4463
4464 #ifdef CONFIG_SMP
4465 if (prev->sched_class->pre_schedule)
4466 prev->sched_class->pre_schedule(rq, prev);
4467 #endif
4468
4469 if (unlikely(!rq->nr_running))
4470 idle_balance(cpu, rq);
4471
4472 prev->sched_class->put_prev_task(rq, prev);
4473 next = pick_next_task(rq, prev);
4474
4475 if (likely(prev != next)) {
4476 sched_info_switch(prev, next);
4477
4478 rq->nr_switches++;
4479 rq->curr = next;
4480 ++*switch_count;
4481
4482 context_switch(rq, prev, next); /* unlocks the rq */
4483 /*
4484 * the context switch might have flipped the stack from under
4485 * us, hence refresh the local variables.
4486 */
4487 cpu = smp_processor_id();
4488 rq = cpu_rq(cpu);
4489 } else
4490 spin_unlock_irq(&rq->lock);
4491
4492 if (unlikely(reacquire_kernel_lock(current) < 0))
4493 goto need_resched_nonpreemptible;
4494
4495 preempt_enable_no_resched();
4496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4497 goto need_resched;
4498 }
4499 EXPORT_SYMBOL(schedule);
4500
4501 #ifdef CONFIG_PREEMPT
4502 /*
4503 * this is the entry point to schedule() from in-kernel preemption
4504 * off of preempt_enable. Kernel preemptions off return from interrupt
4505 * occur there and call schedule directly.
4506 */
4507 asmlinkage void __sched preempt_schedule(void)
4508 {
4509 struct thread_info *ti = current_thread_info();
4510
4511 /*
4512 * If there is a non-zero preempt_count or interrupts are disabled,
4513 * we do not want to preempt the current task. Just return..
4514 */
4515 if (likely(ti->preempt_count || irqs_disabled()))
4516 return;
4517
4518 do {
4519 add_preempt_count(PREEMPT_ACTIVE);
4520 schedule();
4521 sub_preempt_count(PREEMPT_ACTIVE);
4522
4523 /*
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4526 */
4527 barrier();
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4529 }
4530 EXPORT_SYMBOL(preempt_schedule);
4531
4532 /*
4533 * this is the entry point to schedule() from kernel preemption
4534 * off of irq context.
4535 * Note, that this is called and return with irqs disabled. This will
4536 * protect us against recursive calling from irq.
4537 */
4538 asmlinkage void __sched preempt_schedule_irq(void)
4539 {
4540 struct thread_info *ti = current_thread_info();
4541
4542 /* Catch callers which need to be fixed */
4543 BUG_ON(ti->preempt_count || !irqs_disabled());
4544
4545 do {
4546 add_preempt_count(PREEMPT_ACTIVE);
4547 local_irq_enable();
4548 schedule();
4549 local_irq_disable();
4550 sub_preempt_count(PREEMPT_ACTIVE);
4551
4552 /*
4553 * Check again in case we missed a preemption opportunity
4554 * between schedule and now.
4555 */
4556 barrier();
4557 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4558 }
4559
4560 #endif /* CONFIG_PREEMPT */
4561
4562 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4563 void *key)
4564 {
4565 return try_to_wake_up(curr->private, mode, sync);
4566 }
4567 EXPORT_SYMBOL(default_wake_function);
4568
4569 /*
4570 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4571 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4572 * number) then we wake all the non-exclusive tasks and one exclusive task.
4573 *
4574 * There are circumstances in which we can try to wake a task which has already
4575 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4576 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4577 */
4578 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4579 int nr_exclusive, int sync, void *key)
4580 {
4581 wait_queue_t *curr, *next;
4582
4583 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4584 unsigned flags = curr->flags;
4585
4586 if (curr->func(curr, mode, sync, key) &&
4587 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4588 break;
4589 }
4590 }
4591
4592 /**
4593 * __wake_up - wake up threads blocked on a waitqueue.
4594 * @q: the waitqueue
4595 * @mode: which threads
4596 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597 * @key: is directly passed to the wakeup function
4598 */
4599 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4600 int nr_exclusive, void *key)
4601 {
4602 unsigned long flags;
4603
4604 spin_lock_irqsave(&q->lock, flags);
4605 __wake_up_common(q, mode, nr_exclusive, 0, key);
4606 spin_unlock_irqrestore(&q->lock, flags);
4607 }
4608 EXPORT_SYMBOL(__wake_up);
4609
4610 /*
4611 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4612 */
4613 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4614 {
4615 __wake_up_common(q, mode, 1, 0, NULL);
4616 }
4617
4618 /**
4619 * __wake_up_sync - wake up threads blocked on a waitqueue.
4620 * @q: the waitqueue
4621 * @mode: which threads
4622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4623 *
4624 * The sync wakeup differs that the waker knows that it will schedule
4625 * away soon, so while the target thread will be woken up, it will not
4626 * be migrated to another CPU - ie. the two threads are 'synchronized'
4627 * with each other. This can prevent needless bouncing between CPUs.
4628 *
4629 * On UP it can prevent extra preemption.
4630 */
4631 void
4632 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4633 {
4634 unsigned long flags;
4635 int sync = 1;
4636
4637 if (unlikely(!q))
4638 return;
4639
4640 if (unlikely(!nr_exclusive))
4641 sync = 0;
4642
4643 spin_lock_irqsave(&q->lock, flags);
4644 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4645 spin_unlock_irqrestore(&q->lock, flags);
4646 }
4647 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4648
4649 /**
4650 * complete: - signals a single thread waiting on this completion
4651 * @x: holds the state of this particular completion
4652 *
4653 * This will wake up a single thread waiting on this completion. Threads will be
4654 * awakened in the same order in which they were queued.
4655 *
4656 * See also complete_all(), wait_for_completion() and related routines.
4657 */
4658 void complete(struct completion *x)
4659 {
4660 unsigned long flags;
4661
4662 spin_lock_irqsave(&x->wait.lock, flags);
4663 x->done++;
4664 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4665 spin_unlock_irqrestore(&x->wait.lock, flags);
4666 }
4667 EXPORT_SYMBOL(complete);
4668
4669 /**
4670 * complete_all: - signals all threads waiting on this completion
4671 * @x: holds the state of this particular completion
4672 *
4673 * This will wake up all threads waiting on this particular completion event.
4674 */
4675 void complete_all(struct completion *x)
4676 {
4677 unsigned long flags;
4678
4679 spin_lock_irqsave(&x->wait.lock, flags);
4680 x->done += UINT_MAX/2;
4681 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4682 spin_unlock_irqrestore(&x->wait.lock, flags);
4683 }
4684 EXPORT_SYMBOL(complete_all);
4685
4686 static inline long __sched
4687 do_wait_for_common(struct completion *x, long timeout, int state)
4688 {
4689 if (!x->done) {
4690 DECLARE_WAITQUEUE(wait, current);
4691
4692 wait.flags |= WQ_FLAG_EXCLUSIVE;
4693 __add_wait_queue_tail(&x->wait, &wait);
4694 do {
4695 if (signal_pending_state(state, current)) {
4696 timeout = -ERESTARTSYS;
4697 break;
4698 }
4699 __set_current_state(state);
4700 spin_unlock_irq(&x->wait.lock);
4701 timeout = schedule_timeout(timeout);
4702 spin_lock_irq(&x->wait.lock);
4703 } while (!x->done && timeout);
4704 __remove_wait_queue(&x->wait, &wait);
4705 if (!x->done)
4706 return timeout;
4707 }
4708 x->done--;
4709 return timeout ?: 1;
4710 }
4711
4712 static long __sched
4713 wait_for_common(struct completion *x, long timeout, int state)
4714 {
4715 might_sleep();
4716
4717 spin_lock_irq(&x->wait.lock);
4718 timeout = do_wait_for_common(x, timeout, state);
4719 spin_unlock_irq(&x->wait.lock);
4720 return timeout;
4721 }
4722
4723 /**
4724 * wait_for_completion: - waits for completion of a task
4725 * @x: holds the state of this particular completion
4726 *
4727 * This waits to be signaled for completion of a specific task. It is NOT
4728 * interruptible and there is no timeout.
4729 *
4730 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4731 * and interrupt capability. Also see complete().
4732 */
4733 void __sched wait_for_completion(struct completion *x)
4734 {
4735 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4736 }
4737 EXPORT_SYMBOL(wait_for_completion);
4738
4739 /**
4740 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4741 * @x: holds the state of this particular completion
4742 * @timeout: timeout value in jiffies
4743 *
4744 * This waits for either a completion of a specific task to be signaled or for a
4745 * specified timeout to expire. The timeout is in jiffies. It is not
4746 * interruptible.
4747 */
4748 unsigned long __sched
4749 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4750 {
4751 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4752 }
4753 EXPORT_SYMBOL(wait_for_completion_timeout);
4754
4755 /**
4756 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4757 * @x: holds the state of this particular completion
4758 *
4759 * This waits for completion of a specific task to be signaled. It is
4760 * interruptible.
4761 */
4762 int __sched wait_for_completion_interruptible(struct completion *x)
4763 {
4764 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4765 if (t == -ERESTARTSYS)
4766 return t;
4767 return 0;
4768 }
4769 EXPORT_SYMBOL(wait_for_completion_interruptible);
4770
4771 /**
4772 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4773 * @x: holds the state of this particular completion
4774 * @timeout: timeout value in jiffies
4775 *
4776 * This waits for either a completion of a specific task to be signaled or for a
4777 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4778 */
4779 unsigned long __sched
4780 wait_for_completion_interruptible_timeout(struct completion *x,
4781 unsigned long timeout)
4782 {
4783 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4784 }
4785 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4786
4787 /**
4788 * wait_for_completion_killable: - waits for completion of a task (killable)
4789 * @x: holds the state of this particular completion
4790 *
4791 * This waits to be signaled for completion of a specific task. It can be
4792 * interrupted by a kill signal.
4793 */
4794 int __sched wait_for_completion_killable(struct completion *x)
4795 {
4796 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4797 if (t == -ERESTARTSYS)
4798 return t;
4799 return 0;
4800 }
4801 EXPORT_SYMBOL(wait_for_completion_killable);
4802
4803 /**
4804 * try_wait_for_completion - try to decrement a completion without blocking
4805 * @x: completion structure
4806 *
4807 * Returns: 0 if a decrement cannot be done without blocking
4808 * 1 if a decrement succeeded.
4809 *
4810 * If a completion is being used as a counting completion,
4811 * attempt to decrement the counter without blocking. This
4812 * enables us to avoid waiting if the resource the completion
4813 * is protecting is not available.
4814 */
4815 bool try_wait_for_completion(struct completion *x)
4816 {
4817 int ret = 1;
4818
4819 spin_lock_irq(&x->wait.lock);
4820 if (!x->done)
4821 ret = 0;
4822 else
4823 x->done--;
4824 spin_unlock_irq(&x->wait.lock);
4825 return ret;
4826 }
4827 EXPORT_SYMBOL(try_wait_for_completion);
4828
4829 /**
4830 * completion_done - Test to see if a completion has any waiters
4831 * @x: completion structure
4832 *
4833 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4834 * 1 if there are no waiters.
4835 *
4836 */
4837 bool completion_done(struct completion *x)
4838 {
4839 int ret = 1;
4840
4841 spin_lock_irq(&x->wait.lock);
4842 if (!x->done)
4843 ret = 0;
4844 spin_unlock_irq(&x->wait.lock);
4845 return ret;
4846 }
4847 EXPORT_SYMBOL(completion_done);
4848
4849 static long __sched
4850 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4851 {
4852 unsigned long flags;
4853 wait_queue_t wait;
4854
4855 init_waitqueue_entry(&wait, current);
4856
4857 __set_current_state(state);
4858
4859 spin_lock_irqsave(&q->lock, flags);
4860 __add_wait_queue(q, &wait);
4861 spin_unlock(&q->lock);
4862 timeout = schedule_timeout(timeout);
4863 spin_lock_irq(&q->lock);
4864 __remove_wait_queue(q, &wait);
4865 spin_unlock_irqrestore(&q->lock, flags);
4866
4867 return timeout;
4868 }
4869
4870 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4871 {
4872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4873 }
4874 EXPORT_SYMBOL(interruptible_sleep_on);
4875
4876 long __sched
4877 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4878 {
4879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4880 }
4881 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4882
4883 void __sched sleep_on(wait_queue_head_t *q)
4884 {
4885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4886 }
4887 EXPORT_SYMBOL(sleep_on);
4888
4889 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4890 {
4891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4892 }
4893 EXPORT_SYMBOL(sleep_on_timeout);
4894
4895 #ifdef CONFIG_RT_MUTEXES
4896
4897 /*
4898 * rt_mutex_setprio - set the current priority of a task
4899 * @p: task
4900 * @prio: prio value (kernel-internal form)
4901 *
4902 * This function changes the 'effective' priority of a task. It does
4903 * not touch ->normal_prio like __setscheduler().
4904 *
4905 * Used by the rt_mutex code to implement priority inheritance logic.
4906 */
4907 void rt_mutex_setprio(struct task_struct *p, int prio)
4908 {
4909 unsigned long flags;
4910 int oldprio, on_rq, running;
4911 struct rq *rq;
4912 const struct sched_class *prev_class = p->sched_class;
4913
4914 BUG_ON(prio < 0 || prio > MAX_PRIO);
4915
4916 rq = task_rq_lock(p, &flags);
4917 update_rq_clock(rq);
4918
4919 oldprio = p->prio;
4920 on_rq = p->se.on_rq;
4921 running = task_current(rq, p);
4922 if (on_rq)
4923 dequeue_task(rq, p, 0);
4924 if (running)
4925 p->sched_class->put_prev_task(rq, p);
4926
4927 if (rt_prio(prio))
4928 p->sched_class = &rt_sched_class;
4929 else
4930 p->sched_class = &fair_sched_class;
4931
4932 p->prio = prio;
4933
4934 if (running)
4935 p->sched_class->set_curr_task(rq);
4936 if (on_rq) {
4937 enqueue_task(rq, p, 0);
4938
4939 check_class_changed(rq, p, prev_class, oldprio, running);
4940 }
4941 task_rq_unlock(rq, &flags);
4942 }
4943
4944 #endif
4945
4946 void set_user_nice(struct task_struct *p, long nice)
4947 {
4948 int old_prio, delta, on_rq;
4949 unsigned long flags;
4950 struct rq *rq;
4951
4952 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4953 return;
4954 /*
4955 * We have to be careful, if called from sys_setpriority(),
4956 * the task might be in the middle of scheduling on another CPU.
4957 */
4958 rq = task_rq_lock(p, &flags);
4959 update_rq_clock(rq);
4960 /*
4961 * The RT priorities are set via sched_setscheduler(), but we still
4962 * allow the 'normal' nice value to be set - but as expected
4963 * it wont have any effect on scheduling until the task is
4964 * SCHED_FIFO/SCHED_RR:
4965 */
4966 if (task_has_rt_policy(p)) {
4967 p->static_prio = NICE_TO_PRIO(nice);
4968 goto out_unlock;
4969 }
4970 on_rq = p->se.on_rq;
4971 if (on_rq)
4972 dequeue_task(rq, p, 0);
4973
4974 p->static_prio = NICE_TO_PRIO(nice);
4975 set_load_weight(p);
4976 old_prio = p->prio;
4977 p->prio = effective_prio(p);
4978 delta = p->prio - old_prio;
4979
4980 if (on_rq) {
4981 enqueue_task(rq, p, 0);
4982 /*
4983 * If the task increased its priority or is running and
4984 * lowered its priority, then reschedule its CPU:
4985 */
4986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4987 resched_task(rq->curr);
4988 }
4989 out_unlock:
4990 task_rq_unlock(rq, &flags);
4991 }
4992 EXPORT_SYMBOL(set_user_nice);
4993
4994 /*
4995 * can_nice - check if a task can reduce its nice value
4996 * @p: task
4997 * @nice: nice value
4998 */
4999 int can_nice(const struct task_struct *p, const int nice)
5000 {
5001 /* convert nice value [19,-20] to rlimit style value [1,40] */
5002 int nice_rlim = 20 - nice;
5003
5004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5005 capable(CAP_SYS_NICE));
5006 }
5007
5008 #ifdef __ARCH_WANT_SYS_NICE
5009
5010 /*
5011 * sys_nice - change the priority of the current process.
5012 * @increment: priority increment
5013 *
5014 * sys_setpriority is a more generic, but much slower function that
5015 * does similar things.
5016 */
5017 asmlinkage long sys_nice(int increment)
5018 {
5019 long nice, retval;
5020
5021 /*
5022 * Setpriority might change our priority at the same moment.
5023 * We don't have to worry. Conceptually one call occurs first
5024 * and we have a single winner.
5025 */
5026 if (increment < -40)
5027 increment = -40;
5028 if (increment > 40)
5029 increment = 40;
5030
5031 nice = PRIO_TO_NICE(current->static_prio) + increment;
5032 if (nice < -20)
5033 nice = -20;
5034 if (nice > 19)
5035 nice = 19;
5036
5037 if (increment < 0 && !can_nice(current, nice))
5038 return -EPERM;
5039
5040 retval = security_task_setnice(current, nice);
5041 if (retval)
5042 return retval;
5043
5044 set_user_nice(current, nice);
5045 return 0;
5046 }
5047
5048 #endif
5049
5050 /**
5051 * task_prio - return the priority value of a given task.
5052 * @p: the task in question.
5053 *
5054 * This is the priority value as seen by users in /proc.
5055 * RT tasks are offset by -200. Normal tasks are centered
5056 * around 0, value goes from -16 to +15.
5057 */
5058 int task_prio(const struct task_struct *p)
5059 {
5060 return p->prio - MAX_RT_PRIO;
5061 }
5062
5063 /**
5064 * task_nice - return the nice value of a given task.
5065 * @p: the task in question.
5066 */
5067 int task_nice(const struct task_struct *p)
5068 {
5069 return TASK_NICE(p);
5070 }
5071 EXPORT_SYMBOL(task_nice);
5072
5073 /**
5074 * idle_cpu - is a given cpu idle currently?
5075 * @cpu: the processor in question.
5076 */
5077 int idle_cpu(int cpu)
5078 {
5079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5080 }
5081
5082 /**
5083 * idle_task - return the idle task for a given cpu.
5084 * @cpu: the processor in question.
5085 */
5086 struct task_struct *idle_task(int cpu)
5087 {
5088 return cpu_rq(cpu)->idle;
5089 }
5090
5091 /**
5092 * find_process_by_pid - find a process with a matching PID value.
5093 * @pid: the pid in question.
5094 */
5095 static struct task_struct *find_process_by_pid(pid_t pid)
5096 {
5097 return pid ? find_task_by_vpid(pid) : current;
5098 }
5099
5100 /* Actually do priority change: must hold rq lock. */
5101 static void
5102 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5103 {
5104 BUG_ON(p->se.on_rq);
5105
5106 p->policy = policy;
5107 switch (p->policy) {
5108 case SCHED_NORMAL:
5109 case SCHED_BATCH:
5110 case SCHED_IDLE:
5111 p->sched_class = &fair_sched_class;
5112 break;
5113 case SCHED_FIFO:
5114 case SCHED_RR:
5115 p->sched_class = &rt_sched_class;
5116 break;
5117 }
5118
5119 p->rt_priority = prio;
5120 p->normal_prio = normal_prio(p);
5121 /* we are holding p->pi_lock already */
5122 p->prio = rt_mutex_getprio(p);
5123 set_load_weight(p);
5124 }
5125
5126 /*
5127 * check the target process has a UID that matches the current process's
5128 */
5129 static bool check_same_owner(struct task_struct *p)
5130 {
5131 const struct cred *cred = current_cred(), *pcred;
5132 bool match;
5133
5134 rcu_read_lock();
5135 pcred = __task_cred(p);
5136 match = (cred->euid == pcred->euid ||
5137 cred->euid == pcred->uid);
5138 rcu_read_unlock();
5139 return match;
5140 }
5141
5142 static int __sched_setscheduler(struct task_struct *p, int policy,
5143 struct sched_param *param, bool user)
5144 {
5145 int retval, oldprio, oldpolicy = -1, on_rq, running;
5146 unsigned long flags;
5147 const struct sched_class *prev_class = p->sched_class;
5148 struct rq *rq;
5149
5150 /* may grab non-irq protected spin_locks */
5151 BUG_ON(in_interrupt());
5152 recheck:
5153 /* double check policy once rq lock held */
5154 if (policy < 0)
5155 policy = oldpolicy = p->policy;
5156 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5157 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5158 policy != SCHED_IDLE)
5159 return -EINVAL;
5160 /*
5161 * Valid priorities for SCHED_FIFO and SCHED_RR are
5162 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5163 * SCHED_BATCH and SCHED_IDLE is 0.
5164 */
5165 if (param->sched_priority < 0 ||
5166 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5167 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5168 return -EINVAL;
5169 if (rt_policy(policy) != (param->sched_priority != 0))
5170 return -EINVAL;
5171
5172 /*
5173 * Allow unprivileged RT tasks to decrease priority:
5174 */
5175 if (user && !capable(CAP_SYS_NICE)) {
5176 if (rt_policy(policy)) {
5177 unsigned long rlim_rtprio;
5178
5179 if (!lock_task_sighand(p, &flags))
5180 return -ESRCH;
5181 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5182 unlock_task_sighand(p, &flags);
5183
5184 /* can't set/change the rt policy */
5185 if (policy != p->policy && !rlim_rtprio)
5186 return -EPERM;
5187
5188 /* can't increase priority */
5189 if (param->sched_priority > p->rt_priority &&
5190 param->sched_priority > rlim_rtprio)
5191 return -EPERM;
5192 }
5193 /*
5194 * Like positive nice levels, dont allow tasks to
5195 * move out of SCHED_IDLE either:
5196 */
5197 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5198 return -EPERM;
5199
5200 /* can't change other user's priorities */
5201 if (!check_same_owner(p))
5202 return -EPERM;
5203 }
5204
5205 if (user) {
5206 #ifdef CONFIG_RT_GROUP_SCHED
5207 /*
5208 * Do not allow realtime tasks into groups that have no runtime
5209 * assigned.
5210 */
5211 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5212 task_group(p)->rt_bandwidth.rt_runtime == 0)
5213 return -EPERM;
5214 #endif
5215
5216 retval = security_task_setscheduler(p, policy, param);
5217 if (retval)
5218 return retval;
5219 }
5220
5221 /*
5222 * make sure no PI-waiters arrive (or leave) while we are
5223 * changing the priority of the task:
5224 */
5225 spin_lock_irqsave(&p->pi_lock, flags);
5226 /*
5227 * To be able to change p->policy safely, the apropriate
5228 * runqueue lock must be held.
5229 */
5230 rq = __task_rq_lock(p);
5231 /* recheck policy now with rq lock held */
5232 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5233 policy = oldpolicy = -1;
5234 __task_rq_unlock(rq);
5235 spin_unlock_irqrestore(&p->pi_lock, flags);
5236 goto recheck;
5237 }
5238 update_rq_clock(rq);
5239 on_rq = p->se.on_rq;
5240 running = task_current(rq, p);
5241 if (on_rq)
5242 deactivate_task(rq, p, 0);
5243 if (running)
5244 p->sched_class->put_prev_task(rq, p);
5245
5246 oldprio = p->prio;
5247 __setscheduler(rq, p, policy, param->sched_priority);
5248
5249 if (running)
5250 p->sched_class->set_curr_task(rq);
5251 if (on_rq) {
5252 activate_task(rq, p, 0);
5253
5254 check_class_changed(rq, p, prev_class, oldprio, running);
5255 }
5256 __task_rq_unlock(rq);
5257 spin_unlock_irqrestore(&p->pi_lock, flags);
5258
5259 rt_mutex_adjust_pi(p);
5260
5261 return 0;
5262 }
5263
5264 /**
5265 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5269 *
5270 * NOTE that the task may be already dead.
5271 */
5272 int sched_setscheduler(struct task_struct *p, int policy,
5273 struct sched_param *param)
5274 {
5275 return __sched_setscheduler(p, policy, param, true);
5276 }
5277 EXPORT_SYMBOL_GPL(sched_setscheduler);
5278
5279 /**
5280 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5281 * @p: the task in question.
5282 * @policy: new policy.
5283 * @param: structure containing the new RT priority.
5284 *
5285 * Just like sched_setscheduler, only don't bother checking if the
5286 * current context has permission. For example, this is needed in
5287 * stop_machine(): we create temporary high priority worker threads,
5288 * but our caller might not have that capability.
5289 */
5290 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5291 struct sched_param *param)
5292 {
5293 return __sched_setscheduler(p, policy, param, false);
5294 }
5295
5296 static int
5297 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5298 {
5299 struct sched_param lparam;
5300 struct task_struct *p;
5301 int retval;
5302
5303 if (!param || pid < 0)
5304 return -EINVAL;
5305 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5306 return -EFAULT;
5307
5308 rcu_read_lock();
5309 retval = -ESRCH;
5310 p = find_process_by_pid(pid);
5311 if (p != NULL)
5312 retval = sched_setscheduler(p, policy, &lparam);
5313 rcu_read_unlock();
5314
5315 return retval;
5316 }
5317
5318 /**
5319 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5320 * @pid: the pid in question.
5321 * @policy: new policy.
5322 * @param: structure containing the new RT priority.
5323 */
5324 asmlinkage long
5325 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5326 {
5327 /* negative values for policy are not valid */
5328 if (policy < 0)
5329 return -EINVAL;
5330
5331 return do_sched_setscheduler(pid, policy, param);
5332 }
5333
5334 /**
5335 * sys_sched_setparam - set/change the RT priority of a thread
5336 * @pid: the pid in question.
5337 * @param: structure containing the new RT priority.
5338 */
5339 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5340 {
5341 return do_sched_setscheduler(pid, -1, param);
5342 }
5343
5344 /**
5345 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5346 * @pid: the pid in question.
5347 */
5348 asmlinkage long sys_sched_getscheduler(pid_t pid)
5349 {
5350 struct task_struct *p;
5351 int retval;
5352
5353 if (pid < 0)
5354 return -EINVAL;
5355
5356 retval = -ESRCH;
5357 read_lock(&tasklist_lock);
5358 p = find_process_by_pid(pid);
5359 if (p) {
5360 retval = security_task_getscheduler(p);
5361 if (!retval)
5362 retval = p->policy;
5363 }
5364 read_unlock(&tasklist_lock);
5365 return retval;
5366 }
5367
5368 /**
5369 * sys_sched_getscheduler - get the RT priority of a thread
5370 * @pid: the pid in question.
5371 * @param: structure containing the RT priority.
5372 */
5373 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5374 {
5375 struct sched_param lp;
5376 struct task_struct *p;
5377 int retval;
5378
5379 if (!param || pid < 0)
5380 return -EINVAL;
5381
5382 read_lock(&tasklist_lock);
5383 p = find_process_by_pid(pid);
5384 retval = -ESRCH;
5385 if (!p)
5386 goto out_unlock;
5387
5388 retval = security_task_getscheduler(p);
5389 if (retval)
5390 goto out_unlock;
5391
5392 lp.sched_priority = p->rt_priority;
5393 read_unlock(&tasklist_lock);
5394
5395 /*
5396 * This one might sleep, we cannot do it with a spinlock held ...
5397 */
5398 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5399
5400 return retval;
5401
5402 out_unlock:
5403 read_unlock(&tasklist_lock);
5404 return retval;
5405 }
5406
5407 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5408 {
5409 cpumask_t cpus_allowed;
5410 cpumask_t new_mask = *in_mask;
5411 struct task_struct *p;
5412 int retval;
5413
5414 get_online_cpus();
5415 read_lock(&tasklist_lock);
5416
5417 p = find_process_by_pid(pid);
5418 if (!p) {
5419 read_unlock(&tasklist_lock);
5420 put_online_cpus();
5421 return -ESRCH;
5422 }
5423
5424 /*
5425 * It is not safe to call set_cpus_allowed with the
5426 * tasklist_lock held. We will bump the task_struct's
5427 * usage count and then drop tasklist_lock.
5428 */
5429 get_task_struct(p);
5430 read_unlock(&tasklist_lock);
5431
5432 retval = -EPERM;
5433 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5434 goto out_unlock;
5435
5436 retval = security_task_setscheduler(p, 0, NULL);
5437 if (retval)
5438 goto out_unlock;
5439
5440 cpuset_cpus_allowed(p, &cpus_allowed);
5441 cpus_and(new_mask, new_mask, cpus_allowed);
5442 again:
5443 retval = set_cpus_allowed_ptr(p, &new_mask);
5444
5445 if (!retval) {
5446 cpuset_cpus_allowed(p, &cpus_allowed);
5447 if (!cpus_subset(new_mask, cpus_allowed)) {
5448 /*
5449 * We must have raced with a concurrent cpuset
5450 * update. Just reset the cpus_allowed to the
5451 * cpuset's cpus_allowed
5452 */
5453 new_mask = cpus_allowed;
5454 goto again;
5455 }
5456 }
5457 out_unlock:
5458 put_task_struct(p);
5459 put_online_cpus();
5460 return retval;
5461 }
5462
5463 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5464 cpumask_t *new_mask)
5465 {
5466 if (len < sizeof(cpumask_t)) {
5467 memset(new_mask, 0, sizeof(cpumask_t));
5468 } else if (len > sizeof(cpumask_t)) {
5469 len = sizeof(cpumask_t);
5470 }
5471 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5472 }
5473
5474 /**
5475 * sys_sched_setaffinity - set the cpu affinity of a process
5476 * @pid: pid of the process
5477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5478 * @user_mask_ptr: user-space pointer to the new cpu mask
5479 */
5480 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5481 unsigned long __user *user_mask_ptr)
5482 {
5483 cpumask_t new_mask;
5484 int retval;
5485
5486 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5487 if (retval)
5488 return retval;
5489
5490 return sched_setaffinity(pid, &new_mask);
5491 }
5492
5493 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5494 {
5495 struct task_struct *p;
5496 int retval;
5497
5498 get_online_cpus();
5499 read_lock(&tasklist_lock);
5500
5501 retval = -ESRCH;
5502 p = find_process_by_pid(pid);
5503 if (!p)
5504 goto out_unlock;
5505
5506 retval = security_task_getscheduler(p);
5507 if (retval)
5508 goto out_unlock;
5509
5510 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5511
5512 out_unlock:
5513 read_unlock(&tasklist_lock);
5514 put_online_cpus();
5515
5516 return retval;
5517 }
5518
5519 /**
5520 * sys_sched_getaffinity - get the cpu affinity of a process
5521 * @pid: pid of the process
5522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5524 */
5525 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5526 unsigned long __user *user_mask_ptr)
5527 {
5528 int ret;
5529 cpumask_t mask;
5530
5531 if (len < sizeof(cpumask_t))
5532 return -EINVAL;
5533
5534 ret = sched_getaffinity(pid, &mask);
5535 if (ret < 0)
5536 return ret;
5537
5538 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5539 return -EFAULT;
5540
5541 return sizeof(cpumask_t);
5542 }
5543
5544 /**
5545 * sys_sched_yield - yield the current processor to other threads.
5546 *
5547 * This function yields the current CPU to other tasks. If there are no
5548 * other threads running on this CPU then this function will return.
5549 */
5550 asmlinkage long sys_sched_yield(void)
5551 {
5552 struct rq *rq = this_rq_lock();
5553
5554 schedstat_inc(rq, yld_count);
5555 current->sched_class->yield_task(rq);
5556
5557 /*
5558 * Since we are going to call schedule() anyway, there's
5559 * no need to preempt or enable interrupts:
5560 */
5561 __release(rq->lock);
5562 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5563 _raw_spin_unlock(&rq->lock);
5564 preempt_enable_no_resched();
5565
5566 schedule();
5567
5568 return 0;
5569 }
5570
5571 static void __cond_resched(void)
5572 {
5573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5574 __might_sleep(__FILE__, __LINE__);
5575 #endif
5576 /*
5577 * The BKS might be reacquired before we have dropped
5578 * PREEMPT_ACTIVE, which could trigger a second
5579 * cond_resched() call.
5580 */
5581 do {
5582 add_preempt_count(PREEMPT_ACTIVE);
5583 schedule();
5584 sub_preempt_count(PREEMPT_ACTIVE);
5585 } while (need_resched());
5586 }
5587
5588 int __sched _cond_resched(void)
5589 {
5590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5591 system_state == SYSTEM_RUNNING) {
5592 __cond_resched();
5593 return 1;
5594 }
5595 return 0;
5596 }
5597 EXPORT_SYMBOL(_cond_resched);
5598
5599 /*
5600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5601 * call schedule, and on return reacquire the lock.
5602 *
5603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5604 * operations here to prevent schedule() from being called twice (once via
5605 * spin_unlock(), once by hand).
5606 */
5607 int cond_resched_lock(spinlock_t *lock)
5608 {
5609 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5610 int ret = 0;
5611
5612 if (spin_needbreak(lock) || resched) {
5613 spin_unlock(lock);
5614 if (resched && need_resched())
5615 __cond_resched();
5616 else
5617 cpu_relax();
5618 ret = 1;
5619 spin_lock(lock);
5620 }
5621 return ret;
5622 }
5623 EXPORT_SYMBOL(cond_resched_lock);
5624
5625 int __sched cond_resched_softirq(void)
5626 {
5627 BUG_ON(!in_softirq());
5628
5629 if (need_resched() && system_state == SYSTEM_RUNNING) {
5630 local_bh_enable();
5631 __cond_resched();
5632 local_bh_disable();
5633 return 1;
5634 }
5635 return 0;
5636 }
5637 EXPORT_SYMBOL(cond_resched_softirq);
5638
5639 /**
5640 * yield - yield the current processor to other threads.
5641 *
5642 * This is a shortcut for kernel-space yielding - it marks the
5643 * thread runnable and calls sys_sched_yield().
5644 */
5645 void __sched yield(void)
5646 {
5647 set_current_state(TASK_RUNNING);
5648 sys_sched_yield();
5649 }
5650 EXPORT_SYMBOL(yield);
5651
5652 /*
5653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5654 * that process accounting knows that this is a task in IO wait state.
5655 *
5656 * But don't do that if it is a deliberate, throttling IO wait (this task
5657 * has set its backing_dev_info: the queue against which it should throttle)
5658 */
5659 void __sched io_schedule(void)
5660 {
5661 struct rq *rq = &__raw_get_cpu_var(runqueues);
5662
5663 delayacct_blkio_start();
5664 atomic_inc(&rq->nr_iowait);
5665 schedule();
5666 atomic_dec(&rq->nr_iowait);
5667 delayacct_blkio_end();
5668 }
5669 EXPORT_SYMBOL(io_schedule);
5670
5671 long __sched io_schedule_timeout(long timeout)
5672 {
5673 struct rq *rq = &__raw_get_cpu_var(runqueues);
5674 long ret;
5675
5676 delayacct_blkio_start();
5677 atomic_inc(&rq->nr_iowait);
5678 ret = schedule_timeout(timeout);
5679 atomic_dec(&rq->nr_iowait);
5680 delayacct_blkio_end();
5681 return ret;
5682 }
5683
5684 /**
5685 * sys_sched_get_priority_max - return maximum RT priority.
5686 * @policy: scheduling class.
5687 *
5688 * this syscall returns the maximum rt_priority that can be used
5689 * by a given scheduling class.
5690 */
5691 asmlinkage long sys_sched_get_priority_max(int policy)
5692 {
5693 int ret = -EINVAL;
5694
5695 switch (policy) {
5696 case SCHED_FIFO:
5697 case SCHED_RR:
5698 ret = MAX_USER_RT_PRIO-1;
5699 break;
5700 case SCHED_NORMAL:
5701 case SCHED_BATCH:
5702 case SCHED_IDLE:
5703 ret = 0;
5704 break;
5705 }
5706 return ret;
5707 }
5708
5709 /**
5710 * sys_sched_get_priority_min - return minimum RT priority.
5711 * @policy: scheduling class.
5712 *
5713 * this syscall returns the minimum rt_priority that can be used
5714 * by a given scheduling class.
5715 */
5716 asmlinkage long sys_sched_get_priority_min(int policy)
5717 {
5718 int ret = -EINVAL;
5719
5720 switch (policy) {
5721 case SCHED_FIFO:
5722 case SCHED_RR:
5723 ret = 1;
5724 break;
5725 case SCHED_NORMAL:
5726 case SCHED_BATCH:
5727 case SCHED_IDLE:
5728 ret = 0;
5729 }
5730 return ret;
5731 }
5732
5733 /**
5734 * sys_sched_rr_get_interval - return the default timeslice of a process.
5735 * @pid: pid of the process.
5736 * @interval: userspace pointer to the timeslice value.
5737 *
5738 * this syscall writes the default timeslice value of a given process
5739 * into the user-space timespec buffer. A value of '0' means infinity.
5740 */
5741 asmlinkage
5742 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5743 {
5744 struct task_struct *p;
5745 unsigned int time_slice;
5746 int retval;
5747 struct timespec t;
5748
5749 if (pid < 0)
5750 return -EINVAL;
5751
5752 retval = -ESRCH;
5753 read_lock(&tasklist_lock);
5754 p = find_process_by_pid(pid);
5755 if (!p)
5756 goto out_unlock;
5757
5758 retval = security_task_getscheduler(p);
5759 if (retval)
5760 goto out_unlock;
5761
5762 /*
5763 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5764 * tasks that are on an otherwise idle runqueue:
5765 */
5766 time_slice = 0;
5767 if (p->policy == SCHED_RR) {
5768 time_slice = DEF_TIMESLICE;
5769 } else if (p->policy != SCHED_FIFO) {
5770 struct sched_entity *se = &p->se;
5771 unsigned long flags;
5772 struct rq *rq;
5773
5774 rq = task_rq_lock(p, &flags);
5775 if (rq->cfs.load.weight)
5776 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5777 task_rq_unlock(rq, &flags);
5778 }
5779 read_unlock(&tasklist_lock);
5780 jiffies_to_timespec(time_slice, &t);
5781 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5782 return retval;
5783
5784 out_unlock:
5785 read_unlock(&tasklist_lock);
5786 return retval;
5787 }
5788
5789 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5790
5791 void sched_show_task(struct task_struct *p)
5792 {
5793 unsigned long free = 0;
5794 unsigned state;
5795
5796 state = p->state ? __ffs(p->state) + 1 : 0;
5797 printk(KERN_INFO "%-13.13s %c", p->comm,
5798 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5799 #if BITS_PER_LONG == 32
5800 if (state == TASK_RUNNING)
5801 printk(KERN_CONT " running ");
5802 else
5803 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5804 #else
5805 if (state == TASK_RUNNING)
5806 printk(KERN_CONT " running task ");
5807 else
5808 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5809 #endif
5810 #ifdef CONFIG_DEBUG_STACK_USAGE
5811 {
5812 unsigned long *n = end_of_stack(p);
5813 while (!*n)
5814 n++;
5815 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5816 }
5817 #endif
5818 printk(KERN_CONT "%5lu %5d %6d\n", free,
5819 task_pid_nr(p), task_pid_nr(p->real_parent));
5820
5821 show_stack(p, NULL);
5822 }
5823
5824 void show_state_filter(unsigned long state_filter)
5825 {
5826 struct task_struct *g, *p;
5827
5828 #if BITS_PER_LONG == 32
5829 printk(KERN_INFO
5830 " task PC stack pid father\n");
5831 #else
5832 printk(KERN_INFO
5833 " task PC stack pid father\n");
5834 #endif
5835 read_lock(&tasklist_lock);
5836 do_each_thread(g, p) {
5837 /*
5838 * reset the NMI-timeout, listing all files on a slow
5839 * console might take alot of time:
5840 */
5841 touch_nmi_watchdog();
5842 if (!state_filter || (p->state & state_filter))
5843 sched_show_task(p);
5844 } while_each_thread(g, p);
5845
5846 touch_all_softlockup_watchdogs();
5847
5848 #ifdef CONFIG_SCHED_DEBUG
5849 sysrq_sched_debug_show();
5850 #endif
5851 read_unlock(&tasklist_lock);
5852 /*
5853 * Only show locks if all tasks are dumped:
5854 */
5855 if (state_filter == -1)
5856 debug_show_all_locks();
5857 }
5858
5859 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5860 {
5861 idle->sched_class = &idle_sched_class;
5862 }
5863
5864 /**
5865 * init_idle - set up an idle thread for a given CPU
5866 * @idle: task in question
5867 * @cpu: cpu the idle task belongs to
5868 *
5869 * NOTE: this function does not set the idle thread's NEED_RESCHED
5870 * flag, to make booting more robust.
5871 */
5872 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5873 {
5874 struct rq *rq = cpu_rq(cpu);
5875 unsigned long flags;
5876
5877 spin_lock_irqsave(&rq->lock, flags);
5878
5879 __sched_fork(idle);
5880 idle->se.exec_start = sched_clock();
5881
5882 idle->prio = idle->normal_prio = MAX_PRIO;
5883 idle->cpus_allowed = cpumask_of_cpu(cpu);
5884 __set_task_cpu(idle, cpu);
5885
5886 rq->curr = rq->idle = idle;
5887 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5888 idle->oncpu = 1;
5889 #endif
5890 spin_unlock_irqrestore(&rq->lock, flags);
5891
5892 /* Set the preempt count _outside_ the spinlocks! */
5893 #if defined(CONFIG_PREEMPT)
5894 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5895 #else
5896 task_thread_info(idle)->preempt_count = 0;
5897 #endif
5898 /*
5899 * The idle tasks have their own, simple scheduling class:
5900 */
5901 idle->sched_class = &idle_sched_class;
5902 ftrace_graph_init_task(idle);
5903 }
5904
5905 /*
5906 * In a system that switches off the HZ timer nohz_cpu_mask
5907 * indicates which cpus entered this state. This is used
5908 * in the rcu update to wait only for active cpus. For system
5909 * which do not switch off the HZ timer nohz_cpu_mask should
5910 * always be CPU_MASK_NONE.
5911 */
5912 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5913
5914 /*
5915 * Increase the granularity value when there are more CPUs,
5916 * because with more CPUs the 'effective latency' as visible
5917 * to users decreases. But the relationship is not linear,
5918 * so pick a second-best guess by going with the log2 of the
5919 * number of CPUs.
5920 *
5921 * This idea comes from the SD scheduler of Con Kolivas:
5922 */
5923 static inline void sched_init_granularity(void)
5924 {
5925 unsigned int factor = 1 + ilog2(num_online_cpus());
5926 const unsigned long limit = 200000000;
5927
5928 sysctl_sched_min_granularity *= factor;
5929 if (sysctl_sched_min_granularity > limit)
5930 sysctl_sched_min_granularity = limit;
5931
5932 sysctl_sched_latency *= factor;
5933 if (sysctl_sched_latency > limit)
5934 sysctl_sched_latency = limit;
5935
5936 sysctl_sched_wakeup_granularity *= factor;
5937
5938 sysctl_sched_shares_ratelimit *= factor;
5939 }
5940
5941 #ifdef CONFIG_SMP
5942 /*
5943 * This is how migration works:
5944 *
5945 * 1) we queue a struct migration_req structure in the source CPU's
5946 * runqueue and wake up that CPU's migration thread.
5947 * 2) we down() the locked semaphore => thread blocks.
5948 * 3) migration thread wakes up (implicitly it forces the migrated
5949 * thread off the CPU)
5950 * 4) it gets the migration request and checks whether the migrated
5951 * task is still in the wrong runqueue.
5952 * 5) if it's in the wrong runqueue then the migration thread removes
5953 * it and puts it into the right queue.
5954 * 6) migration thread up()s the semaphore.
5955 * 7) we wake up and the migration is done.
5956 */
5957
5958 /*
5959 * Change a given task's CPU affinity. Migrate the thread to a
5960 * proper CPU and schedule it away if the CPU it's executing on
5961 * is removed from the allowed bitmask.
5962 *
5963 * NOTE: the caller must have a valid reference to the task, the
5964 * task must not exit() & deallocate itself prematurely. The
5965 * call is not atomic; no spinlocks may be held.
5966 */
5967 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5968 {
5969 struct migration_req req;
5970 unsigned long flags;
5971 struct rq *rq;
5972 int ret = 0;
5973
5974 rq = task_rq_lock(p, &flags);
5975 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5976 ret = -EINVAL;
5977 goto out;
5978 }
5979
5980 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5981 !cpus_equal(p->cpus_allowed, *new_mask))) {
5982 ret = -EINVAL;
5983 goto out;
5984 }
5985
5986 if (p->sched_class->set_cpus_allowed)
5987 p->sched_class->set_cpus_allowed(p, new_mask);
5988 else {
5989 p->cpus_allowed = *new_mask;
5990 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5991 }
5992
5993 /* Can the task run on the task's current CPU? If so, we're done */
5994 if (cpu_isset(task_cpu(p), *new_mask))
5995 goto out;
5996
5997 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5998 /* Need help from migration thread: drop lock and wait. */
5999 task_rq_unlock(rq, &flags);
6000 wake_up_process(rq->migration_thread);
6001 wait_for_completion(&req.done);
6002 tlb_migrate_finish(p->mm);
6003 return 0;
6004 }
6005 out:
6006 task_rq_unlock(rq, &flags);
6007
6008 return ret;
6009 }
6010 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6011
6012 /*
6013 * Move (not current) task off this cpu, onto dest cpu. We're doing
6014 * this because either it can't run here any more (set_cpus_allowed()
6015 * away from this CPU, or CPU going down), or because we're
6016 * attempting to rebalance this task on exec (sched_exec).
6017 *
6018 * So we race with normal scheduler movements, but that's OK, as long
6019 * as the task is no longer on this CPU.
6020 *
6021 * Returns non-zero if task was successfully migrated.
6022 */
6023 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6024 {
6025 struct rq *rq_dest, *rq_src;
6026 int ret = 0, on_rq;
6027
6028 if (unlikely(!cpu_active(dest_cpu)))
6029 return ret;
6030
6031 rq_src = cpu_rq(src_cpu);
6032 rq_dest = cpu_rq(dest_cpu);
6033
6034 double_rq_lock(rq_src, rq_dest);
6035 /* Already moved. */
6036 if (task_cpu(p) != src_cpu)
6037 goto done;
6038 /* Affinity changed (again). */
6039 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6040 goto fail;
6041
6042 on_rq = p->se.on_rq;
6043 if (on_rq)
6044 deactivate_task(rq_src, p, 0);
6045
6046 set_task_cpu(p, dest_cpu);
6047 if (on_rq) {
6048 activate_task(rq_dest, p, 0);
6049 check_preempt_curr(rq_dest, p, 0);
6050 }
6051 done:
6052 ret = 1;
6053 fail:
6054 double_rq_unlock(rq_src, rq_dest);
6055 return ret;
6056 }
6057
6058 /*
6059 * migration_thread - this is a highprio system thread that performs
6060 * thread migration by bumping thread off CPU then 'pushing' onto
6061 * another runqueue.
6062 */
6063 static int migration_thread(void *data)
6064 {
6065 int cpu = (long)data;
6066 struct rq *rq;
6067
6068 rq = cpu_rq(cpu);
6069 BUG_ON(rq->migration_thread != current);
6070
6071 set_current_state(TASK_INTERRUPTIBLE);
6072 while (!kthread_should_stop()) {
6073 struct migration_req *req;
6074 struct list_head *head;
6075
6076 spin_lock_irq(&rq->lock);
6077
6078 if (cpu_is_offline(cpu)) {
6079 spin_unlock_irq(&rq->lock);
6080 goto wait_to_die;
6081 }
6082
6083 if (rq->active_balance) {
6084 active_load_balance(rq, cpu);
6085 rq->active_balance = 0;
6086 }
6087
6088 head = &rq->migration_queue;
6089
6090 if (list_empty(head)) {
6091 spin_unlock_irq(&rq->lock);
6092 schedule();
6093 set_current_state(TASK_INTERRUPTIBLE);
6094 continue;
6095 }
6096 req = list_entry(head->next, struct migration_req, list);
6097 list_del_init(head->next);
6098
6099 spin_unlock(&rq->lock);
6100 __migrate_task(req->task, cpu, req->dest_cpu);
6101 local_irq_enable();
6102
6103 complete(&req->done);
6104 }
6105 __set_current_state(TASK_RUNNING);
6106 return 0;
6107
6108 wait_to_die:
6109 /* Wait for kthread_stop */
6110 set_current_state(TASK_INTERRUPTIBLE);
6111 while (!kthread_should_stop()) {
6112 schedule();
6113 set_current_state(TASK_INTERRUPTIBLE);
6114 }
6115 __set_current_state(TASK_RUNNING);
6116 return 0;
6117 }
6118
6119 #ifdef CONFIG_HOTPLUG_CPU
6120
6121 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6122 {
6123 int ret;
6124
6125 local_irq_disable();
6126 ret = __migrate_task(p, src_cpu, dest_cpu);
6127 local_irq_enable();
6128 return ret;
6129 }
6130
6131 /*
6132 * Figure out where task on dead CPU should go, use force if necessary.
6133 */
6134 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6135 {
6136 unsigned long flags;
6137 cpumask_t mask;
6138 struct rq *rq;
6139 int dest_cpu;
6140
6141 do {
6142 /* On same node? */
6143 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6144 cpus_and(mask, mask, p->cpus_allowed);
6145 dest_cpu = any_online_cpu(mask);
6146
6147 /* On any allowed CPU? */
6148 if (dest_cpu >= nr_cpu_ids)
6149 dest_cpu = any_online_cpu(p->cpus_allowed);
6150
6151 /* No more Mr. Nice Guy. */
6152 if (dest_cpu >= nr_cpu_ids) {
6153 cpumask_t cpus_allowed;
6154
6155 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6156 /*
6157 * Try to stay on the same cpuset, where the
6158 * current cpuset may be a subset of all cpus.
6159 * The cpuset_cpus_allowed_locked() variant of
6160 * cpuset_cpus_allowed() will not block. It must be
6161 * called within calls to cpuset_lock/cpuset_unlock.
6162 */
6163 rq = task_rq_lock(p, &flags);
6164 p->cpus_allowed = cpus_allowed;
6165 dest_cpu = any_online_cpu(p->cpus_allowed);
6166 task_rq_unlock(rq, &flags);
6167
6168 /*
6169 * Don't tell them about moving exiting tasks or
6170 * kernel threads (both mm NULL), since they never
6171 * leave kernel.
6172 */
6173 if (p->mm && printk_ratelimit()) {
6174 printk(KERN_INFO "process %d (%s) no "
6175 "longer affine to cpu%d\n",
6176 task_pid_nr(p), p->comm, dead_cpu);
6177 }
6178 }
6179 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6180 }
6181
6182 /*
6183 * While a dead CPU has no uninterruptible tasks queued at this point,
6184 * it might still have a nonzero ->nr_uninterruptible counter, because
6185 * for performance reasons the counter is not stricly tracking tasks to
6186 * their home CPUs. So we just add the counter to another CPU's counter,
6187 * to keep the global sum constant after CPU-down:
6188 */
6189 static void migrate_nr_uninterruptible(struct rq *rq_src)
6190 {
6191 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6192 unsigned long flags;
6193
6194 local_irq_save(flags);
6195 double_rq_lock(rq_src, rq_dest);
6196 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6197 rq_src->nr_uninterruptible = 0;
6198 double_rq_unlock(rq_src, rq_dest);
6199 local_irq_restore(flags);
6200 }
6201
6202 /* Run through task list and migrate tasks from the dead cpu. */
6203 static void migrate_live_tasks(int src_cpu)
6204 {
6205 struct task_struct *p, *t;
6206
6207 read_lock(&tasklist_lock);
6208
6209 do_each_thread(t, p) {
6210 if (p == current)
6211 continue;
6212
6213 if (task_cpu(p) == src_cpu)
6214 move_task_off_dead_cpu(src_cpu, p);
6215 } while_each_thread(t, p);
6216
6217 read_unlock(&tasklist_lock);
6218 }
6219
6220 /*
6221 * Schedules idle task to be the next runnable task on current CPU.
6222 * It does so by boosting its priority to highest possible.
6223 * Used by CPU offline code.
6224 */
6225 void sched_idle_next(void)
6226 {
6227 int this_cpu = smp_processor_id();
6228 struct rq *rq = cpu_rq(this_cpu);
6229 struct task_struct *p = rq->idle;
6230 unsigned long flags;
6231
6232 /* cpu has to be offline */
6233 BUG_ON(cpu_online(this_cpu));
6234
6235 /*
6236 * Strictly not necessary since rest of the CPUs are stopped by now
6237 * and interrupts disabled on the current cpu.
6238 */
6239 spin_lock_irqsave(&rq->lock, flags);
6240
6241 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6242
6243 update_rq_clock(rq);
6244 activate_task(rq, p, 0);
6245
6246 spin_unlock_irqrestore(&rq->lock, flags);
6247 }
6248
6249 /*
6250 * Ensures that the idle task is using init_mm right before its cpu goes
6251 * offline.
6252 */
6253 void idle_task_exit(void)
6254 {
6255 struct mm_struct *mm = current->active_mm;
6256
6257 BUG_ON(cpu_online(smp_processor_id()));
6258
6259 if (mm != &init_mm)
6260 switch_mm(mm, &init_mm, current);
6261 mmdrop(mm);
6262 }
6263
6264 /* called under rq->lock with disabled interrupts */
6265 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6266 {
6267 struct rq *rq = cpu_rq(dead_cpu);
6268
6269 /* Must be exiting, otherwise would be on tasklist. */
6270 BUG_ON(!p->exit_state);
6271
6272 /* Cannot have done final schedule yet: would have vanished. */
6273 BUG_ON(p->state == TASK_DEAD);
6274
6275 get_task_struct(p);
6276
6277 /*
6278 * Drop lock around migration; if someone else moves it,
6279 * that's OK. No task can be added to this CPU, so iteration is
6280 * fine.
6281 */
6282 spin_unlock_irq(&rq->lock);
6283 move_task_off_dead_cpu(dead_cpu, p);
6284 spin_lock_irq(&rq->lock);
6285
6286 put_task_struct(p);
6287 }
6288
6289 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6290 static void migrate_dead_tasks(unsigned int dead_cpu)
6291 {
6292 struct rq *rq = cpu_rq(dead_cpu);
6293 struct task_struct *next;
6294
6295 for ( ; ; ) {
6296 if (!rq->nr_running)
6297 break;
6298 update_rq_clock(rq);
6299 next = pick_next_task(rq, rq->curr);
6300 if (!next)
6301 break;
6302 next->sched_class->put_prev_task(rq, next);
6303 migrate_dead(dead_cpu, next);
6304
6305 }
6306 }
6307 #endif /* CONFIG_HOTPLUG_CPU */
6308
6309 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6310
6311 static struct ctl_table sd_ctl_dir[] = {
6312 {
6313 .procname = "sched_domain",
6314 .mode = 0555,
6315 },
6316 {0, },
6317 };
6318
6319 static struct ctl_table sd_ctl_root[] = {
6320 {
6321 .ctl_name = CTL_KERN,
6322 .procname = "kernel",
6323 .mode = 0555,
6324 .child = sd_ctl_dir,
6325 },
6326 {0, },
6327 };
6328
6329 static struct ctl_table *sd_alloc_ctl_entry(int n)
6330 {
6331 struct ctl_table *entry =
6332 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6333
6334 return entry;
6335 }
6336
6337 static void sd_free_ctl_entry(struct ctl_table **tablep)
6338 {
6339 struct ctl_table *entry;
6340
6341 /*
6342 * In the intermediate directories, both the child directory and
6343 * procname are dynamically allocated and could fail but the mode
6344 * will always be set. In the lowest directory the names are
6345 * static strings and all have proc handlers.
6346 */
6347 for (entry = *tablep; entry->mode; entry++) {
6348 if (entry->child)
6349 sd_free_ctl_entry(&entry->child);
6350 if (entry->proc_handler == NULL)
6351 kfree(entry->procname);
6352 }
6353
6354 kfree(*tablep);
6355 *tablep = NULL;
6356 }
6357
6358 static void
6359 set_table_entry(struct ctl_table *entry,
6360 const char *procname, void *data, int maxlen,
6361 mode_t mode, proc_handler *proc_handler)
6362 {
6363 entry->procname = procname;
6364 entry->data = data;
6365 entry->maxlen = maxlen;
6366 entry->mode = mode;
6367 entry->proc_handler = proc_handler;
6368 }
6369
6370 static struct ctl_table *
6371 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6372 {
6373 struct ctl_table *table = sd_alloc_ctl_entry(13);
6374
6375 if (table == NULL)
6376 return NULL;
6377
6378 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6379 sizeof(long), 0644, proc_doulongvec_minmax);
6380 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6381 sizeof(long), 0644, proc_doulongvec_minmax);
6382 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6383 sizeof(int), 0644, proc_dointvec_minmax);
6384 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6385 sizeof(int), 0644, proc_dointvec_minmax);
6386 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6387 sizeof(int), 0644, proc_dointvec_minmax);
6388 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6389 sizeof(int), 0644, proc_dointvec_minmax);
6390 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6391 sizeof(int), 0644, proc_dointvec_minmax);
6392 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6393 sizeof(int), 0644, proc_dointvec_minmax);
6394 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6395 sizeof(int), 0644, proc_dointvec_minmax);
6396 set_table_entry(&table[9], "cache_nice_tries",
6397 &sd->cache_nice_tries,
6398 sizeof(int), 0644, proc_dointvec_minmax);
6399 set_table_entry(&table[10], "flags", &sd->flags,
6400 sizeof(int), 0644, proc_dointvec_minmax);
6401 set_table_entry(&table[11], "name", sd->name,
6402 CORENAME_MAX_SIZE, 0444, proc_dostring);
6403 /* &table[12] is terminator */
6404
6405 return table;
6406 }
6407
6408 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6409 {
6410 struct ctl_table *entry, *table;
6411 struct sched_domain *sd;
6412 int domain_num = 0, i;
6413 char buf[32];
6414
6415 for_each_domain(cpu, sd)
6416 domain_num++;
6417 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6418 if (table == NULL)
6419 return NULL;
6420
6421 i = 0;
6422 for_each_domain(cpu, sd) {
6423 snprintf(buf, 32, "domain%d", i);
6424 entry->procname = kstrdup(buf, GFP_KERNEL);
6425 entry->mode = 0555;
6426 entry->child = sd_alloc_ctl_domain_table(sd);
6427 entry++;
6428 i++;
6429 }
6430 return table;
6431 }
6432
6433 static struct ctl_table_header *sd_sysctl_header;
6434 static void register_sched_domain_sysctl(void)
6435 {
6436 int i, cpu_num = num_online_cpus();
6437 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6438 char buf[32];
6439
6440 WARN_ON(sd_ctl_dir[0].child);
6441 sd_ctl_dir[0].child = entry;
6442
6443 if (entry == NULL)
6444 return;
6445
6446 for_each_online_cpu(i) {
6447 snprintf(buf, 32, "cpu%d", i);
6448 entry->procname = kstrdup(buf, GFP_KERNEL);
6449 entry->mode = 0555;
6450 entry->child = sd_alloc_ctl_cpu_table(i);
6451 entry++;
6452 }
6453
6454 WARN_ON(sd_sysctl_header);
6455 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6456 }
6457
6458 /* may be called multiple times per register */
6459 static void unregister_sched_domain_sysctl(void)
6460 {
6461 if (sd_sysctl_header)
6462 unregister_sysctl_table(sd_sysctl_header);
6463 sd_sysctl_header = NULL;
6464 if (sd_ctl_dir[0].child)
6465 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6466 }
6467 #else
6468 static void register_sched_domain_sysctl(void)
6469 {
6470 }
6471 static void unregister_sched_domain_sysctl(void)
6472 {
6473 }
6474 #endif
6475
6476 static void set_rq_online(struct rq *rq)
6477 {
6478 if (!rq->online) {
6479 const struct sched_class *class;
6480
6481 cpu_set(rq->cpu, rq->rd->online);
6482 rq->online = 1;
6483
6484 for_each_class(class) {
6485 if (class->rq_online)
6486 class->rq_online(rq);
6487 }
6488 }
6489 }
6490
6491 static void set_rq_offline(struct rq *rq)
6492 {
6493 if (rq->online) {
6494 const struct sched_class *class;
6495
6496 for_each_class(class) {
6497 if (class->rq_offline)
6498 class->rq_offline(rq);
6499 }
6500
6501 cpu_clear(rq->cpu, rq->rd->online);
6502 rq->online = 0;
6503 }
6504 }
6505
6506 /*
6507 * migration_call - callback that gets triggered when a CPU is added.
6508 * Here we can start up the necessary migration thread for the new CPU.
6509 */
6510 static int __cpuinit
6511 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6512 {
6513 struct task_struct *p;
6514 int cpu = (long)hcpu;
6515 unsigned long flags;
6516 struct rq *rq;
6517
6518 switch (action) {
6519
6520 case CPU_UP_PREPARE:
6521 case CPU_UP_PREPARE_FROZEN:
6522 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6523 if (IS_ERR(p))
6524 return NOTIFY_BAD;
6525 kthread_bind(p, cpu);
6526 /* Must be high prio: stop_machine expects to yield to it. */
6527 rq = task_rq_lock(p, &flags);
6528 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6529 task_rq_unlock(rq, &flags);
6530 cpu_rq(cpu)->migration_thread = p;
6531 break;
6532
6533 case CPU_ONLINE:
6534 case CPU_ONLINE_FROZEN:
6535 /* Strictly unnecessary, as first user will wake it. */
6536 wake_up_process(cpu_rq(cpu)->migration_thread);
6537
6538 /* Update our root-domain */
6539 rq = cpu_rq(cpu);
6540 spin_lock_irqsave(&rq->lock, flags);
6541 if (rq->rd) {
6542 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6543
6544 set_rq_online(rq);
6545 }
6546 spin_unlock_irqrestore(&rq->lock, flags);
6547 break;
6548
6549 #ifdef CONFIG_HOTPLUG_CPU
6550 case CPU_UP_CANCELED:
6551 case CPU_UP_CANCELED_FROZEN:
6552 if (!cpu_rq(cpu)->migration_thread)
6553 break;
6554 /* Unbind it from offline cpu so it can run. Fall thru. */
6555 kthread_bind(cpu_rq(cpu)->migration_thread,
6556 any_online_cpu(cpu_online_map));
6557 kthread_stop(cpu_rq(cpu)->migration_thread);
6558 cpu_rq(cpu)->migration_thread = NULL;
6559 break;
6560
6561 case CPU_DEAD:
6562 case CPU_DEAD_FROZEN:
6563 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6564 migrate_live_tasks(cpu);
6565 rq = cpu_rq(cpu);
6566 kthread_stop(rq->migration_thread);
6567 rq->migration_thread = NULL;
6568 /* Idle task back to normal (off runqueue, low prio) */
6569 spin_lock_irq(&rq->lock);
6570 update_rq_clock(rq);
6571 deactivate_task(rq, rq->idle, 0);
6572 rq->idle->static_prio = MAX_PRIO;
6573 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6574 rq->idle->sched_class = &idle_sched_class;
6575 migrate_dead_tasks(cpu);
6576 spin_unlock_irq(&rq->lock);
6577 cpuset_unlock();
6578 migrate_nr_uninterruptible(rq);
6579 BUG_ON(rq->nr_running != 0);
6580
6581 /*
6582 * No need to migrate the tasks: it was best-effort if
6583 * they didn't take sched_hotcpu_mutex. Just wake up
6584 * the requestors.
6585 */
6586 spin_lock_irq(&rq->lock);
6587 while (!list_empty(&rq->migration_queue)) {
6588 struct migration_req *req;
6589
6590 req = list_entry(rq->migration_queue.next,
6591 struct migration_req, list);
6592 list_del_init(&req->list);
6593 spin_unlock_irq(&rq->lock);
6594 complete(&req->done);
6595 spin_lock_irq(&rq->lock);
6596 }
6597 spin_unlock_irq(&rq->lock);
6598 break;
6599
6600 case CPU_DYING:
6601 case CPU_DYING_FROZEN:
6602 /* Update our root-domain */
6603 rq = cpu_rq(cpu);
6604 spin_lock_irqsave(&rq->lock, flags);
6605 if (rq->rd) {
6606 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6607 set_rq_offline(rq);
6608 }
6609 spin_unlock_irqrestore(&rq->lock, flags);
6610 break;
6611 #endif
6612 }
6613 return NOTIFY_OK;
6614 }
6615
6616 /* Register at highest priority so that task migration (migrate_all_tasks)
6617 * happens before everything else.
6618 */
6619 static struct notifier_block __cpuinitdata migration_notifier = {
6620 .notifier_call = migration_call,
6621 .priority = 10
6622 };
6623
6624 static int __init migration_init(void)
6625 {
6626 void *cpu = (void *)(long)smp_processor_id();
6627 int err;
6628
6629 /* Start one for the boot CPU: */
6630 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6631 BUG_ON(err == NOTIFY_BAD);
6632 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6633 register_cpu_notifier(&migration_notifier);
6634
6635 return err;
6636 }
6637 early_initcall(migration_init);
6638 #endif
6639
6640 #ifdef CONFIG_SMP
6641
6642 #ifdef CONFIG_SCHED_DEBUG
6643
6644 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6645 cpumask_t *groupmask)
6646 {
6647 struct sched_group *group = sd->groups;
6648 char str[256];
6649
6650 cpulist_scnprintf(str, sizeof(str), sd->span);
6651 cpus_clear(*groupmask);
6652
6653 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6654
6655 if (!(sd->flags & SD_LOAD_BALANCE)) {
6656 printk("does not load-balance\n");
6657 if (sd->parent)
6658 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6659 " has parent");
6660 return -1;
6661 }
6662
6663 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6664
6665 if (!cpu_isset(cpu, sd->span)) {
6666 printk(KERN_ERR "ERROR: domain->span does not contain "
6667 "CPU%d\n", cpu);
6668 }
6669 if (!cpu_isset(cpu, group->cpumask)) {
6670 printk(KERN_ERR "ERROR: domain->groups does not contain"
6671 " CPU%d\n", cpu);
6672 }
6673
6674 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6675 do {
6676 if (!group) {
6677 printk("\n");
6678 printk(KERN_ERR "ERROR: group is NULL\n");
6679 break;
6680 }
6681
6682 if (!group->__cpu_power) {
6683 printk(KERN_CONT "\n");
6684 printk(KERN_ERR "ERROR: domain->cpu_power not "
6685 "set\n");
6686 break;
6687 }
6688
6689 if (!cpus_weight(group->cpumask)) {
6690 printk(KERN_CONT "\n");
6691 printk(KERN_ERR "ERROR: empty group\n");
6692 break;
6693 }
6694
6695 if (cpus_intersects(*groupmask, group->cpumask)) {
6696 printk(KERN_CONT "\n");
6697 printk(KERN_ERR "ERROR: repeated CPUs\n");
6698 break;
6699 }
6700
6701 cpus_or(*groupmask, *groupmask, group->cpumask);
6702
6703 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6704 printk(KERN_CONT " %s", str);
6705
6706 group = group->next;
6707 } while (group != sd->groups);
6708 printk(KERN_CONT "\n");
6709
6710 if (!cpus_equal(sd->span, *groupmask))
6711 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6712
6713 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6714 printk(KERN_ERR "ERROR: parent span is not a superset "
6715 "of domain->span\n");
6716 return 0;
6717 }
6718
6719 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6720 {
6721 cpumask_t *groupmask;
6722 int level = 0;
6723
6724 if (!sd) {
6725 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6726 return;
6727 }
6728
6729 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6730
6731 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6732 if (!groupmask) {
6733 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6734 return;
6735 }
6736
6737 for (;;) {
6738 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6739 break;
6740 level++;
6741 sd = sd->parent;
6742 if (!sd)
6743 break;
6744 }
6745 kfree(groupmask);
6746 }
6747 #else /* !CONFIG_SCHED_DEBUG */
6748 # define sched_domain_debug(sd, cpu) do { } while (0)
6749 #endif /* CONFIG_SCHED_DEBUG */
6750
6751 static int sd_degenerate(struct sched_domain *sd)
6752 {
6753 if (cpus_weight(sd->span) == 1)
6754 return 1;
6755
6756 /* Following flags need at least 2 groups */
6757 if (sd->flags & (SD_LOAD_BALANCE |
6758 SD_BALANCE_NEWIDLE |
6759 SD_BALANCE_FORK |
6760 SD_BALANCE_EXEC |
6761 SD_SHARE_CPUPOWER |
6762 SD_SHARE_PKG_RESOURCES)) {
6763 if (sd->groups != sd->groups->next)
6764 return 0;
6765 }
6766
6767 /* Following flags don't use groups */
6768 if (sd->flags & (SD_WAKE_IDLE |
6769 SD_WAKE_AFFINE |
6770 SD_WAKE_BALANCE))
6771 return 0;
6772
6773 return 1;
6774 }
6775
6776 static int
6777 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6778 {
6779 unsigned long cflags = sd->flags, pflags = parent->flags;
6780
6781 if (sd_degenerate(parent))
6782 return 1;
6783
6784 if (!cpus_equal(sd->span, parent->span))
6785 return 0;
6786
6787 /* Does parent contain flags not in child? */
6788 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6789 if (cflags & SD_WAKE_AFFINE)
6790 pflags &= ~SD_WAKE_BALANCE;
6791 /* Flags needing groups don't count if only 1 group in parent */
6792 if (parent->groups == parent->groups->next) {
6793 pflags &= ~(SD_LOAD_BALANCE |
6794 SD_BALANCE_NEWIDLE |
6795 SD_BALANCE_FORK |
6796 SD_BALANCE_EXEC |
6797 SD_SHARE_CPUPOWER |
6798 SD_SHARE_PKG_RESOURCES);
6799 if (nr_node_ids == 1)
6800 pflags &= ~SD_SERIALIZE;
6801 }
6802 if (~cflags & pflags)
6803 return 0;
6804
6805 return 1;
6806 }
6807
6808 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6809 {
6810 unsigned long flags;
6811
6812 spin_lock_irqsave(&rq->lock, flags);
6813
6814 if (rq->rd) {
6815 struct root_domain *old_rd = rq->rd;
6816
6817 if (cpu_isset(rq->cpu, old_rd->online))
6818 set_rq_offline(rq);
6819
6820 cpu_clear(rq->cpu, old_rd->span);
6821
6822 if (atomic_dec_and_test(&old_rd->refcount))
6823 kfree(old_rd);
6824 }
6825
6826 atomic_inc(&rd->refcount);
6827 rq->rd = rd;
6828
6829 cpu_set(rq->cpu, rd->span);
6830 if (cpu_isset(rq->cpu, cpu_online_map))
6831 set_rq_online(rq);
6832
6833 spin_unlock_irqrestore(&rq->lock, flags);
6834 }
6835
6836 static void init_rootdomain(struct root_domain *rd)
6837 {
6838 memset(rd, 0, sizeof(*rd));
6839
6840 cpus_clear(rd->span);
6841 cpus_clear(rd->online);
6842
6843 cpupri_init(&rd->cpupri);
6844 }
6845
6846 static void init_defrootdomain(void)
6847 {
6848 init_rootdomain(&def_root_domain);
6849 atomic_set(&def_root_domain.refcount, 1);
6850 }
6851
6852 static struct root_domain *alloc_rootdomain(void)
6853 {
6854 struct root_domain *rd;
6855
6856 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6857 if (!rd)
6858 return NULL;
6859
6860 init_rootdomain(rd);
6861
6862 return rd;
6863 }
6864
6865 /*
6866 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6867 * hold the hotplug lock.
6868 */
6869 static void
6870 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6871 {
6872 struct rq *rq = cpu_rq(cpu);
6873 struct sched_domain *tmp;
6874
6875 /* Remove the sched domains which do not contribute to scheduling. */
6876 for (tmp = sd; tmp; ) {
6877 struct sched_domain *parent = tmp->parent;
6878 if (!parent)
6879 break;
6880
6881 if (sd_parent_degenerate(tmp, parent)) {
6882 tmp->parent = parent->parent;
6883 if (parent->parent)
6884 parent->parent->child = tmp;
6885 } else
6886 tmp = tmp->parent;
6887 }
6888
6889 if (sd && sd_degenerate(sd)) {
6890 sd = sd->parent;
6891 if (sd)
6892 sd->child = NULL;
6893 }
6894
6895 sched_domain_debug(sd, cpu);
6896
6897 rq_attach_root(rq, rd);
6898 rcu_assign_pointer(rq->sd, sd);
6899 }
6900
6901 /* cpus with isolated domains */
6902 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6903
6904 /* Setup the mask of cpus configured for isolated domains */
6905 static int __init isolated_cpu_setup(char *str)
6906 {
6907 static int __initdata ints[NR_CPUS];
6908 int i;
6909
6910 str = get_options(str, ARRAY_SIZE(ints), ints);
6911 cpus_clear(cpu_isolated_map);
6912 for (i = 1; i <= ints[0]; i++)
6913 if (ints[i] < NR_CPUS)
6914 cpu_set(ints[i], cpu_isolated_map);
6915 return 1;
6916 }
6917
6918 __setup("isolcpus=", isolated_cpu_setup);
6919
6920 /*
6921 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6922 * to a function which identifies what group(along with sched group) a CPU
6923 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6924 * (due to the fact that we keep track of groups covered with a cpumask_t).
6925 *
6926 * init_sched_build_groups will build a circular linked list of the groups
6927 * covered by the given span, and will set each group's ->cpumask correctly,
6928 * and ->cpu_power to 0.
6929 */
6930 static void
6931 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6932 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6933 struct sched_group **sg,
6934 cpumask_t *tmpmask),
6935 cpumask_t *covered, cpumask_t *tmpmask)
6936 {
6937 struct sched_group *first = NULL, *last = NULL;
6938 int i;
6939
6940 cpus_clear(*covered);
6941
6942 for_each_cpu_mask_nr(i, *span) {
6943 struct sched_group *sg;
6944 int group = group_fn(i, cpu_map, &sg, tmpmask);
6945 int j;
6946
6947 if (cpu_isset(i, *covered))
6948 continue;
6949
6950 cpus_clear(sg->cpumask);
6951 sg->__cpu_power = 0;
6952
6953 for_each_cpu_mask_nr(j, *span) {
6954 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6955 continue;
6956
6957 cpu_set(j, *covered);
6958 cpu_set(j, sg->cpumask);
6959 }
6960 if (!first)
6961 first = sg;
6962 if (last)
6963 last->next = sg;
6964 last = sg;
6965 }
6966 last->next = first;
6967 }
6968
6969 #define SD_NODES_PER_DOMAIN 16
6970
6971 #ifdef CONFIG_NUMA
6972
6973 /**
6974 * find_next_best_node - find the next node to include in a sched_domain
6975 * @node: node whose sched_domain we're building
6976 * @used_nodes: nodes already in the sched_domain
6977 *
6978 * Find the next node to include in a given scheduling domain. Simply
6979 * finds the closest node not already in the @used_nodes map.
6980 *
6981 * Should use nodemask_t.
6982 */
6983 static int find_next_best_node(int node, nodemask_t *used_nodes)
6984 {
6985 int i, n, val, min_val, best_node = 0;
6986
6987 min_val = INT_MAX;
6988
6989 for (i = 0; i < nr_node_ids; i++) {
6990 /* Start at @node */
6991 n = (node + i) % nr_node_ids;
6992
6993 if (!nr_cpus_node(n))
6994 continue;
6995
6996 /* Skip already used nodes */
6997 if (node_isset(n, *used_nodes))
6998 continue;
6999
7000 /* Simple min distance search */
7001 val = node_distance(node, n);
7002
7003 if (val < min_val) {
7004 min_val = val;
7005 best_node = n;
7006 }
7007 }
7008
7009 node_set(best_node, *used_nodes);
7010 return best_node;
7011 }
7012
7013 /**
7014 * sched_domain_node_span - get a cpumask for a node's sched_domain
7015 * @node: node whose cpumask we're constructing
7016 * @span: resulting cpumask
7017 *
7018 * Given a node, construct a good cpumask for its sched_domain to span. It
7019 * should be one that prevents unnecessary balancing, but also spreads tasks
7020 * out optimally.
7021 */
7022 static void sched_domain_node_span(int node, cpumask_t *span)
7023 {
7024 nodemask_t used_nodes;
7025 node_to_cpumask_ptr(nodemask, node);
7026 int i;
7027
7028 cpus_clear(*span);
7029 nodes_clear(used_nodes);
7030
7031 cpus_or(*span, *span, *nodemask);
7032 node_set(node, used_nodes);
7033
7034 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7035 int next_node = find_next_best_node(node, &used_nodes);
7036
7037 node_to_cpumask_ptr_next(nodemask, next_node);
7038 cpus_or(*span, *span, *nodemask);
7039 }
7040 }
7041 #endif /* CONFIG_NUMA */
7042
7043 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7044
7045 /*
7046 * SMT sched-domains:
7047 */
7048 #ifdef CONFIG_SCHED_SMT
7049 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7050 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7051
7052 static int
7053 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7054 cpumask_t *unused)
7055 {
7056 if (sg)
7057 *sg = &per_cpu(sched_group_cpus, cpu);
7058 return cpu;
7059 }
7060 #endif /* CONFIG_SCHED_SMT */
7061
7062 /*
7063 * multi-core sched-domains:
7064 */
7065 #ifdef CONFIG_SCHED_MC
7066 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7067 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7068 #endif /* CONFIG_SCHED_MC */
7069
7070 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7071 static int
7072 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7073 cpumask_t *mask)
7074 {
7075 int group;
7076
7077 *mask = per_cpu(cpu_sibling_map, cpu);
7078 cpus_and(*mask, *mask, *cpu_map);
7079 group = first_cpu(*mask);
7080 if (sg)
7081 *sg = &per_cpu(sched_group_core, group);
7082 return group;
7083 }
7084 #elif defined(CONFIG_SCHED_MC)
7085 static int
7086 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7087 cpumask_t *unused)
7088 {
7089 if (sg)
7090 *sg = &per_cpu(sched_group_core, cpu);
7091 return cpu;
7092 }
7093 #endif
7094
7095 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7096 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7097
7098 static int
7099 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7100 cpumask_t *mask)
7101 {
7102 int group;
7103 #ifdef CONFIG_SCHED_MC
7104 *mask = cpu_coregroup_map(cpu);
7105 cpus_and(*mask, *mask, *cpu_map);
7106 group = first_cpu(*mask);
7107 #elif defined(CONFIG_SCHED_SMT)
7108 *mask = per_cpu(cpu_sibling_map, cpu);
7109 cpus_and(*mask, *mask, *cpu_map);
7110 group = first_cpu(*mask);
7111 #else
7112 group = cpu;
7113 #endif
7114 if (sg)
7115 *sg = &per_cpu(sched_group_phys, group);
7116 return group;
7117 }
7118
7119 #ifdef CONFIG_NUMA
7120 /*
7121 * The init_sched_build_groups can't handle what we want to do with node
7122 * groups, so roll our own. Now each node has its own list of groups which
7123 * gets dynamically allocated.
7124 */
7125 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7126 static struct sched_group ***sched_group_nodes_bycpu;
7127
7128 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7129 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7130
7131 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7132 struct sched_group **sg, cpumask_t *nodemask)
7133 {
7134 int group;
7135
7136 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7137 cpus_and(*nodemask, *nodemask, *cpu_map);
7138 group = first_cpu(*nodemask);
7139
7140 if (sg)
7141 *sg = &per_cpu(sched_group_allnodes, group);
7142 return group;
7143 }
7144
7145 static void init_numa_sched_groups_power(struct sched_group *group_head)
7146 {
7147 struct sched_group *sg = group_head;
7148 int j;
7149
7150 if (!sg)
7151 return;
7152 do {
7153 for_each_cpu_mask_nr(j, sg->cpumask) {
7154 struct sched_domain *sd;
7155
7156 sd = &per_cpu(phys_domains, j);
7157 if (j != first_cpu(sd->groups->cpumask)) {
7158 /*
7159 * Only add "power" once for each
7160 * physical package.
7161 */
7162 continue;
7163 }
7164
7165 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7166 }
7167 sg = sg->next;
7168 } while (sg != group_head);
7169 }
7170 #endif /* CONFIG_NUMA */
7171
7172 #ifdef CONFIG_NUMA
7173 /* Free memory allocated for various sched_group structures */
7174 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7175 {
7176 int cpu, i;
7177
7178 for_each_cpu_mask_nr(cpu, *cpu_map) {
7179 struct sched_group **sched_group_nodes
7180 = sched_group_nodes_bycpu[cpu];
7181
7182 if (!sched_group_nodes)
7183 continue;
7184
7185 for (i = 0; i < nr_node_ids; i++) {
7186 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7187
7188 *nodemask = node_to_cpumask(i);
7189 cpus_and(*nodemask, *nodemask, *cpu_map);
7190 if (cpus_empty(*nodemask))
7191 continue;
7192
7193 if (sg == NULL)
7194 continue;
7195 sg = sg->next;
7196 next_sg:
7197 oldsg = sg;
7198 sg = sg->next;
7199 kfree(oldsg);
7200 if (oldsg != sched_group_nodes[i])
7201 goto next_sg;
7202 }
7203 kfree(sched_group_nodes);
7204 sched_group_nodes_bycpu[cpu] = NULL;
7205 }
7206 }
7207 #else /* !CONFIG_NUMA */
7208 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7209 {
7210 }
7211 #endif /* CONFIG_NUMA */
7212
7213 /*
7214 * Initialize sched groups cpu_power.
7215 *
7216 * cpu_power indicates the capacity of sched group, which is used while
7217 * distributing the load between different sched groups in a sched domain.
7218 * Typically cpu_power for all the groups in a sched domain will be same unless
7219 * there are asymmetries in the topology. If there are asymmetries, group
7220 * having more cpu_power will pickup more load compared to the group having
7221 * less cpu_power.
7222 *
7223 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7224 * the maximum number of tasks a group can handle in the presence of other idle
7225 * or lightly loaded groups in the same sched domain.
7226 */
7227 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7228 {
7229 struct sched_domain *child;
7230 struct sched_group *group;
7231
7232 WARN_ON(!sd || !sd->groups);
7233
7234 if (cpu != first_cpu(sd->groups->cpumask))
7235 return;
7236
7237 child = sd->child;
7238
7239 sd->groups->__cpu_power = 0;
7240
7241 /*
7242 * For perf policy, if the groups in child domain share resources
7243 * (for example cores sharing some portions of the cache hierarchy
7244 * or SMT), then set this domain groups cpu_power such that each group
7245 * can handle only one task, when there are other idle groups in the
7246 * same sched domain.
7247 */
7248 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7249 (child->flags &
7250 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7251 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7252 return;
7253 }
7254
7255 /*
7256 * add cpu_power of each child group to this groups cpu_power
7257 */
7258 group = child->groups;
7259 do {
7260 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7261 group = group->next;
7262 } while (group != child->groups);
7263 }
7264
7265 /*
7266 * Initializers for schedule domains
7267 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7268 */
7269
7270 #ifdef CONFIG_SCHED_DEBUG
7271 # define SD_INIT_NAME(sd, type) sd->name = #type
7272 #else
7273 # define SD_INIT_NAME(sd, type) do { } while (0)
7274 #endif
7275
7276 #define SD_INIT(sd, type) sd_init_##type(sd)
7277
7278 #define SD_INIT_FUNC(type) \
7279 static noinline void sd_init_##type(struct sched_domain *sd) \
7280 { \
7281 memset(sd, 0, sizeof(*sd)); \
7282 *sd = SD_##type##_INIT; \
7283 sd->level = SD_LV_##type; \
7284 SD_INIT_NAME(sd, type); \
7285 }
7286
7287 SD_INIT_FUNC(CPU)
7288 #ifdef CONFIG_NUMA
7289 SD_INIT_FUNC(ALLNODES)
7290 SD_INIT_FUNC(NODE)
7291 #endif
7292 #ifdef CONFIG_SCHED_SMT
7293 SD_INIT_FUNC(SIBLING)
7294 #endif
7295 #ifdef CONFIG_SCHED_MC
7296 SD_INIT_FUNC(MC)
7297 #endif
7298
7299 /*
7300 * To minimize stack usage kmalloc room for cpumasks and share the
7301 * space as the usage in build_sched_domains() dictates. Used only
7302 * if the amount of space is significant.
7303 */
7304 struct allmasks {
7305 cpumask_t tmpmask; /* make this one first */
7306 union {
7307 cpumask_t nodemask;
7308 cpumask_t this_sibling_map;
7309 cpumask_t this_core_map;
7310 };
7311 cpumask_t send_covered;
7312
7313 #ifdef CONFIG_NUMA
7314 cpumask_t domainspan;
7315 cpumask_t covered;
7316 cpumask_t notcovered;
7317 #endif
7318 };
7319
7320 #if NR_CPUS > 128
7321 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7322 static inline void sched_cpumask_alloc(struct allmasks **masks)
7323 {
7324 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7325 }
7326 static inline void sched_cpumask_free(struct allmasks *masks)
7327 {
7328 kfree(masks);
7329 }
7330 #else
7331 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7332 static inline void sched_cpumask_alloc(struct allmasks **masks)
7333 { }
7334 static inline void sched_cpumask_free(struct allmasks *masks)
7335 { }
7336 #endif
7337
7338 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7339 ((unsigned long)(a) + offsetof(struct allmasks, v))
7340
7341 static int default_relax_domain_level = -1;
7342
7343 static int __init setup_relax_domain_level(char *str)
7344 {
7345 unsigned long val;
7346
7347 val = simple_strtoul(str, NULL, 0);
7348 if (val < SD_LV_MAX)
7349 default_relax_domain_level = val;
7350
7351 return 1;
7352 }
7353 __setup("relax_domain_level=", setup_relax_domain_level);
7354
7355 static void set_domain_attribute(struct sched_domain *sd,
7356 struct sched_domain_attr *attr)
7357 {
7358 int request;
7359
7360 if (!attr || attr->relax_domain_level < 0) {
7361 if (default_relax_domain_level < 0)
7362 return;
7363 else
7364 request = default_relax_domain_level;
7365 } else
7366 request = attr->relax_domain_level;
7367 if (request < sd->level) {
7368 /* turn off idle balance on this domain */
7369 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7370 } else {
7371 /* turn on idle balance on this domain */
7372 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7373 }
7374 }
7375
7376 /*
7377 * Build sched domains for a given set of cpus and attach the sched domains
7378 * to the individual cpus
7379 */
7380 static int __build_sched_domains(const cpumask_t *cpu_map,
7381 struct sched_domain_attr *attr)
7382 {
7383 int i;
7384 struct root_domain *rd;
7385 SCHED_CPUMASK_DECLARE(allmasks);
7386 cpumask_t *tmpmask;
7387 #ifdef CONFIG_NUMA
7388 struct sched_group **sched_group_nodes = NULL;
7389 int sd_allnodes = 0;
7390
7391 /*
7392 * Allocate the per-node list of sched groups
7393 */
7394 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7395 GFP_KERNEL);
7396 if (!sched_group_nodes) {
7397 printk(KERN_WARNING "Can not alloc sched group node list\n");
7398 return -ENOMEM;
7399 }
7400 #endif
7401
7402 rd = alloc_rootdomain();
7403 if (!rd) {
7404 printk(KERN_WARNING "Cannot alloc root domain\n");
7405 #ifdef CONFIG_NUMA
7406 kfree(sched_group_nodes);
7407 #endif
7408 return -ENOMEM;
7409 }
7410
7411 /* get space for all scratch cpumask variables */
7412 sched_cpumask_alloc(&allmasks);
7413 if (!allmasks) {
7414 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7415 kfree(rd);
7416 #ifdef CONFIG_NUMA
7417 kfree(sched_group_nodes);
7418 #endif
7419 return -ENOMEM;
7420 }
7421
7422 tmpmask = (cpumask_t *)allmasks;
7423
7424
7425 #ifdef CONFIG_NUMA
7426 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7427 #endif
7428
7429 /*
7430 * Set up domains for cpus specified by the cpu_map.
7431 */
7432 for_each_cpu_mask_nr(i, *cpu_map) {
7433 struct sched_domain *sd = NULL, *p;
7434 SCHED_CPUMASK_VAR(nodemask, allmasks);
7435
7436 *nodemask = node_to_cpumask(cpu_to_node(i));
7437 cpus_and(*nodemask, *nodemask, *cpu_map);
7438
7439 #ifdef CONFIG_NUMA
7440 if (cpus_weight(*cpu_map) >
7441 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7442 sd = &per_cpu(allnodes_domains, i);
7443 SD_INIT(sd, ALLNODES);
7444 set_domain_attribute(sd, attr);
7445 sd->span = *cpu_map;
7446 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7447 p = sd;
7448 sd_allnodes = 1;
7449 } else
7450 p = NULL;
7451
7452 sd = &per_cpu(node_domains, i);
7453 SD_INIT(sd, NODE);
7454 set_domain_attribute(sd, attr);
7455 sched_domain_node_span(cpu_to_node(i), &sd->span);
7456 sd->parent = p;
7457 if (p)
7458 p->child = sd;
7459 cpus_and(sd->span, sd->span, *cpu_map);
7460 #endif
7461
7462 p = sd;
7463 sd = &per_cpu(phys_domains, i);
7464 SD_INIT(sd, CPU);
7465 set_domain_attribute(sd, attr);
7466 sd->span = *nodemask;
7467 sd->parent = p;
7468 if (p)
7469 p->child = sd;
7470 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7471
7472 #ifdef CONFIG_SCHED_MC
7473 p = sd;
7474 sd = &per_cpu(core_domains, i);
7475 SD_INIT(sd, MC);
7476 set_domain_attribute(sd, attr);
7477 sd->span = cpu_coregroup_map(i);
7478 cpus_and(sd->span, sd->span, *cpu_map);
7479 sd->parent = p;
7480 p->child = sd;
7481 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7482 #endif
7483
7484 #ifdef CONFIG_SCHED_SMT
7485 p = sd;
7486 sd = &per_cpu(cpu_domains, i);
7487 SD_INIT(sd, SIBLING);
7488 set_domain_attribute(sd, attr);
7489 sd->span = per_cpu(cpu_sibling_map, i);
7490 cpus_and(sd->span, sd->span, *cpu_map);
7491 sd->parent = p;
7492 p->child = sd;
7493 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7494 #endif
7495 }
7496
7497 #ifdef CONFIG_SCHED_SMT
7498 /* Set up CPU (sibling) groups */
7499 for_each_cpu_mask_nr(i, *cpu_map) {
7500 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7501 SCHED_CPUMASK_VAR(send_covered, allmasks);
7502
7503 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7504 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7505 if (i != first_cpu(*this_sibling_map))
7506 continue;
7507
7508 init_sched_build_groups(this_sibling_map, cpu_map,
7509 &cpu_to_cpu_group,
7510 send_covered, tmpmask);
7511 }
7512 #endif
7513
7514 #ifdef CONFIG_SCHED_MC
7515 /* Set up multi-core groups */
7516 for_each_cpu_mask_nr(i, *cpu_map) {
7517 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7518 SCHED_CPUMASK_VAR(send_covered, allmasks);
7519
7520 *this_core_map = cpu_coregroup_map(i);
7521 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7522 if (i != first_cpu(*this_core_map))
7523 continue;
7524
7525 init_sched_build_groups(this_core_map, cpu_map,
7526 &cpu_to_core_group,
7527 send_covered, tmpmask);
7528 }
7529 #endif
7530
7531 /* Set up physical groups */
7532 for (i = 0; i < nr_node_ids; i++) {
7533 SCHED_CPUMASK_VAR(nodemask, allmasks);
7534 SCHED_CPUMASK_VAR(send_covered, allmasks);
7535
7536 *nodemask = node_to_cpumask(i);
7537 cpus_and(*nodemask, *nodemask, *cpu_map);
7538 if (cpus_empty(*nodemask))
7539 continue;
7540
7541 init_sched_build_groups(nodemask, cpu_map,
7542 &cpu_to_phys_group,
7543 send_covered, tmpmask);
7544 }
7545
7546 #ifdef CONFIG_NUMA
7547 /* Set up node groups */
7548 if (sd_allnodes) {
7549 SCHED_CPUMASK_VAR(send_covered, allmasks);
7550
7551 init_sched_build_groups(cpu_map, cpu_map,
7552 &cpu_to_allnodes_group,
7553 send_covered, tmpmask);
7554 }
7555
7556 for (i = 0; i < nr_node_ids; i++) {
7557 /* Set up node groups */
7558 struct sched_group *sg, *prev;
7559 SCHED_CPUMASK_VAR(nodemask, allmasks);
7560 SCHED_CPUMASK_VAR(domainspan, allmasks);
7561 SCHED_CPUMASK_VAR(covered, allmasks);
7562 int j;
7563
7564 *nodemask = node_to_cpumask(i);
7565 cpus_clear(*covered);
7566
7567 cpus_and(*nodemask, *nodemask, *cpu_map);
7568 if (cpus_empty(*nodemask)) {
7569 sched_group_nodes[i] = NULL;
7570 continue;
7571 }
7572
7573 sched_domain_node_span(i, domainspan);
7574 cpus_and(*domainspan, *domainspan, *cpu_map);
7575
7576 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7577 if (!sg) {
7578 printk(KERN_WARNING "Can not alloc domain group for "
7579 "node %d\n", i);
7580 goto error;
7581 }
7582 sched_group_nodes[i] = sg;
7583 for_each_cpu_mask_nr(j, *nodemask) {
7584 struct sched_domain *sd;
7585
7586 sd = &per_cpu(node_domains, j);
7587 sd->groups = sg;
7588 }
7589 sg->__cpu_power = 0;
7590 sg->cpumask = *nodemask;
7591 sg->next = sg;
7592 cpus_or(*covered, *covered, *nodemask);
7593 prev = sg;
7594
7595 for (j = 0; j < nr_node_ids; j++) {
7596 SCHED_CPUMASK_VAR(notcovered, allmasks);
7597 int n = (i + j) % nr_node_ids;
7598 node_to_cpumask_ptr(pnodemask, n);
7599
7600 cpus_complement(*notcovered, *covered);
7601 cpus_and(*tmpmask, *notcovered, *cpu_map);
7602 cpus_and(*tmpmask, *tmpmask, *domainspan);
7603 if (cpus_empty(*tmpmask))
7604 break;
7605
7606 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7607 if (cpus_empty(*tmpmask))
7608 continue;
7609
7610 sg = kmalloc_node(sizeof(struct sched_group),
7611 GFP_KERNEL, i);
7612 if (!sg) {
7613 printk(KERN_WARNING
7614 "Can not alloc domain group for node %d\n", j);
7615 goto error;
7616 }
7617 sg->__cpu_power = 0;
7618 sg->cpumask = *tmpmask;
7619 sg->next = prev->next;
7620 cpus_or(*covered, *covered, *tmpmask);
7621 prev->next = sg;
7622 prev = sg;
7623 }
7624 }
7625 #endif
7626
7627 /* Calculate CPU power for physical packages and nodes */
7628 #ifdef CONFIG_SCHED_SMT
7629 for_each_cpu_mask_nr(i, *cpu_map) {
7630 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7631
7632 init_sched_groups_power(i, sd);
7633 }
7634 #endif
7635 #ifdef CONFIG_SCHED_MC
7636 for_each_cpu_mask_nr(i, *cpu_map) {
7637 struct sched_domain *sd = &per_cpu(core_domains, i);
7638
7639 init_sched_groups_power(i, sd);
7640 }
7641 #endif
7642
7643 for_each_cpu_mask_nr(i, *cpu_map) {
7644 struct sched_domain *sd = &per_cpu(phys_domains, i);
7645
7646 init_sched_groups_power(i, sd);
7647 }
7648
7649 #ifdef CONFIG_NUMA
7650 for (i = 0; i < nr_node_ids; i++)
7651 init_numa_sched_groups_power(sched_group_nodes[i]);
7652
7653 if (sd_allnodes) {
7654 struct sched_group *sg;
7655
7656 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7657 tmpmask);
7658 init_numa_sched_groups_power(sg);
7659 }
7660 #endif
7661
7662 /* Attach the domains */
7663 for_each_cpu_mask_nr(i, *cpu_map) {
7664 struct sched_domain *sd;
7665 #ifdef CONFIG_SCHED_SMT
7666 sd = &per_cpu(cpu_domains, i);
7667 #elif defined(CONFIG_SCHED_MC)
7668 sd = &per_cpu(core_domains, i);
7669 #else
7670 sd = &per_cpu(phys_domains, i);
7671 #endif
7672 cpu_attach_domain(sd, rd, i);
7673 }
7674
7675 sched_cpumask_free(allmasks);
7676 return 0;
7677
7678 #ifdef CONFIG_NUMA
7679 error:
7680 free_sched_groups(cpu_map, tmpmask);
7681 sched_cpumask_free(allmasks);
7682 kfree(rd);
7683 return -ENOMEM;
7684 #endif
7685 }
7686
7687 static int build_sched_domains(const cpumask_t *cpu_map)
7688 {
7689 return __build_sched_domains(cpu_map, NULL);
7690 }
7691
7692 static cpumask_t *doms_cur; /* current sched domains */
7693 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7694 static struct sched_domain_attr *dattr_cur;
7695 /* attribues of custom domains in 'doms_cur' */
7696
7697 /*
7698 * Special case: If a kmalloc of a doms_cur partition (array of
7699 * cpumask_t) fails, then fallback to a single sched domain,
7700 * as determined by the single cpumask_t fallback_doms.
7701 */
7702 static cpumask_t fallback_doms;
7703
7704 /*
7705 * arch_update_cpu_topology lets virtualized architectures update the
7706 * cpu core maps. It is supposed to return 1 if the topology changed
7707 * or 0 if it stayed the same.
7708 */
7709 int __attribute__((weak)) arch_update_cpu_topology(void)
7710 {
7711 return 0;
7712 }
7713
7714 /*
7715 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7716 * For now this just excludes isolated cpus, but could be used to
7717 * exclude other special cases in the future.
7718 */
7719 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7720 {
7721 int err;
7722
7723 arch_update_cpu_topology();
7724 ndoms_cur = 1;
7725 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7726 if (!doms_cur)
7727 doms_cur = &fallback_doms;
7728 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7729 dattr_cur = NULL;
7730 err = build_sched_domains(doms_cur);
7731 register_sched_domain_sysctl();
7732
7733 return err;
7734 }
7735
7736 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7737 cpumask_t *tmpmask)
7738 {
7739 free_sched_groups(cpu_map, tmpmask);
7740 }
7741
7742 /*
7743 * Detach sched domains from a group of cpus specified in cpu_map
7744 * These cpus will now be attached to the NULL domain
7745 */
7746 static void detach_destroy_domains(const cpumask_t *cpu_map)
7747 {
7748 cpumask_t tmpmask;
7749 int i;
7750
7751 for_each_cpu_mask_nr(i, *cpu_map)
7752 cpu_attach_domain(NULL, &def_root_domain, i);
7753 synchronize_sched();
7754 arch_destroy_sched_domains(cpu_map, &tmpmask);
7755 }
7756
7757 /* handle null as "default" */
7758 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7759 struct sched_domain_attr *new, int idx_new)
7760 {
7761 struct sched_domain_attr tmp;
7762
7763 /* fast path */
7764 if (!new && !cur)
7765 return 1;
7766
7767 tmp = SD_ATTR_INIT;
7768 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7769 new ? (new + idx_new) : &tmp,
7770 sizeof(struct sched_domain_attr));
7771 }
7772
7773 /*
7774 * Partition sched domains as specified by the 'ndoms_new'
7775 * cpumasks in the array doms_new[] of cpumasks. This compares
7776 * doms_new[] to the current sched domain partitioning, doms_cur[].
7777 * It destroys each deleted domain and builds each new domain.
7778 *
7779 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7780 * The masks don't intersect (don't overlap.) We should setup one
7781 * sched domain for each mask. CPUs not in any of the cpumasks will
7782 * not be load balanced. If the same cpumask appears both in the
7783 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7784 * it as it is.
7785 *
7786 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7787 * ownership of it and will kfree it when done with it. If the caller
7788 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7789 * ndoms_new == 1, and partition_sched_domains() will fallback to
7790 * the single partition 'fallback_doms', it also forces the domains
7791 * to be rebuilt.
7792 *
7793 * If doms_new == NULL it will be replaced with cpu_online_map.
7794 * ndoms_new == 0 is a special case for destroying existing domains,
7795 * and it will not create the default domain.
7796 *
7797 * Call with hotplug lock held
7798 */
7799 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7800 struct sched_domain_attr *dattr_new)
7801 {
7802 int i, j, n;
7803 int new_topology;
7804
7805 mutex_lock(&sched_domains_mutex);
7806
7807 /* always unregister in case we don't destroy any domains */
7808 unregister_sched_domain_sysctl();
7809
7810 /* Let architecture update cpu core mappings. */
7811 new_topology = arch_update_cpu_topology();
7812
7813 n = doms_new ? ndoms_new : 0;
7814
7815 /* Destroy deleted domains */
7816 for (i = 0; i < ndoms_cur; i++) {
7817 for (j = 0; j < n && !new_topology; j++) {
7818 if (cpus_equal(doms_cur[i], doms_new[j])
7819 && dattrs_equal(dattr_cur, i, dattr_new, j))
7820 goto match1;
7821 }
7822 /* no match - a current sched domain not in new doms_new[] */
7823 detach_destroy_domains(doms_cur + i);
7824 match1:
7825 ;
7826 }
7827
7828 if (doms_new == NULL) {
7829 ndoms_cur = 0;
7830 doms_new = &fallback_doms;
7831 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7832 WARN_ON_ONCE(dattr_new);
7833 }
7834
7835 /* Build new domains */
7836 for (i = 0; i < ndoms_new; i++) {
7837 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7838 if (cpus_equal(doms_new[i], doms_cur[j])
7839 && dattrs_equal(dattr_new, i, dattr_cur, j))
7840 goto match2;
7841 }
7842 /* no match - add a new doms_new */
7843 __build_sched_domains(doms_new + i,
7844 dattr_new ? dattr_new + i : NULL);
7845 match2:
7846 ;
7847 }
7848
7849 /* Remember the new sched domains */
7850 if (doms_cur != &fallback_doms)
7851 kfree(doms_cur);
7852 kfree(dattr_cur); /* kfree(NULL) is safe */
7853 doms_cur = doms_new;
7854 dattr_cur = dattr_new;
7855 ndoms_cur = ndoms_new;
7856
7857 register_sched_domain_sysctl();
7858
7859 mutex_unlock(&sched_domains_mutex);
7860 }
7861
7862 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7863 int arch_reinit_sched_domains(void)
7864 {
7865 get_online_cpus();
7866
7867 /* Destroy domains first to force the rebuild */
7868 partition_sched_domains(0, NULL, NULL);
7869
7870 rebuild_sched_domains();
7871 put_online_cpus();
7872
7873 return 0;
7874 }
7875
7876 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7877 {
7878 int ret;
7879
7880 if (buf[0] != '0' && buf[0] != '1')
7881 return -EINVAL;
7882
7883 if (smt)
7884 sched_smt_power_savings = (buf[0] == '1');
7885 else
7886 sched_mc_power_savings = (buf[0] == '1');
7887
7888 ret = arch_reinit_sched_domains();
7889
7890 return ret ? ret : count;
7891 }
7892
7893 #ifdef CONFIG_SCHED_MC
7894 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7895 char *page)
7896 {
7897 return sprintf(page, "%u\n", sched_mc_power_savings);
7898 }
7899 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7900 const char *buf, size_t count)
7901 {
7902 return sched_power_savings_store(buf, count, 0);
7903 }
7904 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7905 sched_mc_power_savings_show,
7906 sched_mc_power_savings_store);
7907 #endif
7908
7909 #ifdef CONFIG_SCHED_SMT
7910 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7911 char *page)
7912 {
7913 return sprintf(page, "%u\n", sched_smt_power_savings);
7914 }
7915 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7916 const char *buf, size_t count)
7917 {
7918 return sched_power_savings_store(buf, count, 1);
7919 }
7920 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7921 sched_smt_power_savings_show,
7922 sched_smt_power_savings_store);
7923 #endif
7924
7925 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7926 {
7927 int err = 0;
7928
7929 #ifdef CONFIG_SCHED_SMT
7930 if (smt_capable())
7931 err = sysfs_create_file(&cls->kset.kobj,
7932 &attr_sched_smt_power_savings.attr);
7933 #endif
7934 #ifdef CONFIG_SCHED_MC
7935 if (!err && mc_capable())
7936 err = sysfs_create_file(&cls->kset.kobj,
7937 &attr_sched_mc_power_savings.attr);
7938 #endif
7939 return err;
7940 }
7941 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7942
7943 #ifndef CONFIG_CPUSETS
7944 /*
7945 * Add online and remove offline CPUs from the scheduler domains.
7946 * When cpusets are enabled they take over this function.
7947 */
7948 static int update_sched_domains(struct notifier_block *nfb,
7949 unsigned long action, void *hcpu)
7950 {
7951 switch (action) {
7952 case CPU_ONLINE:
7953 case CPU_ONLINE_FROZEN:
7954 case CPU_DEAD:
7955 case CPU_DEAD_FROZEN:
7956 partition_sched_domains(1, NULL, NULL);
7957 return NOTIFY_OK;
7958
7959 default:
7960 return NOTIFY_DONE;
7961 }
7962 }
7963 #endif
7964
7965 static int update_runtime(struct notifier_block *nfb,
7966 unsigned long action, void *hcpu)
7967 {
7968 int cpu = (int)(long)hcpu;
7969
7970 switch (action) {
7971 case CPU_DOWN_PREPARE:
7972 case CPU_DOWN_PREPARE_FROZEN:
7973 disable_runtime(cpu_rq(cpu));
7974 return NOTIFY_OK;
7975
7976 case CPU_DOWN_FAILED:
7977 case CPU_DOWN_FAILED_FROZEN:
7978 case CPU_ONLINE:
7979 case CPU_ONLINE_FROZEN:
7980 enable_runtime(cpu_rq(cpu));
7981 return NOTIFY_OK;
7982
7983 default:
7984 return NOTIFY_DONE;
7985 }
7986 }
7987
7988 void __init sched_init_smp(void)
7989 {
7990 cpumask_t non_isolated_cpus;
7991
7992 #if defined(CONFIG_NUMA)
7993 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7994 GFP_KERNEL);
7995 BUG_ON(sched_group_nodes_bycpu == NULL);
7996 #endif
7997 get_online_cpus();
7998 mutex_lock(&sched_domains_mutex);
7999 arch_init_sched_domains(&cpu_online_map);
8000 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8001 if (cpus_empty(non_isolated_cpus))
8002 cpu_set(smp_processor_id(), non_isolated_cpus);
8003 mutex_unlock(&sched_domains_mutex);
8004 put_online_cpus();
8005
8006 #ifndef CONFIG_CPUSETS
8007 /* XXX: Theoretical race here - CPU may be hotplugged now */
8008 hotcpu_notifier(update_sched_domains, 0);
8009 #endif
8010
8011 /* RT runtime code needs to handle some hotplug events */
8012 hotcpu_notifier(update_runtime, 0);
8013
8014 init_hrtick();
8015
8016 /* Move init over to a non-isolated CPU */
8017 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8018 BUG();
8019 sched_init_granularity();
8020 }
8021 #else
8022 void __init sched_init_smp(void)
8023 {
8024 sched_init_granularity();
8025 }
8026 #endif /* CONFIG_SMP */
8027
8028 int in_sched_functions(unsigned long addr)
8029 {
8030 return in_lock_functions(addr) ||
8031 (addr >= (unsigned long)__sched_text_start
8032 && addr < (unsigned long)__sched_text_end);
8033 }
8034
8035 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8036 {
8037 cfs_rq->tasks_timeline = RB_ROOT;
8038 INIT_LIST_HEAD(&cfs_rq->tasks);
8039 #ifdef CONFIG_FAIR_GROUP_SCHED
8040 cfs_rq->rq = rq;
8041 #endif
8042 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8043 }
8044
8045 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8046 {
8047 struct rt_prio_array *array;
8048 int i;
8049
8050 array = &rt_rq->active;
8051 for (i = 0; i < MAX_RT_PRIO; i++) {
8052 INIT_LIST_HEAD(array->queue + i);
8053 __clear_bit(i, array->bitmap);
8054 }
8055 /* delimiter for bitsearch: */
8056 __set_bit(MAX_RT_PRIO, array->bitmap);
8057
8058 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8059 rt_rq->highest_prio = MAX_RT_PRIO;
8060 #endif
8061 #ifdef CONFIG_SMP
8062 rt_rq->rt_nr_migratory = 0;
8063 rt_rq->overloaded = 0;
8064 #endif
8065
8066 rt_rq->rt_time = 0;
8067 rt_rq->rt_throttled = 0;
8068 rt_rq->rt_runtime = 0;
8069 spin_lock_init(&rt_rq->rt_runtime_lock);
8070
8071 #ifdef CONFIG_RT_GROUP_SCHED
8072 rt_rq->rt_nr_boosted = 0;
8073 rt_rq->rq = rq;
8074 #endif
8075 }
8076
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8079 struct sched_entity *se, int cpu, int add,
8080 struct sched_entity *parent)
8081 {
8082 struct rq *rq = cpu_rq(cpu);
8083 tg->cfs_rq[cpu] = cfs_rq;
8084 init_cfs_rq(cfs_rq, rq);
8085 cfs_rq->tg = tg;
8086 if (add)
8087 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8088
8089 tg->se[cpu] = se;
8090 /* se could be NULL for init_task_group */
8091 if (!se)
8092 return;
8093
8094 if (!parent)
8095 se->cfs_rq = &rq->cfs;
8096 else
8097 se->cfs_rq = parent->my_q;
8098
8099 se->my_q = cfs_rq;
8100 se->load.weight = tg->shares;
8101 se->load.inv_weight = 0;
8102 se->parent = parent;
8103 }
8104 #endif
8105
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8108 struct sched_rt_entity *rt_se, int cpu, int add,
8109 struct sched_rt_entity *parent)
8110 {
8111 struct rq *rq = cpu_rq(cpu);
8112
8113 tg->rt_rq[cpu] = rt_rq;
8114 init_rt_rq(rt_rq, rq);
8115 rt_rq->tg = tg;
8116 rt_rq->rt_se = rt_se;
8117 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8118 if (add)
8119 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8120
8121 tg->rt_se[cpu] = rt_se;
8122 if (!rt_se)
8123 return;
8124
8125 if (!parent)
8126 rt_se->rt_rq = &rq->rt;
8127 else
8128 rt_se->rt_rq = parent->my_q;
8129
8130 rt_se->my_q = rt_rq;
8131 rt_se->parent = parent;
8132 INIT_LIST_HEAD(&rt_se->run_list);
8133 }
8134 #endif
8135
8136 void __init sched_init(void)
8137 {
8138 int i, j;
8139 unsigned long alloc_size = 0, ptr;
8140
8141 #ifdef CONFIG_FAIR_GROUP_SCHED
8142 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8143 #endif
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8146 #endif
8147 #ifdef CONFIG_USER_SCHED
8148 alloc_size *= 2;
8149 #endif
8150 /*
8151 * As sched_init() is called before page_alloc is setup,
8152 * we use alloc_bootmem().
8153 */
8154 if (alloc_size) {
8155 ptr = (unsigned long)alloc_bootmem(alloc_size);
8156
8157 #ifdef CONFIG_FAIR_GROUP_SCHED
8158 init_task_group.se = (struct sched_entity **)ptr;
8159 ptr += nr_cpu_ids * sizeof(void **);
8160
8161 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8163
8164 #ifdef CONFIG_USER_SCHED
8165 root_task_group.se = (struct sched_entity **)ptr;
8166 ptr += nr_cpu_ids * sizeof(void **);
8167
8168 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8170 #endif /* CONFIG_USER_SCHED */
8171 #endif /* CONFIG_FAIR_GROUP_SCHED */
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8174 ptr += nr_cpu_ids * sizeof(void **);
8175
8176 init_task_group.rt_rq = (struct rt_rq **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
8178
8179 #ifdef CONFIG_USER_SCHED
8180 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8181 ptr += nr_cpu_ids * sizeof(void **);
8182
8183 root_task_group.rt_rq = (struct rt_rq **)ptr;
8184 ptr += nr_cpu_ids * sizeof(void **);
8185 #endif /* CONFIG_USER_SCHED */
8186 #endif /* CONFIG_RT_GROUP_SCHED */
8187 }
8188
8189 #ifdef CONFIG_SMP
8190 init_defrootdomain();
8191 #endif
8192
8193 init_rt_bandwidth(&def_rt_bandwidth,
8194 global_rt_period(), global_rt_runtime());
8195
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8198 global_rt_period(), global_rt_runtime());
8199 #ifdef CONFIG_USER_SCHED
8200 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8201 global_rt_period(), RUNTIME_INF);
8202 #endif /* CONFIG_USER_SCHED */
8203 #endif /* CONFIG_RT_GROUP_SCHED */
8204
8205 #ifdef CONFIG_GROUP_SCHED
8206 list_add(&init_task_group.list, &task_groups);
8207 INIT_LIST_HEAD(&init_task_group.children);
8208
8209 #ifdef CONFIG_USER_SCHED
8210 INIT_LIST_HEAD(&root_task_group.children);
8211 init_task_group.parent = &root_task_group;
8212 list_add(&init_task_group.siblings, &root_task_group.children);
8213 #endif /* CONFIG_USER_SCHED */
8214 #endif /* CONFIG_GROUP_SCHED */
8215
8216 for_each_possible_cpu(i) {
8217 struct rq *rq;
8218
8219 rq = cpu_rq(i);
8220 spin_lock_init(&rq->lock);
8221 rq->nr_running = 0;
8222 init_cfs_rq(&rq->cfs, rq);
8223 init_rt_rq(&rq->rt, rq);
8224 #ifdef CONFIG_FAIR_GROUP_SCHED
8225 init_task_group.shares = init_task_group_load;
8226 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8227 #ifdef CONFIG_CGROUP_SCHED
8228 /*
8229 * How much cpu bandwidth does init_task_group get?
8230 *
8231 * In case of task-groups formed thr' the cgroup filesystem, it
8232 * gets 100% of the cpu resources in the system. This overall
8233 * system cpu resource is divided among the tasks of
8234 * init_task_group and its child task-groups in a fair manner,
8235 * based on each entity's (task or task-group's) weight
8236 * (se->load.weight).
8237 *
8238 * In other words, if init_task_group has 10 tasks of weight
8239 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8240 * then A0's share of the cpu resource is:
8241 *
8242 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8243 *
8244 * We achieve this by letting init_task_group's tasks sit
8245 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8246 */
8247 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8248 #elif defined CONFIG_USER_SCHED
8249 root_task_group.shares = NICE_0_LOAD;
8250 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8251 /*
8252 * In case of task-groups formed thr' the user id of tasks,
8253 * init_task_group represents tasks belonging to root user.
8254 * Hence it forms a sibling of all subsequent groups formed.
8255 * In this case, init_task_group gets only a fraction of overall
8256 * system cpu resource, based on the weight assigned to root
8257 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8258 * by letting tasks of init_task_group sit in a separate cfs_rq
8259 * (init_cfs_rq) and having one entity represent this group of
8260 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8261 */
8262 init_tg_cfs_entry(&init_task_group,
8263 &per_cpu(init_cfs_rq, i),
8264 &per_cpu(init_sched_entity, i), i, 1,
8265 root_task_group.se[i]);
8266
8267 #endif
8268 #endif /* CONFIG_FAIR_GROUP_SCHED */
8269
8270 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8271 #ifdef CONFIG_RT_GROUP_SCHED
8272 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8273 #ifdef CONFIG_CGROUP_SCHED
8274 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8275 #elif defined CONFIG_USER_SCHED
8276 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8277 init_tg_rt_entry(&init_task_group,
8278 &per_cpu(init_rt_rq, i),
8279 &per_cpu(init_sched_rt_entity, i), i, 1,
8280 root_task_group.rt_se[i]);
8281 #endif
8282 #endif
8283
8284 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8285 rq->cpu_load[j] = 0;
8286 #ifdef CONFIG_SMP
8287 rq->sd = NULL;
8288 rq->rd = NULL;
8289 rq->active_balance = 0;
8290 rq->next_balance = jiffies;
8291 rq->push_cpu = 0;
8292 rq->cpu = i;
8293 rq->online = 0;
8294 rq->migration_thread = NULL;
8295 INIT_LIST_HEAD(&rq->migration_queue);
8296 rq_attach_root(rq, &def_root_domain);
8297 #endif
8298 init_rq_hrtick(rq);
8299 atomic_set(&rq->nr_iowait, 0);
8300 }
8301
8302 set_load_weight(&init_task);
8303
8304 #ifdef CONFIG_PREEMPT_NOTIFIERS
8305 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8306 #endif
8307
8308 #ifdef CONFIG_SMP
8309 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8310 #endif
8311
8312 #ifdef CONFIG_RT_MUTEXES
8313 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8314 #endif
8315
8316 /*
8317 * The boot idle thread does lazy MMU switching as well:
8318 */
8319 atomic_inc(&init_mm.mm_count);
8320 enter_lazy_tlb(&init_mm, current);
8321
8322 /*
8323 * Make us the idle thread. Technically, schedule() should not be
8324 * called from this thread, however somewhere below it might be,
8325 * but because we are the idle thread, we just pick up running again
8326 * when this runqueue becomes "idle".
8327 */
8328 init_idle(current, smp_processor_id());
8329 /*
8330 * During early bootup we pretend to be a normal task:
8331 */
8332 current->sched_class = &fair_sched_class;
8333
8334 scheduler_running = 1;
8335 }
8336
8337 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8338 void __might_sleep(char *file, int line)
8339 {
8340 #ifdef in_atomic
8341 static unsigned long prev_jiffy; /* ratelimiting */
8342
8343 if ((!in_atomic() && !irqs_disabled()) ||
8344 system_state != SYSTEM_RUNNING || oops_in_progress)
8345 return;
8346 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8347 return;
8348 prev_jiffy = jiffies;
8349
8350 printk(KERN_ERR
8351 "BUG: sleeping function called from invalid context at %s:%d\n",
8352 file, line);
8353 printk(KERN_ERR
8354 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8355 in_atomic(), irqs_disabled(),
8356 current->pid, current->comm);
8357
8358 debug_show_held_locks(current);
8359 if (irqs_disabled())
8360 print_irqtrace_events(current);
8361 dump_stack();
8362 #endif
8363 }
8364 EXPORT_SYMBOL(__might_sleep);
8365 #endif
8366
8367 #ifdef CONFIG_MAGIC_SYSRQ
8368 static void normalize_task(struct rq *rq, struct task_struct *p)
8369 {
8370 int on_rq;
8371
8372 update_rq_clock(rq);
8373 on_rq = p->se.on_rq;
8374 if (on_rq)
8375 deactivate_task(rq, p, 0);
8376 __setscheduler(rq, p, SCHED_NORMAL, 0);
8377 if (on_rq) {
8378 activate_task(rq, p, 0);
8379 resched_task(rq->curr);
8380 }
8381 }
8382
8383 void normalize_rt_tasks(void)
8384 {
8385 struct task_struct *g, *p;
8386 unsigned long flags;
8387 struct rq *rq;
8388
8389 read_lock_irqsave(&tasklist_lock, flags);
8390 do_each_thread(g, p) {
8391 /*
8392 * Only normalize user tasks:
8393 */
8394 if (!p->mm)
8395 continue;
8396
8397 p->se.exec_start = 0;
8398 #ifdef CONFIG_SCHEDSTATS
8399 p->se.wait_start = 0;
8400 p->se.sleep_start = 0;
8401 p->se.block_start = 0;
8402 #endif
8403
8404 if (!rt_task(p)) {
8405 /*
8406 * Renice negative nice level userspace
8407 * tasks back to 0:
8408 */
8409 if (TASK_NICE(p) < 0 && p->mm)
8410 set_user_nice(p, 0);
8411 continue;
8412 }
8413
8414 spin_lock(&p->pi_lock);
8415 rq = __task_rq_lock(p);
8416
8417 normalize_task(rq, p);
8418
8419 __task_rq_unlock(rq);
8420 spin_unlock(&p->pi_lock);
8421 } while_each_thread(g, p);
8422
8423 read_unlock_irqrestore(&tasklist_lock, flags);
8424 }
8425
8426 #endif /* CONFIG_MAGIC_SYSRQ */
8427
8428 #ifdef CONFIG_IA64
8429 /*
8430 * These functions are only useful for the IA64 MCA handling.
8431 *
8432 * They can only be called when the whole system has been
8433 * stopped - every CPU needs to be quiescent, and no scheduling
8434 * activity can take place. Using them for anything else would
8435 * be a serious bug, and as a result, they aren't even visible
8436 * under any other configuration.
8437 */
8438
8439 /**
8440 * curr_task - return the current task for a given cpu.
8441 * @cpu: the processor in question.
8442 *
8443 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8444 */
8445 struct task_struct *curr_task(int cpu)
8446 {
8447 return cpu_curr(cpu);
8448 }
8449
8450 /**
8451 * set_curr_task - set the current task for a given cpu.
8452 * @cpu: the processor in question.
8453 * @p: the task pointer to set.
8454 *
8455 * Description: This function must only be used when non-maskable interrupts
8456 * are serviced on a separate stack. It allows the architecture to switch the
8457 * notion of the current task on a cpu in a non-blocking manner. This function
8458 * must be called with all CPU's synchronized, and interrupts disabled, the
8459 * and caller must save the original value of the current task (see
8460 * curr_task() above) and restore that value before reenabling interrupts and
8461 * re-starting the system.
8462 *
8463 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8464 */
8465 void set_curr_task(int cpu, struct task_struct *p)
8466 {
8467 cpu_curr(cpu) = p;
8468 }
8469
8470 #endif
8471
8472 #ifdef CONFIG_FAIR_GROUP_SCHED
8473 static void free_fair_sched_group(struct task_group *tg)
8474 {
8475 int i;
8476
8477 for_each_possible_cpu(i) {
8478 if (tg->cfs_rq)
8479 kfree(tg->cfs_rq[i]);
8480 if (tg->se)
8481 kfree(tg->se[i]);
8482 }
8483
8484 kfree(tg->cfs_rq);
8485 kfree(tg->se);
8486 }
8487
8488 static
8489 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8490 {
8491 struct cfs_rq *cfs_rq;
8492 struct sched_entity *se;
8493 struct rq *rq;
8494 int i;
8495
8496 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8497 if (!tg->cfs_rq)
8498 goto err;
8499 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8500 if (!tg->se)
8501 goto err;
8502
8503 tg->shares = NICE_0_LOAD;
8504
8505 for_each_possible_cpu(i) {
8506 rq = cpu_rq(i);
8507
8508 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8509 GFP_KERNEL, cpu_to_node(i));
8510 if (!cfs_rq)
8511 goto err;
8512
8513 se = kzalloc_node(sizeof(struct sched_entity),
8514 GFP_KERNEL, cpu_to_node(i));
8515 if (!se)
8516 goto err;
8517
8518 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8519 }
8520
8521 return 1;
8522
8523 err:
8524 return 0;
8525 }
8526
8527 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8528 {
8529 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8530 &cpu_rq(cpu)->leaf_cfs_rq_list);
8531 }
8532
8533 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8534 {
8535 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8536 }
8537 #else /* !CONFG_FAIR_GROUP_SCHED */
8538 static inline void free_fair_sched_group(struct task_group *tg)
8539 {
8540 }
8541
8542 static inline
8543 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8544 {
8545 return 1;
8546 }
8547
8548 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8549 {
8550 }
8551
8552 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8553 {
8554 }
8555 #endif /* CONFIG_FAIR_GROUP_SCHED */
8556
8557 #ifdef CONFIG_RT_GROUP_SCHED
8558 static void free_rt_sched_group(struct task_group *tg)
8559 {
8560 int i;
8561
8562 destroy_rt_bandwidth(&tg->rt_bandwidth);
8563
8564 for_each_possible_cpu(i) {
8565 if (tg->rt_rq)
8566 kfree(tg->rt_rq[i]);
8567 if (tg->rt_se)
8568 kfree(tg->rt_se[i]);
8569 }
8570
8571 kfree(tg->rt_rq);
8572 kfree(tg->rt_se);
8573 }
8574
8575 static
8576 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8577 {
8578 struct rt_rq *rt_rq;
8579 struct sched_rt_entity *rt_se;
8580 struct rq *rq;
8581 int i;
8582
8583 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8584 if (!tg->rt_rq)
8585 goto err;
8586 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8587 if (!tg->rt_se)
8588 goto err;
8589
8590 init_rt_bandwidth(&tg->rt_bandwidth,
8591 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8592
8593 for_each_possible_cpu(i) {
8594 rq = cpu_rq(i);
8595
8596 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8597 GFP_KERNEL, cpu_to_node(i));
8598 if (!rt_rq)
8599 goto err;
8600
8601 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8602 GFP_KERNEL, cpu_to_node(i));
8603 if (!rt_se)
8604 goto err;
8605
8606 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8607 }
8608
8609 return 1;
8610
8611 err:
8612 return 0;
8613 }
8614
8615 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8616 {
8617 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8618 &cpu_rq(cpu)->leaf_rt_rq_list);
8619 }
8620
8621 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8622 {
8623 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8624 }
8625 #else /* !CONFIG_RT_GROUP_SCHED */
8626 static inline void free_rt_sched_group(struct task_group *tg)
8627 {
8628 }
8629
8630 static inline
8631 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8632 {
8633 return 1;
8634 }
8635
8636 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8637 {
8638 }
8639
8640 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8641 {
8642 }
8643 #endif /* CONFIG_RT_GROUP_SCHED */
8644
8645 #ifdef CONFIG_GROUP_SCHED
8646 static void free_sched_group(struct task_group *tg)
8647 {
8648 free_fair_sched_group(tg);
8649 free_rt_sched_group(tg);
8650 kfree(tg);
8651 }
8652
8653 /* allocate runqueue etc for a new task group */
8654 struct task_group *sched_create_group(struct task_group *parent)
8655 {
8656 struct task_group *tg;
8657 unsigned long flags;
8658 int i;
8659
8660 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8661 if (!tg)
8662 return ERR_PTR(-ENOMEM);
8663
8664 if (!alloc_fair_sched_group(tg, parent))
8665 goto err;
8666
8667 if (!alloc_rt_sched_group(tg, parent))
8668 goto err;
8669
8670 spin_lock_irqsave(&task_group_lock, flags);
8671 for_each_possible_cpu(i) {
8672 register_fair_sched_group(tg, i);
8673 register_rt_sched_group(tg, i);
8674 }
8675 list_add_rcu(&tg->list, &task_groups);
8676
8677 WARN_ON(!parent); /* root should already exist */
8678
8679 tg->parent = parent;
8680 INIT_LIST_HEAD(&tg->children);
8681 list_add_rcu(&tg->siblings, &parent->children);
8682 spin_unlock_irqrestore(&task_group_lock, flags);
8683
8684 return tg;
8685
8686 err:
8687 free_sched_group(tg);
8688 return ERR_PTR(-ENOMEM);
8689 }
8690
8691 /* rcu callback to free various structures associated with a task group */
8692 static void free_sched_group_rcu(struct rcu_head *rhp)
8693 {
8694 /* now it should be safe to free those cfs_rqs */
8695 free_sched_group(container_of(rhp, struct task_group, rcu));
8696 }
8697
8698 /* Destroy runqueue etc associated with a task group */
8699 void sched_destroy_group(struct task_group *tg)
8700 {
8701 unsigned long flags;
8702 int i;
8703
8704 spin_lock_irqsave(&task_group_lock, flags);
8705 for_each_possible_cpu(i) {
8706 unregister_fair_sched_group(tg, i);
8707 unregister_rt_sched_group(tg, i);
8708 }
8709 list_del_rcu(&tg->list);
8710 list_del_rcu(&tg->siblings);
8711 spin_unlock_irqrestore(&task_group_lock, flags);
8712
8713 /* wait for possible concurrent references to cfs_rqs complete */
8714 call_rcu(&tg->rcu, free_sched_group_rcu);
8715 }
8716
8717 /* change task's runqueue when it moves between groups.
8718 * The caller of this function should have put the task in its new group
8719 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8720 * reflect its new group.
8721 */
8722 void sched_move_task(struct task_struct *tsk)
8723 {
8724 int on_rq, running;
8725 unsigned long flags;
8726 struct rq *rq;
8727
8728 rq = task_rq_lock(tsk, &flags);
8729
8730 update_rq_clock(rq);
8731
8732 running = task_current(rq, tsk);
8733 on_rq = tsk->se.on_rq;
8734
8735 if (on_rq)
8736 dequeue_task(rq, tsk, 0);
8737 if (unlikely(running))
8738 tsk->sched_class->put_prev_task(rq, tsk);
8739
8740 set_task_rq(tsk, task_cpu(tsk));
8741
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 if (tsk->sched_class->moved_group)
8744 tsk->sched_class->moved_group(tsk);
8745 #endif
8746
8747 if (unlikely(running))
8748 tsk->sched_class->set_curr_task(rq);
8749 if (on_rq)
8750 enqueue_task(rq, tsk, 0);
8751
8752 task_rq_unlock(rq, &flags);
8753 }
8754 #endif /* CONFIG_GROUP_SCHED */
8755
8756 #ifdef CONFIG_FAIR_GROUP_SCHED
8757 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8758 {
8759 struct cfs_rq *cfs_rq = se->cfs_rq;
8760 int on_rq;
8761
8762 on_rq = se->on_rq;
8763 if (on_rq)
8764 dequeue_entity(cfs_rq, se, 0);
8765
8766 se->load.weight = shares;
8767 se->load.inv_weight = 0;
8768
8769 if (on_rq)
8770 enqueue_entity(cfs_rq, se, 0);
8771 }
8772
8773 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8774 {
8775 struct cfs_rq *cfs_rq = se->cfs_rq;
8776 struct rq *rq = cfs_rq->rq;
8777 unsigned long flags;
8778
8779 spin_lock_irqsave(&rq->lock, flags);
8780 __set_se_shares(se, shares);
8781 spin_unlock_irqrestore(&rq->lock, flags);
8782 }
8783
8784 static DEFINE_MUTEX(shares_mutex);
8785
8786 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8787 {
8788 int i;
8789 unsigned long flags;
8790
8791 /*
8792 * We can't change the weight of the root cgroup.
8793 */
8794 if (!tg->se[0])
8795 return -EINVAL;
8796
8797 if (shares < MIN_SHARES)
8798 shares = MIN_SHARES;
8799 else if (shares > MAX_SHARES)
8800 shares = MAX_SHARES;
8801
8802 mutex_lock(&shares_mutex);
8803 if (tg->shares == shares)
8804 goto done;
8805
8806 spin_lock_irqsave(&task_group_lock, flags);
8807 for_each_possible_cpu(i)
8808 unregister_fair_sched_group(tg, i);
8809 list_del_rcu(&tg->siblings);
8810 spin_unlock_irqrestore(&task_group_lock, flags);
8811
8812 /* wait for any ongoing reference to this group to finish */
8813 synchronize_sched();
8814
8815 /*
8816 * Now we are free to modify the group's share on each cpu
8817 * w/o tripping rebalance_share or load_balance_fair.
8818 */
8819 tg->shares = shares;
8820 for_each_possible_cpu(i) {
8821 /*
8822 * force a rebalance
8823 */
8824 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8825 set_se_shares(tg->se[i], shares);
8826 }
8827
8828 /*
8829 * Enable load balance activity on this group, by inserting it back on
8830 * each cpu's rq->leaf_cfs_rq_list.
8831 */
8832 spin_lock_irqsave(&task_group_lock, flags);
8833 for_each_possible_cpu(i)
8834 register_fair_sched_group(tg, i);
8835 list_add_rcu(&tg->siblings, &tg->parent->children);
8836 spin_unlock_irqrestore(&task_group_lock, flags);
8837 done:
8838 mutex_unlock(&shares_mutex);
8839 return 0;
8840 }
8841
8842 unsigned long sched_group_shares(struct task_group *tg)
8843 {
8844 return tg->shares;
8845 }
8846 #endif
8847
8848 #ifdef CONFIG_RT_GROUP_SCHED
8849 /*
8850 * Ensure that the real time constraints are schedulable.
8851 */
8852 static DEFINE_MUTEX(rt_constraints_mutex);
8853
8854 static unsigned long to_ratio(u64 period, u64 runtime)
8855 {
8856 if (runtime == RUNTIME_INF)
8857 return 1ULL << 20;
8858
8859 return div64_u64(runtime << 20, period);
8860 }
8861
8862 /* Must be called with tasklist_lock held */
8863 static inline int tg_has_rt_tasks(struct task_group *tg)
8864 {
8865 struct task_struct *g, *p;
8866
8867 do_each_thread(g, p) {
8868 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8869 return 1;
8870 } while_each_thread(g, p);
8871
8872 return 0;
8873 }
8874
8875 struct rt_schedulable_data {
8876 struct task_group *tg;
8877 u64 rt_period;
8878 u64 rt_runtime;
8879 };
8880
8881 static int tg_schedulable(struct task_group *tg, void *data)
8882 {
8883 struct rt_schedulable_data *d = data;
8884 struct task_group *child;
8885 unsigned long total, sum = 0;
8886 u64 period, runtime;
8887
8888 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8889 runtime = tg->rt_bandwidth.rt_runtime;
8890
8891 if (tg == d->tg) {
8892 period = d->rt_period;
8893 runtime = d->rt_runtime;
8894 }
8895
8896 /*
8897 * Cannot have more runtime than the period.
8898 */
8899 if (runtime > period && runtime != RUNTIME_INF)
8900 return -EINVAL;
8901
8902 /*
8903 * Ensure we don't starve existing RT tasks.
8904 */
8905 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8906 return -EBUSY;
8907
8908 total = to_ratio(period, runtime);
8909
8910 /*
8911 * Nobody can have more than the global setting allows.
8912 */
8913 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8914 return -EINVAL;
8915
8916 /*
8917 * The sum of our children's runtime should not exceed our own.
8918 */
8919 list_for_each_entry_rcu(child, &tg->children, siblings) {
8920 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8921 runtime = child->rt_bandwidth.rt_runtime;
8922
8923 if (child == d->tg) {
8924 period = d->rt_period;
8925 runtime = d->rt_runtime;
8926 }
8927
8928 sum += to_ratio(period, runtime);
8929 }
8930
8931 if (sum > total)
8932 return -EINVAL;
8933
8934 return 0;
8935 }
8936
8937 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8938 {
8939 struct rt_schedulable_data data = {
8940 .tg = tg,
8941 .rt_period = period,
8942 .rt_runtime = runtime,
8943 };
8944
8945 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8946 }
8947
8948 static int tg_set_bandwidth(struct task_group *tg,
8949 u64 rt_period, u64 rt_runtime)
8950 {
8951 int i, err = 0;
8952
8953 mutex_lock(&rt_constraints_mutex);
8954 read_lock(&tasklist_lock);
8955 err = __rt_schedulable(tg, rt_period, rt_runtime);
8956 if (err)
8957 goto unlock;
8958
8959 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8960 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8961 tg->rt_bandwidth.rt_runtime = rt_runtime;
8962
8963 for_each_possible_cpu(i) {
8964 struct rt_rq *rt_rq = tg->rt_rq[i];
8965
8966 spin_lock(&rt_rq->rt_runtime_lock);
8967 rt_rq->rt_runtime = rt_runtime;
8968 spin_unlock(&rt_rq->rt_runtime_lock);
8969 }
8970 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8971 unlock:
8972 read_unlock(&tasklist_lock);
8973 mutex_unlock(&rt_constraints_mutex);
8974
8975 return err;
8976 }
8977
8978 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8979 {
8980 u64 rt_runtime, rt_period;
8981
8982 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8983 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8984 if (rt_runtime_us < 0)
8985 rt_runtime = RUNTIME_INF;
8986
8987 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8988 }
8989
8990 long sched_group_rt_runtime(struct task_group *tg)
8991 {
8992 u64 rt_runtime_us;
8993
8994 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8995 return -1;
8996
8997 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8998 do_div(rt_runtime_us, NSEC_PER_USEC);
8999 return rt_runtime_us;
9000 }
9001
9002 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9003 {
9004 u64 rt_runtime, rt_period;
9005
9006 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9007 rt_runtime = tg->rt_bandwidth.rt_runtime;
9008
9009 if (rt_period == 0)
9010 return -EINVAL;
9011
9012 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9013 }
9014
9015 long sched_group_rt_period(struct task_group *tg)
9016 {
9017 u64 rt_period_us;
9018
9019 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9020 do_div(rt_period_us, NSEC_PER_USEC);
9021 return rt_period_us;
9022 }
9023
9024 static int sched_rt_global_constraints(void)
9025 {
9026 u64 runtime, period;
9027 int ret = 0;
9028
9029 if (sysctl_sched_rt_period <= 0)
9030 return -EINVAL;
9031
9032 runtime = global_rt_runtime();
9033 period = global_rt_period();
9034
9035 /*
9036 * Sanity check on the sysctl variables.
9037 */
9038 if (runtime > period && runtime != RUNTIME_INF)
9039 return -EINVAL;
9040
9041 mutex_lock(&rt_constraints_mutex);
9042 read_lock(&tasklist_lock);
9043 ret = __rt_schedulable(NULL, 0, 0);
9044 read_unlock(&tasklist_lock);
9045 mutex_unlock(&rt_constraints_mutex);
9046
9047 return ret;
9048 }
9049 #else /* !CONFIG_RT_GROUP_SCHED */
9050 static int sched_rt_global_constraints(void)
9051 {
9052 unsigned long flags;
9053 int i;
9054
9055 if (sysctl_sched_rt_period <= 0)
9056 return -EINVAL;
9057
9058 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9059 for_each_possible_cpu(i) {
9060 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9061
9062 spin_lock(&rt_rq->rt_runtime_lock);
9063 rt_rq->rt_runtime = global_rt_runtime();
9064 spin_unlock(&rt_rq->rt_runtime_lock);
9065 }
9066 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9067
9068 return 0;
9069 }
9070 #endif /* CONFIG_RT_GROUP_SCHED */
9071
9072 int sched_rt_handler(struct ctl_table *table, int write,
9073 struct file *filp, void __user *buffer, size_t *lenp,
9074 loff_t *ppos)
9075 {
9076 int ret;
9077 int old_period, old_runtime;
9078 static DEFINE_MUTEX(mutex);
9079
9080 mutex_lock(&mutex);
9081 old_period = sysctl_sched_rt_period;
9082 old_runtime = sysctl_sched_rt_runtime;
9083
9084 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9085
9086 if (!ret && write) {
9087 ret = sched_rt_global_constraints();
9088 if (ret) {
9089 sysctl_sched_rt_period = old_period;
9090 sysctl_sched_rt_runtime = old_runtime;
9091 } else {
9092 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9093 def_rt_bandwidth.rt_period =
9094 ns_to_ktime(global_rt_period());
9095 }
9096 }
9097 mutex_unlock(&mutex);
9098
9099 return ret;
9100 }
9101
9102 #ifdef CONFIG_CGROUP_SCHED
9103
9104 /* return corresponding task_group object of a cgroup */
9105 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9106 {
9107 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9108 struct task_group, css);
9109 }
9110
9111 static struct cgroup_subsys_state *
9112 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9113 {
9114 struct task_group *tg, *parent;
9115
9116 if (!cgrp->parent) {
9117 /* This is early initialization for the top cgroup */
9118 return &init_task_group.css;
9119 }
9120
9121 parent = cgroup_tg(cgrp->parent);
9122 tg = sched_create_group(parent);
9123 if (IS_ERR(tg))
9124 return ERR_PTR(-ENOMEM);
9125
9126 return &tg->css;
9127 }
9128
9129 static void
9130 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9131 {
9132 struct task_group *tg = cgroup_tg(cgrp);
9133
9134 sched_destroy_group(tg);
9135 }
9136
9137 static int
9138 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9139 struct task_struct *tsk)
9140 {
9141 #ifdef CONFIG_RT_GROUP_SCHED
9142 /* Don't accept realtime tasks when there is no way for them to run */
9143 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9144 return -EINVAL;
9145 #else
9146 /* We don't support RT-tasks being in separate groups */
9147 if (tsk->sched_class != &fair_sched_class)
9148 return -EINVAL;
9149 #endif
9150
9151 return 0;
9152 }
9153
9154 static void
9155 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9156 struct cgroup *old_cont, struct task_struct *tsk)
9157 {
9158 sched_move_task(tsk);
9159 }
9160
9161 #ifdef CONFIG_FAIR_GROUP_SCHED
9162 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9163 u64 shareval)
9164 {
9165 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9166 }
9167
9168 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9169 {
9170 struct task_group *tg = cgroup_tg(cgrp);
9171
9172 return (u64) tg->shares;
9173 }
9174 #endif /* CONFIG_FAIR_GROUP_SCHED */
9175
9176 #ifdef CONFIG_RT_GROUP_SCHED
9177 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9178 s64 val)
9179 {
9180 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9181 }
9182
9183 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9184 {
9185 return sched_group_rt_runtime(cgroup_tg(cgrp));
9186 }
9187
9188 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9189 u64 rt_period_us)
9190 {
9191 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9192 }
9193
9194 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9195 {
9196 return sched_group_rt_period(cgroup_tg(cgrp));
9197 }
9198 #endif /* CONFIG_RT_GROUP_SCHED */
9199
9200 static struct cftype cpu_files[] = {
9201 #ifdef CONFIG_FAIR_GROUP_SCHED
9202 {
9203 .name = "shares",
9204 .read_u64 = cpu_shares_read_u64,
9205 .write_u64 = cpu_shares_write_u64,
9206 },
9207 #endif
9208 #ifdef CONFIG_RT_GROUP_SCHED
9209 {
9210 .name = "rt_runtime_us",
9211 .read_s64 = cpu_rt_runtime_read,
9212 .write_s64 = cpu_rt_runtime_write,
9213 },
9214 {
9215 .name = "rt_period_us",
9216 .read_u64 = cpu_rt_period_read_uint,
9217 .write_u64 = cpu_rt_period_write_uint,
9218 },
9219 #endif
9220 };
9221
9222 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9223 {
9224 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9225 }
9226
9227 struct cgroup_subsys cpu_cgroup_subsys = {
9228 .name = "cpu",
9229 .create = cpu_cgroup_create,
9230 .destroy = cpu_cgroup_destroy,
9231 .can_attach = cpu_cgroup_can_attach,
9232 .attach = cpu_cgroup_attach,
9233 .populate = cpu_cgroup_populate,
9234 .subsys_id = cpu_cgroup_subsys_id,
9235 .early_init = 1,
9236 };
9237
9238 #endif /* CONFIG_CGROUP_SCHED */
9239
9240 #ifdef CONFIG_CGROUP_CPUACCT
9241
9242 /*
9243 * CPU accounting code for task groups.
9244 *
9245 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9246 * (balbir@in.ibm.com).
9247 */
9248
9249 /* track cpu usage of a group of tasks and its child groups */
9250 struct cpuacct {
9251 struct cgroup_subsys_state css;
9252 /* cpuusage holds pointer to a u64-type object on every cpu */
9253 u64 *cpuusage;
9254 struct cpuacct *parent;
9255 };
9256
9257 struct cgroup_subsys cpuacct_subsys;
9258
9259 /* return cpu accounting group corresponding to this container */
9260 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9261 {
9262 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9263 struct cpuacct, css);
9264 }
9265
9266 /* return cpu accounting group to which this task belongs */
9267 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9268 {
9269 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9270 struct cpuacct, css);
9271 }
9272
9273 /* create a new cpu accounting group */
9274 static struct cgroup_subsys_state *cpuacct_create(
9275 struct cgroup_subsys *ss, struct cgroup *cgrp)
9276 {
9277 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9278
9279 if (!ca)
9280 return ERR_PTR(-ENOMEM);
9281
9282 ca->cpuusage = alloc_percpu(u64);
9283 if (!ca->cpuusage) {
9284 kfree(ca);
9285 return ERR_PTR(-ENOMEM);
9286 }
9287
9288 if (cgrp->parent)
9289 ca->parent = cgroup_ca(cgrp->parent);
9290
9291 return &ca->css;
9292 }
9293
9294 /* destroy an existing cpu accounting group */
9295 static void
9296 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9297 {
9298 struct cpuacct *ca = cgroup_ca(cgrp);
9299
9300 free_percpu(ca->cpuusage);
9301 kfree(ca);
9302 }
9303
9304 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9305 {
9306 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9307 u64 data;
9308
9309 #ifndef CONFIG_64BIT
9310 /*
9311 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9312 */
9313 spin_lock_irq(&cpu_rq(cpu)->lock);
9314 data = *cpuusage;
9315 spin_unlock_irq(&cpu_rq(cpu)->lock);
9316 #else
9317 data = *cpuusage;
9318 #endif
9319
9320 return data;
9321 }
9322
9323 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9324 {
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9326
9327 #ifndef CONFIG_64BIT
9328 /*
9329 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9330 */
9331 spin_lock_irq(&cpu_rq(cpu)->lock);
9332 *cpuusage = val;
9333 spin_unlock_irq(&cpu_rq(cpu)->lock);
9334 #else
9335 *cpuusage = val;
9336 #endif
9337 }
9338
9339 /* return total cpu usage (in nanoseconds) of a group */
9340 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9341 {
9342 struct cpuacct *ca = cgroup_ca(cgrp);
9343 u64 totalcpuusage = 0;
9344 int i;
9345
9346 for_each_present_cpu(i)
9347 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9348
9349 return totalcpuusage;
9350 }
9351
9352 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9353 u64 reset)
9354 {
9355 struct cpuacct *ca = cgroup_ca(cgrp);
9356 int err = 0;
9357 int i;
9358
9359 if (reset) {
9360 err = -EINVAL;
9361 goto out;
9362 }
9363
9364 for_each_present_cpu(i)
9365 cpuacct_cpuusage_write(ca, i, 0);
9366
9367 out:
9368 return err;
9369 }
9370
9371 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9372 struct seq_file *m)
9373 {
9374 struct cpuacct *ca = cgroup_ca(cgroup);
9375 u64 percpu;
9376 int i;
9377
9378 for_each_present_cpu(i) {
9379 percpu = cpuacct_cpuusage_read(ca, i);
9380 seq_printf(m, "%llu ", (unsigned long long) percpu);
9381 }
9382 seq_printf(m, "\n");
9383 return 0;
9384 }
9385
9386 static struct cftype files[] = {
9387 {
9388 .name = "usage",
9389 .read_u64 = cpuusage_read,
9390 .write_u64 = cpuusage_write,
9391 },
9392 {
9393 .name = "usage_percpu",
9394 .read_seq_string = cpuacct_percpu_seq_read,
9395 },
9396
9397 };
9398
9399 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9400 {
9401 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9402 }
9403
9404 /*
9405 * charge this task's execution time to its accounting group.
9406 *
9407 * called with rq->lock held.
9408 */
9409 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9410 {
9411 struct cpuacct *ca;
9412 int cpu;
9413
9414 if (!cpuacct_subsys.active)
9415 return;
9416
9417 cpu = task_cpu(tsk);
9418 ca = task_ca(tsk);
9419
9420 for (; ca; ca = ca->parent) {
9421 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9422 *cpuusage += cputime;
9423 }
9424 }
9425
9426 struct cgroup_subsys cpuacct_subsys = {
9427 .name = "cpuacct",
9428 .create = cpuacct_create,
9429 .destroy = cpuacct_destroy,
9430 .populate = cpuacct_populate,
9431 .subsys_id = cpuacct_subsys_id,
9432 };
9433 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.332277 seconds and 6 git commands to generate.