sched: use constants if !CONFIG_SCHED_DEBUG
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 struct load_stat {
175 struct load_weight load;
176 u64 load_update_start, load_update_last;
177 unsigned long delta_fair, delta_exec, delta_stat;
178 };
179
180 /* CFS-related fields in a runqueue */
181 struct cfs_rq {
182 struct load_weight load;
183 unsigned long nr_running;
184
185 s64 fair_clock;
186 u64 exec_clock;
187 s64 wait_runtime;
188 u64 sleeper_bonus;
189 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190
191 struct rb_root tasks_timeline;
192 struct rb_node *rb_leftmost;
193 struct rb_node *rb_load_balance_curr;
194 #ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
197 */
198 struct sched_entity *curr;
199 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
204 *
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
207 */
208 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
209 #endif
210 };
211
212 /* Real-Time classes' related field in a runqueue: */
213 struct rt_rq {
214 struct rt_prio_array active;
215 int rt_load_balance_idx;
216 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
217 };
218
219 /*
220 * This is the main, per-CPU runqueue data structure.
221 *
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
225 */
226 struct rq {
227 spinlock_t lock; /* runqueue lock */
228
229 /*
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
232 */
233 unsigned long nr_running;
234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
236 unsigned char idle_at_tick;
237 #ifdef CONFIG_NO_HZ
238 unsigned char in_nohz_recently;
239 #endif
240 struct load_stat ls; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates;
242 u64 nr_switches;
243
244 struct cfs_rq cfs;
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
247 #endif
248 struct rt_rq rt;
249
250 /*
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
255 */
256 unsigned long nr_uninterruptible;
257
258 struct task_struct *curr, *idle;
259 unsigned long next_balance;
260 struct mm_struct *prev_mm;
261
262 u64 clock, prev_clock_raw;
263 s64 clock_max_delta;
264
265 unsigned int clock_warps, clock_overflows;
266 u64 idle_clock;
267 unsigned int clock_deep_idle_events;
268 u64 tick_timestamp;
269
270 atomic_t nr_iowait;
271
272 #ifdef CONFIG_SMP
273 struct sched_domain *sd;
274
275 /* For active balancing */
276 int active_balance;
277 int push_cpu;
278 int cpu; /* cpu of this runqueue */
279
280 struct task_struct *migration_thread;
281 struct list_head migration_queue;
282 #endif
283
284 #ifdef CONFIG_SCHEDSTATS
285 /* latency stats */
286 struct sched_info rq_sched_info;
287
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty;
290 unsigned long yld_act_empty;
291 unsigned long yld_both_empty;
292 unsigned long yld_cnt;
293
294 /* schedule() stats */
295 unsigned long sched_switch;
296 unsigned long sched_cnt;
297 unsigned long sched_goidle;
298
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt;
301 unsigned long ttwu_local;
302 #endif
303 struct lock_class_key rq_lock_key;
304 };
305
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
307 static DEFINE_MUTEX(sched_hotcpu_mutex);
308
309 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
310 {
311 rq->curr->sched_class->check_preempt_curr(rq, p);
312 }
313
314 static inline int cpu_of(struct rq *rq)
315 {
316 #ifdef CONFIG_SMP
317 return rq->cpu;
318 #else
319 return 0;
320 #endif
321 }
322
323 /*
324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
326 */
327 static void __update_rq_clock(struct rq *rq)
328 {
329 u64 prev_raw = rq->prev_clock_raw;
330 u64 now = sched_clock();
331 s64 delta = now - prev_raw;
332 u64 clock = rq->clock;
333
334 #ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
336 #endif
337 /*
338 * Protect against sched_clock() occasionally going backwards:
339 */
340 if (unlikely(delta < 0)) {
341 clock++;
342 rq->clock_warps++;
343 } else {
344 /*
345 * Catch too large forward jumps too:
346 */
347 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
348 if (clock < rq->tick_timestamp + TICK_NSEC)
349 clock = rq->tick_timestamp + TICK_NSEC;
350 else
351 clock++;
352 rq->clock_overflows++;
353 } else {
354 if (unlikely(delta > rq->clock_max_delta))
355 rq->clock_max_delta = delta;
356 clock += delta;
357 }
358 }
359
360 rq->prev_clock_raw = now;
361 rq->clock = clock;
362 }
363
364 static void update_rq_clock(struct rq *rq)
365 {
366 if (likely(smp_processor_id() == cpu_of(rq)))
367 __update_rq_clock(rq);
368 }
369
370 /*
371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
372 * See detach_destroy_domains: synchronize_sched for details.
373 *
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
376 */
377 #define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
379
380 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381 #define this_rq() (&__get_cpu_var(runqueues))
382 #define task_rq(p) cpu_rq(task_cpu(p))
383 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384
385 /*
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
388 */
389 unsigned long long cpu_clock(int cpu)
390 {
391 unsigned long long now;
392 unsigned long flags;
393 struct rq *rq;
394
395 local_irq_save(flags);
396 rq = cpu_rq(cpu);
397 update_rq_clock(rq);
398 now = rq->clock;
399 local_irq_restore(flags);
400
401 return now;
402 }
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 /* Change a task's ->cfs_rq if it moves across CPUs */
406 static inline void set_task_cfs_rq(struct task_struct *p)
407 {
408 p->se.cfs_rq = &task_rq(p)->cfs;
409 }
410 #else
411 static inline void set_task_cfs_rq(struct task_struct *p)
412 {
413 }
414 #endif
415
416 #ifndef prepare_arch_switch
417 # define prepare_arch_switch(next) do { } while (0)
418 #endif
419 #ifndef finish_arch_switch
420 # define finish_arch_switch(prev) do { } while (0)
421 #endif
422
423 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
424 static inline int task_running(struct rq *rq, struct task_struct *p)
425 {
426 return rq->curr == p;
427 }
428
429 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
430 {
431 }
432
433 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
434 {
435 #ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq->lock.owner = current;
438 #endif
439 /*
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
442 * prev into current:
443 */
444 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
445
446 spin_unlock_irq(&rq->lock);
447 }
448
449 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
450 static inline int task_running(struct rq *rq, struct task_struct *p)
451 {
452 #ifdef CONFIG_SMP
453 return p->oncpu;
454 #else
455 return rq->curr == p;
456 #endif
457 }
458
459 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
460 {
461 #ifdef CONFIG_SMP
462 /*
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
465 * here.
466 */
467 next->oncpu = 1;
468 #endif
469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq->lock);
471 #else
472 spin_unlock(&rq->lock);
473 #endif
474 }
475
476 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
477 {
478 #ifdef CONFIG_SMP
479 /*
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
482 * finished.
483 */
484 smp_wmb();
485 prev->oncpu = 0;
486 #endif
487 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
488 local_irq_enable();
489 #endif
490 }
491 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
492
493 /*
494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
496 */
497 static inline struct rq *__task_rq_lock(struct task_struct *p)
498 __acquires(rq->lock)
499 {
500 struct rq *rq;
501
502 repeat_lock_task:
503 rq = task_rq(p);
504 spin_lock(&rq->lock);
505 if (unlikely(rq != task_rq(p))) {
506 spin_unlock(&rq->lock);
507 goto repeat_lock_task;
508 }
509 return rq;
510 }
511
512 /*
513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
516 */
517 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
518 __acquires(rq->lock)
519 {
520 struct rq *rq;
521
522 repeat_lock_task:
523 local_irq_save(*flags);
524 rq = task_rq(p);
525 spin_lock(&rq->lock);
526 if (unlikely(rq != task_rq(p))) {
527 spin_unlock_irqrestore(&rq->lock, *flags);
528 goto repeat_lock_task;
529 }
530 return rq;
531 }
532
533 static inline void __task_rq_unlock(struct rq *rq)
534 __releases(rq->lock)
535 {
536 spin_unlock(&rq->lock);
537 }
538
539 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
540 __releases(rq->lock)
541 {
542 spin_unlock_irqrestore(&rq->lock, *flags);
543 }
544
545 /*
546 * this_rq_lock - lock this runqueue and disable interrupts.
547 */
548 static inline struct rq *this_rq_lock(void)
549 __acquires(rq->lock)
550 {
551 struct rq *rq;
552
553 local_irq_disable();
554 rq = this_rq();
555 spin_lock(&rq->lock);
556
557 return rq;
558 }
559
560 /*
561 * We are going deep-idle (irqs are disabled):
562 */
563 void sched_clock_idle_sleep_event(void)
564 {
565 struct rq *rq = cpu_rq(smp_processor_id());
566
567 spin_lock(&rq->lock);
568 __update_rq_clock(rq);
569 spin_unlock(&rq->lock);
570 rq->clock_deep_idle_events++;
571 }
572 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
573
574 /*
575 * We just idled delta nanoseconds (called with irqs disabled):
576 */
577 void sched_clock_idle_wakeup_event(u64 delta_ns)
578 {
579 struct rq *rq = cpu_rq(smp_processor_id());
580 u64 now = sched_clock();
581
582 rq->idle_clock += delta_ns;
583 /*
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
587 * rq clock:
588 */
589 spin_lock(&rq->lock);
590 rq->prev_clock_raw = now;
591 rq->clock += delta_ns;
592 spin_unlock(&rq->lock);
593 }
594 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
595
596 /*
597 * resched_task - mark a task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603 #ifdef CONFIG_SMP
604
605 #ifndef tsk_is_polling
606 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
607 #endif
608
609 static void resched_task(struct task_struct *p)
610 {
611 int cpu;
612
613 assert_spin_locked(&task_rq(p)->lock);
614
615 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
616 return;
617
618 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
619
620 cpu = task_cpu(p);
621 if (cpu == smp_processor_id())
622 return;
623
624 /* NEED_RESCHED must be visible before we test polling */
625 smp_mb();
626 if (!tsk_is_polling(p))
627 smp_send_reschedule(cpu);
628 }
629
630 static void resched_cpu(int cpu)
631 {
632 struct rq *rq = cpu_rq(cpu);
633 unsigned long flags;
634
635 if (!spin_trylock_irqsave(&rq->lock, flags))
636 return;
637 resched_task(cpu_curr(cpu));
638 spin_unlock_irqrestore(&rq->lock, flags);
639 }
640 #else
641 static inline void resched_task(struct task_struct *p)
642 {
643 assert_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645 }
646 #endif
647
648 static u64 div64_likely32(u64 divident, unsigned long divisor)
649 {
650 #if BITS_PER_LONG == 32
651 if (likely(divident <= 0xffffffffULL))
652 return (u32)divident / divisor;
653 do_div(divident, divisor);
654
655 return divident;
656 #else
657 return divident / divisor;
658 #endif
659 }
660
661 #if BITS_PER_LONG == 32
662 # define WMULT_CONST (~0UL)
663 #else
664 # define WMULT_CONST (1UL << 32)
665 #endif
666
667 #define WMULT_SHIFT 32
668
669 /*
670 * Shift right and round:
671 */
672 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
673
674 static unsigned long
675 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
676 struct load_weight *lw)
677 {
678 u64 tmp;
679
680 if (unlikely(!lw->inv_weight))
681 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
682
683 tmp = (u64)delta_exec * weight;
684 /*
685 * Check whether we'd overflow the 64-bit multiplication:
686 */
687 if (unlikely(tmp > WMULT_CONST))
688 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
689 WMULT_SHIFT/2);
690 else
691 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
692
693 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
694 }
695
696 static inline unsigned long
697 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
698 {
699 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
700 }
701
702 static void update_load_add(struct load_weight *lw, unsigned long inc)
703 {
704 lw->weight += inc;
705 lw->inv_weight = 0;
706 }
707
708 static void update_load_sub(struct load_weight *lw, unsigned long dec)
709 {
710 lw->weight -= dec;
711 lw->inv_weight = 0;
712 }
713
714 /*
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
723 #define WEIGHT_IDLEPRIO 2
724 #define WMULT_IDLEPRIO (1 << 31)
725
726 /*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
737 */
738 static const int prio_to_weight[40] = {
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
747 };
748
749 /*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
756 static const u32 prio_to_wmult[40] = {
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
765 };
766
767 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769 /*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774 struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778 };
779
780 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
784 int *this_best_prio, struct rq_iterator *iterator);
785
786 #include "sched_stats.h"
787 #include "sched_rt.c"
788 #include "sched_fair.c"
789 #include "sched_idletask.c"
790 #ifdef CONFIG_SCHED_DEBUG
791 # include "sched_debug.c"
792 #endif
793
794 #define sched_class_highest (&rt_sched_class)
795
796 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
797 {
798 if (rq->curr != rq->idle && ls->load.weight) {
799 ls->delta_exec += ls->delta_stat;
800 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
801 ls->delta_stat = 0;
802 }
803 }
804
805 /*
806 * Update delta_exec, delta_fair fields for rq.
807 *
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
811 * cpu is not idle).
812 *
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
816 *
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
819 */
820 static void update_curr_load(struct rq *rq)
821 {
822 struct load_stat *ls = &rq->ls;
823 u64 start;
824
825 start = ls->load_update_start;
826 ls->load_update_start = rq->clock;
827 ls->delta_stat += rq->clock - start;
828 /*
829 * Stagger updates to ls->delta_fair. Very frequent updates
830 * can be expensive.
831 */
832 if (ls->delta_stat >= sysctl_sched_stat_granularity)
833 __update_curr_load(rq, ls);
834 }
835
836 static inline void inc_load(struct rq *rq, const struct task_struct *p)
837 {
838 update_curr_load(rq);
839 update_load_add(&rq->ls.load, p->se.load.weight);
840 }
841
842 static inline void dec_load(struct rq *rq, const struct task_struct *p)
843 {
844 update_curr_load(rq);
845 update_load_sub(&rq->ls.load, p->se.load.weight);
846 }
847
848 static void inc_nr_running(struct task_struct *p, struct rq *rq)
849 {
850 rq->nr_running++;
851 inc_load(rq, p);
852 }
853
854 static void dec_nr_running(struct task_struct *p, struct rq *rq)
855 {
856 rq->nr_running--;
857 dec_load(rq, p);
858 }
859
860 static void set_load_weight(struct task_struct *p)
861 {
862 p->se.wait_runtime = 0;
863
864 if (task_has_rt_policy(p)) {
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
869
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
878
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 }
882
883 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884 {
885 sched_info_queued(p);
886 p->sched_class->enqueue_task(rq, p, wakeup);
887 p->se.on_rq = 1;
888 }
889
890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891 {
892 p->sched_class->dequeue_task(rq, p, sleep);
893 p->se.on_rq = 0;
894 }
895
896 /*
897 * __normal_prio - return the priority that is based on the static prio
898 */
899 static inline int __normal_prio(struct task_struct *p)
900 {
901 return p->static_prio;
902 }
903
904 /*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
911 static inline int normal_prio(struct task_struct *p)
912 {
913 int prio;
914
915 if (task_has_rt_policy(p))
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920 }
921
922 /*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
929 static int effective_prio(struct task_struct *p)
930 {
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940 }
941
942 /*
943 * activate_task - move a task to the runqueue.
944 */
945 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
946 {
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
949
950 enqueue_task(rq, p, wakeup);
951 inc_nr_running(p, rq);
952 }
953
954 /*
955 * activate_idle_task - move idle task to the _front_ of runqueue.
956 */
957 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
958 {
959 update_rq_clock(rq);
960
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
963
964 enqueue_task(rq, p, 0);
965 inc_nr_running(p, rq);
966 }
967
968 /*
969 * deactivate_task - remove a task from the runqueue.
970 */
971 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
972 {
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
976 dequeue_task(rq, p, sleep);
977 dec_nr_running(p, rq);
978 }
979
980 /**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
984 inline int task_curr(const struct task_struct *p)
985 {
986 return cpu_curr(task_cpu(p)) == p;
987 }
988
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu)
991 {
992 return cpu_rq(cpu)->ls.load.weight;
993 }
994
995 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996 {
997 #ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000 #endif
1001 }
1002
1003 #ifdef CONFIG_SMP
1004
1005 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1006 {
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019 #ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
1026 #endif
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_req {
1032 struct list_head list;
1033
1034 struct task_struct *task;
1035 int dest_cpu;
1036
1037 struct completion done;
1038 };
1039
1040 /*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
1044 static int
1045 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1046 {
1047 struct rq *rq = task_rq(p);
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
1053 if (!p->se.on_rq && !task_running(rq, p)) {
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
1075 void wait_task_inactive(struct task_struct *p)
1076 {
1077 unsigned long flags;
1078 int running, on_rq;
1079 struct rq *rq;
1080
1081 repeat:
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1109 rq = task_rq_lock(p, &flags);
1110 running = task_running(rq, p);
1111 on_rq = p->se.on_rq;
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1121 cpu_relax();
1122 goto repeat;
1123 }
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
1134 if (unlikely(on_rq)) {
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169
1170 /*
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
1177 static inline unsigned long source_load(int cpu, int type)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181
1182 if (type == 0)
1183 return total;
1184
1185 return min(rq->cpu_load[type-1], total);
1186 }
1187
1188 /*
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1191 */
1192 static inline unsigned long target_load(int cpu, int type)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196
1197 if (type == 0)
1198 return total;
1199
1200 return max(rq->cpu_load[type-1], total);
1201 }
1202
1203 /*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206 static inline unsigned long cpu_avg_load_per_task(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210 unsigned long n = rq->nr_running;
1211
1212 return n ? total / n : SCHED_LOAD_SCALE;
1213 }
1214
1215 /*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219 static struct sched_group *
1220 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221 {
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
1236 local_group = cpu_isset(this_cpu, group->cpumask);
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
1262 nextgroup:
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269 }
1270
1271 /*
1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1273 */
1274 static int
1275 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1276 {
1277 cpumask_t tmp;
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
1286 load = weighted_cpuload(i);
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295 }
1296
1297 /*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308 static int sched_balance_self(int cpu, int flag)
1309 {
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
1312
1313 for_each_domain(cpu, tmp) {
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
1319 if (tmp->flags & flag)
1320 sd = tmp;
1321 }
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
1339
1340 new_cpu = find_idlest_cpu(group, t, cpu);
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
1346
1347 /* Now try balancing at a lower domain level of new_cpu */
1348 cpu = new_cpu;
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361 }
1362
1363 #endif /* CONFIG_SMP */
1364
1365 /*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374 static int wake_idle(int cpu, struct task_struct *p)
1375 {
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
1399 } else {
1400 break;
1401 }
1402 }
1403 return cpu;
1404 }
1405 #else
1406 static inline int wake_idle(int cpu, struct task_struct *p)
1407 {
1408 return cpu;
1409 }
1410 #endif
1411
1412 /***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
1426 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1427 {
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
1431 struct rq *rq;
1432 #ifdef CONFIG_SMP
1433 struct sched_domain *sd, *this_sd = NULL;
1434 unsigned long load, this_load;
1435 int new_cpu;
1436 #endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
1443 if (p->se.on_rq)
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449 #ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
1453 new_cpu = cpu;
1454
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1466 }
1467 }
1468
1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1470 goto out_set_cpu;
1471
1472 /*
1473 * Check for affine wakeup and passive balancing possibilities.
1474 */
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1478
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1483
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
1491
1492 /*
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1496 */
1497 if (sync)
1498 tl -= current->se.load.weight;
1499
1500 if ((tl <= load &&
1501 tl + target_load(cpu, idx) <= tl_per_task) ||
1502 100*(tl + p->se.load.weight) <= imbalance*load) {
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526 out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
1536 if (p->se.on_rq)
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543 out_activate:
1544 #endif /* CONFIG_SMP */
1545 update_rq_clock(rq);
1546 activate_task(rq, p, 1);
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1557 success = 1;
1558
1559 out_running:
1560 p->state = TASK_RUNNING;
1561 out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565 }
1566
1567 int fastcall wake_up_process(struct task_struct *p)
1568 {
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571 }
1572 EXPORT_SYMBOL(wake_up_process);
1573
1574 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1575 {
1576 return try_to_wake_up(p, state, 0);
1577 }
1578
1579 /*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585 static void __sched_fork(struct task_struct *p)
1586 {
1587 p->se.wait_start_fair = 0;
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.prev_sum_exec_runtime = 0;
1591 p->se.delta_exec = 0;
1592 p->se.delta_fair_run = 0;
1593 p->se.delta_fair_sleep = 0;
1594 p->se.wait_runtime = 0;
1595 p->se.sleep_start_fair = 0;
1596
1597 #ifdef CONFIG_SCHEDSTATS
1598 p->se.wait_start = 0;
1599 p->se.sum_wait_runtime = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
1606 p->se.slice_max = 0;
1607 p->se.wait_max = 0;
1608 p->se.wait_runtime_overruns = 0;
1609 p->se.wait_runtime_underruns = 0;
1610 #endif
1611
1612 INIT_LIST_HEAD(&p->run_list);
1613 p->se.on_rq = 0;
1614
1615 #ifdef CONFIG_PREEMPT_NOTIFIERS
1616 INIT_HLIST_HEAD(&p->preempt_notifiers);
1617 #endif
1618
1619 /*
1620 * We mark the process as running here, but have not actually
1621 * inserted it onto the runqueue yet. This guarantees that
1622 * nobody will actually run it, and a signal or other external
1623 * event cannot wake it up and insert it on the runqueue either.
1624 */
1625 p->state = TASK_RUNNING;
1626 }
1627
1628 /*
1629 * fork()/clone()-time setup:
1630 */
1631 void sched_fork(struct task_struct *p, int clone_flags)
1632 {
1633 int cpu = get_cpu();
1634
1635 __sched_fork(p);
1636
1637 #ifdef CONFIG_SMP
1638 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1639 #endif
1640 __set_task_cpu(p, cpu);
1641
1642 /*
1643 * Make sure we do not leak PI boosting priority to the child:
1644 */
1645 p->prio = current->normal_prio;
1646
1647 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1648 if (likely(sched_info_on()))
1649 memset(&p->sched_info, 0, sizeof(p->sched_info));
1650 #endif
1651 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1652 p->oncpu = 0;
1653 #endif
1654 #ifdef CONFIG_PREEMPT
1655 /* Want to start with kernel preemption disabled. */
1656 task_thread_info(p)->preempt_count = 1;
1657 #endif
1658 put_cpu();
1659 }
1660
1661 /*
1662 * wake_up_new_task - wake up a newly created task for the first time.
1663 *
1664 * This function will do some initial scheduler statistics housekeeping
1665 * that must be done for every newly created context, then puts the task
1666 * on the runqueue and wakes it.
1667 */
1668 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1669 {
1670 unsigned long flags;
1671 struct rq *rq;
1672 int this_cpu;
1673
1674 rq = task_rq_lock(p, &flags);
1675 BUG_ON(p->state != TASK_RUNNING);
1676 this_cpu = smp_processor_id(); /* parent's CPU */
1677 update_rq_clock(rq);
1678
1679 p->prio = effective_prio(p);
1680
1681 if (rt_prio(p->prio))
1682 p->sched_class = &rt_sched_class;
1683 else
1684 p->sched_class = &fair_sched_class;
1685
1686 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1687 !current->se.on_rq) {
1688 activate_task(rq, p, 0);
1689 } else {
1690 /*
1691 * Let the scheduling class do new task startup
1692 * management (if any):
1693 */
1694 p->sched_class->task_new(rq, p);
1695 inc_nr_running(p, rq);
1696 }
1697 check_preempt_curr(rq, p);
1698 task_rq_unlock(rq, &flags);
1699 }
1700
1701 #ifdef CONFIG_PREEMPT_NOTIFIERS
1702
1703 /**
1704 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1705 * @notifier: notifier struct to register
1706 */
1707 void preempt_notifier_register(struct preempt_notifier *notifier)
1708 {
1709 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1710 }
1711 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1712
1713 /**
1714 * preempt_notifier_unregister - no longer interested in preemption notifications
1715 * @notifier: notifier struct to unregister
1716 *
1717 * This is safe to call from within a preemption notifier.
1718 */
1719 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1720 {
1721 hlist_del(&notifier->link);
1722 }
1723 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1724
1725 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1726 {
1727 struct preempt_notifier *notifier;
1728 struct hlist_node *node;
1729
1730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1731 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1732 }
1733
1734 static void
1735 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1736 struct task_struct *next)
1737 {
1738 struct preempt_notifier *notifier;
1739 struct hlist_node *node;
1740
1741 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1742 notifier->ops->sched_out(notifier, next);
1743 }
1744
1745 #else
1746
1747 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1748 {
1749 }
1750
1751 static void
1752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1754 {
1755 }
1756
1757 #endif
1758
1759 /**
1760 * prepare_task_switch - prepare to switch tasks
1761 * @rq: the runqueue preparing to switch
1762 * @prev: the current task that is being switched out
1763 * @next: the task we are going to switch to.
1764 *
1765 * This is called with the rq lock held and interrupts off. It must
1766 * be paired with a subsequent finish_task_switch after the context
1767 * switch.
1768 *
1769 * prepare_task_switch sets up locking and calls architecture specific
1770 * hooks.
1771 */
1772 static inline void
1773 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1774 struct task_struct *next)
1775 {
1776 fire_sched_out_preempt_notifiers(prev, next);
1777 prepare_lock_switch(rq, next);
1778 prepare_arch_switch(next);
1779 }
1780
1781 /**
1782 * finish_task_switch - clean up after a task-switch
1783 * @rq: runqueue associated with task-switch
1784 * @prev: the thread we just switched away from.
1785 *
1786 * finish_task_switch must be called after the context switch, paired
1787 * with a prepare_task_switch call before the context switch.
1788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1789 * and do any other architecture-specific cleanup actions.
1790 *
1791 * Note that we may have delayed dropping an mm in context_switch(). If
1792 * so, we finish that here outside of the runqueue lock. (Doing it
1793 * with the lock held can cause deadlocks; see schedule() for
1794 * details.)
1795 */
1796 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1797 __releases(rq->lock)
1798 {
1799 struct mm_struct *mm = rq->prev_mm;
1800 long prev_state;
1801
1802 rq->prev_mm = NULL;
1803
1804 /*
1805 * A task struct has one reference for the use as "current".
1806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1807 * schedule one last time. The schedule call will never return, and
1808 * the scheduled task must drop that reference.
1809 * The test for TASK_DEAD must occur while the runqueue locks are
1810 * still held, otherwise prev could be scheduled on another cpu, die
1811 * there before we look at prev->state, and then the reference would
1812 * be dropped twice.
1813 * Manfred Spraul <manfred@colorfullife.com>
1814 */
1815 prev_state = prev->state;
1816 finish_arch_switch(prev);
1817 finish_lock_switch(rq, prev);
1818 fire_sched_in_preempt_notifiers(current);
1819 if (mm)
1820 mmdrop(mm);
1821 if (unlikely(prev_state == TASK_DEAD)) {
1822 /*
1823 * Remove function-return probe instances associated with this
1824 * task and put them back on the free list.
1825 */
1826 kprobe_flush_task(prev);
1827 put_task_struct(prev);
1828 }
1829 }
1830
1831 /**
1832 * schedule_tail - first thing a freshly forked thread must call.
1833 * @prev: the thread we just switched away from.
1834 */
1835 asmlinkage void schedule_tail(struct task_struct *prev)
1836 __releases(rq->lock)
1837 {
1838 struct rq *rq = this_rq();
1839
1840 finish_task_switch(rq, prev);
1841 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1842 /* In this case, finish_task_switch does not reenable preemption */
1843 preempt_enable();
1844 #endif
1845 if (current->set_child_tid)
1846 put_user(current->pid, current->set_child_tid);
1847 }
1848
1849 /*
1850 * context_switch - switch to the new MM and the new
1851 * thread's register state.
1852 */
1853 static inline void
1854 context_switch(struct rq *rq, struct task_struct *prev,
1855 struct task_struct *next)
1856 {
1857 struct mm_struct *mm, *oldmm;
1858
1859 prepare_task_switch(rq, prev, next);
1860 mm = next->mm;
1861 oldmm = prev->active_mm;
1862 /*
1863 * For paravirt, this is coupled with an exit in switch_to to
1864 * combine the page table reload and the switch backend into
1865 * one hypercall.
1866 */
1867 arch_enter_lazy_cpu_mode();
1868
1869 if (unlikely(!mm)) {
1870 next->active_mm = oldmm;
1871 atomic_inc(&oldmm->mm_count);
1872 enter_lazy_tlb(oldmm, next);
1873 } else
1874 switch_mm(oldmm, mm, next);
1875
1876 if (unlikely(!prev->mm)) {
1877 prev->active_mm = NULL;
1878 rq->prev_mm = oldmm;
1879 }
1880 /*
1881 * Since the runqueue lock will be released by the next
1882 * task (which is an invalid locking op but in the case
1883 * of the scheduler it's an obvious special-case), so we
1884 * do an early lockdep release here:
1885 */
1886 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1887 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1888 #endif
1889
1890 /* Here we just switch the register state and the stack. */
1891 switch_to(prev, next, prev);
1892
1893 barrier();
1894 /*
1895 * this_rq must be evaluated again because prev may have moved
1896 * CPUs since it called schedule(), thus the 'rq' on its stack
1897 * frame will be invalid.
1898 */
1899 finish_task_switch(this_rq(), prev);
1900 }
1901
1902 /*
1903 * nr_running, nr_uninterruptible and nr_context_switches:
1904 *
1905 * externally visible scheduler statistics: current number of runnable
1906 * threads, current number of uninterruptible-sleeping threads, total
1907 * number of context switches performed since bootup.
1908 */
1909 unsigned long nr_running(void)
1910 {
1911 unsigned long i, sum = 0;
1912
1913 for_each_online_cpu(i)
1914 sum += cpu_rq(i)->nr_running;
1915
1916 return sum;
1917 }
1918
1919 unsigned long nr_uninterruptible(void)
1920 {
1921 unsigned long i, sum = 0;
1922
1923 for_each_possible_cpu(i)
1924 sum += cpu_rq(i)->nr_uninterruptible;
1925
1926 /*
1927 * Since we read the counters lockless, it might be slightly
1928 * inaccurate. Do not allow it to go below zero though:
1929 */
1930 if (unlikely((long)sum < 0))
1931 sum = 0;
1932
1933 return sum;
1934 }
1935
1936 unsigned long long nr_context_switches(void)
1937 {
1938 int i;
1939 unsigned long long sum = 0;
1940
1941 for_each_possible_cpu(i)
1942 sum += cpu_rq(i)->nr_switches;
1943
1944 return sum;
1945 }
1946
1947 unsigned long nr_iowait(void)
1948 {
1949 unsigned long i, sum = 0;
1950
1951 for_each_possible_cpu(i)
1952 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1953
1954 return sum;
1955 }
1956
1957 unsigned long nr_active(void)
1958 {
1959 unsigned long i, running = 0, uninterruptible = 0;
1960
1961 for_each_online_cpu(i) {
1962 running += cpu_rq(i)->nr_running;
1963 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1964 }
1965
1966 if (unlikely((long)uninterruptible < 0))
1967 uninterruptible = 0;
1968
1969 return running + uninterruptible;
1970 }
1971
1972 /*
1973 * Update rq->cpu_load[] statistics. This function is usually called every
1974 * scheduler tick (TICK_NSEC).
1975 */
1976 static void update_cpu_load(struct rq *this_rq)
1977 {
1978 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1979 unsigned long total_load = this_rq->ls.load.weight;
1980 unsigned long this_load = total_load;
1981 struct load_stat *ls = &this_rq->ls;
1982 int i, scale;
1983
1984 this_rq->nr_load_updates++;
1985 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1986 goto do_avg;
1987
1988 /* Update delta_fair/delta_exec fields first */
1989 update_curr_load(this_rq);
1990
1991 fair_delta64 = ls->delta_fair + 1;
1992 ls->delta_fair = 0;
1993
1994 exec_delta64 = ls->delta_exec + 1;
1995 ls->delta_exec = 0;
1996
1997 sample_interval64 = this_rq->clock - ls->load_update_last;
1998 ls->load_update_last = this_rq->clock;
1999
2000 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2001 sample_interval64 = TICK_NSEC;
2002
2003 if (exec_delta64 > sample_interval64)
2004 exec_delta64 = sample_interval64;
2005
2006 idle_delta64 = sample_interval64 - exec_delta64;
2007
2008 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2009 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2010
2011 this_load = (unsigned long)tmp64;
2012
2013 do_avg:
2014
2015 /* Update our load: */
2016 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2017 unsigned long old_load, new_load;
2018
2019 /* scale is effectively 1 << i now, and >> i divides by scale */
2020
2021 old_load = this_rq->cpu_load[i];
2022 new_load = this_load;
2023
2024 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2025 }
2026 }
2027
2028 #ifdef CONFIG_SMP
2029
2030 /*
2031 * double_rq_lock - safely lock two runqueues
2032 *
2033 * Note this does not disable interrupts like task_rq_lock,
2034 * you need to do so manually before calling.
2035 */
2036 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2037 __acquires(rq1->lock)
2038 __acquires(rq2->lock)
2039 {
2040 BUG_ON(!irqs_disabled());
2041 if (rq1 == rq2) {
2042 spin_lock(&rq1->lock);
2043 __acquire(rq2->lock); /* Fake it out ;) */
2044 } else {
2045 if (rq1 < rq2) {
2046 spin_lock(&rq1->lock);
2047 spin_lock(&rq2->lock);
2048 } else {
2049 spin_lock(&rq2->lock);
2050 spin_lock(&rq1->lock);
2051 }
2052 }
2053 update_rq_clock(rq1);
2054 update_rq_clock(rq2);
2055 }
2056
2057 /*
2058 * double_rq_unlock - safely unlock two runqueues
2059 *
2060 * Note this does not restore interrupts like task_rq_unlock,
2061 * you need to do so manually after calling.
2062 */
2063 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2064 __releases(rq1->lock)
2065 __releases(rq2->lock)
2066 {
2067 spin_unlock(&rq1->lock);
2068 if (rq1 != rq2)
2069 spin_unlock(&rq2->lock);
2070 else
2071 __release(rq2->lock);
2072 }
2073
2074 /*
2075 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2076 */
2077 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2078 __releases(this_rq->lock)
2079 __acquires(busiest->lock)
2080 __acquires(this_rq->lock)
2081 {
2082 if (unlikely(!irqs_disabled())) {
2083 /* printk() doesn't work good under rq->lock */
2084 spin_unlock(&this_rq->lock);
2085 BUG_ON(1);
2086 }
2087 if (unlikely(!spin_trylock(&busiest->lock))) {
2088 if (busiest < this_rq) {
2089 spin_unlock(&this_rq->lock);
2090 spin_lock(&busiest->lock);
2091 spin_lock(&this_rq->lock);
2092 } else
2093 spin_lock(&busiest->lock);
2094 }
2095 }
2096
2097 /*
2098 * If dest_cpu is allowed for this process, migrate the task to it.
2099 * This is accomplished by forcing the cpu_allowed mask to only
2100 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2101 * the cpu_allowed mask is restored.
2102 */
2103 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2104 {
2105 struct migration_req req;
2106 unsigned long flags;
2107 struct rq *rq;
2108
2109 rq = task_rq_lock(p, &flags);
2110 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2111 || unlikely(cpu_is_offline(dest_cpu)))
2112 goto out;
2113
2114 /* force the process onto the specified CPU */
2115 if (migrate_task(p, dest_cpu, &req)) {
2116 /* Need to wait for migration thread (might exit: take ref). */
2117 struct task_struct *mt = rq->migration_thread;
2118
2119 get_task_struct(mt);
2120 task_rq_unlock(rq, &flags);
2121 wake_up_process(mt);
2122 put_task_struct(mt);
2123 wait_for_completion(&req.done);
2124
2125 return;
2126 }
2127 out:
2128 task_rq_unlock(rq, &flags);
2129 }
2130
2131 /*
2132 * sched_exec - execve() is a valuable balancing opportunity, because at
2133 * this point the task has the smallest effective memory and cache footprint.
2134 */
2135 void sched_exec(void)
2136 {
2137 int new_cpu, this_cpu = get_cpu();
2138 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2139 put_cpu();
2140 if (new_cpu != this_cpu)
2141 sched_migrate_task(current, new_cpu);
2142 }
2143
2144 /*
2145 * pull_task - move a task from a remote runqueue to the local runqueue.
2146 * Both runqueues must be locked.
2147 */
2148 static void pull_task(struct rq *src_rq, struct task_struct *p,
2149 struct rq *this_rq, int this_cpu)
2150 {
2151 deactivate_task(src_rq, p, 0);
2152 set_task_cpu(p, this_cpu);
2153 activate_task(this_rq, p, 0);
2154 /*
2155 * Note that idle threads have a prio of MAX_PRIO, for this test
2156 * to be always true for them.
2157 */
2158 check_preempt_curr(this_rq, p);
2159 }
2160
2161 /*
2162 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2163 */
2164 static
2165 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2166 struct sched_domain *sd, enum cpu_idle_type idle,
2167 int *all_pinned)
2168 {
2169 /*
2170 * We do not migrate tasks that are:
2171 * 1) running (obviously), or
2172 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2173 * 3) are cache-hot on their current CPU.
2174 */
2175 if (!cpu_isset(this_cpu, p->cpus_allowed))
2176 return 0;
2177 *all_pinned = 0;
2178
2179 if (task_running(rq, p))
2180 return 0;
2181
2182 return 1;
2183 }
2184
2185 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2186 unsigned long max_nr_move, unsigned long max_load_move,
2187 struct sched_domain *sd, enum cpu_idle_type idle,
2188 int *all_pinned, unsigned long *load_moved,
2189 int *this_best_prio, struct rq_iterator *iterator)
2190 {
2191 int pulled = 0, pinned = 0, skip_for_load;
2192 struct task_struct *p;
2193 long rem_load_move = max_load_move;
2194
2195 if (max_nr_move == 0 || max_load_move == 0)
2196 goto out;
2197
2198 pinned = 1;
2199
2200 /*
2201 * Start the load-balancing iterator:
2202 */
2203 p = iterator->start(iterator->arg);
2204 next:
2205 if (!p)
2206 goto out;
2207 /*
2208 * To help distribute high priority tasks accross CPUs we don't
2209 * skip a task if it will be the highest priority task (i.e. smallest
2210 * prio value) on its new queue regardless of its load weight
2211 */
2212 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2213 SCHED_LOAD_SCALE_FUZZ;
2214 if ((skip_for_load && p->prio >= *this_best_prio) ||
2215 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2216 p = iterator->next(iterator->arg);
2217 goto next;
2218 }
2219
2220 pull_task(busiest, p, this_rq, this_cpu);
2221 pulled++;
2222 rem_load_move -= p->se.load.weight;
2223
2224 /*
2225 * We only want to steal up to the prescribed number of tasks
2226 * and the prescribed amount of weighted load.
2227 */
2228 if (pulled < max_nr_move && rem_load_move > 0) {
2229 if (p->prio < *this_best_prio)
2230 *this_best_prio = p->prio;
2231 p = iterator->next(iterator->arg);
2232 goto next;
2233 }
2234 out:
2235 /*
2236 * Right now, this is the only place pull_task() is called,
2237 * so we can safely collect pull_task() stats here rather than
2238 * inside pull_task().
2239 */
2240 schedstat_add(sd, lb_gained[idle], pulled);
2241
2242 if (all_pinned)
2243 *all_pinned = pinned;
2244 *load_moved = max_load_move - rem_load_move;
2245 return pulled;
2246 }
2247
2248 /*
2249 * move_tasks tries to move up to max_load_move weighted load from busiest to
2250 * this_rq, as part of a balancing operation within domain "sd".
2251 * Returns 1 if successful and 0 otherwise.
2252 *
2253 * Called with both runqueues locked.
2254 */
2255 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 unsigned long max_load_move,
2257 struct sched_domain *sd, enum cpu_idle_type idle,
2258 int *all_pinned)
2259 {
2260 struct sched_class *class = sched_class_highest;
2261 unsigned long total_load_moved = 0;
2262 int this_best_prio = this_rq->curr->prio;
2263
2264 do {
2265 total_load_moved +=
2266 class->load_balance(this_rq, this_cpu, busiest,
2267 ULONG_MAX, max_load_move - total_load_moved,
2268 sd, idle, all_pinned, &this_best_prio);
2269 class = class->next;
2270 } while (class && max_load_move > total_load_moved);
2271
2272 return total_load_moved > 0;
2273 }
2274
2275 /*
2276 * move_one_task tries to move exactly one task from busiest to this_rq, as
2277 * part of active balancing operations within "domain".
2278 * Returns 1 if successful and 0 otherwise.
2279 *
2280 * Called with both runqueues locked.
2281 */
2282 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2283 struct sched_domain *sd, enum cpu_idle_type idle)
2284 {
2285 struct sched_class *class;
2286 int this_best_prio = MAX_PRIO;
2287
2288 for (class = sched_class_highest; class; class = class->next)
2289 if (class->load_balance(this_rq, this_cpu, busiest,
2290 1, ULONG_MAX, sd, idle, NULL,
2291 &this_best_prio))
2292 return 1;
2293
2294 return 0;
2295 }
2296
2297 /*
2298 * find_busiest_group finds and returns the busiest CPU group within the
2299 * domain. It calculates and returns the amount of weighted load which
2300 * should be moved to restore balance via the imbalance parameter.
2301 */
2302 static struct sched_group *
2303 find_busiest_group(struct sched_domain *sd, int this_cpu,
2304 unsigned long *imbalance, enum cpu_idle_type idle,
2305 int *sd_idle, cpumask_t *cpus, int *balance)
2306 {
2307 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2308 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2309 unsigned long max_pull;
2310 unsigned long busiest_load_per_task, busiest_nr_running;
2311 unsigned long this_load_per_task, this_nr_running;
2312 int load_idx;
2313 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2314 int power_savings_balance = 1;
2315 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2316 unsigned long min_nr_running = ULONG_MAX;
2317 struct sched_group *group_min = NULL, *group_leader = NULL;
2318 #endif
2319
2320 max_load = this_load = total_load = total_pwr = 0;
2321 busiest_load_per_task = busiest_nr_running = 0;
2322 this_load_per_task = this_nr_running = 0;
2323 if (idle == CPU_NOT_IDLE)
2324 load_idx = sd->busy_idx;
2325 else if (idle == CPU_NEWLY_IDLE)
2326 load_idx = sd->newidle_idx;
2327 else
2328 load_idx = sd->idle_idx;
2329
2330 do {
2331 unsigned long load, group_capacity;
2332 int local_group;
2333 int i;
2334 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2335 unsigned long sum_nr_running, sum_weighted_load;
2336
2337 local_group = cpu_isset(this_cpu, group->cpumask);
2338
2339 if (local_group)
2340 balance_cpu = first_cpu(group->cpumask);
2341
2342 /* Tally up the load of all CPUs in the group */
2343 sum_weighted_load = sum_nr_running = avg_load = 0;
2344
2345 for_each_cpu_mask(i, group->cpumask) {
2346 struct rq *rq;
2347
2348 if (!cpu_isset(i, *cpus))
2349 continue;
2350
2351 rq = cpu_rq(i);
2352
2353 if (*sd_idle && rq->nr_running)
2354 *sd_idle = 0;
2355
2356 /* Bias balancing toward cpus of our domain */
2357 if (local_group) {
2358 if (idle_cpu(i) && !first_idle_cpu) {
2359 first_idle_cpu = 1;
2360 balance_cpu = i;
2361 }
2362
2363 load = target_load(i, load_idx);
2364 } else
2365 load = source_load(i, load_idx);
2366
2367 avg_load += load;
2368 sum_nr_running += rq->nr_running;
2369 sum_weighted_load += weighted_cpuload(i);
2370 }
2371
2372 /*
2373 * First idle cpu or the first cpu(busiest) in this sched group
2374 * is eligible for doing load balancing at this and above
2375 * domains. In the newly idle case, we will allow all the cpu's
2376 * to do the newly idle load balance.
2377 */
2378 if (idle != CPU_NEWLY_IDLE && local_group &&
2379 balance_cpu != this_cpu && balance) {
2380 *balance = 0;
2381 goto ret;
2382 }
2383
2384 total_load += avg_load;
2385 total_pwr += group->__cpu_power;
2386
2387 /* Adjust by relative CPU power of the group */
2388 avg_load = sg_div_cpu_power(group,
2389 avg_load * SCHED_LOAD_SCALE);
2390
2391 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2392
2393 if (local_group) {
2394 this_load = avg_load;
2395 this = group;
2396 this_nr_running = sum_nr_running;
2397 this_load_per_task = sum_weighted_load;
2398 } else if (avg_load > max_load &&
2399 sum_nr_running > group_capacity) {
2400 max_load = avg_load;
2401 busiest = group;
2402 busiest_nr_running = sum_nr_running;
2403 busiest_load_per_task = sum_weighted_load;
2404 }
2405
2406 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2407 /*
2408 * Busy processors will not participate in power savings
2409 * balance.
2410 */
2411 if (idle == CPU_NOT_IDLE ||
2412 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2413 goto group_next;
2414
2415 /*
2416 * If the local group is idle or completely loaded
2417 * no need to do power savings balance at this domain
2418 */
2419 if (local_group && (this_nr_running >= group_capacity ||
2420 !this_nr_running))
2421 power_savings_balance = 0;
2422
2423 /*
2424 * If a group is already running at full capacity or idle,
2425 * don't include that group in power savings calculations
2426 */
2427 if (!power_savings_balance || sum_nr_running >= group_capacity
2428 || !sum_nr_running)
2429 goto group_next;
2430
2431 /*
2432 * Calculate the group which has the least non-idle load.
2433 * This is the group from where we need to pick up the load
2434 * for saving power
2435 */
2436 if ((sum_nr_running < min_nr_running) ||
2437 (sum_nr_running == min_nr_running &&
2438 first_cpu(group->cpumask) <
2439 first_cpu(group_min->cpumask))) {
2440 group_min = group;
2441 min_nr_running = sum_nr_running;
2442 min_load_per_task = sum_weighted_load /
2443 sum_nr_running;
2444 }
2445
2446 /*
2447 * Calculate the group which is almost near its
2448 * capacity but still has some space to pick up some load
2449 * from other group and save more power
2450 */
2451 if (sum_nr_running <= group_capacity - 1) {
2452 if (sum_nr_running > leader_nr_running ||
2453 (sum_nr_running == leader_nr_running &&
2454 first_cpu(group->cpumask) >
2455 first_cpu(group_leader->cpumask))) {
2456 group_leader = group;
2457 leader_nr_running = sum_nr_running;
2458 }
2459 }
2460 group_next:
2461 #endif
2462 group = group->next;
2463 } while (group != sd->groups);
2464
2465 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2466 goto out_balanced;
2467
2468 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2469
2470 if (this_load >= avg_load ||
2471 100*max_load <= sd->imbalance_pct*this_load)
2472 goto out_balanced;
2473
2474 busiest_load_per_task /= busiest_nr_running;
2475 /*
2476 * We're trying to get all the cpus to the average_load, so we don't
2477 * want to push ourselves above the average load, nor do we wish to
2478 * reduce the max loaded cpu below the average load, as either of these
2479 * actions would just result in more rebalancing later, and ping-pong
2480 * tasks around. Thus we look for the minimum possible imbalance.
2481 * Negative imbalances (*we* are more loaded than anyone else) will
2482 * be counted as no imbalance for these purposes -- we can't fix that
2483 * by pulling tasks to us. Be careful of negative numbers as they'll
2484 * appear as very large values with unsigned longs.
2485 */
2486 if (max_load <= busiest_load_per_task)
2487 goto out_balanced;
2488
2489 /*
2490 * In the presence of smp nice balancing, certain scenarios can have
2491 * max load less than avg load(as we skip the groups at or below
2492 * its cpu_power, while calculating max_load..)
2493 */
2494 if (max_load < avg_load) {
2495 *imbalance = 0;
2496 goto small_imbalance;
2497 }
2498
2499 /* Don't want to pull so many tasks that a group would go idle */
2500 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2501
2502 /* How much load to actually move to equalise the imbalance */
2503 *imbalance = min(max_pull * busiest->__cpu_power,
2504 (avg_load - this_load) * this->__cpu_power)
2505 / SCHED_LOAD_SCALE;
2506
2507 /*
2508 * if *imbalance is less than the average load per runnable task
2509 * there is no gaurantee that any tasks will be moved so we'll have
2510 * a think about bumping its value to force at least one task to be
2511 * moved
2512 */
2513 if (*imbalance < busiest_load_per_task) {
2514 unsigned long tmp, pwr_now, pwr_move;
2515 unsigned int imbn;
2516
2517 small_imbalance:
2518 pwr_move = pwr_now = 0;
2519 imbn = 2;
2520 if (this_nr_running) {
2521 this_load_per_task /= this_nr_running;
2522 if (busiest_load_per_task > this_load_per_task)
2523 imbn = 1;
2524 } else
2525 this_load_per_task = SCHED_LOAD_SCALE;
2526
2527 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2528 busiest_load_per_task * imbn) {
2529 *imbalance = busiest_load_per_task;
2530 return busiest;
2531 }
2532
2533 /*
2534 * OK, we don't have enough imbalance to justify moving tasks,
2535 * however we may be able to increase total CPU power used by
2536 * moving them.
2537 */
2538
2539 pwr_now += busiest->__cpu_power *
2540 min(busiest_load_per_task, max_load);
2541 pwr_now += this->__cpu_power *
2542 min(this_load_per_task, this_load);
2543 pwr_now /= SCHED_LOAD_SCALE;
2544
2545 /* Amount of load we'd subtract */
2546 tmp = sg_div_cpu_power(busiest,
2547 busiest_load_per_task * SCHED_LOAD_SCALE);
2548 if (max_load > tmp)
2549 pwr_move += busiest->__cpu_power *
2550 min(busiest_load_per_task, max_load - tmp);
2551
2552 /* Amount of load we'd add */
2553 if (max_load * busiest->__cpu_power <
2554 busiest_load_per_task * SCHED_LOAD_SCALE)
2555 tmp = sg_div_cpu_power(this,
2556 max_load * busiest->__cpu_power);
2557 else
2558 tmp = sg_div_cpu_power(this,
2559 busiest_load_per_task * SCHED_LOAD_SCALE);
2560 pwr_move += this->__cpu_power *
2561 min(this_load_per_task, this_load + tmp);
2562 pwr_move /= SCHED_LOAD_SCALE;
2563
2564 /* Move if we gain throughput */
2565 if (pwr_move > pwr_now)
2566 *imbalance = busiest_load_per_task;
2567 }
2568
2569 return busiest;
2570
2571 out_balanced:
2572 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2573 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2574 goto ret;
2575
2576 if (this == group_leader && group_leader != group_min) {
2577 *imbalance = min_load_per_task;
2578 return group_min;
2579 }
2580 #endif
2581 ret:
2582 *imbalance = 0;
2583 return NULL;
2584 }
2585
2586 /*
2587 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2588 */
2589 static struct rq *
2590 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2591 unsigned long imbalance, cpumask_t *cpus)
2592 {
2593 struct rq *busiest = NULL, *rq;
2594 unsigned long max_load = 0;
2595 int i;
2596
2597 for_each_cpu_mask(i, group->cpumask) {
2598 unsigned long wl;
2599
2600 if (!cpu_isset(i, *cpus))
2601 continue;
2602
2603 rq = cpu_rq(i);
2604 wl = weighted_cpuload(i);
2605
2606 if (rq->nr_running == 1 && wl > imbalance)
2607 continue;
2608
2609 if (wl > max_load) {
2610 max_load = wl;
2611 busiest = rq;
2612 }
2613 }
2614
2615 return busiest;
2616 }
2617
2618 /*
2619 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2620 * so long as it is large enough.
2621 */
2622 #define MAX_PINNED_INTERVAL 512
2623
2624 /*
2625 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2626 * tasks if there is an imbalance.
2627 */
2628 static int load_balance(int this_cpu, struct rq *this_rq,
2629 struct sched_domain *sd, enum cpu_idle_type idle,
2630 int *balance)
2631 {
2632 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2633 struct sched_group *group;
2634 unsigned long imbalance;
2635 struct rq *busiest;
2636 cpumask_t cpus = CPU_MASK_ALL;
2637 unsigned long flags;
2638
2639 /*
2640 * When power savings policy is enabled for the parent domain, idle
2641 * sibling can pick up load irrespective of busy siblings. In this case,
2642 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2643 * portraying it as CPU_NOT_IDLE.
2644 */
2645 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2646 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2647 sd_idle = 1;
2648
2649 schedstat_inc(sd, lb_cnt[idle]);
2650
2651 redo:
2652 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2653 &cpus, balance);
2654
2655 if (*balance == 0)
2656 goto out_balanced;
2657
2658 if (!group) {
2659 schedstat_inc(sd, lb_nobusyg[idle]);
2660 goto out_balanced;
2661 }
2662
2663 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2664 if (!busiest) {
2665 schedstat_inc(sd, lb_nobusyq[idle]);
2666 goto out_balanced;
2667 }
2668
2669 BUG_ON(busiest == this_rq);
2670
2671 schedstat_add(sd, lb_imbalance[idle], imbalance);
2672
2673 ld_moved = 0;
2674 if (busiest->nr_running > 1) {
2675 /*
2676 * Attempt to move tasks. If find_busiest_group has found
2677 * an imbalance but busiest->nr_running <= 1, the group is
2678 * still unbalanced. ld_moved simply stays zero, so it is
2679 * correctly treated as an imbalance.
2680 */
2681 local_irq_save(flags);
2682 double_rq_lock(this_rq, busiest);
2683 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2684 imbalance, sd, idle, &all_pinned);
2685 double_rq_unlock(this_rq, busiest);
2686 local_irq_restore(flags);
2687
2688 /*
2689 * some other cpu did the load balance for us.
2690 */
2691 if (ld_moved && this_cpu != smp_processor_id())
2692 resched_cpu(this_cpu);
2693
2694 /* All tasks on this runqueue were pinned by CPU affinity */
2695 if (unlikely(all_pinned)) {
2696 cpu_clear(cpu_of(busiest), cpus);
2697 if (!cpus_empty(cpus))
2698 goto redo;
2699 goto out_balanced;
2700 }
2701 }
2702
2703 if (!ld_moved) {
2704 schedstat_inc(sd, lb_failed[idle]);
2705 sd->nr_balance_failed++;
2706
2707 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2708
2709 spin_lock_irqsave(&busiest->lock, flags);
2710
2711 /* don't kick the migration_thread, if the curr
2712 * task on busiest cpu can't be moved to this_cpu
2713 */
2714 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2715 spin_unlock_irqrestore(&busiest->lock, flags);
2716 all_pinned = 1;
2717 goto out_one_pinned;
2718 }
2719
2720 if (!busiest->active_balance) {
2721 busiest->active_balance = 1;
2722 busiest->push_cpu = this_cpu;
2723 active_balance = 1;
2724 }
2725 spin_unlock_irqrestore(&busiest->lock, flags);
2726 if (active_balance)
2727 wake_up_process(busiest->migration_thread);
2728
2729 /*
2730 * We've kicked active balancing, reset the failure
2731 * counter.
2732 */
2733 sd->nr_balance_failed = sd->cache_nice_tries+1;
2734 }
2735 } else
2736 sd->nr_balance_failed = 0;
2737
2738 if (likely(!active_balance)) {
2739 /* We were unbalanced, so reset the balancing interval */
2740 sd->balance_interval = sd->min_interval;
2741 } else {
2742 /*
2743 * If we've begun active balancing, start to back off. This
2744 * case may not be covered by the all_pinned logic if there
2745 * is only 1 task on the busy runqueue (because we don't call
2746 * move_tasks).
2747 */
2748 if (sd->balance_interval < sd->max_interval)
2749 sd->balance_interval *= 2;
2750 }
2751
2752 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2753 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2754 return -1;
2755 return ld_moved;
2756
2757 out_balanced:
2758 schedstat_inc(sd, lb_balanced[idle]);
2759
2760 sd->nr_balance_failed = 0;
2761
2762 out_one_pinned:
2763 /* tune up the balancing interval */
2764 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2765 (sd->balance_interval < sd->max_interval))
2766 sd->balance_interval *= 2;
2767
2768 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2769 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2770 return -1;
2771 return 0;
2772 }
2773
2774 /*
2775 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2776 * tasks if there is an imbalance.
2777 *
2778 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2779 * this_rq is locked.
2780 */
2781 static int
2782 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2783 {
2784 struct sched_group *group;
2785 struct rq *busiest = NULL;
2786 unsigned long imbalance;
2787 int ld_moved = 0;
2788 int sd_idle = 0;
2789 int all_pinned = 0;
2790 cpumask_t cpus = CPU_MASK_ALL;
2791
2792 /*
2793 * When power savings policy is enabled for the parent domain, idle
2794 * sibling can pick up load irrespective of busy siblings. In this case,
2795 * let the state of idle sibling percolate up as IDLE, instead of
2796 * portraying it as CPU_NOT_IDLE.
2797 */
2798 if (sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 sd_idle = 1;
2801
2802 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2803 redo:
2804 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2805 &sd_idle, &cpus, NULL);
2806 if (!group) {
2807 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2808 goto out_balanced;
2809 }
2810
2811 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2812 &cpus);
2813 if (!busiest) {
2814 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2815 goto out_balanced;
2816 }
2817
2818 BUG_ON(busiest == this_rq);
2819
2820 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2821
2822 ld_moved = 0;
2823 if (busiest->nr_running > 1) {
2824 /* Attempt to move tasks */
2825 double_lock_balance(this_rq, busiest);
2826 /* this_rq->clock is already updated */
2827 update_rq_clock(busiest);
2828 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2829 imbalance, sd, CPU_NEWLY_IDLE,
2830 &all_pinned);
2831 spin_unlock(&busiest->lock);
2832
2833 if (unlikely(all_pinned)) {
2834 cpu_clear(cpu_of(busiest), cpus);
2835 if (!cpus_empty(cpus))
2836 goto redo;
2837 }
2838 }
2839
2840 if (!ld_moved) {
2841 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2842 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2844 return -1;
2845 } else
2846 sd->nr_balance_failed = 0;
2847
2848 return ld_moved;
2849
2850 out_balanced:
2851 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2852 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2854 return -1;
2855 sd->nr_balance_failed = 0;
2856
2857 return 0;
2858 }
2859
2860 /*
2861 * idle_balance is called by schedule() if this_cpu is about to become
2862 * idle. Attempts to pull tasks from other CPUs.
2863 */
2864 static void idle_balance(int this_cpu, struct rq *this_rq)
2865 {
2866 struct sched_domain *sd;
2867 int pulled_task = -1;
2868 unsigned long next_balance = jiffies + HZ;
2869
2870 for_each_domain(this_cpu, sd) {
2871 unsigned long interval;
2872
2873 if (!(sd->flags & SD_LOAD_BALANCE))
2874 continue;
2875
2876 if (sd->flags & SD_BALANCE_NEWIDLE)
2877 /* If we've pulled tasks over stop searching: */
2878 pulled_task = load_balance_newidle(this_cpu,
2879 this_rq, sd);
2880
2881 interval = msecs_to_jiffies(sd->balance_interval);
2882 if (time_after(next_balance, sd->last_balance + interval))
2883 next_balance = sd->last_balance + interval;
2884 if (pulled_task)
2885 break;
2886 }
2887 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2888 /*
2889 * We are going idle. next_balance may be set based on
2890 * a busy processor. So reset next_balance.
2891 */
2892 this_rq->next_balance = next_balance;
2893 }
2894 }
2895
2896 /*
2897 * active_load_balance is run by migration threads. It pushes running tasks
2898 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2899 * running on each physical CPU where possible, and avoids physical /
2900 * logical imbalances.
2901 *
2902 * Called with busiest_rq locked.
2903 */
2904 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2905 {
2906 int target_cpu = busiest_rq->push_cpu;
2907 struct sched_domain *sd;
2908 struct rq *target_rq;
2909
2910 /* Is there any task to move? */
2911 if (busiest_rq->nr_running <= 1)
2912 return;
2913
2914 target_rq = cpu_rq(target_cpu);
2915
2916 /*
2917 * This condition is "impossible", if it occurs
2918 * we need to fix it. Originally reported by
2919 * Bjorn Helgaas on a 128-cpu setup.
2920 */
2921 BUG_ON(busiest_rq == target_rq);
2922
2923 /* move a task from busiest_rq to target_rq */
2924 double_lock_balance(busiest_rq, target_rq);
2925 update_rq_clock(busiest_rq);
2926 update_rq_clock(target_rq);
2927
2928 /* Search for an sd spanning us and the target CPU. */
2929 for_each_domain(target_cpu, sd) {
2930 if ((sd->flags & SD_LOAD_BALANCE) &&
2931 cpu_isset(busiest_cpu, sd->span))
2932 break;
2933 }
2934
2935 if (likely(sd)) {
2936 schedstat_inc(sd, alb_cnt);
2937
2938 if (move_one_task(target_rq, target_cpu, busiest_rq,
2939 sd, CPU_IDLE))
2940 schedstat_inc(sd, alb_pushed);
2941 else
2942 schedstat_inc(sd, alb_failed);
2943 }
2944 spin_unlock(&target_rq->lock);
2945 }
2946
2947 #ifdef CONFIG_NO_HZ
2948 static struct {
2949 atomic_t load_balancer;
2950 cpumask_t cpu_mask;
2951 } nohz ____cacheline_aligned = {
2952 .load_balancer = ATOMIC_INIT(-1),
2953 .cpu_mask = CPU_MASK_NONE,
2954 };
2955
2956 /*
2957 * This routine will try to nominate the ilb (idle load balancing)
2958 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2959 * load balancing on behalf of all those cpus. If all the cpus in the system
2960 * go into this tickless mode, then there will be no ilb owner (as there is
2961 * no need for one) and all the cpus will sleep till the next wakeup event
2962 * arrives...
2963 *
2964 * For the ilb owner, tick is not stopped. And this tick will be used
2965 * for idle load balancing. ilb owner will still be part of
2966 * nohz.cpu_mask..
2967 *
2968 * While stopping the tick, this cpu will become the ilb owner if there
2969 * is no other owner. And will be the owner till that cpu becomes busy
2970 * or if all cpus in the system stop their ticks at which point
2971 * there is no need for ilb owner.
2972 *
2973 * When the ilb owner becomes busy, it nominates another owner, during the
2974 * next busy scheduler_tick()
2975 */
2976 int select_nohz_load_balancer(int stop_tick)
2977 {
2978 int cpu = smp_processor_id();
2979
2980 if (stop_tick) {
2981 cpu_set(cpu, nohz.cpu_mask);
2982 cpu_rq(cpu)->in_nohz_recently = 1;
2983
2984 /*
2985 * If we are going offline and still the leader, give up!
2986 */
2987 if (cpu_is_offline(cpu) &&
2988 atomic_read(&nohz.load_balancer) == cpu) {
2989 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2990 BUG();
2991 return 0;
2992 }
2993
2994 /* time for ilb owner also to sleep */
2995 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2996 if (atomic_read(&nohz.load_balancer) == cpu)
2997 atomic_set(&nohz.load_balancer, -1);
2998 return 0;
2999 }
3000
3001 if (atomic_read(&nohz.load_balancer) == -1) {
3002 /* make me the ilb owner */
3003 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3004 return 1;
3005 } else if (atomic_read(&nohz.load_balancer) == cpu)
3006 return 1;
3007 } else {
3008 if (!cpu_isset(cpu, nohz.cpu_mask))
3009 return 0;
3010
3011 cpu_clear(cpu, nohz.cpu_mask);
3012
3013 if (atomic_read(&nohz.load_balancer) == cpu)
3014 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3015 BUG();
3016 }
3017 return 0;
3018 }
3019 #endif
3020
3021 static DEFINE_SPINLOCK(balancing);
3022
3023 /*
3024 * It checks each scheduling domain to see if it is due to be balanced,
3025 * and initiates a balancing operation if so.
3026 *
3027 * Balancing parameters are set up in arch_init_sched_domains.
3028 */
3029 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3030 {
3031 int balance = 1;
3032 struct rq *rq = cpu_rq(cpu);
3033 unsigned long interval;
3034 struct sched_domain *sd;
3035 /* Earliest time when we have to do rebalance again */
3036 unsigned long next_balance = jiffies + 60*HZ;
3037 int update_next_balance = 0;
3038
3039 for_each_domain(cpu, sd) {
3040 if (!(sd->flags & SD_LOAD_BALANCE))
3041 continue;
3042
3043 interval = sd->balance_interval;
3044 if (idle != CPU_IDLE)
3045 interval *= sd->busy_factor;
3046
3047 /* scale ms to jiffies */
3048 interval = msecs_to_jiffies(interval);
3049 if (unlikely(!interval))
3050 interval = 1;
3051 if (interval > HZ*NR_CPUS/10)
3052 interval = HZ*NR_CPUS/10;
3053
3054
3055 if (sd->flags & SD_SERIALIZE) {
3056 if (!spin_trylock(&balancing))
3057 goto out;
3058 }
3059
3060 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3061 if (load_balance(cpu, rq, sd, idle, &balance)) {
3062 /*
3063 * We've pulled tasks over so either we're no
3064 * longer idle, or one of our SMT siblings is
3065 * not idle.
3066 */
3067 idle = CPU_NOT_IDLE;
3068 }
3069 sd->last_balance = jiffies;
3070 }
3071 if (sd->flags & SD_SERIALIZE)
3072 spin_unlock(&balancing);
3073 out:
3074 if (time_after(next_balance, sd->last_balance + interval)) {
3075 next_balance = sd->last_balance + interval;
3076 update_next_balance = 1;
3077 }
3078
3079 /*
3080 * Stop the load balance at this level. There is another
3081 * CPU in our sched group which is doing load balancing more
3082 * actively.
3083 */
3084 if (!balance)
3085 break;
3086 }
3087
3088 /*
3089 * next_balance will be updated only when there is a need.
3090 * When the cpu is attached to null domain for ex, it will not be
3091 * updated.
3092 */
3093 if (likely(update_next_balance))
3094 rq->next_balance = next_balance;
3095 }
3096
3097 /*
3098 * run_rebalance_domains is triggered when needed from the scheduler tick.
3099 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3100 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3101 */
3102 static void run_rebalance_domains(struct softirq_action *h)
3103 {
3104 int this_cpu = smp_processor_id();
3105 struct rq *this_rq = cpu_rq(this_cpu);
3106 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3107 CPU_IDLE : CPU_NOT_IDLE;
3108
3109 rebalance_domains(this_cpu, idle);
3110
3111 #ifdef CONFIG_NO_HZ
3112 /*
3113 * If this cpu is the owner for idle load balancing, then do the
3114 * balancing on behalf of the other idle cpus whose ticks are
3115 * stopped.
3116 */
3117 if (this_rq->idle_at_tick &&
3118 atomic_read(&nohz.load_balancer) == this_cpu) {
3119 cpumask_t cpus = nohz.cpu_mask;
3120 struct rq *rq;
3121 int balance_cpu;
3122
3123 cpu_clear(this_cpu, cpus);
3124 for_each_cpu_mask(balance_cpu, cpus) {
3125 /*
3126 * If this cpu gets work to do, stop the load balancing
3127 * work being done for other cpus. Next load
3128 * balancing owner will pick it up.
3129 */
3130 if (need_resched())
3131 break;
3132
3133 rebalance_domains(balance_cpu, CPU_IDLE);
3134
3135 rq = cpu_rq(balance_cpu);
3136 if (time_after(this_rq->next_balance, rq->next_balance))
3137 this_rq->next_balance = rq->next_balance;
3138 }
3139 }
3140 #endif
3141 }
3142
3143 /*
3144 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3145 *
3146 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3147 * idle load balancing owner or decide to stop the periodic load balancing,
3148 * if the whole system is idle.
3149 */
3150 static inline void trigger_load_balance(struct rq *rq, int cpu)
3151 {
3152 #ifdef CONFIG_NO_HZ
3153 /*
3154 * If we were in the nohz mode recently and busy at the current
3155 * scheduler tick, then check if we need to nominate new idle
3156 * load balancer.
3157 */
3158 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3159 rq->in_nohz_recently = 0;
3160
3161 if (atomic_read(&nohz.load_balancer) == cpu) {
3162 cpu_clear(cpu, nohz.cpu_mask);
3163 atomic_set(&nohz.load_balancer, -1);
3164 }
3165
3166 if (atomic_read(&nohz.load_balancer) == -1) {
3167 /*
3168 * simple selection for now: Nominate the
3169 * first cpu in the nohz list to be the next
3170 * ilb owner.
3171 *
3172 * TBD: Traverse the sched domains and nominate
3173 * the nearest cpu in the nohz.cpu_mask.
3174 */
3175 int ilb = first_cpu(nohz.cpu_mask);
3176
3177 if (ilb != NR_CPUS)
3178 resched_cpu(ilb);
3179 }
3180 }
3181
3182 /*
3183 * If this cpu is idle and doing idle load balancing for all the
3184 * cpus with ticks stopped, is it time for that to stop?
3185 */
3186 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3187 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3188 resched_cpu(cpu);
3189 return;
3190 }
3191
3192 /*
3193 * If this cpu is idle and the idle load balancing is done by
3194 * someone else, then no need raise the SCHED_SOFTIRQ
3195 */
3196 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3197 cpu_isset(cpu, nohz.cpu_mask))
3198 return;
3199 #endif
3200 if (time_after_eq(jiffies, rq->next_balance))
3201 raise_softirq(SCHED_SOFTIRQ);
3202 }
3203
3204 #else /* CONFIG_SMP */
3205
3206 /*
3207 * on UP we do not need to balance between CPUs:
3208 */
3209 static inline void idle_balance(int cpu, struct rq *rq)
3210 {
3211 }
3212
3213 /* Avoid "used but not defined" warning on UP */
3214 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3215 unsigned long max_nr_move, unsigned long max_load_move,
3216 struct sched_domain *sd, enum cpu_idle_type idle,
3217 int *all_pinned, unsigned long *load_moved,
3218 int *this_best_prio, struct rq_iterator *iterator)
3219 {
3220 *load_moved = 0;
3221
3222 return 0;
3223 }
3224
3225 #endif
3226
3227 DEFINE_PER_CPU(struct kernel_stat, kstat);
3228
3229 EXPORT_PER_CPU_SYMBOL(kstat);
3230
3231 /*
3232 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3233 * that have not yet been banked in case the task is currently running.
3234 */
3235 unsigned long long task_sched_runtime(struct task_struct *p)
3236 {
3237 unsigned long flags;
3238 u64 ns, delta_exec;
3239 struct rq *rq;
3240
3241 rq = task_rq_lock(p, &flags);
3242 ns = p->se.sum_exec_runtime;
3243 if (rq->curr == p) {
3244 update_rq_clock(rq);
3245 delta_exec = rq->clock - p->se.exec_start;
3246 if ((s64)delta_exec > 0)
3247 ns += delta_exec;
3248 }
3249 task_rq_unlock(rq, &flags);
3250
3251 return ns;
3252 }
3253
3254 /*
3255 * Account user cpu time to a process.
3256 * @p: the process that the cpu time gets accounted to
3257 * @hardirq_offset: the offset to subtract from hardirq_count()
3258 * @cputime: the cpu time spent in user space since the last update
3259 */
3260 void account_user_time(struct task_struct *p, cputime_t cputime)
3261 {
3262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3263 cputime64_t tmp;
3264
3265 p->utime = cputime_add(p->utime, cputime);
3266
3267 /* Add user time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (TASK_NICE(p) > 0)
3270 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3271 else
3272 cpustat->user = cputime64_add(cpustat->user, tmp);
3273 }
3274
3275 /*
3276 * Account system cpu time to a process.
3277 * @p: the process that the cpu time gets accounted to
3278 * @hardirq_offset: the offset to subtract from hardirq_count()
3279 * @cputime: the cpu time spent in kernel space since the last update
3280 */
3281 void account_system_time(struct task_struct *p, int hardirq_offset,
3282 cputime_t cputime)
3283 {
3284 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3285 struct rq *rq = this_rq();
3286 cputime64_t tmp;
3287
3288 p->stime = cputime_add(p->stime, cputime);
3289
3290 /* Add system time to cpustat. */
3291 tmp = cputime_to_cputime64(cputime);
3292 if (hardirq_count() - hardirq_offset)
3293 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3294 else if (softirq_count())
3295 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3296 else if (p != rq->idle)
3297 cpustat->system = cputime64_add(cpustat->system, tmp);
3298 else if (atomic_read(&rq->nr_iowait) > 0)
3299 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3300 else
3301 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3302 /* Account for system time used */
3303 acct_update_integrals(p);
3304 }
3305
3306 /*
3307 * Account for involuntary wait time.
3308 * @p: the process from which the cpu time has been stolen
3309 * @steal: the cpu time spent in involuntary wait
3310 */
3311 void account_steal_time(struct task_struct *p, cputime_t steal)
3312 {
3313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3314 cputime64_t tmp = cputime_to_cputime64(steal);
3315 struct rq *rq = this_rq();
3316
3317 if (p == rq->idle) {
3318 p->stime = cputime_add(p->stime, steal);
3319 if (atomic_read(&rq->nr_iowait) > 0)
3320 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3321 else
3322 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3323 } else
3324 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3325 }
3326
3327 /*
3328 * This function gets called by the timer code, with HZ frequency.
3329 * We call it with interrupts disabled.
3330 *
3331 * It also gets called by the fork code, when changing the parent's
3332 * timeslices.
3333 */
3334 void scheduler_tick(void)
3335 {
3336 int cpu = smp_processor_id();
3337 struct rq *rq = cpu_rq(cpu);
3338 struct task_struct *curr = rq->curr;
3339 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3340
3341 spin_lock(&rq->lock);
3342 __update_rq_clock(rq);
3343 /*
3344 * Let rq->clock advance by at least TICK_NSEC:
3345 */
3346 if (unlikely(rq->clock < next_tick))
3347 rq->clock = next_tick;
3348 rq->tick_timestamp = rq->clock;
3349 update_cpu_load(rq);
3350 if (curr != rq->idle) /* FIXME: needed? */
3351 curr->sched_class->task_tick(rq, curr);
3352 spin_unlock(&rq->lock);
3353
3354 #ifdef CONFIG_SMP
3355 rq->idle_at_tick = idle_cpu(cpu);
3356 trigger_load_balance(rq, cpu);
3357 #endif
3358 }
3359
3360 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3361
3362 void fastcall add_preempt_count(int val)
3363 {
3364 /*
3365 * Underflow?
3366 */
3367 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3368 return;
3369 preempt_count() += val;
3370 /*
3371 * Spinlock count overflowing soon?
3372 */
3373 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3374 PREEMPT_MASK - 10);
3375 }
3376 EXPORT_SYMBOL(add_preempt_count);
3377
3378 void fastcall sub_preempt_count(int val)
3379 {
3380 /*
3381 * Underflow?
3382 */
3383 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3384 return;
3385 /*
3386 * Is the spinlock portion underflowing?
3387 */
3388 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3389 !(preempt_count() & PREEMPT_MASK)))
3390 return;
3391
3392 preempt_count() -= val;
3393 }
3394 EXPORT_SYMBOL(sub_preempt_count);
3395
3396 #endif
3397
3398 /*
3399 * Print scheduling while atomic bug:
3400 */
3401 static noinline void __schedule_bug(struct task_struct *prev)
3402 {
3403 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3404 prev->comm, preempt_count(), prev->pid);
3405 debug_show_held_locks(prev);
3406 if (irqs_disabled())
3407 print_irqtrace_events(prev);
3408 dump_stack();
3409 }
3410
3411 /*
3412 * Various schedule()-time debugging checks and statistics:
3413 */
3414 static inline void schedule_debug(struct task_struct *prev)
3415 {
3416 /*
3417 * Test if we are atomic. Since do_exit() needs to call into
3418 * schedule() atomically, we ignore that path for now.
3419 * Otherwise, whine if we are scheduling when we should not be.
3420 */
3421 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3422 __schedule_bug(prev);
3423
3424 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3425
3426 schedstat_inc(this_rq(), sched_cnt);
3427 }
3428
3429 /*
3430 * Pick up the highest-prio task:
3431 */
3432 static inline struct task_struct *
3433 pick_next_task(struct rq *rq, struct task_struct *prev)
3434 {
3435 struct sched_class *class;
3436 struct task_struct *p;
3437
3438 /*
3439 * Optimization: we know that if all tasks are in
3440 * the fair class we can call that function directly:
3441 */
3442 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3443 p = fair_sched_class.pick_next_task(rq);
3444 if (likely(p))
3445 return p;
3446 }
3447
3448 class = sched_class_highest;
3449 for ( ; ; ) {
3450 p = class->pick_next_task(rq);
3451 if (p)
3452 return p;
3453 /*
3454 * Will never be NULL as the idle class always
3455 * returns a non-NULL p:
3456 */
3457 class = class->next;
3458 }
3459 }
3460
3461 /*
3462 * schedule() is the main scheduler function.
3463 */
3464 asmlinkage void __sched schedule(void)
3465 {
3466 struct task_struct *prev, *next;
3467 long *switch_count;
3468 struct rq *rq;
3469 int cpu;
3470
3471 need_resched:
3472 preempt_disable();
3473 cpu = smp_processor_id();
3474 rq = cpu_rq(cpu);
3475 rcu_qsctr_inc(cpu);
3476 prev = rq->curr;
3477 switch_count = &prev->nivcsw;
3478
3479 release_kernel_lock(prev);
3480 need_resched_nonpreemptible:
3481
3482 schedule_debug(prev);
3483
3484 spin_lock_irq(&rq->lock);
3485 clear_tsk_need_resched(prev);
3486 __update_rq_clock(rq);
3487
3488 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3489 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3490 unlikely(signal_pending(prev)))) {
3491 prev->state = TASK_RUNNING;
3492 } else {
3493 deactivate_task(rq, prev, 1);
3494 }
3495 switch_count = &prev->nvcsw;
3496 }
3497
3498 if (unlikely(!rq->nr_running))
3499 idle_balance(cpu, rq);
3500
3501 prev->sched_class->put_prev_task(rq, prev);
3502 next = pick_next_task(rq, prev);
3503
3504 sched_info_switch(prev, next);
3505
3506 if (likely(prev != next)) {
3507 rq->nr_switches++;
3508 rq->curr = next;
3509 ++*switch_count;
3510
3511 context_switch(rq, prev, next); /* unlocks the rq */
3512 } else
3513 spin_unlock_irq(&rq->lock);
3514
3515 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3516 cpu = smp_processor_id();
3517 rq = cpu_rq(cpu);
3518 goto need_resched_nonpreemptible;
3519 }
3520 preempt_enable_no_resched();
3521 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3522 goto need_resched;
3523 }
3524 EXPORT_SYMBOL(schedule);
3525
3526 #ifdef CONFIG_PREEMPT
3527 /*
3528 * this is the entry point to schedule() from in-kernel preemption
3529 * off of preempt_enable. Kernel preemptions off return from interrupt
3530 * occur there and call schedule directly.
3531 */
3532 asmlinkage void __sched preempt_schedule(void)
3533 {
3534 struct thread_info *ti = current_thread_info();
3535 #ifdef CONFIG_PREEMPT_BKL
3536 struct task_struct *task = current;
3537 int saved_lock_depth;
3538 #endif
3539 /*
3540 * If there is a non-zero preempt_count or interrupts are disabled,
3541 * we do not want to preempt the current task. Just return..
3542 */
3543 if (likely(ti->preempt_count || irqs_disabled()))
3544 return;
3545
3546 need_resched:
3547 add_preempt_count(PREEMPT_ACTIVE);
3548 /*
3549 * We keep the big kernel semaphore locked, but we
3550 * clear ->lock_depth so that schedule() doesnt
3551 * auto-release the semaphore:
3552 */
3553 #ifdef CONFIG_PREEMPT_BKL
3554 saved_lock_depth = task->lock_depth;
3555 task->lock_depth = -1;
3556 #endif
3557 schedule();
3558 #ifdef CONFIG_PREEMPT_BKL
3559 task->lock_depth = saved_lock_depth;
3560 #endif
3561 sub_preempt_count(PREEMPT_ACTIVE);
3562
3563 /* we could miss a preemption opportunity between schedule and now */
3564 barrier();
3565 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3566 goto need_resched;
3567 }
3568 EXPORT_SYMBOL(preempt_schedule);
3569
3570 /*
3571 * this is the entry point to schedule() from kernel preemption
3572 * off of irq context.
3573 * Note, that this is called and return with irqs disabled. This will
3574 * protect us against recursive calling from irq.
3575 */
3576 asmlinkage void __sched preempt_schedule_irq(void)
3577 {
3578 struct thread_info *ti = current_thread_info();
3579 #ifdef CONFIG_PREEMPT_BKL
3580 struct task_struct *task = current;
3581 int saved_lock_depth;
3582 #endif
3583 /* Catch callers which need to be fixed */
3584 BUG_ON(ti->preempt_count || !irqs_disabled());
3585
3586 need_resched:
3587 add_preempt_count(PREEMPT_ACTIVE);
3588 /*
3589 * We keep the big kernel semaphore locked, but we
3590 * clear ->lock_depth so that schedule() doesnt
3591 * auto-release the semaphore:
3592 */
3593 #ifdef CONFIG_PREEMPT_BKL
3594 saved_lock_depth = task->lock_depth;
3595 task->lock_depth = -1;
3596 #endif
3597 local_irq_enable();
3598 schedule();
3599 local_irq_disable();
3600 #ifdef CONFIG_PREEMPT_BKL
3601 task->lock_depth = saved_lock_depth;
3602 #endif
3603 sub_preempt_count(PREEMPT_ACTIVE);
3604
3605 /* we could miss a preemption opportunity between schedule and now */
3606 barrier();
3607 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3608 goto need_resched;
3609 }
3610
3611 #endif /* CONFIG_PREEMPT */
3612
3613 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3614 void *key)
3615 {
3616 return try_to_wake_up(curr->private, mode, sync);
3617 }
3618 EXPORT_SYMBOL(default_wake_function);
3619
3620 /*
3621 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3622 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3623 * number) then we wake all the non-exclusive tasks and one exclusive task.
3624 *
3625 * There are circumstances in which we can try to wake a task which has already
3626 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3627 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3628 */
3629 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3630 int nr_exclusive, int sync, void *key)
3631 {
3632 wait_queue_t *curr, *next;
3633
3634 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3635 unsigned flags = curr->flags;
3636
3637 if (curr->func(curr, mode, sync, key) &&
3638 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3639 break;
3640 }
3641 }
3642
3643 /**
3644 * __wake_up - wake up threads blocked on a waitqueue.
3645 * @q: the waitqueue
3646 * @mode: which threads
3647 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3648 * @key: is directly passed to the wakeup function
3649 */
3650 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3651 int nr_exclusive, void *key)
3652 {
3653 unsigned long flags;
3654
3655 spin_lock_irqsave(&q->lock, flags);
3656 __wake_up_common(q, mode, nr_exclusive, 0, key);
3657 spin_unlock_irqrestore(&q->lock, flags);
3658 }
3659 EXPORT_SYMBOL(__wake_up);
3660
3661 /*
3662 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3663 */
3664 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3665 {
3666 __wake_up_common(q, mode, 1, 0, NULL);
3667 }
3668
3669 /**
3670 * __wake_up_sync - wake up threads blocked on a waitqueue.
3671 * @q: the waitqueue
3672 * @mode: which threads
3673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3674 *
3675 * The sync wakeup differs that the waker knows that it will schedule
3676 * away soon, so while the target thread will be woken up, it will not
3677 * be migrated to another CPU - ie. the two threads are 'synchronized'
3678 * with each other. This can prevent needless bouncing between CPUs.
3679 *
3680 * On UP it can prevent extra preemption.
3681 */
3682 void fastcall
3683 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3684 {
3685 unsigned long flags;
3686 int sync = 1;
3687
3688 if (unlikely(!q))
3689 return;
3690
3691 if (unlikely(!nr_exclusive))
3692 sync = 0;
3693
3694 spin_lock_irqsave(&q->lock, flags);
3695 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3696 spin_unlock_irqrestore(&q->lock, flags);
3697 }
3698 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3699
3700 void fastcall complete(struct completion *x)
3701 {
3702 unsigned long flags;
3703
3704 spin_lock_irqsave(&x->wait.lock, flags);
3705 x->done++;
3706 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3707 1, 0, NULL);
3708 spin_unlock_irqrestore(&x->wait.lock, flags);
3709 }
3710 EXPORT_SYMBOL(complete);
3711
3712 void fastcall complete_all(struct completion *x)
3713 {
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&x->wait.lock, flags);
3717 x->done += UINT_MAX/2;
3718 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3719 0, 0, NULL);
3720 spin_unlock_irqrestore(&x->wait.lock, flags);
3721 }
3722 EXPORT_SYMBOL(complete_all);
3723
3724 void fastcall __sched wait_for_completion(struct completion *x)
3725 {
3726 might_sleep();
3727
3728 spin_lock_irq(&x->wait.lock);
3729 if (!x->done) {
3730 DECLARE_WAITQUEUE(wait, current);
3731
3732 wait.flags |= WQ_FLAG_EXCLUSIVE;
3733 __add_wait_queue_tail(&x->wait, &wait);
3734 do {
3735 __set_current_state(TASK_UNINTERRUPTIBLE);
3736 spin_unlock_irq(&x->wait.lock);
3737 schedule();
3738 spin_lock_irq(&x->wait.lock);
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743 spin_unlock_irq(&x->wait.lock);
3744 }
3745 EXPORT_SYMBOL(wait_for_completion);
3746
3747 unsigned long fastcall __sched
3748 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3749 {
3750 might_sleep();
3751
3752 spin_lock_irq(&x->wait.lock);
3753 if (!x->done) {
3754 DECLARE_WAITQUEUE(wait, current);
3755
3756 wait.flags |= WQ_FLAG_EXCLUSIVE;
3757 __add_wait_queue_tail(&x->wait, &wait);
3758 do {
3759 __set_current_state(TASK_UNINTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 timeout = schedule_timeout(timeout);
3762 spin_lock_irq(&x->wait.lock);
3763 if (!timeout) {
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3769 }
3770 x->done--;
3771 out:
3772 spin_unlock_irq(&x->wait.lock);
3773 return timeout;
3774 }
3775 EXPORT_SYMBOL(wait_for_completion_timeout);
3776
3777 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3778 {
3779 int ret = 0;
3780
3781 might_sleep();
3782
3783 spin_lock_irq(&x->wait.lock);
3784 if (!x->done) {
3785 DECLARE_WAITQUEUE(wait, current);
3786
3787 wait.flags |= WQ_FLAG_EXCLUSIVE;
3788 __add_wait_queue_tail(&x->wait, &wait);
3789 do {
3790 if (signal_pending(current)) {
3791 ret = -ERESTARTSYS;
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3794 }
3795 __set_current_state(TASK_INTERRUPTIBLE);
3796 spin_unlock_irq(&x->wait.lock);
3797 schedule();
3798 spin_lock_irq(&x->wait.lock);
3799 } while (!x->done);
3800 __remove_wait_queue(&x->wait, &wait);
3801 }
3802 x->done--;
3803 out:
3804 spin_unlock_irq(&x->wait.lock);
3805
3806 return ret;
3807 }
3808 EXPORT_SYMBOL(wait_for_completion_interruptible);
3809
3810 unsigned long fastcall __sched
3811 wait_for_completion_interruptible_timeout(struct completion *x,
3812 unsigned long timeout)
3813 {
3814 might_sleep();
3815
3816 spin_lock_irq(&x->wait.lock);
3817 if (!x->done) {
3818 DECLARE_WAITQUEUE(wait, current);
3819
3820 wait.flags |= WQ_FLAG_EXCLUSIVE;
3821 __add_wait_queue_tail(&x->wait, &wait);
3822 do {
3823 if (signal_pending(current)) {
3824 timeout = -ERESTARTSYS;
3825 __remove_wait_queue(&x->wait, &wait);
3826 goto out;
3827 }
3828 __set_current_state(TASK_INTERRUPTIBLE);
3829 spin_unlock_irq(&x->wait.lock);
3830 timeout = schedule_timeout(timeout);
3831 spin_lock_irq(&x->wait.lock);
3832 if (!timeout) {
3833 __remove_wait_queue(&x->wait, &wait);
3834 goto out;
3835 }
3836 } while (!x->done);
3837 __remove_wait_queue(&x->wait, &wait);
3838 }
3839 x->done--;
3840 out:
3841 spin_unlock_irq(&x->wait.lock);
3842 return timeout;
3843 }
3844 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3845
3846 static inline void
3847 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3848 {
3849 spin_lock_irqsave(&q->lock, *flags);
3850 __add_wait_queue(q, wait);
3851 spin_unlock(&q->lock);
3852 }
3853
3854 static inline void
3855 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3856 {
3857 spin_lock_irq(&q->lock);
3858 __remove_wait_queue(q, wait);
3859 spin_unlock_irqrestore(&q->lock, *flags);
3860 }
3861
3862 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3863 {
3864 unsigned long flags;
3865 wait_queue_t wait;
3866
3867 init_waitqueue_entry(&wait, current);
3868
3869 current->state = TASK_INTERRUPTIBLE;
3870
3871 sleep_on_head(q, &wait, &flags);
3872 schedule();
3873 sleep_on_tail(q, &wait, &flags);
3874 }
3875 EXPORT_SYMBOL(interruptible_sleep_on);
3876
3877 long __sched
3878 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3879 {
3880 unsigned long flags;
3881 wait_queue_t wait;
3882
3883 init_waitqueue_entry(&wait, current);
3884
3885 current->state = TASK_INTERRUPTIBLE;
3886
3887 sleep_on_head(q, &wait, &flags);
3888 timeout = schedule_timeout(timeout);
3889 sleep_on_tail(q, &wait, &flags);
3890
3891 return timeout;
3892 }
3893 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3894
3895 void __sched sleep_on(wait_queue_head_t *q)
3896 {
3897 unsigned long flags;
3898 wait_queue_t wait;
3899
3900 init_waitqueue_entry(&wait, current);
3901
3902 current->state = TASK_UNINTERRUPTIBLE;
3903
3904 sleep_on_head(q, &wait, &flags);
3905 schedule();
3906 sleep_on_tail(q, &wait, &flags);
3907 }
3908 EXPORT_SYMBOL(sleep_on);
3909
3910 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3911 {
3912 unsigned long flags;
3913 wait_queue_t wait;
3914
3915 init_waitqueue_entry(&wait, current);
3916
3917 current->state = TASK_UNINTERRUPTIBLE;
3918
3919 sleep_on_head(q, &wait, &flags);
3920 timeout = schedule_timeout(timeout);
3921 sleep_on_tail(q, &wait, &flags);
3922
3923 return timeout;
3924 }
3925 EXPORT_SYMBOL(sleep_on_timeout);
3926
3927 #ifdef CONFIG_RT_MUTEXES
3928
3929 /*
3930 * rt_mutex_setprio - set the current priority of a task
3931 * @p: task
3932 * @prio: prio value (kernel-internal form)
3933 *
3934 * This function changes the 'effective' priority of a task. It does
3935 * not touch ->normal_prio like __setscheduler().
3936 *
3937 * Used by the rt_mutex code to implement priority inheritance logic.
3938 */
3939 void rt_mutex_setprio(struct task_struct *p, int prio)
3940 {
3941 unsigned long flags;
3942 int oldprio, on_rq;
3943 struct rq *rq;
3944
3945 BUG_ON(prio < 0 || prio > MAX_PRIO);
3946
3947 rq = task_rq_lock(p, &flags);
3948 update_rq_clock(rq);
3949
3950 oldprio = p->prio;
3951 on_rq = p->se.on_rq;
3952 if (on_rq)
3953 dequeue_task(rq, p, 0);
3954
3955 if (rt_prio(prio))
3956 p->sched_class = &rt_sched_class;
3957 else
3958 p->sched_class = &fair_sched_class;
3959
3960 p->prio = prio;
3961
3962 if (on_rq) {
3963 enqueue_task(rq, p, 0);
3964 /*
3965 * Reschedule if we are currently running on this runqueue and
3966 * our priority decreased, or if we are not currently running on
3967 * this runqueue and our priority is higher than the current's
3968 */
3969 if (task_running(rq, p)) {
3970 if (p->prio > oldprio)
3971 resched_task(rq->curr);
3972 } else {
3973 check_preempt_curr(rq, p);
3974 }
3975 }
3976 task_rq_unlock(rq, &flags);
3977 }
3978
3979 #endif
3980
3981 void set_user_nice(struct task_struct *p, long nice)
3982 {
3983 int old_prio, delta, on_rq;
3984 unsigned long flags;
3985 struct rq *rq;
3986
3987 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3988 return;
3989 /*
3990 * We have to be careful, if called from sys_setpriority(),
3991 * the task might be in the middle of scheduling on another CPU.
3992 */
3993 rq = task_rq_lock(p, &flags);
3994 update_rq_clock(rq);
3995 /*
3996 * The RT priorities are set via sched_setscheduler(), but we still
3997 * allow the 'normal' nice value to be set - but as expected
3998 * it wont have any effect on scheduling until the task is
3999 * SCHED_FIFO/SCHED_RR:
4000 */
4001 if (task_has_rt_policy(p)) {
4002 p->static_prio = NICE_TO_PRIO(nice);
4003 goto out_unlock;
4004 }
4005 on_rq = p->se.on_rq;
4006 if (on_rq) {
4007 dequeue_task(rq, p, 0);
4008 dec_load(rq, p);
4009 }
4010
4011 p->static_prio = NICE_TO_PRIO(nice);
4012 set_load_weight(p);
4013 old_prio = p->prio;
4014 p->prio = effective_prio(p);
4015 delta = p->prio - old_prio;
4016
4017 if (on_rq) {
4018 enqueue_task(rq, p, 0);
4019 inc_load(rq, p);
4020 /*
4021 * If the task increased its priority or is running and
4022 * lowered its priority, then reschedule its CPU:
4023 */
4024 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4025 resched_task(rq->curr);
4026 }
4027 out_unlock:
4028 task_rq_unlock(rq, &flags);
4029 }
4030 EXPORT_SYMBOL(set_user_nice);
4031
4032 /*
4033 * can_nice - check if a task can reduce its nice value
4034 * @p: task
4035 * @nice: nice value
4036 */
4037 int can_nice(const struct task_struct *p, const int nice)
4038 {
4039 /* convert nice value [19,-20] to rlimit style value [1,40] */
4040 int nice_rlim = 20 - nice;
4041
4042 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4043 capable(CAP_SYS_NICE));
4044 }
4045
4046 #ifdef __ARCH_WANT_SYS_NICE
4047
4048 /*
4049 * sys_nice - change the priority of the current process.
4050 * @increment: priority increment
4051 *
4052 * sys_setpriority is a more generic, but much slower function that
4053 * does similar things.
4054 */
4055 asmlinkage long sys_nice(int increment)
4056 {
4057 long nice, retval;
4058
4059 /*
4060 * Setpriority might change our priority at the same moment.
4061 * We don't have to worry. Conceptually one call occurs first
4062 * and we have a single winner.
4063 */
4064 if (increment < -40)
4065 increment = -40;
4066 if (increment > 40)
4067 increment = 40;
4068
4069 nice = PRIO_TO_NICE(current->static_prio) + increment;
4070 if (nice < -20)
4071 nice = -20;
4072 if (nice > 19)
4073 nice = 19;
4074
4075 if (increment < 0 && !can_nice(current, nice))
4076 return -EPERM;
4077
4078 retval = security_task_setnice(current, nice);
4079 if (retval)
4080 return retval;
4081
4082 set_user_nice(current, nice);
4083 return 0;
4084 }
4085
4086 #endif
4087
4088 /**
4089 * task_prio - return the priority value of a given task.
4090 * @p: the task in question.
4091 *
4092 * This is the priority value as seen by users in /proc.
4093 * RT tasks are offset by -200. Normal tasks are centered
4094 * around 0, value goes from -16 to +15.
4095 */
4096 int task_prio(const struct task_struct *p)
4097 {
4098 return p->prio - MAX_RT_PRIO;
4099 }
4100
4101 /**
4102 * task_nice - return the nice value of a given task.
4103 * @p: the task in question.
4104 */
4105 int task_nice(const struct task_struct *p)
4106 {
4107 return TASK_NICE(p);
4108 }
4109 EXPORT_SYMBOL_GPL(task_nice);
4110
4111 /**
4112 * idle_cpu - is a given cpu idle currently?
4113 * @cpu: the processor in question.
4114 */
4115 int idle_cpu(int cpu)
4116 {
4117 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4118 }
4119
4120 /**
4121 * idle_task - return the idle task for a given cpu.
4122 * @cpu: the processor in question.
4123 */
4124 struct task_struct *idle_task(int cpu)
4125 {
4126 return cpu_rq(cpu)->idle;
4127 }
4128
4129 /**
4130 * find_process_by_pid - find a process with a matching PID value.
4131 * @pid: the pid in question.
4132 */
4133 static inline struct task_struct *find_process_by_pid(pid_t pid)
4134 {
4135 return pid ? find_task_by_pid(pid) : current;
4136 }
4137
4138 /* Actually do priority change: must hold rq lock. */
4139 static void
4140 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4141 {
4142 BUG_ON(p->se.on_rq);
4143
4144 p->policy = policy;
4145 switch (p->policy) {
4146 case SCHED_NORMAL:
4147 case SCHED_BATCH:
4148 case SCHED_IDLE:
4149 p->sched_class = &fair_sched_class;
4150 break;
4151 case SCHED_FIFO:
4152 case SCHED_RR:
4153 p->sched_class = &rt_sched_class;
4154 break;
4155 }
4156
4157 p->rt_priority = prio;
4158 p->normal_prio = normal_prio(p);
4159 /* we are holding p->pi_lock already */
4160 p->prio = rt_mutex_getprio(p);
4161 set_load_weight(p);
4162 }
4163
4164 /**
4165 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4166 * @p: the task in question.
4167 * @policy: new policy.
4168 * @param: structure containing the new RT priority.
4169 *
4170 * NOTE that the task may be already dead.
4171 */
4172 int sched_setscheduler(struct task_struct *p, int policy,
4173 struct sched_param *param)
4174 {
4175 int retval, oldprio, oldpolicy = -1, on_rq;
4176 unsigned long flags;
4177 struct rq *rq;
4178
4179 /* may grab non-irq protected spin_locks */
4180 BUG_ON(in_interrupt());
4181 recheck:
4182 /* double check policy once rq lock held */
4183 if (policy < 0)
4184 policy = oldpolicy = p->policy;
4185 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4186 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4187 policy != SCHED_IDLE)
4188 return -EINVAL;
4189 /*
4190 * Valid priorities for SCHED_FIFO and SCHED_RR are
4191 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4192 * SCHED_BATCH and SCHED_IDLE is 0.
4193 */
4194 if (param->sched_priority < 0 ||
4195 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4196 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4197 return -EINVAL;
4198 if (rt_policy(policy) != (param->sched_priority != 0))
4199 return -EINVAL;
4200
4201 /*
4202 * Allow unprivileged RT tasks to decrease priority:
4203 */
4204 if (!capable(CAP_SYS_NICE)) {
4205 if (rt_policy(policy)) {
4206 unsigned long rlim_rtprio;
4207
4208 if (!lock_task_sighand(p, &flags))
4209 return -ESRCH;
4210 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4211 unlock_task_sighand(p, &flags);
4212
4213 /* can't set/change the rt policy */
4214 if (policy != p->policy && !rlim_rtprio)
4215 return -EPERM;
4216
4217 /* can't increase priority */
4218 if (param->sched_priority > p->rt_priority &&
4219 param->sched_priority > rlim_rtprio)
4220 return -EPERM;
4221 }
4222 /*
4223 * Like positive nice levels, dont allow tasks to
4224 * move out of SCHED_IDLE either:
4225 */
4226 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4227 return -EPERM;
4228
4229 /* can't change other user's priorities */
4230 if ((current->euid != p->euid) &&
4231 (current->euid != p->uid))
4232 return -EPERM;
4233 }
4234
4235 retval = security_task_setscheduler(p, policy, param);
4236 if (retval)
4237 return retval;
4238 /*
4239 * make sure no PI-waiters arrive (or leave) while we are
4240 * changing the priority of the task:
4241 */
4242 spin_lock_irqsave(&p->pi_lock, flags);
4243 /*
4244 * To be able to change p->policy safely, the apropriate
4245 * runqueue lock must be held.
4246 */
4247 rq = __task_rq_lock(p);
4248 /* recheck policy now with rq lock held */
4249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4250 policy = oldpolicy = -1;
4251 __task_rq_unlock(rq);
4252 spin_unlock_irqrestore(&p->pi_lock, flags);
4253 goto recheck;
4254 }
4255 update_rq_clock(rq);
4256 on_rq = p->se.on_rq;
4257 if (on_rq)
4258 deactivate_task(rq, p, 0);
4259 oldprio = p->prio;
4260 __setscheduler(rq, p, policy, param->sched_priority);
4261 if (on_rq) {
4262 activate_task(rq, p, 0);
4263 /*
4264 * Reschedule if we are currently running on this runqueue and
4265 * our priority decreased, or if we are not currently running on
4266 * this runqueue and our priority is higher than the current's
4267 */
4268 if (task_running(rq, p)) {
4269 if (p->prio > oldprio)
4270 resched_task(rq->curr);
4271 } else {
4272 check_preempt_curr(rq, p);
4273 }
4274 }
4275 __task_rq_unlock(rq);
4276 spin_unlock_irqrestore(&p->pi_lock, flags);
4277
4278 rt_mutex_adjust_pi(p);
4279
4280 return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(sched_setscheduler);
4283
4284 static int
4285 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4286 {
4287 struct sched_param lparam;
4288 struct task_struct *p;
4289 int retval;
4290
4291 if (!param || pid < 0)
4292 return -EINVAL;
4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 return -EFAULT;
4295
4296 rcu_read_lock();
4297 retval = -ESRCH;
4298 p = find_process_by_pid(pid);
4299 if (p != NULL)
4300 retval = sched_setscheduler(p, policy, &lparam);
4301 rcu_read_unlock();
4302
4303 return retval;
4304 }
4305
4306 /**
4307 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4308 * @pid: the pid in question.
4309 * @policy: new policy.
4310 * @param: structure containing the new RT priority.
4311 */
4312 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4313 struct sched_param __user *param)
4314 {
4315 /* negative values for policy are not valid */
4316 if (policy < 0)
4317 return -EINVAL;
4318
4319 return do_sched_setscheduler(pid, policy, param);
4320 }
4321
4322 /**
4323 * sys_sched_setparam - set/change the RT priority of a thread
4324 * @pid: the pid in question.
4325 * @param: structure containing the new RT priority.
4326 */
4327 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4328 {
4329 return do_sched_setscheduler(pid, -1, param);
4330 }
4331
4332 /**
4333 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4334 * @pid: the pid in question.
4335 */
4336 asmlinkage long sys_sched_getscheduler(pid_t pid)
4337 {
4338 struct task_struct *p;
4339 int retval = -EINVAL;
4340
4341 if (pid < 0)
4342 goto out_nounlock;
4343
4344 retval = -ESRCH;
4345 read_lock(&tasklist_lock);
4346 p = find_process_by_pid(pid);
4347 if (p) {
4348 retval = security_task_getscheduler(p);
4349 if (!retval)
4350 retval = p->policy;
4351 }
4352 read_unlock(&tasklist_lock);
4353
4354 out_nounlock:
4355 return retval;
4356 }
4357
4358 /**
4359 * sys_sched_getscheduler - get the RT priority of a thread
4360 * @pid: the pid in question.
4361 * @param: structure containing the RT priority.
4362 */
4363 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4364 {
4365 struct sched_param lp;
4366 struct task_struct *p;
4367 int retval = -EINVAL;
4368
4369 if (!param || pid < 0)
4370 goto out_nounlock;
4371
4372 read_lock(&tasklist_lock);
4373 p = find_process_by_pid(pid);
4374 retval = -ESRCH;
4375 if (!p)
4376 goto out_unlock;
4377
4378 retval = security_task_getscheduler(p);
4379 if (retval)
4380 goto out_unlock;
4381
4382 lp.sched_priority = p->rt_priority;
4383 read_unlock(&tasklist_lock);
4384
4385 /*
4386 * This one might sleep, we cannot do it with a spinlock held ...
4387 */
4388 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4389
4390 out_nounlock:
4391 return retval;
4392
4393 out_unlock:
4394 read_unlock(&tasklist_lock);
4395 return retval;
4396 }
4397
4398 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4399 {
4400 cpumask_t cpus_allowed;
4401 struct task_struct *p;
4402 int retval;
4403
4404 mutex_lock(&sched_hotcpu_mutex);
4405 read_lock(&tasklist_lock);
4406
4407 p = find_process_by_pid(pid);
4408 if (!p) {
4409 read_unlock(&tasklist_lock);
4410 mutex_unlock(&sched_hotcpu_mutex);
4411 return -ESRCH;
4412 }
4413
4414 /*
4415 * It is not safe to call set_cpus_allowed with the
4416 * tasklist_lock held. We will bump the task_struct's
4417 * usage count and then drop tasklist_lock.
4418 */
4419 get_task_struct(p);
4420 read_unlock(&tasklist_lock);
4421
4422 retval = -EPERM;
4423 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4424 !capable(CAP_SYS_NICE))
4425 goto out_unlock;
4426
4427 retval = security_task_setscheduler(p, 0, NULL);
4428 if (retval)
4429 goto out_unlock;
4430
4431 cpus_allowed = cpuset_cpus_allowed(p);
4432 cpus_and(new_mask, new_mask, cpus_allowed);
4433 retval = set_cpus_allowed(p, new_mask);
4434
4435 out_unlock:
4436 put_task_struct(p);
4437 mutex_unlock(&sched_hotcpu_mutex);
4438 return retval;
4439 }
4440
4441 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 cpumask_t *new_mask)
4443 {
4444 if (len < sizeof(cpumask_t)) {
4445 memset(new_mask, 0, sizeof(cpumask_t));
4446 } else if (len > sizeof(cpumask_t)) {
4447 len = sizeof(cpumask_t);
4448 }
4449 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4450 }
4451
4452 /**
4453 * sys_sched_setaffinity - set the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to the new cpu mask
4457 */
4458 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4459 unsigned long __user *user_mask_ptr)
4460 {
4461 cpumask_t new_mask;
4462 int retval;
4463
4464 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4465 if (retval)
4466 return retval;
4467
4468 return sched_setaffinity(pid, new_mask);
4469 }
4470
4471 /*
4472 * Represents all cpu's present in the system
4473 * In systems capable of hotplug, this map could dynamically grow
4474 * as new cpu's are detected in the system via any platform specific
4475 * method, such as ACPI for e.g.
4476 */
4477
4478 cpumask_t cpu_present_map __read_mostly;
4479 EXPORT_SYMBOL(cpu_present_map);
4480
4481 #ifndef CONFIG_SMP
4482 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4483 EXPORT_SYMBOL(cpu_online_map);
4484
4485 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4486 EXPORT_SYMBOL(cpu_possible_map);
4487 #endif
4488
4489 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4490 {
4491 struct task_struct *p;
4492 int retval;
4493
4494 mutex_lock(&sched_hotcpu_mutex);
4495 read_lock(&tasklist_lock);
4496
4497 retval = -ESRCH;
4498 p = find_process_by_pid(pid);
4499 if (!p)
4500 goto out_unlock;
4501
4502 retval = security_task_getscheduler(p);
4503 if (retval)
4504 goto out_unlock;
4505
4506 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4507
4508 out_unlock:
4509 read_unlock(&tasklist_lock);
4510 mutex_unlock(&sched_hotcpu_mutex);
4511
4512 return retval;
4513 }
4514
4515 /**
4516 * sys_sched_getaffinity - get the cpu affinity of a process
4517 * @pid: pid of the process
4518 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4519 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4520 */
4521 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4522 unsigned long __user *user_mask_ptr)
4523 {
4524 int ret;
4525 cpumask_t mask;
4526
4527 if (len < sizeof(cpumask_t))
4528 return -EINVAL;
4529
4530 ret = sched_getaffinity(pid, &mask);
4531 if (ret < 0)
4532 return ret;
4533
4534 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4535 return -EFAULT;
4536
4537 return sizeof(cpumask_t);
4538 }
4539
4540 /**
4541 * sys_sched_yield - yield the current processor to other threads.
4542 *
4543 * This function yields the current CPU to other tasks. If there are no
4544 * other threads running on this CPU then this function will return.
4545 */
4546 asmlinkage long sys_sched_yield(void)
4547 {
4548 struct rq *rq = this_rq_lock();
4549
4550 schedstat_inc(rq, yld_cnt);
4551 current->sched_class->yield_task(rq, current);
4552
4553 /*
4554 * Since we are going to call schedule() anyway, there's
4555 * no need to preempt or enable interrupts:
4556 */
4557 __release(rq->lock);
4558 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4559 _raw_spin_unlock(&rq->lock);
4560 preempt_enable_no_resched();
4561
4562 schedule();
4563
4564 return 0;
4565 }
4566
4567 static void __cond_resched(void)
4568 {
4569 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4570 __might_sleep(__FILE__, __LINE__);
4571 #endif
4572 /*
4573 * The BKS might be reacquired before we have dropped
4574 * PREEMPT_ACTIVE, which could trigger a second
4575 * cond_resched() call.
4576 */
4577 do {
4578 add_preempt_count(PREEMPT_ACTIVE);
4579 schedule();
4580 sub_preempt_count(PREEMPT_ACTIVE);
4581 } while (need_resched());
4582 }
4583
4584 int __sched cond_resched(void)
4585 {
4586 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4587 system_state == SYSTEM_RUNNING) {
4588 __cond_resched();
4589 return 1;
4590 }
4591 return 0;
4592 }
4593 EXPORT_SYMBOL(cond_resched);
4594
4595 /*
4596 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4597 * call schedule, and on return reacquire the lock.
4598 *
4599 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4600 * operations here to prevent schedule() from being called twice (once via
4601 * spin_unlock(), once by hand).
4602 */
4603 int cond_resched_lock(spinlock_t *lock)
4604 {
4605 int ret = 0;
4606
4607 if (need_lockbreak(lock)) {
4608 spin_unlock(lock);
4609 cpu_relax();
4610 ret = 1;
4611 spin_lock(lock);
4612 }
4613 if (need_resched() && system_state == SYSTEM_RUNNING) {
4614 spin_release(&lock->dep_map, 1, _THIS_IP_);
4615 _raw_spin_unlock(lock);
4616 preempt_enable_no_resched();
4617 __cond_resched();
4618 ret = 1;
4619 spin_lock(lock);
4620 }
4621 return ret;
4622 }
4623 EXPORT_SYMBOL(cond_resched_lock);
4624
4625 int __sched cond_resched_softirq(void)
4626 {
4627 BUG_ON(!in_softirq());
4628
4629 if (need_resched() && system_state == SYSTEM_RUNNING) {
4630 local_bh_enable();
4631 __cond_resched();
4632 local_bh_disable();
4633 return 1;
4634 }
4635 return 0;
4636 }
4637 EXPORT_SYMBOL(cond_resched_softirq);
4638
4639 /**
4640 * yield - yield the current processor to other threads.
4641 *
4642 * This is a shortcut for kernel-space yielding - it marks the
4643 * thread runnable and calls sys_sched_yield().
4644 */
4645 void __sched yield(void)
4646 {
4647 set_current_state(TASK_RUNNING);
4648 sys_sched_yield();
4649 }
4650 EXPORT_SYMBOL(yield);
4651
4652 /*
4653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4654 * that process accounting knows that this is a task in IO wait state.
4655 *
4656 * But don't do that if it is a deliberate, throttling IO wait (this task
4657 * has set its backing_dev_info: the queue against which it should throttle)
4658 */
4659 void __sched io_schedule(void)
4660 {
4661 struct rq *rq = &__raw_get_cpu_var(runqueues);
4662
4663 delayacct_blkio_start();
4664 atomic_inc(&rq->nr_iowait);
4665 schedule();
4666 atomic_dec(&rq->nr_iowait);
4667 delayacct_blkio_end();
4668 }
4669 EXPORT_SYMBOL(io_schedule);
4670
4671 long __sched io_schedule_timeout(long timeout)
4672 {
4673 struct rq *rq = &__raw_get_cpu_var(runqueues);
4674 long ret;
4675
4676 delayacct_blkio_start();
4677 atomic_inc(&rq->nr_iowait);
4678 ret = schedule_timeout(timeout);
4679 atomic_dec(&rq->nr_iowait);
4680 delayacct_blkio_end();
4681 return ret;
4682 }
4683
4684 /**
4685 * sys_sched_get_priority_max - return maximum RT priority.
4686 * @policy: scheduling class.
4687 *
4688 * this syscall returns the maximum rt_priority that can be used
4689 * by a given scheduling class.
4690 */
4691 asmlinkage long sys_sched_get_priority_max(int policy)
4692 {
4693 int ret = -EINVAL;
4694
4695 switch (policy) {
4696 case SCHED_FIFO:
4697 case SCHED_RR:
4698 ret = MAX_USER_RT_PRIO-1;
4699 break;
4700 case SCHED_NORMAL:
4701 case SCHED_BATCH:
4702 case SCHED_IDLE:
4703 ret = 0;
4704 break;
4705 }
4706 return ret;
4707 }
4708
4709 /**
4710 * sys_sched_get_priority_min - return minimum RT priority.
4711 * @policy: scheduling class.
4712 *
4713 * this syscall returns the minimum rt_priority that can be used
4714 * by a given scheduling class.
4715 */
4716 asmlinkage long sys_sched_get_priority_min(int policy)
4717 {
4718 int ret = -EINVAL;
4719
4720 switch (policy) {
4721 case SCHED_FIFO:
4722 case SCHED_RR:
4723 ret = 1;
4724 break;
4725 case SCHED_NORMAL:
4726 case SCHED_BATCH:
4727 case SCHED_IDLE:
4728 ret = 0;
4729 }
4730 return ret;
4731 }
4732
4733 /**
4734 * sys_sched_rr_get_interval - return the default timeslice of a process.
4735 * @pid: pid of the process.
4736 * @interval: userspace pointer to the timeslice value.
4737 *
4738 * this syscall writes the default timeslice value of a given process
4739 * into the user-space timespec buffer. A value of '0' means infinity.
4740 */
4741 asmlinkage
4742 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4743 {
4744 struct task_struct *p;
4745 int retval = -EINVAL;
4746 struct timespec t;
4747
4748 if (pid < 0)
4749 goto out_nounlock;
4750
4751 retval = -ESRCH;
4752 read_lock(&tasklist_lock);
4753 p = find_process_by_pid(pid);
4754 if (!p)
4755 goto out_unlock;
4756
4757 retval = security_task_getscheduler(p);
4758 if (retval)
4759 goto out_unlock;
4760
4761 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4762 0 : static_prio_timeslice(p->static_prio), &t);
4763 read_unlock(&tasklist_lock);
4764 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4765 out_nounlock:
4766 return retval;
4767 out_unlock:
4768 read_unlock(&tasklist_lock);
4769 return retval;
4770 }
4771
4772 static const char stat_nam[] = "RSDTtZX";
4773
4774 static void show_task(struct task_struct *p)
4775 {
4776 unsigned long free = 0;
4777 unsigned state;
4778
4779 state = p->state ? __ffs(p->state) + 1 : 0;
4780 printk("%-13.13s %c", p->comm,
4781 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4782 #if BITS_PER_LONG == 32
4783 if (state == TASK_RUNNING)
4784 printk(" running ");
4785 else
4786 printk(" %08lx ", thread_saved_pc(p));
4787 #else
4788 if (state == TASK_RUNNING)
4789 printk(" running task ");
4790 else
4791 printk(" %016lx ", thread_saved_pc(p));
4792 #endif
4793 #ifdef CONFIG_DEBUG_STACK_USAGE
4794 {
4795 unsigned long *n = end_of_stack(p);
4796 while (!*n)
4797 n++;
4798 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4799 }
4800 #endif
4801 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4802
4803 if (state != TASK_RUNNING)
4804 show_stack(p, NULL);
4805 }
4806
4807 void show_state_filter(unsigned long state_filter)
4808 {
4809 struct task_struct *g, *p;
4810
4811 #if BITS_PER_LONG == 32
4812 printk(KERN_INFO
4813 " task PC stack pid father\n");
4814 #else
4815 printk(KERN_INFO
4816 " task PC stack pid father\n");
4817 #endif
4818 read_lock(&tasklist_lock);
4819 do_each_thread(g, p) {
4820 /*
4821 * reset the NMI-timeout, listing all files on a slow
4822 * console might take alot of time:
4823 */
4824 touch_nmi_watchdog();
4825 if (!state_filter || (p->state & state_filter))
4826 show_task(p);
4827 } while_each_thread(g, p);
4828
4829 touch_all_softlockup_watchdogs();
4830
4831 #ifdef CONFIG_SCHED_DEBUG
4832 sysrq_sched_debug_show();
4833 #endif
4834 read_unlock(&tasklist_lock);
4835 /*
4836 * Only show locks if all tasks are dumped:
4837 */
4838 if (state_filter == -1)
4839 debug_show_all_locks();
4840 }
4841
4842 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4843 {
4844 idle->sched_class = &idle_sched_class;
4845 }
4846
4847 /**
4848 * init_idle - set up an idle thread for a given CPU
4849 * @idle: task in question
4850 * @cpu: cpu the idle task belongs to
4851 *
4852 * NOTE: this function does not set the idle thread's NEED_RESCHED
4853 * flag, to make booting more robust.
4854 */
4855 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4856 {
4857 struct rq *rq = cpu_rq(cpu);
4858 unsigned long flags;
4859
4860 __sched_fork(idle);
4861 idle->se.exec_start = sched_clock();
4862
4863 idle->prio = idle->normal_prio = MAX_PRIO;
4864 idle->cpus_allowed = cpumask_of_cpu(cpu);
4865 __set_task_cpu(idle, cpu);
4866
4867 spin_lock_irqsave(&rq->lock, flags);
4868 rq->curr = rq->idle = idle;
4869 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4870 idle->oncpu = 1;
4871 #endif
4872 spin_unlock_irqrestore(&rq->lock, flags);
4873
4874 /* Set the preempt count _outside_ the spinlocks! */
4875 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4876 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4877 #else
4878 task_thread_info(idle)->preempt_count = 0;
4879 #endif
4880 /*
4881 * The idle tasks have their own, simple scheduling class:
4882 */
4883 idle->sched_class = &idle_sched_class;
4884 }
4885
4886 /*
4887 * In a system that switches off the HZ timer nohz_cpu_mask
4888 * indicates which cpus entered this state. This is used
4889 * in the rcu update to wait only for active cpus. For system
4890 * which do not switch off the HZ timer nohz_cpu_mask should
4891 * always be CPU_MASK_NONE.
4892 */
4893 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4894
4895 #ifdef CONFIG_SMP
4896 /*
4897 * This is how migration works:
4898 *
4899 * 1) we queue a struct migration_req structure in the source CPU's
4900 * runqueue and wake up that CPU's migration thread.
4901 * 2) we down() the locked semaphore => thread blocks.
4902 * 3) migration thread wakes up (implicitly it forces the migrated
4903 * thread off the CPU)
4904 * 4) it gets the migration request and checks whether the migrated
4905 * task is still in the wrong runqueue.
4906 * 5) if it's in the wrong runqueue then the migration thread removes
4907 * it and puts it into the right queue.
4908 * 6) migration thread up()s the semaphore.
4909 * 7) we wake up and the migration is done.
4910 */
4911
4912 /*
4913 * Change a given task's CPU affinity. Migrate the thread to a
4914 * proper CPU and schedule it away if the CPU it's executing on
4915 * is removed from the allowed bitmask.
4916 *
4917 * NOTE: the caller must have a valid reference to the task, the
4918 * task must not exit() & deallocate itself prematurely. The
4919 * call is not atomic; no spinlocks may be held.
4920 */
4921 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4922 {
4923 struct migration_req req;
4924 unsigned long flags;
4925 struct rq *rq;
4926 int ret = 0;
4927
4928 rq = task_rq_lock(p, &flags);
4929 if (!cpus_intersects(new_mask, cpu_online_map)) {
4930 ret = -EINVAL;
4931 goto out;
4932 }
4933
4934 p->cpus_allowed = new_mask;
4935 /* Can the task run on the task's current CPU? If so, we're done */
4936 if (cpu_isset(task_cpu(p), new_mask))
4937 goto out;
4938
4939 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4940 /* Need help from migration thread: drop lock and wait. */
4941 task_rq_unlock(rq, &flags);
4942 wake_up_process(rq->migration_thread);
4943 wait_for_completion(&req.done);
4944 tlb_migrate_finish(p->mm);
4945 return 0;
4946 }
4947 out:
4948 task_rq_unlock(rq, &flags);
4949
4950 return ret;
4951 }
4952 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4953
4954 /*
4955 * Move (not current) task off this cpu, onto dest cpu. We're doing
4956 * this because either it can't run here any more (set_cpus_allowed()
4957 * away from this CPU, or CPU going down), or because we're
4958 * attempting to rebalance this task on exec (sched_exec).
4959 *
4960 * So we race with normal scheduler movements, but that's OK, as long
4961 * as the task is no longer on this CPU.
4962 *
4963 * Returns non-zero if task was successfully migrated.
4964 */
4965 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4966 {
4967 struct rq *rq_dest, *rq_src;
4968 int ret = 0, on_rq;
4969
4970 if (unlikely(cpu_is_offline(dest_cpu)))
4971 return ret;
4972
4973 rq_src = cpu_rq(src_cpu);
4974 rq_dest = cpu_rq(dest_cpu);
4975
4976 double_rq_lock(rq_src, rq_dest);
4977 /* Already moved. */
4978 if (task_cpu(p) != src_cpu)
4979 goto out;
4980 /* Affinity changed (again). */
4981 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4982 goto out;
4983
4984 on_rq = p->se.on_rq;
4985 if (on_rq)
4986 deactivate_task(rq_src, p, 0);
4987
4988 set_task_cpu(p, dest_cpu);
4989 if (on_rq) {
4990 activate_task(rq_dest, p, 0);
4991 check_preempt_curr(rq_dest, p);
4992 }
4993 ret = 1;
4994 out:
4995 double_rq_unlock(rq_src, rq_dest);
4996 return ret;
4997 }
4998
4999 /*
5000 * migration_thread - this is a highprio system thread that performs
5001 * thread migration by bumping thread off CPU then 'pushing' onto
5002 * another runqueue.
5003 */
5004 static int migration_thread(void *data)
5005 {
5006 int cpu = (long)data;
5007 struct rq *rq;
5008
5009 rq = cpu_rq(cpu);
5010 BUG_ON(rq->migration_thread != current);
5011
5012 set_current_state(TASK_INTERRUPTIBLE);
5013 while (!kthread_should_stop()) {
5014 struct migration_req *req;
5015 struct list_head *head;
5016
5017 spin_lock_irq(&rq->lock);
5018
5019 if (cpu_is_offline(cpu)) {
5020 spin_unlock_irq(&rq->lock);
5021 goto wait_to_die;
5022 }
5023
5024 if (rq->active_balance) {
5025 active_load_balance(rq, cpu);
5026 rq->active_balance = 0;
5027 }
5028
5029 head = &rq->migration_queue;
5030
5031 if (list_empty(head)) {
5032 spin_unlock_irq(&rq->lock);
5033 schedule();
5034 set_current_state(TASK_INTERRUPTIBLE);
5035 continue;
5036 }
5037 req = list_entry(head->next, struct migration_req, list);
5038 list_del_init(head->next);
5039
5040 spin_unlock(&rq->lock);
5041 __migrate_task(req->task, cpu, req->dest_cpu);
5042 local_irq_enable();
5043
5044 complete(&req->done);
5045 }
5046 __set_current_state(TASK_RUNNING);
5047 return 0;
5048
5049 wait_to_die:
5050 /* Wait for kthread_stop */
5051 set_current_state(TASK_INTERRUPTIBLE);
5052 while (!kthread_should_stop()) {
5053 schedule();
5054 set_current_state(TASK_INTERRUPTIBLE);
5055 }
5056 __set_current_state(TASK_RUNNING);
5057 return 0;
5058 }
5059
5060 #ifdef CONFIG_HOTPLUG_CPU
5061 /*
5062 * Figure out where task on dead CPU should go, use force if neccessary.
5063 * NOTE: interrupts should be disabled by the caller
5064 */
5065 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5066 {
5067 unsigned long flags;
5068 cpumask_t mask;
5069 struct rq *rq;
5070 int dest_cpu;
5071
5072 restart:
5073 /* On same node? */
5074 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5075 cpus_and(mask, mask, p->cpus_allowed);
5076 dest_cpu = any_online_cpu(mask);
5077
5078 /* On any allowed CPU? */
5079 if (dest_cpu == NR_CPUS)
5080 dest_cpu = any_online_cpu(p->cpus_allowed);
5081
5082 /* No more Mr. Nice Guy. */
5083 if (dest_cpu == NR_CPUS) {
5084 rq = task_rq_lock(p, &flags);
5085 cpus_setall(p->cpus_allowed);
5086 dest_cpu = any_online_cpu(p->cpus_allowed);
5087 task_rq_unlock(rq, &flags);
5088
5089 /*
5090 * Don't tell them about moving exiting tasks or
5091 * kernel threads (both mm NULL), since they never
5092 * leave kernel.
5093 */
5094 if (p->mm && printk_ratelimit())
5095 printk(KERN_INFO "process %d (%s) no "
5096 "longer affine to cpu%d\n",
5097 p->pid, p->comm, dead_cpu);
5098 }
5099 if (!__migrate_task(p, dead_cpu, dest_cpu))
5100 goto restart;
5101 }
5102
5103 /*
5104 * While a dead CPU has no uninterruptible tasks queued at this point,
5105 * it might still have a nonzero ->nr_uninterruptible counter, because
5106 * for performance reasons the counter is not stricly tracking tasks to
5107 * their home CPUs. So we just add the counter to another CPU's counter,
5108 * to keep the global sum constant after CPU-down:
5109 */
5110 static void migrate_nr_uninterruptible(struct rq *rq_src)
5111 {
5112 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5113 unsigned long flags;
5114
5115 local_irq_save(flags);
5116 double_rq_lock(rq_src, rq_dest);
5117 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5118 rq_src->nr_uninterruptible = 0;
5119 double_rq_unlock(rq_src, rq_dest);
5120 local_irq_restore(flags);
5121 }
5122
5123 /* Run through task list and migrate tasks from the dead cpu. */
5124 static void migrate_live_tasks(int src_cpu)
5125 {
5126 struct task_struct *p, *t;
5127
5128 write_lock_irq(&tasklist_lock);
5129
5130 do_each_thread(t, p) {
5131 if (p == current)
5132 continue;
5133
5134 if (task_cpu(p) == src_cpu)
5135 move_task_off_dead_cpu(src_cpu, p);
5136 } while_each_thread(t, p);
5137
5138 write_unlock_irq(&tasklist_lock);
5139 }
5140
5141 /*
5142 * Schedules idle task to be the next runnable task on current CPU.
5143 * It does so by boosting its priority to highest possible and adding it to
5144 * the _front_ of the runqueue. Used by CPU offline code.
5145 */
5146 void sched_idle_next(void)
5147 {
5148 int this_cpu = smp_processor_id();
5149 struct rq *rq = cpu_rq(this_cpu);
5150 struct task_struct *p = rq->idle;
5151 unsigned long flags;
5152
5153 /* cpu has to be offline */
5154 BUG_ON(cpu_online(this_cpu));
5155
5156 /*
5157 * Strictly not necessary since rest of the CPUs are stopped by now
5158 * and interrupts disabled on the current cpu.
5159 */
5160 spin_lock_irqsave(&rq->lock, flags);
5161
5162 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5163
5164 /* Add idle task to the _front_ of its priority queue: */
5165 activate_idle_task(p, rq);
5166
5167 spin_unlock_irqrestore(&rq->lock, flags);
5168 }
5169
5170 /*
5171 * Ensures that the idle task is using init_mm right before its cpu goes
5172 * offline.
5173 */
5174 void idle_task_exit(void)
5175 {
5176 struct mm_struct *mm = current->active_mm;
5177
5178 BUG_ON(cpu_online(smp_processor_id()));
5179
5180 if (mm != &init_mm)
5181 switch_mm(mm, &init_mm, current);
5182 mmdrop(mm);
5183 }
5184
5185 /* called under rq->lock with disabled interrupts */
5186 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5187 {
5188 struct rq *rq = cpu_rq(dead_cpu);
5189
5190 /* Must be exiting, otherwise would be on tasklist. */
5191 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5192
5193 /* Cannot have done final schedule yet: would have vanished. */
5194 BUG_ON(p->state == TASK_DEAD);
5195
5196 get_task_struct(p);
5197
5198 /*
5199 * Drop lock around migration; if someone else moves it,
5200 * that's OK. No task can be added to this CPU, so iteration is
5201 * fine.
5202 * NOTE: interrupts should be left disabled --dev@
5203 */
5204 spin_unlock(&rq->lock);
5205 move_task_off_dead_cpu(dead_cpu, p);
5206 spin_lock(&rq->lock);
5207
5208 put_task_struct(p);
5209 }
5210
5211 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5212 static void migrate_dead_tasks(unsigned int dead_cpu)
5213 {
5214 struct rq *rq = cpu_rq(dead_cpu);
5215 struct task_struct *next;
5216
5217 for ( ; ; ) {
5218 if (!rq->nr_running)
5219 break;
5220 update_rq_clock(rq);
5221 next = pick_next_task(rq, rq->curr);
5222 if (!next)
5223 break;
5224 migrate_dead(dead_cpu, next);
5225
5226 }
5227 }
5228 #endif /* CONFIG_HOTPLUG_CPU */
5229
5230 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5231
5232 static struct ctl_table sd_ctl_dir[] = {
5233 {
5234 .procname = "sched_domain",
5235 .mode = 0555,
5236 },
5237 {0,},
5238 };
5239
5240 static struct ctl_table sd_ctl_root[] = {
5241 {
5242 .ctl_name = CTL_KERN,
5243 .procname = "kernel",
5244 .mode = 0555,
5245 .child = sd_ctl_dir,
5246 },
5247 {0,},
5248 };
5249
5250 static struct ctl_table *sd_alloc_ctl_entry(int n)
5251 {
5252 struct ctl_table *entry =
5253 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5254
5255 BUG_ON(!entry);
5256 memset(entry, 0, n * sizeof(struct ctl_table));
5257
5258 return entry;
5259 }
5260
5261 static void
5262 set_table_entry(struct ctl_table *entry,
5263 const char *procname, void *data, int maxlen,
5264 mode_t mode, proc_handler *proc_handler)
5265 {
5266 entry->procname = procname;
5267 entry->data = data;
5268 entry->maxlen = maxlen;
5269 entry->mode = mode;
5270 entry->proc_handler = proc_handler;
5271 }
5272
5273 static struct ctl_table *
5274 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5275 {
5276 struct ctl_table *table = sd_alloc_ctl_entry(14);
5277
5278 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5279 sizeof(long), 0644, proc_doulongvec_minmax);
5280 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5281 sizeof(long), 0644, proc_doulongvec_minmax);
5282 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5287 sizeof(int), 0644, proc_dointvec_minmax);
5288 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax);
5290 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[10], "cache_nice_tries",
5297 &sd->cache_nice_tries,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[12], "flags", &sd->flags,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301
5302 return table;
5303 }
5304
5305 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5306 {
5307 struct ctl_table *entry, *table;
5308 struct sched_domain *sd;
5309 int domain_num = 0, i;
5310 char buf[32];
5311
5312 for_each_domain(cpu, sd)
5313 domain_num++;
5314 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5315
5316 i = 0;
5317 for_each_domain(cpu, sd) {
5318 snprintf(buf, 32, "domain%d", i);
5319 entry->procname = kstrdup(buf, GFP_KERNEL);
5320 entry->mode = 0555;
5321 entry->child = sd_alloc_ctl_domain_table(sd);
5322 entry++;
5323 i++;
5324 }
5325 return table;
5326 }
5327
5328 static struct ctl_table_header *sd_sysctl_header;
5329 static void init_sched_domain_sysctl(void)
5330 {
5331 int i, cpu_num = num_online_cpus();
5332 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5333 char buf[32];
5334
5335 sd_ctl_dir[0].child = entry;
5336
5337 for (i = 0; i < cpu_num; i++, entry++) {
5338 snprintf(buf, 32, "cpu%d", i);
5339 entry->procname = kstrdup(buf, GFP_KERNEL);
5340 entry->mode = 0555;
5341 entry->child = sd_alloc_ctl_cpu_table(i);
5342 }
5343 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5344 }
5345 #else
5346 static void init_sched_domain_sysctl(void)
5347 {
5348 }
5349 #endif
5350
5351 /*
5352 * migration_call - callback that gets triggered when a CPU is added.
5353 * Here we can start up the necessary migration thread for the new CPU.
5354 */
5355 static int __cpuinit
5356 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5357 {
5358 struct task_struct *p;
5359 int cpu = (long)hcpu;
5360 unsigned long flags;
5361 struct rq *rq;
5362
5363 switch (action) {
5364 case CPU_LOCK_ACQUIRE:
5365 mutex_lock(&sched_hotcpu_mutex);
5366 break;
5367
5368 case CPU_UP_PREPARE:
5369 case CPU_UP_PREPARE_FROZEN:
5370 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5371 if (IS_ERR(p))
5372 return NOTIFY_BAD;
5373 kthread_bind(p, cpu);
5374 /* Must be high prio: stop_machine expects to yield to it. */
5375 rq = task_rq_lock(p, &flags);
5376 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5377 task_rq_unlock(rq, &flags);
5378 cpu_rq(cpu)->migration_thread = p;
5379 break;
5380
5381 case CPU_ONLINE:
5382 case CPU_ONLINE_FROZEN:
5383 /* Strictly unneccessary, as first user will wake it. */
5384 wake_up_process(cpu_rq(cpu)->migration_thread);
5385 break;
5386
5387 #ifdef CONFIG_HOTPLUG_CPU
5388 case CPU_UP_CANCELED:
5389 case CPU_UP_CANCELED_FROZEN:
5390 if (!cpu_rq(cpu)->migration_thread)
5391 break;
5392 /* Unbind it from offline cpu so it can run. Fall thru. */
5393 kthread_bind(cpu_rq(cpu)->migration_thread,
5394 any_online_cpu(cpu_online_map));
5395 kthread_stop(cpu_rq(cpu)->migration_thread);
5396 cpu_rq(cpu)->migration_thread = NULL;
5397 break;
5398
5399 case CPU_DEAD:
5400 case CPU_DEAD_FROZEN:
5401 migrate_live_tasks(cpu);
5402 rq = cpu_rq(cpu);
5403 kthread_stop(rq->migration_thread);
5404 rq->migration_thread = NULL;
5405 /* Idle task back to normal (off runqueue, low prio) */
5406 rq = task_rq_lock(rq->idle, &flags);
5407 update_rq_clock(rq);
5408 deactivate_task(rq, rq->idle, 0);
5409 rq->idle->static_prio = MAX_PRIO;
5410 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5411 rq->idle->sched_class = &idle_sched_class;
5412 migrate_dead_tasks(cpu);
5413 task_rq_unlock(rq, &flags);
5414 migrate_nr_uninterruptible(rq);
5415 BUG_ON(rq->nr_running != 0);
5416
5417 /* No need to migrate the tasks: it was best-effort if
5418 * they didn't take sched_hotcpu_mutex. Just wake up
5419 * the requestors. */
5420 spin_lock_irq(&rq->lock);
5421 while (!list_empty(&rq->migration_queue)) {
5422 struct migration_req *req;
5423
5424 req = list_entry(rq->migration_queue.next,
5425 struct migration_req, list);
5426 list_del_init(&req->list);
5427 complete(&req->done);
5428 }
5429 spin_unlock_irq(&rq->lock);
5430 break;
5431 #endif
5432 case CPU_LOCK_RELEASE:
5433 mutex_unlock(&sched_hotcpu_mutex);
5434 break;
5435 }
5436 return NOTIFY_OK;
5437 }
5438
5439 /* Register at highest priority so that task migration (migrate_all_tasks)
5440 * happens before everything else.
5441 */
5442 static struct notifier_block __cpuinitdata migration_notifier = {
5443 .notifier_call = migration_call,
5444 .priority = 10
5445 };
5446
5447 int __init migration_init(void)
5448 {
5449 void *cpu = (void *)(long)smp_processor_id();
5450 int err;
5451
5452 /* Start one for the boot CPU: */
5453 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5454 BUG_ON(err == NOTIFY_BAD);
5455 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5456 register_cpu_notifier(&migration_notifier);
5457
5458 return 0;
5459 }
5460 #endif
5461
5462 #ifdef CONFIG_SMP
5463
5464 /* Number of possible processor ids */
5465 int nr_cpu_ids __read_mostly = NR_CPUS;
5466 EXPORT_SYMBOL(nr_cpu_ids);
5467
5468 #undef SCHED_DOMAIN_DEBUG
5469 #ifdef SCHED_DOMAIN_DEBUG
5470 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5471 {
5472 int level = 0;
5473
5474 if (!sd) {
5475 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5476 return;
5477 }
5478
5479 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5480
5481 do {
5482 int i;
5483 char str[NR_CPUS];
5484 struct sched_group *group = sd->groups;
5485 cpumask_t groupmask;
5486
5487 cpumask_scnprintf(str, NR_CPUS, sd->span);
5488 cpus_clear(groupmask);
5489
5490 printk(KERN_DEBUG);
5491 for (i = 0; i < level + 1; i++)
5492 printk(" ");
5493 printk("domain %d: ", level);
5494
5495 if (!(sd->flags & SD_LOAD_BALANCE)) {
5496 printk("does not load-balance\n");
5497 if (sd->parent)
5498 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5499 " has parent");
5500 break;
5501 }
5502
5503 printk("span %s\n", str);
5504
5505 if (!cpu_isset(cpu, sd->span))
5506 printk(KERN_ERR "ERROR: domain->span does not contain "
5507 "CPU%d\n", cpu);
5508 if (!cpu_isset(cpu, group->cpumask))
5509 printk(KERN_ERR "ERROR: domain->groups does not contain"
5510 " CPU%d\n", cpu);
5511
5512 printk(KERN_DEBUG);
5513 for (i = 0; i < level + 2; i++)
5514 printk(" ");
5515 printk("groups:");
5516 do {
5517 if (!group) {
5518 printk("\n");
5519 printk(KERN_ERR "ERROR: group is NULL\n");
5520 break;
5521 }
5522
5523 if (!group->__cpu_power) {
5524 printk("\n");
5525 printk(KERN_ERR "ERROR: domain->cpu_power not "
5526 "set\n");
5527 }
5528
5529 if (!cpus_weight(group->cpumask)) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: empty group\n");
5532 }
5533
5534 if (cpus_intersects(groupmask, group->cpumask)) {
5535 printk("\n");
5536 printk(KERN_ERR "ERROR: repeated CPUs\n");
5537 }
5538
5539 cpus_or(groupmask, groupmask, group->cpumask);
5540
5541 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5542 printk(" %s", str);
5543
5544 group = group->next;
5545 } while (group != sd->groups);
5546 printk("\n");
5547
5548 if (!cpus_equal(sd->span, groupmask))
5549 printk(KERN_ERR "ERROR: groups don't span "
5550 "domain->span\n");
5551
5552 level++;
5553 sd = sd->parent;
5554 if (!sd)
5555 continue;
5556
5557 if (!cpus_subset(groupmask, sd->span))
5558 printk(KERN_ERR "ERROR: parent span is not a superset "
5559 "of domain->span\n");
5560
5561 } while (sd);
5562 }
5563 #else
5564 # define sched_domain_debug(sd, cpu) do { } while (0)
5565 #endif
5566
5567 static int sd_degenerate(struct sched_domain *sd)
5568 {
5569 if (cpus_weight(sd->span) == 1)
5570 return 1;
5571
5572 /* Following flags need at least 2 groups */
5573 if (sd->flags & (SD_LOAD_BALANCE |
5574 SD_BALANCE_NEWIDLE |
5575 SD_BALANCE_FORK |
5576 SD_BALANCE_EXEC |
5577 SD_SHARE_CPUPOWER |
5578 SD_SHARE_PKG_RESOURCES)) {
5579 if (sd->groups != sd->groups->next)
5580 return 0;
5581 }
5582
5583 /* Following flags don't use groups */
5584 if (sd->flags & (SD_WAKE_IDLE |
5585 SD_WAKE_AFFINE |
5586 SD_WAKE_BALANCE))
5587 return 0;
5588
5589 return 1;
5590 }
5591
5592 static int
5593 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5594 {
5595 unsigned long cflags = sd->flags, pflags = parent->flags;
5596
5597 if (sd_degenerate(parent))
5598 return 1;
5599
5600 if (!cpus_equal(sd->span, parent->span))
5601 return 0;
5602
5603 /* Does parent contain flags not in child? */
5604 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5605 if (cflags & SD_WAKE_AFFINE)
5606 pflags &= ~SD_WAKE_BALANCE;
5607 /* Flags needing groups don't count if only 1 group in parent */
5608 if (parent->groups == parent->groups->next) {
5609 pflags &= ~(SD_LOAD_BALANCE |
5610 SD_BALANCE_NEWIDLE |
5611 SD_BALANCE_FORK |
5612 SD_BALANCE_EXEC |
5613 SD_SHARE_CPUPOWER |
5614 SD_SHARE_PKG_RESOURCES);
5615 }
5616 if (~cflags & pflags)
5617 return 0;
5618
5619 return 1;
5620 }
5621
5622 /*
5623 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5624 * hold the hotplug lock.
5625 */
5626 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5627 {
5628 struct rq *rq = cpu_rq(cpu);
5629 struct sched_domain *tmp;
5630
5631 /* Remove the sched domains which do not contribute to scheduling. */
5632 for (tmp = sd; tmp; tmp = tmp->parent) {
5633 struct sched_domain *parent = tmp->parent;
5634 if (!parent)
5635 break;
5636 if (sd_parent_degenerate(tmp, parent)) {
5637 tmp->parent = parent->parent;
5638 if (parent->parent)
5639 parent->parent->child = tmp;
5640 }
5641 }
5642
5643 if (sd && sd_degenerate(sd)) {
5644 sd = sd->parent;
5645 if (sd)
5646 sd->child = NULL;
5647 }
5648
5649 sched_domain_debug(sd, cpu);
5650
5651 rcu_assign_pointer(rq->sd, sd);
5652 }
5653
5654 /* cpus with isolated domains */
5655 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5656
5657 /* Setup the mask of cpus configured for isolated domains */
5658 static int __init isolated_cpu_setup(char *str)
5659 {
5660 int ints[NR_CPUS], i;
5661
5662 str = get_options(str, ARRAY_SIZE(ints), ints);
5663 cpus_clear(cpu_isolated_map);
5664 for (i = 1; i <= ints[0]; i++)
5665 if (ints[i] < NR_CPUS)
5666 cpu_set(ints[i], cpu_isolated_map);
5667 return 1;
5668 }
5669
5670 __setup ("isolcpus=", isolated_cpu_setup);
5671
5672 /*
5673 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5674 * to a function which identifies what group(along with sched group) a CPU
5675 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5676 * (due to the fact that we keep track of groups covered with a cpumask_t).
5677 *
5678 * init_sched_build_groups will build a circular linked list of the groups
5679 * covered by the given span, and will set each group's ->cpumask correctly,
5680 * and ->cpu_power to 0.
5681 */
5682 static void
5683 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5684 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5685 struct sched_group **sg))
5686 {
5687 struct sched_group *first = NULL, *last = NULL;
5688 cpumask_t covered = CPU_MASK_NONE;
5689 int i;
5690
5691 for_each_cpu_mask(i, span) {
5692 struct sched_group *sg;
5693 int group = group_fn(i, cpu_map, &sg);
5694 int j;
5695
5696 if (cpu_isset(i, covered))
5697 continue;
5698
5699 sg->cpumask = CPU_MASK_NONE;
5700 sg->__cpu_power = 0;
5701
5702 for_each_cpu_mask(j, span) {
5703 if (group_fn(j, cpu_map, NULL) != group)
5704 continue;
5705
5706 cpu_set(j, covered);
5707 cpu_set(j, sg->cpumask);
5708 }
5709 if (!first)
5710 first = sg;
5711 if (last)
5712 last->next = sg;
5713 last = sg;
5714 }
5715 last->next = first;
5716 }
5717
5718 #define SD_NODES_PER_DOMAIN 16
5719
5720 #ifdef CONFIG_NUMA
5721
5722 /**
5723 * find_next_best_node - find the next node to include in a sched_domain
5724 * @node: node whose sched_domain we're building
5725 * @used_nodes: nodes already in the sched_domain
5726 *
5727 * Find the next node to include in a given scheduling domain. Simply
5728 * finds the closest node not already in the @used_nodes map.
5729 *
5730 * Should use nodemask_t.
5731 */
5732 static int find_next_best_node(int node, unsigned long *used_nodes)
5733 {
5734 int i, n, val, min_val, best_node = 0;
5735
5736 min_val = INT_MAX;
5737
5738 for (i = 0; i < MAX_NUMNODES; i++) {
5739 /* Start at @node */
5740 n = (node + i) % MAX_NUMNODES;
5741
5742 if (!nr_cpus_node(n))
5743 continue;
5744
5745 /* Skip already used nodes */
5746 if (test_bit(n, used_nodes))
5747 continue;
5748
5749 /* Simple min distance search */
5750 val = node_distance(node, n);
5751
5752 if (val < min_val) {
5753 min_val = val;
5754 best_node = n;
5755 }
5756 }
5757
5758 set_bit(best_node, used_nodes);
5759 return best_node;
5760 }
5761
5762 /**
5763 * sched_domain_node_span - get a cpumask for a node's sched_domain
5764 * @node: node whose cpumask we're constructing
5765 * @size: number of nodes to include in this span
5766 *
5767 * Given a node, construct a good cpumask for its sched_domain to span. It
5768 * should be one that prevents unnecessary balancing, but also spreads tasks
5769 * out optimally.
5770 */
5771 static cpumask_t sched_domain_node_span(int node)
5772 {
5773 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5774 cpumask_t span, nodemask;
5775 int i;
5776
5777 cpus_clear(span);
5778 bitmap_zero(used_nodes, MAX_NUMNODES);
5779
5780 nodemask = node_to_cpumask(node);
5781 cpus_or(span, span, nodemask);
5782 set_bit(node, used_nodes);
5783
5784 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5785 int next_node = find_next_best_node(node, used_nodes);
5786
5787 nodemask = node_to_cpumask(next_node);
5788 cpus_or(span, span, nodemask);
5789 }
5790
5791 return span;
5792 }
5793 #endif
5794
5795 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5796
5797 /*
5798 * SMT sched-domains:
5799 */
5800 #ifdef CONFIG_SCHED_SMT
5801 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5802 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5803
5804 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5805 struct sched_group **sg)
5806 {
5807 if (sg)
5808 *sg = &per_cpu(sched_group_cpus, cpu);
5809 return cpu;
5810 }
5811 #endif
5812
5813 /*
5814 * multi-core sched-domains:
5815 */
5816 #ifdef CONFIG_SCHED_MC
5817 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5818 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5819 #endif
5820
5821 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5822 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5823 struct sched_group **sg)
5824 {
5825 int group;
5826 cpumask_t mask = cpu_sibling_map[cpu];
5827 cpus_and(mask, mask, *cpu_map);
5828 group = first_cpu(mask);
5829 if (sg)
5830 *sg = &per_cpu(sched_group_core, group);
5831 return group;
5832 }
5833 #elif defined(CONFIG_SCHED_MC)
5834 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5835 struct sched_group **sg)
5836 {
5837 if (sg)
5838 *sg = &per_cpu(sched_group_core, cpu);
5839 return cpu;
5840 }
5841 #endif
5842
5843 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5844 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5845
5846 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5847 struct sched_group **sg)
5848 {
5849 int group;
5850 #ifdef CONFIG_SCHED_MC
5851 cpumask_t mask = cpu_coregroup_map(cpu);
5852 cpus_and(mask, mask, *cpu_map);
5853 group = first_cpu(mask);
5854 #elif defined(CONFIG_SCHED_SMT)
5855 cpumask_t mask = cpu_sibling_map[cpu];
5856 cpus_and(mask, mask, *cpu_map);
5857 group = first_cpu(mask);
5858 #else
5859 group = cpu;
5860 #endif
5861 if (sg)
5862 *sg = &per_cpu(sched_group_phys, group);
5863 return group;
5864 }
5865
5866 #ifdef CONFIG_NUMA
5867 /*
5868 * The init_sched_build_groups can't handle what we want to do with node
5869 * groups, so roll our own. Now each node has its own list of groups which
5870 * gets dynamically allocated.
5871 */
5872 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5873 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5874
5875 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5876 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5877
5878 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5879 struct sched_group **sg)
5880 {
5881 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5882 int group;
5883
5884 cpus_and(nodemask, nodemask, *cpu_map);
5885 group = first_cpu(nodemask);
5886
5887 if (sg)
5888 *sg = &per_cpu(sched_group_allnodes, group);
5889 return group;
5890 }
5891
5892 static void init_numa_sched_groups_power(struct sched_group *group_head)
5893 {
5894 struct sched_group *sg = group_head;
5895 int j;
5896
5897 if (!sg)
5898 return;
5899 next_sg:
5900 for_each_cpu_mask(j, sg->cpumask) {
5901 struct sched_domain *sd;
5902
5903 sd = &per_cpu(phys_domains, j);
5904 if (j != first_cpu(sd->groups->cpumask)) {
5905 /*
5906 * Only add "power" once for each
5907 * physical package.
5908 */
5909 continue;
5910 }
5911
5912 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5913 }
5914 sg = sg->next;
5915 if (sg != group_head)
5916 goto next_sg;
5917 }
5918 #endif
5919
5920 #ifdef CONFIG_NUMA
5921 /* Free memory allocated for various sched_group structures */
5922 static void free_sched_groups(const cpumask_t *cpu_map)
5923 {
5924 int cpu, i;
5925
5926 for_each_cpu_mask(cpu, *cpu_map) {
5927 struct sched_group **sched_group_nodes
5928 = sched_group_nodes_bycpu[cpu];
5929
5930 if (!sched_group_nodes)
5931 continue;
5932
5933 for (i = 0; i < MAX_NUMNODES; i++) {
5934 cpumask_t nodemask = node_to_cpumask(i);
5935 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5936
5937 cpus_and(nodemask, nodemask, *cpu_map);
5938 if (cpus_empty(nodemask))
5939 continue;
5940
5941 if (sg == NULL)
5942 continue;
5943 sg = sg->next;
5944 next_sg:
5945 oldsg = sg;
5946 sg = sg->next;
5947 kfree(oldsg);
5948 if (oldsg != sched_group_nodes[i])
5949 goto next_sg;
5950 }
5951 kfree(sched_group_nodes);
5952 sched_group_nodes_bycpu[cpu] = NULL;
5953 }
5954 }
5955 #else
5956 static void free_sched_groups(const cpumask_t *cpu_map)
5957 {
5958 }
5959 #endif
5960
5961 /*
5962 * Initialize sched groups cpu_power.
5963 *
5964 * cpu_power indicates the capacity of sched group, which is used while
5965 * distributing the load between different sched groups in a sched domain.
5966 * Typically cpu_power for all the groups in a sched domain will be same unless
5967 * there are asymmetries in the topology. If there are asymmetries, group
5968 * having more cpu_power will pickup more load compared to the group having
5969 * less cpu_power.
5970 *
5971 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5972 * the maximum number of tasks a group can handle in the presence of other idle
5973 * or lightly loaded groups in the same sched domain.
5974 */
5975 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5976 {
5977 struct sched_domain *child;
5978 struct sched_group *group;
5979
5980 WARN_ON(!sd || !sd->groups);
5981
5982 if (cpu != first_cpu(sd->groups->cpumask))
5983 return;
5984
5985 child = sd->child;
5986
5987 sd->groups->__cpu_power = 0;
5988
5989 /*
5990 * For perf policy, if the groups in child domain share resources
5991 * (for example cores sharing some portions of the cache hierarchy
5992 * or SMT), then set this domain groups cpu_power such that each group
5993 * can handle only one task, when there are other idle groups in the
5994 * same sched domain.
5995 */
5996 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5997 (child->flags &
5998 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5999 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6000 return;
6001 }
6002
6003 /*
6004 * add cpu_power of each child group to this groups cpu_power
6005 */
6006 group = child->groups;
6007 do {
6008 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6009 group = group->next;
6010 } while (group != child->groups);
6011 }
6012
6013 /*
6014 * Build sched domains for a given set of cpus and attach the sched domains
6015 * to the individual cpus
6016 */
6017 static int build_sched_domains(const cpumask_t *cpu_map)
6018 {
6019 int i;
6020 #ifdef CONFIG_NUMA
6021 struct sched_group **sched_group_nodes = NULL;
6022 int sd_allnodes = 0;
6023
6024 /*
6025 * Allocate the per-node list of sched groups
6026 */
6027 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6028 GFP_KERNEL);
6029 if (!sched_group_nodes) {
6030 printk(KERN_WARNING "Can not alloc sched group node list\n");
6031 return -ENOMEM;
6032 }
6033 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6034 #endif
6035
6036 /*
6037 * Set up domains for cpus specified by the cpu_map.
6038 */
6039 for_each_cpu_mask(i, *cpu_map) {
6040 struct sched_domain *sd = NULL, *p;
6041 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6042
6043 cpus_and(nodemask, nodemask, *cpu_map);
6044
6045 #ifdef CONFIG_NUMA
6046 if (cpus_weight(*cpu_map) >
6047 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6048 sd = &per_cpu(allnodes_domains, i);
6049 *sd = SD_ALLNODES_INIT;
6050 sd->span = *cpu_map;
6051 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6052 p = sd;
6053 sd_allnodes = 1;
6054 } else
6055 p = NULL;
6056
6057 sd = &per_cpu(node_domains, i);
6058 *sd = SD_NODE_INIT;
6059 sd->span = sched_domain_node_span(cpu_to_node(i));
6060 sd->parent = p;
6061 if (p)
6062 p->child = sd;
6063 cpus_and(sd->span, sd->span, *cpu_map);
6064 #endif
6065
6066 p = sd;
6067 sd = &per_cpu(phys_domains, i);
6068 *sd = SD_CPU_INIT;
6069 sd->span = nodemask;
6070 sd->parent = p;
6071 if (p)
6072 p->child = sd;
6073 cpu_to_phys_group(i, cpu_map, &sd->groups);
6074
6075 #ifdef CONFIG_SCHED_MC
6076 p = sd;
6077 sd = &per_cpu(core_domains, i);
6078 *sd = SD_MC_INIT;
6079 sd->span = cpu_coregroup_map(i);
6080 cpus_and(sd->span, sd->span, *cpu_map);
6081 sd->parent = p;
6082 p->child = sd;
6083 cpu_to_core_group(i, cpu_map, &sd->groups);
6084 #endif
6085
6086 #ifdef CONFIG_SCHED_SMT
6087 p = sd;
6088 sd = &per_cpu(cpu_domains, i);
6089 *sd = SD_SIBLING_INIT;
6090 sd->span = cpu_sibling_map[i];
6091 cpus_and(sd->span, sd->span, *cpu_map);
6092 sd->parent = p;
6093 p->child = sd;
6094 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6095 #endif
6096 }
6097
6098 #ifdef CONFIG_SCHED_SMT
6099 /* Set up CPU (sibling) groups */
6100 for_each_cpu_mask(i, *cpu_map) {
6101 cpumask_t this_sibling_map = cpu_sibling_map[i];
6102 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6103 if (i != first_cpu(this_sibling_map))
6104 continue;
6105
6106 init_sched_build_groups(this_sibling_map, cpu_map,
6107 &cpu_to_cpu_group);
6108 }
6109 #endif
6110
6111 #ifdef CONFIG_SCHED_MC
6112 /* Set up multi-core groups */
6113 for_each_cpu_mask(i, *cpu_map) {
6114 cpumask_t this_core_map = cpu_coregroup_map(i);
6115 cpus_and(this_core_map, this_core_map, *cpu_map);
6116 if (i != first_cpu(this_core_map))
6117 continue;
6118 init_sched_build_groups(this_core_map, cpu_map,
6119 &cpu_to_core_group);
6120 }
6121 #endif
6122
6123 /* Set up physical groups */
6124 for (i = 0; i < MAX_NUMNODES; i++) {
6125 cpumask_t nodemask = node_to_cpumask(i);
6126
6127 cpus_and(nodemask, nodemask, *cpu_map);
6128 if (cpus_empty(nodemask))
6129 continue;
6130
6131 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6132 }
6133
6134 #ifdef CONFIG_NUMA
6135 /* Set up node groups */
6136 if (sd_allnodes)
6137 init_sched_build_groups(*cpu_map, cpu_map,
6138 &cpu_to_allnodes_group);
6139
6140 for (i = 0; i < MAX_NUMNODES; i++) {
6141 /* Set up node groups */
6142 struct sched_group *sg, *prev;
6143 cpumask_t nodemask = node_to_cpumask(i);
6144 cpumask_t domainspan;
6145 cpumask_t covered = CPU_MASK_NONE;
6146 int j;
6147
6148 cpus_and(nodemask, nodemask, *cpu_map);
6149 if (cpus_empty(nodemask)) {
6150 sched_group_nodes[i] = NULL;
6151 continue;
6152 }
6153
6154 domainspan = sched_domain_node_span(i);
6155 cpus_and(domainspan, domainspan, *cpu_map);
6156
6157 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6158 if (!sg) {
6159 printk(KERN_WARNING "Can not alloc domain group for "
6160 "node %d\n", i);
6161 goto error;
6162 }
6163 sched_group_nodes[i] = sg;
6164 for_each_cpu_mask(j, nodemask) {
6165 struct sched_domain *sd;
6166
6167 sd = &per_cpu(node_domains, j);
6168 sd->groups = sg;
6169 }
6170 sg->__cpu_power = 0;
6171 sg->cpumask = nodemask;
6172 sg->next = sg;
6173 cpus_or(covered, covered, nodemask);
6174 prev = sg;
6175
6176 for (j = 0; j < MAX_NUMNODES; j++) {
6177 cpumask_t tmp, notcovered;
6178 int n = (i + j) % MAX_NUMNODES;
6179
6180 cpus_complement(notcovered, covered);
6181 cpus_and(tmp, notcovered, *cpu_map);
6182 cpus_and(tmp, tmp, domainspan);
6183 if (cpus_empty(tmp))
6184 break;
6185
6186 nodemask = node_to_cpumask(n);
6187 cpus_and(tmp, tmp, nodemask);
6188 if (cpus_empty(tmp))
6189 continue;
6190
6191 sg = kmalloc_node(sizeof(struct sched_group),
6192 GFP_KERNEL, i);
6193 if (!sg) {
6194 printk(KERN_WARNING
6195 "Can not alloc domain group for node %d\n", j);
6196 goto error;
6197 }
6198 sg->__cpu_power = 0;
6199 sg->cpumask = tmp;
6200 sg->next = prev->next;
6201 cpus_or(covered, covered, tmp);
6202 prev->next = sg;
6203 prev = sg;
6204 }
6205 }
6206 #endif
6207
6208 /* Calculate CPU power for physical packages and nodes */
6209 #ifdef CONFIG_SCHED_SMT
6210 for_each_cpu_mask(i, *cpu_map) {
6211 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6212
6213 init_sched_groups_power(i, sd);
6214 }
6215 #endif
6216 #ifdef CONFIG_SCHED_MC
6217 for_each_cpu_mask(i, *cpu_map) {
6218 struct sched_domain *sd = &per_cpu(core_domains, i);
6219
6220 init_sched_groups_power(i, sd);
6221 }
6222 #endif
6223
6224 for_each_cpu_mask(i, *cpu_map) {
6225 struct sched_domain *sd = &per_cpu(phys_domains, i);
6226
6227 init_sched_groups_power(i, sd);
6228 }
6229
6230 #ifdef CONFIG_NUMA
6231 for (i = 0; i < MAX_NUMNODES; i++)
6232 init_numa_sched_groups_power(sched_group_nodes[i]);
6233
6234 if (sd_allnodes) {
6235 struct sched_group *sg;
6236
6237 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6238 init_numa_sched_groups_power(sg);
6239 }
6240 #endif
6241
6242 /* Attach the domains */
6243 for_each_cpu_mask(i, *cpu_map) {
6244 struct sched_domain *sd;
6245 #ifdef CONFIG_SCHED_SMT
6246 sd = &per_cpu(cpu_domains, i);
6247 #elif defined(CONFIG_SCHED_MC)
6248 sd = &per_cpu(core_domains, i);
6249 #else
6250 sd = &per_cpu(phys_domains, i);
6251 #endif
6252 cpu_attach_domain(sd, i);
6253 }
6254
6255 return 0;
6256
6257 #ifdef CONFIG_NUMA
6258 error:
6259 free_sched_groups(cpu_map);
6260 return -ENOMEM;
6261 #endif
6262 }
6263 /*
6264 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6265 */
6266 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6267 {
6268 cpumask_t cpu_default_map;
6269 int err;
6270
6271 /*
6272 * Setup mask for cpus without special case scheduling requirements.
6273 * For now this just excludes isolated cpus, but could be used to
6274 * exclude other special cases in the future.
6275 */
6276 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6277
6278 err = build_sched_domains(&cpu_default_map);
6279
6280 return err;
6281 }
6282
6283 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6284 {
6285 free_sched_groups(cpu_map);
6286 }
6287
6288 /*
6289 * Detach sched domains from a group of cpus specified in cpu_map
6290 * These cpus will now be attached to the NULL domain
6291 */
6292 static void detach_destroy_domains(const cpumask_t *cpu_map)
6293 {
6294 int i;
6295
6296 for_each_cpu_mask(i, *cpu_map)
6297 cpu_attach_domain(NULL, i);
6298 synchronize_sched();
6299 arch_destroy_sched_domains(cpu_map);
6300 }
6301
6302 /*
6303 * Partition sched domains as specified by the cpumasks below.
6304 * This attaches all cpus from the cpumasks to the NULL domain,
6305 * waits for a RCU quiescent period, recalculates sched
6306 * domain information and then attaches them back to the
6307 * correct sched domains
6308 * Call with hotplug lock held
6309 */
6310 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6311 {
6312 cpumask_t change_map;
6313 int err = 0;
6314
6315 cpus_and(*partition1, *partition1, cpu_online_map);
6316 cpus_and(*partition2, *partition2, cpu_online_map);
6317 cpus_or(change_map, *partition1, *partition2);
6318
6319 /* Detach sched domains from all of the affected cpus */
6320 detach_destroy_domains(&change_map);
6321 if (!cpus_empty(*partition1))
6322 err = build_sched_domains(partition1);
6323 if (!err && !cpus_empty(*partition2))
6324 err = build_sched_domains(partition2);
6325
6326 return err;
6327 }
6328
6329 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6330 static int arch_reinit_sched_domains(void)
6331 {
6332 int err;
6333
6334 mutex_lock(&sched_hotcpu_mutex);
6335 detach_destroy_domains(&cpu_online_map);
6336 err = arch_init_sched_domains(&cpu_online_map);
6337 mutex_unlock(&sched_hotcpu_mutex);
6338
6339 return err;
6340 }
6341
6342 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6343 {
6344 int ret;
6345
6346 if (buf[0] != '0' && buf[0] != '1')
6347 return -EINVAL;
6348
6349 if (smt)
6350 sched_smt_power_savings = (buf[0] == '1');
6351 else
6352 sched_mc_power_savings = (buf[0] == '1');
6353
6354 ret = arch_reinit_sched_domains();
6355
6356 return ret ? ret : count;
6357 }
6358
6359 #ifdef CONFIG_SCHED_MC
6360 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6361 {
6362 return sprintf(page, "%u\n", sched_mc_power_savings);
6363 }
6364 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6365 const char *buf, size_t count)
6366 {
6367 return sched_power_savings_store(buf, count, 0);
6368 }
6369 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6370 sched_mc_power_savings_store);
6371 #endif
6372
6373 #ifdef CONFIG_SCHED_SMT
6374 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6375 {
6376 return sprintf(page, "%u\n", sched_smt_power_savings);
6377 }
6378 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6379 const char *buf, size_t count)
6380 {
6381 return sched_power_savings_store(buf, count, 1);
6382 }
6383 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6384 sched_smt_power_savings_store);
6385 #endif
6386
6387 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6388 {
6389 int err = 0;
6390
6391 #ifdef CONFIG_SCHED_SMT
6392 if (smt_capable())
6393 err = sysfs_create_file(&cls->kset.kobj,
6394 &attr_sched_smt_power_savings.attr);
6395 #endif
6396 #ifdef CONFIG_SCHED_MC
6397 if (!err && mc_capable())
6398 err = sysfs_create_file(&cls->kset.kobj,
6399 &attr_sched_mc_power_savings.attr);
6400 #endif
6401 return err;
6402 }
6403 #endif
6404
6405 /*
6406 * Force a reinitialization of the sched domains hierarchy. The domains
6407 * and groups cannot be updated in place without racing with the balancing
6408 * code, so we temporarily attach all running cpus to the NULL domain
6409 * which will prevent rebalancing while the sched domains are recalculated.
6410 */
6411 static int update_sched_domains(struct notifier_block *nfb,
6412 unsigned long action, void *hcpu)
6413 {
6414 switch (action) {
6415 case CPU_UP_PREPARE:
6416 case CPU_UP_PREPARE_FROZEN:
6417 case CPU_DOWN_PREPARE:
6418 case CPU_DOWN_PREPARE_FROZEN:
6419 detach_destroy_domains(&cpu_online_map);
6420 return NOTIFY_OK;
6421
6422 case CPU_UP_CANCELED:
6423 case CPU_UP_CANCELED_FROZEN:
6424 case CPU_DOWN_FAILED:
6425 case CPU_DOWN_FAILED_FROZEN:
6426 case CPU_ONLINE:
6427 case CPU_ONLINE_FROZEN:
6428 case CPU_DEAD:
6429 case CPU_DEAD_FROZEN:
6430 /*
6431 * Fall through and re-initialise the domains.
6432 */
6433 break;
6434 default:
6435 return NOTIFY_DONE;
6436 }
6437
6438 /* The hotplug lock is already held by cpu_up/cpu_down */
6439 arch_init_sched_domains(&cpu_online_map);
6440
6441 return NOTIFY_OK;
6442 }
6443
6444 void __init sched_init_smp(void)
6445 {
6446 cpumask_t non_isolated_cpus;
6447
6448 mutex_lock(&sched_hotcpu_mutex);
6449 arch_init_sched_domains(&cpu_online_map);
6450 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6451 if (cpus_empty(non_isolated_cpus))
6452 cpu_set(smp_processor_id(), non_isolated_cpus);
6453 mutex_unlock(&sched_hotcpu_mutex);
6454 /* XXX: Theoretical race here - CPU may be hotplugged now */
6455 hotcpu_notifier(update_sched_domains, 0);
6456
6457 init_sched_domain_sysctl();
6458
6459 /* Move init over to a non-isolated CPU */
6460 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6461 BUG();
6462 }
6463 #else
6464 void __init sched_init_smp(void)
6465 {
6466 }
6467 #endif /* CONFIG_SMP */
6468
6469 int in_sched_functions(unsigned long addr)
6470 {
6471 /* Linker adds these: start and end of __sched functions */
6472 extern char __sched_text_start[], __sched_text_end[];
6473
6474 return in_lock_functions(addr) ||
6475 (addr >= (unsigned long)__sched_text_start
6476 && addr < (unsigned long)__sched_text_end);
6477 }
6478
6479 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6480 {
6481 cfs_rq->tasks_timeline = RB_ROOT;
6482 cfs_rq->fair_clock = 1;
6483 #ifdef CONFIG_FAIR_GROUP_SCHED
6484 cfs_rq->rq = rq;
6485 #endif
6486 }
6487
6488 void __init sched_init(void)
6489 {
6490 u64 now = sched_clock();
6491 int highest_cpu = 0;
6492 int i, j;
6493
6494 /*
6495 * Link up the scheduling class hierarchy:
6496 */
6497 rt_sched_class.next = &fair_sched_class;
6498 fair_sched_class.next = &idle_sched_class;
6499 idle_sched_class.next = NULL;
6500
6501 for_each_possible_cpu(i) {
6502 struct rt_prio_array *array;
6503 struct rq *rq;
6504
6505 rq = cpu_rq(i);
6506 spin_lock_init(&rq->lock);
6507 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6508 rq->nr_running = 0;
6509 rq->clock = 1;
6510 init_cfs_rq(&rq->cfs, rq);
6511 #ifdef CONFIG_FAIR_GROUP_SCHED
6512 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6513 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6514 #endif
6515 rq->ls.load_update_last = now;
6516 rq->ls.load_update_start = now;
6517
6518 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6519 rq->cpu_load[j] = 0;
6520 #ifdef CONFIG_SMP
6521 rq->sd = NULL;
6522 rq->active_balance = 0;
6523 rq->next_balance = jiffies;
6524 rq->push_cpu = 0;
6525 rq->cpu = i;
6526 rq->migration_thread = NULL;
6527 INIT_LIST_HEAD(&rq->migration_queue);
6528 #endif
6529 atomic_set(&rq->nr_iowait, 0);
6530
6531 array = &rq->rt.active;
6532 for (j = 0; j < MAX_RT_PRIO; j++) {
6533 INIT_LIST_HEAD(array->queue + j);
6534 __clear_bit(j, array->bitmap);
6535 }
6536 highest_cpu = i;
6537 /* delimiter for bitsearch: */
6538 __set_bit(MAX_RT_PRIO, array->bitmap);
6539 }
6540
6541 set_load_weight(&init_task);
6542
6543 #ifdef CONFIG_PREEMPT_NOTIFIERS
6544 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6545 #endif
6546
6547 #ifdef CONFIG_SMP
6548 nr_cpu_ids = highest_cpu + 1;
6549 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6550 #endif
6551
6552 #ifdef CONFIG_RT_MUTEXES
6553 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6554 #endif
6555
6556 /*
6557 * The boot idle thread does lazy MMU switching as well:
6558 */
6559 atomic_inc(&init_mm.mm_count);
6560 enter_lazy_tlb(&init_mm, current);
6561
6562 /*
6563 * Make us the idle thread. Technically, schedule() should not be
6564 * called from this thread, however somewhere below it might be,
6565 * but because we are the idle thread, we just pick up running again
6566 * when this runqueue becomes "idle".
6567 */
6568 init_idle(current, smp_processor_id());
6569 /*
6570 * During early bootup we pretend to be a normal task:
6571 */
6572 current->sched_class = &fair_sched_class;
6573 }
6574
6575 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6576 void __might_sleep(char *file, int line)
6577 {
6578 #ifdef in_atomic
6579 static unsigned long prev_jiffy; /* ratelimiting */
6580
6581 if ((in_atomic() || irqs_disabled()) &&
6582 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6583 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6584 return;
6585 prev_jiffy = jiffies;
6586 printk(KERN_ERR "BUG: sleeping function called from invalid"
6587 " context at %s:%d\n", file, line);
6588 printk("in_atomic():%d, irqs_disabled():%d\n",
6589 in_atomic(), irqs_disabled());
6590 debug_show_held_locks(current);
6591 if (irqs_disabled())
6592 print_irqtrace_events(current);
6593 dump_stack();
6594 }
6595 #endif
6596 }
6597 EXPORT_SYMBOL(__might_sleep);
6598 #endif
6599
6600 #ifdef CONFIG_MAGIC_SYSRQ
6601 void normalize_rt_tasks(void)
6602 {
6603 struct task_struct *g, *p;
6604 unsigned long flags;
6605 struct rq *rq;
6606 int on_rq;
6607
6608 read_lock_irq(&tasklist_lock);
6609 do_each_thread(g, p) {
6610 p->se.fair_key = 0;
6611 p->se.wait_runtime = 0;
6612 p->se.exec_start = 0;
6613 p->se.wait_start_fair = 0;
6614 p->se.sleep_start_fair = 0;
6615 #ifdef CONFIG_SCHEDSTATS
6616 p->se.wait_start = 0;
6617 p->se.sleep_start = 0;
6618 p->se.block_start = 0;
6619 #endif
6620 task_rq(p)->cfs.fair_clock = 0;
6621 task_rq(p)->clock = 0;
6622
6623 if (!rt_task(p)) {
6624 /*
6625 * Renice negative nice level userspace
6626 * tasks back to 0:
6627 */
6628 if (TASK_NICE(p) < 0 && p->mm)
6629 set_user_nice(p, 0);
6630 continue;
6631 }
6632
6633 spin_lock_irqsave(&p->pi_lock, flags);
6634 rq = __task_rq_lock(p);
6635 #ifdef CONFIG_SMP
6636 /*
6637 * Do not touch the migration thread:
6638 */
6639 if (p == rq->migration_thread)
6640 goto out_unlock;
6641 #endif
6642
6643 update_rq_clock(rq);
6644 on_rq = p->se.on_rq;
6645 if (on_rq)
6646 deactivate_task(rq, p, 0);
6647 __setscheduler(rq, p, SCHED_NORMAL, 0);
6648 if (on_rq) {
6649 activate_task(rq, p, 0);
6650 resched_task(rq->curr);
6651 }
6652 #ifdef CONFIG_SMP
6653 out_unlock:
6654 #endif
6655 __task_rq_unlock(rq);
6656 spin_unlock_irqrestore(&p->pi_lock, flags);
6657 } while_each_thread(g, p);
6658
6659 read_unlock_irq(&tasklist_lock);
6660 }
6661
6662 #endif /* CONFIG_MAGIC_SYSRQ */
6663
6664 #ifdef CONFIG_IA64
6665 /*
6666 * These functions are only useful for the IA64 MCA handling.
6667 *
6668 * They can only be called when the whole system has been
6669 * stopped - every CPU needs to be quiescent, and no scheduling
6670 * activity can take place. Using them for anything else would
6671 * be a serious bug, and as a result, they aren't even visible
6672 * under any other configuration.
6673 */
6674
6675 /**
6676 * curr_task - return the current task for a given cpu.
6677 * @cpu: the processor in question.
6678 *
6679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6680 */
6681 struct task_struct *curr_task(int cpu)
6682 {
6683 return cpu_curr(cpu);
6684 }
6685
6686 /**
6687 * set_curr_task - set the current task for a given cpu.
6688 * @cpu: the processor in question.
6689 * @p: the task pointer to set.
6690 *
6691 * Description: This function must only be used when non-maskable interrupts
6692 * are serviced on a separate stack. It allows the architecture to switch the
6693 * notion of the current task on a cpu in a non-blocking manner. This function
6694 * must be called with all CPU's synchronized, and interrupts disabled, the
6695 * and caller must save the original value of the current task (see
6696 * curr_task() above) and restore that value before reenabling interrupts and
6697 * re-starting the system.
6698 *
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6700 */
6701 void set_curr_task(int cpu, struct task_struct *p)
6702 {
6703 cpu_curr(cpu) = p;
6704 }
6705
6706 #endif
This page took 0.794221 seconds and 6 git commands to generate.