sched: clean up debug info
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 #ifdef CONFIG_SMP
122 /*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127 {
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 }
130
131 /*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136 {
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139 }
140 #endif
141
142 static inline int rt_policy(int policy)
143 {
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
147 }
148
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 return rt_policy(p->policy);
152 }
153
154 /*
155 * This is the priority-queue data structure of the RT scheduling class:
156 */
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160 };
161
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
168 };
169
170 static struct rt_bandwidth def_rt_bandwidth;
171
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175 {
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 }
194
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197 {
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 }
208
209 static inline int rt_bandwidth_enabled(void)
210 {
211 return sysctl_sched_rt_runtime >= 0;
212 }
213
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215 {
216 ktime_t now;
217
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235 }
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239 {
240 hrtimer_cancel(&rt_b->rt_period_timer);
241 }
242 #endif
243
244 /*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248 static DEFINE_MUTEX(sched_domains_mutex);
249
250 #ifdef CONFIG_GROUP_SCHED
251
252 #include <linux/cgroup.h>
253
254 struct cfs_rq;
255
256 static LIST_HEAD(task_groups);
257
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
271
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
276 struct rt_bandwidth rt_bandwidth;
277 #endif
278
279 struct rcu_head rcu;
280 struct list_head list;
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
285 };
286
287 #ifdef CONFIG_USER_SCHED
288
289 /*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294 struct task_group root_task_group;
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
310
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
313 */
314 static DEFINE_SPINLOCK(task_group_lock);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
322
323 /*
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
333
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
336
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
339 */
340 struct task_group init_task_group;
341
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
344 {
345 struct task_group *tg;
346
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
356 }
357
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
360 {
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
365
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
370 }
371
372 #else
373
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 return NULL;
378 }
379
380 #endif /* CONFIG_GROUP_SCHED */
381
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
387 u64 exec_clock;
388 u64 min_vruntime;
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
400 struct sched_entity *curr, *next, *last;
401
402 unsigned int nr_spread_over;
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
417
418 #ifdef CONFIG_SMP
419 /*
420 * the part of load.weight contributed by tasks
421 */
422 unsigned long task_weight;
423
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
431
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
441 #endif
442 #endif
443 };
444
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
461
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
464
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
470 };
471
472 #ifdef CONFIG_SMP
473
474 /*
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
481 */
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
486
487 /*
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
496 };
497
498 /*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
502 static struct root_domain def_root_domain;
503
504 #endif
505
506 /*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
535 struct rt_rq rt;
536
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
556
557 u64 clock;
558
559 atomic_t nr_iowait;
560
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
571
572 unsigned long avg_load_per_task;
573
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
577
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
585
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
595
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
600
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
604
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
608 };
609
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
611
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
613 {
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 /*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
635
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
641 static inline void update_rq_clock(struct rq *rq)
642 {
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644 }
645
646 /*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
654
655 /**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662 int runqueue_is_locked(void)
663 {
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_open(struct inode *inode, struct file *filp)
707 {
708 filp->private_data = inode->i_private;
709 return 0;
710 }
711
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715 {
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819
820 /*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825 unsigned int sysctl_sched_shares_thresh = 4;
826
827 /*
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
830 */
831 unsigned int sysctl_sched_rt_period = 1000000;
832
833 static __read_mostly int scheduler_running;
834
835 /*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839 int sysctl_sched_rt_runtime = 950000;
840
841 static inline u64 global_rt_period(void)
842 {
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844 }
845
846 static inline u64 global_rt_runtime(void)
847 {
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852 }
853
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
860
861 static inline int task_current(struct rq *rq, struct task_struct *p)
862 {
863 return rq->curr == p;
864 }
865
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
868 {
869 return task_current(rq, p);
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 }
875
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 {
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
889 spin_unlock_irq(&rq->lock);
890 }
891
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
894 {
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 #ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
917 }
918
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 {
921 #ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
933 }
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 spin_unlock(&rq->lock);
976 }
977
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
980 {
981 spin_unlock_irqrestore(&rq->lock, *flags);
982 }
983
984 /*
985 * this_rq_lock - lock this runqueue and disable interrupts.
986 */
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
989 {
990 struct rq *rq;
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997 }
998
999 #ifdef CONFIG_SCHED_HRTICK
1000 /*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
1010
1011 /*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016 static inline int hrtick_enabled(struct rq *rq)
1017 {
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023 }
1024
1025 static void hrtick_clear(struct rq *rq)
1026 {
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029 }
1030
1031 /*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036 {
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
1041 spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 spin_unlock(&rq->lock);
1045
1046 return HRTIMER_NORESTART;
1047 }
1048
1049 #ifdef CONFIG_SMP
1050 /*
1051 * called from hardirq (IPI) context
1052 */
1053 static void __hrtick_start(void *arg)
1054 {
1055 struct rq *rq = arg;
1056
1057 spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 spin_unlock(&rq->lock);
1061 }
1062
1063 /*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068 static void hrtick_start(struct rq *rq, u64 delay)
1069 {
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072
1073 hrtimer_set_expires(timer, time);
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1079 rq->hrtick_csd_pending = 1;
1080 }
1081 }
1082
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085 {
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100 }
1101
1102 static __init void init_hrtick(void)
1103 {
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105 }
1106 #else
1107 /*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112 static void hrtick_start(struct rq *rq, u64 delay)
1113 {
1114 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1115 }
1116
1117 static inline void init_hrtick(void)
1118 {
1119 }
1120 #endif /* CONFIG_SMP */
1121
1122 static void init_rq_hrtick(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1126
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1131
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1135 }
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1138 {
1139 }
1140
1141 static inline void init_rq_hrtick(struct rq *rq)
1142 {
1143 }
1144
1145 static inline void init_hrtick(void)
1146 {
1147 }
1148 #endif /* CONFIG_SCHED_HRTICK */
1149
1150 /*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157 #ifdef CONFIG_SMP
1158
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1162
1163 static void resched_task(struct task_struct *p)
1164 {
1165 int cpu;
1166
1167 assert_spin_locked(&task_rq(p)->lock);
1168
1169 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1170 return;
1171
1172 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182 }
1183
1184 static void resched_cpu(int cpu)
1185 {
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
1189 if (!spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 spin_unlock_irqrestore(&rq->lock, flags);
1193 }
1194
1195 #ifdef CONFIG_NO_HZ
1196 /*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206 void wake_up_idle_cpu(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
1228 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234 }
1235 #endif /* CONFIG_NO_HZ */
1236
1237 #else /* !CONFIG_SMP */
1238 static void resched_task(struct task_struct *p)
1239 {
1240 assert_spin_locked(&task_rq(p)->lock);
1241 set_tsk_need_resched(p);
1242 }
1243 #endif /* CONFIG_SMP */
1244
1245 #if BITS_PER_LONG == 32
1246 # define WMULT_CONST (~0UL)
1247 #else
1248 # define WMULT_CONST (1UL << 32)
1249 #endif
1250
1251 #define WMULT_SHIFT 32
1252
1253 /*
1254 * Shift right and round:
1255 */
1256 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1257
1258 /*
1259 * delta *= weight / lw
1260 */
1261 static unsigned long
1262 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1263 struct load_weight *lw)
1264 {
1265 u64 tmp;
1266
1267 if (!lw->inv_weight) {
1268 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1269 lw->inv_weight = 1;
1270 else
1271 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1272 / (lw->weight+1);
1273 }
1274
1275 tmp = (u64)delta_exec * weight;
1276 /*
1277 * Check whether we'd overflow the 64-bit multiplication:
1278 */
1279 if (unlikely(tmp > WMULT_CONST))
1280 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1281 WMULT_SHIFT/2);
1282 else
1283 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1284
1285 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1286 }
1287
1288 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1289 {
1290 lw->weight += inc;
1291 lw->inv_weight = 0;
1292 }
1293
1294 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1295 {
1296 lw->weight -= dec;
1297 lw->inv_weight = 0;
1298 }
1299
1300 /*
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1307 */
1308
1309 #define WEIGHT_IDLEPRIO 2
1310 #define WMULT_IDLEPRIO (1 << 31)
1311
1312 /*
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1317 *
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
1323 */
1324 static const int prio_to_weight[40] = {
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
1333 };
1334
1335 /*
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1337 *
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1341 */
1342 static const u32 prio_to_wmult[40] = {
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1351 };
1352
1353 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1354
1355 /*
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1359 */
1360 struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1364 };
1365
1366 #ifdef CONFIG_SMP
1367 static unsigned long
1368 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1372
1373 static int
1374 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
1377 #endif
1378
1379 #ifdef CONFIG_CGROUP_CPUACCT
1380 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381 #else
1382 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383 #endif
1384
1385 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1386 {
1387 update_load_add(&rq->load, load);
1388 }
1389
1390 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1391 {
1392 update_load_sub(&rq->load, load);
1393 }
1394
1395 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1396 typedef int (*tg_visitor)(struct task_group *, void *);
1397
1398 /*
1399 * Iterate the full tree, calling @down when first entering a node and @up when
1400 * leaving it for the final time.
1401 */
1402 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1403 {
1404 struct task_group *parent, *child;
1405 int ret;
1406
1407 rcu_read_lock();
1408 parent = &root_task_group;
1409 down:
1410 ret = (*down)(parent, data);
1411 if (ret)
1412 goto out_unlock;
1413 list_for_each_entry_rcu(child, &parent->children, siblings) {
1414 parent = child;
1415 goto down;
1416
1417 up:
1418 continue;
1419 }
1420 ret = (*up)(parent, data);
1421 if (ret)
1422 goto out_unlock;
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 out_unlock:
1429 rcu_read_unlock();
1430
1431 return ret;
1432 }
1433
1434 static int tg_nop(struct task_group *tg, void *data)
1435 {
1436 return 0;
1437 }
1438 #endif
1439
1440 #ifdef CONFIG_SMP
1441 static unsigned long source_load(int cpu, int type);
1442 static unsigned long target_load(int cpu, int type);
1443 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1444
1445 static unsigned long cpu_avg_load_per_task(int cpu)
1446 {
1447 struct rq *rq = cpu_rq(cpu);
1448
1449 if (rq->nr_running)
1450 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1451
1452 return rq->avg_load_per_task;
1453 }
1454
1455 #ifdef CONFIG_FAIR_GROUP_SCHED
1456
1457 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1458
1459 /*
1460 * Calculate and set the cpu's group shares.
1461 */
1462 static void
1463 update_group_shares_cpu(struct task_group *tg, int cpu,
1464 unsigned long sd_shares, unsigned long sd_rq_weight)
1465 {
1466 int boost = 0;
1467 unsigned long shares;
1468 unsigned long rq_weight;
1469
1470 if (!tg->se[cpu])
1471 return;
1472
1473 rq_weight = tg->cfs_rq[cpu]->load.weight;
1474
1475 /*
1476 * If there are currently no tasks on the cpu pretend there is one of
1477 * average load so that when a new task gets to run here it will not
1478 * get delayed by group starvation.
1479 */
1480 if (!rq_weight) {
1481 boost = 1;
1482 rq_weight = NICE_0_LOAD;
1483 }
1484
1485 if (unlikely(rq_weight > sd_rq_weight))
1486 rq_weight = sd_rq_weight;
1487
1488 /*
1489 * \Sum shares * rq_weight
1490 * shares = -----------------------
1491 * \Sum rq_weight
1492 *
1493 */
1494 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1495 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1496
1497 if (abs(shares - tg->se[cpu]->load.weight) >
1498 sysctl_sched_shares_thresh) {
1499 struct rq *rq = cpu_rq(cpu);
1500 unsigned long flags;
1501
1502 spin_lock_irqsave(&rq->lock, flags);
1503 /*
1504 * record the actual number of shares, not the boosted amount.
1505 */
1506 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1507 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1508
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
1512 }
1513
1514 /*
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
1518 */
1519 static int tg_shares_up(struct task_group *tg, void *data)
1520 {
1521 unsigned long rq_weight = 0;
1522 unsigned long shares = 0;
1523 struct sched_domain *sd = data;
1524 int i;
1525
1526 for_each_cpu_mask(i, sd->span) {
1527 rq_weight += tg->cfs_rq[i]->load.weight;
1528 shares += tg->cfs_rq[i]->shares;
1529 }
1530
1531 if ((!shares && rq_weight) || shares > tg->shares)
1532 shares = tg->shares;
1533
1534 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1535 shares = tg->shares;
1536
1537 if (!rq_weight)
1538 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1539
1540 for_each_cpu_mask(i, sd->span)
1541 update_group_shares_cpu(tg, i, shares, rq_weight);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
1550 */
1551 static int tg_load_down(struct task_group *tg, void *data)
1552 {
1553 unsigned long load;
1554 long cpu = (long)data;
1555
1556 if (!tg->parent) {
1557 load = cpu_rq(cpu)->load.weight;
1558 } else {
1559 load = tg->parent->cfs_rq[cpu]->h_load;
1560 load *= tg->cfs_rq[cpu]->shares;
1561 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1562 }
1563
1564 tg->cfs_rq[cpu]->h_load = load;
1565
1566 return 0;
1567 }
1568
1569 static void update_shares(struct sched_domain *sd)
1570 {
1571 u64 now = cpu_clock(raw_smp_processor_id());
1572 s64 elapsed = now - sd->last_update;
1573
1574 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1575 sd->last_update = now;
1576 walk_tg_tree(tg_nop, tg_shares_up, sd);
1577 }
1578 }
1579
1580 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1581 {
1582 spin_unlock(&rq->lock);
1583 update_shares(sd);
1584 spin_lock(&rq->lock);
1585 }
1586
1587 static void update_h_load(long cpu)
1588 {
1589 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1590 }
1591
1592 #else
1593
1594 static inline void update_shares(struct sched_domain *sd)
1595 {
1596 }
1597
1598 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1599 {
1600 }
1601
1602 #endif
1603
1604 #endif
1605
1606 #ifdef CONFIG_FAIR_GROUP_SCHED
1607 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1608 {
1609 #ifdef CONFIG_SMP
1610 cfs_rq->shares = shares;
1611 #endif
1612 }
1613 #endif
1614
1615 #include "sched_stats.h"
1616 #include "sched_idletask.c"
1617 #include "sched_fair.c"
1618 #include "sched_rt.c"
1619 #ifdef CONFIG_SCHED_DEBUG
1620 # include "sched_debug.c"
1621 #endif
1622
1623 #define sched_class_highest (&rt_sched_class)
1624 #define for_each_class(class) \
1625 for (class = sched_class_highest; class; class = class->next)
1626
1627 static void inc_nr_running(struct rq *rq)
1628 {
1629 rq->nr_running++;
1630 }
1631
1632 static void dec_nr_running(struct rq *rq)
1633 {
1634 rq->nr_running--;
1635 }
1636
1637 static void set_load_weight(struct task_struct *p)
1638 {
1639 if (task_has_rt_policy(p)) {
1640 p->se.load.weight = prio_to_weight[0] * 2;
1641 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1642 return;
1643 }
1644
1645 /*
1646 * SCHED_IDLE tasks get minimal weight:
1647 */
1648 if (p->policy == SCHED_IDLE) {
1649 p->se.load.weight = WEIGHT_IDLEPRIO;
1650 p->se.load.inv_weight = WMULT_IDLEPRIO;
1651 return;
1652 }
1653
1654 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1655 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1656 }
1657
1658 static void update_avg(u64 *avg, u64 sample)
1659 {
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662 }
1663
1664 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1665 {
1666 sched_info_queued(p);
1667 p->sched_class->enqueue_task(rq, p, wakeup);
1668 p->se.on_rq = 1;
1669 }
1670
1671 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1672 {
1673 if (sleep && p->se.last_wakeup) {
1674 update_avg(&p->se.avg_overlap,
1675 p->se.sum_exec_runtime - p->se.last_wakeup);
1676 p->se.last_wakeup = 0;
1677 }
1678
1679 sched_info_dequeued(p);
1680 p->sched_class->dequeue_task(rq, p, sleep);
1681 p->se.on_rq = 0;
1682 }
1683
1684 /*
1685 * __normal_prio - return the priority that is based on the static prio
1686 */
1687 static inline int __normal_prio(struct task_struct *p)
1688 {
1689 return p->static_prio;
1690 }
1691
1692 /*
1693 * Calculate the expected normal priority: i.e. priority
1694 * without taking RT-inheritance into account. Might be
1695 * boosted by interactivity modifiers. Changes upon fork,
1696 * setprio syscalls, and whenever the interactivity
1697 * estimator recalculates.
1698 */
1699 static inline int normal_prio(struct task_struct *p)
1700 {
1701 int prio;
1702
1703 if (task_has_rt_policy(p))
1704 prio = MAX_RT_PRIO-1 - p->rt_priority;
1705 else
1706 prio = __normal_prio(p);
1707 return prio;
1708 }
1709
1710 /*
1711 * Calculate the current priority, i.e. the priority
1712 * taken into account by the scheduler. This value might
1713 * be boosted by RT tasks, or might be boosted by
1714 * interactivity modifiers. Will be RT if the task got
1715 * RT-boosted. If not then it returns p->normal_prio.
1716 */
1717 static int effective_prio(struct task_struct *p)
1718 {
1719 p->normal_prio = normal_prio(p);
1720 /*
1721 * If we are RT tasks or we were boosted to RT priority,
1722 * keep the priority unchanged. Otherwise, update priority
1723 * to the normal priority:
1724 */
1725 if (!rt_prio(p->prio))
1726 return p->normal_prio;
1727 return p->prio;
1728 }
1729
1730 /*
1731 * activate_task - move a task to the runqueue.
1732 */
1733 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1734 {
1735 if (task_contributes_to_load(p))
1736 rq->nr_uninterruptible--;
1737
1738 enqueue_task(rq, p, wakeup);
1739 inc_nr_running(rq);
1740 }
1741
1742 /*
1743 * deactivate_task - remove a task from the runqueue.
1744 */
1745 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1746 {
1747 if (task_contributes_to_load(p))
1748 rq->nr_uninterruptible++;
1749
1750 dequeue_task(rq, p, sleep);
1751 dec_nr_running(rq);
1752 }
1753
1754 /**
1755 * task_curr - is this task currently executing on a CPU?
1756 * @p: the task in question.
1757 */
1758 inline int task_curr(const struct task_struct *p)
1759 {
1760 return cpu_curr(task_cpu(p)) == p;
1761 }
1762
1763 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1764 {
1765 set_task_rq(p, cpu);
1766 #ifdef CONFIG_SMP
1767 /*
1768 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1769 * successfuly executed on another CPU. We must ensure that updates of
1770 * per-task data have been completed by this moment.
1771 */
1772 smp_wmb();
1773 task_thread_info(p)->cpu = cpu;
1774 #endif
1775 }
1776
1777 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1778 const struct sched_class *prev_class,
1779 int oldprio, int running)
1780 {
1781 if (prev_class != p->sched_class) {
1782 if (prev_class->switched_from)
1783 prev_class->switched_from(rq, p, running);
1784 p->sched_class->switched_to(rq, p, running);
1785 } else
1786 p->sched_class->prio_changed(rq, p, oldprio, running);
1787 }
1788
1789 #ifdef CONFIG_SMP
1790
1791 /* Used instead of source_load when we know the type == 0 */
1792 static unsigned long weighted_cpuload(const int cpu)
1793 {
1794 return cpu_rq(cpu)->load.weight;
1795 }
1796
1797 /*
1798 * Is this task likely cache-hot:
1799 */
1800 static int
1801 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1802 {
1803 s64 delta;
1804
1805 /*
1806 * Buddy candidates are cache hot:
1807 */
1808 if (sched_feat(CACHE_HOT_BUDDY) &&
1809 (&p->se == cfs_rq_of(&p->se)->next ||
1810 &p->se == cfs_rq_of(&p->se)->last))
1811 return 1;
1812
1813 if (p->sched_class != &fair_sched_class)
1814 return 0;
1815
1816 if (sysctl_sched_migration_cost == -1)
1817 return 1;
1818 if (sysctl_sched_migration_cost == 0)
1819 return 0;
1820
1821 delta = now - p->se.exec_start;
1822
1823 return delta < (s64)sysctl_sched_migration_cost;
1824 }
1825
1826
1827 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1828 {
1829 int old_cpu = task_cpu(p);
1830 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1831 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1832 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1833 u64 clock_offset;
1834
1835 clock_offset = old_rq->clock - new_rq->clock;
1836
1837 #ifdef CONFIG_SCHEDSTATS
1838 if (p->se.wait_start)
1839 p->se.wait_start -= clock_offset;
1840 if (p->se.sleep_start)
1841 p->se.sleep_start -= clock_offset;
1842 if (p->se.block_start)
1843 p->se.block_start -= clock_offset;
1844 if (old_cpu != new_cpu) {
1845 schedstat_inc(p, se.nr_migrations);
1846 if (task_hot(p, old_rq->clock, NULL))
1847 schedstat_inc(p, se.nr_forced2_migrations);
1848 }
1849 #endif
1850 p->se.vruntime -= old_cfsrq->min_vruntime -
1851 new_cfsrq->min_vruntime;
1852
1853 __set_task_cpu(p, new_cpu);
1854 }
1855
1856 struct migration_req {
1857 struct list_head list;
1858
1859 struct task_struct *task;
1860 int dest_cpu;
1861
1862 struct completion done;
1863 };
1864
1865 /*
1866 * The task's runqueue lock must be held.
1867 * Returns true if you have to wait for migration thread.
1868 */
1869 static int
1870 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1871 {
1872 struct rq *rq = task_rq(p);
1873
1874 /*
1875 * If the task is not on a runqueue (and not running), then
1876 * it is sufficient to simply update the task's cpu field.
1877 */
1878 if (!p->se.on_rq && !task_running(rq, p)) {
1879 set_task_cpu(p, dest_cpu);
1880 return 0;
1881 }
1882
1883 init_completion(&req->done);
1884 req->task = p;
1885 req->dest_cpu = dest_cpu;
1886 list_add(&req->list, &rq->migration_queue);
1887
1888 return 1;
1889 }
1890
1891 /*
1892 * wait_task_inactive - wait for a thread to unschedule.
1893 *
1894 * If @match_state is nonzero, it's the @p->state value just checked and
1895 * not expected to change. If it changes, i.e. @p might have woken up,
1896 * then return zero. When we succeed in waiting for @p to be off its CPU,
1897 * we return a positive number (its total switch count). If a second call
1898 * a short while later returns the same number, the caller can be sure that
1899 * @p has remained unscheduled the whole time.
1900 *
1901 * The caller must ensure that the task *will* unschedule sometime soon,
1902 * else this function might spin for a *long* time. This function can't
1903 * be called with interrupts off, or it may introduce deadlock with
1904 * smp_call_function() if an IPI is sent by the same process we are
1905 * waiting to become inactive.
1906 */
1907 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1908 {
1909 unsigned long flags;
1910 int running, on_rq;
1911 unsigned long ncsw;
1912 struct rq *rq;
1913
1914 for (;;) {
1915 /*
1916 * We do the initial early heuristics without holding
1917 * any task-queue locks at all. We'll only try to get
1918 * the runqueue lock when things look like they will
1919 * work out!
1920 */
1921 rq = task_rq(p);
1922
1923 /*
1924 * If the task is actively running on another CPU
1925 * still, just relax and busy-wait without holding
1926 * any locks.
1927 *
1928 * NOTE! Since we don't hold any locks, it's not
1929 * even sure that "rq" stays as the right runqueue!
1930 * But we don't care, since "task_running()" will
1931 * return false if the runqueue has changed and p
1932 * is actually now running somewhere else!
1933 */
1934 while (task_running(rq, p)) {
1935 if (match_state && unlikely(p->state != match_state))
1936 return 0;
1937 cpu_relax();
1938 }
1939
1940 /*
1941 * Ok, time to look more closely! We need the rq
1942 * lock now, to be *sure*. If we're wrong, we'll
1943 * just go back and repeat.
1944 */
1945 rq = task_rq_lock(p, &flags);
1946 trace_sched_wait_task(rq, p);
1947 running = task_running(rq, p);
1948 on_rq = p->se.on_rq;
1949 ncsw = 0;
1950 if (!match_state || p->state == match_state)
1951 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1952 task_rq_unlock(rq, &flags);
1953
1954 /*
1955 * If it changed from the expected state, bail out now.
1956 */
1957 if (unlikely(!ncsw))
1958 break;
1959
1960 /*
1961 * Was it really running after all now that we
1962 * checked with the proper locks actually held?
1963 *
1964 * Oops. Go back and try again..
1965 */
1966 if (unlikely(running)) {
1967 cpu_relax();
1968 continue;
1969 }
1970
1971 /*
1972 * It's not enough that it's not actively running,
1973 * it must be off the runqueue _entirely_, and not
1974 * preempted!
1975 *
1976 * So if it wa still runnable (but just not actively
1977 * running right now), it's preempted, and we should
1978 * yield - it could be a while.
1979 */
1980 if (unlikely(on_rq)) {
1981 schedule_timeout_uninterruptible(1);
1982 continue;
1983 }
1984
1985 /*
1986 * Ahh, all good. It wasn't running, and it wasn't
1987 * runnable, which means that it will never become
1988 * running in the future either. We're all done!
1989 */
1990 break;
1991 }
1992
1993 return ncsw;
1994 }
1995
1996 /***
1997 * kick_process - kick a running thread to enter/exit the kernel
1998 * @p: the to-be-kicked thread
1999 *
2000 * Cause a process which is running on another CPU to enter
2001 * kernel-mode, without any delay. (to get signals handled.)
2002 *
2003 * NOTE: this function doesnt have to take the runqueue lock,
2004 * because all it wants to ensure is that the remote task enters
2005 * the kernel. If the IPI races and the task has been migrated
2006 * to another CPU then no harm is done and the purpose has been
2007 * achieved as well.
2008 */
2009 void kick_process(struct task_struct *p)
2010 {
2011 int cpu;
2012
2013 preempt_disable();
2014 cpu = task_cpu(p);
2015 if ((cpu != smp_processor_id()) && task_curr(p))
2016 smp_send_reschedule(cpu);
2017 preempt_enable();
2018 }
2019
2020 /*
2021 * Return a low guess at the load of a migration-source cpu weighted
2022 * according to the scheduling class and "nice" value.
2023 *
2024 * We want to under-estimate the load of migration sources, to
2025 * balance conservatively.
2026 */
2027 static unsigned long source_load(int cpu, int type)
2028 {
2029 struct rq *rq = cpu_rq(cpu);
2030 unsigned long total = weighted_cpuload(cpu);
2031
2032 if (type == 0 || !sched_feat(LB_BIAS))
2033 return total;
2034
2035 return min(rq->cpu_load[type-1], total);
2036 }
2037
2038 /*
2039 * Return a high guess at the load of a migration-target cpu weighted
2040 * according to the scheduling class and "nice" value.
2041 */
2042 static unsigned long target_load(int cpu, int type)
2043 {
2044 struct rq *rq = cpu_rq(cpu);
2045 unsigned long total = weighted_cpuload(cpu);
2046
2047 if (type == 0 || !sched_feat(LB_BIAS))
2048 return total;
2049
2050 return max(rq->cpu_load[type-1], total);
2051 }
2052
2053 /*
2054 * find_idlest_group finds and returns the least busy CPU group within the
2055 * domain.
2056 */
2057 static struct sched_group *
2058 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2059 {
2060 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2061 unsigned long min_load = ULONG_MAX, this_load = 0;
2062 int load_idx = sd->forkexec_idx;
2063 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2064
2065 do {
2066 unsigned long load, avg_load;
2067 int local_group;
2068 int i;
2069
2070 /* Skip over this group if it has no CPUs allowed */
2071 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2072 continue;
2073
2074 local_group = cpu_isset(this_cpu, group->cpumask);
2075
2076 /* Tally up the load of all CPUs in the group */
2077 avg_load = 0;
2078
2079 for_each_cpu_mask_nr(i, group->cpumask) {
2080 /* Bias balancing toward cpus of our domain */
2081 if (local_group)
2082 load = source_load(i, load_idx);
2083 else
2084 load = target_load(i, load_idx);
2085
2086 avg_load += load;
2087 }
2088
2089 /* Adjust by relative CPU power of the group */
2090 avg_load = sg_div_cpu_power(group,
2091 avg_load * SCHED_LOAD_SCALE);
2092
2093 if (local_group) {
2094 this_load = avg_load;
2095 this = group;
2096 } else if (avg_load < min_load) {
2097 min_load = avg_load;
2098 idlest = group;
2099 }
2100 } while (group = group->next, group != sd->groups);
2101
2102 if (!idlest || 100*this_load < imbalance*min_load)
2103 return NULL;
2104 return idlest;
2105 }
2106
2107 /*
2108 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2109 */
2110 static int
2111 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2112 cpumask_t *tmp)
2113 {
2114 unsigned long load, min_load = ULONG_MAX;
2115 int idlest = -1;
2116 int i;
2117
2118 /* Traverse only the allowed CPUs */
2119 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2120
2121 for_each_cpu_mask_nr(i, *tmp) {
2122 load = weighted_cpuload(i);
2123
2124 if (load < min_load || (load == min_load && i == this_cpu)) {
2125 min_load = load;
2126 idlest = i;
2127 }
2128 }
2129
2130 return idlest;
2131 }
2132
2133 /*
2134 * sched_balance_self: balance the current task (running on cpu) in domains
2135 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2136 * SD_BALANCE_EXEC.
2137 *
2138 * Balance, ie. select the least loaded group.
2139 *
2140 * Returns the target CPU number, or the same CPU if no balancing is needed.
2141 *
2142 * preempt must be disabled.
2143 */
2144 static int sched_balance_self(int cpu, int flag)
2145 {
2146 struct task_struct *t = current;
2147 struct sched_domain *tmp, *sd = NULL;
2148
2149 for_each_domain(cpu, tmp) {
2150 /*
2151 * If power savings logic is enabled for a domain, stop there.
2152 */
2153 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2154 break;
2155 if (tmp->flags & flag)
2156 sd = tmp;
2157 }
2158
2159 if (sd)
2160 update_shares(sd);
2161
2162 while (sd) {
2163 cpumask_t span, tmpmask;
2164 struct sched_group *group;
2165 int new_cpu, weight;
2166
2167 if (!(sd->flags & flag)) {
2168 sd = sd->child;
2169 continue;
2170 }
2171
2172 span = sd->span;
2173 group = find_idlest_group(sd, t, cpu);
2174 if (!group) {
2175 sd = sd->child;
2176 continue;
2177 }
2178
2179 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2180 if (new_cpu == -1 || new_cpu == cpu) {
2181 /* Now try balancing at a lower domain level of cpu */
2182 sd = sd->child;
2183 continue;
2184 }
2185
2186 /* Now try balancing at a lower domain level of new_cpu */
2187 cpu = new_cpu;
2188 sd = NULL;
2189 weight = cpus_weight(span);
2190 for_each_domain(cpu, tmp) {
2191 if (weight <= cpus_weight(tmp->span))
2192 break;
2193 if (tmp->flags & flag)
2194 sd = tmp;
2195 }
2196 /* while loop will break here if sd == NULL */
2197 }
2198
2199 return cpu;
2200 }
2201
2202 #endif /* CONFIG_SMP */
2203
2204 /***
2205 * try_to_wake_up - wake up a thread
2206 * @p: the to-be-woken-up thread
2207 * @state: the mask of task states that can be woken
2208 * @sync: do a synchronous wakeup?
2209 *
2210 * Put it on the run-queue if it's not already there. The "current"
2211 * thread is always on the run-queue (except when the actual
2212 * re-schedule is in progress), and as such you're allowed to do
2213 * the simpler "current->state = TASK_RUNNING" to mark yourself
2214 * runnable without the overhead of this.
2215 *
2216 * returns failure only if the task is already active.
2217 */
2218 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2219 {
2220 int cpu, orig_cpu, this_cpu, success = 0;
2221 unsigned long flags;
2222 long old_state;
2223 struct rq *rq;
2224
2225 if (!sched_feat(SYNC_WAKEUPS))
2226 sync = 0;
2227
2228 #ifdef CONFIG_SMP
2229 if (sched_feat(LB_WAKEUP_UPDATE)) {
2230 struct sched_domain *sd;
2231
2232 this_cpu = raw_smp_processor_id();
2233 cpu = task_cpu(p);
2234
2235 for_each_domain(this_cpu, sd) {
2236 if (cpu_isset(cpu, sd->span)) {
2237 update_shares(sd);
2238 break;
2239 }
2240 }
2241 }
2242 #endif
2243
2244 smp_wmb();
2245 rq = task_rq_lock(p, &flags);
2246 old_state = p->state;
2247 if (!(old_state & state))
2248 goto out;
2249
2250 if (p->se.on_rq)
2251 goto out_running;
2252
2253 cpu = task_cpu(p);
2254 orig_cpu = cpu;
2255 this_cpu = smp_processor_id();
2256
2257 #ifdef CONFIG_SMP
2258 if (unlikely(task_running(rq, p)))
2259 goto out_activate;
2260
2261 cpu = p->sched_class->select_task_rq(p, sync);
2262 if (cpu != orig_cpu) {
2263 set_task_cpu(p, cpu);
2264 task_rq_unlock(rq, &flags);
2265 /* might preempt at this point */
2266 rq = task_rq_lock(p, &flags);
2267 old_state = p->state;
2268 if (!(old_state & state))
2269 goto out;
2270 if (p->se.on_rq)
2271 goto out_running;
2272
2273 this_cpu = smp_processor_id();
2274 cpu = task_cpu(p);
2275 }
2276
2277 #ifdef CONFIG_SCHEDSTATS
2278 schedstat_inc(rq, ttwu_count);
2279 if (cpu == this_cpu)
2280 schedstat_inc(rq, ttwu_local);
2281 else {
2282 struct sched_domain *sd;
2283 for_each_domain(this_cpu, sd) {
2284 if (cpu_isset(cpu, sd->span)) {
2285 schedstat_inc(sd, ttwu_wake_remote);
2286 break;
2287 }
2288 }
2289 }
2290 #endif /* CONFIG_SCHEDSTATS */
2291
2292 out_activate:
2293 #endif /* CONFIG_SMP */
2294 schedstat_inc(p, se.nr_wakeups);
2295 if (sync)
2296 schedstat_inc(p, se.nr_wakeups_sync);
2297 if (orig_cpu != cpu)
2298 schedstat_inc(p, se.nr_wakeups_migrate);
2299 if (cpu == this_cpu)
2300 schedstat_inc(p, se.nr_wakeups_local);
2301 else
2302 schedstat_inc(p, se.nr_wakeups_remote);
2303 update_rq_clock(rq);
2304 activate_task(rq, p, 1);
2305 success = 1;
2306
2307 out_running:
2308 trace_sched_wakeup(rq, p);
2309 check_preempt_curr(rq, p, sync);
2310
2311 p->state = TASK_RUNNING;
2312 #ifdef CONFIG_SMP
2313 if (p->sched_class->task_wake_up)
2314 p->sched_class->task_wake_up(rq, p);
2315 #endif
2316 out:
2317 current->se.last_wakeup = current->se.sum_exec_runtime;
2318
2319 task_rq_unlock(rq, &flags);
2320
2321 return success;
2322 }
2323
2324 int wake_up_process(struct task_struct *p)
2325 {
2326 return try_to_wake_up(p, TASK_ALL, 0);
2327 }
2328 EXPORT_SYMBOL(wake_up_process);
2329
2330 int wake_up_state(struct task_struct *p, unsigned int state)
2331 {
2332 return try_to_wake_up(p, state, 0);
2333 }
2334
2335 /*
2336 * Perform scheduler related setup for a newly forked process p.
2337 * p is forked by current.
2338 *
2339 * __sched_fork() is basic setup used by init_idle() too:
2340 */
2341 static void __sched_fork(struct task_struct *p)
2342 {
2343 p->se.exec_start = 0;
2344 p->se.sum_exec_runtime = 0;
2345 p->se.prev_sum_exec_runtime = 0;
2346 p->se.last_wakeup = 0;
2347 p->se.avg_overlap = 0;
2348
2349 #ifdef CONFIG_SCHEDSTATS
2350 p->se.wait_start = 0;
2351 p->se.sum_sleep_runtime = 0;
2352 p->se.sleep_start = 0;
2353 p->se.block_start = 0;
2354 p->se.sleep_max = 0;
2355 p->se.block_max = 0;
2356 p->se.exec_max = 0;
2357 p->se.slice_max = 0;
2358 p->se.wait_max = 0;
2359 #endif
2360
2361 INIT_LIST_HEAD(&p->rt.run_list);
2362 p->se.on_rq = 0;
2363 INIT_LIST_HEAD(&p->se.group_node);
2364
2365 #ifdef CONFIG_PREEMPT_NOTIFIERS
2366 INIT_HLIST_HEAD(&p->preempt_notifiers);
2367 #endif
2368
2369 /*
2370 * We mark the process as running here, but have not actually
2371 * inserted it onto the runqueue yet. This guarantees that
2372 * nobody will actually run it, and a signal or other external
2373 * event cannot wake it up and insert it on the runqueue either.
2374 */
2375 p->state = TASK_RUNNING;
2376 }
2377
2378 /*
2379 * fork()/clone()-time setup:
2380 */
2381 void sched_fork(struct task_struct *p, int clone_flags)
2382 {
2383 int cpu = get_cpu();
2384
2385 __sched_fork(p);
2386
2387 #ifdef CONFIG_SMP
2388 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2389 #endif
2390 set_task_cpu(p, cpu);
2391
2392 /*
2393 * Make sure we do not leak PI boosting priority to the child:
2394 */
2395 p->prio = current->normal_prio;
2396 if (!rt_prio(p->prio))
2397 p->sched_class = &fair_sched_class;
2398
2399 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2400 if (likely(sched_info_on()))
2401 memset(&p->sched_info, 0, sizeof(p->sched_info));
2402 #endif
2403 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2404 p->oncpu = 0;
2405 #endif
2406 #ifdef CONFIG_PREEMPT
2407 /* Want to start with kernel preemption disabled. */
2408 task_thread_info(p)->preempt_count = 1;
2409 #endif
2410 put_cpu();
2411 }
2412
2413 /*
2414 * wake_up_new_task - wake up a newly created task for the first time.
2415 *
2416 * This function will do some initial scheduler statistics housekeeping
2417 * that must be done for every newly created context, then puts the task
2418 * on the runqueue and wakes it.
2419 */
2420 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2421 {
2422 unsigned long flags;
2423 struct rq *rq;
2424
2425 rq = task_rq_lock(p, &flags);
2426 BUG_ON(p->state != TASK_RUNNING);
2427 update_rq_clock(rq);
2428
2429 p->prio = effective_prio(p);
2430
2431 if (!p->sched_class->task_new || !current->se.on_rq) {
2432 activate_task(rq, p, 0);
2433 } else {
2434 /*
2435 * Let the scheduling class do new task startup
2436 * management (if any):
2437 */
2438 p->sched_class->task_new(rq, p);
2439 inc_nr_running(rq);
2440 }
2441 trace_sched_wakeup_new(rq, p);
2442 check_preempt_curr(rq, p, 0);
2443 #ifdef CONFIG_SMP
2444 if (p->sched_class->task_wake_up)
2445 p->sched_class->task_wake_up(rq, p);
2446 #endif
2447 task_rq_unlock(rq, &flags);
2448 }
2449
2450 #ifdef CONFIG_PREEMPT_NOTIFIERS
2451
2452 /**
2453 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2454 * @notifier: notifier struct to register
2455 */
2456 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 {
2458 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2459 }
2460 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2461
2462 /**
2463 * preempt_notifier_unregister - no longer interested in preemption notifications
2464 * @notifier: notifier struct to unregister
2465 *
2466 * This is safe to call from within a preemption notifier.
2467 */
2468 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2469 {
2470 hlist_del(&notifier->link);
2471 }
2472 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2473
2474 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2475 {
2476 struct preempt_notifier *notifier;
2477 struct hlist_node *node;
2478
2479 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2480 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2481 }
2482
2483 static void
2484 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2485 struct task_struct *next)
2486 {
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2489
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_out(notifier, next);
2492 }
2493
2494 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2495
2496 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2497 {
2498 }
2499
2500 static void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2503 {
2504 }
2505
2506 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2507
2508 /**
2509 * prepare_task_switch - prepare to switch tasks
2510 * @rq: the runqueue preparing to switch
2511 * @prev: the current task that is being switched out
2512 * @next: the task we are going to switch to.
2513 *
2514 * This is called with the rq lock held and interrupts off. It must
2515 * be paired with a subsequent finish_task_switch after the context
2516 * switch.
2517 *
2518 * prepare_task_switch sets up locking and calls architecture specific
2519 * hooks.
2520 */
2521 static inline void
2522 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2523 struct task_struct *next)
2524 {
2525 fire_sched_out_preempt_notifiers(prev, next);
2526 prepare_lock_switch(rq, next);
2527 prepare_arch_switch(next);
2528 }
2529
2530 /**
2531 * finish_task_switch - clean up after a task-switch
2532 * @rq: runqueue associated with task-switch
2533 * @prev: the thread we just switched away from.
2534 *
2535 * finish_task_switch must be called after the context switch, paired
2536 * with a prepare_task_switch call before the context switch.
2537 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2538 * and do any other architecture-specific cleanup actions.
2539 *
2540 * Note that we may have delayed dropping an mm in context_switch(). If
2541 * so, we finish that here outside of the runqueue lock. (Doing it
2542 * with the lock held can cause deadlocks; see schedule() for
2543 * details.)
2544 */
2545 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2546 __releases(rq->lock)
2547 {
2548 struct mm_struct *mm = rq->prev_mm;
2549 long prev_state;
2550
2551 rq->prev_mm = NULL;
2552
2553 /*
2554 * A task struct has one reference for the use as "current".
2555 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2556 * schedule one last time. The schedule call will never return, and
2557 * the scheduled task must drop that reference.
2558 * The test for TASK_DEAD must occur while the runqueue locks are
2559 * still held, otherwise prev could be scheduled on another cpu, die
2560 * there before we look at prev->state, and then the reference would
2561 * be dropped twice.
2562 * Manfred Spraul <manfred@colorfullife.com>
2563 */
2564 prev_state = prev->state;
2565 finish_arch_switch(prev);
2566 finish_lock_switch(rq, prev);
2567 #ifdef CONFIG_SMP
2568 if (current->sched_class->post_schedule)
2569 current->sched_class->post_schedule(rq);
2570 #endif
2571
2572 fire_sched_in_preempt_notifiers(current);
2573 if (mm)
2574 mmdrop(mm);
2575 if (unlikely(prev_state == TASK_DEAD)) {
2576 /*
2577 * Remove function-return probe instances associated with this
2578 * task and put them back on the free list.
2579 */
2580 kprobe_flush_task(prev);
2581 put_task_struct(prev);
2582 }
2583 }
2584
2585 /**
2586 * schedule_tail - first thing a freshly forked thread must call.
2587 * @prev: the thread we just switched away from.
2588 */
2589 asmlinkage void schedule_tail(struct task_struct *prev)
2590 __releases(rq->lock)
2591 {
2592 struct rq *rq = this_rq();
2593
2594 finish_task_switch(rq, prev);
2595 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2596 /* In this case, finish_task_switch does not reenable preemption */
2597 preempt_enable();
2598 #endif
2599 if (current->set_child_tid)
2600 put_user(task_pid_vnr(current), current->set_child_tid);
2601 }
2602
2603 /*
2604 * context_switch - switch to the new MM and the new
2605 * thread's register state.
2606 */
2607 static inline void
2608 context_switch(struct rq *rq, struct task_struct *prev,
2609 struct task_struct *next)
2610 {
2611 struct mm_struct *mm, *oldmm;
2612
2613 prepare_task_switch(rq, prev, next);
2614 trace_sched_switch(rq, prev, next);
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
2617 /*
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2621 */
2622 arch_enter_lazy_cpu_mode();
2623
2624 if (unlikely(!mm)) {
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2630
2631 if (unlikely(!prev->mm)) {
2632 prev->active_mm = NULL;
2633 rq->prev_mm = oldmm;
2634 }
2635 /*
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2640 */
2641 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643 #endif
2644
2645 /* Here we just switch the register state and the stack. */
2646 switch_to(prev, next, prev);
2647
2648 barrier();
2649 /*
2650 * this_rq must be evaluated again because prev may have moved
2651 * CPUs since it called schedule(), thus the 'rq' on its stack
2652 * frame will be invalid.
2653 */
2654 finish_task_switch(this_rq(), prev);
2655 }
2656
2657 /*
2658 * nr_running, nr_uninterruptible and nr_context_switches:
2659 *
2660 * externally visible scheduler statistics: current number of runnable
2661 * threads, current number of uninterruptible-sleeping threads, total
2662 * number of context switches performed since bootup.
2663 */
2664 unsigned long nr_running(void)
2665 {
2666 unsigned long i, sum = 0;
2667
2668 for_each_online_cpu(i)
2669 sum += cpu_rq(i)->nr_running;
2670
2671 return sum;
2672 }
2673
2674 unsigned long nr_uninterruptible(void)
2675 {
2676 unsigned long i, sum = 0;
2677
2678 for_each_possible_cpu(i)
2679 sum += cpu_rq(i)->nr_uninterruptible;
2680
2681 /*
2682 * Since we read the counters lockless, it might be slightly
2683 * inaccurate. Do not allow it to go below zero though:
2684 */
2685 if (unlikely((long)sum < 0))
2686 sum = 0;
2687
2688 return sum;
2689 }
2690
2691 unsigned long long nr_context_switches(void)
2692 {
2693 int i;
2694 unsigned long long sum = 0;
2695
2696 for_each_possible_cpu(i)
2697 sum += cpu_rq(i)->nr_switches;
2698
2699 return sum;
2700 }
2701
2702 unsigned long nr_iowait(void)
2703 {
2704 unsigned long i, sum = 0;
2705
2706 for_each_possible_cpu(i)
2707 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_active(void)
2713 {
2714 unsigned long i, running = 0, uninterruptible = 0;
2715
2716 for_each_online_cpu(i) {
2717 running += cpu_rq(i)->nr_running;
2718 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2719 }
2720
2721 if (unlikely((long)uninterruptible < 0))
2722 uninterruptible = 0;
2723
2724 return running + uninterruptible;
2725 }
2726
2727 /*
2728 * Update rq->cpu_load[] statistics. This function is usually called every
2729 * scheduler tick (TICK_NSEC).
2730 */
2731 static void update_cpu_load(struct rq *this_rq)
2732 {
2733 unsigned long this_load = this_rq->load.weight;
2734 int i, scale;
2735
2736 this_rq->nr_load_updates++;
2737
2738 /* Update our load: */
2739 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2740 unsigned long old_load, new_load;
2741
2742 /* scale is effectively 1 << i now, and >> i divides by scale */
2743
2744 old_load = this_rq->cpu_load[i];
2745 new_load = this_load;
2746 /*
2747 * Round up the averaging division if load is increasing. This
2748 * prevents us from getting stuck on 9 if the load is 10, for
2749 * example.
2750 */
2751 if (new_load > old_load)
2752 new_load += scale-1;
2753 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2754 }
2755 }
2756
2757 #ifdef CONFIG_SMP
2758
2759 /*
2760 * double_rq_lock - safely lock two runqueues
2761 *
2762 * Note this does not disable interrupts like task_rq_lock,
2763 * you need to do so manually before calling.
2764 */
2765 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2766 __acquires(rq1->lock)
2767 __acquires(rq2->lock)
2768 {
2769 BUG_ON(!irqs_disabled());
2770 if (rq1 == rq2) {
2771 spin_lock(&rq1->lock);
2772 __acquire(rq2->lock); /* Fake it out ;) */
2773 } else {
2774 if (rq1 < rq2) {
2775 spin_lock(&rq1->lock);
2776 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2777 } else {
2778 spin_lock(&rq2->lock);
2779 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2780 }
2781 }
2782 update_rq_clock(rq1);
2783 update_rq_clock(rq2);
2784 }
2785
2786 /*
2787 * double_rq_unlock - safely unlock two runqueues
2788 *
2789 * Note this does not restore interrupts like task_rq_unlock,
2790 * you need to do so manually after calling.
2791 */
2792 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2793 __releases(rq1->lock)
2794 __releases(rq2->lock)
2795 {
2796 spin_unlock(&rq1->lock);
2797 if (rq1 != rq2)
2798 spin_unlock(&rq2->lock);
2799 else
2800 __release(rq2->lock);
2801 }
2802
2803 /*
2804 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2805 */
2806 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2807 __releases(this_rq->lock)
2808 __acquires(busiest->lock)
2809 __acquires(this_rq->lock)
2810 {
2811 int ret = 0;
2812
2813 if (unlikely(!irqs_disabled())) {
2814 /* printk() doesn't work good under rq->lock */
2815 spin_unlock(&this_rq->lock);
2816 BUG_ON(1);
2817 }
2818 if (unlikely(!spin_trylock(&busiest->lock))) {
2819 if (busiest < this_rq) {
2820 spin_unlock(&this_rq->lock);
2821 spin_lock(&busiest->lock);
2822 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2823 ret = 1;
2824 } else
2825 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2826 }
2827 return ret;
2828 }
2829
2830 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2831 __releases(busiest->lock)
2832 {
2833 spin_unlock(&busiest->lock);
2834 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2835 }
2836
2837 /*
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841 * the cpu_allowed mask is restored.
2842 */
2843 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2844 {
2845 struct migration_req req;
2846 unsigned long flags;
2847 struct rq *rq;
2848
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851 || unlikely(!cpu_active(dest_cpu)))
2852 goto out;
2853
2854 trace_sched_migrate_task(rq, p, dest_cpu);
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p, dest_cpu, &req)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct *mt = rq->migration_thread;
2859
2860 get_task_struct(mt);
2861 task_rq_unlock(rq, &flags);
2862 wake_up_process(mt);
2863 put_task_struct(mt);
2864 wait_for_completion(&req.done);
2865
2866 return;
2867 }
2868 out:
2869 task_rq_unlock(rq, &flags);
2870 }
2871
2872 /*
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2875 */
2876 void sched_exec(void)
2877 {
2878 int new_cpu, this_cpu = get_cpu();
2879 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880 put_cpu();
2881 if (new_cpu != this_cpu)
2882 sched_migrate_task(current, new_cpu);
2883 }
2884
2885 /*
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2888 */
2889 static void pull_task(struct rq *src_rq, struct task_struct *p,
2890 struct rq *this_rq, int this_cpu)
2891 {
2892 deactivate_task(src_rq, p, 0);
2893 set_task_cpu(p, this_cpu);
2894 activate_task(this_rq, p, 0);
2895 /*
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2898 */
2899 check_preempt_curr(this_rq, p, 0);
2900 }
2901
2902 /*
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904 */
2905 static
2906 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907 struct sched_domain *sd, enum cpu_idle_type idle,
2908 int *all_pinned)
2909 {
2910 /*
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2915 */
2916 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2917 schedstat_inc(p, se.nr_failed_migrations_affine);
2918 return 0;
2919 }
2920 *all_pinned = 0;
2921
2922 if (task_running(rq, p)) {
2923 schedstat_inc(p, se.nr_failed_migrations_running);
2924 return 0;
2925 }
2926
2927 /*
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2931 */
2932
2933 if (!task_hot(p, rq->clock, sd) ||
2934 sd->nr_balance_failed > sd->cache_nice_tries) {
2935 #ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(sd, lb_hot_gained[idle]);
2938 schedstat_inc(p, se.nr_forced_migrations);
2939 }
2940 #endif
2941 return 1;
2942 }
2943
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(p, se.nr_failed_migrations_hot);
2946 return 0;
2947 }
2948 return 1;
2949 }
2950
2951 static unsigned long
2952 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953 unsigned long max_load_move, struct sched_domain *sd,
2954 enum cpu_idle_type idle, int *all_pinned,
2955 int *this_best_prio, struct rq_iterator *iterator)
2956 {
2957 int loops = 0, pulled = 0, pinned = 0;
2958 struct task_struct *p;
2959 long rem_load_move = max_load_move;
2960
2961 if (max_load_move == 0)
2962 goto out;
2963
2964 pinned = 1;
2965
2966 /*
2967 * Start the load-balancing iterator:
2968 */
2969 p = iterator->start(iterator->arg);
2970 next:
2971 if (!p || loops++ > sysctl_sched_nr_migrate)
2972 goto out;
2973
2974 if ((p->se.load.weight >> 1) > rem_load_move ||
2975 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976 p = iterator->next(iterator->arg);
2977 goto next;
2978 }
2979
2980 pull_task(busiest, p, this_rq, this_cpu);
2981 pulled++;
2982 rem_load_move -= p->se.load.weight;
2983
2984 /*
2985 * We only want to steal up to the prescribed amount of weighted load.
2986 */
2987 if (rem_load_move > 0) {
2988 if (p->prio < *this_best_prio)
2989 *this_best_prio = p->prio;
2990 p = iterator->next(iterator->arg);
2991 goto next;
2992 }
2993 out:
2994 /*
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2998 */
2999 schedstat_add(sd, lb_gained[idle], pulled);
3000
3001 if (all_pinned)
3002 *all_pinned = pinned;
3003
3004 return max_load_move - rem_load_move;
3005 }
3006
3007 /*
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3011 *
3012 * Called with both runqueues locked.
3013 */
3014 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015 unsigned long max_load_move,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *all_pinned)
3018 {
3019 const struct sched_class *class = sched_class_highest;
3020 unsigned long total_load_moved = 0;
3021 int this_best_prio = this_rq->curr->prio;
3022
3023 do {
3024 total_load_moved +=
3025 class->load_balance(this_rq, this_cpu, busiest,
3026 max_load_move - total_load_moved,
3027 sd, idle, all_pinned, &this_best_prio);
3028 class = class->next;
3029
3030 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031 break;
3032
3033 } while (class && max_load_move > total_load_moved);
3034
3035 return total_load_moved > 0;
3036 }
3037
3038 static int
3039 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040 struct sched_domain *sd, enum cpu_idle_type idle,
3041 struct rq_iterator *iterator)
3042 {
3043 struct task_struct *p = iterator->start(iterator->arg);
3044 int pinned = 0;
3045
3046 while (p) {
3047 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048 pull_task(busiest, p, this_rq, this_cpu);
3049 /*
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3053 */
3054 schedstat_inc(sd, lb_gained[idle]);
3055
3056 return 1;
3057 }
3058 p = iterator->next(iterator->arg);
3059 }
3060
3061 return 0;
3062 }
3063
3064 /*
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3068 *
3069 * Called with both runqueues locked.
3070 */
3071 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle)
3073 {
3074 const struct sched_class *class;
3075
3076 for (class = sched_class_highest; class; class = class->next)
3077 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078 return 1;
3079
3080 return 0;
3081 }
3082
3083 /*
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3087 */
3088 static struct sched_group *
3089 find_busiest_group(struct sched_domain *sd, int this_cpu,
3090 unsigned long *imbalance, enum cpu_idle_type idle,
3091 int *sd_idle, const cpumask_t *cpus, int *balance)
3092 {
3093 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095 unsigned long max_pull;
3096 unsigned long busiest_load_per_task, busiest_nr_running;
3097 unsigned long this_load_per_task, this_nr_running;
3098 int load_idx, group_imb = 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance = 1;
3101 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102 unsigned long min_nr_running = ULONG_MAX;
3103 struct sched_group *group_min = NULL, *group_leader = NULL;
3104 #endif
3105
3106 max_load = this_load = total_load = total_pwr = 0;
3107 busiest_load_per_task = busiest_nr_running = 0;
3108 this_load_per_task = this_nr_running = 0;
3109
3110 if (idle == CPU_NOT_IDLE)
3111 load_idx = sd->busy_idx;
3112 else if (idle == CPU_NEWLY_IDLE)
3113 load_idx = sd->newidle_idx;
3114 else
3115 load_idx = sd->idle_idx;
3116
3117 do {
3118 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119 int local_group;
3120 int i;
3121 int __group_imb = 0;
3122 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123 unsigned long sum_nr_running, sum_weighted_load;
3124 unsigned long sum_avg_load_per_task;
3125 unsigned long avg_load_per_task;
3126
3127 local_group = cpu_isset(this_cpu, group->cpumask);
3128
3129 if (local_group)
3130 balance_cpu = first_cpu(group->cpumask);
3131
3132 /* Tally up the load of all CPUs in the group */
3133 sum_weighted_load = sum_nr_running = avg_load = 0;
3134 sum_avg_load_per_task = avg_load_per_task = 0;
3135
3136 max_cpu_load = 0;
3137 min_cpu_load = ~0UL;
3138
3139 for_each_cpu_mask_nr(i, group->cpumask) {
3140 struct rq *rq;
3141
3142 if (!cpu_isset(i, *cpus))
3143 continue;
3144
3145 rq = cpu_rq(i);
3146
3147 if (*sd_idle && rq->nr_running)
3148 *sd_idle = 0;
3149
3150 /* Bias balancing toward cpus of our domain */
3151 if (local_group) {
3152 if (idle_cpu(i) && !first_idle_cpu) {
3153 first_idle_cpu = 1;
3154 balance_cpu = i;
3155 }
3156
3157 load = target_load(i, load_idx);
3158 } else {
3159 load = source_load(i, load_idx);
3160 if (load > max_cpu_load)
3161 max_cpu_load = load;
3162 if (min_cpu_load > load)
3163 min_cpu_load = load;
3164 }
3165
3166 avg_load += load;
3167 sum_nr_running += rq->nr_running;
3168 sum_weighted_load += weighted_cpuload(i);
3169
3170 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3171 }
3172
3173 /*
3174 * First idle cpu or the first cpu(busiest) in this sched group
3175 * is eligible for doing load balancing at this and above
3176 * domains. In the newly idle case, we will allow all the cpu's
3177 * to do the newly idle load balance.
3178 */
3179 if (idle != CPU_NEWLY_IDLE && local_group &&
3180 balance_cpu != this_cpu && balance) {
3181 *balance = 0;
3182 goto ret;
3183 }
3184
3185 total_load += avg_load;
3186 total_pwr += group->__cpu_power;
3187
3188 /* Adjust by relative CPU power of the group */
3189 avg_load = sg_div_cpu_power(group,
3190 avg_load * SCHED_LOAD_SCALE);
3191
3192
3193 /*
3194 * Consider the group unbalanced when the imbalance is larger
3195 * than the average weight of two tasks.
3196 *
3197 * APZ: with cgroup the avg task weight can vary wildly and
3198 * might not be a suitable number - should we keep a
3199 * normalized nr_running number somewhere that negates
3200 * the hierarchy?
3201 */
3202 avg_load_per_task = sg_div_cpu_power(group,
3203 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3204
3205 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3206 __group_imb = 1;
3207
3208 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3209
3210 if (local_group) {
3211 this_load = avg_load;
3212 this = group;
3213 this_nr_running = sum_nr_running;
3214 this_load_per_task = sum_weighted_load;
3215 } else if (avg_load > max_load &&
3216 (sum_nr_running > group_capacity || __group_imb)) {
3217 max_load = avg_load;
3218 busiest = group;
3219 busiest_nr_running = sum_nr_running;
3220 busiest_load_per_task = sum_weighted_load;
3221 group_imb = __group_imb;
3222 }
3223
3224 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225 /*
3226 * Busy processors will not participate in power savings
3227 * balance.
3228 */
3229 if (idle == CPU_NOT_IDLE ||
3230 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3231 goto group_next;
3232
3233 /*
3234 * If the local group is idle or completely loaded
3235 * no need to do power savings balance at this domain
3236 */
3237 if (local_group && (this_nr_running >= group_capacity ||
3238 !this_nr_running))
3239 power_savings_balance = 0;
3240
3241 /*
3242 * If a group is already running at full capacity or idle,
3243 * don't include that group in power savings calculations
3244 */
3245 if (!power_savings_balance || sum_nr_running >= group_capacity
3246 || !sum_nr_running)
3247 goto group_next;
3248
3249 /*
3250 * Calculate the group which has the least non-idle load.
3251 * This is the group from where we need to pick up the load
3252 * for saving power
3253 */
3254 if ((sum_nr_running < min_nr_running) ||
3255 (sum_nr_running == min_nr_running &&
3256 first_cpu(group->cpumask) <
3257 first_cpu(group_min->cpumask))) {
3258 group_min = group;
3259 min_nr_running = sum_nr_running;
3260 min_load_per_task = sum_weighted_load /
3261 sum_nr_running;
3262 }
3263
3264 /*
3265 * Calculate the group which is almost near its
3266 * capacity but still has some space to pick up some load
3267 * from other group and save more power
3268 */
3269 if (sum_nr_running <= group_capacity - 1) {
3270 if (sum_nr_running > leader_nr_running ||
3271 (sum_nr_running == leader_nr_running &&
3272 first_cpu(group->cpumask) >
3273 first_cpu(group_leader->cpumask))) {
3274 group_leader = group;
3275 leader_nr_running = sum_nr_running;
3276 }
3277 }
3278 group_next:
3279 #endif
3280 group = group->next;
3281 } while (group != sd->groups);
3282
3283 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3284 goto out_balanced;
3285
3286 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3287
3288 if (this_load >= avg_load ||
3289 100*max_load <= sd->imbalance_pct*this_load)
3290 goto out_balanced;
3291
3292 busiest_load_per_task /= busiest_nr_running;
3293 if (group_imb)
3294 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3295
3296 /*
3297 * We're trying to get all the cpus to the average_load, so we don't
3298 * want to push ourselves above the average load, nor do we wish to
3299 * reduce the max loaded cpu below the average load, as either of these
3300 * actions would just result in more rebalancing later, and ping-pong
3301 * tasks around. Thus we look for the minimum possible imbalance.
3302 * Negative imbalances (*we* are more loaded than anyone else) will
3303 * be counted as no imbalance for these purposes -- we can't fix that
3304 * by pulling tasks to us. Be careful of negative numbers as they'll
3305 * appear as very large values with unsigned longs.
3306 */
3307 if (max_load <= busiest_load_per_task)
3308 goto out_balanced;
3309
3310 /*
3311 * In the presence of smp nice balancing, certain scenarios can have
3312 * max load less than avg load(as we skip the groups at or below
3313 * its cpu_power, while calculating max_load..)
3314 */
3315 if (max_load < avg_load) {
3316 *imbalance = 0;
3317 goto small_imbalance;
3318 }
3319
3320 /* Don't want to pull so many tasks that a group would go idle */
3321 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3322
3323 /* How much load to actually move to equalise the imbalance */
3324 *imbalance = min(max_pull * busiest->__cpu_power,
3325 (avg_load - this_load) * this->__cpu_power)
3326 / SCHED_LOAD_SCALE;
3327
3328 /*
3329 * if *imbalance is less than the average load per runnable task
3330 * there is no gaurantee that any tasks will be moved so we'll have
3331 * a think about bumping its value to force at least one task to be
3332 * moved
3333 */
3334 if (*imbalance < busiest_load_per_task) {
3335 unsigned long tmp, pwr_now, pwr_move;
3336 unsigned int imbn;
3337
3338 small_imbalance:
3339 pwr_move = pwr_now = 0;
3340 imbn = 2;
3341 if (this_nr_running) {
3342 this_load_per_task /= this_nr_running;
3343 if (busiest_load_per_task > this_load_per_task)
3344 imbn = 1;
3345 } else
3346 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3347
3348 if (max_load - this_load + busiest_load_per_task >=
3349 busiest_load_per_task * imbn) {
3350 *imbalance = busiest_load_per_task;
3351 return busiest;
3352 }
3353
3354 /*
3355 * OK, we don't have enough imbalance to justify moving tasks,
3356 * however we may be able to increase total CPU power used by
3357 * moving them.
3358 */
3359
3360 pwr_now += busiest->__cpu_power *
3361 min(busiest_load_per_task, max_load);
3362 pwr_now += this->__cpu_power *
3363 min(this_load_per_task, this_load);
3364 pwr_now /= SCHED_LOAD_SCALE;
3365
3366 /* Amount of load we'd subtract */
3367 tmp = sg_div_cpu_power(busiest,
3368 busiest_load_per_task * SCHED_LOAD_SCALE);
3369 if (max_load > tmp)
3370 pwr_move += busiest->__cpu_power *
3371 min(busiest_load_per_task, max_load - tmp);
3372
3373 /* Amount of load we'd add */
3374 if (max_load * busiest->__cpu_power <
3375 busiest_load_per_task * SCHED_LOAD_SCALE)
3376 tmp = sg_div_cpu_power(this,
3377 max_load * busiest->__cpu_power);
3378 else
3379 tmp = sg_div_cpu_power(this,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 pwr_move += this->__cpu_power *
3382 min(this_load_per_task, this_load + tmp);
3383 pwr_move /= SCHED_LOAD_SCALE;
3384
3385 /* Move if we gain throughput */
3386 if (pwr_move > pwr_now)
3387 *imbalance = busiest_load_per_task;
3388 }
3389
3390 return busiest;
3391
3392 out_balanced:
3393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3394 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3395 goto ret;
3396
3397 if (this == group_leader && group_leader != group_min) {
3398 *imbalance = min_load_per_task;
3399 return group_min;
3400 }
3401 #endif
3402 ret:
3403 *imbalance = 0;
3404 return NULL;
3405 }
3406
3407 /*
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409 */
3410 static struct rq *
3411 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412 unsigned long imbalance, const cpumask_t *cpus)
3413 {
3414 struct rq *busiest = NULL, *rq;
3415 unsigned long max_load = 0;
3416 int i;
3417
3418 for_each_cpu_mask_nr(i, group->cpumask) {
3419 unsigned long wl;
3420
3421 if (!cpu_isset(i, *cpus))
3422 continue;
3423
3424 rq = cpu_rq(i);
3425 wl = weighted_cpuload(i);
3426
3427 if (rq->nr_running == 1 && wl > imbalance)
3428 continue;
3429
3430 if (wl > max_load) {
3431 max_load = wl;
3432 busiest = rq;
3433 }
3434 }
3435
3436 return busiest;
3437 }
3438
3439 /*
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3442 */
3443 #define MAX_PINNED_INTERVAL 512
3444
3445 /*
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3448 */
3449 static int load_balance(int this_cpu, struct rq *this_rq,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *balance, cpumask_t *cpus)
3452 {
3453 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454 struct sched_group *group;
3455 unsigned long imbalance;
3456 struct rq *busiest;
3457 unsigned long flags;
3458
3459 cpus_setall(*cpus);
3460
3461 /*
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3466 */
3467 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469 sd_idle = 1;
3470
3471 schedstat_inc(sd, lb_count[idle]);
3472
3473 redo:
3474 update_shares(sd);
3475 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476 cpus, balance);
3477
3478 if (*balance == 0)
3479 goto out_balanced;
3480
3481 if (!group) {
3482 schedstat_inc(sd, lb_nobusyg[idle]);
3483 goto out_balanced;
3484 }
3485
3486 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487 if (!busiest) {
3488 schedstat_inc(sd, lb_nobusyq[idle]);
3489 goto out_balanced;
3490 }
3491
3492 BUG_ON(busiest == this_rq);
3493
3494 schedstat_add(sd, lb_imbalance[idle], imbalance);
3495
3496 ld_moved = 0;
3497 if (busiest->nr_running > 1) {
3498 /*
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3503 */
3504 local_irq_save(flags);
3505 double_rq_lock(this_rq, busiest);
3506 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507 imbalance, sd, idle, &all_pinned);
3508 double_rq_unlock(this_rq, busiest);
3509 local_irq_restore(flags);
3510
3511 /*
3512 * some other cpu did the load balance for us.
3513 */
3514 if (ld_moved && this_cpu != smp_processor_id())
3515 resched_cpu(this_cpu);
3516
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned)) {
3519 cpu_clear(cpu_of(busiest), *cpus);
3520 if (!cpus_empty(*cpus))
3521 goto redo;
3522 goto out_balanced;
3523 }
3524 }
3525
3526 if (!ld_moved) {
3527 schedstat_inc(sd, lb_failed[idle]);
3528 sd->nr_balance_failed++;
3529
3530 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3531
3532 spin_lock_irqsave(&busiest->lock, flags);
3533
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3536 */
3537 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3538 spin_unlock_irqrestore(&busiest->lock, flags);
3539 all_pinned = 1;
3540 goto out_one_pinned;
3541 }
3542
3543 if (!busiest->active_balance) {
3544 busiest->active_balance = 1;
3545 busiest->push_cpu = this_cpu;
3546 active_balance = 1;
3547 }
3548 spin_unlock_irqrestore(&busiest->lock, flags);
3549 if (active_balance)
3550 wake_up_process(busiest->migration_thread);
3551
3552 /*
3553 * We've kicked active balancing, reset the failure
3554 * counter.
3555 */
3556 sd->nr_balance_failed = sd->cache_nice_tries+1;
3557 }
3558 } else
3559 sd->nr_balance_failed = 0;
3560
3561 if (likely(!active_balance)) {
3562 /* We were unbalanced, so reset the balancing interval */
3563 sd->balance_interval = sd->min_interval;
3564 } else {
3565 /*
3566 * If we've begun active balancing, start to back off. This
3567 * case may not be covered by the all_pinned logic if there
3568 * is only 1 task on the busy runqueue (because we don't call
3569 * move_tasks).
3570 */
3571 if (sd->balance_interval < sd->max_interval)
3572 sd->balance_interval *= 2;
3573 }
3574
3575 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3576 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3577 ld_moved = -1;
3578
3579 goto out;
3580
3581 out_balanced:
3582 schedstat_inc(sd, lb_balanced[idle]);
3583
3584 sd->nr_balance_failed = 0;
3585
3586 out_one_pinned:
3587 /* tune up the balancing interval */
3588 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3589 (sd->balance_interval < sd->max_interval))
3590 sd->balance_interval *= 2;
3591
3592 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 ld_moved = -1;
3595 else
3596 ld_moved = 0;
3597 out:
3598 if (ld_moved)
3599 update_shares(sd);
3600 return ld_moved;
3601 }
3602
3603 /*
3604 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3605 * tasks if there is an imbalance.
3606 *
3607 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3608 * this_rq is locked.
3609 */
3610 static int
3611 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3612 cpumask_t *cpus)
3613 {
3614 struct sched_group *group;
3615 struct rq *busiest = NULL;
3616 unsigned long imbalance;
3617 int ld_moved = 0;
3618 int sd_idle = 0;
3619 int all_pinned = 0;
3620
3621 cpus_setall(*cpus);
3622
3623 /*
3624 * When power savings policy is enabled for the parent domain, idle
3625 * sibling can pick up load irrespective of busy siblings. In this case,
3626 * let the state of idle sibling percolate up as IDLE, instead of
3627 * portraying it as CPU_NOT_IDLE.
3628 */
3629 if (sd->flags & SD_SHARE_CPUPOWER &&
3630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3631 sd_idle = 1;
3632
3633 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3634 redo:
3635 update_shares_locked(this_rq, sd);
3636 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3637 &sd_idle, cpus, NULL);
3638 if (!group) {
3639 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3640 goto out_balanced;
3641 }
3642
3643 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3644 if (!busiest) {
3645 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3646 goto out_balanced;
3647 }
3648
3649 BUG_ON(busiest == this_rq);
3650
3651 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3652
3653 ld_moved = 0;
3654 if (busiest->nr_running > 1) {
3655 /* Attempt to move tasks */
3656 double_lock_balance(this_rq, busiest);
3657 /* this_rq->clock is already updated */
3658 update_rq_clock(busiest);
3659 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3660 imbalance, sd, CPU_NEWLY_IDLE,
3661 &all_pinned);
3662 double_unlock_balance(this_rq, busiest);
3663
3664 if (unlikely(all_pinned)) {
3665 cpu_clear(cpu_of(busiest), *cpus);
3666 if (!cpus_empty(*cpus))
3667 goto redo;
3668 }
3669 }
3670
3671 if (!ld_moved) {
3672 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 return -1;
3676 } else
3677 sd->nr_balance_failed = 0;
3678
3679 update_shares_locked(this_rq, sd);
3680 return ld_moved;
3681
3682 out_balanced:
3683 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3686 return -1;
3687 sd->nr_balance_failed = 0;
3688
3689 return 0;
3690 }
3691
3692 /*
3693 * idle_balance is called by schedule() if this_cpu is about to become
3694 * idle. Attempts to pull tasks from other CPUs.
3695 */
3696 static void idle_balance(int this_cpu, struct rq *this_rq)
3697 {
3698 struct sched_domain *sd;
3699 int pulled_task = -1;
3700 unsigned long next_balance = jiffies + HZ;
3701 cpumask_t tmpmask;
3702
3703 for_each_domain(this_cpu, sd) {
3704 unsigned long interval;
3705
3706 if (!(sd->flags & SD_LOAD_BALANCE))
3707 continue;
3708
3709 if (sd->flags & SD_BALANCE_NEWIDLE)
3710 /* If we've pulled tasks over stop searching: */
3711 pulled_task = load_balance_newidle(this_cpu, this_rq,
3712 sd, &tmpmask);
3713
3714 interval = msecs_to_jiffies(sd->balance_interval);
3715 if (time_after(next_balance, sd->last_balance + interval))
3716 next_balance = sd->last_balance + interval;
3717 if (pulled_task)
3718 break;
3719 }
3720 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3721 /*
3722 * We are going idle. next_balance may be set based on
3723 * a busy processor. So reset next_balance.
3724 */
3725 this_rq->next_balance = next_balance;
3726 }
3727 }
3728
3729 /*
3730 * active_load_balance is run by migration threads. It pushes running tasks
3731 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3732 * running on each physical CPU where possible, and avoids physical /
3733 * logical imbalances.
3734 *
3735 * Called with busiest_rq locked.
3736 */
3737 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3738 {
3739 int target_cpu = busiest_rq->push_cpu;
3740 struct sched_domain *sd;
3741 struct rq *target_rq;
3742
3743 /* Is there any task to move? */
3744 if (busiest_rq->nr_running <= 1)
3745 return;
3746
3747 target_rq = cpu_rq(target_cpu);
3748
3749 /*
3750 * This condition is "impossible", if it occurs
3751 * we need to fix it. Originally reported by
3752 * Bjorn Helgaas on a 128-cpu setup.
3753 */
3754 BUG_ON(busiest_rq == target_rq);
3755
3756 /* move a task from busiest_rq to target_rq */
3757 double_lock_balance(busiest_rq, target_rq);
3758 update_rq_clock(busiest_rq);
3759 update_rq_clock(target_rq);
3760
3761 /* Search for an sd spanning us and the target CPU. */
3762 for_each_domain(target_cpu, sd) {
3763 if ((sd->flags & SD_LOAD_BALANCE) &&
3764 cpu_isset(busiest_cpu, sd->span))
3765 break;
3766 }
3767
3768 if (likely(sd)) {
3769 schedstat_inc(sd, alb_count);
3770
3771 if (move_one_task(target_rq, target_cpu, busiest_rq,
3772 sd, CPU_IDLE))
3773 schedstat_inc(sd, alb_pushed);
3774 else
3775 schedstat_inc(sd, alb_failed);
3776 }
3777 double_unlock_balance(busiest_rq, target_rq);
3778 }
3779
3780 #ifdef CONFIG_NO_HZ
3781 static struct {
3782 atomic_t load_balancer;
3783 cpumask_t cpu_mask;
3784 } nohz ____cacheline_aligned = {
3785 .load_balancer = ATOMIC_INIT(-1),
3786 .cpu_mask = CPU_MASK_NONE,
3787 };
3788
3789 /*
3790 * This routine will try to nominate the ilb (idle load balancing)
3791 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3792 * load balancing on behalf of all those cpus. If all the cpus in the system
3793 * go into this tickless mode, then there will be no ilb owner (as there is
3794 * no need for one) and all the cpus will sleep till the next wakeup event
3795 * arrives...
3796 *
3797 * For the ilb owner, tick is not stopped. And this tick will be used
3798 * for idle load balancing. ilb owner will still be part of
3799 * nohz.cpu_mask..
3800 *
3801 * While stopping the tick, this cpu will become the ilb owner if there
3802 * is no other owner. And will be the owner till that cpu becomes busy
3803 * or if all cpus in the system stop their ticks at which point
3804 * there is no need for ilb owner.
3805 *
3806 * When the ilb owner becomes busy, it nominates another owner, during the
3807 * next busy scheduler_tick()
3808 */
3809 int select_nohz_load_balancer(int stop_tick)
3810 {
3811 int cpu = smp_processor_id();
3812
3813 if (stop_tick) {
3814 cpu_set(cpu, nohz.cpu_mask);
3815 cpu_rq(cpu)->in_nohz_recently = 1;
3816
3817 /*
3818 * If we are going offline and still the leader, give up!
3819 */
3820 if (!cpu_active(cpu) &&
3821 atomic_read(&nohz.load_balancer) == cpu) {
3822 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3823 BUG();
3824 return 0;
3825 }
3826
3827 /* time for ilb owner also to sleep */
3828 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 if (atomic_read(&nohz.load_balancer) == cpu)
3830 atomic_set(&nohz.load_balancer, -1);
3831 return 0;
3832 }
3833
3834 if (atomic_read(&nohz.load_balancer) == -1) {
3835 /* make me the ilb owner */
3836 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3837 return 1;
3838 } else if (atomic_read(&nohz.load_balancer) == cpu)
3839 return 1;
3840 } else {
3841 if (!cpu_isset(cpu, nohz.cpu_mask))
3842 return 0;
3843
3844 cpu_clear(cpu, nohz.cpu_mask);
3845
3846 if (atomic_read(&nohz.load_balancer) == cpu)
3847 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3848 BUG();
3849 }
3850 return 0;
3851 }
3852 #endif
3853
3854 static DEFINE_SPINLOCK(balancing);
3855
3856 /*
3857 * It checks each scheduling domain to see if it is due to be balanced,
3858 * and initiates a balancing operation if so.
3859 *
3860 * Balancing parameters are set up in arch_init_sched_domains.
3861 */
3862 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3863 {
3864 int balance = 1;
3865 struct rq *rq = cpu_rq(cpu);
3866 unsigned long interval;
3867 struct sched_domain *sd;
3868 /* Earliest time when we have to do rebalance again */
3869 unsigned long next_balance = jiffies + 60*HZ;
3870 int update_next_balance = 0;
3871 int need_serialize;
3872 cpumask_t tmp;
3873
3874 for_each_domain(cpu, sd) {
3875 if (!(sd->flags & SD_LOAD_BALANCE))
3876 continue;
3877
3878 interval = sd->balance_interval;
3879 if (idle != CPU_IDLE)
3880 interval *= sd->busy_factor;
3881
3882 /* scale ms to jiffies */
3883 interval = msecs_to_jiffies(interval);
3884 if (unlikely(!interval))
3885 interval = 1;
3886 if (interval > HZ*NR_CPUS/10)
3887 interval = HZ*NR_CPUS/10;
3888
3889 need_serialize = sd->flags & SD_SERIALIZE;
3890
3891 if (need_serialize) {
3892 if (!spin_trylock(&balancing))
3893 goto out;
3894 }
3895
3896 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3897 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3898 /*
3899 * We've pulled tasks over so either we're no
3900 * longer idle, or one of our SMT siblings is
3901 * not idle.
3902 */
3903 idle = CPU_NOT_IDLE;
3904 }
3905 sd->last_balance = jiffies;
3906 }
3907 if (need_serialize)
3908 spin_unlock(&balancing);
3909 out:
3910 if (time_after(next_balance, sd->last_balance + interval)) {
3911 next_balance = sd->last_balance + interval;
3912 update_next_balance = 1;
3913 }
3914
3915 /*
3916 * Stop the load balance at this level. There is another
3917 * CPU in our sched group which is doing load balancing more
3918 * actively.
3919 */
3920 if (!balance)
3921 break;
3922 }
3923
3924 /*
3925 * next_balance will be updated only when there is a need.
3926 * When the cpu is attached to null domain for ex, it will not be
3927 * updated.
3928 */
3929 if (likely(update_next_balance))
3930 rq->next_balance = next_balance;
3931 }
3932
3933 /*
3934 * run_rebalance_domains is triggered when needed from the scheduler tick.
3935 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3936 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3937 */
3938 static void run_rebalance_domains(struct softirq_action *h)
3939 {
3940 int this_cpu = smp_processor_id();
3941 struct rq *this_rq = cpu_rq(this_cpu);
3942 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3943 CPU_IDLE : CPU_NOT_IDLE;
3944
3945 rebalance_domains(this_cpu, idle);
3946
3947 #ifdef CONFIG_NO_HZ
3948 /*
3949 * If this cpu is the owner for idle load balancing, then do the
3950 * balancing on behalf of the other idle cpus whose ticks are
3951 * stopped.
3952 */
3953 if (this_rq->idle_at_tick &&
3954 atomic_read(&nohz.load_balancer) == this_cpu) {
3955 cpumask_t cpus = nohz.cpu_mask;
3956 struct rq *rq;
3957 int balance_cpu;
3958
3959 cpu_clear(this_cpu, cpus);
3960 for_each_cpu_mask_nr(balance_cpu, cpus) {
3961 /*
3962 * If this cpu gets work to do, stop the load balancing
3963 * work being done for other cpus. Next load
3964 * balancing owner will pick it up.
3965 */
3966 if (need_resched())
3967 break;
3968
3969 rebalance_domains(balance_cpu, CPU_IDLE);
3970
3971 rq = cpu_rq(balance_cpu);
3972 if (time_after(this_rq->next_balance, rq->next_balance))
3973 this_rq->next_balance = rq->next_balance;
3974 }
3975 }
3976 #endif
3977 }
3978
3979 /*
3980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3981 *
3982 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3983 * idle load balancing owner or decide to stop the periodic load balancing,
3984 * if the whole system is idle.
3985 */
3986 static inline void trigger_load_balance(struct rq *rq, int cpu)
3987 {
3988 #ifdef CONFIG_NO_HZ
3989 /*
3990 * If we were in the nohz mode recently and busy at the current
3991 * scheduler tick, then check if we need to nominate new idle
3992 * load balancer.
3993 */
3994 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3995 rq->in_nohz_recently = 0;
3996
3997 if (atomic_read(&nohz.load_balancer) == cpu) {
3998 cpu_clear(cpu, nohz.cpu_mask);
3999 atomic_set(&nohz.load_balancer, -1);
4000 }
4001
4002 if (atomic_read(&nohz.load_balancer) == -1) {
4003 /*
4004 * simple selection for now: Nominate the
4005 * first cpu in the nohz list to be the next
4006 * ilb owner.
4007 *
4008 * TBD: Traverse the sched domains and nominate
4009 * the nearest cpu in the nohz.cpu_mask.
4010 */
4011 int ilb = first_cpu(nohz.cpu_mask);
4012
4013 if (ilb < nr_cpu_ids)
4014 resched_cpu(ilb);
4015 }
4016 }
4017
4018 /*
4019 * If this cpu is idle and doing idle load balancing for all the
4020 * cpus with ticks stopped, is it time for that to stop?
4021 */
4022 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4023 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4024 resched_cpu(cpu);
4025 return;
4026 }
4027
4028 /*
4029 * If this cpu is idle and the idle load balancing is done by
4030 * someone else, then no need raise the SCHED_SOFTIRQ
4031 */
4032 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4033 cpu_isset(cpu, nohz.cpu_mask))
4034 return;
4035 #endif
4036 if (time_after_eq(jiffies, rq->next_balance))
4037 raise_softirq(SCHED_SOFTIRQ);
4038 }
4039
4040 #else /* CONFIG_SMP */
4041
4042 /*
4043 * on UP we do not need to balance between CPUs:
4044 */
4045 static inline void idle_balance(int cpu, struct rq *rq)
4046 {
4047 }
4048
4049 #endif
4050
4051 DEFINE_PER_CPU(struct kernel_stat, kstat);
4052
4053 EXPORT_PER_CPU_SYMBOL(kstat);
4054
4055 /*
4056 * Return any ns on the sched_clock that have not yet been banked in
4057 * @p in case that task is currently running.
4058 */
4059 unsigned long long task_delta_exec(struct task_struct *p)
4060 {
4061 unsigned long flags;
4062 struct rq *rq;
4063 u64 ns = 0;
4064
4065 rq = task_rq_lock(p, &flags);
4066
4067 if (task_current(rq, p)) {
4068 u64 delta_exec;
4069
4070 update_rq_clock(rq);
4071 delta_exec = rq->clock - p->se.exec_start;
4072 if ((s64)delta_exec > 0)
4073 ns = delta_exec;
4074 }
4075
4076 task_rq_unlock(rq, &flags);
4077
4078 return ns;
4079 }
4080
4081 /*
4082 * Account user cpu time to a process.
4083 * @p: the process that the cpu time gets accounted to
4084 * @cputime: the cpu time spent in user space since the last update
4085 */
4086 void account_user_time(struct task_struct *p, cputime_t cputime)
4087 {
4088 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4089 cputime64_t tmp;
4090
4091 p->utime = cputime_add(p->utime, cputime);
4092 account_group_user_time(p, cputime);
4093
4094 /* Add user time to cpustat. */
4095 tmp = cputime_to_cputime64(cputime);
4096 if (TASK_NICE(p) > 0)
4097 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4098 else
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 /* Account for user time used */
4101 acct_update_integrals(p);
4102 }
4103
4104 /*
4105 * Account guest cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in virtual machine since the last update
4108 */
4109 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 {
4111 cputime64_t tmp;
4112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4113
4114 tmp = cputime_to_cputime64(cputime);
4115
4116 p->utime = cputime_add(p->utime, cputime);
4117 account_group_user_time(p, cputime);
4118 p->gtime = cputime_add(p->gtime, cputime);
4119
4120 cpustat->user = cputime64_add(cpustat->user, tmp);
4121 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4122 }
4123
4124 /*
4125 * Account scaled user cpu time to a process.
4126 * @p: the process that the cpu time gets accounted to
4127 * @cputime: the cpu time spent in user space since the last update
4128 */
4129 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4130 {
4131 p->utimescaled = cputime_add(p->utimescaled, cputime);
4132 }
4133
4134 /*
4135 * Account system cpu time to a process.
4136 * @p: the process that the cpu time gets accounted to
4137 * @hardirq_offset: the offset to subtract from hardirq_count()
4138 * @cputime: the cpu time spent in kernel space since the last update
4139 */
4140 void account_system_time(struct task_struct *p, int hardirq_offset,
4141 cputime_t cputime)
4142 {
4143 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4144 struct rq *rq = this_rq();
4145 cputime64_t tmp;
4146
4147 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4148 account_guest_time(p, cputime);
4149 return;
4150 }
4151
4152 p->stime = cputime_add(p->stime, cputime);
4153 account_group_system_time(p, cputime);
4154
4155 /* Add system time to cpustat. */
4156 tmp = cputime_to_cputime64(cputime);
4157 if (hardirq_count() - hardirq_offset)
4158 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4159 else if (softirq_count())
4160 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4161 else if (p != rq->idle)
4162 cpustat->system = cputime64_add(cpustat->system, tmp);
4163 else if (atomic_read(&rq->nr_iowait) > 0)
4164 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4165 else
4166 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4167 /* Account for system time used */
4168 acct_update_integrals(p);
4169 }
4170
4171 /*
4172 * Account scaled system cpu time to a process.
4173 * @p: the process that the cpu time gets accounted to
4174 * @hardirq_offset: the offset to subtract from hardirq_count()
4175 * @cputime: the cpu time spent in kernel space since the last update
4176 */
4177 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4178 {
4179 p->stimescaled = cputime_add(p->stimescaled, cputime);
4180 }
4181
4182 /*
4183 * Account for involuntary wait time.
4184 * @p: the process from which the cpu time has been stolen
4185 * @steal: the cpu time spent in involuntary wait
4186 */
4187 void account_steal_time(struct task_struct *p, cputime_t steal)
4188 {
4189 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4190 cputime64_t tmp = cputime_to_cputime64(steal);
4191 struct rq *rq = this_rq();
4192
4193 if (p == rq->idle) {
4194 p->stime = cputime_add(p->stime, steal);
4195 account_group_system_time(p, steal);
4196 if (atomic_read(&rq->nr_iowait) > 0)
4197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4198 else
4199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4200 } else
4201 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4202 }
4203
4204 /*
4205 * Use precise platform statistics if available:
4206 */
4207 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4208 cputime_t task_utime(struct task_struct *p)
4209 {
4210 return p->utime;
4211 }
4212
4213 cputime_t task_stime(struct task_struct *p)
4214 {
4215 return p->stime;
4216 }
4217 #else
4218 cputime_t task_utime(struct task_struct *p)
4219 {
4220 clock_t utime = cputime_to_clock_t(p->utime),
4221 total = utime + cputime_to_clock_t(p->stime);
4222 u64 temp;
4223
4224 /*
4225 * Use CFS's precise accounting:
4226 */
4227 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4228
4229 if (total) {
4230 temp *= utime;
4231 do_div(temp, total);
4232 }
4233 utime = (clock_t)temp;
4234
4235 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4236 return p->prev_utime;
4237 }
4238
4239 cputime_t task_stime(struct task_struct *p)
4240 {
4241 clock_t stime;
4242
4243 /*
4244 * Use CFS's precise accounting. (we subtract utime from
4245 * the total, to make sure the total observed by userspace
4246 * grows monotonically - apps rely on that):
4247 */
4248 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4249 cputime_to_clock_t(task_utime(p));
4250
4251 if (stime >= 0)
4252 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4253
4254 return p->prev_stime;
4255 }
4256 #endif
4257
4258 inline cputime_t task_gtime(struct task_struct *p)
4259 {
4260 return p->gtime;
4261 }
4262
4263 /*
4264 * This function gets called by the timer code, with HZ frequency.
4265 * We call it with interrupts disabled.
4266 *
4267 * It also gets called by the fork code, when changing the parent's
4268 * timeslices.
4269 */
4270 void scheduler_tick(void)
4271 {
4272 int cpu = smp_processor_id();
4273 struct rq *rq = cpu_rq(cpu);
4274 struct task_struct *curr = rq->curr;
4275
4276 sched_clock_tick();
4277
4278 spin_lock(&rq->lock);
4279 update_rq_clock(rq);
4280 update_cpu_load(rq);
4281 curr->sched_class->task_tick(rq, curr, 0);
4282 spin_unlock(&rq->lock);
4283
4284 #ifdef CONFIG_SMP
4285 rq->idle_at_tick = idle_cpu(cpu);
4286 trigger_load_balance(rq, cpu);
4287 #endif
4288 }
4289
4290 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291 defined(CONFIG_PREEMPT_TRACER))
4292
4293 static inline unsigned long get_parent_ip(unsigned long addr)
4294 {
4295 if (in_lock_functions(addr)) {
4296 addr = CALLER_ADDR2;
4297 if (in_lock_functions(addr))
4298 addr = CALLER_ADDR3;
4299 }
4300 return addr;
4301 }
4302
4303 void __kprobes add_preempt_count(int val)
4304 {
4305 #ifdef CONFIG_DEBUG_PREEMPT
4306 /*
4307 * Underflow?
4308 */
4309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4310 return;
4311 #endif
4312 preempt_count() += val;
4313 #ifdef CONFIG_DEBUG_PREEMPT
4314 /*
4315 * Spinlock count overflowing soon?
4316 */
4317 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4318 PREEMPT_MASK - 10);
4319 #endif
4320 if (preempt_count() == val)
4321 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4322 }
4323 EXPORT_SYMBOL(add_preempt_count);
4324
4325 void __kprobes sub_preempt_count(int val)
4326 {
4327 #ifdef CONFIG_DEBUG_PREEMPT
4328 /*
4329 * Underflow?
4330 */
4331 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4332 return;
4333 /*
4334 * Is the spinlock portion underflowing?
4335 */
4336 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4337 !(preempt_count() & PREEMPT_MASK)))
4338 return;
4339 #endif
4340
4341 if (preempt_count() == val)
4342 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4343 preempt_count() -= val;
4344 }
4345 EXPORT_SYMBOL(sub_preempt_count);
4346
4347 #endif
4348
4349 /*
4350 * Print scheduling while atomic bug:
4351 */
4352 static noinline void __schedule_bug(struct task_struct *prev)
4353 {
4354 struct pt_regs *regs = get_irq_regs();
4355
4356 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4357 prev->comm, prev->pid, preempt_count());
4358
4359 debug_show_held_locks(prev);
4360 print_modules();
4361 if (irqs_disabled())
4362 print_irqtrace_events(prev);
4363
4364 if (regs)
4365 show_regs(regs);
4366 else
4367 dump_stack();
4368 }
4369
4370 /*
4371 * Various schedule()-time debugging checks and statistics:
4372 */
4373 static inline void schedule_debug(struct task_struct *prev)
4374 {
4375 /*
4376 * Test if we are atomic. Since do_exit() needs to call into
4377 * schedule() atomically, we ignore that path for now.
4378 * Otherwise, whine if we are scheduling when we should not be.
4379 */
4380 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4381 __schedule_bug(prev);
4382
4383 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4384
4385 schedstat_inc(this_rq(), sched_count);
4386 #ifdef CONFIG_SCHEDSTATS
4387 if (unlikely(prev->lock_depth >= 0)) {
4388 schedstat_inc(this_rq(), bkl_count);
4389 schedstat_inc(prev, sched_info.bkl_count);
4390 }
4391 #endif
4392 }
4393
4394 /*
4395 * Pick up the highest-prio task:
4396 */
4397 static inline struct task_struct *
4398 pick_next_task(struct rq *rq, struct task_struct *prev)
4399 {
4400 const struct sched_class *class;
4401 struct task_struct *p;
4402
4403 /*
4404 * Optimization: we know that if all tasks are in
4405 * the fair class we can call that function directly:
4406 */
4407 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4408 p = fair_sched_class.pick_next_task(rq);
4409 if (likely(p))
4410 return p;
4411 }
4412
4413 class = sched_class_highest;
4414 for ( ; ; ) {
4415 p = class->pick_next_task(rq);
4416 if (p)
4417 return p;
4418 /*
4419 * Will never be NULL as the idle class always
4420 * returns a non-NULL p:
4421 */
4422 class = class->next;
4423 }
4424 }
4425
4426 /*
4427 * schedule() is the main scheduler function.
4428 */
4429 asmlinkage void __sched schedule(void)
4430 {
4431 struct task_struct *prev, *next;
4432 unsigned long *switch_count;
4433 struct rq *rq;
4434 int cpu;
4435
4436 need_resched:
4437 preempt_disable();
4438 cpu = smp_processor_id();
4439 rq = cpu_rq(cpu);
4440 rcu_qsctr_inc(cpu);
4441 prev = rq->curr;
4442 switch_count = &prev->nivcsw;
4443
4444 release_kernel_lock(prev);
4445 need_resched_nonpreemptible:
4446
4447 schedule_debug(prev);
4448
4449 if (sched_feat(HRTICK))
4450 hrtick_clear(rq);
4451
4452 spin_lock_irq(&rq->lock);
4453 update_rq_clock(rq);
4454 clear_tsk_need_resched(prev);
4455
4456 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4457 if (unlikely(signal_pending_state(prev->state, prev)))
4458 prev->state = TASK_RUNNING;
4459 else
4460 deactivate_task(rq, prev, 1);
4461 switch_count = &prev->nvcsw;
4462 }
4463
4464 #ifdef CONFIG_SMP
4465 if (prev->sched_class->pre_schedule)
4466 prev->sched_class->pre_schedule(rq, prev);
4467 #endif
4468
4469 if (unlikely(!rq->nr_running))
4470 idle_balance(cpu, rq);
4471
4472 prev->sched_class->put_prev_task(rq, prev);
4473 next = pick_next_task(rq, prev);
4474
4475 if (likely(prev != next)) {
4476 sched_info_switch(prev, next);
4477
4478 rq->nr_switches++;
4479 rq->curr = next;
4480 ++*switch_count;
4481
4482 context_switch(rq, prev, next); /* unlocks the rq */
4483 /*
4484 * the context switch might have flipped the stack from under
4485 * us, hence refresh the local variables.
4486 */
4487 cpu = smp_processor_id();
4488 rq = cpu_rq(cpu);
4489 } else
4490 spin_unlock_irq(&rq->lock);
4491
4492 if (unlikely(reacquire_kernel_lock(current) < 0))
4493 goto need_resched_nonpreemptible;
4494
4495 preempt_enable_no_resched();
4496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4497 goto need_resched;
4498 }
4499 EXPORT_SYMBOL(schedule);
4500
4501 #ifdef CONFIG_PREEMPT
4502 /*
4503 * this is the entry point to schedule() from in-kernel preemption
4504 * off of preempt_enable. Kernel preemptions off return from interrupt
4505 * occur there and call schedule directly.
4506 */
4507 asmlinkage void __sched preempt_schedule(void)
4508 {
4509 struct thread_info *ti = current_thread_info();
4510
4511 /*
4512 * If there is a non-zero preempt_count or interrupts are disabled,
4513 * we do not want to preempt the current task. Just return..
4514 */
4515 if (likely(ti->preempt_count || irqs_disabled()))
4516 return;
4517
4518 do {
4519 add_preempt_count(PREEMPT_ACTIVE);
4520 schedule();
4521 sub_preempt_count(PREEMPT_ACTIVE);
4522
4523 /*
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4526 */
4527 barrier();
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4529 }
4530 EXPORT_SYMBOL(preempt_schedule);
4531
4532 /*
4533 * this is the entry point to schedule() from kernel preemption
4534 * off of irq context.
4535 * Note, that this is called and return with irqs disabled. This will
4536 * protect us against recursive calling from irq.
4537 */
4538 asmlinkage void __sched preempt_schedule_irq(void)
4539 {
4540 struct thread_info *ti = current_thread_info();
4541
4542 /* Catch callers which need to be fixed */
4543 BUG_ON(ti->preempt_count || !irqs_disabled());
4544
4545 do {
4546 add_preempt_count(PREEMPT_ACTIVE);
4547 local_irq_enable();
4548 schedule();
4549 local_irq_disable();
4550 sub_preempt_count(PREEMPT_ACTIVE);
4551
4552 /*
4553 * Check again in case we missed a preemption opportunity
4554 * between schedule and now.
4555 */
4556 barrier();
4557 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4558 }
4559
4560 #endif /* CONFIG_PREEMPT */
4561
4562 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4563 void *key)
4564 {
4565 return try_to_wake_up(curr->private, mode, sync);
4566 }
4567 EXPORT_SYMBOL(default_wake_function);
4568
4569 /*
4570 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4571 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4572 * number) then we wake all the non-exclusive tasks and one exclusive task.
4573 *
4574 * There are circumstances in which we can try to wake a task which has already
4575 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4576 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4577 */
4578 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4579 int nr_exclusive, int sync, void *key)
4580 {
4581 wait_queue_t *curr, *next;
4582
4583 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4584 unsigned flags = curr->flags;
4585
4586 if (curr->func(curr, mode, sync, key) &&
4587 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4588 break;
4589 }
4590 }
4591
4592 /**
4593 * __wake_up - wake up threads blocked on a waitqueue.
4594 * @q: the waitqueue
4595 * @mode: which threads
4596 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597 * @key: is directly passed to the wakeup function
4598 */
4599 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4600 int nr_exclusive, void *key)
4601 {
4602 unsigned long flags;
4603
4604 spin_lock_irqsave(&q->lock, flags);
4605 __wake_up_common(q, mode, nr_exclusive, 0, key);
4606 spin_unlock_irqrestore(&q->lock, flags);
4607 }
4608 EXPORT_SYMBOL(__wake_up);
4609
4610 /*
4611 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4612 */
4613 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4614 {
4615 __wake_up_common(q, mode, 1, 0, NULL);
4616 }
4617
4618 /**
4619 * __wake_up_sync - wake up threads blocked on a waitqueue.
4620 * @q: the waitqueue
4621 * @mode: which threads
4622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4623 *
4624 * The sync wakeup differs that the waker knows that it will schedule
4625 * away soon, so while the target thread will be woken up, it will not
4626 * be migrated to another CPU - ie. the two threads are 'synchronized'
4627 * with each other. This can prevent needless bouncing between CPUs.
4628 *
4629 * On UP it can prevent extra preemption.
4630 */
4631 void
4632 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4633 {
4634 unsigned long flags;
4635 int sync = 1;
4636
4637 if (unlikely(!q))
4638 return;
4639
4640 if (unlikely(!nr_exclusive))
4641 sync = 0;
4642
4643 spin_lock_irqsave(&q->lock, flags);
4644 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4645 spin_unlock_irqrestore(&q->lock, flags);
4646 }
4647 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4648
4649 /**
4650 * complete: - signals a single thread waiting on this completion
4651 * @x: holds the state of this particular completion
4652 *
4653 * This will wake up a single thread waiting on this completion. Threads will be
4654 * awakened in the same order in which they were queued.
4655 *
4656 * See also complete_all(), wait_for_completion() and related routines.
4657 */
4658 void complete(struct completion *x)
4659 {
4660 unsigned long flags;
4661
4662 spin_lock_irqsave(&x->wait.lock, flags);
4663 x->done++;
4664 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4665 spin_unlock_irqrestore(&x->wait.lock, flags);
4666 }
4667 EXPORT_SYMBOL(complete);
4668
4669 /**
4670 * complete_all: - signals all threads waiting on this completion
4671 * @x: holds the state of this particular completion
4672 *
4673 * This will wake up all threads waiting on this particular completion event.
4674 */
4675 void complete_all(struct completion *x)
4676 {
4677 unsigned long flags;
4678
4679 spin_lock_irqsave(&x->wait.lock, flags);
4680 x->done += UINT_MAX/2;
4681 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4682 spin_unlock_irqrestore(&x->wait.lock, flags);
4683 }
4684 EXPORT_SYMBOL(complete_all);
4685
4686 static inline long __sched
4687 do_wait_for_common(struct completion *x, long timeout, int state)
4688 {
4689 if (!x->done) {
4690 DECLARE_WAITQUEUE(wait, current);
4691
4692 wait.flags |= WQ_FLAG_EXCLUSIVE;
4693 __add_wait_queue_tail(&x->wait, &wait);
4694 do {
4695 if (signal_pending_state(state, current)) {
4696 timeout = -ERESTARTSYS;
4697 break;
4698 }
4699 __set_current_state(state);
4700 spin_unlock_irq(&x->wait.lock);
4701 timeout = schedule_timeout(timeout);
4702 spin_lock_irq(&x->wait.lock);
4703 } while (!x->done && timeout);
4704 __remove_wait_queue(&x->wait, &wait);
4705 if (!x->done)
4706 return timeout;
4707 }
4708 x->done--;
4709 return timeout ?: 1;
4710 }
4711
4712 static long __sched
4713 wait_for_common(struct completion *x, long timeout, int state)
4714 {
4715 might_sleep();
4716
4717 spin_lock_irq(&x->wait.lock);
4718 timeout = do_wait_for_common(x, timeout, state);
4719 spin_unlock_irq(&x->wait.lock);
4720 return timeout;
4721 }
4722
4723 /**
4724 * wait_for_completion: - waits for completion of a task
4725 * @x: holds the state of this particular completion
4726 *
4727 * This waits to be signaled for completion of a specific task. It is NOT
4728 * interruptible and there is no timeout.
4729 *
4730 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4731 * and interrupt capability. Also see complete().
4732 */
4733 void __sched wait_for_completion(struct completion *x)
4734 {
4735 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4736 }
4737 EXPORT_SYMBOL(wait_for_completion);
4738
4739 /**
4740 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4741 * @x: holds the state of this particular completion
4742 * @timeout: timeout value in jiffies
4743 *
4744 * This waits for either a completion of a specific task to be signaled or for a
4745 * specified timeout to expire. The timeout is in jiffies. It is not
4746 * interruptible.
4747 */
4748 unsigned long __sched
4749 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4750 {
4751 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4752 }
4753 EXPORT_SYMBOL(wait_for_completion_timeout);
4754
4755 /**
4756 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4757 * @x: holds the state of this particular completion
4758 *
4759 * This waits for completion of a specific task to be signaled. It is
4760 * interruptible.
4761 */
4762 int __sched wait_for_completion_interruptible(struct completion *x)
4763 {
4764 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4765 if (t == -ERESTARTSYS)
4766 return t;
4767 return 0;
4768 }
4769 EXPORT_SYMBOL(wait_for_completion_interruptible);
4770
4771 /**
4772 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4773 * @x: holds the state of this particular completion
4774 * @timeout: timeout value in jiffies
4775 *
4776 * This waits for either a completion of a specific task to be signaled or for a
4777 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4778 */
4779 unsigned long __sched
4780 wait_for_completion_interruptible_timeout(struct completion *x,
4781 unsigned long timeout)
4782 {
4783 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4784 }
4785 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4786
4787 /**
4788 * wait_for_completion_killable: - waits for completion of a task (killable)
4789 * @x: holds the state of this particular completion
4790 *
4791 * This waits to be signaled for completion of a specific task. It can be
4792 * interrupted by a kill signal.
4793 */
4794 int __sched wait_for_completion_killable(struct completion *x)
4795 {
4796 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4797 if (t == -ERESTARTSYS)
4798 return t;
4799 return 0;
4800 }
4801 EXPORT_SYMBOL(wait_for_completion_killable);
4802
4803 /**
4804 * try_wait_for_completion - try to decrement a completion without blocking
4805 * @x: completion structure
4806 *
4807 * Returns: 0 if a decrement cannot be done without blocking
4808 * 1 if a decrement succeeded.
4809 *
4810 * If a completion is being used as a counting completion,
4811 * attempt to decrement the counter without blocking. This
4812 * enables us to avoid waiting if the resource the completion
4813 * is protecting is not available.
4814 */
4815 bool try_wait_for_completion(struct completion *x)
4816 {
4817 int ret = 1;
4818
4819 spin_lock_irq(&x->wait.lock);
4820 if (!x->done)
4821 ret = 0;
4822 else
4823 x->done--;
4824 spin_unlock_irq(&x->wait.lock);
4825 return ret;
4826 }
4827 EXPORT_SYMBOL(try_wait_for_completion);
4828
4829 /**
4830 * completion_done - Test to see if a completion has any waiters
4831 * @x: completion structure
4832 *
4833 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4834 * 1 if there are no waiters.
4835 *
4836 */
4837 bool completion_done(struct completion *x)
4838 {
4839 int ret = 1;
4840
4841 spin_lock_irq(&x->wait.lock);
4842 if (!x->done)
4843 ret = 0;
4844 spin_unlock_irq(&x->wait.lock);
4845 return ret;
4846 }
4847 EXPORT_SYMBOL(completion_done);
4848
4849 static long __sched
4850 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4851 {
4852 unsigned long flags;
4853 wait_queue_t wait;
4854
4855 init_waitqueue_entry(&wait, current);
4856
4857 __set_current_state(state);
4858
4859 spin_lock_irqsave(&q->lock, flags);
4860 __add_wait_queue(q, &wait);
4861 spin_unlock(&q->lock);
4862 timeout = schedule_timeout(timeout);
4863 spin_lock_irq(&q->lock);
4864 __remove_wait_queue(q, &wait);
4865 spin_unlock_irqrestore(&q->lock, flags);
4866
4867 return timeout;
4868 }
4869
4870 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4871 {
4872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4873 }
4874 EXPORT_SYMBOL(interruptible_sleep_on);
4875
4876 long __sched
4877 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4878 {
4879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4880 }
4881 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4882
4883 void __sched sleep_on(wait_queue_head_t *q)
4884 {
4885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4886 }
4887 EXPORT_SYMBOL(sleep_on);
4888
4889 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4890 {
4891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4892 }
4893 EXPORT_SYMBOL(sleep_on_timeout);
4894
4895 #ifdef CONFIG_RT_MUTEXES
4896
4897 /*
4898 * rt_mutex_setprio - set the current priority of a task
4899 * @p: task
4900 * @prio: prio value (kernel-internal form)
4901 *
4902 * This function changes the 'effective' priority of a task. It does
4903 * not touch ->normal_prio like __setscheduler().
4904 *
4905 * Used by the rt_mutex code to implement priority inheritance logic.
4906 */
4907 void rt_mutex_setprio(struct task_struct *p, int prio)
4908 {
4909 unsigned long flags;
4910 int oldprio, on_rq, running;
4911 struct rq *rq;
4912 const struct sched_class *prev_class = p->sched_class;
4913
4914 BUG_ON(prio < 0 || prio > MAX_PRIO);
4915
4916 rq = task_rq_lock(p, &flags);
4917 update_rq_clock(rq);
4918
4919 oldprio = p->prio;
4920 on_rq = p->se.on_rq;
4921 running = task_current(rq, p);
4922 if (on_rq)
4923 dequeue_task(rq, p, 0);
4924 if (running)
4925 p->sched_class->put_prev_task(rq, p);
4926
4927 if (rt_prio(prio))
4928 p->sched_class = &rt_sched_class;
4929 else
4930 p->sched_class = &fair_sched_class;
4931
4932 p->prio = prio;
4933
4934 if (running)
4935 p->sched_class->set_curr_task(rq);
4936 if (on_rq) {
4937 enqueue_task(rq, p, 0);
4938
4939 check_class_changed(rq, p, prev_class, oldprio, running);
4940 }
4941 task_rq_unlock(rq, &flags);
4942 }
4943
4944 #endif
4945
4946 void set_user_nice(struct task_struct *p, long nice)
4947 {
4948 int old_prio, delta, on_rq;
4949 unsigned long flags;
4950 struct rq *rq;
4951
4952 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4953 return;
4954 /*
4955 * We have to be careful, if called from sys_setpriority(),
4956 * the task might be in the middle of scheduling on another CPU.
4957 */
4958 rq = task_rq_lock(p, &flags);
4959 update_rq_clock(rq);
4960 /*
4961 * The RT priorities are set via sched_setscheduler(), but we still
4962 * allow the 'normal' nice value to be set - but as expected
4963 * it wont have any effect on scheduling until the task is
4964 * SCHED_FIFO/SCHED_RR:
4965 */
4966 if (task_has_rt_policy(p)) {
4967 p->static_prio = NICE_TO_PRIO(nice);
4968 goto out_unlock;
4969 }
4970 on_rq = p->se.on_rq;
4971 if (on_rq)
4972 dequeue_task(rq, p, 0);
4973
4974 p->static_prio = NICE_TO_PRIO(nice);
4975 set_load_weight(p);
4976 old_prio = p->prio;
4977 p->prio = effective_prio(p);
4978 delta = p->prio - old_prio;
4979
4980 if (on_rq) {
4981 enqueue_task(rq, p, 0);
4982 /*
4983 * If the task increased its priority or is running and
4984 * lowered its priority, then reschedule its CPU:
4985 */
4986 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4987 resched_task(rq->curr);
4988 }
4989 out_unlock:
4990 task_rq_unlock(rq, &flags);
4991 }
4992 EXPORT_SYMBOL(set_user_nice);
4993
4994 /*
4995 * can_nice - check if a task can reduce its nice value
4996 * @p: task
4997 * @nice: nice value
4998 */
4999 int can_nice(const struct task_struct *p, const int nice)
5000 {
5001 /* convert nice value [19,-20] to rlimit style value [1,40] */
5002 int nice_rlim = 20 - nice;
5003
5004 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5005 capable(CAP_SYS_NICE));
5006 }
5007
5008 #ifdef __ARCH_WANT_SYS_NICE
5009
5010 /*
5011 * sys_nice - change the priority of the current process.
5012 * @increment: priority increment
5013 *
5014 * sys_setpriority is a more generic, but much slower function that
5015 * does similar things.
5016 */
5017 asmlinkage long sys_nice(int increment)
5018 {
5019 long nice, retval;
5020
5021 /*
5022 * Setpriority might change our priority at the same moment.
5023 * We don't have to worry. Conceptually one call occurs first
5024 * and we have a single winner.
5025 */
5026 if (increment < -40)
5027 increment = -40;
5028 if (increment > 40)
5029 increment = 40;
5030
5031 nice = PRIO_TO_NICE(current->static_prio) + increment;
5032 if (nice < -20)
5033 nice = -20;
5034 if (nice > 19)
5035 nice = 19;
5036
5037 if (increment < 0 && !can_nice(current, nice))
5038 return -EPERM;
5039
5040 retval = security_task_setnice(current, nice);
5041 if (retval)
5042 return retval;
5043
5044 set_user_nice(current, nice);
5045 return 0;
5046 }
5047
5048 #endif
5049
5050 /**
5051 * task_prio - return the priority value of a given task.
5052 * @p: the task in question.
5053 *
5054 * This is the priority value as seen by users in /proc.
5055 * RT tasks are offset by -200. Normal tasks are centered
5056 * around 0, value goes from -16 to +15.
5057 */
5058 int task_prio(const struct task_struct *p)
5059 {
5060 return p->prio - MAX_RT_PRIO;
5061 }
5062
5063 /**
5064 * task_nice - return the nice value of a given task.
5065 * @p: the task in question.
5066 */
5067 int task_nice(const struct task_struct *p)
5068 {
5069 return TASK_NICE(p);
5070 }
5071 EXPORT_SYMBOL(task_nice);
5072
5073 /**
5074 * idle_cpu - is a given cpu idle currently?
5075 * @cpu: the processor in question.
5076 */
5077 int idle_cpu(int cpu)
5078 {
5079 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5080 }
5081
5082 /**
5083 * idle_task - return the idle task for a given cpu.
5084 * @cpu: the processor in question.
5085 */
5086 struct task_struct *idle_task(int cpu)
5087 {
5088 return cpu_rq(cpu)->idle;
5089 }
5090
5091 /**
5092 * find_process_by_pid - find a process with a matching PID value.
5093 * @pid: the pid in question.
5094 */
5095 static struct task_struct *find_process_by_pid(pid_t pid)
5096 {
5097 return pid ? find_task_by_vpid(pid) : current;
5098 }
5099
5100 /* Actually do priority change: must hold rq lock. */
5101 static void
5102 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5103 {
5104 BUG_ON(p->se.on_rq);
5105
5106 p->policy = policy;
5107 switch (p->policy) {
5108 case SCHED_NORMAL:
5109 case SCHED_BATCH:
5110 case SCHED_IDLE:
5111 p->sched_class = &fair_sched_class;
5112 break;
5113 case SCHED_FIFO:
5114 case SCHED_RR:
5115 p->sched_class = &rt_sched_class;
5116 break;
5117 }
5118
5119 p->rt_priority = prio;
5120 p->normal_prio = normal_prio(p);
5121 /* we are holding p->pi_lock already */
5122 p->prio = rt_mutex_getprio(p);
5123 set_load_weight(p);
5124 }
5125
5126 static int __sched_setscheduler(struct task_struct *p, int policy,
5127 struct sched_param *param, bool user)
5128 {
5129 int retval, oldprio, oldpolicy = -1, on_rq, running;
5130 unsigned long flags;
5131 const struct sched_class *prev_class = p->sched_class;
5132 struct rq *rq;
5133
5134 /* may grab non-irq protected spin_locks */
5135 BUG_ON(in_interrupt());
5136 recheck:
5137 /* double check policy once rq lock held */
5138 if (policy < 0)
5139 policy = oldpolicy = p->policy;
5140 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5141 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5142 policy != SCHED_IDLE)
5143 return -EINVAL;
5144 /*
5145 * Valid priorities for SCHED_FIFO and SCHED_RR are
5146 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5147 * SCHED_BATCH and SCHED_IDLE is 0.
5148 */
5149 if (param->sched_priority < 0 ||
5150 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5151 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5152 return -EINVAL;
5153 if (rt_policy(policy) != (param->sched_priority != 0))
5154 return -EINVAL;
5155
5156 /*
5157 * Allow unprivileged RT tasks to decrease priority:
5158 */
5159 if (user && !capable(CAP_SYS_NICE)) {
5160 if (rt_policy(policy)) {
5161 unsigned long rlim_rtprio;
5162
5163 if (!lock_task_sighand(p, &flags))
5164 return -ESRCH;
5165 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5166 unlock_task_sighand(p, &flags);
5167
5168 /* can't set/change the rt policy */
5169 if (policy != p->policy && !rlim_rtprio)
5170 return -EPERM;
5171
5172 /* can't increase priority */
5173 if (param->sched_priority > p->rt_priority &&
5174 param->sched_priority > rlim_rtprio)
5175 return -EPERM;
5176 }
5177 /*
5178 * Like positive nice levels, dont allow tasks to
5179 * move out of SCHED_IDLE either:
5180 */
5181 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5182 return -EPERM;
5183
5184 /* can't change other user's priorities */
5185 if ((current->euid != p->euid) &&
5186 (current->euid != p->uid))
5187 return -EPERM;
5188 }
5189
5190 if (user) {
5191 #ifdef CONFIG_RT_GROUP_SCHED
5192 /*
5193 * Do not allow realtime tasks into groups that have no runtime
5194 * assigned.
5195 */
5196 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5197 task_group(p)->rt_bandwidth.rt_runtime == 0)
5198 return -EPERM;
5199 #endif
5200
5201 retval = security_task_setscheduler(p, policy, param);
5202 if (retval)
5203 return retval;
5204 }
5205
5206 /*
5207 * make sure no PI-waiters arrive (or leave) while we are
5208 * changing the priority of the task:
5209 */
5210 spin_lock_irqsave(&p->pi_lock, flags);
5211 /*
5212 * To be able to change p->policy safely, the apropriate
5213 * runqueue lock must be held.
5214 */
5215 rq = __task_rq_lock(p);
5216 /* recheck policy now with rq lock held */
5217 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5218 policy = oldpolicy = -1;
5219 __task_rq_unlock(rq);
5220 spin_unlock_irqrestore(&p->pi_lock, flags);
5221 goto recheck;
5222 }
5223 update_rq_clock(rq);
5224 on_rq = p->se.on_rq;
5225 running = task_current(rq, p);
5226 if (on_rq)
5227 deactivate_task(rq, p, 0);
5228 if (running)
5229 p->sched_class->put_prev_task(rq, p);
5230
5231 oldprio = p->prio;
5232 __setscheduler(rq, p, policy, param->sched_priority);
5233
5234 if (running)
5235 p->sched_class->set_curr_task(rq);
5236 if (on_rq) {
5237 activate_task(rq, p, 0);
5238
5239 check_class_changed(rq, p, prev_class, oldprio, running);
5240 }
5241 __task_rq_unlock(rq);
5242 spin_unlock_irqrestore(&p->pi_lock, flags);
5243
5244 rt_mutex_adjust_pi(p);
5245
5246 return 0;
5247 }
5248
5249 /**
5250 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5251 * @p: the task in question.
5252 * @policy: new policy.
5253 * @param: structure containing the new RT priority.
5254 *
5255 * NOTE that the task may be already dead.
5256 */
5257 int sched_setscheduler(struct task_struct *p, int policy,
5258 struct sched_param *param)
5259 {
5260 return __sched_setscheduler(p, policy, param, true);
5261 }
5262 EXPORT_SYMBOL_GPL(sched_setscheduler);
5263
5264 /**
5265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5269 *
5270 * Just like sched_setscheduler, only don't bother checking if the
5271 * current context has permission. For example, this is needed in
5272 * stop_machine(): we create temporary high priority worker threads,
5273 * but our caller might not have that capability.
5274 */
5275 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5276 struct sched_param *param)
5277 {
5278 return __sched_setscheduler(p, policy, param, false);
5279 }
5280
5281 static int
5282 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5283 {
5284 struct sched_param lparam;
5285 struct task_struct *p;
5286 int retval;
5287
5288 if (!param || pid < 0)
5289 return -EINVAL;
5290 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5291 return -EFAULT;
5292
5293 rcu_read_lock();
5294 retval = -ESRCH;
5295 p = find_process_by_pid(pid);
5296 if (p != NULL)
5297 retval = sched_setscheduler(p, policy, &lparam);
5298 rcu_read_unlock();
5299
5300 return retval;
5301 }
5302
5303 /**
5304 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5305 * @pid: the pid in question.
5306 * @policy: new policy.
5307 * @param: structure containing the new RT priority.
5308 */
5309 asmlinkage long
5310 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5311 {
5312 /* negative values for policy are not valid */
5313 if (policy < 0)
5314 return -EINVAL;
5315
5316 return do_sched_setscheduler(pid, policy, param);
5317 }
5318
5319 /**
5320 * sys_sched_setparam - set/change the RT priority of a thread
5321 * @pid: the pid in question.
5322 * @param: structure containing the new RT priority.
5323 */
5324 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5325 {
5326 return do_sched_setscheduler(pid, -1, param);
5327 }
5328
5329 /**
5330 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5331 * @pid: the pid in question.
5332 */
5333 asmlinkage long sys_sched_getscheduler(pid_t pid)
5334 {
5335 struct task_struct *p;
5336 int retval;
5337
5338 if (pid < 0)
5339 return -EINVAL;
5340
5341 retval = -ESRCH;
5342 read_lock(&tasklist_lock);
5343 p = find_process_by_pid(pid);
5344 if (p) {
5345 retval = security_task_getscheduler(p);
5346 if (!retval)
5347 retval = p->policy;
5348 }
5349 read_unlock(&tasklist_lock);
5350 return retval;
5351 }
5352
5353 /**
5354 * sys_sched_getscheduler - get the RT priority of a thread
5355 * @pid: the pid in question.
5356 * @param: structure containing the RT priority.
5357 */
5358 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5359 {
5360 struct sched_param lp;
5361 struct task_struct *p;
5362 int retval;
5363
5364 if (!param || pid < 0)
5365 return -EINVAL;
5366
5367 read_lock(&tasklist_lock);
5368 p = find_process_by_pid(pid);
5369 retval = -ESRCH;
5370 if (!p)
5371 goto out_unlock;
5372
5373 retval = security_task_getscheduler(p);
5374 if (retval)
5375 goto out_unlock;
5376
5377 lp.sched_priority = p->rt_priority;
5378 read_unlock(&tasklist_lock);
5379
5380 /*
5381 * This one might sleep, we cannot do it with a spinlock held ...
5382 */
5383 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5384
5385 return retval;
5386
5387 out_unlock:
5388 read_unlock(&tasklist_lock);
5389 return retval;
5390 }
5391
5392 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5393 {
5394 cpumask_t cpus_allowed;
5395 cpumask_t new_mask = *in_mask;
5396 struct task_struct *p;
5397 int retval;
5398
5399 get_online_cpus();
5400 read_lock(&tasklist_lock);
5401
5402 p = find_process_by_pid(pid);
5403 if (!p) {
5404 read_unlock(&tasklist_lock);
5405 put_online_cpus();
5406 return -ESRCH;
5407 }
5408
5409 /*
5410 * It is not safe to call set_cpus_allowed with the
5411 * tasklist_lock held. We will bump the task_struct's
5412 * usage count and then drop tasklist_lock.
5413 */
5414 get_task_struct(p);
5415 read_unlock(&tasklist_lock);
5416
5417 retval = -EPERM;
5418 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5419 !capable(CAP_SYS_NICE))
5420 goto out_unlock;
5421
5422 retval = security_task_setscheduler(p, 0, NULL);
5423 if (retval)
5424 goto out_unlock;
5425
5426 cpuset_cpus_allowed(p, &cpus_allowed);
5427 cpus_and(new_mask, new_mask, cpus_allowed);
5428 again:
5429 retval = set_cpus_allowed_ptr(p, &new_mask);
5430
5431 if (!retval) {
5432 cpuset_cpus_allowed(p, &cpus_allowed);
5433 if (!cpus_subset(new_mask, cpus_allowed)) {
5434 /*
5435 * We must have raced with a concurrent cpuset
5436 * update. Just reset the cpus_allowed to the
5437 * cpuset's cpus_allowed
5438 */
5439 new_mask = cpus_allowed;
5440 goto again;
5441 }
5442 }
5443 out_unlock:
5444 put_task_struct(p);
5445 put_online_cpus();
5446 return retval;
5447 }
5448
5449 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5450 cpumask_t *new_mask)
5451 {
5452 if (len < sizeof(cpumask_t)) {
5453 memset(new_mask, 0, sizeof(cpumask_t));
5454 } else if (len > sizeof(cpumask_t)) {
5455 len = sizeof(cpumask_t);
5456 }
5457 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5458 }
5459
5460 /**
5461 * sys_sched_setaffinity - set the cpu affinity of a process
5462 * @pid: pid of the process
5463 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5464 * @user_mask_ptr: user-space pointer to the new cpu mask
5465 */
5466 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5467 unsigned long __user *user_mask_ptr)
5468 {
5469 cpumask_t new_mask;
5470 int retval;
5471
5472 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5473 if (retval)
5474 return retval;
5475
5476 return sched_setaffinity(pid, &new_mask);
5477 }
5478
5479 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5480 {
5481 struct task_struct *p;
5482 int retval;
5483
5484 get_online_cpus();
5485 read_lock(&tasklist_lock);
5486
5487 retval = -ESRCH;
5488 p = find_process_by_pid(pid);
5489 if (!p)
5490 goto out_unlock;
5491
5492 retval = security_task_getscheduler(p);
5493 if (retval)
5494 goto out_unlock;
5495
5496 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5497
5498 out_unlock:
5499 read_unlock(&tasklist_lock);
5500 put_online_cpus();
5501
5502 return retval;
5503 }
5504
5505 /**
5506 * sys_sched_getaffinity - get the cpu affinity of a process
5507 * @pid: pid of the process
5508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5509 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5510 */
5511 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5512 unsigned long __user *user_mask_ptr)
5513 {
5514 int ret;
5515 cpumask_t mask;
5516
5517 if (len < sizeof(cpumask_t))
5518 return -EINVAL;
5519
5520 ret = sched_getaffinity(pid, &mask);
5521 if (ret < 0)
5522 return ret;
5523
5524 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5525 return -EFAULT;
5526
5527 return sizeof(cpumask_t);
5528 }
5529
5530 /**
5531 * sys_sched_yield - yield the current processor to other threads.
5532 *
5533 * This function yields the current CPU to other tasks. If there are no
5534 * other threads running on this CPU then this function will return.
5535 */
5536 asmlinkage long sys_sched_yield(void)
5537 {
5538 struct rq *rq = this_rq_lock();
5539
5540 schedstat_inc(rq, yld_count);
5541 current->sched_class->yield_task(rq);
5542
5543 /*
5544 * Since we are going to call schedule() anyway, there's
5545 * no need to preempt or enable interrupts:
5546 */
5547 __release(rq->lock);
5548 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5549 _raw_spin_unlock(&rq->lock);
5550 preempt_enable_no_resched();
5551
5552 schedule();
5553
5554 return 0;
5555 }
5556
5557 static void __cond_resched(void)
5558 {
5559 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5560 __might_sleep(__FILE__, __LINE__);
5561 #endif
5562 /*
5563 * The BKS might be reacquired before we have dropped
5564 * PREEMPT_ACTIVE, which could trigger a second
5565 * cond_resched() call.
5566 */
5567 do {
5568 add_preempt_count(PREEMPT_ACTIVE);
5569 schedule();
5570 sub_preempt_count(PREEMPT_ACTIVE);
5571 } while (need_resched());
5572 }
5573
5574 int __sched _cond_resched(void)
5575 {
5576 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5577 system_state == SYSTEM_RUNNING) {
5578 __cond_resched();
5579 return 1;
5580 }
5581 return 0;
5582 }
5583 EXPORT_SYMBOL(_cond_resched);
5584
5585 /*
5586 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5587 * call schedule, and on return reacquire the lock.
5588 *
5589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5590 * operations here to prevent schedule() from being called twice (once via
5591 * spin_unlock(), once by hand).
5592 */
5593 int cond_resched_lock(spinlock_t *lock)
5594 {
5595 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5596 int ret = 0;
5597
5598 if (spin_needbreak(lock) || resched) {
5599 spin_unlock(lock);
5600 if (resched && need_resched())
5601 __cond_resched();
5602 else
5603 cpu_relax();
5604 ret = 1;
5605 spin_lock(lock);
5606 }
5607 return ret;
5608 }
5609 EXPORT_SYMBOL(cond_resched_lock);
5610
5611 int __sched cond_resched_softirq(void)
5612 {
5613 BUG_ON(!in_softirq());
5614
5615 if (need_resched() && system_state == SYSTEM_RUNNING) {
5616 local_bh_enable();
5617 __cond_resched();
5618 local_bh_disable();
5619 return 1;
5620 }
5621 return 0;
5622 }
5623 EXPORT_SYMBOL(cond_resched_softirq);
5624
5625 /**
5626 * yield - yield the current processor to other threads.
5627 *
5628 * This is a shortcut for kernel-space yielding - it marks the
5629 * thread runnable and calls sys_sched_yield().
5630 */
5631 void __sched yield(void)
5632 {
5633 set_current_state(TASK_RUNNING);
5634 sys_sched_yield();
5635 }
5636 EXPORT_SYMBOL(yield);
5637
5638 /*
5639 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5640 * that process accounting knows that this is a task in IO wait state.
5641 *
5642 * But don't do that if it is a deliberate, throttling IO wait (this task
5643 * has set its backing_dev_info: the queue against which it should throttle)
5644 */
5645 void __sched io_schedule(void)
5646 {
5647 struct rq *rq = &__raw_get_cpu_var(runqueues);
5648
5649 delayacct_blkio_start();
5650 atomic_inc(&rq->nr_iowait);
5651 schedule();
5652 atomic_dec(&rq->nr_iowait);
5653 delayacct_blkio_end();
5654 }
5655 EXPORT_SYMBOL(io_schedule);
5656
5657 long __sched io_schedule_timeout(long timeout)
5658 {
5659 struct rq *rq = &__raw_get_cpu_var(runqueues);
5660 long ret;
5661
5662 delayacct_blkio_start();
5663 atomic_inc(&rq->nr_iowait);
5664 ret = schedule_timeout(timeout);
5665 atomic_dec(&rq->nr_iowait);
5666 delayacct_blkio_end();
5667 return ret;
5668 }
5669
5670 /**
5671 * sys_sched_get_priority_max - return maximum RT priority.
5672 * @policy: scheduling class.
5673 *
5674 * this syscall returns the maximum rt_priority that can be used
5675 * by a given scheduling class.
5676 */
5677 asmlinkage long sys_sched_get_priority_max(int policy)
5678 {
5679 int ret = -EINVAL;
5680
5681 switch (policy) {
5682 case SCHED_FIFO:
5683 case SCHED_RR:
5684 ret = MAX_USER_RT_PRIO-1;
5685 break;
5686 case SCHED_NORMAL:
5687 case SCHED_BATCH:
5688 case SCHED_IDLE:
5689 ret = 0;
5690 break;
5691 }
5692 return ret;
5693 }
5694
5695 /**
5696 * sys_sched_get_priority_min - return minimum RT priority.
5697 * @policy: scheduling class.
5698 *
5699 * this syscall returns the minimum rt_priority that can be used
5700 * by a given scheduling class.
5701 */
5702 asmlinkage long sys_sched_get_priority_min(int policy)
5703 {
5704 int ret = -EINVAL;
5705
5706 switch (policy) {
5707 case SCHED_FIFO:
5708 case SCHED_RR:
5709 ret = 1;
5710 break;
5711 case SCHED_NORMAL:
5712 case SCHED_BATCH:
5713 case SCHED_IDLE:
5714 ret = 0;
5715 }
5716 return ret;
5717 }
5718
5719 /**
5720 * sys_sched_rr_get_interval - return the default timeslice of a process.
5721 * @pid: pid of the process.
5722 * @interval: userspace pointer to the timeslice value.
5723 *
5724 * this syscall writes the default timeslice value of a given process
5725 * into the user-space timespec buffer. A value of '0' means infinity.
5726 */
5727 asmlinkage
5728 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5729 {
5730 struct task_struct *p;
5731 unsigned int time_slice;
5732 int retval;
5733 struct timespec t;
5734
5735 if (pid < 0)
5736 return -EINVAL;
5737
5738 retval = -ESRCH;
5739 read_lock(&tasklist_lock);
5740 p = find_process_by_pid(pid);
5741 if (!p)
5742 goto out_unlock;
5743
5744 retval = security_task_getscheduler(p);
5745 if (retval)
5746 goto out_unlock;
5747
5748 /*
5749 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5750 * tasks that are on an otherwise idle runqueue:
5751 */
5752 time_slice = 0;
5753 if (p->policy == SCHED_RR) {
5754 time_slice = DEF_TIMESLICE;
5755 } else if (p->policy != SCHED_FIFO) {
5756 struct sched_entity *se = &p->se;
5757 unsigned long flags;
5758 struct rq *rq;
5759
5760 rq = task_rq_lock(p, &flags);
5761 if (rq->cfs.load.weight)
5762 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5763 task_rq_unlock(rq, &flags);
5764 }
5765 read_unlock(&tasklist_lock);
5766 jiffies_to_timespec(time_slice, &t);
5767 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5768 return retval;
5769
5770 out_unlock:
5771 read_unlock(&tasklist_lock);
5772 return retval;
5773 }
5774
5775 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5776
5777 void sched_show_task(struct task_struct *p)
5778 {
5779 unsigned long free = 0;
5780 unsigned state;
5781
5782 state = p->state ? __ffs(p->state) + 1 : 0;
5783 printk(KERN_INFO "%-13.13s %c", p->comm,
5784 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5785 #if BITS_PER_LONG == 32
5786 if (state == TASK_RUNNING)
5787 printk(KERN_CONT " running ");
5788 else
5789 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5790 #else
5791 if (state == TASK_RUNNING)
5792 printk(KERN_CONT " running task ");
5793 else
5794 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5795 #endif
5796 #ifdef CONFIG_DEBUG_STACK_USAGE
5797 {
5798 unsigned long *n = end_of_stack(p);
5799 while (!*n)
5800 n++;
5801 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5802 }
5803 #endif
5804 printk(KERN_CONT "%5lu %5d %6d\n", free,
5805 task_pid_nr(p), task_pid_nr(p->real_parent));
5806
5807 show_stack(p, NULL);
5808 }
5809
5810 void show_state_filter(unsigned long state_filter)
5811 {
5812 struct task_struct *g, *p;
5813
5814 #if BITS_PER_LONG == 32
5815 printk(KERN_INFO
5816 " task PC stack pid father\n");
5817 #else
5818 printk(KERN_INFO
5819 " task PC stack pid father\n");
5820 #endif
5821 read_lock(&tasklist_lock);
5822 do_each_thread(g, p) {
5823 /*
5824 * reset the NMI-timeout, listing all files on a slow
5825 * console might take alot of time:
5826 */
5827 touch_nmi_watchdog();
5828 if (!state_filter || (p->state & state_filter))
5829 sched_show_task(p);
5830 } while_each_thread(g, p);
5831
5832 touch_all_softlockup_watchdogs();
5833
5834 #ifdef CONFIG_SCHED_DEBUG
5835 sysrq_sched_debug_show();
5836 #endif
5837 read_unlock(&tasklist_lock);
5838 /*
5839 * Only show locks if all tasks are dumped:
5840 */
5841 if (state_filter == -1)
5842 debug_show_all_locks();
5843 }
5844
5845 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5846 {
5847 idle->sched_class = &idle_sched_class;
5848 }
5849
5850 /**
5851 * init_idle - set up an idle thread for a given CPU
5852 * @idle: task in question
5853 * @cpu: cpu the idle task belongs to
5854 *
5855 * NOTE: this function does not set the idle thread's NEED_RESCHED
5856 * flag, to make booting more robust.
5857 */
5858 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5859 {
5860 struct rq *rq = cpu_rq(cpu);
5861 unsigned long flags;
5862
5863 __sched_fork(idle);
5864 idle->se.exec_start = sched_clock();
5865
5866 idle->prio = idle->normal_prio = MAX_PRIO;
5867 idle->cpus_allowed = cpumask_of_cpu(cpu);
5868 __set_task_cpu(idle, cpu);
5869
5870 spin_lock_irqsave(&rq->lock, flags);
5871 rq->curr = rq->idle = idle;
5872 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5873 idle->oncpu = 1;
5874 #endif
5875 spin_unlock_irqrestore(&rq->lock, flags);
5876
5877 /* Set the preempt count _outside_ the spinlocks! */
5878 #if defined(CONFIG_PREEMPT)
5879 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5880 #else
5881 task_thread_info(idle)->preempt_count = 0;
5882 #endif
5883 /*
5884 * The idle tasks have their own, simple scheduling class:
5885 */
5886 idle->sched_class = &idle_sched_class;
5887 }
5888
5889 /*
5890 * In a system that switches off the HZ timer nohz_cpu_mask
5891 * indicates which cpus entered this state. This is used
5892 * in the rcu update to wait only for active cpus. For system
5893 * which do not switch off the HZ timer nohz_cpu_mask should
5894 * always be CPU_MASK_NONE.
5895 */
5896 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5897
5898 /*
5899 * Increase the granularity value when there are more CPUs,
5900 * because with more CPUs the 'effective latency' as visible
5901 * to users decreases. But the relationship is not linear,
5902 * so pick a second-best guess by going with the log2 of the
5903 * number of CPUs.
5904 *
5905 * This idea comes from the SD scheduler of Con Kolivas:
5906 */
5907 static inline void sched_init_granularity(void)
5908 {
5909 unsigned int factor = 1 + ilog2(num_online_cpus());
5910 const unsigned long limit = 200000000;
5911
5912 sysctl_sched_min_granularity *= factor;
5913 if (sysctl_sched_min_granularity > limit)
5914 sysctl_sched_min_granularity = limit;
5915
5916 sysctl_sched_latency *= factor;
5917 if (sysctl_sched_latency > limit)
5918 sysctl_sched_latency = limit;
5919
5920 sysctl_sched_wakeup_granularity *= factor;
5921
5922 sysctl_sched_shares_ratelimit *= factor;
5923 }
5924
5925 #ifdef CONFIG_SMP
5926 /*
5927 * This is how migration works:
5928 *
5929 * 1) we queue a struct migration_req structure in the source CPU's
5930 * runqueue and wake up that CPU's migration thread.
5931 * 2) we down() the locked semaphore => thread blocks.
5932 * 3) migration thread wakes up (implicitly it forces the migrated
5933 * thread off the CPU)
5934 * 4) it gets the migration request and checks whether the migrated
5935 * task is still in the wrong runqueue.
5936 * 5) if it's in the wrong runqueue then the migration thread removes
5937 * it and puts it into the right queue.
5938 * 6) migration thread up()s the semaphore.
5939 * 7) we wake up and the migration is done.
5940 */
5941
5942 /*
5943 * Change a given task's CPU affinity. Migrate the thread to a
5944 * proper CPU and schedule it away if the CPU it's executing on
5945 * is removed from the allowed bitmask.
5946 *
5947 * NOTE: the caller must have a valid reference to the task, the
5948 * task must not exit() & deallocate itself prematurely. The
5949 * call is not atomic; no spinlocks may be held.
5950 */
5951 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5952 {
5953 struct migration_req req;
5954 unsigned long flags;
5955 struct rq *rq;
5956 int ret = 0;
5957
5958 rq = task_rq_lock(p, &flags);
5959 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5960 ret = -EINVAL;
5961 goto out;
5962 }
5963
5964 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5965 !cpus_equal(p->cpus_allowed, *new_mask))) {
5966 ret = -EINVAL;
5967 goto out;
5968 }
5969
5970 if (p->sched_class->set_cpus_allowed)
5971 p->sched_class->set_cpus_allowed(p, new_mask);
5972 else {
5973 p->cpus_allowed = *new_mask;
5974 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5975 }
5976
5977 /* Can the task run on the task's current CPU? If so, we're done */
5978 if (cpu_isset(task_cpu(p), *new_mask))
5979 goto out;
5980
5981 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5982 /* Need help from migration thread: drop lock and wait. */
5983 task_rq_unlock(rq, &flags);
5984 wake_up_process(rq->migration_thread);
5985 wait_for_completion(&req.done);
5986 tlb_migrate_finish(p->mm);
5987 return 0;
5988 }
5989 out:
5990 task_rq_unlock(rq, &flags);
5991
5992 return ret;
5993 }
5994 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5995
5996 /*
5997 * Move (not current) task off this cpu, onto dest cpu. We're doing
5998 * this because either it can't run here any more (set_cpus_allowed()
5999 * away from this CPU, or CPU going down), or because we're
6000 * attempting to rebalance this task on exec (sched_exec).
6001 *
6002 * So we race with normal scheduler movements, but that's OK, as long
6003 * as the task is no longer on this CPU.
6004 *
6005 * Returns non-zero if task was successfully migrated.
6006 */
6007 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6008 {
6009 struct rq *rq_dest, *rq_src;
6010 int ret = 0, on_rq;
6011
6012 if (unlikely(!cpu_active(dest_cpu)))
6013 return ret;
6014
6015 rq_src = cpu_rq(src_cpu);
6016 rq_dest = cpu_rq(dest_cpu);
6017
6018 double_rq_lock(rq_src, rq_dest);
6019 /* Already moved. */
6020 if (task_cpu(p) != src_cpu)
6021 goto done;
6022 /* Affinity changed (again). */
6023 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6024 goto fail;
6025
6026 on_rq = p->se.on_rq;
6027 if (on_rq)
6028 deactivate_task(rq_src, p, 0);
6029
6030 set_task_cpu(p, dest_cpu);
6031 if (on_rq) {
6032 activate_task(rq_dest, p, 0);
6033 check_preempt_curr(rq_dest, p, 0);
6034 }
6035 done:
6036 ret = 1;
6037 fail:
6038 double_rq_unlock(rq_src, rq_dest);
6039 return ret;
6040 }
6041
6042 /*
6043 * migration_thread - this is a highprio system thread that performs
6044 * thread migration by bumping thread off CPU then 'pushing' onto
6045 * another runqueue.
6046 */
6047 static int migration_thread(void *data)
6048 {
6049 int cpu = (long)data;
6050 struct rq *rq;
6051
6052 rq = cpu_rq(cpu);
6053 BUG_ON(rq->migration_thread != current);
6054
6055 set_current_state(TASK_INTERRUPTIBLE);
6056 while (!kthread_should_stop()) {
6057 struct migration_req *req;
6058 struct list_head *head;
6059
6060 spin_lock_irq(&rq->lock);
6061
6062 if (cpu_is_offline(cpu)) {
6063 spin_unlock_irq(&rq->lock);
6064 goto wait_to_die;
6065 }
6066
6067 if (rq->active_balance) {
6068 active_load_balance(rq, cpu);
6069 rq->active_balance = 0;
6070 }
6071
6072 head = &rq->migration_queue;
6073
6074 if (list_empty(head)) {
6075 spin_unlock_irq(&rq->lock);
6076 schedule();
6077 set_current_state(TASK_INTERRUPTIBLE);
6078 continue;
6079 }
6080 req = list_entry(head->next, struct migration_req, list);
6081 list_del_init(head->next);
6082
6083 spin_unlock(&rq->lock);
6084 __migrate_task(req->task, cpu, req->dest_cpu);
6085 local_irq_enable();
6086
6087 complete(&req->done);
6088 }
6089 __set_current_state(TASK_RUNNING);
6090 return 0;
6091
6092 wait_to_die:
6093 /* Wait for kthread_stop */
6094 set_current_state(TASK_INTERRUPTIBLE);
6095 while (!kthread_should_stop()) {
6096 schedule();
6097 set_current_state(TASK_INTERRUPTIBLE);
6098 }
6099 __set_current_state(TASK_RUNNING);
6100 return 0;
6101 }
6102
6103 #ifdef CONFIG_HOTPLUG_CPU
6104
6105 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6106 {
6107 int ret;
6108
6109 local_irq_disable();
6110 ret = __migrate_task(p, src_cpu, dest_cpu);
6111 local_irq_enable();
6112 return ret;
6113 }
6114
6115 /*
6116 * Figure out where task on dead CPU should go, use force if necessary.
6117 * NOTE: interrupts should be disabled by the caller
6118 */
6119 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6120 {
6121 unsigned long flags;
6122 cpumask_t mask;
6123 struct rq *rq;
6124 int dest_cpu;
6125
6126 do {
6127 /* On same node? */
6128 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6129 cpus_and(mask, mask, p->cpus_allowed);
6130 dest_cpu = any_online_cpu(mask);
6131
6132 /* On any allowed CPU? */
6133 if (dest_cpu >= nr_cpu_ids)
6134 dest_cpu = any_online_cpu(p->cpus_allowed);
6135
6136 /* No more Mr. Nice Guy. */
6137 if (dest_cpu >= nr_cpu_ids) {
6138 cpumask_t cpus_allowed;
6139
6140 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6141 /*
6142 * Try to stay on the same cpuset, where the
6143 * current cpuset may be a subset of all cpus.
6144 * The cpuset_cpus_allowed_locked() variant of
6145 * cpuset_cpus_allowed() will not block. It must be
6146 * called within calls to cpuset_lock/cpuset_unlock.
6147 */
6148 rq = task_rq_lock(p, &flags);
6149 p->cpus_allowed = cpus_allowed;
6150 dest_cpu = any_online_cpu(p->cpus_allowed);
6151 task_rq_unlock(rq, &flags);
6152
6153 /*
6154 * Don't tell them about moving exiting tasks or
6155 * kernel threads (both mm NULL), since they never
6156 * leave kernel.
6157 */
6158 if (p->mm && printk_ratelimit()) {
6159 printk(KERN_INFO "process %d (%s) no "
6160 "longer affine to cpu%d\n",
6161 task_pid_nr(p), p->comm, dead_cpu);
6162 }
6163 }
6164 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6165 }
6166
6167 /*
6168 * While a dead CPU has no uninterruptible tasks queued at this point,
6169 * it might still have a nonzero ->nr_uninterruptible counter, because
6170 * for performance reasons the counter is not stricly tracking tasks to
6171 * their home CPUs. So we just add the counter to another CPU's counter,
6172 * to keep the global sum constant after CPU-down:
6173 */
6174 static void migrate_nr_uninterruptible(struct rq *rq_src)
6175 {
6176 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6177 unsigned long flags;
6178
6179 local_irq_save(flags);
6180 double_rq_lock(rq_src, rq_dest);
6181 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6182 rq_src->nr_uninterruptible = 0;
6183 double_rq_unlock(rq_src, rq_dest);
6184 local_irq_restore(flags);
6185 }
6186
6187 /* Run through task list and migrate tasks from the dead cpu. */
6188 static void migrate_live_tasks(int src_cpu)
6189 {
6190 struct task_struct *p, *t;
6191
6192 read_lock(&tasklist_lock);
6193
6194 do_each_thread(t, p) {
6195 if (p == current)
6196 continue;
6197
6198 if (task_cpu(p) == src_cpu)
6199 move_task_off_dead_cpu(src_cpu, p);
6200 } while_each_thread(t, p);
6201
6202 read_unlock(&tasklist_lock);
6203 }
6204
6205 /*
6206 * Schedules idle task to be the next runnable task on current CPU.
6207 * It does so by boosting its priority to highest possible.
6208 * Used by CPU offline code.
6209 */
6210 void sched_idle_next(void)
6211 {
6212 int this_cpu = smp_processor_id();
6213 struct rq *rq = cpu_rq(this_cpu);
6214 struct task_struct *p = rq->idle;
6215 unsigned long flags;
6216
6217 /* cpu has to be offline */
6218 BUG_ON(cpu_online(this_cpu));
6219
6220 /*
6221 * Strictly not necessary since rest of the CPUs are stopped by now
6222 * and interrupts disabled on the current cpu.
6223 */
6224 spin_lock_irqsave(&rq->lock, flags);
6225
6226 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6227
6228 update_rq_clock(rq);
6229 activate_task(rq, p, 0);
6230
6231 spin_unlock_irqrestore(&rq->lock, flags);
6232 }
6233
6234 /*
6235 * Ensures that the idle task is using init_mm right before its cpu goes
6236 * offline.
6237 */
6238 void idle_task_exit(void)
6239 {
6240 struct mm_struct *mm = current->active_mm;
6241
6242 BUG_ON(cpu_online(smp_processor_id()));
6243
6244 if (mm != &init_mm)
6245 switch_mm(mm, &init_mm, current);
6246 mmdrop(mm);
6247 }
6248
6249 /* called under rq->lock with disabled interrupts */
6250 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6251 {
6252 struct rq *rq = cpu_rq(dead_cpu);
6253
6254 /* Must be exiting, otherwise would be on tasklist. */
6255 BUG_ON(!p->exit_state);
6256
6257 /* Cannot have done final schedule yet: would have vanished. */
6258 BUG_ON(p->state == TASK_DEAD);
6259
6260 get_task_struct(p);
6261
6262 /*
6263 * Drop lock around migration; if someone else moves it,
6264 * that's OK. No task can be added to this CPU, so iteration is
6265 * fine.
6266 */
6267 spin_unlock_irq(&rq->lock);
6268 move_task_off_dead_cpu(dead_cpu, p);
6269 spin_lock_irq(&rq->lock);
6270
6271 put_task_struct(p);
6272 }
6273
6274 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6275 static void migrate_dead_tasks(unsigned int dead_cpu)
6276 {
6277 struct rq *rq = cpu_rq(dead_cpu);
6278 struct task_struct *next;
6279
6280 for ( ; ; ) {
6281 if (!rq->nr_running)
6282 break;
6283 update_rq_clock(rq);
6284 next = pick_next_task(rq, rq->curr);
6285 if (!next)
6286 break;
6287 next->sched_class->put_prev_task(rq, next);
6288 migrate_dead(dead_cpu, next);
6289
6290 }
6291 }
6292 #endif /* CONFIG_HOTPLUG_CPU */
6293
6294 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6295
6296 static struct ctl_table sd_ctl_dir[] = {
6297 {
6298 .procname = "sched_domain",
6299 .mode = 0555,
6300 },
6301 {0, },
6302 };
6303
6304 static struct ctl_table sd_ctl_root[] = {
6305 {
6306 .ctl_name = CTL_KERN,
6307 .procname = "kernel",
6308 .mode = 0555,
6309 .child = sd_ctl_dir,
6310 },
6311 {0, },
6312 };
6313
6314 static struct ctl_table *sd_alloc_ctl_entry(int n)
6315 {
6316 struct ctl_table *entry =
6317 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6318
6319 return entry;
6320 }
6321
6322 static void sd_free_ctl_entry(struct ctl_table **tablep)
6323 {
6324 struct ctl_table *entry;
6325
6326 /*
6327 * In the intermediate directories, both the child directory and
6328 * procname are dynamically allocated and could fail but the mode
6329 * will always be set. In the lowest directory the names are
6330 * static strings and all have proc handlers.
6331 */
6332 for (entry = *tablep; entry->mode; entry++) {
6333 if (entry->child)
6334 sd_free_ctl_entry(&entry->child);
6335 if (entry->proc_handler == NULL)
6336 kfree(entry->procname);
6337 }
6338
6339 kfree(*tablep);
6340 *tablep = NULL;
6341 }
6342
6343 static void
6344 set_table_entry(struct ctl_table *entry,
6345 const char *procname, void *data, int maxlen,
6346 mode_t mode, proc_handler *proc_handler)
6347 {
6348 entry->procname = procname;
6349 entry->data = data;
6350 entry->maxlen = maxlen;
6351 entry->mode = mode;
6352 entry->proc_handler = proc_handler;
6353 }
6354
6355 static struct ctl_table *
6356 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6357 {
6358 struct ctl_table *table = sd_alloc_ctl_entry(13);
6359
6360 if (table == NULL)
6361 return NULL;
6362
6363 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6364 sizeof(long), 0644, proc_doulongvec_minmax);
6365 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6366 sizeof(long), 0644, proc_doulongvec_minmax);
6367 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6368 sizeof(int), 0644, proc_dointvec_minmax);
6369 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6370 sizeof(int), 0644, proc_dointvec_minmax);
6371 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6372 sizeof(int), 0644, proc_dointvec_minmax);
6373 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6374 sizeof(int), 0644, proc_dointvec_minmax);
6375 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6378 sizeof(int), 0644, proc_dointvec_minmax);
6379 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[9], "cache_nice_tries",
6382 &sd->cache_nice_tries,
6383 sizeof(int), 0644, proc_dointvec_minmax);
6384 set_table_entry(&table[10], "flags", &sd->flags,
6385 sizeof(int), 0644, proc_dointvec_minmax);
6386 set_table_entry(&table[11], "name", sd->name,
6387 CORENAME_MAX_SIZE, 0444, proc_dostring);
6388 /* &table[12] is terminator */
6389
6390 return table;
6391 }
6392
6393 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6394 {
6395 struct ctl_table *entry, *table;
6396 struct sched_domain *sd;
6397 int domain_num = 0, i;
6398 char buf[32];
6399
6400 for_each_domain(cpu, sd)
6401 domain_num++;
6402 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6403 if (table == NULL)
6404 return NULL;
6405
6406 i = 0;
6407 for_each_domain(cpu, sd) {
6408 snprintf(buf, 32, "domain%d", i);
6409 entry->procname = kstrdup(buf, GFP_KERNEL);
6410 entry->mode = 0555;
6411 entry->child = sd_alloc_ctl_domain_table(sd);
6412 entry++;
6413 i++;
6414 }
6415 return table;
6416 }
6417
6418 static struct ctl_table_header *sd_sysctl_header;
6419 static void register_sched_domain_sysctl(void)
6420 {
6421 int i, cpu_num = num_online_cpus();
6422 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6423 char buf[32];
6424
6425 WARN_ON(sd_ctl_dir[0].child);
6426 sd_ctl_dir[0].child = entry;
6427
6428 if (entry == NULL)
6429 return;
6430
6431 for_each_online_cpu(i) {
6432 snprintf(buf, 32, "cpu%d", i);
6433 entry->procname = kstrdup(buf, GFP_KERNEL);
6434 entry->mode = 0555;
6435 entry->child = sd_alloc_ctl_cpu_table(i);
6436 entry++;
6437 }
6438
6439 WARN_ON(sd_sysctl_header);
6440 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6441 }
6442
6443 /* may be called multiple times per register */
6444 static void unregister_sched_domain_sysctl(void)
6445 {
6446 if (sd_sysctl_header)
6447 unregister_sysctl_table(sd_sysctl_header);
6448 sd_sysctl_header = NULL;
6449 if (sd_ctl_dir[0].child)
6450 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6451 }
6452 #else
6453 static void register_sched_domain_sysctl(void)
6454 {
6455 }
6456 static void unregister_sched_domain_sysctl(void)
6457 {
6458 }
6459 #endif
6460
6461 static void set_rq_online(struct rq *rq)
6462 {
6463 if (!rq->online) {
6464 const struct sched_class *class;
6465
6466 cpu_set(rq->cpu, rq->rd->online);
6467 rq->online = 1;
6468
6469 for_each_class(class) {
6470 if (class->rq_online)
6471 class->rq_online(rq);
6472 }
6473 }
6474 }
6475
6476 static void set_rq_offline(struct rq *rq)
6477 {
6478 if (rq->online) {
6479 const struct sched_class *class;
6480
6481 for_each_class(class) {
6482 if (class->rq_offline)
6483 class->rq_offline(rq);
6484 }
6485
6486 cpu_clear(rq->cpu, rq->rd->online);
6487 rq->online = 0;
6488 }
6489 }
6490
6491 /*
6492 * migration_call - callback that gets triggered when a CPU is added.
6493 * Here we can start up the necessary migration thread for the new CPU.
6494 */
6495 static int __cpuinit
6496 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6497 {
6498 struct task_struct *p;
6499 int cpu = (long)hcpu;
6500 unsigned long flags;
6501 struct rq *rq;
6502
6503 switch (action) {
6504
6505 case CPU_UP_PREPARE:
6506 case CPU_UP_PREPARE_FROZEN:
6507 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6508 if (IS_ERR(p))
6509 return NOTIFY_BAD;
6510 kthread_bind(p, cpu);
6511 /* Must be high prio: stop_machine expects to yield to it. */
6512 rq = task_rq_lock(p, &flags);
6513 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6514 task_rq_unlock(rq, &flags);
6515 cpu_rq(cpu)->migration_thread = p;
6516 break;
6517
6518 case CPU_ONLINE:
6519 case CPU_ONLINE_FROZEN:
6520 /* Strictly unnecessary, as first user will wake it. */
6521 wake_up_process(cpu_rq(cpu)->migration_thread);
6522
6523 /* Update our root-domain */
6524 rq = cpu_rq(cpu);
6525 spin_lock_irqsave(&rq->lock, flags);
6526 if (rq->rd) {
6527 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6528
6529 set_rq_online(rq);
6530 }
6531 spin_unlock_irqrestore(&rq->lock, flags);
6532 break;
6533
6534 #ifdef CONFIG_HOTPLUG_CPU
6535 case CPU_UP_CANCELED:
6536 case CPU_UP_CANCELED_FROZEN:
6537 if (!cpu_rq(cpu)->migration_thread)
6538 break;
6539 /* Unbind it from offline cpu so it can run. Fall thru. */
6540 kthread_bind(cpu_rq(cpu)->migration_thread,
6541 any_online_cpu(cpu_online_map));
6542 kthread_stop(cpu_rq(cpu)->migration_thread);
6543 cpu_rq(cpu)->migration_thread = NULL;
6544 break;
6545
6546 case CPU_DEAD:
6547 case CPU_DEAD_FROZEN:
6548 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6549 migrate_live_tasks(cpu);
6550 rq = cpu_rq(cpu);
6551 kthread_stop(rq->migration_thread);
6552 rq->migration_thread = NULL;
6553 /* Idle task back to normal (off runqueue, low prio) */
6554 spin_lock_irq(&rq->lock);
6555 update_rq_clock(rq);
6556 deactivate_task(rq, rq->idle, 0);
6557 rq->idle->static_prio = MAX_PRIO;
6558 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6559 rq->idle->sched_class = &idle_sched_class;
6560 migrate_dead_tasks(cpu);
6561 spin_unlock_irq(&rq->lock);
6562 cpuset_unlock();
6563 migrate_nr_uninterruptible(rq);
6564 BUG_ON(rq->nr_running != 0);
6565
6566 /*
6567 * No need to migrate the tasks: it was best-effort if
6568 * they didn't take sched_hotcpu_mutex. Just wake up
6569 * the requestors.
6570 */
6571 spin_lock_irq(&rq->lock);
6572 while (!list_empty(&rq->migration_queue)) {
6573 struct migration_req *req;
6574
6575 req = list_entry(rq->migration_queue.next,
6576 struct migration_req, list);
6577 list_del_init(&req->list);
6578 complete(&req->done);
6579 }
6580 spin_unlock_irq(&rq->lock);
6581 break;
6582
6583 case CPU_DYING:
6584 case CPU_DYING_FROZEN:
6585 /* Update our root-domain */
6586 rq = cpu_rq(cpu);
6587 spin_lock_irqsave(&rq->lock, flags);
6588 if (rq->rd) {
6589 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6590 set_rq_offline(rq);
6591 }
6592 spin_unlock_irqrestore(&rq->lock, flags);
6593 break;
6594 #endif
6595 }
6596 return NOTIFY_OK;
6597 }
6598
6599 /* Register at highest priority so that task migration (migrate_all_tasks)
6600 * happens before everything else.
6601 */
6602 static struct notifier_block __cpuinitdata migration_notifier = {
6603 .notifier_call = migration_call,
6604 .priority = 10
6605 };
6606
6607 static int __init migration_init(void)
6608 {
6609 void *cpu = (void *)(long)smp_processor_id();
6610 int err;
6611
6612 /* Start one for the boot CPU: */
6613 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6614 BUG_ON(err == NOTIFY_BAD);
6615 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6616 register_cpu_notifier(&migration_notifier);
6617
6618 return err;
6619 }
6620 early_initcall(migration_init);
6621 #endif
6622
6623 #ifdef CONFIG_SMP
6624
6625 #ifdef CONFIG_SCHED_DEBUG
6626
6627 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6628 {
6629 switch (lvl) {
6630 case SD_LV_NONE:
6631 return "NONE";
6632 case SD_LV_SIBLING:
6633 return "SIBLING";
6634 case SD_LV_MC:
6635 return "MC";
6636 case SD_LV_CPU:
6637 return "CPU";
6638 case SD_LV_NODE:
6639 return "NODE";
6640 case SD_LV_ALLNODES:
6641 return "ALLNODES";
6642 case SD_LV_MAX:
6643 return "MAX";
6644
6645 }
6646 return "MAX";
6647 }
6648
6649 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6650 cpumask_t *groupmask)
6651 {
6652 struct sched_group *group = sd->groups;
6653 char str[256];
6654
6655 cpulist_scnprintf(str, sizeof(str), sd->span);
6656 cpus_clear(*groupmask);
6657
6658 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6659
6660 if (!(sd->flags & SD_LOAD_BALANCE)) {
6661 printk("does not load-balance\n");
6662 if (sd->parent)
6663 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6664 " has parent");
6665 return -1;
6666 }
6667
6668 printk(KERN_CONT "span %s level %s\n",
6669 str, sd_level_to_string(sd->level));
6670
6671 if (!cpu_isset(cpu, sd->span)) {
6672 printk(KERN_ERR "ERROR: domain->span does not contain "
6673 "CPU%d\n", cpu);
6674 }
6675 if (!cpu_isset(cpu, group->cpumask)) {
6676 printk(KERN_ERR "ERROR: domain->groups does not contain"
6677 " CPU%d\n", cpu);
6678 }
6679
6680 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6681 do {
6682 if (!group) {
6683 printk("\n");
6684 printk(KERN_ERR "ERROR: group is NULL\n");
6685 break;
6686 }
6687
6688 if (!group->__cpu_power) {
6689 printk(KERN_CONT "\n");
6690 printk(KERN_ERR "ERROR: domain->cpu_power not "
6691 "set\n");
6692 break;
6693 }
6694
6695 if (!cpus_weight(group->cpumask)) {
6696 printk(KERN_CONT "\n");
6697 printk(KERN_ERR "ERROR: empty group\n");
6698 break;
6699 }
6700
6701 if (cpus_intersects(*groupmask, group->cpumask)) {
6702 printk(KERN_CONT "\n");
6703 printk(KERN_ERR "ERROR: repeated CPUs\n");
6704 break;
6705 }
6706
6707 cpus_or(*groupmask, *groupmask, group->cpumask);
6708
6709 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6710 printk(KERN_CONT " %s", str);
6711
6712 group = group->next;
6713 } while (group != sd->groups);
6714 printk(KERN_CONT "\n");
6715
6716 if (!cpus_equal(sd->span, *groupmask))
6717 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6718
6719 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6720 printk(KERN_ERR "ERROR: parent span is not a superset "
6721 "of domain->span\n");
6722 return 0;
6723 }
6724
6725 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6726 {
6727 cpumask_t *groupmask;
6728 int level = 0;
6729
6730 if (!sd) {
6731 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6732 return;
6733 }
6734
6735 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6736
6737 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6738 if (!groupmask) {
6739 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6740 return;
6741 }
6742
6743 for (;;) {
6744 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6745 break;
6746 level++;
6747 sd = sd->parent;
6748 if (!sd)
6749 break;
6750 }
6751 kfree(groupmask);
6752 }
6753 #else /* !CONFIG_SCHED_DEBUG */
6754 # define sched_domain_debug(sd, cpu) do { } while (0)
6755 #endif /* CONFIG_SCHED_DEBUG */
6756
6757 static int sd_degenerate(struct sched_domain *sd)
6758 {
6759 if (cpus_weight(sd->span) == 1)
6760 return 1;
6761
6762 /* Following flags need at least 2 groups */
6763 if (sd->flags & (SD_LOAD_BALANCE |
6764 SD_BALANCE_NEWIDLE |
6765 SD_BALANCE_FORK |
6766 SD_BALANCE_EXEC |
6767 SD_SHARE_CPUPOWER |
6768 SD_SHARE_PKG_RESOURCES)) {
6769 if (sd->groups != sd->groups->next)
6770 return 0;
6771 }
6772
6773 /* Following flags don't use groups */
6774 if (sd->flags & (SD_WAKE_IDLE |
6775 SD_WAKE_AFFINE |
6776 SD_WAKE_BALANCE))
6777 return 0;
6778
6779 return 1;
6780 }
6781
6782 static int
6783 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6784 {
6785 unsigned long cflags = sd->flags, pflags = parent->flags;
6786
6787 if (sd_degenerate(parent))
6788 return 1;
6789
6790 if (!cpus_equal(sd->span, parent->span))
6791 return 0;
6792
6793 /* Does parent contain flags not in child? */
6794 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6795 if (cflags & SD_WAKE_AFFINE)
6796 pflags &= ~SD_WAKE_BALANCE;
6797 /* Flags needing groups don't count if only 1 group in parent */
6798 if (parent->groups == parent->groups->next) {
6799 pflags &= ~(SD_LOAD_BALANCE |
6800 SD_BALANCE_NEWIDLE |
6801 SD_BALANCE_FORK |
6802 SD_BALANCE_EXEC |
6803 SD_SHARE_CPUPOWER |
6804 SD_SHARE_PKG_RESOURCES);
6805 }
6806 if (~cflags & pflags)
6807 return 0;
6808
6809 return 1;
6810 }
6811
6812 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6813 {
6814 unsigned long flags;
6815
6816 spin_lock_irqsave(&rq->lock, flags);
6817
6818 if (rq->rd) {
6819 struct root_domain *old_rd = rq->rd;
6820
6821 if (cpu_isset(rq->cpu, old_rd->online))
6822 set_rq_offline(rq);
6823
6824 cpu_clear(rq->cpu, old_rd->span);
6825
6826 if (atomic_dec_and_test(&old_rd->refcount))
6827 kfree(old_rd);
6828 }
6829
6830 atomic_inc(&rd->refcount);
6831 rq->rd = rd;
6832
6833 cpu_set(rq->cpu, rd->span);
6834 if (cpu_isset(rq->cpu, cpu_online_map))
6835 set_rq_online(rq);
6836
6837 spin_unlock_irqrestore(&rq->lock, flags);
6838 }
6839
6840 static void init_rootdomain(struct root_domain *rd)
6841 {
6842 memset(rd, 0, sizeof(*rd));
6843
6844 cpus_clear(rd->span);
6845 cpus_clear(rd->online);
6846
6847 cpupri_init(&rd->cpupri);
6848 }
6849
6850 static void init_defrootdomain(void)
6851 {
6852 init_rootdomain(&def_root_domain);
6853 atomic_set(&def_root_domain.refcount, 1);
6854 }
6855
6856 static struct root_domain *alloc_rootdomain(void)
6857 {
6858 struct root_domain *rd;
6859
6860 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6861 if (!rd)
6862 return NULL;
6863
6864 init_rootdomain(rd);
6865
6866 return rd;
6867 }
6868
6869 /*
6870 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6871 * hold the hotplug lock.
6872 */
6873 static void
6874 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6875 {
6876 struct rq *rq = cpu_rq(cpu);
6877 struct sched_domain *tmp;
6878
6879 /* Remove the sched domains which do not contribute to scheduling. */
6880 for (tmp = sd; tmp; ) {
6881 struct sched_domain *parent = tmp->parent;
6882 if (!parent)
6883 break;
6884
6885 if (sd_parent_degenerate(tmp, parent)) {
6886 tmp->parent = parent->parent;
6887 if (parent->parent)
6888 parent->parent->child = tmp;
6889 } else
6890 tmp = tmp->parent;
6891 }
6892
6893 if (sd && sd_degenerate(sd)) {
6894 sd = sd->parent;
6895 if (sd)
6896 sd->child = NULL;
6897 }
6898
6899 sched_domain_debug(sd, cpu);
6900
6901 rq_attach_root(rq, rd);
6902 rcu_assign_pointer(rq->sd, sd);
6903 }
6904
6905 /* cpus with isolated domains */
6906 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6907
6908 /* Setup the mask of cpus configured for isolated domains */
6909 static int __init isolated_cpu_setup(char *str)
6910 {
6911 static int __initdata ints[NR_CPUS];
6912 int i;
6913
6914 str = get_options(str, ARRAY_SIZE(ints), ints);
6915 cpus_clear(cpu_isolated_map);
6916 for (i = 1; i <= ints[0]; i++)
6917 if (ints[i] < NR_CPUS)
6918 cpu_set(ints[i], cpu_isolated_map);
6919 return 1;
6920 }
6921
6922 __setup("isolcpus=", isolated_cpu_setup);
6923
6924 /*
6925 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6926 * to a function which identifies what group(along with sched group) a CPU
6927 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6928 * (due to the fact that we keep track of groups covered with a cpumask_t).
6929 *
6930 * init_sched_build_groups will build a circular linked list of the groups
6931 * covered by the given span, and will set each group's ->cpumask correctly,
6932 * and ->cpu_power to 0.
6933 */
6934 static void
6935 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6936 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6937 struct sched_group **sg,
6938 cpumask_t *tmpmask),
6939 cpumask_t *covered, cpumask_t *tmpmask)
6940 {
6941 struct sched_group *first = NULL, *last = NULL;
6942 int i;
6943
6944 cpus_clear(*covered);
6945
6946 for_each_cpu_mask_nr(i, *span) {
6947 struct sched_group *sg;
6948 int group = group_fn(i, cpu_map, &sg, tmpmask);
6949 int j;
6950
6951 if (cpu_isset(i, *covered))
6952 continue;
6953
6954 cpus_clear(sg->cpumask);
6955 sg->__cpu_power = 0;
6956
6957 for_each_cpu_mask_nr(j, *span) {
6958 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6959 continue;
6960
6961 cpu_set(j, *covered);
6962 cpu_set(j, sg->cpumask);
6963 }
6964 if (!first)
6965 first = sg;
6966 if (last)
6967 last->next = sg;
6968 last = sg;
6969 }
6970 last->next = first;
6971 }
6972
6973 #define SD_NODES_PER_DOMAIN 16
6974
6975 #ifdef CONFIG_NUMA
6976
6977 /**
6978 * find_next_best_node - find the next node to include in a sched_domain
6979 * @node: node whose sched_domain we're building
6980 * @used_nodes: nodes already in the sched_domain
6981 *
6982 * Find the next node to include in a given scheduling domain. Simply
6983 * finds the closest node not already in the @used_nodes map.
6984 *
6985 * Should use nodemask_t.
6986 */
6987 static int find_next_best_node(int node, nodemask_t *used_nodes)
6988 {
6989 int i, n, val, min_val, best_node = 0;
6990
6991 min_val = INT_MAX;
6992
6993 for (i = 0; i < nr_node_ids; i++) {
6994 /* Start at @node */
6995 n = (node + i) % nr_node_ids;
6996
6997 if (!nr_cpus_node(n))
6998 continue;
6999
7000 /* Skip already used nodes */
7001 if (node_isset(n, *used_nodes))
7002 continue;
7003
7004 /* Simple min distance search */
7005 val = node_distance(node, n);
7006
7007 if (val < min_val) {
7008 min_val = val;
7009 best_node = n;
7010 }
7011 }
7012
7013 node_set(best_node, *used_nodes);
7014 return best_node;
7015 }
7016
7017 /**
7018 * sched_domain_node_span - get a cpumask for a node's sched_domain
7019 * @node: node whose cpumask we're constructing
7020 * @span: resulting cpumask
7021 *
7022 * Given a node, construct a good cpumask for its sched_domain to span. It
7023 * should be one that prevents unnecessary balancing, but also spreads tasks
7024 * out optimally.
7025 */
7026 static void sched_domain_node_span(int node, cpumask_t *span)
7027 {
7028 nodemask_t used_nodes;
7029 node_to_cpumask_ptr(nodemask, node);
7030 int i;
7031
7032 cpus_clear(*span);
7033 nodes_clear(used_nodes);
7034
7035 cpus_or(*span, *span, *nodemask);
7036 node_set(node, used_nodes);
7037
7038 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7039 int next_node = find_next_best_node(node, &used_nodes);
7040
7041 node_to_cpumask_ptr_next(nodemask, next_node);
7042 cpus_or(*span, *span, *nodemask);
7043 }
7044 }
7045 #endif /* CONFIG_NUMA */
7046
7047 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7048
7049 /*
7050 * SMT sched-domains:
7051 */
7052 #ifdef CONFIG_SCHED_SMT
7053 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7054 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7055
7056 static int
7057 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7058 cpumask_t *unused)
7059 {
7060 if (sg)
7061 *sg = &per_cpu(sched_group_cpus, cpu);
7062 return cpu;
7063 }
7064 #endif /* CONFIG_SCHED_SMT */
7065
7066 /*
7067 * multi-core sched-domains:
7068 */
7069 #ifdef CONFIG_SCHED_MC
7070 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7071 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7072 #endif /* CONFIG_SCHED_MC */
7073
7074 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7075 static int
7076 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7077 cpumask_t *mask)
7078 {
7079 int group;
7080
7081 *mask = per_cpu(cpu_sibling_map, cpu);
7082 cpus_and(*mask, *mask, *cpu_map);
7083 group = first_cpu(*mask);
7084 if (sg)
7085 *sg = &per_cpu(sched_group_core, group);
7086 return group;
7087 }
7088 #elif defined(CONFIG_SCHED_MC)
7089 static int
7090 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7091 cpumask_t *unused)
7092 {
7093 if (sg)
7094 *sg = &per_cpu(sched_group_core, cpu);
7095 return cpu;
7096 }
7097 #endif
7098
7099 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7100 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7101
7102 static int
7103 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7104 cpumask_t *mask)
7105 {
7106 int group;
7107 #ifdef CONFIG_SCHED_MC
7108 *mask = cpu_coregroup_map(cpu);
7109 cpus_and(*mask, *mask, *cpu_map);
7110 group = first_cpu(*mask);
7111 #elif defined(CONFIG_SCHED_SMT)
7112 *mask = per_cpu(cpu_sibling_map, cpu);
7113 cpus_and(*mask, *mask, *cpu_map);
7114 group = first_cpu(*mask);
7115 #else
7116 group = cpu;
7117 #endif
7118 if (sg)
7119 *sg = &per_cpu(sched_group_phys, group);
7120 return group;
7121 }
7122
7123 #ifdef CONFIG_NUMA
7124 /*
7125 * The init_sched_build_groups can't handle what we want to do with node
7126 * groups, so roll our own. Now each node has its own list of groups which
7127 * gets dynamically allocated.
7128 */
7129 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7130 static struct sched_group ***sched_group_nodes_bycpu;
7131
7132 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7133 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7134
7135 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7136 struct sched_group **sg, cpumask_t *nodemask)
7137 {
7138 int group;
7139
7140 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7141 cpus_and(*nodemask, *nodemask, *cpu_map);
7142 group = first_cpu(*nodemask);
7143
7144 if (sg)
7145 *sg = &per_cpu(sched_group_allnodes, group);
7146 return group;
7147 }
7148
7149 static void init_numa_sched_groups_power(struct sched_group *group_head)
7150 {
7151 struct sched_group *sg = group_head;
7152 int j;
7153
7154 if (!sg)
7155 return;
7156 do {
7157 for_each_cpu_mask_nr(j, sg->cpumask) {
7158 struct sched_domain *sd;
7159
7160 sd = &per_cpu(phys_domains, j);
7161 if (j != first_cpu(sd->groups->cpumask)) {
7162 /*
7163 * Only add "power" once for each
7164 * physical package.
7165 */
7166 continue;
7167 }
7168
7169 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7170 }
7171 sg = sg->next;
7172 } while (sg != group_head);
7173 }
7174 #endif /* CONFIG_NUMA */
7175
7176 #ifdef CONFIG_NUMA
7177 /* Free memory allocated for various sched_group structures */
7178 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7179 {
7180 int cpu, i;
7181
7182 for_each_cpu_mask_nr(cpu, *cpu_map) {
7183 struct sched_group **sched_group_nodes
7184 = sched_group_nodes_bycpu[cpu];
7185
7186 if (!sched_group_nodes)
7187 continue;
7188
7189 for (i = 0; i < nr_node_ids; i++) {
7190 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7191
7192 *nodemask = node_to_cpumask(i);
7193 cpus_and(*nodemask, *nodemask, *cpu_map);
7194 if (cpus_empty(*nodemask))
7195 continue;
7196
7197 if (sg == NULL)
7198 continue;
7199 sg = sg->next;
7200 next_sg:
7201 oldsg = sg;
7202 sg = sg->next;
7203 kfree(oldsg);
7204 if (oldsg != sched_group_nodes[i])
7205 goto next_sg;
7206 }
7207 kfree(sched_group_nodes);
7208 sched_group_nodes_bycpu[cpu] = NULL;
7209 }
7210 }
7211 #else /* !CONFIG_NUMA */
7212 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7213 {
7214 }
7215 #endif /* CONFIG_NUMA */
7216
7217 /*
7218 * Initialize sched groups cpu_power.
7219 *
7220 * cpu_power indicates the capacity of sched group, which is used while
7221 * distributing the load between different sched groups in a sched domain.
7222 * Typically cpu_power for all the groups in a sched domain will be same unless
7223 * there are asymmetries in the topology. If there are asymmetries, group
7224 * having more cpu_power will pickup more load compared to the group having
7225 * less cpu_power.
7226 *
7227 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7228 * the maximum number of tasks a group can handle in the presence of other idle
7229 * or lightly loaded groups in the same sched domain.
7230 */
7231 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7232 {
7233 struct sched_domain *child;
7234 struct sched_group *group;
7235
7236 WARN_ON(!sd || !sd->groups);
7237
7238 if (cpu != first_cpu(sd->groups->cpumask))
7239 return;
7240
7241 child = sd->child;
7242
7243 sd->groups->__cpu_power = 0;
7244
7245 /*
7246 * For perf policy, if the groups in child domain share resources
7247 * (for example cores sharing some portions of the cache hierarchy
7248 * or SMT), then set this domain groups cpu_power such that each group
7249 * can handle only one task, when there are other idle groups in the
7250 * same sched domain.
7251 */
7252 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7253 (child->flags &
7254 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7255 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7256 return;
7257 }
7258
7259 /*
7260 * add cpu_power of each child group to this groups cpu_power
7261 */
7262 group = child->groups;
7263 do {
7264 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7265 group = group->next;
7266 } while (group != child->groups);
7267 }
7268
7269 /*
7270 * Initializers for schedule domains
7271 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7272 */
7273
7274 #ifdef CONFIG_SCHED_DEBUG
7275 # define SD_INIT_NAME(sd, type) sd->name = #type
7276 #else
7277 # define SD_INIT_NAME(sd, type) do { } while (0)
7278 #endif
7279
7280 #define SD_INIT(sd, type) sd_init_##type(sd)
7281
7282 #define SD_INIT_FUNC(type) \
7283 static noinline void sd_init_##type(struct sched_domain *sd) \
7284 { \
7285 memset(sd, 0, sizeof(*sd)); \
7286 *sd = SD_##type##_INIT; \
7287 sd->level = SD_LV_##type; \
7288 SD_INIT_NAME(sd, type); \
7289 }
7290
7291 SD_INIT_FUNC(CPU)
7292 #ifdef CONFIG_NUMA
7293 SD_INIT_FUNC(ALLNODES)
7294 SD_INIT_FUNC(NODE)
7295 #endif
7296 #ifdef CONFIG_SCHED_SMT
7297 SD_INIT_FUNC(SIBLING)
7298 #endif
7299 #ifdef CONFIG_SCHED_MC
7300 SD_INIT_FUNC(MC)
7301 #endif
7302
7303 /*
7304 * To minimize stack usage kmalloc room for cpumasks and share the
7305 * space as the usage in build_sched_domains() dictates. Used only
7306 * if the amount of space is significant.
7307 */
7308 struct allmasks {
7309 cpumask_t tmpmask; /* make this one first */
7310 union {
7311 cpumask_t nodemask;
7312 cpumask_t this_sibling_map;
7313 cpumask_t this_core_map;
7314 };
7315 cpumask_t send_covered;
7316
7317 #ifdef CONFIG_NUMA
7318 cpumask_t domainspan;
7319 cpumask_t covered;
7320 cpumask_t notcovered;
7321 #endif
7322 };
7323
7324 #if NR_CPUS > 128
7325 #define SCHED_CPUMASK_ALLOC 1
7326 #define SCHED_CPUMASK_FREE(v) kfree(v)
7327 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7328 #else
7329 #define SCHED_CPUMASK_ALLOC 0
7330 #define SCHED_CPUMASK_FREE(v)
7331 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7332 #endif
7333
7334 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7335 ((unsigned long)(a) + offsetof(struct allmasks, v))
7336
7337 static int default_relax_domain_level = -1;
7338
7339 static int __init setup_relax_domain_level(char *str)
7340 {
7341 unsigned long val;
7342
7343 val = simple_strtoul(str, NULL, 0);
7344 if (val < SD_LV_MAX)
7345 default_relax_domain_level = val;
7346
7347 return 1;
7348 }
7349 __setup("relax_domain_level=", setup_relax_domain_level);
7350
7351 static void set_domain_attribute(struct sched_domain *sd,
7352 struct sched_domain_attr *attr)
7353 {
7354 int request;
7355
7356 if (!attr || attr->relax_domain_level < 0) {
7357 if (default_relax_domain_level < 0)
7358 return;
7359 else
7360 request = default_relax_domain_level;
7361 } else
7362 request = attr->relax_domain_level;
7363 if (request < sd->level) {
7364 /* turn off idle balance on this domain */
7365 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7366 } else {
7367 /* turn on idle balance on this domain */
7368 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7369 }
7370 }
7371
7372 /*
7373 * Build sched domains for a given set of cpus and attach the sched domains
7374 * to the individual cpus
7375 */
7376 static int __build_sched_domains(const cpumask_t *cpu_map,
7377 struct sched_domain_attr *attr)
7378 {
7379 int i;
7380 struct root_domain *rd;
7381 SCHED_CPUMASK_DECLARE(allmasks);
7382 cpumask_t *tmpmask;
7383 #ifdef CONFIG_NUMA
7384 struct sched_group **sched_group_nodes = NULL;
7385 int sd_allnodes = 0;
7386
7387 /*
7388 * Allocate the per-node list of sched groups
7389 */
7390 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7391 GFP_KERNEL);
7392 if (!sched_group_nodes) {
7393 printk(KERN_WARNING "Can not alloc sched group node list\n");
7394 return -ENOMEM;
7395 }
7396 #endif
7397
7398 rd = alloc_rootdomain();
7399 if (!rd) {
7400 printk(KERN_WARNING "Cannot alloc root domain\n");
7401 #ifdef CONFIG_NUMA
7402 kfree(sched_group_nodes);
7403 #endif
7404 return -ENOMEM;
7405 }
7406
7407 #if SCHED_CPUMASK_ALLOC
7408 /* get space for all scratch cpumask variables */
7409 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7410 if (!allmasks) {
7411 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7412 kfree(rd);
7413 #ifdef CONFIG_NUMA
7414 kfree(sched_group_nodes);
7415 #endif
7416 return -ENOMEM;
7417 }
7418 #endif
7419 tmpmask = (cpumask_t *)allmasks;
7420
7421
7422 #ifdef CONFIG_NUMA
7423 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7424 #endif
7425
7426 /*
7427 * Set up domains for cpus specified by the cpu_map.
7428 */
7429 for_each_cpu_mask_nr(i, *cpu_map) {
7430 struct sched_domain *sd = NULL, *p;
7431 SCHED_CPUMASK_VAR(nodemask, allmasks);
7432
7433 *nodemask = node_to_cpumask(cpu_to_node(i));
7434 cpus_and(*nodemask, *nodemask, *cpu_map);
7435
7436 #ifdef CONFIG_NUMA
7437 if (cpus_weight(*cpu_map) >
7438 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7439 sd = &per_cpu(allnodes_domains, i);
7440 SD_INIT(sd, ALLNODES);
7441 set_domain_attribute(sd, attr);
7442 sd->span = *cpu_map;
7443 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7444 p = sd;
7445 sd_allnodes = 1;
7446 } else
7447 p = NULL;
7448
7449 sd = &per_cpu(node_domains, i);
7450 SD_INIT(sd, NODE);
7451 set_domain_attribute(sd, attr);
7452 sched_domain_node_span(cpu_to_node(i), &sd->span);
7453 sd->parent = p;
7454 if (p)
7455 p->child = sd;
7456 cpus_and(sd->span, sd->span, *cpu_map);
7457 #endif
7458
7459 p = sd;
7460 sd = &per_cpu(phys_domains, i);
7461 SD_INIT(sd, CPU);
7462 set_domain_attribute(sd, attr);
7463 sd->span = *nodemask;
7464 sd->parent = p;
7465 if (p)
7466 p->child = sd;
7467 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7468
7469 #ifdef CONFIG_SCHED_MC
7470 p = sd;
7471 sd = &per_cpu(core_domains, i);
7472 SD_INIT(sd, MC);
7473 set_domain_attribute(sd, attr);
7474 sd->span = cpu_coregroup_map(i);
7475 cpus_and(sd->span, sd->span, *cpu_map);
7476 sd->parent = p;
7477 p->child = sd;
7478 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7479 #endif
7480
7481 #ifdef CONFIG_SCHED_SMT
7482 p = sd;
7483 sd = &per_cpu(cpu_domains, i);
7484 SD_INIT(sd, SIBLING);
7485 set_domain_attribute(sd, attr);
7486 sd->span = per_cpu(cpu_sibling_map, i);
7487 cpus_and(sd->span, sd->span, *cpu_map);
7488 sd->parent = p;
7489 p->child = sd;
7490 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7491 #endif
7492 }
7493
7494 #ifdef CONFIG_SCHED_SMT
7495 /* Set up CPU (sibling) groups */
7496 for_each_cpu_mask_nr(i, *cpu_map) {
7497 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7498 SCHED_CPUMASK_VAR(send_covered, allmasks);
7499
7500 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7501 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7502 if (i != first_cpu(*this_sibling_map))
7503 continue;
7504
7505 init_sched_build_groups(this_sibling_map, cpu_map,
7506 &cpu_to_cpu_group,
7507 send_covered, tmpmask);
7508 }
7509 #endif
7510
7511 #ifdef CONFIG_SCHED_MC
7512 /* Set up multi-core groups */
7513 for_each_cpu_mask_nr(i, *cpu_map) {
7514 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7515 SCHED_CPUMASK_VAR(send_covered, allmasks);
7516
7517 *this_core_map = cpu_coregroup_map(i);
7518 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7519 if (i != first_cpu(*this_core_map))
7520 continue;
7521
7522 init_sched_build_groups(this_core_map, cpu_map,
7523 &cpu_to_core_group,
7524 send_covered, tmpmask);
7525 }
7526 #endif
7527
7528 /* Set up physical groups */
7529 for (i = 0; i < nr_node_ids; i++) {
7530 SCHED_CPUMASK_VAR(nodemask, allmasks);
7531 SCHED_CPUMASK_VAR(send_covered, allmasks);
7532
7533 *nodemask = node_to_cpumask(i);
7534 cpus_and(*nodemask, *nodemask, *cpu_map);
7535 if (cpus_empty(*nodemask))
7536 continue;
7537
7538 init_sched_build_groups(nodemask, cpu_map,
7539 &cpu_to_phys_group,
7540 send_covered, tmpmask);
7541 }
7542
7543 #ifdef CONFIG_NUMA
7544 /* Set up node groups */
7545 if (sd_allnodes) {
7546 SCHED_CPUMASK_VAR(send_covered, allmasks);
7547
7548 init_sched_build_groups(cpu_map, cpu_map,
7549 &cpu_to_allnodes_group,
7550 send_covered, tmpmask);
7551 }
7552
7553 for (i = 0; i < nr_node_ids; i++) {
7554 /* Set up node groups */
7555 struct sched_group *sg, *prev;
7556 SCHED_CPUMASK_VAR(nodemask, allmasks);
7557 SCHED_CPUMASK_VAR(domainspan, allmasks);
7558 SCHED_CPUMASK_VAR(covered, allmasks);
7559 int j;
7560
7561 *nodemask = node_to_cpumask(i);
7562 cpus_clear(*covered);
7563
7564 cpus_and(*nodemask, *nodemask, *cpu_map);
7565 if (cpus_empty(*nodemask)) {
7566 sched_group_nodes[i] = NULL;
7567 continue;
7568 }
7569
7570 sched_domain_node_span(i, domainspan);
7571 cpus_and(*domainspan, *domainspan, *cpu_map);
7572
7573 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7574 if (!sg) {
7575 printk(KERN_WARNING "Can not alloc domain group for "
7576 "node %d\n", i);
7577 goto error;
7578 }
7579 sched_group_nodes[i] = sg;
7580 for_each_cpu_mask_nr(j, *nodemask) {
7581 struct sched_domain *sd;
7582
7583 sd = &per_cpu(node_domains, j);
7584 sd->groups = sg;
7585 }
7586 sg->__cpu_power = 0;
7587 sg->cpumask = *nodemask;
7588 sg->next = sg;
7589 cpus_or(*covered, *covered, *nodemask);
7590 prev = sg;
7591
7592 for (j = 0; j < nr_node_ids; j++) {
7593 SCHED_CPUMASK_VAR(notcovered, allmasks);
7594 int n = (i + j) % nr_node_ids;
7595 node_to_cpumask_ptr(pnodemask, n);
7596
7597 cpus_complement(*notcovered, *covered);
7598 cpus_and(*tmpmask, *notcovered, *cpu_map);
7599 cpus_and(*tmpmask, *tmpmask, *domainspan);
7600 if (cpus_empty(*tmpmask))
7601 break;
7602
7603 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7604 if (cpus_empty(*tmpmask))
7605 continue;
7606
7607 sg = kmalloc_node(sizeof(struct sched_group),
7608 GFP_KERNEL, i);
7609 if (!sg) {
7610 printk(KERN_WARNING
7611 "Can not alloc domain group for node %d\n", j);
7612 goto error;
7613 }
7614 sg->__cpu_power = 0;
7615 sg->cpumask = *tmpmask;
7616 sg->next = prev->next;
7617 cpus_or(*covered, *covered, *tmpmask);
7618 prev->next = sg;
7619 prev = sg;
7620 }
7621 }
7622 #endif
7623
7624 /* Calculate CPU power for physical packages and nodes */
7625 #ifdef CONFIG_SCHED_SMT
7626 for_each_cpu_mask_nr(i, *cpu_map) {
7627 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7628
7629 init_sched_groups_power(i, sd);
7630 }
7631 #endif
7632 #ifdef CONFIG_SCHED_MC
7633 for_each_cpu_mask_nr(i, *cpu_map) {
7634 struct sched_domain *sd = &per_cpu(core_domains, i);
7635
7636 init_sched_groups_power(i, sd);
7637 }
7638 #endif
7639
7640 for_each_cpu_mask_nr(i, *cpu_map) {
7641 struct sched_domain *sd = &per_cpu(phys_domains, i);
7642
7643 init_sched_groups_power(i, sd);
7644 }
7645
7646 #ifdef CONFIG_NUMA
7647 for (i = 0; i < nr_node_ids; i++)
7648 init_numa_sched_groups_power(sched_group_nodes[i]);
7649
7650 if (sd_allnodes) {
7651 struct sched_group *sg;
7652
7653 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7654 tmpmask);
7655 init_numa_sched_groups_power(sg);
7656 }
7657 #endif
7658
7659 /* Attach the domains */
7660 for_each_cpu_mask_nr(i, *cpu_map) {
7661 struct sched_domain *sd;
7662 #ifdef CONFIG_SCHED_SMT
7663 sd = &per_cpu(cpu_domains, i);
7664 #elif defined(CONFIG_SCHED_MC)
7665 sd = &per_cpu(core_domains, i);
7666 #else
7667 sd = &per_cpu(phys_domains, i);
7668 #endif
7669 cpu_attach_domain(sd, rd, i);
7670 }
7671
7672 SCHED_CPUMASK_FREE((void *)allmasks);
7673 return 0;
7674
7675 #ifdef CONFIG_NUMA
7676 error:
7677 free_sched_groups(cpu_map, tmpmask);
7678 SCHED_CPUMASK_FREE((void *)allmasks);
7679 kfree(rd);
7680 return -ENOMEM;
7681 #endif
7682 }
7683
7684 static int build_sched_domains(const cpumask_t *cpu_map)
7685 {
7686 return __build_sched_domains(cpu_map, NULL);
7687 }
7688
7689 static cpumask_t *doms_cur; /* current sched domains */
7690 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7691 static struct sched_domain_attr *dattr_cur;
7692 /* attribues of custom domains in 'doms_cur' */
7693
7694 /*
7695 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms.
7698 */
7699 static cpumask_t fallback_doms;
7700
7701 void __attribute__((weak)) arch_update_cpu_topology(void)
7702 {
7703 }
7704
7705 /*
7706 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7707 * For now this just excludes isolated cpus, but could be used to
7708 * exclude other special cases in the future.
7709 */
7710 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7711 {
7712 int err;
7713
7714 arch_update_cpu_topology();
7715 ndoms_cur = 1;
7716 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7717 if (!doms_cur)
7718 doms_cur = &fallback_doms;
7719 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7720 dattr_cur = NULL;
7721 err = build_sched_domains(doms_cur);
7722 register_sched_domain_sysctl();
7723
7724 return err;
7725 }
7726
7727 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7728 cpumask_t *tmpmask)
7729 {
7730 free_sched_groups(cpu_map, tmpmask);
7731 }
7732
7733 /*
7734 * Detach sched domains from a group of cpus specified in cpu_map
7735 * These cpus will now be attached to the NULL domain
7736 */
7737 static void detach_destroy_domains(const cpumask_t *cpu_map)
7738 {
7739 cpumask_t tmpmask;
7740 int i;
7741
7742 unregister_sched_domain_sysctl();
7743
7744 for_each_cpu_mask_nr(i, *cpu_map)
7745 cpu_attach_domain(NULL, &def_root_domain, i);
7746 synchronize_sched();
7747 arch_destroy_sched_domains(cpu_map, &tmpmask);
7748 }
7749
7750 /* handle null as "default" */
7751 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7752 struct sched_domain_attr *new, int idx_new)
7753 {
7754 struct sched_domain_attr tmp;
7755
7756 /* fast path */
7757 if (!new && !cur)
7758 return 1;
7759
7760 tmp = SD_ATTR_INIT;
7761 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7762 new ? (new + idx_new) : &tmp,
7763 sizeof(struct sched_domain_attr));
7764 }
7765
7766 /*
7767 * Partition sched domains as specified by the 'ndoms_new'
7768 * cpumasks in the array doms_new[] of cpumasks. This compares
7769 * doms_new[] to the current sched domain partitioning, doms_cur[].
7770 * It destroys each deleted domain and builds each new domain.
7771 *
7772 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7773 * The masks don't intersect (don't overlap.) We should setup one
7774 * sched domain for each mask. CPUs not in any of the cpumasks will
7775 * not be load balanced. If the same cpumask appears both in the
7776 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7777 * it as it is.
7778 *
7779 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7780 * ownership of it and will kfree it when done with it. If the caller
7781 * failed the kmalloc call, then it can pass in doms_new == NULL,
7782 * and partition_sched_domains() will fallback to the single partition
7783 * 'fallback_doms', it also forces the domains to be rebuilt.
7784 *
7785 * If doms_new==NULL it will be replaced with cpu_online_map.
7786 * ndoms_new==0 is a special case for destroying existing domains.
7787 * It will not create the default domain.
7788 *
7789 * Call with hotplug lock held
7790 */
7791 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7792 struct sched_domain_attr *dattr_new)
7793 {
7794 int i, j, n;
7795
7796 mutex_lock(&sched_domains_mutex);
7797
7798 /* always unregister in case we don't destroy any domains */
7799 unregister_sched_domain_sysctl();
7800
7801 n = doms_new ? ndoms_new : 0;
7802
7803 /* Destroy deleted domains */
7804 for (i = 0; i < ndoms_cur; i++) {
7805 for (j = 0; j < n; j++) {
7806 if (cpus_equal(doms_cur[i], doms_new[j])
7807 && dattrs_equal(dattr_cur, i, dattr_new, j))
7808 goto match1;
7809 }
7810 /* no match - a current sched domain not in new doms_new[] */
7811 detach_destroy_domains(doms_cur + i);
7812 match1:
7813 ;
7814 }
7815
7816 if (doms_new == NULL) {
7817 ndoms_cur = 0;
7818 doms_new = &fallback_doms;
7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7820 dattr_new = NULL;
7821 }
7822
7823 /* Build new domains */
7824 for (i = 0; i < ndoms_new; i++) {
7825 for (j = 0; j < ndoms_cur; j++) {
7826 if (cpus_equal(doms_new[i], doms_cur[j])
7827 && dattrs_equal(dattr_new, i, dattr_cur, j))
7828 goto match2;
7829 }
7830 /* no match - add a new doms_new */
7831 __build_sched_domains(doms_new + i,
7832 dattr_new ? dattr_new + i : NULL);
7833 match2:
7834 ;
7835 }
7836
7837 /* Remember the new sched domains */
7838 if (doms_cur != &fallback_doms)
7839 kfree(doms_cur);
7840 kfree(dattr_cur); /* kfree(NULL) is safe */
7841 doms_cur = doms_new;
7842 dattr_cur = dattr_new;
7843 ndoms_cur = ndoms_new;
7844
7845 register_sched_domain_sysctl();
7846
7847 mutex_unlock(&sched_domains_mutex);
7848 }
7849
7850 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7851 int arch_reinit_sched_domains(void)
7852 {
7853 get_online_cpus();
7854
7855 /* Destroy domains first to force the rebuild */
7856 partition_sched_domains(0, NULL, NULL);
7857
7858 rebuild_sched_domains();
7859 put_online_cpus();
7860
7861 return 0;
7862 }
7863
7864 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7865 {
7866 int ret;
7867
7868 if (buf[0] != '0' && buf[0] != '1')
7869 return -EINVAL;
7870
7871 if (smt)
7872 sched_smt_power_savings = (buf[0] == '1');
7873 else
7874 sched_mc_power_savings = (buf[0] == '1');
7875
7876 ret = arch_reinit_sched_domains();
7877
7878 return ret ? ret : count;
7879 }
7880
7881 #ifdef CONFIG_SCHED_MC
7882 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7883 char *page)
7884 {
7885 return sprintf(page, "%u\n", sched_mc_power_savings);
7886 }
7887 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7888 const char *buf, size_t count)
7889 {
7890 return sched_power_savings_store(buf, count, 0);
7891 }
7892 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7893 sched_mc_power_savings_show,
7894 sched_mc_power_savings_store);
7895 #endif
7896
7897 #ifdef CONFIG_SCHED_SMT
7898 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7899 char *page)
7900 {
7901 return sprintf(page, "%u\n", sched_smt_power_savings);
7902 }
7903 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7904 const char *buf, size_t count)
7905 {
7906 return sched_power_savings_store(buf, count, 1);
7907 }
7908 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7909 sched_smt_power_savings_show,
7910 sched_smt_power_savings_store);
7911 #endif
7912
7913 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7914 {
7915 int err = 0;
7916
7917 #ifdef CONFIG_SCHED_SMT
7918 if (smt_capable())
7919 err = sysfs_create_file(&cls->kset.kobj,
7920 &attr_sched_smt_power_savings.attr);
7921 #endif
7922 #ifdef CONFIG_SCHED_MC
7923 if (!err && mc_capable())
7924 err = sysfs_create_file(&cls->kset.kobj,
7925 &attr_sched_mc_power_savings.attr);
7926 #endif
7927 return err;
7928 }
7929 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7930
7931 #ifndef CONFIG_CPUSETS
7932 /*
7933 * Add online and remove offline CPUs from the scheduler domains.
7934 * When cpusets are enabled they take over this function.
7935 */
7936 static int update_sched_domains(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
7938 {
7939 switch (action) {
7940 case CPU_ONLINE:
7941 case CPU_ONLINE_FROZEN:
7942 case CPU_DEAD:
7943 case CPU_DEAD_FROZEN:
7944 partition_sched_domains(1, NULL, NULL);
7945 return NOTIFY_OK;
7946
7947 default:
7948 return NOTIFY_DONE;
7949 }
7950 }
7951 #endif
7952
7953 static int update_runtime(struct notifier_block *nfb,
7954 unsigned long action, void *hcpu)
7955 {
7956 int cpu = (int)(long)hcpu;
7957
7958 switch (action) {
7959 case CPU_DOWN_PREPARE:
7960 case CPU_DOWN_PREPARE_FROZEN:
7961 disable_runtime(cpu_rq(cpu));
7962 return NOTIFY_OK;
7963
7964 case CPU_DOWN_FAILED:
7965 case CPU_DOWN_FAILED_FROZEN:
7966 case CPU_ONLINE:
7967 case CPU_ONLINE_FROZEN:
7968 enable_runtime(cpu_rq(cpu));
7969 return NOTIFY_OK;
7970
7971 default:
7972 return NOTIFY_DONE;
7973 }
7974 }
7975
7976 void __init sched_init_smp(void)
7977 {
7978 cpumask_t non_isolated_cpus;
7979
7980 #if defined(CONFIG_NUMA)
7981 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7982 GFP_KERNEL);
7983 BUG_ON(sched_group_nodes_bycpu == NULL);
7984 #endif
7985 get_online_cpus();
7986 mutex_lock(&sched_domains_mutex);
7987 arch_init_sched_domains(&cpu_online_map);
7988 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7989 if (cpus_empty(non_isolated_cpus))
7990 cpu_set(smp_processor_id(), non_isolated_cpus);
7991 mutex_unlock(&sched_domains_mutex);
7992 put_online_cpus();
7993
7994 #ifndef CONFIG_CPUSETS
7995 /* XXX: Theoretical race here - CPU may be hotplugged now */
7996 hotcpu_notifier(update_sched_domains, 0);
7997 #endif
7998
7999 /* RT runtime code needs to handle some hotplug events */
8000 hotcpu_notifier(update_runtime, 0);
8001
8002 init_hrtick();
8003
8004 /* Move init over to a non-isolated CPU */
8005 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8006 BUG();
8007 sched_init_granularity();
8008 }
8009 #else
8010 void __init sched_init_smp(void)
8011 {
8012 sched_init_granularity();
8013 }
8014 #endif /* CONFIG_SMP */
8015
8016 int in_sched_functions(unsigned long addr)
8017 {
8018 return in_lock_functions(addr) ||
8019 (addr >= (unsigned long)__sched_text_start
8020 && addr < (unsigned long)__sched_text_end);
8021 }
8022
8023 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8024 {
8025 cfs_rq->tasks_timeline = RB_ROOT;
8026 INIT_LIST_HEAD(&cfs_rq->tasks);
8027 #ifdef CONFIG_FAIR_GROUP_SCHED
8028 cfs_rq->rq = rq;
8029 #endif
8030 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8031 }
8032
8033 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8034 {
8035 struct rt_prio_array *array;
8036 int i;
8037
8038 array = &rt_rq->active;
8039 for (i = 0; i < MAX_RT_PRIO; i++) {
8040 INIT_LIST_HEAD(array->queue + i);
8041 __clear_bit(i, array->bitmap);
8042 }
8043 /* delimiter for bitsearch: */
8044 __set_bit(MAX_RT_PRIO, array->bitmap);
8045
8046 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8047 rt_rq->highest_prio = MAX_RT_PRIO;
8048 #endif
8049 #ifdef CONFIG_SMP
8050 rt_rq->rt_nr_migratory = 0;
8051 rt_rq->overloaded = 0;
8052 #endif
8053
8054 rt_rq->rt_time = 0;
8055 rt_rq->rt_throttled = 0;
8056 rt_rq->rt_runtime = 0;
8057 spin_lock_init(&rt_rq->rt_runtime_lock);
8058
8059 #ifdef CONFIG_RT_GROUP_SCHED
8060 rt_rq->rt_nr_boosted = 0;
8061 rt_rq->rq = rq;
8062 #endif
8063 }
8064
8065 #ifdef CONFIG_FAIR_GROUP_SCHED
8066 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8067 struct sched_entity *se, int cpu, int add,
8068 struct sched_entity *parent)
8069 {
8070 struct rq *rq = cpu_rq(cpu);
8071 tg->cfs_rq[cpu] = cfs_rq;
8072 init_cfs_rq(cfs_rq, rq);
8073 cfs_rq->tg = tg;
8074 if (add)
8075 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8076
8077 tg->se[cpu] = se;
8078 /* se could be NULL for init_task_group */
8079 if (!se)
8080 return;
8081
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8086
8087 se->my_q = cfs_rq;
8088 se->load.weight = tg->shares;
8089 se->load.inv_weight = 0;
8090 se->parent = parent;
8091 }
8092 #endif
8093
8094 #ifdef CONFIG_RT_GROUP_SCHED
8095 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8096 struct sched_rt_entity *rt_se, int cpu, int add,
8097 struct sched_rt_entity *parent)
8098 {
8099 struct rq *rq = cpu_rq(cpu);
8100
8101 tg->rt_rq[cpu] = rt_rq;
8102 init_rt_rq(rt_rq, rq);
8103 rt_rq->tg = tg;
8104 rt_rq->rt_se = rt_se;
8105 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8106 if (add)
8107 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8108
8109 tg->rt_se[cpu] = rt_se;
8110 if (!rt_se)
8111 return;
8112
8113 if (!parent)
8114 rt_se->rt_rq = &rq->rt;
8115 else
8116 rt_se->rt_rq = parent->my_q;
8117
8118 rt_se->my_q = rt_rq;
8119 rt_se->parent = parent;
8120 INIT_LIST_HEAD(&rt_se->run_list);
8121 }
8122 #endif
8123
8124 void __init sched_init(void)
8125 {
8126 int i, j;
8127 unsigned long alloc_size = 0, ptr;
8128
8129 #ifdef CONFIG_FAIR_GROUP_SCHED
8130 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8131 #endif
8132 #ifdef CONFIG_RT_GROUP_SCHED
8133 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8134 #endif
8135 #ifdef CONFIG_USER_SCHED
8136 alloc_size *= 2;
8137 #endif
8138 /*
8139 * As sched_init() is called before page_alloc is setup,
8140 * we use alloc_bootmem().
8141 */
8142 if (alloc_size) {
8143 ptr = (unsigned long)alloc_bootmem(alloc_size);
8144
8145 #ifdef CONFIG_FAIR_GROUP_SCHED
8146 init_task_group.se = (struct sched_entity **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
8149 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
8152 #ifdef CONFIG_USER_SCHED
8153 root_task_group.se = (struct sched_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8155
8156 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158 #endif /* CONFIG_USER_SCHED */
8159 #endif /* CONFIG_FAIR_GROUP_SCHED */
8160 #ifdef CONFIG_RT_GROUP_SCHED
8161 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8163
8164 init_task_group.rt_rq = (struct rt_rq **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8166
8167 #ifdef CONFIG_USER_SCHED
8168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8170
8171 root_task_group.rt_rq = (struct rt_rq **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
8173 #endif /* CONFIG_USER_SCHED */
8174 #endif /* CONFIG_RT_GROUP_SCHED */
8175 }
8176
8177 #ifdef CONFIG_SMP
8178 init_defrootdomain();
8179 #endif
8180
8181 init_rt_bandwidth(&def_rt_bandwidth,
8182 global_rt_period(), global_rt_runtime());
8183
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8186 global_rt_period(), global_rt_runtime());
8187 #ifdef CONFIG_USER_SCHED
8188 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8189 global_rt_period(), RUNTIME_INF);
8190 #endif /* CONFIG_USER_SCHED */
8191 #endif /* CONFIG_RT_GROUP_SCHED */
8192
8193 #ifdef CONFIG_GROUP_SCHED
8194 list_add(&init_task_group.list, &task_groups);
8195 INIT_LIST_HEAD(&init_task_group.children);
8196
8197 #ifdef CONFIG_USER_SCHED
8198 INIT_LIST_HEAD(&root_task_group.children);
8199 init_task_group.parent = &root_task_group;
8200 list_add(&init_task_group.siblings, &root_task_group.children);
8201 #endif /* CONFIG_USER_SCHED */
8202 #endif /* CONFIG_GROUP_SCHED */
8203
8204 for_each_possible_cpu(i) {
8205 struct rq *rq;
8206
8207 rq = cpu_rq(i);
8208 spin_lock_init(&rq->lock);
8209 rq->nr_running = 0;
8210 init_cfs_rq(&rq->cfs, rq);
8211 init_rt_rq(&rq->rt, rq);
8212 #ifdef CONFIG_FAIR_GROUP_SCHED
8213 init_task_group.shares = init_task_group_load;
8214 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8215 #ifdef CONFIG_CGROUP_SCHED
8216 /*
8217 * How much cpu bandwidth does init_task_group get?
8218 *
8219 * In case of task-groups formed thr' the cgroup filesystem, it
8220 * gets 100% of the cpu resources in the system. This overall
8221 * system cpu resource is divided among the tasks of
8222 * init_task_group and its child task-groups in a fair manner,
8223 * based on each entity's (task or task-group's) weight
8224 * (se->load.weight).
8225 *
8226 * In other words, if init_task_group has 10 tasks of weight
8227 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8228 * then A0's share of the cpu resource is:
8229 *
8230 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8231 *
8232 * We achieve this by letting init_task_group's tasks sit
8233 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8234 */
8235 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8236 #elif defined CONFIG_USER_SCHED
8237 root_task_group.shares = NICE_0_LOAD;
8238 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8239 /*
8240 * In case of task-groups formed thr' the user id of tasks,
8241 * init_task_group represents tasks belonging to root user.
8242 * Hence it forms a sibling of all subsequent groups formed.
8243 * In this case, init_task_group gets only a fraction of overall
8244 * system cpu resource, based on the weight assigned to root
8245 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8246 * by letting tasks of init_task_group sit in a separate cfs_rq
8247 * (init_cfs_rq) and having one entity represent this group of
8248 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8249 */
8250 init_tg_cfs_entry(&init_task_group,
8251 &per_cpu(init_cfs_rq, i),
8252 &per_cpu(init_sched_entity, i), i, 1,
8253 root_task_group.se[i]);
8254
8255 #endif
8256 #endif /* CONFIG_FAIR_GROUP_SCHED */
8257
8258 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8259 #ifdef CONFIG_RT_GROUP_SCHED
8260 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8261 #ifdef CONFIG_CGROUP_SCHED
8262 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8263 #elif defined CONFIG_USER_SCHED
8264 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8265 init_tg_rt_entry(&init_task_group,
8266 &per_cpu(init_rt_rq, i),
8267 &per_cpu(init_sched_rt_entity, i), i, 1,
8268 root_task_group.rt_se[i]);
8269 #endif
8270 #endif
8271
8272 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8273 rq->cpu_load[j] = 0;
8274 #ifdef CONFIG_SMP
8275 rq->sd = NULL;
8276 rq->rd = NULL;
8277 rq->active_balance = 0;
8278 rq->next_balance = jiffies;
8279 rq->push_cpu = 0;
8280 rq->cpu = i;
8281 rq->online = 0;
8282 rq->migration_thread = NULL;
8283 INIT_LIST_HEAD(&rq->migration_queue);
8284 rq_attach_root(rq, &def_root_domain);
8285 #endif
8286 init_rq_hrtick(rq);
8287 atomic_set(&rq->nr_iowait, 0);
8288 }
8289
8290 set_load_weight(&init_task);
8291
8292 #ifdef CONFIG_PREEMPT_NOTIFIERS
8293 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8294 #endif
8295
8296 #ifdef CONFIG_SMP
8297 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8298 #endif
8299
8300 #ifdef CONFIG_RT_MUTEXES
8301 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8302 #endif
8303
8304 /*
8305 * The boot idle thread does lazy MMU switching as well:
8306 */
8307 atomic_inc(&init_mm.mm_count);
8308 enter_lazy_tlb(&init_mm, current);
8309
8310 /*
8311 * Make us the idle thread. Technically, schedule() should not be
8312 * called from this thread, however somewhere below it might be,
8313 * but because we are the idle thread, we just pick up running again
8314 * when this runqueue becomes "idle".
8315 */
8316 init_idle(current, smp_processor_id());
8317 /*
8318 * During early bootup we pretend to be a normal task:
8319 */
8320 current->sched_class = &fair_sched_class;
8321
8322 scheduler_running = 1;
8323 }
8324
8325 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8326 void __might_sleep(char *file, int line)
8327 {
8328 #ifdef in_atomic
8329 static unsigned long prev_jiffy; /* ratelimiting */
8330
8331 if ((!in_atomic() && !irqs_disabled()) ||
8332 system_state != SYSTEM_RUNNING || oops_in_progress)
8333 return;
8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8335 return;
8336 prev_jiffy = jiffies;
8337
8338 printk(KERN_ERR
8339 "BUG: sleeping function called from invalid context at %s:%d\n",
8340 file, line);
8341 printk(KERN_ERR
8342 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8343 in_atomic(), irqs_disabled(),
8344 current->pid, current->comm);
8345
8346 debug_show_held_locks(current);
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
8349 dump_stack();
8350 #endif
8351 }
8352 EXPORT_SYMBOL(__might_sleep);
8353 #endif
8354
8355 #ifdef CONFIG_MAGIC_SYSRQ
8356 static void normalize_task(struct rq *rq, struct task_struct *p)
8357 {
8358 int on_rq;
8359
8360 update_rq_clock(rq);
8361 on_rq = p->se.on_rq;
8362 if (on_rq)
8363 deactivate_task(rq, p, 0);
8364 __setscheduler(rq, p, SCHED_NORMAL, 0);
8365 if (on_rq) {
8366 activate_task(rq, p, 0);
8367 resched_task(rq->curr);
8368 }
8369 }
8370
8371 void normalize_rt_tasks(void)
8372 {
8373 struct task_struct *g, *p;
8374 unsigned long flags;
8375 struct rq *rq;
8376
8377 read_lock_irqsave(&tasklist_lock, flags);
8378 do_each_thread(g, p) {
8379 /*
8380 * Only normalize user tasks:
8381 */
8382 if (!p->mm)
8383 continue;
8384
8385 p->se.exec_start = 0;
8386 #ifdef CONFIG_SCHEDSTATS
8387 p->se.wait_start = 0;
8388 p->se.sleep_start = 0;
8389 p->se.block_start = 0;
8390 #endif
8391
8392 if (!rt_task(p)) {
8393 /*
8394 * Renice negative nice level userspace
8395 * tasks back to 0:
8396 */
8397 if (TASK_NICE(p) < 0 && p->mm)
8398 set_user_nice(p, 0);
8399 continue;
8400 }
8401
8402 spin_lock(&p->pi_lock);
8403 rq = __task_rq_lock(p);
8404
8405 normalize_task(rq, p);
8406
8407 __task_rq_unlock(rq);
8408 spin_unlock(&p->pi_lock);
8409 } while_each_thread(g, p);
8410
8411 read_unlock_irqrestore(&tasklist_lock, flags);
8412 }
8413
8414 #endif /* CONFIG_MAGIC_SYSRQ */
8415
8416 #ifdef CONFIG_IA64
8417 /*
8418 * These functions are only useful for the IA64 MCA handling.
8419 *
8420 * They can only be called when the whole system has been
8421 * stopped - every CPU needs to be quiescent, and no scheduling
8422 * activity can take place. Using them for anything else would
8423 * be a serious bug, and as a result, they aren't even visible
8424 * under any other configuration.
8425 */
8426
8427 /**
8428 * curr_task - return the current task for a given cpu.
8429 * @cpu: the processor in question.
8430 *
8431 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8432 */
8433 struct task_struct *curr_task(int cpu)
8434 {
8435 return cpu_curr(cpu);
8436 }
8437
8438 /**
8439 * set_curr_task - set the current task for a given cpu.
8440 * @cpu: the processor in question.
8441 * @p: the task pointer to set.
8442 *
8443 * Description: This function must only be used when non-maskable interrupts
8444 * are serviced on a separate stack. It allows the architecture to switch the
8445 * notion of the current task on a cpu in a non-blocking manner. This function
8446 * must be called with all CPU's synchronized, and interrupts disabled, the
8447 * and caller must save the original value of the current task (see
8448 * curr_task() above) and restore that value before reenabling interrupts and
8449 * re-starting the system.
8450 *
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8452 */
8453 void set_curr_task(int cpu, struct task_struct *p)
8454 {
8455 cpu_curr(cpu) = p;
8456 }
8457
8458 #endif
8459
8460 #ifdef CONFIG_FAIR_GROUP_SCHED
8461 static void free_fair_sched_group(struct task_group *tg)
8462 {
8463 int i;
8464
8465 for_each_possible_cpu(i) {
8466 if (tg->cfs_rq)
8467 kfree(tg->cfs_rq[i]);
8468 if (tg->se)
8469 kfree(tg->se[i]);
8470 }
8471
8472 kfree(tg->cfs_rq);
8473 kfree(tg->se);
8474 }
8475
8476 static
8477 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8478 {
8479 struct cfs_rq *cfs_rq;
8480 struct sched_entity *se, *parent_se;
8481 struct rq *rq;
8482 int i;
8483
8484 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8485 if (!tg->cfs_rq)
8486 goto err;
8487 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8488 if (!tg->se)
8489 goto err;
8490
8491 tg->shares = NICE_0_LOAD;
8492
8493 for_each_possible_cpu(i) {
8494 rq = cpu_rq(i);
8495
8496 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8497 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8498 if (!cfs_rq)
8499 goto err;
8500
8501 se = kmalloc_node(sizeof(struct sched_entity),
8502 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8503 if (!se)
8504 goto err;
8505
8506 parent_se = parent ? parent->se[i] : NULL;
8507 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8508 }
8509
8510 return 1;
8511
8512 err:
8513 return 0;
8514 }
8515
8516 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8517 {
8518 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8519 &cpu_rq(cpu)->leaf_cfs_rq_list);
8520 }
8521
8522 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8523 {
8524 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8525 }
8526 #else /* !CONFG_FAIR_GROUP_SCHED */
8527 static inline void free_fair_sched_group(struct task_group *tg)
8528 {
8529 }
8530
8531 static inline
8532 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8533 {
8534 return 1;
8535 }
8536
8537 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8538 {
8539 }
8540
8541 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8542 {
8543 }
8544 #endif /* CONFIG_FAIR_GROUP_SCHED */
8545
8546 #ifdef CONFIG_RT_GROUP_SCHED
8547 static void free_rt_sched_group(struct task_group *tg)
8548 {
8549 int i;
8550
8551 destroy_rt_bandwidth(&tg->rt_bandwidth);
8552
8553 for_each_possible_cpu(i) {
8554 if (tg->rt_rq)
8555 kfree(tg->rt_rq[i]);
8556 if (tg->rt_se)
8557 kfree(tg->rt_se[i]);
8558 }
8559
8560 kfree(tg->rt_rq);
8561 kfree(tg->rt_se);
8562 }
8563
8564 static
8565 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8566 {
8567 struct rt_rq *rt_rq;
8568 struct sched_rt_entity *rt_se, *parent_se;
8569 struct rq *rq;
8570 int i;
8571
8572 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8573 if (!tg->rt_rq)
8574 goto err;
8575 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8576 if (!tg->rt_se)
8577 goto err;
8578
8579 init_rt_bandwidth(&tg->rt_bandwidth,
8580 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8581
8582 for_each_possible_cpu(i) {
8583 rq = cpu_rq(i);
8584
8585 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8586 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8587 if (!rt_rq)
8588 goto err;
8589
8590 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8591 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8592 if (!rt_se)
8593 goto err;
8594
8595 parent_se = parent ? parent->rt_se[i] : NULL;
8596 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8597 }
8598
8599 return 1;
8600
8601 err:
8602 return 0;
8603 }
8604
8605 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8606 {
8607 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8608 &cpu_rq(cpu)->leaf_rt_rq_list);
8609 }
8610
8611 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8612 {
8613 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8614 }
8615 #else /* !CONFIG_RT_GROUP_SCHED */
8616 static inline void free_rt_sched_group(struct task_group *tg)
8617 {
8618 }
8619
8620 static inline
8621 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8622 {
8623 return 1;
8624 }
8625
8626 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8627 {
8628 }
8629
8630 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8631 {
8632 }
8633 #endif /* CONFIG_RT_GROUP_SCHED */
8634
8635 #ifdef CONFIG_GROUP_SCHED
8636 static void free_sched_group(struct task_group *tg)
8637 {
8638 free_fair_sched_group(tg);
8639 free_rt_sched_group(tg);
8640 kfree(tg);
8641 }
8642
8643 /* allocate runqueue etc for a new task group */
8644 struct task_group *sched_create_group(struct task_group *parent)
8645 {
8646 struct task_group *tg;
8647 unsigned long flags;
8648 int i;
8649
8650 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8651 if (!tg)
8652 return ERR_PTR(-ENOMEM);
8653
8654 if (!alloc_fair_sched_group(tg, parent))
8655 goto err;
8656
8657 if (!alloc_rt_sched_group(tg, parent))
8658 goto err;
8659
8660 spin_lock_irqsave(&task_group_lock, flags);
8661 for_each_possible_cpu(i) {
8662 register_fair_sched_group(tg, i);
8663 register_rt_sched_group(tg, i);
8664 }
8665 list_add_rcu(&tg->list, &task_groups);
8666
8667 WARN_ON(!parent); /* root should already exist */
8668
8669 tg->parent = parent;
8670 INIT_LIST_HEAD(&tg->children);
8671 list_add_rcu(&tg->siblings, &parent->children);
8672 spin_unlock_irqrestore(&task_group_lock, flags);
8673
8674 return tg;
8675
8676 err:
8677 free_sched_group(tg);
8678 return ERR_PTR(-ENOMEM);
8679 }
8680
8681 /* rcu callback to free various structures associated with a task group */
8682 static void free_sched_group_rcu(struct rcu_head *rhp)
8683 {
8684 /* now it should be safe to free those cfs_rqs */
8685 free_sched_group(container_of(rhp, struct task_group, rcu));
8686 }
8687
8688 /* Destroy runqueue etc associated with a task group */
8689 void sched_destroy_group(struct task_group *tg)
8690 {
8691 unsigned long flags;
8692 int i;
8693
8694 spin_lock_irqsave(&task_group_lock, flags);
8695 for_each_possible_cpu(i) {
8696 unregister_fair_sched_group(tg, i);
8697 unregister_rt_sched_group(tg, i);
8698 }
8699 list_del_rcu(&tg->list);
8700 list_del_rcu(&tg->siblings);
8701 spin_unlock_irqrestore(&task_group_lock, flags);
8702
8703 /* wait for possible concurrent references to cfs_rqs complete */
8704 call_rcu(&tg->rcu, free_sched_group_rcu);
8705 }
8706
8707 /* change task's runqueue when it moves between groups.
8708 * The caller of this function should have put the task in its new group
8709 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8710 * reflect its new group.
8711 */
8712 void sched_move_task(struct task_struct *tsk)
8713 {
8714 int on_rq, running;
8715 unsigned long flags;
8716 struct rq *rq;
8717
8718 rq = task_rq_lock(tsk, &flags);
8719
8720 update_rq_clock(rq);
8721
8722 running = task_current(rq, tsk);
8723 on_rq = tsk->se.on_rq;
8724
8725 if (on_rq)
8726 dequeue_task(rq, tsk, 0);
8727 if (unlikely(running))
8728 tsk->sched_class->put_prev_task(rq, tsk);
8729
8730 set_task_rq(tsk, task_cpu(tsk));
8731
8732 #ifdef CONFIG_FAIR_GROUP_SCHED
8733 if (tsk->sched_class->moved_group)
8734 tsk->sched_class->moved_group(tsk);
8735 #endif
8736
8737 if (unlikely(running))
8738 tsk->sched_class->set_curr_task(rq);
8739 if (on_rq)
8740 enqueue_task(rq, tsk, 0);
8741
8742 task_rq_unlock(rq, &flags);
8743 }
8744 #endif /* CONFIG_GROUP_SCHED */
8745
8746 #ifdef CONFIG_FAIR_GROUP_SCHED
8747 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8748 {
8749 struct cfs_rq *cfs_rq = se->cfs_rq;
8750 int on_rq;
8751
8752 on_rq = se->on_rq;
8753 if (on_rq)
8754 dequeue_entity(cfs_rq, se, 0);
8755
8756 se->load.weight = shares;
8757 se->load.inv_weight = 0;
8758
8759 if (on_rq)
8760 enqueue_entity(cfs_rq, se, 0);
8761 }
8762
8763 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8764 {
8765 struct cfs_rq *cfs_rq = se->cfs_rq;
8766 struct rq *rq = cfs_rq->rq;
8767 unsigned long flags;
8768
8769 spin_lock_irqsave(&rq->lock, flags);
8770 __set_se_shares(se, shares);
8771 spin_unlock_irqrestore(&rq->lock, flags);
8772 }
8773
8774 static DEFINE_MUTEX(shares_mutex);
8775
8776 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8777 {
8778 int i;
8779 unsigned long flags;
8780
8781 /*
8782 * We can't change the weight of the root cgroup.
8783 */
8784 if (!tg->se[0])
8785 return -EINVAL;
8786
8787 if (shares < MIN_SHARES)
8788 shares = MIN_SHARES;
8789 else if (shares > MAX_SHARES)
8790 shares = MAX_SHARES;
8791
8792 mutex_lock(&shares_mutex);
8793 if (tg->shares == shares)
8794 goto done;
8795
8796 spin_lock_irqsave(&task_group_lock, flags);
8797 for_each_possible_cpu(i)
8798 unregister_fair_sched_group(tg, i);
8799 list_del_rcu(&tg->siblings);
8800 spin_unlock_irqrestore(&task_group_lock, flags);
8801
8802 /* wait for any ongoing reference to this group to finish */
8803 synchronize_sched();
8804
8805 /*
8806 * Now we are free to modify the group's share on each cpu
8807 * w/o tripping rebalance_share or load_balance_fair.
8808 */
8809 tg->shares = shares;
8810 for_each_possible_cpu(i) {
8811 /*
8812 * force a rebalance
8813 */
8814 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8815 set_se_shares(tg->se[i], shares);
8816 }
8817
8818 /*
8819 * Enable load balance activity on this group, by inserting it back on
8820 * each cpu's rq->leaf_cfs_rq_list.
8821 */
8822 spin_lock_irqsave(&task_group_lock, flags);
8823 for_each_possible_cpu(i)
8824 register_fair_sched_group(tg, i);
8825 list_add_rcu(&tg->siblings, &tg->parent->children);
8826 spin_unlock_irqrestore(&task_group_lock, flags);
8827 done:
8828 mutex_unlock(&shares_mutex);
8829 return 0;
8830 }
8831
8832 unsigned long sched_group_shares(struct task_group *tg)
8833 {
8834 return tg->shares;
8835 }
8836 #endif
8837
8838 #ifdef CONFIG_RT_GROUP_SCHED
8839 /*
8840 * Ensure that the real time constraints are schedulable.
8841 */
8842 static DEFINE_MUTEX(rt_constraints_mutex);
8843
8844 static unsigned long to_ratio(u64 period, u64 runtime)
8845 {
8846 if (runtime == RUNTIME_INF)
8847 return 1ULL << 20;
8848
8849 return div64_u64(runtime << 20, period);
8850 }
8851
8852 /* Must be called with tasklist_lock held */
8853 static inline int tg_has_rt_tasks(struct task_group *tg)
8854 {
8855 struct task_struct *g, *p;
8856
8857 do_each_thread(g, p) {
8858 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8859 return 1;
8860 } while_each_thread(g, p);
8861
8862 return 0;
8863 }
8864
8865 struct rt_schedulable_data {
8866 struct task_group *tg;
8867 u64 rt_period;
8868 u64 rt_runtime;
8869 };
8870
8871 static int tg_schedulable(struct task_group *tg, void *data)
8872 {
8873 struct rt_schedulable_data *d = data;
8874 struct task_group *child;
8875 unsigned long total, sum = 0;
8876 u64 period, runtime;
8877
8878 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8879 runtime = tg->rt_bandwidth.rt_runtime;
8880
8881 if (tg == d->tg) {
8882 period = d->rt_period;
8883 runtime = d->rt_runtime;
8884 }
8885
8886 /*
8887 * Cannot have more runtime than the period.
8888 */
8889 if (runtime > period && runtime != RUNTIME_INF)
8890 return -EINVAL;
8891
8892 /*
8893 * Ensure we don't starve existing RT tasks.
8894 */
8895 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8896 return -EBUSY;
8897
8898 total = to_ratio(period, runtime);
8899
8900 /*
8901 * Nobody can have more than the global setting allows.
8902 */
8903 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8904 return -EINVAL;
8905
8906 /*
8907 * The sum of our children's runtime should not exceed our own.
8908 */
8909 list_for_each_entry_rcu(child, &tg->children, siblings) {
8910 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8911 runtime = child->rt_bandwidth.rt_runtime;
8912
8913 if (child == d->tg) {
8914 period = d->rt_period;
8915 runtime = d->rt_runtime;
8916 }
8917
8918 sum += to_ratio(period, runtime);
8919 }
8920
8921 if (sum > total)
8922 return -EINVAL;
8923
8924 return 0;
8925 }
8926
8927 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8928 {
8929 struct rt_schedulable_data data = {
8930 .tg = tg,
8931 .rt_period = period,
8932 .rt_runtime = runtime,
8933 };
8934
8935 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8936 }
8937
8938 static int tg_set_bandwidth(struct task_group *tg,
8939 u64 rt_period, u64 rt_runtime)
8940 {
8941 int i, err = 0;
8942
8943 mutex_lock(&rt_constraints_mutex);
8944 read_lock(&tasklist_lock);
8945 err = __rt_schedulable(tg, rt_period, rt_runtime);
8946 if (err)
8947 goto unlock;
8948
8949 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8950 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8951 tg->rt_bandwidth.rt_runtime = rt_runtime;
8952
8953 for_each_possible_cpu(i) {
8954 struct rt_rq *rt_rq = tg->rt_rq[i];
8955
8956 spin_lock(&rt_rq->rt_runtime_lock);
8957 rt_rq->rt_runtime = rt_runtime;
8958 spin_unlock(&rt_rq->rt_runtime_lock);
8959 }
8960 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8961 unlock:
8962 read_unlock(&tasklist_lock);
8963 mutex_unlock(&rt_constraints_mutex);
8964
8965 return err;
8966 }
8967
8968 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8969 {
8970 u64 rt_runtime, rt_period;
8971
8972 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8973 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8974 if (rt_runtime_us < 0)
8975 rt_runtime = RUNTIME_INF;
8976
8977 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8978 }
8979
8980 long sched_group_rt_runtime(struct task_group *tg)
8981 {
8982 u64 rt_runtime_us;
8983
8984 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8985 return -1;
8986
8987 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8988 do_div(rt_runtime_us, NSEC_PER_USEC);
8989 return rt_runtime_us;
8990 }
8991
8992 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8993 {
8994 u64 rt_runtime, rt_period;
8995
8996 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8997 rt_runtime = tg->rt_bandwidth.rt_runtime;
8998
8999 if (rt_period == 0)
9000 return -EINVAL;
9001
9002 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9003 }
9004
9005 long sched_group_rt_period(struct task_group *tg)
9006 {
9007 u64 rt_period_us;
9008
9009 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9010 do_div(rt_period_us, NSEC_PER_USEC);
9011 return rt_period_us;
9012 }
9013
9014 static int sched_rt_global_constraints(void)
9015 {
9016 u64 runtime, period;
9017 int ret = 0;
9018
9019 if (sysctl_sched_rt_period <= 0)
9020 return -EINVAL;
9021
9022 runtime = global_rt_runtime();
9023 period = global_rt_period();
9024
9025 /*
9026 * Sanity check on the sysctl variables.
9027 */
9028 if (runtime > period && runtime != RUNTIME_INF)
9029 return -EINVAL;
9030
9031 mutex_lock(&rt_constraints_mutex);
9032 read_lock(&tasklist_lock);
9033 ret = __rt_schedulable(NULL, 0, 0);
9034 read_unlock(&tasklist_lock);
9035 mutex_unlock(&rt_constraints_mutex);
9036
9037 return ret;
9038 }
9039 #else /* !CONFIG_RT_GROUP_SCHED */
9040 static int sched_rt_global_constraints(void)
9041 {
9042 unsigned long flags;
9043 int i;
9044
9045 if (sysctl_sched_rt_period <= 0)
9046 return -EINVAL;
9047
9048 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9049 for_each_possible_cpu(i) {
9050 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9051
9052 spin_lock(&rt_rq->rt_runtime_lock);
9053 rt_rq->rt_runtime = global_rt_runtime();
9054 spin_unlock(&rt_rq->rt_runtime_lock);
9055 }
9056 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9057
9058 return 0;
9059 }
9060 #endif /* CONFIG_RT_GROUP_SCHED */
9061
9062 int sched_rt_handler(struct ctl_table *table, int write,
9063 struct file *filp, void __user *buffer, size_t *lenp,
9064 loff_t *ppos)
9065 {
9066 int ret;
9067 int old_period, old_runtime;
9068 static DEFINE_MUTEX(mutex);
9069
9070 mutex_lock(&mutex);
9071 old_period = sysctl_sched_rt_period;
9072 old_runtime = sysctl_sched_rt_runtime;
9073
9074 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9075
9076 if (!ret && write) {
9077 ret = sched_rt_global_constraints();
9078 if (ret) {
9079 sysctl_sched_rt_period = old_period;
9080 sysctl_sched_rt_runtime = old_runtime;
9081 } else {
9082 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9083 def_rt_bandwidth.rt_period =
9084 ns_to_ktime(global_rt_period());
9085 }
9086 }
9087 mutex_unlock(&mutex);
9088
9089 return ret;
9090 }
9091
9092 #ifdef CONFIG_CGROUP_SCHED
9093
9094 /* return corresponding task_group object of a cgroup */
9095 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9096 {
9097 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9098 struct task_group, css);
9099 }
9100
9101 static struct cgroup_subsys_state *
9102 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9103 {
9104 struct task_group *tg, *parent;
9105
9106 if (!cgrp->parent) {
9107 /* This is early initialization for the top cgroup */
9108 return &init_task_group.css;
9109 }
9110
9111 parent = cgroup_tg(cgrp->parent);
9112 tg = sched_create_group(parent);
9113 if (IS_ERR(tg))
9114 return ERR_PTR(-ENOMEM);
9115
9116 return &tg->css;
9117 }
9118
9119 static void
9120 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9121 {
9122 struct task_group *tg = cgroup_tg(cgrp);
9123
9124 sched_destroy_group(tg);
9125 }
9126
9127 static int
9128 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9129 struct task_struct *tsk)
9130 {
9131 #ifdef CONFIG_RT_GROUP_SCHED
9132 /* Don't accept realtime tasks when there is no way for them to run */
9133 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9134 return -EINVAL;
9135 #else
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk->sched_class != &fair_sched_class)
9138 return -EINVAL;
9139 #endif
9140
9141 return 0;
9142 }
9143
9144 static void
9145 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9146 struct cgroup *old_cont, struct task_struct *tsk)
9147 {
9148 sched_move_task(tsk);
9149 }
9150
9151 #ifdef CONFIG_FAIR_GROUP_SCHED
9152 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9153 u64 shareval)
9154 {
9155 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9156 }
9157
9158 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9159 {
9160 struct task_group *tg = cgroup_tg(cgrp);
9161
9162 return (u64) tg->shares;
9163 }
9164 #endif /* CONFIG_FAIR_GROUP_SCHED */
9165
9166 #ifdef CONFIG_RT_GROUP_SCHED
9167 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9168 s64 val)
9169 {
9170 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9171 }
9172
9173 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9174 {
9175 return sched_group_rt_runtime(cgroup_tg(cgrp));
9176 }
9177
9178 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9179 u64 rt_period_us)
9180 {
9181 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9182 }
9183
9184 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9185 {
9186 return sched_group_rt_period(cgroup_tg(cgrp));
9187 }
9188 #endif /* CONFIG_RT_GROUP_SCHED */
9189
9190 static struct cftype cpu_files[] = {
9191 #ifdef CONFIG_FAIR_GROUP_SCHED
9192 {
9193 .name = "shares",
9194 .read_u64 = cpu_shares_read_u64,
9195 .write_u64 = cpu_shares_write_u64,
9196 },
9197 #endif
9198 #ifdef CONFIG_RT_GROUP_SCHED
9199 {
9200 .name = "rt_runtime_us",
9201 .read_s64 = cpu_rt_runtime_read,
9202 .write_s64 = cpu_rt_runtime_write,
9203 },
9204 {
9205 .name = "rt_period_us",
9206 .read_u64 = cpu_rt_period_read_uint,
9207 .write_u64 = cpu_rt_period_write_uint,
9208 },
9209 #endif
9210 };
9211
9212 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9213 {
9214 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9215 }
9216
9217 struct cgroup_subsys cpu_cgroup_subsys = {
9218 .name = "cpu",
9219 .create = cpu_cgroup_create,
9220 .destroy = cpu_cgroup_destroy,
9221 .can_attach = cpu_cgroup_can_attach,
9222 .attach = cpu_cgroup_attach,
9223 .populate = cpu_cgroup_populate,
9224 .subsys_id = cpu_cgroup_subsys_id,
9225 .early_init = 1,
9226 };
9227
9228 #endif /* CONFIG_CGROUP_SCHED */
9229
9230 #ifdef CONFIG_CGROUP_CPUACCT
9231
9232 /*
9233 * CPU accounting code for task groups.
9234 *
9235 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9236 * (balbir@in.ibm.com).
9237 */
9238
9239 /* track cpu usage of a group of tasks */
9240 struct cpuacct {
9241 struct cgroup_subsys_state css;
9242 /* cpuusage holds pointer to a u64-type object on every cpu */
9243 u64 *cpuusage;
9244 };
9245
9246 struct cgroup_subsys cpuacct_subsys;
9247
9248 /* return cpu accounting group corresponding to this container */
9249 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9250 {
9251 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9252 struct cpuacct, css);
9253 }
9254
9255 /* return cpu accounting group to which this task belongs */
9256 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9257 {
9258 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9259 struct cpuacct, css);
9260 }
9261
9262 /* create a new cpu accounting group */
9263 static struct cgroup_subsys_state *cpuacct_create(
9264 struct cgroup_subsys *ss, struct cgroup *cgrp)
9265 {
9266 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9267
9268 if (!ca)
9269 return ERR_PTR(-ENOMEM);
9270
9271 ca->cpuusage = alloc_percpu(u64);
9272 if (!ca->cpuusage) {
9273 kfree(ca);
9274 return ERR_PTR(-ENOMEM);
9275 }
9276
9277 return &ca->css;
9278 }
9279
9280 /* destroy an existing cpu accounting group */
9281 static void
9282 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283 {
9284 struct cpuacct *ca = cgroup_ca(cgrp);
9285
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9288 }
9289
9290 /* return total cpu usage (in nanoseconds) of a group */
9291 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9292 {
9293 struct cpuacct *ca = cgroup_ca(cgrp);
9294 u64 totalcpuusage = 0;
9295 int i;
9296
9297 for_each_possible_cpu(i) {
9298 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9299
9300 /*
9301 * Take rq->lock to make 64-bit addition safe on 32-bit
9302 * platforms.
9303 */
9304 spin_lock_irq(&cpu_rq(i)->lock);
9305 totalcpuusage += *cpuusage;
9306 spin_unlock_irq(&cpu_rq(i)->lock);
9307 }
9308
9309 return totalcpuusage;
9310 }
9311
9312 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9314 {
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9318
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9322 }
9323
9324 for_each_possible_cpu(i) {
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9326
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 *cpuusage = 0;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9330 }
9331 out:
9332 return err;
9333 }
9334
9335 static struct cftype files[] = {
9336 {
9337 .name = "usage",
9338 .read_u64 = cpuusage_read,
9339 .write_u64 = cpuusage_write,
9340 },
9341 };
9342
9343 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9344 {
9345 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9346 }
9347
9348 /*
9349 * charge this task's execution time to its accounting group.
9350 *
9351 * called with rq->lock held.
9352 */
9353 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9354 {
9355 struct cpuacct *ca;
9356
9357 if (!cpuacct_subsys.active)
9358 return;
9359
9360 ca = task_ca(tsk);
9361 if (ca) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9363
9364 *cpuusage += cputime;
9365 }
9366 }
9367
9368 struct cgroup_subsys cpuacct_subsys = {
9369 .name = "cpuacct",
9370 .create = cpuacct_create,
9371 .destroy = cpuacct_destroy,
9372 .populate = cpuacct_populate,
9373 .subsys_id = cpuacct_subsys_id,
9374 };
9375 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.274889 seconds and 6 git commands to generate.