sched: remove rq_clock()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
267 atomic_t nr_iowait;
268
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
276
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
280
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
301 };
302
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
305
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307 {
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309 }
310
311 static inline int cpu_of(struct rq *rq)
312 {
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
318 }
319
320 /*
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
323 */
324 static void __update_rq_clock(struct rq *rq)
325 {
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
356 }
357
358 static void update_rq_clock(struct rq *rq)
359 {
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
362 }
363
364 static u64 __rq_clock(struct rq *rq)
365 {
366 __update_rq_clock(rq);
367
368 return rq->clock;
369 }
370
371 /*
372 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
373 * See detach_destroy_domains: synchronize_sched for details.
374 *
375 * The domain tree of any CPU may only be accessed from within
376 * preempt-disabled sections.
377 */
378 #define for_each_domain(cpu, __sd) \
379 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
380
381 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
382 #define this_rq() (&__get_cpu_var(runqueues))
383 #define task_rq(p) cpu_rq(task_cpu(p))
384 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
385
386 /*
387 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
388 * clock constructed from sched_clock():
389 */
390 unsigned long long cpu_clock(int cpu)
391 {
392 unsigned long long now;
393 unsigned long flags;
394 struct rq *rq;
395
396 local_irq_save(flags);
397 rq = cpu_rq(cpu);
398 update_rq_clock(rq);
399 now = rq->clock;
400 local_irq_restore(flags);
401
402 return now;
403 }
404
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 /* Change a task's ->cfs_rq if it moves across CPUs */
407 static inline void set_task_cfs_rq(struct task_struct *p)
408 {
409 p->se.cfs_rq = &task_rq(p)->cfs;
410 }
411 #else
412 static inline void set_task_cfs_rq(struct task_struct *p)
413 {
414 }
415 #endif
416
417 #ifndef prepare_arch_switch
418 # define prepare_arch_switch(next) do { } while (0)
419 #endif
420 #ifndef finish_arch_switch
421 # define finish_arch_switch(prev) do { } while (0)
422 #endif
423
424 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
425 static inline int task_running(struct rq *rq, struct task_struct *p)
426 {
427 return rq->curr == p;
428 }
429
430 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
431 {
432 }
433
434 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
435 {
436 #ifdef CONFIG_DEBUG_SPINLOCK
437 /* this is a valid case when another task releases the spinlock */
438 rq->lock.owner = current;
439 #endif
440 /*
441 * If we are tracking spinlock dependencies then we have to
442 * fix up the runqueue lock - which gets 'carried over' from
443 * prev into current:
444 */
445 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
446
447 spin_unlock_irq(&rq->lock);
448 }
449
450 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
451 static inline int task_running(struct rq *rq, struct task_struct *p)
452 {
453 #ifdef CONFIG_SMP
454 return p->oncpu;
455 #else
456 return rq->curr == p;
457 #endif
458 }
459
460 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
461 {
462 #ifdef CONFIG_SMP
463 /*
464 * We can optimise this out completely for !SMP, because the
465 * SMP rebalancing from interrupt is the only thing that cares
466 * here.
467 */
468 next->oncpu = 1;
469 #endif
470 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
471 spin_unlock_irq(&rq->lock);
472 #else
473 spin_unlock(&rq->lock);
474 #endif
475 }
476
477 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
478 {
479 #ifdef CONFIG_SMP
480 /*
481 * After ->oncpu is cleared, the task can be moved to a different CPU.
482 * We must ensure this doesn't happen until the switch is completely
483 * finished.
484 */
485 smp_wmb();
486 prev->oncpu = 0;
487 #endif
488 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
489 local_irq_enable();
490 #endif
491 }
492 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
493
494 /*
495 * __task_rq_lock - lock the runqueue a given task resides on.
496 * Must be called interrupts disabled.
497 */
498 static inline struct rq *__task_rq_lock(struct task_struct *p)
499 __acquires(rq->lock)
500 {
501 struct rq *rq;
502
503 repeat_lock_task:
504 rq = task_rq(p);
505 spin_lock(&rq->lock);
506 if (unlikely(rq != task_rq(p))) {
507 spin_unlock(&rq->lock);
508 goto repeat_lock_task;
509 }
510 return rq;
511 }
512
513 /*
514 * task_rq_lock - lock the runqueue a given task resides on and disable
515 * interrupts. Note the ordering: we can safely lookup the task_rq without
516 * explicitly disabling preemption.
517 */
518 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
519 __acquires(rq->lock)
520 {
521 struct rq *rq;
522
523 repeat_lock_task:
524 local_irq_save(*flags);
525 rq = task_rq(p);
526 spin_lock(&rq->lock);
527 if (unlikely(rq != task_rq(p))) {
528 spin_unlock_irqrestore(&rq->lock, *flags);
529 goto repeat_lock_task;
530 }
531 return rq;
532 }
533
534 static inline void __task_rq_unlock(struct rq *rq)
535 __releases(rq->lock)
536 {
537 spin_unlock(&rq->lock);
538 }
539
540 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
541 __releases(rq->lock)
542 {
543 spin_unlock_irqrestore(&rq->lock, *flags);
544 }
545
546 /*
547 * this_rq_lock - lock this runqueue and disable interrupts.
548 */
549 static inline struct rq *this_rq_lock(void)
550 __acquires(rq->lock)
551 {
552 struct rq *rq;
553
554 local_irq_disable();
555 rq = this_rq();
556 spin_lock(&rq->lock);
557
558 return rq;
559 }
560
561 /*
562 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
563 */
564 void sched_clock_unstable_event(void)
565 {
566 unsigned long flags;
567 struct rq *rq;
568
569 rq = task_rq_lock(current, &flags);
570 rq->prev_clock_raw = sched_clock();
571 rq->clock_unstable_events++;
572 task_rq_unlock(rq, &flags);
573 }
574
575 /*
576 * resched_task - mark a task 'to be rescheduled now'.
577 *
578 * On UP this means the setting of the need_resched flag, on SMP it
579 * might also involve a cross-CPU call to trigger the scheduler on
580 * the target CPU.
581 */
582 #ifdef CONFIG_SMP
583
584 #ifndef tsk_is_polling
585 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
586 #endif
587
588 static void resched_task(struct task_struct *p)
589 {
590 int cpu;
591
592 assert_spin_locked(&task_rq(p)->lock);
593
594 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
595 return;
596
597 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
598
599 cpu = task_cpu(p);
600 if (cpu == smp_processor_id())
601 return;
602
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(p))
606 smp_send_reschedule(cpu);
607 }
608
609 static void resched_cpu(int cpu)
610 {
611 struct rq *rq = cpu_rq(cpu);
612 unsigned long flags;
613
614 if (!spin_trylock_irqsave(&rq->lock, flags))
615 return;
616 resched_task(cpu_curr(cpu));
617 spin_unlock_irqrestore(&rq->lock, flags);
618 }
619 #else
620 static inline void resched_task(struct task_struct *p)
621 {
622 assert_spin_locked(&task_rq(p)->lock);
623 set_tsk_need_resched(p);
624 }
625 #endif
626
627 static u64 div64_likely32(u64 divident, unsigned long divisor)
628 {
629 #if BITS_PER_LONG == 32
630 if (likely(divident <= 0xffffffffULL))
631 return (u32)divident / divisor;
632 do_div(divident, divisor);
633
634 return divident;
635 #else
636 return divident / divisor;
637 #endif
638 }
639
640 #if BITS_PER_LONG == 32
641 # define WMULT_CONST (~0UL)
642 #else
643 # define WMULT_CONST (1UL << 32)
644 #endif
645
646 #define WMULT_SHIFT 32
647
648 static unsigned long
649 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
650 struct load_weight *lw)
651 {
652 u64 tmp;
653
654 if (unlikely(!lw->inv_weight))
655 lw->inv_weight = WMULT_CONST / lw->weight;
656
657 tmp = (u64)delta_exec * weight;
658 /*
659 * Check whether we'd overflow the 64-bit multiplication:
660 */
661 if (unlikely(tmp > WMULT_CONST)) {
662 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
663 >> (WMULT_SHIFT/2);
664 } else {
665 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
666 }
667
668 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
669 }
670
671 static inline unsigned long
672 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
673 {
674 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
675 }
676
677 static void update_load_add(struct load_weight *lw, unsigned long inc)
678 {
679 lw->weight += inc;
680 lw->inv_weight = 0;
681 }
682
683 static void update_load_sub(struct load_weight *lw, unsigned long dec)
684 {
685 lw->weight -= dec;
686 lw->inv_weight = 0;
687 }
688
689 /*
690 * To aid in avoiding the subversion of "niceness" due to uneven distribution
691 * of tasks with abnormal "nice" values across CPUs the contribution that
692 * each task makes to its run queue's load is weighted according to its
693 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
694 * scaled version of the new time slice allocation that they receive on time
695 * slice expiry etc.
696 */
697
698 #define WEIGHT_IDLEPRIO 2
699 #define WMULT_IDLEPRIO (1 << 31)
700
701 /*
702 * Nice levels are multiplicative, with a gentle 10% change for every
703 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
704 * nice 1, it will get ~10% less CPU time than another CPU-bound task
705 * that remained on nice 0.
706 *
707 * The "10% effect" is relative and cumulative: from _any_ nice level,
708 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
709 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
710 * If a task goes up by ~10% and another task goes down by ~10% then
711 * the relative distance between them is ~25%.)
712 */
713 static const int prio_to_weight[40] = {
714 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
715 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
716 /* 0 */ NICE_0_LOAD /* 1024 */,
717 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
718 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
719 };
720
721 /*
722 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
723 *
724 * In cases where the weight does not change often, we can use the
725 * precalculated inverse to speed up arithmetics by turning divisions
726 * into multiplications:
727 */
728 static const u32 prio_to_wmult[40] = {
729 /* -20 */ 48356, 60446, 75558, 94446, 118058,
730 /* -15 */ 147573, 184467, 230589, 288233, 360285,
731 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
732 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
733 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
734 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
735 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
736 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
737 };
738
739 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
740
741 /*
742 * runqueue iterator, to support SMP load-balancing between different
743 * scheduling classes, without having to expose their internal data
744 * structures to the load-balancing proper:
745 */
746 struct rq_iterator {
747 void *arg;
748 struct task_struct *(*start)(void *);
749 struct task_struct *(*next)(void *);
750 };
751
752 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
753 unsigned long max_nr_move, unsigned long max_load_move,
754 struct sched_domain *sd, enum cpu_idle_type idle,
755 int *all_pinned, unsigned long *load_moved,
756 int *this_best_prio, struct rq_iterator *iterator);
757
758 #include "sched_stats.h"
759 #include "sched_rt.c"
760 #include "sched_fair.c"
761 #include "sched_idletask.c"
762 #ifdef CONFIG_SCHED_DEBUG
763 # include "sched_debug.c"
764 #endif
765
766 #define sched_class_highest (&rt_sched_class)
767
768 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
769 {
770 if (rq->curr != rq->idle && ls->load.weight) {
771 ls->delta_exec += ls->delta_stat;
772 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
773 ls->delta_stat = 0;
774 }
775 }
776
777 /*
778 * Update delta_exec, delta_fair fields for rq.
779 *
780 * delta_fair clock advances at a rate inversely proportional to
781 * total load (rq->ls.load.weight) on the runqueue, while
782 * delta_exec advances at the same rate as wall-clock (provided
783 * cpu is not idle).
784 *
785 * delta_exec / delta_fair is a measure of the (smoothened) load on this
786 * runqueue over any given interval. This (smoothened) load is used
787 * during load balance.
788 *
789 * This function is called /before/ updating rq->ls.load
790 * and when switching tasks.
791 */
792 static void update_curr_load(struct rq *rq, u64 now)
793 {
794 struct load_stat *ls = &rq->ls;
795 u64 start;
796
797 start = ls->load_update_start;
798 ls->load_update_start = now;
799 ls->delta_stat += now - start;
800 /*
801 * Stagger updates to ls->delta_fair. Very frequent updates
802 * can be expensive.
803 */
804 if (ls->delta_stat >= sysctl_sched_stat_granularity)
805 __update_curr_load(rq, ls);
806 }
807
808 static inline void
809 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
810 {
811 update_curr_load(rq, now);
812 update_load_add(&rq->ls.load, p->se.load.weight);
813 }
814
815 static inline void
816 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
817 {
818 update_curr_load(rq, now);
819 update_load_sub(&rq->ls.load, p->se.load.weight);
820 }
821
822 static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
823 {
824 rq->nr_running++;
825 inc_load(rq, p, now);
826 }
827
828 static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
829 {
830 rq->nr_running--;
831 dec_load(rq, p, now);
832 }
833
834 static void set_load_weight(struct task_struct *p)
835 {
836 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
837 p->se.wait_runtime = 0;
838
839 if (task_has_rt_policy(p)) {
840 p->se.load.weight = prio_to_weight[0] * 2;
841 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
842 return;
843 }
844
845 /*
846 * SCHED_IDLE tasks get minimal weight:
847 */
848 if (p->policy == SCHED_IDLE) {
849 p->se.load.weight = WEIGHT_IDLEPRIO;
850 p->se.load.inv_weight = WMULT_IDLEPRIO;
851 return;
852 }
853
854 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
855 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
856 }
857
858 static void
859 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
860 {
861 sched_info_queued(p);
862 p->sched_class->enqueue_task(rq, p, wakeup, now);
863 p->se.on_rq = 1;
864 }
865
866 static void
867 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
868 {
869 p->sched_class->dequeue_task(rq, p, sleep, now);
870 p->se.on_rq = 0;
871 }
872
873 /*
874 * __normal_prio - return the priority that is based on the static prio
875 */
876 static inline int __normal_prio(struct task_struct *p)
877 {
878 return p->static_prio;
879 }
880
881 /*
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
887 */
888 static inline int normal_prio(struct task_struct *p)
889 {
890 int prio;
891
892 if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /*
920 * activate_task - move a task to the runqueue.
921 */
922 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
923 {
924 u64 now;
925
926 update_rq_clock(rq);
927 now = rq->clock;
928
929 if (p->state == TASK_UNINTERRUPTIBLE)
930 rq->nr_uninterruptible--;
931
932 enqueue_task(rq, p, wakeup, now);
933 inc_nr_running(p, rq, now);
934 }
935
936 /*
937 * activate_idle_task - move idle task to the _front_ of runqueue.
938 */
939 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
940 {
941 u64 now;
942
943 update_rq_clock(rq);
944 now = rq->clock;
945
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible--;
948
949 enqueue_task(rq, p, 0, now);
950 inc_nr_running(p, rq, now);
951 }
952
953 /*
954 * deactivate_task - remove a task from the runqueue.
955 */
956 static void
957 deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
958 {
959 if (p->state == TASK_UNINTERRUPTIBLE)
960 rq->nr_uninterruptible++;
961
962 dequeue_task(rq, p, sleep, now);
963 dec_nr_running(p, rq, now);
964 }
965
966 /**
967 * task_curr - is this task currently executing on a CPU?
968 * @p: the task in question.
969 */
970 inline int task_curr(const struct task_struct *p)
971 {
972 return cpu_curr(task_cpu(p)) == p;
973 }
974
975 /* Used instead of source_load when we know the type == 0 */
976 unsigned long weighted_cpuload(const int cpu)
977 {
978 return cpu_rq(cpu)->ls.load.weight;
979 }
980
981 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
982 {
983 #ifdef CONFIG_SMP
984 task_thread_info(p)->cpu = cpu;
985 set_task_cfs_rq(p);
986 #endif
987 }
988
989 #ifdef CONFIG_SMP
990
991 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
992 {
993 int old_cpu = task_cpu(p);
994 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
995 u64 clock_offset, fair_clock_offset;
996
997 clock_offset = old_rq->clock - new_rq->clock;
998 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
999
1000 if (p->se.wait_start_fair)
1001 p->se.wait_start_fair -= fair_clock_offset;
1002 if (p->se.sleep_start_fair)
1003 p->se.sleep_start_fair -= fair_clock_offset;
1004
1005 #ifdef CONFIG_SCHEDSTATS
1006 if (p->se.wait_start)
1007 p->se.wait_start -= clock_offset;
1008 if (p->se.sleep_start)
1009 p->se.sleep_start -= clock_offset;
1010 if (p->se.block_start)
1011 p->se.block_start -= clock_offset;
1012 #endif
1013
1014 __set_task_cpu(p, new_cpu);
1015 }
1016
1017 struct migration_req {
1018 struct list_head list;
1019
1020 struct task_struct *task;
1021 int dest_cpu;
1022
1023 struct completion done;
1024 };
1025
1026 /*
1027 * The task's runqueue lock must be held.
1028 * Returns true if you have to wait for migration thread.
1029 */
1030 static int
1031 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1032 {
1033 struct rq *rq = task_rq(p);
1034
1035 /*
1036 * If the task is not on a runqueue (and not running), then
1037 * it is sufficient to simply update the task's cpu field.
1038 */
1039 if (!p->se.on_rq && !task_running(rq, p)) {
1040 set_task_cpu(p, dest_cpu);
1041 return 0;
1042 }
1043
1044 init_completion(&req->done);
1045 req->task = p;
1046 req->dest_cpu = dest_cpu;
1047 list_add(&req->list, &rq->migration_queue);
1048
1049 return 1;
1050 }
1051
1052 /*
1053 * wait_task_inactive - wait for a thread to unschedule.
1054 *
1055 * The caller must ensure that the task *will* unschedule sometime soon,
1056 * else this function might spin for a *long* time. This function can't
1057 * be called with interrupts off, or it may introduce deadlock with
1058 * smp_call_function() if an IPI is sent by the same process we are
1059 * waiting to become inactive.
1060 */
1061 void wait_task_inactive(struct task_struct *p)
1062 {
1063 unsigned long flags;
1064 int running, on_rq;
1065 struct rq *rq;
1066
1067 repeat:
1068 /*
1069 * We do the initial early heuristics without holding
1070 * any task-queue locks at all. We'll only try to get
1071 * the runqueue lock when things look like they will
1072 * work out!
1073 */
1074 rq = task_rq(p);
1075
1076 /*
1077 * If the task is actively running on another CPU
1078 * still, just relax and busy-wait without holding
1079 * any locks.
1080 *
1081 * NOTE! Since we don't hold any locks, it's not
1082 * even sure that "rq" stays as the right runqueue!
1083 * But we don't care, since "task_running()" will
1084 * return false if the runqueue has changed and p
1085 * is actually now running somewhere else!
1086 */
1087 while (task_running(rq, p))
1088 cpu_relax();
1089
1090 /*
1091 * Ok, time to look more closely! We need the rq
1092 * lock now, to be *sure*. If we're wrong, we'll
1093 * just go back and repeat.
1094 */
1095 rq = task_rq_lock(p, &flags);
1096 running = task_running(rq, p);
1097 on_rq = p->se.on_rq;
1098 task_rq_unlock(rq, &flags);
1099
1100 /*
1101 * Was it really running after all now that we
1102 * checked with the proper locks actually held?
1103 *
1104 * Oops. Go back and try again..
1105 */
1106 if (unlikely(running)) {
1107 cpu_relax();
1108 goto repeat;
1109 }
1110
1111 /*
1112 * It's not enough that it's not actively running,
1113 * it must be off the runqueue _entirely_, and not
1114 * preempted!
1115 *
1116 * So if it wa still runnable (but just not actively
1117 * running right now), it's preempted, and we should
1118 * yield - it could be a while.
1119 */
1120 if (unlikely(on_rq)) {
1121 yield();
1122 goto repeat;
1123 }
1124
1125 /*
1126 * Ahh, all good. It wasn't running, and it wasn't
1127 * runnable, which means that it will never become
1128 * running in the future either. We're all done!
1129 */
1130 }
1131
1132 /***
1133 * kick_process - kick a running thread to enter/exit the kernel
1134 * @p: the to-be-kicked thread
1135 *
1136 * Cause a process which is running on another CPU to enter
1137 * kernel-mode, without any delay. (to get signals handled.)
1138 *
1139 * NOTE: this function doesnt have to take the runqueue lock,
1140 * because all it wants to ensure is that the remote task enters
1141 * the kernel. If the IPI races and the task has been migrated
1142 * to another CPU then no harm is done and the purpose has been
1143 * achieved as well.
1144 */
1145 void kick_process(struct task_struct *p)
1146 {
1147 int cpu;
1148
1149 preempt_disable();
1150 cpu = task_cpu(p);
1151 if ((cpu != smp_processor_id()) && task_curr(p))
1152 smp_send_reschedule(cpu);
1153 preempt_enable();
1154 }
1155
1156 /*
1157 * Return a low guess at the load of a migration-source cpu weighted
1158 * according to the scheduling class and "nice" value.
1159 *
1160 * We want to under-estimate the load of migration sources, to
1161 * balance conservatively.
1162 */
1163 static inline unsigned long source_load(int cpu, int type)
1164 {
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long total = weighted_cpuload(cpu);
1167
1168 if (type == 0)
1169 return total;
1170
1171 return min(rq->cpu_load[type-1], total);
1172 }
1173
1174 /*
1175 * Return a high guess at the load of a migration-target cpu weighted
1176 * according to the scheduling class and "nice" value.
1177 */
1178 static inline unsigned long target_load(int cpu, int type)
1179 {
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long total = weighted_cpuload(cpu);
1182
1183 if (type == 0)
1184 return total;
1185
1186 return max(rq->cpu_load[type-1], total);
1187 }
1188
1189 /*
1190 * Return the average load per task on the cpu's run queue
1191 */
1192 static inline unsigned long cpu_avg_load_per_task(int cpu)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196 unsigned long n = rq->nr_running;
1197
1198 return n ? total / n : SCHED_LOAD_SCALE;
1199 }
1200
1201 /*
1202 * find_idlest_group finds and returns the least busy CPU group within the
1203 * domain.
1204 */
1205 static struct sched_group *
1206 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1207 {
1208 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1209 unsigned long min_load = ULONG_MAX, this_load = 0;
1210 int load_idx = sd->forkexec_idx;
1211 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1212
1213 do {
1214 unsigned long load, avg_load;
1215 int local_group;
1216 int i;
1217
1218 /* Skip over this group if it has no CPUs allowed */
1219 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1220 goto nextgroup;
1221
1222 local_group = cpu_isset(this_cpu, group->cpumask);
1223
1224 /* Tally up the load of all CPUs in the group */
1225 avg_load = 0;
1226
1227 for_each_cpu_mask(i, group->cpumask) {
1228 /* Bias balancing toward cpus of our domain */
1229 if (local_group)
1230 load = source_load(i, load_idx);
1231 else
1232 load = target_load(i, load_idx);
1233
1234 avg_load += load;
1235 }
1236
1237 /* Adjust by relative CPU power of the group */
1238 avg_load = sg_div_cpu_power(group,
1239 avg_load * SCHED_LOAD_SCALE);
1240
1241 if (local_group) {
1242 this_load = avg_load;
1243 this = group;
1244 } else if (avg_load < min_load) {
1245 min_load = avg_load;
1246 idlest = group;
1247 }
1248 nextgroup:
1249 group = group->next;
1250 } while (group != sd->groups);
1251
1252 if (!idlest || 100*this_load < imbalance*min_load)
1253 return NULL;
1254 return idlest;
1255 }
1256
1257 /*
1258 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1259 */
1260 static int
1261 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1262 {
1263 cpumask_t tmp;
1264 unsigned long load, min_load = ULONG_MAX;
1265 int idlest = -1;
1266 int i;
1267
1268 /* Traverse only the allowed CPUs */
1269 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1270
1271 for_each_cpu_mask(i, tmp) {
1272 load = weighted_cpuload(i);
1273
1274 if (load < min_load || (load == min_load && i == this_cpu)) {
1275 min_load = load;
1276 idlest = i;
1277 }
1278 }
1279
1280 return idlest;
1281 }
1282
1283 /*
1284 * sched_balance_self: balance the current task (running on cpu) in domains
1285 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1286 * SD_BALANCE_EXEC.
1287 *
1288 * Balance, ie. select the least loaded group.
1289 *
1290 * Returns the target CPU number, or the same CPU if no balancing is needed.
1291 *
1292 * preempt must be disabled.
1293 */
1294 static int sched_balance_self(int cpu, int flag)
1295 {
1296 struct task_struct *t = current;
1297 struct sched_domain *tmp, *sd = NULL;
1298
1299 for_each_domain(cpu, tmp) {
1300 /*
1301 * If power savings logic is enabled for a domain, stop there.
1302 */
1303 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1304 break;
1305 if (tmp->flags & flag)
1306 sd = tmp;
1307 }
1308
1309 while (sd) {
1310 cpumask_t span;
1311 struct sched_group *group;
1312 int new_cpu, weight;
1313
1314 if (!(sd->flags & flag)) {
1315 sd = sd->child;
1316 continue;
1317 }
1318
1319 span = sd->span;
1320 group = find_idlest_group(sd, t, cpu);
1321 if (!group) {
1322 sd = sd->child;
1323 continue;
1324 }
1325
1326 new_cpu = find_idlest_cpu(group, t, cpu);
1327 if (new_cpu == -1 || new_cpu == cpu) {
1328 /* Now try balancing at a lower domain level of cpu */
1329 sd = sd->child;
1330 continue;
1331 }
1332
1333 /* Now try balancing at a lower domain level of new_cpu */
1334 cpu = new_cpu;
1335 sd = NULL;
1336 weight = cpus_weight(span);
1337 for_each_domain(cpu, tmp) {
1338 if (weight <= cpus_weight(tmp->span))
1339 break;
1340 if (tmp->flags & flag)
1341 sd = tmp;
1342 }
1343 /* while loop will break here if sd == NULL */
1344 }
1345
1346 return cpu;
1347 }
1348
1349 #endif /* CONFIG_SMP */
1350
1351 /*
1352 * wake_idle() will wake a task on an idle cpu if task->cpu is
1353 * not idle and an idle cpu is available. The span of cpus to
1354 * search starts with cpus closest then further out as needed,
1355 * so we always favor a closer, idle cpu.
1356 *
1357 * Returns the CPU we should wake onto.
1358 */
1359 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1360 static int wake_idle(int cpu, struct task_struct *p)
1361 {
1362 cpumask_t tmp;
1363 struct sched_domain *sd;
1364 int i;
1365
1366 /*
1367 * If it is idle, then it is the best cpu to run this task.
1368 *
1369 * This cpu is also the best, if it has more than one task already.
1370 * Siblings must be also busy(in most cases) as they didn't already
1371 * pickup the extra load from this cpu and hence we need not check
1372 * sibling runqueue info. This will avoid the checks and cache miss
1373 * penalities associated with that.
1374 */
1375 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1376 return cpu;
1377
1378 for_each_domain(cpu, sd) {
1379 if (sd->flags & SD_WAKE_IDLE) {
1380 cpus_and(tmp, sd->span, p->cpus_allowed);
1381 for_each_cpu_mask(i, tmp) {
1382 if (idle_cpu(i))
1383 return i;
1384 }
1385 } else {
1386 break;
1387 }
1388 }
1389 return cpu;
1390 }
1391 #else
1392 static inline int wake_idle(int cpu, struct task_struct *p)
1393 {
1394 return cpu;
1395 }
1396 #endif
1397
1398 /***
1399 * try_to_wake_up - wake up a thread
1400 * @p: the to-be-woken-up thread
1401 * @state: the mask of task states that can be woken
1402 * @sync: do a synchronous wakeup?
1403 *
1404 * Put it on the run-queue if it's not already there. The "current"
1405 * thread is always on the run-queue (except when the actual
1406 * re-schedule is in progress), and as such you're allowed to do
1407 * the simpler "current->state = TASK_RUNNING" to mark yourself
1408 * runnable without the overhead of this.
1409 *
1410 * returns failure only if the task is already active.
1411 */
1412 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1413 {
1414 int cpu, this_cpu, success = 0;
1415 unsigned long flags;
1416 long old_state;
1417 struct rq *rq;
1418 #ifdef CONFIG_SMP
1419 struct sched_domain *sd, *this_sd = NULL;
1420 unsigned long load, this_load;
1421 int new_cpu;
1422 #endif
1423
1424 rq = task_rq_lock(p, &flags);
1425 old_state = p->state;
1426 if (!(old_state & state))
1427 goto out;
1428
1429 if (p->se.on_rq)
1430 goto out_running;
1431
1432 cpu = task_cpu(p);
1433 this_cpu = smp_processor_id();
1434
1435 #ifdef CONFIG_SMP
1436 if (unlikely(task_running(rq, p)))
1437 goto out_activate;
1438
1439 new_cpu = cpu;
1440
1441 schedstat_inc(rq, ttwu_cnt);
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 goto out_set_cpu;
1445 }
1446
1447 for_each_domain(this_cpu, sd) {
1448 if (cpu_isset(cpu, sd->span)) {
1449 schedstat_inc(sd, ttwu_wake_remote);
1450 this_sd = sd;
1451 break;
1452 }
1453 }
1454
1455 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1456 goto out_set_cpu;
1457
1458 /*
1459 * Check for affine wakeup and passive balancing possibilities.
1460 */
1461 if (this_sd) {
1462 int idx = this_sd->wake_idx;
1463 unsigned int imbalance;
1464
1465 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1466
1467 load = source_load(cpu, idx);
1468 this_load = target_load(this_cpu, idx);
1469
1470 new_cpu = this_cpu; /* Wake to this CPU if we can */
1471
1472 if (this_sd->flags & SD_WAKE_AFFINE) {
1473 unsigned long tl = this_load;
1474 unsigned long tl_per_task;
1475
1476 tl_per_task = cpu_avg_load_per_task(this_cpu);
1477
1478 /*
1479 * If sync wakeup then subtract the (maximum possible)
1480 * effect of the currently running task from the load
1481 * of the current CPU:
1482 */
1483 if (sync)
1484 tl -= current->se.load.weight;
1485
1486 if ((tl <= load &&
1487 tl + target_load(cpu, idx) <= tl_per_task) ||
1488 100*(tl + p->se.load.weight) <= imbalance*load) {
1489 /*
1490 * This domain has SD_WAKE_AFFINE and
1491 * p is cache cold in this domain, and
1492 * there is no bad imbalance.
1493 */
1494 schedstat_inc(this_sd, ttwu_move_affine);
1495 goto out_set_cpu;
1496 }
1497 }
1498
1499 /*
1500 * Start passive balancing when half the imbalance_pct
1501 * limit is reached.
1502 */
1503 if (this_sd->flags & SD_WAKE_BALANCE) {
1504 if (imbalance*this_load <= 100*load) {
1505 schedstat_inc(this_sd, ttwu_move_balance);
1506 goto out_set_cpu;
1507 }
1508 }
1509 }
1510
1511 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1512 out_set_cpu:
1513 new_cpu = wake_idle(new_cpu, p);
1514 if (new_cpu != cpu) {
1515 set_task_cpu(p, new_cpu);
1516 task_rq_unlock(rq, &flags);
1517 /* might preempt at this point */
1518 rq = task_rq_lock(p, &flags);
1519 old_state = p->state;
1520 if (!(old_state & state))
1521 goto out;
1522 if (p->se.on_rq)
1523 goto out_running;
1524
1525 this_cpu = smp_processor_id();
1526 cpu = task_cpu(p);
1527 }
1528
1529 out_activate:
1530 #endif /* CONFIG_SMP */
1531 activate_task(rq, p, 1);
1532 /*
1533 * Sync wakeups (i.e. those types of wakeups where the waker
1534 * has indicated that it will leave the CPU in short order)
1535 * don't trigger a preemption, if the woken up task will run on
1536 * this cpu. (in this case the 'I will reschedule' promise of
1537 * the waker guarantees that the freshly woken up task is going
1538 * to be considered on this CPU.)
1539 */
1540 if (!sync || cpu != this_cpu)
1541 check_preempt_curr(rq, p);
1542 success = 1;
1543
1544 out_running:
1545 p->state = TASK_RUNNING;
1546 out:
1547 task_rq_unlock(rq, &flags);
1548
1549 return success;
1550 }
1551
1552 int fastcall wake_up_process(struct task_struct *p)
1553 {
1554 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1555 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1556 }
1557 EXPORT_SYMBOL(wake_up_process);
1558
1559 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1560 {
1561 return try_to_wake_up(p, state, 0);
1562 }
1563
1564 /*
1565 * Perform scheduler related setup for a newly forked process p.
1566 * p is forked by current.
1567 *
1568 * __sched_fork() is basic setup used by init_idle() too:
1569 */
1570 static void __sched_fork(struct task_struct *p)
1571 {
1572 p->se.wait_start_fair = 0;
1573 p->se.exec_start = 0;
1574 p->se.sum_exec_runtime = 0;
1575 p->se.delta_exec = 0;
1576 p->se.delta_fair_run = 0;
1577 p->se.delta_fair_sleep = 0;
1578 p->se.wait_runtime = 0;
1579 p->se.sleep_start_fair = 0;
1580
1581 #ifdef CONFIG_SCHEDSTATS
1582 p->se.wait_start = 0;
1583 p->se.sum_wait_runtime = 0;
1584 p->se.sum_sleep_runtime = 0;
1585 p->se.sleep_start = 0;
1586 p->se.block_start = 0;
1587 p->se.sleep_max = 0;
1588 p->se.block_max = 0;
1589 p->se.exec_max = 0;
1590 p->se.wait_max = 0;
1591 p->se.wait_runtime_overruns = 0;
1592 p->se.wait_runtime_underruns = 0;
1593 #endif
1594
1595 INIT_LIST_HEAD(&p->run_list);
1596 p->se.on_rq = 0;
1597
1598 #ifdef CONFIG_PREEMPT_NOTIFIERS
1599 INIT_HLIST_HEAD(&p->preempt_notifiers);
1600 #endif
1601
1602 /*
1603 * We mark the process as running here, but have not actually
1604 * inserted it onto the runqueue yet. This guarantees that
1605 * nobody will actually run it, and a signal or other external
1606 * event cannot wake it up and insert it on the runqueue either.
1607 */
1608 p->state = TASK_RUNNING;
1609 }
1610
1611 /*
1612 * fork()/clone()-time setup:
1613 */
1614 void sched_fork(struct task_struct *p, int clone_flags)
1615 {
1616 int cpu = get_cpu();
1617
1618 __sched_fork(p);
1619
1620 #ifdef CONFIG_SMP
1621 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1622 #endif
1623 __set_task_cpu(p, cpu);
1624
1625 /*
1626 * Make sure we do not leak PI boosting priority to the child:
1627 */
1628 p->prio = current->normal_prio;
1629
1630 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1631 if (likely(sched_info_on()))
1632 memset(&p->sched_info, 0, sizeof(p->sched_info));
1633 #endif
1634 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1635 p->oncpu = 0;
1636 #endif
1637 #ifdef CONFIG_PREEMPT
1638 /* Want to start with kernel preemption disabled. */
1639 task_thread_info(p)->preempt_count = 1;
1640 #endif
1641 put_cpu();
1642 }
1643
1644 /*
1645 * After fork, child runs first. (default) If set to 0 then
1646 * parent will (try to) run first.
1647 */
1648 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1649
1650 /*
1651 * wake_up_new_task - wake up a newly created task for the first time.
1652 *
1653 * This function will do some initial scheduler statistics housekeeping
1654 * that must be done for every newly created context, then puts the task
1655 * on the runqueue and wakes it.
1656 */
1657 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1658 {
1659 unsigned long flags;
1660 struct rq *rq;
1661 int this_cpu;
1662 u64 now;
1663
1664 rq = task_rq_lock(p, &flags);
1665 BUG_ON(p->state != TASK_RUNNING);
1666 this_cpu = smp_processor_id(); /* parent's CPU */
1667 update_rq_clock(rq);
1668 now = rq->clock;
1669
1670 p->prio = effective_prio(p);
1671
1672 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1673 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1674 !current->se.on_rq) {
1675
1676 activate_task(rq, p, 0);
1677 } else {
1678 /*
1679 * Let the scheduling class do new task startup
1680 * management (if any):
1681 */
1682 p->sched_class->task_new(rq, p, now);
1683 inc_nr_running(p, rq, now);
1684 }
1685 check_preempt_curr(rq, p);
1686 task_rq_unlock(rq, &flags);
1687 }
1688
1689 #ifdef CONFIG_PREEMPT_NOTIFIERS
1690
1691 /**
1692 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1693 * @notifier: notifier struct to register
1694 */
1695 void preempt_notifier_register(struct preempt_notifier *notifier)
1696 {
1697 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1698 }
1699 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1700
1701 /**
1702 * preempt_notifier_unregister - no longer interested in preemption notifications
1703 * @notifier: notifier struct to unregister
1704 *
1705 * This is safe to call from within a preemption notifier.
1706 */
1707 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1708 {
1709 hlist_del(&notifier->link);
1710 }
1711 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1712
1713 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1714 {
1715 struct preempt_notifier *notifier;
1716 struct hlist_node *node;
1717
1718 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1719 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1720 }
1721
1722 static void
1723 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1724 struct task_struct *next)
1725 {
1726 struct preempt_notifier *notifier;
1727 struct hlist_node *node;
1728
1729 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1730 notifier->ops->sched_out(notifier, next);
1731 }
1732
1733 #else
1734
1735 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1736 {
1737 }
1738
1739 static void
1740 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1741 struct task_struct *next)
1742 {
1743 }
1744
1745 #endif
1746
1747 /**
1748 * prepare_task_switch - prepare to switch tasks
1749 * @rq: the runqueue preparing to switch
1750 * @prev: the current task that is being switched out
1751 * @next: the task we are going to switch to.
1752 *
1753 * This is called with the rq lock held and interrupts off. It must
1754 * be paired with a subsequent finish_task_switch after the context
1755 * switch.
1756 *
1757 * prepare_task_switch sets up locking and calls architecture specific
1758 * hooks.
1759 */
1760 static inline void
1761 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1762 struct task_struct *next)
1763 {
1764 fire_sched_out_preempt_notifiers(prev, next);
1765 prepare_lock_switch(rq, next);
1766 prepare_arch_switch(next);
1767 }
1768
1769 /**
1770 * finish_task_switch - clean up after a task-switch
1771 * @rq: runqueue associated with task-switch
1772 * @prev: the thread we just switched away from.
1773 *
1774 * finish_task_switch must be called after the context switch, paired
1775 * with a prepare_task_switch call before the context switch.
1776 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1777 * and do any other architecture-specific cleanup actions.
1778 *
1779 * Note that we may have delayed dropping an mm in context_switch(). If
1780 * so, we finish that here outside of the runqueue lock. (Doing it
1781 * with the lock held can cause deadlocks; see schedule() for
1782 * details.)
1783 */
1784 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1785 __releases(rq->lock)
1786 {
1787 struct mm_struct *mm = rq->prev_mm;
1788 long prev_state;
1789
1790 rq->prev_mm = NULL;
1791
1792 /*
1793 * A task struct has one reference for the use as "current".
1794 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1795 * schedule one last time. The schedule call will never return, and
1796 * the scheduled task must drop that reference.
1797 * The test for TASK_DEAD must occur while the runqueue locks are
1798 * still held, otherwise prev could be scheduled on another cpu, die
1799 * there before we look at prev->state, and then the reference would
1800 * be dropped twice.
1801 * Manfred Spraul <manfred@colorfullife.com>
1802 */
1803 prev_state = prev->state;
1804 finish_arch_switch(prev);
1805 finish_lock_switch(rq, prev);
1806 fire_sched_in_preempt_notifiers(current);
1807 if (mm)
1808 mmdrop(mm);
1809 if (unlikely(prev_state == TASK_DEAD)) {
1810 /*
1811 * Remove function-return probe instances associated with this
1812 * task and put them back on the free list.
1813 */
1814 kprobe_flush_task(prev);
1815 put_task_struct(prev);
1816 }
1817 }
1818
1819 /**
1820 * schedule_tail - first thing a freshly forked thread must call.
1821 * @prev: the thread we just switched away from.
1822 */
1823 asmlinkage void schedule_tail(struct task_struct *prev)
1824 __releases(rq->lock)
1825 {
1826 struct rq *rq = this_rq();
1827
1828 finish_task_switch(rq, prev);
1829 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1830 /* In this case, finish_task_switch does not reenable preemption */
1831 preempt_enable();
1832 #endif
1833 if (current->set_child_tid)
1834 put_user(current->pid, current->set_child_tid);
1835 }
1836
1837 /*
1838 * context_switch - switch to the new MM and the new
1839 * thread's register state.
1840 */
1841 static inline void
1842 context_switch(struct rq *rq, struct task_struct *prev,
1843 struct task_struct *next)
1844 {
1845 struct mm_struct *mm, *oldmm;
1846
1847 prepare_task_switch(rq, prev, next);
1848 mm = next->mm;
1849 oldmm = prev->active_mm;
1850 /*
1851 * For paravirt, this is coupled with an exit in switch_to to
1852 * combine the page table reload and the switch backend into
1853 * one hypercall.
1854 */
1855 arch_enter_lazy_cpu_mode();
1856
1857 if (unlikely(!mm)) {
1858 next->active_mm = oldmm;
1859 atomic_inc(&oldmm->mm_count);
1860 enter_lazy_tlb(oldmm, next);
1861 } else
1862 switch_mm(oldmm, mm, next);
1863
1864 if (unlikely(!prev->mm)) {
1865 prev->active_mm = NULL;
1866 rq->prev_mm = oldmm;
1867 }
1868 /*
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1873 */
1874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1876 #endif
1877
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev, next, prev);
1880
1881 barrier();
1882 /*
1883 * this_rq must be evaluated again because prev may have moved
1884 * CPUs since it called schedule(), thus the 'rq' on its stack
1885 * frame will be invalid.
1886 */
1887 finish_task_switch(this_rq(), prev);
1888 }
1889
1890 /*
1891 * nr_running, nr_uninterruptible and nr_context_switches:
1892 *
1893 * externally visible scheduler statistics: current number of runnable
1894 * threads, current number of uninterruptible-sleeping threads, total
1895 * number of context switches performed since bootup.
1896 */
1897 unsigned long nr_running(void)
1898 {
1899 unsigned long i, sum = 0;
1900
1901 for_each_online_cpu(i)
1902 sum += cpu_rq(i)->nr_running;
1903
1904 return sum;
1905 }
1906
1907 unsigned long nr_uninterruptible(void)
1908 {
1909 unsigned long i, sum = 0;
1910
1911 for_each_possible_cpu(i)
1912 sum += cpu_rq(i)->nr_uninterruptible;
1913
1914 /*
1915 * Since we read the counters lockless, it might be slightly
1916 * inaccurate. Do not allow it to go below zero though:
1917 */
1918 if (unlikely((long)sum < 0))
1919 sum = 0;
1920
1921 return sum;
1922 }
1923
1924 unsigned long long nr_context_switches(void)
1925 {
1926 int i;
1927 unsigned long long sum = 0;
1928
1929 for_each_possible_cpu(i)
1930 sum += cpu_rq(i)->nr_switches;
1931
1932 return sum;
1933 }
1934
1935 unsigned long nr_iowait(void)
1936 {
1937 unsigned long i, sum = 0;
1938
1939 for_each_possible_cpu(i)
1940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1941
1942 return sum;
1943 }
1944
1945 unsigned long nr_active(void)
1946 {
1947 unsigned long i, running = 0, uninterruptible = 0;
1948
1949 for_each_online_cpu(i) {
1950 running += cpu_rq(i)->nr_running;
1951 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1952 }
1953
1954 if (unlikely((long)uninterruptible < 0))
1955 uninterruptible = 0;
1956
1957 return running + uninterruptible;
1958 }
1959
1960 /*
1961 * Update rq->cpu_load[] statistics. This function is usually called every
1962 * scheduler tick (TICK_NSEC).
1963 */
1964 static void update_cpu_load(struct rq *this_rq)
1965 {
1966 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1967 unsigned long total_load = this_rq->ls.load.weight;
1968 unsigned long this_load = total_load;
1969 struct load_stat *ls = &this_rq->ls;
1970 u64 now = __rq_clock(this_rq);
1971 int i, scale;
1972
1973 this_rq->nr_load_updates++;
1974 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1975 goto do_avg;
1976
1977 /* Update delta_fair/delta_exec fields first */
1978 update_curr_load(this_rq, now);
1979
1980 fair_delta64 = ls->delta_fair + 1;
1981 ls->delta_fair = 0;
1982
1983 exec_delta64 = ls->delta_exec + 1;
1984 ls->delta_exec = 0;
1985
1986 sample_interval64 = now - ls->load_update_last;
1987 ls->load_update_last = now;
1988
1989 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1990 sample_interval64 = TICK_NSEC;
1991
1992 if (exec_delta64 > sample_interval64)
1993 exec_delta64 = sample_interval64;
1994
1995 idle_delta64 = sample_interval64 - exec_delta64;
1996
1997 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1998 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1999
2000 this_load = (unsigned long)tmp64;
2001
2002 do_avg:
2003
2004 /* Update our load: */
2005 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2006 unsigned long old_load, new_load;
2007
2008 /* scale is effectively 1 << i now, and >> i divides by scale */
2009
2010 old_load = this_rq->cpu_load[i];
2011 new_load = this_load;
2012
2013 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2014 }
2015 }
2016
2017 #ifdef CONFIG_SMP
2018
2019 /*
2020 * double_rq_lock - safely lock two runqueues
2021 *
2022 * Note this does not disable interrupts like task_rq_lock,
2023 * you need to do so manually before calling.
2024 */
2025 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2026 __acquires(rq1->lock)
2027 __acquires(rq2->lock)
2028 {
2029 BUG_ON(!irqs_disabled());
2030 if (rq1 == rq2) {
2031 spin_lock(&rq1->lock);
2032 __acquire(rq2->lock); /* Fake it out ;) */
2033 } else {
2034 if (rq1 < rq2) {
2035 spin_lock(&rq1->lock);
2036 spin_lock(&rq2->lock);
2037 } else {
2038 spin_lock(&rq2->lock);
2039 spin_lock(&rq1->lock);
2040 }
2041 }
2042 }
2043
2044 /*
2045 * double_rq_unlock - safely unlock two runqueues
2046 *
2047 * Note this does not restore interrupts like task_rq_unlock,
2048 * you need to do so manually after calling.
2049 */
2050 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2051 __releases(rq1->lock)
2052 __releases(rq2->lock)
2053 {
2054 spin_unlock(&rq1->lock);
2055 if (rq1 != rq2)
2056 spin_unlock(&rq2->lock);
2057 else
2058 __release(rq2->lock);
2059 }
2060
2061 /*
2062 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2063 */
2064 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2065 __releases(this_rq->lock)
2066 __acquires(busiest->lock)
2067 __acquires(this_rq->lock)
2068 {
2069 if (unlikely(!irqs_disabled())) {
2070 /* printk() doesn't work good under rq->lock */
2071 spin_unlock(&this_rq->lock);
2072 BUG_ON(1);
2073 }
2074 if (unlikely(!spin_trylock(&busiest->lock))) {
2075 if (busiest < this_rq) {
2076 spin_unlock(&this_rq->lock);
2077 spin_lock(&busiest->lock);
2078 spin_lock(&this_rq->lock);
2079 } else
2080 spin_lock(&busiest->lock);
2081 }
2082 }
2083
2084 /*
2085 * If dest_cpu is allowed for this process, migrate the task to it.
2086 * This is accomplished by forcing the cpu_allowed mask to only
2087 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2088 * the cpu_allowed mask is restored.
2089 */
2090 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2091 {
2092 struct migration_req req;
2093 unsigned long flags;
2094 struct rq *rq;
2095
2096 rq = task_rq_lock(p, &flags);
2097 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2098 || unlikely(cpu_is_offline(dest_cpu)))
2099 goto out;
2100
2101 /* force the process onto the specified CPU */
2102 if (migrate_task(p, dest_cpu, &req)) {
2103 /* Need to wait for migration thread (might exit: take ref). */
2104 struct task_struct *mt = rq->migration_thread;
2105
2106 get_task_struct(mt);
2107 task_rq_unlock(rq, &flags);
2108 wake_up_process(mt);
2109 put_task_struct(mt);
2110 wait_for_completion(&req.done);
2111
2112 return;
2113 }
2114 out:
2115 task_rq_unlock(rq, &flags);
2116 }
2117
2118 /*
2119 * sched_exec - execve() is a valuable balancing opportunity, because at
2120 * this point the task has the smallest effective memory and cache footprint.
2121 */
2122 void sched_exec(void)
2123 {
2124 int new_cpu, this_cpu = get_cpu();
2125 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2126 put_cpu();
2127 if (new_cpu != this_cpu)
2128 sched_migrate_task(current, new_cpu);
2129 }
2130
2131 /*
2132 * pull_task - move a task from a remote runqueue to the local runqueue.
2133 * Both runqueues must be locked.
2134 */
2135 static void pull_task(struct rq *src_rq, struct task_struct *p,
2136 struct rq *this_rq, int this_cpu)
2137 {
2138 update_rq_clock(src_rq);
2139 deactivate_task(src_rq, p, 0, src_rq->clock);
2140 set_task_cpu(p, this_cpu);
2141 activate_task(this_rq, p, 0);
2142 /*
2143 * Note that idle threads have a prio of MAX_PRIO, for this test
2144 * to be always true for them.
2145 */
2146 check_preempt_curr(this_rq, p);
2147 }
2148
2149 /*
2150 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2151 */
2152 static
2153 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2154 struct sched_domain *sd, enum cpu_idle_type idle,
2155 int *all_pinned)
2156 {
2157 /*
2158 * We do not migrate tasks that are:
2159 * 1) running (obviously), or
2160 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2161 * 3) are cache-hot on their current CPU.
2162 */
2163 if (!cpu_isset(this_cpu, p->cpus_allowed))
2164 return 0;
2165 *all_pinned = 0;
2166
2167 if (task_running(rq, p))
2168 return 0;
2169
2170 /*
2171 * Aggressive migration if too many balance attempts have failed:
2172 */
2173 if (sd->nr_balance_failed > sd->cache_nice_tries)
2174 return 1;
2175
2176 return 1;
2177 }
2178
2179 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180 unsigned long max_nr_move, unsigned long max_load_move,
2181 struct sched_domain *sd, enum cpu_idle_type idle,
2182 int *all_pinned, unsigned long *load_moved,
2183 int *this_best_prio, struct rq_iterator *iterator)
2184 {
2185 int pulled = 0, pinned = 0, skip_for_load;
2186 struct task_struct *p;
2187 long rem_load_move = max_load_move;
2188
2189 if (max_nr_move == 0 || max_load_move == 0)
2190 goto out;
2191
2192 pinned = 1;
2193
2194 /*
2195 * Start the load-balancing iterator:
2196 */
2197 p = iterator->start(iterator->arg);
2198 next:
2199 if (!p)
2200 goto out;
2201 /*
2202 * To help distribute high priority tasks accross CPUs we don't
2203 * skip a task if it will be the highest priority task (i.e. smallest
2204 * prio value) on its new queue regardless of its load weight
2205 */
2206 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2207 SCHED_LOAD_SCALE_FUZZ;
2208 if ((skip_for_load && p->prio >= *this_best_prio) ||
2209 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2210 p = iterator->next(iterator->arg);
2211 goto next;
2212 }
2213
2214 pull_task(busiest, p, this_rq, this_cpu);
2215 pulled++;
2216 rem_load_move -= p->se.load.weight;
2217
2218 /*
2219 * We only want to steal up to the prescribed number of tasks
2220 * and the prescribed amount of weighted load.
2221 */
2222 if (pulled < max_nr_move && rem_load_move > 0) {
2223 if (p->prio < *this_best_prio)
2224 *this_best_prio = p->prio;
2225 p = iterator->next(iterator->arg);
2226 goto next;
2227 }
2228 out:
2229 /*
2230 * Right now, this is the only place pull_task() is called,
2231 * so we can safely collect pull_task() stats here rather than
2232 * inside pull_task().
2233 */
2234 schedstat_add(sd, lb_gained[idle], pulled);
2235
2236 if (all_pinned)
2237 *all_pinned = pinned;
2238 *load_moved = max_load_move - rem_load_move;
2239 return pulled;
2240 }
2241
2242 /*
2243 * move_tasks tries to move up to max_load_move weighted load from busiest to
2244 * this_rq, as part of a balancing operation within domain "sd".
2245 * Returns 1 if successful and 0 otherwise.
2246 *
2247 * Called with both runqueues locked.
2248 */
2249 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2250 unsigned long max_load_move,
2251 struct sched_domain *sd, enum cpu_idle_type idle,
2252 int *all_pinned)
2253 {
2254 struct sched_class *class = sched_class_highest;
2255 unsigned long total_load_moved = 0;
2256 int this_best_prio = this_rq->curr->prio;
2257
2258 do {
2259 total_load_moved +=
2260 class->load_balance(this_rq, this_cpu, busiest,
2261 ULONG_MAX, max_load_move - total_load_moved,
2262 sd, idle, all_pinned, &this_best_prio);
2263 class = class->next;
2264 } while (class && max_load_move > total_load_moved);
2265
2266 return total_load_moved > 0;
2267 }
2268
2269 /*
2270 * move_one_task tries to move exactly one task from busiest to this_rq, as
2271 * part of active balancing operations within "domain".
2272 * Returns 1 if successful and 0 otherwise.
2273 *
2274 * Called with both runqueues locked.
2275 */
2276 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2277 struct sched_domain *sd, enum cpu_idle_type idle)
2278 {
2279 struct sched_class *class;
2280 int this_best_prio = MAX_PRIO;
2281
2282 for (class = sched_class_highest; class; class = class->next)
2283 if (class->load_balance(this_rq, this_cpu, busiest,
2284 1, ULONG_MAX, sd, idle, NULL,
2285 &this_best_prio))
2286 return 1;
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * find_busiest_group finds and returns the busiest CPU group within the
2293 * domain. It calculates and returns the amount of weighted load which
2294 * should be moved to restore balance via the imbalance parameter.
2295 */
2296 static struct sched_group *
2297 find_busiest_group(struct sched_domain *sd, int this_cpu,
2298 unsigned long *imbalance, enum cpu_idle_type idle,
2299 int *sd_idle, cpumask_t *cpus, int *balance)
2300 {
2301 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2302 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2303 unsigned long max_pull;
2304 unsigned long busiest_load_per_task, busiest_nr_running;
2305 unsigned long this_load_per_task, this_nr_running;
2306 int load_idx;
2307 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2308 int power_savings_balance = 1;
2309 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2310 unsigned long min_nr_running = ULONG_MAX;
2311 struct sched_group *group_min = NULL, *group_leader = NULL;
2312 #endif
2313
2314 max_load = this_load = total_load = total_pwr = 0;
2315 busiest_load_per_task = busiest_nr_running = 0;
2316 this_load_per_task = this_nr_running = 0;
2317 if (idle == CPU_NOT_IDLE)
2318 load_idx = sd->busy_idx;
2319 else if (idle == CPU_NEWLY_IDLE)
2320 load_idx = sd->newidle_idx;
2321 else
2322 load_idx = sd->idle_idx;
2323
2324 do {
2325 unsigned long load, group_capacity;
2326 int local_group;
2327 int i;
2328 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2329 unsigned long sum_nr_running, sum_weighted_load;
2330
2331 local_group = cpu_isset(this_cpu, group->cpumask);
2332
2333 if (local_group)
2334 balance_cpu = first_cpu(group->cpumask);
2335
2336 /* Tally up the load of all CPUs in the group */
2337 sum_weighted_load = sum_nr_running = avg_load = 0;
2338
2339 for_each_cpu_mask(i, group->cpumask) {
2340 struct rq *rq;
2341
2342 if (!cpu_isset(i, *cpus))
2343 continue;
2344
2345 rq = cpu_rq(i);
2346
2347 if (*sd_idle && rq->nr_running)
2348 *sd_idle = 0;
2349
2350 /* Bias balancing toward cpus of our domain */
2351 if (local_group) {
2352 if (idle_cpu(i) && !first_idle_cpu) {
2353 first_idle_cpu = 1;
2354 balance_cpu = i;
2355 }
2356
2357 load = target_load(i, load_idx);
2358 } else
2359 load = source_load(i, load_idx);
2360
2361 avg_load += load;
2362 sum_nr_running += rq->nr_running;
2363 sum_weighted_load += weighted_cpuload(i);
2364 }
2365
2366 /*
2367 * First idle cpu or the first cpu(busiest) in this sched group
2368 * is eligible for doing load balancing at this and above
2369 * domains. In the newly idle case, we will allow all the cpu's
2370 * to do the newly idle load balance.
2371 */
2372 if (idle != CPU_NEWLY_IDLE && local_group &&
2373 balance_cpu != this_cpu && balance) {
2374 *balance = 0;
2375 goto ret;
2376 }
2377
2378 total_load += avg_load;
2379 total_pwr += group->__cpu_power;
2380
2381 /* Adjust by relative CPU power of the group */
2382 avg_load = sg_div_cpu_power(group,
2383 avg_load * SCHED_LOAD_SCALE);
2384
2385 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2386
2387 if (local_group) {
2388 this_load = avg_load;
2389 this = group;
2390 this_nr_running = sum_nr_running;
2391 this_load_per_task = sum_weighted_load;
2392 } else if (avg_load > max_load &&
2393 sum_nr_running > group_capacity) {
2394 max_load = avg_load;
2395 busiest = group;
2396 busiest_nr_running = sum_nr_running;
2397 busiest_load_per_task = sum_weighted_load;
2398 }
2399
2400 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2401 /*
2402 * Busy processors will not participate in power savings
2403 * balance.
2404 */
2405 if (idle == CPU_NOT_IDLE ||
2406 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2407 goto group_next;
2408
2409 /*
2410 * If the local group is idle or completely loaded
2411 * no need to do power savings balance at this domain
2412 */
2413 if (local_group && (this_nr_running >= group_capacity ||
2414 !this_nr_running))
2415 power_savings_balance = 0;
2416
2417 /*
2418 * If a group is already running at full capacity or idle,
2419 * don't include that group in power savings calculations
2420 */
2421 if (!power_savings_balance || sum_nr_running >= group_capacity
2422 || !sum_nr_running)
2423 goto group_next;
2424
2425 /*
2426 * Calculate the group which has the least non-idle load.
2427 * This is the group from where we need to pick up the load
2428 * for saving power
2429 */
2430 if ((sum_nr_running < min_nr_running) ||
2431 (sum_nr_running == min_nr_running &&
2432 first_cpu(group->cpumask) <
2433 first_cpu(group_min->cpumask))) {
2434 group_min = group;
2435 min_nr_running = sum_nr_running;
2436 min_load_per_task = sum_weighted_load /
2437 sum_nr_running;
2438 }
2439
2440 /*
2441 * Calculate the group which is almost near its
2442 * capacity but still has some space to pick up some load
2443 * from other group and save more power
2444 */
2445 if (sum_nr_running <= group_capacity - 1) {
2446 if (sum_nr_running > leader_nr_running ||
2447 (sum_nr_running == leader_nr_running &&
2448 first_cpu(group->cpumask) >
2449 first_cpu(group_leader->cpumask))) {
2450 group_leader = group;
2451 leader_nr_running = sum_nr_running;
2452 }
2453 }
2454 group_next:
2455 #endif
2456 group = group->next;
2457 } while (group != sd->groups);
2458
2459 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2460 goto out_balanced;
2461
2462 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2463
2464 if (this_load >= avg_load ||
2465 100*max_load <= sd->imbalance_pct*this_load)
2466 goto out_balanced;
2467
2468 busiest_load_per_task /= busiest_nr_running;
2469 /*
2470 * We're trying to get all the cpus to the average_load, so we don't
2471 * want to push ourselves above the average load, nor do we wish to
2472 * reduce the max loaded cpu below the average load, as either of these
2473 * actions would just result in more rebalancing later, and ping-pong
2474 * tasks around. Thus we look for the minimum possible imbalance.
2475 * Negative imbalances (*we* are more loaded than anyone else) will
2476 * be counted as no imbalance for these purposes -- we can't fix that
2477 * by pulling tasks to us. Be careful of negative numbers as they'll
2478 * appear as very large values with unsigned longs.
2479 */
2480 if (max_load <= busiest_load_per_task)
2481 goto out_balanced;
2482
2483 /*
2484 * In the presence of smp nice balancing, certain scenarios can have
2485 * max load less than avg load(as we skip the groups at or below
2486 * its cpu_power, while calculating max_load..)
2487 */
2488 if (max_load < avg_load) {
2489 *imbalance = 0;
2490 goto small_imbalance;
2491 }
2492
2493 /* Don't want to pull so many tasks that a group would go idle */
2494 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2495
2496 /* How much load to actually move to equalise the imbalance */
2497 *imbalance = min(max_pull * busiest->__cpu_power,
2498 (avg_load - this_load) * this->__cpu_power)
2499 / SCHED_LOAD_SCALE;
2500
2501 /*
2502 * if *imbalance is less than the average load per runnable task
2503 * there is no gaurantee that any tasks will be moved so we'll have
2504 * a think about bumping its value to force at least one task to be
2505 * moved
2506 */
2507 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2508 unsigned long tmp, pwr_now, pwr_move;
2509 unsigned int imbn;
2510
2511 small_imbalance:
2512 pwr_move = pwr_now = 0;
2513 imbn = 2;
2514 if (this_nr_running) {
2515 this_load_per_task /= this_nr_running;
2516 if (busiest_load_per_task > this_load_per_task)
2517 imbn = 1;
2518 } else
2519 this_load_per_task = SCHED_LOAD_SCALE;
2520
2521 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2522 busiest_load_per_task * imbn) {
2523 *imbalance = busiest_load_per_task;
2524 return busiest;
2525 }
2526
2527 /*
2528 * OK, we don't have enough imbalance to justify moving tasks,
2529 * however we may be able to increase total CPU power used by
2530 * moving them.
2531 */
2532
2533 pwr_now += busiest->__cpu_power *
2534 min(busiest_load_per_task, max_load);
2535 pwr_now += this->__cpu_power *
2536 min(this_load_per_task, this_load);
2537 pwr_now /= SCHED_LOAD_SCALE;
2538
2539 /* Amount of load we'd subtract */
2540 tmp = sg_div_cpu_power(busiest,
2541 busiest_load_per_task * SCHED_LOAD_SCALE);
2542 if (max_load > tmp)
2543 pwr_move += busiest->__cpu_power *
2544 min(busiest_load_per_task, max_load - tmp);
2545
2546 /* Amount of load we'd add */
2547 if (max_load * busiest->__cpu_power <
2548 busiest_load_per_task * SCHED_LOAD_SCALE)
2549 tmp = sg_div_cpu_power(this,
2550 max_load * busiest->__cpu_power);
2551 else
2552 tmp = sg_div_cpu_power(this,
2553 busiest_load_per_task * SCHED_LOAD_SCALE);
2554 pwr_move += this->__cpu_power *
2555 min(this_load_per_task, this_load + tmp);
2556 pwr_move /= SCHED_LOAD_SCALE;
2557
2558 /* Move if we gain throughput */
2559 if (pwr_move <= pwr_now)
2560 goto out_balanced;
2561
2562 *imbalance = busiest_load_per_task;
2563 }
2564
2565 return busiest;
2566
2567 out_balanced:
2568 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2569 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2570 goto ret;
2571
2572 if (this == group_leader && group_leader != group_min) {
2573 *imbalance = min_load_per_task;
2574 return group_min;
2575 }
2576 #endif
2577 ret:
2578 *imbalance = 0;
2579 return NULL;
2580 }
2581
2582 /*
2583 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2584 */
2585 static struct rq *
2586 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2587 unsigned long imbalance, cpumask_t *cpus)
2588 {
2589 struct rq *busiest = NULL, *rq;
2590 unsigned long max_load = 0;
2591 int i;
2592
2593 for_each_cpu_mask(i, group->cpumask) {
2594 unsigned long wl;
2595
2596 if (!cpu_isset(i, *cpus))
2597 continue;
2598
2599 rq = cpu_rq(i);
2600 wl = weighted_cpuload(i);
2601
2602 if (rq->nr_running == 1 && wl > imbalance)
2603 continue;
2604
2605 if (wl > max_load) {
2606 max_load = wl;
2607 busiest = rq;
2608 }
2609 }
2610
2611 return busiest;
2612 }
2613
2614 /*
2615 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2616 * so long as it is large enough.
2617 */
2618 #define MAX_PINNED_INTERVAL 512
2619
2620 /*
2621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2622 * tasks if there is an imbalance.
2623 */
2624 static int load_balance(int this_cpu, struct rq *this_rq,
2625 struct sched_domain *sd, enum cpu_idle_type idle,
2626 int *balance)
2627 {
2628 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2629 struct sched_group *group;
2630 unsigned long imbalance;
2631 struct rq *busiest;
2632 cpumask_t cpus = CPU_MASK_ALL;
2633 unsigned long flags;
2634
2635 /*
2636 * When power savings policy is enabled for the parent domain, idle
2637 * sibling can pick up load irrespective of busy siblings. In this case,
2638 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2639 * portraying it as CPU_NOT_IDLE.
2640 */
2641 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2642 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2643 sd_idle = 1;
2644
2645 schedstat_inc(sd, lb_cnt[idle]);
2646
2647 redo:
2648 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2649 &cpus, balance);
2650
2651 if (*balance == 0)
2652 goto out_balanced;
2653
2654 if (!group) {
2655 schedstat_inc(sd, lb_nobusyg[idle]);
2656 goto out_balanced;
2657 }
2658
2659 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2660 if (!busiest) {
2661 schedstat_inc(sd, lb_nobusyq[idle]);
2662 goto out_balanced;
2663 }
2664
2665 BUG_ON(busiest == this_rq);
2666
2667 schedstat_add(sd, lb_imbalance[idle], imbalance);
2668
2669 ld_moved = 0;
2670 if (busiest->nr_running > 1) {
2671 /*
2672 * Attempt to move tasks. If find_busiest_group has found
2673 * an imbalance but busiest->nr_running <= 1, the group is
2674 * still unbalanced. ld_moved simply stays zero, so it is
2675 * correctly treated as an imbalance.
2676 */
2677 local_irq_save(flags);
2678 double_rq_lock(this_rq, busiest);
2679 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2680 imbalance, sd, idle, &all_pinned);
2681 double_rq_unlock(this_rq, busiest);
2682 local_irq_restore(flags);
2683
2684 /*
2685 * some other cpu did the load balance for us.
2686 */
2687 if (ld_moved && this_cpu != smp_processor_id())
2688 resched_cpu(this_cpu);
2689
2690 /* All tasks on this runqueue were pinned by CPU affinity */
2691 if (unlikely(all_pinned)) {
2692 cpu_clear(cpu_of(busiest), cpus);
2693 if (!cpus_empty(cpus))
2694 goto redo;
2695 goto out_balanced;
2696 }
2697 }
2698
2699 if (!ld_moved) {
2700 schedstat_inc(sd, lb_failed[idle]);
2701 sd->nr_balance_failed++;
2702
2703 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2704
2705 spin_lock_irqsave(&busiest->lock, flags);
2706
2707 /* don't kick the migration_thread, if the curr
2708 * task on busiest cpu can't be moved to this_cpu
2709 */
2710 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2711 spin_unlock_irqrestore(&busiest->lock, flags);
2712 all_pinned = 1;
2713 goto out_one_pinned;
2714 }
2715
2716 if (!busiest->active_balance) {
2717 busiest->active_balance = 1;
2718 busiest->push_cpu = this_cpu;
2719 active_balance = 1;
2720 }
2721 spin_unlock_irqrestore(&busiest->lock, flags);
2722 if (active_balance)
2723 wake_up_process(busiest->migration_thread);
2724
2725 /*
2726 * We've kicked active balancing, reset the failure
2727 * counter.
2728 */
2729 sd->nr_balance_failed = sd->cache_nice_tries+1;
2730 }
2731 } else
2732 sd->nr_balance_failed = 0;
2733
2734 if (likely(!active_balance)) {
2735 /* We were unbalanced, so reset the balancing interval */
2736 sd->balance_interval = sd->min_interval;
2737 } else {
2738 /*
2739 * If we've begun active balancing, start to back off. This
2740 * case may not be covered by the all_pinned logic if there
2741 * is only 1 task on the busy runqueue (because we don't call
2742 * move_tasks).
2743 */
2744 if (sd->balance_interval < sd->max_interval)
2745 sd->balance_interval *= 2;
2746 }
2747
2748 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2749 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2750 return -1;
2751 return ld_moved;
2752
2753 out_balanced:
2754 schedstat_inc(sd, lb_balanced[idle]);
2755
2756 sd->nr_balance_failed = 0;
2757
2758 out_one_pinned:
2759 /* tune up the balancing interval */
2760 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2761 (sd->balance_interval < sd->max_interval))
2762 sd->balance_interval *= 2;
2763
2764 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2766 return -1;
2767 return 0;
2768 }
2769
2770 /*
2771 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2772 * tasks if there is an imbalance.
2773 *
2774 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2775 * this_rq is locked.
2776 */
2777 static int
2778 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2779 {
2780 struct sched_group *group;
2781 struct rq *busiest = NULL;
2782 unsigned long imbalance;
2783 int ld_moved = 0;
2784 int sd_idle = 0;
2785 int all_pinned = 0;
2786 cpumask_t cpus = CPU_MASK_ALL;
2787
2788 /*
2789 * When power savings policy is enabled for the parent domain, idle
2790 * sibling can pick up load irrespective of busy siblings. In this case,
2791 * let the state of idle sibling percolate up as IDLE, instead of
2792 * portraying it as CPU_NOT_IDLE.
2793 */
2794 if (sd->flags & SD_SHARE_CPUPOWER &&
2795 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2796 sd_idle = 1;
2797
2798 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2799 redo:
2800 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2801 &sd_idle, &cpus, NULL);
2802 if (!group) {
2803 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2804 goto out_balanced;
2805 }
2806
2807 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2808 &cpus);
2809 if (!busiest) {
2810 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2811 goto out_balanced;
2812 }
2813
2814 BUG_ON(busiest == this_rq);
2815
2816 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2817
2818 ld_moved = 0;
2819 if (busiest->nr_running > 1) {
2820 /* Attempt to move tasks */
2821 double_lock_balance(this_rq, busiest);
2822 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2823 imbalance, sd, CPU_NEWLY_IDLE,
2824 &all_pinned);
2825 spin_unlock(&busiest->lock);
2826
2827 if (unlikely(all_pinned)) {
2828 cpu_clear(cpu_of(busiest), cpus);
2829 if (!cpus_empty(cpus))
2830 goto redo;
2831 }
2832 }
2833
2834 if (!ld_moved) {
2835 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2838 return -1;
2839 } else
2840 sd->nr_balance_failed = 0;
2841
2842 return ld_moved;
2843
2844 out_balanced:
2845 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2846 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2847 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2848 return -1;
2849 sd->nr_balance_failed = 0;
2850
2851 return 0;
2852 }
2853
2854 /*
2855 * idle_balance is called by schedule() if this_cpu is about to become
2856 * idle. Attempts to pull tasks from other CPUs.
2857 */
2858 static void idle_balance(int this_cpu, struct rq *this_rq)
2859 {
2860 struct sched_domain *sd;
2861 int pulled_task = -1;
2862 unsigned long next_balance = jiffies + HZ;
2863
2864 for_each_domain(this_cpu, sd) {
2865 unsigned long interval;
2866
2867 if (!(sd->flags & SD_LOAD_BALANCE))
2868 continue;
2869
2870 if (sd->flags & SD_BALANCE_NEWIDLE)
2871 /* If we've pulled tasks over stop searching: */
2872 pulled_task = load_balance_newidle(this_cpu,
2873 this_rq, sd);
2874
2875 interval = msecs_to_jiffies(sd->balance_interval);
2876 if (time_after(next_balance, sd->last_balance + interval))
2877 next_balance = sd->last_balance + interval;
2878 if (pulled_task)
2879 break;
2880 }
2881 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2882 /*
2883 * We are going idle. next_balance may be set based on
2884 * a busy processor. So reset next_balance.
2885 */
2886 this_rq->next_balance = next_balance;
2887 }
2888 }
2889
2890 /*
2891 * active_load_balance is run by migration threads. It pushes running tasks
2892 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2893 * running on each physical CPU where possible, and avoids physical /
2894 * logical imbalances.
2895 *
2896 * Called with busiest_rq locked.
2897 */
2898 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2899 {
2900 int target_cpu = busiest_rq->push_cpu;
2901 struct sched_domain *sd;
2902 struct rq *target_rq;
2903
2904 /* Is there any task to move? */
2905 if (busiest_rq->nr_running <= 1)
2906 return;
2907
2908 target_rq = cpu_rq(target_cpu);
2909
2910 /*
2911 * This condition is "impossible", if it occurs
2912 * we need to fix it. Originally reported by
2913 * Bjorn Helgaas on a 128-cpu setup.
2914 */
2915 BUG_ON(busiest_rq == target_rq);
2916
2917 /* move a task from busiest_rq to target_rq */
2918 double_lock_balance(busiest_rq, target_rq);
2919
2920 /* Search for an sd spanning us and the target CPU. */
2921 for_each_domain(target_cpu, sd) {
2922 if ((sd->flags & SD_LOAD_BALANCE) &&
2923 cpu_isset(busiest_cpu, sd->span))
2924 break;
2925 }
2926
2927 if (likely(sd)) {
2928 schedstat_inc(sd, alb_cnt);
2929
2930 if (move_one_task(target_rq, target_cpu, busiest_rq,
2931 sd, CPU_IDLE))
2932 schedstat_inc(sd, alb_pushed);
2933 else
2934 schedstat_inc(sd, alb_failed);
2935 }
2936 spin_unlock(&target_rq->lock);
2937 }
2938
2939 #ifdef CONFIG_NO_HZ
2940 static struct {
2941 atomic_t load_balancer;
2942 cpumask_t cpu_mask;
2943 } nohz ____cacheline_aligned = {
2944 .load_balancer = ATOMIC_INIT(-1),
2945 .cpu_mask = CPU_MASK_NONE,
2946 };
2947
2948 /*
2949 * This routine will try to nominate the ilb (idle load balancing)
2950 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2951 * load balancing on behalf of all those cpus. If all the cpus in the system
2952 * go into this tickless mode, then there will be no ilb owner (as there is
2953 * no need for one) and all the cpus will sleep till the next wakeup event
2954 * arrives...
2955 *
2956 * For the ilb owner, tick is not stopped. And this tick will be used
2957 * for idle load balancing. ilb owner will still be part of
2958 * nohz.cpu_mask..
2959 *
2960 * While stopping the tick, this cpu will become the ilb owner if there
2961 * is no other owner. And will be the owner till that cpu becomes busy
2962 * or if all cpus in the system stop their ticks at which point
2963 * there is no need for ilb owner.
2964 *
2965 * When the ilb owner becomes busy, it nominates another owner, during the
2966 * next busy scheduler_tick()
2967 */
2968 int select_nohz_load_balancer(int stop_tick)
2969 {
2970 int cpu = smp_processor_id();
2971
2972 if (stop_tick) {
2973 cpu_set(cpu, nohz.cpu_mask);
2974 cpu_rq(cpu)->in_nohz_recently = 1;
2975
2976 /*
2977 * If we are going offline and still the leader, give up!
2978 */
2979 if (cpu_is_offline(cpu) &&
2980 atomic_read(&nohz.load_balancer) == cpu) {
2981 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2982 BUG();
2983 return 0;
2984 }
2985
2986 /* time for ilb owner also to sleep */
2987 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2988 if (atomic_read(&nohz.load_balancer) == cpu)
2989 atomic_set(&nohz.load_balancer, -1);
2990 return 0;
2991 }
2992
2993 if (atomic_read(&nohz.load_balancer) == -1) {
2994 /* make me the ilb owner */
2995 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2996 return 1;
2997 } else if (atomic_read(&nohz.load_balancer) == cpu)
2998 return 1;
2999 } else {
3000 if (!cpu_isset(cpu, nohz.cpu_mask))
3001 return 0;
3002
3003 cpu_clear(cpu, nohz.cpu_mask);
3004
3005 if (atomic_read(&nohz.load_balancer) == cpu)
3006 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3007 BUG();
3008 }
3009 return 0;
3010 }
3011 #endif
3012
3013 static DEFINE_SPINLOCK(balancing);
3014
3015 /*
3016 * It checks each scheduling domain to see if it is due to be balanced,
3017 * and initiates a balancing operation if so.
3018 *
3019 * Balancing parameters are set up in arch_init_sched_domains.
3020 */
3021 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3022 {
3023 int balance = 1;
3024 struct rq *rq = cpu_rq(cpu);
3025 unsigned long interval;
3026 struct sched_domain *sd;
3027 /* Earliest time when we have to do rebalance again */
3028 unsigned long next_balance = jiffies + 60*HZ;
3029
3030 for_each_domain(cpu, sd) {
3031 if (!(sd->flags & SD_LOAD_BALANCE))
3032 continue;
3033
3034 interval = sd->balance_interval;
3035 if (idle != CPU_IDLE)
3036 interval *= sd->busy_factor;
3037
3038 /* scale ms to jiffies */
3039 interval = msecs_to_jiffies(interval);
3040 if (unlikely(!interval))
3041 interval = 1;
3042 if (interval > HZ*NR_CPUS/10)
3043 interval = HZ*NR_CPUS/10;
3044
3045
3046 if (sd->flags & SD_SERIALIZE) {
3047 if (!spin_trylock(&balancing))
3048 goto out;
3049 }
3050
3051 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3052 if (load_balance(cpu, rq, sd, idle, &balance)) {
3053 /*
3054 * We've pulled tasks over so either we're no
3055 * longer idle, or one of our SMT siblings is
3056 * not idle.
3057 */
3058 idle = CPU_NOT_IDLE;
3059 }
3060 sd->last_balance = jiffies;
3061 }
3062 if (sd->flags & SD_SERIALIZE)
3063 spin_unlock(&balancing);
3064 out:
3065 if (time_after(next_balance, sd->last_balance + interval))
3066 next_balance = sd->last_balance + interval;
3067
3068 /*
3069 * Stop the load balance at this level. There is another
3070 * CPU in our sched group which is doing load balancing more
3071 * actively.
3072 */
3073 if (!balance)
3074 break;
3075 }
3076 rq->next_balance = next_balance;
3077 }
3078
3079 /*
3080 * run_rebalance_domains is triggered when needed from the scheduler tick.
3081 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3082 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3083 */
3084 static void run_rebalance_domains(struct softirq_action *h)
3085 {
3086 int this_cpu = smp_processor_id();
3087 struct rq *this_rq = cpu_rq(this_cpu);
3088 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3089 CPU_IDLE : CPU_NOT_IDLE;
3090
3091 rebalance_domains(this_cpu, idle);
3092
3093 #ifdef CONFIG_NO_HZ
3094 /*
3095 * If this cpu is the owner for idle load balancing, then do the
3096 * balancing on behalf of the other idle cpus whose ticks are
3097 * stopped.
3098 */
3099 if (this_rq->idle_at_tick &&
3100 atomic_read(&nohz.load_balancer) == this_cpu) {
3101 cpumask_t cpus = nohz.cpu_mask;
3102 struct rq *rq;
3103 int balance_cpu;
3104
3105 cpu_clear(this_cpu, cpus);
3106 for_each_cpu_mask(balance_cpu, cpus) {
3107 /*
3108 * If this cpu gets work to do, stop the load balancing
3109 * work being done for other cpus. Next load
3110 * balancing owner will pick it up.
3111 */
3112 if (need_resched())
3113 break;
3114
3115 rebalance_domains(balance_cpu, SCHED_IDLE);
3116
3117 rq = cpu_rq(balance_cpu);
3118 if (time_after(this_rq->next_balance, rq->next_balance))
3119 this_rq->next_balance = rq->next_balance;
3120 }
3121 }
3122 #endif
3123 }
3124
3125 /*
3126 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3127 *
3128 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3129 * idle load balancing owner or decide to stop the periodic load balancing,
3130 * if the whole system is idle.
3131 */
3132 static inline void trigger_load_balance(struct rq *rq, int cpu)
3133 {
3134 #ifdef CONFIG_NO_HZ
3135 /*
3136 * If we were in the nohz mode recently and busy at the current
3137 * scheduler tick, then check if we need to nominate new idle
3138 * load balancer.
3139 */
3140 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3141 rq->in_nohz_recently = 0;
3142
3143 if (atomic_read(&nohz.load_balancer) == cpu) {
3144 cpu_clear(cpu, nohz.cpu_mask);
3145 atomic_set(&nohz.load_balancer, -1);
3146 }
3147
3148 if (atomic_read(&nohz.load_balancer) == -1) {
3149 /*
3150 * simple selection for now: Nominate the
3151 * first cpu in the nohz list to be the next
3152 * ilb owner.
3153 *
3154 * TBD: Traverse the sched domains and nominate
3155 * the nearest cpu in the nohz.cpu_mask.
3156 */
3157 int ilb = first_cpu(nohz.cpu_mask);
3158
3159 if (ilb != NR_CPUS)
3160 resched_cpu(ilb);
3161 }
3162 }
3163
3164 /*
3165 * If this cpu is idle and doing idle load balancing for all the
3166 * cpus with ticks stopped, is it time for that to stop?
3167 */
3168 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3169 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3170 resched_cpu(cpu);
3171 return;
3172 }
3173
3174 /*
3175 * If this cpu is idle and the idle load balancing is done by
3176 * someone else, then no need raise the SCHED_SOFTIRQ
3177 */
3178 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3179 cpu_isset(cpu, nohz.cpu_mask))
3180 return;
3181 #endif
3182 if (time_after_eq(jiffies, rq->next_balance))
3183 raise_softirq(SCHED_SOFTIRQ);
3184 }
3185
3186 #else /* CONFIG_SMP */
3187
3188 /*
3189 * on UP we do not need to balance between CPUs:
3190 */
3191 static inline void idle_balance(int cpu, struct rq *rq)
3192 {
3193 }
3194
3195 /* Avoid "used but not defined" warning on UP */
3196 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3197 unsigned long max_nr_move, unsigned long max_load_move,
3198 struct sched_domain *sd, enum cpu_idle_type idle,
3199 int *all_pinned, unsigned long *load_moved,
3200 int *this_best_prio, struct rq_iterator *iterator)
3201 {
3202 *load_moved = 0;
3203
3204 return 0;
3205 }
3206
3207 #endif
3208
3209 DEFINE_PER_CPU(struct kernel_stat, kstat);
3210
3211 EXPORT_PER_CPU_SYMBOL(kstat);
3212
3213 /*
3214 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3215 * that have not yet been banked in case the task is currently running.
3216 */
3217 unsigned long long task_sched_runtime(struct task_struct *p)
3218 {
3219 unsigned long flags;
3220 u64 ns, delta_exec;
3221 struct rq *rq;
3222
3223 rq = task_rq_lock(p, &flags);
3224 ns = p->se.sum_exec_runtime;
3225 if (rq->curr == p) {
3226 update_rq_clock(rq);
3227 delta_exec = rq->clock - p->se.exec_start;
3228 if ((s64)delta_exec > 0)
3229 ns += delta_exec;
3230 }
3231 task_rq_unlock(rq, &flags);
3232
3233 return ns;
3234 }
3235
3236 /*
3237 * Account user cpu time to a process.
3238 * @p: the process that the cpu time gets accounted to
3239 * @hardirq_offset: the offset to subtract from hardirq_count()
3240 * @cputime: the cpu time spent in user space since the last update
3241 */
3242 void account_user_time(struct task_struct *p, cputime_t cputime)
3243 {
3244 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245 cputime64_t tmp;
3246
3247 p->utime = cputime_add(p->utime, cputime);
3248
3249 /* Add user time to cpustat. */
3250 tmp = cputime_to_cputime64(cputime);
3251 if (TASK_NICE(p) > 0)
3252 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3253 else
3254 cpustat->user = cputime64_add(cpustat->user, tmp);
3255 }
3256
3257 /*
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
3262 */
3263 void account_system_time(struct task_struct *p, int hardirq_offset,
3264 cputime_t cputime)
3265 {
3266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267 struct rq *rq = this_rq();
3268 cputime64_t tmp;
3269
3270 p->stime = cputime_add(p->stime, cputime);
3271
3272 /* Add system time to cpustat. */
3273 tmp = cputime_to_cputime64(cputime);
3274 if (hardirq_count() - hardirq_offset)
3275 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3276 else if (softirq_count())
3277 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3278 else if (p != rq->idle)
3279 cpustat->system = cputime64_add(cpustat->system, tmp);
3280 else if (atomic_read(&rq->nr_iowait) > 0)
3281 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3282 else
3283 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3284 /* Account for system time used */
3285 acct_update_integrals(p);
3286 }
3287
3288 /*
3289 * Account for involuntary wait time.
3290 * @p: the process from which the cpu time has been stolen
3291 * @steal: the cpu time spent in involuntary wait
3292 */
3293 void account_steal_time(struct task_struct *p, cputime_t steal)
3294 {
3295 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3296 cputime64_t tmp = cputime_to_cputime64(steal);
3297 struct rq *rq = this_rq();
3298
3299 if (p == rq->idle) {
3300 p->stime = cputime_add(p->stime, steal);
3301 if (atomic_read(&rq->nr_iowait) > 0)
3302 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3303 else
3304 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3305 } else
3306 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3307 }
3308
3309 /*
3310 * This function gets called by the timer code, with HZ frequency.
3311 * We call it with interrupts disabled.
3312 *
3313 * It also gets called by the fork code, when changing the parent's
3314 * timeslices.
3315 */
3316 void scheduler_tick(void)
3317 {
3318 int cpu = smp_processor_id();
3319 struct rq *rq = cpu_rq(cpu);
3320 struct task_struct *curr = rq->curr;
3321
3322 spin_lock(&rq->lock);
3323 update_cpu_load(rq);
3324 if (curr != rq->idle) /* FIXME: needed? */
3325 curr->sched_class->task_tick(rq, curr);
3326 spin_unlock(&rq->lock);
3327
3328 #ifdef CONFIG_SMP
3329 rq->idle_at_tick = idle_cpu(cpu);
3330 trigger_load_balance(rq, cpu);
3331 #endif
3332 }
3333
3334 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3335
3336 void fastcall add_preempt_count(int val)
3337 {
3338 /*
3339 * Underflow?
3340 */
3341 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3342 return;
3343 preempt_count() += val;
3344 /*
3345 * Spinlock count overflowing soon?
3346 */
3347 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3348 PREEMPT_MASK - 10);
3349 }
3350 EXPORT_SYMBOL(add_preempt_count);
3351
3352 void fastcall sub_preempt_count(int val)
3353 {
3354 /*
3355 * Underflow?
3356 */
3357 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3358 return;
3359 /*
3360 * Is the spinlock portion underflowing?
3361 */
3362 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3363 !(preempt_count() & PREEMPT_MASK)))
3364 return;
3365
3366 preempt_count() -= val;
3367 }
3368 EXPORT_SYMBOL(sub_preempt_count);
3369
3370 #endif
3371
3372 /*
3373 * Print scheduling while atomic bug:
3374 */
3375 static noinline void __schedule_bug(struct task_struct *prev)
3376 {
3377 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3378 prev->comm, preempt_count(), prev->pid);
3379 debug_show_held_locks(prev);
3380 if (irqs_disabled())
3381 print_irqtrace_events(prev);
3382 dump_stack();
3383 }
3384
3385 /*
3386 * Various schedule()-time debugging checks and statistics:
3387 */
3388 static inline void schedule_debug(struct task_struct *prev)
3389 {
3390 /*
3391 * Test if we are atomic. Since do_exit() needs to call into
3392 * schedule() atomically, we ignore that path for now.
3393 * Otherwise, whine if we are scheduling when we should not be.
3394 */
3395 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3396 __schedule_bug(prev);
3397
3398 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3399
3400 schedstat_inc(this_rq(), sched_cnt);
3401 }
3402
3403 /*
3404 * Pick up the highest-prio task:
3405 */
3406 static inline struct task_struct *
3407 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3408 {
3409 struct sched_class *class;
3410 struct task_struct *p;
3411
3412 /*
3413 * Optimization: we know that if all tasks are in
3414 * the fair class we can call that function directly:
3415 */
3416 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3417 p = fair_sched_class.pick_next_task(rq, now);
3418 if (likely(p))
3419 return p;
3420 }
3421
3422 class = sched_class_highest;
3423 for ( ; ; ) {
3424 p = class->pick_next_task(rq, now);
3425 if (p)
3426 return p;
3427 /*
3428 * Will never be NULL as the idle class always
3429 * returns a non-NULL p:
3430 */
3431 class = class->next;
3432 }
3433 }
3434
3435 /*
3436 * schedule() is the main scheduler function.
3437 */
3438 asmlinkage void __sched schedule(void)
3439 {
3440 struct task_struct *prev, *next;
3441 long *switch_count;
3442 struct rq *rq;
3443 u64 now;
3444 int cpu;
3445
3446 need_resched:
3447 preempt_disable();
3448 cpu = smp_processor_id();
3449 rq = cpu_rq(cpu);
3450 rcu_qsctr_inc(cpu);
3451 prev = rq->curr;
3452 switch_count = &prev->nivcsw;
3453
3454 release_kernel_lock(prev);
3455 need_resched_nonpreemptible:
3456
3457 schedule_debug(prev);
3458
3459 spin_lock_irq(&rq->lock);
3460 clear_tsk_need_resched(prev);
3461 now = __rq_clock(rq);
3462
3463 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3464 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3465 unlikely(signal_pending(prev)))) {
3466 prev->state = TASK_RUNNING;
3467 } else {
3468 deactivate_task(rq, prev, 1, now);
3469 }
3470 switch_count = &prev->nvcsw;
3471 }
3472
3473 if (unlikely(!rq->nr_running))
3474 idle_balance(cpu, rq);
3475
3476 prev->sched_class->put_prev_task(rq, prev, now);
3477 next = pick_next_task(rq, prev, now);
3478
3479 sched_info_switch(prev, next);
3480
3481 if (likely(prev != next)) {
3482 rq->nr_switches++;
3483 rq->curr = next;
3484 ++*switch_count;
3485
3486 context_switch(rq, prev, next); /* unlocks the rq */
3487 } else
3488 spin_unlock_irq(&rq->lock);
3489
3490 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3491 cpu = smp_processor_id();
3492 rq = cpu_rq(cpu);
3493 goto need_resched_nonpreemptible;
3494 }
3495 preempt_enable_no_resched();
3496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3497 goto need_resched;
3498 }
3499 EXPORT_SYMBOL(schedule);
3500
3501 #ifdef CONFIG_PREEMPT
3502 /*
3503 * this is the entry point to schedule() from in-kernel preemption
3504 * off of preempt_enable. Kernel preemptions off return from interrupt
3505 * occur there and call schedule directly.
3506 */
3507 asmlinkage void __sched preempt_schedule(void)
3508 {
3509 struct thread_info *ti = current_thread_info();
3510 #ifdef CONFIG_PREEMPT_BKL
3511 struct task_struct *task = current;
3512 int saved_lock_depth;
3513 #endif
3514 /*
3515 * If there is a non-zero preempt_count or interrupts are disabled,
3516 * we do not want to preempt the current task. Just return..
3517 */
3518 if (likely(ti->preempt_count || irqs_disabled()))
3519 return;
3520
3521 need_resched:
3522 add_preempt_count(PREEMPT_ACTIVE);
3523 /*
3524 * We keep the big kernel semaphore locked, but we
3525 * clear ->lock_depth so that schedule() doesnt
3526 * auto-release the semaphore:
3527 */
3528 #ifdef CONFIG_PREEMPT_BKL
3529 saved_lock_depth = task->lock_depth;
3530 task->lock_depth = -1;
3531 #endif
3532 schedule();
3533 #ifdef CONFIG_PREEMPT_BKL
3534 task->lock_depth = saved_lock_depth;
3535 #endif
3536 sub_preempt_count(PREEMPT_ACTIVE);
3537
3538 /* we could miss a preemption opportunity between schedule and now */
3539 barrier();
3540 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3541 goto need_resched;
3542 }
3543 EXPORT_SYMBOL(preempt_schedule);
3544
3545 /*
3546 * this is the entry point to schedule() from kernel preemption
3547 * off of irq context.
3548 * Note, that this is called and return with irqs disabled. This will
3549 * protect us against recursive calling from irq.
3550 */
3551 asmlinkage void __sched preempt_schedule_irq(void)
3552 {
3553 struct thread_info *ti = current_thread_info();
3554 #ifdef CONFIG_PREEMPT_BKL
3555 struct task_struct *task = current;
3556 int saved_lock_depth;
3557 #endif
3558 /* Catch callers which need to be fixed */
3559 BUG_ON(ti->preempt_count || !irqs_disabled());
3560
3561 need_resched:
3562 add_preempt_count(PREEMPT_ACTIVE);
3563 /*
3564 * We keep the big kernel semaphore locked, but we
3565 * clear ->lock_depth so that schedule() doesnt
3566 * auto-release the semaphore:
3567 */
3568 #ifdef CONFIG_PREEMPT_BKL
3569 saved_lock_depth = task->lock_depth;
3570 task->lock_depth = -1;
3571 #endif
3572 local_irq_enable();
3573 schedule();
3574 local_irq_disable();
3575 #ifdef CONFIG_PREEMPT_BKL
3576 task->lock_depth = saved_lock_depth;
3577 #endif
3578 sub_preempt_count(PREEMPT_ACTIVE);
3579
3580 /* we could miss a preemption opportunity between schedule and now */
3581 barrier();
3582 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3583 goto need_resched;
3584 }
3585
3586 #endif /* CONFIG_PREEMPT */
3587
3588 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3589 void *key)
3590 {
3591 return try_to_wake_up(curr->private, mode, sync);
3592 }
3593 EXPORT_SYMBOL(default_wake_function);
3594
3595 /*
3596 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3597 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3598 * number) then we wake all the non-exclusive tasks and one exclusive task.
3599 *
3600 * There are circumstances in which we can try to wake a task which has already
3601 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3602 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3603 */
3604 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3605 int nr_exclusive, int sync, void *key)
3606 {
3607 struct list_head *tmp, *next;
3608
3609 list_for_each_safe(tmp, next, &q->task_list) {
3610 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3611 unsigned flags = curr->flags;
3612
3613 if (curr->func(curr, mode, sync, key) &&
3614 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615 break;
3616 }
3617 }
3618
3619 /**
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624 * @key: is directly passed to the wakeup function
3625 */
3626 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3627 int nr_exclusive, void *key)
3628 {
3629 unsigned long flags;
3630
3631 spin_lock_irqsave(&q->lock, flags);
3632 __wake_up_common(q, mode, nr_exclusive, 0, key);
3633 spin_unlock_irqrestore(&q->lock, flags);
3634 }
3635 EXPORT_SYMBOL(__wake_up);
3636
3637 /*
3638 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3639 */
3640 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3641 {
3642 __wake_up_common(q, mode, 1, 0, NULL);
3643 }
3644
3645 /**
3646 * __wake_up_sync - wake up threads blocked on a waitqueue.
3647 * @q: the waitqueue
3648 * @mode: which threads
3649 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3650 *
3651 * The sync wakeup differs that the waker knows that it will schedule
3652 * away soon, so while the target thread will be woken up, it will not
3653 * be migrated to another CPU - ie. the two threads are 'synchronized'
3654 * with each other. This can prevent needless bouncing between CPUs.
3655 *
3656 * On UP it can prevent extra preemption.
3657 */
3658 void fastcall
3659 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3660 {
3661 unsigned long flags;
3662 int sync = 1;
3663
3664 if (unlikely(!q))
3665 return;
3666
3667 if (unlikely(!nr_exclusive))
3668 sync = 0;
3669
3670 spin_lock_irqsave(&q->lock, flags);
3671 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3672 spin_unlock_irqrestore(&q->lock, flags);
3673 }
3674 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3675
3676 void fastcall complete(struct completion *x)
3677 {
3678 unsigned long flags;
3679
3680 spin_lock_irqsave(&x->wait.lock, flags);
3681 x->done++;
3682 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3683 1, 0, NULL);
3684 spin_unlock_irqrestore(&x->wait.lock, flags);
3685 }
3686 EXPORT_SYMBOL(complete);
3687
3688 void fastcall complete_all(struct completion *x)
3689 {
3690 unsigned long flags;
3691
3692 spin_lock_irqsave(&x->wait.lock, flags);
3693 x->done += UINT_MAX/2;
3694 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3695 0, 0, NULL);
3696 spin_unlock_irqrestore(&x->wait.lock, flags);
3697 }
3698 EXPORT_SYMBOL(complete_all);
3699
3700 void fastcall __sched wait_for_completion(struct completion *x)
3701 {
3702 might_sleep();
3703
3704 spin_lock_irq(&x->wait.lock);
3705 if (!x->done) {
3706 DECLARE_WAITQUEUE(wait, current);
3707
3708 wait.flags |= WQ_FLAG_EXCLUSIVE;
3709 __add_wait_queue_tail(&x->wait, &wait);
3710 do {
3711 __set_current_state(TASK_UNINTERRUPTIBLE);
3712 spin_unlock_irq(&x->wait.lock);
3713 schedule();
3714 spin_lock_irq(&x->wait.lock);
3715 } while (!x->done);
3716 __remove_wait_queue(&x->wait, &wait);
3717 }
3718 x->done--;
3719 spin_unlock_irq(&x->wait.lock);
3720 }
3721 EXPORT_SYMBOL(wait_for_completion);
3722
3723 unsigned long fastcall __sched
3724 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3725 {
3726 might_sleep();
3727
3728 spin_lock_irq(&x->wait.lock);
3729 if (!x->done) {
3730 DECLARE_WAITQUEUE(wait, current);
3731
3732 wait.flags |= WQ_FLAG_EXCLUSIVE;
3733 __add_wait_queue_tail(&x->wait, &wait);
3734 do {
3735 __set_current_state(TASK_UNINTERRUPTIBLE);
3736 spin_unlock_irq(&x->wait.lock);
3737 timeout = schedule_timeout(timeout);
3738 spin_lock_irq(&x->wait.lock);
3739 if (!timeout) {
3740 __remove_wait_queue(&x->wait, &wait);
3741 goto out;
3742 }
3743 } while (!x->done);
3744 __remove_wait_queue(&x->wait, &wait);
3745 }
3746 x->done--;
3747 out:
3748 spin_unlock_irq(&x->wait.lock);
3749 return timeout;
3750 }
3751 EXPORT_SYMBOL(wait_for_completion_timeout);
3752
3753 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3754 {
3755 int ret = 0;
3756
3757 might_sleep();
3758
3759 spin_lock_irq(&x->wait.lock);
3760 if (!x->done) {
3761 DECLARE_WAITQUEUE(wait, current);
3762
3763 wait.flags |= WQ_FLAG_EXCLUSIVE;
3764 __add_wait_queue_tail(&x->wait, &wait);
3765 do {
3766 if (signal_pending(current)) {
3767 ret = -ERESTARTSYS;
3768 __remove_wait_queue(&x->wait, &wait);
3769 goto out;
3770 }
3771 __set_current_state(TASK_INTERRUPTIBLE);
3772 spin_unlock_irq(&x->wait.lock);
3773 schedule();
3774 spin_lock_irq(&x->wait.lock);
3775 } while (!x->done);
3776 __remove_wait_queue(&x->wait, &wait);
3777 }
3778 x->done--;
3779 out:
3780 spin_unlock_irq(&x->wait.lock);
3781
3782 return ret;
3783 }
3784 EXPORT_SYMBOL(wait_for_completion_interruptible);
3785
3786 unsigned long fastcall __sched
3787 wait_for_completion_interruptible_timeout(struct completion *x,
3788 unsigned long timeout)
3789 {
3790 might_sleep();
3791
3792 spin_lock_irq(&x->wait.lock);
3793 if (!x->done) {
3794 DECLARE_WAITQUEUE(wait, current);
3795
3796 wait.flags |= WQ_FLAG_EXCLUSIVE;
3797 __add_wait_queue_tail(&x->wait, &wait);
3798 do {
3799 if (signal_pending(current)) {
3800 timeout = -ERESTARTSYS;
3801 __remove_wait_queue(&x->wait, &wait);
3802 goto out;
3803 }
3804 __set_current_state(TASK_INTERRUPTIBLE);
3805 spin_unlock_irq(&x->wait.lock);
3806 timeout = schedule_timeout(timeout);
3807 spin_lock_irq(&x->wait.lock);
3808 if (!timeout) {
3809 __remove_wait_queue(&x->wait, &wait);
3810 goto out;
3811 }
3812 } while (!x->done);
3813 __remove_wait_queue(&x->wait, &wait);
3814 }
3815 x->done--;
3816 out:
3817 spin_unlock_irq(&x->wait.lock);
3818 return timeout;
3819 }
3820 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3821
3822 static inline void
3823 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3824 {
3825 spin_lock_irqsave(&q->lock, *flags);
3826 __add_wait_queue(q, wait);
3827 spin_unlock(&q->lock);
3828 }
3829
3830 static inline void
3831 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3832 {
3833 spin_lock_irq(&q->lock);
3834 __remove_wait_queue(q, wait);
3835 spin_unlock_irqrestore(&q->lock, *flags);
3836 }
3837
3838 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3839 {
3840 unsigned long flags;
3841 wait_queue_t wait;
3842
3843 init_waitqueue_entry(&wait, current);
3844
3845 current->state = TASK_INTERRUPTIBLE;
3846
3847 sleep_on_head(q, &wait, &flags);
3848 schedule();
3849 sleep_on_tail(q, &wait, &flags);
3850 }
3851 EXPORT_SYMBOL(interruptible_sleep_on);
3852
3853 long __sched
3854 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3855 {
3856 unsigned long flags;
3857 wait_queue_t wait;
3858
3859 init_waitqueue_entry(&wait, current);
3860
3861 current->state = TASK_INTERRUPTIBLE;
3862
3863 sleep_on_head(q, &wait, &flags);
3864 timeout = schedule_timeout(timeout);
3865 sleep_on_tail(q, &wait, &flags);
3866
3867 return timeout;
3868 }
3869 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3870
3871 void __sched sleep_on(wait_queue_head_t *q)
3872 {
3873 unsigned long flags;
3874 wait_queue_t wait;
3875
3876 init_waitqueue_entry(&wait, current);
3877
3878 current->state = TASK_UNINTERRUPTIBLE;
3879
3880 sleep_on_head(q, &wait, &flags);
3881 schedule();
3882 sleep_on_tail(q, &wait, &flags);
3883 }
3884 EXPORT_SYMBOL(sleep_on);
3885
3886 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3887 {
3888 unsigned long flags;
3889 wait_queue_t wait;
3890
3891 init_waitqueue_entry(&wait, current);
3892
3893 current->state = TASK_UNINTERRUPTIBLE;
3894
3895 sleep_on_head(q, &wait, &flags);
3896 timeout = schedule_timeout(timeout);
3897 sleep_on_tail(q, &wait, &flags);
3898
3899 return timeout;
3900 }
3901 EXPORT_SYMBOL(sleep_on_timeout);
3902
3903 #ifdef CONFIG_RT_MUTEXES
3904
3905 /*
3906 * rt_mutex_setprio - set the current priority of a task
3907 * @p: task
3908 * @prio: prio value (kernel-internal form)
3909 *
3910 * This function changes the 'effective' priority of a task. It does
3911 * not touch ->normal_prio like __setscheduler().
3912 *
3913 * Used by the rt_mutex code to implement priority inheritance logic.
3914 */
3915 void rt_mutex_setprio(struct task_struct *p, int prio)
3916 {
3917 unsigned long flags;
3918 int oldprio, on_rq;
3919 struct rq *rq;
3920 u64 now;
3921
3922 BUG_ON(prio < 0 || prio > MAX_PRIO);
3923
3924 rq = task_rq_lock(p, &flags);
3925 update_rq_clock(rq);
3926 now = rq->clock;
3927
3928 oldprio = p->prio;
3929 on_rq = p->se.on_rq;
3930 if (on_rq)
3931 dequeue_task(rq, p, 0, now);
3932
3933 if (rt_prio(prio))
3934 p->sched_class = &rt_sched_class;
3935 else
3936 p->sched_class = &fair_sched_class;
3937
3938 p->prio = prio;
3939
3940 if (on_rq) {
3941 enqueue_task(rq, p, 0, now);
3942 /*
3943 * Reschedule if we are currently running on this runqueue and
3944 * our priority decreased, or if we are not currently running on
3945 * this runqueue and our priority is higher than the current's
3946 */
3947 if (task_running(rq, p)) {
3948 if (p->prio > oldprio)
3949 resched_task(rq->curr);
3950 } else {
3951 check_preempt_curr(rq, p);
3952 }
3953 }
3954 task_rq_unlock(rq, &flags);
3955 }
3956
3957 #endif
3958
3959 void set_user_nice(struct task_struct *p, long nice)
3960 {
3961 int old_prio, delta, on_rq;
3962 unsigned long flags;
3963 struct rq *rq;
3964 u64 now;
3965
3966 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3967 return;
3968 /*
3969 * We have to be careful, if called from sys_setpriority(),
3970 * the task might be in the middle of scheduling on another CPU.
3971 */
3972 rq = task_rq_lock(p, &flags);
3973 update_rq_clock(rq);
3974 now = rq->clock;
3975 /*
3976 * The RT priorities are set via sched_setscheduler(), but we still
3977 * allow the 'normal' nice value to be set - but as expected
3978 * it wont have any effect on scheduling until the task is
3979 * SCHED_FIFO/SCHED_RR:
3980 */
3981 if (task_has_rt_policy(p)) {
3982 p->static_prio = NICE_TO_PRIO(nice);
3983 goto out_unlock;
3984 }
3985 on_rq = p->se.on_rq;
3986 if (on_rq) {
3987 dequeue_task(rq, p, 0, now);
3988 dec_load(rq, p, now);
3989 }
3990
3991 p->static_prio = NICE_TO_PRIO(nice);
3992 set_load_weight(p);
3993 old_prio = p->prio;
3994 p->prio = effective_prio(p);
3995 delta = p->prio - old_prio;
3996
3997 if (on_rq) {
3998 enqueue_task(rq, p, 0, now);
3999 inc_load(rq, p, now);
4000 /*
4001 * If the task increased its priority or is running and
4002 * lowered its priority, then reschedule its CPU:
4003 */
4004 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4005 resched_task(rq->curr);
4006 }
4007 out_unlock:
4008 task_rq_unlock(rq, &flags);
4009 }
4010 EXPORT_SYMBOL(set_user_nice);
4011
4012 /*
4013 * can_nice - check if a task can reduce its nice value
4014 * @p: task
4015 * @nice: nice value
4016 */
4017 int can_nice(const struct task_struct *p, const int nice)
4018 {
4019 /* convert nice value [19,-20] to rlimit style value [1,40] */
4020 int nice_rlim = 20 - nice;
4021
4022 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4023 capable(CAP_SYS_NICE));
4024 }
4025
4026 #ifdef __ARCH_WANT_SYS_NICE
4027
4028 /*
4029 * sys_nice - change the priority of the current process.
4030 * @increment: priority increment
4031 *
4032 * sys_setpriority is a more generic, but much slower function that
4033 * does similar things.
4034 */
4035 asmlinkage long sys_nice(int increment)
4036 {
4037 long nice, retval;
4038
4039 /*
4040 * Setpriority might change our priority at the same moment.
4041 * We don't have to worry. Conceptually one call occurs first
4042 * and we have a single winner.
4043 */
4044 if (increment < -40)
4045 increment = -40;
4046 if (increment > 40)
4047 increment = 40;
4048
4049 nice = PRIO_TO_NICE(current->static_prio) + increment;
4050 if (nice < -20)
4051 nice = -20;
4052 if (nice > 19)
4053 nice = 19;
4054
4055 if (increment < 0 && !can_nice(current, nice))
4056 return -EPERM;
4057
4058 retval = security_task_setnice(current, nice);
4059 if (retval)
4060 return retval;
4061
4062 set_user_nice(current, nice);
4063 return 0;
4064 }
4065
4066 #endif
4067
4068 /**
4069 * task_prio - return the priority value of a given task.
4070 * @p: the task in question.
4071 *
4072 * This is the priority value as seen by users in /proc.
4073 * RT tasks are offset by -200. Normal tasks are centered
4074 * around 0, value goes from -16 to +15.
4075 */
4076 int task_prio(const struct task_struct *p)
4077 {
4078 return p->prio - MAX_RT_PRIO;
4079 }
4080
4081 /**
4082 * task_nice - return the nice value of a given task.
4083 * @p: the task in question.
4084 */
4085 int task_nice(const struct task_struct *p)
4086 {
4087 return TASK_NICE(p);
4088 }
4089 EXPORT_SYMBOL_GPL(task_nice);
4090
4091 /**
4092 * idle_cpu - is a given cpu idle currently?
4093 * @cpu: the processor in question.
4094 */
4095 int idle_cpu(int cpu)
4096 {
4097 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4098 }
4099
4100 /**
4101 * idle_task - return the idle task for a given cpu.
4102 * @cpu: the processor in question.
4103 */
4104 struct task_struct *idle_task(int cpu)
4105 {
4106 return cpu_rq(cpu)->idle;
4107 }
4108
4109 /**
4110 * find_process_by_pid - find a process with a matching PID value.
4111 * @pid: the pid in question.
4112 */
4113 static inline struct task_struct *find_process_by_pid(pid_t pid)
4114 {
4115 return pid ? find_task_by_pid(pid) : current;
4116 }
4117
4118 /* Actually do priority change: must hold rq lock. */
4119 static void
4120 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4121 {
4122 BUG_ON(p->se.on_rq);
4123
4124 p->policy = policy;
4125 switch (p->policy) {
4126 case SCHED_NORMAL:
4127 case SCHED_BATCH:
4128 case SCHED_IDLE:
4129 p->sched_class = &fair_sched_class;
4130 break;
4131 case SCHED_FIFO:
4132 case SCHED_RR:
4133 p->sched_class = &rt_sched_class;
4134 break;
4135 }
4136
4137 p->rt_priority = prio;
4138 p->normal_prio = normal_prio(p);
4139 /* we are holding p->pi_lock already */
4140 p->prio = rt_mutex_getprio(p);
4141 set_load_weight(p);
4142 }
4143
4144 /**
4145 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4146 * @p: the task in question.
4147 * @policy: new policy.
4148 * @param: structure containing the new RT priority.
4149 *
4150 * NOTE that the task may be already dead.
4151 */
4152 int sched_setscheduler(struct task_struct *p, int policy,
4153 struct sched_param *param)
4154 {
4155 int retval, oldprio, oldpolicy = -1, on_rq;
4156 unsigned long flags;
4157 struct rq *rq;
4158
4159 /* may grab non-irq protected spin_locks */
4160 BUG_ON(in_interrupt());
4161 recheck:
4162 /* double check policy once rq lock held */
4163 if (policy < 0)
4164 policy = oldpolicy = p->policy;
4165 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4166 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4167 policy != SCHED_IDLE)
4168 return -EINVAL;
4169 /*
4170 * Valid priorities for SCHED_FIFO and SCHED_RR are
4171 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4172 * SCHED_BATCH and SCHED_IDLE is 0.
4173 */
4174 if (param->sched_priority < 0 ||
4175 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4176 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4177 return -EINVAL;
4178 if (rt_policy(policy) != (param->sched_priority != 0))
4179 return -EINVAL;
4180
4181 /*
4182 * Allow unprivileged RT tasks to decrease priority:
4183 */
4184 if (!capable(CAP_SYS_NICE)) {
4185 if (rt_policy(policy)) {
4186 unsigned long rlim_rtprio;
4187
4188 if (!lock_task_sighand(p, &flags))
4189 return -ESRCH;
4190 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4191 unlock_task_sighand(p, &flags);
4192
4193 /* can't set/change the rt policy */
4194 if (policy != p->policy && !rlim_rtprio)
4195 return -EPERM;
4196
4197 /* can't increase priority */
4198 if (param->sched_priority > p->rt_priority &&
4199 param->sched_priority > rlim_rtprio)
4200 return -EPERM;
4201 }
4202 /*
4203 * Like positive nice levels, dont allow tasks to
4204 * move out of SCHED_IDLE either:
4205 */
4206 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4207 return -EPERM;
4208
4209 /* can't change other user's priorities */
4210 if ((current->euid != p->euid) &&
4211 (current->euid != p->uid))
4212 return -EPERM;
4213 }
4214
4215 retval = security_task_setscheduler(p, policy, param);
4216 if (retval)
4217 return retval;
4218 /*
4219 * make sure no PI-waiters arrive (or leave) while we are
4220 * changing the priority of the task:
4221 */
4222 spin_lock_irqsave(&p->pi_lock, flags);
4223 /*
4224 * To be able to change p->policy safely, the apropriate
4225 * runqueue lock must be held.
4226 */
4227 rq = __task_rq_lock(p);
4228 /* recheck policy now with rq lock held */
4229 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4230 policy = oldpolicy = -1;
4231 __task_rq_unlock(rq);
4232 spin_unlock_irqrestore(&p->pi_lock, flags);
4233 goto recheck;
4234 }
4235 on_rq = p->se.on_rq;
4236 if (on_rq) {
4237 update_rq_clock(rq);
4238 deactivate_task(rq, p, 0, rq->clock);
4239 }
4240 oldprio = p->prio;
4241 __setscheduler(rq, p, policy, param->sched_priority);
4242 if (on_rq) {
4243 activate_task(rq, p, 0);
4244 /*
4245 * Reschedule if we are currently running on this runqueue and
4246 * our priority decreased, or if we are not currently running on
4247 * this runqueue and our priority is higher than the current's
4248 */
4249 if (task_running(rq, p)) {
4250 if (p->prio > oldprio)
4251 resched_task(rq->curr);
4252 } else {
4253 check_preempt_curr(rq, p);
4254 }
4255 }
4256 __task_rq_unlock(rq);
4257 spin_unlock_irqrestore(&p->pi_lock, flags);
4258
4259 rt_mutex_adjust_pi(p);
4260
4261 return 0;
4262 }
4263 EXPORT_SYMBOL_GPL(sched_setscheduler);
4264
4265 static int
4266 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4267 {
4268 struct sched_param lparam;
4269 struct task_struct *p;
4270 int retval;
4271
4272 if (!param || pid < 0)
4273 return -EINVAL;
4274 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4275 return -EFAULT;
4276
4277 rcu_read_lock();
4278 retval = -ESRCH;
4279 p = find_process_by_pid(pid);
4280 if (p != NULL)
4281 retval = sched_setscheduler(p, policy, &lparam);
4282 rcu_read_unlock();
4283
4284 return retval;
4285 }
4286
4287 /**
4288 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4289 * @pid: the pid in question.
4290 * @policy: new policy.
4291 * @param: structure containing the new RT priority.
4292 */
4293 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4294 struct sched_param __user *param)
4295 {
4296 /* negative values for policy are not valid */
4297 if (policy < 0)
4298 return -EINVAL;
4299
4300 return do_sched_setscheduler(pid, policy, param);
4301 }
4302
4303 /**
4304 * sys_sched_setparam - set/change the RT priority of a thread
4305 * @pid: the pid in question.
4306 * @param: structure containing the new RT priority.
4307 */
4308 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4309 {
4310 return do_sched_setscheduler(pid, -1, param);
4311 }
4312
4313 /**
4314 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4315 * @pid: the pid in question.
4316 */
4317 asmlinkage long sys_sched_getscheduler(pid_t pid)
4318 {
4319 struct task_struct *p;
4320 int retval = -EINVAL;
4321
4322 if (pid < 0)
4323 goto out_nounlock;
4324
4325 retval = -ESRCH;
4326 read_lock(&tasklist_lock);
4327 p = find_process_by_pid(pid);
4328 if (p) {
4329 retval = security_task_getscheduler(p);
4330 if (!retval)
4331 retval = p->policy;
4332 }
4333 read_unlock(&tasklist_lock);
4334
4335 out_nounlock:
4336 return retval;
4337 }
4338
4339 /**
4340 * sys_sched_getscheduler - get the RT priority of a thread
4341 * @pid: the pid in question.
4342 * @param: structure containing the RT priority.
4343 */
4344 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4345 {
4346 struct sched_param lp;
4347 struct task_struct *p;
4348 int retval = -EINVAL;
4349
4350 if (!param || pid < 0)
4351 goto out_nounlock;
4352
4353 read_lock(&tasklist_lock);
4354 p = find_process_by_pid(pid);
4355 retval = -ESRCH;
4356 if (!p)
4357 goto out_unlock;
4358
4359 retval = security_task_getscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4362
4363 lp.sched_priority = p->rt_priority;
4364 read_unlock(&tasklist_lock);
4365
4366 /*
4367 * This one might sleep, we cannot do it with a spinlock held ...
4368 */
4369 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4370
4371 out_nounlock:
4372 return retval;
4373
4374 out_unlock:
4375 read_unlock(&tasklist_lock);
4376 return retval;
4377 }
4378
4379 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4380 {
4381 cpumask_t cpus_allowed;
4382 struct task_struct *p;
4383 int retval;
4384
4385 mutex_lock(&sched_hotcpu_mutex);
4386 read_lock(&tasklist_lock);
4387
4388 p = find_process_by_pid(pid);
4389 if (!p) {
4390 read_unlock(&tasklist_lock);
4391 mutex_unlock(&sched_hotcpu_mutex);
4392 return -ESRCH;
4393 }
4394
4395 /*
4396 * It is not safe to call set_cpus_allowed with the
4397 * tasklist_lock held. We will bump the task_struct's
4398 * usage count and then drop tasklist_lock.
4399 */
4400 get_task_struct(p);
4401 read_unlock(&tasklist_lock);
4402
4403 retval = -EPERM;
4404 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4405 !capable(CAP_SYS_NICE))
4406 goto out_unlock;
4407
4408 retval = security_task_setscheduler(p, 0, NULL);
4409 if (retval)
4410 goto out_unlock;
4411
4412 cpus_allowed = cpuset_cpus_allowed(p);
4413 cpus_and(new_mask, new_mask, cpus_allowed);
4414 retval = set_cpus_allowed(p, new_mask);
4415
4416 out_unlock:
4417 put_task_struct(p);
4418 mutex_unlock(&sched_hotcpu_mutex);
4419 return retval;
4420 }
4421
4422 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4423 cpumask_t *new_mask)
4424 {
4425 if (len < sizeof(cpumask_t)) {
4426 memset(new_mask, 0, sizeof(cpumask_t));
4427 } else if (len > sizeof(cpumask_t)) {
4428 len = sizeof(cpumask_t);
4429 }
4430 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4431 }
4432
4433 /**
4434 * sys_sched_setaffinity - set the cpu affinity of a process
4435 * @pid: pid of the process
4436 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4437 * @user_mask_ptr: user-space pointer to the new cpu mask
4438 */
4439 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4440 unsigned long __user *user_mask_ptr)
4441 {
4442 cpumask_t new_mask;
4443 int retval;
4444
4445 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4446 if (retval)
4447 return retval;
4448
4449 return sched_setaffinity(pid, new_mask);
4450 }
4451
4452 /*
4453 * Represents all cpu's present in the system
4454 * In systems capable of hotplug, this map could dynamically grow
4455 * as new cpu's are detected in the system via any platform specific
4456 * method, such as ACPI for e.g.
4457 */
4458
4459 cpumask_t cpu_present_map __read_mostly;
4460 EXPORT_SYMBOL(cpu_present_map);
4461
4462 #ifndef CONFIG_SMP
4463 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4464 EXPORT_SYMBOL(cpu_online_map);
4465
4466 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4467 EXPORT_SYMBOL(cpu_possible_map);
4468 #endif
4469
4470 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4471 {
4472 struct task_struct *p;
4473 int retval;
4474
4475 mutex_lock(&sched_hotcpu_mutex);
4476 read_lock(&tasklist_lock);
4477
4478 retval = -ESRCH;
4479 p = find_process_by_pid(pid);
4480 if (!p)
4481 goto out_unlock;
4482
4483 retval = security_task_getscheduler(p);
4484 if (retval)
4485 goto out_unlock;
4486
4487 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4488
4489 out_unlock:
4490 read_unlock(&tasklist_lock);
4491 mutex_unlock(&sched_hotcpu_mutex);
4492
4493 return retval;
4494 }
4495
4496 /**
4497 * sys_sched_getaffinity - get the cpu affinity of a process
4498 * @pid: pid of the process
4499 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4500 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4501 */
4502 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4503 unsigned long __user *user_mask_ptr)
4504 {
4505 int ret;
4506 cpumask_t mask;
4507
4508 if (len < sizeof(cpumask_t))
4509 return -EINVAL;
4510
4511 ret = sched_getaffinity(pid, &mask);
4512 if (ret < 0)
4513 return ret;
4514
4515 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4516 return -EFAULT;
4517
4518 return sizeof(cpumask_t);
4519 }
4520
4521 /**
4522 * sys_sched_yield - yield the current processor to other threads.
4523 *
4524 * This function yields the current CPU to other tasks. If there are no
4525 * other threads running on this CPU then this function will return.
4526 */
4527 asmlinkage long sys_sched_yield(void)
4528 {
4529 struct rq *rq = this_rq_lock();
4530
4531 schedstat_inc(rq, yld_cnt);
4532 if (unlikely(rq->nr_running == 1))
4533 schedstat_inc(rq, yld_act_empty);
4534 else
4535 current->sched_class->yield_task(rq, current);
4536
4537 /*
4538 * Since we are going to call schedule() anyway, there's
4539 * no need to preempt or enable interrupts:
4540 */
4541 __release(rq->lock);
4542 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4543 _raw_spin_unlock(&rq->lock);
4544 preempt_enable_no_resched();
4545
4546 schedule();
4547
4548 return 0;
4549 }
4550
4551 static void __cond_resched(void)
4552 {
4553 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4554 __might_sleep(__FILE__, __LINE__);
4555 #endif
4556 /*
4557 * The BKS might be reacquired before we have dropped
4558 * PREEMPT_ACTIVE, which could trigger a second
4559 * cond_resched() call.
4560 */
4561 do {
4562 add_preempt_count(PREEMPT_ACTIVE);
4563 schedule();
4564 sub_preempt_count(PREEMPT_ACTIVE);
4565 } while (need_resched());
4566 }
4567
4568 int __sched cond_resched(void)
4569 {
4570 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4571 system_state == SYSTEM_RUNNING) {
4572 __cond_resched();
4573 return 1;
4574 }
4575 return 0;
4576 }
4577 EXPORT_SYMBOL(cond_resched);
4578
4579 /*
4580 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4581 * call schedule, and on return reacquire the lock.
4582 *
4583 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4584 * operations here to prevent schedule() from being called twice (once via
4585 * spin_unlock(), once by hand).
4586 */
4587 int cond_resched_lock(spinlock_t *lock)
4588 {
4589 int ret = 0;
4590
4591 if (need_lockbreak(lock)) {
4592 spin_unlock(lock);
4593 cpu_relax();
4594 ret = 1;
4595 spin_lock(lock);
4596 }
4597 if (need_resched() && system_state == SYSTEM_RUNNING) {
4598 spin_release(&lock->dep_map, 1, _THIS_IP_);
4599 _raw_spin_unlock(lock);
4600 preempt_enable_no_resched();
4601 __cond_resched();
4602 ret = 1;
4603 spin_lock(lock);
4604 }
4605 return ret;
4606 }
4607 EXPORT_SYMBOL(cond_resched_lock);
4608
4609 int __sched cond_resched_softirq(void)
4610 {
4611 BUG_ON(!in_softirq());
4612
4613 if (need_resched() && system_state == SYSTEM_RUNNING) {
4614 local_bh_enable();
4615 __cond_resched();
4616 local_bh_disable();
4617 return 1;
4618 }
4619 return 0;
4620 }
4621 EXPORT_SYMBOL(cond_resched_softirq);
4622
4623 /**
4624 * yield - yield the current processor to other threads.
4625 *
4626 * This is a shortcut for kernel-space yielding - it marks the
4627 * thread runnable and calls sys_sched_yield().
4628 */
4629 void __sched yield(void)
4630 {
4631 set_current_state(TASK_RUNNING);
4632 sys_sched_yield();
4633 }
4634 EXPORT_SYMBOL(yield);
4635
4636 /*
4637 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4638 * that process accounting knows that this is a task in IO wait state.
4639 *
4640 * But don't do that if it is a deliberate, throttling IO wait (this task
4641 * has set its backing_dev_info: the queue against which it should throttle)
4642 */
4643 void __sched io_schedule(void)
4644 {
4645 struct rq *rq = &__raw_get_cpu_var(runqueues);
4646
4647 delayacct_blkio_start();
4648 atomic_inc(&rq->nr_iowait);
4649 schedule();
4650 atomic_dec(&rq->nr_iowait);
4651 delayacct_blkio_end();
4652 }
4653 EXPORT_SYMBOL(io_schedule);
4654
4655 long __sched io_schedule_timeout(long timeout)
4656 {
4657 struct rq *rq = &__raw_get_cpu_var(runqueues);
4658 long ret;
4659
4660 delayacct_blkio_start();
4661 atomic_inc(&rq->nr_iowait);
4662 ret = schedule_timeout(timeout);
4663 atomic_dec(&rq->nr_iowait);
4664 delayacct_blkio_end();
4665 return ret;
4666 }
4667
4668 /**
4669 * sys_sched_get_priority_max - return maximum RT priority.
4670 * @policy: scheduling class.
4671 *
4672 * this syscall returns the maximum rt_priority that can be used
4673 * by a given scheduling class.
4674 */
4675 asmlinkage long sys_sched_get_priority_max(int policy)
4676 {
4677 int ret = -EINVAL;
4678
4679 switch (policy) {
4680 case SCHED_FIFO:
4681 case SCHED_RR:
4682 ret = MAX_USER_RT_PRIO-1;
4683 break;
4684 case SCHED_NORMAL:
4685 case SCHED_BATCH:
4686 case SCHED_IDLE:
4687 ret = 0;
4688 break;
4689 }
4690 return ret;
4691 }
4692
4693 /**
4694 * sys_sched_get_priority_min - return minimum RT priority.
4695 * @policy: scheduling class.
4696 *
4697 * this syscall returns the minimum rt_priority that can be used
4698 * by a given scheduling class.
4699 */
4700 asmlinkage long sys_sched_get_priority_min(int policy)
4701 {
4702 int ret = -EINVAL;
4703
4704 switch (policy) {
4705 case SCHED_FIFO:
4706 case SCHED_RR:
4707 ret = 1;
4708 break;
4709 case SCHED_NORMAL:
4710 case SCHED_BATCH:
4711 case SCHED_IDLE:
4712 ret = 0;
4713 }
4714 return ret;
4715 }
4716
4717 /**
4718 * sys_sched_rr_get_interval - return the default timeslice of a process.
4719 * @pid: pid of the process.
4720 * @interval: userspace pointer to the timeslice value.
4721 *
4722 * this syscall writes the default timeslice value of a given process
4723 * into the user-space timespec buffer. A value of '0' means infinity.
4724 */
4725 asmlinkage
4726 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4727 {
4728 struct task_struct *p;
4729 int retval = -EINVAL;
4730 struct timespec t;
4731
4732 if (pid < 0)
4733 goto out_nounlock;
4734
4735 retval = -ESRCH;
4736 read_lock(&tasklist_lock);
4737 p = find_process_by_pid(pid);
4738 if (!p)
4739 goto out_unlock;
4740
4741 retval = security_task_getscheduler(p);
4742 if (retval)
4743 goto out_unlock;
4744
4745 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4746 0 : static_prio_timeslice(p->static_prio), &t);
4747 read_unlock(&tasklist_lock);
4748 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4749 out_nounlock:
4750 return retval;
4751 out_unlock:
4752 read_unlock(&tasklist_lock);
4753 return retval;
4754 }
4755
4756 static const char stat_nam[] = "RSDTtZX";
4757
4758 static void show_task(struct task_struct *p)
4759 {
4760 unsigned long free = 0;
4761 unsigned state;
4762
4763 state = p->state ? __ffs(p->state) + 1 : 0;
4764 printk("%-13.13s %c", p->comm,
4765 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4766 #if BITS_PER_LONG == 32
4767 if (state == TASK_RUNNING)
4768 printk(" running ");
4769 else
4770 printk(" %08lx ", thread_saved_pc(p));
4771 #else
4772 if (state == TASK_RUNNING)
4773 printk(" running task ");
4774 else
4775 printk(" %016lx ", thread_saved_pc(p));
4776 #endif
4777 #ifdef CONFIG_DEBUG_STACK_USAGE
4778 {
4779 unsigned long *n = end_of_stack(p);
4780 while (!*n)
4781 n++;
4782 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4783 }
4784 #endif
4785 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4786
4787 if (state != TASK_RUNNING)
4788 show_stack(p, NULL);
4789 }
4790
4791 void show_state_filter(unsigned long state_filter)
4792 {
4793 struct task_struct *g, *p;
4794
4795 #if BITS_PER_LONG == 32
4796 printk(KERN_INFO
4797 " task PC stack pid father\n");
4798 #else
4799 printk(KERN_INFO
4800 " task PC stack pid father\n");
4801 #endif
4802 read_lock(&tasklist_lock);
4803 do_each_thread(g, p) {
4804 /*
4805 * reset the NMI-timeout, listing all files on a slow
4806 * console might take alot of time:
4807 */
4808 touch_nmi_watchdog();
4809 if (!state_filter || (p->state & state_filter))
4810 show_task(p);
4811 } while_each_thread(g, p);
4812
4813 touch_all_softlockup_watchdogs();
4814
4815 #ifdef CONFIG_SCHED_DEBUG
4816 sysrq_sched_debug_show();
4817 #endif
4818 read_unlock(&tasklist_lock);
4819 /*
4820 * Only show locks if all tasks are dumped:
4821 */
4822 if (state_filter == -1)
4823 debug_show_all_locks();
4824 }
4825
4826 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4827 {
4828 idle->sched_class = &idle_sched_class;
4829 }
4830
4831 /**
4832 * init_idle - set up an idle thread for a given CPU
4833 * @idle: task in question
4834 * @cpu: cpu the idle task belongs to
4835 *
4836 * NOTE: this function does not set the idle thread's NEED_RESCHED
4837 * flag, to make booting more robust.
4838 */
4839 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4840 {
4841 struct rq *rq = cpu_rq(cpu);
4842 unsigned long flags;
4843
4844 __sched_fork(idle);
4845 idle->se.exec_start = sched_clock();
4846
4847 idle->prio = idle->normal_prio = MAX_PRIO;
4848 idle->cpus_allowed = cpumask_of_cpu(cpu);
4849 __set_task_cpu(idle, cpu);
4850
4851 spin_lock_irqsave(&rq->lock, flags);
4852 rq->curr = rq->idle = idle;
4853 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4854 idle->oncpu = 1;
4855 #endif
4856 spin_unlock_irqrestore(&rq->lock, flags);
4857
4858 /* Set the preempt count _outside_ the spinlocks! */
4859 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4860 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4861 #else
4862 task_thread_info(idle)->preempt_count = 0;
4863 #endif
4864 /*
4865 * The idle tasks have their own, simple scheduling class:
4866 */
4867 idle->sched_class = &idle_sched_class;
4868 }
4869
4870 /*
4871 * In a system that switches off the HZ timer nohz_cpu_mask
4872 * indicates which cpus entered this state. This is used
4873 * in the rcu update to wait only for active cpus. For system
4874 * which do not switch off the HZ timer nohz_cpu_mask should
4875 * always be CPU_MASK_NONE.
4876 */
4877 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4878
4879 /*
4880 * Increase the granularity value when there are more CPUs,
4881 * because with more CPUs the 'effective latency' as visible
4882 * to users decreases. But the relationship is not linear,
4883 * so pick a second-best guess by going with the log2 of the
4884 * number of CPUs.
4885 *
4886 * This idea comes from the SD scheduler of Con Kolivas:
4887 */
4888 static inline void sched_init_granularity(void)
4889 {
4890 unsigned int factor = 1 + ilog2(num_online_cpus());
4891 const unsigned long gran_limit = 100000000;
4892
4893 sysctl_sched_granularity *= factor;
4894 if (sysctl_sched_granularity > gran_limit)
4895 sysctl_sched_granularity = gran_limit;
4896
4897 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4898 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4899 }
4900
4901 #ifdef CONFIG_SMP
4902 /*
4903 * This is how migration works:
4904 *
4905 * 1) we queue a struct migration_req structure in the source CPU's
4906 * runqueue and wake up that CPU's migration thread.
4907 * 2) we down() the locked semaphore => thread blocks.
4908 * 3) migration thread wakes up (implicitly it forces the migrated
4909 * thread off the CPU)
4910 * 4) it gets the migration request and checks whether the migrated
4911 * task is still in the wrong runqueue.
4912 * 5) if it's in the wrong runqueue then the migration thread removes
4913 * it and puts it into the right queue.
4914 * 6) migration thread up()s the semaphore.
4915 * 7) we wake up and the migration is done.
4916 */
4917
4918 /*
4919 * Change a given task's CPU affinity. Migrate the thread to a
4920 * proper CPU and schedule it away if the CPU it's executing on
4921 * is removed from the allowed bitmask.
4922 *
4923 * NOTE: the caller must have a valid reference to the task, the
4924 * task must not exit() & deallocate itself prematurely. The
4925 * call is not atomic; no spinlocks may be held.
4926 */
4927 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4928 {
4929 struct migration_req req;
4930 unsigned long flags;
4931 struct rq *rq;
4932 int ret = 0;
4933
4934 rq = task_rq_lock(p, &flags);
4935 if (!cpus_intersects(new_mask, cpu_online_map)) {
4936 ret = -EINVAL;
4937 goto out;
4938 }
4939
4940 p->cpus_allowed = new_mask;
4941 /* Can the task run on the task's current CPU? If so, we're done */
4942 if (cpu_isset(task_cpu(p), new_mask))
4943 goto out;
4944
4945 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4946 /* Need help from migration thread: drop lock and wait. */
4947 task_rq_unlock(rq, &flags);
4948 wake_up_process(rq->migration_thread);
4949 wait_for_completion(&req.done);
4950 tlb_migrate_finish(p->mm);
4951 return 0;
4952 }
4953 out:
4954 task_rq_unlock(rq, &flags);
4955
4956 return ret;
4957 }
4958 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4959
4960 /*
4961 * Move (not current) task off this cpu, onto dest cpu. We're doing
4962 * this because either it can't run here any more (set_cpus_allowed()
4963 * away from this CPU, or CPU going down), or because we're
4964 * attempting to rebalance this task on exec (sched_exec).
4965 *
4966 * So we race with normal scheduler movements, but that's OK, as long
4967 * as the task is no longer on this CPU.
4968 *
4969 * Returns non-zero if task was successfully migrated.
4970 */
4971 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4972 {
4973 struct rq *rq_dest, *rq_src;
4974 int ret = 0, on_rq;
4975
4976 if (unlikely(cpu_is_offline(dest_cpu)))
4977 return ret;
4978
4979 rq_src = cpu_rq(src_cpu);
4980 rq_dest = cpu_rq(dest_cpu);
4981
4982 double_rq_lock(rq_src, rq_dest);
4983 /* Already moved. */
4984 if (task_cpu(p) != src_cpu)
4985 goto out;
4986 /* Affinity changed (again). */
4987 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4988 goto out;
4989
4990 on_rq = p->se.on_rq;
4991 if (on_rq) {
4992 update_rq_clock(rq_src);
4993 deactivate_task(rq_src, p, 0, rq_src->clock);
4994 }
4995 set_task_cpu(p, dest_cpu);
4996 if (on_rq) {
4997 activate_task(rq_dest, p, 0);
4998 check_preempt_curr(rq_dest, p);
4999 }
5000 ret = 1;
5001 out:
5002 double_rq_unlock(rq_src, rq_dest);
5003 return ret;
5004 }
5005
5006 /*
5007 * migration_thread - this is a highprio system thread that performs
5008 * thread migration by bumping thread off CPU then 'pushing' onto
5009 * another runqueue.
5010 */
5011 static int migration_thread(void *data)
5012 {
5013 int cpu = (long)data;
5014 struct rq *rq;
5015
5016 rq = cpu_rq(cpu);
5017 BUG_ON(rq->migration_thread != current);
5018
5019 set_current_state(TASK_INTERRUPTIBLE);
5020 while (!kthread_should_stop()) {
5021 struct migration_req *req;
5022 struct list_head *head;
5023
5024 spin_lock_irq(&rq->lock);
5025
5026 if (cpu_is_offline(cpu)) {
5027 spin_unlock_irq(&rq->lock);
5028 goto wait_to_die;
5029 }
5030
5031 if (rq->active_balance) {
5032 active_load_balance(rq, cpu);
5033 rq->active_balance = 0;
5034 }
5035
5036 head = &rq->migration_queue;
5037
5038 if (list_empty(head)) {
5039 spin_unlock_irq(&rq->lock);
5040 schedule();
5041 set_current_state(TASK_INTERRUPTIBLE);
5042 continue;
5043 }
5044 req = list_entry(head->next, struct migration_req, list);
5045 list_del_init(head->next);
5046
5047 spin_unlock(&rq->lock);
5048 __migrate_task(req->task, cpu, req->dest_cpu);
5049 local_irq_enable();
5050
5051 complete(&req->done);
5052 }
5053 __set_current_state(TASK_RUNNING);
5054 return 0;
5055
5056 wait_to_die:
5057 /* Wait for kthread_stop */
5058 set_current_state(TASK_INTERRUPTIBLE);
5059 while (!kthread_should_stop()) {
5060 schedule();
5061 set_current_state(TASK_INTERRUPTIBLE);
5062 }
5063 __set_current_state(TASK_RUNNING);
5064 return 0;
5065 }
5066
5067 #ifdef CONFIG_HOTPLUG_CPU
5068 /*
5069 * Figure out where task on dead CPU should go, use force if neccessary.
5070 * NOTE: interrupts should be disabled by the caller
5071 */
5072 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5073 {
5074 unsigned long flags;
5075 cpumask_t mask;
5076 struct rq *rq;
5077 int dest_cpu;
5078
5079 restart:
5080 /* On same node? */
5081 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5082 cpus_and(mask, mask, p->cpus_allowed);
5083 dest_cpu = any_online_cpu(mask);
5084
5085 /* On any allowed CPU? */
5086 if (dest_cpu == NR_CPUS)
5087 dest_cpu = any_online_cpu(p->cpus_allowed);
5088
5089 /* No more Mr. Nice Guy. */
5090 if (dest_cpu == NR_CPUS) {
5091 rq = task_rq_lock(p, &flags);
5092 cpus_setall(p->cpus_allowed);
5093 dest_cpu = any_online_cpu(p->cpus_allowed);
5094 task_rq_unlock(rq, &flags);
5095
5096 /*
5097 * Don't tell them about moving exiting tasks or
5098 * kernel threads (both mm NULL), since they never
5099 * leave kernel.
5100 */
5101 if (p->mm && printk_ratelimit())
5102 printk(KERN_INFO "process %d (%s) no "
5103 "longer affine to cpu%d\n",
5104 p->pid, p->comm, dead_cpu);
5105 }
5106 if (!__migrate_task(p, dead_cpu, dest_cpu))
5107 goto restart;
5108 }
5109
5110 /*
5111 * While a dead CPU has no uninterruptible tasks queued at this point,
5112 * it might still have a nonzero ->nr_uninterruptible counter, because
5113 * for performance reasons the counter is not stricly tracking tasks to
5114 * their home CPUs. So we just add the counter to another CPU's counter,
5115 * to keep the global sum constant after CPU-down:
5116 */
5117 static void migrate_nr_uninterruptible(struct rq *rq_src)
5118 {
5119 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5120 unsigned long flags;
5121
5122 local_irq_save(flags);
5123 double_rq_lock(rq_src, rq_dest);
5124 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5125 rq_src->nr_uninterruptible = 0;
5126 double_rq_unlock(rq_src, rq_dest);
5127 local_irq_restore(flags);
5128 }
5129
5130 /* Run through task list and migrate tasks from the dead cpu. */
5131 static void migrate_live_tasks(int src_cpu)
5132 {
5133 struct task_struct *p, *t;
5134
5135 write_lock_irq(&tasklist_lock);
5136
5137 do_each_thread(t, p) {
5138 if (p == current)
5139 continue;
5140
5141 if (task_cpu(p) == src_cpu)
5142 move_task_off_dead_cpu(src_cpu, p);
5143 } while_each_thread(t, p);
5144
5145 write_unlock_irq(&tasklist_lock);
5146 }
5147
5148 /*
5149 * Schedules idle task to be the next runnable task on current CPU.
5150 * It does so by boosting its priority to highest possible and adding it to
5151 * the _front_ of the runqueue. Used by CPU offline code.
5152 */
5153 void sched_idle_next(void)
5154 {
5155 int this_cpu = smp_processor_id();
5156 struct rq *rq = cpu_rq(this_cpu);
5157 struct task_struct *p = rq->idle;
5158 unsigned long flags;
5159
5160 /* cpu has to be offline */
5161 BUG_ON(cpu_online(this_cpu));
5162
5163 /*
5164 * Strictly not necessary since rest of the CPUs are stopped by now
5165 * and interrupts disabled on the current cpu.
5166 */
5167 spin_lock_irqsave(&rq->lock, flags);
5168
5169 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5170
5171 /* Add idle task to the _front_ of its priority queue: */
5172 activate_idle_task(p, rq);
5173
5174 spin_unlock_irqrestore(&rq->lock, flags);
5175 }
5176
5177 /*
5178 * Ensures that the idle task is using init_mm right before its cpu goes
5179 * offline.
5180 */
5181 void idle_task_exit(void)
5182 {
5183 struct mm_struct *mm = current->active_mm;
5184
5185 BUG_ON(cpu_online(smp_processor_id()));
5186
5187 if (mm != &init_mm)
5188 switch_mm(mm, &init_mm, current);
5189 mmdrop(mm);
5190 }
5191
5192 /* called under rq->lock with disabled interrupts */
5193 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5194 {
5195 struct rq *rq = cpu_rq(dead_cpu);
5196
5197 /* Must be exiting, otherwise would be on tasklist. */
5198 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5199
5200 /* Cannot have done final schedule yet: would have vanished. */
5201 BUG_ON(p->state == TASK_DEAD);
5202
5203 get_task_struct(p);
5204
5205 /*
5206 * Drop lock around migration; if someone else moves it,
5207 * that's OK. No task can be added to this CPU, so iteration is
5208 * fine.
5209 * NOTE: interrupts should be left disabled --dev@
5210 */
5211 spin_unlock(&rq->lock);
5212 move_task_off_dead_cpu(dead_cpu, p);
5213 spin_lock(&rq->lock);
5214
5215 put_task_struct(p);
5216 }
5217
5218 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5219 static void migrate_dead_tasks(unsigned int dead_cpu)
5220 {
5221 struct rq *rq = cpu_rq(dead_cpu);
5222 struct task_struct *next;
5223
5224 for ( ; ; ) {
5225 if (!rq->nr_running)
5226 break;
5227 update_rq_clock(rq);
5228 next = pick_next_task(rq, rq->curr, rq->clock);
5229 if (!next)
5230 break;
5231 migrate_dead(dead_cpu, next);
5232
5233 }
5234 }
5235 #endif /* CONFIG_HOTPLUG_CPU */
5236
5237 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5238
5239 static struct ctl_table sd_ctl_dir[] = {
5240 {
5241 .procname = "sched_domain",
5242 .mode = 0755,
5243 },
5244 {0,},
5245 };
5246
5247 static struct ctl_table sd_ctl_root[] = {
5248 {
5249 .procname = "kernel",
5250 .mode = 0755,
5251 .child = sd_ctl_dir,
5252 },
5253 {0,},
5254 };
5255
5256 static struct ctl_table *sd_alloc_ctl_entry(int n)
5257 {
5258 struct ctl_table *entry =
5259 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5260
5261 BUG_ON(!entry);
5262 memset(entry, 0, n * sizeof(struct ctl_table));
5263
5264 return entry;
5265 }
5266
5267 static void
5268 set_table_entry(struct ctl_table *entry,
5269 const char *procname, void *data, int maxlen,
5270 mode_t mode, proc_handler *proc_handler)
5271 {
5272 entry->procname = procname;
5273 entry->data = data;
5274 entry->maxlen = maxlen;
5275 entry->mode = mode;
5276 entry->proc_handler = proc_handler;
5277 }
5278
5279 static struct ctl_table *
5280 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5281 {
5282 struct ctl_table *table = sd_alloc_ctl_entry(14);
5283
5284 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5285 sizeof(long), 0644, proc_doulongvec_minmax);
5286 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5287 sizeof(long), 0644, proc_doulongvec_minmax);
5288 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax);
5290 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax);
5298 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[10], "cache_nice_tries",
5303 &sd->cache_nice_tries,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[12], "flags", &sd->flags,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307
5308 return table;
5309 }
5310
5311 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5312 {
5313 struct ctl_table *entry, *table;
5314 struct sched_domain *sd;
5315 int domain_num = 0, i;
5316 char buf[32];
5317
5318 for_each_domain(cpu, sd)
5319 domain_num++;
5320 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5321
5322 i = 0;
5323 for_each_domain(cpu, sd) {
5324 snprintf(buf, 32, "domain%d", i);
5325 entry->procname = kstrdup(buf, GFP_KERNEL);
5326 entry->mode = 0755;
5327 entry->child = sd_alloc_ctl_domain_table(sd);
5328 entry++;
5329 i++;
5330 }
5331 return table;
5332 }
5333
5334 static struct ctl_table_header *sd_sysctl_header;
5335 static void init_sched_domain_sysctl(void)
5336 {
5337 int i, cpu_num = num_online_cpus();
5338 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5339 char buf[32];
5340
5341 sd_ctl_dir[0].child = entry;
5342
5343 for (i = 0; i < cpu_num; i++, entry++) {
5344 snprintf(buf, 32, "cpu%d", i);
5345 entry->procname = kstrdup(buf, GFP_KERNEL);
5346 entry->mode = 0755;
5347 entry->child = sd_alloc_ctl_cpu_table(i);
5348 }
5349 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5350 }
5351 #else
5352 static void init_sched_domain_sysctl(void)
5353 {
5354 }
5355 #endif
5356
5357 /*
5358 * migration_call - callback that gets triggered when a CPU is added.
5359 * Here we can start up the necessary migration thread for the new CPU.
5360 */
5361 static int __cpuinit
5362 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5363 {
5364 struct task_struct *p;
5365 int cpu = (long)hcpu;
5366 unsigned long flags;
5367 struct rq *rq;
5368
5369 switch (action) {
5370 case CPU_LOCK_ACQUIRE:
5371 mutex_lock(&sched_hotcpu_mutex);
5372 break;
5373
5374 case CPU_UP_PREPARE:
5375 case CPU_UP_PREPARE_FROZEN:
5376 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5377 if (IS_ERR(p))
5378 return NOTIFY_BAD;
5379 kthread_bind(p, cpu);
5380 /* Must be high prio: stop_machine expects to yield to it. */
5381 rq = task_rq_lock(p, &flags);
5382 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5383 task_rq_unlock(rq, &flags);
5384 cpu_rq(cpu)->migration_thread = p;
5385 break;
5386
5387 case CPU_ONLINE:
5388 case CPU_ONLINE_FROZEN:
5389 /* Strictly unneccessary, as first user will wake it. */
5390 wake_up_process(cpu_rq(cpu)->migration_thread);
5391 break;
5392
5393 #ifdef CONFIG_HOTPLUG_CPU
5394 case CPU_UP_CANCELED:
5395 case CPU_UP_CANCELED_FROZEN:
5396 if (!cpu_rq(cpu)->migration_thread)
5397 break;
5398 /* Unbind it from offline cpu so it can run. Fall thru. */
5399 kthread_bind(cpu_rq(cpu)->migration_thread,
5400 any_online_cpu(cpu_online_map));
5401 kthread_stop(cpu_rq(cpu)->migration_thread);
5402 cpu_rq(cpu)->migration_thread = NULL;
5403 break;
5404
5405 case CPU_DEAD:
5406 case CPU_DEAD_FROZEN:
5407 migrate_live_tasks(cpu);
5408 rq = cpu_rq(cpu);
5409 kthread_stop(rq->migration_thread);
5410 rq->migration_thread = NULL;
5411 /* Idle task back to normal (off runqueue, low prio) */
5412 rq = task_rq_lock(rq->idle, &flags);
5413 update_rq_clock(rq);
5414 deactivate_task(rq, rq->idle, 0, rq->clock);
5415 rq->idle->static_prio = MAX_PRIO;
5416 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5417 rq->idle->sched_class = &idle_sched_class;
5418 migrate_dead_tasks(cpu);
5419 task_rq_unlock(rq, &flags);
5420 migrate_nr_uninterruptible(rq);
5421 BUG_ON(rq->nr_running != 0);
5422
5423 /* No need to migrate the tasks: it was best-effort if
5424 * they didn't take sched_hotcpu_mutex. Just wake up
5425 * the requestors. */
5426 spin_lock_irq(&rq->lock);
5427 while (!list_empty(&rq->migration_queue)) {
5428 struct migration_req *req;
5429
5430 req = list_entry(rq->migration_queue.next,
5431 struct migration_req, list);
5432 list_del_init(&req->list);
5433 complete(&req->done);
5434 }
5435 spin_unlock_irq(&rq->lock);
5436 break;
5437 #endif
5438 case CPU_LOCK_RELEASE:
5439 mutex_unlock(&sched_hotcpu_mutex);
5440 break;
5441 }
5442 return NOTIFY_OK;
5443 }
5444
5445 /* Register at highest priority so that task migration (migrate_all_tasks)
5446 * happens before everything else.
5447 */
5448 static struct notifier_block __cpuinitdata migration_notifier = {
5449 .notifier_call = migration_call,
5450 .priority = 10
5451 };
5452
5453 int __init migration_init(void)
5454 {
5455 void *cpu = (void *)(long)smp_processor_id();
5456 int err;
5457
5458 /* Start one for the boot CPU: */
5459 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5460 BUG_ON(err == NOTIFY_BAD);
5461 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5462 register_cpu_notifier(&migration_notifier);
5463
5464 return 0;
5465 }
5466 #endif
5467
5468 #ifdef CONFIG_SMP
5469
5470 /* Number of possible processor ids */
5471 int nr_cpu_ids __read_mostly = NR_CPUS;
5472 EXPORT_SYMBOL(nr_cpu_ids);
5473
5474 #undef SCHED_DOMAIN_DEBUG
5475 #ifdef SCHED_DOMAIN_DEBUG
5476 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5477 {
5478 int level = 0;
5479
5480 if (!sd) {
5481 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5482 return;
5483 }
5484
5485 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5486
5487 do {
5488 int i;
5489 char str[NR_CPUS];
5490 struct sched_group *group = sd->groups;
5491 cpumask_t groupmask;
5492
5493 cpumask_scnprintf(str, NR_CPUS, sd->span);
5494 cpus_clear(groupmask);
5495
5496 printk(KERN_DEBUG);
5497 for (i = 0; i < level + 1; i++)
5498 printk(" ");
5499 printk("domain %d: ", level);
5500
5501 if (!(sd->flags & SD_LOAD_BALANCE)) {
5502 printk("does not load-balance\n");
5503 if (sd->parent)
5504 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5505 " has parent");
5506 break;
5507 }
5508
5509 printk("span %s\n", str);
5510
5511 if (!cpu_isset(cpu, sd->span))
5512 printk(KERN_ERR "ERROR: domain->span does not contain "
5513 "CPU%d\n", cpu);
5514 if (!cpu_isset(cpu, group->cpumask))
5515 printk(KERN_ERR "ERROR: domain->groups does not contain"
5516 " CPU%d\n", cpu);
5517
5518 printk(KERN_DEBUG);
5519 for (i = 0; i < level + 2; i++)
5520 printk(" ");
5521 printk("groups:");
5522 do {
5523 if (!group) {
5524 printk("\n");
5525 printk(KERN_ERR "ERROR: group is NULL\n");
5526 break;
5527 }
5528
5529 if (!group->__cpu_power) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: domain->cpu_power not "
5532 "set\n");
5533 }
5534
5535 if (!cpus_weight(group->cpumask)) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: empty group\n");
5538 }
5539
5540 if (cpus_intersects(groupmask, group->cpumask)) {
5541 printk("\n");
5542 printk(KERN_ERR "ERROR: repeated CPUs\n");
5543 }
5544
5545 cpus_or(groupmask, groupmask, group->cpumask);
5546
5547 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5548 printk(" %s", str);
5549
5550 group = group->next;
5551 } while (group != sd->groups);
5552 printk("\n");
5553
5554 if (!cpus_equal(sd->span, groupmask))
5555 printk(KERN_ERR "ERROR: groups don't span "
5556 "domain->span\n");
5557
5558 level++;
5559 sd = sd->parent;
5560 if (!sd)
5561 continue;
5562
5563 if (!cpus_subset(groupmask, sd->span))
5564 printk(KERN_ERR "ERROR: parent span is not a superset "
5565 "of domain->span\n");
5566
5567 } while (sd);
5568 }
5569 #else
5570 # define sched_domain_debug(sd, cpu) do { } while (0)
5571 #endif
5572
5573 static int sd_degenerate(struct sched_domain *sd)
5574 {
5575 if (cpus_weight(sd->span) == 1)
5576 return 1;
5577
5578 /* Following flags need at least 2 groups */
5579 if (sd->flags & (SD_LOAD_BALANCE |
5580 SD_BALANCE_NEWIDLE |
5581 SD_BALANCE_FORK |
5582 SD_BALANCE_EXEC |
5583 SD_SHARE_CPUPOWER |
5584 SD_SHARE_PKG_RESOURCES)) {
5585 if (sd->groups != sd->groups->next)
5586 return 0;
5587 }
5588
5589 /* Following flags don't use groups */
5590 if (sd->flags & (SD_WAKE_IDLE |
5591 SD_WAKE_AFFINE |
5592 SD_WAKE_BALANCE))
5593 return 0;
5594
5595 return 1;
5596 }
5597
5598 static int
5599 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5600 {
5601 unsigned long cflags = sd->flags, pflags = parent->flags;
5602
5603 if (sd_degenerate(parent))
5604 return 1;
5605
5606 if (!cpus_equal(sd->span, parent->span))
5607 return 0;
5608
5609 /* Does parent contain flags not in child? */
5610 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5611 if (cflags & SD_WAKE_AFFINE)
5612 pflags &= ~SD_WAKE_BALANCE;
5613 /* Flags needing groups don't count if only 1 group in parent */
5614 if (parent->groups == parent->groups->next) {
5615 pflags &= ~(SD_LOAD_BALANCE |
5616 SD_BALANCE_NEWIDLE |
5617 SD_BALANCE_FORK |
5618 SD_BALANCE_EXEC |
5619 SD_SHARE_CPUPOWER |
5620 SD_SHARE_PKG_RESOURCES);
5621 }
5622 if (~cflags & pflags)
5623 return 0;
5624
5625 return 1;
5626 }
5627
5628 /*
5629 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5630 * hold the hotplug lock.
5631 */
5632 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5633 {
5634 struct rq *rq = cpu_rq(cpu);
5635 struct sched_domain *tmp;
5636
5637 /* Remove the sched domains which do not contribute to scheduling. */
5638 for (tmp = sd; tmp; tmp = tmp->parent) {
5639 struct sched_domain *parent = tmp->parent;
5640 if (!parent)
5641 break;
5642 if (sd_parent_degenerate(tmp, parent)) {
5643 tmp->parent = parent->parent;
5644 if (parent->parent)
5645 parent->parent->child = tmp;
5646 }
5647 }
5648
5649 if (sd && sd_degenerate(sd)) {
5650 sd = sd->parent;
5651 if (sd)
5652 sd->child = NULL;
5653 }
5654
5655 sched_domain_debug(sd, cpu);
5656
5657 rcu_assign_pointer(rq->sd, sd);
5658 }
5659
5660 /* cpus with isolated domains */
5661 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5662
5663 /* Setup the mask of cpus configured for isolated domains */
5664 static int __init isolated_cpu_setup(char *str)
5665 {
5666 int ints[NR_CPUS], i;
5667
5668 str = get_options(str, ARRAY_SIZE(ints), ints);
5669 cpus_clear(cpu_isolated_map);
5670 for (i = 1; i <= ints[0]; i++)
5671 if (ints[i] < NR_CPUS)
5672 cpu_set(ints[i], cpu_isolated_map);
5673 return 1;
5674 }
5675
5676 __setup ("isolcpus=", isolated_cpu_setup);
5677
5678 /*
5679 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5680 * to a function which identifies what group(along with sched group) a CPU
5681 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5682 * (due to the fact that we keep track of groups covered with a cpumask_t).
5683 *
5684 * init_sched_build_groups will build a circular linked list of the groups
5685 * covered by the given span, and will set each group's ->cpumask correctly,
5686 * and ->cpu_power to 0.
5687 */
5688 static void
5689 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5690 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5691 struct sched_group **sg))
5692 {
5693 struct sched_group *first = NULL, *last = NULL;
5694 cpumask_t covered = CPU_MASK_NONE;
5695 int i;
5696
5697 for_each_cpu_mask(i, span) {
5698 struct sched_group *sg;
5699 int group = group_fn(i, cpu_map, &sg);
5700 int j;
5701
5702 if (cpu_isset(i, covered))
5703 continue;
5704
5705 sg->cpumask = CPU_MASK_NONE;
5706 sg->__cpu_power = 0;
5707
5708 for_each_cpu_mask(j, span) {
5709 if (group_fn(j, cpu_map, NULL) != group)
5710 continue;
5711
5712 cpu_set(j, covered);
5713 cpu_set(j, sg->cpumask);
5714 }
5715 if (!first)
5716 first = sg;
5717 if (last)
5718 last->next = sg;
5719 last = sg;
5720 }
5721 last->next = first;
5722 }
5723
5724 #define SD_NODES_PER_DOMAIN 16
5725
5726 #ifdef CONFIG_NUMA
5727
5728 /**
5729 * find_next_best_node - find the next node to include in a sched_domain
5730 * @node: node whose sched_domain we're building
5731 * @used_nodes: nodes already in the sched_domain
5732 *
5733 * Find the next node to include in a given scheduling domain. Simply
5734 * finds the closest node not already in the @used_nodes map.
5735 *
5736 * Should use nodemask_t.
5737 */
5738 static int find_next_best_node(int node, unsigned long *used_nodes)
5739 {
5740 int i, n, val, min_val, best_node = 0;
5741
5742 min_val = INT_MAX;
5743
5744 for (i = 0; i < MAX_NUMNODES; i++) {
5745 /* Start at @node */
5746 n = (node + i) % MAX_NUMNODES;
5747
5748 if (!nr_cpus_node(n))
5749 continue;
5750
5751 /* Skip already used nodes */
5752 if (test_bit(n, used_nodes))
5753 continue;
5754
5755 /* Simple min distance search */
5756 val = node_distance(node, n);
5757
5758 if (val < min_val) {
5759 min_val = val;
5760 best_node = n;
5761 }
5762 }
5763
5764 set_bit(best_node, used_nodes);
5765 return best_node;
5766 }
5767
5768 /**
5769 * sched_domain_node_span - get a cpumask for a node's sched_domain
5770 * @node: node whose cpumask we're constructing
5771 * @size: number of nodes to include in this span
5772 *
5773 * Given a node, construct a good cpumask for its sched_domain to span. It
5774 * should be one that prevents unnecessary balancing, but also spreads tasks
5775 * out optimally.
5776 */
5777 static cpumask_t sched_domain_node_span(int node)
5778 {
5779 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5780 cpumask_t span, nodemask;
5781 int i;
5782
5783 cpus_clear(span);
5784 bitmap_zero(used_nodes, MAX_NUMNODES);
5785
5786 nodemask = node_to_cpumask(node);
5787 cpus_or(span, span, nodemask);
5788 set_bit(node, used_nodes);
5789
5790 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5791 int next_node = find_next_best_node(node, used_nodes);
5792
5793 nodemask = node_to_cpumask(next_node);
5794 cpus_or(span, span, nodemask);
5795 }
5796
5797 return span;
5798 }
5799 #endif
5800
5801 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5802
5803 /*
5804 * SMT sched-domains:
5805 */
5806 #ifdef CONFIG_SCHED_SMT
5807 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5808 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5809
5810 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5811 struct sched_group **sg)
5812 {
5813 if (sg)
5814 *sg = &per_cpu(sched_group_cpus, cpu);
5815 return cpu;
5816 }
5817 #endif
5818
5819 /*
5820 * multi-core sched-domains:
5821 */
5822 #ifdef CONFIG_SCHED_MC
5823 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5824 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5825 #endif
5826
5827 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5828 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5829 struct sched_group **sg)
5830 {
5831 int group;
5832 cpumask_t mask = cpu_sibling_map[cpu];
5833 cpus_and(mask, mask, *cpu_map);
5834 group = first_cpu(mask);
5835 if (sg)
5836 *sg = &per_cpu(sched_group_core, group);
5837 return group;
5838 }
5839 #elif defined(CONFIG_SCHED_MC)
5840 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5841 struct sched_group **sg)
5842 {
5843 if (sg)
5844 *sg = &per_cpu(sched_group_core, cpu);
5845 return cpu;
5846 }
5847 #endif
5848
5849 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5850 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5851
5852 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg)
5854 {
5855 int group;
5856 #ifdef CONFIG_SCHED_MC
5857 cpumask_t mask = cpu_coregroup_map(cpu);
5858 cpus_and(mask, mask, *cpu_map);
5859 group = first_cpu(mask);
5860 #elif defined(CONFIG_SCHED_SMT)
5861 cpumask_t mask = cpu_sibling_map[cpu];
5862 cpus_and(mask, mask, *cpu_map);
5863 group = first_cpu(mask);
5864 #else
5865 group = cpu;
5866 #endif
5867 if (sg)
5868 *sg = &per_cpu(sched_group_phys, group);
5869 return group;
5870 }
5871
5872 #ifdef CONFIG_NUMA
5873 /*
5874 * The init_sched_build_groups can't handle what we want to do with node
5875 * groups, so roll our own. Now each node has its own list of groups which
5876 * gets dynamically allocated.
5877 */
5878 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5879 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5880
5881 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5882 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5883
5884 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5885 struct sched_group **sg)
5886 {
5887 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5888 int group;
5889
5890 cpus_and(nodemask, nodemask, *cpu_map);
5891 group = first_cpu(nodemask);
5892
5893 if (sg)
5894 *sg = &per_cpu(sched_group_allnodes, group);
5895 return group;
5896 }
5897
5898 static void init_numa_sched_groups_power(struct sched_group *group_head)
5899 {
5900 struct sched_group *sg = group_head;
5901 int j;
5902
5903 if (!sg)
5904 return;
5905 next_sg:
5906 for_each_cpu_mask(j, sg->cpumask) {
5907 struct sched_domain *sd;
5908
5909 sd = &per_cpu(phys_domains, j);
5910 if (j != first_cpu(sd->groups->cpumask)) {
5911 /*
5912 * Only add "power" once for each
5913 * physical package.
5914 */
5915 continue;
5916 }
5917
5918 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5919 }
5920 sg = sg->next;
5921 if (sg != group_head)
5922 goto next_sg;
5923 }
5924 #endif
5925
5926 #ifdef CONFIG_NUMA
5927 /* Free memory allocated for various sched_group structures */
5928 static void free_sched_groups(const cpumask_t *cpu_map)
5929 {
5930 int cpu, i;
5931
5932 for_each_cpu_mask(cpu, *cpu_map) {
5933 struct sched_group **sched_group_nodes
5934 = sched_group_nodes_bycpu[cpu];
5935
5936 if (!sched_group_nodes)
5937 continue;
5938
5939 for (i = 0; i < MAX_NUMNODES; i++) {
5940 cpumask_t nodemask = node_to_cpumask(i);
5941 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5942
5943 cpus_and(nodemask, nodemask, *cpu_map);
5944 if (cpus_empty(nodemask))
5945 continue;
5946
5947 if (sg == NULL)
5948 continue;
5949 sg = sg->next;
5950 next_sg:
5951 oldsg = sg;
5952 sg = sg->next;
5953 kfree(oldsg);
5954 if (oldsg != sched_group_nodes[i])
5955 goto next_sg;
5956 }
5957 kfree(sched_group_nodes);
5958 sched_group_nodes_bycpu[cpu] = NULL;
5959 }
5960 }
5961 #else
5962 static void free_sched_groups(const cpumask_t *cpu_map)
5963 {
5964 }
5965 #endif
5966
5967 /*
5968 * Initialize sched groups cpu_power.
5969 *
5970 * cpu_power indicates the capacity of sched group, which is used while
5971 * distributing the load between different sched groups in a sched domain.
5972 * Typically cpu_power for all the groups in a sched domain will be same unless
5973 * there are asymmetries in the topology. If there are asymmetries, group
5974 * having more cpu_power will pickup more load compared to the group having
5975 * less cpu_power.
5976 *
5977 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5978 * the maximum number of tasks a group can handle in the presence of other idle
5979 * or lightly loaded groups in the same sched domain.
5980 */
5981 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5982 {
5983 struct sched_domain *child;
5984 struct sched_group *group;
5985
5986 WARN_ON(!sd || !sd->groups);
5987
5988 if (cpu != first_cpu(sd->groups->cpumask))
5989 return;
5990
5991 child = sd->child;
5992
5993 sd->groups->__cpu_power = 0;
5994
5995 /*
5996 * For perf policy, if the groups in child domain share resources
5997 * (for example cores sharing some portions of the cache hierarchy
5998 * or SMT), then set this domain groups cpu_power such that each group
5999 * can handle only one task, when there are other idle groups in the
6000 * same sched domain.
6001 */
6002 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6003 (child->flags &
6004 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6005 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6006 return;
6007 }
6008
6009 /*
6010 * add cpu_power of each child group to this groups cpu_power
6011 */
6012 group = child->groups;
6013 do {
6014 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6015 group = group->next;
6016 } while (group != child->groups);
6017 }
6018
6019 /*
6020 * Build sched domains for a given set of cpus and attach the sched domains
6021 * to the individual cpus
6022 */
6023 static int build_sched_domains(const cpumask_t *cpu_map)
6024 {
6025 int i;
6026 #ifdef CONFIG_NUMA
6027 struct sched_group **sched_group_nodes = NULL;
6028 int sd_allnodes = 0;
6029
6030 /*
6031 * Allocate the per-node list of sched groups
6032 */
6033 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6034 GFP_KERNEL);
6035 if (!sched_group_nodes) {
6036 printk(KERN_WARNING "Can not alloc sched group node list\n");
6037 return -ENOMEM;
6038 }
6039 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6040 #endif
6041
6042 /*
6043 * Set up domains for cpus specified by the cpu_map.
6044 */
6045 for_each_cpu_mask(i, *cpu_map) {
6046 struct sched_domain *sd = NULL, *p;
6047 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6048
6049 cpus_and(nodemask, nodemask, *cpu_map);
6050
6051 #ifdef CONFIG_NUMA
6052 if (cpus_weight(*cpu_map) >
6053 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6054 sd = &per_cpu(allnodes_domains, i);
6055 *sd = SD_ALLNODES_INIT;
6056 sd->span = *cpu_map;
6057 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6058 p = sd;
6059 sd_allnodes = 1;
6060 } else
6061 p = NULL;
6062
6063 sd = &per_cpu(node_domains, i);
6064 *sd = SD_NODE_INIT;
6065 sd->span = sched_domain_node_span(cpu_to_node(i));
6066 sd->parent = p;
6067 if (p)
6068 p->child = sd;
6069 cpus_and(sd->span, sd->span, *cpu_map);
6070 #endif
6071
6072 p = sd;
6073 sd = &per_cpu(phys_domains, i);
6074 *sd = SD_CPU_INIT;
6075 sd->span = nodemask;
6076 sd->parent = p;
6077 if (p)
6078 p->child = sd;
6079 cpu_to_phys_group(i, cpu_map, &sd->groups);
6080
6081 #ifdef CONFIG_SCHED_MC
6082 p = sd;
6083 sd = &per_cpu(core_domains, i);
6084 *sd = SD_MC_INIT;
6085 sd->span = cpu_coregroup_map(i);
6086 cpus_and(sd->span, sd->span, *cpu_map);
6087 sd->parent = p;
6088 p->child = sd;
6089 cpu_to_core_group(i, cpu_map, &sd->groups);
6090 #endif
6091
6092 #ifdef CONFIG_SCHED_SMT
6093 p = sd;
6094 sd = &per_cpu(cpu_domains, i);
6095 *sd = SD_SIBLING_INIT;
6096 sd->span = cpu_sibling_map[i];
6097 cpus_and(sd->span, sd->span, *cpu_map);
6098 sd->parent = p;
6099 p->child = sd;
6100 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6101 #endif
6102 }
6103
6104 #ifdef CONFIG_SCHED_SMT
6105 /* Set up CPU (sibling) groups */
6106 for_each_cpu_mask(i, *cpu_map) {
6107 cpumask_t this_sibling_map = cpu_sibling_map[i];
6108 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6109 if (i != first_cpu(this_sibling_map))
6110 continue;
6111
6112 init_sched_build_groups(this_sibling_map, cpu_map,
6113 &cpu_to_cpu_group);
6114 }
6115 #endif
6116
6117 #ifdef CONFIG_SCHED_MC
6118 /* Set up multi-core groups */
6119 for_each_cpu_mask(i, *cpu_map) {
6120 cpumask_t this_core_map = cpu_coregroup_map(i);
6121 cpus_and(this_core_map, this_core_map, *cpu_map);
6122 if (i != first_cpu(this_core_map))
6123 continue;
6124 init_sched_build_groups(this_core_map, cpu_map,
6125 &cpu_to_core_group);
6126 }
6127 #endif
6128
6129 /* Set up physical groups */
6130 for (i = 0; i < MAX_NUMNODES; i++) {
6131 cpumask_t nodemask = node_to_cpumask(i);
6132
6133 cpus_and(nodemask, nodemask, *cpu_map);
6134 if (cpus_empty(nodemask))
6135 continue;
6136
6137 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6138 }
6139
6140 #ifdef CONFIG_NUMA
6141 /* Set up node groups */
6142 if (sd_allnodes)
6143 init_sched_build_groups(*cpu_map, cpu_map,
6144 &cpu_to_allnodes_group);
6145
6146 for (i = 0; i < MAX_NUMNODES; i++) {
6147 /* Set up node groups */
6148 struct sched_group *sg, *prev;
6149 cpumask_t nodemask = node_to_cpumask(i);
6150 cpumask_t domainspan;
6151 cpumask_t covered = CPU_MASK_NONE;
6152 int j;
6153
6154 cpus_and(nodemask, nodemask, *cpu_map);
6155 if (cpus_empty(nodemask)) {
6156 sched_group_nodes[i] = NULL;
6157 continue;
6158 }
6159
6160 domainspan = sched_domain_node_span(i);
6161 cpus_and(domainspan, domainspan, *cpu_map);
6162
6163 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6164 if (!sg) {
6165 printk(KERN_WARNING "Can not alloc domain group for "
6166 "node %d\n", i);
6167 goto error;
6168 }
6169 sched_group_nodes[i] = sg;
6170 for_each_cpu_mask(j, nodemask) {
6171 struct sched_domain *sd;
6172
6173 sd = &per_cpu(node_domains, j);
6174 sd->groups = sg;
6175 }
6176 sg->__cpu_power = 0;
6177 sg->cpumask = nodemask;
6178 sg->next = sg;
6179 cpus_or(covered, covered, nodemask);
6180 prev = sg;
6181
6182 for (j = 0; j < MAX_NUMNODES; j++) {
6183 cpumask_t tmp, notcovered;
6184 int n = (i + j) % MAX_NUMNODES;
6185
6186 cpus_complement(notcovered, covered);
6187 cpus_and(tmp, notcovered, *cpu_map);
6188 cpus_and(tmp, tmp, domainspan);
6189 if (cpus_empty(tmp))
6190 break;
6191
6192 nodemask = node_to_cpumask(n);
6193 cpus_and(tmp, tmp, nodemask);
6194 if (cpus_empty(tmp))
6195 continue;
6196
6197 sg = kmalloc_node(sizeof(struct sched_group),
6198 GFP_KERNEL, i);
6199 if (!sg) {
6200 printk(KERN_WARNING
6201 "Can not alloc domain group for node %d\n", j);
6202 goto error;
6203 }
6204 sg->__cpu_power = 0;
6205 sg->cpumask = tmp;
6206 sg->next = prev->next;
6207 cpus_or(covered, covered, tmp);
6208 prev->next = sg;
6209 prev = sg;
6210 }
6211 }
6212 #endif
6213
6214 /* Calculate CPU power for physical packages and nodes */
6215 #ifdef CONFIG_SCHED_SMT
6216 for_each_cpu_mask(i, *cpu_map) {
6217 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6218
6219 init_sched_groups_power(i, sd);
6220 }
6221 #endif
6222 #ifdef CONFIG_SCHED_MC
6223 for_each_cpu_mask(i, *cpu_map) {
6224 struct sched_domain *sd = &per_cpu(core_domains, i);
6225
6226 init_sched_groups_power(i, sd);
6227 }
6228 #endif
6229
6230 for_each_cpu_mask(i, *cpu_map) {
6231 struct sched_domain *sd = &per_cpu(phys_domains, i);
6232
6233 init_sched_groups_power(i, sd);
6234 }
6235
6236 #ifdef CONFIG_NUMA
6237 for (i = 0; i < MAX_NUMNODES; i++)
6238 init_numa_sched_groups_power(sched_group_nodes[i]);
6239
6240 if (sd_allnodes) {
6241 struct sched_group *sg;
6242
6243 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6244 init_numa_sched_groups_power(sg);
6245 }
6246 #endif
6247
6248 /* Attach the domains */
6249 for_each_cpu_mask(i, *cpu_map) {
6250 struct sched_domain *sd;
6251 #ifdef CONFIG_SCHED_SMT
6252 sd = &per_cpu(cpu_domains, i);
6253 #elif defined(CONFIG_SCHED_MC)
6254 sd = &per_cpu(core_domains, i);
6255 #else
6256 sd = &per_cpu(phys_domains, i);
6257 #endif
6258 cpu_attach_domain(sd, i);
6259 }
6260
6261 return 0;
6262
6263 #ifdef CONFIG_NUMA
6264 error:
6265 free_sched_groups(cpu_map);
6266 return -ENOMEM;
6267 #endif
6268 }
6269 /*
6270 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6271 */
6272 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6273 {
6274 cpumask_t cpu_default_map;
6275 int err;
6276
6277 /*
6278 * Setup mask for cpus without special case scheduling requirements.
6279 * For now this just excludes isolated cpus, but could be used to
6280 * exclude other special cases in the future.
6281 */
6282 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6283
6284 err = build_sched_domains(&cpu_default_map);
6285
6286 return err;
6287 }
6288
6289 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6290 {
6291 free_sched_groups(cpu_map);
6292 }
6293
6294 /*
6295 * Detach sched domains from a group of cpus specified in cpu_map
6296 * These cpus will now be attached to the NULL domain
6297 */
6298 static void detach_destroy_domains(const cpumask_t *cpu_map)
6299 {
6300 int i;
6301
6302 for_each_cpu_mask(i, *cpu_map)
6303 cpu_attach_domain(NULL, i);
6304 synchronize_sched();
6305 arch_destroy_sched_domains(cpu_map);
6306 }
6307
6308 /*
6309 * Partition sched domains as specified by the cpumasks below.
6310 * This attaches all cpus from the cpumasks to the NULL domain,
6311 * waits for a RCU quiescent period, recalculates sched
6312 * domain information and then attaches them back to the
6313 * correct sched domains
6314 * Call with hotplug lock held
6315 */
6316 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6317 {
6318 cpumask_t change_map;
6319 int err = 0;
6320
6321 cpus_and(*partition1, *partition1, cpu_online_map);
6322 cpus_and(*partition2, *partition2, cpu_online_map);
6323 cpus_or(change_map, *partition1, *partition2);
6324
6325 /* Detach sched domains from all of the affected cpus */
6326 detach_destroy_domains(&change_map);
6327 if (!cpus_empty(*partition1))
6328 err = build_sched_domains(partition1);
6329 if (!err && !cpus_empty(*partition2))
6330 err = build_sched_domains(partition2);
6331
6332 return err;
6333 }
6334
6335 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6336 int arch_reinit_sched_domains(void)
6337 {
6338 int err;
6339
6340 mutex_lock(&sched_hotcpu_mutex);
6341 detach_destroy_domains(&cpu_online_map);
6342 err = arch_init_sched_domains(&cpu_online_map);
6343 mutex_unlock(&sched_hotcpu_mutex);
6344
6345 return err;
6346 }
6347
6348 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6349 {
6350 int ret;
6351
6352 if (buf[0] != '0' && buf[0] != '1')
6353 return -EINVAL;
6354
6355 if (smt)
6356 sched_smt_power_savings = (buf[0] == '1');
6357 else
6358 sched_mc_power_savings = (buf[0] == '1');
6359
6360 ret = arch_reinit_sched_domains();
6361
6362 return ret ? ret : count;
6363 }
6364
6365 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6366 {
6367 int err = 0;
6368
6369 #ifdef CONFIG_SCHED_SMT
6370 if (smt_capable())
6371 err = sysfs_create_file(&cls->kset.kobj,
6372 &attr_sched_smt_power_savings.attr);
6373 #endif
6374 #ifdef CONFIG_SCHED_MC
6375 if (!err && mc_capable())
6376 err = sysfs_create_file(&cls->kset.kobj,
6377 &attr_sched_mc_power_savings.attr);
6378 #endif
6379 return err;
6380 }
6381 #endif
6382
6383 #ifdef CONFIG_SCHED_MC
6384 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6385 {
6386 return sprintf(page, "%u\n", sched_mc_power_savings);
6387 }
6388 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6389 const char *buf, size_t count)
6390 {
6391 return sched_power_savings_store(buf, count, 0);
6392 }
6393 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6394 sched_mc_power_savings_store);
6395 #endif
6396
6397 #ifdef CONFIG_SCHED_SMT
6398 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6399 {
6400 return sprintf(page, "%u\n", sched_smt_power_savings);
6401 }
6402 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6403 const char *buf, size_t count)
6404 {
6405 return sched_power_savings_store(buf, count, 1);
6406 }
6407 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6408 sched_smt_power_savings_store);
6409 #endif
6410
6411 /*
6412 * Force a reinitialization of the sched domains hierarchy. The domains
6413 * and groups cannot be updated in place without racing with the balancing
6414 * code, so we temporarily attach all running cpus to the NULL domain
6415 * which will prevent rebalancing while the sched domains are recalculated.
6416 */
6417 static int update_sched_domains(struct notifier_block *nfb,
6418 unsigned long action, void *hcpu)
6419 {
6420 switch (action) {
6421 case CPU_UP_PREPARE:
6422 case CPU_UP_PREPARE_FROZEN:
6423 case CPU_DOWN_PREPARE:
6424 case CPU_DOWN_PREPARE_FROZEN:
6425 detach_destroy_domains(&cpu_online_map);
6426 return NOTIFY_OK;
6427
6428 case CPU_UP_CANCELED:
6429 case CPU_UP_CANCELED_FROZEN:
6430 case CPU_DOWN_FAILED:
6431 case CPU_DOWN_FAILED_FROZEN:
6432 case CPU_ONLINE:
6433 case CPU_ONLINE_FROZEN:
6434 case CPU_DEAD:
6435 case CPU_DEAD_FROZEN:
6436 /*
6437 * Fall through and re-initialise the domains.
6438 */
6439 break;
6440 default:
6441 return NOTIFY_DONE;
6442 }
6443
6444 /* The hotplug lock is already held by cpu_up/cpu_down */
6445 arch_init_sched_domains(&cpu_online_map);
6446
6447 return NOTIFY_OK;
6448 }
6449
6450 void __init sched_init_smp(void)
6451 {
6452 cpumask_t non_isolated_cpus;
6453
6454 mutex_lock(&sched_hotcpu_mutex);
6455 arch_init_sched_domains(&cpu_online_map);
6456 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6457 if (cpus_empty(non_isolated_cpus))
6458 cpu_set(smp_processor_id(), non_isolated_cpus);
6459 mutex_unlock(&sched_hotcpu_mutex);
6460 /* XXX: Theoretical race here - CPU may be hotplugged now */
6461 hotcpu_notifier(update_sched_domains, 0);
6462
6463 init_sched_domain_sysctl();
6464
6465 /* Move init over to a non-isolated CPU */
6466 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6467 BUG();
6468 sched_init_granularity();
6469 }
6470 #else
6471 void __init sched_init_smp(void)
6472 {
6473 sched_init_granularity();
6474 }
6475 #endif /* CONFIG_SMP */
6476
6477 int in_sched_functions(unsigned long addr)
6478 {
6479 /* Linker adds these: start and end of __sched functions */
6480 extern char __sched_text_start[], __sched_text_end[];
6481
6482 return in_lock_functions(addr) ||
6483 (addr >= (unsigned long)__sched_text_start
6484 && addr < (unsigned long)__sched_text_end);
6485 }
6486
6487 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6488 {
6489 cfs_rq->tasks_timeline = RB_ROOT;
6490 cfs_rq->fair_clock = 1;
6491 #ifdef CONFIG_FAIR_GROUP_SCHED
6492 cfs_rq->rq = rq;
6493 #endif
6494 }
6495
6496 void __init sched_init(void)
6497 {
6498 u64 now = sched_clock();
6499 int highest_cpu = 0;
6500 int i, j;
6501
6502 /*
6503 * Link up the scheduling class hierarchy:
6504 */
6505 rt_sched_class.next = &fair_sched_class;
6506 fair_sched_class.next = &idle_sched_class;
6507 idle_sched_class.next = NULL;
6508
6509 for_each_possible_cpu(i) {
6510 struct rt_prio_array *array;
6511 struct rq *rq;
6512
6513 rq = cpu_rq(i);
6514 spin_lock_init(&rq->lock);
6515 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6516 rq->nr_running = 0;
6517 rq->clock = 1;
6518 init_cfs_rq(&rq->cfs, rq);
6519 #ifdef CONFIG_FAIR_GROUP_SCHED
6520 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6521 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6522 #endif
6523 rq->ls.load_update_last = now;
6524 rq->ls.load_update_start = now;
6525
6526 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6527 rq->cpu_load[j] = 0;
6528 #ifdef CONFIG_SMP
6529 rq->sd = NULL;
6530 rq->active_balance = 0;
6531 rq->next_balance = jiffies;
6532 rq->push_cpu = 0;
6533 rq->cpu = i;
6534 rq->migration_thread = NULL;
6535 INIT_LIST_HEAD(&rq->migration_queue);
6536 #endif
6537 atomic_set(&rq->nr_iowait, 0);
6538
6539 array = &rq->rt.active;
6540 for (j = 0; j < MAX_RT_PRIO; j++) {
6541 INIT_LIST_HEAD(array->queue + j);
6542 __clear_bit(j, array->bitmap);
6543 }
6544 highest_cpu = i;
6545 /* delimiter for bitsearch: */
6546 __set_bit(MAX_RT_PRIO, array->bitmap);
6547 }
6548
6549 set_load_weight(&init_task);
6550
6551 #ifdef CONFIG_PREEMPT_NOTIFIERS
6552 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6553 #endif
6554
6555 #ifdef CONFIG_SMP
6556 nr_cpu_ids = highest_cpu + 1;
6557 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6558 #endif
6559
6560 #ifdef CONFIG_RT_MUTEXES
6561 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6562 #endif
6563
6564 /*
6565 * The boot idle thread does lazy MMU switching as well:
6566 */
6567 atomic_inc(&init_mm.mm_count);
6568 enter_lazy_tlb(&init_mm, current);
6569
6570 /*
6571 * Make us the idle thread. Technically, schedule() should not be
6572 * called from this thread, however somewhere below it might be,
6573 * but because we are the idle thread, we just pick up running again
6574 * when this runqueue becomes "idle".
6575 */
6576 init_idle(current, smp_processor_id());
6577 /*
6578 * During early bootup we pretend to be a normal task:
6579 */
6580 current->sched_class = &fair_sched_class;
6581 }
6582
6583 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6584 void __might_sleep(char *file, int line)
6585 {
6586 #ifdef in_atomic
6587 static unsigned long prev_jiffy; /* ratelimiting */
6588
6589 if ((in_atomic() || irqs_disabled()) &&
6590 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6591 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6592 return;
6593 prev_jiffy = jiffies;
6594 printk(KERN_ERR "BUG: sleeping function called from invalid"
6595 " context at %s:%d\n", file, line);
6596 printk("in_atomic():%d, irqs_disabled():%d\n",
6597 in_atomic(), irqs_disabled());
6598 debug_show_held_locks(current);
6599 if (irqs_disabled())
6600 print_irqtrace_events(current);
6601 dump_stack();
6602 }
6603 #endif
6604 }
6605 EXPORT_SYMBOL(__might_sleep);
6606 #endif
6607
6608 #ifdef CONFIG_MAGIC_SYSRQ
6609 void normalize_rt_tasks(void)
6610 {
6611 struct task_struct *g, *p;
6612 unsigned long flags;
6613 struct rq *rq;
6614 int on_rq;
6615
6616 read_lock_irq(&tasklist_lock);
6617 do_each_thread(g, p) {
6618 p->se.fair_key = 0;
6619 p->se.wait_runtime = 0;
6620 p->se.exec_start = 0;
6621 p->se.wait_start_fair = 0;
6622 p->se.sleep_start_fair = 0;
6623 #ifdef CONFIG_SCHEDSTATS
6624 p->se.wait_start = 0;
6625 p->se.sleep_start = 0;
6626 p->se.block_start = 0;
6627 #endif
6628 task_rq(p)->cfs.fair_clock = 0;
6629 task_rq(p)->clock = 0;
6630
6631 if (!rt_task(p)) {
6632 /*
6633 * Renice negative nice level userspace
6634 * tasks back to 0:
6635 */
6636 if (TASK_NICE(p) < 0 && p->mm)
6637 set_user_nice(p, 0);
6638 continue;
6639 }
6640
6641 spin_lock_irqsave(&p->pi_lock, flags);
6642 rq = __task_rq_lock(p);
6643 #ifdef CONFIG_SMP
6644 /*
6645 * Do not touch the migration thread:
6646 */
6647 if (p == rq->migration_thread)
6648 goto out_unlock;
6649 #endif
6650
6651 on_rq = p->se.on_rq;
6652 if (on_rq) {
6653 update_rq_clock(task_rq(p));
6654 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6655 }
6656 __setscheduler(rq, p, SCHED_NORMAL, 0);
6657 if (on_rq) {
6658 activate_task(task_rq(p), p, 0);
6659 resched_task(rq->curr);
6660 }
6661 #ifdef CONFIG_SMP
6662 out_unlock:
6663 #endif
6664 __task_rq_unlock(rq);
6665 spin_unlock_irqrestore(&p->pi_lock, flags);
6666 } while_each_thread(g, p);
6667
6668 read_unlock_irq(&tasklist_lock);
6669 }
6670
6671 #endif /* CONFIG_MAGIC_SYSRQ */
6672
6673 #ifdef CONFIG_IA64
6674 /*
6675 * These functions are only useful for the IA64 MCA handling.
6676 *
6677 * They can only be called when the whole system has been
6678 * stopped - every CPU needs to be quiescent, and no scheduling
6679 * activity can take place. Using them for anything else would
6680 * be a serious bug, and as a result, they aren't even visible
6681 * under any other configuration.
6682 */
6683
6684 /**
6685 * curr_task - return the current task for a given cpu.
6686 * @cpu: the processor in question.
6687 *
6688 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6689 */
6690 struct task_struct *curr_task(int cpu)
6691 {
6692 return cpu_curr(cpu);
6693 }
6694
6695 /**
6696 * set_curr_task - set the current task for a given cpu.
6697 * @cpu: the processor in question.
6698 * @p: the task pointer to set.
6699 *
6700 * Description: This function must only be used when non-maskable interrupts
6701 * are serviced on a separate stack. It allows the architecture to switch the
6702 * notion of the current task on a cpu in a non-blocking manner. This function
6703 * must be called with all CPU's synchronized, and interrupts disabled, the
6704 * and caller must save the original value of the current task (see
6705 * curr_task() above) and restore that value before reenabling interrupts and
6706 * re-starting the system.
6707 *
6708 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6709 */
6710 void set_curr_task(int cpu, struct task_struct *p)
6711 {
6712 cpu_curr(cpu) = p;
6713 }
6714
6715 #endif
This page took 0.210494 seconds and 6 git commands to generate.