sched: Optimize cgroup vs wakeup a bit
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
545
546 struct cfs_rq cfs;
547 struct rt_rq rt;
548
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
568
569 u64 clock;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
585
586 unsigned long avg_load_per_task;
587
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
590
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(void)
685 {
686 int cpu = get_cpu();
687 struct rq *rq = cpu_rq(cpu);
688 int ret;
689
690 ret = spin_is_locked(&rq->lock);
691 put_cpu();
692 return ret;
693 }
694
695 /*
696 * Debugging: various feature bits
697 */
698
699 #define SCHED_FEAT(name, enabled) \
700 __SCHED_FEAT_##name ,
701
702 enum {
703 #include "sched_features.h"
704 };
705
706 #undef SCHED_FEAT
707
708 #define SCHED_FEAT(name, enabled) \
709 (1UL << __SCHED_FEAT_##name) * enabled |
710
711 const_debug unsigned int sysctl_sched_features =
712 #include "sched_features.h"
713 0;
714
715 #undef SCHED_FEAT
716
717 #ifdef CONFIG_SCHED_DEBUG
718 #define SCHED_FEAT(name, enabled) \
719 #name ,
720
721 static __read_mostly char *sched_feat_names[] = {
722 #include "sched_features.h"
723 NULL
724 };
725
726 #undef SCHED_FEAT
727
728 static int sched_feat_show(struct seq_file *m, void *v)
729 {
730 int i;
731
732 for (i = 0; sched_feat_names[i]; i++) {
733 if (!(sysctl_sched_features & (1UL << i)))
734 seq_puts(m, "NO_");
735 seq_printf(m, "%s ", sched_feat_names[i]);
736 }
737 seq_puts(m, "\n");
738
739 return 0;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745 {
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
759 if (strncmp(buf, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782 }
783
784 static int sched_feat_open(struct inode *inode, struct file *filp)
785 {
786 return single_open(filp, sched_feat_show, NULL);
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .write = sched_feat_write,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
795 };
796
797 static __init int sched_init_debug(void)
798 {
799 debugfs_create_file("sched_features", 0644, NULL, NULL,
800 &sched_feat_fops);
801
802 return 0;
803 }
804 late_initcall(sched_init_debug);
805
806 #endif
807
808 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809
810 /*
811 * Number of tasks to iterate in a single balance run.
812 * Limited because this is done with IRQs disabled.
813 */
814 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815
816 /*
817 * ratelimit for updating the group shares.
818 * default: 0.25ms
819 */
820 unsigned int sysctl_sched_shares_ratelimit = 250000;
821
822 /*
823 * Inject some fuzzyness into changing the per-cpu group shares
824 * this avoids remote rq-locks at the expense of fairness.
825 * default: 4
826 */
827 unsigned int sysctl_sched_shares_thresh = 4;
828
829 /*
830 * period over which we average the RT time consumption, measured
831 * in ms.
832 *
833 * default: 1s
834 */
835 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
836
837 /*
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
840 */
841 unsigned int sysctl_sched_rt_period = 1000000;
842
843 static __read_mostly int scheduler_running;
844
845 /*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849 int sysctl_sched_rt_runtime = 950000;
850
851 static inline u64 global_rt_period(void)
852 {
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 }
855
856 static inline u64 global_rt_runtime(void)
857 {
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 }
863
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
870
871 static inline int task_current(struct rq *rq, struct task_struct *p)
872 {
873 return rq->curr == p;
874 }
875
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
878 {
879 return task_current(rq, p);
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 }
885
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 {
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
899 spin_unlock_irq(&rq->lock);
900 }
901
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
904 {
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
910 }
911
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
927 }
928
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 {
931 #ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
943 }
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945
946 /*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
952 {
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
959 }
960 }
961
962 /*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
966 */
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
969 {
970 struct rq *rq;
971
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980 }
981
982 void task_rq_unlock_wait(struct task_struct *p)
983 {
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988 }
989
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
992 {
993 spin_unlock(&rq->lock);
994 }
995
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
998 {
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000 }
1001
1002 /*
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1004 */
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1007 {
1008 struct rq *rq;
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015 }
1016
1017 #ifdef CONFIG_SCHED_HRTICK
1018 /*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
1028
1029 /*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034 static inline int hrtick_enabled(struct rq *rq)
1035 {
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041 }
1042
1043 static void hrtick_clear(struct rq *rq)
1044 {
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047 }
1048
1049 /*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 {
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065 }
1066
1067 #ifdef CONFIG_SMP
1068 /*
1069 * called from hardirq (IPI) context
1070 */
1071 static void __hrtick_start(void *arg)
1072 {
1073 struct rq *rq = arg;
1074
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1079 }
1080
1081 /*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086 static void hrtick_start(struct rq *rq, u64 delay)
1087 {
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090
1091 hrtimer_set_expires(timer, time);
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1097 rq->hrtick_csd_pending = 1;
1098 }
1099 }
1100
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 {
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118 }
1119
1120 static __init void init_hrtick(void)
1121 {
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123 }
1124 #else
1125 /*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130 static void hrtick_start(struct rq *rq, u64 delay)
1131 {
1132 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1133 HRTIMER_MODE_REL_PINNED, 0);
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif /* CONFIG_SMP */
1140
1141 static void init_rq_hrtick(struct rq *rq)
1142 {
1143 #ifdef CONFIG_SMP
1144 rq->hrtick_csd_pending = 0;
1145
1146 rq->hrtick_csd.flags = 0;
1147 rq->hrtick_csd.func = __hrtick_start;
1148 rq->hrtick_csd.info = rq;
1149 #endif
1150
1151 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1152 rq->hrtick_timer.function = hrtick;
1153 }
1154 #else /* CONFIG_SCHED_HRTICK */
1155 static inline void hrtick_clear(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_rq_hrtick(struct rq *rq)
1160 {
1161 }
1162
1163 static inline void init_hrtick(void)
1164 {
1165 }
1166 #endif /* CONFIG_SCHED_HRTICK */
1167
1168 /*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175 #ifdef CONFIG_SMP
1176
1177 #ifndef tsk_is_polling
1178 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179 #endif
1180
1181 static void resched_task(struct task_struct *p)
1182 {
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
1187 if (test_tsk_need_resched(p))
1188 return;
1189
1190 set_tsk_need_resched(p);
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200 }
1201
1202 static void resched_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211 }
1212
1213 #ifdef CONFIG_NO_HZ
1214 /*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224 void wake_up_idle_cpu(int cpu)
1225 {
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_need_resched(rq->idle);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252 }
1253 #endif /* CONFIG_NO_HZ */
1254
1255 static u64 sched_avg_period(void)
1256 {
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258 }
1259
1260 static void sched_avg_update(struct rq *rq)
1261 {
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268 }
1269
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 {
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274 }
1275
1276 #else /* !CONFIG_SMP */
1277 static void resched_task(struct task_struct *p)
1278 {
1279 assert_spin_locked(&task_rq(p)->lock);
1280 set_tsk_need_resched(p);
1281 }
1282
1283 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 /* Used instead of source_load when we know the type == 0 */
1497 static unsigned long weighted_cpuload(const int cpu)
1498 {
1499 return cpu_rq(cpu)->load.weight;
1500 }
1501
1502 /*
1503 * Return a low guess at the load of a migration-source cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 *
1506 * We want to under-estimate the load of migration sources, to
1507 * balance conservatively.
1508 */
1509 static unsigned long source_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return min(rq->cpu_load[type-1], total);
1518 }
1519
1520 /*
1521 * Return a high guess at the load of a migration-target cpu weighted
1522 * according to the scheduling class and "nice" value.
1523 */
1524 static unsigned long target_load(int cpu, int type)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return max(rq->cpu_load[type-1], total);
1533 }
1534
1535 static struct sched_group *group_of(int cpu)
1536 {
1537 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538
1539 if (!sd)
1540 return NULL;
1541
1542 return sd->groups;
1543 }
1544
1545 static unsigned long power_of(int cpu)
1546 {
1547 struct sched_group *group = group_of(cpu);
1548
1549 if (!group)
1550 return SCHED_LOAD_SCALE;
1551
1552 return group->cpu_power;
1553 }
1554
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1558 {
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1564 else
1565 rq->avg_load_per_task = 0;
1566
1567 return rq->avg_load_per_task;
1568 }
1569
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1571
1572 struct update_shares_data {
1573 unsigned long rq_weight[NR_CPUS];
1574 };
1575
1576 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1577
1578 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1579
1580 /*
1581 * Calculate and set the cpu's group shares.
1582 */
1583 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1584 unsigned long sd_shares,
1585 unsigned long sd_rq_weight,
1586 struct update_shares_data *usd)
1587 {
1588 unsigned long shares, rq_weight;
1589 int boost = 0;
1590
1591 rq_weight = usd->rq_weight[cpu];
1592 if (!rq_weight) {
1593 boost = 1;
1594 rq_weight = NICE_0_LOAD;
1595 }
1596
1597 /*
1598 * \Sum_j shares_j * rq_weight_i
1599 * shares_i = -----------------------------
1600 * \Sum_j rq_weight_j
1601 */
1602 shares = (sd_shares * rq_weight) / sd_rq_weight;
1603 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1604
1605 if (abs(shares - tg->se[cpu]->load.weight) >
1606 sysctl_sched_shares_thresh) {
1607 struct rq *rq = cpu_rq(cpu);
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&rq->lock, flags);
1611 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1612 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1613 __set_se_shares(tg->se[cpu], shares);
1614 spin_unlock_irqrestore(&rq->lock, flags);
1615 }
1616 }
1617
1618 /*
1619 * Re-compute the task group their per cpu shares over the given domain.
1620 * This needs to be done in a bottom-up fashion because the rq weight of a
1621 * parent group depends on the shares of its child groups.
1622 */
1623 static int tg_shares_up(struct task_group *tg, void *data)
1624 {
1625 unsigned long weight, rq_weight = 0, shares = 0;
1626 struct update_shares_data *usd;
1627 struct sched_domain *sd = data;
1628 unsigned long flags;
1629 int i;
1630
1631 if (!tg->se[0])
1632 return 0;
1633
1634 local_irq_save(flags);
1635 usd = &__get_cpu_var(update_shares_data);
1636
1637 for_each_cpu(i, sched_domain_span(sd)) {
1638 weight = tg->cfs_rq[i]->load.weight;
1639 usd->rq_weight[i] = weight;
1640
1641 /*
1642 * If there are currently no tasks on the cpu pretend there
1643 * is one of average load so that when a new task gets to
1644 * run here it will not get delayed by group starvation.
1645 */
1646 if (!weight)
1647 weight = NICE_0_LOAD;
1648
1649 rq_weight += weight;
1650 shares += tg->cfs_rq[i]->shares;
1651 }
1652
1653 if ((!shares && rq_weight) || shares > tg->shares)
1654 shares = tg->shares;
1655
1656 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1657 shares = tg->shares;
1658
1659 for_each_cpu(i, sched_domain_span(sd))
1660 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1661
1662 local_irq_restore(flags);
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Compute the cpu's hierarchical load factor for each task group.
1669 * This needs to be done in a top-down fashion because the load of a child
1670 * group is a fraction of its parents load.
1671 */
1672 static int tg_load_down(struct task_group *tg, void *data)
1673 {
1674 unsigned long load;
1675 long cpu = (long)data;
1676
1677 if (!tg->parent) {
1678 load = cpu_rq(cpu)->load.weight;
1679 } else {
1680 load = tg->parent->cfs_rq[cpu]->h_load;
1681 load *= tg->cfs_rq[cpu]->shares;
1682 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1683 }
1684
1685 tg->cfs_rq[cpu]->h_load = load;
1686
1687 return 0;
1688 }
1689
1690 static void update_shares(struct sched_domain *sd)
1691 {
1692 s64 elapsed;
1693 u64 now;
1694
1695 if (root_task_group_empty())
1696 return;
1697
1698 now = cpu_clock(raw_smp_processor_id());
1699 elapsed = now - sd->last_update;
1700
1701 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1702 sd->last_update = now;
1703 walk_tg_tree(tg_nop, tg_shares_up, sd);
1704 }
1705 }
1706
1707 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1708 {
1709 if (root_task_group_empty())
1710 return;
1711
1712 spin_unlock(&rq->lock);
1713 update_shares(sd);
1714 spin_lock(&rq->lock);
1715 }
1716
1717 static void update_h_load(long cpu)
1718 {
1719 if (root_task_group_empty())
1720 return;
1721
1722 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1723 }
1724
1725 #else
1726
1727 static inline void update_shares(struct sched_domain *sd)
1728 {
1729 }
1730
1731 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1732 {
1733 }
1734
1735 #endif
1736
1737 #ifdef CONFIG_PREEMPT
1738
1739 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1740
1741 /*
1742 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1743 * way at the expense of forcing extra atomic operations in all
1744 * invocations. This assures that the double_lock is acquired using the
1745 * same underlying policy as the spinlock_t on this architecture, which
1746 * reduces latency compared to the unfair variant below. However, it
1747 * also adds more overhead and therefore may reduce throughput.
1748 */
1749 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1750 __releases(this_rq->lock)
1751 __acquires(busiest->lock)
1752 __acquires(this_rq->lock)
1753 {
1754 spin_unlock(&this_rq->lock);
1755 double_rq_lock(this_rq, busiest);
1756
1757 return 1;
1758 }
1759
1760 #else
1761 /*
1762 * Unfair double_lock_balance: Optimizes throughput at the expense of
1763 * latency by eliminating extra atomic operations when the locks are
1764 * already in proper order on entry. This favors lower cpu-ids and will
1765 * grant the double lock to lower cpus over higher ids under contention,
1766 * regardless of entry order into the function.
1767 */
1768 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1769 __releases(this_rq->lock)
1770 __acquires(busiest->lock)
1771 __acquires(this_rq->lock)
1772 {
1773 int ret = 0;
1774
1775 if (unlikely(!spin_trylock(&busiest->lock))) {
1776 if (busiest < this_rq) {
1777 spin_unlock(&this_rq->lock);
1778 spin_lock(&busiest->lock);
1779 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809 #endif
1810
1811 #ifdef CONFIG_FAIR_GROUP_SCHED
1812 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813 {
1814 #ifdef CONFIG_SMP
1815 cfs_rq->shares = shares;
1816 #endif
1817 }
1818 #endif
1819
1820 static void calc_load_account_active(struct rq *this_rq);
1821
1822 #include "sched_stats.h"
1823 #include "sched_idletask.c"
1824 #include "sched_fair.c"
1825 #include "sched_rt.c"
1826 #ifdef CONFIG_SCHED_DEBUG
1827 # include "sched_debug.c"
1828 #endif
1829
1830 #define sched_class_highest (&rt_sched_class)
1831 #define for_each_class(class) \
1832 for (class = sched_class_highest; class; class = class->next)
1833
1834 static void inc_nr_running(struct rq *rq)
1835 {
1836 rq->nr_running++;
1837 }
1838
1839 static void dec_nr_running(struct rq *rq)
1840 {
1841 rq->nr_running--;
1842 }
1843
1844 static void set_load_weight(struct task_struct *p)
1845 {
1846 if (task_has_rt_policy(p)) {
1847 p->se.load.weight = prio_to_weight[0] * 2;
1848 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1849 return;
1850 }
1851
1852 /*
1853 * SCHED_IDLE tasks get minimal weight:
1854 */
1855 if (p->policy == SCHED_IDLE) {
1856 p->se.load.weight = WEIGHT_IDLEPRIO;
1857 p->se.load.inv_weight = WMULT_IDLEPRIO;
1858 return;
1859 }
1860
1861 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1862 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1863 }
1864
1865 static void update_avg(u64 *avg, u64 sample)
1866 {
1867 s64 diff = sample - *avg;
1868 *avg += diff >> 3;
1869 }
1870
1871 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1872 {
1873 if (wakeup)
1874 p->se.start_runtime = p->se.sum_exec_runtime;
1875
1876 sched_info_queued(p);
1877 p->sched_class->enqueue_task(rq, p, wakeup);
1878 p->se.on_rq = 1;
1879 }
1880
1881 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1882 {
1883 if (sleep) {
1884 if (p->se.last_wakeup) {
1885 update_avg(&p->se.avg_overlap,
1886 p->se.sum_exec_runtime - p->se.last_wakeup);
1887 p->se.last_wakeup = 0;
1888 } else {
1889 update_avg(&p->se.avg_wakeup,
1890 sysctl_sched_wakeup_granularity);
1891 }
1892 }
1893
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, sleep);
1896 p->se.on_rq = 0;
1897 }
1898
1899 /*
1900 * __normal_prio - return the priority that is based on the static prio
1901 */
1902 static inline int __normal_prio(struct task_struct *p)
1903 {
1904 return p->static_prio;
1905 }
1906
1907 /*
1908 * Calculate the expected normal priority: i.e. priority
1909 * without taking RT-inheritance into account. Might be
1910 * boosted by interactivity modifiers. Changes upon fork,
1911 * setprio syscalls, and whenever the interactivity
1912 * estimator recalculates.
1913 */
1914 static inline int normal_prio(struct task_struct *p)
1915 {
1916 int prio;
1917
1918 if (task_has_rt_policy(p))
1919 prio = MAX_RT_PRIO-1 - p->rt_priority;
1920 else
1921 prio = __normal_prio(p);
1922 return prio;
1923 }
1924
1925 /*
1926 * Calculate the current priority, i.e. the priority
1927 * taken into account by the scheduler. This value might
1928 * be boosted by RT tasks, or might be boosted by
1929 * interactivity modifiers. Will be RT if the task got
1930 * RT-boosted. If not then it returns p->normal_prio.
1931 */
1932 static int effective_prio(struct task_struct *p)
1933 {
1934 p->normal_prio = normal_prio(p);
1935 /*
1936 * If we are RT tasks or we were boosted to RT priority,
1937 * keep the priority unchanged. Otherwise, update priority
1938 * to the normal priority:
1939 */
1940 if (!rt_prio(p->prio))
1941 return p->normal_prio;
1942 return p->prio;
1943 }
1944
1945 /*
1946 * activate_task - move a task to the runqueue.
1947 */
1948 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1949 {
1950 if (task_contributes_to_load(p))
1951 rq->nr_uninterruptible--;
1952
1953 enqueue_task(rq, p, wakeup);
1954 inc_nr_running(rq);
1955 }
1956
1957 /*
1958 * deactivate_task - remove a task from the runqueue.
1959 */
1960 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1961 {
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible++;
1964
1965 dequeue_task(rq, p, sleep);
1966 dec_nr_running(rq);
1967 }
1968
1969 /**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
1973 inline int task_curr(const struct task_struct *p)
1974 {
1975 return cpu_curr(task_cpu(p)) == p;
1976 }
1977
1978 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1979 {
1980 set_task_rq(p, cpu);
1981 #ifdef CONFIG_SMP
1982 /*
1983 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1984 * successfuly executed on another CPU. We must ensure that updates of
1985 * per-task data have been completed by this moment.
1986 */
1987 smp_wmb();
1988 task_thread_info(p)->cpu = cpu;
1989 #endif
1990 }
1991
1992 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1993 const struct sched_class *prev_class,
1994 int oldprio, int running)
1995 {
1996 if (prev_class != p->sched_class) {
1997 if (prev_class->switched_from)
1998 prev_class->switched_from(rq, p, running);
1999 p->sched_class->switched_to(rq, p, running);
2000 } else
2001 p->sched_class->prio_changed(rq, p, oldprio, running);
2002 }
2003
2004 #ifdef CONFIG_SMP
2005 /*
2006 * Is this task likely cache-hot:
2007 */
2008 static int
2009 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010 {
2011 s64 delta;
2012
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
2016 if (sched_feat(CACHE_HOT_BUDDY) &&
2017 (&p->se == cfs_rq_of(&p->se)->next ||
2018 &p->se == cfs_rq_of(&p->se)->last))
2019 return 1;
2020
2021 if (p->sched_class != &fair_sched_class)
2022 return 0;
2023
2024 if (sysctl_sched_migration_cost == -1)
2025 return 1;
2026 if (sysctl_sched_migration_cost == 0)
2027 return 0;
2028
2029 delta = now - p->se.exec_start;
2030
2031 return delta < (s64)sysctl_sched_migration_cost;
2032 }
2033
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 int old_cpu = task_cpu(p);
2038 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2039 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2040 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2041 u64 clock_offset;
2042
2043 clock_offset = old_rq->clock - new_rq->clock;
2044
2045 trace_sched_migrate_task(p, new_cpu);
2046
2047 #ifdef CONFIG_SCHEDSTATS
2048 if (p->se.wait_start)
2049 p->se.wait_start -= clock_offset;
2050 if (p->se.sleep_start)
2051 p->se.sleep_start -= clock_offset;
2052 if (p->se.block_start)
2053 p->se.block_start -= clock_offset;
2054 #endif
2055 if (old_cpu != new_cpu) {
2056 p->se.nr_migrations++;
2057 new_rq->nr_migrations_in++;
2058 #ifdef CONFIG_SCHEDSTATS
2059 if (task_hot(p, old_rq->clock, NULL))
2060 schedstat_inc(p, se.nr_forced2_migrations);
2061 #endif
2062 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2063 1, 1, NULL, 0);
2064 }
2065 p->se.vruntime -= old_cfsrq->min_vruntime -
2066 new_cfsrq->min_vruntime;
2067
2068 __set_task_cpu(p, new_cpu);
2069 }
2070
2071 struct migration_req {
2072 struct list_head list;
2073
2074 struct task_struct *task;
2075 int dest_cpu;
2076
2077 struct completion done;
2078 };
2079
2080 /*
2081 * The task's runqueue lock must be held.
2082 * Returns true if you have to wait for migration thread.
2083 */
2084 static int
2085 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2086 {
2087 struct rq *rq = task_rq(p);
2088
2089 /*
2090 * If the task is not on a runqueue (and not running), then
2091 * it is sufficient to simply update the task's cpu field.
2092 */
2093 if (!p->se.on_rq && !task_running(rq, p)) {
2094 set_task_cpu(p, dest_cpu);
2095 return 0;
2096 }
2097
2098 init_completion(&req->done);
2099 req->task = p;
2100 req->dest_cpu = dest_cpu;
2101 list_add(&req->list, &rq->migration_queue);
2102
2103 return 1;
2104 }
2105
2106 /*
2107 * wait_task_context_switch - wait for a thread to complete at least one
2108 * context switch.
2109 *
2110 * @p must not be current.
2111 */
2112 void wait_task_context_switch(struct task_struct *p)
2113 {
2114 unsigned long nvcsw, nivcsw, flags;
2115 int running;
2116 struct rq *rq;
2117
2118 nvcsw = p->nvcsw;
2119 nivcsw = p->nivcsw;
2120 for (;;) {
2121 /*
2122 * The runqueue is assigned before the actual context
2123 * switch. We need to take the runqueue lock.
2124 *
2125 * We could check initially without the lock but it is
2126 * very likely that we need to take the lock in every
2127 * iteration.
2128 */
2129 rq = task_rq_lock(p, &flags);
2130 running = task_running(rq, p);
2131 task_rq_unlock(rq, &flags);
2132
2133 if (likely(!running))
2134 break;
2135 /*
2136 * The switch count is incremented before the actual
2137 * context switch. We thus wait for two switches to be
2138 * sure at least one completed.
2139 */
2140 if ((p->nvcsw - nvcsw) > 1)
2141 break;
2142 if ((p->nivcsw - nivcsw) > 1)
2143 break;
2144
2145 cpu_relax();
2146 }
2147 }
2148
2149 /*
2150 * wait_task_inactive - wait for a thread to unschedule.
2151 *
2152 * If @match_state is nonzero, it's the @p->state value just checked and
2153 * not expected to change. If it changes, i.e. @p might have woken up,
2154 * then return zero. When we succeed in waiting for @p to be off its CPU,
2155 * we return a positive number (its total switch count). If a second call
2156 * a short while later returns the same number, the caller can be sure that
2157 * @p has remained unscheduled the whole time.
2158 *
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2164 */
2165 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2166 {
2167 unsigned long flags;
2168 int running, on_rq;
2169 unsigned long ncsw;
2170 struct rq *rq;
2171
2172 for (;;) {
2173 /*
2174 * We do the initial early heuristics without holding
2175 * any task-queue locks at all. We'll only try to get
2176 * the runqueue lock when things look like they will
2177 * work out!
2178 */
2179 rq = task_rq(p);
2180
2181 /*
2182 * If the task is actively running on another CPU
2183 * still, just relax and busy-wait without holding
2184 * any locks.
2185 *
2186 * NOTE! Since we don't hold any locks, it's not
2187 * even sure that "rq" stays as the right runqueue!
2188 * But we don't care, since "task_running()" will
2189 * return false if the runqueue has changed and p
2190 * is actually now running somewhere else!
2191 */
2192 while (task_running(rq, p)) {
2193 if (match_state && unlikely(p->state != match_state))
2194 return 0;
2195 cpu_relax();
2196 }
2197
2198 /*
2199 * Ok, time to look more closely! We need the rq
2200 * lock now, to be *sure*. If we're wrong, we'll
2201 * just go back and repeat.
2202 */
2203 rq = task_rq_lock(p, &flags);
2204 trace_sched_wait_task(rq, p);
2205 running = task_running(rq, p);
2206 on_rq = p->se.on_rq;
2207 ncsw = 0;
2208 if (!match_state || p->state == match_state)
2209 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2210 task_rq_unlock(rq, &flags);
2211
2212 /*
2213 * If it changed from the expected state, bail out now.
2214 */
2215 if (unlikely(!ncsw))
2216 break;
2217
2218 /*
2219 * Was it really running after all now that we
2220 * checked with the proper locks actually held?
2221 *
2222 * Oops. Go back and try again..
2223 */
2224 if (unlikely(running)) {
2225 cpu_relax();
2226 continue;
2227 }
2228
2229 /*
2230 * It's not enough that it's not actively running,
2231 * it must be off the runqueue _entirely_, and not
2232 * preempted!
2233 *
2234 * So if it was still runnable (but just not actively
2235 * running right now), it's preempted, and we should
2236 * yield - it could be a while.
2237 */
2238 if (unlikely(on_rq)) {
2239 schedule_timeout_uninterruptible(1);
2240 continue;
2241 }
2242
2243 /*
2244 * Ahh, all good. It wasn't running, and it wasn't
2245 * runnable, which means that it will never become
2246 * running in the future either. We're all done!
2247 */
2248 break;
2249 }
2250
2251 return ncsw;
2252 }
2253
2254 /***
2255 * kick_process - kick a running thread to enter/exit the kernel
2256 * @p: the to-be-kicked thread
2257 *
2258 * Cause a process which is running on another CPU to enter
2259 * kernel-mode, without any delay. (to get signals handled.)
2260 *
2261 * NOTE: this function doesnt have to take the runqueue lock,
2262 * because all it wants to ensure is that the remote task enters
2263 * the kernel. If the IPI races and the task has been migrated
2264 * to another CPU then no harm is done and the purpose has been
2265 * achieved as well.
2266 */
2267 void kick_process(struct task_struct *p)
2268 {
2269 int cpu;
2270
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if ((cpu != smp_processor_id()) && task_curr(p))
2274 smp_send_reschedule(cpu);
2275 preempt_enable();
2276 }
2277 EXPORT_SYMBOL_GPL(kick_process);
2278 #endif /* CONFIG_SMP */
2279
2280 /**
2281 * task_oncpu_function_call - call a function on the cpu on which a task runs
2282 * @p: the task to evaluate
2283 * @func: the function to be called
2284 * @info: the function call argument
2285 *
2286 * Calls the function @func when the task is currently running. This might
2287 * be on the current CPU, which just calls the function directly
2288 */
2289 void task_oncpu_function_call(struct task_struct *p,
2290 void (*func) (void *info), void *info)
2291 {
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if (task_curr(p))
2297 smp_call_function_single(cpu, func, info, 1);
2298 preempt_enable();
2299 }
2300
2301 /***
2302 * try_to_wake_up - wake up a thread
2303 * @p: the to-be-woken-up thread
2304 * @state: the mask of task states that can be woken
2305 * @sync: do a synchronous wakeup?
2306 *
2307 * Put it on the run-queue if it's not already there. The "current"
2308 * thread is always on the run-queue (except when the actual
2309 * re-schedule is in progress), and as such you're allowed to do
2310 * the simpler "current->state = TASK_RUNNING" to mark yourself
2311 * runnable without the overhead of this.
2312 *
2313 * returns failure only if the task is already active.
2314 */
2315 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2316 int wake_flags)
2317 {
2318 int cpu, orig_cpu, this_cpu, success = 0;
2319 unsigned long flags;
2320 struct rq *rq;
2321
2322 if (!sched_feat(SYNC_WAKEUPS))
2323 wake_flags &= ~WF_SYNC;
2324
2325 this_cpu = get_cpu();
2326
2327 smp_wmb();
2328 rq = task_rq_lock(p, &flags);
2329 update_rq_clock(rq);
2330 if (!(p->state & state))
2331 goto out;
2332
2333 if (p->se.on_rq)
2334 goto out_running;
2335
2336 cpu = task_cpu(p);
2337 orig_cpu = cpu;
2338
2339 #ifdef CONFIG_SMP
2340 if (unlikely(task_running(rq, p)))
2341 goto out_activate;
2342
2343 /*
2344 * In order to handle concurrent wakeups and release the rq->lock
2345 * we put the task in TASK_WAKING state.
2346 */
2347 p->state = TASK_WAKING;
2348 task_rq_unlock(rq, &flags);
2349
2350 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2351 if (cpu != orig_cpu)
2352 set_task_cpu(p, cpu);
2353
2354 rq = task_rq_lock(p, &flags);
2355 WARN_ON(p->state != TASK_WAKING);
2356 cpu = task_cpu(p);
2357
2358 #ifdef CONFIG_SCHEDSTATS
2359 schedstat_inc(rq, ttwu_count);
2360 if (cpu == this_cpu)
2361 schedstat_inc(rq, ttwu_local);
2362 else {
2363 struct sched_domain *sd;
2364 for_each_domain(this_cpu, sd) {
2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 schedstat_inc(sd, ttwu_wake_remote);
2367 break;
2368 }
2369 }
2370 }
2371 #endif /* CONFIG_SCHEDSTATS */
2372
2373 out_activate:
2374 #endif /* CONFIG_SMP */
2375 schedstat_inc(p, se.nr_wakeups);
2376 if (wake_flags & WF_SYNC)
2377 schedstat_inc(p, se.nr_wakeups_sync);
2378 if (orig_cpu != cpu)
2379 schedstat_inc(p, se.nr_wakeups_migrate);
2380 if (cpu == this_cpu)
2381 schedstat_inc(p, se.nr_wakeups_local);
2382 else
2383 schedstat_inc(p, se.nr_wakeups_remote);
2384 activate_task(rq, p, 1);
2385 success = 1;
2386
2387 /*
2388 * Only attribute actual wakeups done by this task.
2389 */
2390 if (!in_interrupt()) {
2391 struct sched_entity *se = &current->se;
2392 u64 sample = se->sum_exec_runtime;
2393
2394 if (se->last_wakeup)
2395 sample -= se->last_wakeup;
2396 else
2397 sample -= se->start_runtime;
2398 update_avg(&se->avg_wakeup, sample);
2399
2400 se->last_wakeup = se->sum_exec_runtime;
2401 }
2402
2403 out_running:
2404 trace_sched_wakeup(rq, p, success);
2405 check_preempt_curr(rq, p, wake_flags);
2406
2407 p->state = TASK_RUNNING;
2408 #ifdef CONFIG_SMP
2409 if (p->sched_class->task_wake_up)
2410 p->sched_class->task_wake_up(rq, p);
2411 #endif
2412 out:
2413 task_rq_unlock(rq, &flags);
2414 put_cpu();
2415
2416 return success;
2417 }
2418
2419 /**
2420 * wake_up_process - Wake up a specific process
2421 * @p: The process to be woken up.
2422 *
2423 * Attempt to wake up the nominated process and move it to the set of runnable
2424 * processes. Returns 1 if the process was woken up, 0 if it was already
2425 * running.
2426 *
2427 * It may be assumed that this function implies a write memory barrier before
2428 * changing the task state if and only if any tasks are woken up.
2429 */
2430 int wake_up_process(struct task_struct *p)
2431 {
2432 return try_to_wake_up(p, TASK_ALL, 0);
2433 }
2434 EXPORT_SYMBOL(wake_up_process);
2435
2436 int wake_up_state(struct task_struct *p, unsigned int state)
2437 {
2438 return try_to_wake_up(p, state, 0);
2439 }
2440
2441 /*
2442 * Perform scheduler related setup for a newly forked process p.
2443 * p is forked by current.
2444 *
2445 * __sched_fork() is basic setup used by init_idle() too:
2446 */
2447 static void __sched_fork(struct task_struct *p)
2448 {
2449 p->se.exec_start = 0;
2450 p->se.sum_exec_runtime = 0;
2451 p->se.prev_sum_exec_runtime = 0;
2452 p->se.nr_migrations = 0;
2453 p->se.last_wakeup = 0;
2454 p->se.avg_overlap = 0;
2455 p->se.start_runtime = 0;
2456 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2457
2458 #ifdef CONFIG_SCHEDSTATS
2459 p->se.wait_start = 0;
2460 p->se.wait_max = 0;
2461 p->se.wait_count = 0;
2462 p->se.wait_sum = 0;
2463
2464 p->se.sleep_start = 0;
2465 p->se.sleep_max = 0;
2466 p->se.sum_sleep_runtime = 0;
2467
2468 p->se.block_start = 0;
2469 p->se.block_max = 0;
2470 p->se.exec_max = 0;
2471 p->se.slice_max = 0;
2472
2473 p->se.nr_migrations_cold = 0;
2474 p->se.nr_failed_migrations_affine = 0;
2475 p->se.nr_failed_migrations_running = 0;
2476 p->se.nr_failed_migrations_hot = 0;
2477 p->se.nr_forced_migrations = 0;
2478 p->se.nr_forced2_migrations = 0;
2479
2480 p->se.nr_wakeups = 0;
2481 p->se.nr_wakeups_sync = 0;
2482 p->se.nr_wakeups_migrate = 0;
2483 p->se.nr_wakeups_local = 0;
2484 p->se.nr_wakeups_remote = 0;
2485 p->se.nr_wakeups_affine = 0;
2486 p->se.nr_wakeups_affine_attempts = 0;
2487 p->se.nr_wakeups_passive = 0;
2488 p->se.nr_wakeups_idle = 0;
2489
2490 #endif
2491
2492 INIT_LIST_HEAD(&p->rt.run_list);
2493 p->se.on_rq = 0;
2494 INIT_LIST_HEAD(&p->se.group_node);
2495
2496 #ifdef CONFIG_PREEMPT_NOTIFIERS
2497 INIT_HLIST_HEAD(&p->preempt_notifiers);
2498 #endif
2499
2500 /*
2501 * We mark the process as running here, but have not actually
2502 * inserted it onto the runqueue yet. This guarantees that
2503 * nobody will actually run it, and a signal or other external
2504 * event cannot wake it up and insert it on the runqueue either.
2505 */
2506 p->state = TASK_RUNNING;
2507 }
2508
2509 /*
2510 * fork()/clone()-time setup:
2511 */
2512 void sched_fork(struct task_struct *p, int clone_flags)
2513 {
2514 int cpu = get_cpu();
2515
2516 __sched_fork(p);
2517
2518 /*
2519 * Make sure we do not leak PI boosting priority to the child.
2520 */
2521 p->prio = current->normal_prio;
2522
2523 /*
2524 * Revert to default priority/policy on fork if requested.
2525 */
2526 if (unlikely(p->sched_reset_on_fork)) {
2527 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2528 p->policy = SCHED_NORMAL;
2529
2530 if (p->normal_prio < DEFAULT_PRIO)
2531 p->prio = DEFAULT_PRIO;
2532
2533 if (PRIO_TO_NICE(p->static_prio) < 0) {
2534 p->static_prio = NICE_TO_PRIO(0);
2535 set_load_weight(p);
2536 }
2537
2538 /*
2539 * We don't need the reset flag anymore after the fork. It has
2540 * fulfilled its duty:
2541 */
2542 p->sched_reset_on_fork = 0;
2543 }
2544
2545 if (!rt_prio(p->prio))
2546 p->sched_class = &fair_sched_class;
2547
2548 #ifdef CONFIG_SMP
2549 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2550 #endif
2551 set_task_cpu(p, cpu);
2552
2553 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2554 if (likely(sched_info_on()))
2555 memset(&p->sched_info, 0, sizeof(p->sched_info));
2556 #endif
2557 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2558 p->oncpu = 0;
2559 #endif
2560 #ifdef CONFIG_PREEMPT
2561 /* Want to start with kernel preemption disabled. */
2562 task_thread_info(p)->preempt_count = 1;
2563 #endif
2564 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2565
2566 put_cpu();
2567 }
2568
2569 /*
2570 * wake_up_new_task - wake up a newly created task for the first time.
2571 *
2572 * This function will do some initial scheduler statistics housekeeping
2573 * that must be done for every newly created context, then puts the task
2574 * on the runqueue and wakes it.
2575 */
2576 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2577 {
2578 unsigned long flags;
2579 struct rq *rq;
2580
2581 rq = task_rq_lock(p, &flags);
2582 BUG_ON(p->state != TASK_RUNNING);
2583 update_rq_clock(rq);
2584
2585 p->prio = effective_prio(p);
2586
2587 if (!p->sched_class->task_new || !current->se.on_rq) {
2588 activate_task(rq, p, 0);
2589 } else {
2590 /*
2591 * Let the scheduling class do new task startup
2592 * management (if any):
2593 */
2594 p->sched_class->task_new(rq, p);
2595 inc_nr_running(rq);
2596 }
2597 trace_sched_wakeup_new(rq, p, 1);
2598 check_preempt_curr(rq, p, WF_FORK);
2599 #ifdef CONFIG_SMP
2600 if (p->sched_class->task_wake_up)
2601 p->sched_class->task_wake_up(rq, p);
2602 #endif
2603 task_rq_unlock(rq, &flags);
2604 }
2605
2606 #ifdef CONFIG_PREEMPT_NOTIFIERS
2607
2608 /**
2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2610 * @notifier: notifier struct to register
2611 */
2612 void preempt_notifier_register(struct preempt_notifier *notifier)
2613 {
2614 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2615 }
2616 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2617
2618 /**
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
2620 * @notifier: notifier struct to unregister
2621 *
2622 * This is safe to call from within a preemption notifier.
2623 */
2624 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2625 {
2626 hlist_del(&notifier->link);
2627 }
2628 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2629
2630 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2631 {
2632 struct preempt_notifier *notifier;
2633 struct hlist_node *node;
2634
2635 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2636 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2637 }
2638
2639 static void
2640 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 struct task_struct *next)
2642 {
2643 struct preempt_notifier *notifier;
2644 struct hlist_node *node;
2645
2646 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_out(notifier, next);
2648 }
2649
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651
2652 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 {
2654 }
2655
2656 static void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659 {
2660 }
2661
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2663
2664 /**
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
2667 * @prev: the current task that is being switched out
2668 * @next: the task we are going to switch to.
2669 *
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2672 * switch.
2673 *
2674 * prepare_task_switch sets up locking and calls architecture specific
2675 * hooks.
2676 */
2677 static inline void
2678 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 struct task_struct *next)
2680 {
2681 fire_sched_out_preempt_notifiers(prev, next);
2682 prepare_lock_switch(rq, next);
2683 prepare_arch_switch(next);
2684 }
2685
2686 /**
2687 * finish_task_switch - clean up after a task-switch
2688 * @rq: runqueue associated with task-switch
2689 * @prev: the thread we just switched away from.
2690 *
2691 * finish_task_switch must be called after the context switch, paired
2692 * with a prepare_task_switch call before the context switch.
2693 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2694 * and do any other architecture-specific cleanup actions.
2695 *
2696 * Note that we may have delayed dropping an mm in context_switch(). If
2697 * so, we finish that here outside of the runqueue lock. (Doing it
2698 * with the lock held can cause deadlocks; see schedule() for
2699 * details.)
2700 */
2701 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2702 __releases(rq->lock)
2703 {
2704 struct mm_struct *mm = rq->prev_mm;
2705 long prev_state;
2706
2707 rq->prev_mm = NULL;
2708
2709 /*
2710 * A task struct has one reference for the use as "current".
2711 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2712 * schedule one last time. The schedule call will never return, and
2713 * the scheduled task must drop that reference.
2714 * The test for TASK_DEAD must occur while the runqueue locks are
2715 * still held, otherwise prev could be scheduled on another cpu, die
2716 * there before we look at prev->state, and then the reference would
2717 * be dropped twice.
2718 * Manfred Spraul <manfred@colorfullife.com>
2719 */
2720 prev_state = prev->state;
2721 finish_arch_switch(prev);
2722 perf_counter_task_sched_in(current, cpu_of(rq));
2723 finish_lock_switch(rq, prev);
2724
2725 fire_sched_in_preempt_notifiers(current);
2726 if (mm)
2727 mmdrop(mm);
2728 if (unlikely(prev_state == TASK_DEAD)) {
2729 /*
2730 * Remove function-return probe instances associated with this
2731 * task and put them back on the free list.
2732 */
2733 kprobe_flush_task(prev);
2734 put_task_struct(prev);
2735 }
2736 }
2737
2738 #ifdef CONFIG_SMP
2739
2740 /* assumes rq->lock is held */
2741 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2742 {
2743 if (prev->sched_class->pre_schedule)
2744 prev->sched_class->pre_schedule(rq, prev);
2745 }
2746
2747 /* rq->lock is NOT held, but preemption is disabled */
2748 static inline void post_schedule(struct rq *rq)
2749 {
2750 if (rq->post_schedule) {
2751 unsigned long flags;
2752
2753 spin_lock_irqsave(&rq->lock, flags);
2754 if (rq->curr->sched_class->post_schedule)
2755 rq->curr->sched_class->post_schedule(rq);
2756 spin_unlock_irqrestore(&rq->lock, flags);
2757
2758 rq->post_schedule = 0;
2759 }
2760 }
2761
2762 #else
2763
2764 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2765 {
2766 }
2767
2768 static inline void post_schedule(struct rq *rq)
2769 {
2770 }
2771
2772 #endif
2773
2774 /**
2775 * schedule_tail - first thing a freshly forked thread must call.
2776 * @prev: the thread we just switched away from.
2777 */
2778 asmlinkage void schedule_tail(struct task_struct *prev)
2779 __releases(rq->lock)
2780 {
2781 struct rq *rq = this_rq();
2782
2783 finish_task_switch(rq, prev);
2784
2785 /*
2786 * FIXME: do we need to worry about rq being invalidated by the
2787 * task_switch?
2788 */
2789 post_schedule(rq);
2790
2791 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2792 /* In this case, finish_task_switch does not reenable preemption */
2793 preempt_enable();
2794 #endif
2795 if (current->set_child_tid)
2796 put_user(task_pid_vnr(current), current->set_child_tid);
2797 }
2798
2799 /*
2800 * context_switch - switch to the new MM and the new
2801 * thread's register state.
2802 */
2803 static inline void
2804 context_switch(struct rq *rq, struct task_struct *prev,
2805 struct task_struct *next)
2806 {
2807 struct mm_struct *mm, *oldmm;
2808
2809 prepare_task_switch(rq, prev, next);
2810 trace_sched_switch(rq, prev, next);
2811 mm = next->mm;
2812 oldmm = prev->active_mm;
2813 /*
2814 * For paravirt, this is coupled with an exit in switch_to to
2815 * combine the page table reload and the switch backend into
2816 * one hypercall.
2817 */
2818 arch_start_context_switch(prev);
2819
2820 if (unlikely(!mm)) {
2821 next->active_mm = oldmm;
2822 atomic_inc(&oldmm->mm_count);
2823 enter_lazy_tlb(oldmm, next);
2824 } else
2825 switch_mm(oldmm, mm, next);
2826
2827 if (unlikely(!prev->mm)) {
2828 prev->active_mm = NULL;
2829 rq->prev_mm = oldmm;
2830 }
2831 /*
2832 * Since the runqueue lock will be released by the next
2833 * task (which is an invalid locking op but in the case
2834 * of the scheduler it's an obvious special-case), so we
2835 * do an early lockdep release here:
2836 */
2837 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2838 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2839 #endif
2840
2841 /* Here we just switch the register state and the stack. */
2842 switch_to(prev, next, prev);
2843
2844 barrier();
2845 /*
2846 * this_rq must be evaluated again because prev may have moved
2847 * CPUs since it called schedule(), thus the 'rq' on its stack
2848 * frame will be invalid.
2849 */
2850 finish_task_switch(this_rq(), prev);
2851 }
2852
2853 /*
2854 * nr_running, nr_uninterruptible and nr_context_switches:
2855 *
2856 * externally visible scheduler statistics: current number of runnable
2857 * threads, current number of uninterruptible-sleeping threads, total
2858 * number of context switches performed since bootup.
2859 */
2860 unsigned long nr_running(void)
2861 {
2862 unsigned long i, sum = 0;
2863
2864 for_each_online_cpu(i)
2865 sum += cpu_rq(i)->nr_running;
2866
2867 return sum;
2868 }
2869
2870 unsigned long nr_uninterruptible(void)
2871 {
2872 unsigned long i, sum = 0;
2873
2874 for_each_possible_cpu(i)
2875 sum += cpu_rq(i)->nr_uninterruptible;
2876
2877 /*
2878 * Since we read the counters lockless, it might be slightly
2879 * inaccurate. Do not allow it to go below zero though:
2880 */
2881 if (unlikely((long)sum < 0))
2882 sum = 0;
2883
2884 return sum;
2885 }
2886
2887 unsigned long long nr_context_switches(void)
2888 {
2889 int i;
2890 unsigned long long sum = 0;
2891
2892 for_each_possible_cpu(i)
2893 sum += cpu_rq(i)->nr_switches;
2894
2895 return sum;
2896 }
2897
2898 unsigned long nr_iowait(void)
2899 {
2900 unsigned long i, sum = 0;
2901
2902 for_each_possible_cpu(i)
2903 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2904
2905 return sum;
2906 }
2907
2908 /* Variables and functions for calc_load */
2909 static atomic_long_t calc_load_tasks;
2910 static unsigned long calc_load_update;
2911 unsigned long avenrun[3];
2912 EXPORT_SYMBOL(avenrun);
2913
2914 /**
2915 * get_avenrun - get the load average array
2916 * @loads: pointer to dest load array
2917 * @offset: offset to add
2918 * @shift: shift count to shift the result left
2919 *
2920 * These values are estimates at best, so no need for locking.
2921 */
2922 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2923 {
2924 loads[0] = (avenrun[0] + offset) << shift;
2925 loads[1] = (avenrun[1] + offset) << shift;
2926 loads[2] = (avenrun[2] + offset) << shift;
2927 }
2928
2929 static unsigned long
2930 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2931 {
2932 load *= exp;
2933 load += active * (FIXED_1 - exp);
2934 return load >> FSHIFT;
2935 }
2936
2937 /*
2938 * calc_load - update the avenrun load estimates 10 ticks after the
2939 * CPUs have updated calc_load_tasks.
2940 */
2941 void calc_global_load(void)
2942 {
2943 unsigned long upd = calc_load_update + 10;
2944 long active;
2945
2946 if (time_before(jiffies, upd))
2947 return;
2948
2949 active = atomic_long_read(&calc_load_tasks);
2950 active = active > 0 ? active * FIXED_1 : 0;
2951
2952 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2953 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2954 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2955
2956 calc_load_update += LOAD_FREQ;
2957 }
2958
2959 /*
2960 * Either called from update_cpu_load() or from a cpu going idle
2961 */
2962 static void calc_load_account_active(struct rq *this_rq)
2963 {
2964 long nr_active, delta;
2965
2966 nr_active = this_rq->nr_running;
2967 nr_active += (long) this_rq->nr_uninterruptible;
2968
2969 if (nr_active != this_rq->calc_load_active) {
2970 delta = nr_active - this_rq->calc_load_active;
2971 this_rq->calc_load_active = nr_active;
2972 atomic_long_add(delta, &calc_load_tasks);
2973 }
2974 }
2975
2976 /*
2977 * Externally visible per-cpu scheduler statistics:
2978 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2979 */
2980 u64 cpu_nr_migrations(int cpu)
2981 {
2982 return cpu_rq(cpu)->nr_migrations_in;
2983 }
2984
2985 /*
2986 * Update rq->cpu_load[] statistics. This function is usually called every
2987 * scheduler tick (TICK_NSEC).
2988 */
2989 static void update_cpu_load(struct rq *this_rq)
2990 {
2991 unsigned long this_load = this_rq->load.weight;
2992 int i, scale;
2993
2994 this_rq->nr_load_updates++;
2995
2996 /* Update our load: */
2997 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2998 unsigned long old_load, new_load;
2999
3000 /* scale is effectively 1 << i now, and >> i divides by scale */
3001
3002 old_load = this_rq->cpu_load[i];
3003 new_load = this_load;
3004 /*
3005 * Round up the averaging division if load is increasing. This
3006 * prevents us from getting stuck on 9 if the load is 10, for
3007 * example.
3008 */
3009 if (new_load > old_load)
3010 new_load += scale-1;
3011 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3012 }
3013
3014 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3015 this_rq->calc_load_update += LOAD_FREQ;
3016 calc_load_account_active(this_rq);
3017 }
3018 }
3019
3020 #ifdef CONFIG_SMP
3021
3022 /*
3023 * double_rq_lock - safely lock two runqueues
3024 *
3025 * Note this does not disable interrupts like task_rq_lock,
3026 * you need to do so manually before calling.
3027 */
3028 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3029 __acquires(rq1->lock)
3030 __acquires(rq2->lock)
3031 {
3032 BUG_ON(!irqs_disabled());
3033 if (rq1 == rq2) {
3034 spin_lock(&rq1->lock);
3035 __acquire(rq2->lock); /* Fake it out ;) */
3036 } else {
3037 if (rq1 < rq2) {
3038 spin_lock(&rq1->lock);
3039 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3040 } else {
3041 spin_lock(&rq2->lock);
3042 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3043 }
3044 }
3045 update_rq_clock(rq1);
3046 update_rq_clock(rq2);
3047 }
3048
3049 /*
3050 * double_rq_unlock - safely unlock two runqueues
3051 *
3052 * Note this does not restore interrupts like task_rq_unlock,
3053 * you need to do so manually after calling.
3054 */
3055 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3056 __releases(rq1->lock)
3057 __releases(rq2->lock)
3058 {
3059 spin_unlock(&rq1->lock);
3060 if (rq1 != rq2)
3061 spin_unlock(&rq2->lock);
3062 else
3063 __release(rq2->lock);
3064 }
3065
3066 /*
3067 * If dest_cpu is allowed for this process, migrate the task to it.
3068 * This is accomplished by forcing the cpu_allowed mask to only
3069 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3070 * the cpu_allowed mask is restored.
3071 */
3072 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3073 {
3074 struct migration_req req;
3075 unsigned long flags;
3076 struct rq *rq;
3077
3078 rq = task_rq_lock(p, &flags);
3079 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3080 || unlikely(!cpu_active(dest_cpu)))
3081 goto out;
3082
3083 /* force the process onto the specified CPU */
3084 if (migrate_task(p, dest_cpu, &req)) {
3085 /* Need to wait for migration thread (might exit: take ref). */
3086 struct task_struct *mt = rq->migration_thread;
3087
3088 get_task_struct(mt);
3089 task_rq_unlock(rq, &flags);
3090 wake_up_process(mt);
3091 put_task_struct(mt);
3092 wait_for_completion(&req.done);
3093
3094 return;
3095 }
3096 out:
3097 task_rq_unlock(rq, &flags);
3098 }
3099
3100 /*
3101 * sched_exec - execve() is a valuable balancing opportunity, because at
3102 * this point the task has the smallest effective memory and cache footprint.
3103 */
3104 void sched_exec(void)
3105 {
3106 int new_cpu, this_cpu = get_cpu();
3107 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3108 put_cpu();
3109 if (new_cpu != this_cpu)
3110 sched_migrate_task(current, new_cpu);
3111 }
3112
3113 /*
3114 * pull_task - move a task from a remote runqueue to the local runqueue.
3115 * Both runqueues must be locked.
3116 */
3117 static void pull_task(struct rq *src_rq, struct task_struct *p,
3118 struct rq *this_rq, int this_cpu)
3119 {
3120 deactivate_task(src_rq, p, 0);
3121 set_task_cpu(p, this_cpu);
3122 activate_task(this_rq, p, 0);
3123 /*
3124 * Note that idle threads have a prio of MAX_PRIO, for this test
3125 * to be always true for them.
3126 */
3127 check_preempt_curr(this_rq, p, 0);
3128 }
3129
3130 /*
3131 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3132 */
3133 static
3134 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3135 struct sched_domain *sd, enum cpu_idle_type idle,
3136 int *all_pinned)
3137 {
3138 int tsk_cache_hot = 0;
3139 /*
3140 * We do not migrate tasks that are:
3141 * 1) running (obviously), or
3142 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3143 * 3) are cache-hot on their current CPU.
3144 */
3145 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3146 schedstat_inc(p, se.nr_failed_migrations_affine);
3147 return 0;
3148 }
3149 *all_pinned = 0;
3150
3151 if (task_running(rq, p)) {
3152 schedstat_inc(p, se.nr_failed_migrations_running);
3153 return 0;
3154 }
3155
3156 /*
3157 * Aggressive migration if:
3158 * 1) task is cache cold, or
3159 * 2) too many balance attempts have failed.
3160 */
3161
3162 tsk_cache_hot = task_hot(p, rq->clock, sd);
3163 if (!tsk_cache_hot ||
3164 sd->nr_balance_failed > sd->cache_nice_tries) {
3165 #ifdef CONFIG_SCHEDSTATS
3166 if (tsk_cache_hot) {
3167 schedstat_inc(sd, lb_hot_gained[idle]);
3168 schedstat_inc(p, se.nr_forced_migrations);
3169 }
3170 #endif
3171 return 1;
3172 }
3173
3174 if (tsk_cache_hot) {
3175 schedstat_inc(p, se.nr_failed_migrations_hot);
3176 return 0;
3177 }
3178 return 1;
3179 }
3180
3181 static unsigned long
3182 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3183 unsigned long max_load_move, struct sched_domain *sd,
3184 enum cpu_idle_type idle, int *all_pinned,
3185 int *this_best_prio, struct rq_iterator *iterator)
3186 {
3187 int loops = 0, pulled = 0, pinned = 0;
3188 struct task_struct *p;
3189 long rem_load_move = max_load_move;
3190
3191 if (max_load_move == 0)
3192 goto out;
3193
3194 pinned = 1;
3195
3196 /*
3197 * Start the load-balancing iterator:
3198 */
3199 p = iterator->start(iterator->arg);
3200 next:
3201 if (!p || loops++ > sysctl_sched_nr_migrate)
3202 goto out;
3203
3204 if ((p->se.load.weight >> 1) > rem_load_move ||
3205 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3206 p = iterator->next(iterator->arg);
3207 goto next;
3208 }
3209
3210 pull_task(busiest, p, this_rq, this_cpu);
3211 pulled++;
3212 rem_load_move -= p->se.load.weight;
3213
3214 #ifdef CONFIG_PREEMPT
3215 /*
3216 * NEWIDLE balancing is a source of latency, so preemptible kernels
3217 * will stop after the first task is pulled to minimize the critical
3218 * section.
3219 */
3220 if (idle == CPU_NEWLY_IDLE)
3221 goto out;
3222 #endif
3223
3224 /*
3225 * We only want to steal up to the prescribed amount of weighted load.
3226 */
3227 if (rem_load_move > 0) {
3228 if (p->prio < *this_best_prio)
3229 *this_best_prio = p->prio;
3230 p = iterator->next(iterator->arg);
3231 goto next;
3232 }
3233 out:
3234 /*
3235 * Right now, this is one of only two places pull_task() is called,
3236 * so we can safely collect pull_task() stats here rather than
3237 * inside pull_task().
3238 */
3239 schedstat_add(sd, lb_gained[idle], pulled);
3240
3241 if (all_pinned)
3242 *all_pinned = pinned;
3243
3244 return max_load_move - rem_load_move;
3245 }
3246
3247 /*
3248 * move_tasks tries to move up to max_load_move weighted load from busiest to
3249 * this_rq, as part of a balancing operation within domain "sd".
3250 * Returns 1 if successful and 0 otherwise.
3251 *
3252 * Called with both runqueues locked.
3253 */
3254 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3255 unsigned long max_load_move,
3256 struct sched_domain *sd, enum cpu_idle_type idle,
3257 int *all_pinned)
3258 {
3259 const struct sched_class *class = sched_class_highest;
3260 unsigned long total_load_moved = 0;
3261 int this_best_prio = this_rq->curr->prio;
3262
3263 do {
3264 total_load_moved +=
3265 class->load_balance(this_rq, this_cpu, busiest,
3266 max_load_move - total_load_moved,
3267 sd, idle, all_pinned, &this_best_prio);
3268 class = class->next;
3269
3270 #ifdef CONFIG_PREEMPT
3271 /*
3272 * NEWIDLE balancing is a source of latency, so preemptible
3273 * kernels will stop after the first task is pulled to minimize
3274 * the critical section.
3275 */
3276 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3277 break;
3278 #endif
3279 } while (class && max_load_move > total_load_moved);
3280
3281 return total_load_moved > 0;
3282 }
3283
3284 static int
3285 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3286 struct sched_domain *sd, enum cpu_idle_type idle,
3287 struct rq_iterator *iterator)
3288 {
3289 struct task_struct *p = iterator->start(iterator->arg);
3290 int pinned = 0;
3291
3292 while (p) {
3293 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3294 pull_task(busiest, p, this_rq, this_cpu);
3295 /*
3296 * Right now, this is only the second place pull_task()
3297 * is called, so we can safely collect pull_task()
3298 * stats here rather than inside pull_task().
3299 */
3300 schedstat_inc(sd, lb_gained[idle]);
3301
3302 return 1;
3303 }
3304 p = iterator->next(iterator->arg);
3305 }
3306
3307 return 0;
3308 }
3309
3310 /*
3311 * move_one_task tries to move exactly one task from busiest to this_rq, as
3312 * part of active balancing operations within "domain".
3313 * Returns 1 if successful and 0 otherwise.
3314 *
3315 * Called with both runqueues locked.
3316 */
3317 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3318 struct sched_domain *sd, enum cpu_idle_type idle)
3319 {
3320 const struct sched_class *class;
3321
3322 for_each_class(class) {
3323 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3324 return 1;
3325 }
3326
3327 return 0;
3328 }
3329 /********** Helpers for find_busiest_group ************************/
3330 /*
3331 * sd_lb_stats - Structure to store the statistics of a sched_domain
3332 * during load balancing.
3333 */
3334 struct sd_lb_stats {
3335 struct sched_group *busiest; /* Busiest group in this sd */
3336 struct sched_group *this; /* Local group in this sd */
3337 unsigned long total_load; /* Total load of all groups in sd */
3338 unsigned long total_pwr; /* Total power of all groups in sd */
3339 unsigned long avg_load; /* Average load across all groups in sd */
3340
3341 /** Statistics of this group */
3342 unsigned long this_load;
3343 unsigned long this_load_per_task;
3344 unsigned long this_nr_running;
3345
3346 /* Statistics of the busiest group */
3347 unsigned long max_load;
3348 unsigned long busiest_load_per_task;
3349 unsigned long busiest_nr_running;
3350
3351 int group_imb; /* Is there imbalance in this sd */
3352 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3353 int power_savings_balance; /* Is powersave balance needed for this sd */
3354 struct sched_group *group_min; /* Least loaded group in sd */
3355 struct sched_group *group_leader; /* Group which relieves group_min */
3356 unsigned long min_load_per_task; /* load_per_task in group_min */
3357 unsigned long leader_nr_running; /* Nr running of group_leader */
3358 unsigned long min_nr_running; /* Nr running of group_min */
3359 #endif
3360 };
3361
3362 /*
3363 * sg_lb_stats - stats of a sched_group required for load_balancing
3364 */
3365 struct sg_lb_stats {
3366 unsigned long avg_load; /*Avg load across the CPUs of the group */
3367 unsigned long group_load; /* Total load over the CPUs of the group */
3368 unsigned long sum_nr_running; /* Nr tasks running in the group */
3369 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3370 unsigned long group_capacity;
3371 int group_imb; /* Is there an imbalance in the group ? */
3372 };
3373
3374 /**
3375 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3376 * @group: The group whose first cpu is to be returned.
3377 */
3378 static inline unsigned int group_first_cpu(struct sched_group *group)
3379 {
3380 return cpumask_first(sched_group_cpus(group));
3381 }
3382
3383 /**
3384 * get_sd_load_idx - Obtain the load index for a given sched domain.
3385 * @sd: The sched_domain whose load_idx is to be obtained.
3386 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3387 */
3388 static inline int get_sd_load_idx(struct sched_domain *sd,
3389 enum cpu_idle_type idle)
3390 {
3391 int load_idx;
3392
3393 switch (idle) {
3394 case CPU_NOT_IDLE:
3395 load_idx = sd->busy_idx;
3396 break;
3397
3398 case CPU_NEWLY_IDLE:
3399 load_idx = sd->newidle_idx;
3400 break;
3401 default:
3402 load_idx = sd->idle_idx;
3403 break;
3404 }
3405
3406 return load_idx;
3407 }
3408
3409
3410 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3411 /**
3412 * init_sd_power_savings_stats - Initialize power savings statistics for
3413 * the given sched_domain, during load balancing.
3414 *
3415 * @sd: Sched domain whose power-savings statistics are to be initialized.
3416 * @sds: Variable containing the statistics for sd.
3417 * @idle: Idle status of the CPU at which we're performing load-balancing.
3418 */
3419 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3421 {
3422 /*
3423 * Busy processors will not participate in power savings
3424 * balance.
3425 */
3426 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3427 sds->power_savings_balance = 0;
3428 else {
3429 sds->power_savings_balance = 1;
3430 sds->min_nr_running = ULONG_MAX;
3431 sds->leader_nr_running = 0;
3432 }
3433 }
3434
3435 /**
3436 * update_sd_power_savings_stats - Update the power saving stats for a
3437 * sched_domain while performing load balancing.
3438 *
3439 * @group: sched_group belonging to the sched_domain under consideration.
3440 * @sds: Variable containing the statistics of the sched_domain
3441 * @local_group: Does group contain the CPU for which we're performing
3442 * load balancing ?
3443 * @sgs: Variable containing the statistics of the group.
3444 */
3445 static inline void update_sd_power_savings_stats(struct sched_group *group,
3446 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3447 {
3448
3449 if (!sds->power_savings_balance)
3450 return;
3451
3452 /*
3453 * If the local group is idle or completely loaded
3454 * no need to do power savings balance at this domain
3455 */
3456 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3457 !sds->this_nr_running))
3458 sds->power_savings_balance = 0;
3459
3460 /*
3461 * If a group is already running at full capacity or idle,
3462 * don't include that group in power savings calculations
3463 */
3464 if (!sds->power_savings_balance ||
3465 sgs->sum_nr_running >= sgs->group_capacity ||
3466 !sgs->sum_nr_running)
3467 return;
3468
3469 /*
3470 * Calculate the group which has the least non-idle load.
3471 * This is the group from where we need to pick up the load
3472 * for saving power
3473 */
3474 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3475 (sgs->sum_nr_running == sds->min_nr_running &&
3476 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3477 sds->group_min = group;
3478 sds->min_nr_running = sgs->sum_nr_running;
3479 sds->min_load_per_task = sgs->sum_weighted_load /
3480 sgs->sum_nr_running;
3481 }
3482
3483 /*
3484 * Calculate the group which is almost near its
3485 * capacity but still has some space to pick up some load
3486 * from other group and save more power
3487 */
3488 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3489 return;
3490
3491 if (sgs->sum_nr_running > sds->leader_nr_running ||
3492 (sgs->sum_nr_running == sds->leader_nr_running &&
3493 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3494 sds->group_leader = group;
3495 sds->leader_nr_running = sgs->sum_nr_running;
3496 }
3497 }
3498
3499 /**
3500 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3501 * @sds: Variable containing the statistics of the sched_domain
3502 * under consideration.
3503 * @this_cpu: Cpu at which we're currently performing load-balancing.
3504 * @imbalance: Variable to store the imbalance.
3505 *
3506 * Description:
3507 * Check if we have potential to perform some power-savings balance.
3508 * If yes, set the busiest group to be the least loaded group in the
3509 * sched_domain, so that it's CPUs can be put to idle.
3510 *
3511 * Returns 1 if there is potential to perform power-savings balance.
3512 * Else returns 0.
3513 */
3514 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3515 int this_cpu, unsigned long *imbalance)
3516 {
3517 if (!sds->power_savings_balance)
3518 return 0;
3519
3520 if (sds->this != sds->group_leader ||
3521 sds->group_leader == sds->group_min)
3522 return 0;
3523
3524 *imbalance = sds->min_load_per_task;
3525 sds->busiest = sds->group_min;
3526
3527 return 1;
3528
3529 }
3530 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3531 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3532 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3533 {
3534 return;
3535 }
3536
3537 static inline void update_sd_power_savings_stats(struct sched_group *group,
3538 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3539 {
3540 return;
3541 }
3542
3543 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3544 int this_cpu, unsigned long *imbalance)
3545 {
3546 return 0;
3547 }
3548 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3549
3550
3551 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3552 {
3553 return SCHED_LOAD_SCALE;
3554 }
3555
3556 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3557 {
3558 return default_scale_freq_power(sd, cpu);
3559 }
3560
3561 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3562 {
3563 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3564 unsigned long smt_gain = sd->smt_gain;
3565
3566 smt_gain /= weight;
3567
3568 return smt_gain;
3569 }
3570
3571 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3572 {
3573 return default_scale_smt_power(sd, cpu);
3574 }
3575
3576 unsigned long scale_rt_power(int cpu)
3577 {
3578 struct rq *rq = cpu_rq(cpu);
3579 u64 total, available;
3580
3581 sched_avg_update(rq);
3582
3583 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3584 available = total - rq->rt_avg;
3585
3586 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3587 total = SCHED_LOAD_SCALE;
3588
3589 total >>= SCHED_LOAD_SHIFT;
3590
3591 return div_u64(available, total);
3592 }
3593
3594 static void update_cpu_power(struct sched_domain *sd, int cpu)
3595 {
3596 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3597 unsigned long power = SCHED_LOAD_SCALE;
3598 struct sched_group *sdg = sd->groups;
3599
3600 if (sched_feat(ARCH_POWER))
3601 power *= arch_scale_freq_power(sd, cpu);
3602 else
3603 power *= default_scale_freq_power(sd, cpu);
3604
3605 power >>= SCHED_LOAD_SHIFT;
3606
3607 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3608 if (sched_feat(ARCH_POWER))
3609 power *= arch_scale_smt_power(sd, cpu);
3610 else
3611 power *= default_scale_smt_power(sd, cpu);
3612
3613 power >>= SCHED_LOAD_SHIFT;
3614 }
3615
3616 power *= scale_rt_power(cpu);
3617 power >>= SCHED_LOAD_SHIFT;
3618
3619 if (!power)
3620 power = 1;
3621
3622 sdg->cpu_power = power;
3623 }
3624
3625 static void update_group_power(struct sched_domain *sd, int cpu)
3626 {
3627 struct sched_domain *child = sd->child;
3628 struct sched_group *group, *sdg = sd->groups;
3629 unsigned long power;
3630
3631 if (!child) {
3632 update_cpu_power(sd, cpu);
3633 return;
3634 }
3635
3636 power = 0;
3637
3638 group = child->groups;
3639 do {
3640 power += group->cpu_power;
3641 group = group->next;
3642 } while (group != child->groups);
3643
3644 sdg->cpu_power = power;
3645 }
3646
3647 /**
3648 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3649 * @group: sched_group whose statistics are to be updated.
3650 * @this_cpu: Cpu for which load balance is currently performed.
3651 * @idle: Idle status of this_cpu
3652 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3653 * @sd_idle: Idle status of the sched_domain containing group.
3654 * @local_group: Does group contain this_cpu.
3655 * @cpus: Set of cpus considered for load balancing.
3656 * @balance: Should we balance.
3657 * @sgs: variable to hold the statistics for this group.
3658 */
3659 static inline void update_sg_lb_stats(struct sched_domain *sd,
3660 struct sched_group *group, int this_cpu,
3661 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3662 int local_group, const struct cpumask *cpus,
3663 int *balance, struct sg_lb_stats *sgs)
3664 {
3665 unsigned long load, max_cpu_load, min_cpu_load;
3666 int i;
3667 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3668 unsigned long sum_avg_load_per_task;
3669 unsigned long avg_load_per_task;
3670
3671 if (local_group) {
3672 balance_cpu = group_first_cpu(group);
3673 if (balance_cpu == this_cpu)
3674 update_group_power(sd, this_cpu);
3675 }
3676
3677 /* Tally up the load of all CPUs in the group */
3678 sum_avg_load_per_task = avg_load_per_task = 0;
3679 max_cpu_load = 0;
3680 min_cpu_load = ~0UL;
3681
3682 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3683 struct rq *rq = cpu_rq(i);
3684
3685 if (*sd_idle && rq->nr_running)
3686 *sd_idle = 0;
3687
3688 /* Bias balancing toward cpus of our domain */
3689 if (local_group) {
3690 if (idle_cpu(i) && !first_idle_cpu) {
3691 first_idle_cpu = 1;
3692 balance_cpu = i;
3693 }
3694
3695 load = target_load(i, load_idx);
3696 } else {
3697 load = source_load(i, load_idx);
3698 if (load > max_cpu_load)
3699 max_cpu_load = load;
3700 if (min_cpu_load > load)
3701 min_cpu_load = load;
3702 }
3703
3704 sgs->group_load += load;
3705 sgs->sum_nr_running += rq->nr_running;
3706 sgs->sum_weighted_load += weighted_cpuload(i);
3707
3708 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3709 }
3710
3711 /*
3712 * First idle cpu or the first cpu(busiest) in this sched group
3713 * is eligible for doing load balancing at this and above
3714 * domains. In the newly idle case, we will allow all the cpu's
3715 * to do the newly idle load balance.
3716 */
3717 if (idle != CPU_NEWLY_IDLE && local_group &&
3718 balance_cpu != this_cpu && balance) {
3719 *balance = 0;
3720 return;
3721 }
3722
3723 /* Adjust by relative CPU power of the group */
3724 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3725
3726
3727 /*
3728 * Consider the group unbalanced when the imbalance is larger
3729 * than the average weight of two tasks.
3730 *
3731 * APZ: with cgroup the avg task weight can vary wildly and
3732 * might not be a suitable number - should we keep a
3733 * normalized nr_running number somewhere that negates
3734 * the hierarchy?
3735 */
3736 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3737 group->cpu_power;
3738
3739 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3740 sgs->group_imb = 1;
3741
3742 sgs->group_capacity =
3743 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3744 }
3745
3746 /**
3747 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3748 * @sd: sched_domain whose statistics are to be updated.
3749 * @this_cpu: Cpu for which load balance is currently performed.
3750 * @idle: Idle status of this_cpu
3751 * @sd_idle: Idle status of the sched_domain containing group.
3752 * @cpus: Set of cpus considered for load balancing.
3753 * @balance: Should we balance.
3754 * @sds: variable to hold the statistics for this sched_domain.
3755 */
3756 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3757 enum cpu_idle_type idle, int *sd_idle,
3758 const struct cpumask *cpus, int *balance,
3759 struct sd_lb_stats *sds)
3760 {
3761 struct sched_domain *child = sd->child;
3762 struct sched_group *group = sd->groups;
3763 struct sg_lb_stats sgs;
3764 int load_idx, prefer_sibling = 0;
3765
3766 if (child && child->flags & SD_PREFER_SIBLING)
3767 prefer_sibling = 1;
3768
3769 init_sd_power_savings_stats(sd, sds, idle);
3770 load_idx = get_sd_load_idx(sd, idle);
3771
3772 do {
3773 int local_group;
3774
3775 local_group = cpumask_test_cpu(this_cpu,
3776 sched_group_cpus(group));
3777 memset(&sgs, 0, sizeof(sgs));
3778 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3779 local_group, cpus, balance, &sgs);
3780
3781 if (local_group && balance && !(*balance))
3782 return;
3783
3784 sds->total_load += sgs.group_load;
3785 sds->total_pwr += group->cpu_power;
3786
3787 /*
3788 * In case the child domain prefers tasks go to siblings
3789 * first, lower the group capacity to one so that we'll try
3790 * and move all the excess tasks away.
3791 */
3792 if (prefer_sibling)
3793 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3794
3795 if (local_group) {
3796 sds->this_load = sgs.avg_load;
3797 sds->this = group;
3798 sds->this_nr_running = sgs.sum_nr_running;
3799 sds->this_load_per_task = sgs.sum_weighted_load;
3800 } else if (sgs.avg_load > sds->max_load &&
3801 (sgs.sum_nr_running > sgs.group_capacity ||
3802 sgs.group_imb)) {
3803 sds->max_load = sgs.avg_load;
3804 sds->busiest = group;
3805 sds->busiest_nr_running = sgs.sum_nr_running;
3806 sds->busiest_load_per_task = sgs.sum_weighted_load;
3807 sds->group_imb = sgs.group_imb;
3808 }
3809
3810 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3811 group = group->next;
3812 } while (group != sd->groups);
3813 }
3814
3815 /**
3816 * fix_small_imbalance - Calculate the minor imbalance that exists
3817 * amongst the groups of a sched_domain, during
3818 * load balancing.
3819 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3820 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3821 * @imbalance: Variable to store the imbalance.
3822 */
3823 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3824 int this_cpu, unsigned long *imbalance)
3825 {
3826 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3827 unsigned int imbn = 2;
3828
3829 if (sds->this_nr_running) {
3830 sds->this_load_per_task /= sds->this_nr_running;
3831 if (sds->busiest_load_per_task >
3832 sds->this_load_per_task)
3833 imbn = 1;
3834 } else
3835 sds->this_load_per_task =
3836 cpu_avg_load_per_task(this_cpu);
3837
3838 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3839 sds->busiest_load_per_task * imbn) {
3840 *imbalance = sds->busiest_load_per_task;
3841 return;
3842 }
3843
3844 /*
3845 * OK, we don't have enough imbalance to justify moving tasks,
3846 * however we may be able to increase total CPU power used by
3847 * moving them.
3848 */
3849
3850 pwr_now += sds->busiest->cpu_power *
3851 min(sds->busiest_load_per_task, sds->max_load);
3852 pwr_now += sds->this->cpu_power *
3853 min(sds->this_load_per_task, sds->this_load);
3854 pwr_now /= SCHED_LOAD_SCALE;
3855
3856 /* Amount of load we'd subtract */
3857 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3858 sds->busiest->cpu_power;
3859 if (sds->max_load > tmp)
3860 pwr_move += sds->busiest->cpu_power *
3861 min(sds->busiest_load_per_task, sds->max_load - tmp);
3862
3863 /* Amount of load we'd add */
3864 if (sds->max_load * sds->busiest->cpu_power <
3865 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3866 tmp = (sds->max_load * sds->busiest->cpu_power) /
3867 sds->this->cpu_power;
3868 else
3869 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3870 sds->this->cpu_power;
3871 pwr_move += sds->this->cpu_power *
3872 min(sds->this_load_per_task, sds->this_load + tmp);
3873 pwr_move /= SCHED_LOAD_SCALE;
3874
3875 /* Move if we gain throughput */
3876 if (pwr_move > pwr_now)
3877 *imbalance = sds->busiest_load_per_task;
3878 }
3879
3880 /**
3881 * calculate_imbalance - Calculate the amount of imbalance present within the
3882 * groups of a given sched_domain during load balance.
3883 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3884 * @this_cpu: Cpu for which currently load balance is being performed.
3885 * @imbalance: The variable to store the imbalance.
3886 */
3887 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3888 unsigned long *imbalance)
3889 {
3890 unsigned long max_pull;
3891 /*
3892 * In the presence of smp nice balancing, certain scenarios can have
3893 * max load less than avg load(as we skip the groups at or below
3894 * its cpu_power, while calculating max_load..)
3895 */
3896 if (sds->max_load < sds->avg_load) {
3897 *imbalance = 0;
3898 return fix_small_imbalance(sds, this_cpu, imbalance);
3899 }
3900
3901 /* Don't want to pull so many tasks that a group would go idle */
3902 max_pull = min(sds->max_load - sds->avg_load,
3903 sds->max_load - sds->busiest_load_per_task);
3904
3905 /* How much load to actually move to equalise the imbalance */
3906 *imbalance = min(max_pull * sds->busiest->cpu_power,
3907 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3908 / SCHED_LOAD_SCALE;
3909
3910 /*
3911 * if *imbalance is less than the average load per runnable task
3912 * there is no gaurantee that any tasks will be moved so we'll have
3913 * a think about bumping its value to force at least one task to be
3914 * moved
3915 */
3916 if (*imbalance < sds->busiest_load_per_task)
3917 return fix_small_imbalance(sds, this_cpu, imbalance);
3918
3919 }
3920 /******* find_busiest_group() helpers end here *********************/
3921
3922 /**
3923 * find_busiest_group - Returns the busiest group within the sched_domain
3924 * if there is an imbalance. If there isn't an imbalance, and
3925 * the user has opted for power-savings, it returns a group whose
3926 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3927 * such a group exists.
3928 *
3929 * Also calculates the amount of weighted load which should be moved
3930 * to restore balance.
3931 *
3932 * @sd: The sched_domain whose busiest group is to be returned.
3933 * @this_cpu: The cpu for which load balancing is currently being performed.
3934 * @imbalance: Variable which stores amount of weighted load which should
3935 * be moved to restore balance/put a group to idle.
3936 * @idle: The idle status of this_cpu.
3937 * @sd_idle: The idleness of sd
3938 * @cpus: The set of CPUs under consideration for load-balancing.
3939 * @balance: Pointer to a variable indicating if this_cpu
3940 * is the appropriate cpu to perform load balancing at this_level.
3941 *
3942 * Returns: - the busiest group if imbalance exists.
3943 * - If no imbalance and user has opted for power-savings balance,
3944 * return the least loaded group whose CPUs can be
3945 * put to idle by rebalancing its tasks onto our group.
3946 */
3947 static struct sched_group *
3948 find_busiest_group(struct sched_domain *sd, int this_cpu,
3949 unsigned long *imbalance, enum cpu_idle_type idle,
3950 int *sd_idle, const struct cpumask *cpus, int *balance)
3951 {
3952 struct sd_lb_stats sds;
3953
3954 memset(&sds, 0, sizeof(sds));
3955
3956 /*
3957 * Compute the various statistics relavent for load balancing at
3958 * this level.
3959 */
3960 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3961 balance, &sds);
3962
3963 /* Cases where imbalance does not exist from POV of this_cpu */
3964 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3965 * at this level.
3966 * 2) There is no busy sibling group to pull from.
3967 * 3) This group is the busiest group.
3968 * 4) This group is more busy than the avg busieness at this
3969 * sched_domain.
3970 * 5) The imbalance is within the specified limit.
3971 * 6) Any rebalance would lead to ping-pong
3972 */
3973 if (balance && !(*balance))
3974 goto ret;
3975
3976 if (!sds.busiest || sds.busiest_nr_running == 0)
3977 goto out_balanced;
3978
3979 if (sds.this_load >= sds.max_load)
3980 goto out_balanced;
3981
3982 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3983
3984 if (sds.this_load >= sds.avg_load)
3985 goto out_balanced;
3986
3987 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3988 goto out_balanced;
3989
3990 sds.busiest_load_per_task /= sds.busiest_nr_running;
3991 if (sds.group_imb)
3992 sds.busiest_load_per_task =
3993 min(sds.busiest_load_per_task, sds.avg_load);
3994
3995 /*
3996 * We're trying to get all the cpus to the average_load, so we don't
3997 * want to push ourselves above the average load, nor do we wish to
3998 * reduce the max loaded cpu below the average load, as either of these
3999 * actions would just result in more rebalancing later, and ping-pong
4000 * tasks around. Thus we look for the minimum possible imbalance.
4001 * Negative imbalances (*we* are more loaded than anyone else) will
4002 * be counted as no imbalance for these purposes -- we can't fix that
4003 * by pulling tasks to us. Be careful of negative numbers as they'll
4004 * appear as very large values with unsigned longs.
4005 */
4006 if (sds.max_load <= sds.busiest_load_per_task)
4007 goto out_balanced;
4008
4009 /* Looks like there is an imbalance. Compute it */
4010 calculate_imbalance(&sds, this_cpu, imbalance);
4011 return sds.busiest;
4012
4013 out_balanced:
4014 /*
4015 * There is no obvious imbalance. But check if we can do some balancing
4016 * to save power.
4017 */
4018 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4019 return sds.busiest;
4020 ret:
4021 *imbalance = 0;
4022 return NULL;
4023 }
4024
4025 /*
4026 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4027 */
4028 static struct rq *
4029 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4030 unsigned long imbalance, const struct cpumask *cpus)
4031 {
4032 struct rq *busiest = NULL, *rq;
4033 unsigned long max_load = 0;
4034 int i;
4035
4036 for_each_cpu(i, sched_group_cpus(group)) {
4037 unsigned long power = power_of(i);
4038 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4039 unsigned long wl;
4040
4041 if (!cpumask_test_cpu(i, cpus))
4042 continue;
4043
4044 rq = cpu_rq(i);
4045 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4046 wl /= power;
4047
4048 if (capacity && rq->nr_running == 1 && wl > imbalance)
4049 continue;
4050
4051 if (wl > max_load) {
4052 max_load = wl;
4053 busiest = rq;
4054 }
4055 }
4056
4057 return busiest;
4058 }
4059
4060 /*
4061 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4062 * so long as it is large enough.
4063 */
4064 #define MAX_PINNED_INTERVAL 512
4065
4066 /* Working cpumask for load_balance and load_balance_newidle. */
4067 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4068
4069 /*
4070 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4071 * tasks if there is an imbalance.
4072 */
4073 static int load_balance(int this_cpu, struct rq *this_rq,
4074 struct sched_domain *sd, enum cpu_idle_type idle,
4075 int *balance)
4076 {
4077 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4078 struct sched_group *group;
4079 unsigned long imbalance;
4080 struct rq *busiest;
4081 unsigned long flags;
4082 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4083
4084 cpumask_setall(cpus);
4085
4086 /*
4087 * When power savings policy is enabled for the parent domain, idle
4088 * sibling can pick up load irrespective of busy siblings. In this case,
4089 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4090 * portraying it as CPU_NOT_IDLE.
4091 */
4092 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4093 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4094 sd_idle = 1;
4095
4096 schedstat_inc(sd, lb_count[idle]);
4097
4098 redo:
4099 update_shares(sd);
4100 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4101 cpus, balance);
4102
4103 if (*balance == 0)
4104 goto out_balanced;
4105
4106 if (!group) {
4107 schedstat_inc(sd, lb_nobusyg[idle]);
4108 goto out_balanced;
4109 }
4110
4111 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4112 if (!busiest) {
4113 schedstat_inc(sd, lb_nobusyq[idle]);
4114 goto out_balanced;
4115 }
4116
4117 BUG_ON(busiest == this_rq);
4118
4119 schedstat_add(sd, lb_imbalance[idle], imbalance);
4120
4121 ld_moved = 0;
4122 if (busiest->nr_running > 1) {
4123 /*
4124 * Attempt to move tasks. If find_busiest_group has found
4125 * an imbalance but busiest->nr_running <= 1, the group is
4126 * still unbalanced. ld_moved simply stays zero, so it is
4127 * correctly treated as an imbalance.
4128 */
4129 local_irq_save(flags);
4130 double_rq_lock(this_rq, busiest);
4131 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4132 imbalance, sd, idle, &all_pinned);
4133 double_rq_unlock(this_rq, busiest);
4134 local_irq_restore(flags);
4135
4136 /*
4137 * some other cpu did the load balance for us.
4138 */
4139 if (ld_moved && this_cpu != smp_processor_id())
4140 resched_cpu(this_cpu);
4141
4142 /* All tasks on this runqueue were pinned by CPU affinity */
4143 if (unlikely(all_pinned)) {
4144 cpumask_clear_cpu(cpu_of(busiest), cpus);
4145 if (!cpumask_empty(cpus))
4146 goto redo;
4147 goto out_balanced;
4148 }
4149 }
4150
4151 if (!ld_moved) {
4152 schedstat_inc(sd, lb_failed[idle]);
4153 sd->nr_balance_failed++;
4154
4155 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4156
4157 spin_lock_irqsave(&busiest->lock, flags);
4158
4159 /* don't kick the migration_thread, if the curr
4160 * task on busiest cpu can't be moved to this_cpu
4161 */
4162 if (!cpumask_test_cpu(this_cpu,
4163 &busiest->curr->cpus_allowed)) {
4164 spin_unlock_irqrestore(&busiest->lock, flags);
4165 all_pinned = 1;
4166 goto out_one_pinned;
4167 }
4168
4169 if (!busiest->active_balance) {
4170 busiest->active_balance = 1;
4171 busiest->push_cpu = this_cpu;
4172 active_balance = 1;
4173 }
4174 spin_unlock_irqrestore(&busiest->lock, flags);
4175 if (active_balance)
4176 wake_up_process(busiest->migration_thread);
4177
4178 /*
4179 * We've kicked active balancing, reset the failure
4180 * counter.
4181 */
4182 sd->nr_balance_failed = sd->cache_nice_tries+1;
4183 }
4184 } else
4185 sd->nr_balance_failed = 0;
4186
4187 if (likely(!active_balance)) {
4188 /* We were unbalanced, so reset the balancing interval */
4189 sd->balance_interval = sd->min_interval;
4190 } else {
4191 /*
4192 * If we've begun active balancing, start to back off. This
4193 * case may not be covered by the all_pinned logic if there
4194 * is only 1 task on the busy runqueue (because we don't call
4195 * move_tasks).
4196 */
4197 if (sd->balance_interval < sd->max_interval)
4198 sd->balance_interval *= 2;
4199 }
4200
4201 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4202 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4203 ld_moved = -1;
4204
4205 goto out;
4206
4207 out_balanced:
4208 schedstat_inc(sd, lb_balanced[idle]);
4209
4210 sd->nr_balance_failed = 0;
4211
4212 out_one_pinned:
4213 /* tune up the balancing interval */
4214 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4215 (sd->balance_interval < sd->max_interval))
4216 sd->balance_interval *= 2;
4217
4218 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4219 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4220 ld_moved = -1;
4221 else
4222 ld_moved = 0;
4223 out:
4224 if (ld_moved)
4225 update_shares(sd);
4226 return ld_moved;
4227 }
4228
4229 /*
4230 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4231 * tasks if there is an imbalance.
4232 *
4233 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4234 * this_rq is locked.
4235 */
4236 static int
4237 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4238 {
4239 struct sched_group *group;
4240 struct rq *busiest = NULL;
4241 unsigned long imbalance;
4242 int ld_moved = 0;
4243 int sd_idle = 0;
4244 int all_pinned = 0;
4245 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4246
4247 cpumask_setall(cpus);
4248
4249 /*
4250 * When power savings policy is enabled for the parent domain, idle
4251 * sibling can pick up load irrespective of busy siblings. In this case,
4252 * let the state of idle sibling percolate up as IDLE, instead of
4253 * portraying it as CPU_NOT_IDLE.
4254 */
4255 if (sd->flags & SD_SHARE_CPUPOWER &&
4256 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4257 sd_idle = 1;
4258
4259 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4260 redo:
4261 update_shares_locked(this_rq, sd);
4262 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4263 &sd_idle, cpus, NULL);
4264 if (!group) {
4265 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4266 goto out_balanced;
4267 }
4268
4269 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4270 if (!busiest) {
4271 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4272 goto out_balanced;
4273 }
4274
4275 BUG_ON(busiest == this_rq);
4276
4277 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4278
4279 ld_moved = 0;
4280 if (busiest->nr_running > 1) {
4281 /* Attempt to move tasks */
4282 double_lock_balance(this_rq, busiest);
4283 /* this_rq->clock is already updated */
4284 update_rq_clock(busiest);
4285 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4286 imbalance, sd, CPU_NEWLY_IDLE,
4287 &all_pinned);
4288 double_unlock_balance(this_rq, busiest);
4289
4290 if (unlikely(all_pinned)) {
4291 cpumask_clear_cpu(cpu_of(busiest), cpus);
4292 if (!cpumask_empty(cpus))
4293 goto redo;
4294 }
4295 }
4296
4297 if (!ld_moved) {
4298 int active_balance = 0;
4299
4300 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4301 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4302 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4303 return -1;
4304
4305 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4306 return -1;
4307
4308 if (sd->nr_balance_failed++ < 2)
4309 return -1;
4310
4311 /*
4312 * The only task running in a non-idle cpu can be moved to this
4313 * cpu in an attempt to completely freeup the other CPU
4314 * package. The same method used to move task in load_balance()
4315 * have been extended for load_balance_newidle() to speedup
4316 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4317 *
4318 * The package power saving logic comes from
4319 * find_busiest_group(). If there are no imbalance, then
4320 * f_b_g() will return NULL. However when sched_mc={1,2} then
4321 * f_b_g() will select a group from which a running task may be
4322 * pulled to this cpu in order to make the other package idle.
4323 * If there is no opportunity to make a package idle and if
4324 * there are no imbalance, then f_b_g() will return NULL and no
4325 * action will be taken in load_balance_newidle().
4326 *
4327 * Under normal task pull operation due to imbalance, there
4328 * will be more than one task in the source run queue and
4329 * move_tasks() will succeed. ld_moved will be true and this
4330 * active balance code will not be triggered.
4331 */
4332
4333 /* Lock busiest in correct order while this_rq is held */
4334 double_lock_balance(this_rq, busiest);
4335
4336 /*
4337 * don't kick the migration_thread, if the curr
4338 * task on busiest cpu can't be moved to this_cpu
4339 */
4340 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4341 double_unlock_balance(this_rq, busiest);
4342 all_pinned = 1;
4343 return ld_moved;
4344 }
4345
4346 if (!busiest->active_balance) {
4347 busiest->active_balance = 1;
4348 busiest->push_cpu = this_cpu;
4349 active_balance = 1;
4350 }
4351
4352 double_unlock_balance(this_rq, busiest);
4353 /*
4354 * Should not call ttwu while holding a rq->lock
4355 */
4356 spin_unlock(&this_rq->lock);
4357 if (active_balance)
4358 wake_up_process(busiest->migration_thread);
4359 spin_lock(&this_rq->lock);
4360
4361 } else
4362 sd->nr_balance_failed = 0;
4363
4364 update_shares_locked(this_rq, sd);
4365 return ld_moved;
4366
4367 out_balanced:
4368 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4369 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4370 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4371 return -1;
4372 sd->nr_balance_failed = 0;
4373
4374 return 0;
4375 }
4376
4377 /*
4378 * idle_balance is called by schedule() if this_cpu is about to become
4379 * idle. Attempts to pull tasks from other CPUs.
4380 */
4381 static void idle_balance(int this_cpu, struct rq *this_rq)
4382 {
4383 struct sched_domain *sd;
4384 int pulled_task = 0;
4385 unsigned long next_balance = jiffies + HZ;
4386
4387 for_each_domain(this_cpu, sd) {
4388 unsigned long interval;
4389
4390 if (!(sd->flags & SD_LOAD_BALANCE))
4391 continue;
4392
4393 if (sd->flags & SD_BALANCE_NEWIDLE)
4394 /* If we've pulled tasks over stop searching: */
4395 pulled_task = load_balance_newidle(this_cpu, this_rq,
4396 sd);
4397
4398 interval = msecs_to_jiffies(sd->balance_interval);
4399 if (time_after(next_balance, sd->last_balance + interval))
4400 next_balance = sd->last_balance + interval;
4401 if (pulled_task)
4402 break;
4403 }
4404 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4405 /*
4406 * We are going idle. next_balance may be set based on
4407 * a busy processor. So reset next_balance.
4408 */
4409 this_rq->next_balance = next_balance;
4410 }
4411 }
4412
4413 /*
4414 * active_load_balance is run by migration threads. It pushes running tasks
4415 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4416 * running on each physical CPU where possible, and avoids physical /
4417 * logical imbalances.
4418 *
4419 * Called with busiest_rq locked.
4420 */
4421 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4422 {
4423 int target_cpu = busiest_rq->push_cpu;
4424 struct sched_domain *sd;
4425 struct rq *target_rq;
4426
4427 /* Is there any task to move? */
4428 if (busiest_rq->nr_running <= 1)
4429 return;
4430
4431 target_rq = cpu_rq(target_cpu);
4432
4433 /*
4434 * This condition is "impossible", if it occurs
4435 * we need to fix it. Originally reported by
4436 * Bjorn Helgaas on a 128-cpu setup.
4437 */
4438 BUG_ON(busiest_rq == target_rq);
4439
4440 /* move a task from busiest_rq to target_rq */
4441 double_lock_balance(busiest_rq, target_rq);
4442 update_rq_clock(busiest_rq);
4443 update_rq_clock(target_rq);
4444
4445 /* Search for an sd spanning us and the target CPU. */
4446 for_each_domain(target_cpu, sd) {
4447 if ((sd->flags & SD_LOAD_BALANCE) &&
4448 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4449 break;
4450 }
4451
4452 if (likely(sd)) {
4453 schedstat_inc(sd, alb_count);
4454
4455 if (move_one_task(target_rq, target_cpu, busiest_rq,
4456 sd, CPU_IDLE))
4457 schedstat_inc(sd, alb_pushed);
4458 else
4459 schedstat_inc(sd, alb_failed);
4460 }
4461 double_unlock_balance(busiest_rq, target_rq);
4462 }
4463
4464 #ifdef CONFIG_NO_HZ
4465 static struct {
4466 atomic_t load_balancer;
4467 cpumask_var_t cpu_mask;
4468 cpumask_var_t ilb_grp_nohz_mask;
4469 } nohz ____cacheline_aligned = {
4470 .load_balancer = ATOMIC_INIT(-1),
4471 };
4472
4473 int get_nohz_load_balancer(void)
4474 {
4475 return atomic_read(&nohz.load_balancer);
4476 }
4477
4478 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4479 /**
4480 * lowest_flag_domain - Return lowest sched_domain containing flag.
4481 * @cpu: The cpu whose lowest level of sched domain is to
4482 * be returned.
4483 * @flag: The flag to check for the lowest sched_domain
4484 * for the given cpu.
4485 *
4486 * Returns the lowest sched_domain of a cpu which contains the given flag.
4487 */
4488 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4489 {
4490 struct sched_domain *sd;
4491
4492 for_each_domain(cpu, sd)
4493 if (sd && (sd->flags & flag))
4494 break;
4495
4496 return sd;
4497 }
4498
4499 /**
4500 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4501 * @cpu: The cpu whose domains we're iterating over.
4502 * @sd: variable holding the value of the power_savings_sd
4503 * for cpu.
4504 * @flag: The flag to filter the sched_domains to be iterated.
4505 *
4506 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4507 * set, starting from the lowest sched_domain to the highest.
4508 */
4509 #define for_each_flag_domain(cpu, sd, flag) \
4510 for (sd = lowest_flag_domain(cpu, flag); \
4511 (sd && (sd->flags & flag)); sd = sd->parent)
4512
4513 /**
4514 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4515 * @ilb_group: group to be checked for semi-idleness
4516 *
4517 * Returns: 1 if the group is semi-idle. 0 otherwise.
4518 *
4519 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4520 * and atleast one non-idle CPU. This helper function checks if the given
4521 * sched_group is semi-idle or not.
4522 */
4523 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4524 {
4525 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4526 sched_group_cpus(ilb_group));
4527
4528 /*
4529 * A sched_group is semi-idle when it has atleast one busy cpu
4530 * and atleast one idle cpu.
4531 */
4532 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4533 return 0;
4534
4535 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4536 return 0;
4537
4538 return 1;
4539 }
4540 /**
4541 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4542 * @cpu: The cpu which is nominating a new idle_load_balancer.
4543 *
4544 * Returns: Returns the id of the idle load balancer if it exists,
4545 * Else, returns >= nr_cpu_ids.
4546 *
4547 * This algorithm picks the idle load balancer such that it belongs to a
4548 * semi-idle powersavings sched_domain. The idea is to try and avoid
4549 * completely idle packages/cores just for the purpose of idle load balancing
4550 * when there are other idle cpu's which are better suited for that job.
4551 */
4552 static int find_new_ilb(int cpu)
4553 {
4554 struct sched_domain *sd;
4555 struct sched_group *ilb_group;
4556
4557 /*
4558 * Have idle load balancer selection from semi-idle packages only
4559 * when power-aware load balancing is enabled
4560 */
4561 if (!(sched_smt_power_savings || sched_mc_power_savings))
4562 goto out_done;
4563
4564 /*
4565 * Optimize for the case when we have no idle CPUs or only one
4566 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4567 */
4568 if (cpumask_weight(nohz.cpu_mask) < 2)
4569 goto out_done;
4570
4571 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4572 ilb_group = sd->groups;
4573
4574 do {
4575 if (is_semi_idle_group(ilb_group))
4576 return cpumask_first(nohz.ilb_grp_nohz_mask);
4577
4578 ilb_group = ilb_group->next;
4579
4580 } while (ilb_group != sd->groups);
4581 }
4582
4583 out_done:
4584 return cpumask_first(nohz.cpu_mask);
4585 }
4586 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4587 static inline int find_new_ilb(int call_cpu)
4588 {
4589 return cpumask_first(nohz.cpu_mask);
4590 }
4591 #endif
4592
4593 /*
4594 * This routine will try to nominate the ilb (idle load balancing)
4595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4596 * load balancing on behalf of all those cpus. If all the cpus in the system
4597 * go into this tickless mode, then there will be no ilb owner (as there is
4598 * no need for one) and all the cpus will sleep till the next wakeup event
4599 * arrives...
4600 *
4601 * For the ilb owner, tick is not stopped. And this tick will be used
4602 * for idle load balancing. ilb owner will still be part of
4603 * nohz.cpu_mask..
4604 *
4605 * While stopping the tick, this cpu will become the ilb owner if there
4606 * is no other owner. And will be the owner till that cpu becomes busy
4607 * or if all cpus in the system stop their ticks at which point
4608 * there is no need for ilb owner.
4609 *
4610 * When the ilb owner becomes busy, it nominates another owner, during the
4611 * next busy scheduler_tick()
4612 */
4613 int select_nohz_load_balancer(int stop_tick)
4614 {
4615 int cpu = smp_processor_id();
4616
4617 if (stop_tick) {
4618 cpu_rq(cpu)->in_nohz_recently = 1;
4619
4620 if (!cpu_active(cpu)) {
4621 if (atomic_read(&nohz.load_balancer) != cpu)
4622 return 0;
4623
4624 /*
4625 * If we are going offline and still the leader,
4626 * give up!
4627 */
4628 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4629 BUG();
4630
4631 return 0;
4632 }
4633
4634 cpumask_set_cpu(cpu, nohz.cpu_mask);
4635
4636 /* time for ilb owner also to sleep */
4637 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4638 if (atomic_read(&nohz.load_balancer) == cpu)
4639 atomic_set(&nohz.load_balancer, -1);
4640 return 0;
4641 }
4642
4643 if (atomic_read(&nohz.load_balancer) == -1) {
4644 /* make me the ilb owner */
4645 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4646 return 1;
4647 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4648 int new_ilb;
4649
4650 if (!(sched_smt_power_savings ||
4651 sched_mc_power_savings))
4652 return 1;
4653 /*
4654 * Check to see if there is a more power-efficient
4655 * ilb.
4656 */
4657 new_ilb = find_new_ilb(cpu);
4658 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4659 atomic_set(&nohz.load_balancer, -1);
4660 resched_cpu(new_ilb);
4661 return 0;
4662 }
4663 return 1;
4664 }
4665 } else {
4666 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4667 return 0;
4668
4669 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4670
4671 if (atomic_read(&nohz.load_balancer) == cpu)
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
4674 }
4675 return 0;
4676 }
4677 #endif
4678
4679 static DEFINE_SPINLOCK(balancing);
4680
4681 /*
4682 * It checks each scheduling domain to see if it is due to be balanced,
4683 * and initiates a balancing operation if so.
4684 *
4685 * Balancing parameters are set up in arch_init_sched_domains.
4686 */
4687 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4688 {
4689 int balance = 1;
4690 struct rq *rq = cpu_rq(cpu);
4691 unsigned long interval;
4692 struct sched_domain *sd;
4693 /* Earliest time when we have to do rebalance again */
4694 unsigned long next_balance = jiffies + 60*HZ;
4695 int update_next_balance = 0;
4696 int need_serialize;
4697
4698 for_each_domain(cpu, sd) {
4699 if (!(sd->flags & SD_LOAD_BALANCE))
4700 continue;
4701
4702 interval = sd->balance_interval;
4703 if (idle != CPU_IDLE)
4704 interval *= sd->busy_factor;
4705
4706 /* scale ms to jiffies */
4707 interval = msecs_to_jiffies(interval);
4708 if (unlikely(!interval))
4709 interval = 1;
4710 if (interval > HZ*NR_CPUS/10)
4711 interval = HZ*NR_CPUS/10;
4712
4713 need_serialize = sd->flags & SD_SERIALIZE;
4714
4715 if (need_serialize) {
4716 if (!spin_trylock(&balancing))
4717 goto out;
4718 }
4719
4720 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4721 if (load_balance(cpu, rq, sd, idle, &balance)) {
4722 /*
4723 * We've pulled tasks over so either we're no
4724 * longer idle, or one of our SMT siblings is
4725 * not idle.
4726 */
4727 idle = CPU_NOT_IDLE;
4728 }
4729 sd->last_balance = jiffies;
4730 }
4731 if (need_serialize)
4732 spin_unlock(&balancing);
4733 out:
4734 if (time_after(next_balance, sd->last_balance + interval)) {
4735 next_balance = sd->last_balance + interval;
4736 update_next_balance = 1;
4737 }
4738
4739 /*
4740 * Stop the load balance at this level. There is another
4741 * CPU in our sched group which is doing load balancing more
4742 * actively.
4743 */
4744 if (!balance)
4745 break;
4746 }
4747
4748 /*
4749 * next_balance will be updated only when there is a need.
4750 * When the cpu is attached to null domain for ex, it will not be
4751 * updated.
4752 */
4753 if (likely(update_next_balance))
4754 rq->next_balance = next_balance;
4755 }
4756
4757 /*
4758 * run_rebalance_domains is triggered when needed from the scheduler tick.
4759 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4760 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4761 */
4762 static void run_rebalance_domains(struct softirq_action *h)
4763 {
4764 int this_cpu = smp_processor_id();
4765 struct rq *this_rq = cpu_rq(this_cpu);
4766 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4767 CPU_IDLE : CPU_NOT_IDLE;
4768
4769 rebalance_domains(this_cpu, idle);
4770
4771 #ifdef CONFIG_NO_HZ
4772 /*
4773 * If this cpu is the owner for idle load balancing, then do the
4774 * balancing on behalf of the other idle cpus whose ticks are
4775 * stopped.
4776 */
4777 if (this_rq->idle_at_tick &&
4778 atomic_read(&nohz.load_balancer) == this_cpu) {
4779 struct rq *rq;
4780 int balance_cpu;
4781
4782 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4783 if (balance_cpu == this_cpu)
4784 continue;
4785
4786 /*
4787 * If this cpu gets work to do, stop the load balancing
4788 * work being done for other cpus. Next load
4789 * balancing owner will pick it up.
4790 */
4791 if (need_resched())
4792 break;
4793
4794 rebalance_domains(balance_cpu, CPU_IDLE);
4795
4796 rq = cpu_rq(balance_cpu);
4797 if (time_after(this_rq->next_balance, rq->next_balance))
4798 this_rq->next_balance = rq->next_balance;
4799 }
4800 }
4801 #endif
4802 }
4803
4804 static inline int on_null_domain(int cpu)
4805 {
4806 return !rcu_dereference(cpu_rq(cpu)->sd);
4807 }
4808
4809 /*
4810 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4811 *
4812 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4813 * idle load balancing owner or decide to stop the periodic load balancing,
4814 * if the whole system is idle.
4815 */
4816 static inline void trigger_load_balance(struct rq *rq, int cpu)
4817 {
4818 #ifdef CONFIG_NO_HZ
4819 /*
4820 * If we were in the nohz mode recently and busy at the current
4821 * scheduler tick, then check if we need to nominate new idle
4822 * load balancer.
4823 */
4824 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4825 rq->in_nohz_recently = 0;
4826
4827 if (atomic_read(&nohz.load_balancer) == cpu) {
4828 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4829 atomic_set(&nohz.load_balancer, -1);
4830 }
4831
4832 if (atomic_read(&nohz.load_balancer) == -1) {
4833 int ilb = find_new_ilb(cpu);
4834
4835 if (ilb < nr_cpu_ids)
4836 resched_cpu(ilb);
4837 }
4838 }
4839
4840 /*
4841 * If this cpu is idle and doing idle load balancing for all the
4842 * cpus with ticks stopped, is it time for that to stop?
4843 */
4844 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4845 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4846 resched_cpu(cpu);
4847 return;
4848 }
4849
4850 /*
4851 * If this cpu is idle and the idle load balancing is done by
4852 * someone else, then no need raise the SCHED_SOFTIRQ
4853 */
4854 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4855 cpumask_test_cpu(cpu, nohz.cpu_mask))
4856 return;
4857 #endif
4858 /* Don't need to rebalance while attached to NULL domain */
4859 if (time_after_eq(jiffies, rq->next_balance) &&
4860 likely(!on_null_domain(cpu)))
4861 raise_softirq(SCHED_SOFTIRQ);
4862 }
4863
4864 #else /* CONFIG_SMP */
4865
4866 /*
4867 * on UP we do not need to balance between CPUs:
4868 */
4869 static inline void idle_balance(int cpu, struct rq *rq)
4870 {
4871 }
4872
4873 #endif
4874
4875 DEFINE_PER_CPU(struct kernel_stat, kstat);
4876
4877 EXPORT_PER_CPU_SYMBOL(kstat);
4878
4879 /*
4880 * Return any ns on the sched_clock that have not yet been accounted in
4881 * @p in case that task is currently running.
4882 *
4883 * Called with task_rq_lock() held on @rq.
4884 */
4885 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4886 {
4887 u64 ns = 0;
4888
4889 if (task_current(rq, p)) {
4890 update_rq_clock(rq);
4891 ns = rq->clock - p->se.exec_start;
4892 if ((s64)ns < 0)
4893 ns = 0;
4894 }
4895
4896 return ns;
4897 }
4898
4899 unsigned long long task_delta_exec(struct task_struct *p)
4900 {
4901 unsigned long flags;
4902 struct rq *rq;
4903 u64 ns = 0;
4904
4905 rq = task_rq_lock(p, &flags);
4906 ns = do_task_delta_exec(p, rq);
4907 task_rq_unlock(rq, &flags);
4908
4909 return ns;
4910 }
4911
4912 /*
4913 * Return accounted runtime for the task.
4914 * In case the task is currently running, return the runtime plus current's
4915 * pending runtime that have not been accounted yet.
4916 */
4917 unsigned long long task_sched_runtime(struct task_struct *p)
4918 {
4919 unsigned long flags;
4920 struct rq *rq;
4921 u64 ns = 0;
4922
4923 rq = task_rq_lock(p, &flags);
4924 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4925 task_rq_unlock(rq, &flags);
4926
4927 return ns;
4928 }
4929
4930 /*
4931 * Return sum_exec_runtime for the thread group.
4932 * In case the task is currently running, return the sum plus current's
4933 * pending runtime that have not been accounted yet.
4934 *
4935 * Note that the thread group might have other running tasks as well,
4936 * so the return value not includes other pending runtime that other
4937 * running tasks might have.
4938 */
4939 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4940 {
4941 struct task_cputime totals;
4942 unsigned long flags;
4943 struct rq *rq;
4944 u64 ns;
4945
4946 rq = task_rq_lock(p, &flags);
4947 thread_group_cputime(p, &totals);
4948 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4949 task_rq_unlock(rq, &flags);
4950
4951 return ns;
4952 }
4953
4954 /*
4955 * Account user cpu time to a process.
4956 * @p: the process that the cpu time gets accounted to
4957 * @cputime: the cpu time spent in user space since the last update
4958 * @cputime_scaled: cputime scaled by cpu frequency
4959 */
4960 void account_user_time(struct task_struct *p, cputime_t cputime,
4961 cputime_t cputime_scaled)
4962 {
4963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4964 cputime64_t tmp;
4965
4966 /* Add user time to process. */
4967 p->utime = cputime_add(p->utime, cputime);
4968 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4969 account_group_user_time(p, cputime);
4970
4971 /* Add user time to cpustat. */
4972 tmp = cputime_to_cputime64(cputime);
4973 if (TASK_NICE(p) > 0)
4974 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4975 else
4976 cpustat->user = cputime64_add(cpustat->user, tmp);
4977
4978 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4979 /* Account for user time used */
4980 acct_update_integrals(p);
4981 }
4982
4983 /*
4984 * Account guest cpu time to a process.
4985 * @p: the process that the cpu time gets accounted to
4986 * @cputime: the cpu time spent in virtual machine since the last update
4987 * @cputime_scaled: cputime scaled by cpu frequency
4988 */
4989 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4990 cputime_t cputime_scaled)
4991 {
4992 cputime64_t tmp;
4993 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4994
4995 tmp = cputime_to_cputime64(cputime);
4996
4997 /* Add guest time to process. */
4998 p->utime = cputime_add(p->utime, cputime);
4999 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5000 account_group_user_time(p, cputime);
5001 p->gtime = cputime_add(p->gtime, cputime);
5002
5003 /* Add guest time to cpustat. */
5004 cpustat->user = cputime64_add(cpustat->user, tmp);
5005 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5006 }
5007
5008 /*
5009 * Account system cpu time to a process.
5010 * @p: the process that the cpu time gets accounted to
5011 * @hardirq_offset: the offset to subtract from hardirq_count()
5012 * @cputime: the cpu time spent in kernel space since the last update
5013 * @cputime_scaled: cputime scaled by cpu frequency
5014 */
5015 void account_system_time(struct task_struct *p, int hardirq_offset,
5016 cputime_t cputime, cputime_t cputime_scaled)
5017 {
5018 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5019 cputime64_t tmp;
5020
5021 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5022 account_guest_time(p, cputime, cputime_scaled);
5023 return;
5024 }
5025
5026 /* Add system time to process. */
5027 p->stime = cputime_add(p->stime, cputime);
5028 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5029 account_group_system_time(p, cputime);
5030
5031 /* Add system time to cpustat. */
5032 tmp = cputime_to_cputime64(cputime);
5033 if (hardirq_count() - hardirq_offset)
5034 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5035 else if (softirq_count())
5036 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5037 else
5038 cpustat->system = cputime64_add(cpustat->system, tmp);
5039
5040 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5041
5042 /* Account for system time used */
5043 acct_update_integrals(p);
5044 }
5045
5046 /*
5047 * Account for involuntary wait time.
5048 * @steal: the cpu time spent in involuntary wait
5049 */
5050 void account_steal_time(cputime_t cputime)
5051 {
5052 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5053 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5054
5055 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5056 }
5057
5058 /*
5059 * Account for idle time.
5060 * @cputime: the cpu time spent in idle wait
5061 */
5062 void account_idle_time(cputime_t cputime)
5063 {
5064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5065 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5066 struct rq *rq = this_rq();
5067
5068 if (atomic_read(&rq->nr_iowait) > 0)
5069 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5070 else
5071 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5072 }
5073
5074 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5075
5076 /*
5077 * Account a single tick of cpu time.
5078 * @p: the process that the cpu time gets accounted to
5079 * @user_tick: indicates if the tick is a user or a system tick
5080 */
5081 void account_process_tick(struct task_struct *p, int user_tick)
5082 {
5083 cputime_t one_jiffy = jiffies_to_cputime(1);
5084 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5085 struct rq *rq = this_rq();
5086
5087 if (user_tick)
5088 account_user_time(p, one_jiffy, one_jiffy_scaled);
5089 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5090 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5091 one_jiffy_scaled);
5092 else
5093 account_idle_time(one_jiffy);
5094 }
5095
5096 /*
5097 * Account multiple ticks of steal time.
5098 * @p: the process from which the cpu time has been stolen
5099 * @ticks: number of stolen ticks
5100 */
5101 void account_steal_ticks(unsigned long ticks)
5102 {
5103 account_steal_time(jiffies_to_cputime(ticks));
5104 }
5105
5106 /*
5107 * Account multiple ticks of idle time.
5108 * @ticks: number of stolen ticks
5109 */
5110 void account_idle_ticks(unsigned long ticks)
5111 {
5112 account_idle_time(jiffies_to_cputime(ticks));
5113 }
5114
5115 #endif
5116
5117 /*
5118 * Use precise platform statistics if available:
5119 */
5120 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5121 cputime_t task_utime(struct task_struct *p)
5122 {
5123 return p->utime;
5124 }
5125
5126 cputime_t task_stime(struct task_struct *p)
5127 {
5128 return p->stime;
5129 }
5130 #else
5131 cputime_t task_utime(struct task_struct *p)
5132 {
5133 clock_t utime = cputime_to_clock_t(p->utime),
5134 total = utime + cputime_to_clock_t(p->stime);
5135 u64 temp;
5136
5137 /*
5138 * Use CFS's precise accounting:
5139 */
5140 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5141
5142 if (total) {
5143 temp *= utime;
5144 do_div(temp, total);
5145 }
5146 utime = (clock_t)temp;
5147
5148 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5149 return p->prev_utime;
5150 }
5151
5152 cputime_t task_stime(struct task_struct *p)
5153 {
5154 clock_t stime;
5155
5156 /*
5157 * Use CFS's precise accounting. (we subtract utime from
5158 * the total, to make sure the total observed by userspace
5159 * grows monotonically - apps rely on that):
5160 */
5161 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5162 cputime_to_clock_t(task_utime(p));
5163
5164 if (stime >= 0)
5165 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5166
5167 return p->prev_stime;
5168 }
5169 #endif
5170
5171 inline cputime_t task_gtime(struct task_struct *p)
5172 {
5173 return p->gtime;
5174 }
5175
5176 /*
5177 * This function gets called by the timer code, with HZ frequency.
5178 * We call it with interrupts disabled.
5179 *
5180 * It also gets called by the fork code, when changing the parent's
5181 * timeslices.
5182 */
5183 void scheduler_tick(void)
5184 {
5185 int cpu = smp_processor_id();
5186 struct rq *rq = cpu_rq(cpu);
5187 struct task_struct *curr = rq->curr;
5188
5189 sched_clock_tick();
5190
5191 spin_lock(&rq->lock);
5192 update_rq_clock(rq);
5193 update_cpu_load(rq);
5194 curr->sched_class->task_tick(rq, curr, 0);
5195 spin_unlock(&rq->lock);
5196
5197 perf_counter_task_tick(curr, cpu);
5198
5199 #ifdef CONFIG_SMP
5200 rq->idle_at_tick = idle_cpu(cpu);
5201 trigger_load_balance(rq, cpu);
5202 #endif
5203 }
5204
5205 notrace unsigned long get_parent_ip(unsigned long addr)
5206 {
5207 if (in_lock_functions(addr)) {
5208 addr = CALLER_ADDR2;
5209 if (in_lock_functions(addr))
5210 addr = CALLER_ADDR3;
5211 }
5212 return addr;
5213 }
5214
5215 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5216 defined(CONFIG_PREEMPT_TRACER))
5217
5218 void __kprobes add_preempt_count(int val)
5219 {
5220 #ifdef CONFIG_DEBUG_PREEMPT
5221 /*
5222 * Underflow?
5223 */
5224 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5225 return;
5226 #endif
5227 preempt_count() += val;
5228 #ifdef CONFIG_DEBUG_PREEMPT
5229 /*
5230 * Spinlock count overflowing soon?
5231 */
5232 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5233 PREEMPT_MASK - 10);
5234 #endif
5235 if (preempt_count() == val)
5236 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5237 }
5238 EXPORT_SYMBOL(add_preempt_count);
5239
5240 void __kprobes sub_preempt_count(int val)
5241 {
5242 #ifdef CONFIG_DEBUG_PREEMPT
5243 /*
5244 * Underflow?
5245 */
5246 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5247 return;
5248 /*
5249 * Is the spinlock portion underflowing?
5250 */
5251 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5252 !(preempt_count() & PREEMPT_MASK)))
5253 return;
5254 #endif
5255
5256 if (preempt_count() == val)
5257 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5258 preempt_count() -= val;
5259 }
5260 EXPORT_SYMBOL(sub_preempt_count);
5261
5262 #endif
5263
5264 /*
5265 * Print scheduling while atomic bug:
5266 */
5267 static noinline void __schedule_bug(struct task_struct *prev)
5268 {
5269 struct pt_regs *regs = get_irq_regs();
5270
5271 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5272 prev->comm, prev->pid, preempt_count());
5273
5274 debug_show_held_locks(prev);
5275 print_modules();
5276 if (irqs_disabled())
5277 print_irqtrace_events(prev);
5278
5279 if (regs)
5280 show_regs(regs);
5281 else
5282 dump_stack();
5283 }
5284
5285 /*
5286 * Various schedule()-time debugging checks and statistics:
5287 */
5288 static inline void schedule_debug(struct task_struct *prev)
5289 {
5290 /*
5291 * Test if we are atomic. Since do_exit() needs to call into
5292 * schedule() atomically, we ignore that path for now.
5293 * Otherwise, whine if we are scheduling when we should not be.
5294 */
5295 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5296 __schedule_bug(prev);
5297
5298 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5299
5300 schedstat_inc(this_rq(), sched_count);
5301 #ifdef CONFIG_SCHEDSTATS
5302 if (unlikely(prev->lock_depth >= 0)) {
5303 schedstat_inc(this_rq(), bkl_count);
5304 schedstat_inc(prev, sched_info.bkl_count);
5305 }
5306 #endif
5307 }
5308
5309 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5310 {
5311 if (prev->state == TASK_RUNNING) {
5312 u64 runtime = prev->se.sum_exec_runtime;
5313
5314 runtime -= prev->se.prev_sum_exec_runtime;
5315 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5316
5317 /*
5318 * In order to avoid avg_overlap growing stale when we are
5319 * indeed overlapping and hence not getting put to sleep, grow
5320 * the avg_overlap on preemption.
5321 *
5322 * We use the average preemption runtime because that
5323 * correlates to the amount of cache footprint a task can
5324 * build up.
5325 */
5326 update_avg(&prev->se.avg_overlap, runtime);
5327 }
5328 prev->sched_class->put_prev_task(rq, prev);
5329 }
5330
5331 /*
5332 * Pick up the highest-prio task:
5333 */
5334 static inline struct task_struct *
5335 pick_next_task(struct rq *rq)
5336 {
5337 const struct sched_class *class;
5338 struct task_struct *p;
5339
5340 /*
5341 * Optimization: we know that if all tasks are in
5342 * the fair class we can call that function directly:
5343 */
5344 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5345 p = fair_sched_class.pick_next_task(rq);
5346 if (likely(p))
5347 return p;
5348 }
5349
5350 class = sched_class_highest;
5351 for ( ; ; ) {
5352 p = class->pick_next_task(rq);
5353 if (p)
5354 return p;
5355 /*
5356 * Will never be NULL as the idle class always
5357 * returns a non-NULL p:
5358 */
5359 class = class->next;
5360 }
5361 }
5362
5363 /*
5364 * schedule() is the main scheduler function.
5365 */
5366 asmlinkage void __sched schedule(void)
5367 {
5368 struct task_struct *prev, *next;
5369 unsigned long *switch_count;
5370 struct rq *rq;
5371 int cpu;
5372
5373 need_resched:
5374 preempt_disable();
5375 cpu = smp_processor_id();
5376 rq = cpu_rq(cpu);
5377 rcu_sched_qs(cpu);
5378 prev = rq->curr;
5379 switch_count = &prev->nivcsw;
5380
5381 release_kernel_lock(prev);
5382 need_resched_nonpreemptible:
5383
5384 schedule_debug(prev);
5385
5386 if (sched_feat(HRTICK))
5387 hrtick_clear(rq);
5388
5389 spin_lock_irq(&rq->lock);
5390 update_rq_clock(rq);
5391 clear_tsk_need_resched(prev);
5392
5393 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5394 if (unlikely(signal_pending_state(prev->state, prev)))
5395 prev->state = TASK_RUNNING;
5396 else
5397 deactivate_task(rq, prev, 1);
5398 switch_count = &prev->nvcsw;
5399 }
5400
5401 pre_schedule(rq, prev);
5402
5403 if (unlikely(!rq->nr_running))
5404 idle_balance(cpu, rq);
5405
5406 put_prev_task(rq, prev);
5407 next = pick_next_task(rq);
5408
5409 if (likely(prev != next)) {
5410 sched_info_switch(prev, next);
5411 perf_counter_task_sched_out(prev, next, cpu);
5412
5413 rq->nr_switches++;
5414 rq->curr = next;
5415 ++*switch_count;
5416
5417 context_switch(rq, prev, next); /* unlocks the rq */
5418 /*
5419 * the context switch might have flipped the stack from under
5420 * us, hence refresh the local variables.
5421 */
5422 cpu = smp_processor_id();
5423 rq = cpu_rq(cpu);
5424 } else
5425 spin_unlock_irq(&rq->lock);
5426
5427 post_schedule(rq);
5428
5429 if (unlikely(reacquire_kernel_lock(current) < 0))
5430 goto need_resched_nonpreemptible;
5431
5432 preempt_enable_no_resched();
5433 if (need_resched())
5434 goto need_resched;
5435 }
5436 EXPORT_SYMBOL(schedule);
5437
5438 #ifdef CONFIG_SMP
5439 /*
5440 * Look out! "owner" is an entirely speculative pointer
5441 * access and not reliable.
5442 */
5443 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5444 {
5445 unsigned int cpu;
5446 struct rq *rq;
5447
5448 if (!sched_feat(OWNER_SPIN))
5449 return 0;
5450
5451 #ifdef CONFIG_DEBUG_PAGEALLOC
5452 /*
5453 * Need to access the cpu field knowing that
5454 * DEBUG_PAGEALLOC could have unmapped it if
5455 * the mutex owner just released it and exited.
5456 */
5457 if (probe_kernel_address(&owner->cpu, cpu))
5458 goto out;
5459 #else
5460 cpu = owner->cpu;
5461 #endif
5462
5463 /*
5464 * Even if the access succeeded (likely case),
5465 * the cpu field may no longer be valid.
5466 */
5467 if (cpu >= nr_cpumask_bits)
5468 goto out;
5469
5470 /*
5471 * We need to validate that we can do a
5472 * get_cpu() and that we have the percpu area.
5473 */
5474 if (!cpu_online(cpu))
5475 goto out;
5476
5477 rq = cpu_rq(cpu);
5478
5479 for (;;) {
5480 /*
5481 * Owner changed, break to re-assess state.
5482 */
5483 if (lock->owner != owner)
5484 break;
5485
5486 /*
5487 * Is that owner really running on that cpu?
5488 */
5489 if (task_thread_info(rq->curr) != owner || need_resched())
5490 return 0;
5491
5492 cpu_relax();
5493 }
5494 out:
5495 return 1;
5496 }
5497 #endif
5498
5499 #ifdef CONFIG_PREEMPT
5500 /*
5501 * this is the entry point to schedule() from in-kernel preemption
5502 * off of preempt_enable. Kernel preemptions off return from interrupt
5503 * occur there and call schedule directly.
5504 */
5505 asmlinkage void __sched preempt_schedule(void)
5506 {
5507 struct thread_info *ti = current_thread_info();
5508
5509 /*
5510 * If there is a non-zero preempt_count or interrupts are disabled,
5511 * we do not want to preempt the current task. Just return..
5512 */
5513 if (likely(ti->preempt_count || irqs_disabled()))
5514 return;
5515
5516 do {
5517 add_preempt_count(PREEMPT_ACTIVE);
5518 schedule();
5519 sub_preempt_count(PREEMPT_ACTIVE);
5520
5521 /*
5522 * Check again in case we missed a preemption opportunity
5523 * between schedule and now.
5524 */
5525 barrier();
5526 } while (need_resched());
5527 }
5528 EXPORT_SYMBOL(preempt_schedule);
5529
5530 /*
5531 * this is the entry point to schedule() from kernel preemption
5532 * off of irq context.
5533 * Note, that this is called and return with irqs disabled. This will
5534 * protect us against recursive calling from irq.
5535 */
5536 asmlinkage void __sched preempt_schedule_irq(void)
5537 {
5538 struct thread_info *ti = current_thread_info();
5539
5540 /* Catch callers which need to be fixed */
5541 BUG_ON(ti->preempt_count || !irqs_disabled());
5542
5543 do {
5544 add_preempt_count(PREEMPT_ACTIVE);
5545 local_irq_enable();
5546 schedule();
5547 local_irq_disable();
5548 sub_preempt_count(PREEMPT_ACTIVE);
5549
5550 /*
5551 * Check again in case we missed a preemption opportunity
5552 * between schedule and now.
5553 */
5554 barrier();
5555 } while (need_resched());
5556 }
5557
5558 #endif /* CONFIG_PREEMPT */
5559
5560 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5561 void *key)
5562 {
5563 return try_to_wake_up(curr->private, mode, wake_flags);
5564 }
5565 EXPORT_SYMBOL(default_wake_function);
5566
5567 /*
5568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5570 * number) then we wake all the non-exclusive tasks and one exclusive task.
5571 *
5572 * There are circumstances in which we can try to wake a task which has already
5573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5575 */
5576 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5577 int nr_exclusive, int wake_flags, void *key)
5578 {
5579 wait_queue_t *curr, *next;
5580
5581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5582 unsigned flags = curr->flags;
5583
5584 if (curr->func(curr, mode, wake_flags, key) &&
5585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5586 break;
5587 }
5588 }
5589
5590 /**
5591 * __wake_up - wake up threads blocked on a waitqueue.
5592 * @q: the waitqueue
5593 * @mode: which threads
5594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5595 * @key: is directly passed to the wakeup function
5596 *
5597 * It may be assumed that this function implies a write memory barrier before
5598 * changing the task state if and only if any tasks are woken up.
5599 */
5600 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5601 int nr_exclusive, void *key)
5602 {
5603 unsigned long flags;
5604
5605 spin_lock_irqsave(&q->lock, flags);
5606 __wake_up_common(q, mode, nr_exclusive, 0, key);
5607 spin_unlock_irqrestore(&q->lock, flags);
5608 }
5609 EXPORT_SYMBOL(__wake_up);
5610
5611 /*
5612 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5613 */
5614 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5615 {
5616 __wake_up_common(q, mode, 1, 0, NULL);
5617 }
5618
5619 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5620 {
5621 __wake_up_common(q, mode, 1, 0, key);
5622 }
5623
5624 /**
5625 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5626 * @q: the waitqueue
5627 * @mode: which threads
5628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629 * @key: opaque value to be passed to wakeup targets
5630 *
5631 * The sync wakeup differs that the waker knows that it will schedule
5632 * away soon, so while the target thread will be woken up, it will not
5633 * be migrated to another CPU - ie. the two threads are 'synchronized'
5634 * with each other. This can prevent needless bouncing between CPUs.
5635 *
5636 * On UP it can prevent extra preemption.
5637 *
5638 * It may be assumed that this function implies a write memory barrier before
5639 * changing the task state if and only if any tasks are woken up.
5640 */
5641 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5642 int nr_exclusive, void *key)
5643 {
5644 unsigned long flags;
5645 int wake_flags = WF_SYNC;
5646
5647 if (unlikely(!q))
5648 return;
5649
5650 if (unlikely(!nr_exclusive))
5651 wake_flags = 0;
5652
5653 spin_lock_irqsave(&q->lock, flags);
5654 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5655 spin_unlock_irqrestore(&q->lock, flags);
5656 }
5657 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5658
5659 /*
5660 * __wake_up_sync - see __wake_up_sync_key()
5661 */
5662 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5663 {
5664 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5665 }
5666 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5667
5668 /**
5669 * complete: - signals a single thread waiting on this completion
5670 * @x: holds the state of this particular completion
5671 *
5672 * This will wake up a single thread waiting on this completion. Threads will be
5673 * awakened in the same order in which they were queued.
5674 *
5675 * See also complete_all(), wait_for_completion() and related routines.
5676 *
5677 * It may be assumed that this function implies a write memory barrier before
5678 * changing the task state if and only if any tasks are woken up.
5679 */
5680 void complete(struct completion *x)
5681 {
5682 unsigned long flags;
5683
5684 spin_lock_irqsave(&x->wait.lock, flags);
5685 x->done++;
5686 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5687 spin_unlock_irqrestore(&x->wait.lock, flags);
5688 }
5689 EXPORT_SYMBOL(complete);
5690
5691 /**
5692 * complete_all: - signals all threads waiting on this completion
5693 * @x: holds the state of this particular completion
5694 *
5695 * This will wake up all threads waiting on this particular completion event.
5696 *
5697 * It may be assumed that this function implies a write memory barrier before
5698 * changing the task state if and only if any tasks are woken up.
5699 */
5700 void complete_all(struct completion *x)
5701 {
5702 unsigned long flags;
5703
5704 spin_lock_irqsave(&x->wait.lock, flags);
5705 x->done += UINT_MAX/2;
5706 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5707 spin_unlock_irqrestore(&x->wait.lock, flags);
5708 }
5709 EXPORT_SYMBOL(complete_all);
5710
5711 static inline long __sched
5712 do_wait_for_common(struct completion *x, long timeout, int state)
5713 {
5714 if (!x->done) {
5715 DECLARE_WAITQUEUE(wait, current);
5716
5717 wait.flags |= WQ_FLAG_EXCLUSIVE;
5718 __add_wait_queue_tail(&x->wait, &wait);
5719 do {
5720 if (signal_pending_state(state, current)) {
5721 timeout = -ERESTARTSYS;
5722 break;
5723 }
5724 __set_current_state(state);
5725 spin_unlock_irq(&x->wait.lock);
5726 timeout = schedule_timeout(timeout);
5727 spin_lock_irq(&x->wait.lock);
5728 } while (!x->done && timeout);
5729 __remove_wait_queue(&x->wait, &wait);
5730 if (!x->done)
5731 return timeout;
5732 }
5733 x->done--;
5734 return timeout ?: 1;
5735 }
5736
5737 static long __sched
5738 wait_for_common(struct completion *x, long timeout, int state)
5739 {
5740 might_sleep();
5741
5742 spin_lock_irq(&x->wait.lock);
5743 timeout = do_wait_for_common(x, timeout, state);
5744 spin_unlock_irq(&x->wait.lock);
5745 return timeout;
5746 }
5747
5748 /**
5749 * wait_for_completion: - waits for completion of a task
5750 * @x: holds the state of this particular completion
5751 *
5752 * This waits to be signaled for completion of a specific task. It is NOT
5753 * interruptible and there is no timeout.
5754 *
5755 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5756 * and interrupt capability. Also see complete().
5757 */
5758 void __sched wait_for_completion(struct completion *x)
5759 {
5760 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5761 }
5762 EXPORT_SYMBOL(wait_for_completion);
5763
5764 /**
5765 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5766 * @x: holds the state of this particular completion
5767 * @timeout: timeout value in jiffies
5768 *
5769 * This waits for either a completion of a specific task to be signaled or for a
5770 * specified timeout to expire. The timeout is in jiffies. It is not
5771 * interruptible.
5772 */
5773 unsigned long __sched
5774 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5775 {
5776 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5777 }
5778 EXPORT_SYMBOL(wait_for_completion_timeout);
5779
5780 /**
5781 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5782 * @x: holds the state of this particular completion
5783 *
5784 * This waits for completion of a specific task to be signaled. It is
5785 * interruptible.
5786 */
5787 int __sched wait_for_completion_interruptible(struct completion *x)
5788 {
5789 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5790 if (t == -ERESTARTSYS)
5791 return t;
5792 return 0;
5793 }
5794 EXPORT_SYMBOL(wait_for_completion_interruptible);
5795
5796 /**
5797 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5798 * @x: holds the state of this particular completion
5799 * @timeout: timeout value in jiffies
5800 *
5801 * This waits for either a completion of a specific task to be signaled or for a
5802 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5803 */
5804 unsigned long __sched
5805 wait_for_completion_interruptible_timeout(struct completion *x,
5806 unsigned long timeout)
5807 {
5808 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5809 }
5810 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5811
5812 /**
5813 * wait_for_completion_killable: - waits for completion of a task (killable)
5814 * @x: holds the state of this particular completion
5815 *
5816 * This waits to be signaled for completion of a specific task. It can be
5817 * interrupted by a kill signal.
5818 */
5819 int __sched wait_for_completion_killable(struct completion *x)
5820 {
5821 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5822 if (t == -ERESTARTSYS)
5823 return t;
5824 return 0;
5825 }
5826 EXPORT_SYMBOL(wait_for_completion_killable);
5827
5828 /**
5829 * try_wait_for_completion - try to decrement a completion without blocking
5830 * @x: completion structure
5831 *
5832 * Returns: 0 if a decrement cannot be done without blocking
5833 * 1 if a decrement succeeded.
5834 *
5835 * If a completion is being used as a counting completion,
5836 * attempt to decrement the counter without blocking. This
5837 * enables us to avoid waiting if the resource the completion
5838 * is protecting is not available.
5839 */
5840 bool try_wait_for_completion(struct completion *x)
5841 {
5842 int ret = 1;
5843
5844 spin_lock_irq(&x->wait.lock);
5845 if (!x->done)
5846 ret = 0;
5847 else
5848 x->done--;
5849 spin_unlock_irq(&x->wait.lock);
5850 return ret;
5851 }
5852 EXPORT_SYMBOL(try_wait_for_completion);
5853
5854 /**
5855 * completion_done - Test to see if a completion has any waiters
5856 * @x: completion structure
5857 *
5858 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5859 * 1 if there are no waiters.
5860 *
5861 */
5862 bool completion_done(struct completion *x)
5863 {
5864 int ret = 1;
5865
5866 spin_lock_irq(&x->wait.lock);
5867 if (!x->done)
5868 ret = 0;
5869 spin_unlock_irq(&x->wait.lock);
5870 return ret;
5871 }
5872 EXPORT_SYMBOL(completion_done);
5873
5874 static long __sched
5875 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5876 {
5877 unsigned long flags;
5878 wait_queue_t wait;
5879
5880 init_waitqueue_entry(&wait, current);
5881
5882 __set_current_state(state);
5883
5884 spin_lock_irqsave(&q->lock, flags);
5885 __add_wait_queue(q, &wait);
5886 spin_unlock(&q->lock);
5887 timeout = schedule_timeout(timeout);
5888 spin_lock_irq(&q->lock);
5889 __remove_wait_queue(q, &wait);
5890 spin_unlock_irqrestore(&q->lock, flags);
5891
5892 return timeout;
5893 }
5894
5895 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5896 {
5897 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5898 }
5899 EXPORT_SYMBOL(interruptible_sleep_on);
5900
5901 long __sched
5902 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5903 {
5904 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5905 }
5906 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5907
5908 void __sched sleep_on(wait_queue_head_t *q)
5909 {
5910 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5911 }
5912 EXPORT_SYMBOL(sleep_on);
5913
5914 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5915 {
5916 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5917 }
5918 EXPORT_SYMBOL(sleep_on_timeout);
5919
5920 #ifdef CONFIG_RT_MUTEXES
5921
5922 /*
5923 * rt_mutex_setprio - set the current priority of a task
5924 * @p: task
5925 * @prio: prio value (kernel-internal form)
5926 *
5927 * This function changes the 'effective' priority of a task. It does
5928 * not touch ->normal_prio like __setscheduler().
5929 *
5930 * Used by the rt_mutex code to implement priority inheritance logic.
5931 */
5932 void rt_mutex_setprio(struct task_struct *p, int prio)
5933 {
5934 unsigned long flags;
5935 int oldprio, on_rq, running;
5936 struct rq *rq;
5937 const struct sched_class *prev_class = p->sched_class;
5938
5939 BUG_ON(prio < 0 || prio > MAX_PRIO);
5940
5941 rq = task_rq_lock(p, &flags);
5942 update_rq_clock(rq);
5943
5944 oldprio = p->prio;
5945 on_rq = p->se.on_rq;
5946 running = task_current(rq, p);
5947 if (on_rq)
5948 dequeue_task(rq, p, 0);
5949 if (running)
5950 p->sched_class->put_prev_task(rq, p);
5951
5952 if (rt_prio(prio))
5953 p->sched_class = &rt_sched_class;
5954 else
5955 p->sched_class = &fair_sched_class;
5956
5957 p->prio = prio;
5958
5959 if (running)
5960 p->sched_class->set_curr_task(rq);
5961 if (on_rq) {
5962 enqueue_task(rq, p, 0);
5963
5964 check_class_changed(rq, p, prev_class, oldprio, running);
5965 }
5966 task_rq_unlock(rq, &flags);
5967 }
5968
5969 #endif
5970
5971 void set_user_nice(struct task_struct *p, long nice)
5972 {
5973 int old_prio, delta, on_rq;
5974 unsigned long flags;
5975 struct rq *rq;
5976
5977 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5978 return;
5979 /*
5980 * We have to be careful, if called from sys_setpriority(),
5981 * the task might be in the middle of scheduling on another CPU.
5982 */
5983 rq = task_rq_lock(p, &flags);
5984 update_rq_clock(rq);
5985 /*
5986 * The RT priorities are set via sched_setscheduler(), but we still
5987 * allow the 'normal' nice value to be set - but as expected
5988 * it wont have any effect on scheduling until the task is
5989 * SCHED_FIFO/SCHED_RR:
5990 */
5991 if (task_has_rt_policy(p)) {
5992 p->static_prio = NICE_TO_PRIO(nice);
5993 goto out_unlock;
5994 }
5995 on_rq = p->se.on_rq;
5996 if (on_rq)
5997 dequeue_task(rq, p, 0);
5998
5999 p->static_prio = NICE_TO_PRIO(nice);
6000 set_load_weight(p);
6001 old_prio = p->prio;
6002 p->prio = effective_prio(p);
6003 delta = p->prio - old_prio;
6004
6005 if (on_rq) {
6006 enqueue_task(rq, p, 0);
6007 /*
6008 * If the task increased its priority or is running and
6009 * lowered its priority, then reschedule its CPU:
6010 */
6011 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6012 resched_task(rq->curr);
6013 }
6014 out_unlock:
6015 task_rq_unlock(rq, &flags);
6016 }
6017 EXPORT_SYMBOL(set_user_nice);
6018
6019 /*
6020 * can_nice - check if a task can reduce its nice value
6021 * @p: task
6022 * @nice: nice value
6023 */
6024 int can_nice(const struct task_struct *p, const int nice)
6025 {
6026 /* convert nice value [19,-20] to rlimit style value [1,40] */
6027 int nice_rlim = 20 - nice;
6028
6029 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6030 capable(CAP_SYS_NICE));
6031 }
6032
6033 #ifdef __ARCH_WANT_SYS_NICE
6034
6035 /*
6036 * sys_nice - change the priority of the current process.
6037 * @increment: priority increment
6038 *
6039 * sys_setpriority is a more generic, but much slower function that
6040 * does similar things.
6041 */
6042 SYSCALL_DEFINE1(nice, int, increment)
6043 {
6044 long nice, retval;
6045
6046 /*
6047 * Setpriority might change our priority at the same moment.
6048 * We don't have to worry. Conceptually one call occurs first
6049 * and we have a single winner.
6050 */
6051 if (increment < -40)
6052 increment = -40;
6053 if (increment > 40)
6054 increment = 40;
6055
6056 nice = TASK_NICE(current) + increment;
6057 if (nice < -20)
6058 nice = -20;
6059 if (nice > 19)
6060 nice = 19;
6061
6062 if (increment < 0 && !can_nice(current, nice))
6063 return -EPERM;
6064
6065 retval = security_task_setnice(current, nice);
6066 if (retval)
6067 return retval;
6068
6069 set_user_nice(current, nice);
6070 return 0;
6071 }
6072
6073 #endif
6074
6075 /**
6076 * task_prio - return the priority value of a given task.
6077 * @p: the task in question.
6078 *
6079 * This is the priority value as seen by users in /proc.
6080 * RT tasks are offset by -200. Normal tasks are centered
6081 * around 0, value goes from -16 to +15.
6082 */
6083 int task_prio(const struct task_struct *p)
6084 {
6085 return p->prio - MAX_RT_PRIO;
6086 }
6087
6088 /**
6089 * task_nice - return the nice value of a given task.
6090 * @p: the task in question.
6091 */
6092 int task_nice(const struct task_struct *p)
6093 {
6094 return TASK_NICE(p);
6095 }
6096 EXPORT_SYMBOL(task_nice);
6097
6098 /**
6099 * idle_cpu - is a given cpu idle currently?
6100 * @cpu: the processor in question.
6101 */
6102 int idle_cpu(int cpu)
6103 {
6104 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6105 }
6106
6107 /**
6108 * idle_task - return the idle task for a given cpu.
6109 * @cpu: the processor in question.
6110 */
6111 struct task_struct *idle_task(int cpu)
6112 {
6113 return cpu_rq(cpu)->idle;
6114 }
6115
6116 /**
6117 * find_process_by_pid - find a process with a matching PID value.
6118 * @pid: the pid in question.
6119 */
6120 static struct task_struct *find_process_by_pid(pid_t pid)
6121 {
6122 return pid ? find_task_by_vpid(pid) : current;
6123 }
6124
6125 /* Actually do priority change: must hold rq lock. */
6126 static void
6127 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6128 {
6129 BUG_ON(p->se.on_rq);
6130
6131 p->policy = policy;
6132 switch (p->policy) {
6133 case SCHED_NORMAL:
6134 case SCHED_BATCH:
6135 case SCHED_IDLE:
6136 p->sched_class = &fair_sched_class;
6137 break;
6138 case SCHED_FIFO:
6139 case SCHED_RR:
6140 p->sched_class = &rt_sched_class;
6141 break;
6142 }
6143
6144 p->rt_priority = prio;
6145 p->normal_prio = normal_prio(p);
6146 /* we are holding p->pi_lock already */
6147 p->prio = rt_mutex_getprio(p);
6148 set_load_weight(p);
6149 }
6150
6151 /*
6152 * check the target process has a UID that matches the current process's
6153 */
6154 static bool check_same_owner(struct task_struct *p)
6155 {
6156 const struct cred *cred = current_cred(), *pcred;
6157 bool match;
6158
6159 rcu_read_lock();
6160 pcred = __task_cred(p);
6161 match = (cred->euid == pcred->euid ||
6162 cred->euid == pcred->uid);
6163 rcu_read_unlock();
6164 return match;
6165 }
6166
6167 static int __sched_setscheduler(struct task_struct *p, int policy,
6168 struct sched_param *param, bool user)
6169 {
6170 int retval, oldprio, oldpolicy = -1, on_rq, running;
6171 unsigned long flags;
6172 const struct sched_class *prev_class = p->sched_class;
6173 struct rq *rq;
6174 int reset_on_fork;
6175
6176 /* may grab non-irq protected spin_locks */
6177 BUG_ON(in_interrupt());
6178 recheck:
6179 /* double check policy once rq lock held */
6180 if (policy < 0) {
6181 reset_on_fork = p->sched_reset_on_fork;
6182 policy = oldpolicy = p->policy;
6183 } else {
6184 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6185 policy &= ~SCHED_RESET_ON_FORK;
6186
6187 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6188 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6189 policy != SCHED_IDLE)
6190 return -EINVAL;
6191 }
6192
6193 /*
6194 * Valid priorities for SCHED_FIFO and SCHED_RR are
6195 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6196 * SCHED_BATCH and SCHED_IDLE is 0.
6197 */
6198 if (param->sched_priority < 0 ||
6199 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6200 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6201 return -EINVAL;
6202 if (rt_policy(policy) != (param->sched_priority != 0))
6203 return -EINVAL;
6204
6205 /*
6206 * Allow unprivileged RT tasks to decrease priority:
6207 */
6208 if (user && !capable(CAP_SYS_NICE)) {
6209 if (rt_policy(policy)) {
6210 unsigned long rlim_rtprio;
6211
6212 if (!lock_task_sighand(p, &flags))
6213 return -ESRCH;
6214 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6215 unlock_task_sighand(p, &flags);
6216
6217 /* can't set/change the rt policy */
6218 if (policy != p->policy && !rlim_rtprio)
6219 return -EPERM;
6220
6221 /* can't increase priority */
6222 if (param->sched_priority > p->rt_priority &&
6223 param->sched_priority > rlim_rtprio)
6224 return -EPERM;
6225 }
6226 /*
6227 * Like positive nice levels, dont allow tasks to
6228 * move out of SCHED_IDLE either:
6229 */
6230 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6231 return -EPERM;
6232
6233 /* can't change other user's priorities */
6234 if (!check_same_owner(p))
6235 return -EPERM;
6236
6237 /* Normal users shall not reset the sched_reset_on_fork flag */
6238 if (p->sched_reset_on_fork && !reset_on_fork)
6239 return -EPERM;
6240 }
6241
6242 if (user) {
6243 #ifdef CONFIG_RT_GROUP_SCHED
6244 /*
6245 * Do not allow realtime tasks into groups that have no runtime
6246 * assigned.
6247 */
6248 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6249 task_group(p)->rt_bandwidth.rt_runtime == 0)
6250 return -EPERM;
6251 #endif
6252
6253 retval = security_task_setscheduler(p, policy, param);
6254 if (retval)
6255 return retval;
6256 }
6257
6258 /*
6259 * make sure no PI-waiters arrive (or leave) while we are
6260 * changing the priority of the task:
6261 */
6262 spin_lock_irqsave(&p->pi_lock, flags);
6263 /*
6264 * To be able to change p->policy safely, the apropriate
6265 * runqueue lock must be held.
6266 */
6267 rq = __task_rq_lock(p);
6268 /* recheck policy now with rq lock held */
6269 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6270 policy = oldpolicy = -1;
6271 __task_rq_unlock(rq);
6272 spin_unlock_irqrestore(&p->pi_lock, flags);
6273 goto recheck;
6274 }
6275 update_rq_clock(rq);
6276 on_rq = p->se.on_rq;
6277 running = task_current(rq, p);
6278 if (on_rq)
6279 deactivate_task(rq, p, 0);
6280 if (running)
6281 p->sched_class->put_prev_task(rq, p);
6282
6283 p->sched_reset_on_fork = reset_on_fork;
6284
6285 oldprio = p->prio;
6286 __setscheduler(rq, p, policy, param->sched_priority);
6287
6288 if (running)
6289 p->sched_class->set_curr_task(rq);
6290 if (on_rq) {
6291 activate_task(rq, p, 0);
6292
6293 check_class_changed(rq, p, prev_class, oldprio, running);
6294 }
6295 __task_rq_unlock(rq);
6296 spin_unlock_irqrestore(&p->pi_lock, flags);
6297
6298 rt_mutex_adjust_pi(p);
6299
6300 return 0;
6301 }
6302
6303 /**
6304 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6305 * @p: the task in question.
6306 * @policy: new policy.
6307 * @param: structure containing the new RT priority.
6308 *
6309 * NOTE that the task may be already dead.
6310 */
6311 int sched_setscheduler(struct task_struct *p, int policy,
6312 struct sched_param *param)
6313 {
6314 return __sched_setscheduler(p, policy, param, true);
6315 }
6316 EXPORT_SYMBOL_GPL(sched_setscheduler);
6317
6318 /**
6319 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6320 * @p: the task in question.
6321 * @policy: new policy.
6322 * @param: structure containing the new RT priority.
6323 *
6324 * Just like sched_setscheduler, only don't bother checking if the
6325 * current context has permission. For example, this is needed in
6326 * stop_machine(): we create temporary high priority worker threads,
6327 * but our caller might not have that capability.
6328 */
6329 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6330 struct sched_param *param)
6331 {
6332 return __sched_setscheduler(p, policy, param, false);
6333 }
6334
6335 static int
6336 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6337 {
6338 struct sched_param lparam;
6339 struct task_struct *p;
6340 int retval;
6341
6342 if (!param || pid < 0)
6343 return -EINVAL;
6344 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6345 return -EFAULT;
6346
6347 rcu_read_lock();
6348 retval = -ESRCH;
6349 p = find_process_by_pid(pid);
6350 if (p != NULL)
6351 retval = sched_setscheduler(p, policy, &lparam);
6352 rcu_read_unlock();
6353
6354 return retval;
6355 }
6356
6357 /**
6358 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6359 * @pid: the pid in question.
6360 * @policy: new policy.
6361 * @param: structure containing the new RT priority.
6362 */
6363 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6364 struct sched_param __user *, param)
6365 {
6366 /* negative values for policy are not valid */
6367 if (policy < 0)
6368 return -EINVAL;
6369
6370 return do_sched_setscheduler(pid, policy, param);
6371 }
6372
6373 /**
6374 * sys_sched_setparam - set/change the RT priority of a thread
6375 * @pid: the pid in question.
6376 * @param: structure containing the new RT priority.
6377 */
6378 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6379 {
6380 return do_sched_setscheduler(pid, -1, param);
6381 }
6382
6383 /**
6384 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6385 * @pid: the pid in question.
6386 */
6387 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6388 {
6389 struct task_struct *p;
6390 int retval;
6391
6392 if (pid < 0)
6393 return -EINVAL;
6394
6395 retval = -ESRCH;
6396 read_lock(&tasklist_lock);
6397 p = find_process_by_pid(pid);
6398 if (p) {
6399 retval = security_task_getscheduler(p);
6400 if (!retval)
6401 retval = p->policy
6402 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6403 }
6404 read_unlock(&tasklist_lock);
6405 return retval;
6406 }
6407
6408 /**
6409 * sys_sched_getparam - get the RT priority of a thread
6410 * @pid: the pid in question.
6411 * @param: structure containing the RT priority.
6412 */
6413 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6414 {
6415 struct sched_param lp;
6416 struct task_struct *p;
6417 int retval;
6418
6419 if (!param || pid < 0)
6420 return -EINVAL;
6421
6422 read_lock(&tasklist_lock);
6423 p = find_process_by_pid(pid);
6424 retval = -ESRCH;
6425 if (!p)
6426 goto out_unlock;
6427
6428 retval = security_task_getscheduler(p);
6429 if (retval)
6430 goto out_unlock;
6431
6432 lp.sched_priority = p->rt_priority;
6433 read_unlock(&tasklist_lock);
6434
6435 /*
6436 * This one might sleep, we cannot do it with a spinlock held ...
6437 */
6438 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6439
6440 return retval;
6441
6442 out_unlock:
6443 read_unlock(&tasklist_lock);
6444 return retval;
6445 }
6446
6447 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6448 {
6449 cpumask_var_t cpus_allowed, new_mask;
6450 struct task_struct *p;
6451 int retval;
6452
6453 get_online_cpus();
6454 read_lock(&tasklist_lock);
6455
6456 p = find_process_by_pid(pid);
6457 if (!p) {
6458 read_unlock(&tasklist_lock);
6459 put_online_cpus();
6460 return -ESRCH;
6461 }
6462
6463 /*
6464 * It is not safe to call set_cpus_allowed with the
6465 * tasklist_lock held. We will bump the task_struct's
6466 * usage count and then drop tasklist_lock.
6467 */
6468 get_task_struct(p);
6469 read_unlock(&tasklist_lock);
6470
6471 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6472 retval = -ENOMEM;
6473 goto out_put_task;
6474 }
6475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6476 retval = -ENOMEM;
6477 goto out_free_cpus_allowed;
6478 }
6479 retval = -EPERM;
6480 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6481 goto out_unlock;
6482
6483 retval = security_task_setscheduler(p, 0, NULL);
6484 if (retval)
6485 goto out_unlock;
6486
6487 cpuset_cpus_allowed(p, cpus_allowed);
6488 cpumask_and(new_mask, in_mask, cpus_allowed);
6489 again:
6490 retval = set_cpus_allowed_ptr(p, new_mask);
6491
6492 if (!retval) {
6493 cpuset_cpus_allowed(p, cpus_allowed);
6494 if (!cpumask_subset(new_mask, cpus_allowed)) {
6495 /*
6496 * We must have raced with a concurrent cpuset
6497 * update. Just reset the cpus_allowed to the
6498 * cpuset's cpus_allowed
6499 */
6500 cpumask_copy(new_mask, cpus_allowed);
6501 goto again;
6502 }
6503 }
6504 out_unlock:
6505 free_cpumask_var(new_mask);
6506 out_free_cpus_allowed:
6507 free_cpumask_var(cpus_allowed);
6508 out_put_task:
6509 put_task_struct(p);
6510 put_online_cpus();
6511 return retval;
6512 }
6513
6514 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6515 struct cpumask *new_mask)
6516 {
6517 if (len < cpumask_size())
6518 cpumask_clear(new_mask);
6519 else if (len > cpumask_size())
6520 len = cpumask_size();
6521
6522 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6523 }
6524
6525 /**
6526 * sys_sched_setaffinity - set the cpu affinity of a process
6527 * @pid: pid of the process
6528 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6529 * @user_mask_ptr: user-space pointer to the new cpu mask
6530 */
6531 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6532 unsigned long __user *, user_mask_ptr)
6533 {
6534 cpumask_var_t new_mask;
6535 int retval;
6536
6537 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6538 return -ENOMEM;
6539
6540 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6541 if (retval == 0)
6542 retval = sched_setaffinity(pid, new_mask);
6543 free_cpumask_var(new_mask);
6544 return retval;
6545 }
6546
6547 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6548 {
6549 struct task_struct *p;
6550 int retval;
6551
6552 get_online_cpus();
6553 read_lock(&tasklist_lock);
6554
6555 retval = -ESRCH;
6556 p = find_process_by_pid(pid);
6557 if (!p)
6558 goto out_unlock;
6559
6560 retval = security_task_getscheduler(p);
6561 if (retval)
6562 goto out_unlock;
6563
6564 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6565
6566 out_unlock:
6567 read_unlock(&tasklist_lock);
6568 put_online_cpus();
6569
6570 return retval;
6571 }
6572
6573 /**
6574 * sys_sched_getaffinity - get the cpu affinity of a process
6575 * @pid: pid of the process
6576 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6577 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6578 */
6579 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6580 unsigned long __user *, user_mask_ptr)
6581 {
6582 int ret;
6583 cpumask_var_t mask;
6584
6585 if (len < cpumask_size())
6586 return -EINVAL;
6587
6588 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6589 return -ENOMEM;
6590
6591 ret = sched_getaffinity(pid, mask);
6592 if (ret == 0) {
6593 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6594 ret = -EFAULT;
6595 else
6596 ret = cpumask_size();
6597 }
6598 free_cpumask_var(mask);
6599
6600 return ret;
6601 }
6602
6603 /**
6604 * sys_sched_yield - yield the current processor to other threads.
6605 *
6606 * This function yields the current CPU to other tasks. If there are no
6607 * other threads running on this CPU then this function will return.
6608 */
6609 SYSCALL_DEFINE0(sched_yield)
6610 {
6611 struct rq *rq = this_rq_lock();
6612
6613 schedstat_inc(rq, yld_count);
6614 current->sched_class->yield_task(rq);
6615
6616 /*
6617 * Since we are going to call schedule() anyway, there's
6618 * no need to preempt or enable interrupts:
6619 */
6620 __release(rq->lock);
6621 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6622 _raw_spin_unlock(&rq->lock);
6623 preempt_enable_no_resched();
6624
6625 schedule();
6626
6627 return 0;
6628 }
6629
6630 static inline int should_resched(void)
6631 {
6632 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6633 }
6634
6635 static void __cond_resched(void)
6636 {
6637 add_preempt_count(PREEMPT_ACTIVE);
6638 schedule();
6639 sub_preempt_count(PREEMPT_ACTIVE);
6640 }
6641
6642 int __sched _cond_resched(void)
6643 {
6644 if (should_resched()) {
6645 __cond_resched();
6646 return 1;
6647 }
6648 return 0;
6649 }
6650 EXPORT_SYMBOL(_cond_resched);
6651
6652 /*
6653 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6654 * call schedule, and on return reacquire the lock.
6655 *
6656 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6657 * operations here to prevent schedule() from being called twice (once via
6658 * spin_unlock(), once by hand).
6659 */
6660 int __cond_resched_lock(spinlock_t *lock)
6661 {
6662 int resched = should_resched();
6663 int ret = 0;
6664
6665 lockdep_assert_held(lock);
6666
6667 if (spin_needbreak(lock) || resched) {
6668 spin_unlock(lock);
6669 if (resched)
6670 __cond_resched();
6671 else
6672 cpu_relax();
6673 ret = 1;
6674 spin_lock(lock);
6675 }
6676 return ret;
6677 }
6678 EXPORT_SYMBOL(__cond_resched_lock);
6679
6680 int __sched __cond_resched_softirq(void)
6681 {
6682 BUG_ON(!in_softirq());
6683
6684 if (should_resched()) {
6685 local_bh_enable();
6686 __cond_resched();
6687 local_bh_disable();
6688 return 1;
6689 }
6690 return 0;
6691 }
6692 EXPORT_SYMBOL(__cond_resched_softirq);
6693
6694 /**
6695 * yield - yield the current processor to other threads.
6696 *
6697 * This is a shortcut for kernel-space yielding - it marks the
6698 * thread runnable and calls sys_sched_yield().
6699 */
6700 void __sched yield(void)
6701 {
6702 set_current_state(TASK_RUNNING);
6703 sys_sched_yield();
6704 }
6705 EXPORT_SYMBOL(yield);
6706
6707 /*
6708 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6709 * that process accounting knows that this is a task in IO wait state.
6710 *
6711 * But don't do that if it is a deliberate, throttling IO wait (this task
6712 * has set its backing_dev_info: the queue against which it should throttle)
6713 */
6714 void __sched io_schedule(void)
6715 {
6716 struct rq *rq = raw_rq();
6717
6718 delayacct_blkio_start();
6719 atomic_inc(&rq->nr_iowait);
6720 current->in_iowait = 1;
6721 schedule();
6722 current->in_iowait = 0;
6723 atomic_dec(&rq->nr_iowait);
6724 delayacct_blkio_end();
6725 }
6726 EXPORT_SYMBOL(io_schedule);
6727
6728 long __sched io_schedule_timeout(long timeout)
6729 {
6730 struct rq *rq = raw_rq();
6731 long ret;
6732
6733 delayacct_blkio_start();
6734 atomic_inc(&rq->nr_iowait);
6735 current->in_iowait = 1;
6736 ret = schedule_timeout(timeout);
6737 current->in_iowait = 0;
6738 atomic_dec(&rq->nr_iowait);
6739 delayacct_blkio_end();
6740 return ret;
6741 }
6742
6743 /**
6744 * sys_sched_get_priority_max - return maximum RT priority.
6745 * @policy: scheduling class.
6746 *
6747 * this syscall returns the maximum rt_priority that can be used
6748 * by a given scheduling class.
6749 */
6750 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6751 {
6752 int ret = -EINVAL;
6753
6754 switch (policy) {
6755 case SCHED_FIFO:
6756 case SCHED_RR:
6757 ret = MAX_USER_RT_PRIO-1;
6758 break;
6759 case SCHED_NORMAL:
6760 case SCHED_BATCH:
6761 case SCHED_IDLE:
6762 ret = 0;
6763 break;
6764 }
6765 return ret;
6766 }
6767
6768 /**
6769 * sys_sched_get_priority_min - return minimum RT priority.
6770 * @policy: scheduling class.
6771 *
6772 * this syscall returns the minimum rt_priority that can be used
6773 * by a given scheduling class.
6774 */
6775 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6776 {
6777 int ret = -EINVAL;
6778
6779 switch (policy) {
6780 case SCHED_FIFO:
6781 case SCHED_RR:
6782 ret = 1;
6783 break;
6784 case SCHED_NORMAL:
6785 case SCHED_BATCH:
6786 case SCHED_IDLE:
6787 ret = 0;
6788 }
6789 return ret;
6790 }
6791
6792 /**
6793 * sys_sched_rr_get_interval - return the default timeslice of a process.
6794 * @pid: pid of the process.
6795 * @interval: userspace pointer to the timeslice value.
6796 *
6797 * this syscall writes the default timeslice value of a given process
6798 * into the user-space timespec buffer. A value of '0' means infinity.
6799 */
6800 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6801 struct timespec __user *, interval)
6802 {
6803 struct task_struct *p;
6804 unsigned int time_slice;
6805 int retval;
6806 struct timespec t;
6807
6808 if (pid < 0)
6809 return -EINVAL;
6810
6811 retval = -ESRCH;
6812 read_lock(&tasklist_lock);
6813 p = find_process_by_pid(pid);
6814 if (!p)
6815 goto out_unlock;
6816
6817 retval = security_task_getscheduler(p);
6818 if (retval)
6819 goto out_unlock;
6820
6821 /*
6822 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6823 * tasks that are on an otherwise idle runqueue:
6824 */
6825 time_slice = 0;
6826 if (p->policy == SCHED_RR) {
6827 time_slice = DEF_TIMESLICE;
6828 } else if (p->policy != SCHED_FIFO) {
6829 struct sched_entity *se = &p->se;
6830 unsigned long flags;
6831 struct rq *rq;
6832
6833 rq = task_rq_lock(p, &flags);
6834 if (rq->cfs.load.weight)
6835 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6836 task_rq_unlock(rq, &flags);
6837 }
6838 read_unlock(&tasklist_lock);
6839 jiffies_to_timespec(time_slice, &t);
6840 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6841 return retval;
6842
6843 out_unlock:
6844 read_unlock(&tasklist_lock);
6845 return retval;
6846 }
6847
6848 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6849
6850 void sched_show_task(struct task_struct *p)
6851 {
6852 unsigned long free = 0;
6853 unsigned state;
6854
6855 state = p->state ? __ffs(p->state) + 1 : 0;
6856 printk(KERN_INFO "%-13.13s %c", p->comm,
6857 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6858 #if BITS_PER_LONG == 32
6859 if (state == TASK_RUNNING)
6860 printk(KERN_CONT " running ");
6861 else
6862 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6863 #else
6864 if (state == TASK_RUNNING)
6865 printk(KERN_CONT " running task ");
6866 else
6867 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6868 #endif
6869 #ifdef CONFIG_DEBUG_STACK_USAGE
6870 free = stack_not_used(p);
6871 #endif
6872 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6873 task_pid_nr(p), task_pid_nr(p->real_parent),
6874 (unsigned long)task_thread_info(p)->flags);
6875
6876 show_stack(p, NULL);
6877 }
6878
6879 void show_state_filter(unsigned long state_filter)
6880 {
6881 struct task_struct *g, *p;
6882
6883 #if BITS_PER_LONG == 32
6884 printk(KERN_INFO
6885 " task PC stack pid father\n");
6886 #else
6887 printk(KERN_INFO
6888 " task PC stack pid father\n");
6889 #endif
6890 read_lock(&tasklist_lock);
6891 do_each_thread(g, p) {
6892 /*
6893 * reset the NMI-timeout, listing all files on a slow
6894 * console might take alot of time:
6895 */
6896 touch_nmi_watchdog();
6897 if (!state_filter || (p->state & state_filter))
6898 sched_show_task(p);
6899 } while_each_thread(g, p);
6900
6901 touch_all_softlockup_watchdogs();
6902
6903 #ifdef CONFIG_SCHED_DEBUG
6904 sysrq_sched_debug_show();
6905 #endif
6906 read_unlock(&tasklist_lock);
6907 /*
6908 * Only show locks if all tasks are dumped:
6909 */
6910 if (state_filter == -1)
6911 debug_show_all_locks();
6912 }
6913
6914 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6915 {
6916 idle->sched_class = &idle_sched_class;
6917 }
6918
6919 /**
6920 * init_idle - set up an idle thread for a given CPU
6921 * @idle: task in question
6922 * @cpu: cpu the idle task belongs to
6923 *
6924 * NOTE: this function does not set the idle thread's NEED_RESCHED
6925 * flag, to make booting more robust.
6926 */
6927 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6928 {
6929 struct rq *rq = cpu_rq(cpu);
6930 unsigned long flags;
6931
6932 spin_lock_irqsave(&rq->lock, flags);
6933
6934 __sched_fork(idle);
6935 idle->se.exec_start = sched_clock();
6936
6937 idle->prio = idle->normal_prio = MAX_PRIO;
6938 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6939 __set_task_cpu(idle, cpu);
6940
6941 rq->curr = rq->idle = idle;
6942 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6943 idle->oncpu = 1;
6944 #endif
6945 spin_unlock_irqrestore(&rq->lock, flags);
6946
6947 /* Set the preempt count _outside_ the spinlocks! */
6948 #if defined(CONFIG_PREEMPT)
6949 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6950 #else
6951 task_thread_info(idle)->preempt_count = 0;
6952 #endif
6953 /*
6954 * The idle tasks have their own, simple scheduling class:
6955 */
6956 idle->sched_class = &idle_sched_class;
6957 ftrace_graph_init_task(idle);
6958 }
6959
6960 /*
6961 * In a system that switches off the HZ timer nohz_cpu_mask
6962 * indicates which cpus entered this state. This is used
6963 * in the rcu update to wait only for active cpus. For system
6964 * which do not switch off the HZ timer nohz_cpu_mask should
6965 * always be CPU_BITS_NONE.
6966 */
6967 cpumask_var_t nohz_cpu_mask;
6968
6969 /*
6970 * Increase the granularity value when there are more CPUs,
6971 * because with more CPUs the 'effective latency' as visible
6972 * to users decreases. But the relationship is not linear,
6973 * so pick a second-best guess by going with the log2 of the
6974 * number of CPUs.
6975 *
6976 * This idea comes from the SD scheduler of Con Kolivas:
6977 */
6978 static inline void sched_init_granularity(void)
6979 {
6980 unsigned int factor = 1 + ilog2(num_online_cpus());
6981 const unsigned long limit = 200000000;
6982
6983 sysctl_sched_min_granularity *= factor;
6984 if (sysctl_sched_min_granularity > limit)
6985 sysctl_sched_min_granularity = limit;
6986
6987 sysctl_sched_latency *= factor;
6988 if (sysctl_sched_latency > limit)
6989 sysctl_sched_latency = limit;
6990
6991 sysctl_sched_wakeup_granularity *= factor;
6992
6993 sysctl_sched_shares_ratelimit *= factor;
6994 }
6995
6996 #ifdef CONFIG_SMP
6997 /*
6998 * This is how migration works:
6999 *
7000 * 1) we queue a struct migration_req structure in the source CPU's
7001 * runqueue and wake up that CPU's migration thread.
7002 * 2) we down() the locked semaphore => thread blocks.
7003 * 3) migration thread wakes up (implicitly it forces the migrated
7004 * thread off the CPU)
7005 * 4) it gets the migration request and checks whether the migrated
7006 * task is still in the wrong runqueue.
7007 * 5) if it's in the wrong runqueue then the migration thread removes
7008 * it and puts it into the right queue.
7009 * 6) migration thread up()s the semaphore.
7010 * 7) we wake up and the migration is done.
7011 */
7012
7013 /*
7014 * Change a given task's CPU affinity. Migrate the thread to a
7015 * proper CPU and schedule it away if the CPU it's executing on
7016 * is removed from the allowed bitmask.
7017 *
7018 * NOTE: the caller must have a valid reference to the task, the
7019 * task must not exit() & deallocate itself prematurely. The
7020 * call is not atomic; no spinlocks may be held.
7021 */
7022 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7023 {
7024 struct migration_req req;
7025 unsigned long flags;
7026 struct rq *rq;
7027 int ret = 0;
7028
7029 rq = task_rq_lock(p, &flags);
7030 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7031 ret = -EINVAL;
7032 goto out;
7033 }
7034
7035 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7036 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7037 ret = -EINVAL;
7038 goto out;
7039 }
7040
7041 if (p->sched_class->set_cpus_allowed)
7042 p->sched_class->set_cpus_allowed(p, new_mask);
7043 else {
7044 cpumask_copy(&p->cpus_allowed, new_mask);
7045 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7046 }
7047
7048 /* Can the task run on the task's current CPU? If so, we're done */
7049 if (cpumask_test_cpu(task_cpu(p), new_mask))
7050 goto out;
7051
7052 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7053 /* Need help from migration thread: drop lock and wait. */
7054 struct task_struct *mt = rq->migration_thread;
7055
7056 get_task_struct(mt);
7057 task_rq_unlock(rq, &flags);
7058 wake_up_process(rq->migration_thread);
7059 put_task_struct(mt);
7060 wait_for_completion(&req.done);
7061 tlb_migrate_finish(p->mm);
7062 return 0;
7063 }
7064 out:
7065 task_rq_unlock(rq, &flags);
7066
7067 return ret;
7068 }
7069 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7070
7071 /*
7072 * Move (not current) task off this cpu, onto dest cpu. We're doing
7073 * this because either it can't run here any more (set_cpus_allowed()
7074 * away from this CPU, or CPU going down), or because we're
7075 * attempting to rebalance this task on exec (sched_exec).
7076 *
7077 * So we race with normal scheduler movements, but that's OK, as long
7078 * as the task is no longer on this CPU.
7079 *
7080 * Returns non-zero if task was successfully migrated.
7081 */
7082 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7083 {
7084 struct rq *rq_dest, *rq_src;
7085 int ret = 0, on_rq;
7086
7087 if (unlikely(!cpu_active(dest_cpu)))
7088 return ret;
7089
7090 rq_src = cpu_rq(src_cpu);
7091 rq_dest = cpu_rq(dest_cpu);
7092
7093 double_rq_lock(rq_src, rq_dest);
7094 /* Already moved. */
7095 if (task_cpu(p) != src_cpu)
7096 goto done;
7097 /* Affinity changed (again). */
7098 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7099 goto fail;
7100
7101 on_rq = p->se.on_rq;
7102 if (on_rq)
7103 deactivate_task(rq_src, p, 0);
7104
7105 set_task_cpu(p, dest_cpu);
7106 if (on_rq) {
7107 activate_task(rq_dest, p, 0);
7108 check_preempt_curr(rq_dest, p, 0);
7109 }
7110 done:
7111 ret = 1;
7112 fail:
7113 double_rq_unlock(rq_src, rq_dest);
7114 return ret;
7115 }
7116
7117 #define RCU_MIGRATION_IDLE 0
7118 #define RCU_MIGRATION_NEED_QS 1
7119 #define RCU_MIGRATION_GOT_QS 2
7120 #define RCU_MIGRATION_MUST_SYNC 3
7121
7122 /*
7123 * migration_thread - this is a highprio system thread that performs
7124 * thread migration by bumping thread off CPU then 'pushing' onto
7125 * another runqueue.
7126 */
7127 static int migration_thread(void *data)
7128 {
7129 int badcpu;
7130 int cpu = (long)data;
7131 struct rq *rq;
7132
7133 rq = cpu_rq(cpu);
7134 BUG_ON(rq->migration_thread != current);
7135
7136 set_current_state(TASK_INTERRUPTIBLE);
7137 while (!kthread_should_stop()) {
7138 struct migration_req *req;
7139 struct list_head *head;
7140
7141 spin_lock_irq(&rq->lock);
7142
7143 if (cpu_is_offline(cpu)) {
7144 spin_unlock_irq(&rq->lock);
7145 break;
7146 }
7147
7148 if (rq->active_balance) {
7149 active_load_balance(rq, cpu);
7150 rq->active_balance = 0;
7151 }
7152
7153 head = &rq->migration_queue;
7154
7155 if (list_empty(head)) {
7156 spin_unlock_irq(&rq->lock);
7157 schedule();
7158 set_current_state(TASK_INTERRUPTIBLE);
7159 continue;
7160 }
7161 req = list_entry(head->next, struct migration_req, list);
7162 list_del_init(head->next);
7163
7164 if (req->task != NULL) {
7165 spin_unlock(&rq->lock);
7166 __migrate_task(req->task, cpu, req->dest_cpu);
7167 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7168 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7169 spin_unlock(&rq->lock);
7170 } else {
7171 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7172 spin_unlock(&rq->lock);
7173 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7174 }
7175 local_irq_enable();
7176
7177 complete(&req->done);
7178 }
7179 __set_current_state(TASK_RUNNING);
7180
7181 return 0;
7182 }
7183
7184 #ifdef CONFIG_HOTPLUG_CPU
7185
7186 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7187 {
7188 int ret;
7189
7190 local_irq_disable();
7191 ret = __migrate_task(p, src_cpu, dest_cpu);
7192 local_irq_enable();
7193 return ret;
7194 }
7195
7196 /*
7197 * Figure out where task on dead CPU should go, use force if necessary.
7198 */
7199 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7200 {
7201 int dest_cpu;
7202 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7203
7204 again:
7205 /* Look for allowed, online CPU in same node. */
7206 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7207 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7208 goto move;
7209
7210 /* Any allowed, online CPU? */
7211 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7212 if (dest_cpu < nr_cpu_ids)
7213 goto move;
7214
7215 /* No more Mr. Nice Guy. */
7216 if (dest_cpu >= nr_cpu_ids) {
7217 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7218 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7219
7220 /*
7221 * Don't tell them about moving exiting tasks or
7222 * kernel threads (both mm NULL), since they never
7223 * leave kernel.
7224 */
7225 if (p->mm && printk_ratelimit()) {
7226 printk(KERN_INFO "process %d (%s) no "
7227 "longer affine to cpu%d\n",
7228 task_pid_nr(p), p->comm, dead_cpu);
7229 }
7230 }
7231
7232 move:
7233 /* It can have affinity changed while we were choosing. */
7234 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7235 goto again;
7236 }
7237
7238 /*
7239 * While a dead CPU has no uninterruptible tasks queued at this point,
7240 * it might still have a nonzero ->nr_uninterruptible counter, because
7241 * for performance reasons the counter is not stricly tracking tasks to
7242 * their home CPUs. So we just add the counter to another CPU's counter,
7243 * to keep the global sum constant after CPU-down:
7244 */
7245 static void migrate_nr_uninterruptible(struct rq *rq_src)
7246 {
7247 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7248 unsigned long flags;
7249
7250 local_irq_save(flags);
7251 double_rq_lock(rq_src, rq_dest);
7252 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7253 rq_src->nr_uninterruptible = 0;
7254 double_rq_unlock(rq_src, rq_dest);
7255 local_irq_restore(flags);
7256 }
7257
7258 /* Run through task list and migrate tasks from the dead cpu. */
7259 static void migrate_live_tasks(int src_cpu)
7260 {
7261 struct task_struct *p, *t;
7262
7263 read_lock(&tasklist_lock);
7264
7265 do_each_thread(t, p) {
7266 if (p == current)
7267 continue;
7268
7269 if (task_cpu(p) == src_cpu)
7270 move_task_off_dead_cpu(src_cpu, p);
7271 } while_each_thread(t, p);
7272
7273 read_unlock(&tasklist_lock);
7274 }
7275
7276 /*
7277 * Schedules idle task to be the next runnable task on current CPU.
7278 * It does so by boosting its priority to highest possible.
7279 * Used by CPU offline code.
7280 */
7281 void sched_idle_next(void)
7282 {
7283 int this_cpu = smp_processor_id();
7284 struct rq *rq = cpu_rq(this_cpu);
7285 struct task_struct *p = rq->idle;
7286 unsigned long flags;
7287
7288 /* cpu has to be offline */
7289 BUG_ON(cpu_online(this_cpu));
7290
7291 /*
7292 * Strictly not necessary since rest of the CPUs are stopped by now
7293 * and interrupts disabled on the current cpu.
7294 */
7295 spin_lock_irqsave(&rq->lock, flags);
7296
7297 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7298
7299 update_rq_clock(rq);
7300 activate_task(rq, p, 0);
7301
7302 spin_unlock_irqrestore(&rq->lock, flags);
7303 }
7304
7305 /*
7306 * Ensures that the idle task is using init_mm right before its cpu goes
7307 * offline.
7308 */
7309 void idle_task_exit(void)
7310 {
7311 struct mm_struct *mm = current->active_mm;
7312
7313 BUG_ON(cpu_online(smp_processor_id()));
7314
7315 if (mm != &init_mm)
7316 switch_mm(mm, &init_mm, current);
7317 mmdrop(mm);
7318 }
7319
7320 /* called under rq->lock with disabled interrupts */
7321 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7322 {
7323 struct rq *rq = cpu_rq(dead_cpu);
7324
7325 /* Must be exiting, otherwise would be on tasklist. */
7326 BUG_ON(!p->exit_state);
7327
7328 /* Cannot have done final schedule yet: would have vanished. */
7329 BUG_ON(p->state == TASK_DEAD);
7330
7331 get_task_struct(p);
7332
7333 /*
7334 * Drop lock around migration; if someone else moves it,
7335 * that's OK. No task can be added to this CPU, so iteration is
7336 * fine.
7337 */
7338 spin_unlock_irq(&rq->lock);
7339 move_task_off_dead_cpu(dead_cpu, p);
7340 spin_lock_irq(&rq->lock);
7341
7342 put_task_struct(p);
7343 }
7344
7345 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7346 static void migrate_dead_tasks(unsigned int dead_cpu)
7347 {
7348 struct rq *rq = cpu_rq(dead_cpu);
7349 struct task_struct *next;
7350
7351 for ( ; ; ) {
7352 if (!rq->nr_running)
7353 break;
7354 update_rq_clock(rq);
7355 next = pick_next_task(rq);
7356 if (!next)
7357 break;
7358 next->sched_class->put_prev_task(rq, next);
7359 migrate_dead(dead_cpu, next);
7360
7361 }
7362 }
7363
7364 /*
7365 * remove the tasks which were accounted by rq from calc_load_tasks.
7366 */
7367 static void calc_global_load_remove(struct rq *rq)
7368 {
7369 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7370 rq->calc_load_active = 0;
7371 }
7372 #endif /* CONFIG_HOTPLUG_CPU */
7373
7374 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7375
7376 static struct ctl_table sd_ctl_dir[] = {
7377 {
7378 .procname = "sched_domain",
7379 .mode = 0555,
7380 },
7381 {0, },
7382 };
7383
7384 static struct ctl_table sd_ctl_root[] = {
7385 {
7386 .ctl_name = CTL_KERN,
7387 .procname = "kernel",
7388 .mode = 0555,
7389 .child = sd_ctl_dir,
7390 },
7391 {0, },
7392 };
7393
7394 static struct ctl_table *sd_alloc_ctl_entry(int n)
7395 {
7396 struct ctl_table *entry =
7397 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7398
7399 return entry;
7400 }
7401
7402 static void sd_free_ctl_entry(struct ctl_table **tablep)
7403 {
7404 struct ctl_table *entry;
7405
7406 /*
7407 * In the intermediate directories, both the child directory and
7408 * procname are dynamically allocated and could fail but the mode
7409 * will always be set. In the lowest directory the names are
7410 * static strings and all have proc handlers.
7411 */
7412 for (entry = *tablep; entry->mode; entry++) {
7413 if (entry->child)
7414 sd_free_ctl_entry(&entry->child);
7415 if (entry->proc_handler == NULL)
7416 kfree(entry->procname);
7417 }
7418
7419 kfree(*tablep);
7420 *tablep = NULL;
7421 }
7422
7423 static void
7424 set_table_entry(struct ctl_table *entry,
7425 const char *procname, void *data, int maxlen,
7426 mode_t mode, proc_handler *proc_handler)
7427 {
7428 entry->procname = procname;
7429 entry->data = data;
7430 entry->maxlen = maxlen;
7431 entry->mode = mode;
7432 entry->proc_handler = proc_handler;
7433 }
7434
7435 static struct ctl_table *
7436 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7437 {
7438 struct ctl_table *table = sd_alloc_ctl_entry(13);
7439
7440 if (table == NULL)
7441 return NULL;
7442
7443 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7444 sizeof(long), 0644, proc_doulongvec_minmax);
7445 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7446 sizeof(long), 0644, proc_doulongvec_minmax);
7447 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7448 sizeof(int), 0644, proc_dointvec_minmax);
7449 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7450 sizeof(int), 0644, proc_dointvec_minmax);
7451 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7452 sizeof(int), 0644, proc_dointvec_minmax);
7453 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7454 sizeof(int), 0644, proc_dointvec_minmax);
7455 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7456 sizeof(int), 0644, proc_dointvec_minmax);
7457 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[9], "cache_nice_tries",
7462 &sd->cache_nice_tries,
7463 sizeof(int), 0644, proc_dointvec_minmax);
7464 set_table_entry(&table[10], "flags", &sd->flags,
7465 sizeof(int), 0644, proc_dointvec_minmax);
7466 set_table_entry(&table[11], "name", sd->name,
7467 CORENAME_MAX_SIZE, 0444, proc_dostring);
7468 /* &table[12] is terminator */
7469
7470 return table;
7471 }
7472
7473 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7474 {
7475 struct ctl_table *entry, *table;
7476 struct sched_domain *sd;
7477 int domain_num = 0, i;
7478 char buf[32];
7479
7480 for_each_domain(cpu, sd)
7481 domain_num++;
7482 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7483 if (table == NULL)
7484 return NULL;
7485
7486 i = 0;
7487 for_each_domain(cpu, sd) {
7488 snprintf(buf, 32, "domain%d", i);
7489 entry->procname = kstrdup(buf, GFP_KERNEL);
7490 entry->mode = 0555;
7491 entry->child = sd_alloc_ctl_domain_table(sd);
7492 entry++;
7493 i++;
7494 }
7495 return table;
7496 }
7497
7498 static struct ctl_table_header *sd_sysctl_header;
7499 static void register_sched_domain_sysctl(void)
7500 {
7501 int i, cpu_num = num_online_cpus();
7502 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7503 char buf[32];
7504
7505 WARN_ON(sd_ctl_dir[0].child);
7506 sd_ctl_dir[0].child = entry;
7507
7508 if (entry == NULL)
7509 return;
7510
7511 for_each_online_cpu(i) {
7512 snprintf(buf, 32, "cpu%d", i);
7513 entry->procname = kstrdup(buf, GFP_KERNEL);
7514 entry->mode = 0555;
7515 entry->child = sd_alloc_ctl_cpu_table(i);
7516 entry++;
7517 }
7518
7519 WARN_ON(sd_sysctl_header);
7520 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7521 }
7522
7523 /* may be called multiple times per register */
7524 static void unregister_sched_domain_sysctl(void)
7525 {
7526 if (sd_sysctl_header)
7527 unregister_sysctl_table(sd_sysctl_header);
7528 sd_sysctl_header = NULL;
7529 if (sd_ctl_dir[0].child)
7530 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7531 }
7532 #else
7533 static void register_sched_domain_sysctl(void)
7534 {
7535 }
7536 static void unregister_sched_domain_sysctl(void)
7537 {
7538 }
7539 #endif
7540
7541 static void set_rq_online(struct rq *rq)
7542 {
7543 if (!rq->online) {
7544 const struct sched_class *class;
7545
7546 cpumask_set_cpu(rq->cpu, rq->rd->online);
7547 rq->online = 1;
7548
7549 for_each_class(class) {
7550 if (class->rq_online)
7551 class->rq_online(rq);
7552 }
7553 }
7554 }
7555
7556 static void set_rq_offline(struct rq *rq)
7557 {
7558 if (rq->online) {
7559 const struct sched_class *class;
7560
7561 for_each_class(class) {
7562 if (class->rq_offline)
7563 class->rq_offline(rq);
7564 }
7565
7566 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7567 rq->online = 0;
7568 }
7569 }
7570
7571 /*
7572 * migration_call - callback that gets triggered when a CPU is added.
7573 * Here we can start up the necessary migration thread for the new CPU.
7574 */
7575 static int __cpuinit
7576 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7577 {
7578 struct task_struct *p;
7579 int cpu = (long)hcpu;
7580 unsigned long flags;
7581 struct rq *rq;
7582
7583 switch (action) {
7584
7585 case CPU_UP_PREPARE:
7586 case CPU_UP_PREPARE_FROZEN:
7587 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7588 if (IS_ERR(p))
7589 return NOTIFY_BAD;
7590 kthread_bind(p, cpu);
7591 /* Must be high prio: stop_machine expects to yield to it. */
7592 rq = task_rq_lock(p, &flags);
7593 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7594 task_rq_unlock(rq, &flags);
7595 get_task_struct(p);
7596 cpu_rq(cpu)->migration_thread = p;
7597 rq->calc_load_update = calc_load_update;
7598 break;
7599
7600 case CPU_ONLINE:
7601 case CPU_ONLINE_FROZEN:
7602 /* Strictly unnecessary, as first user will wake it. */
7603 wake_up_process(cpu_rq(cpu)->migration_thread);
7604
7605 /* Update our root-domain */
7606 rq = cpu_rq(cpu);
7607 spin_lock_irqsave(&rq->lock, flags);
7608 if (rq->rd) {
7609 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7610
7611 set_rq_online(rq);
7612 }
7613 spin_unlock_irqrestore(&rq->lock, flags);
7614 break;
7615
7616 #ifdef CONFIG_HOTPLUG_CPU
7617 case CPU_UP_CANCELED:
7618 case CPU_UP_CANCELED_FROZEN:
7619 if (!cpu_rq(cpu)->migration_thread)
7620 break;
7621 /* Unbind it from offline cpu so it can run. Fall thru. */
7622 kthread_bind(cpu_rq(cpu)->migration_thread,
7623 cpumask_any(cpu_online_mask));
7624 kthread_stop(cpu_rq(cpu)->migration_thread);
7625 put_task_struct(cpu_rq(cpu)->migration_thread);
7626 cpu_rq(cpu)->migration_thread = NULL;
7627 break;
7628
7629 case CPU_DEAD:
7630 case CPU_DEAD_FROZEN:
7631 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7632 migrate_live_tasks(cpu);
7633 rq = cpu_rq(cpu);
7634 kthread_stop(rq->migration_thread);
7635 put_task_struct(rq->migration_thread);
7636 rq->migration_thread = NULL;
7637 /* Idle task back to normal (off runqueue, low prio) */
7638 spin_lock_irq(&rq->lock);
7639 update_rq_clock(rq);
7640 deactivate_task(rq, rq->idle, 0);
7641 rq->idle->static_prio = MAX_PRIO;
7642 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7643 rq->idle->sched_class = &idle_sched_class;
7644 migrate_dead_tasks(cpu);
7645 spin_unlock_irq(&rq->lock);
7646 cpuset_unlock();
7647 migrate_nr_uninterruptible(rq);
7648 BUG_ON(rq->nr_running != 0);
7649 calc_global_load_remove(rq);
7650 /*
7651 * No need to migrate the tasks: it was best-effort if
7652 * they didn't take sched_hotcpu_mutex. Just wake up
7653 * the requestors.
7654 */
7655 spin_lock_irq(&rq->lock);
7656 while (!list_empty(&rq->migration_queue)) {
7657 struct migration_req *req;
7658
7659 req = list_entry(rq->migration_queue.next,
7660 struct migration_req, list);
7661 list_del_init(&req->list);
7662 spin_unlock_irq(&rq->lock);
7663 complete(&req->done);
7664 spin_lock_irq(&rq->lock);
7665 }
7666 spin_unlock_irq(&rq->lock);
7667 break;
7668
7669 case CPU_DYING:
7670 case CPU_DYING_FROZEN:
7671 /* Update our root-domain */
7672 rq = cpu_rq(cpu);
7673 spin_lock_irqsave(&rq->lock, flags);
7674 if (rq->rd) {
7675 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7676 set_rq_offline(rq);
7677 }
7678 spin_unlock_irqrestore(&rq->lock, flags);
7679 break;
7680 #endif
7681 }
7682 return NOTIFY_OK;
7683 }
7684
7685 /*
7686 * Register at high priority so that task migration (migrate_all_tasks)
7687 * happens before everything else. This has to be lower priority than
7688 * the notifier in the perf_counter subsystem, though.
7689 */
7690 static struct notifier_block __cpuinitdata migration_notifier = {
7691 .notifier_call = migration_call,
7692 .priority = 10
7693 };
7694
7695 static int __init migration_init(void)
7696 {
7697 void *cpu = (void *)(long)smp_processor_id();
7698 int err;
7699
7700 /* Start one for the boot CPU: */
7701 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7702 BUG_ON(err == NOTIFY_BAD);
7703 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7704 register_cpu_notifier(&migration_notifier);
7705
7706 return 0;
7707 }
7708 early_initcall(migration_init);
7709 #endif
7710
7711 #ifdef CONFIG_SMP
7712
7713 #ifdef CONFIG_SCHED_DEBUG
7714
7715 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7716 struct cpumask *groupmask)
7717 {
7718 struct sched_group *group = sd->groups;
7719 char str[256];
7720
7721 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7722 cpumask_clear(groupmask);
7723
7724 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7725
7726 if (!(sd->flags & SD_LOAD_BALANCE)) {
7727 printk("does not load-balance\n");
7728 if (sd->parent)
7729 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7730 " has parent");
7731 return -1;
7732 }
7733
7734 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7735
7736 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7737 printk(KERN_ERR "ERROR: domain->span does not contain "
7738 "CPU%d\n", cpu);
7739 }
7740 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7741 printk(KERN_ERR "ERROR: domain->groups does not contain"
7742 " CPU%d\n", cpu);
7743 }
7744
7745 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7746 do {
7747 if (!group) {
7748 printk("\n");
7749 printk(KERN_ERR "ERROR: group is NULL\n");
7750 break;
7751 }
7752
7753 if (!group->cpu_power) {
7754 printk(KERN_CONT "\n");
7755 printk(KERN_ERR "ERROR: domain->cpu_power not "
7756 "set\n");
7757 break;
7758 }
7759
7760 if (!cpumask_weight(sched_group_cpus(group))) {
7761 printk(KERN_CONT "\n");
7762 printk(KERN_ERR "ERROR: empty group\n");
7763 break;
7764 }
7765
7766 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7767 printk(KERN_CONT "\n");
7768 printk(KERN_ERR "ERROR: repeated CPUs\n");
7769 break;
7770 }
7771
7772 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7773
7774 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7775
7776 printk(KERN_CONT " %s", str);
7777 if (group->cpu_power != SCHED_LOAD_SCALE) {
7778 printk(KERN_CONT " (cpu_power = %d)",
7779 group->cpu_power);
7780 }
7781
7782 group = group->next;
7783 } while (group != sd->groups);
7784 printk(KERN_CONT "\n");
7785
7786 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7787 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7788
7789 if (sd->parent &&
7790 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7791 printk(KERN_ERR "ERROR: parent span is not a superset "
7792 "of domain->span\n");
7793 return 0;
7794 }
7795
7796 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7797 {
7798 cpumask_var_t groupmask;
7799 int level = 0;
7800
7801 if (!sd) {
7802 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7803 return;
7804 }
7805
7806 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7807
7808 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7809 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7810 return;
7811 }
7812
7813 for (;;) {
7814 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7815 break;
7816 level++;
7817 sd = sd->parent;
7818 if (!sd)
7819 break;
7820 }
7821 free_cpumask_var(groupmask);
7822 }
7823 #else /* !CONFIG_SCHED_DEBUG */
7824 # define sched_domain_debug(sd, cpu) do { } while (0)
7825 #endif /* CONFIG_SCHED_DEBUG */
7826
7827 static int sd_degenerate(struct sched_domain *sd)
7828 {
7829 if (cpumask_weight(sched_domain_span(sd)) == 1)
7830 return 1;
7831
7832 /* Following flags need at least 2 groups */
7833 if (sd->flags & (SD_LOAD_BALANCE |
7834 SD_BALANCE_NEWIDLE |
7835 SD_BALANCE_FORK |
7836 SD_BALANCE_EXEC |
7837 SD_SHARE_CPUPOWER |
7838 SD_SHARE_PKG_RESOURCES)) {
7839 if (sd->groups != sd->groups->next)
7840 return 0;
7841 }
7842
7843 /* Following flags don't use groups */
7844 if (sd->flags & (SD_WAKE_AFFINE))
7845 return 0;
7846
7847 return 1;
7848 }
7849
7850 static int
7851 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7852 {
7853 unsigned long cflags = sd->flags, pflags = parent->flags;
7854
7855 if (sd_degenerate(parent))
7856 return 1;
7857
7858 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7859 return 0;
7860
7861 /* Flags needing groups don't count if only 1 group in parent */
7862 if (parent->groups == parent->groups->next) {
7863 pflags &= ~(SD_LOAD_BALANCE |
7864 SD_BALANCE_NEWIDLE |
7865 SD_BALANCE_FORK |
7866 SD_BALANCE_EXEC |
7867 SD_SHARE_CPUPOWER |
7868 SD_SHARE_PKG_RESOURCES);
7869 if (nr_node_ids == 1)
7870 pflags &= ~SD_SERIALIZE;
7871 }
7872 if (~cflags & pflags)
7873 return 0;
7874
7875 return 1;
7876 }
7877
7878 static void free_rootdomain(struct root_domain *rd)
7879 {
7880 cpupri_cleanup(&rd->cpupri);
7881
7882 free_cpumask_var(rd->rto_mask);
7883 free_cpumask_var(rd->online);
7884 free_cpumask_var(rd->span);
7885 kfree(rd);
7886 }
7887
7888 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7889 {
7890 struct root_domain *old_rd = NULL;
7891 unsigned long flags;
7892
7893 spin_lock_irqsave(&rq->lock, flags);
7894
7895 if (rq->rd) {
7896 old_rd = rq->rd;
7897
7898 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7899 set_rq_offline(rq);
7900
7901 cpumask_clear_cpu(rq->cpu, old_rd->span);
7902
7903 /*
7904 * If we dont want to free the old_rt yet then
7905 * set old_rd to NULL to skip the freeing later
7906 * in this function:
7907 */
7908 if (!atomic_dec_and_test(&old_rd->refcount))
7909 old_rd = NULL;
7910 }
7911
7912 atomic_inc(&rd->refcount);
7913 rq->rd = rd;
7914
7915 cpumask_set_cpu(rq->cpu, rd->span);
7916 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7917 set_rq_online(rq);
7918
7919 spin_unlock_irqrestore(&rq->lock, flags);
7920
7921 if (old_rd)
7922 free_rootdomain(old_rd);
7923 }
7924
7925 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7926 {
7927 gfp_t gfp = GFP_KERNEL;
7928
7929 memset(rd, 0, sizeof(*rd));
7930
7931 if (bootmem)
7932 gfp = GFP_NOWAIT;
7933
7934 if (!alloc_cpumask_var(&rd->span, gfp))
7935 goto out;
7936 if (!alloc_cpumask_var(&rd->online, gfp))
7937 goto free_span;
7938 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7939 goto free_online;
7940
7941 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7942 goto free_rto_mask;
7943 return 0;
7944
7945 free_rto_mask:
7946 free_cpumask_var(rd->rto_mask);
7947 free_online:
7948 free_cpumask_var(rd->online);
7949 free_span:
7950 free_cpumask_var(rd->span);
7951 out:
7952 return -ENOMEM;
7953 }
7954
7955 static void init_defrootdomain(void)
7956 {
7957 init_rootdomain(&def_root_domain, true);
7958
7959 atomic_set(&def_root_domain.refcount, 1);
7960 }
7961
7962 static struct root_domain *alloc_rootdomain(void)
7963 {
7964 struct root_domain *rd;
7965
7966 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7967 if (!rd)
7968 return NULL;
7969
7970 if (init_rootdomain(rd, false) != 0) {
7971 kfree(rd);
7972 return NULL;
7973 }
7974
7975 return rd;
7976 }
7977
7978 /*
7979 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7980 * hold the hotplug lock.
7981 */
7982 static void
7983 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7984 {
7985 struct rq *rq = cpu_rq(cpu);
7986 struct sched_domain *tmp;
7987
7988 /* Remove the sched domains which do not contribute to scheduling. */
7989 for (tmp = sd; tmp; ) {
7990 struct sched_domain *parent = tmp->parent;
7991 if (!parent)
7992 break;
7993
7994 if (sd_parent_degenerate(tmp, parent)) {
7995 tmp->parent = parent->parent;
7996 if (parent->parent)
7997 parent->parent->child = tmp;
7998 } else
7999 tmp = tmp->parent;
8000 }
8001
8002 if (sd && sd_degenerate(sd)) {
8003 sd = sd->parent;
8004 if (sd)
8005 sd->child = NULL;
8006 }
8007
8008 sched_domain_debug(sd, cpu);
8009
8010 rq_attach_root(rq, rd);
8011 rcu_assign_pointer(rq->sd, sd);
8012 }
8013
8014 /* cpus with isolated domains */
8015 static cpumask_var_t cpu_isolated_map;
8016
8017 /* Setup the mask of cpus configured for isolated domains */
8018 static int __init isolated_cpu_setup(char *str)
8019 {
8020 cpulist_parse(str, cpu_isolated_map);
8021 return 1;
8022 }
8023
8024 __setup("isolcpus=", isolated_cpu_setup);
8025
8026 /*
8027 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8028 * to a function which identifies what group(along with sched group) a CPU
8029 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8030 * (due to the fact that we keep track of groups covered with a struct cpumask).
8031 *
8032 * init_sched_build_groups will build a circular linked list of the groups
8033 * covered by the given span, and will set each group's ->cpumask correctly,
8034 * and ->cpu_power to 0.
8035 */
8036 static void
8037 init_sched_build_groups(const struct cpumask *span,
8038 const struct cpumask *cpu_map,
8039 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8040 struct sched_group **sg,
8041 struct cpumask *tmpmask),
8042 struct cpumask *covered, struct cpumask *tmpmask)
8043 {
8044 struct sched_group *first = NULL, *last = NULL;
8045 int i;
8046
8047 cpumask_clear(covered);
8048
8049 for_each_cpu(i, span) {
8050 struct sched_group *sg;
8051 int group = group_fn(i, cpu_map, &sg, tmpmask);
8052 int j;
8053
8054 if (cpumask_test_cpu(i, covered))
8055 continue;
8056
8057 cpumask_clear(sched_group_cpus(sg));
8058 sg->cpu_power = 0;
8059
8060 for_each_cpu(j, span) {
8061 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8062 continue;
8063
8064 cpumask_set_cpu(j, covered);
8065 cpumask_set_cpu(j, sched_group_cpus(sg));
8066 }
8067 if (!first)
8068 first = sg;
8069 if (last)
8070 last->next = sg;
8071 last = sg;
8072 }
8073 last->next = first;
8074 }
8075
8076 #define SD_NODES_PER_DOMAIN 16
8077
8078 #ifdef CONFIG_NUMA
8079
8080 /**
8081 * find_next_best_node - find the next node to include in a sched_domain
8082 * @node: node whose sched_domain we're building
8083 * @used_nodes: nodes already in the sched_domain
8084 *
8085 * Find the next node to include in a given scheduling domain. Simply
8086 * finds the closest node not already in the @used_nodes map.
8087 *
8088 * Should use nodemask_t.
8089 */
8090 static int find_next_best_node(int node, nodemask_t *used_nodes)
8091 {
8092 int i, n, val, min_val, best_node = 0;
8093
8094 min_val = INT_MAX;
8095
8096 for (i = 0; i < nr_node_ids; i++) {
8097 /* Start at @node */
8098 n = (node + i) % nr_node_ids;
8099
8100 if (!nr_cpus_node(n))
8101 continue;
8102
8103 /* Skip already used nodes */
8104 if (node_isset(n, *used_nodes))
8105 continue;
8106
8107 /* Simple min distance search */
8108 val = node_distance(node, n);
8109
8110 if (val < min_val) {
8111 min_val = val;
8112 best_node = n;
8113 }
8114 }
8115
8116 node_set(best_node, *used_nodes);
8117 return best_node;
8118 }
8119
8120 /**
8121 * sched_domain_node_span - get a cpumask for a node's sched_domain
8122 * @node: node whose cpumask we're constructing
8123 * @span: resulting cpumask
8124 *
8125 * Given a node, construct a good cpumask for its sched_domain to span. It
8126 * should be one that prevents unnecessary balancing, but also spreads tasks
8127 * out optimally.
8128 */
8129 static void sched_domain_node_span(int node, struct cpumask *span)
8130 {
8131 nodemask_t used_nodes;
8132 int i;
8133
8134 cpumask_clear(span);
8135 nodes_clear(used_nodes);
8136
8137 cpumask_or(span, span, cpumask_of_node(node));
8138 node_set(node, used_nodes);
8139
8140 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8141 int next_node = find_next_best_node(node, &used_nodes);
8142
8143 cpumask_or(span, span, cpumask_of_node(next_node));
8144 }
8145 }
8146 #endif /* CONFIG_NUMA */
8147
8148 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8149
8150 /*
8151 * The cpus mask in sched_group and sched_domain hangs off the end.
8152 *
8153 * ( See the the comments in include/linux/sched.h:struct sched_group
8154 * and struct sched_domain. )
8155 */
8156 struct static_sched_group {
8157 struct sched_group sg;
8158 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8159 };
8160
8161 struct static_sched_domain {
8162 struct sched_domain sd;
8163 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8164 };
8165
8166 struct s_data {
8167 #ifdef CONFIG_NUMA
8168 int sd_allnodes;
8169 cpumask_var_t domainspan;
8170 cpumask_var_t covered;
8171 cpumask_var_t notcovered;
8172 #endif
8173 cpumask_var_t nodemask;
8174 cpumask_var_t this_sibling_map;
8175 cpumask_var_t this_core_map;
8176 cpumask_var_t send_covered;
8177 cpumask_var_t tmpmask;
8178 struct sched_group **sched_group_nodes;
8179 struct root_domain *rd;
8180 };
8181
8182 enum s_alloc {
8183 sa_sched_groups = 0,
8184 sa_rootdomain,
8185 sa_tmpmask,
8186 sa_send_covered,
8187 sa_this_core_map,
8188 sa_this_sibling_map,
8189 sa_nodemask,
8190 sa_sched_group_nodes,
8191 #ifdef CONFIG_NUMA
8192 sa_notcovered,
8193 sa_covered,
8194 sa_domainspan,
8195 #endif
8196 sa_none,
8197 };
8198
8199 /*
8200 * SMT sched-domains:
8201 */
8202 #ifdef CONFIG_SCHED_SMT
8203 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8204 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8205
8206 static int
8207 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8208 struct sched_group **sg, struct cpumask *unused)
8209 {
8210 if (sg)
8211 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8212 return cpu;
8213 }
8214 #endif /* CONFIG_SCHED_SMT */
8215
8216 /*
8217 * multi-core sched-domains:
8218 */
8219 #ifdef CONFIG_SCHED_MC
8220 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8221 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8222 #endif /* CONFIG_SCHED_MC */
8223
8224 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8225 static int
8226 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8227 struct sched_group **sg, struct cpumask *mask)
8228 {
8229 int group;
8230
8231 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8232 group = cpumask_first(mask);
8233 if (sg)
8234 *sg = &per_cpu(sched_group_core, group).sg;
8235 return group;
8236 }
8237 #elif defined(CONFIG_SCHED_MC)
8238 static int
8239 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8240 struct sched_group **sg, struct cpumask *unused)
8241 {
8242 if (sg)
8243 *sg = &per_cpu(sched_group_core, cpu).sg;
8244 return cpu;
8245 }
8246 #endif
8247
8248 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8249 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8250
8251 static int
8252 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8253 struct sched_group **sg, struct cpumask *mask)
8254 {
8255 int group;
8256 #ifdef CONFIG_SCHED_MC
8257 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8258 group = cpumask_first(mask);
8259 #elif defined(CONFIG_SCHED_SMT)
8260 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8261 group = cpumask_first(mask);
8262 #else
8263 group = cpu;
8264 #endif
8265 if (sg)
8266 *sg = &per_cpu(sched_group_phys, group).sg;
8267 return group;
8268 }
8269
8270 #ifdef CONFIG_NUMA
8271 /*
8272 * The init_sched_build_groups can't handle what we want to do with node
8273 * groups, so roll our own. Now each node has its own list of groups which
8274 * gets dynamically allocated.
8275 */
8276 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8277 static struct sched_group ***sched_group_nodes_bycpu;
8278
8279 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8280 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8281
8282 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8283 struct sched_group **sg,
8284 struct cpumask *nodemask)
8285 {
8286 int group;
8287
8288 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8289 group = cpumask_first(nodemask);
8290
8291 if (sg)
8292 *sg = &per_cpu(sched_group_allnodes, group).sg;
8293 return group;
8294 }
8295
8296 static void init_numa_sched_groups_power(struct sched_group *group_head)
8297 {
8298 struct sched_group *sg = group_head;
8299 int j;
8300
8301 if (!sg)
8302 return;
8303 do {
8304 for_each_cpu(j, sched_group_cpus(sg)) {
8305 struct sched_domain *sd;
8306
8307 sd = &per_cpu(phys_domains, j).sd;
8308 if (j != group_first_cpu(sd->groups)) {
8309 /*
8310 * Only add "power" once for each
8311 * physical package.
8312 */
8313 continue;
8314 }
8315
8316 sg->cpu_power += sd->groups->cpu_power;
8317 }
8318 sg = sg->next;
8319 } while (sg != group_head);
8320 }
8321
8322 static int build_numa_sched_groups(struct s_data *d,
8323 const struct cpumask *cpu_map, int num)
8324 {
8325 struct sched_domain *sd;
8326 struct sched_group *sg, *prev;
8327 int n, j;
8328
8329 cpumask_clear(d->covered);
8330 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8331 if (cpumask_empty(d->nodemask)) {
8332 d->sched_group_nodes[num] = NULL;
8333 goto out;
8334 }
8335
8336 sched_domain_node_span(num, d->domainspan);
8337 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8338
8339 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8340 GFP_KERNEL, num);
8341 if (!sg) {
8342 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8343 num);
8344 return -ENOMEM;
8345 }
8346 d->sched_group_nodes[num] = sg;
8347
8348 for_each_cpu(j, d->nodemask) {
8349 sd = &per_cpu(node_domains, j).sd;
8350 sd->groups = sg;
8351 }
8352
8353 sg->cpu_power = 0;
8354 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8355 sg->next = sg;
8356 cpumask_or(d->covered, d->covered, d->nodemask);
8357
8358 prev = sg;
8359 for (j = 0; j < nr_node_ids; j++) {
8360 n = (num + j) % nr_node_ids;
8361 cpumask_complement(d->notcovered, d->covered);
8362 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8363 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8364 if (cpumask_empty(d->tmpmask))
8365 break;
8366 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8367 if (cpumask_empty(d->tmpmask))
8368 continue;
8369 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8370 GFP_KERNEL, num);
8371 if (!sg) {
8372 printk(KERN_WARNING
8373 "Can not alloc domain group for node %d\n", j);
8374 return -ENOMEM;
8375 }
8376 sg->cpu_power = 0;
8377 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8378 sg->next = prev->next;
8379 cpumask_or(d->covered, d->covered, d->tmpmask);
8380 prev->next = sg;
8381 prev = sg;
8382 }
8383 out:
8384 return 0;
8385 }
8386 #endif /* CONFIG_NUMA */
8387
8388 #ifdef CONFIG_NUMA
8389 /* Free memory allocated for various sched_group structures */
8390 static void free_sched_groups(const struct cpumask *cpu_map,
8391 struct cpumask *nodemask)
8392 {
8393 int cpu, i;
8394
8395 for_each_cpu(cpu, cpu_map) {
8396 struct sched_group **sched_group_nodes
8397 = sched_group_nodes_bycpu[cpu];
8398
8399 if (!sched_group_nodes)
8400 continue;
8401
8402 for (i = 0; i < nr_node_ids; i++) {
8403 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8404
8405 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8406 if (cpumask_empty(nodemask))
8407 continue;
8408
8409 if (sg == NULL)
8410 continue;
8411 sg = sg->next;
8412 next_sg:
8413 oldsg = sg;
8414 sg = sg->next;
8415 kfree(oldsg);
8416 if (oldsg != sched_group_nodes[i])
8417 goto next_sg;
8418 }
8419 kfree(sched_group_nodes);
8420 sched_group_nodes_bycpu[cpu] = NULL;
8421 }
8422 }
8423 #else /* !CONFIG_NUMA */
8424 static void free_sched_groups(const struct cpumask *cpu_map,
8425 struct cpumask *nodemask)
8426 {
8427 }
8428 #endif /* CONFIG_NUMA */
8429
8430 /*
8431 * Initialize sched groups cpu_power.
8432 *
8433 * cpu_power indicates the capacity of sched group, which is used while
8434 * distributing the load between different sched groups in a sched domain.
8435 * Typically cpu_power for all the groups in a sched domain will be same unless
8436 * there are asymmetries in the topology. If there are asymmetries, group
8437 * having more cpu_power will pickup more load compared to the group having
8438 * less cpu_power.
8439 */
8440 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8441 {
8442 struct sched_domain *child;
8443 struct sched_group *group;
8444 long power;
8445 int weight;
8446
8447 WARN_ON(!sd || !sd->groups);
8448
8449 if (cpu != group_first_cpu(sd->groups))
8450 return;
8451
8452 child = sd->child;
8453
8454 sd->groups->cpu_power = 0;
8455
8456 if (!child) {
8457 power = SCHED_LOAD_SCALE;
8458 weight = cpumask_weight(sched_domain_span(sd));
8459 /*
8460 * SMT siblings share the power of a single core.
8461 * Usually multiple threads get a better yield out of
8462 * that one core than a single thread would have,
8463 * reflect that in sd->smt_gain.
8464 */
8465 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8466 power *= sd->smt_gain;
8467 power /= weight;
8468 power >>= SCHED_LOAD_SHIFT;
8469 }
8470 sd->groups->cpu_power += power;
8471 return;
8472 }
8473
8474 /*
8475 * Add cpu_power of each child group to this groups cpu_power.
8476 */
8477 group = child->groups;
8478 do {
8479 sd->groups->cpu_power += group->cpu_power;
8480 group = group->next;
8481 } while (group != child->groups);
8482 }
8483
8484 /*
8485 * Initializers for schedule domains
8486 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8487 */
8488
8489 #ifdef CONFIG_SCHED_DEBUG
8490 # define SD_INIT_NAME(sd, type) sd->name = #type
8491 #else
8492 # define SD_INIT_NAME(sd, type) do { } while (0)
8493 #endif
8494
8495 #define SD_INIT(sd, type) sd_init_##type(sd)
8496
8497 #define SD_INIT_FUNC(type) \
8498 static noinline void sd_init_##type(struct sched_domain *sd) \
8499 { \
8500 memset(sd, 0, sizeof(*sd)); \
8501 *sd = SD_##type##_INIT; \
8502 sd->level = SD_LV_##type; \
8503 SD_INIT_NAME(sd, type); \
8504 }
8505
8506 SD_INIT_FUNC(CPU)
8507 #ifdef CONFIG_NUMA
8508 SD_INIT_FUNC(ALLNODES)
8509 SD_INIT_FUNC(NODE)
8510 #endif
8511 #ifdef CONFIG_SCHED_SMT
8512 SD_INIT_FUNC(SIBLING)
8513 #endif
8514 #ifdef CONFIG_SCHED_MC
8515 SD_INIT_FUNC(MC)
8516 #endif
8517
8518 static int default_relax_domain_level = -1;
8519
8520 static int __init setup_relax_domain_level(char *str)
8521 {
8522 unsigned long val;
8523
8524 val = simple_strtoul(str, NULL, 0);
8525 if (val < SD_LV_MAX)
8526 default_relax_domain_level = val;
8527
8528 return 1;
8529 }
8530 __setup("relax_domain_level=", setup_relax_domain_level);
8531
8532 static void set_domain_attribute(struct sched_domain *sd,
8533 struct sched_domain_attr *attr)
8534 {
8535 int request;
8536
8537 if (!attr || attr->relax_domain_level < 0) {
8538 if (default_relax_domain_level < 0)
8539 return;
8540 else
8541 request = default_relax_domain_level;
8542 } else
8543 request = attr->relax_domain_level;
8544 if (request < sd->level) {
8545 /* turn off idle balance on this domain */
8546 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8547 } else {
8548 /* turn on idle balance on this domain */
8549 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8550 }
8551 }
8552
8553 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8554 const struct cpumask *cpu_map)
8555 {
8556 switch (what) {
8557 case sa_sched_groups:
8558 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8559 d->sched_group_nodes = NULL;
8560 case sa_rootdomain:
8561 free_rootdomain(d->rd); /* fall through */
8562 case sa_tmpmask:
8563 free_cpumask_var(d->tmpmask); /* fall through */
8564 case sa_send_covered:
8565 free_cpumask_var(d->send_covered); /* fall through */
8566 case sa_this_core_map:
8567 free_cpumask_var(d->this_core_map); /* fall through */
8568 case sa_this_sibling_map:
8569 free_cpumask_var(d->this_sibling_map); /* fall through */
8570 case sa_nodemask:
8571 free_cpumask_var(d->nodemask); /* fall through */
8572 case sa_sched_group_nodes:
8573 #ifdef CONFIG_NUMA
8574 kfree(d->sched_group_nodes); /* fall through */
8575 case sa_notcovered:
8576 free_cpumask_var(d->notcovered); /* fall through */
8577 case sa_covered:
8578 free_cpumask_var(d->covered); /* fall through */
8579 case sa_domainspan:
8580 free_cpumask_var(d->domainspan); /* fall through */
8581 #endif
8582 case sa_none:
8583 break;
8584 }
8585 }
8586
8587 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8588 const struct cpumask *cpu_map)
8589 {
8590 #ifdef CONFIG_NUMA
8591 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8592 return sa_none;
8593 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8594 return sa_domainspan;
8595 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8596 return sa_covered;
8597 /* Allocate the per-node list of sched groups */
8598 d->sched_group_nodes = kcalloc(nr_node_ids,
8599 sizeof(struct sched_group *), GFP_KERNEL);
8600 if (!d->sched_group_nodes) {
8601 printk(KERN_WARNING "Can not alloc sched group node list\n");
8602 return sa_notcovered;
8603 }
8604 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8605 #endif
8606 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8607 return sa_sched_group_nodes;
8608 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8609 return sa_nodemask;
8610 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8611 return sa_this_sibling_map;
8612 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8613 return sa_this_core_map;
8614 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8615 return sa_send_covered;
8616 d->rd = alloc_rootdomain();
8617 if (!d->rd) {
8618 printk(KERN_WARNING "Cannot alloc root domain\n");
8619 return sa_tmpmask;
8620 }
8621 return sa_rootdomain;
8622 }
8623
8624 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8625 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8626 {
8627 struct sched_domain *sd = NULL;
8628 #ifdef CONFIG_NUMA
8629 struct sched_domain *parent;
8630
8631 d->sd_allnodes = 0;
8632 if (cpumask_weight(cpu_map) >
8633 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8634 sd = &per_cpu(allnodes_domains, i).sd;
8635 SD_INIT(sd, ALLNODES);
8636 set_domain_attribute(sd, attr);
8637 cpumask_copy(sched_domain_span(sd), cpu_map);
8638 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8639 d->sd_allnodes = 1;
8640 }
8641 parent = sd;
8642
8643 sd = &per_cpu(node_domains, i).sd;
8644 SD_INIT(sd, NODE);
8645 set_domain_attribute(sd, attr);
8646 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8647 sd->parent = parent;
8648 if (parent)
8649 parent->child = sd;
8650 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8651 #endif
8652 return sd;
8653 }
8654
8655 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8656 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8657 struct sched_domain *parent, int i)
8658 {
8659 struct sched_domain *sd;
8660 sd = &per_cpu(phys_domains, i).sd;
8661 SD_INIT(sd, CPU);
8662 set_domain_attribute(sd, attr);
8663 cpumask_copy(sched_domain_span(sd), d->nodemask);
8664 sd->parent = parent;
8665 if (parent)
8666 parent->child = sd;
8667 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8668 return sd;
8669 }
8670
8671 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8672 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8673 struct sched_domain *parent, int i)
8674 {
8675 struct sched_domain *sd = parent;
8676 #ifdef CONFIG_SCHED_MC
8677 sd = &per_cpu(core_domains, i).sd;
8678 SD_INIT(sd, MC);
8679 set_domain_attribute(sd, attr);
8680 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8681 sd->parent = parent;
8682 parent->child = sd;
8683 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8684 #endif
8685 return sd;
8686 }
8687
8688 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8689 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8690 struct sched_domain *parent, int i)
8691 {
8692 struct sched_domain *sd = parent;
8693 #ifdef CONFIG_SCHED_SMT
8694 sd = &per_cpu(cpu_domains, i).sd;
8695 SD_INIT(sd, SIBLING);
8696 set_domain_attribute(sd, attr);
8697 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8698 sd->parent = parent;
8699 parent->child = sd;
8700 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8701 #endif
8702 return sd;
8703 }
8704
8705 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8706 const struct cpumask *cpu_map, int cpu)
8707 {
8708 switch (l) {
8709 #ifdef CONFIG_SCHED_SMT
8710 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8711 cpumask_and(d->this_sibling_map, cpu_map,
8712 topology_thread_cpumask(cpu));
8713 if (cpu == cpumask_first(d->this_sibling_map))
8714 init_sched_build_groups(d->this_sibling_map, cpu_map,
8715 &cpu_to_cpu_group,
8716 d->send_covered, d->tmpmask);
8717 break;
8718 #endif
8719 #ifdef CONFIG_SCHED_MC
8720 case SD_LV_MC: /* set up multi-core groups */
8721 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8722 if (cpu == cpumask_first(d->this_core_map))
8723 init_sched_build_groups(d->this_core_map, cpu_map,
8724 &cpu_to_core_group,
8725 d->send_covered, d->tmpmask);
8726 break;
8727 #endif
8728 case SD_LV_CPU: /* set up physical groups */
8729 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8730 if (!cpumask_empty(d->nodemask))
8731 init_sched_build_groups(d->nodemask, cpu_map,
8732 &cpu_to_phys_group,
8733 d->send_covered, d->tmpmask);
8734 break;
8735 #ifdef CONFIG_NUMA
8736 case SD_LV_ALLNODES:
8737 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8738 d->send_covered, d->tmpmask);
8739 break;
8740 #endif
8741 default:
8742 break;
8743 }
8744 }
8745
8746 /*
8747 * Build sched domains for a given set of cpus and attach the sched domains
8748 * to the individual cpus
8749 */
8750 static int __build_sched_domains(const struct cpumask *cpu_map,
8751 struct sched_domain_attr *attr)
8752 {
8753 enum s_alloc alloc_state = sa_none;
8754 struct s_data d;
8755 struct sched_domain *sd;
8756 int i;
8757 #ifdef CONFIG_NUMA
8758 d.sd_allnodes = 0;
8759 #endif
8760
8761 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8762 if (alloc_state != sa_rootdomain)
8763 goto error;
8764 alloc_state = sa_sched_groups;
8765
8766 /*
8767 * Set up domains for cpus specified by the cpu_map.
8768 */
8769 for_each_cpu(i, cpu_map) {
8770 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8771 cpu_map);
8772
8773 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8774 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8775 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8776 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8777 }
8778
8779 for_each_cpu(i, cpu_map) {
8780 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8781 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8782 }
8783
8784 /* Set up physical groups */
8785 for (i = 0; i < nr_node_ids; i++)
8786 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8787
8788 #ifdef CONFIG_NUMA
8789 /* Set up node groups */
8790 if (d.sd_allnodes)
8791 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8792
8793 for (i = 0; i < nr_node_ids; i++)
8794 if (build_numa_sched_groups(&d, cpu_map, i))
8795 goto error;
8796 #endif
8797
8798 /* Calculate CPU power for physical packages and nodes */
8799 #ifdef CONFIG_SCHED_SMT
8800 for_each_cpu(i, cpu_map) {
8801 sd = &per_cpu(cpu_domains, i).sd;
8802 init_sched_groups_power(i, sd);
8803 }
8804 #endif
8805 #ifdef CONFIG_SCHED_MC
8806 for_each_cpu(i, cpu_map) {
8807 sd = &per_cpu(core_domains, i).sd;
8808 init_sched_groups_power(i, sd);
8809 }
8810 #endif
8811
8812 for_each_cpu(i, cpu_map) {
8813 sd = &per_cpu(phys_domains, i).sd;
8814 init_sched_groups_power(i, sd);
8815 }
8816
8817 #ifdef CONFIG_NUMA
8818 for (i = 0; i < nr_node_ids; i++)
8819 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8820
8821 if (d.sd_allnodes) {
8822 struct sched_group *sg;
8823
8824 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8825 d.tmpmask);
8826 init_numa_sched_groups_power(sg);
8827 }
8828 #endif
8829
8830 /* Attach the domains */
8831 for_each_cpu(i, cpu_map) {
8832 #ifdef CONFIG_SCHED_SMT
8833 sd = &per_cpu(cpu_domains, i).sd;
8834 #elif defined(CONFIG_SCHED_MC)
8835 sd = &per_cpu(core_domains, i).sd;
8836 #else
8837 sd = &per_cpu(phys_domains, i).sd;
8838 #endif
8839 cpu_attach_domain(sd, d.rd, i);
8840 }
8841
8842 d.sched_group_nodes = NULL; /* don't free this we still need it */
8843 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8844 return 0;
8845
8846 error:
8847 __free_domain_allocs(&d, alloc_state, cpu_map);
8848 return -ENOMEM;
8849 }
8850
8851 static int build_sched_domains(const struct cpumask *cpu_map)
8852 {
8853 return __build_sched_domains(cpu_map, NULL);
8854 }
8855
8856 static struct cpumask *doms_cur; /* current sched domains */
8857 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8858 static struct sched_domain_attr *dattr_cur;
8859 /* attribues of custom domains in 'doms_cur' */
8860
8861 /*
8862 * Special case: If a kmalloc of a doms_cur partition (array of
8863 * cpumask) fails, then fallback to a single sched domain,
8864 * as determined by the single cpumask fallback_doms.
8865 */
8866 static cpumask_var_t fallback_doms;
8867
8868 /*
8869 * arch_update_cpu_topology lets virtualized architectures update the
8870 * cpu core maps. It is supposed to return 1 if the topology changed
8871 * or 0 if it stayed the same.
8872 */
8873 int __attribute__((weak)) arch_update_cpu_topology(void)
8874 {
8875 return 0;
8876 }
8877
8878 /*
8879 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8880 * For now this just excludes isolated cpus, but could be used to
8881 * exclude other special cases in the future.
8882 */
8883 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8884 {
8885 int err;
8886
8887 arch_update_cpu_topology();
8888 ndoms_cur = 1;
8889 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8890 if (!doms_cur)
8891 doms_cur = fallback_doms;
8892 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8893 dattr_cur = NULL;
8894 err = build_sched_domains(doms_cur);
8895 register_sched_domain_sysctl();
8896
8897 return err;
8898 }
8899
8900 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8901 struct cpumask *tmpmask)
8902 {
8903 free_sched_groups(cpu_map, tmpmask);
8904 }
8905
8906 /*
8907 * Detach sched domains from a group of cpus specified in cpu_map
8908 * These cpus will now be attached to the NULL domain
8909 */
8910 static void detach_destroy_domains(const struct cpumask *cpu_map)
8911 {
8912 /* Save because hotplug lock held. */
8913 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8914 int i;
8915
8916 for_each_cpu(i, cpu_map)
8917 cpu_attach_domain(NULL, &def_root_domain, i);
8918 synchronize_sched();
8919 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8920 }
8921
8922 /* handle null as "default" */
8923 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8924 struct sched_domain_attr *new, int idx_new)
8925 {
8926 struct sched_domain_attr tmp;
8927
8928 /* fast path */
8929 if (!new && !cur)
8930 return 1;
8931
8932 tmp = SD_ATTR_INIT;
8933 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8934 new ? (new + idx_new) : &tmp,
8935 sizeof(struct sched_domain_attr));
8936 }
8937
8938 /*
8939 * Partition sched domains as specified by the 'ndoms_new'
8940 * cpumasks in the array doms_new[] of cpumasks. This compares
8941 * doms_new[] to the current sched domain partitioning, doms_cur[].
8942 * It destroys each deleted domain and builds each new domain.
8943 *
8944 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8945 * The masks don't intersect (don't overlap.) We should setup one
8946 * sched domain for each mask. CPUs not in any of the cpumasks will
8947 * not be load balanced. If the same cpumask appears both in the
8948 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8949 * it as it is.
8950 *
8951 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8952 * ownership of it and will kfree it when done with it. If the caller
8953 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8954 * ndoms_new == 1, and partition_sched_domains() will fallback to
8955 * the single partition 'fallback_doms', it also forces the domains
8956 * to be rebuilt.
8957 *
8958 * If doms_new == NULL it will be replaced with cpu_online_mask.
8959 * ndoms_new == 0 is a special case for destroying existing domains,
8960 * and it will not create the default domain.
8961 *
8962 * Call with hotplug lock held
8963 */
8964 /* FIXME: Change to struct cpumask *doms_new[] */
8965 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8966 struct sched_domain_attr *dattr_new)
8967 {
8968 int i, j, n;
8969 int new_topology;
8970
8971 mutex_lock(&sched_domains_mutex);
8972
8973 /* always unregister in case we don't destroy any domains */
8974 unregister_sched_domain_sysctl();
8975
8976 /* Let architecture update cpu core mappings. */
8977 new_topology = arch_update_cpu_topology();
8978
8979 n = doms_new ? ndoms_new : 0;
8980
8981 /* Destroy deleted domains */
8982 for (i = 0; i < ndoms_cur; i++) {
8983 for (j = 0; j < n && !new_topology; j++) {
8984 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8985 && dattrs_equal(dattr_cur, i, dattr_new, j))
8986 goto match1;
8987 }
8988 /* no match - a current sched domain not in new doms_new[] */
8989 detach_destroy_domains(doms_cur + i);
8990 match1:
8991 ;
8992 }
8993
8994 if (doms_new == NULL) {
8995 ndoms_cur = 0;
8996 doms_new = fallback_doms;
8997 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8998 WARN_ON_ONCE(dattr_new);
8999 }
9000
9001 /* Build new domains */
9002 for (i = 0; i < ndoms_new; i++) {
9003 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9004 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9005 && dattrs_equal(dattr_new, i, dattr_cur, j))
9006 goto match2;
9007 }
9008 /* no match - add a new doms_new */
9009 __build_sched_domains(doms_new + i,
9010 dattr_new ? dattr_new + i : NULL);
9011 match2:
9012 ;
9013 }
9014
9015 /* Remember the new sched domains */
9016 if (doms_cur != fallback_doms)
9017 kfree(doms_cur);
9018 kfree(dattr_cur); /* kfree(NULL) is safe */
9019 doms_cur = doms_new;
9020 dattr_cur = dattr_new;
9021 ndoms_cur = ndoms_new;
9022
9023 register_sched_domain_sysctl();
9024
9025 mutex_unlock(&sched_domains_mutex);
9026 }
9027
9028 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9029 static void arch_reinit_sched_domains(void)
9030 {
9031 get_online_cpus();
9032
9033 /* Destroy domains first to force the rebuild */
9034 partition_sched_domains(0, NULL, NULL);
9035
9036 rebuild_sched_domains();
9037 put_online_cpus();
9038 }
9039
9040 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9041 {
9042 unsigned int level = 0;
9043
9044 if (sscanf(buf, "%u", &level) != 1)
9045 return -EINVAL;
9046
9047 /*
9048 * level is always be positive so don't check for
9049 * level < POWERSAVINGS_BALANCE_NONE which is 0
9050 * What happens on 0 or 1 byte write,
9051 * need to check for count as well?
9052 */
9053
9054 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9055 return -EINVAL;
9056
9057 if (smt)
9058 sched_smt_power_savings = level;
9059 else
9060 sched_mc_power_savings = level;
9061
9062 arch_reinit_sched_domains();
9063
9064 return count;
9065 }
9066
9067 #ifdef CONFIG_SCHED_MC
9068 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9069 char *page)
9070 {
9071 return sprintf(page, "%u\n", sched_mc_power_savings);
9072 }
9073 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9074 const char *buf, size_t count)
9075 {
9076 return sched_power_savings_store(buf, count, 0);
9077 }
9078 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9079 sched_mc_power_savings_show,
9080 sched_mc_power_savings_store);
9081 #endif
9082
9083 #ifdef CONFIG_SCHED_SMT
9084 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9085 char *page)
9086 {
9087 return sprintf(page, "%u\n", sched_smt_power_savings);
9088 }
9089 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9090 const char *buf, size_t count)
9091 {
9092 return sched_power_savings_store(buf, count, 1);
9093 }
9094 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9095 sched_smt_power_savings_show,
9096 sched_smt_power_savings_store);
9097 #endif
9098
9099 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9100 {
9101 int err = 0;
9102
9103 #ifdef CONFIG_SCHED_SMT
9104 if (smt_capable())
9105 err = sysfs_create_file(&cls->kset.kobj,
9106 &attr_sched_smt_power_savings.attr);
9107 #endif
9108 #ifdef CONFIG_SCHED_MC
9109 if (!err && mc_capable())
9110 err = sysfs_create_file(&cls->kset.kobj,
9111 &attr_sched_mc_power_savings.attr);
9112 #endif
9113 return err;
9114 }
9115 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9116
9117 #ifndef CONFIG_CPUSETS
9118 /*
9119 * Add online and remove offline CPUs from the scheduler domains.
9120 * When cpusets are enabled they take over this function.
9121 */
9122 static int update_sched_domains(struct notifier_block *nfb,
9123 unsigned long action, void *hcpu)
9124 {
9125 switch (action) {
9126 case CPU_ONLINE:
9127 case CPU_ONLINE_FROZEN:
9128 case CPU_DEAD:
9129 case CPU_DEAD_FROZEN:
9130 partition_sched_domains(1, NULL, NULL);
9131 return NOTIFY_OK;
9132
9133 default:
9134 return NOTIFY_DONE;
9135 }
9136 }
9137 #endif
9138
9139 static int update_runtime(struct notifier_block *nfb,
9140 unsigned long action, void *hcpu)
9141 {
9142 int cpu = (int)(long)hcpu;
9143
9144 switch (action) {
9145 case CPU_DOWN_PREPARE:
9146 case CPU_DOWN_PREPARE_FROZEN:
9147 disable_runtime(cpu_rq(cpu));
9148 return NOTIFY_OK;
9149
9150 case CPU_DOWN_FAILED:
9151 case CPU_DOWN_FAILED_FROZEN:
9152 case CPU_ONLINE:
9153 case CPU_ONLINE_FROZEN:
9154 enable_runtime(cpu_rq(cpu));
9155 return NOTIFY_OK;
9156
9157 default:
9158 return NOTIFY_DONE;
9159 }
9160 }
9161
9162 void __init sched_init_smp(void)
9163 {
9164 cpumask_var_t non_isolated_cpus;
9165
9166 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9167
9168 #if defined(CONFIG_NUMA)
9169 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9170 GFP_KERNEL);
9171 BUG_ON(sched_group_nodes_bycpu == NULL);
9172 #endif
9173 get_online_cpus();
9174 mutex_lock(&sched_domains_mutex);
9175 arch_init_sched_domains(cpu_online_mask);
9176 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9177 if (cpumask_empty(non_isolated_cpus))
9178 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9179 mutex_unlock(&sched_domains_mutex);
9180 put_online_cpus();
9181
9182 #ifndef CONFIG_CPUSETS
9183 /* XXX: Theoretical race here - CPU may be hotplugged now */
9184 hotcpu_notifier(update_sched_domains, 0);
9185 #endif
9186
9187 /* RT runtime code needs to handle some hotplug events */
9188 hotcpu_notifier(update_runtime, 0);
9189
9190 init_hrtick();
9191
9192 /* Move init over to a non-isolated CPU */
9193 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9194 BUG();
9195 sched_init_granularity();
9196 free_cpumask_var(non_isolated_cpus);
9197
9198 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9199 init_sched_rt_class();
9200 }
9201 #else
9202 void __init sched_init_smp(void)
9203 {
9204 sched_init_granularity();
9205 }
9206 #endif /* CONFIG_SMP */
9207
9208 const_debug unsigned int sysctl_timer_migration = 1;
9209
9210 int in_sched_functions(unsigned long addr)
9211 {
9212 return in_lock_functions(addr) ||
9213 (addr >= (unsigned long)__sched_text_start
9214 && addr < (unsigned long)__sched_text_end);
9215 }
9216
9217 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9218 {
9219 cfs_rq->tasks_timeline = RB_ROOT;
9220 INIT_LIST_HEAD(&cfs_rq->tasks);
9221 #ifdef CONFIG_FAIR_GROUP_SCHED
9222 cfs_rq->rq = rq;
9223 #endif
9224 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9225 }
9226
9227 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9228 {
9229 struct rt_prio_array *array;
9230 int i;
9231
9232 array = &rt_rq->active;
9233 for (i = 0; i < MAX_RT_PRIO; i++) {
9234 INIT_LIST_HEAD(array->queue + i);
9235 __clear_bit(i, array->bitmap);
9236 }
9237 /* delimiter for bitsearch: */
9238 __set_bit(MAX_RT_PRIO, array->bitmap);
9239
9240 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9241 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9242 #ifdef CONFIG_SMP
9243 rt_rq->highest_prio.next = MAX_RT_PRIO;
9244 #endif
9245 #endif
9246 #ifdef CONFIG_SMP
9247 rt_rq->rt_nr_migratory = 0;
9248 rt_rq->overloaded = 0;
9249 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9250 #endif
9251
9252 rt_rq->rt_time = 0;
9253 rt_rq->rt_throttled = 0;
9254 rt_rq->rt_runtime = 0;
9255 spin_lock_init(&rt_rq->rt_runtime_lock);
9256
9257 #ifdef CONFIG_RT_GROUP_SCHED
9258 rt_rq->rt_nr_boosted = 0;
9259 rt_rq->rq = rq;
9260 #endif
9261 }
9262
9263 #ifdef CONFIG_FAIR_GROUP_SCHED
9264 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9265 struct sched_entity *se, int cpu, int add,
9266 struct sched_entity *parent)
9267 {
9268 struct rq *rq = cpu_rq(cpu);
9269 tg->cfs_rq[cpu] = cfs_rq;
9270 init_cfs_rq(cfs_rq, rq);
9271 cfs_rq->tg = tg;
9272 if (add)
9273 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9274
9275 tg->se[cpu] = se;
9276 /* se could be NULL for init_task_group */
9277 if (!se)
9278 return;
9279
9280 if (!parent)
9281 se->cfs_rq = &rq->cfs;
9282 else
9283 se->cfs_rq = parent->my_q;
9284
9285 se->my_q = cfs_rq;
9286 se->load.weight = tg->shares;
9287 se->load.inv_weight = 0;
9288 se->parent = parent;
9289 }
9290 #endif
9291
9292 #ifdef CONFIG_RT_GROUP_SCHED
9293 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9294 struct sched_rt_entity *rt_se, int cpu, int add,
9295 struct sched_rt_entity *parent)
9296 {
9297 struct rq *rq = cpu_rq(cpu);
9298
9299 tg->rt_rq[cpu] = rt_rq;
9300 init_rt_rq(rt_rq, rq);
9301 rt_rq->tg = tg;
9302 rt_rq->rt_se = rt_se;
9303 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9304 if (add)
9305 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9306
9307 tg->rt_se[cpu] = rt_se;
9308 if (!rt_se)
9309 return;
9310
9311 if (!parent)
9312 rt_se->rt_rq = &rq->rt;
9313 else
9314 rt_se->rt_rq = parent->my_q;
9315
9316 rt_se->my_q = rt_rq;
9317 rt_se->parent = parent;
9318 INIT_LIST_HEAD(&rt_se->run_list);
9319 }
9320 #endif
9321
9322 void __init sched_init(void)
9323 {
9324 int i, j;
9325 unsigned long alloc_size = 0, ptr;
9326
9327 #ifdef CONFIG_FAIR_GROUP_SCHED
9328 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9329 #endif
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9332 #endif
9333 #ifdef CONFIG_USER_SCHED
9334 alloc_size *= 2;
9335 #endif
9336 #ifdef CONFIG_CPUMASK_OFFSTACK
9337 alloc_size += num_possible_cpus() * cpumask_size();
9338 #endif
9339 /*
9340 * As sched_init() is called before page_alloc is setup,
9341 * we use alloc_bootmem().
9342 */
9343 if (alloc_size) {
9344 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9345
9346 #ifdef CONFIG_FAIR_GROUP_SCHED
9347 init_task_group.se = (struct sched_entity **)ptr;
9348 ptr += nr_cpu_ids * sizeof(void **);
9349
9350 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9351 ptr += nr_cpu_ids * sizeof(void **);
9352
9353 #ifdef CONFIG_USER_SCHED
9354 root_task_group.se = (struct sched_entity **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9358 ptr += nr_cpu_ids * sizeof(void **);
9359 #endif /* CONFIG_USER_SCHED */
9360 #endif /* CONFIG_FAIR_GROUP_SCHED */
9361 #ifdef CONFIG_RT_GROUP_SCHED
9362 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9364
9365 init_task_group.rt_rq = (struct rt_rq **)ptr;
9366 ptr += nr_cpu_ids * sizeof(void **);
9367
9368 #ifdef CONFIG_USER_SCHED
9369 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 root_task_group.rt_rq = (struct rt_rq **)ptr;
9373 ptr += nr_cpu_ids * sizeof(void **);
9374 #endif /* CONFIG_USER_SCHED */
9375 #endif /* CONFIG_RT_GROUP_SCHED */
9376 #ifdef CONFIG_CPUMASK_OFFSTACK
9377 for_each_possible_cpu(i) {
9378 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9379 ptr += cpumask_size();
9380 }
9381 #endif /* CONFIG_CPUMASK_OFFSTACK */
9382 }
9383
9384 #ifdef CONFIG_SMP
9385 init_defrootdomain();
9386 #endif
9387
9388 init_rt_bandwidth(&def_rt_bandwidth,
9389 global_rt_period(), global_rt_runtime());
9390
9391 #ifdef CONFIG_RT_GROUP_SCHED
9392 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9393 global_rt_period(), global_rt_runtime());
9394 #ifdef CONFIG_USER_SCHED
9395 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9396 global_rt_period(), RUNTIME_INF);
9397 #endif /* CONFIG_USER_SCHED */
9398 #endif /* CONFIG_RT_GROUP_SCHED */
9399
9400 #ifdef CONFIG_GROUP_SCHED
9401 list_add(&init_task_group.list, &task_groups);
9402 INIT_LIST_HEAD(&init_task_group.children);
9403
9404 #ifdef CONFIG_USER_SCHED
9405 INIT_LIST_HEAD(&root_task_group.children);
9406 init_task_group.parent = &root_task_group;
9407 list_add(&init_task_group.siblings, &root_task_group.children);
9408 #endif /* CONFIG_USER_SCHED */
9409 #endif /* CONFIG_GROUP_SCHED */
9410
9411 for_each_possible_cpu(i) {
9412 struct rq *rq;
9413
9414 rq = cpu_rq(i);
9415 spin_lock_init(&rq->lock);
9416 rq->nr_running = 0;
9417 rq->calc_load_active = 0;
9418 rq->calc_load_update = jiffies + LOAD_FREQ;
9419 init_cfs_rq(&rq->cfs, rq);
9420 init_rt_rq(&rq->rt, rq);
9421 #ifdef CONFIG_FAIR_GROUP_SCHED
9422 init_task_group.shares = init_task_group_load;
9423 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9424 #ifdef CONFIG_CGROUP_SCHED
9425 /*
9426 * How much cpu bandwidth does init_task_group get?
9427 *
9428 * In case of task-groups formed thr' the cgroup filesystem, it
9429 * gets 100% of the cpu resources in the system. This overall
9430 * system cpu resource is divided among the tasks of
9431 * init_task_group and its child task-groups in a fair manner,
9432 * based on each entity's (task or task-group's) weight
9433 * (se->load.weight).
9434 *
9435 * In other words, if init_task_group has 10 tasks of weight
9436 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9437 * then A0's share of the cpu resource is:
9438 *
9439 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9440 *
9441 * We achieve this by letting init_task_group's tasks sit
9442 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9443 */
9444 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9445 #elif defined CONFIG_USER_SCHED
9446 root_task_group.shares = NICE_0_LOAD;
9447 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9448 /*
9449 * In case of task-groups formed thr' the user id of tasks,
9450 * init_task_group represents tasks belonging to root user.
9451 * Hence it forms a sibling of all subsequent groups formed.
9452 * In this case, init_task_group gets only a fraction of overall
9453 * system cpu resource, based on the weight assigned to root
9454 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9455 * by letting tasks of init_task_group sit in a separate cfs_rq
9456 * (init_tg_cfs_rq) and having one entity represent this group of
9457 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9458 */
9459 init_tg_cfs_entry(&init_task_group,
9460 &per_cpu(init_tg_cfs_rq, i),
9461 &per_cpu(init_sched_entity, i), i, 1,
9462 root_task_group.se[i]);
9463
9464 #endif
9465 #endif /* CONFIG_FAIR_GROUP_SCHED */
9466
9467 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9468 #ifdef CONFIG_RT_GROUP_SCHED
9469 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9470 #ifdef CONFIG_CGROUP_SCHED
9471 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9472 #elif defined CONFIG_USER_SCHED
9473 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9474 init_tg_rt_entry(&init_task_group,
9475 &per_cpu(init_rt_rq, i),
9476 &per_cpu(init_sched_rt_entity, i), i, 1,
9477 root_task_group.rt_se[i]);
9478 #endif
9479 #endif
9480
9481 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9482 rq->cpu_load[j] = 0;
9483 #ifdef CONFIG_SMP
9484 rq->sd = NULL;
9485 rq->rd = NULL;
9486 rq->post_schedule = 0;
9487 rq->active_balance = 0;
9488 rq->next_balance = jiffies;
9489 rq->push_cpu = 0;
9490 rq->cpu = i;
9491 rq->online = 0;
9492 rq->migration_thread = NULL;
9493 INIT_LIST_HEAD(&rq->migration_queue);
9494 rq_attach_root(rq, &def_root_domain);
9495 #endif
9496 init_rq_hrtick(rq);
9497 atomic_set(&rq->nr_iowait, 0);
9498 }
9499
9500 set_load_weight(&init_task);
9501
9502 #ifdef CONFIG_PREEMPT_NOTIFIERS
9503 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9504 #endif
9505
9506 #ifdef CONFIG_SMP
9507 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9508 #endif
9509
9510 #ifdef CONFIG_RT_MUTEXES
9511 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9512 #endif
9513
9514 /*
9515 * The boot idle thread does lazy MMU switching as well:
9516 */
9517 atomic_inc(&init_mm.mm_count);
9518 enter_lazy_tlb(&init_mm, current);
9519
9520 /*
9521 * Make us the idle thread. Technically, schedule() should not be
9522 * called from this thread, however somewhere below it might be,
9523 * but because we are the idle thread, we just pick up running again
9524 * when this runqueue becomes "idle".
9525 */
9526 init_idle(current, smp_processor_id());
9527
9528 calc_load_update = jiffies + LOAD_FREQ;
9529
9530 /*
9531 * During early bootup we pretend to be a normal task:
9532 */
9533 current->sched_class = &fair_sched_class;
9534
9535 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9536 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9537 #ifdef CONFIG_SMP
9538 #ifdef CONFIG_NO_HZ
9539 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9540 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9541 #endif
9542 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9543 #endif /* SMP */
9544
9545 perf_counter_init();
9546
9547 scheduler_running = 1;
9548 }
9549
9550 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9551 static inline int preempt_count_equals(int preempt_offset)
9552 {
9553 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9554
9555 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9556 }
9557
9558 void __might_sleep(char *file, int line, int preempt_offset)
9559 {
9560 #ifdef in_atomic
9561 static unsigned long prev_jiffy; /* ratelimiting */
9562
9563 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9564 system_state != SYSTEM_RUNNING || oops_in_progress)
9565 return;
9566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9567 return;
9568 prev_jiffy = jiffies;
9569
9570 printk(KERN_ERR
9571 "BUG: sleeping function called from invalid context at %s:%d\n",
9572 file, line);
9573 printk(KERN_ERR
9574 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9575 in_atomic(), irqs_disabled(),
9576 current->pid, current->comm);
9577
9578 debug_show_held_locks(current);
9579 if (irqs_disabled())
9580 print_irqtrace_events(current);
9581 dump_stack();
9582 #endif
9583 }
9584 EXPORT_SYMBOL(__might_sleep);
9585 #endif
9586
9587 #ifdef CONFIG_MAGIC_SYSRQ
9588 static void normalize_task(struct rq *rq, struct task_struct *p)
9589 {
9590 int on_rq;
9591
9592 update_rq_clock(rq);
9593 on_rq = p->se.on_rq;
9594 if (on_rq)
9595 deactivate_task(rq, p, 0);
9596 __setscheduler(rq, p, SCHED_NORMAL, 0);
9597 if (on_rq) {
9598 activate_task(rq, p, 0);
9599 resched_task(rq->curr);
9600 }
9601 }
9602
9603 void normalize_rt_tasks(void)
9604 {
9605 struct task_struct *g, *p;
9606 unsigned long flags;
9607 struct rq *rq;
9608
9609 read_lock_irqsave(&tasklist_lock, flags);
9610 do_each_thread(g, p) {
9611 /*
9612 * Only normalize user tasks:
9613 */
9614 if (!p->mm)
9615 continue;
9616
9617 p->se.exec_start = 0;
9618 #ifdef CONFIG_SCHEDSTATS
9619 p->se.wait_start = 0;
9620 p->se.sleep_start = 0;
9621 p->se.block_start = 0;
9622 #endif
9623
9624 if (!rt_task(p)) {
9625 /*
9626 * Renice negative nice level userspace
9627 * tasks back to 0:
9628 */
9629 if (TASK_NICE(p) < 0 && p->mm)
9630 set_user_nice(p, 0);
9631 continue;
9632 }
9633
9634 spin_lock(&p->pi_lock);
9635 rq = __task_rq_lock(p);
9636
9637 normalize_task(rq, p);
9638
9639 __task_rq_unlock(rq);
9640 spin_unlock(&p->pi_lock);
9641 } while_each_thread(g, p);
9642
9643 read_unlock_irqrestore(&tasklist_lock, flags);
9644 }
9645
9646 #endif /* CONFIG_MAGIC_SYSRQ */
9647
9648 #ifdef CONFIG_IA64
9649 /*
9650 * These functions are only useful for the IA64 MCA handling.
9651 *
9652 * They can only be called when the whole system has been
9653 * stopped - every CPU needs to be quiescent, and no scheduling
9654 * activity can take place. Using them for anything else would
9655 * be a serious bug, and as a result, they aren't even visible
9656 * under any other configuration.
9657 */
9658
9659 /**
9660 * curr_task - return the current task for a given cpu.
9661 * @cpu: the processor in question.
9662 *
9663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9664 */
9665 struct task_struct *curr_task(int cpu)
9666 {
9667 return cpu_curr(cpu);
9668 }
9669
9670 /**
9671 * set_curr_task - set the current task for a given cpu.
9672 * @cpu: the processor in question.
9673 * @p: the task pointer to set.
9674 *
9675 * Description: This function must only be used when non-maskable interrupts
9676 * are serviced on a separate stack. It allows the architecture to switch the
9677 * notion of the current task on a cpu in a non-blocking manner. This function
9678 * must be called with all CPU's synchronized, and interrupts disabled, the
9679 * and caller must save the original value of the current task (see
9680 * curr_task() above) and restore that value before reenabling interrupts and
9681 * re-starting the system.
9682 *
9683 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684 */
9685 void set_curr_task(int cpu, struct task_struct *p)
9686 {
9687 cpu_curr(cpu) = p;
9688 }
9689
9690 #endif
9691
9692 #ifdef CONFIG_FAIR_GROUP_SCHED
9693 static void free_fair_sched_group(struct task_group *tg)
9694 {
9695 int i;
9696
9697 for_each_possible_cpu(i) {
9698 if (tg->cfs_rq)
9699 kfree(tg->cfs_rq[i]);
9700 if (tg->se)
9701 kfree(tg->se[i]);
9702 }
9703
9704 kfree(tg->cfs_rq);
9705 kfree(tg->se);
9706 }
9707
9708 static
9709 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9710 {
9711 struct cfs_rq *cfs_rq;
9712 struct sched_entity *se;
9713 struct rq *rq;
9714 int i;
9715
9716 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9717 if (!tg->cfs_rq)
9718 goto err;
9719 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9720 if (!tg->se)
9721 goto err;
9722
9723 tg->shares = NICE_0_LOAD;
9724
9725 for_each_possible_cpu(i) {
9726 rq = cpu_rq(i);
9727
9728 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9729 GFP_KERNEL, cpu_to_node(i));
9730 if (!cfs_rq)
9731 goto err;
9732
9733 se = kzalloc_node(sizeof(struct sched_entity),
9734 GFP_KERNEL, cpu_to_node(i));
9735 if (!se)
9736 goto err;
9737
9738 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9739 }
9740
9741 return 1;
9742
9743 err:
9744 return 0;
9745 }
9746
9747 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9748 {
9749 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9750 &cpu_rq(cpu)->leaf_cfs_rq_list);
9751 }
9752
9753 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9754 {
9755 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9756 }
9757 #else /* !CONFG_FAIR_GROUP_SCHED */
9758 static inline void free_fair_sched_group(struct task_group *tg)
9759 {
9760 }
9761
9762 static inline
9763 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9764 {
9765 return 1;
9766 }
9767
9768 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9769 {
9770 }
9771
9772 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9773 {
9774 }
9775 #endif /* CONFIG_FAIR_GROUP_SCHED */
9776
9777 #ifdef CONFIG_RT_GROUP_SCHED
9778 static void free_rt_sched_group(struct task_group *tg)
9779 {
9780 int i;
9781
9782 destroy_rt_bandwidth(&tg->rt_bandwidth);
9783
9784 for_each_possible_cpu(i) {
9785 if (tg->rt_rq)
9786 kfree(tg->rt_rq[i]);
9787 if (tg->rt_se)
9788 kfree(tg->rt_se[i]);
9789 }
9790
9791 kfree(tg->rt_rq);
9792 kfree(tg->rt_se);
9793 }
9794
9795 static
9796 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9797 {
9798 struct rt_rq *rt_rq;
9799 struct sched_rt_entity *rt_se;
9800 struct rq *rq;
9801 int i;
9802
9803 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9804 if (!tg->rt_rq)
9805 goto err;
9806 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9807 if (!tg->rt_se)
9808 goto err;
9809
9810 init_rt_bandwidth(&tg->rt_bandwidth,
9811 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9812
9813 for_each_possible_cpu(i) {
9814 rq = cpu_rq(i);
9815
9816 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9817 GFP_KERNEL, cpu_to_node(i));
9818 if (!rt_rq)
9819 goto err;
9820
9821 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9822 GFP_KERNEL, cpu_to_node(i));
9823 if (!rt_se)
9824 goto err;
9825
9826 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9827 }
9828
9829 return 1;
9830
9831 err:
9832 return 0;
9833 }
9834
9835 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9836 {
9837 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9838 &cpu_rq(cpu)->leaf_rt_rq_list);
9839 }
9840
9841 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9842 {
9843 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9844 }
9845 #else /* !CONFIG_RT_GROUP_SCHED */
9846 static inline void free_rt_sched_group(struct task_group *tg)
9847 {
9848 }
9849
9850 static inline
9851 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9852 {
9853 return 1;
9854 }
9855
9856 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9857 {
9858 }
9859
9860 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9861 {
9862 }
9863 #endif /* CONFIG_RT_GROUP_SCHED */
9864
9865 #ifdef CONFIG_GROUP_SCHED
9866 static void free_sched_group(struct task_group *tg)
9867 {
9868 free_fair_sched_group(tg);
9869 free_rt_sched_group(tg);
9870 kfree(tg);
9871 }
9872
9873 /* allocate runqueue etc for a new task group */
9874 struct task_group *sched_create_group(struct task_group *parent)
9875 {
9876 struct task_group *tg;
9877 unsigned long flags;
9878 int i;
9879
9880 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9881 if (!tg)
9882 return ERR_PTR(-ENOMEM);
9883
9884 if (!alloc_fair_sched_group(tg, parent))
9885 goto err;
9886
9887 if (!alloc_rt_sched_group(tg, parent))
9888 goto err;
9889
9890 spin_lock_irqsave(&task_group_lock, flags);
9891 for_each_possible_cpu(i) {
9892 register_fair_sched_group(tg, i);
9893 register_rt_sched_group(tg, i);
9894 }
9895 list_add_rcu(&tg->list, &task_groups);
9896
9897 WARN_ON(!parent); /* root should already exist */
9898
9899 tg->parent = parent;
9900 INIT_LIST_HEAD(&tg->children);
9901 list_add_rcu(&tg->siblings, &parent->children);
9902 spin_unlock_irqrestore(&task_group_lock, flags);
9903
9904 return tg;
9905
9906 err:
9907 free_sched_group(tg);
9908 return ERR_PTR(-ENOMEM);
9909 }
9910
9911 /* rcu callback to free various structures associated with a task group */
9912 static void free_sched_group_rcu(struct rcu_head *rhp)
9913 {
9914 /* now it should be safe to free those cfs_rqs */
9915 free_sched_group(container_of(rhp, struct task_group, rcu));
9916 }
9917
9918 /* Destroy runqueue etc associated with a task group */
9919 void sched_destroy_group(struct task_group *tg)
9920 {
9921 unsigned long flags;
9922 int i;
9923
9924 spin_lock_irqsave(&task_group_lock, flags);
9925 for_each_possible_cpu(i) {
9926 unregister_fair_sched_group(tg, i);
9927 unregister_rt_sched_group(tg, i);
9928 }
9929 list_del_rcu(&tg->list);
9930 list_del_rcu(&tg->siblings);
9931 spin_unlock_irqrestore(&task_group_lock, flags);
9932
9933 /* wait for possible concurrent references to cfs_rqs complete */
9934 call_rcu(&tg->rcu, free_sched_group_rcu);
9935 }
9936
9937 /* change task's runqueue when it moves between groups.
9938 * The caller of this function should have put the task in its new group
9939 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9940 * reflect its new group.
9941 */
9942 void sched_move_task(struct task_struct *tsk)
9943 {
9944 int on_rq, running;
9945 unsigned long flags;
9946 struct rq *rq;
9947
9948 rq = task_rq_lock(tsk, &flags);
9949
9950 update_rq_clock(rq);
9951
9952 running = task_current(rq, tsk);
9953 on_rq = tsk->se.on_rq;
9954
9955 if (on_rq)
9956 dequeue_task(rq, tsk, 0);
9957 if (unlikely(running))
9958 tsk->sched_class->put_prev_task(rq, tsk);
9959
9960 set_task_rq(tsk, task_cpu(tsk));
9961
9962 #ifdef CONFIG_FAIR_GROUP_SCHED
9963 if (tsk->sched_class->moved_group)
9964 tsk->sched_class->moved_group(tsk);
9965 #endif
9966
9967 if (unlikely(running))
9968 tsk->sched_class->set_curr_task(rq);
9969 if (on_rq)
9970 enqueue_task(rq, tsk, 0);
9971
9972 task_rq_unlock(rq, &flags);
9973 }
9974 #endif /* CONFIG_GROUP_SCHED */
9975
9976 #ifdef CONFIG_FAIR_GROUP_SCHED
9977 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9978 {
9979 struct cfs_rq *cfs_rq = se->cfs_rq;
9980 int on_rq;
9981
9982 on_rq = se->on_rq;
9983 if (on_rq)
9984 dequeue_entity(cfs_rq, se, 0);
9985
9986 se->load.weight = shares;
9987 se->load.inv_weight = 0;
9988
9989 if (on_rq)
9990 enqueue_entity(cfs_rq, se, 0);
9991 }
9992
9993 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9994 {
9995 struct cfs_rq *cfs_rq = se->cfs_rq;
9996 struct rq *rq = cfs_rq->rq;
9997 unsigned long flags;
9998
9999 spin_lock_irqsave(&rq->lock, flags);
10000 __set_se_shares(se, shares);
10001 spin_unlock_irqrestore(&rq->lock, flags);
10002 }
10003
10004 static DEFINE_MUTEX(shares_mutex);
10005
10006 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10007 {
10008 int i;
10009 unsigned long flags;
10010
10011 /*
10012 * We can't change the weight of the root cgroup.
10013 */
10014 if (!tg->se[0])
10015 return -EINVAL;
10016
10017 if (shares < MIN_SHARES)
10018 shares = MIN_SHARES;
10019 else if (shares > MAX_SHARES)
10020 shares = MAX_SHARES;
10021
10022 mutex_lock(&shares_mutex);
10023 if (tg->shares == shares)
10024 goto done;
10025
10026 spin_lock_irqsave(&task_group_lock, flags);
10027 for_each_possible_cpu(i)
10028 unregister_fair_sched_group(tg, i);
10029 list_del_rcu(&tg->siblings);
10030 spin_unlock_irqrestore(&task_group_lock, flags);
10031
10032 /* wait for any ongoing reference to this group to finish */
10033 synchronize_sched();
10034
10035 /*
10036 * Now we are free to modify the group's share on each cpu
10037 * w/o tripping rebalance_share or load_balance_fair.
10038 */
10039 tg->shares = shares;
10040 for_each_possible_cpu(i) {
10041 /*
10042 * force a rebalance
10043 */
10044 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10045 set_se_shares(tg->se[i], shares);
10046 }
10047
10048 /*
10049 * Enable load balance activity on this group, by inserting it back on
10050 * each cpu's rq->leaf_cfs_rq_list.
10051 */
10052 spin_lock_irqsave(&task_group_lock, flags);
10053 for_each_possible_cpu(i)
10054 register_fair_sched_group(tg, i);
10055 list_add_rcu(&tg->siblings, &tg->parent->children);
10056 spin_unlock_irqrestore(&task_group_lock, flags);
10057 done:
10058 mutex_unlock(&shares_mutex);
10059 return 0;
10060 }
10061
10062 unsigned long sched_group_shares(struct task_group *tg)
10063 {
10064 return tg->shares;
10065 }
10066 #endif
10067
10068 #ifdef CONFIG_RT_GROUP_SCHED
10069 /*
10070 * Ensure that the real time constraints are schedulable.
10071 */
10072 static DEFINE_MUTEX(rt_constraints_mutex);
10073
10074 static unsigned long to_ratio(u64 period, u64 runtime)
10075 {
10076 if (runtime == RUNTIME_INF)
10077 return 1ULL << 20;
10078
10079 return div64_u64(runtime << 20, period);
10080 }
10081
10082 /* Must be called with tasklist_lock held */
10083 static inline int tg_has_rt_tasks(struct task_group *tg)
10084 {
10085 struct task_struct *g, *p;
10086
10087 do_each_thread(g, p) {
10088 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10089 return 1;
10090 } while_each_thread(g, p);
10091
10092 return 0;
10093 }
10094
10095 struct rt_schedulable_data {
10096 struct task_group *tg;
10097 u64 rt_period;
10098 u64 rt_runtime;
10099 };
10100
10101 static int tg_schedulable(struct task_group *tg, void *data)
10102 {
10103 struct rt_schedulable_data *d = data;
10104 struct task_group *child;
10105 unsigned long total, sum = 0;
10106 u64 period, runtime;
10107
10108 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10109 runtime = tg->rt_bandwidth.rt_runtime;
10110
10111 if (tg == d->tg) {
10112 period = d->rt_period;
10113 runtime = d->rt_runtime;
10114 }
10115
10116 #ifdef CONFIG_USER_SCHED
10117 if (tg == &root_task_group) {
10118 period = global_rt_period();
10119 runtime = global_rt_runtime();
10120 }
10121 #endif
10122
10123 /*
10124 * Cannot have more runtime than the period.
10125 */
10126 if (runtime > period && runtime != RUNTIME_INF)
10127 return -EINVAL;
10128
10129 /*
10130 * Ensure we don't starve existing RT tasks.
10131 */
10132 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10133 return -EBUSY;
10134
10135 total = to_ratio(period, runtime);
10136
10137 /*
10138 * Nobody can have more than the global setting allows.
10139 */
10140 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10141 return -EINVAL;
10142
10143 /*
10144 * The sum of our children's runtime should not exceed our own.
10145 */
10146 list_for_each_entry_rcu(child, &tg->children, siblings) {
10147 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10148 runtime = child->rt_bandwidth.rt_runtime;
10149
10150 if (child == d->tg) {
10151 period = d->rt_period;
10152 runtime = d->rt_runtime;
10153 }
10154
10155 sum += to_ratio(period, runtime);
10156 }
10157
10158 if (sum > total)
10159 return -EINVAL;
10160
10161 return 0;
10162 }
10163
10164 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10165 {
10166 struct rt_schedulable_data data = {
10167 .tg = tg,
10168 .rt_period = period,
10169 .rt_runtime = runtime,
10170 };
10171
10172 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10173 }
10174
10175 static int tg_set_bandwidth(struct task_group *tg,
10176 u64 rt_period, u64 rt_runtime)
10177 {
10178 int i, err = 0;
10179
10180 mutex_lock(&rt_constraints_mutex);
10181 read_lock(&tasklist_lock);
10182 err = __rt_schedulable(tg, rt_period, rt_runtime);
10183 if (err)
10184 goto unlock;
10185
10186 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10187 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10188 tg->rt_bandwidth.rt_runtime = rt_runtime;
10189
10190 for_each_possible_cpu(i) {
10191 struct rt_rq *rt_rq = tg->rt_rq[i];
10192
10193 spin_lock(&rt_rq->rt_runtime_lock);
10194 rt_rq->rt_runtime = rt_runtime;
10195 spin_unlock(&rt_rq->rt_runtime_lock);
10196 }
10197 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10198 unlock:
10199 read_unlock(&tasklist_lock);
10200 mutex_unlock(&rt_constraints_mutex);
10201
10202 return err;
10203 }
10204
10205 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10206 {
10207 u64 rt_runtime, rt_period;
10208
10209 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10210 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10211 if (rt_runtime_us < 0)
10212 rt_runtime = RUNTIME_INF;
10213
10214 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10215 }
10216
10217 long sched_group_rt_runtime(struct task_group *tg)
10218 {
10219 u64 rt_runtime_us;
10220
10221 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10222 return -1;
10223
10224 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10225 do_div(rt_runtime_us, NSEC_PER_USEC);
10226 return rt_runtime_us;
10227 }
10228
10229 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10230 {
10231 u64 rt_runtime, rt_period;
10232
10233 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10234 rt_runtime = tg->rt_bandwidth.rt_runtime;
10235
10236 if (rt_period == 0)
10237 return -EINVAL;
10238
10239 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10240 }
10241
10242 long sched_group_rt_period(struct task_group *tg)
10243 {
10244 u64 rt_period_us;
10245
10246 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10247 do_div(rt_period_us, NSEC_PER_USEC);
10248 return rt_period_us;
10249 }
10250
10251 static int sched_rt_global_constraints(void)
10252 {
10253 u64 runtime, period;
10254 int ret = 0;
10255
10256 if (sysctl_sched_rt_period <= 0)
10257 return -EINVAL;
10258
10259 runtime = global_rt_runtime();
10260 period = global_rt_period();
10261
10262 /*
10263 * Sanity check on the sysctl variables.
10264 */
10265 if (runtime > period && runtime != RUNTIME_INF)
10266 return -EINVAL;
10267
10268 mutex_lock(&rt_constraints_mutex);
10269 read_lock(&tasklist_lock);
10270 ret = __rt_schedulable(NULL, 0, 0);
10271 read_unlock(&tasklist_lock);
10272 mutex_unlock(&rt_constraints_mutex);
10273
10274 return ret;
10275 }
10276
10277 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10278 {
10279 /* Don't accept realtime tasks when there is no way for them to run */
10280 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10281 return 0;
10282
10283 return 1;
10284 }
10285
10286 #else /* !CONFIG_RT_GROUP_SCHED */
10287 static int sched_rt_global_constraints(void)
10288 {
10289 unsigned long flags;
10290 int i;
10291
10292 if (sysctl_sched_rt_period <= 0)
10293 return -EINVAL;
10294
10295 /*
10296 * There's always some RT tasks in the root group
10297 * -- migration, kstopmachine etc..
10298 */
10299 if (sysctl_sched_rt_runtime == 0)
10300 return -EBUSY;
10301
10302 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10303 for_each_possible_cpu(i) {
10304 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10305
10306 spin_lock(&rt_rq->rt_runtime_lock);
10307 rt_rq->rt_runtime = global_rt_runtime();
10308 spin_unlock(&rt_rq->rt_runtime_lock);
10309 }
10310 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10311
10312 return 0;
10313 }
10314 #endif /* CONFIG_RT_GROUP_SCHED */
10315
10316 int sched_rt_handler(struct ctl_table *table, int write,
10317 struct file *filp, void __user *buffer, size_t *lenp,
10318 loff_t *ppos)
10319 {
10320 int ret;
10321 int old_period, old_runtime;
10322 static DEFINE_MUTEX(mutex);
10323
10324 mutex_lock(&mutex);
10325 old_period = sysctl_sched_rt_period;
10326 old_runtime = sysctl_sched_rt_runtime;
10327
10328 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10329
10330 if (!ret && write) {
10331 ret = sched_rt_global_constraints();
10332 if (ret) {
10333 sysctl_sched_rt_period = old_period;
10334 sysctl_sched_rt_runtime = old_runtime;
10335 } else {
10336 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10337 def_rt_bandwidth.rt_period =
10338 ns_to_ktime(global_rt_period());
10339 }
10340 }
10341 mutex_unlock(&mutex);
10342
10343 return ret;
10344 }
10345
10346 #ifdef CONFIG_CGROUP_SCHED
10347
10348 /* return corresponding task_group object of a cgroup */
10349 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10350 {
10351 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10352 struct task_group, css);
10353 }
10354
10355 static struct cgroup_subsys_state *
10356 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10357 {
10358 struct task_group *tg, *parent;
10359
10360 if (!cgrp->parent) {
10361 /* This is early initialization for the top cgroup */
10362 return &init_task_group.css;
10363 }
10364
10365 parent = cgroup_tg(cgrp->parent);
10366 tg = sched_create_group(parent);
10367 if (IS_ERR(tg))
10368 return ERR_PTR(-ENOMEM);
10369
10370 return &tg->css;
10371 }
10372
10373 static void
10374 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10375 {
10376 struct task_group *tg = cgroup_tg(cgrp);
10377
10378 sched_destroy_group(tg);
10379 }
10380
10381 static int
10382 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10383 struct task_struct *tsk)
10384 {
10385 #ifdef CONFIG_RT_GROUP_SCHED
10386 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10387 return -EINVAL;
10388 #else
10389 /* We don't support RT-tasks being in separate groups */
10390 if (tsk->sched_class != &fair_sched_class)
10391 return -EINVAL;
10392 #endif
10393
10394 return 0;
10395 }
10396
10397 static void
10398 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10399 struct cgroup *old_cont, struct task_struct *tsk)
10400 {
10401 sched_move_task(tsk);
10402 }
10403
10404 #ifdef CONFIG_FAIR_GROUP_SCHED
10405 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10406 u64 shareval)
10407 {
10408 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10409 }
10410
10411 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10412 {
10413 struct task_group *tg = cgroup_tg(cgrp);
10414
10415 return (u64) tg->shares;
10416 }
10417 #endif /* CONFIG_FAIR_GROUP_SCHED */
10418
10419 #ifdef CONFIG_RT_GROUP_SCHED
10420 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10421 s64 val)
10422 {
10423 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10424 }
10425
10426 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10427 {
10428 return sched_group_rt_runtime(cgroup_tg(cgrp));
10429 }
10430
10431 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10432 u64 rt_period_us)
10433 {
10434 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10435 }
10436
10437 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10438 {
10439 return sched_group_rt_period(cgroup_tg(cgrp));
10440 }
10441 #endif /* CONFIG_RT_GROUP_SCHED */
10442
10443 static struct cftype cpu_files[] = {
10444 #ifdef CONFIG_FAIR_GROUP_SCHED
10445 {
10446 .name = "shares",
10447 .read_u64 = cpu_shares_read_u64,
10448 .write_u64 = cpu_shares_write_u64,
10449 },
10450 #endif
10451 #ifdef CONFIG_RT_GROUP_SCHED
10452 {
10453 .name = "rt_runtime_us",
10454 .read_s64 = cpu_rt_runtime_read,
10455 .write_s64 = cpu_rt_runtime_write,
10456 },
10457 {
10458 .name = "rt_period_us",
10459 .read_u64 = cpu_rt_period_read_uint,
10460 .write_u64 = cpu_rt_period_write_uint,
10461 },
10462 #endif
10463 };
10464
10465 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10466 {
10467 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10468 }
10469
10470 struct cgroup_subsys cpu_cgroup_subsys = {
10471 .name = "cpu",
10472 .create = cpu_cgroup_create,
10473 .destroy = cpu_cgroup_destroy,
10474 .can_attach = cpu_cgroup_can_attach,
10475 .attach = cpu_cgroup_attach,
10476 .populate = cpu_cgroup_populate,
10477 .subsys_id = cpu_cgroup_subsys_id,
10478 .early_init = 1,
10479 };
10480
10481 #endif /* CONFIG_CGROUP_SCHED */
10482
10483 #ifdef CONFIG_CGROUP_CPUACCT
10484
10485 /*
10486 * CPU accounting code for task groups.
10487 *
10488 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10489 * (balbir@in.ibm.com).
10490 */
10491
10492 /* track cpu usage of a group of tasks and its child groups */
10493 struct cpuacct {
10494 struct cgroup_subsys_state css;
10495 /* cpuusage holds pointer to a u64-type object on every cpu */
10496 u64 *cpuusage;
10497 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10498 struct cpuacct *parent;
10499 };
10500
10501 struct cgroup_subsys cpuacct_subsys;
10502
10503 /* return cpu accounting group corresponding to this container */
10504 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10505 {
10506 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10507 struct cpuacct, css);
10508 }
10509
10510 /* return cpu accounting group to which this task belongs */
10511 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10512 {
10513 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10514 struct cpuacct, css);
10515 }
10516
10517 /* create a new cpu accounting group */
10518 static struct cgroup_subsys_state *cpuacct_create(
10519 struct cgroup_subsys *ss, struct cgroup *cgrp)
10520 {
10521 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10522 int i;
10523
10524 if (!ca)
10525 goto out;
10526
10527 ca->cpuusage = alloc_percpu(u64);
10528 if (!ca->cpuusage)
10529 goto out_free_ca;
10530
10531 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10532 if (percpu_counter_init(&ca->cpustat[i], 0))
10533 goto out_free_counters;
10534
10535 if (cgrp->parent)
10536 ca->parent = cgroup_ca(cgrp->parent);
10537
10538 return &ca->css;
10539
10540 out_free_counters:
10541 while (--i >= 0)
10542 percpu_counter_destroy(&ca->cpustat[i]);
10543 free_percpu(ca->cpuusage);
10544 out_free_ca:
10545 kfree(ca);
10546 out:
10547 return ERR_PTR(-ENOMEM);
10548 }
10549
10550 /* destroy an existing cpu accounting group */
10551 static void
10552 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10553 {
10554 struct cpuacct *ca = cgroup_ca(cgrp);
10555 int i;
10556
10557 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10558 percpu_counter_destroy(&ca->cpustat[i]);
10559 free_percpu(ca->cpuusage);
10560 kfree(ca);
10561 }
10562
10563 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10564 {
10565 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10566 u64 data;
10567
10568 #ifndef CONFIG_64BIT
10569 /*
10570 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10571 */
10572 spin_lock_irq(&cpu_rq(cpu)->lock);
10573 data = *cpuusage;
10574 spin_unlock_irq(&cpu_rq(cpu)->lock);
10575 #else
10576 data = *cpuusage;
10577 #endif
10578
10579 return data;
10580 }
10581
10582 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10583 {
10584 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10585
10586 #ifndef CONFIG_64BIT
10587 /*
10588 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10589 */
10590 spin_lock_irq(&cpu_rq(cpu)->lock);
10591 *cpuusage = val;
10592 spin_unlock_irq(&cpu_rq(cpu)->lock);
10593 #else
10594 *cpuusage = val;
10595 #endif
10596 }
10597
10598 /* return total cpu usage (in nanoseconds) of a group */
10599 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10600 {
10601 struct cpuacct *ca = cgroup_ca(cgrp);
10602 u64 totalcpuusage = 0;
10603 int i;
10604
10605 for_each_present_cpu(i)
10606 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10607
10608 return totalcpuusage;
10609 }
10610
10611 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10612 u64 reset)
10613 {
10614 struct cpuacct *ca = cgroup_ca(cgrp);
10615 int err = 0;
10616 int i;
10617
10618 if (reset) {
10619 err = -EINVAL;
10620 goto out;
10621 }
10622
10623 for_each_present_cpu(i)
10624 cpuacct_cpuusage_write(ca, i, 0);
10625
10626 out:
10627 return err;
10628 }
10629
10630 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10631 struct seq_file *m)
10632 {
10633 struct cpuacct *ca = cgroup_ca(cgroup);
10634 u64 percpu;
10635 int i;
10636
10637 for_each_present_cpu(i) {
10638 percpu = cpuacct_cpuusage_read(ca, i);
10639 seq_printf(m, "%llu ", (unsigned long long) percpu);
10640 }
10641 seq_printf(m, "\n");
10642 return 0;
10643 }
10644
10645 static const char *cpuacct_stat_desc[] = {
10646 [CPUACCT_STAT_USER] = "user",
10647 [CPUACCT_STAT_SYSTEM] = "system",
10648 };
10649
10650 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10651 struct cgroup_map_cb *cb)
10652 {
10653 struct cpuacct *ca = cgroup_ca(cgrp);
10654 int i;
10655
10656 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10657 s64 val = percpu_counter_read(&ca->cpustat[i]);
10658 val = cputime64_to_clock_t(val);
10659 cb->fill(cb, cpuacct_stat_desc[i], val);
10660 }
10661 return 0;
10662 }
10663
10664 static struct cftype files[] = {
10665 {
10666 .name = "usage",
10667 .read_u64 = cpuusage_read,
10668 .write_u64 = cpuusage_write,
10669 },
10670 {
10671 .name = "usage_percpu",
10672 .read_seq_string = cpuacct_percpu_seq_read,
10673 },
10674 {
10675 .name = "stat",
10676 .read_map = cpuacct_stats_show,
10677 },
10678 };
10679
10680 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10681 {
10682 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10683 }
10684
10685 /*
10686 * charge this task's execution time to its accounting group.
10687 *
10688 * called with rq->lock held.
10689 */
10690 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10691 {
10692 struct cpuacct *ca;
10693 int cpu;
10694
10695 if (unlikely(!cpuacct_subsys.active))
10696 return;
10697
10698 cpu = task_cpu(tsk);
10699
10700 rcu_read_lock();
10701
10702 ca = task_ca(tsk);
10703
10704 for (; ca; ca = ca->parent) {
10705 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10706 *cpuusage += cputime;
10707 }
10708
10709 rcu_read_unlock();
10710 }
10711
10712 /*
10713 * Charge the system/user time to the task's accounting group.
10714 */
10715 static void cpuacct_update_stats(struct task_struct *tsk,
10716 enum cpuacct_stat_index idx, cputime_t val)
10717 {
10718 struct cpuacct *ca;
10719
10720 if (unlikely(!cpuacct_subsys.active))
10721 return;
10722
10723 rcu_read_lock();
10724 ca = task_ca(tsk);
10725
10726 do {
10727 percpu_counter_add(&ca->cpustat[idx], val);
10728 ca = ca->parent;
10729 } while (ca);
10730 rcu_read_unlock();
10731 }
10732
10733 struct cgroup_subsys cpuacct_subsys = {
10734 .name = "cpuacct",
10735 .create = cpuacct_create,
10736 .destroy = cpuacct_destroy,
10737 .populate = cpuacct_populate,
10738 .subsys_id = cpuacct_subsys_id,
10739 };
10740 #endif /* CONFIG_CGROUP_CPUACCT */
10741
10742 #ifndef CONFIG_SMP
10743
10744 int rcu_expedited_torture_stats(char *page)
10745 {
10746 return 0;
10747 }
10748 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10749
10750 void synchronize_sched_expedited(void)
10751 {
10752 }
10753 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10754
10755 #else /* #ifndef CONFIG_SMP */
10756
10757 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10758 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10759
10760 #define RCU_EXPEDITED_STATE_POST -2
10761 #define RCU_EXPEDITED_STATE_IDLE -1
10762
10763 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10764
10765 int rcu_expedited_torture_stats(char *page)
10766 {
10767 int cnt = 0;
10768 int cpu;
10769
10770 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10771 for_each_online_cpu(cpu) {
10772 cnt += sprintf(&page[cnt], " %d:%d",
10773 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10774 }
10775 cnt += sprintf(&page[cnt], "\n");
10776 return cnt;
10777 }
10778 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10779
10780 static long synchronize_sched_expedited_count;
10781
10782 /*
10783 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10784 * approach to force grace period to end quickly. This consumes
10785 * significant time on all CPUs, and is thus not recommended for
10786 * any sort of common-case code.
10787 *
10788 * Note that it is illegal to call this function while holding any
10789 * lock that is acquired by a CPU-hotplug notifier. Failing to
10790 * observe this restriction will result in deadlock.
10791 */
10792 void synchronize_sched_expedited(void)
10793 {
10794 int cpu;
10795 unsigned long flags;
10796 bool need_full_sync = 0;
10797 struct rq *rq;
10798 struct migration_req *req;
10799 long snap;
10800 int trycount = 0;
10801
10802 smp_mb(); /* ensure prior mod happens before capturing snap. */
10803 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10804 get_online_cpus();
10805 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10806 put_online_cpus();
10807 if (trycount++ < 10)
10808 udelay(trycount * num_online_cpus());
10809 else {
10810 synchronize_sched();
10811 return;
10812 }
10813 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10814 smp_mb(); /* ensure test happens before caller kfree */
10815 return;
10816 }
10817 get_online_cpus();
10818 }
10819 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10820 for_each_online_cpu(cpu) {
10821 rq = cpu_rq(cpu);
10822 req = &per_cpu(rcu_migration_req, cpu);
10823 init_completion(&req->done);
10824 req->task = NULL;
10825 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10826 spin_lock_irqsave(&rq->lock, flags);
10827 list_add(&req->list, &rq->migration_queue);
10828 spin_unlock_irqrestore(&rq->lock, flags);
10829 wake_up_process(rq->migration_thread);
10830 }
10831 for_each_online_cpu(cpu) {
10832 rcu_expedited_state = cpu;
10833 req = &per_cpu(rcu_migration_req, cpu);
10834 rq = cpu_rq(cpu);
10835 wait_for_completion(&req->done);
10836 spin_lock_irqsave(&rq->lock, flags);
10837 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10838 need_full_sync = 1;
10839 req->dest_cpu = RCU_MIGRATION_IDLE;
10840 spin_unlock_irqrestore(&rq->lock, flags);
10841 }
10842 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10843 mutex_unlock(&rcu_sched_expedited_mutex);
10844 put_online_cpus();
10845 if (need_full_sync)
10846 synchronize_sched();
10847 }
10848 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10849
10850 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.303091 seconds and 6 git commands to generate.