Merge branch 'linus' into sched/core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
504
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
507
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
529
530 /*
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
547 };
548
549 /*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
553 static struct root_domain def_root_domain;
554
555 #endif
556
557 /*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
584
585 struct cfs_rq cfs;
586 struct rt_rq rt;
587
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
607
608 u64 clock;
609
610 atomic_t nr_iowait;
611
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
615
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
623
624 unsigned long avg_load_per_task;
625
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
629
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
641
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
650
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
655
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
659
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
663 };
664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 {
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 }
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
679 }
680
681 /*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
696 inline void update_rq_clock(struct rq *rq)
697 {
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699 }
700
701 /*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
709
710 /**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717 int runqueue_is_locked(void)
718 {
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726 }
727
728 /*
729 * Debugging: various feature bits
730 */
731
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735 enum {
736 #include "sched_features.h"
737 };
738
739 #undef SCHED_FEAT
740
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
746 0;
747
748 #undef SCHED_FEAT
749
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
753
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
757 };
758
759 #undef SCHED_FEAT
760
761 static int sched_feat_show(struct seq_file *m, void *v)
762 {
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
769 }
770 seq_puts(m, "\n");
771
772 return 0;
773 }
774
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778 {
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815 }
816
817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 {
819 return single_open(filp, sched_feat_show, NULL);
820 }
821
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828 };
829
830 static __init int sched_init_debug(void)
831 {
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836 }
837 late_initcall(sched_init_debug);
838
839 #endif
840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842
843 /*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
849 /*
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
852 */
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854
855 /*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860 unsigned int sysctl_sched_shares_thresh = 4;
861
862 /*
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
865 */
866 unsigned int sysctl_sched_rt_period = 1000000;
867
868 static __read_mostly int scheduler_running;
869
870 /*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874 int sysctl_sched_rt_runtime = 950000;
875
876 static inline u64 global_rt_period(void)
877 {
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 }
880
881 static inline u64 global_rt_runtime(void)
882 {
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 }
888
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
895
896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 {
898 return rq->curr == p;
899 }
900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 return task_current(rq, p);
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
924 spin_unlock_irq(&rq->lock);
925 }
926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 {
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
935 }
936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 {
939 #ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
952 }
953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 {
956 #ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970
971 /*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
977 {
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
984 }
985 }
986
987 /*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
991 */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
994 {
995 struct rq *rq;
996
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1004 }
1005 }
1006
1007 void task_rq_unlock_wait(struct task_struct *p)
1008 {
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013 }
1014
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1017 {
1018 spin_unlock(&rq->lock);
1019 }
1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1023 {
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025 }
1026
1027 /*
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1029 */
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1032 {
1033 struct rq *rq;
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040 }
1041
1042 #ifdef CONFIG_SCHED_HRTICK
1043 /*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
1053
1054 /*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059 static inline int hrtick_enabled(struct rq *rq)
1060 {
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 }
1067
1068 static void hrtick_clear(struct rq *rq)
1069 {
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072 }
1073
1074 /*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 {
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090 }
1091
1092 #ifdef CONFIG_SMP
1093 /*
1094 * called from hardirq (IPI) context
1095 */
1096 static void __hrtick_start(void *arg)
1097 {
1098 struct rq *rq = arg;
1099
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1104 }
1105
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115
1116 hrtimer_set_expires(timer, time);
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1123 }
1124 }
1125
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 {
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143 }
1144
1145 static __init void init_hrtick(void)
1146 {
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148 }
1149 #else
1150 /*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 {
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL_PINNED, 0);
1159 }
1160
1161 static inline void init_hrtick(void)
1162 {
1163 }
1164 #endif /* CONFIG_SMP */
1165
1166 static void init_rq_hrtick(struct rq *rq)
1167 {
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1170
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1175
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1178 }
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1181 {
1182 }
1183
1184 static inline void init_rq_hrtick(struct rq *rq)
1185 {
1186 }
1187
1188 static inline void init_hrtick(void)
1189 {
1190 }
1191 #endif /* CONFIG_SCHED_HRTICK */
1192
1193 /*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200 #ifdef CONFIG_SMP
1201
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1205
1206 static void resched_task(struct task_struct *p)
1207 {
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
1212 if (test_tsk_need_resched(p))
1213 return;
1214
1215 set_tsk_need_resched(p);
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225 }
1226
1227 static void resched_cpu(int cpu)
1228 {
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236 }
1237
1238 #ifdef CONFIG_NO_HZ
1239 /*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249 void wake_up_idle_cpu(int cpu)
1250 {
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
1271 set_tsk_need_resched(rq->idle);
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277 }
1278 #endif /* CONFIG_NO_HZ */
1279
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1282 {
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1509
1510 return rq->avg_load_per_task;
1511 }
1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517 /*
1518 * Calculate and set the cpu's group shares.
1519 */
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 {
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
1527 if (!tg->se[cpu])
1528 return;
1529
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1548
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
1552 }
1553
1554 /*
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1558 */
1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 {
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1565
1566 for_each_cpu(i, sched_domain_span(sd)) {
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1579 }
1580
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1586
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1597 */
1598 static int tg_load_down(struct task_group *tg, void *data)
1599 {
1600 unsigned long load;
1601 long cpu = (long)data;
1602
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
1610
1611 tg->cfs_rq[cpu]->h_load = load;
1612
1613 return 0;
1614 }
1615
1616 static void update_shares(struct sched_domain *sd)
1617 {
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624 }
1625 }
1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632 }
1633
1634 static void update_h_load(long cpu)
1635 {
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 }
1638
1639 #else
1640
1641 static inline void update_shares(struct sched_domain *sd)
1642 {
1643 }
1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 {
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_PREEMPT
1652
1653 /*
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665 {
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670 }
1671
1672 #else
1673 /*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684 {
1685 int ret = 0;
1686
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697 }
1698
1699 #endif /* CONFIG_PREEMPT */
1700
1701 /*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 {
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713 }
1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717 {
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 {
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1729 }
1730 #endif
1731
1732 static void calc_load_account_active(struct rq *this_rq);
1733
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1741
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
1763
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
1772
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 }
1776
1777 static void update_avg(u64 *avg, u64 sample)
1778 {
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 {
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1791 }
1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 {
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
1804 }
1805
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1809 }
1810
1811 /*
1812 * __normal_prio - return the priority that is based on the static prio
1813 */
1814 static inline int __normal_prio(struct task_struct *p)
1815 {
1816 return p->static_prio;
1817 }
1818
1819 /*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
1826 static inline int normal_prio(struct task_struct *p)
1827 {
1828 int prio;
1829
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835 }
1836
1837 /*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
1844 static int effective_prio(struct task_struct *p)
1845 {
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855 }
1856
1857 /*
1858 * activate_task - move a task to the runqueue.
1859 */
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 {
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1864
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1867 }
1868
1869 /*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 {
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1876
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1879 }
1880
1881 /**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
1885 inline int task_curr(const struct task_struct *p)
1886 {
1887 return cpu_curr(task_cpu(p)) == p;
1888 }
1889
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 {
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1902 }
1903
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907 {
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 }
1915
1916 #ifdef CONFIG_SMP
1917
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1920 {
1921 return cpu_rq(cpu)->load.weight;
1922 }
1923
1924 /*
1925 * Is this task likely cache-hot:
1926 */
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 {
1930 s64 delta;
1931
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1939
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951 }
1952
1953
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 {
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
1963
1964 trace_sched_migrate_task(p, new_cpu);
1965
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1982 1, 1, NULL, 0);
1983 }
1984 p->se.vruntime -= old_cfsrq->min_vruntime -
1985 new_cfsrq->min_vruntime;
1986
1987 __set_task_cpu(p, new_cpu);
1988 }
1989
1990 struct migration_req {
1991 struct list_head list;
1992
1993 struct task_struct *task;
1994 int dest_cpu;
1995
1996 struct completion done;
1997 };
1998
1999 /*
2000 * The task's runqueue lock must be held.
2001 * Returns true if you have to wait for migration thread.
2002 */
2003 static int
2004 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2005 {
2006 struct rq *rq = task_rq(p);
2007
2008 /*
2009 * If the task is not on a runqueue (and not running), then
2010 * it is sufficient to simply update the task's cpu field.
2011 */
2012 if (!p->se.on_rq && !task_running(rq, p)) {
2013 set_task_cpu(p, dest_cpu);
2014 return 0;
2015 }
2016
2017 init_completion(&req->done);
2018 req->task = p;
2019 req->dest_cpu = dest_cpu;
2020 list_add(&req->list, &rq->migration_queue);
2021
2022 return 1;
2023 }
2024
2025 /*
2026 * wait_task_context_switch - wait for a thread to complete at least one
2027 * context switch.
2028 *
2029 * @p must not be current.
2030 */
2031 void wait_task_context_switch(struct task_struct *p)
2032 {
2033 unsigned long nvcsw, nivcsw, flags;
2034 int running;
2035 struct rq *rq;
2036
2037 nvcsw = p->nvcsw;
2038 nivcsw = p->nivcsw;
2039 for (;;) {
2040 /*
2041 * The runqueue is assigned before the actual context
2042 * switch. We need to take the runqueue lock.
2043 *
2044 * We could check initially without the lock but it is
2045 * very likely that we need to take the lock in every
2046 * iteration.
2047 */
2048 rq = task_rq_lock(p, &flags);
2049 running = task_running(rq, p);
2050 task_rq_unlock(rq, &flags);
2051
2052 if (likely(!running))
2053 break;
2054 /*
2055 * The switch count is incremented before the actual
2056 * context switch. We thus wait for two switches to be
2057 * sure at least one completed.
2058 */
2059 if ((p->nvcsw - nvcsw) > 1)
2060 break;
2061 if ((p->nivcsw - nivcsw) > 1)
2062 break;
2063
2064 cpu_relax();
2065 }
2066 }
2067
2068 /*
2069 * wait_task_inactive - wait for a thread to unschedule.
2070 *
2071 * If @match_state is nonzero, it's the @p->state value just checked and
2072 * not expected to change. If it changes, i.e. @p might have woken up,
2073 * then return zero. When we succeed in waiting for @p to be off its CPU,
2074 * we return a positive number (its total switch count). If a second call
2075 * a short while later returns the same number, the caller can be sure that
2076 * @p has remained unscheduled the whole time.
2077 *
2078 * The caller must ensure that the task *will* unschedule sometime soon,
2079 * else this function might spin for a *long* time. This function can't
2080 * be called with interrupts off, or it may introduce deadlock with
2081 * smp_call_function() if an IPI is sent by the same process we are
2082 * waiting to become inactive.
2083 */
2084 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2085 {
2086 unsigned long flags;
2087 int running, on_rq;
2088 unsigned long ncsw;
2089 struct rq *rq;
2090
2091 for (;;) {
2092 /*
2093 * We do the initial early heuristics without holding
2094 * any task-queue locks at all. We'll only try to get
2095 * the runqueue lock when things look like they will
2096 * work out!
2097 */
2098 rq = task_rq(p);
2099
2100 /*
2101 * If the task is actively running on another CPU
2102 * still, just relax and busy-wait without holding
2103 * any locks.
2104 *
2105 * NOTE! Since we don't hold any locks, it's not
2106 * even sure that "rq" stays as the right runqueue!
2107 * But we don't care, since "task_running()" will
2108 * return false if the runqueue has changed and p
2109 * is actually now running somewhere else!
2110 */
2111 while (task_running(rq, p)) {
2112 if (match_state && unlikely(p->state != match_state))
2113 return 0;
2114 cpu_relax();
2115 }
2116
2117 /*
2118 * Ok, time to look more closely! We need the rq
2119 * lock now, to be *sure*. If we're wrong, we'll
2120 * just go back and repeat.
2121 */
2122 rq = task_rq_lock(p, &flags);
2123 trace_sched_wait_task(rq, p);
2124 running = task_running(rq, p);
2125 on_rq = p->se.on_rq;
2126 ncsw = 0;
2127 if (!match_state || p->state == match_state)
2128 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2129 task_rq_unlock(rq, &flags);
2130
2131 /*
2132 * If it changed from the expected state, bail out now.
2133 */
2134 if (unlikely(!ncsw))
2135 break;
2136
2137 /*
2138 * Was it really running after all now that we
2139 * checked with the proper locks actually held?
2140 *
2141 * Oops. Go back and try again..
2142 */
2143 if (unlikely(running)) {
2144 cpu_relax();
2145 continue;
2146 }
2147
2148 /*
2149 * It's not enough that it's not actively running,
2150 * it must be off the runqueue _entirely_, and not
2151 * preempted!
2152 *
2153 * So if it was still runnable (but just not actively
2154 * running right now), it's preempted, and we should
2155 * yield - it could be a while.
2156 */
2157 if (unlikely(on_rq)) {
2158 schedule_timeout_uninterruptible(1);
2159 continue;
2160 }
2161
2162 /*
2163 * Ahh, all good. It wasn't running, and it wasn't
2164 * runnable, which means that it will never become
2165 * running in the future either. We're all done!
2166 */
2167 break;
2168 }
2169
2170 return ncsw;
2171 }
2172
2173 /***
2174 * kick_process - kick a running thread to enter/exit the kernel
2175 * @p: the to-be-kicked thread
2176 *
2177 * Cause a process which is running on another CPU to enter
2178 * kernel-mode, without any delay. (to get signals handled.)
2179 *
2180 * NOTE: this function doesnt have to take the runqueue lock,
2181 * because all it wants to ensure is that the remote task enters
2182 * the kernel. If the IPI races and the task has been migrated
2183 * to another CPU then no harm is done and the purpose has been
2184 * achieved as well.
2185 */
2186 void kick_process(struct task_struct *p)
2187 {
2188 int cpu;
2189
2190 preempt_disable();
2191 cpu = task_cpu(p);
2192 if ((cpu != smp_processor_id()) && task_curr(p))
2193 smp_send_reschedule(cpu);
2194 preempt_enable();
2195 }
2196 EXPORT_SYMBOL_GPL(kick_process);
2197
2198 /*
2199 * Return a low guess at the load of a migration-source cpu weighted
2200 * according to the scheduling class and "nice" value.
2201 *
2202 * We want to under-estimate the load of migration sources, to
2203 * balance conservatively.
2204 */
2205 static unsigned long source_load(int cpu, int type)
2206 {
2207 struct rq *rq = cpu_rq(cpu);
2208 unsigned long total = weighted_cpuload(cpu);
2209
2210 if (type == 0 || !sched_feat(LB_BIAS))
2211 return total;
2212
2213 return min(rq->cpu_load[type-1], total);
2214 }
2215
2216 /*
2217 * Return a high guess at the load of a migration-target cpu weighted
2218 * according to the scheduling class and "nice" value.
2219 */
2220 static unsigned long target_load(int cpu, int type)
2221 {
2222 struct rq *rq = cpu_rq(cpu);
2223 unsigned long total = weighted_cpuload(cpu);
2224
2225 if (type == 0 || !sched_feat(LB_BIAS))
2226 return total;
2227
2228 return max(rq->cpu_load[type-1], total);
2229 }
2230
2231 /*
2232 * find_idlest_group finds and returns the least busy CPU group within the
2233 * domain.
2234 */
2235 static struct sched_group *
2236 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2237 {
2238 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2239 unsigned long min_load = ULONG_MAX, this_load = 0;
2240 int load_idx = sd->forkexec_idx;
2241 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2242
2243 do {
2244 unsigned long load, avg_load;
2245 int local_group;
2246 int i;
2247
2248 /* Skip over this group if it has no CPUs allowed */
2249 if (!cpumask_intersects(sched_group_cpus(group),
2250 &p->cpus_allowed))
2251 continue;
2252
2253 local_group = cpumask_test_cpu(this_cpu,
2254 sched_group_cpus(group));
2255
2256 /* Tally up the load of all CPUs in the group */
2257 avg_load = 0;
2258
2259 for_each_cpu(i, sched_group_cpus(group)) {
2260 /* Bias balancing toward cpus of our domain */
2261 if (local_group)
2262 load = source_load(i, load_idx);
2263 else
2264 load = target_load(i, load_idx);
2265
2266 avg_load += load;
2267 }
2268
2269 /* Adjust by relative CPU power of the group */
2270 avg_load = sg_div_cpu_power(group,
2271 avg_load * SCHED_LOAD_SCALE);
2272
2273 if (local_group) {
2274 this_load = avg_load;
2275 this = group;
2276 } else if (avg_load < min_load) {
2277 min_load = avg_load;
2278 idlest = group;
2279 }
2280 } while (group = group->next, group != sd->groups);
2281
2282 if (!idlest || 100*this_load < imbalance*min_load)
2283 return NULL;
2284 return idlest;
2285 }
2286
2287 /*
2288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2289 */
2290 static int
2291 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2292 {
2293 unsigned long load, min_load = ULONG_MAX;
2294 int idlest = -1;
2295 int i;
2296
2297 /* Traverse only the allowed CPUs */
2298 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2299 load = weighted_cpuload(i);
2300
2301 if (load < min_load || (load == min_load && i == this_cpu)) {
2302 min_load = load;
2303 idlest = i;
2304 }
2305 }
2306
2307 return idlest;
2308 }
2309
2310 /*
2311 * sched_balance_self: balance the current task (running on cpu) in domains
2312 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2313 * SD_BALANCE_EXEC.
2314 *
2315 * Balance, ie. select the least loaded group.
2316 *
2317 * Returns the target CPU number, or the same CPU if no balancing is needed.
2318 *
2319 * preempt must be disabled.
2320 */
2321 static int sched_balance_self(int cpu, int flag)
2322 {
2323 struct task_struct *t = current;
2324 struct sched_domain *tmp, *sd = NULL;
2325
2326 for_each_domain(cpu, tmp) {
2327 /*
2328 * If power savings logic is enabled for a domain, stop there.
2329 */
2330 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2331 break;
2332 if (tmp->flags & flag)
2333 sd = tmp;
2334 }
2335
2336 if (sd)
2337 update_shares(sd);
2338
2339 while (sd) {
2340 struct sched_group *group;
2341 int new_cpu, weight;
2342
2343 if (!(sd->flags & flag)) {
2344 sd = sd->child;
2345 continue;
2346 }
2347
2348 group = find_idlest_group(sd, t, cpu);
2349 if (!group) {
2350 sd = sd->child;
2351 continue;
2352 }
2353
2354 new_cpu = find_idlest_cpu(group, t, cpu);
2355 if (new_cpu == -1 || new_cpu == cpu) {
2356 /* Now try balancing at a lower domain level of cpu */
2357 sd = sd->child;
2358 continue;
2359 }
2360
2361 /* Now try balancing at a lower domain level of new_cpu */
2362 cpu = new_cpu;
2363 weight = cpumask_weight(sched_domain_span(sd));
2364 sd = NULL;
2365 for_each_domain(cpu, tmp) {
2366 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2367 break;
2368 if (tmp->flags & flag)
2369 sd = tmp;
2370 }
2371 /* while loop will break here if sd == NULL */
2372 }
2373
2374 return cpu;
2375 }
2376
2377 #endif /* CONFIG_SMP */
2378
2379 /**
2380 * task_oncpu_function_call - call a function on the cpu on which a task runs
2381 * @p: the task to evaluate
2382 * @func: the function to be called
2383 * @info: the function call argument
2384 *
2385 * Calls the function @func when the task is currently running. This might
2386 * be on the current CPU, which just calls the function directly
2387 */
2388 void task_oncpu_function_call(struct task_struct *p,
2389 void (*func) (void *info), void *info)
2390 {
2391 int cpu;
2392
2393 preempt_disable();
2394 cpu = task_cpu(p);
2395 if (task_curr(p))
2396 smp_call_function_single(cpu, func, info, 1);
2397 preempt_enable();
2398 }
2399
2400 /***
2401 * try_to_wake_up - wake up a thread
2402 * @p: the to-be-woken-up thread
2403 * @state: the mask of task states that can be woken
2404 * @sync: do a synchronous wakeup?
2405 *
2406 * Put it on the run-queue if it's not already there. The "current"
2407 * thread is always on the run-queue (except when the actual
2408 * re-schedule is in progress), and as such you're allowed to do
2409 * the simpler "current->state = TASK_RUNNING" to mark yourself
2410 * runnable without the overhead of this.
2411 *
2412 * returns failure only if the task is already active.
2413 */
2414 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2415 {
2416 int cpu, orig_cpu, this_cpu, success = 0;
2417 unsigned long flags;
2418 long old_state;
2419 struct rq *rq;
2420
2421 if (!sched_feat(SYNC_WAKEUPS))
2422 sync = 0;
2423
2424 #ifdef CONFIG_SMP
2425 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2426 struct sched_domain *sd;
2427
2428 this_cpu = raw_smp_processor_id();
2429 cpu = task_cpu(p);
2430
2431 for_each_domain(this_cpu, sd) {
2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2433 update_shares(sd);
2434 break;
2435 }
2436 }
2437 }
2438 #endif
2439
2440 smp_wmb();
2441 rq = task_rq_lock(p, &flags);
2442 update_rq_clock(rq);
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
2446
2447 if (p->se.on_rq)
2448 goto out_running;
2449
2450 cpu = task_cpu(p);
2451 orig_cpu = cpu;
2452 this_cpu = smp_processor_id();
2453
2454 #ifdef CONFIG_SMP
2455 if (unlikely(task_running(rq, p)))
2456 goto out_activate;
2457
2458 cpu = p->sched_class->select_task_rq(p, sync);
2459 if (cpu != orig_cpu) {
2460 set_task_cpu(p, cpu);
2461 task_rq_unlock(rq, &flags);
2462 /* might preempt at this point */
2463 rq = task_rq_lock(p, &flags);
2464 old_state = p->state;
2465 if (!(old_state & state))
2466 goto out;
2467 if (p->se.on_rq)
2468 goto out_running;
2469
2470 this_cpu = smp_processor_id();
2471 cpu = task_cpu(p);
2472 }
2473
2474 #ifdef CONFIG_SCHEDSTATS
2475 schedstat_inc(rq, ttwu_count);
2476 if (cpu == this_cpu)
2477 schedstat_inc(rq, ttwu_local);
2478 else {
2479 struct sched_domain *sd;
2480 for_each_domain(this_cpu, sd) {
2481 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2482 schedstat_inc(sd, ttwu_wake_remote);
2483 break;
2484 }
2485 }
2486 }
2487 #endif /* CONFIG_SCHEDSTATS */
2488
2489 out_activate:
2490 #endif /* CONFIG_SMP */
2491 schedstat_inc(p, se.nr_wakeups);
2492 if (sync)
2493 schedstat_inc(p, se.nr_wakeups_sync);
2494 if (orig_cpu != cpu)
2495 schedstat_inc(p, se.nr_wakeups_migrate);
2496 if (cpu == this_cpu)
2497 schedstat_inc(p, se.nr_wakeups_local);
2498 else
2499 schedstat_inc(p, se.nr_wakeups_remote);
2500 activate_task(rq, p, 1);
2501 success = 1;
2502
2503 /*
2504 * Only attribute actual wakeups done by this task.
2505 */
2506 if (!in_interrupt()) {
2507 struct sched_entity *se = &current->se;
2508 u64 sample = se->sum_exec_runtime;
2509
2510 if (se->last_wakeup)
2511 sample -= se->last_wakeup;
2512 else
2513 sample -= se->start_runtime;
2514 update_avg(&se->avg_wakeup, sample);
2515
2516 se->last_wakeup = se->sum_exec_runtime;
2517 }
2518
2519 out_running:
2520 trace_sched_wakeup(rq, p, success);
2521 check_preempt_curr(rq, p, sync);
2522
2523 p->state = TASK_RUNNING;
2524 #ifdef CONFIG_SMP
2525 if (p->sched_class->task_wake_up)
2526 p->sched_class->task_wake_up(rq, p);
2527 #endif
2528 out:
2529 task_rq_unlock(rq, &flags);
2530
2531 return success;
2532 }
2533
2534 /**
2535 * wake_up_process - Wake up a specific process
2536 * @p: The process to be woken up.
2537 *
2538 * Attempt to wake up the nominated process and move it to the set of runnable
2539 * processes. Returns 1 if the process was woken up, 0 if it was already
2540 * running.
2541 *
2542 * It may be assumed that this function implies a write memory barrier before
2543 * changing the task state if and only if any tasks are woken up.
2544 */
2545 int wake_up_process(struct task_struct *p)
2546 {
2547 return try_to_wake_up(p, TASK_ALL, 0);
2548 }
2549 EXPORT_SYMBOL(wake_up_process);
2550
2551 int wake_up_state(struct task_struct *p, unsigned int state)
2552 {
2553 return try_to_wake_up(p, state, 0);
2554 }
2555
2556 /*
2557 * Perform scheduler related setup for a newly forked process p.
2558 * p is forked by current.
2559 *
2560 * __sched_fork() is basic setup used by init_idle() too:
2561 */
2562 static void __sched_fork(struct task_struct *p)
2563 {
2564 p->se.exec_start = 0;
2565 p->se.sum_exec_runtime = 0;
2566 p->se.prev_sum_exec_runtime = 0;
2567 p->se.nr_migrations = 0;
2568 p->se.last_wakeup = 0;
2569 p->se.avg_overlap = 0;
2570 p->se.start_runtime = 0;
2571 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2572
2573 #ifdef CONFIG_SCHEDSTATS
2574 p->se.wait_start = 0;
2575 p->se.sum_sleep_runtime = 0;
2576 p->se.sleep_start = 0;
2577 p->se.block_start = 0;
2578 p->se.sleep_max = 0;
2579 p->se.block_max = 0;
2580 p->se.exec_max = 0;
2581 p->se.slice_max = 0;
2582 p->se.wait_max = 0;
2583 #endif
2584
2585 INIT_LIST_HEAD(&p->rt.run_list);
2586 p->se.on_rq = 0;
2587 INIT_LIST_HEAD(&p->se.group_node);
2588
2589 #ifdef CONFIG_PREEMPT_NOTIFIERS
2590 INIT_HLIST_HEAD(&p->preempt_notifiers);
2591 #endif
2592
2593 /*
2594 * We mark the process as running here, but have not actually
2595 * inserted it onto the runqueue yet. This guarantees that
2596 * nobody will actually run it, and a signal or other external
2597 * event cannot wake it up and insert it on the runqueue either.
2598 */
2599 p->state = TASK_RUNNING;
2600 }
2601
2602 /*
2603 * fork()/clone()-time setup:
2604 */
2605 void sched_fork(struct task_struct *p, int clone_flags)
2606 {
2607 int cpu = get_cpu();
2608
2609 __sched_fork(p);
2610
2611 #ifdef CONFIG_SMP
2612 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2613 #endif
2614 set_task_cpu(p, cpu);
2615
2616 /*
2617 * Make sure we do not leak PI boosting priority to the child.
2618 */
2619 p->prio = current->normal_prio;
2620
2621 /*
2622 * Revert to default priority/policy on fork if requested.
2623 */
2624 if (unlikely(p->sched_reset_on_fork)) {
2625 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2626 p->policy = SCHED_NORMAL;
2627
2628 if (p->normal_prio < DEFAULT_PRIO)
2629 p->prio = DEFAULT_PRIO;
2630
2631 if (PRIO_TO_NICE(p->static_prio) < 0) {
2632 p->static_prio = NICE_TO_PRIO(0);
2633 set_load_weight(p);
2634 }
2635
2636 /*
2637 * We don't need the reset flag anymore after the fork. It has
2638 * fulfilled its duty:
2639 */
2640 p->sched_reset_on_fork = 0;
2641 }
2642
2643 if (!rt_prio(p->prio))
2644 p->sched_class = &fair_sched_class;
2645
2646 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2647 if (likely(sched_info_on()))
2648 memset(&p->sched_info, 0, sizeof(p->sched_info));
2649 #endif
2650 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2651 p->oncpu = 0;
2652 #endif
2653 #ifdef CONFIG_PREEMPT
2654 /* Want to start with kernel preemption disabled. */
2655 task_thread_info(p)->preempt_count = 1;
2656 #endif
2657 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2658
2659 put_cpu();
2660 }
2661
2662 /*
2663 * wake_up_new_task - wake up a newly created task for the first time.
2664 *
2665 * This function will do some initial scheduler statistics housekeeping
2666 * that must be done for every newly created context, then puts the task
2667 * on the runqueue and wakes it.
2668 */
2669 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2670 {
2671 unsigned long flags;
2672 struct rq *rq;
2673
2674 rq = task_rq_lock(p, &flags);
2675 BUG_ON(p->state != TASK_RUNNING);
2676 update_rq_clock(rq);
2677
2678 p->prio = effective_prio(p);
2679
2680 if (!p->sched_class->task_new || !current->se.on_rq) {
2681 activate_task(rq, p, 0);
2682 } else {
2683 /*
2684 * Let the scheduling class do new task startup
2685 * management (if any):
2686 */
2687 p->sched_class->task_new(rq, p);
2688 inc_nr_running(rq);
2689 }
2690 trace_sched_wakeup_new(rq, p, 1);
2691 check_preempt_curr(rq, p, 0);
2692 #ifdef CONFIG_SMP
2693 if (p->sched_class->task_wake_up)
2694 p->sched_class->task_wake_up(rq, p);
2695 #endif
2696 task_rq_unlock(rq, &flags);
2697 }
2698
2699 #ifdef CONFIG_PREEMPT_NOTIFIERS
2700
2701 /**
2702 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2703 * @notifier: notifier struct to register
2704 */
2705 void preempt_notifier_register(struct preempt_notifier *notifier)
2706 {
2707 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2708 }
2709 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2710
2711 /**
2712 * preempt_notifier_unregister - no longer interested in preemption notifications
2713 * @notifier: notifier struct to unregister
2714 *
2715 * This is safe to call from within a preemption notifier.
2716 */
2717 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2718 {
2719 hlist_del(&notifier->link);
2720 }
2721 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2722
2723 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2724 {
2725 struct preempt_notifier *notifier;
2726 struct hlist_node *node;
2727
2728 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2729 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2730 }
2731
2732 static void
2733 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2734 struct task_struct *next)
2735 {
2736 struct preempt_notifier *notifier;
2737 struct hlist_node *node;
2738
2739 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2740 notifier->ops->sched_out(notifier, next);
2741 }
2742
2743 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2744
2745 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2746 {
2747 }
2748
2749 static void
2750 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2751 struct task_struct *next)
2752 {
2753 }
2754
2755 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2756
2757 /**
2758 * prepare_task_switch - prepare to switch tasks
2759 * @rq: the runqueue preparing to switch
2760 * @prev: the current task that is being switched out
2761 * @next: the task we are going to switch to.
2762 *
2763 * This is called with the rq lock held and interrupts off. It must
2764 * be paired with a subsequent finish_task_switch after the context
2765 * switch.
2766 *
2767 * prepare_task_switch sets up locking and calls architecture specific
2768 * hooks.
2769 */
2770 static inline void
2771 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2772 struct task_struct *next)
2773 {
2774 fire_sched_out_preempt_notifiers(prev, next);
2775 prepare_lock_switch(rq, next);
2776 prepare_arch_switch(next);
2777 }
2778
2779 /**
2780 * finish_task_switch - clean up after a task-switch
2781 * @rq: runqueue associated with task-switch
2782 * @prev: the thread we just switched away from.
2783 *
2784 * finish_task_switch must be called after the context switch, paired
2785 * with a prepare_task_switch call before the context switch.
2786 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2787 * and do any other architecture-specific cleanup actions.
2788 *
2789 * Note that we may have delayed dropping an mm in context_switch(). If
2790 * so, we finish that here outside of the runqueue lock. (Doing it
2791 * with the lock held can cause deadlocks; see schedule() for
2792 * details.)
2793 */
2794 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2795 __releases(rq->lock)
2796 {
2797 struct mm_struct *mm = rq->prev_mm;
2798 long prev_state;
2799 #ifdef CONFIG_SMP
2800 int post_schedule = 0;
2801
2802 if (current->sched_class->needs_post_schedule)
2803 post_schedule = current->sched_class->needs_post_schedule(rq);
2804 #endif
2805
2806 rq->prev_mm = NULL;
2807
2808 /*
2809 * A task struct has one reference for the use as "current".
2810 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2811 * schedule one last time. The schedule call will never return, and
2812 * the scheduled task must drop that reference.
2813 * The test for TASK_DEAD must occur while the runqueue locks are
2814 * still held, otherwise prev could be scheduled on another cpu, die
2815 * there before we look at prev->state, and then the reference would
2816 * be dropped twice.
2817 * Manfred Spraul <manfred@colorfullife.com>
2818 */
2819 prev_state = prev->state;
2820 finish_arch_switch(prev);
2821 perf_counter_task_sched_in(current, cpu_of(rq));
2822 finish_lock_switch(rq, prev);
2823 #ifdef CONFIG_SMP
2824 if (post_schedule)
2825 current->sched_class->post_schedule(rq);
2826 #endif
2827
2828 fire_sched_in_preempt_notifiers(current);
2829 if (mm)
2830 mmdrop(mm);
2831 if (unlikely(prev_state == TASK_DEAD)) {
2832 /*
2833 * Remove function-return probe instances associated with this
2834 * task and put them back on the free list.
2835 */
2836 kprobe_flush_task(prev);
2837 put_task_struct(prev);
2838 }
2839 }
2840
2841 /**
2842 * schedule_tail - first thing a freshly forked thread must call.
2843 * @prev: the thread we just switched away from.
2844 */
2845 asmlinkage void schedule_tail(struct task_struct *prev)
2846 __releases(rq->lock)
2847 {
2848 struct rq *rq = this_rq();
2849
2850 finish_task_switch(rq, prev);
2851 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852 /* In this case, finish_task_switch does not reenable preemption */
2853 preempt_enable();
2854 #endif
2855 if (current->set_child_tid)
2856 put_user(task_pid_vnr(current), current->set_child_tid);
2857 }
2858
2859 /*
2860 * context_switch - switch to the new MM and the new
2861 * thread's register state.
2862 */
2863 static inline void
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865 struct task_struct *next)
2866 {
2867 struct mm_struct *mm, *oldmm;
2868
2869 prepare_task_switch(rq, prev, next);
2870 trace_sched_switch(rq, prev, next);
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
2873 /*
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2877 */
2878 arch_start_context_switch(prev);
2879
2880 if (unlikely(!mm)) {
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm(oldmm, mm, next);
2886
2887 if (unlikely(!prev->mm)) {
2888 prev->active_mm = NULL;
2889 rq->prev_mm = oldmm;
2890 }
2891 /*
2892 * Since the runqueue lock will be released by the next
2893 * task (which is an invalid locking op but in the case
2894 * of the scheduler it's an obvious special-case), so we
2895 * do an early lockdep release here:
2896 */
2897 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2899 #endif
2900
2901 /* Here we just switch the register state and the stack. */
2902 switch_to(prev, next, prev);
2903
2904 barrier();
2905 /*
2906 * this_rq must be evaluated again because prev may have moved
2907 * CPUs since it called schedule(), thus the 'rq' on its stack
2908 * frame will be invalid.
2909 */
2910 finish_task_switch(this_rq(), prev);
2911 }
2912
2913 /*
2914 * nr_running, nr_uninterruptible and nr_context_switches:
2915 *
2916 * externally visible scheduler statistics: current number of runnable
2917 * threads, current number of uninterruptible-sleeping threads, total
2918 * number of context switches performed since bootup.
2919 */
2920 unsigned long nr_running(void)
2921 {
2922 unsigned long i, sum = 0;
2923
2924 for_each_online_cpu(i)
2925 sum += cpu_rq(i)->nr_running;
2926
2927 return sum;
2928 }
2929
2930 unsigned long nr_uninterruptible(void)
2931 {
2932 unsigned long i, sum = 0;
2933
2934 for_each_possible_cpu(i)
2935 sum += cpu_rq(i)->nr_uninterruptible;
2936
2937 /*
2938 * Since we read the counters lockless, it might be slightly
2939 * inaccurate. Do not allow it to go below zero though:
2940 */
2941 if (unlikely((long)sum < 0))
2942 sum = 0;
2943
2944 return sum;
2945 }
2946
2947 unsigned long long nr_context_switches(void)
2948 {
2949 int i;
2950 unsigned long long sum = 0;
2951
2952 for_each_possible_cpu(i)
2953 sum += cpu_rq(i)->nr_switches;
2954
2955 return sum;
2956 }
2957
2958 unsigned long nr_iowait(void)
2959 {
2960 unsigned long i, sum = 0;
2961
2962 for_each_possible_cpu(i)
2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965 return sum;
2966 }
2967
2968 /* Variables and functions for calc_load */
2969 static atomic_long_t calc_load_tasks;
2970 static unsigned long calc_load_update;
2971 unsigned long avenrun[3];
2972 EXPORT_SYMBOL(avenrun);
2973
2974 /**
2975 * get_avenrun - get the load average array
2976 * @loads: pointer to dest load array
2977 * @offset: offset to add
2978 * @shift: shift count to shift the result left
2979 *
2980 * These values are estimates at best, so no need for locking.
2981 */
2982 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2983 {
2984 loads[0] = (avenrun[0] + offset) << shift;
2985 loads[1] = (avenrun[1] + offset) << shift;
2986 loads[2] = (avenrun[2] + offset) << shift;
2987 }
2988
2989 static unsigned long
2990 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991 {
2992 load *= exp;
2993 load += active * (FIXED_1 - exp);
2994 return load >> FSHIFT;
2995 }
2996
2997 /*
2998 * calc_load - update the avenrun load estimates 10 ticks after the
2999 * CPUs have updated calc_load_tasks.
3000 */
3001 void calc_global_load(void)
3002 {
3003 unsigned long upd = calc_load_update + 10;
3004 long active;
3005
3006 if (time_before(jiffies, upd))
3007 return;
3008
3009 active = atomic_long_read(&calc_load_tasks);
3010 active = active > 0 ? active * FIXED_1 : 0;
3011
3012 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3013 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3014 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3015
3016 calc_load_update += LOAD_FREQ;
3017 }
3018
3019 /*
3020 * Either called from update_cpu_load() or from a cpu going idle
3021 */
3022 static void calc_load_account_active(struct rq *this_rq)
3023 {
3024 long nr_active, delta;
3025
3026 nr_active = this_rq->nr_running;
3027 nr_active += (long) this_rq->nr_uninterruptible;
3028
3029 if (nr_active != this_rq->calc_load_active) {
3030 delta = nr_active - this_rq->calc_load_active;
3031 this_rq->calc_load_active = nr_active;
3032 atomic_long_add(delta, &calc_load_tasks);
3033 }
3034 }
3035
3036 /*
3037 * Externally visible per-cpu scheduler statistics:
3038 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3039 */
3040 u64 cpu_nr_migrations(int cpu)
3041 {
3042 return cpu_rq(cpu)->nr_migrations_in;
3043 }
3044
3045 /*
3046 * Update rq->cpu_load[] statistics. This function is usually called every
3047 * scheduler tick (TICK_NSEC).
3048 */
3049 static void update_cpu_load(struct rq *this_rq)
3050 {
3051 unsigned long this_load = this_rq->load.weight;
3052 int i, scale;
3053
3054 this_rq->nr_load_updates++;
3055
3056 /* Update our load: */
3057 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3058 unsigned long old_load, new_load;
3059
3060 /* scale is effectively 1 << i now, and >> i divides by scale */
3061
3062 old_load = this_rq->cpu_load[i];
3063 new_load = this_load;
3064 /*
3065 * Round up the averaging division if load is increasing. This
3066 * prevents us from getting stuck on 9 if the load is 10, for
3067 * example.
3068 */
3069 if (new_load > old_load)
3070 new_load += scale-1;
3071 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3072 }
3073
3074 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3075 this_rq->calc_load_update += LOAD_FREQ;
3076 calc_load_account_active(this_rq);
3077 }
3078 }
3079
3080 #ifdef CONFIG_SMP
3081
3082 /*
3083 * double_rq_lock - safely lock two runqueues
3084 *
3085 * Note this does not disable interrupts like task_rq_lock,
3086 * you need to do so manually before calling.
3087 */
3088 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3089 __acquires(rq1->lock)
3090 __acquires(rq2->lock)
3091 {
3092 BUG_ON(!irqs_disabled());
3093 if (rq1 == rq2) {
3094 spin_lock(&rq1->lock);
3095 __acquire(rq2->lock); /* Fake it out ;) */
3096 } else {
3097 if (rq1 < rq2) {
3098 spin_lock(&rq1->lock);
3099 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3100 } else {
3101 spin_lock(&rq2->lock);
3102 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3103 }
3104 }
3105 update_rq_clock(rq1);
3106 update_rq_clock(rq2);
3107 }
3108
3109 /*
3110 * double_rq_unlock - safely unlock two runqueues
3111 *
3112 * Note this does not restore interrupts like task_rq_unlock,
3113 * you need to do so manually after calling.
3114 */
3115 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3116 __releases(rq1->lock)
3117 __releases(rq2->lock)
3118 {
3119 spin_unlock(&rq1->lock);
3120 if (rq1 != rq2)
3121 spin_unlock(&rq2->lock);
3122 else
3123 __release(rq2->lock);
3124 }
3125
3126 /*
3127 * If dest_cpu is allowed for this process, migrate the task to it.
3128 * This is accomplished by forcing the cpu_allowed mask to only
3129 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3130 * the cpu_allowed mask is restored.
3131 */
3132 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3133 {
3134 struct migration_req req;
3135 unsigned long flags;
3136 struct rq *rq;
3137
3138 rq = task_rq_lock(p, &flags);
3139 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3140 || unlikely(!cpu_active(dest_cpu)))
3141 goto out;
3142
3143 /* force the process onto the specified CPU */
3144 if (migrate_task(p, dest_cpu, &req)) {
3145 /* Need to wait for migration thread (might exit: take ref). */
3146 struct task_struct *mt = rq->migration_thread;
3147
3148 get_task_struct(mt);
3149 task_rq_unlock(rq, &flags);
3150 wake_up_process(mt);
3151 put_task_struct(mt);
3152 wait_for_completion(&req.done);
3153
3154 return;
3155 }
3156 out:
3157 task_rq_unlock(rq, &flags);
3158 }
3159
3160 /*
3161 * sched_exec - execve() is a valuable balancing opportunity, because at
3162 * this point the task has the smallest effective memory and cache footprint.
3163 */
3164 void sched_exec(void)
3165 {
3166 int new_cpu, this_cpu = get_cpu();
3167 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3168 put_cpu();
3169 if (new_cpu != this_cpu)
3170 sched_migrate_task(current, new_cpu);
3171 }
3172
3173 /*
3174 * pull_task - move a task from a remote runqueue to the local runqueue.
3175 * Both runqueues must be locked.
3176 */
3177 static void pull_task(struct rq *src_rq, struct task_struct *p,
3178 struct rq *this_rq, int this_cpu)
3179 {
3180 deactivate_task(src_rq, p, 0);
3181 set_task_cpu(p, this_cpu);
3182 activate_task(this_rq, p, 0);
3183 /*
3184 * Note that idle threads have a prio of MAX_PRIO, for this test
3185 * to be always true for them.
3186 */
3187 check_preempt_curr(this_rq, p, 0);
3188 }
3189
3190 /*
3191 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3192 */
3193 static
3194 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3195 struct sched_domain *sd, enum cpu_idle_type idle,
3196 int *all_pinned)
3197 {
3198 int tsk_cache_hot = 0;
3199 /*
3200 * We do not migrate tasks that are:
3201 * 1) running (obviously), or
3202 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3203 * 3) are cache-hot on their current CPU.
3204 */
3205 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3206 schedstat_inc(p, se.nr_failed_migrations_affine);
3207 return 0;
3208 }
3209 *all_pinned = 0;
3210
3211 if (task_running(rq, p)) {
3212 schedstat_inc(p, se.nr_failed_migrations_running);
3213 return 0;
3214 }
3215
3216 /*
3217 * Aggressive migration if:
3218 * 1) task is cache cold, or
3219 * 2) too many balance attempts have failed.
3220 */
3221
3222 tsk_cache_hot = task_hot(p, rq->clock, sd);
3223 if (!tsk_cache_hot ||
3224 sd->nr_balance_failed > sd->cache_nice_tries) {
3225 #ifdef CONFIG_SCHEDSTATS
3226 if (tsk_cache_hot) {
3227 schedstat_inc(sd, lb_hot_gained[idle]);
3228 schedstat_inc(p, se.nr_forced_migrations);
3229 }
3230 #endif
3231 return 1;
3232 }
3233
3234 if (tsk_cache_hot) {
3235 schedstat_inc(p, se.nr_failed_migrations_hot);
3236 return 0;
3237 }
3238 return 1;
3239 }
3240
3241 static unsigned long
3242 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3243 unsigned long max_load_move, struct sched_domain *sd,
3244 enum cpu_idle_type idle, int *all_pinned,
3245 int *this_best_prio, struct rq_iterator *iterator)
3246 {
3247 int loops = 0, pulled = 0, pinned = 0;
3248 struct task_struct *p;
3249 long rem_load_move = max_load_move;
3250
3251 if (max_load_move == 0)
3252 goto out;
3253
3254 pinned = 1;
3255
3256 /*
3257 * Start the load-balancing iterator:
3258 */
3259 p = iterator->start(iterator->arg);
3260 next:
3261 if (!p || loops++ > sysctl_sched_nr_migrate)
3262 goto out;
3263
3264 if ((p->se.load.weight >> 1) > rem_load_move ||
3265 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3266 p = iterator->next(iterator->arg);
3267 goto next;
3268 }
3269
3270 pull_task(busiest, p, this_rq, this_cpu);
3271 pulled++;
3272 rem_load_move -= p->se.load.weight;
3273
3274 #ifdef CONFIG_PREEMPT
3275 /*
3276 * NEWIDLE balancing is a source of latency, so preemptible kernels
3277 * will stop after the first task is pulled to minimize the critical
3278 * section.
3279 */
3280 if (idle == CPU_NEWLY_IDLE)
3281 goto out;
3282 #endif
3283
3284 /*
3285 * We only want to steal up to the prescribed amount of weighted load.
3286 */
3287 if (rem_load_move > 0) {
3288 if (p->prio < *this_best_prio)
3289 *this_best_prio = p->prio;
3290 p = iterator->next(iterator->arg);
3291 goto next;
3292 }
3293 out:
3294 /*
3295 * Right now, this is one of only two places pull_task() is called,
3296 * so we can safely collect pull_task() stats here rather than
3297 * inside pull_task().
3298 */
3299 schedstat_add(sd, lb_gained[idle], pulled);
3300
3301 if (all_pinned)
3302 *all_pinned = pinned;
3303
3304 return max_load_move - rem_load_move;
3305 }
3306
3307 /*
3308 * move_tasks tries to move up to max_load_move weighted load from busiest to
3309 * this_rq, as part of a balancing operation within domain "sd".
3310 * Returns 1 if successful and 0 otherwise.
3311 *
3312 * Called with both runqueues locked.
3313 */
3314 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3315 unsigned long max_load_move,
3316 struct sched_domain *sd, enum cpu_idle_type idle,
3317 int *all_pinned)
3318 {
3319 const struct sched_class *class = sched_class_highest;
3320 unsigned long total_load_moved = 0;
3321 int this_best_prio = this_rq->curr->prio;
3322
3323 do {
3324 total_load_moved +=
3325 class->load_balance(this_rq, this_cpu, busiest,
3326 max_load_move - total_load_moved,
3327 sd, idle, all_pinned, &this_best_prio);
3328 class = class->next;
3329
3330 #ifdef CONFIG_PREEMPT
3331 /*
3332 * NEWIDLE balancing is a source of latency, so preemptible
3333 * kernels will stop after the first task is pulled to minimize
3334 * the critical section.
3335 */
3336 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3337 break;
3338 #endif
3339 } while (class && max_load_move > total_load_moved);
3340
3341 return total_load_moved > 0;
3342 }
3343
3344 static int
3345 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3346 struct sched_domain *sd, enum cpu_idle_type idle,
3347 struct rq_iterator *iterator)
3348 {
3349 struct task_struct *p = iterator->start(iterator->arg);
3350 int pinned = 0;
3351
3352 while (p) {
3353 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3354 pull_task(busiest, p, this_rq, this_cpu);
3355 /*
3356 * Right now, this is only the second place pull_task()
3357 * is called, so we can safely collect pull_task()
3358 * stats here rather than inside pull_task().
3359 */
3360 schedstat_inc(sd, lb_gained[idle]);
3361
3362 return 1;
3363 }
3364 p = iterator->next(iterator->arg);
3365 }
3366
3367 return 0;
3368 }
3369
3370 /*
3371 * move_one_task tries to move exactly one task from busiest to this_rq, as
3372 * part of active balancing operations within "domain".
3373 * Returns 1 if successful and 0 otherwise.
3374 *
3375 * Called with both runqueues locked.
3376 */
3377 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3378 struct sched_domain *sd, enum cpu_idle_type idle)
3379 {
3380 const struct sched_class *class;
3381
3382 for (class = sched_class_highest; class; class = class->next)
3383 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3384 return 1;
3385
3386 return 0;
3387 }
3388 /********** Helpers for find_busiest_group ************************/
3389 /*
3390 * sd_lb_stats - Structure to store the statistics of a sched_domain
3391 * during load balancing.
3392 */
3393 struct sd_lb_stats {
3394 struct sched_group *busiest; /* Busiest group in this sd */
3395 struct sched_group *this; /* Local group in this sd */
3396 unsigned long total_load; /* Total load of all groups in sd */
3397 unsigned long total_pwr; /* Total power of all groups in sd */
3398 unsigned long avg_load; /* Average load across all groups in sd */
3399
3400 /** Statistics of this group */
3401 unsigned long this_load;
3402 unsigned long this_load_per_task;
3403 unsigned long this_nr_running;
3404
3405 /* Statistics of the busiest group */
3406 unsigned long max_load;
3407 unsigned long busiest_load_per_task;
3408 unsigned long busiest_nr_running;
3409
3410 int group_imb; /* Is there imbalance in this sd */
3411 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3412 int power_savings_balance; /* Is powersave balance needed for this sd */
3413 struct sched_group *group_min; /* Least loaded group in sd */
3414 struct sched_group *group_leader; /* Group which relieves group_min */
3415 unsigned long min_load_per_task; /* load_per_task in group_min */
3416 unsigned long leader_nr_running; /* Nr running of group_leader */
3417 unsigned long min_nr_running; /* Nr running of group_min */
3418 #endif
3419 };
3420
3421 /*
3422 * sg_lb_stats - stats of a sched_group required for load_balancing
3423 */
3424 struct sg_lb_stats {
3425 unsigned long avg_load; /*Avg load across the CPUs of the group */
3426 unsigned long group_load; /* Total load over the CPUs of the group */
3427 unsigned long sum_nr_running; /* Nr tasks running in the group */
3428 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3429 unsigned long group_capacity;
3430 int group_imb; /* Is there an imbalance in the group ? */
3431 };
3432
3433 /**
3434 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3435 * @group: The group whose first cpu is to be returned.
3436 */
3437 static inline unsigned int group_first_cpu(struct sched_group *group)
3438 {
3439 return cpumask_first(sched_group_cpus(group));
3440 }
3441
3442 /**
3443 * get_sd_load_idx - Obtain the load index for a given sched domain.
3444 * @sd: The sched_domain whose load_idx is to be obtained.
3445 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3446 */
3447 static inline int get_sd_load_idx(struct sched_domain *sd,
3448 enum cpu_idle_type idle)
3449 {
3450 int load_idx;
3451
3452 switch (idle) {
3453 case CPU_NOT_IDLE:
3454 load_idx = sd->busy_idx;
3455 break;
3456
3457 case CPU_NEWLY_IDLE:
3458 load_idx = sd->newidle_idx;
3459 break;
3460 default:
3461 load_idx = sd->idle_idx;
3462 break;
3463 }
3464
3465 return load_idx;
3466 }
3467
3468
3469 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3470 /**
3471 * init_sd_power_savings_stats - Initialize power savings statistics for
3472 * the given sched_domain, during load balancing.
3473 *
3474 * @sd: Sched domain whose power-savings statistics are to be initialized.
3475 * @sds: Variable containing the statistics for sd.
3476 * @idle: Idle status of the CPU at which we're performing load-balancing.
3477 */
3478 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3479 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3480 {
3481 /*
3482 * Busy processors will not participate in power savings
3483 * balance.
3484 */
3485 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3486 sds->power_savings_balance = 0;
3487 else {
3488 sds->power_savings_balance = 1;
3489 sds->min_nr_running = ULONG_MAX;
3490 sds->leader_nr_running = 0;
3491 }
3492 }
3493
3494 /**
3495 * update_sd_power_savings_stats - Update the power saving stats for a
3496 * sched_domain while performing load balancing.
3497 *
3498 * @group: sched_group belonging to the sched_domain under consideration.
3499 * @sds: Variable containing the statistics of the sched_domain
3500 * @local_group: Does group contain the CPU for which we're performing
3501 * load balancing ?
3502 * @sgs: Variable containing the statistics of the group.
3503 */
3504 static inline void update_sd_power_savings_stats(struct sched_group *group,
3505 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3506 {
3507
3508 if (!sds->power_savings_balance)
3509 return;
3510
3511 /*
3512 * If the local group is idle or completely loaded
3513 * no need to do power savings balance at this domain
3514 */
3515 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3516 !sds->this_nr_running))
3517 sds->power_savings_balance = 0;
3518
3519 /*
3520 * If a group is already running at full capacity or idle,
3521 * don't include that group in power savings calculations
3522 */
3523 if (!sds->power_savings_balance ||
3524 sgs->sum_nr_running >= sgs->group_capacity ||
3525 !sgs->sum_nr_running)
3526 return;
3527
3528 /*
3529 * Calculate the group which has the least non-idle load.
3530 * This is the group from where we need to pick up the load
3531 * for saving power
3532 */
3533 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3534 (sgs->sum_nr_running == sds->min_nr_running &&
3535 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3536 sds->group_min = group;
3537 sds->min_nr_running = sgs->sum_nr_running;
3538 sds->min_load_per_task = sgs->sum_weighted_load /
3539 sgs->sum_nr_running;
3540 }
3541
3542 /*
3543 * Calculate the group which is almost near its
3544 * capacity but still has some space to pick up some load
3545 * from other group and save more power
3546 */
3547 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3548 return;
3549
3550 if (sgs->sum_nr_running > sds->leader_nr_running ||
3551 (sgs->sum_nr_running == sds->leader_nr_running &&
3552 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3553 sds->group_leader = group;
3554 sds->leader_nr_running = sgs->sum_nr_running;
3555 }
3556 }
3557
3558 /**
3559 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3560 * @sds: Variable containing the statistics of the sched_domain
3561 * under consideration.
3562 * @this_cpu: Cpu at which we're currently performing load-balancing.
3563 * @imbalance: Variable to store the imbalance.
3564 *
3565 * Description:
3566 * Check if we have potential to perform some power-savings balance.
3567 * If yes, set the busiest group to be the least loaded group in the
3568 * sched_domain, so that it's CPUs can be put to idle.
3569 *
3570 * Returns 1 if there is potential to perform power-savings balance.
3571 * Else returns 0.
3572 */
3573 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3574 int this_cpu, unsigned long *imbalance)
3575 {
3576 if (!sds->power_savings_balance)
3577 return 0;
3578
3579 if (sds->this != sds->group_leader ||
3580 sds->group_leader == sds->group_min)
3581 return 0;
3582
3583 *imbalance = sds->min_load_per_task;
3584 sds->busiest = sds->group_min;
3585
3586 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3587 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3588 group_first_cpu(sds->group_leader);
3589 }
3590
3591 return 1;
3592
3593 }
3594 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3595 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3596 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3597 {
3598 return;
3599 }
3600
3601 static inline void update_sd_power_savings_stats(struct sched_group *group,
3602 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3603 {
3604 return;
3605 }
3606
3607 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3608 int this_cpu, unsigned long *imbalance)
3609 {
3610 return 0;
3611 }
3612 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613
3614
3615 /**
3616 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3617 * @group: sched_group whose statistics are to be updated.
3618 * @this_cpu: Cpu for which load balance is currently performed.
3619 * @idle: Idle status of this_cpu
3620 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3621 * @sd_idle: Idle status of the sched_domain containing group.
3622 * @local_group: Does group contain this_cpu.
3623 * @cpus: Set of cpus considered for load balancing.
3624 * @balance: Should we balance.
3625 * @sgs: variable to hold the statistics for this group.
3626 */
3627 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3628 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3629 int local_group, const struct cpumask *cpus,
3630 int *balance, struct sg_lb_stats *sgs)
3631 {
3632 unsigned long load, max_cpu_load, min_cpu_load;
3633 int i;
3634 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3635 unsigned long sum_avg_load_per_task;
3636 unsigned long avg_load_per_task;
3637
3638 if (local_group)
3639 balance_cpu = group_first_cpu(group);
3640
3641 /* Tally up the load of all CPUs in the group */
3642 sum_avg_load_per_task = avg_load_per_task = 0;
3643 max_cpu_load = 0;
3644 min_cpu_load = ~0UL;
3645
3646 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3647 struct rq *rq = cpu_rq(i);
3648
3649 if (*sd_idle && rq->nr_running)
3650 *sd_idle = 0;
3651
3652 /* Bias balancing toward cpus of our domain */
3653 if (local_group) {
3654 if (idle_cpu(i) && !first_idle_cpu) {
3655 first_idle_cpu = 1;
3656 balance_cpu = i;
3657 }
3658
3659 load = target_load(i, load_idx);
3660 } else {
3661 load = source_load(i, load_idx);
3662 if (load > max_cpu_load)
3663 max_cpu_load = load;
3664 if (min_cpu_load > load)
3665 min_cpu_load = load;
3666 }
3667
3668 sgs->group_load += load;
3669 sgs->sum_nr_running += rq->nr_running;
3670 sgs->sum_weighted_load += weighted_cpuload(i);
3671
3672 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3673 }
3674
3675 /*
3676 * First idle cpu or the first cpu(busiest) in this sched group
3677 * is eligible for doing load balancing at this and above
3678 * domains. In the newly idle case, we will allow all the cpu's
3679 * to do the newly idle load balance.
3680 */
3681 if (idle != CPU_NEWLY_IDLE && local_group &&
3682 balance_cpu != this_cpu && balance) {
3683 *balance = 0;
3684 return;
3685 }
3686
3687 /* Adjust by relative CPU power of the group */
3688 sgs->avg_load = sg_div_cpu_power(group,
3689 sgs->group_load * SCHED_LOAD_SCALE);
3690
3691
3692 /*
3693 * Consider the group unbalanced when the imbalance is larger
3694 * than the average weight of two tasks.
3695 *
3696 * APZ: with cgroup the avg task weight can vary wildly and
3697 * might not be a suitable number - should we keep a
3698 * normalized nr_running number somewhere that negates
3699 * the hierarchy?
3700 */
3701 avg_load_per_task = sg_div_cpu_power(group,
3702 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3703
3704 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3705 sgs->group_imb = 1;
3706
3707 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3708
3709 }
3710
3711 /**
3712 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3713 * @sd: sched_domain whose statistics are to be updated.
3714 * @this_cpu: Cpu for which load balance is currently performed.
3715 * @idle: Idle status of this_cpu
3716 * @sd_idle: Idle status of the sched_domain containing group.
3717 * @cpus: Set of cpus considered for load balancing.
3718 * @balance: Should we balance.
3719 * @sds: variable to hold the statistics for this sched_domain.
3720 */
3721 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3722 enum cpu_idle_type idle, int *sd_idle,
3723 const struct cpumask *cpus, int *balance,
3724 struct sd_lb_stats *sds)
3725 {
3726 struct sched_group *group = sd->groups;
3727 struct sg_lb_stats sgs;
3728 int load_idx;
3729
3730 init_sd_power_savings_stats(sd, sds, idle);
3731 load_idx = get_sd_load_idx(sd, idle);
3732
3733 do {
3734 int local_group;
3735
3736 local_group = cpumask_test_cpu(this_cpu,
3737 sched_group_cpus(group));
3738 memset(&sgs, 0, sizeof(sgs));
3739 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3740 local_group, cpus, balance, &sgs);
3741
3742 if (local_group && balance && !(*balance))
3743 return;
3744
3745 sds->total_load += sgs.group_load;
3746 sds->total_pwr += group->__cpu_power;
3747
3748 if (local_group) {
3749 sds->this_load = sgs.avg_load;
3750 sds->this = group;
3751 sds->this_nr_running = sgs.sum_nr_running;
3752 sds->this_load_per_task = sgs.sum_weighted_load;
3753 } else if (sgs.avg_load > sds->max_load &&
3754 (sgs.sum_nr_running > sgs.group_capacity ||
3755 sgs.group_imb)) {
3756 sds->max_load = sgs.avg_load;
3757 sds->busiest = group;
3758 sds->busiest_nr_running = sgs.sum_nr_running;
3759 sds->busiest_load_per_task = sgs.sum_weighted_load;
3760 sds->group_imb = sgs.group_imb;
3761 }
3762
3763 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3764 group = group->next;
3765 } while (group != sd->groups);
3766
3767 }
3768
3769 /**
3770 * fix_small_imbalance - Calculate the minor imbalance that exists
3771 * amongst the groups of a sched_domain, during
3772 * load balancing.
3773 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3774 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3775 * @imbalance: Variable to store the imbalance.
3776 */
3777 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3778 int this_cpu, unsigned long *imbalance)
3779 {
3780 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3781 unsigned int imbn = 2;
3782
3783 if (sds->this_nr_running) {
3784 sds->this_load_per_task /= sds->this_nr_running;
3785 if (sds->busiest_load_per_task >
3786 sds->this_load_per_task)
3787 imbn = 1;
3788 } else
3789 sds->this_load_per_task =
3790 cpu_avg_load_per_task(this_cpu);
3791
3792 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3793 sds->busiest_load_per_task * imbn) {
3794 *imbalance = sds->busiest_load_per_task;
3795 return;
3796 }
3797
3798 /*
3799 * OK, we don't have enough imbalance to justify moving tasks,
3800 * however we may be able to increase total CPU power used by
3801 * moving them.
3802 */
3803
3804 pwr_now += sds->busiest->__cpu_power *
3805 min(sds->busiest_load_per_task, sds->max_load);
3806 pwr_now += sds->this->__cpu_power *
3807 min(sds->this_load_per_task, sds->this_load);
3808 pwr_now /= SCHED_LOAD_SCALE;
3809
3810 /* Amount of load we'd subtract */
3811 tmp = sg_div_cpu_power(sds->busiest,
3812 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3813 if (sds->max_load > tmp)
3814 pwr_move += sds->busiest->__cpu_power *
3815 min(sds->busiest_load_per_task, sds->max_load - tmp);
3816
3817 /* Amount of load we'd add */
3818 if (sds->max_load * sds->busiest->__cpu_power <
3819 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3820 tmp = sg_div_cpu_power(sds->this,
3821 sds->max_load * sds->busiest->__cpu_power);
3822 else
3823 tmp = sg_div_cpu_power(sds->this,
3824 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3825 pwr_move += sds->this->__cpu_power *
3826 min(sds->this_load_per_task, sds->this_load + tmp);
3827 pwr_move /= SCHED_LOAD_SCALE;
3828
3829 /* Move if we gain throughput */
3830 if (pwr_move > pwr_now)
3831 *imbalance = sds->busiest_load_per_task;
3832 }
3833
3834 /**
3835 * calculate_imbalance - Calculate the amount of imbalance present within the
3836 * groups of a given sched_domain during load balance.
3837 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3838 * @this_cpu: Cpu for which currently load balance is being performed.
3839 * @imbalance: The variable to store the imbalance.
3840 */
3841 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3842 unsigned long *imbalance)
3843 {
3844 unsigned long max_pull;
3845 /*
3846 * In the presence of smp nice balancing, certain scenarios can have
3847 * max load less than avg load(as we skip the groups at or below
3848 * its cpu_power, while calculating max_load..)
3849 */
3850 if (sds->max_load < sds->avg_load) {
3851 *imbalance = 0;
3852 return fix_small_imbalance(sds, this_cpu, imbalance);
3853 }
3854
3855 /* Don't want to pull so many tasks that a group would go idle */
3856 max_pull = min(sds->max_load - sds->avg_load,
3857 sds->max_load - sds->busiest_load_per_task);
3858
3859 /* How much load to actually move to equalise the imbalance */
3860 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3861 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3862 / SCHED_LOAD_SCALE;
3863
3864 /*
3865 * if *imbalance is less than the average load per runnable task
3866 * there is no gaurantee that any tasks will be moved so we'll have
3867 * a think about bumping its value to force at least one task to be
3868 * moved
3869 */
3870 if (*imbalance < sds->busiest_load_per_task)
3871 return fix_small_imbalance(sds, this_cpu, imbalance);
3872
3873 }
3874 /******* find_busiest_group() helpers end here *********************/
3875
3876 /**
3877 * find_busiest_group - Returns the busiest group within the sched_domain
3878 * if there is an imbalance. If there isn't an imbalance, and
3879 * the user has opted for power-savings, it returns a group whose
3880 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3881 * such a group exists.
3882 *
3883 * Also calculates the amount of weighted load which should be moved
3884 * to restore balance.
3885 *
3886 * @sd: The sched_domain whose busiest group is to be returned.
3887 * @this_cpu: The cpu for which load balancing is currently being performed.
3888 * @imbalance: Variable which stores amount of weighted load which should
3889 * be moved to restore balance/put a group to idle.
3890 * @idle: The idle status of this_cpu.
3891 * @sd_idle: The idleness of sd
3892 * @cpus: The set of CPUs under consideration for load-balancing.
3893 * @balance: Pointer to a variable indicating if this_cpu
3894 * is the appropriate cpu to perform load balancing at this_level.
3895 *
3896 * Returns: - the busiest group if imbalance exists.
3897 * - If no imbalance and user has opted for power-savings balance,
3898 * return the least loaded group whose CPUs can be
3899 * put to idle by rebalancing its tasks onto our group.
3900 */
3901 static struct sched_group *
3902 find_busiest_group(struct sched_domain *sd, int this_cpu,
3903 unsigned long *imbalance, enum cpu_idle_type idle,
3904 int *sd_idle, const struct cpumask *cpus, int *balance)
3905 {
3906 struct sd_lb_stats sds;
3907
3908 memset(&sds, 0, sizeof(sds));
3909
3910 /*
3911 * Compute the various statistics relavent for load balancing at
3912 * this level.
3913 */
3914 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3915 balance, &sds);
3916
3917 /* Cases where imbalance does not exist from POV of this_cpu */
3918 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3919 * at this level.
3920 * 2) There is no busy sibling group to pull from.
3921 * 3) This group is the busiest group.
3922 * 4) This group is more busy than the avg busieness at this
3923 * sched_domain.
3924 * 5) The imbalance is within the specified limit.
3925 * 6) Any rebalance would lead to ping-pong
3926 */
3927 if (balance && !(*balance))
3928 goto ret;
3929
3930 if (!sds.busiest || sds.busiest_nr_running == 0)
3931 goto out_balanced;
3932
3933 if (sds.this_load >= sds.max_load)
3934 goto out_balanced;
3935
3936 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3937
3938 if (sds.this_load >= sds.avg_load)
3939 goto out_balanced;
3940
3941 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3942 goto out_balanced;
3943
3944 sds.busiest_load_per_task /= sds.busiest_nr_running;
3945 if (sds.group_imb)
3946 sds.busiest_load_per_task =
3947 min(sds.busiest_load_per_task, sds.avg_load);
3948
3949 /*
3950 * We're trying to get all the cpus to the average_load, so we don't
3951 * want to push ourselves above the average load, nor do we wish to
3952 * reduce the max loaded cpu below the average load, as either of these
3953 * actions would just result in more rebalancing later, and ping-pong
3954 * tasks around. Thus we look for the minimum possible imbalance.
3955 * Negative imbalances (*we* are more loaded than anyone else) will
3956 * be counted as no imbalance for these purposes -- we can't fix that
3957 * by pulling tasks to us. Be careful of negative numbers as they'll
3958 * appear as very large values with unsigned longs.
3959 */
3960 if (sds.max_load <= sds.busiest_load_per_task)
3961 goto out_balanced;
3962
3963 /* Looks like there is an imbalance. Compute it */
3964 calculate_imbalance(&sds, this_cpu, imbalance);
3965 return sds.busiest;
3966
3967 out_balanced:
3968 /*
3969 * There is no obvious imbalance. But check if we can do some balancing
3970 * to save power.
3971 */
3972 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3973 return sds.busiest;
3974 ret:
3975 *imbalance = 0;
3976 return NULL;
3977 }
3978
3979 /*
3980 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3981 */
3982 static struct rq *
3983 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3984 unsigned long imbalance, const struct cpumask *cpus)
3985 {
3986 struct rq *busiest = NULL, *rq;
3987 unsigned long max_load = 0;
3988 int i;
3989
3990 for_each_cpu(i, sched_group_cpus(group)) {
3991 unsigned long wl;
3992
3993 if (!cpumask_test_cpu(i, cpus))
3994 continue;
3995
3996 rq = cpu_rq(i);
3997 wl = weighted_cpuload(i);
3998
3999 if (rq->nr_running == 1 && wl > imbalance)
4000 continue;
4001
4002 if (wl > max_load) {
4003 max_load = wl;
4004 busiest = rq;
4005 }
4006 }
4007
4008 return busiest;
4009 }
4010
4011 /*
4012 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4013 * so long as it is large enough.
4014 */
4015 #define MAX_PINNED_INTERVAL 512
4016
4017 /* Working cpumask for load_balance and load_balance_newidle. */
4018 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4019
4020 /*
4021 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4022 * tasks if there is an imbalance.
4023 */
4024 static int load_balance(int this_cpu, struct rq *this_rq,
4025 struct sched_domain *sd, enum cpu_idle_type idle,
4026 int *balance)
4027 {
4028 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4029 struct sched_group *group;
4030 unsigned long imbalance;
4031 struct rq *busiest;
4032 unsigned long flags;
4033 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4034
4035 cpumask_setall(cpus);
4036
4037 /*
4038 * When power savings policy is enabled for the parent domain, idle
4039 * sibling can pick up load irrespective of busy siblings. In this case,
4040 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4041 * portraying it as CPU_NOT_IDLE.
4042 */
4043 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4044 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4045 sd_idle = 1;
4046
4047 schedstat_inc(sd, lb_count[idle]);
4048
4049 redo:
4050 update_shares(sd);
4051 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4052 cpus, balance);
4053
4054 if (*balance == 0)
4055 goto out_balanced;
4056
4057 if (!group) {
4058 schedstat_inc(sd, lb_nobusyg[idle]);
4059 goto out_balanced;
4060 }
4061
4062 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4063 if (!busiest) {
4064 schedstat_inc(sd, lb_nobusyq[idle]);
4065 goto out_balanced;
4066 }
4067
4068 BUG_ON(busiest == this_rq);
4069
4070 schedstat_add(sd, lb_imbalance[idle], imbalance);
4071
4072 ld_moved = 0;
4073 if (busiest->nr_running > 1) {
4074 /*
4075 * Attempt to move tasks. If find_busiest_group has found
4076 * an imbalance but busiest->nr_running <= 1, the group is
4077 * still unbalanced. ld_moved simply stays zero, so it is
4078 * correctly treated as an imbalance.
4079 */
4080 local_irq_save(flags);
4081 double_rq_lock(this_rq, busiest);
4082 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4083 imbalance, sd, idle, &all_pinned);
4084 double_rq_unlock(this_rq, busiest);
4085 local_irq_restore(flags);
4086
4087 /*
4088 * some other cpu did the load balance for us.
4089 */
4090 if (ld_moved && this_cpu != smp_processor_id())
4091 resched_cpu(this_cpu);
4092
4093 /* All tasks on this runqueue were pinned by CPU affinity */
4094 if (unlikely(all_pinned)) {
4095 cpumask_clear_cpu(cpu_of(busiest), cpus);
4096 if (!cpumask_empty(cpus))
4097 goto redo;
4098 goto out_balanced;
4099 }
4100 }
4101
4102 if (!ld_moved) {
4103 schedstat_inc(sd, lb_failed[idle]);
4104 sd->nr_balance_failed++;
4105
4106 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4107
4108 spin_lock_irqsave(&busiest->lock, flags);
4109
4110 /* don't kick the migration_thread, if the curr
4111 * task on busiest cpu can't be moved to this_cpu
4112 */
4113 if (!cpumask_test_cpu(this_cpu,
4114 &busiest->curr->cpus_allowed)) {
4115 spin_unlock_irqrestore(&busiest->lock, flags);
4116 all_pinned = 1;
4117 goto out_one_pinned;
4118 }
4119
4120 if (!busiest->active_balance) {
4121 busiest->active_balance = 1;
4122 busiest->push_cpu = this_cpu;
4123 active_balance = 1;
4124 }
4125 spin_unlock_irqrestore(&busiest->lock, flags);
4126 if (active_balance)
4127 wake_up_process(busiest->migration_thread);
4128
4129 /*
4130 * We've kicked active balancing, reset the failure
4131 * counter.
4132 */
4133 sd->nr_balance_failed = sd->cache_nice_tries+1;
4134 }
4135 } else
4136 sd->nr_balance_failed = 0;
4137
4138 if (likely(!active_balance)) {
4139 /* We were unbalanced, so reset the balancing interval */
4140 sd->balance_interval = sd->min_interval;
4141 } else {
4142 /*
4143 * If we've begun active balancing, start to back off. This
4144 * case may not be covered by the all_pinned logic if there
4145 * is only 1 task on the busy runqueue (because we don't call
4146 * move_tasks).
4147 */
4148 if (sd->balance_interval < sd->max_interval)
4149 sd->balance_interval *= 2;
4150 }
4151
4152 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4153 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4154 ld_moved = -1;
4155
4156 goto out;
4157
4158 out_balanced:
4159 schedstat_inc(sd, lb_balanced[idle]);
4160
4161 sd->nr_balance_failed = 0;
4162
4163 out_one_pinned:
4164 /* tune up the balancing interval */
4165 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4166 (sd->balance_interval < sd->max_interval))
4167 sd->balance_interval *= 2;
4168
4169 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4170 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 ld_moved = -1;
4172 else
4173 ld_moved = 0;
4174 out:
4175 if (ld_moved)
4176 update_shares(sd);
4177 return ld_moved;
4178 }
4179
4180 /*
4181 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4182 * tasks if there is an imbalance.
4183 *
4184 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4185 * this_rq is locked.
4186 */
4187 static int
4188 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4189 {
4190 struct sched_group *group;
4191 struct rq *busiest = NULL;
4192 unsigned long imbalance;
4193 int ld_moved = 0;
4194 int sd_idle = 0;
4195 int all_pinned = 0;
4196 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4197
4198 cpumask_setall(cpus);
4199
4200 /*
4201 * When power savings policy is enabled for the parent domain, idle
4202 * sibling can pick up load irrespective of busy siblings. In this case,
4203 * let the state of idle sibling percolate up as IDLE, instead of
4204 * portraying it as CPU_NOT_IDLE.
4205 */
4206 if (sd->flags & SD_SHARE_CPUPOWER &&
4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4208 sd_idle = 1;
4209
4210 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4211 redo:
4212 update_shares_locked(this_rq, sd);
4213 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4214 &sd_idle, cpus, NULL);
4215 if (!group) {
4216 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4217 goto out_balanced;
4218 }
4219
4220 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4221 if (!busiest) {
4222 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4223 goto out_balanced;
4224 }
4225
4226 BUG_ON(busiest == this_rq);
4227
4228 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4229
4230 ld_moved = 0;
4231 if (busiest->nr_running > 1) {
4232 /* Attempt to move tasks */
4233 double_lock_balance(this_rq, busiest);
4234 /* this_rq->clock is already updated */
4235 update_rq_clock(busiest);
4236 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4237 imbalance, sd, CPU_NEWLY_IDLE,
4238 &all_pinned);
4239 double_unlock_balance(this_rq, busiest);
4240
4241 if (unlikely(all_pinned)) {
4242 cpumask_clear_cpu(cpu_of(busiest), cpus);
4243 if (!cpumask_empty(cpus))
4244 goto redo;
4245 }
4246 }
4247
4248 if (!ld_moved) {
4249 int active_balance = 0;
4250
4251 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4252 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 return -1;
4255
4256 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4257 return -1;
4258
4259 if (sd->nr_balance_failed++ < 2)
4260 return -1;
4261
4262 /*
4263 * The only task running in a non-idle cpu can be moved to this
4264 * cpu in an attempt to completely freeup the other CPU
4265 * package. The same method used to move task in load_balance()
4266 * have been extended for load_balance_newidle() to speedup
4267 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4268 *
4269 * The package power saving logic comes from
4270 * find_busiest_group(). If there are no imbalance, then
4271 * f_b_g() will return NULL. However when sched_mc={1,2} then
4272 * f_b_g() will select a group from which a running task may be
4273 * pulled to this cpu in order to make the other package idle.
4274 * If there is no opportunity to make a package idle and if
4275 * there are no imbalance, then f_b_g() will return NULL and no
4276 * action will be taken in load_balance_newidle().
4277 *
4278 * Under normal task pull operation due to imbalance, there
4279 * will be more than one task in the source run queue and
4280 * move_tasks() will succeed. ld_moved will be true and this
4281 * active balance code will not be triggered.
4282 */
4283
4284 /* Lock busiest in correct order while this_rq is held */
4285 double_lock_balance(this_rq, busiest);
4286
4287 /*
4288 * don't kick the migration_thread, if the curr
4289 * task on busiest cpu can't be moved to this_cpu
4290 */
4291 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4292 double_unlock_balance(this_rq, busiest);
4293 all_pinned = 1;
4294 return ld_moved;
4295 }
4296
4297 if (!busiest->active_balance) {
4298 busiest->active_balance = 1;
4299 busiest->push_cpu = this_cpu;
4300 active_balance = 1;
4301 }
4302
4303 double_unlock_balance(this_rq, busiest);
4304 /*
4305 * Should not call ttwu while holding a rq->lock
4306 */
4307 spin_unlock(&this_rq->lock);
4308 if (active_balance)
4309 wake_up_process(busiest->migration_thread);
4310 spin_lock(&this_rq->lock);
4311
4312 } else
4313 sd->nr_balance_failed = 0;
4314
4315 update_shares_locked(this_rq, sd);
4316 return ld_moved;
4317
4318 out_balanced:
4319 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4320 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4321 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4322 return -1;
4323 sd->nr_balance_failed = 0;
4324
4325 return 0;
4326 }
4327
4328 /*
4329 * idle_balance is called by schedule() if this_cpu is about to become
4330 * idle. Attempts to pull tasks from other CPUs.
4331 */
4332 static void idle_balance(int this_cpu, struct rq *this_rq)
4333 {
4334 struct sched_domain *sd;
4335 int pulled_task = 0;
4336 unsigned long next_balance = jiffies + HZ;
4337
4338 for_each_domain(this_cpu, sd) {
4339 unsigned long interval;
4340
4341 if (!(sd->flags & SD_LOAD_BALANCE))
4342 continue;
4343
4344 if (sd->flags & SD_BALANCE_NEWIDLE)
4345 /* If we've pulled tasks over stop searching: */
4346 pulled_task = load_balance_newidle(this_cpu, this_rq,
4347 sd);
4348
4349 interval = msecs_to_jiffies(sd->balance_interval);
4350 if (time_after(next_balance, sd->last_balance + interval))
4351 next_balance = sd->last_balance + interval;
4352 if (pulled_task)
4353 break;
4354 }
4355 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4356 /*
4357 * We are going idle. next_balance may be set based on
4358 * a busy processor. So reset next_balance.
4359 */
4360 this_rq->next_balance = next_balance;
4361 }
4362 }
4363
4364 /*
4365 * active_load_balance is run by migration threads. It pushes running tasks
4366 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4367 * running on each physical CPU where possible, and avoids physical /
4368 * logical imbalances.
4369 *
4370 * Called with busiest_rq locked.
4371 */
4372 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4373 {
4374 int target_cpu = busiest_rq->push_cpu;
4375 struct sched_domain *sd;
4376 struct rq *target_rq;
4377
4378 /* Is there any task to move? */
4379 if (busiest_rq->nr_running <= 1)
4380 return;
4381
4382 target_rq = cpu_rq(target_cpu);
4383
4384 /*
4385 * This condition is "impossible", if it occurs
4386 * we need to fix it. Originally reported by
4387 * Bjorn Helgaas on a 128-cpu setup.
4388 */
4389 BUG_ON(busiest_rq == target_rq);
4390
4391 /* move a task from busiest_rq to target_rq */
4392 double_lock_balance(busiest_rq, target_rq);
4393 update_rq_clock(busiest_rq);
4394 update_rq_clock(target_rq);
4395
4396 /* Search for an sd spanning us and the target CPU. */
4397 for_each_domain(target_cpu, sd) {
4398 if ((sd->flags & SD_LOAD_BALANCE) &&
4399 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4400 break;
4401 }
4402
4403 if (likely(sd)) {
4404 schedstat_inc(sd, alb_count);
4405
4406 if (move_one_task(target_rq, target_cpu, busiest_rq,
4407 sd, CPU_IDLE))
4408 schedstat_inc(sd, alb_pushed);
4409 else
4410 schedstat_inc(sd, alb_failed);
4411 }
4412 double_unlock_balance(busiest_rq, target_rq);
4413 }
4414
4415 #ifdef CONFIG_NO_HZ
4416 static struct {
4417 atomic_t load_balancer;
4418 cpumask_var_t cpu_mask;
4419 cpumask_var_t ilb_grp_nohz_mask;
4420 } nohz ____cacheline_aligned = {
4421 .load_balancer = ATOMIC_INIT(-1),
4422 };
4423
4424 int get_nohz_load_balancer(void)
4425 {
4426 return atomic_read(&nohz.load_balancer);
4427 }
4428
4429 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4430 /**
4431 * lowest_flag_domain - Return lowest sched_domain containing flag.
4432 * @cpu: The cpu whose lowest level of sched domain is to
4433 * be returned.
4434 * @flag: The flag to check for the lowest sched_domain
4435 * for the given cpu.
4436 *
4437 * Returns the lowest sched_domain of a cpu which contains the given flag.
4438 */
4439 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4440 {
4441 struct sched_domain *sd;
4442
4443 for_each_domain(cpu, sd)
4444 if (sd && (sd->flags & flag))
4445 break;
4446
4447 return sd;
4448 }
4449
4450 /**
4451 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4452 * @cpu: The cpu whose domains we're iterating over.
4453 * @sd: variable holding the value of the power_savings_sd
4454 * for cpu.
4455 * @flag: The flag to filter the sched_domains to be iterated.
4456 *
4457 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4458 * set, starting from the lowest sched_domain to the highest.
4459 */
4460 #define for_each_flag_domain(cpu, sd, flag) \
4461 for (sd = lowest_flag_domain(cpu, flag); \
4462 (sd && (sd->flags & flag)); sd = sd->parent)
4463
4464 /**
4465 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4466 * @ilb_group: group to be checked for semi-idleness
4467 *
4468 * Returns: 1 if the group is semi-idle. 0 otherwise.
4469 *
4470 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4471 * and atleast one non-idle CPU. This helper function checks if the given
4472 * sched_group is semi-idle or not.
4473 */
4474 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4475 {
4476 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4477 sched_group_cpus(ilb_group));
4478
4479 /*
4480 * A sched_group is semi-idle when it has atleast one busy cpu
4481 * and atleast one idle cpu.
4482 */
4483 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4484 return 0;
4485
4486 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4487 return 0;
4488
4489 return 1;
4490 }
4491 /**
4492 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4493 * @cpu: The cpu which is nominating a new idle_load_balancer.
4494 *
4495 * Returns: Returns the id of the idle load balancer if it exists,
4496 * Else, returns >= nr_cpu_ids.
4497 *
4498 * This algorithm picks the idle load balancer such that it belongs to a
4499 * semi-idle powersavings sched_domain. The idea is to try and avoid
4500 * completely idle packages/cores just for the purpose of idle load balancing
4501 * when there are other idle cpu's which are better suited for that job.
4502 */
4503 static int find_new_ilb(int cpu)
4504 {
4505 struct sched_domain *sd;
4506 struct sched_group *ilb_group;
4507
4508 /*
4509 * Have idle load balancer selection from semi-idle packages only
4510 * when power-aware load balancing is enabled
4511 */
4512 if (!(sched_smt_power_savings || sched_mc_power_savings))
4513 goto out_done;
4514
4515 /*
4516 * Optimize for the case when we have no idle CPUs or only one
4517 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4518 */
4519 if (cpumask_weight(nohz.cpu_mask) < 2)
4520 goto out_done;
4521
4522 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4523 ilb_group = sd->groups;
4524
4525 do {
4526 if (is_semi_idle_group(ilb_group))
4527 return cpumask_first(nohz.ilb_grp_nohz_mask);
4528
4529 ilb_group = ilb_group->next;
4530
4531 } while (ilb_group != sd->groups);
4532 }
4533
4534 out_done:
4535 return cpumask_first(nohz.cpu_mask);
4536 }
4537 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4538 static inline int find_new_ilb(int call_cpu)
4539 {
4540 return cpumask_first(nohz.cpu_mask);
4541 }
4542 #endif
4543
4544 /*
4545 * This routine will try to nominate the ilb (idle load balancing)
4546 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4547 * load balancing on behalf of all those cpus. If all the cpus in the system
4548 * go into this tickless mode, then there will be no ilb owner (as there is
4549 * no need for one) and all the cpus will sleep till the next wakeup event
4550 * arrives...
4551 *
4552 * For the ilb owner, tick is not stopped. And this tick will be used
4553 * for idle load balancing. ilb owner will still be part of
4554 * nohz.cpu_mask..
4555 *
4556 * While stopping the tick, this cpu will become the ilb owner if there
4557 * is no other owner. And will be the owner till that cpu becomes busy
4558 * or if all cpus in the system stop their ticks at which point
4559 * there is no need for ilb owner.
4560 *
4561 * When the ilb owner becomes busy, it nominates another owner, during the
4562 * next busy scheduler_tick()
4563 */
4564 int select_nohz_load_balancer(int stop_tick)
4565 {
4566 int cpu = smp_processor_id();
4567
4568 if (stop_tick) {
4569 cpu_rq(cpu)->in_nohz_recently = 1;
4570
4571 if (!cpu_active(cpu)) {
4572 if (atomic_read(&nohz.load_balancer) != cpu)
4573 return 0;
4574
4575 /*
4576 * If we are going offline and still the leader,
4577 * give up!
4578 */
4579 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4580 BUG();
4581
4582 return 0;
4583 }
4584
4585 cpumask_set_cpu(cpu, nohz.cpu_mask);
4586
4587 /* time for ilb owner also to sleep */
4588 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4589 if (atomic_read(&nohz.load_balancer) == cpu)
4590 atomic_set(&nohz.load_balancer, -1);
4591 return 0;
4592 }
4593
4594 if (atomic_read(&nohz.load_balancer) == -1) {
4595 /* make me the ilb owner */
4596 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4597 return 1;
4598 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4599 int new_ilb;
4600
4601 if (!(sched_smt_power_savings ||
4602 sched_mc_power_savings))
4603 return 1;
4604 /*
4605 * Check to see if there is a more power-efficient
4606 * ilb.
4607 */
4608 new_ilb = find_new_ilb(cpu);
4609 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4610 atomic_set(&nohz.load_balancer, -1);
4611 resched_cpu(new_ilb);
4612 return 0;
4613 }
4614 return 1;
4615 }
4616 } else {
4617 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4618 return 0;
4619
4620 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4621
4622 if (atomic_read(&nohz.load_balancer) == cpu)
4623 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4624 BUG();
4625 }
4626 return 0;
4627 }
4628 #endif
4629
4630 static DEFINE_SPINLOCK(balancing);
4631
4632 /*
4633 * It checks each scheduling domain to see if it is due to be balanced,
4634 * and initiates a balancing operation if so.
4635 *
4636 * Balancing parameters are set up in arch_init_sched_domains.
4637 */
4638 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4639 {
4640 int balance = 1;
4641 struct rq *rq = cpu_rq(cpu);
4642 unsigned long interval;
4643 struct sched_domain *sd;
4644 /* Earliest time when we have to do rebalance again */
4645 unsigned long next_balance = jiffies + 60*HZ;
4646 int update_next_balance = 0;
4647 int need_serialize;
4648
4649 for_each_domain(cpu, sd) {
4650 if (!(sd->flags & SD_LOAD_BALANCE))
4651 continue;
4652
4653 interval = sd->balance_interval;
4654 if (idle != CPU_IDLE)
4655 interval *= sd->busy_factor;
4656
4657 /* scale ms to jiffies */
4658 interval = msecs_to_jiffies(interval);
4659 if (unlikely(!interval))
4660 interval = 1;
4661 if (interval > HZ*NR_CPUS/10)
4662 interval = HZ*NR_CPUS/10;
4663
4664 need_serialize = sd->flags & SD_SERIALIZE;
4665
4666 if (need_serialize) {
4667 if (!spin_trylock(&balancing))
4668 goto out;
4669 }
4670
4671 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4672 if (load_balance(cpu, rq, sd, idle, &balance)) {
4673 /*
4674 * We've pulled tasks over so either we're no
4675 * longer idle, or one of our SMT siblings is
4676 * not idle.
4677 */
4678 idle = CPU_NOT_IDLE;
4679 }
4680 sd->last_balance = jiffies;
4681 }
4682 if (need_serialize)
4683 spin_unlock(&balancing);
4684 out:
4685 if (time_after(next_balance, sd->last_balance + interval)) {
4686 next_balance = sd->last_balance + interval;
4687 update_next_balance = 1;
4688 }
4689
4690 /*
4691 * Stop the load balance at this level. There is another
4692 * CPU in our sched group which is doing load balancing more
4693 * actively.
4694 */
4695 if (!balance)
4696 break;
4697 }
4698
4699 /*
4700 * next_balance will be updated only when there is a need.
4701 * When the cpu is attached to null domain for ex, it will not be
4702 * updated.
4703 */
4704 if (likely(update_next_balance))
4705 rq->next_balance = next_balance;
4706 }
4707
4708 /*
4709 * run_rebalance_domains is triggered when needed from the scheduler tick.
4710 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4711 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4712 */
4713 static void run_rebalance_domains(struct softirq_action *h)
4714 {
4715 int this_cpu = smp_processor_id();
4716 struct rq *this_rq = cpu_rq(this_cpu);
4717 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4718 CPU_IDLE : CPU_NOT_IDLE;
4719
4720 rebalance_domains(this_cpu, idle);
4721
4722 #ifdef CONFIG_NO_HZ
4723 /*
4724 * If this cpu is the owner for idle load balancing, then do the
4725 * balancing on behalf of the other idle cpus whose ticks are
4726 * stopped.
4727 */
4728 if (this_rq->idle_at_tick &&
4729 atomic_read(&nohz.load_balancer) == this_cpu) {
4730 struct rq *rq;
4731 int balance_cpu;
4732
4733 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4734 if (balance_cpu == this_cpu)
4735 continue;
4736
4737 /*
4738 * If this cpu gets work to do, stop the load balancing
4739 * work being done for other cpus. Next load
4740 * balancing owner will pick it up.
4741 */
4742 if (need_resched())
4743 break;
4744
4745 rebalance_domains(balance_cpu, CPU_IDLE);
4746
4747 rq = cpu_rq(balance_cpu);
4748 if (time_after(this_rq->next_balance, rq->next_balance))
4749 this_rq->next_balance = rq->next_balance;
4750 }
4751 }
4752 #endif
4753 }
4754
4755 static inline int on_null_domain(int cpu)
4756 {
4757 return !rcu_dereference(cpu_rq(cpu)->sd);
4758 }
4759
4760 /*
4761 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4762 *
4763 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4764 * idle load balancing owner or decide to stop the periodic load balancing,
4765 * if the whole system is idle.
4766 */
4767 static inline void trigger_load_balance(struct rq *rq, int cpu)
4768 {
4769 #ifdef CONFIG_NO_HZ
4770 /*
4771 * If we were in the nohz mode recently and busy at the current
4772 * scheduler tick, then check if we need to nominate new idle
4773 * load balancer.
4774 */
4775 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4776 rq->in_nohz_recently = 0;
4777
4778 if (atomic_read(&nohz.load_balancer) == cpu) {
4779 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4780 atomic_set(&nohz.load_balancer, -1);
4781 }
4782
4783 if (atomic_read(&nohz.load_balancer) == -1) {
4784 int ilb = find_new_ilb(cpu);
4785
4786 if (ilb < nr_cpu_ids)
4787 resched_cpu(ilb);
4788 }
4789 }
4790
4791 /*
4792 * If this cpu is idle and doing idle load balancing for all the
4793 * cpus with ticks stopped, is it time for that to stop?
4794 */
4795 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4796 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4797 resched_cpu(cpu);
4798 return;
4799 }
4800
4801 /*
4802 * If this cpu is idle and the idle load balancing is done by
4803 * someone else, then no need raise the SCHED_SOFTIRQ
4804 */
4805 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4806 cpumask_test_cpu(cpu, nohz.cpu_mask))
4807 return;
4808 #endif
4809 /* Don't need to rebalance while attached to NULL domain */
4810 if (time_after_eq(jiffies, rq->next_balance) &&
4811 likely(!on_null_domain(cpu)))
4812 raise_softirq(SCHED_SOFTIRQ);
4813 }
4814
4815 #else /* CONFIG_SMP */
4816
4817 /*
4818 * on UP we do not need to balance between CPUs:
4819 */
4820 static inline void idle_balance(int cpu, struct rq *rq)
4821 {
4822 }
4823
4824 #endif
4825
4826 DEFINE_PER_CPU(struct kernel_stat, kstat);
4827
4828 EXPORT_PER_CPU_SYMBOL(kstat);
4829
4830 /*
4831 * Return any ns on the sched_clock that have not yet been accounted in
4832 * @p in case that task is currently running.
4833 *
4834 * Called with task_rq_lock() held on @rq.
4835 */
4836 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4837 {
4838 u64 ns = 0;
4839
4840 if (task_current(rq, p)) {
4841 update_rq_clock(rq);
4842 ns = rq->clock - p->se.exec_start;
4843 if ((s64)ns < 0)
4844 ns = 0;
4845 }
4846
4847 return ns;
4848 }
4849
4850 unsigned long long task_delta_exec(struct task_struct *p)
4851 {
4852 unsigned long flags;
4853 struct rq *rq;
4854 u64 ns = 0;
4855
4856 rq = task_rq_lock(p, &flags);
4857 ns = do_task_delta_exec(p, rq);
4858 task_rq_unlock(rq, &flags);
4859
4860 return ns;
4861 }
4862
4863 /*
4864 * Return accounted runtime for the task.
4865 * In case the task is currently running, return the runtime plus current's
4866 * pending runtime that have not been accounted yet.
4867 */
4868 unsigned long long task_sched_runtime(struct task_struct *p)
4869 {
4870 unsigned long flags;
4871 struct rq *rq;
4872 u64 ns = 0;
4873
4874 rq = task_rq_lock(p, &flags);
4875 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4876 task_rq_unlock(rq, &flags);
4877
4878 return ns;
4879 }
4880
4881 /*
4882 * Return sum_exec_runtime for the thread group.
4883 * In case the task is currently running, return the sum plus current's
4884 * pending runtime that have not been accounted yet.
4885 *
4886 * Note that the thread group might have other running tasks as well,
4887 * so the return value not includes other pending runtime that other
4888 * running tasks might have.
4889 */
4890 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4891 {
4892 struct task_cputime totals;
4893 unsigned long flags;
4894 struct rq *rq;
4895 u64 ns;
4896
4897 rq = task_rq_lock(p, &flags);
4898 thread_group_cputime(p, &totals);
4899 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4900 task_rq_unlock(rq, &flags);
4901
4902 return ns;
4903 }
4904
4905 /*
4906 * Account user cpu time to a process.
4907 * @p: the process that the cpu time gets accounted to
4908 * @cputime: the cpu time spent in user space since the last update
4909 * @cputime_scaled: cputime scaled by cpu frequency
4910 */
4911 void account_user_time(struct task_struct *p, cputime_t cputime,
4912 cputime_t cputime_scaled)
4913 {
4914 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4915 cputime64_t tmp;
4916
4917 /* Add user time to process. */
4918 p->utime = cputime_add(p->utime, cputime);
4919 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4920 account_group_user_time(p, cputime);
4921
4922 /* Add user time to cpustat. */
4923 tmp = cputime_to_cputime64(cputime);
4924 if (TASK_NICE(p) > 0)
4925 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4926 else
4927 cpustat->user = cputime64_add(cpustat->user, tmp);
4928
4929 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4930 /* Account for user time used */
4931 acct_update_integrals(p);
4932 }
4933
4934 /*
4935 * Account guest cpu time to a process.
4936 * @p: the process that the cpu time gets accounted to
4937 * @cputime: the cpu time spent in virtual machine since the last update
4938 * @cputime_scaled: cputime scaled by cpu frequency
4939 */
4940 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4941 cputime_t cputime_scaled)
4942 {
4943 cputime64_t tmp;
4944 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4945
4946 tmp = cputime_to_cputime64(cputime);
4947
4948 /* Add guest time to process. */
4949 p->utime = cputime_add(p->utime, cputime);
4950 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4951 account_group_user_time(p, cputime);
4952 p->gtime = cputime_add(p->gtime, cputime);
4953
4954 /* Add guest time to cpustat. */
4955 cpustat->user = cputime64_add(cpustat->user, tmp);
4956 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4957 }
4958
4959 /*
4960 * Account system cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
4962 * @hardirq_offset: the offset to subtract from hardirq_count()
4963 * @cputime: the cpu time spent in kernel space since the last update
4964 * @cputime_scaled: cputime scaled by cpu frequency
4965 */
4966 void account_system_time(struct task_struct *p, int hardirq_offset,
4967 cputime_t cputime, cputime_t cputime_scaled)
4968 {
4969 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4970 cputime64_t tmp;
4971
4972 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4973 account_guest_time(p, cputime, cputime_scaled);
4974 return;
4975 }
4976
4977 /* Add system time to process. */
4978 p->stime = cputime_add(p->stime, cputime);
4979 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4980 account_group_system_time(p, cputime);
4981
4982 /* Add system time to cpustat. */
4983 tmp = cputime_to_cputime64(cputime);
4984 if (hardirq_count() - hardirq_offset)
4985 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4986 else if (softirq_count())
4987 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4988 else
4989 cpustat->system = cputime64_add(cpustat->system, tmp);
4990
4991 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4992
4993 /* Account for system time used */
4994 acct_update_integrals(p);
4995 }
4996
4997 /*
4998 * Account for involuntary wait time.
4999 * @steal: the cpu time spent in involuntary wait
5000 */
5001 void account_steal_time(cputime_t cputime)
5002 {
5003 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5004 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5005
5006 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5007 }
5008
5009 /*
5010 * Account for idle time.
5011 * @cputime: the cpu time spent in idle wait
5012 */
5013 void account_idle_time(cputime_t cputime)
5014 {
5015 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5016 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5017 struct rq *rq = this_rq();
5018
5019 if (atomic_read(&rq->nr_iowait) > 0)
5020 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5021 else
5022 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5023 }
5024
5025 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5026
5027 /*
5028 * Account a single tick of cpu time.
5029 * @p: the process that the cpu time gets accounted to
5030 * @user_tick: indicates if the tick is a user or a system tick
5031 */
5032 void account_process_tick(struct task_struct *p, int user_tick)
5033 {
5034 cputime_t one_jiffy = jiffies_to_cputime(1);
5035 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5036 struct rq *rq = this_rq();
5037
5038 if (user_tick)
5039 account_user_time(p, one_jiffy, one_jiffy_scaled);
5040 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5041 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5042 one_jiffy_scaled);
5043 else
5044 account_idle_time(one_jiffy);
5045 }
5046
5047 /*
5048 * Account multiple ticks of steal time.
5049 * @p: the process from which the cpu time has been stolen
5050 * @ticks: number of stolen ticks
5051 */
5052 void account_steal_ticks(unsigned long ticks)
5053 {
5054 account_steal_time(jiffies_to_cputime(ticks));
5055 }
5056
5057 /*
5058 * Account multiple ticks of idle time.
5059 * @ticks: number of stolen ticks
5060 */
5061 void account_idle_ticks(unsigned long ticks)
5062 {
5063 account_idle_time(jiffies_to_cputime(ticks));
5064 }
5065
5066 #endif
5067
5068 /*
5069 * Use precise platform statistics if available:
5070 */
5071 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5072 cputime_t task_utime(struct task_struct *p)
5073 {
5074 return p->utime;
5075 }
5076
5077 cputime_t task_stime(struct task_struct *p)
5078 {
5079 return p->stime;
5080 }
5081 #else
5082 cputime_t task_utime(struct task_struct *p)
5083 {
5084 clock_t utime = cputime_to_clock_t(p->utime),
5085 total = utime + cputime_to_clock_t(p->stime);
5086 u64 temp;
5087
5088 /*
5089 * Use CFS's precise accounting:
5090 */
5091 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5092
5093 if (total) {
5094 temp *= utime;
5095 do_div(temp, total);
5096 }
5097 utime = (clock_t)temp;
5098
5099 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5100 return p->prev_utime;
5101 }
5102
5103 cputime_t task_stime(struct task_struct *p)
5104 {
5105 clock_t stime;
5106
5107 /*
5108 * Use CFS's precise accounting. (we subtract utime from
5109 * the total, to make sure the total observed by userspace
5110 * grows monotonically - apps rely on that):
5111 */
5112 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5113 cputime_to_clock_t(task_utime(p));
5114
5115 if (stime >= 0)
5116 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5117
5118 return p->prev_stime;
5119 }
5120 #endif
5121
5122 inline cputime_t task_gtime(struct task_struct *p)
5123 {
5124 return p->gtime;
5125 }
5126
5127 /*
5128 * This function gets called by the timer code, with HZ frequency.
5129 * We call it with interrupts disabled.
5130 *
5131 * It also gets called by the fork code, when changing the parent's
5132 * timeslices.
5133 */
5134 void scheduler_tick(void)
5135 {
5136 int cpu = smp_processor_id();
5137 struct rq *rq = cpu_rq(cpu);
5138 struct task_struct *curr = rq->curr;
5139
5140 sched_clock_tick();
5141
5142 spin_lock(&rq->lock);
5143 update_rq_clock(rq);
5144 update_cpu_load(rq);
5145 curr->sched_class->task_tick(rq, curr, 0);
5146 spin_unlock(&rq->lock);
5147
5148 perf_counter_task_tick(curr, cpu);
5149
5150 #ifdef CONFIG_SMP
5151 rq->idle_at_tick = idle_cpu(cpu);
5152 trigger_load_balance(rq, cpu);
5153 #endif
5154 }
5155
5156 notrace unsigned long get_parent_ip(unsigned long addr)
5157 {
5158 if (in_lock_functions(addr)) {
5159 addr = CALLER_ADDR2;
5160 if (in_lock_functions(addr))
5161 addr = CALLER_ADDR3;
5162 }
5163 return addr;
5164 }
5165
5166 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5167 defined(CONFIG_PREEMPT_TRACER))
5168
5169 void __kprobes add_preempt_count(int val)
5170 {
5171 #ifdef CONFIG_DEBUG_PREEMPT
5172 /*
5173 * Underflow?
5174 */
5175 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5176 return;
5177 #endif
5178 preempt_count() += val;
5179 #ifdef CONFIG_DEBUG_PREEMPT
5180 /*
5181 * Spinlock count overflowing soon?
5182 */
5183 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5184 PREEMPT_MASK - 10);
5185 #endif
5186 if (preempt_count() == val)
5187 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5188 }
5189 EXPORT_SYMBOL(add_preempt_count);
5190
5191 void __kprobes sub_preempt_count(int val)
5192 {
5193 #ifdef CONFIG_DEBUG_PREEMPT
5194 /*
5195 * Underflow?
5196 */
5197 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5198 return;
5199 /*
5200 * Is the spinlock portion underflowing?
5201 */
5202 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5203 !(preempt_count() & PREEMPT_MASK)))
5204 return;
5205 #endif
5206
5207 if (preempt_count() == val)
5208 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5209 preempt_count() -= val;
5210 }
5211 EXPORT_SYMBOL(sub_preempt_count);
5212
5213 #endif
5214
5215 /*
5216 * Print scheduling while atomic bug:
5217 */
5218 static noinline void __schedule_bug(struct task_struct *prev)
5219 {
5220 struct pt_regs *regs = get_irq_regs();
5221
5222 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5223 prev->comm, prev->pid, preempt_count());
5224
5225 debug_show_held_locks(prev);
5226 print_modules();
5227 if (irqs_disabled())
5228 print_irqtrace_events(prev);
5229
5230 if (regs)
5231 show_regs(regs);
5232 else
5233 dump_stack();
5234 }
5235
5236 /*
5237 * Various schedule()-time debugging checks and statistics:
5238 */
5239 static inline void schedule_debug(struct task_struct *prev)
5240 {
5241 /*
5242 * Test if we are atomic. Since do_exit() needs to call into
5243 * schedule() atomically, we ignore that path for now.
5244 * Otherwise, whine if we are scheduling when we should not be.
5245 */
5246 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5247 __schedule_bug(prev);
5248
5249 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5250
5251 schedstat_inc(this_rq(), sched_count);
5252 #ifdef CONFIG_SCHEDSTATS
5253 if (unlikely(prev->lock_depth >= 0)) {
5254 schedstat_inc(this_rq(), bkl_count);
5255 schedstat_inc(prev, sched_info.bkl_count);
5256 }
5257 #endif
5258 }
5259
5260 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5261 {
5262 if (prev->state == TASK_RUNNING) {
5263 u64 runtime = prev->se.sum_exec_runtime;
5264
5265 runtime -= prev->se.prev_sum_exec_runtime;
5266 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5267
5268 /*
5269 * In order to avoid avg_overlap growing stale when we are
5270 * indeed overlapping and hence not getting put to sleep, grow
5271 * the avg_overlap on preemption.
5272 *
5273 * We use the average preemption runtime because that
5274 * correlates to the amount of cache footprint a task can
5275 * build up.
5276 */
5277 update_avg(&prev->se.avg_overlap, runtime);
5278 }
5279 prev->sched_class->put_prev_task(rq, prev);
5280 }
5281
5282 /*
5283 * Pick up the highest-prio task:
5284 */
5285 static inline struct task_struct *
5286 pick_next_task(struct rq *rq)
5287 {
5288 const struct sched_class *class;
5289 struct task_struct *p;
5290
5291 /*
5292 * Optimization: we know that if all tasks are in
5293 * the fair class we can call that function directly:
5294 */
5295 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5296 p = fair_sched_class.pick_next_task(rq);
5297 if (likely(p))
5298 return p;
5299 }
5300
5301 class = sched_class_highest;
5302 for ( ; ; ) {
5303 p = class->pick_next_task(rq);
5304 if (p)
5305 return p;
5306 /*
5307 * Will never be NULL as the idle class always
5308 * returns a non-NULL p:
5309 */
5310 class = class->next;
5311 }
5312 }
5313
5314 /*
5315 * schedule() is the main scheduler function.
5316 */
5317 asmlinkage void __sched schedule(void)
5318 {
5319 struct task_struct *prev, *next;
5320 unsigned long *switch_count;
5321 struct rq *rq;
5322 int cpu;
5323
5324 need_resched:
5325 preempt_disable();
5326 cpu = smp_processor_id();
5327 rq = cpu_rq(cpu);
5328 rcu_qsctr_inc(cpu);
5329 prev = rq->curr;
5330 switch_count = &prev->nivcsw;
5331
5332 release_kernel_lock(prev);
5333 need_resched_nonpreemptible:
5334
5335 schedule_debug(prev);
5336
5337 if (sched_feat(HRTICK))
5338 hrtick_clear(rq);
5339
5340 spin_lock_irq(&rq->lock);
5341 update_rq_clock(rq);
5342 clear_tsk_need_resched(prev);
5343
5344 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5345 if (unlikely(signal_pending_state(prev->state, prev)))
5346 prev->state = TASK_RUNNING;
5347 else
5348 deactivate_task(rq, prev, 1);
5349 switch_count = &prev->nvcsw;
5350 }
5351
5352 #ifdef CONFIG_SMP
5353 if (prev->sched_class->pre_schedule)
5354 prev->sched_class->pre_schedule(rq, prev);
5355 #endif
5356
5357 if (unlikely(!rq->nr_running))
5358 idle_balance(cpu, rq);
5359
5360 put_prev_task(rq, prev);
5361 next = pick_next_task(rq);
5362
5363 if (likely(prev != next)) {
5364 sched_info_switch(prev, next);
5365 perf_counter_task_sched_out(prev, next, cpu);
5366
5367 rq->nr_switches++;
5368 rq->curr = next;
5369 ++*switch_count;
5370
5371 context_switch(rq, prev, next); /* unlocks the rq */
5372 /*
5373 * the context switch might have flipped the stack from under
5374 * us, hence refresh the local variables.
5375 */
5376 cpu = smp_processor_id();
5377 rq = cpu_rq(cpu);
5378 } else
5379 spin_unlock_irq(&rq->lock);
5380
5381 if (unlikely(reacquire_kernel_lock(current) < 0))
5382 goto need_resched_nonpreemptible;
5383
5384 preempt_enable_no_resched();
5385 if (need_resched())
5386 goto need_resched;
5387 }
5388 EXPORT_SYMBOL(schedule);
5389
5390 #ifdef CONFIG_SMP
5391 /*
5392 * Look out! "owner" is an entirely speculative pointer
5393 * access and not reliable.
5394 */
5395 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5396 {
5397 unsigned int cpu;
5398 struct rq *rq;
5399
5400 if (!sched_feat(OWNER_SPIN))
5401 return 0;
5402
5403 #ifdef CONFIG_DEBUG_PAGEALLOC
5404 /*
5405 * Need to access the cpu field knowing that
5406 * DEBUG_PAGEALLOC could have unmapped it if
5407 * the mutex owner just released it and exited.
5408 */
5409 if (probe_kernel_address(&owner->cpu, cpu))
5410 goto out;
5411 #else
5412 cpu = owner->cpu;
5413 #endif
5414
5415 /*
5416 * Even if the access succeeded (likely case),
5417 * the cpu field may no longer be valid.
5418 */
5419 if (cpu >= nr_cpumask_bits)
5420 goto out;
5421
5422 /*
5423 * We need to validate that we can do a
5424 * get_cpu() and that we have the percpu area.
5425 */
5426 if (!cpu_online(cpu))
5427 goto out;
5428
5429 rq = cpu_rq(cpu);
5430
5431 for (;;) {
5432 /*
5433 * Owner changed, break to re-assess state.
5434 */
5435 if (lock->owner != owner)
5436 break;
5437
5438 /*
5439 * Is that owner really running on that cpu?
5440 */
5441 if (task_thread_info(rq->curr) != owner || need_resched())
5442 return 0;
5443
5444 cpu_relax();
5445 }
5446 out:
5447 return 1;
5448 }
5449 #endif
5450
5451 #ifdef CONFIG_PREEMPT
5452 /*
5453 * this is the entry point to schedule() from in-kernel preemption
5454 * off of preempt_enable. Kernel preemptions off return from interrupt
5455 * occur there and call schedule directly.
5456 */
5457 asmlinkage void __sched preempt_schedule(void)
5458 {
5459 struct thread_info *ti = current_thread_info();
5460
5461 /*
5462 * If there is a non-zero preempt_count or interrupts are disabled,
5463 * we do not want to preempt the current task. Just return..
5464 */
5465 if (likely(ti->preempt_count || irqs_disabled()))
5466 return;
5467
5468 do {
5469 add_preempt_count(PREEMPT_ACTIVE);
5470 schedule();
5471 sub_preempt_count(PREEMPT_ACTIVE);
5472
5473 /*
5474 * Check again in case we missed a preemption opportunity
5475 * between schedule and now.
5476 */
5477 barrier();
5478 } while (need_resched());
5479 }
5480 EXPORT_SYMBOL(preempt_schedule);
5481
5482 /*
5483 * this is the entry point to schedule() from kernel preemption
5484 * off of irq context.
5485 * Note, that this is called and return with irqs disabled. This will
5486 * protect us against recursive calling from irq.
5487 */
5488 asmlinkage void __sched preempt_schedule_irq(void)
5489 {
5490 struct thread_info *ti = current_thread_info();
5491
5492 /* Catch callers which need to be fixed */
5493 BUG_ON(ti->preempt_count || !irqs_disabled());
5494
5495 do {
5496 add_preempt_count(PREEMPT_ACTIVE);
5497 local_irq_enable();
5498 schedule();
5499 local_irq_disable();
5500 sub_preempt_count(PREEMPT_ACTIVE);
5501
5502 /*
5503 * Check again in case we missed a preemption opportunity
5504 * between schedule and now.
5505 */
5506 barrier();
5507 } while (need_resched());
5508 }
5509
5510 #endif /* CONFIG_PREEMPT */
5511
5512 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5513 void *key)
5514 {
5515 return try_to_wake_up(curr->private, mode, sync);
5516 }
5517 EXPORT_SYMBOL(default_wake_function);
5518
5519 /*
5520 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5521 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5522 * number) then we wake all the non-exclusive tasks and one exclusive task.
5523 *
5524 * There are circumstances in which we can try to wake a task which has already
5525 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5526 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5527 */
5528 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5529 int nr_exclusive, int sync, void *key)
5530 {
5531 wait_queue_t *curr, *next;
5532
5533 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5534 unsigned flags = curr->flags;
5535
5536 if (curr->func(curr, mode, sync, key) &&
5537 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5538 break;
5539 }
5540 }
5541
5542 /**
5543 * __wake_up - wake up threads blocked on a waitqueue.
5544 * @q: the waitqueue
5545 * @mode: which threads
5546 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5547 * @key: is directly passed to the wakeup function
5548 *
5549 * It may be assumed that this function implies a write memory barrier before
5550 * changing the task state if and only if any tasks are woken up.
5551 */
5552 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5553 int nr_exclusive, void *key)
5554 {
5555 unsigned long flags;
5556
5557 spin_lock_irqsave(&q->lock, flags);
5558 __wake_up_common(q, mode, nr_exclusive, 0, key);
5559 spin_unlock_irqrestore(&q->lock, flags);
5560 }
5561 EXPORT_SYMBOL(__wake_up);
5562
5563 /*
5564 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5565 */
5566 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5567 {
5568 __wake_up_common(q, mode, 1, 0, NULL);
5569 }
5570
5571 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5572 {
5573 __wake_up_common(q, mode, 1, 0, key);
5574 }
5575
5576 /**
5577 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5578 * @q: the waitqueue
5579 * @mode: which threads
5580 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5581 * @key: opaque value to be passed to wakeup targets
5582 *
5583 * The sync wakeup differs that the waker knows that it will schedule
5584 * away soon, so while the target thread will be woken up, it will not
5585 * be migrated to another CPU - ie. the two threads are 'synchronized'
5586 * with each other. This can prevent needless bouncing between CPUs.
5587 *
5588 * On UP it can prevent extra preemption.
5589 *
5590 * It may be assumed that this function implies a write memory barrier before
5591 * changing the task state if and only if any tasks are woken up.
5592 */
5593 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5594 int nr_exclusive, void *key)
5595 {
5596 unsigned long flags;
5597 int sync = 1;
5598
5599 if (unlikely(!q))
5600 return;
5601
5602 if (unlikely(!nr_exclusive))
5603 sync = 0;
5604
5605 spin_lock_irqsave(&q->lock, flags);
5606 __wake_up_common(q, mode, nr_exclusive, sync, key);
5607 spin_unlock_irqrestore(&q->lock, flags);
5608 }
5609 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5610
5611 /*
5612 * __wake_up_sync - see __wake_up_sync_key()
5613 */
5614 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5615 {
5616 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5617 }
5618 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5619
5620 /**
5621 * complete: - signals a single thread waiting on this completion
5622 * @x: holds the state of this particular completion
5623 *
5624 * This will wake up a single thread waiting on this completion. Threads will be
5625 * awakened in the same order in which they were queued.
5626 *
5627 * See also complete_all(), wait_for_completion() and related routines.
5628 *
5629 * It may be assumed that this function implies a write memory barrier before
5630 * changing the task state if and only if any tasks are woken up.
5631 */
5632 void complete(struct completion *x)
5633 {
5634 unsigned long flags;
5635
5636 spin_lock_irqsave(&x->wait.lock, flags);
5637 x->done++;
5638 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5639 spin_unlock_irqrestore(&x->wait.lock, flags);
5640 }
5641 EXPORT_SYMBOL(complete);
5642
5643 /**
5644 * complete_all: - signals all threads waiting on this completion
5645 * @x: holds the state of this particular completion
5646 *
5647 * This will wake up all threads waiting on this particular completion event.
5648 *
5649 * It may be assumed that this function implies a write memory barrier before
5650 * changing the task state if and only if any tasks are woken up.
5651 */
5652 void complete_all(struct completion *x)
5653 {
5654 unsigned long flags;
5655
5656 spin_lock_irqsave(&x->wait.lock, flags);
5657 x->done += UINT_MAX/2;
5658 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5659 spin_unlock_irqrestore(&x->wait.lock, flags);
5660 }
5661 EXPORT_SYMBOL(complete_all);
5662
5663 static inline long __sched
5664 do_wait_for_common(struct completion *x, long timeout, int state)
5665 {
5666 if (!x->done) {
5667 DECLARE_WAITQUEUE(wait, current);
5668
5669 wait.flags |= WQ_FLAG_EXCLUSIVE;
5670 __add_wait_queue_tail(&x->wait, &wait);
5671 do {
5672 if (signal_pending_state(state, current)) {
5673 timeout = -ERESTARTSYS;
5674 break;
5675 }
5676 __set_current_state(state);
5677 spin_unlock_irq(&x->wait.lock);
5678 timeout = schedule_timeout(timeout);
5679 spin_lock_irq(&x->wait.lock);
5680 } while (!x->done && timeout);
5681 __remove_wait_queue(&x->wait, &wait);
5682 if (!x->done)
5683 return timeout;
5684 }
5685 x->done--;
5686 return timeout ?: 1;
5687 }
5688
5689 static long __sched
5690 wait_for_common(struct completion *x, long timeout, int state)
5691 {
5692 might_sleep();
5693
5694 spin_lock_irq(&x->wait.lock);
5695 timeout = do_wait_for_common(x, timeout, state);
5696 spin_unlock_irq(&x->wait.lock);
5697 return timeout;
5698 }
5699
5700 /**
5701 * wait_for_completion: - waits for completion of a task
5702 * @x: holds the state of this particular completion
5703 *
5704 * This waits to be signaled for completion of a specific task. It is NOT
5705 * interruptible and there is no timeout.
5706 *
5707 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5708 * and interrupt capability. Also see complete().
5709 */
5710 void __sched wait_for_completion(struct completion *x)
5711 {
5712 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5713 }
5714 EXPORT_SYMBOL(wait_for_completion);
5715
5716 /**
5717 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5718 * @x: holds the state of this particular completion
5719 * @timeout: timeout value in jiffies
5720 *
5721 * This waits for either a completion of a specific task to be signaled or for a
5722 * specified timeout to expire. The timeout is in jiffies. It is not
5723 * interruptible.
5724 */
5725 unsigned long __sched
5726 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5727 {
5728 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5729 }
5730 EXPORT_SYMBOL(wait_for_completion_timeout);
5731
5732 /**
5733 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5734 * @x: holds the state of this particular completion
5735 *
5736 * This waits for completion of a specific task to be signaled. It is
5737 * interruptible.
5738 */
5739 int __sched wait_for_completion_interruptible(struct completion *x)
5740 {
5741 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5742 if (t == -ERESTARTSYS)
5743 return t;
5744 return 0;
5745 }
5746 EXPORT_SYMBOL(wait_for_completion_interruptible);
5747
5748 /**
5749 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5750 * @x: holds the state of this particular completion
5751 * @timeout: timeout value in jiffies
5752 *
5753 * This waits for either a completion of a specific task to be signaled or for a
5754 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5755 */
5756 unsigned long __sched
5757 wait_for_completion_interruptible_timeout(struct completion *x,
5758 unsigned long timeout)
5759 {
5760 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5761 }
5762 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5763
5764 /**
5765 * wait_for_completion_killable: - waits for completion of a task (killable)
5766 * @x: holds the state of this particular completion
5767 *
5768 * This waits to be signaled for completion of a specific task. It can be
5769 * interrupted by a kill signal.
5770 */
5771 int __sched wait_for_completion_killable(struct completion *x)
5772 {
5773 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5774 if (t == -ERESTARTSYS)
5775 return t;
5776 return 0;
5777 }
5778 EXPORT_SYMBOL(wait_for_completion_killable);
5779
5780 /**
5781 * try_wait_for_completion - try to decrement a completion without blocking
5782 * @x: completion structure
5783 *
5784 * Returns: 0 if a decrement cannot be done without blocking
5785 * 1 if a decrement succeeded.
5786 *
5787 * If a completion is being used as a counting completion,
5788 * attempt to decrement the counter without blocking. This
5789 * enables us to avoid waiting if the resource the completion
5790 * is protecting is not available.
5791 */
5792 bool try_wait_for_completion(struct completion *x)
5793 {
5794 int ret = 1;
5795
5796 spin_lock_irq(&x->wait.lock);
5797 if (!x->done)
5798 ret = 0;
5799 else
5800 x->done--;
5801 spin_unlock_irq(&x->wait.lock);
5802 return ret;
5803 }
5804 EXPORT_SYMBOL(try_wait_for_completion);
5805
5806 /**
5807 * completion_done - Test to see if a completion has any waiters
5808 * @x: completion structure
5809 *
5810 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5811 * 1 if there are no waiters.
5812 *
5813 */
5814 bool completion_done(struct completion *x)
5815 {
5816 int ret = 1;
5817
5818 spin_lock_irq(&x->wait.lock);
5819 if (!x->done)
5820 ret = 0;
5821 spin_unlock_irq(&x->wait.lock);
5822 return ret;
5823 }
5824 EXPORT_SYMBOL(completion_done);
5825
5826 static long __sched
5827 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5828 {
5829 unsigned long flags;
5830 wait_queue_t wait;
5831
5832 init_waitqueue_entry(&wait, current);
5833
5834 __set_current_state(state);
5835
5836 spin_lock_irqsave(&q->lock, flags);
5837 __add_wait_queue(q, &wait);
5838 spin_unlock(&q->lock);
5839 timeout = schedule_timeout(timeout);
5840 spin_lock_irq(&q->lock);
5841 __remove_wait_queue(q, &wait);
5842 spin_unlock_irqrestore(&q->lock, flags);
5843
5844 return timeout;
5845 }
5846
5847 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5848 {
5849 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5850 }
5851 EXPORT_SYMBOL(interruptible_sleep_on);
5852
5853 long __sched
5854 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5855 {
5856 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5857 }
5858 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5859
5860 void __sched sleep_on(wait_queue_head_t *q)
5861 {
5862 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5863 }
5864 EXPORT_SYMBOL(sleep_on);
5865
5866 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5867 {
5868 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5869 }
5870 EXPORT_SYMBOL(sleep_on_timeout);
5871
5872 #ifdef CONFIG_RT_MUTEXES
5873
5874 /*
5875 * rt_mutex_setprio - set the current priority of a task
5876 * @p: task
5877 * @prio: prio value (kernel-internal form)
5878 *
5879 * This function changes the 'effective' priority of a task. It does
5880 * not touch ->normal_prio like __setscheduler().
5881 *
5882 * Used by the rt_mutex code to implement priority inheritance logic.
5883 */
5884 void rt_mutex_setprio(struct task_struct *p, int prio)
5885 {
5886 unsigned long flags;
5887 int oldprio, on_rq, running;
5888 struct rq *rq;
5889 const struct sched_class *prev_class = p->sched_class;
5890
5891 BUG_ON(prio < 0 || prio > MAX_PRIO);
5892
5893 rq = task_rq_lock(p, &flags);
5894 update_rq_clock(rq);
5895
5896 oldprio = p->prio;
5897 on_rq = p->se.on_rq;
5898 running = task_current(rq, p);
5899 if (on_rq)
5900 dequeue_task(rq, p, 0);
5901 if (running)
5902 p->sched_class->put_prev_task(rq, p);
5903
5904 if (rt_prio(prio))
5905 p->sched_class = &rt_sched_class;
5906 else
5907 p->sched_class = &fair_sched_class;
5908
5909 p->prio = prio;
5910
5911 if (running)
5912 p->sched_class->set_curr_task(rq);
5913 if (on_rq) {
5914 enqueue_task(rq, p, 0);
5915
5916 check_class_changed(rq, p, prev_class, oldprio, running);
5917 }
5918 task_rq_unlock(rq, &flags);
5919 }
5920
5921 #endif
5922
5923 void set_user_nice(struct task_struct *p, long nice)
5924 {
5925 int old_prio, delta, on_rq;
5926 unsigned long flags;
5927 struct rq *rq;
5928
5929 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5930 return;
5931 /*
5932 * We have to be careful, if called from sys_setpriority(),
5933 * the task might be in the middle of scheduling on another CPU.
5934 */
5935 rq = task_rq_lock(p, &flags);
5936 update_rq_clock(rq);
5937 /*
5938 * The RT priorities are set via sched_setscheduler(), but we still
5939 * allow the 'normal' nice value to be set - but as expected
5940 * it wont have any effect on scheduling until the task is
5941 * SCHED_FIFO/SCHED_RR:
5942 */
5943 if (task_has_rt_policy(p)) {
5944 p->static_prio = NICE_TO_PRIO(nice);
5945 goto out_unlock;
5946 }
5947 on_rq = p->se.on_rq;
5948 if (on_rq)
5949 dequeue_task(rq, p, 0);
5950
5951 p->static_prio = NICE_TO_PRIO(nice);
5952 set_load_weight(p);
5953 old_prio = p->prio;
5954 p->prio = effective_prio(p);
5955 delta = p->prio - old_prio;
5956
5957 if (on_rq) {
5958 enqueue_task(rq, p, 0);
5959 /*
5960 * If the task increased its priority or is running and
5961 * lowered its priority, then reschedule its CPU:
5962 */
5963 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5964 resched_task(rq->curr);
5965 }
5966 out_unlock:
5967 task_rq_unlock(rq, &flags);
5968 }
5969 EXPORT_SYMBOL(set_user_nice);
5970
5971 /*
5972 * can_nice - check if a task can reduce its nice value
5973 * @p: task
5974 * @nice: nice value
5975 */
5976 int can_nice(const struct task_struct *p, const int nice)
5977 {
5978 /* convert nice value [19,-20] to rlimit style value [1,40] */
5979 int nice_rlim = 20 - nice;
5980
5981 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5982 capable(CAP_SYS_NICE));
5983 }
5984
5985 #ifdef __ARCH_WANT_SYS_NICE
5986
5987 /*
5988 * sys_nice - change the priority of the current process.
5989 * @increment: priority increment
5990 *
5991 * sys_setpriority is a more generic, but much slower function that
5992 * does similar things.
5993 */
5994 SYSCALL_DEFINE1(nice, int, increment)
5995 {
5996 long nice, retval;
5997
5998 /*
5999 * Setpriority might change our priority at the same moment.
6000 * We don't have to worry. Conceptually one call occurs first
6001 * and we have a single winner.
6002 */
6003 if (increment < -40)
6004 increment = -40;
6005 if (increment > 40)
6006 increment = 40;
6007
6008 nice = TASK_NICE(current) + increment;
6009 if (nice < -20)
6010 nice = -20;
6011 if (nice > 19)
6012 nice = 19;
6013
6014 if (increment < 0 && !can_nice(current, nice))
6015 return -EPERM;
6016
6017 retval = security_task_setnice(current, nice);
6018 if (retval)
6019 return retval;
6020
6021 set_user_nice(current, nice);
6022 return 0;
6023 }
6024
6025 #endif
6026
6027 /**
6028 * task_prio - return the priority value of a given task.
6029 * @p: the task in question.
6030 *
6031 * This is the priority value as seen by users in /proc.
6032 * RT tasks are offset by -200. Normal tasks are centered
6033 * around 0, value goes from -16 to +15.
6034 */
6035 int task_prio(const struct task_struct *p)
6036 {
6037 return p->prio - MAX_RT_PRIO;
6038 }
6039
6040 /**
6041 * task_nice - return the nice value of a given task.
6042 * @p: the task in question.
6043 */
6044 int task_nice(const struct task_struct *p)
6045 {
6046 return TASK_NICE(p);
6047 }
6048 EXPORT_SYMBOL(task_nice);
6049
6050 /**
6051 * idle_cpu - is a given cpu idle currently?
6052 * @cpu: the processor in question.
6053 */
6054 int idle_cpu(int cpu)
6055 {
6056 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6057 }
6058
6059 /**
6060 * idle_task - return the idle task for a given cpu.
6061 * @cpu: the processor in question.
6062 */
6063 struct task_struct *idle_task(int cpu)
6064 {
6065 return cpu_rq(cpu)->idle;
6066 }
6067
6068 /**
6069 * find_process_by_pid - find a process with a matching PID value.
6070 * @pid: the pid in question.
6071 */
6072 static struct task_struct *find_process_by_pid(pid_t pid)
6073 {
6074 return pid ? find_task_by_vpid(pid) : current;
6075 }
6076
6077 /* Actually do priority change: must hold rq lock. */
6078 static void
6079 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6080 {
6081 BUG_ON(p->se.on_rq);
6082
6083 p->policy = policy;
6084 switch (p->policy) {
6085 case SCHED_NORMAL:
6086 case SCHED_BATCH:
6087 case SCHED_IDLE:
6088 p->sched_class = &fair_sched_class;
6089 break;
6090 case SCHED_FIFO:
6091 case SCHED_RR:
6092 p->sched_class = &rt_sched_class;
6093 break;
6094 }
6095
6096 p->rt_priority = prio;
6097 p->normal_prio = normal_prio(p);
6098 /* we are holding p->pi_lock already */
6099 p->prio = rt_mutex_getprio(p);
6100 set_load_weight(p);
6101 }
6102
6103 /*
6104 * check the target process has a UID that matches the current process's
6105 */
6106 static bool check_same_owner(struct task_struct *p)
6107 {
6108 const struct cred *cred = current_cred(), *pcred;
6109 bool match;
6110
6111 rcu_read_lock();
6112 pcred = __task_cred(p);
6113 match = (cred->euid == pcred->euid ||
6114 cred->euid == pcred->uid);
6115 rcu_read_unlock();
6116 return match;
6117 }
6118
6119 static int __sched_setscheduler(struct task_struct *p, int policy,
6120 struct sched_param *param, bool user)
6121 {
6122 int retval, oldprio, oldpolicy = -1, on_rq, running;
6123 unsigned long flags;
6124 const struct sched_class *prev_class = p->sched_class;
6125 struct rq *rq;
6126 int reset_on_fork;
6127
6128 /* may grab non-irq protected spin_locks */
6129 BUG_ON(in_interrupt());
6130 recheck:
6131 /* double check policy once rq lock held */
6132 if (policy < 0) {
6133 reset_on_fork = p->sched_reset_on_fork;
6134 policy = oldpolicy = p->policy;
6135 } else {
6136 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6137 policy &= ~SCHED_RESET_ON_FORK;
6138
6139 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6140 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6141 policy != SCHED_IDLE)
6142 return -EINVAL;
6143 }
6144
6145 /*
6146 * Valid priorities for SCHED_FIFO and SCHED_RR are
6147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6148 * SCHED_BATCH and SCHED_IDLE is 0.
6149 */
6150 if (param->sched_priority < 0 ||
6151 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6152 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6153 return -EINVAL;
6154 if (rt_policy(policy) != (param->sched_priority != 0))
6155 return -EINVAL;
6156
6157 /*
6158 * Allow unprivileged RT tasks to decrease priority:
6159 */
6160 if (user && !capable(CAP_SYS_NICE)) {
6161 if (rt_policy(policy)) {
6162 unsigned long rlim_rtprio;
6163
6164 if (!lock_task_sighand(p, &flags))
6165 return -ESRCH;
6166 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6167 unlock_task_sighand(p, &flags);
6168
6169 /* can't set/change the rt policy */
6170 if (policy != p->policy && !rlim_rtprio)
6171 return -EPERM;
6172
6173 /* can't increase priority */
6174 if (param->sched_priority > p->rt_priority &&
6175 param->sched_priority > rlim_rtprio)
6176 return -EPERM;
6177 }
6178 /*
6179 * Like positive nice levels, dont allow tasks to
6180 * move out of SCHED_IDLE either:
6181 */
6182 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6183 return -EPERM;
6184
6185 /* can't change other user's priorities */
6186 if (!check_same_owner(p))
6187 return -EPERM;
6188
6189 /* Normal users shall not reset the sched_reset_on_fork flag */
6190 if (p->sched_reset_on_fork && !reset_on_fork)
6191 return -EPERM;
6192 }
6193
6194 if (user) {
6195 #ifdef CONFIG_RT_GROUP_SCHED
6196 /*
6197 * Do not allow realtime tasks into groups that have no runtime
6198 * assigned.
6199 */
6200 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6201 task_group(p)->rt_bandwidth.rt_runtime == 0)
6202 return -EPERM;
6203 #endif
6204
6205 retval = security_task_setscheduler(p, policy, param);
6206 if (retval)
6207 return retval;
6208 }
6209
6210 /*
6211 * make sure no PI-waiters arrive (or leave) while we are
6212 * changing the priority of the task:
6213 */
6214 spin_lock_irqsave(&p->pi_lock, flags);
6215 /*
6216 * To be able to change p->policy safely, the apropriate
6217 * runqueue lock must be held.
6218 */
6219 rq = __task_rq_lock(p);
6220 /* recheck policy now with rq lock held */
6221 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6222 policy = oldpolicy = -1;
6223 __task_rq_unlock(rq);
6224 spin_unlock_irqrestore(&p->pi_lock, flags);
6225 goto recheck;
6226 }
6227 update_rq_clock(rq);
6228 on_rq = p->se.on_rq;
6229 running = task_current(rq, p);
6230 if (on_rq)
6231 deactivate_task(rq, p, 0);
6232 if (running)
6233 p->sched_class->put_prev_task(rq, p);
6234
6235 p->sched_reset_on_fork = reset_on_fork;
6236
6237 oldprio = p->prio;
6238 __setscheduler(rq, p, policy, param->sched_priority);
6239
6240 if (running)
6241 p->sched_class->set_curr_task(rq);
6242 if (on_rq) {
6243 activate_task(rq, p, 0);
6244
6245 check_class_changed(rq, p, prev_class, oldprio, running);
6246 }
6247 __task_rq_unlock(rq);
6248 spin_unlock_irqrestore(&p->pi_lock, flags);
6249
6250 rt_mutex_adjust_pi(p);
6251
6252 return 0;
6253 }
6254
6255 /**
6256 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6257 * @p: the task in question.
6258 * @policy: new policy.
6259 * @param: structure containing the new RT priority.
6260 *
6261 * NOTE that the task may be already dead.
6262 */
6263 int sched_setscheduler(struct task_struct *p, int policy,
6264 struct sched_param *param)
6265 {
6266 return __sched_setscheduler(p, policy, param, true);
6267 }
6268 EXPORT_SYMBOL_GPL(sched_setscheduler);
6269
6270 /**
6271 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6272 * @p: the task in question.
6273 * @policy: new policy.
6274 * @param: structure containing the new RT priority.
6275 *
6276 * Just like sched_setscheduler, only don't bother checking if the
6277 * current context has permission. For example, this is needed in
6278 * stop_machine(): we create temporary high priority worker threads,
6279 * but our caller might not have that capability.
6280 */
6281 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6282 struct sched_param *param)
6283 {
6284 return __sched_setscheduler(p, policy, param, false);
6285 }
6286
6287 static int
6288 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6289 {
6290 struct sched_param lparam;
6291 struct task_struct *p;
6292 int retval;
6293
6294 if (!param || pid < 0)
6295 return -EINVAL;
6296 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6297 return -EFAULT;
6298
6299 rcu_read_lock();
6300 retval = -ESRCH;
6301 p = find_process_by_pid(pid);
6302 if (p != NULL)
6303 retval = sched_setscheduler(p, policy, &lparam);
6304 rcu_read_unlock();
6305
6306 return retval;
6307 }
6308
6309 /**
6310 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6311 * @pid: the pid in question.
6312 * @policy: new policy.
6313 * @param: structure containing the new RT priority.
6314 */
6315 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6316 struct sched_param __user *, param)
6317 {
6318 /* negative values for policy are not valid */
6319 if (policy < 0)
6320 return -EINVAL;
6321
6322 return do_sched_setscheduler(pid, policy, param);
6323 }
6324
6325 /**
6326 * sys_sched_setparam - set/change the RT priority of a thread
6327 * @pid: the pid in question.
6328 * @param: structure containing the new RT priority.
6329 */
6330 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6331 {
6332 return do_sched_setscheduler(pid, -1, param);
6333 }
6334
6335 /**
6336 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6337 * @pid: the pid in question.
6338 */
6339 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6340 {
6341 struct task_struct *p;
6342 int retval;
6343
6344 if (pid < 0)
6345 return -EINVAL;
6346
6347 retval = -ESRCH;
6348 read_lock(&tasklist_lock);
6349 p = find_process_by_pid(pid);
6350 if (p) {
6351 retval = security_task_getscheduler(p);
6352 if (!retval)
6353 retval = p->policy
6354 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6355 }
6356 read_unlock(&tasklist_lock);
6357 return retval;
6358 }
6359
6360 /**
6361 * sys_sched_getparam - get the RT priority of a thread
6362 * @pid: the pid in question.
6363 * @param: structure containing the RT priority.
6364 */
6365 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6366 {
6367 struct sched_param lp;
6368 struct task_struct *p;
6369 int retval;
6370
6371 if (!param || pid < 0)
6372 return -EINVAL;
6373
6374 read_lock(&tasklist_lock);
6375 p = find_process_by_pid(pid);
6376 retval = -ESRCH;
6377 if (!p)
6378 goto out_unlock;
6379
6380 retval = security_task_getscheduler(p);
6381 if (retval)
6382 goto out_unlock;
6383
6384 lp.sched_priority = p->rt_priority;
6385 read_unlock(&tasklist_lock);
6386
6387 /*
6388 * This one might sleep, we cannot do it with a spinlock held ...
6389 */
6390 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6391
6392 return retval;
6393
6394 out_unlock:
6395 read_unlock(&tasklist_lock);
6396 return retval;
6397 }
6398
6399 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6400 {
6401 cpumask_var_t cpus_allowed, new_mask;
6402 struct task_struct *p;
6403 int retval;
6404
6405 get_online_cpus();
6406 read_lock(&tasklist_lock);
6407
6408 p = find_process_by_pid(pid);
6409 if (!p) {
6410 read_unlock(&tasklist_lock);
6411 put_online_cpus();
6412 return -ESRCH;
6413 }
6414
6415 /*
6416 * It is not safe to call set_cpus_allowed with the
6417 * tasklist_lock held. We will bump the task_struct's
6418 * usage count and then drop tasklist_lock.
6419 */
6420 get_task_struct(p);
6421 read_unlock(&tasklist_lock);
6422
6423 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6424 retval = -ENOMEM;
6425 goto out_put_task;
6426 }
6427 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6428 retval = -ENOMEM;
6429 goto out_free_cpus_allowed;
6430 }
6431 retval = -EPERM;
6432 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6433 goto out_unlock;
6434
6435 retval = security_task_setscheduler(p, 0, NULL);
6436 if (retval)
6437 goto out_unlock;
6438
6439 cpuset_cpus_allowed(p, cpus_allowed);
6440 cpumask_and(new_mask, in_mask, cpus_allowed);
6441 again:
6442 retval = set_cpus_allowed_ptr(p, new_mask);
6443
6444 if (!retval) {
6445 cpuset_cpus_allowed(p, cpus_allowed);
6446 if (!cpumask_subset(new_mask, cpus_allowed)) {
6447 /*
6448 * We must have raced with a concurrent cpuset
6449 * update. Just reset the cpus_allowed to the
6450 * cpuset's cpus_allowed
6451 */
6452 cpumask_copy(new_mask, cpus_allowed);
6453 goto again;
6454 }
6455 }
6456 out_unlock:
6457 free_cpumask_var(new_mask);
6458 out_free_cpus_allowed:
6459 free_cpumask_var(cpus_allowed);
6460 out_put_task:
6461 put_task_struct(p);
6462 put_online_cpus();
6463 return retval;
6464 }
6465
6466 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6467 struct cpumask *new_mask)
6468 {
6469 if (len < cpumask_size())
6470 cpumask_clear(new_mask);
6471 else if (len > cpumask_size())
6472 len = cpumask_size();
6473
6474 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6475 }
6476
6477 /**
6478 * sys_sched_setaffinity - set the cpu affinity of a process
6479 * @pid: pid of the process
6480 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6481 * @user_mask_ptr: user-space pointer to the new cpu mask
6482 */
6483 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6484 unsigned long __user *, user_mask_ptr)
6485 {
6486 cpumask_var_t new_mask;
6487 int retval;
6488
6489 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6490 return -ENOMEM;
6491
6492 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6493 if (retval == 0)
6494 retval = sched_setaffinity(pid, new_mask);
6495 free_cpumask_var(new_mask);
6496 return retval;
6497 }
6498
6499 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6500 {
6501 struct task_struct *p;
6502 int retval;
6503
6504 get_online_cpus();
6505 read_lock(&tasklist_lock);
6506
6507 retval = -ESRCH;
6508 p = find_process_by_pid(pid);
6509 if (!p)
6510 goto out_unlock;
6511
6512 retval = security_task_getscheduler(p);
6513 if (retval)
6514 goto out_unlock;
6515
6516 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6517
6518 out_unlock:
6519 read_unlock(&tasklist_lock);
6520 put_online_cpus();
6521
6522 return retval;
6523 }
6524
6525 /**
6526 * sys_sched_getaffinity - get the cpu affinity of a process
6527 * @pid: pid of the process
6528 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6529 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6530 */
6531 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6532 unsigned long __user *, user_mask_ptr)
6533 {
6534 int ret;
6535 cpumask_var_t mask;
6536
6537 if (len < cpumask_size())
6538 return -EINVAL;
6539
6540 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6541 return -ENOMEM;
6542
6543 ret = sched_getaffinity(pid, mask);
6544 if (ret == 0) {
6545 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6546 ret = -EFAULT;
6547 else
6548 ret = cpumask_size();
6549 }
6550 free_cpumask_var(mask);
6551
6552 return ret;
6553 }
6554
6555 /**
6556 * sys_sched_yield - yield the current processor to other threads.
6557 *
6558 * This function yields the current CPU to other tasks. If there are no
6559 * other threads running on this CPU then this function will return.
6560 */
6561 SYSCALL_DEFINE0(sched_yield)
6562 {
6563 struct rq *rq = this_rq_lock();
6564
6565 schedstat_inc(rq, yld_count);
6566 current->sched_class->yield_task(rq);
6567
6568 /*
6569 * Since we are going to call schedule() anyway, there's
6570 * no need to preempt or enable interrupts:
6571 */
6572 __release(rq->lock);
6573 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6574 _raw_spin_unlock(&rq->lock);
6575 preempt_enable_no_resched();
6576
6577 schedule();
6578
6579 return 0;
6580 }
6581
6582 static void __cond_resched(void)
6583 {
6584 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6585 __might_sleep(__FILE__, __LINE__);
6586 #endif
6587 /*
6588 * The BKS might be reacquired before we have dropped
6589 * PREEMPT_ACTIVE, which could trigger a second
6590 * cond_resched() call.
6591 */
6592 do {
6593 add_preempt_count(PREEMPT_ACTIVE);
6594 schedule();
6595 sub_preempt_count(PREEMPT_ACTIVE);
6596 } while (need_resched());
6597 }
6598
6599 int __sched _cond_resched(void)
6600 {
6601 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6602 system_state == SYSTEM_RUNNING) {
6603 __cond_resched();
6604 return 1;
6605 }
6606 return 0;
6607 }
6608 EXPORT_SYMBOL(_cond_resched);
6609
6610 /*
6611 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6612 * call schedule, and on return reacquire the lock.
6613 *
6614 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6615 * operations here to prevent schedule() from being called twice (once via
6616 * spin_unlock(), once by hand).
6617 */
6618 int cond_resched_lock(spinlock_t *lock)
6619 {
6620 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6621 int ret = 0;
6622
6623 if (spin_needbreak(lock) || resched) {
6624 spin_unlock(lock);
6625 if (resched && need_resched())
6626 __cond_resched();
6627 else
6628 cpu_relax();
6629 ret = 1;
6630 spin_lock(lock);
6631 }
6632 return ret;
6633 }
6634 EXPORT_SYMBOL(cond_resched_lock);
6635
6636 int __sched cond_resched_softirq(void)
6637 {
6638 BUG_ON(!in_softirq());
6639
6640 if (need_resched() && system_state == SYSTEM_RUNNING) {
6641 local_bh_enable();
6642 __cond_resched();
6643 local_bh_disable();
6644 return 1;
6645 }
6646 return 0;
6647 }
6648 EXPORT_SYMBOL(cond_resched_softirq);
6649
6650 /**
6651 * yield - yield the current processor to other threads.
6652 *
6653 * This is a shortcut for kernel-space yielding - it marks the
6654 * thread runnable and calls sys_sched_yield().
6655 */
6656 void __sched yield(void)
6657 {
6658 set_current_state(TASK_RUNNING);
6659 sys_sched_yield();
6660 }
6661 EXPORT_SYMBOL(yield);
6662
6663 /*
6664 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6665 * that process accounting knows that this is a task in IO wait state.
6666 *
6667 * But don't do that if it is a deliberate, throttling IO wait (this task
6668 * has set its backing_dev_info: the queue against which it should throttle)
6669 */
6670 void __sched io_schedule(void)
6671 {
6672 struct rq *rq = &__raw_get_cpu_var(runqueues);
6673
6674 delayacct_blkio_start();
6675 atomic_inc(&rq->nr_iowait);
6676 schedule();
6677 atomic_dec(&rq->nr_iowait);
6678 delayacct_blkio_end();
6679 }
6680 EXPORT_SYMBOL(io_schedule);
6681
6682 long __sched io_schedule_timeout(long timeout)
6683 {
6684 struct rq *rq = &__raw_get_cpu_var(runqueues);
6685 long ret;
6686
6687 delayacct_blkio_start();
6688 atomic_inc(&rq->nr_iowait);
6689 ret = schedule_timeout(timeout);
6690 atomic_dec(&rq->nr_iowait);
6691 delayacct_blkio_end();
6692 return ret;
6693 }
6694
6695 /**
6696 * sys_sched_get_priority_max - return maximum RT priority.
6697 * @policy: scheduling class.
6698 *
6699 * this syscall returns the maximum rt_priority that can be used
6700 * by a given scheduling class.
6701 */
6702 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6703 {
6704 int ret = -EINVAL;
6705
6706 switch (policy) {
6707 case SCHED_FIFO:
6708 case SCHED_RR:
6709 ret = MAX_USER_RT_PRIO-1;
6710 break;
6711 case SCHED_NORMAL:
6712 case SCHED_BATCH:
6713 case SCHED_IDLE:
6714 ret = 0;
6715 break;
6716 }
6717 return ret;
6718 }
6719
6720 /**
6721 * sys_sched_get_priority_min - return minimum RT priority.
6722 * @policy: scheduling class.
6723 *
6724 * this syscall returns the minimum rt_priority that can be used
6725 * by a given scheduling class.
6726 */
6727 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6728 {
6729 int ret = -EINVAL;
6730
6731 switch (policy) {
6732 case SCHED_FIFO:
6733 case SCHED_RR:
6734 ret = 1;
6735 break;
6736 case SCHED_NORMAL:
6737 case SCHED_BATCH:
6738 case SCHED_IDLE:
6739 ret = 0;
6740 }
6741 return ret;
6742 }
6743
6744 /**
6745 * sys_sched_rr_get_interval - return the default timeslice of a process.
6746 * @pid: pid of the process.
6747 * @interval: userspace pointer to the timeslice value.
6748 *
6749 * this syscall writes the default timeslice value of a given process
6750 * into the user-space timespec buffer. A value of '0' means infinity.
6751 */
6752 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6753 struct timespec __user *, interval)
6754 {
6755 struct task_struct *p;
6756 unsigned int time_slice;
6757 int retval;
6758 struct timespec t;
6759
6760 if (pid < 0)
6761 return -EINVAL;
6762
6763 retval = -ESRCH;
6764 read_lock(&tasklist_lock);
6765 p = find_process_by_pid(pid);
6766 if (!p)
6767 goto out_unlock;
6768
6769 retval = security_task_getscheduler(p);
6770 if (retval)
6771 goto out_unlock;
6772
6773 /*
6774 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6775 * tasks that are on an otherwise idle runqueue:
6776 */
6777 time_slice = 0;
6778 if (p->policy == SCHED_RR) {
6779 time_slice = DEF_TIMESLICE;
6780 } else if (p->policy != SCHED_FIFO) {
6781 struct sched_entity *se = &p->se;
6782 unsigned long flags;
6783 struct rq *rq;
6784
6785 rq = task_rq_lock(p, &flags);
6786 if (rq->cfs.load.weight)
6787 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6788 task_rq_unlock(rq, &flags);
6789 }
6790 read_unlock(&tasklist_lock);
6791 jiffies_to_timespec(time_slice, &t);
6792 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6793 return retval;
6794
6795 out_unlock:
6796 read_unlock(&tasklist_lock);
6797 return retval;
6798 }
6799
6800 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6801
6802 void sched_show_task(struct task_struct *p)
6803 {
6804 unsigned long free = 0;
6805 unsigned state;
6806
6807 state = p->state ? __ffs(p->state) + 1 : 0;
6808 printk(KERN_INFO "%-13.13s %c", p->comm,
6809 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6810 #if BITS_PER_LONG == 32
6811 if (state == TASK_RUNNING)
6812 printk(KERN_CONT " running ");
6813 else
6814 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6815 #else
6816 if (state == TASK_RUNNING)
6817 printk(KERN_CONT " running task ");
6818 else
6819 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6820 #endif
6821 #ifdef CONFIG_DEBUG_STACK_USAGE
6822 free = stack_not_used(p);
6823 #endif
6824 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6825 task_pid_nr(p), task_pid_nr(p->real_parent),
6826 (unsigned long)task_thread_info(p)->flags);
6827
6828 show_stack(p, NULL);
6829 }
6830
6831 void show_state_filter(unsigned long state_filter)
6832 {
6833 struct task_struct *g, *p;
6834
6835 #if BITS_PER_LONG == 32
6836 printk(KERN_INFO
6837 " task PC stack pid father\n");
6838 #else
6839 printk(KERN_INFO
6840 " task PC stack pid father\n");
6841 #endif
6842 read_lock(&tasklist_lock);
6843 do_each_thread(g, p) {
6844 /*
6845 * reset the NMI-timeout, listing all files on a slow
6846 * console might take alot of time:
6847 */
6848 touch_nmi_watchdog();
6849 if (!state_filter || (p->state & state_filter))
6850 sched_show_task(p);
6851 } while_each_thread(g, p);
6852
6853 touch_all_softlockup_watchdogs();
6854
6855 #ifdef CONFIG_SCHED_DEBUG
6856 sysrq_sched_debug_show();
6857 #endif
6858 read_unlock(&tasklist_lock);
6859 /*
6860 * Only show locks if all tasks are dumped:
6861 */
6862 if (state_filter == -1)
6863 debug_show_all_locks();
6864 }
6865
6866 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6867 {
6868 idle->sched_class = &idle_sched_class;
6869 }
6870
6871 /**
6872 * init_idle - set up an idle thread for a given CPU
6873 * @idle: task in question
6874 * @cpu: cpu the idle task belongs to
6875 *
6876 * NOTE: this function does not set the idle thread's NEED_RESCHED
6877 * flag, to make booting more robust.
6878 */
6879 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6880 {
6881 struct rq *rq = cpu_rq(cpu);
6882 unsigned long flags;
6883
6884 spin_lock_irqsave(&rq->lock, flags);
6885
6886 __sched_fork(idle);
6887 idle->se.exec_start = sched_clock();
6888
6889 idle->prio = idle->normal_prio = MAX_PRIO;
6890 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6891 __set_task_cpu(idle, cpu);
6892
6893 rq->curr = rq->idle = idle;
6894 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6895 idle->oncpu = 1;
6896 #endif
6897 spin_unlock_irqrestore(&rq->lock, flags);
6898
6899 /* Set the preempt count _outside_ the spinlocks! */
6900 #if defined(CONFIG_PREEMPT)
6901 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6902 #else
6903 task_thread_info(idle)->preempt_count = 0;
6904 #endif
6905 /*
6906 * The idle tasks have their own, simple scheduling class:
6907 */
6908 idle->sched_class = &idle_sched_class;
6909 ftrace_graph_init_task(idle);
6910 }
6911
6912 /*
6913 * In a system that switches off the HZ timer nohz_cpu_mask
6914 * indicates which cpus entered this state. This is used
6915 * in the rcu update to wait only for active cpus. For system
6916 * which do not switch off the HZ timer nohz_cpu_mask should
6917 * always be CPU_BITS_NONE.
6918 */
6919 cpumask_var_t nohz_cpu_mask;
6920
6921 /*
6922 * Increase the granularity value when there are more CPUs,
6923 * because with more CPUs the 'effective latency' as visible
6924 * to users decreases. But the relationship is not linear,
6925 * so pick a second-best guess by going with the log2 of the
6926 * number of CPUs.
6927 *
6928 * This idea comes from the SD scheduler of Con Kolivas:
6929 */
6930 static inline void sched_init_granularity(void)
6931 {
6932 unsigned int factor = 1 + ilog2(num_online_cpus());
6933 const unsigned long limit = 200000000;
6934
6935 sysctl_sched_min_granularity *= factor;
6936 if (sysctl_sched_min_granularity > limit)
6937 sysctl_sched_min_granularity = limit;
6938
6939 sysctl_sched_latency *= factor;
6940 if (sysctl_sched_latency > limit)
6941 sysctl_sched_latency = limit;
6942
6943 sysctl_sched_wakeup_granularity *= factor;
6944
6945 sysctl_sched_shares_ratelimit *= factor;
6946 }
6947
6948 #ifdef CONFIG_SMP
6949 /*
6950 * This is how migration works:
6951 *
6952 * 1) we queue a struct migration_req structure in the source CPU's
6953 * runqueue and wake up that CPU's migration thread.
6954 * 2) we down() the locked semaphore => thread blocks.
6955 * 3) migration thread wakes up (implicitly it forces the migrated
6956 * thread off the CPU)
6957 * 4) it gets the migration request and checks whether the migrated
6958 * task is still in the wrong runqueue.
6959 * 5) if it's in the wrong runqueue then the migration thread removes
6960 * it and puts it into the right queue.
6961 * 6) migration thread up()s the semaphore.
6962 * 7) we wake up and the migration is done.
6963 */
6964
6965 /*
6966 * Change a given task's CPU affinity. Migrate the thread to a
6967 * proper CPU and schedule it away if the CPU it's executing on
6968 * is removed from the allowed bitmask.
6969 *
6970 * NOTE: the caller must have a valid reference to the task, the
6971 * task must not exit() & deallocate itself prematurely. The
6972 * call is not atomic; no spinlocks may be held.
6973 */
6974 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6975 {
6976 struct migration_req req;
6977 unsigned long flags;
6978 struct rq *rq;
6979 int ret = 0;
6980
6981 rq = task_rq_lock(p, &flags);
6982 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6983 ret = -EINVAL;
6984 goto out;
6985 }
6986
6987 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6988 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6989 ret = -EINVAL;
6990 goto out;
6991 }
6992
6993 if (p->sched_class->set_cpus_allowed)
6994 p->sched_class->set_cpus_allowed(p, new_mask);
6995 else {
6996 cpumask_copy(&p->cpus_allowed, new_mask);
6997 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6998 }
6999
7000 /* Can the task run on the task's current CPU? If so, we're done */
7001 if (cpumask_test_cpu(task_cpu(p), new_mask))
7002 goto out;
7003
7004 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7005 /* Need help from migration thread: drop lock and wait. */
7006 task_rq_unlock(rq, &flags);
7007 wake_up_process(rq->migration_thread);
7008 wait_for_completion(&req.done);
7009 tlb_migrate_finish(p->mm);
7010 return 0;
7011 }
7012 out:
7013 task_rq_unlock(rq, &flags);
7014
7015 return ret;
7016 }
7017 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7018
7019 /*
7020 * Move (not current) task off this cpu, onto dest cpu. We're doing
7021 * this because either it can't run here any more (set_cpus_allowed()
7022 * away from this CPU, or CPU going down), or because we're
7023 * attempting to rebalance this task on exec (sched_exec).
7024 *
7025 * So we race with normal scheduler movements, but that's OK, as long
7026 * as the task is no longer on this CPU.
7027 *
7028 * Returns non-zero if task was successfully migrated.
7029 */
7030 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7031 {
7032 struct rq *rq_dest, *rq_src;
7033 int ret = 0, on_rq;
7034
7035 if (unlikely(!cpu_active(dest_cpu)))
7036 return ret;
7037
7038 rq_src = cpu_rq(src_cpu);
7039 rq_dest = cpu_rq(dest_cpu);
7040
7041 double_rq_lock(rq_src, rq_dest);
7042 /* Already moved. */
7043 if (task_cpu(p) != src_cpu)
7044 goto done;
7045 /* Affinity changed (again). */
7046 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7047 goto fail;
7048
7049 on_rq = p->se.on_rq;
7050 if (on_rq)
7051 deactivate_task(rq_src, p, 0);
7052
7053 set_task_cpu(p, dest_cpu);
7054 if (on_rq) {
7055 activate_task(rq_dest, p, 0);
7056 check_preempt_curr(rq_dest, p, 0);
7057 }
7058 done:
7059 ret = 1;
7060 fail:
7061 double_rq_unlock(rq_src, rq_dest);
7062 return ret;
7063 }
7064
7065 /*
7066 * migration_thread - this is a highprio system thread that performs
7067 * thread migration by bumping thread off CPU then 'pushing' onto
7068 * another runqueue.
7069 */
7070 static int migration_thread(void *data)
7071 {
7072 int cpu = (long)data;
7073 struct rq *rq;
7074
7075 rq = cpu_rq(cpu);
7076 BUG_ON(rq->migration_thread != current);
7077
7078 set_current_state(TASK_INTERRUPTIBLE);
7079 while (!kthread_should_stop()) {
7080 struct migration_req *req;
7081 struct list_head *head;
7082
7083 spin_lock_irq(&rq->lock);
7084
7085 if (cpu_is_offline(cpu)) {
7086 spin_unlock_irq(&rq->lock);
7087 break;
7088 }
7089
7090 if (rq->active_balance) {
7091 active_load_balance(rq, cpu);
7092 rq->active_balance = 0;
7093 }
7094
7095 head = &rq->migration_queue;
7096
7097 if (list_empty(head)) {
7098 spin_unlock_irq(&rq->lock);
7099 schedule();
7100 set_current_state(TASK_INTERRUPTIBLE);
7101 continue;
7102 }
7103 req = list_entry(head->next, struct migration_req, list);
7104 list_del_init(head->next);
7105
7106 spin_unlock(&rq->lock);
7107 __migrate_task(req->task, cpu, req->dest_cpu);
7108 local_irq_enable();
7109
7110 complete(&req->done);
7111 }
7112 __set_current_state(TASK_RUNNING);
7113
7114 return 0;
7115 }
7116
7117 #ifdef CONFIG_HOTPLUG_CPU
7118
7119 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7120 {
7121 int ret;
7122
7123 local_irq_disable();
7124 ret = __migrate_task(p, src_cpu, dest_cpu);
7125 local_irq_enable();
7126 return ret;
7127 }
7128
7129 /*
7130 * Figure out where task on dead CPU should go, use force if necessary.
7131 */
7132 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7133 {
7134 int dest_cpu;
7135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7136
7137 again:
7138 /* Look for allowed, online CPU in same node. */
7139 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7140 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7141 goto move;
7142
7143 /* Any allowed, online CPU? */
7144 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7145 if (dest_cpu < nr_cpu_ids)
7146 goto move;
7147
7148 /* No more Mr. Nice Guy. */
7149 if (dest_cpu >= nr_cpu_ids) {
7150 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7151 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7152
7153 /*
7154 * Don't tell them about moving exiting tasks or
7155 * kernel threads (both mm NULL), since they never
7156 * leave kernel.
7157 */
7158 if (p->mm && printk_ratelimit()) {
7159 printk(KERN_INFO "process %d (%s) no "
7160 "longer affine to cpu%d\n",
7161 task_pid_nr(p), p->comm, dead_cpu);
7162 }
7163 }
7164
7165 move:
7166 /* It can have affinity changed while we were choosing. */
7167 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7168 goto again;
7169 }
7170
7171 /*
7172 * While a dead CPU has no uninterruptible tasks queued at this point,
7173 * it might still have a nonzero ->nr_uninterruptible counter, because
7174 * for performance reasons the counter is not stricly tracking tasks to
7175 * their home CPUs. So we just add the counter to another CPU's counter,
7176 * to keep the global sum constant after CPU-down:
7177 */
7178 static void migrate_nr_uninterruptible(struct rq *rq_src)
7179 {
7180 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7181 unsigned long flags;
7182
7183 local_irq_save(flags);
7184 double_rq_lock(rq_src, rq_dest);
7185 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7186 rq_src->nr_uninterruptible = 0;
7187 double_rq_unlock(rq_src, rq_dest);
7188 local_irq_restore(flags);
7189 }
7190
7191 /* Run through task list and migrate tasks from the dead cpu. */
7192 static void migrate_live_tasks(int src_cpu)
7193 {
7194 struct task_struct *p, *t;
7195
7196 read_lock(&tasklist_lock);
7197
7198 do_each_thread(t, p) {
7199 if (p == current)
7200 continue;
7201
7202 if (task_cpu(p) == src_cpu)
7203 move_task_off_dead_cpu(src_cpu, p);
7204 } while_each_thread(t, p);
7205
7206 read_unlock(&tasklist_lock);
7207 }
7208
7209 /*
7210 * Schedules idle task to be the next runnable task on current CPU.
7211 * It does so by boosting its priority to highest possible.
7212 * Used by CPU offline code.
7213 */
7214 void sched_idle_next(void)
7215 {
7216 int this_cpu = smp_processor_id();
7217 struct rq *rq = cpu_rq(this_cpu);
7218 struct task_struct *p = rq->idle;
7219 unsigned long flags;
7220
7221 /* cpu has to be offline */
7222 BUG_ON(cpu_online(this_cpu));
7223
7224 /*
7225 * Strictly not necessary since rest of the CPUs are stopped by now
7226 * and interrupts disabled on the current cpu.
7227 */
7228 spin_lock_irqsave(&rq->lock, flags);
7229
7230 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7231
7232 update_rq_clock(rq);
7233 activate_task(rq, p, 0);
7234
7235 spin_unlock_irqrestore(&rq->lock, flags);
7236 }
7237
7238 /*
7239 * Ensures that the idle task is using init_mm right before its cpu goes
7240 * offline.
7241 */
7242 void idle_task_exit(void)
7243 {
7244 struct mm_struct *mm = current->active_mm;
7245
7246 BUG_ON(cpu_online(smp_processor_id()));
7247
7248 if (mm != &init_mm)
7249 switch_mm(mm, &init_mm, current);
7250 mmdrop(mm);
7251 }
7252
7253 /* called under rq->lock with disabled interrupts */
7254 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7255 {
7256 struct rq *rq = cpu_rq(dead_cpu);
7257
7258 /* Must be exiting, otherwise would be on tasklist. */
7259 BUG_ON(!p->exit_state);
7260
7261 /* Cannot have done final schedule yet: would have vanished. */
7262 BUG_ON(p->state == TASK_DEAD);
7263
7264 get_task_struct(p);
7265
7266 /*
7267 * Drop lock around migration; if someone else moves it,
7268 * that's OK. No task can be added to this CPU, so iteration is
7269 * fine.
7270 */
7271 spin_unlock_irq(&rq->lock);
7272 move_task_off_dead_cpu(dead_cpu, p);
7273 spin_lock_irq(&rq->lock);
7274
7275 put_task_struct(p);
7276 }
7277
7278 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7279 static void migrate_dead_tasks(unsigned int dead_cpu)
7280 {
7281 struct rq *rq = cpu_rq(dead_cpu);
7282 struct task_struct *next;
7283
7284 for ( ; ; ) {
7285 if (!rq->nr_running)
7286 break;
7287 update_rq_clock(rq);
7288 next = pick_next_task(rq);
7289 if (!next)
7290 break;
7291 next->sched_class->put_prev_task(rq, next);
7292 migrate_dead(dead_cpu, next);
7293
7294 }
7295 }
7296
7297 /*
7298 * remove the tasks which were accounted by rq from calc_load_tasks.
7299 */
7300 static void calc_global_load_remove(struct rq *rq)
7301 {
7302 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7303 }
7304 #endif /* CONFIG_HOTPLUG_CPU */
7305
7306 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7307
7308 static struct ctl_table sd_ctl_dir[] = {
7309 {
7310 .procname = "sched_domain",
7311 .mode = 0555,
7312 },
7313 {0, },
7314 };
7315
7316 static struct ctl_table sd_ctl_root[] = {
7317 {
7318 .ctl_name = CTL_KERN,
7319 .procname = "kernel",
7320 .mode = 0555,
7321 .child = sd_ctl_dir,
7322 },
7323 {0, },
7324 };
7325
7326 static struct ctl_table *sd_alloc_ctl_entry(int n)
7327 {
7328 struct ctl_table *entry =
7329 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7330
7331 return entry;
7332 }
7333
7334 static void sd_free_ctl_entry(struct ctl_table **tablep)
7335 {
7336 struct ctl_table *entry;
7337
7338 /*
7339 * In the intermediate directories, both the child directory and
7340 * procname are dynamically allocated and could fail but the mode
7341 * will always be set. In the lowest directory the names are
7342 * static strings and all have proc handlers.
7343 */
7344 for (entry = *tablep; entry->mode; entry++) {
7345 if (entry->child)
7346 sd_free_ctl_entry(&entry->child);
7347 if (entry->proc_handler == NULL)
7348 kfree(entry->procname);
7349 }
7350
7351 kfree(*tablep);
7352 *tablep = NULL;
7353 }
7354
7355 static void
7356 set_table_entry(struct ctl_table *entry,
7357 const char *procname, void *data, int maxlen,
7358 mode_t mode, proc_handler *proc_handler)
7359 {
7360 entry->procname = procname;
7361 entry->data = data;
7362 entry->maxlen = maxlen;
7363 entry->mode = mode;
7364 entry->proc_handler = proc_handler;
7365 }
7366
7367 static struct ctl_table *
7368 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7369 {
7370 struct ctl_table *table = sd_alloc_ctl_entry(13);
7371
7372 if (table == NULL)
7373 return NULL;
7374
7375 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7376 sizeof(long), 0644, proc_doulongvec_minmax);
7377 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7378 sizeof(long), 0644, proc_doulongvec_minmax);
7379 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7380 sizeof(int), 0644, proc_dointvec_minmax);
7381 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7382 sizeof(int), 0644, proc_dointvec_minmax);
7383 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7384 sizeof(int), 0644, proc_dointvec_minmax);
7385 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7386 sizeof(int), 0644, proc_dointvec_minmax);
7387 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7388 sizeof(int), 0644, proc_dointvec_minmax);
7389 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7390 sizeof(int), 0644, proc_dointvec_minmax);
7391 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7392 sizeof(int), 0644, proc_dointvec_minmax);
7393 set_table_entry(&table[9], "cache_nice_tries",
7394 &sd->cache_nice_tries,
7395 sizeof(int), 0644, proc_dointvec_minmax);
7396 set_table_entry(&table[10], "flags", &sd->flags,
7397 sizeof(int), 0644, proc_dointvec_minmax);
7398 set_table_entry(&table[11], "name", sd->name,
7399 CORENAME_MAX_SIZE, 0444, proc_dostring);
7400 /* &table[12] is terminator */
7401
7402 return table;
7403 }
7404
7405 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7406 {
7407 struct ctl_table *entry, *table;
7408 struct sched_domain *sd;
7409 int domain_num = 0, i;
7410 char buf[32];
7411
7412 for_each_domain(cpu, sd)
7413 domain_num++;
7414 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7415 if (table == NULL)
7416 return NULL;
7417
7418 i = 0;
7419 for_each_domain(cpu, sd) {
7420 snprintf(buf, 32, "domain%d", i);
7421 entry->procname = kstrdup(buf, GFP_KERNEL);
7422 entry->mode = 0555;
7423 entry->child = sd_alloc_ctl_domain_table(sd);
7424 entry++;
7425 i++;
7426 }
7427 return table;
7428 }
7429
7430 static struct ctl_table_header *sd_sysctl_header;
7431 static void register_sched_domain_sysctl(void)
7432 {
7433 int i, cpu_num = num_online_cpus();
7434 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7435 char buf[32];
7436
7437 WARN_ON(sd_ctl_dir[0].child);
7438 sd_ctl_dir[0].child = entry;
7439
7440 if (entry == NULL)
7441 return;
7442
7443 for_each_online_cpu(i) {
7444 snprintf(buf, 32, "cpu%d", i);
7445 entry->procname = kstrdup(buf, GFP_KERNEL);
7446 entry->mode = 0555;
7447 entry->child = sd_alloc_ctl_cpu_table(i);
7448 entry++;
7449 }
7450
7451 WARN_ON(sd_sysctl_header);
7452 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7453 }
7454
7455 /* may be called multiple times per register */
7456 static void unregister_sched_domain_sysctl(void)
7457 {
7458 if (sd_sysctl_header)
7459 unregister_sysctl_table(sd_sysctl_header);
7460 sd_sysctl_header = NULL;
7461 if (sd_ctl_dir[0].child)
7462 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7463 }
7464 #else
7465 static void register_sched_domain_sysctl(void)
7466 {
7467 }
7468 static void unregister_sched_domain_sysctl(void)
7469 {
7470 }
7471 #endif
7472
7473 static void set_rq_online(struct rq *rq)
7474 {
7475 if (!rq->online) {
7476 const struct sched_class *class;
7477
7478 cpumask_set_cpu(rq->cpu, rq->rd->online);
7479 rq->online = 1;
7480
7481 for_each_class(class) {
7482 if (class->rq_online)
7483 class->rq_online(rq);
7484 }
7485 }
7486 }
7487
7488 static void set_rq_offline(struct rq *rq)
7489 {
7490 if (rq->online) {
7491 const struct sched_class *class;
7492
7493 for_each_class(class) {
7494 if (class->rq_offline)
7495 class->rq_offline(rq);
7496 }
7497
7498 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7499 rq->online = 0;
7500 }
7501 }
7502
7503 /*
7504 * migration_call - callback that gets triggered when a CPU is added.
7505 * Here we can start up the necessary migration thread for the new CPU.
7506 */
7507 static int __cpuinit
7508 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7509 {
7510 struct task_struct *p;
7511 int cpu = (long)hcpu;
7512 unsigned long flags;
7513 struct rq *rq;
7514
7515 switch (action) {
7516
7517 case CPU_UP_PREPARE:
7518 case CPU_UP_PREPARE_FROZEN:
7519 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7520 if (IS_ERR(p))
7521 return NOTIFY_BAD;
7522 kthread_bind(p, cpu);
7523 /* Must be high prio: stop_machine expects to yield to it. */
7524 rq = task_rq_lock(p, &flags);
7525 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7526 task_rq_unlock(rq, &flags);
7527 get_task_struct(p);
7528 cpu_rq(cpu)->migration_thread = p;
7529 break;
7530
7531 case CPU_ONLINE:
7532 case CPU_ONLINE_FROZEN:
7533 /* Strictly unnecessary, as first user will wake it. */
7534 wake_up_process(cpu_rq(cpu)->migration_thread);
7535
7536 /* Update our root-domain */
7537 rq = cpu_rq(cpu);
7538 spin_lock_irqsave(&rq->lock, flags);
7539 rq->calc_load_update = calc_load_update;
7540 rq->calc_load_active = 0;
7541 if (rq->rd) {
7542 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7543
7544 set_rq_online(rq);
7545 }
7546 spin_unlock_irqrestore(&rq->lock, flags);
7547 break;
7548
7549 #ifdef CONFIG_HOTPLUG_CPU
7550 case CPU_UP_CANCELED:
7551 case CPU_UP_CANCELED_FROZEN:
7552 if (!cpu_rq(cpu)->migration_thread)
7553 break;
7554 /* Unbind it from offline cpu so it can run. Fall thru. */
7555 kthread_bind(cpu_rq(cpu)->migration_thread,
7556 cpumask_any(cpu_online_mask));
7557 kthread_stop(cpu_rq(cpu)->migration_thread);
7558 put_task_struct(cpu_rq(cpu)->migration_thread);
7559 cpu_rq(cpu)->migration_thread = NULL;
7560 break;
7561
7562 case CPU_DEAD:
7563 case CPU_DEAD_FROZEN:
7564 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7565 migrate_live_tasks(cpu);
7566 rq = cpu_rq(cpu);
7567 kthread_stop(rq->migration_thread);
7568 put_task_struct(rq->migration_thread);
7569 rq->migration_thread = NULL;
7570 /* Idle task back to normal (off runqueue, low prio) */
7571 spin_lock_irq(&rq->lock);
7572 update_rq_clock(rq);
7573 deactivate_task(rq, rq->idle, 0);
7574 rq->idle->static_prio = MAX_PRIO;
7575 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7576 rq->idle->sched_class = &idle_sched_class;
7577 migrate_dead_tasks(cpu);
7578 spin_unlock_irq(&rq->lock);
7579 cpuset_unlock();
7580 migrate_nr_uninterruptible(rq);
7581 BUG_ON(rq->nr_running != 0);
7582 calc_global_load_remove(rq);
7583 /*
7584 * No need to migrate the tasks: it was best-effort if
7585 * they didn't take sched_hotcpu_mutex. Just wake up
7586 * the requestors.
7587 */
7588 spin_lock_irq(&rq->lock);
7589 while (!list_empty(&rq->migration_queue)) {
7590 struct migration_req *req;
7591
7592 req = list_entry(rq->migration_queue.next,
7593 struct migration_req, list);
7594 list_del_init(&req->list);
7595 spin_unlock_irq(&rq->lock);
7596 complete(&req->done);
7597 spin_lock_irq(&rq->lock);
7598 }
7599 spin_unlock_irq(&rq->lock);
7600 break;
7601
7602 case CPU_DYING:
7603 case CPU_DYING_FROZEN:
7604 /* Update our root-domain */
7605 rq = cpu_rq(cpu);
7606 spin_lock_irqsave(&rq->lock, flags);
7607 if (rq->rd) {
7608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7609 set_rq_offline(rq);
7610 }
7611 spin_unlock_irqrestore(&rq->lock, flags);
7612 break;
7613 #endif
7614 }
7615 return NOTIFY_OK;
7616 }
7617
7618 /*
7619 * Register at high priority so that task migration (migrate_all_tasks)
7620 * happens before everything else. This has to be lower priority than
7621 * the notifier in the perf_counter subsystem, though.
7622 */
7623 static struct notifier_block __cpuinitdata migration_notifier = {
7624 .notifier_call = migration_call,
7625 .priority = 10
7626 };
7627
7628 static int __init migration_init(void)
7629 {
7630 void *cpu = (void *)(long)smp_processor_id();
7631 int err;
7632
7633 /* Start one for the boot CPU: */
7634 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7635 BUG_ON(err == NOTIFY_BAD);
7636 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7637 register_cpu_notifier(&migration_notifier);
7638
7639 return err;
7640 }
7641 early_initcall(migration_init);
7642 #endif
7643
7644 #ifdef CONFIG_SMP
7645
7646 #ifdef CONFIG_SCHED_DEBUG
7647
7648 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7649 struct cpumask *groupmask)
7650 {
7651 struct sched_group *group = sd->groups;
7652 char str[256];
7653
7654 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7655 cpumask_clear(groupmask);
7656
7657 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7658
7659 if (!(sd->flags & SD_LOAD_BALANCE)) {
7660 printk("does not load-balance\n");
7661 if (sd->parent)
7662 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7663 " has parent");
7664 return -1;
7665 }
7666
7667 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7668
7669 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7670 printk(KERN_ERR "ERROR: domain->span does not contain "
7671 "CPU%d\n", cpu);
7672 }
7673 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7674 printk(KERN_ERR "ERROR: domain->groups does not contain"
7675 " CPU%d\n", cpu);
7676 }
7677
7678 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7679 do {
7680 if (!group) {
7681 printk("\n");
7682 printk(KERN_ERR "ERROR: group is NULL\n");
7683 break;
7684 }
7685
7686 if (!group->__cpu_power) {
7687 printk(KERN_CONT "\n");
7688 printk(KERN_ERR "ERROR: domain->cpu_power not "
7689 "set\n");
7690 break;
7691 }
7692
7693 if (!cpumask_weight(sched_group_cpus(group))) {
7694 printk(KERN_CONT "\n");
7695 printk(KERN_ERR "ERROR: empty group\n");
7696 break;
7697 }
7698
7699 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7700 printk(KERN_CONT "\n");
7701 printk(KERN_ERR "ERROR: repeated CPUs\n");
7702 break;
7703 }
7704
7705 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7706
7707 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7708
7709 printk(KERN_CONT " %s", str);
7710 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7711 printk(KERN_CONT " (__cpu_power = %d)",
7712 group->__cpu_power);
7713 }
7714
7715 group = group->next;
7716 } while (group != sd->groups);
7717 printk(KERN_CONT "\n");
7718
7719 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7720 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7721
7722 if (sd->parent &&
7723 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7724 printk(KERN_ERR "ERROR: parent span is not a superset "
7725 "of domain->span\n");
7726 return 0;
7727 }
7728
7729 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7730 {
7731 cpumask_var_t groupmask;
7732 int level = 0;
7733
7734 if (!sd) {
7735 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7736 return;
7737 }
7738
7739 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7740
7741 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7742 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7743 return;
7744 }
7745
7746 for (;;) {
7747 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7748 break;
7749 level++;
7750 sd = sd->parent;
7751 if (!sd)
7752 break;
7753 }
7754 free_cpumask_var(groupmask);
7755 }
7756 #else /* !CONFIG_SCHED_DEBUG */
7757 # define sched_domain_debug(sd, cpu) do { } while (0)
7758 #endif /* CONFIG_SCHED_DEBUG */
7759
7760 static int sd_degenerate(struct sched_domain *sd)
7761 {
7762 if (cpumask_weight(sched_domain_span(sd)) == 1)
7763 return 1;
7764
7765 /* Following flags need at least 2 groups */
7766 if (sd->flags & (SD_LOAD_BALANCE |
7767 SD_BALANCE_NEWIDLE |
7768 SD_BALANCE_FORK |
7769 SD_BALANCE_EXEC |
7770 SD_SHARE_CPUPOWER |
7771 SD_SHARE_PKG_RESOURCES)) {
7772 if (sd->groups != sd->groups->next)
7773 return 0;
7774 }
7775
7776 /* Following flags don't use groups */
7777 if (sd->flags & (SD_WAKE_IDLE |
7778 SD_WAKE_AFFINE |
7779 SD_WAKE_BALANCE))
7780 return 0;
7781
7782 return 1;
7783 }
7784
7785 static int
7786 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7787 {
7788 unsigned long cflags = sd->flags, pflags = parent->flags;
7789
7790 if (sd_degenerate(parent))
7791 return 1;
7792
7793 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7794 return 0;
7795
7796 /* Does parent contain flags not in child? */
7797 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7798 if (cflags & SD_WAKE_AFFINE)
7799 pflags &= ~SD_WAKE_BALANCE;
7800 /* Flags needing groups don't count if only 1 group in parent */
7801 if (parent->groups == parent->groups->next) {
7802 pflags &= ~(SD_LOAD_BALANCE |
7803 SD_BALANCE_NEWIDLE |
7804 SD_BALANCE_FORK |
7805 SD_BALANCE_EXEC |
7806 SD_SHARE_CPUPOWER |
7807 SD_SHARE_PKG_RESOURCES);
7808 if (nr_node_ids == 1)
7809 pflags &= ~SD_SERIALIZE;
7810 }
7811 if (~cflags & pflags)
7812 return 0;
7813
7814 return 1;
7815 }
7816
7817 static void free_rootdomain(struct root_domain *rd)
7818 {
7819 cpupri_cleanup(&rd->cpupri);
7820
7821 free_cpumask_var(rd->rto_mask);
7822 free_cpumask_var(rd->online);
7823 free_cpumask_var(rd->span);
7824 kfree(rd);
7825 }
7826
7827 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7828 {
7829 struct root_domain *old_rd = NULL;
7830 unsigned long flags;
7831
7832 spin_lock_irqsave(&rq->lock, flags);
7833
7834 if (rq->rd) {
7835 old_rd = rq->rd;
7836
7837 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7838 set_rq_offline(rq);
7839
7840 cpumask_clear_cpu(rq->cpu, old_rd->span);
7841
7842 /*
7843 * If we dont want to free the old_rt yet then
7844 * set old_rd to NULL to skip the freeing later
7845 * in this function:
7846 */
7847 if (!atomic_dec_and_test(&old_rd->refcount))
7848 old_rd = NULL;
7849 }
7850
7851 atomic_inc(&rd->refcount);
7852 rq->rd = rd;
7853
7854 cpumask_set_cpu(rq->cpu, rd->span);
7855 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7856 set_rq_online(rq);
7857
7858 spin_unlock_irqrestore(&rq->lock, flags);
7859
7860 if (old_rd)
7861 free_rootdomain(old_rd);
7862 }
7863
7864 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7865 {
7866 gfp_t gfp = GFP_KERNEL;
7867
7868 memset(rd, 0, sizeof(*rd));
7869
7870 if (bootmem)
7871 gfp = GFP_NOWAIT;
7872
7873 if (!alloc_cpumask_var(&rd->span, gfp))
7874 goto out;
7875 if (!alloc_cpumask_var(&rd->online, gfp))
7876 goto free_span;
7877 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7878 goto free_online;
7879
7880 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7881 goto free_rto_mask;
7882 return 0;
7883
7884 free_rto_mask:
7885 free_cpumask_var(rd->rto_mask);
7886 free_online:
7887 free_cpumask_var(rd->online);
7888 free_span:
7889 free_cpumask_var(rd->span);
7890 out:
7891 return -ENOMEM;
7892 }
7893
7894 static void init_defrootdomain(void)
7895 {
7896 init_rootdomain(&def_root_domain, true);
7897
7898 atomic_set(&def_root_domain.refcount, 1);
7899 }
7900
7901 static struct root_domain *alloc_rootdomain(void)
7902 {
7903 struct root_domain *rd;
7904
7905 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7906 if (!rd)
7907 return NULL;
7908
7909 if (init_rootdomain(rd, false) != 0) {
7910 kfree(rd);
7911 return NULL;
7912 }
7913
7914 return rd;
7915 }
7916
7917 /*
7918 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7919 * hold the hotplug lock.
7920 */
7921 static void
7922 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7923 {
7924 struct rq *rq = cpu_rq(cpu);
7925 struct sched_domain *tmp;
7926
7927 /* Remove the sched domains which do not contribute to scheduling. */
7928 for (tmp = sd; tmp; ) {
7929 struct sched_domain *parent = tmp->parent;
7930 if (!parent)
7931 break;
7932
7933 if (sd_parent_degenerate(tmp, parent)) {
7934 tmp->parent = parent->parent;
7935 if (parent->parent)
7936 parent->parent->child = tmp;
7937 } else
7938 tmp = tmp->parent;
7939 }
7940
7941 if (sd && sd_degenerate(sd)) {
7942 sd = sd->parent;
7943 if (sd)
7944 sd->child = NULL;
7945 }
7946
7947 sched_domain_debug(sd, cpu);
7948
7949 rq_attach_root(rq, rd);
7950 rcu_assign_pointer(rq->sd, sd);
7951 }
7952
7953 /* cpus with isolated domains */
7954 static cpumask_var_t cpu_isolated_map;
7955
7956 /* Setup the mask of cpus configured for isolated domains */
7957 static int __init isolated_cpu_setup(char *str)
7958 {
7959 cpulist_parse(str, cpu_isolated_map);
7960 return 1;
7961 }
7962
7963 __setup("isolcpus=", isolated_cpu_setup);
7964
7965 /*
7966 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7967 * to a function which identifies what group(along with sched group) a CPU
7968 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7969 * (due to the fact that we keep track of groups covered with a struct cpumask).
7970 *
7971 * init_sched_build_groups will build a circular linked list of the groups
7972 * covered by the given span, and will set each group's ->cpumask correctly,
7973 * and ->cpu_power to 0.
7974 */
7975 static void
7976 init_sched_build_groups(const struct cpumask *span,
7977 const struct cpumask *cpu_map,
7978 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7979 struct sched_group **sg,
7980 struct cpumask *tmpmask),
7981 struct cpumask *covered, struct cpumask *tmpmask)
7982 {
7983 struct sched_group *first = NULL, *last = NULL;
7984 int i;
7985
7986 cpumask_clear(covered);
7987
7988 for_each_cpu(i, span) {
7989 struct sched_group *sg;
7990 int group = group_fn(i, cpu_map, &sg, tmpmask);
7991 int j;
7992
7993 if (cpumask_test_cpu(i, covered))
7994 continue;
7995
7996 cpumask_clear(sched_group_cpus(sg));
7997 sg->__cpu_power = 0;
7998
7999 for_each_cpu(j, span) {
8000 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8001 continue;
8002
8003 cpumask_set_cpu(j, covered);
8004 cpumask_set_cpu(j, sched_group_cpus(sg));
8005 }
8006 if (!first)
8007 first = sg;
8008 if (last)
8009 last->next = sg;
8010 last = sg;
8011 }
8012 last->next = first;
8013 }
8014
8015 #define SD_NODES_PER_DOMAIN 16
8016
8017 #ifdef CONFIG_NUMA
8018
8019 /**
8020 * find_next_best_node - find the next node to include in a sched_domain
8021 * @node: node whose sched_domain we're building
8022 * @used_nodes: nodes already in the sched_domain
8023 *
8024 * Find the next node to include in a given scheduling domain. Simply
8025 * finds the closest node not already in the @used_nodes map.
8026 *
8027 * Should use nodemask_t.
8028 */
8029 static int find_next_best_node(int node, nodemask_t *used_nodes)
8030 {
8031 int i, n, val, min_val, best_node = 0;
8032
8033 min_val = INT_MAX;
8034
8035 for (i = 0; i < nr_node_ids; i++) {
8036 /* Start at @node */
8037 n = (node + i) % nr_node_ids;
8038
8039 if (!nr_cpus_node(n))
8040 continue;
8041
8042 /* Skip already used nodes */
8043 if (node_isset(n, *used_nodes))
8044 continue;
8045
8046 /* Simple min distance search */
8047 val = node_distance(node, n);
8048
8049 if (val < min_val) {
8050 min_val = val;
8051 best_node = n;
8052 }
8053 }
8054
8055 node_set(best_node, *used_nodes);
8056 return best_node;
8057 }
8058
8059 /**
8060 * sched_domain_node_span - get a cpumask for a node's sched_domain
8061 * @node: node whose cpumask we're constructing
8062 * @span: resulting cpumask
8063 *
8064 * Given a node, construct a good cpumask for its sched_domain to span. It
8065 * should be one that prevents unnecessary balancing, but also spreads tasks
8066 * out optimally.
8067 */
8068 static void sched_domain_node_span(int node, struct cpumask *span)
8069 {
8070 nodemask_t used_nodes;
8071 int i;
8072
8073 cpumask_clear(span);
8074 nodes_clear(used_nodes);
8075
8076 cpumask_or(span, span, cpumask_of_node(node));
8077 node_set(node, used_nodes);
8078
8079 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8080 int next_node = find_next_best_node(node, &used_nodes);
8081
8082 cpumask_or(span, span, cpumask_of_node(next_node));
8083 }
8084 }
8085 #endif /* CONFIG_NUMA */
8086
8087 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8088
8089 /*
8090 * The cpus mask in sched_group and sched_domain hangs off the end.
8091 *
8092 * ( See the the comments in include/linux/sched.h:struct sched_group
8093 * and struct sched_domain. )
8094 */
8095 struct static_sched_group {
8096 struct sched_group sg;
8097 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8098 };
8099
8100 struct static_sched_domain {
8101 struct sched_domain sd;
8102 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8103 };
8104
8105 /*
8106 * SMT sched-domains:
8107 */
8108 #ifdef CONFIG_SCHED_SMT
8109 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8110 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8111
8112 static int
8113 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8114 struct sched_group **sg, struct cpumask *unused)
8115 {
8116 if (sg)
8117 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8118 return cpu;
8119 }
8120 #endif /* CONFIG_SCHED_SMT */
8121
8122 /*
8123 * multi-core sched-domains:
8124 */
8125 #ifdef CONFIG_SCHED_MC
8126 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8127 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8128 #endif /* CONFIG_SCHED_MC */
8129
8130 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8131 static int
8132 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8133 struct sched_group **sg, struct cpumask *mask)
8134 {
8135 int group;
8136
8137 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8138 group = cpumask_first(mask);
8139 if (sg)
8140 *sg = &per_cpu(sched_group_core, group).sg;
8141 return group;
8142 }
8143 #elif defined(CONFIG_SCHED_MC)
8144 static int
8145 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8146 struct sched_group **sg, struct cpumask *unused)
8147 {
8148 if (sg)
8149 *sg = &per_cpu(sched_group_core, cpu).sg;
8150 return cpu;
8151 }
8152 #endif
8153
8154 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8155 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8156
8157 static int
8158 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8159 struct sched_group **sg, struct cpumask *mask)
8160 {
8161 int group;
8162 #ifdef CONFIG_SCHED_MC
8163 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8164 group = cpumask_first(mask);
8165 #elif defined(CONFIG_SCHED_SMT)
8166 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8167 group = cpumask_first(mask);
8168 #else
8169 group = cpu;
8170 #endif
8171 if (sg)
8172 *sg = &per_cpu(sched_group_phys, group).sg;
8173 return group;
8174 }
8175
8176 #ifdef CONFIG_NUMA
8177 /*
8178 * The init_sched_build_groups can't handle what we want to do with node
8179 * groups, so roll our own. Now each node has its own list of groups which
8180 * gets dynamically allocated.
8181 */
8182 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8183 static struct sched_group ***sched_group_nodes_bycpu;
8184
8185 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8186 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8187
8188 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8189 struct sched_group **sg,
8190 struct cpumask *nodemask)
8191 {
8192 int group;
8193
8194 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8195 group = cpumask_first(nodemask);
8196
8197 if (sg)
8198 *sg = &per_cpu(sched_group_allnodes, group).sg;
8199 return group;
8200 }
8201
8202 static void init_numa_sched_groups_power(struct sched_group *group_head)
8203 {
8204 struct sched_group *sg = group_head;
8205 int j;
8206
8207 if (!sg)
8208 return;
8209 do {
8210 for_each_cpu(j, sched_group_cpus(sg)) {
8211 struct sched_domain *sd;
8212
8213 sd = &per_cpu(phys_domains, j).sd;
8214 if (j != group_first_cpu(sd->groups)) {
8215 /*
8216 * Only add "power" once for each
8217 * physical package.
8218 */
8219 continue;
8220 }
8221
8222 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8223 }
8224 sg = sg->next;
8225 } while (sg != group_head);
8226 }
8227 #endif /* CONFIG_NUMA */
8228
8229 #ifdef CONFIG_NUMA
8230 /* Free memory allocated for various sched_group structures */
8231 static void free_sched_groups(const struct cpumask *cpu_map,
8232 struct cpumask *nodemask)
8233 {
8234 int cpu, i;
8235
8236 for_each_cpu(cpu, cpu_map) {
8237 struct sched_group **sched_group_nodes
8238 = sched_group_nodes_bycpu[cpu];
8239
8240 if (!sched_group_nodes)
8241 continue;
8242
8243 for (i = 0; i < nr_node_ids; i++) {
8244 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8245
8246 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8247 if (cpumask_empty(nodemask))
8248 continue;
8249
8250 if (sg == NULL)
8251 continue;
8252 sg = sg->next;
8253 next_sg:
8254 oldsg = sg;
8255 sg = sg->next;
8256 kfree(oldsg);
8257 if (oldsg != sched_group_nodes[i])
8258 goto next_sg;
8259 }
8260 kfree(sched_group_nodes);
8261 sched_group_nodes_bycpu[cpu] = NULL;
8262 }
8263 }
8264 #else /* !CONFIG_NUMA */
8265 static void free_sched_groups(const struct cpumask *cpu_map,
8266 struct cpumask *nodemask)
8267 {
8268 }
8269 #endif /* CONFIG_NUMA */
8270
8271 /*
8272 * Initialize sched groups cpu_power.
8273 *
8274 * cpu_power indicates the capacity of sched group, which is used while
8275 * distributing the load between different sched groups in a sched domain.
8276 * Typically cpu_power for all the groups in a sched domain will be same unless
8277 * there are asymmetries in the topology. If there are asymmetries, group
8278 * having more cpu_power will pickup more load compared to the group having
8279 * less cpu_power.
8280 *
8281 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8282 * the maximum number of tasks a group can handle in the presence of other idle
8283 * or lightly loaded groups in the same sched domain.
8284 */
8285 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8286 {
8287 struct sched_domain *child;
8288 struct sched_group *group;
8289
8290 WARN_ON(!sd || !sd->groups);
8291
8292 if (cpu != group_first_cpu(sd->groups))
8293 return;
8294
8295 child = sd->child;
8296
8297 sd->groups->__cpu_power = 0;
8298
8299 /*
8300 * For perf policy, if the groups in child domain share resources
8301 * (for example cores sharing some portions of the cache hierarchy
8302 * or SMT), then set this domain groups cpu_power such that each group
8303 * can handle only one task, when there are other idle groups in the
8304 * same sched domain.
8305 */
8306 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8307 (child->flags &
8308 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8309 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8310 return;
8311 }
8312
8313 /*
8314 * add cpu_power of each child group to this groups cpu_power
8315 */
8316 group = child->groups;
8317 do {
8318 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8319 group = group->next;
8320 } while (group != child->groups);
8321 }
8322
8323 /*
8324 * Initializers for schedule domains
8325 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8326 */
8327
8328 #ifdef CONFIG_SCHED_DEBUG
8329 # define SD_INIT_NAME(sd, type) sd->name = #type
8330 #else
8331 # define SD_INIT_NAME(sd, type) do { } while (0)
8332 #endif
8333
8334 #define SD_INIT(sd, type) sd_init_##type(sd)
8335
8336 #define SD_INIT_FUNC(type) \
8337 static noinline void sd_init_##type(struct sched_domain *sd) \
8338 { \
8339 memset(sd, 0, sizeof(*sd)); \
8340 *sd = SD_##type##_INIT; \
8341 sd->level = SD_LV_##type; \
8342 SD_INIT_NAME(sd, type); \
8343 }
8344
8345 SD_INIT_FUNC(CPU)
8346 #ifdef CONFIG_NUMA
8347 SD_INIT_FUNC(ALLNODES)
8348 SD_INIT_FUNC(NODE)
8349 #endif
8350 #ifdef CONFIG_SCHED_SMT
8351 SD_INIT_FUNC(SIBLING)
8352 #endif
8353 #ifdef CONFIG_SCHED_MC
8354 SD_INIT_FUNC(MC)
8355 #endif
8356
8357 static int default_relax_domain_level = -1;
8358
8359 static int __init setup_relax_domain_level(char *str)
8360 {
8361 unsigned long val;
8362
8363 val = simple_strtoul(str, NULL, 0);
8364 if (val < SD_LV_MAX)
8365 default_relax_domain_level = val;
8366
8367 return 1;
8368 }
8369 __setup("relax_domain_level=", setup_relax_domain_level);
8370
8371 static void set_domain_attribute(struct sched_domain *sd,
8372 struct sched_domain_attr *attr)
8373 {
8374 int request;
8375
8376 if (!attr || attr->relax_domain_level < 0) {
8377 if (default_relax_domain_level < 0)
8378 return;
8379 else
8380 request = default_relax_domain_level;
8381 } else
8382 request = attr->relax_domain_level;
8383 if (request < sd->level) {
8384 /* turn off idle balance on this domain */
8385 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8386 } else {
8387 /* turn on idle balance on this domain */
8388 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8389 }
8390 }
8391
8392 /*
8393 * Build sched domains for a given set of cpus and attach the sched domains
8394 * to the individual cpus
8395 */
8396 static int __build_sched_domains(const struct cpumask *cpu_map,
8397 struct sched_domain_attr *attr)
8398 {
8399 int i, err = -ENOMEM;
8400 struct root_domain *rd;
8401 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8402 tmpmask;
8403 #ifdef CONFIG_NUMA
8404 cpumask_var_t domainspan, covered, notcovered;
8405 struct sched_group **sched_group_nodes = NULL;
8406 int sd_allnodes = 0;
8407
8408 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8409 goto out;
8410 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8411 goto free_domainspan;
8412 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8413 goto free_covered;
8414 #endif
8415
8416 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8417 goto free_notcovered;
8418 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8419 goto free_nodemask;
8420 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8421 goto free_this_sibling_map;
8422 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8423 goto free_this_core_map;
8424 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8425 goto free_send_covered;
8426
8427 #ifdef CONFIG_NUMA
8428 /*
8429 * Allocate the per-node list of sched groups
8430 */
8431 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8432 GFP_KERNEL);
8433 if (!sched_group_nodes) {
8434 printk(KERN_WARNING "Can not alloc sched group node list\n");
8435 goto free_tmpmask;
8436 }
8437 #endif
8438
8439 rd = alloc_rootdomain();
8440 if (!rd) {
8441 printk(KERN_WARNING "Cannot alloc root domain\n");
8442 goto free_sched_groups;
8443 }
8444
8445 #ifdef CONFIG_NUMA
8446 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8447 #endif
8448
8449 /*
8450 * Set up domains for cpus specified by the cpu_map.
8451 */
8452 for_each_cpu(i, cpu_map) {
8453 struct sched_domain *sd = NULL, *p;
8454
8455 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8456
8457 #ifdef CONFIG_NUMA
8458 if (cpumask_weight(cpu_map) >
8459 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8460 sd = &per_cpu(allnodes_domains, i).sd;
8461 SD_INIT(sd, ALLNODES);
8462 set_domain_attribute(sd, attr);
8463 cpumask_copy(sched_domain_span(sd), cpu_map);
8464 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8465 p = sd;
8466 sd_allnodes = 1;
8467 } else
8468 p = NULL;
8469
8470 sd = &per_cpu(node_domains, i).sd;
8471 SD_INIT(sd, NODE);
8472 set_domain_attribute(sd, attr);
8473 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8474 sd->parent = p;
8475 if (p)
8476 p->child = sd;
8477 cpumask_and(sched_domain_span(sd),
8478 sched_domain_span(sd), cpu_map);
8479 #endif
8480
8481 p = sd;
8482 sd = &per_cpu(phys_domains, i).sd;
8483 SD_INIT(sd, CPU);
8484 set_domain_attribute(sd, attr);
8485 cpumask_copy(sched_domain_span(sd), nodemask);
8486 sd->parent = p;
8487 if (p)
8488 p->child = sd;
8489 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8490
8491 #ifdef CONFIG_SCHED_MC
8492 p = sd;
8493 sd = &per_cpu(core_domains, i).sd;
8494 SD_INIT(sd, MC);
8495 set_domain_attribute(sd, attr);
8496 cpumask_and(sched_domain_span(sd), cpu_map,
8497 cpu_coregroup_mask(i));
8498 sd->parent = p;
8499 p->child = sd;
8500 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8501 #endif
8502
8503 #ifdef CONFIG_SCHED_SMT
8504 p = sd;
8505 sd = &per_cpu(cpu_domains, i).sd;
8506 SD_INIT(sd, SIBLING);
8507 set_domain_attribute(sd, attr);
8508 cpumask_and(sched_domain_span(sd),
8509 topology_thread_cpumask(i), cpu_map);
8510 sd->parent = p;
8511 p->child = sd;
8512 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8513 #endif
8514 }
8515
8516 #ifdef CONFIG_SCHED_SMT
8517 /* Set up CPU (sibling) groups */
8518 for_each_cpu(i, cpu_map) {
8519 cpumask_and(this_sibling_map,
8520 topology_thread_cpumask(i), cpu_map);
8521 if (i != cpumask_first(this_sibling_map))
8522 continue;
8523
8524 init_sched_build_groups(this_sibling_map, cpu_map,
8525 &cpu_to_cpu_group,
8526 send_covered, tmpmask);
8527 }
8528 #endif
8529
8530 #ifdef CONFIG_SCHED_MC
8531 /* Set up multi-core groups */
8532 for_each_cpu(i, cpu_map) {
8533 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8534 if (i != cpumask_first(this_core_map))
8535 continue;
8536
8537 init_sched_build_groups(this_core_map, cpu_map,
8538 &cpu_to_core_group,
8539 send_covered, tmpmask);
8540 }
8541 #endif
8542
8543 /* Set up physical groups */
8544 for (i = 0; i < nr_node_ids; i++) {
8545 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8546 if (cpumask_empty(nodemask))
8547 continue;
8548
8549 init_sched_build_groups(nodemask, cpu_map,
8550 &cpu_to_phys_group,
8551 send_covered, tmpmask);
8552 }
8553
8554 #ifdef CONFIG_NUMA
8555 /* Set up node groups */
8556 if (sd_allnodes) {
8557 init_sched_build_groups(cpu_map, cpu_map,
8558 &cpu_to_allnodes_group,
8559 send_covered, tmpmask);
8560 }
8561
8562 for (i = 0; i < nr_node_ids; i++) {
8563 /* Set up node groups */
8564 struct sched_group *sg, *prev;
8565 int j;
8566
8567 cpumask_clear(covered);
8568 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8569 if (cpumask_empty(nodemask)) {
8570 sched_group_nodes[i] = NULL;
8571 continue;
8572 }
8573
8574 sched_domain_node_span(i, domainspan);
8575 cpumask_and(domainspan, domainspan, cpu_map);
8576
8577 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8578 GFP_KERNEL, i);
8579 if (!sg) {
8580 printk(KERN_WARNING "Can not alloc domain group for "
8581 "node %d\n", i);
8582 goto error;
8583 }
8584 sched_group_nodes[i] = sg;
8585 for_each_cpu(j, nodemask) {
8586 struct sched_domain *sd;
8587
8588 sd = &per_cpu(node_domains, j).sd;
8589 sd->groups = sg;
8590 }
8591 sg->__cpu_power = 0;
8592 cpumask_copy(sched_group_cpus(sg), nodemask);
8593 sg->next = sg;
8594 cpumask_or(covered, covered, nodemask);
8595 prev = sg;
8596
8597 for (j = 0; j < nr_node_ids; j++) {
8598 int n = (i + j) % nr_node_ids;
8599
8600 cpumask_complement(notcovered, covered);
8601 cpumask_and(tmpmask, notcovered, cpu_map);
8602 cpumask_and(tmpmask, tmpmask, domainspan);
8603 if (cpumask_empty(tmpmask))
8604 break;
8605
8606 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8607 if (cpumask_empty(tmpmask))
8608 continue;
8609
8610 sg = kmalloc_node(sizeof(struct sched_group) +
8611 cpumask_size(),
8612 GFP_KERNEL, i);
8613 if (!sg) {
8614 printk(KERN_WARNING
8615 "Can not alloc domain group for node %d\n", j);
8616 goto error;
8617 }
8618 sg->__cpu_power = 0;
8619 cpumask_copy(sched_group_cpus(sg), tmpmask);
8620 sg->next = prev->next;
8621 cpumask_or(covered, covered, tmpmask);
8622 prev->next = sg;
8623 prev = sg;
8624 }
8625 }
8626 #endif
8627
8628 /* Calculate CPU power for physical packages and nodes */
8629 #ifdef CONFIG_SCHED_SMT
8630 for_each_cpu(i, cpu_map) {
8631 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8632
8633 init_sched_groups_power(i, sd);
8634 }
8635 #endif
8636 #ifdef CONFIG_SCHED_MC
8637 for_each_cpu(i, cpu_map) {
8638 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8639
8640 init_sched_groups_power(i, sd);
8641 }
8642 #endif
8643
8644 for_each_cpu(i, cpu_map) {
8645 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8646
8647 init_sched_groups_power(i, sd);
8648 }
8649
8650 #ifdef CONFIG_NUMA
8651 for (i = 0; i < nr_node_ids; i++)
8652 init_numa_sched_groups_power(sched_group_nodes[i]);
8653
8654 if (sd_allnodes) {
8655 struct sched_group *sg;
8656
8657 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8658 tmpmask);
8659 init_numa_sched_groups_power(sg);
8660 }
8661 #endif
8662
8663 /* Attach the domains */
8664 for_each_cpu(i, cpu_map) {
8665 struct sched_domain *sd;
8666 #ifdef CONFIG_SCHED_SMT
8667 sd = &per_cpu(cpu_domains, i).sd;
8668 #elif defined(CONFIG_SCHED_MC)
8669 sd = &per_cpu(core_domains, i).sd;
8670 #else
8671 sd = &per_cpu(phys_domains, i).sd;
8672 #endif
8673 cpu_attach_domain(sd, rd, i);
8674 }
8675
8676 err = 0;
8677
8678 free_tmpmask:
8679 free_cpumask_var(tmpmask);
8680 free_send_covered:
8681 free_cpumask_var(send_covered);
8682 free_this_core_map:
8683 free_cpumask_var(this_core_map);
8684 free_this_sibling_map:
8685 free_cpumask_var(this_sibling_map);
8686 free_nodemask:
8687 free_cpumask_var(nodemask);
8688 free_notcovered:
8689 #ifdef CONFIG_NUMA
8690 free_cpumask_var(notcovered);
8691 free_covered:
8692 free_cpumask_var(covered);
8693 free_domainspan:
8694 free_cpumask_var(domainspan);
8695 out:
8696 #endif
8697 return err;
8698
8699 free_sched_groups:
8700 #ifdef CONFIG_NUMA
8701 kfree(sched_group_nodes);
8702 #endif
8703 goto free_tmpmask;
8704
8705 #ifdef CONFIG_NUMA
8706 error:
8707 free_sched_groups(cpu_map, tmpmask);
8708 free_rootdomain(rd);
8709 goto free_tmpmask;
8710 #endif
8711 }
8712
8713 static int build_sched_domains(const struct cpumask *cpu_map)
8714 {
8715 return __build_sched_domains(cpu_map, NULL);
8716 }
8717
8718 static struct cpumask *doms_cur; /* current sched domains */
8719 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8720 static struct sched_domain_attr *dattr_cur;
8721 /* attribues of custom domains in 'doms_cur' */
8722
8723 /*
8724 * Special case: If a kmalloc of a doms_cur partition (array of
8725 * cpumask) fails, then fallback to a single sched domain,
8726 * as determined by the single cpumask fallback_doms.
8727 */
8728 static cpumask_var_t fallback_doms;
8729
8730 /*
8731 * arch_update_cpu_topology lets virtualized architectures update the
8732 * cpu core maps. It is supposed to return 1 if the topology changed
8733 * or 0 if it stayed the same.
8734 */
8735 int __attribute__((weak)) arch_update_cpu_topology(void)
8736 {
8737 return 0;
8738 }
8739
8740 /*
8741 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8742 * For now this just excludes isolated cpus, but could be used to
8743 * exclude other special cases in the future.
8744 */
8745 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8746 {
8747 int err;
8748
8749 arch_update_cpu_topology();
8750 ndoms_cur = 1;
8751 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8752 if (!doms_cur)
8753 doms_cur = fallback_doms;
8754 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8755 dattr_cur = NULL;
8756 err = build_sched_domains(doms_cur);
8757 register_sched_domain_sysctl();
8758
8759 return err;
8760 }
8761
8762 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8763 struct cpumask *tmpmask)
8764 {
8765 free_sched_groups(cpu_map, tmpmask);
8766 }
8767
8768 /*
8769 * Detach sched domains from a group of cpus specified in cpu_map
8770 * These cpus will now be attached to the NULL domain
8771 */
8772 static void detach_destroy_domains(const struct cpumask *cpu_map)
8773 {
8774 /* Save because hotplug lock held. */
8775 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8776 int i;
8777
8778 for_each_cpu(i, cpu_map)
8779 cpu_attach_domain(NULL, &def_root_domain, i);
8780 synchronize_sched();
8781 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8782 }
8783
8784 /* handle null as "default" */
8785 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8786 struct sched_domain_attr *new, int idx_new)
8787 {
8788 struct sched_domain_attr tmp;
8789
8790 /* fast path */
8791 if (!new && !cur)
8792 return 1;
8793
8794 tmp = SD_ATTR_INIT;
8795 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8796 new ? (new + idx_new) : &tmp,
8797 sizeof(struct sched_domain_attr));
8798 }
8799
8800 /*
8801 * Partition sched domains as specified by the 'ndoms_new'
8802 * cpumasks in the array doms_new[] of cpumasks. This compares
8803 * doms_new[] to the current sched domain partitioning, doms_cur[].
8804 * It destroys each deleted domain and builds each new domain.
8805 *
8806 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8807 * The masks don't intersect (don't overlap.) We should setup one
8808 * sched domain for each mask. CPUs not in any of the cpumasks will
8809 * not be load balanced. If the same cpumask appears both in the
8810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8811 * it as it is.
8812 *
8813 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8814 * ownership of it and will kfree it when done with it. If the caller
8815 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8816 * ndoms_new == 1, and partition_sched_domains() will fallback to
8817 * the single partition 'fallback_doms', it also forces the domains
8818 * to be rebuilt.
8819 *
8820 * If doms_new == NULL it will be replaced with cpu_online_mask.
8821 * ndoms_new == 0 is a special case for destroying existing domains,
8822 * and it will not create the default domain.
8823 *
8824 * Call with hotplug lock held
8825 */
8826 /* FIXME: Change to struct cpumask *doms_new[] */
8827 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8828 struct sched_domain_attr *dattr_new)
8829 {
8830 int i, j, n;
8831 int new_topology;
8832
8833 mutex_lock(&sched_domains_mutex);
8834
8835 /* always unregister in case we don't destroy any domains */
8836 unregister_sched_domain_sysctl();
8837
8838 /* Let architecture update cpu core mappings. */
8839 new_topology = arch_update_cpu_topology();
8840
8841 n = doms_new ? ndoms_new : 0;
8842
8843 /* Destroy deleted domains */
8844 for (i = 0; i < ndoms_cur; i++) {
8845 for (j = 0; j < n && !new_topology; j++) {
8846 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8847 && dattrs_equal(dattr_cur, i, dattr_new, j))
8848 goto match1;
8849 }
8850 /* no match - a current sched domain not in new doms_new[] */
8851 detach_destroy_domains(doms_cur + i);
8852 match1:
8853 ;
8854 }
8855
8856 if (doms_new == NULL) {
8857 ndoms_cur = 0;
8858 doms_new = fallback_doms;
8859 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8860 WARN_ON_ONCE(dattr_new);
8861 }
8862
8863 /* Build new domains */
8864 for (i = 0; i < ndoms_new; i++) {
8865 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8866 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8867 && dattrs_equal(dattr_new, i, dattr_cur, j))
8868 goto match2;
8869 }
8870 /* no match - add a new doms_new */
8871 __build_sched_domains(doms_new + i,
8872 dattr_new ? dattr_new + i : NULL);
8873 match2:
8874 ;
8875 }
8876
8877 /* Remember the new sched domains */
8878 if (doms_cur != fallback_doms)
8879 kfree(doms_cur);
8880 kfree(dattr_cur); /* kfree(NULL) is safe */
8881 doms_cur = doms_new;
8882 dattr_cur = dattr_new;
8883 ndoms_cur = ndoms_new;
8884
8885 register_sched_domain_sysctl();
8886
8887 mutex_unlock(&sched_domains_mutex);
8888 }
8889
8890 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8891 static void arch_reinit_sched_domains(void)
8892 {
8893 get_online_cpus();
8894
8895 /* Destroy domains first to force the rebuild */
8896 partition_sched_domains(0, NULL, NULL);
8897
8898 rebuild_sched_domains();
8899 put_online_cpus();
8900 }
8901
8902 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8903 {
8904 unsigned int level = 0;
8905
8906 if (sscanf(buf, "%u", &level) != 1)
8907 return -EINVAL;
8908
8909 /*
8910 * level is always be positive so don't check for
8911 * level < POWERSAVINGS_BALANCE_NONE which is 0
8912 * What happens on 0 or 1 byte write,
8913 * need to check for count as well?
8914 */
8915
8916 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8917 return -EINVAL;
8918
8919 if (smt)
8920 sched_smt_power_savings = level;
8921 else
8922 sched_mc_power_savings = level;
8923
8924 arch_reinit_sched_domains();
8925
8926 return count;
8927 }
8928
8929 #ifdef CONFIG_SCHED_MC
8930 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8931 char *page)
8932 {
8933 return sprintf(page, "%u\n", sched_mc_power_savings);
8934 }
8935 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8936 const char *buf, size_t count)
8937 {
8938 return sched_power_savings_store(buf, count, 0);
8939 }
8940 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8941 sched_mc_power_savings_show,
8942 sched_mc_power_savings_store);
8943 #endif
8944
8945 #ifdef CONFIG_SCHED_SMT
8946 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8947 char *page)
8948 {
8949 return sprintf(page, "%u\n", sched_smt_power_savings);
8950 }
8951 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8952 const char *buf, size_t count)
8953 {
8954 return sched_power_savings_store(buf, count, 1);
8955 }
8956 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8957 sched_smt_power_savings_show,
8958 sched_smt_power_savings_store);
8959 #endif
8960
8961 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8962 {
8963 int err = 0;
8964
8965 #ifdef CONFIG_SCHED_SMT
8966 if (smt_capable())
8967 err = sysfs_create_file(&cls->kset.kobj,
8968 &attr_sched_smt_power_savings.attr);
8969 #endif
8970 #ifdef CONFIG_SCHED_MC
8971 if (!err && mc_capable())
8972 err = sysfs_create_file(&cls->kset.kobj,
8973 &attr_sched_mc_power_savings.attr);
8974 #endif
8975 return err;
8976 }
8977 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8978
8979 #ifndef CONFIG_CPUSETS
8980 /*
8981 * Add online and remove offline CPUs from the scheduler domains.
8982 * When cpusets are enabled they take over this function.
8983 */
8984 static int update_sched_domains(struct notifier_block *nfb,
8985 unsigned long action, void *hcpu)
8986 {
8987 switch (action) {
8988 case CPU_ONLINE:
8989 case CPU_ONLINE_FROZEN:
8990 case CPU_DEAD:
8991 case CPU_DEAD_FROZEN:
8992 partition_sched_domains(1, NULL, NULL);
8993 return NOTIFY_OK;
8994
8995 default:
8996 return NOTIFY_DONE;
8997 }
8998 }
8999 #endif
9000
9001 static int update_runtime(struct notifier_block *nfb,
9002 unsigned long action, void *hcpu)
9003 {
9004 int cpu = (int)(long)hcpu;
9005
9006 switch (action) {
9007 case CPU_DOWN_PREPARE:
9008 case CPU_DOWN_PREPARE_FROZEN:
9009 disable_runtime(cpu_rq(cpu));
9010 return NOTIFY_OK;
9011
9012 case CPU_DOWN_FAILED:
9013 case CPU_DOWN_FAILED_FROZEN:
9014 case CPU_ONLINE:
9015 case CPU_ONLINE_FROZEN:
9016 enable_runtime(cpu_rq(cpu));
9017 return NOTIFY_OK;
9018
9019 default:
9020 return NOTIFY_DONE;
9021 }
9022 }
9023
9024 void __init sched_init_smp(void)
9025 {
9026 cpumask_var_t non_isolated_cpus;
9027
9028 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9029
9030 #if defined(CONFIG_NUMA)
9031 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9032 GFP_KERNEL);
9033 BUG_ON(sched_group_nodes_bycpu == NULL);
9034 #endif
9035 get_online_cpus();
9036 mutex_lock(&sched_domains_mutex);
9037 arch_init_sched_domains(cpu_online_mask);
9038 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9039 if (cpumask_empty(non_isolated_cpus))
9040 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9041 mutex_unlock(&sched_domains_mutex);
9042 put_online_cpus();
9043
9044 #ifndef CONFIG_CPUSETS
9045 /* XXX: Theoretical race here - CPU may be hotplugged now */
9046 hotcpu_notifier(update_sched_domains, 0);
9047 #endif
9048
9049 /* RT runtime code needs to handle some hotplug events */
9050 hotcpu_notifier(update_runtime, 0);
9051
9052 init_hrtick();
9053
9054 /* Move init over to a non-isolated CPU */
9055 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9056 BUG();
9057 sched_init_granularity();
9058 free_cpumask_var(non_isolated_cpus);
9059
9060 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9061 init_sched_rt_class();
9062 }
9063 #else
9064 void __init sched_init_smp(void)
9065 {
9066 sched_init_granularity();
9067 }
9068 #endif /* CONFIG_SMP */
9069
9070 const_debug unsigned int sysctl_timer_migration = 1;
9071
9072 int in_sched_functions(unsigned long addr)
9073 {
9074 return in_lock_functions(addr) ||
9075 (addr >= (unsigned long)__sched_text_start
9076 && addr < (unsigned long)__sched_text_end);
9077 }
9078
9079 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9080 {
9081 cfs_rq->tasks_timeline = RB_ROOT;
9082 INIT_LIST_HEAD(&cfs_rq->tasks);
9083 #ifdef CONFIG_FAIR_GROUP_SCHED
9084 cfs_rq->rq = rq;
9085 #endif
9086 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9087 }
9088
9089 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9090 {
9091 struct rt_prio_array *array;
9092 int i;
9093
9094 array = &rt_rq->active;
9095 for (i = 0; i < MAX_RT_PRIO; i++) {
9096 INIT_LIST_HEAD(array->queue + i);
9097 __clear_bit(i, array->bitmap);
9098 }
9099 /* delimiter for bitsearch: */
9100 __set_bit(MAX_RT_PRIO, array->bitmap);
9101
9102 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9103 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9104 #ifdef CONFIG_SMP
9105 rt_rq->highest_prio.next = MAX_RT_PRIO;
9106 #endif
9107 #endif
9108 #ifdef CONFIG_SMP
9109 rt_rq->rt_nr_migratory = 0;
9110 rt_rq->overloaded = 0;
9111 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9112 #endif
9113
9114 rt_rq->rt_time = 0;
9115 rt_rq->rt_throttled = 0;
9116 rt_rq->rt_runtime = 0;
9117 spin_lock_init(&rt_rq->rt_runtime_lock);
9118
9119 #ifdef CONFIG_RT_GROUP_SCHED
9120 rt_rq->rt_nr_boosted = 0;
9121 rt_rq->rq = rq;
9122 #endif
9123 }
9124
9125 #ifdef CONFIG_FAIR_GROUP_SCHED
9126 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9127 struct sched_entity *se, int cpu, int add,
9128 struct sched_entity *parent)
9129 {
9130 struct rq *rq = cpu_rq(cpu);
9131 tg->cfs_rq[cpu] = cfs_rq;
9132 init_cfs_rq(cfs_rq, rq);
9133 cfs_rq->tg = tg;
9134 if (add)
9135 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9136
9137 tg->se[cpu] = se;
9138 /* se could be NULL for init_task_group */
9139 if (!se)
9140 return;
9141
9142 if (!parent)
9143 se->cfs_rq = &rq->cfs;
9144 else
9145 se->cfs_rq = parent->my_q;
9146
9147 se->my_q = cfs_rq;
9148 se->load.weight = tg->shares;
9149 se->load.inv_weight = 0;
9150 se->parent = parent;
9151 }
9152 #endif
9153
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9156 struct sched_rt_entity *rt_se, int cpu, int add,
9157 struct sched_rt_entity *parent)
9158 {
9159 struct rq *rq = cpu_rq(cpu);
9160
9161 tg->rt_rq[cpu] = rt_rq;
9162 init_rt_rq(rt_rq, rq);
9163 rt_rq->tg = tg;
9164 rt_rq->rt_se = rt_se;
9165 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9166 if (add)
9167 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9168
9169 tg->rt_se[cpu] = rt_se;
9170 if (!rt_se)
9171 return;
9172
9173 if (!parent)
9174 rt_se->rt_rq = &rq->rt;
9175 else
9176 rt_se->rt_rq = parent->my_q;
9177
9178 rt_se->my_q = rt_rq;
9179 rt_se->parent = parent;
9180 INIT_LIST_HEAD(&rt_se->run_list);
9181 }
9182 #endif
9183
9184 void __init sched_init(void)
9185 {
9186 int i, j;
9187 unsigned long alloc_size = 0, ptr;
9188
9189 #ifdef CONFIG_FAIR_GROUP_SCHED
9190 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9191 #endif
9192 #ifdef CONFIG_RT_GROUP_SCHED
9193 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9194 #endif
9195 #ifdef CONFIG_USER_SCHED
9196 alloc_size *= 2;
9197 #endif
9198 #ifdef CONFIG_CPUMASK_OFFSTACK
9199 alloc_size += num_possible_cpus() * cpumask_size();
9200 #endif
9201 /*
9202 * As sched_init() is called before page_alloc is setup,
9203 * we use alloc_bootmem().
9204 */
9205 if (alloc_size) {
9206 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9207
9208 #ifdef CONFIG_FAIR_GROUP_SCHED
9209 init_task_group.se = (struct sched_entity **)ptr;
9210 ptr += nr_cpu_ids * sizeof(void **);
9211
9212 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9213 ptr += nr_cpu_ids * sizeof(void **);
9214
9215 #ifdef CONFIG_USER_SCHED
9216 root_task_group.se = (struct sched_entity **)ptr;
9217 ptr += nr_cpu_ids * sizeof(void **);
9218
9219 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9220 ptr += nr_cpu_ids * sizeof(void **);
9221 #endif /* CONFIG_USER_SCHED */
9222 #endif /* CONFIG_FAIR_GROUP_SCHED */
9223 #ifdef CONFIG_RT_GROUP_SCHED
9224 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9225 ptr += nr_cpu_ids * sizeof(void **);
9226
9227 init_task_group.rt_rq = (struct rt_rq **)ptr;
9228 ptr += nr_cpu_ids * sizeof(void **);
9229
9230 #ifdef CONFIG_USER_SCHED
9231 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9232 ptr += nr_cpu_ids * sizeof(void **);
9233
9234 root_task_group.rt_rq = (struct rt_rq **)ptr;
9235 ptr += nr_cpu_ids * sizeof(void **);
9236 #endif /* CONFIG_USER_SCHED */
9237 #endif /* CONFIG_RT_GROUP_SCHED */
9238 #ifdef CONFIG_CPUMASK_OFFSTACK
9239 for_each_possible_cpu(i) {
9240 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9241 ptr += cpumask_size();
9242 }
9243 #endif /* CONFIG_CPUMASK_OFFSTACK */
9244 }
9245
9246 #ifdef CONFIG_SMP
9247 init_defrootdomain();
9248 #endif
9249
9250 init_rt_bandwidth(&def_rt_bandwidth,
9251 global_rt_period(), global_rt_runtime());
9252
9253 #ifdef CONFIG_RT_GROUP_SCHED
9254 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9255 global_rt_period(), global_rt_runtime());
9256 #ifdef CONFIG_USER_SCHED
9257 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9258 global_rt_period(), RUNTIME_INF);
9259 #endif /* CONFIG_USER_SCHED */
9260 #endif /* CONFIG_RT_GROUP_SCHED */
9261
9262 #ifdef CONFIG_GROUP_SCHED
9263 list_add(&init_task_group.list, &task_groups);
9264 INIT_LIST_HEAD(&init_task_group.children);
9265
9266 #ifdef CONFIG_USER_SCHED
9267 INIT_LIST_HEAD(&root_task_group.children);
9268 init_task_group.parent = &root_task_group;
9269 list_add(&init_task_group.siblings, &root_task_group.children);
9270 #endif /* CONFIG_USER_SCHED */
9271 #endif /* CONFIG_GROUP_SCHED */
9272
9273 for_each_possible_cpu(i) {
9274 struct rq *rq;
9275
9276 rq = cpu_rq(i);
9277 spin_lock_init(&rq->lock);
9278 rq->nr_running = 0;
9279 rq->calc_load_active = 0;
9280 rq->calc_load_update = jiffies + LOAD_FREQ;
9281 init_cfs_rq(&rq->cfs, rq);
9282 init_rt_rq(&rq->rt, rq);
9283 #ifdef CONFIG_FAIR_GROUP_SCHED
9284 init_task_group.shares = init_task_group_load;
9285 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9286 #ifdef CONFIG_CGROUP_SCHED
9287 /*
9288 * How much cpu bandwidth does init_task_group get?
9289 *
9290 * In case of task-groups formed thr' the cgroup filesystem, it
9291 * gets 100% of the cpu resources in the system. This overall
9292 * system cpu resource is divided among the tasks of
9293 * init_task_group and its child task-groups in a fair manner,
9294 * based on each entity's (task or task-group's) weight
9295 * (se->load.weight).
9296 *
9297 * In other words, if init_task_group has 10 tasks of weight
9298 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9299 * then A0's share of the cpu resource is:
9300 *
9301 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9302 *
9303 * We achieve this by letting init_task_group's tasks sit
9304 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9305 */
9306 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9307 #elif defined CONFIG_USER_SCHED
9308 root_task_group.shares = NICE_0_LOAD;
9309 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9310 /*
9311 * In case of task-groups formed thr' the user id of tasks,
9312 * init_task_group represents tasks belonging to root user.
9313 * Hence it forms a sibling of all subsequent groups formed.
9314 * In this case, init_task_group gets only a fraction of overall
9315 * system cpu resource, based on the weight assigned to root
9316 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9317 * by letting tasks of init_task_group sit in a separate cfs_rq
9318 * (init_cfs_rq) and having one entity represent this group of
9319 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9320 */
9321 init_tg_cfs_entry(&init_task_group,
9322 &per_cpu(init_cfs_rq, i),
9323 &per_cpu(init_sched_entity, i), i, 1,
9324 root_task_group.se[i]);
9325
9326 #endif
9327 #endif /* CONFIG_FAIR_GROUP_SCHED */
9328
9329 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9332 #ifdef CONFIG_CGROUP_SCHED
9333 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9334 #elif defined CONFIG_USER_SCHED
9335 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9336 init_tg_rt_entry(&init_task_group,
9337 &per_cpu(init_rt_rq, i),
9338 &per_cpu(init_sched_rt_entity, i), i, 1,
9339 root_task_group.rt_se[i]);
9340 #endif
9341 #endif
9342
9343 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9344 rq->cpu_load[j] = 0;
9345 #ifdef CONFIG_SMP
9346 rq->sd = NULL;
9347 rq->rd = NULL;
9348 rq->active_balance = 0;
9349 rq->next_balance = jiffies;
9350 rq->push_cpu = 0;
9351 rq->cpu = i;
9352 rq->online = 0;
9353 rq->migration_thread = NULL;
9354 INIT_LIST_HEAD(&rq->migration_queue);
9355 rq_attach_root(rq, &def_root_domain);
9356 #endif
9357 init_rq_hrtick(rq);
9358 atomic_set(&rq->nr_iowait, 0);
9359 }
9360
9361 set_load_weight(&init_task);
9362
9363 #ifdef CONFIG_PREEMPT_NOTIFIERS
9364 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9365 #endif
9366
9367 #ifdef CONFIG_SMP
9368 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9369 #endif
9370
9371 #ifdef CONFIG_RT_MUTEXES
9372 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9373 #endif
9374
9375 /*
9376 * The boot idle thread does lazy MMU switching as well:
9377 */
9378 atomic_inc(&init_mm.mm_count);
9379 enter_lazy_tlb(&init_mm, current);
9380
9381 /*
9382 * Make us the idle thread. Technically, schedule() should not be
9383 * called from this thread, however somewhere below it might be,
9384 * but because we are the idle thread, we just pick up running again
9385 * when this runqueue becomes "idle".
9386 */
9387 init_idle(current, smp_processor_id());
9388
9389 calc_load_update = jiffies + LOAD_FREQ;
9390
9391 /*
9392 * During early bootup we pretend to be a normal task:
9393 */
9394 current->sched_class = &fair_sched_class;
9395
9396 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9397 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9398 #ifdef CONFIG_SMP
9399 #ifdef CONFIG_NO_HZ
9400 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9401 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9402 #endif
9403 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9404 #endif /* SMP */
9405
9406 perf_counter_init();
9407
9408 scheduler_running = 1;
9409 }
9410
9411 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9412 void __might_sleep(char *file, int line)
9413 {
9414 #ifdef in_atomic
9415 static unsigned long prev_jiffy; /* ratelimiting */
9416
9417 if ((!in_atomic() && !irqs_disabled()) ||
9418 system_state != SYSTEM_RUNNING || oops_in_progress)
9419 return;
9420 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9421 return;
9422 prev_jiffy = jiffies;
9423
9424 printk(KERN_ERR
9425 "BUG: sleeping function called from invalid context at %s:%d\n",
9426 file, line);
9427 printk(KERN_ERR
9428 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9429 in_atomic(), irqs_disabled(),
9430 current->pid, current->comm);
9431
9432 debug_show_held_locks(current);
9433 if (irqs_disabled())
9434 print_irqtrace_events(current);
9435 dump_stack();
9436 #endif
9437 }
9438 EXPORT_SYMBOL(__might_sleep);
9439 #endif
9440
9441 #ifdef CONFIG_MAGIC_SYSRQ
9442 static void normalize_task(struct rq *rq, struct task_struct *p)
9443 {
9444 int on_rq;
9445
9446 update_rq_clock(rq);
9447 on_rq = p->se.on_rq;
9448 if (on_rq)
9449 deactivate_task(rq, p, 0);
9450 __setscheduler(rq, p, SCHED_NORMAL, 0);
9451 if (on_rq) {
9452 activate_task(rq, p, 0);
9453 resched_task(rq->curr);
9454 }
9455 }
9456
9457 void normalize_rt_tasks(void)
9458 {
9459 struct task_struct *g, *p;
9460 unsigned long flags;
9461 struct rq *rq;
9462
9463 read_lock_irqsave(&tasklist_lock, flags);
9464 do_each_thread(g, p) {
9465 /*
9466 * Only normalize user tasks:
9467 */
9468 if (!p->mm)
9469 continue;
9470
9471 p->se.exec_start = 0;
9472 #ifdef CONFIG_SCHEDSTATS
9473 p->se.wait_start = 0;
9474 p->se.sleep_start = 0;
9475 p->se.block_start = 0;
9476 #endif
9477
9478 if (!rt_task(p)) {
9479 /*
9480 * Renice negative nice level userspace
9481 * tasks back to 0:
9482 */
9483 if (TASK_NICE(p) < 0 && p->mm)
9484 set_user_nice(p, 0);
9485 continue;
9486 }
9487
9488 spin_lock(&p->pi_lock);
9489 rq = __task_rq_lock(p);
9490
9491 normalize_task(rq, p);
9492
9493 __task_rq_unlock(rq);
9494 spin_unlock(&p->pi_lock);
9495 } while_each_thread(g, p);
9496
9497 read_unlock_irqrestore(&tasklist_lock, flags);
9498 }
9499
9500 #endif /* CONFIG_MAGIC_SYSRQ */
9501
9502 #ifdef CONFIG_IA64
9503 /*
9504 * These functions are only useful for the IA64 MCA handling.
9505 *
9506 * They can only be called when the whole system has been
9507 * stopped - every CPU needs to be quiescent, and no scheduling
9508 * activity can take place. Using them for anything else would
9509 * be a serious bug, and as a result, they aren't even visible
9510 * under any other configuration.
9511 */
9512
9513 /**
9514 * curr_task - return the current task for a given cpu.
9515 * @cpu: the processor in question.
9516 *
9517 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9518 */
9519 struct task_struct *curr_task(int cpu)
9520 {
9521 return cpu_curr(cpu);
9522 }
9523
9524 /**
9525 * set_curr_task - set the current task for a given cpu.
9526 * @cpu: the processor in question.
9527 * @p: the task pointer to set.
9528 *
9529 * Description: This function must only be used when non-maskable interrupts
9530 * are serviced on a separate stack. It allows the architecture to switch the
9531 * notion of the current task on a cpu in a non-blocking manner. This function
9532 * must be called with all CPU's synchronized, and interrupts disabled, the
9533 * and caller must save the original value of the current task (see
9534 * curr_task() above) and restore that value before reenabling interrupts and
9535 * re-starting the system.
9536 *
9537 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9538 */
9539 void set_curr_task(int cpu, struct task_struct *p)
9540 {
9541 cpu_curr(cpu) = p;
9542 }
9543
9544 #endif
9545
9546 #ifdef CONFIG_FAIR_GROUP_SCHED
9547 static void free_fair_sched_group(struct task_group *tg)
9548 {
9549 int i;
9550
9551 for_each_possible_cpu(i) {
9552 if (tg->cfs_rq)
9553 kfree(tg->cfs_rq[i]);
9554 if (tg->se)
9555 kfree(tg->se[i]);
9556 }
9557
9558 kfree(tg->cfs_rq);
9559 kfree(tg->se);
9560 }
9561
9562 static
9563 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9564 {
9565 struct cfs_rq *cfs_rq;
9566 struct sched_entity *se;
9567 struct rq *rq;
9568 int i;
9569
9570 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9571 if (!tg->cfs_rq)
9572 goto err;
9573 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9574 if (!tg->se)
9575 goto err;
9576
9577 tg->shares = NICE_0_LOAD;
9578
9579 for_each_possible_cpu(i) {
9580 rq = cpu_rq(i);
9581
9582 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9583 GFP_KERNEL, cpu_to_node(i));
9584 if (!cfs_rq)
9585 goto err;
9586
9587 se = kzalloc_node(sizeof(struct sched_entity),
9588 GFP_KERNEL, cpu_to_node(i));
9589 if (!se)
9590 goto err;
9591
9592 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9593 }
9594
9595 return 1;
9596
9597 err:
9598 return 0;
9599 }
9600
9601 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9602 {
9603 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9604 &cpu_rq(cpu)->leaf_cfs_rq_list);
9605 }
9606
9607 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9608 {
9609 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9610 }
9611 #else /* !CONFG_FAIR_GROUP_SCHED */
9612 static inline void free_fair_sched_group(struct task_group *tg)
9613 {
9614 }
9615
9616 static inline
9617 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9618 {
9619 return 1;
9620 }
9621
9622 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9623 {
9624 }
9625
9626 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9627 {
9628 }
9629 #endif /* CONFIG_FAIR_GROUP_SCHED */
9630
9631 #ifdef CONFIG_RT_GROUP_SCHED
9632 static void free_rt_sched_group(struct task_group *tg)
9633 {
9634 int i;
9635
9636 destroy_rt_bandwidth(&tg->rt_bandwidth);
9637
9638 for_each_possible_cpu(i) {
9639 if (tg->rt_rq)
9640 kfree(tg->rt_rq[i]);
9641 if (tg->rt_se)
9642 kfree(tg->rt_se[i]);
9643 }
9644
9645 kfree(tg->rt_rq);
9646 kfree(tg->rt_se);
9647 }
9648
9649 static
9650 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9651 {
9652 struct rt_rq *rt_rq;
9653 struct sched_rt_entity *rt_se;
9654 struct rq *rq;
9655 int i;
9656
9657 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9658 if (!tg->rt_rq)
9659 goto err;
9660 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9661 if (!tg->rt_se)
9662 goto err;
9663
9664 init_rt_bandwidth(&tg->rt_bandwidth,
9665 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9666
9667 for_each_possible_cpu(i) {
9668 rq = cpu_rq(i);
9669
9670 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9671 GFP_KERNEL, cpu_to_node(i));
9672 if (!rt_rq)
9673 goto err;
9674
9675 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9676 GFP_KERNEL, cpu_to_node(i));
9677 if (!rt_se)
9678 goto err;
9679
9680 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9681 }
9682
9683 return 1;
9684
9685 err:
9686 return 0;
9687 }
9688
9689 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9690 {
9691 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9692 &cpu_rq(cpu)->leaf_rt_rq_list);
9693 }
9694
9695 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9696 {
9697 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9698 }
9699 #else /* !CONFIG_RT_GROUP_SCHED */
9700 static inline void free_rt_sched_group(struct task_group *tg)
9701 {
9702 }
9703
9704 static inline
9705 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9706 {
9707 return 1;
9708 }
9709
9710 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9711 {
9712 }
9713
9714 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9715 {
9716 }
9717 #endif /* CONFIG_RT_GROUP_SCHED */
9718
9719 #ifdef CONFIG_GROUP_SCHED
9720 static void free_sched_group(struct task_group *tg)
9721 {
9722 free_fair_sched_group(tg);
9723 free_rt_sched_group(tg);
9724 kfree(tg);
9725 }
9726
9727 /* allocate runqueue etc for a new task group */
9728 struct task_group *sched_create_group(struct task_group *parent)
9729 {
9730 struct task_group *tg;
9731 unsigned long flags;
9732 int i;
9733
9734 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9735 if (!tg)
9736 return ERR_PTR(-ENOMEM);
9737
9738 if (!alloc_fair_sched_group(tg, parent))
9739 goto err;
9740
9741 if (!alloc_rt_sched_group(tg, parent))
9742 goto err;
9743
9744 spin_lock_irqsave(&task_group_lock, flags);
9745 for_each_possible_cpu(i) {
9746 register_fair_sched_group(tg, i);
9747 register_rt_sched_group(tg, i);
9748 }
9749 list_add_rcu(&tg->list, &task_groups);
9750
9751 WARN_ON(!parent); /* root should already exist */
9752
9753 tg->parent = parent;
9754 INIT_LIST_HEAD(&tg->children);
9755 list_add_rcu(&tg->siblings, &parent->children);
9756 spin_unlock_irqrestore(&task_group_lock, flags);
9757
9758 return tg;
9759
9760 err:
9761 free_sched_group(tg);
9762 return ERR_PTR(-ENOMEM);
9763 }
9764
9765 /* rcu callback to free various structures associated with a task group */
9766 static void free_sched_group_rcu(struct rcu_head *rhp)
9767 {
9768 /* now it should be safe to free those cfs_rqs */
9769 free_sched_group(container_of(rhp, struct task_group, rcu));
9770 }
9771
9772 /* Destroy runqueue etc associated with a task group */
9773 void sched_destroy_group(struct task_group *tg)
9774 {
9775 unsigned long flags;
9776 int i;
9777
9778 spin_lock_irqsave(&task_group_lock, flags);
9779 for_each_possible_cpu(i) {
9780 unregister_fair_sched_group(tg, i);
9781 unregister_rt_sched_group(tg, i);
9782 }
9783 list_del_rcu(&tg->list);
9784 list_del_rcu(&tg->siblings);
9785 spin_unlock_irqrestore(&task_group_lock, flags);
9786
9787 /* wait for possible concurrent references to cfs_rqs complete */
9788 call_rcu(&tg->rcu, free_sched_group_rcu);
9789 }
9790
9791 /* change task's runqueue when it moves between groups.
9792 * The caller of this function should have put the task in its new group
9793 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9794 * reflect its new group.
9795 */
9796 void sched_move_task(struct task_struct *tsk)
9797 {
9798 int on_rq, running;
9799 unsigned long flags;
9800 struct rq *rq;
9801
9802 rq = task_rq_lock(tsk, &flags);
9803
9804 update_rq_clock(rq);
9805
9806 running = task_current(rq, tsk);
9807 on_rq = tsk->se.on_rq;
9808
9809 if (on_rq)
9810 dequeue_task(rq, tsk, 0);
9811 if (unlikely(running))
9812 tsk->sched_class->put_prev_task(rq, tsk);
9813
9814 set_task_rq(tsk, task_cpu(tsk));
9815
9816 #ifdef CONFIG_FAIR_GROUP_SCHED
9817 if (tsk->sched_class->moved_group)
9818 tsk->sched_class->moved_group(tsk);
9819 #endif
9820
9821 if (unlikely(running))
9822 tsk->sched_class->set_curr_task(rq);
9823 if (on_rq)
9824 enqueue_task(rq, tsk, 0);
9825
9826 task_rq_unlock(rq, &flags);
9827 }
9828 #endif /* CONFIG_GROUP_SCHED */
9829
9830 #ifdef CONFIG_FAIR_GROUP_SCHED
9831 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9832 {
9833 struct cfs_rq *cfs_rq = se->cfs_rq;
9834 int on_rq;
9835
9836 on_rq = se->on_rq;
9837 if (on_rq)
9838 dequeue_entity(cfs_rq, se, 0);
9839
9840 se->load.weight = shares;
9841 se->load.inv_weight = 0;
9842
9843 if (on_rq)
9844 enqueue_entity(cfs_rq, se, 0);
9845 }
9846
9847 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9848 {
9849 struct cfs_rq *cfs_rq = se->cfs_rq;
9850 struct rq *rq = cfs_rq->rq;
9851 unsigned long flags;
9852
9853 spin_lock_irqsave(&rq->lock, flags);
9854 __set_se_shares(se, shares);
9855 spin_unlock_irqrestore(&rq->lock, flags);
9856 }
9857
9858 static DEFINE_MUTEX(shares_mutex);
9859
9860 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9861 {
9862 int i;
9863 unsigned long flags;
9864
9865 /*
9866 * We can't change the weight of the root cgroup.
9867 */
9868 if (!tg->se[0])
9869 return -EINVAL;
9870
9871 if (shares < MIN_SHARES)
9872 shares = MIN_SHARES;
9873 else if (shares > MAX_SHARES)
9874 shares = MAX_SHARES;
9875
9876 mutex_lock(&shares_mutex);
9877 if (tg->shares == shares)
9878 goto done;
9879
9880 spin_lock_irqsave(&task_group_lock, flags);
9881 for_each_possible_cpu(i)
9882 unregister_fair_sched_group(tg, i);
9883 list_del_rcu(&tg->siblings);
9884 spin_unlock_irqrestore(&task_group_lock, flags);
9885
9886 /* wait for any ongoing reference to this group to finish */
9887 synchronize_sched();
9888
9889 /*
9890 * Now we are free to modify the group's share on each cpu
9891 * w/o tripping rebalance_share or load_balance_fair.
9892 */
9893 tg->shares = shares;
9894 for_each_possible_cpu(i) {
9895 /*
9896 * force a rebalance
9897 */
9898 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9899 set_se_shares(tg->se[i], shares);
9900 }
9901
9902 /*
9903 * Enable load balance activity on this group, by inserting it back on
9904 * each cpu's rq->leaf_cfs_rq_list.
9905 */
9906 spin_lock_irqsave(&task_group_lock, flags);
9907 for_each_possible_cpu(i)
9908 register_fair_sched_group(tg, i);
9909 list_add_rcu(&tg->siblings, &tg->parent->children);
9910 spin_unlock_irqrestore(&task_group_lock, flags);
9911 done:
9912 mutex_unlock(&shares_mutex);
9913 return 0;
9914 }
9915
9916 unsigned long sched_group_shares(struct task_group *tg)
9917 {
9918 return tg->shares;
9919 }
9920 #endif
9921
9922 #ifdef CONFIG_RT_GROUP_SCHED
9923 /*
9924 * Ensure that the real time constraints are schedulable.
9925 */
9926 static DEFINE_MUTEX(rt_constraints_mutex);
9927
9928 static unsigned long to_ratio(u64 period, u64 runtime)
9929 {
9930 if (runtime == RUNTIME_INF)
9931 return 1ULL << 20;
9932
9933 return div64_u64(runtime << 20, period);
9934 }
9935
9936 /* Must be called with tasklist_lock held */
9937 static inline int tg_has_rt_tasks(struct task_group *tg)
9938 {
9939 struct task_struct *g, *p;
9940
9941 do_each_thread(g, p) {
9942 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9943 return 1;
9944 } while_each_thread(g, p);
9945
9946 return 0;
9947 }
9948
9949 struct rt_schedulable_data {
9950 struct task_group *tg;
9951 u64 rt_period;
9952 u64 rt_runtime;
9953 };
9954
9955 static int tg_schedulable(struct task_group *tg, void *data)
9956 {
9957 struct rt_schedulable_data *d = data;
9958 struct task_group *child;
9959 unsigned long total, sum = 0;
9960 u64 period, runtime;
9961
9962 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9963 runtime = tg->rt_bandwidth.rt_runtime;
9964
9965 if (tg == d->tg) {
9966 period = d->rt_period;
9967 runtime = d->rt_runtime;
9968 }
9969
9970 #ifdef CONFIG_USER_SCHED
9971 if (tg == &root_task_group) {
9972 period = global_rt_period();
9973 runtime = global_rt_runtime();
9974 }
9975 #endif
9976
9977 /*
9978 * Cannot have more runtime than the period.
9979 */
9980 if (runtime > period && runtime != RUNTIME_INF)
9981 return -EINVAL;
9982
9983 /*
9984 * Ensure we don't starve existing RT tasks.
9985 */
9986 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9987 return -EBUSY;
9988
9989 total = to_ratio(period, runtime);
9990
9991 /*
9992 * Nobody can have more than the global setting allows.
9993 */
9994 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9995 return -EINVAL;
9996
9997 /*
9998 * The sum of our children's runtime should not exceed our own.
9999 */
10000 list_for_each_entry_rcu(child, &tg->children, siblings) {
10001 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10002 runtime = child->rt_bandwidth.rt_runtime;
10003
10004 if (child == d->tg) {
10005 period = d->rt_period;
10006 runtime = d->rt_runtime;
10007 }
10008
10009 sum += to_ratio(period, runtime);
10010 }
10011
10012 if (sum > total)
10013 return -EINVAL;
10014
10015 return 0;
10016 }
10017
10018 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10019 {
10020 struct rt_schedulable_data data = {
10021 .tg = tg,
10022 .rt_period = period,
10023 .rt_runtime = runtime,
10024 };
10025
10026 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10027 }
10028
10029 static int tg_set_bandwidth(struct task_group *tg,
10030 u64 rt_period, u64 rt_runtime)
10031 {
10032 int i, err = 0;
10033
10034 mutex_lock(&rt_constraints_mutex);
10035 read_lock(&tasklist_lock);
10036 err = __rt_schedulable(tg, rt_period, rt_runtime);
10037 if (err)
10038 goto unlock;
10039
10040 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10041 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10042 tg->rt_bandwidth.rt_runtime = rt_runtime;
10043
10044 for_each_possible_cpu(i) {
10045 struct rt_rq *rt_rq = tg->rt_rq[i];
10046
10047 spin_lock(&rt_rq->rt_runtime_lock);
10048 rt_rq->rt_runtime = rt_runtime;
10049 spin_unlock(&rt_rq->rt_runtime_lock);
10050 }
10051 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10052 unlock:
10053 read_unlock(&tasklist_lock);
10054 mutex_unlock(&rt_constraints_mutex);
10055
10056 return err;
10057 }
10058
10059 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10060 {
10061 u64 rt_runtime, rt_period;
10062
10063 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10064 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10065 if (rt_runtime_us < 0)
10066 rt_runtime = RUNTIME_INF;
10067
10068 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10069 }
10070
10071 long sched_group_rt_runtime(struct task_group *tg)
10072 {
10073 u64 rt_runtime_us;
10074
10075 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10076 return -1;
10077
10078 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10079 do_div(rt_runtime_us, NSEC_PER_USEC);
10080 return rt_runtime_us;
10081 }
10082
10083 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10084 {
10085 u64 rt_runtime, rt_period;
10086
10087 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10088 rt_runtime = tg->rt_bandwidth.rt_runtime;
10089
10090 if (rt_period == 0)
10091 return -EINVAL;
10092
10093 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10094 }
10095
10096 long sched_group_rt_period(struct task_group *tg)
10097 {
10098 u64 rt_period_us;
10099
10100 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10101 do_div(rt_period_us, NSEC_PER_USEC);
10102 return rt_period_us;
10103 }
10104
10105 static int sched_rt_global_constraints(void)
10106 {
10107 u64 runtime, period;
10108 int ret = 0;
10109
10110 if (sysctl_sched_rt_period <= 0)
10111 return -EINVAL;
10112
10113 runtime = global_rt_runtime();
10114 period = global_rt_period();
10115
10116 /*
10117 * Sanity check on the sysctl variables.
10118 */
10119 if (runtime > period && runtime != RUNTIME_INF)
10120 return -EINVAL;
10121
10122 mutex_lock(&rt_constraints_mutex);
10123 read_lock(&tasklist_lock);
10124 ret = __rt_schedulable(NULL, 0, 0);
10125 read_unlock(&tasklist_lock);
10126 mutex_unlock(&rt_constraints_mutex);
10127
10128 return ret;
10129 }
10130
10131 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10132 {
10133 /* Don't accept realtime tasks when there is no way for them to run */
10134 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10135 return 0;
10136
10137 return 1;
10138 }
10139
10140 #else /* !CONFIG_RT_GROUP_SCHED */
10141 static int sched_rt_global_constraints(void)
10142 {
10143 unsigned long flags;
10144 int i;
10145
10146 if (sysctl_sched_rt_period <= 0)
10147 return -EINVAL;
10148
10149 /*
10150 * There's always some RT tasks in the root group
10151 * -- migration, kstopmachine etc..
10152 */
10153 if (sysctl_sched_rt_runtime == 0)
10154 return -EBUSY;
10155
10156 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10157 for_each_possible_cpu(i) {
10158 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10159
10160 spin_lock(&rt_rq->rt_runtime_lock);
10161 rt_rq->rt_runtime = global_rt_runtime();
10162 spin_unlock(&rt_rq->rt_runtime_lock);
10163 }
10164 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10165
10166 return 0;
10167 }
10168 #endif /* CONFIG_RT_GROUP_SCHED */
10169
10170 int sched_rt_handler(struct ctl_table *table, int write,
10171 struct file *filp, void __user *buffer, size_t *lenp,
10172 loff_t *ppos)
10173 {
10174 int ret;
10175 int old_period, old_runtime;
10176 static DEFINE_MUTEX(mutex);
10177
10178 mutex_lock(&mutex);
10179 old_period = sysctl_sched_rt_period;
10180 old_runtime = sysctl_sched_rt_runtime;
10181
10182 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10183
10184 if (!ret && write) {
10185 ret = sched_rt_global_constraints();
10186 if (ret) {
10187 sysctl_sched_rt_period = old_period;
10188 sysctl_sched_rt_runtime = old_runtime;
10189 } else {
10190 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10191 def_rt_bandwidth.rt_period =
10192 ns_to_ktime(global_rt_period());
10193 }
10194 }
10195 mutex_unlock(&mutex);
10196
10197 return ret;
10198 }
10199
10200 #ifdef CONFIG_CGROUP_SCHED
10201
10202 /* return corresponding task_group object of a cgroup */
10203 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10204 {
10205 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10206 struct task_group, css);
10207 }
10208
10209 static struct cgroup_subsys_state *
10210 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10211 {
10212 struct task_group *tg, *parent;
10213
10214 if (!cgrp->parent) {
10215 /* This is early initialization for the top cgroup */
10216 return &init_task_group.css;
10217 }
10218
10219 parent = cgroup_tg(cgrp->parent);
10220 tg = sched_create_group(parent);
10221 if (IS_ERR(tg))
10222 return ERR_PTR(-ENOMEM);
10223
10224 return &tg->css;
10225 }
10226
10227 static void
10228 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10229 {
10230 struct task_group *tg = cgroup_tg(cgrp);
10231
10232 sched_destroy_group(tg);
10233 }
10234
10235 static int
10236 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10237 struct task_struct *tsk)
10238 {
10239 #ifdef CONFIG_RT_GROUP_SCHED
10240 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10241 return -EINVAL;
10242 #else
10243 /* We don't support RT-tasks being in separate groups */
10244 if (tsk->sched_class != &fair_sched_class)
10245 return -EINVAL;
10246 #endif
10247
10248 return 0;
10249 }
10250
10251 static void
10252 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10253 struct cgroup *old_cont, struct task_struct *tsk)
10254 {
10255 sched_move_task(tsk);
10256 }
10257
10258 #ifdef CONFIG_FAIR_GROUP_SCHED
10259 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10260 u64 shareval)
10261 {
10262 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10263 }
10264
10265 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10266 {
10267 struct task_group *tg = cgroup_tg(cgrp);
10268
10269 return (u64) tg->shares;
10270 }
10271 #endif /* CONFIG_FAIR_GROUP_SCHED */
10272
10273 #ifdef CONFIG_RT_GROUP_SCHED
10274 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10275 s64 val)
10276 {
10277 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10278 }
10279
10280 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10281 {
10282 return sched_group_rt_runtime(cgroup_tg(cgrp));
10283 }
10284
10285 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10286 u64 rt_period_us)
10287 {
10288 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10289 }
10290
10291 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10292 {
10293 return sched_group_rt_period(cgroup_tg(cgrp));
10294 }
10295 #endif /* CONFIG_RT_GROUP_SCHED */
10296
10297 static struct cftype cpu_files[] = {
10298 #ifdef CONFIG_FAIR_GROUP_SCHED
10299 {
10300 .name = "shares",
10301 .read_u64 = cpu_shares_read_u64,
10302 .write_u64 = cpu_shares_write_u64,
10303 },
10304 #endif
10305 #ifdef CONFIG_RT_GROUP_SCHED
10306 {
10307 .name = "rt_runtime_us",
10308 .read_s64 = cpu_rt_runtime_read,
10309 .write_s64 = cpu_rt_runtime_write,
10310 },
10311 {
10312 .name = "rt_period_us",
10313 .read_u64 = cpu_rt_period_read_uint,
10314 .write_u64 = cpu_rt_period_write_uint,
10315 },
10316 #endif
10317 };
10318
10319 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10320 {
10321 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10322 }
10323
10324 struct cgroup_subsys cpu_cgroup_subsys = {
10325 .name = "cpu",
10326 .create = cpu_cgroup_create,
10327 .destroy = cpu_cgroup_destroy,
10328 .can_attach = cpu_cgroup_can_attach,
10329 .attach = cpu_cgroup_attach,
10330 .populate = cpu_cgroup_populate,
10331 .subsys_id = cpu_cgroup_subsys_id,
10332 .early_init = 1,
10333 };
10334
10335 #endif /* CONFIG_CGROUP_SCHED */
10336
10337 #ifdef CONFIG_CGROUP_CPUACCT
10338
10339 /*
10340 * CPU accounting code for task groups.
10341 *
10342 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10343 * (balbir@in.ibm.com).
10344 */
10345
10346 /* track cpu usage of a group of tasks and its child groups */
10347 struct cpuacct {
10348 struct cgroup_subsys_state css;
10349 /* cpuusage holds pointer to a u64-type object on every cpu */
10350 u64 *cpuusage;
10351 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10352 struct cpuacct *parent;
10353 };
10354
10355 struct cgroup_subsys cpuacct_subsys;
10356
10357 /* return cpu accounting group corresponding to this container */
10358 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10359 {
10360 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10361 struct cpuacct, css);
10362 }
10363
10364 /* return cpu accounting group to which this task belongs */
10365 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10366 {
10367 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10368 struct cpuacct, css);
10369 }
10370
10371 /* create a new cpu accounting group */
10372 static struct cgroup_subsys_state *cpuacct_create(
10373 struct cgroup_subsys *ss, struct cgroup *cgrp)
10374 {
10375 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10376 int i;
10377
10378 if (!ca)
10379 goto out;
10380
10381 ca->cpuusage = alloc_percpu(u64);
10382 if (!ca->cpuusage)
10383 goto out_free_ca;
10384
10385 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10386 if (percpu_counter_init(&ca->cpustat[i], 0))
10387 goto out_free_counters;
10388
10389 if (cgrp->parent)
10390 ca->parent = cgroup_ca(cgrp->parent);
10391
10392 return &ca->css;
10393
10394 out_free_counters:
10395 while (--i >= 0)
10396 percpu_counter_destroy(&ca->cpustat[i]);
10397 free_percpu(ca->cpuusage);
10398 out_free_ca:
10399 kfree(ca);
10400 out:
10401 return ERR_PTR(-ENOMEM);
10402 }
10403
10404 /* destroy an existing cpu accounting group */
10405 static void
10406 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10407 {
10408 struct cpuacct *ca = cgroup_ca(cgrp);
10409 int i;
10410
10411 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10412 percpu_counter_destroy(&ca->cpustat[i]);
10413 free_percpu(ca->cpuusage);
10414 kfree(ca);
10415 }
10416
10417 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10418 {
10419 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10420 u64 data;
10421
10422 #ifndef CONFIG_64BIT
10423 /*
10424 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10425 */
10426 spin_lock_irq(&cpu_rq(cpu)->lock);
10427 data = *cpuusage;
10428 spin_unlock_irq(&cpu_rq(cpu)->lock);
10429 #else
10430 data = *cpuusage;
10431 #endif
10432
10433 return data;
10434 }
10435
10436 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10437 {
10438 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10439
10440 #ifndef CONFIG_64BIT
10441 /*
10442 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10443 */
10444 spin_lock_irq(&cpu_rq(cpu)->lock);
10445 *cpuusage = val;
10446 spin_unlock_irq(&cpu_rq(cpu)->lock);
10447 #else
10448 *cpuusage = val;
10449 #endif
10450 }
10451
10452 /* return total cpu usage (in nanoseconds) of a group */
10453 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10454 {
10455 struct cpuacct *ca = cgroup_ca(cgrp);
10456 u64 totalcpuusage = 0;
10457 int i;
10458
10459 for_each_present_cpu(i)
10460 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10461
10462 return totalcpuusage;
10463 }
10464
10465 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10466 u64 reset)
10467 {
10468 struct cpuacct *ca = cgroup_ca(cgrp);
10469 int err = 0;
10470 int i;
10471
10472 if (reset) {
10473 err = -EINVAL;
10474 goto out;
10475 }
10476
10477 for_each_present_cpu(i)
10478 cpuacct_cpuusage_write(ca, i, 0);
10479
10480 out:
10481 return err;
10482 }
10483
10484 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10485 struct seq_file *m)
10486 {
10487 struct cpuacct *ca = cgroup_ca(cgroup);
10488 u64 percpu;
10489 int i;
10490
10491 for_each_present_cpu(i) {
10492 percpu = cpuacct_cpuusage_read(ca, i);
10493 seq_printf(m, "%llu ", (unsigned long long) percpu);
10494 }
10495 seq_printf(m, "\n");
10496 return 0;
10497 }
10498
10499 static const char *cpuacct_stat_desc[] = {
10500 [CPUACCT_STAT_USER] = "user",
10501 [CPUACCT_STAT_SYSTEM] = "system",
10502 };
10503
10504 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10505 struct cgroup_map_cb *cb)
10506 {
10507 struct cpuacct *ca = cgroup_ca(cgrp);
10508 int i;
10509
10510 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10511 s64 val = percpu_counter_read(&ca->cpustat[i]);
10512 val = cputime64_to_clock_t(val);
10513 cb->fill(cb, cpuacct_stat_desc[i], val);
10514 }
10515 return 0;
10516 }
10517
10518 static struct cftype files[] = {
10519 {
10520 .name = "usage",
10521 .read_u64 = cpuusage_read,
10522 .write_u64 = cpuusage_write,
10523 },
10524 {
10525 .name = "usage_percpu",
10526 .read_seq_string = cpuacct_percpu_seq_read,
10527 },
10528 {
10529 .name = "stat",
10530 .read_map = cpuacct_stats_show,
10531 },
10532 };
10533
10534 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10535 {
10536 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10537 }
10538
10539 /*
10540 * charge this task's execution time to its accounting group.
10541 *
10542 * called with rq->lock held.
10543 */
10544 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10545 {
10546 struct cpuacct *ca;
10547 int cpu;
10548
10549 if (unlikely(!cpuacct_subsys.active))
10550 return;
10551
10552 cpu = task_cpu(tsk);
10553
10554 rcu_read_lock();
10555
10556 ca = task_ca(tsk);
10557
10558 for (; ca; ca = ca->parent) {
10559 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10560 *cpuusage += cputime;
10561 }
10562
10563 rcu_read_unlock();
10564 }
10565
10566 /*
10567 * Charge the system/user time to the task's accounting group.
10568 */
10569 static void cpuacct_update_stats(struct task_struct *tsk,
10570 enum cpuacct_stat_index idx, cputime_t val)
10571 {
10572 struct cpuacct *ca;
10573
10574 if (unlikely(!cpuacct_subsys.active))
10575 return;
10576
10577 rcu_read_lock();
10578 ca = task_ca(tsk);
10579
10580 do {
10581 percpu_counter_add(&ca->cpustat[idx], val);
10582 ca = ca->parent;
10583 } while (ca);
10584 rcu_read_unlock();
10585 }
10586
10587 struct cgroup_subsys cpuacct_subsys = {
10588 .name = "cpuacct",
10589 .create = cpuacct_create,
10590 .destroy = cpuacct_destroy,
10591 .populate = cpuacct_populate,
10592 .subsys_id = cpuacct_subsys_id,
10593 };
10594 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.53995 seconds and 6 git commands to generate.