Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 }
213
214 static inline int rt_bandwidth_enabled(void)
215 {
216 return sysctl_sched_rt_runtime >= 0;
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 ktime_t now;
222
223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240 }
241
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244 {
245 hrtimer_cancel(&rt_b->rt_period_timer);
246 }
247 #endif
248
249 /*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253 static DEFINE_MUTEX(sched_domains_mutex);
254
255 #ifdef CONFIG_GROUP_SCHED
256
257 #include <linux/cgroup.h>
258
259 struct cfs_rq;
260
261 static LIST_HEAD(task_groups);
262
263 /* task group related information */
264 struct task_group {
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css;
267 #endif
268
269 #ifdef CONFIG_USER_SCHED
270 uid_t uid;
271 #endif
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
285 struct rt_bandwidth rt_bandwidth;
286 #endif
287
288 struct rcu_head rcu;
289 struct list_head list;
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
294 };
295
296 #ifdef CONFIG_USER_SCHED
297
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct *user)
300 {
301 user->tg->uid = user->uid;
302 }
303
304 /*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309 struct task_group root_task_group;
310
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
317
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
325
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
328 */
329 static DEFINE_SPINLOCK(task_group_lock);
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
337
338 /*
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
346 #define MIN_SHARES 2
347 #define MAX_SHARES (1UL << 18)
348
349 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350 #endif
351
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
354 */
355 struct task_group init_task_group;
356
357 /* return group to which a task belongs */
358 static inline struct task_group *task_group(struct task_struct *p)
359 {
360 struct task_group *tg;
361
362 #ifdef CONFIG_USER_SCHED
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
369 #else
370 tg = &init_task_group;
371 #endif
372 return tg;
373 }
374
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
377 {
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
381 #endif
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
386 #endif
387 }
388
389 #else
390
391 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 static inline struct task_group *task_group(struct task_struct *p)
393 {
394 return NULL;
395 }
396
397 #endif /* CONFIG_GROUP_SCHED */
398
399 /* CFS-related fields in a runqueue */
400 struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
404 u64 exec_clock;
405 u64 min_vruntime;
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
417 struct sched_entity *curr, *next, *last;
418
419 unsigned int nr_spread_over;
420
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
434
435 #ifdef CONFIG_SMP
436 /*
437 * the part of load.weight contributed by tasks
438 */
439 unsigned long task_weight;
440
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
448
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
458 #endif
459 #endif
460 };
461
462 /* Real-Time classes' related field in a runqueue: */
463 struct rt_rq {
464 struct rt_prio_array active;
465 unsigned long rt_nr_running;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio; /* highest queued rt task prio */
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 int overloaded;
472 #endif
473 int rt_throttled;
474 u64 rt_time;
475 u64 rt_runtime;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock;
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted;
481
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486 #endif
487 };
488
489 #ifdef CONFIG_SMP
490
491 /*
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
498 */
499 struct root_domain {
500 atomic_t refcount;
501 cpumask_t span;
502 cpumask_t online;
503
504 /*
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
508 cpumask_t rto_mask;
509 atomic_t rto_count;
510 #ifdef CONFIG_SMP
511 struct cpupri cpupri;
512 #endif
513 };
514
515 /*
516 * By default the system creates a single root-domain with all cpus as
517 * members (mimicking the global state we have today).
518 */
519 static struct root_domain def_root_domain;
520
521 #endif
522
523 /*
524 * This is the main, per-CPU runqueue data structure.
525 *
526 * Locking rule: those places that want to lock multiple runqueues
527 * (such as the load balancing or the thread migration code), lock
528 * acquire operations must be ordered by ascending &runqueue.
529 */
530 struct rq {
531 /* runqueue lock: */
532 spinlock_t lock;
533
534 /*
535 * nr_running and cpu_load should be in the same cacheline because
536 * remote CPUs use both these fields when doing load calculation.
537 */
538 unsigned long nr_running;
539 #define CPU_LOAD_IDX_MAX 5
540 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
541 unsigned char idle_at_tick;
542 #ifdef CONFIG_NO_HZ
543 unsigned long last_tick_seen;
544 unsigned char in_nohz_recently;
545 #endif
546 /* capture load from *all* tasks on this cpu: */
547 struct load_weight load;
548 unsigned long nr_load_updates;
549 u64 nr_switches;
550
551 struct cfs_rq cfs;
552 struct rt_rq rt;
553
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555 /* list of leaf cfs_rq on this cpu: */
556 struct list_head leaf_cfs_rq_list;
557 #endif
558 #ifdef CONFIG_RT_GROUP_SCHED
559 struct list_head leaf_rt_rq_list;
560 #endif
561
562 /*
563 * This is part of a global counter where only the total sum
564 * over all CPUs matters. A task can increase this counter on
565 * one CPU and if it got migrated afterwards it may decrease
566 * it on another CPU. Always updated under the runqueue lock:
567 */
568 unsigned long nr_uninterruptible;
569
570 struct task_struct *curr, *idle;
571 unsigned long next_balance;
572 struct mm_struct *prev_mm;
573
574 u64 clock;
575
576 atomic_t nr_iowait;
577
578 #ifdef CONFIG_SMP
579 struct root_domain *rd;
580 struct sched_domain *sd;
581
582 /* For active balancing */
583 int active_balance;
584 int push_cpu;
585 /* cpu of this runqueue: */
586 int cpu;
587 int online;
588
589 unsigned long avg_load_per_task;
590
591 struct task_struct *migration_thread;
592 struct list_head migration_queue;
593 #endif
594
595 #ifdef CONFIG_SCHED_HRTICK
596 #ifdef CONFIG_SMP
597 int hrtick_csd_pending;
598 struct call_single_data hrtick_csd;
599 #endif
600 struct hrtimer hrtick_timer;
601 #endif
602
603 #ifdef CONFIG_SCHEDSTATS
604 /* latency stats */
605 struct sched_info rq_sched_info;
606 unsigned long long rq_cpu_time;
607 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
608
609 /* sys_sched_yield() stats */
610 unsigned int yld_exp_empty;
611 unsigned int yld_act_empty;
612 unsigned int yld_both_empty;
613 unsigned int yld_count;
614
615 /* schedule() stats */
616 unsigned int sched_switch;
617 unsigned int sched_count;
618 unsigned int sched_goidle;
619
620 /* try_to_wake_up() stats */
621 unsigned int ttwu_count;
622 unsigned int ttwu_local;
623
624 /* BKL stats */
625 unsigned int bkl_count;
626 #endif
627 };
628
629 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
630
631 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
632 {
633 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
634 }
635
636 static inline int cpu_of(struct rq *rq)
637 {
638 #ifdef CONFIG_SMP
639 return rq->cpu;
640 #else
641 return 0;
642 #endif
643 }
644
645 /*
646 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
647 * See detach_destroy_domains: synchronize_sched for details.
648 *
649 * The domain tree of any CPU may only be accessed from within
650 * preempt-disabled sections.
651 */
652 #define for_each_domain(cpu, __sd) \
653 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
654
655 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
656 #define this_rq() (&__get_cpu_var(runqueues))
657 #define task_rq(p) cpu_rq(task_cpu(p))
658 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
659
660 static inline void update_rq_clock(struct rq *rq)
661 {
662 rq->clock = sched_clock_cpu(cpu_of(rq));
663 }
664
665 /*
666 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
667 */
668 #ifdef CONFIG_SCHED_DEBUG
669 # define const_debug __read_mostly
670 #else
671 # define const_debug static const
672 #endif
673
674 /**
675 * runqueue_is_locked
676 *
677 * Returns true if the current cpu runqueue is locked.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
680 */
681 int runqueue_is_locked(void)
682 {
683 int cpu = get_cpu();
684 struct rq *rq = cpu_rq(cpu);
685 int ret;
686
687 ret = spin_is_locked(&rq->lock);
688 put_cpu();
689 return ret;
690 }
691
692 /*
693 * Debugging: various feature bits
694 */
695
696 #define SCHED_FEAT(name, enabled) \
697 __SCHED_FEAT_##name ,
698
699 enum {
700 #include "sched_features.h"
701 };
702
703 #undef SCHED_FEAT
704
705 #define SCHED_FEAT(name, enabled) \
706 (1UL << __SCHED_FEAT_##name) * enabled |
707
708 const_debug unsigned int sysctl_sched_features =
709 #include "sched_features.h"
710 0;
711
712 #undef SCHED_FEAT
713
714 #ifdef CONFIG_SCHED_DEBUG
715 #define SCHED_FEAT(name, enabled) \
716 #name ,
717
718 static __read_mostly char *sched_feat_names[] = {
719 #include "sched_features.h"
720 NULL
721 };
722
723 #undef SCHED_FEAT
724
725 static int sched_feat_show(struct seq_file *m, void *v)
726 {
727 int i;
728
729 for (i = 0; sched_feat_names[i]; i++) {
730 if (!(sysctl_sched_features & (1UL << i)))
731 seq_puts(m, "NO_");
732 seq_printf(m, "%s ", sched_feat_names[i]);
733 }
734 seq_puts(m, "\n");
735
736 return 0;
737 }
738
739 static ssize_t
740 sched_feat_write(struct file *filp, const char __user *ubuf,
741 size_t cnt, loff_t *ppos)
742 {
743 char buf[64];
744 char *cmp = buf;
745 int neg = 0;
746 int i;
747
748 if (cnt > 63)
749 cnt = 63;
750
751 if (copy_from_user(&buf, ubuf, cnt))
752 return -EFAULT;
753
754 buf[cnt] = 0;
755
756 if (strncmp(buf, "NO_", 3) == 0) {
757 neg = 1;
758 cmp += 3;
759 }
760
761 for (i = 0; sched_feat_names[i]; i++) {
762 int len = strlen(sched_feat_names[i]);
763
764 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
765 if (neg)
766 sysctl_sched_features &= ~(1UL << i);
767 else
768 sysctl_sched_features |= (1UL << i);
769 break;
770 }
771 }
772
773 if (!sched_feat_names[i])
774 return -EINVAL;
775
776 filp->f_pos += cnt;
777
778 return cnt;
779 }
780
781 static int sched_feat_open(struct inode *inode, struct file *filp)
782 {
783 return single_open(filp, sched_feat_show, NULL);
784 }
785
786 static struct file_operations sched_feat_fops = {
787 .open = sched_feat_open,
788 .write = sched_feat_write,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
792 };
793
794 static __init int sched_init_debug(void)
795 {
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800 }
801 late_initcall(sched_init_debug);
802
803 #endif
804
805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806
807 /*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811 const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
813 /*
814 * ratelimit for updating the group shares.
815 * default: 0.25ms
816 */
817 unsigned int sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we measure -rt task cpu usage in us.
828 * default: 1s
829 */
830 unsigned int sysctl_sched_rt_period = 1000000;
831
832 static __read_mostly int scheduler_running;
833
834 /*
835 * part of the period that we allow rt tasks to run in us.
836 * default: 0.95s
837 */
838 int sysctl_sched_rt_runtime = 950000;
839
840 static inline u64 global_rt_period(void)
841 {
842 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
843 }
844
845 static inline u64 global_rt_runtime(void)
846 {
847 if (sysctl_sched_rt_runtime < 0)
848 return RUNTIME_INF;
849
850 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
851 }
852
853 #ifndef prepare_arch_switch
854 # define prepare_arch_switch(next) do { } while (0)
855 #endif
856 #ifndef finish_arch_switch
857 # define finish_arch_switch(prev) do { } while (0)
858 #endif
859
860 static inline int task_current(struct rq *rq, struct task_struct *p)
861 {
862 return rq->curr == p;
863 }
864
865 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
866 static inline int task_running(struct rq *rq, struct task_struct *p)
867 {
868 return task_current(rq, p);
869 }
870
871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 {
873 }
874
875 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
876 {
877 #ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880 #endif
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
888 spin_unlock_irq(&rq->lock);
889 }
890
891 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
892 static inline int task_running(struct rq *rq, struct task_struct *p)
893 {
894 #ifdef CONFIG_SMP
895 return p->oncpu;
896 #else
897 return task_current(rq, p);
898 #endif
899 }
900
901 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
902 {
903 #ifdef CONFIG_SMP
904 /*
905 * We can optimise this out completely for !SMP, because the
906 * SMP rebalancing from interrupt is the only thing that cares
907 * here.
908 */
909 next->oncpu = 1;
910 #endif
911 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 spin_unlock_irq(&rq->lock);
913 #else
914 spin_unlock(&rq->lock);
915 #endif
916 }
917
918 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
919 {
920 #ifdef CONFIG_SMP
921 /*
922 * After ->oncpu is cleared, the task can be moved to a different CPU.
923 * We must ensure this doesn't happen until the switch is completely
924 * finished.
925 */
926 smp_wmb();
927 prev->oncpu = 0;
928 #endif
929 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
930 local_irq_enable();
931 #endif
932 }
933 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934
935 /*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
940 __acquires(rq->lock)
941 {
942 for (;;) {
943 struct rq *rq = task_rq(p);
944 spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
947 spin_unlock(&rq->lock);
948 }
949 }
950
951 /*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
955 */
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(rq->lock)
958 {
959 struct rq *rq;
960
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 }
970
971 void task_rq_unlock_wait(struct task_struct *p)
972 {
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 spin_unlock_wait(&rq->lock);
977 }
978
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
981 {
982 spin_unlock(&rq->lock);
983 }
984
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
987 {
988 spin_unlock_irqrestore(&rq->lock, *flags);
989 }
990
991 /*
992 * this_rq_lock - lock this runqueue and disable interrupts.
993 */
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
996 {
997 struct rq *rq;
998
999 local_irq_disable();
1000 rq = this_rq();
1001 spin_lock(&rq->lock);
1002
1003 return rq;
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007 /*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017
1018 /*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023 static inline int hrtick_enabled(struct rq *rq)
1024 {
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 }
1031
1032 static void hrtick_clear(struct rq *rq)
1033 {
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036 }
1037
1038 /*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043 {
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 spin_unlock(&rq->lock);
1052
1053 return HRTIMER_NORESTART;
1054 }
1055
1056 #ifdef CONFIG_SMP
1057 /*
1058 * called from hardirq (IPI) context
1059 */
1060 static void __hrtick_start(void *arg)
1061 {
1062 struct rq *rq = arg;
1063
1064 spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 spin_unlock(&rq->lock);
1068 }
1069
1070 /*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075 static void hrtick_start(struct rq *rq, u64 delay)
1076 {
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079
1080 hrtimer_set_expires(timer, time);
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1086 rq->hrtick_csd_pending = 1;
1087 }
1088 }
1089
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092 {
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107 }
1108
1109 static __init void init_hrtick(void)
1110 {
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112 }
1113 #else
1114 /*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119 static void hrtick_start(struct rq *rq, u64 delay)
1120 {
1121 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1122 }
1123
1124 static inline void init_hrtick(void)
1125 {
1126 }
1127 #endif /* CONFIG_SMP */
1128
1129 static void init_rq_hrtick(struct rq *rq)
1130 {
1131 #ifdef CONFIG_SMP
1132 rq->hrtick_csd_pending = 0;
1133
1134 rq->hrtick_csd.flags = 0;
1135 rq->hrtick_csd.func = __hrtick_start;
1136 rq->hrtick_csd.info = rq;
1137 #endif
1138
1139 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1140 rq->hrtick_timer.function = hrtick;
1141 }
1142 #else /* CONFIG_SCHED_HRTICK */
1143 static inline void hrtick_clear(struct rq *rq)
1144 {
1145 }
1146
1147 static inline void init_rq_hrtick(struct rq *rq)
1148 {
1149 }
1150
1151 static inline void init_hrtick(void)
1152 {
1153 }
1154 #endif /* CONFIG_SCHED_HRTICK */
1155
1156 /*
1157 * resched_task - mark a task 'to be rescheduled now'.
1158 *
1159 * On UP this means the setting of the need_resched flag, on SMP it
1160 * might also involve a cross-CPU call to trigger the scheduler on
1161 * the target CPU.
1162 */
1163 #ifdef CONFIG_SMP
1164
1165 #ifndef tsk_is_polling
1166 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1167 #endif
1168
1169 static void resched_task(struct task_struct *p)
1170 {
1171 int cpu;
1172
1173 assert_spin_locked(&task_rq(p)->lock);
1174
1175 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1176 return;
1177
1178 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1179
1180 cpu = task_cpu(p);
1181 if (cpu == smp_processor_id())
1182 return;
1183
1184 /* NEED_RESCHED must be visible before we test polling */
1185 smp_mb();
1186 if (!tsk_is_polling(p))
1187 smp_send_reschedule(cpu);
1188 }
1189
1190 static void resched_cpu(int cpu)
1191 {
1192 struct rq *rq = cpu_rq(cpu);
1193 unsigned long flags;
1194
1195 if (!spin_trylock_irqsave(&rq->lock, flags))
1196 return;
1197 resched_task(cpu_curr(cpu));
1198 spin_unlock_irqrestore(&rq->lock, flags);
1199 }
1200
1201 #ifdef CONFIG_NO_HZ
1202 /*
1203 * When add_timer_on() enqueues a timer into the timer wheel of an
1204 * idle CPU then this timer might expire before the next timer event
1205 * which is scheduled to wake up that CPU. In case of a completely
1206 * idle system the next event might even be infinite time into the
1207 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1208 * leaves the inner idle loop so the newly added timer is taken into
1209 * account when the CPU goes back to idle and evaluates the timer
1210 * wheel for the next timer event.
1211 */
1212 void wake_up_idle_cpu(int cpu)
1213 {
1214 struct rq *rq = cpu_rq(cpu);
1215
1216 if (cpu == smp_processor_id())
1217 return;
1218
1219 /*
1220 * This is safe, as this function is called with the timer
1221 * wheel base lock of (cpu) held. When the CPU is on the way
1222 * to idle and has not yet set rq->curr to idle then it will
1223 * be serialized on the timer wheel base lock and take the new
1224 * timer into account automatically.
1225 */
1226 if (rq->curr != rq->idle)
1227 return;
1228
1229 /*
1230 * We can set TIF_RESCHED on the idle task of the other CPU
1231 * lockless. The worst case is that the other CPU runs the
1232 * idle task through an additional NOOP schedule()
1233 */
1234 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1235
1236 /* NEED_RESCHED must be visible before we test polling */
1237 smp_mb();
1238 if (!tsk_is_polling(rq->idle))
1239 smp_send_reschedule(cpu);
1240 }
1241 #endif /* CONFIG_NO_HZ */
1242
1243 #else /* !CONFIG_SMP */
1244 static void resched_task(struct task_struct *p)
1245 {
1246 assert_spin_locked(&task_rq(p)->lock);
1247 set_tsk_need_resched(p);
1248 }
1249 #endif /* CONFIG_SMP */
1250
1251 #if BITS_PER_LONG == 32
1252 # define WMULT_CONST (~0UL)
1253 #else
1254 # define WMULT_CONST (1UL << 32)
1255 #endif
1256
1257 #define WMULT_SHIFT 32
1258
1259 /*
1260 * Shift right and round:
1261 */
1262 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1263
1264 /*
1265 * delta *= weight / lw
1266 */
1267 static unsigned long
1268 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1269 struct load_weight *lw)
1270 {
1271 u64 tmp;
1272
1273 if (!lw->inv_weight) {
1274 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1275 lw->inv_weight = 1;
1276 else
1277 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1278 / (lw->weight+1);
1279 }
1280
1281 tmp = (u64)delta_exec * weight;
1282 /*
1283 * Check whether we'd overflow the 64-bit multiplication:
1284 */
1285 if (unlikely(tmp > WMULT_CONST))
1286 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1287 WMULT_SHIFT/2);
1288 else
1289 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1290
1291 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1292 }
1293
1294 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1295 {
1296 lw->weight += inc;
1297 lw->inv_weight = 0;
1298 }
1299
1300 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1301 {
1302 lw->weight -= dec;
1303 lw->inv_weight = 0;
1304 }
1305
1306 /*
1307 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1308 * of tasks with abnormal "nice" values across CPUs the contribution that
1309 * each task makes to its run queue's load is weighted according to its
1310 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1311 * scaled version of the new time slice allocation that they receive on time
1312 * slice expiry etc.
1313 */
1314
1315 #define WEIGHT_IDLEPRIO 2
1316 #define WMULT_IDLEPRIO (1 << 31)
1317
1318 /*
1319 * Nice levels are multiplicative, with a gentle 10% change for every
1320 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1321 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1322 * that remained on nice 0.
1323 *
1324 * The "10% effect" is relative and cumulative: from _any_ nice level,
1325 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1326 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1327 * If a task goes up by ~10% and another task goes down by ~10% then
1328 * the relative distance between them is ~25%.)
1329 */
1330 static const int prio_to_weight[40] = {
1331 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1332 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1333 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1334 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1335 /* 0 */ 1024, 820, 655, 526, 423,
1336 /* 5 */ 335, 272, 215, 172, 137,
1337 /* 10 */ 110, 87, 70, 56, 45,
1338 /* 15 */ 36, 29, 23, 18, 15,
1339 };
1340
1341 /*
1342 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1343 *
1344 * In cases where the weight does not change often, we can use the
1345 * precalculated inverse to speed up arithmetics by turning divisions
1346 * into multiplications:
1347 */
1348 static const u32 prio_to_wmult[40] = {
1349 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1350 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1351 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1352 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1353 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1354 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1355 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1356 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1357 };
1358
1359 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1360
1361 /*
1362 * runqueue iterator, to support SMP load-balancing between different
1363 * scheduling classes, without having to expose their internal data
1364 * structures to the load-balancing proper:
1365 */
1366 struct rq_iterator {
1367 void *arg;
1368 struct task_struct *(*start)(void *);
1369 struct task_struct *(*next)(void *);
1370 };
1371
1372 #ifdef CONFIG_SMP
1373 static unsigned long
1374 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 unsigned long max_load_move, struct sched_domain *sd,
1376 enum cpu_idle_type idle, int *all_pinned,
1377 int *this_best_prio, struct rq_iterator *iterator);
1378
1379 static int
1380 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 struct sched_domain *sd, enum cpu_idle_type idle,
1382 struct rq_iterator *iterator);
1383 #endif
1384
1385 #ifdef CONFIG_CGROUP_CPUACCT
1386 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1387 #else
1388 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389 #endif
1390
1391 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1392 {
1393 update_load_add(&rq->load, load);
1394 }
1395
1396 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1397 {
1398 update_load_sub(&rq->load, load);
1399 }
1400
1401 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1402 typedef int (*tg_visitor)(struct task_group *, void *);
1403
1404 /*
1405 * Iterate the full tree, calling @down when first entering a node and @up when
1406 * leaving it for the final time.
1407 */
1408 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1409 {
1410 struct task_group *parent, *child;
1411 int ret;
1412
1413 rcu_read_lock();
1414 parent = &root_task_group;
1415 down:
1416 ret = (*down)(parent, data);
1417 if (ret)
1418 goto out_unlock;
1419 list_for_each_entry_rcu(child, &parent->children, siblings) {
1420 parent = child;
1421 goto down;
1422
1423 up:
1424 continue;
1425 }
1426 ret = (*up)(parent, data);
1427 if (ret)
1428 goto out_unlock;
1429
1430 child = parent;
1431 parent = parent->parent;
1432 if (parent)
1433 goto up;
1434 out_unlock:
1435 rcu_read_unlock();
1436
1437 return ret;
1438 }
1439
1440 static int tg_nop(struct task_group *tg, void *data)
1441 {
1442 return 0;
1443 }
1444 #endif
1445
1446 #ifdef CONFIG_SMP
1447 static unsigned long source_load(int cpu, int type);
1448 static unsigned long target_load(int cpu, int type);
1449 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1450
1451 static unsigned long cpu_avg_load_per_task(int cpu)
1452 {
1453 struct rq *rq = cpu_rq(cpu);
1454 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1455
1456 if (nr_running)
1457 rq->avg_load_per_task = rq->load.weight / nr_running;
1458 else
1459 rq->avg_load_per_task = 0;
1460
1461 return rq->avg_load_per_task;
1462 }
1463
1464 #ifdef CONFIG_FAIR_GROUP_SCHED
1465
1466 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1467
1468 /*
1469 * Calculate and set the cpu's group shares.
1470 */
1471 static void
1472 update_group_shares_cpu(struct task_group *tg, int cpu,
1473 unsigned long sd_shares, unsigned long sd_rq_weight)
1474 {
1475 unsigned long shares;
1476 unsigned long rq_weight;
1477
1478 if (!tg->se[cpu])
1479 return;
1480
1481 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1482
1483 /*
1484 * \Sum shares * rq_weight
1485 * shares = -----------------------
1486 * \Sum rq_weight
1487 *
1488 */
1489 shares = (sd_shares * rq_weight) / sd_rq_weight;
1490 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1491
1492 if (abs(shares - tg->se[cpu]->load.weight) >
1493 sysctl_sched_shares_thresh) {
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long flags;
1496
1497 spin_lock_irqsave(&rq->lock, flags);
1498 tg->cfs_rq[cpu]->shares = shares;
1499
1500 __set_se_shares(tg->se[cpu], shares);
1501 spin_unlock_irqrestore(&rq->lock, flags);
1502 }
1503 }
1504
1505 /*
1506 * Re-compute the task group their per cpu shares over the given domain.
1507 * This needs to be done in a bottom-up fashion because the rq weight of a
1508 * parent group depends on the shares of its child groups.
1509 */
1510 static int tg_shares_up(struct task_group *tg, void *data)
1511 {
1512 unsigned long weight, rq_weight = 0;
1513 unsigned long shares = 0;
1514 struct sched_domain *sd = data;
1515 int i;
1516
1517 for_each_cpu_mask(i, sd->span) {
1518 /*
1519 * If there are currently no tasks on the cpu pretend there
1520 * is one of average load so that when a new task gets to
1521 * run here it will not get delayed by group starvation.
1522 */
1523 weight = tg->cfs_rq[i]->load.weight;
1524 if (!weight)
1525 weight = NICE_0_LOAD;
1526
1527 tg->cfs_rq[i]->rq_weight = weight;
1528 rq_weight += weight;
1529 shares += tg->cfs_rq[i]->shares;
1530 }
1531
1532 if ((!shares && rq_weight) || shares > tg->shares)
1533 shares = tg->shares;
1534
1535 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1536 shares = tg->shares;
1537
1538 for_each_cpu_mask(i, sd->span)
1539 update_group_shares_cpu(tg, i, shares, rq_weight);
1540
1541 return 0;
1542 }
1543
1544 /*
1545 * Compute the cpu's hierarchical load factor for each task group.
1546 * This needs to be done in a top-down fashion because the load of a child
1547 * group is a fraction of its parents load.
1548 */
1549 static int tg_load_down(struct task_group *tg, void *data)
1550 {
1551 unsigned long load;
1552 long cpu = (long)data;
1553
1554 if (!tg->parent) {
1555 load = cpu_rq(cpu)->load.weight;
1556 } else {
1557 load = tg->parent->cfs_rq[cpu]->h_load;
1558 load *= tg->cfs_rq[cpu]->shares;
1559 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1560 }
1561
1562 tg->cfs_rq[cpu]->h_load = load;
1563
1564 return 0;
1565 }
1566
1567 static void update_shares(struct sched_domain *sd)
1568 {
1569 u64 now = cpu_clock(raw_smp_processor_id());
1570 s64 elapsed = now - sd->last_update;
1571
1572 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1573 sd->last_update = now;
1574 walk_tg_tree(tg_nop, tg_shares_up, sd);
1575 }
1576 }
1577
1578 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1579 {
1580 spin_unlock(&rq->lock);
1581 update_shares(sd);
1582 spin_lock(&rq->lock);
1583 }
1584
1585 static void update_h_load(long cpu)
1586 {
1587 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1588 }
1589
1590 #else
1591
1592 static inline void update_shares(struct sched_domain *sd)
1593 {
1594 }
1595
1596 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1597 {
1598 }
1599
1600 #endif
1601
1602 /*
1603 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1604 */
1605 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1606 __releases(this_rq->lock)
1607 __acquires(busiest->lock)
1608 __acquires(this_rq->lock)
1609 {
1610 int ret = 0;
1611
1612 if (unlikely(!irqs_disabled())) {
1613 /* printk() doesn't work good under rq->lock */
1614 spin_unlock(&this_rq->lock);
1615 BUG_ON(1);
1616 }
1617 if (unlikely(!spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 spin_unlock(&this_rq->lock);
1620 spin_lock(&busiest->lock);
1621 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1622 ret = 1;
1623 } else
1624 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1625 }
1626 return ret;
1627 }
1628
1629 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1630 __releases(busiest->lock)
1631 {
1632 spin_unlock(&busiest->lock);
1633 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1634 }
1635 #endif
1636
1637 #ifdef CONFIG_FAIR_GROUP_SCHED
1638 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1639 {
1640 #ifdef CONFIG_SMP
1641 cfs_rq->shares = shares;
1642 #endif
1643 }
1644 #endif
1645
1646 #include "sched_stats.h"
1647 #include "sched_idletask.c"
1648 #include "sched_fair.c"
1649 #include "sched_rt.c"
1650 #ifdef CONFIG_SCHED_DEBUG
1651 # include "sched_debug.c"
1652 #endif
1653
1654 #define sched_class_highest (&rt_sched_class)
1655 #define for_each_class(class) \
1656 for (class = sched_class_highest; class; class = class->next)
1657
1658 static void inc_nr_running(struct rq *rq)
1659 {
1660 rq->nr_running++;
1661 }
1662
1663 static void dec_nr_running(struct rq *rq)
1664 {
1665 rq->nr_running--;
1666 }
1667
1668 static void set_load_weight(struct task_struct *p)
1669 {
1670 if (task_has_rt_policy(p)) {
1671 p->se.load.weight = prio_to_weight[0] * 2;
1672 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1673 return;
1674 }
1675
1676 /*
1677 * SCHED_IDLE tasks get minimal weight:
1678 */
1679 if (p->policy == SCHED_IDLE) {
1680 p->se.load.weight = WEIGHT_IDLEPRIO;
1681 p->se.load.inv_weight = WMULT_IDLEPRIO;
1682 return;
1683 }
1684
1685 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1686 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1687 }
1688
1689 static void update_avg(u64 *avg, u64 sample)
1690 {
1691 s64 diff = sample - *avg;
1692 *avg += diff >> 3;
1693 }
1694
1695 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1696 {
1697 sched_info_queued(p);
1698 p->sched_class->enqueue_task(rq, p, wakeup);
1699 p->se.on_rq = 1;
1700 }
1701
1702 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1703 {
1704 if (sleep && p->se.last_wakeup) {
1705 update_avg(&p->se.avg_overlap,
1706 p->se.sum_exec_runtime - p->se.last_wakeup);
1707 p->se.last_wakeup = 0;
1708 }
1709
1710 sched_info_dequeued(p);
1711 p->sched_class->dequeue_task(rq, p, sleep);
1712 p->se.on_rq = 0;
1713 }
1714
1715 /*
1716 * __normal_prio - return the priority that is based on the static prio
1717 */
1718 static inline int __normal_prio(struct task_struct *p)
1719 {
1720 return p->static_prio;
1721 }
1722
1723 /*
1724 * Calculate the expected normal priority: i.e. priority
1725 * without taking RT-inheritance into account. Might be
1726 * boosted by interactivity modifiers. Changes upon fork,
1727 * setprio syscalls, and whenever the interactivity
1728 * estimator recalculates.
1729 */
1730 static inline int normal_prio(struct task_struct *p)
1731 {
1732 int prio;
1733
1734 if (task_has_rt_policy(p))
1735 prio = MAX_RT_PRIO-1 - p->rt_priority;
1736 else
1737 prio = __normal_prio(p);
1738 return prio;
1739 }
1740
1741 /*
1742 * Calculate the current priority, i.e. the priority
1743 * taken into account by the scheduler. This value might
1744 * be boosted by RT tasks, or might be boosted by
1745 * interactivity modifiers. Will be RT if the task got
1746 * RT-boosted. If not then it returns p->normal_prio.
1747 */
1748 static int effective_prio(struct task_struct *p)
1749 {
1750 p->normal_prio = normal_prio(p);
1751 /*
1752 * If we are RT tasks or we were boosted to RT priority,
1753 * keep the priority unchanged. Otherwise, update priority
1754 * to the normal priority:
1755 */
1756 if (!rt_prio(p->prio))
1757 return p->normal_prio;
1758 return p->prio;
1759 }
1760
1761 /*
1762 * activate_task - move a task to the runqueue.
1763 */
1764 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1765 {
1766 if (task_contributes_to_load(p))
1767 rq->nr_uninterruptible--;
1768
1769 enqueue_task(rq, p, wakeup);
1770 inc_nr_running(rq);
1771 }
1772
1773 /*
1774 * deactivate_task - remove a task from the runqueue.
1775 */
1776 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1777 {
1778 if (task_contributes_to_load(p))
1779 rq->nr_uninterruptible++;
1780
1781 dequeue_task(rq, p, sleep);
1782 dec_nr_running(rq);
1783 }
1784
1785 /**
1786 * task_curr - is this task currently executing on a CPU?
1787 * @p: the task in question.
1788 */
1789 inline int task_curr(const struct task_struct *p)
1790 {
1791 return cpu_curr(task_cpu(p)) == p;
1792 }
1793
1794 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1795 {
1796 set_task_rq(p, cpu);
1797 #ifdef CONFIG_SMP
1798 /*
1799 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1800 * successfuly executed on another CPU. We must ensure that updates of
1801 * per-task data have been completed by this moment.
1802 */
1803 smp_wmb();
1804 task_thread_info(p)->cpu = cpu;
1805 #endif
1806 }
1807
1808 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1809 const struct sched_class *prev_class,
1810 int oldprio, int running)
1811 {
1812 if (prev_class != p->sched_class) {
1813 if (prev_class->switched_from)
1814 prev_class->switched_from(rq, p, running);
1815 p->sched_class->switched_to(rq, p, running);
1816 } else
1817 p->sched_class->prio_changed(rq, p, oldprio, running);
1818 }
1819
1820 #ifdef CONFIG_SMP
1821
1822 /* Used instead of source_load when we know the type == 0 */
1823 static unsigned long weighted_cpuload(const int cpu)
1824 {
1825 return cpu_rq(cpu)->load.weight;
1826 }
1827
1828 /*
1829 * Is this task likely cache-hot:
1830 */
1831 static int
1832 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1833 {
1834 s64 delta;
1835
1836 /*
1837 * Buddy candidates are cache hot:
1838 */
1839 if (sched_feat(CACHE_HOT_BUDDY) &&
1840 (&p->se == cfs_rq_of(&p->se)->next ||
1841 &p->se == cfs_rq_of(&p->se)->last))
1842 return 1;
1843
1844 if (p->sched_class != &fair_sched_class)
1845 return 0;
1846
1847 if (sysctl_sched_migration_cost == -1)
1848 return 1;
1849 if (sysctl_sched_migration_cost == 0)
1850 return 0;
1851
1852 delta = now - p->se.exec_start;
1853
1854 return delta < (s64)sysctl_sched_migration_cost;
1855 }
1856
1857
1858 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1859 {
1860 int old_cpu = task_cpu(p);
1861 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1862 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1863 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1864 u64 clock_offset;
1865
1866 clock_offset = old_rq->clock - new_rq->clock;
1867
1868 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1869
1870 #ifdef CONFIG_SCHEDSTATS
1871 if (p->se.wait_start)
1872 p->se.wait_start -= clock_offset;
1873 if (p->se.sleep_start)
1874 p->se.sleep_start -= clock_offset;
1875 if (p->se.block_start)
1876 p->se.block_start -= clock_offset;
1877 if (old_cpu != new_cpu) {
1878 schedstat_inc(p, se.nr_migrations);
1879 if (task_hot(p, old_rq->clock, NULL))
1880 schedstat_inc(p, se.nr_forced2_migrations);
1881 }
1882 #endif
1883 p->se.vruntime -= old_cfsrq->min_vruntime -
1884 new_cfsrq->min_vruntime;
1885
1886 __set_task_cpu(p, new_cpu);
1887 }
1888
1889 struct migration_req {
1890 struct list_head list;
1891
1892 struct task_struct *task;
1893 int dest_cpu;
1894
1895 struct completion done;
1896 };
1897
1898 /*
1899 * The task's runqueue lock must be held.
1900 * Returns true if you have to wait for migration thread.
1901 */
1902 static int
1903 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1904 {
1905 struct rq *rq = task_rq(p);
1906
1907 /*
1908 * If the task is not on a runqueue (and not running), then
1909 * it is sufficient to simply update the task's cpu field.
1910 */
1911 if (!p->se.on_rq && !task_running(rq, p)) {
1912 set_task_cpu(p, dest_cpu);
1913 return 0;
1914 }
1915
1916 init_completion(&req->done);
1917 req->task = p;
1918 req->dest_cpu = dest_cpu;
1919 list_add(&req->list, &rq->migration_queue);
1920
1921 return 1;
1922 }
1923
1924 /*
1925 * wait_task_inactive - wait for a thread to unschedule.
1926 *
1927 * If @match_state is nonzero, it's the @p->state value just checked and
1928 * not expected to change. If it changes, i.e. @p might have woken up,
1929 * then return zero. When we succeed in waiting for @p to be off its CPU,
1930 * we return a positive number (its total switch count). If a second call
1931 * a short while later returns the same number, the caller can be sure that
1932 * @p has remained unscheduled the whole time.
1933 *
1934 * The caller must ensure that the task *will* unschedule sometime soon,
1935 * else this function might spin for a *long* time. This function can't
1936 * be called with interrupts off, or it may introduce deadlock with
1937 * smp_call_function() if an IPI is sent by the same process we are
1938 * waiting to become inactive.
1939 */
1940 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1941 {
1942 unsigned long flags;
1943 int running, on_rq;
1944 unsigned long ncsw;
1945 struct rq *rq;
1946
1947 for (;;) {
1948 /*
1949 * We do the initial early heuristics without holding
1950 * any task-queue locks at all. We'll only try to get
1951 * the runqueue lock when things look like they will
1952 * work out!
1953 */
1954 rq = task_rq(p);
1955
1956 /*
1957 * If the task is actively running on another CPU
1958 * still, just relax and busy-wait without holding
1959 * any locks.
1960 *
1961 * NOTE! Since we don't hold any locks, it's not
1962 * even sure that "rq" stays as the right runqueue!
1963 * But we don't care, since "task_running()" will
1964 * return false if the runqueue has changed and p
1965 * is actually now running somewhere else!
1966 */
1967 while (task_running(rq, p)) {
1968 if (match_state && unlikely(p->state != match_state))
1969 return 0;
1970 cpu_relax();
1971 }
1972
1973 /*
1974 * Ok, time to look more closely! We need the rq
1975 * lock now, to be *sure*. If we're wrong, we'll
1976 * just go back and repeat.
1977 */
1978 rq = task_rq_lock(p, &flags);
1979 trace_sched_wait_task(rq, p);
1980 running = task_running(rq, p);
1981 on_rq = p->se.on_rq;
1982 ncsw = 0;
1983 if (!match_state || p->state == match_state)
1984 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1985 task_rq_unlock(rq, &flags);
1986
1987 /*
1988 * If it changed from the expected state, bail out now.
1989 */
1990 if (unlikely(!ncsw))
1991 break;
1992
1993 /*
1994 * Was it really running after all now that we
1995 * checked with the proper locks actually held?
1996 *
1997 * Oops. Go back and try again..
1998 */
1999 if (unlikely(running)) {
2000 cpu_relax();
2001 continue;
2002 }
2003
2004 /*
2005 * It's not enough that it's not actively running,
2006 * it must be off the runqueue _entirely_, and not
2007 * preempted!
2008 *
2009 * So if it wa still runnable (but just not actively
2010 * running right now), it's preempted, and we should
2011 * yield - it could be a while.
2012 */
2013 if (unlikely(on_rq)) {
2014 schedule_timeout_uninterruptible(1);
2015 continue;
2016 }
2017
2018 /*
2019 * Ahh, all good. It wasn't running, and it wasn't
2020 * runnable, which means that it will never become
2021 * running in the future either. We're all done!
2022 */
2023 break;
2024 }
2025
2026 return ncsw;
2027 }
2028
2029 /***
2030 * kick_process - kick a running thread to enter/exit the kernel
2031 * @p: the to-be-kicked thread
2032 *
2033 * Cause a process which is running on another CPU to enter
2034 * kernel-mode, without any delay. (to get signals handled.)
2035 *
2036 * NOTE: this function doesnt have to take the runqueue lock,
2037 * because all it wants to ensure is that the remote task enters
2038 * the kernel. If the IPI races and the task has been migrated
2039 * to another CPU then no harm is done and the purpose has been
2040 * achieved as well.
2041 */
2042 void kick_process(struct task_struct *p)
2043 {
2044 int cpu;
2045
2046 preempt_disable();
2047 cpu = task_cpu(p);
2048 if ((cpu != smp_processor_id()) && task_curr(p))
2049 smp_send_reschedule(cpu);
2050 preempt_enable();
2051 }
2052
2053 /*
2054 * Return a low guess at the load of a migration-source cpu weighted
2055 * according to the scheduling class and "nice" value.
2056 *
2057 * We want to under-estimate the load of migration sources, to
2058 * balance conservatively.
2059 */
2060 static unsigned long source_load(int cpu, int type)
2061 {
2062 struct rq *rq = cpu_rq(cpu);
2063 unsigned long total = weighted_cpuload(cpu);
2064
2065 if (type == 0 || !sched_feat(LB_BIAS))
2066 return total;
2067
2068 return min(rq->cpu_load[type-1], total);
2069 }
2070
2071 /*
2072 * Return a high guess at the load of a migration-target cpu weighted
2073 * according to the scheduling class and "nice" value.
2074 */
2075 static unsigned long target_load(int cpu, int type)
2076 {
2077 struct rq *rq = cpu_rq(cpu);
2078 unsigned long total = weighted_cpuload(cpu);
2079
2080 if (type == 0 || !sched_feat(LB_BIAS))
2081 return total;
2082
2083 return max(rq->cpu_load[type-1], total);
2084 }
2085
2086 /*
2087 * find_idlest_group finds and returns the least busy CPU group within the
2088 * domain.
2089 */
2090 static struct sched_group *
2091 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2092 {
2093 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2094 unsigned long min_load = ULONG_MAX, this_load = 0;
2095 int load_idx = sd->forkexec_idx;
2096 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2097
2098 do {
2099 unsigned long load, avg_load;
2100 int local_group;
2101 int i;
2102
2103 /* Skip over this group if it has no CPUs allowed */
2104 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2105 continue;
2106
2107 local_group = cpu_isset(this_cpu, group->cpumask);
2108
2109 /* Tally up the load of all CPUs in the group */
2110 avg_load = 0;
2111
2112 for_each_cpu_mask_nr(i, group->cpumask) {
2113 /* Bias balancing toward cpus of our domain */
2114 if (local_group)
2115 load = source_load(i, load_idx);
2116 else
2117 load = target_load(i, load_idx);
2118
2119 avg_load += load;
2120 }
2121
2122 /* Adjust by relative CPU power of the group */
2123 avg_load = sg_div_cpu_power(group,
2124 avg_load * SCHED_LOAD_SCALE);
2125
2126 if (local_group) {
2127 this_load = avg_load;
2128 this = group;
2129 } else if (avg_load < min_load) {
2130 min_load = avg_load;
2131 idlest = group;
2132 }
2133 } while (group = group->next, group != sd->groups);
2134
2135 if (!idlest || 100*this_load < imbalance*min_load)
2136 return NULL;
2137 return idlest;
2138 }
2139
2140 /*
2141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2142 */
2143 static int
2144 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2145 cpumask_t *tmp)
2146 {
2147 unsigned long load, min_load = ULONG_MAX;
2148 int idlest = -1;
2149 int i;
2150
2151 /* Traverse only the allowed CPUs */
2152 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2153
2154 for_each_cpu_mask_nr(i, *tmp) {
2155 load = weighted_cpuload(i);
2156
2157 if (load < min_load || (load == min_load && i == this_cpu)) {
2158 min_load = load;
2159 idlest = i;
2160 }
2161 }
2162
2163 return idlest;
2164 }
2165
2166 /*
2167 * sched_balance_self: balance the current task (running on cpu) in domains
2168 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2169 * SD_BALANCE_EXEC.
2170 *
2171 * Balance, ie. select the least loaded group.
2172 *
2173 * Returns the target CPU number, or the same CPU if no balancing is needed.
2174 *
2175 * preempt must be disabled.
2176 */
2177 static int sched_balance_self(int cpu, int flag)
2178 {
2179 struct task_struct *t = current;
2180 struct sched_domain *tmp, *sd = NULL;
2181
2182 for_each_domain(cpu, tmp) {
2183 /*
2184 * If power savings logic is enabled for a domain, stop there.
2185 */
2186 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2187 break;
2188 if (tmp->flags & flag)
2189 sd = tmp;
2190 }
2191
2192 if (sd)
2193 update_shares(sd);
2194
2195 while (sd) {
2196 cpumask_t span, tmpmask;
2197 struct sched_group *group;
2198 int new_cpu, weight;
2199
2200 if (!(sd->flags & flag)) {
2201 sd = sd->child;
2202 continue;
2203 }
2204
2205 span = sd->span;
2206 group = find_idlest_group(sd, t, cpu);
2207 if (!group) {
2208 sd = sd->child;
2209 continue;
2210 }
2211
2212 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2213 if (new_cpu == -1 || new_cpu == cpu) {
2214 /* Now try balancing at a lower domain level of cpu */
2215 sd = sd->child;
2216 continue;
2217 }
2218
2219 /* Now try balancing at a lower domain level of new_cpu */
2220 cpu = new_cpu;
2221 sd = NULL;
2222 weight = cpus_weight(span);
2223 for_each_domain(cpu, tmp) {
2224 if (weight <= cpus_weight(tmp->span))
2225 break;
2226 if (tmp->flags & flag)
2227 sd = tmp;
2228 }
2229 /* while loop will break here if sd == NULL */
2230 }
2231
2232 return cpu;
2233 }
2234
2235 #endif /* CONFIG_SMP */
2236
2237 /***
2238 * try_to_wake_up - wake up a thread
2239 * @p: the to-be-woken-up thread
2240 * @state: the mask of task states that can be woken
2241 * @sync: do a synchronous wakeup?
2242 *
2243 * Put it on the run-queue if it's not already there. The "current"
2244 * thread is always on the run-queue (except when the actual
2245 * re-schedule is in progress), and as such you're allowed to do
2246 * the simpler "current->state = TASK_RUNNING" to mark yourself
2247 * runnable without the overhead of this.
2248 *
2249 * returns failure only if the task is already active.
2250 */
2251 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2252 {
2253 int cpu, orig_cpu, this_cpu, success = 0;
2254 unsigned long flags;
2255 long old_state;
2256 struct rq *rq;
2257
2258 if (!sched_feat(SYNC_WAKEUPS))
2259 sync = 0;
2260
2261 #ifdef CONFIG_SMP
2262 if (sched_feat(LB_WAKEUP_UPDATE)) {
2263 struct sched_domain *sd;
2264
2265 this_cpu = raw_smp_processor_id();
2266 cpu = task_cpu(p);
2267
2268 for_each_domain(this_cpu, sd) {
2269 if (cpu_isset(cpu, sd->span)) {
2270 update_shares(sd);
2271 break;
2272 }
2273 }
2274 }
2275 #endif
2276
2277 smp_wmb();
2278 rq = task_rq_lock(p, &flags);
2279 update_rq_clock(rq);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283
2284 if (p->se.on_rq)
2285 goto out_running;
2286
2287 cpu = task_cpu(p);
2288 orig_cpu = cpu;
2289 this_cpu = smp_processor_id();
2290
2291 #ifdef CONFIG_SMP
2292 if (unlikely(task_running(rq, p)))
2293 goto out_activate;
2294
2295 cpu = p->sched_class->select_task_rq(p, sync);
2296 if (cpu != orig_cpu) {
2297 set_task_cpu(p, cpu);
2298 task_rq_unlock(rq, &flags);
2299 /* might preempt at this point */
2300 rq = task_rq_lock(p, &flags);
2301 old_state = p->state;
2302 if (!(old_state & state))
2303 goto out;
2304 if (p->se.on_rq)
2305 goto out_running;
2306
2307 this_cpu = smp_processor_id();
2308 cpu = task_cpu(p);
2309 }
2310
2311 #ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq, ttwu_count);
2313 if (cpu == this_cpu)
2314 schedstat_inc(rq, ttwu_local);
2315 else {
2316 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) {
2318 if (cpu_isset(cpu, sd->span)) {
2319 schedstat_inc(sd, ttwu_wake_remote);
2320 break;
2321 }
2322 }
2323 }
2324 #endif /* CONFIG_SCHEDSTATS */
2325
2326 out_activate:
2327 #endif /* CONFIG_SMP */
2328 schedstat_inc(p, se.nr_wakeups);
2329 if (sync)
2330 schedstat_inc(p, se.nr_wakeups_sync);
2331 if (orig_cpu != cpu)
2332 schedstat_inc(p, se.nr_wakeups_migrate);
2333 if (cpu == this_cpu)
2334 schedstat_inc(p, se.nr_wakeups_local);
2335 else
2336 schedstat_inc(p, se.nr_wakeups_remote);
2337 activate_task(rq, p, 1);
2338 success = 1;
2339
2340 out_running:
2341 trace_sched_wakeup(rq, p, success);
2342 check_preempt_curr(rq, p, sync);
2343
2344 p->state = TASK_RUNNING;
2345 #ifdef CONFIG_SMP
2346 if (p->sched_class->task_wake_up)
2347 p->sched_class->task_wake_up(rq, p);
2348 #endif
2349 out:
2350 current->se.last_wakeup = current->se.sum_exec_runtime;
2351
2352 task_rq_unlock(rq, &flags);
2353
2354 return success;
2355 }
2356
2357 int wake_up_process(struct task_struct *p)
2358 {
2359 return try_to_wake_up(p, TASK_ALL, 0);
2360 }
2361 EXPORT_SYMBOL(wake_up_process);
2362
2363 int wake_up_state(struct task_struct *p, unsigned int state)
2364 {
2365 return try_to_wake_up(p, state, 0);
2366 }
2367
2368 /*
2369 * Perform scheduler related setup for a newly forked process p.
2370 * p is forked by current.
2371 *
2372 * __sched_fork() is basic setup used by init_idle() too:
2373 */
2374 static void __sched_fork(struct task_struct *p)
2375 {
2376 p->se.exec_start = 0;
2377 p->se.sum_exec_runtime = 0;
2378 p->se.prev_sum_exec_runtime = 0;
2379 p->se.last_wakeup = 0;
2380 p->se.avg_overlap = 0;
2381
2382 #ifdef CONFIG_SCHEDSTATS
2383 p->se.wait_start = 0;
2384 p->se.sum_sleep_runtime = 0;
2385 p->se.sleep_start = 0;
2386 p->se.block_start = 0;
2387 p->se.sleep_max = 0;
2388 p->se.block_max = 0;
2389 p->se.exec_max = 0;
2390 p->se.slice_max = 0;
2391 p->se.wait_max = 0;
2392 #endif
2393
2394 INIT_LIST_HEAD(&p->rt.run_list);
2395 p->se.on_rq = 0;
2396 INIT_LIST_HEAD(&p->se.group_node);
2397
2398 #ifdef CONFIG_PREEMPT_NOTIFIERS
2399 INIT_HLIST_HEAD(&p->preempt_notifiers);
2400 #endif
2401
2402 /*
2403 * We mark the process as running here, but have not actually
2404 * inserted it onto the runqueue yet. This guarantees that
2405 * nobody will actually run it, and a signal or other external
2406 * event cannot wake it up and insert it on the runqueue either.
2407 */
2408 p->state = TASK_RUNNING;
2409 }
2410
2411 /*
2412 * fork()/clone()-time setup:
2413 */
2414 void sched_fork(struct task_struct *p, int clone_flags)
2415 {
2416 int cpu = get_cpu();
2417
2418 __sched_fork(p);
2419
2420 #ifdef CONFIG_SMP
2421 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2422 #endif
2423 set_task_cpu(p, cpu);
2424
2425 /*
2426 * Make sure we do not leak PI boosting priority to the child:
2427 */
2428 p->prio = current->normal_prio;
2429 if (!rt_prio(p->prio))
2430 p->sched_class = &fair_sched_class;
2431
2432 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2433 if (likely(sched_info_on()))
2434 memset(&p->sched_info, 0, sizeof(p->sched_info));
2435 #endif
2436 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2437 p->oncpu = 0;
2438 #endif
2439 #ifdef CONFIG_PREEMPT
2440 /* Want to start with kernel preemption disabled. */
2441 task_thread_info(p)->preempt_count = 1;
2442 #endif
2443 put_cpu();
2444 }
2445
2446 /*
2447 * wake_up_new_task - wake up a newly created task for the first time.
2448 *
2449 * This function will do some initial scheduler statistics housekeeping
2450 * that must be done for every newly created context, then puts the task
2451 * on the runqueue and wakes it.
2452 */
2453 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2454 {
2455 unsigned long flags;
2456 struct rq *rq;
2457
2458 rq = task_rq_lock(p, &flags);
2459 BUG_ON(p->state != TASK_RUNNING);
2460 update_rq_clock(rq);
2461
2462 p->prio = effective_prio(p);
2463
2464 if (!p->sched_class->task_new || !current->se.on_rq) {
2465 activate_task(rq, p, 0);
2466 } else {
2467 /*
2468 * Let the scheduling class do new task startup
2469 * management (if any):
2470 */
2471 p->sched_class->task_new(rq, p);
2472 inc_nr_running(rq);
2473 }
2474 trace_sched_wakeup_new(rq, p, 1);
2475 check_preempt_curr(rq, p, 0);
2476 #ifdef CONFIG_SMP
2477 if (p->sched_class->task_wake_up)
2478 p->sched_class->task_wake_up(rq, p);
2479 #endif
2480 task_rq_unlock(rq, &flags);
2481 }
2482
2483 #ifdef CONFIG_PREEMPT_NOTIFIERS
2484
2485 /**
2486 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2487 * @notifier: notifier struct to register
2488 */
2489 void preempt_notifier_register(struct preempt_notifier *notifier)
2490 {
2491 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2492 }
2493 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2494
2495 /**
2496 * preempt_notifier_unregister - no longer interested in preemption notifications
2497 * @notifier: notifier struct to unregister
2498 *
2499 * This is safe to call from within a preemption notifier.
2500 */
2501 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2502 {
2503 hlist_del(&notifier->link);
2504 }
2505 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2506
2507 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 {
2509 struct preempt_notifier *notifier;
2510 struct hlist_node *node;
2511
2512 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2513 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2514 }
2515
2516 static void
2517 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2518 struct task_struct *next)
2519 {
2520 struct preempt_notifier *notifier;
2521 struct hlist_node *node;
2522
2523 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2524 notifier->ops->sched_out(notifier, next);
2525 }
2526
2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2528
2529 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 {
2531 }
2532
2533 static void
2534 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 struct task_struct *next)
2536 {
2537 }
2538
2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2540
2541 /**
2542 * prepare_task_switch - prepare to switch tasks
2543 * @rq: the runqueue preparing to switch
2544 * @prev: the current task that is being switched out
2545 * @next: the task we are going to switch to.
2546 *
2547 * This is called with the rq lock held and interrupts off. It must
2548 * be paired with a subsequent finish_task_switch after the context
2549 * switch.
2550 *
2551 * prepare_task_switch sets up locking and calls architecture specific
2552 * hooks.
2553 */
2554 static inline void
2555 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2556 struct task_struct *next)
2557 {
2558 fire_sched_out_preempt_notifiers(prev, next);
2559 prepare_lock_switch(rq, next);
2560 prepare_arch_switch(next);
2561 }
2562
2563 /**
2564 * finish_task_switch - clean up after a task-switch
2565 * @rq: runqueue associated with task-switch
2566 * @prev: the thread we just switched away from.
2567 *
2568 * finish_task_switch must be called after the context switch, paired
2569 * with a prepare_task_switch call before the context switch.
2570 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2571 * and do any other architecture-specific cleanup actions.
2572 *
2573 * Note that we may have delayed dropping an mm in context_switch(). If
2574 * so, we finish that here outside of the runqueue lock. (Doing it
2575 * with the lock held can cause deadlocks; see schedule() for
2576 * details.)
2577 */
2578 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2579 __releases(rq->lock)
2580 {
2581 struct mm_struct *mm = rq->prev_mm;
2582 long prev_state;
2583
2584 rq->prev_mm = NULL;
2585
2586 /*
2587 * A task struct has one reference for the use as "current".
2588 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2589 * schedule one last time. The schedule call will never return, and
2590 * the scheduled task must drop that reference.
2591 * The test for TASK_DEAD must occur while the runqueue locks are
2592 * still held, otherwise prev could be scheduled on another cpu, die
2593 * there before we look at prev->state, and then the reference would
2594 * be dropped twice.
2595 * Manfred Spraul <manfred@colorfullife.com>
2596 */
2597 prev_state = prev->state;
2598 finish_arch_switch(prev);
2599 finish_lock_switch(rq, prev);
2600 #ifdef CONFIG_SMP
2601 if (current->sched_class->post_schedule)
2602 current->sched_class->post_schedule(rq);
2603 #endif
2604
2605 fire_sched_in_preempt_notifiers(current);
2606 if (mm)
2607 mmdrop(mm);
2608 if (unlikely(prev_state == TASK_DEAD)) {
2609 /*
2610 * Remove function-return probe instances associated with this
2611 * task and put them back on the free list.
2612 */
2613 kprobe_flush_task(prev);
2614 put_task_struct(prev);
2615 }
2616 }
2617
2618 /**
2619 * schedule_tail - first thing a freshly forked thread must call.
2620 * @prev: the thread we just switched away from.
2621 */
2622 asmlinkage void schedule_tail(struct task_struct *prev)
2623 __releases(rq->lock)
2624 {
2625 struct rq *rq = this_rq();
2626
2627 finish_task_switch(rq, prev);
2628 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2629 /* In this case, finish_task_switch does not reenable preemption */
2630 preempt_enable();
2631 #endif
2632 if (current->set_child_tid)
2633 put_user(task_pid_vnr(current), current->set_child_tid);
2634 }
2635
2636 /*
2637 * context_switch - switch to the new MM and the new
2638 * thread's register state.
2639 */
2640 static inline void
2641 context_switch(struct rq *rq, struct task_struct *prev,
2642 struct task_struct *next)
2643 {
2644 struct mm_struct *mm, *oldmm;
2645
2646 prepare_task_switch(rq, prev, next);
2647 trace_sched_switch(rq, prev, next);
2648 mm = next->mm;
2649 oldmm = prev->active_mm;
2650 /*
2651 * For paravirt, this is coupled with an exit in switch_to to
2652 * combine the page table reload and the switch backend into
2653 * one hypercall.
2654 */
2655 arch_enter_lazy_cpu_mode();
2656
2657 if (unlikely(!mm)) {
2658 next->active_mm = oldmm;
2659 atomic_inc(&oldmm->mm_count);
2660 enter_lazy_tlb(oldmm, next);
2661 } else
2662 switch_mm(oldmm, mm, next);
2663
2664 if (unlikely(!prev->mm)) {
2665 prev->active_mm = NULL;
2666 rq->prev_mm = oldmm;
2667 }
2668 /*
2669 * Since the runqueue lock will be released by the next
2670 * task (which is an invalid locking op but in the case
2671 * of the scheduler it's an obvious special-case), so we
2672 * do an early lockdep release here:
2673 */
2674 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2675 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2676 #endif
2677
2678 /* Here we just switch the register state and the stack. */
2679 switch_to(prev, next, prev);
2680
2681 barrier();
2682 /*
2683 * this_rq must be evaluated again because prev may have moved
2684 * CPUs since it called schedule(), thus the 'rq' on its stack
2685 * frame will be invalid.
2686 */
2687 finish_task_switch(this_rq(), prev);
2688 }
2689
2690 /*
2691 * nr_running, nr_uninterruptible and nr_context_switches:
2692 *
2693 * externally visible scheduler statistics: current number of runnable
2694 * threads, current number of uninterruptible-sleeping threads, total
2695 * number of context switches performed since bootup.
2696 */
2697 unsigned long nr_running(void)
2698 {
2699 unsigned long i, sum = 0;
2700
2701 for_each_online_cpu(i)
2702 sum += cpu_rq(i)->nr_running;
2703
2704 return sum;
2705 }
2706
2707 unsigned long nr_uninterruptible(void)
2708 {
2709 unsigned long i, sum = 0;
2710
2711 for_each_possible_cpu(i)
2712 sum += cpu_rq(i)->nr_uninterruptible;
2713
2714 /*
2715 * Since we read the counters lockless, it might be slightly
2716 * inaccurate. Do not allow it to go below zero though:
2717 */
2718 if (unlikely((long)sum < 0))
2719 sum = 0;
2720
2721 return sum;
2722 }
2723
2724 unsigned long long nr_context_switches(void)
2725 {
2726 int i;
2727 unsigned long long sum = 0;
2728
2729 for_each_possible_cpu(i)
2730 sum += cpu_rq(i)->nr_switches;
2731
2732 return sum;
2733 }
2734
2735 unsigned long nr_iowait(void)
2736 {
2737 unsigned long i, sum = 0;
2738
2739 for_each_possible_cpu(i)
2740 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2741
2742 return sum;
2743 }
2744
2745 unsigned long nr_active(void)
2746 {
2747 unsigned long i, running = 0, uninterruptible = 0;
2748
2749 for_each_online_cpu(i) {
2750 running += cpu_rq(i)->nr_running;
2751 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2752 }
2753
2754 if (unlikely((long)uninterruptible < 0))
2755 uninterruptible = 0;
2756
2757 return running + uninterruptible;
2758 }
2759
2760 /*
2761 * Update rq->cpu_load[] statistics. This function is usually called every
2762 * scheduler tick (TICK_NSEC).
2763 */
2764 static void update_cpu_load(struct rq *this_rq)
2765 {
2766 unsigned long this_load = this_rq->load.weight;
2767 int i, scale;
2768
2769 this_rq->nr_load_updates++;
2770
2771 /* Update our load: */
2772 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2773 unsigned long old_load, new_load;
2774
2775 /* scale is effectively 1 << i now, and >> i divides by scale */
2776
2777 old_load = this_rq->cpu_load[i];
2778 new_load = this_load;
2779 /*
2780 * Round up the averaging division if load is increasing. This
2781 * prevents us from getting stuck on 9 if the load is 10, for
2782 * example.
2783 */
2784 if (new_load > old_load)
2785 new_load += scale-1;
2786 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2787 }
2788 }
2789
2790 #ifdef CONFIG_SMP
2791
2792 /*
2793 * double_rq_lock - safely lock two runqueues
2794 *
2795 * Note this does not disable interrupts like task_rq_lock,
2796 * you need to do so manually before calling.
2797 */
2798 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2799 __acquires(rq1->lock)
2800 __acquires(rq2->lock)
2801 {
2802 BUG_ON(!irqs_disabled());
2803 if (rq1 == rq2) {
2804 spin_lock(&rq1->lock);
2805 __acquire(rq2->lock); /* Fake it out ;) */
2806 } else {
2807 if (rq1 < rq2) {
2808 spin_lock(&rq1->lock);
2809 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2810 } else {
2811 spin_lock(&rq2->lock);
2812 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2813 }
2814 }
2815 update_rq_clock(rq1);
2816 update_rq_clock(rq2);
2817 }
2818
2819 /*
2820 * double_rq_unlock - safely unlock two runqueues
2821 *
2822 * Note this does not restore interrupts like task_rq_unlock,
2823 * you need to do so manually after calling.
2824 */
2825 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2826 __releases(rq1->lock)
2827 __releases(rq2->lock)
2828 {
2829 spin_unlock(&rq1->lock);
2830 if (rq1 != rq2)
2831 spin_unlock(&rq2->lock);
2832 else
2833 __release(rq2->lock);
2834 }
2835
2836 /*
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2840 * the cpu_allowed mask is restored.
2841 */
2842 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2843 {
2844 struct migration_req req;
2845 unsigned long flags;
2846 struct rq *rq;
2847
2848 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2850 || unlikely(!cpu_active(dest_cpu)))
2851 goto out;
2852
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
2857
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
2863
2864 return;
2865 }
2866 out:
2867 task_rq_unlock(rq, &flags);
2868 }
2869
2870 /*
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
2873 */
2874 void sched_exec(void)
2875 {
2876 int new_cpu, this_cpu = get_cpu();
2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2878 put_cpu();
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
2881 }
2882
2883 /*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
2887 static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
2889 {
2890 deactivate_task(src_rq, p, 0);
2891 set_task_cpu(p, this_cpu);
2892 activate_task(this_rq, p, 0);
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
2897 check_preempt_curr(this_rq, p, 0);
2898 }
2899
2900 /*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
2903 static
2904 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2905 struct sched_domain *sd, enum cpu_idle_type idle,
2906 int *all_pinned)
2907 {
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
2916 return 0;
2917 }
2918 *all_pinned = 0;
2919
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
2922 return 0;
2923 }
2924
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
2933 #ifdef CONFIG_SCHEDSTATS
2934 if (task_hot(p, rq->clock, sd)) {
2935 schedstat_inc(sd, lb_hot_gained[idle]);
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
2938 #endif
2939 return 1;
2940 }
2941
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
2944 return 0;
2945 }
2946 return 1;
2947 }
2948
2949 static unsigned long
2950 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
2954 {
2955 int loops = 0, pulled = 0, pinned = 0;
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
2958
2959 if (max_load_move == 0)
2960 goto out;
2961
2962 pinned = 1;
2963
2964 /*
2965 * Start the load-balancing iterator:
2966 */
2967 p = iterator->start(iterator->arg);
2968 next:
2969 if (!p || loops++ > sysctl_sched_nr_migrate)
2970 goto out;
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2974 p = iterator->next(iterator->arg);
2975 goto next;
2976 }
2977
2978 pull_task(busiest, p, this_rq, this_cpu);
2979 pulled++;
2980 rem_load_move -= p->se.load.weight;
2981
2982 /*
2983 * We only want to steal up to the prescribed amount of weighted load.
2984 */
2985 if (rem_load_move > 0) {
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
2988 p = iterator->next(iterator->arg);
2989 goto next;
2990 }
2991 out:
2992 /*
2993 * Right now, this is one of only two places pull_task() is called,
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
3001
3002 return max_load_move - rem_load_move;
3003 }
3004
3005 /*
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
3009 *
3010 * Called with both runqueues locked.
3011 */
3012 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3013 unsigned long max_load_move,
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016 {
3017 const struct sched_class *class = sched_class_highest;
3018 unsigned long total_load_moved = 0;
3019 int this_best_prio = this_rq->curr->prio;
3020
3021 do {
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
3024 max_load_move - total_load_moved,
3025 sd, idle, all_pinned, &this_best_prio);
3026 class = class->next;
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
3031 } while (class && max_load_move > total_load_moved);
3032
3033 return total_load_moved > 0;
3034 }
3035
3036 static int
3037 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040 {
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071 {
3072 const struct sched_class *class;
3073
3074 for (class = sched_class_highest; class; class = class->next)
3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3076 return 1;
3077
3078 return 0;
3079 }
3080
3081 /*
3082 * find_busiest_group finds and returns the busiest CPU group within the
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
3085 */
3086 static struct sched_group *
3087 find_busiest_group(struct sched_domain *sd, int this_cpu,
3088 unsigned long *imbalance, enum cpu_idle_type idle,
3089 int *sd_idle, const cpumask_t *cpus, int *balance)
3090 {
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3093 unsigned long max_pull;
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
3096 int load_idx, group_imb = 0;
3097 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102 #endif
3103
3104 max_load = this_load = total_load = total_pwr = 0;
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
3107
3108 if (idle == CPU_NOT_IDLE)
3109 load_idx = sd->busy_idx;
3110 else if (idle == CPU_NEWLY_IDLE)
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
3114
3115 do {
3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3117 int local_group;
3118 int i;
3119 int __group_imb = 0;
3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3121 unsigned long sum_nr_running, sum_weighted_load;
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
3130 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load = sum_nr_running = avg_load = 0;
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
3136
3137 for_each_cpu_mask_nr(i, group->cpumask) {
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
3144
3145 if (*sd_idle && rq->nr_running)
3146 *sd_idle = 0;
3147
3148 /* Bias balancing toward cpus of our domain */
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
3155 load = target_load(i, load_idx);
3156 } else {
3157 load = source_load(i, load_idx);
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
3163
3164 avg_load += load;
3165 sum_nr_running += rq->nr_running;
3166 sum_weighted_load += weighted_cpuload(i);
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3169 }
3170
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
3176 */
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
3179 *balance = 0;
3180 goto ret;
3181 }
3182
3183 total_load += avg_load;
3184 total_pwr += group->__cpu_power;
3185
3186 /* Adjust by relative CPU power of the group */
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
3189
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3204 __group_imb = 1;
3205
3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3207
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
3214 (sum_nr_running > group_capacity || __group_imb)) {
3215 max_load = avg_load;
3216 busiest = group;
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
3219 group_imb = __group_imb;
3220 }
3221
3222 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
3239 /*
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
3244 || !sum_nr_running)
3245 goto group_next;
3246
3247 /*
3248 * Calculate the group which has the least non-idle load.
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
3260 }
3261
3262 /*
3263 * Calculate the group which is almost near its
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
3275 }
3276 group_next:
3277 #endif
3278 group = group->next;
3279 } while (group != sd->groups);
3280
3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
3290 busiest_load_per_task /= busiest_nr_running;
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
3302 * by pulling tasks to us. Be careful of negative numbers as they'll
3303 * appear as very large values with unsigned longs.
3304 */
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3320
3321 /* How much load to actually move to equalise the imbalance */
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
3324 / SCHED_LOAD_SCALE;
3325
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
3332 if (*imbalance < busiest_load_per_task) {
3333 unsigned long tmp, pwr_now, pwr_move;
3334 unsigned int imbn;
3335
3336 small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3345
3346 if (max_load - this_load + busiest_load_per_task >=
3347 busiest_load_per_task * imbn) {
3348 *imbalance = busiest_load_per_task;
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
3367 if (max_load > tmp)
3368 pwr_move += busiest->__cpu_power *
3369 min(busiest_load_per_task, max_load - tmp);
3370
3371 /* Amount of load we'd add */
3372 if (max_load * busiest->__cpu_power <
3373 busiest_load_per_task * SCHED_LOAD_SCALE)
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
3376 else
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
3386 }
3387
3388 return busiest;
3389
3390 out_balanced:
3391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3393 goto ret;
3394
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
3399 #endif
3400 ret:
3401 *imbalance = 0;
3402 return NULL;
3403 }
3404
3405 /*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
3408 static struct rq *
3409 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410 unsigned long imbalance, const cpumask_t *cpus)
3411 {
3412 struct rq *busiest = NULL, *rq;
3413 unsigned long max_load = 0;
3414 int i;
3415
3416 for_each_cpu_mask_nr(i, group->cpumask) {
3417 unsigned long wl;
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
3422 rq = cpu_rq(i);
3423 wl = weighted_cpuload(i);
3424
3425 if (rq->nr_running == 1 && wl > imbalance)
3426 continue;
3427
3428 if (wl > max_load) {
3429 max_load = wl;
3430 busiest = rq;
3431 }
3432 }
3433
3434 return busiest;
3435 }
3436
3437 /*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441 #define MAX_PINNED_INTERVAL 512
3442
3443 /*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
3446 */
3447 static int load_balance(int this_cpu, struct rq *this_rq,
3448 struct sched_domain *sd, enum cpu_idle_type idle,
3449 int *balance, cpumask_t *cpus)
3450 {
3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3452 struct sched_group *group;
3453 unsigned long imbalance;
3454 struct rq *busiest;
3455 unsigned long flags;
3456
3457 cpus_setall(*cpus);
3458
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3463 * portraying it as CPU_NOT_IDLE.
3464 */
3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3467 sd_idle = 1;
3468
3469 schedstat_inc(sd, lb_count[idle]);
3470
3471 redo:
3472 update_shares(sd);
3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3474 cpus, balance);
3475
3476 if (*balance == 0)
3477 goto out_balanced;
3478
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
3490 BUG_ON(busiest == this_rq);
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
3494 ld_moved = 0;
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
3499 * still unbalanced. ld_moved simply stays zero, so it is
3500 * correctly treated as an imbalance.
3501 */
3502 local_irq_save(flags);
3503 double_rq_lock(this_rq, busiest);
3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3505 imbalance, sd, idle, &all_pinned);
3506 double_rq_unlock(this_rq, busiest);
3507 local_irq_restore(flags);
3508
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
3512 if (ld_moved && this_cpu != smp_processor_id())
3513 resched_cpu(this_cpu);
3514
3515 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned)) {
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
3519 goto redo;
3520 goto out_balanced;
3521 }
3522 }
3523
3524 if (!ld_moved) {
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3529
3530 spin_lock_irqsave(&busiest->lock, flags);
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3536 spin_unlock_irqrestore(&busiest->lock, flags);
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
3544 active_balance = 1;
3545 }
3546 spin_unlock_irqrestore(&busiest->lock, flags);
3547 if (active_balance)
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
3555 }
3556 } else
3557 sd->nr_balance_failed = 0;
3558
3559 if (likely(!active_balance)) {
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
3571 }
3572
3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 ld_moved = -1;
3576
3577 goto out;
3578
3579 out_balanced:
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
3582 sd->nr_balance_failed = 0;
3583
3584 out_one_pinned:
3585 /* tune up the balancing interval */
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
3588 sd->balance_interval *= 2;
3589
3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595 out:
3596 if (ld_moved)
3597 update_shares(sd);
3598 return ld_moved;
3599 }
3600
3601 /*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3606 * this_rq is locked.
3607 */
3608 static int
3609 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
3611 {
3612 struct sched_group *group;
3613 struct rq *busiest = NULL;
3614 unsigned long imbalance;
3615 int ld_moved = 0;
3616 int sd_idle = 0;
3617 int all_pinned = 0;
3618
3619 cpus_setall(*cpus);
3620
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
3625 * portraying it as CPU_NOT_IDLE.
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3629 sd_idle = 1;
3630
3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3632 redo:
3633 update_shares_locked(this_rq, sd);
3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3635 &sd_idle, cpus, NULL);
3636 if (!group) {
3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3638 goto out_balanced;
3639 }
3640
3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3642 if (!busiest) {
3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 BUG_ON(busiest == this_rq);
3648
3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3650
3651 ld_moved = 0;
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
3660 double_unlock_balance(this_rq, busiest);
3661
3662 if (unlikely(all_pinned)) {
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
3665 goto redo;
3666 }
3667 }
3668
3669 if (!ld_moved) {
3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3673 return -1;
3674 } else
3675 sd->nr_balance_failed = 0;
3676
3677 update_shares_locked(this_rq, sd);
3678 return ld_moved;
3679
3680 out_balanced:
3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3684 return -1;
3685 sd->nr_balance_failed = 0;
3686
3687 return 0;
3688 }
3689
3690 /*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
3694 static void idle_balance(int this_cpu, struct rq *this_rq)
3695 {
3696 struct sched_domain *sd;
3697 int pulled_task = 0;
3698 unsigned long next_balance = jiffies + HZ;
3699 cpumask_t tmpmask;
3700
3701 for_each_domain(this_cpu, sd) {
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
3708 /* If we've pulled tasks over stop searching: */
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
3717 }
3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
3724 }
3725 }
3726
3727 /*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
3735 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3736 {
3737 int target_cpu = busiest_rq->push_cpu;
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
3740
3741 /* Is there any task to move? */
3742 if (busiest_rq->nr_running <= 1)
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
3746
3747 /*
3748 * This condition is "impossible", if it occurs
3749 * we need to fix it. Originally reported by
3750 * Bjorn Helgaas on a 128-cpu setup.
3751 */
3752 BUG_ON(busiest_rq == target_rq);
3753
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
3758
3759 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu, sd) {
3761 if ((sd->flags & SD_LOAD_BALANCE) &&
3762 cpu_isset(busiest_cpu, sd->span))
3763 break;
3764 }
3765
3766 if (likely(sd)) {
3767 schedstat_inc(sd, alb_count);
3768
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
3775 double_unlock_balance(busiest_rq, target_rq);
3776 }
3777
3778 #ifdef CONFIG_NO_HZ
3779 static struct {
3780 atomic_t load_balancer;
3781 cpumask_t cpu_mask;
3782 } nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785 };
3786
3787 /*
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
3798 *
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807 int select_nohz_load_balancer(int stop_tick)
3808 {
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
3818 if (!cpu_active(cpu) &&
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849 }
3850 #endif
3851
3852 static DEFINE_SPINLOCK(balancing);
3853
3854 /*
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
3860 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3861 {
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
3864 unsigned long interval;
3865 struct sched_domain *sd;
3866 /* Earliest time when we have to do rebalance again */
3867 unsigned long next_balance = jiffies + 60*HZ;
3868 int update_next_balance = 0;
3869 int need_serialize;
3870 cpumask_t tmp;
3871
3872 for_each_domain(cpu, sd) {
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
3877 if (idle != CPU_IDLE)
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
3887 need_serialize = sd->flags & SD_SERIALIZE;
3888
3889 if (need_serialize) {
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3896 /*
3897 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
3901 idle = CPU_NOT_IDLE;
3902 }
3903 sd->last_balance = jiffies;
3904 }
3905 if (need_serialize)
3906 spin_unlock(&balancing);
3907 out:
3908 if (time_after(next_balance, sd->last_balance + interval)) {
3909 next_balance = sd->last_balance + interval;
3910 update_next_balance = 1;
3911 }
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
3920 }
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
3929 }
3930
3931 /*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936 static void run_rebalance_domains(struct softirq_action *h)
3937 {
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
3942
3943 rebalance_domains(this_cpu, idle);
3944
3945 #ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
3957 cpu_clear(this_cpu, cpus);
3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
3967 rebalance_domains(balance_cpu, CPU_IDLE);
3968
3969 rq = cpu_rq(balance_cpu);
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
3972 }
3973 }
3974 #endif
3975 }
3976
3977 /*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
3984 static inline void trigger_load_balance(struct rq *rq, int cpu)
3985 {
3986 #ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
4011 if (ilb < nr_cpu_ids)
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033 #endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
4036 }
4037
4038 #else /* CONFIG_SMP */
4039
4040 /*
4041 * on UP we do not need to balance between CPUs:
4042 */
4043 static inline void idle_balance(int cpu, struct rq *rq)
4044 {
4045 }
4046
4047 #endif
4048
4049 DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051 EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053 /*
4054 * Return any ns on the sched_clock that have not yet been banked in
4055 * @p in case that task is currently running.
4056 */
4057 unsigned long long task_delta_exec(struct task_struct *p)
4058 {
4059 unsigned long flags;
4060 struct rq *rq;
4061 u64 ns = 0;
4062
4063 rq = task_rq_lock(p, &flags);
4064
4065 if (task_current(rq, p)) {
4066 u64 delta_exec;
4067
4068 update_rq_clock(rq);
4069 delta_exec = rq->clock - p->se.exec_start;
4070 if ((s64)delta_exec > 0)
4071 ns = delta_exec;
4072 }
4073
4074 task_rq_unlock(rq, &flags);
4075
4076 return ns;
4077 }
4078
4079 /*
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in user space since the last update
4083 */
4084 void account_user_time(struct task_struct *p, cputime_t cputime)
4085 {
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp;
4088
4089 p->utime = cputime_add(p->utime, cputime);
4090 account_group_user_time(p, cputime);
4091
4092 /* Add user time to cpustat. */
4093 tmp = cputime_to_cputime64(cputime);
4094 if (TASK_NICE(p) > 0)
4095 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4096 else
4097 cpustat->user = cputime64_add(cpustat->user, tmp);
4098 /* Account for user time used */
4099 acct_update_integrals(p);
4100 }
4101
4102 /*
4103 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update
4106 */
4107 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4108 {
4109 cputime64_t tmp;
4110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4111
4112 tmp = cputime_to_cputime64(cputime);
4113
4114 p->utime = cputime_add(p->utime, cputime);
4115 account_group_user_time(p, cputime);
4116 p->gtime = cputime_add(p->gtime, cputime);
4117
4118 cpustat->user = cputime64_add(cpustat->user, tmp);
4119 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4120 }
4121
4122 /*
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4126 */
4127 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4128 {
4129 p->utimescaled = cputime_add(p->utimescaled, cputime);
4130 }
4131
4132 /*
4133 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update
4137 */
4138 void account_system_time(struct task_struct *p, int hardirq_offset,
4139 cputime_t cputime)
4140 {
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4142 struct rq *rq = this_rq();
4143 cputime64_t tmp;
4144
4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4146 account_guest_time(p, cputime);
4147 return;
4148 }
4149
4150 p->stime = cputime_add(p->stime, cputime);
4151 account_group_system_time(p, cputime);
4152
4153 /* Add system time to cpustat. */
4154 tmp = cputime_to_cputime64(cputime);
4155 if (hardirq_count() - hardirq_offset)
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159 else if (p != rq->idle)
4160 cpustat->system = cputime64_add(cpustat->system, tmp);
4161 else if (atomic_read(&rq->nr_iowait) > 0)
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4165 /* Account for system time used */
4166 acct_update_integrals(p);
4167 }
4168
4169 /*
4170 * Account scaled system cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */
4175 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4176 {
4177 p->stimescaled = cputime_add(p->stimescaled, cputime);
4178 }
4179
4180 /*
4181 * Account for involuntary wait time.
4182 * @p: the process from which the cpu time has been stolen
4183 * @steal: the cpu time spent in involuntary wait
4184 */
4185 void account_steal_time(struct task_struct *p, cputime_t steal)
4186 {
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal);
4189 struct rq *rq = this_rq();
4190
4191 if (p == rq->idle) {
4192 p->stime = cputime_add(p->stime, steal);
4193 if (atomic_read(&rq->nr_iowait) > 0)
4194 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4195 else
4196 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4197 } else
4198 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4199 }
4200
4201 /*
4202 * Use precise platform statistics if available:
4203 */
4204 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4205 cputime_t task_utime(struct task_struct *p)
4206 {
4207 return p->utime;
4208 }
4209
4210 cputime_t task_stime(struct task_struct *p)
4211 {
4212 return p->stime;
4213 }
4214 #else
4215 cputime_t task_utime(struct task_struct *p)
4216 {
4217 clock_t utime = cputime_to_clock_t(p->utime),
4218 total = utime + cputime_to_clock_t(p->stime);
4219 u64 temp;
4220
4221 /*
4222 * Use CFS's precise accounting:
4223 */
4224 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4225
4226 if (total) {
4227 temp *= utime;
4228 do_div(temp, total);
4229 }
4230 utime = (clock_t)temp;
4231
4232 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4233 return p->prev_utime;
4234 }
4235
4236 cputime_t task_stime(struct task_struct *p)
4237 {
4238 clock_t stime;
4239
4240 /*
4241 * Use CFS's precise accounting. (we subtract utime from
4242 * the total, to make sure the total observed by userspace
4243 * grows monotonically - apps rely on that):
4244 */
4245 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4246 cputime_to_clock_t(task_utime(p));
4247
4248 if (stime >= 0)
4249 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4250
4251 return p->prev_stime;
4252 }
4253 #endif
4254
4255 inline cputime_t task_gtime(struct task_struct *p)
4256 {
4257 return p->gtime;
4258 }
4259
4260 /*
4261 * This function gets called by the timer code, with HZ frequency.
4262 * We call it with interrupts disabled.
4263 *
4264 * It also gets called by the fork code, when changing the parent's
4265 * timeslices.
4266 */
4267 void scheduler_tick(void)
4268 {
4269 int cpu = smp_processor_id();
4270 struct rq *rq = cpu_rq(cpu);
4271 struct task_struct *curr = rq->curr;
4272
4273 sched_clock_tick();
4274
4275 spin_lock(&rq->lock);
4276 update_rq_clock(rq);
4277 update_cpu_load(rq);
4278 curr->sched_class->task_tick(rq, curr, 0);
4279 spin_unlock(&rq->lock);
4280
4281 #ifdef CONFIG_SMP
4282 rq->idle_at_tick = idle_cpu(cpu);
4283 trigger_load_balance(rq, cpu);
4284 #endif
4285 }
4286
4287 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4288 defined(CONFIG_PREEMPT_TRACER))
4289
4290 static inline unsigned long get_parent_ip(unsigned long addr)
4291 {
4292 if (in_lock_functions(addr)) {
4293 addr = CALLER_ADDR2;
4294 if (in_lock_functions(addr))
4295 addr = CALLER_ADDR3;
4296 }
4297 return addr;
4298 }
4299
4300 void __kprobes add_preempt_count(int val)
4301 {
4302 #ifdef CONFIG_DEBUG_PREEMPT
4303 /*
4304 * Underflow?
4305 */
4306 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4307 return;
4308 #endif
4309 preempt_count() += val;
4310 #ifdef CONFIG_DEBUG_PREEMPT
4311 /*
4312 * Spinlock count overflowing soon?
4313 */
4314 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4315 PREEMPT_MASK - 10);
4316 #endif
4317 if (preempt_count() == val)
4318 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4319 }
4320 EXPORT_SYMBOL(add_preempt_count);
4321
4322 void __kprobes sub_preempt_count(int val)
4323 {
4324 #ifdef CONFIG_DEBUG_PREEMPT
4325 /*
4326 * Underflow?
4327 */
4328 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4329 return;
4330 /*
4331 * Is the spinlock portion underflowing?
4332 */
4333 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4334 !(preempt_count() & PREEMPT_MASK)))
4335 return;
4336 #endif
4337
4338 if (preempt_count() == val)
4339 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4340 preempt_count() -= val;
4341 }
4342 EXPORT_SYMBOL(sub_preempt_count);
4343
4344 #endif
4345
4346 /*
4347 * Print scheduling while atomic bug:
4348 */
4349 static noinline void __schedule_bug(struct task_struct *prev)
4350 {
4351 struct pt_regs *regs = get_irq_regs();
4352
4353 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4354 prev->comm, prev->pid, preempt_count());
4355
4356 debug_show_held_locks(prev);
4357 print_modules();
4358 if (irqs_disabled())
4359 print_irqtrace_events(prev);
4360
4361 if (regs)
4362 show_regs(regs);
4363 else
4364 dump_stack();
4365 }
4366
4367 /*
4368 * Various schedule()-time debugging checks and statistics:
4369 */
4370 static inline void schedule_debug(struct task_struct *prev)
4371 {
4372 /*
4373 * Test if we are atomic. Since do_exit() needs to call into
4374 * schedule() atomically, we ignore that path for now.
4375 * Otherwise, whine if we are scheduling when we should not be.
4376 */
4377 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4378 __schedule_bug(prev);
4379
4380 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4381
4382 schedstat_inc(this_rq(), sched_count);
4383 #ifdef CONFIG_SCHEDSTATS
4384 if (unlikely(prev->lock_depth >= 0)) {
4385 schedstat_inc(this_rq(), bkl_count);
4386 schedstat_inc(prev, sched_info.bkl_count);
4387 }
4388 #endif
4389 }
4390
4391 /*
4392 * Pick up the highest-prio task:
4393 */
4394 static inline struct task_struct *
4395 pick_next_task(struct rq *rq, struct task_struct *prev)
4396 {
4397 const struct sched_class *class;
4398 struct task_struct *p;
4399
4400 /*
4401 * Optimization: we know that if all tasks are in
4402 * the fair class we can call that function directly:
4403 */
4404 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4405 p = fair_sched_class.pick_next_task(rq);
4406 if (likely(p))
4407 return p;
4408 }
4409
4410 class = sched_class_highest;
4411 for ( ; ; ) {
4412 p = class->pick_next_task(rq);
4413 if (p)
4414 return p;
4415 /*
4416 * Will never be NULL as the idle class always
4417 * returns a non-NULL p:
4418 */
4419 class = class->next;
4420 }
4421 }
4422
4423 /*
4424 * schedule() is the main scheduler function.
4425 */
4426 asmlinkage void __sched schedule(void)
4427 {
4428 struct task_struct *prev, *next;
4429 unsigned long *switch_count;
4430 struct rq *rq;
4431 int cpu;
4432
4433 need_resched:
4434 preempt_disable();
4435 cpu = smp_processor_id();
4436 rq = cpu_rq(cpu);
4437 rcu_qsctr_inc(cpu);
4438 prev = rq->curr;
4439 switch_count = &prev->nivcsw;
4440
4441 release_kernel_lock(prev);
4442 need_resched_nonpreemptible:
4443
4444 schedule_debug(prev);
4445
4446 if (sched_feat(HRTICK))
4447 hrtick_clear(rq);
4448
4449 spin_lock_irq(&rq->lock);
4450 update_rq_clock(rq);
4451 clear_tsk_need_resched(prev);
4452
4453 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4454 if (unlikely(signal_pending_state(prev->state, prev)))
4455 prev->state = TASK_RUNNING;
4456 else
4457 deactivate_task(rq, prev, 1);
4458 switch_count = &prev->nvcsw;
4459 }
4460
4461 #ifdef CONFIG_SMP
4462 if (prev->sched_class->pre_schedule)
4463 prev->sched_class->pre_schedule(rq, prev);
4464 #endif
4465
4466 if (unlikely(!rq->nr_running))
4467 idle_balance(cpu, rq);
4468
4469 prev->sched_class->put_prev_task(rq, prev);
4470 next = pick_next_task(rq, prev);
4471
4472 if (likely(prev != next)) {
4473 sched_info_switch(prev, next);
4474
4475 rq->nr_switches++;
4476 rq->curr = next;
4477 ++*switch_count;
4478
4479 context_switch(rq, prev, next); /* unlocks the rq */
4480 /*
4481 * the context switch might have flipped the stack from under
4482 * us, hence refresh the local variables.
4483 */
4484 cpu = smp_processor_id();
4485 rq = cpu_rq(cpu);
4486 } else
4487 spin_unlock_irq(&rq->lock);
4488
4489 if (unlikely(reacquire_kernel_lock(current) < 0))
4490 goto need_resched_nonpreemptible;
4491
4492 preempt_enable_no_resched();
4493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4494 goto need_resched;
4495 }
4496 EXPORT_SYMBOL(schedule);
4497
4498 #ifdef CONFIG_PREEMPT
4499 /*
4500 * this is the entry point to schedule() from in-kernel preemption
4501 * off of preempt_enable. Kernel preemptions off return from interrupt
4502 * occur there and call schedule directly.
4503 */
4504 asmlinkage void __sched preempt_schedule(void)
4505 {
4506 struct thread_info *ti = current_thread_info();
4507
4508 /*
4509 * If there is a non-zero preempt_count or interrupts are disabled,
4510 * we do not want to preempt the current task. Just return..
4511 */
4512 if (likely(ti->preempt_count || irqs_disabled()))
4513 return;
4514
4515 do {
4516 add_preempt_count(PREEMPT_ACTIVE);
4517 schedule();
4518 sub_preempt_count(PREEMPT_ACTIVE);
4519
4520 /*
4521 * Check again in case we missed a preemption opportunity
4522 * between schedule and now.
4523 */
4524 barrier();
4525 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4526 }
4527 EXPORT_SYMBOL(preempt_schedule);
4528
4529 /*
4530 * this is the entry point to schedule() from kernel preemption
4531 * off of irq context.
4532 * Note, that this is called and return with irqs disabled. This will
4533 * protect us against recursive calling from irq.
4534 */
4535 asmlinkage void __sched preempt_schedule_irq(void)
4536 {
4537 struct thread_info *ti = current_thread_info();
4538
4539 /* Catch callers which need to be fixed */
4540 BUG_ON(ti->preempt_count || !irqs_disabled());
4541
4542 do {
4543 add_preempt_count(PREEMPT_ACTIVE);
4544 local_irq_enable();
4545 schedule();
4546 local_irq_disable();
4547 sub_preempt_count(PREEMPT_ACTIVE);
4548
4549 /*
4550 * Check again in case we missed a preemption opportunity
4551 * between schedule and now.
4552 */
4553 barrier();
4554 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4555 }
4556
4557 #endif /* CONFIG_PREEMPT */
4558
4559 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4560 void *key)
4561 {
4562 return try_to_wake_up(curr->private, mode, sync);
4563 }
4564 EXPORT_SYMBOL(default_wake_function);
4565
4566 /*
4567 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4568 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4569 * number) then we wake all the non-exclusive tasks and one exclusive task.
4570 *
4571 * There are circumstances in which we can try to wake a task which has already
4572 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4573 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4574 */
4575 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4576 int nr_exclusive, int sync, void *key)
4577 {
4578 wait_queue_t *curr, *next;
4579
4580 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4581 unsigned flags = curr->flags;
4582
4583 if (curr->func(curr, mode, sync, key) &&
4584 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4585 break;
4586 }
4587 }
4588
4589 /**
4590 * __wake_up - wake up threads blocked on a waitqueue.
4591 * @q: the waitqueue
4592 * @mode: which threads
4593 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4594 * @key: is directly passed to the wakeup function
4595 */
4596 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4597 int nr_exclusive, void *key)
4598 {
4599 unsigned long flags;
4600
4601 spin_lock_irqsave(&q->lock, flags);
4602 __wake_up_common(q, mode, nr_exclusive, 0, key);
4603 spin_unlock_irqrestore(&q->lock, flags);
4604 }
4605 EXPORT_SYMBOL(__wake_up);
4606
4607 /*
4608 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4609 */
4610 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4611 {
4612 __wake_up_common(q, mode, 1, 0, NULL);
4613 }
4614
4615 /**
4616 * __wake_up_sync - wake up threads blocked on a waitqueue.
4617 * @q: the waitqueue
4618 * @mode: which threads
4619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4620 *
4621 * The sync wakeup differs that the waker knows that it will schedule
4622 * away soon, so while the target thread will be woken up, it will not
4623 * be migrated to another CPU - ie. the two threads are 'synchronized'
4624 * with each other. This can prevent needless bouncing between CPUs.
4625 *
4626 * On UP it can prevent extra preemption.
4627 */
4628 void
4629 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4630 {
4631 unsigned long flags;
4632 int sync = 1;
4633
4634 if (unlikely(!q))
4635 return;
4636
4637 if (unlikely(!nr_exclusive))
4638 sync = 0;
4639
4640 spin_lock_irqsave(&q->lock, flags);
4641 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4642 spin_unlock_irqrestore(&q->lock, flags);
4643 }
4644 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4645
4646 /**
4647 * complete: - signals a single thread waiting on this completion
4648 * @x: holds the state of this particular completion
4649 *
4650 * This will wake up a single thread waiting on this completion. Threads will be
4651 * awakened in the same order in which they were queued.
4652 *
4653 * See also complete_all(), wait_for_completion() and related routines.
4654 */
4655 void complete(struct completion *x)
4656 {
4657 unsigned long flags;
4658
4659 spin_lock_irqsave(&x->wait.lock, flags);
4660 x->done++;
4661 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4662 spin_unlock_irqrestore(&x->wait.lock, flags);
4663 }
4664 EXPORT_SYMBOL(complete);
4665
4666 /**
4667 * complete_all: - signals all threads waiting on this completion
4668 * @x: holds the state of this particular completion
4669 *
4670 * This will wake up all threads waiting on this particular completion event.
4671 */
4672 void complete_all(struct completion *x)
4673 {
4674 unsigned long flags;
4675
4676 spin_lock_irqsave(&x->wait.lock, flags);
4677 x->done += UINT_MAX/2;
4678 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4679 spin_unlock_irqrestore(&x->wait.lock, flags);
4680 }
4681 EXPORT_SYMBOL(complete_all);
4682
4683 static inline long __sched
4684 do_wait_for_common(struct completion *x, long timeout, int state)
4685 {
4686 if (!x->done) {
4687 DECLARE_WAITQUEUE(wait, current);
4688
4689 wait.flags |= WQ_FLAG_EXCLUSIVE;
4690 __add_wait_queue_tail(&x->wait, &wait);
4691 do {
4692 if (signal_pending_state(state, current)) {
4693 timeout = -ERESTARTSYS;
4694 break;
4695 }
4696 __set_current_state(state);
4697 spin_unlock_irq(&x->wait.lock);
4698 timeout = schedule_timeout(timeout);
4699 spin_lock_irq(&x->wait.lock);
4700 } while (!x->done && timeout);
4701 __remove_wait_queue(&x->wait, &wait);
4702 if (!x->done)
4703 return timeout;
4704 }
4705 x->done--;
4706 return timeout ?: 1;
4707 }
4708
4709 static long __sched
4710 wait_for_common(struct completion *x, long timeout, int state)
4711 {
4712 might_sleep();
4713
4714 spin_lock_irq(&x->wait.lock);
4715 timeout = do_wait_for_common(x, timeout, state);
4716 spin_unlock_irq(&x->wait.lock);
4717 return timeout;
4718 }
4719
4720 /**
4721 * wait_for_completion: - waits for completion of a task
4722 * @x: holds the state of this particular completion
4723 *
4724 * This waits to be signaled for completion of a specific task. It is NOT
4725 * interruptible and there is no timeout.
4726 *
4727 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4728 * and interrupt capability. Also see complete().
4729 */
4730 void __sched wait_for_completion(struct completion *x)
4731 {
4732 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4733 }
4734 EXPORT_SYMBOL(wait_for_completion);
4735
4736 /**
4737 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4738 * @x: holds the state of this particular completion
4739 * @timeout: timeout value in jiffies
4740 *
4741 * This waits for either a completion of a specific task to be signaled or for a
4742 * specified timeout to expire. The timeout is in jiffies. It is not
4743 * interruptible.
4744 */
4745 unsigned long __sched
4746 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4747 {
4748 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4749 }
4750 EXPORT_SYMBOL(wait_for_completion_timeout);
4751
4752 /**
4753 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4754 * @x: holds the state of this particular completion
4755 *
4756 * This waits for completion of a specific task to be signaled. It is
4757 * interruptible.
4758 */
4759 int __sched wait_for_completion_interruptible(struct completion *x)
4760 {
4761 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4762 if (t == -ERESTARTSYS)
4763 return t;
4764 return 0;
4765 }
4766 EXPORT_SYMBOL(wait_for_completion_interruptible);
4767
4768 /**
4769 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4770 * @x: holds the state of this particular completion
4771 * @timeout: timeout value in jiffies
4772 *
4773 * This waits for either a completion of a specific task to be signaled or for a
4774 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4775 */
4776 unsigned long __sched
4777 wait_for_completion_interruptible_timeout(struct completion *x,
4778 unsigned long timeout)
4779 {
4780 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4781 }
4782 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4783
4784 /**
4785 * wait_for_completion_killable: - waits for completion of a task (killable)
4786 * @x: holds the state of this particular completion
4787 *
4788 * This waits to be signaled for completion of a specific task. It can be
4789 * interrupted by a kill signal.
4790 */
4791 int __sched wait_for_completion_killable(struct completion *x)
4792 {
4793 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4794 if (t == -ERESTARTSYS)
4795 return t;
4796 return 0;
4797 }
4798 EXPORT_SYMBOL(wait_for_completion_killable);
4799
4800 /**
4801 * try_wait_for_completion - try to decrement a completion without blocking
4802 * @x: completion structure
4803 *
4804 * Returns: 0 if a decrement cannot be done without blocking
4805 * 1 if a decrement succeeded.
4806 *
4807 * If a completion is being used as a counting completion,
4808 * attempt to decrement the counter without blocking. This
4809 * enables us to avoid waiting if the resource the completion
4810 * is protecting is not available.
4811 */
4812 bool try_wait_for_completion(struct completion *x)
4813 {
4814 int ret = 1;
4815
4816 spin_lock_irq(&x->wait.lock);
4817 if (!x->done)
4818 ret = 0;
4819 else
4820 x->done--;
4821 spin_unlock_irq(&x->wait.lock);
4822 return ret;
4823 }
4824 EXPORT_SYMBOL(try_wait_for_completion);
4825
4826 /**
4827 * completion_done - Test to see if a completion has any waiters
4828 * @x: completion structure
4829 *
4830 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4831 * 1 if there are no waiters.
4832 *
4833 */
4834 bool completion_done(struct completion *x)
4835 {
4836 int ret = 1;
4837
4838 spin_lock_irq(&x->wait.lock);
4839 if (!x->done)
4840 ret = 0;
4841 spin_unlock_irq(&x->wait.lock);
4842 return ret;
4843 }
4844 EXPORT_SYMBOL(completion_done);
4845
4846 static long __sched
4847 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4848 {
4849 unsigned long flags;
4850 wait_queue_t wait;
4851
4852 init_waitqueue_entry(&wait, current);
4853
4854 __set_current_state(state);
4855
4856 spin_lock_irqsave(&q->lock, flags);
4857 __add_wait_queue(q, &wait);
4858 spin_unlock(&q->lock);
4859 timeout = schedule_timeout(timeout);
4860 spin_lock_irq(&q->lock);
4861 __remove_wait_queue(q, &wait);
4862 spin_unlock_irqrestore(&q->lock, flags);
4863
4864 return timeout;
4865 }
4866
4867 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4868 {
4869 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4870 }
4871 EXPORT_SYMBOL(interruptible_sleep_on);
4872
4873 long __sched
4874 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4875 {
4876 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4877 }
4878 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4879
4880 void __sched sleep_on(wait_queue_head_t *q)
4881 {
4882 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4883 }
4884 EXPORT_SYMBOL(sleep_on);
4885
4886 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4887 {
4888 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4889 }
4890 EXPORT_SYMBOL(sleep_on_timeout);
4891
4892 #ifdef CONFIG_RT_MUTEXES
4893
4894 /*
4895 * rt_mutex_setprio - set the current priority of a task
4896 * @p: task
4897 * @prio: prio value (kernel-internal form)
4898 *
4899 * This function changes the 'effective' priority of a task. It does
4900 * not touch ->normal_prio like __setscheduler().
4901 *
4902 * Used by the rt_mutex code to implement priority inheritance logic.
4903 */
4904 void rt_mutex_setprio(struct task_struct *p, int prio)
4905 {
4906 unsigned long flags;
4907 int oldprio, on_rq, running;
4908 struct rq *rq;
4909 const struct sched_class *prev_class = p->sched_class;
4910
4911 BUG_ON(prio < 0 || prio > MAX_PRIO);
4912
4913 rq = task_rq_lock(p, &flags);
4914 update_rq_clock(rq);
4915
4916 oldprio = p->prio;
4917 on_rq = p->se.on_rq;
4918 running = task_current(rq, p);
4919 if (on_rq)
4920 dequeue_task(rq, p, 0);
4921 if (running)
4922 p->sched_class->put_prev_task(rq, p);
4923
4924 if (rt_prio(prio))
4925 p->sched_class = &rt_sched_class;
4926 else
4927 p->sched_class = &fair_sched_class;
4928
4929 p->prio = prio;
4930
4931 if (running)
4932 p->sched_class->set_curr_task(rq);
4933 if (on_rq) {
4934 enqueue_task(rq, p, 0);
4935
4936 check_class_changed(rq, p, prev_class, oldprio, running);
4937 }
4938 task_rq_unlock(rq, &flags);
4939 }
4940
4941 #endif
4942
4943 void set_user_nice(struct task_struct *p, long nice)
4944 {
4945 int old_prio, delta, on_rq;
4946 unsigned long flags;
4947 struct rq *rq;
4948
4949 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4950 return;
4951 /*
4952 * We have to be careful, if called from sys_setpriority(),
4953 * the task might be in the middle of scheduling on another CPU.
4954 */
4955 rq = task_rq_lock(p, &flags);
4956 update_rq_clock(rq);
4957 /*
4958 * The RT priorities are set via sched_setscheduler(), but we still
4959 * allow the 'normal' nice value to be set - but as expected
4960 * it wont have any effect on scheduling until the task is
4961 * SCHED_FIFO/SCHED_RR:
4962 */
4963 if (task_has_rt_policy(p)) {
4964 p->static_prio = NICE_TO_PRIO(nice);
4965 goto out_unlock;
4966 }
4967 on_rq = p->se.on_rq;
4968 if (on_rq)
4969 dequeue_task(rq, p, 0);
4970
4971 p->static_prio = NICE_TO_PRIO(nice);
4972 set_load_weight(p);
4973 old_prio = p->prio;
4974 p->prio = effective_prio(p);
4975 delta = p->prio - old_prio;
4976
4977 if (on_rq) {
4978 enqueue_task(rq, p, 0);
4979 /*
4980 * If the task increased its priority or is running and
4981 * lowered its priority, then reschedule its CPU:
4982 */
4983 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4984 resched_task(rq->curr);
4985 }
4986 out_unlock:
4987 task_rq_unlock(rq, &flags);
4988 }
4989 EXPORT_SYMBOL(set_user_nice);
4990
4991 /*
4992 * can_nice - check if a task can reduce its nice value
4993 * @p: task
4994 * @nice: nice value
4995 */
4996 int can_nice(const struct task_struct *p, const int nice)
4997 {
4998 /* convert nice value [19,-20] to rlimit style value [1,40] */
4999 int nice_rlim = 20 - nice;
5000
5001 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5002 capable(CAP_SYS_NICE));
5003 }
5004
5005 #ifdef __ARCH_WANT_SYS_NICE
5006
5007 /*
5008 * sys_nice - change the priority of the current process.
5009 * @increment: priority increment
5010 *
5011 * sys_setpriority is a more generic, but much slower function that
5012 * does similar things.
5013 */
5014 asmlinkage long sys_nice(int increment)
5015 {
5016 long nice, retval;
5017
5018 /*
5019 * Setpriority might change our priority at the same moment.
5020 * We don't have to worry. Conceptually one call occurs first
5021 * and we have a single winner.
5022 */
5023 if (increment < -40)
5024 increment = -40;
5025 if (increment > 40)
5026 increment = 40;
5027
5028 nice = PRIO_TO_NICE(current->static_prio) + increment;
5029 if (nice < -20)
5030 nice = -20;
5031 if (nice > 19)
5032 nice = 19;
5033
5034 if (increment < 0 && !can_nice(current, nice))
5035 return -EPERM;
5036
5037 retval = security_task_setnice(current, nice);
5038 if (retval)
5039 return retval;
5040
5041 set_user_nice(current, nice);
5042 return 0;
5043 }
5044
5045 #endif
5046
5047 /**
5048 * task_prio - return the priority value of a given task.
5049 * @p: the task in question.
5050 *
5051 * This is the priority value as seen by users in /proc.
5052 * RT tasks are offset by -200. Normal tasks are centered
5053 * around 0, value goes from -16 to +15.
5054 */
5055 int task_prio(const struct task_struct *p)
5056 {
5057 return p->prio - MAX_RT_PRIO;
5058 }
5059
5060 /**
5061 * task_nice - return the nice value of a given task.
5062 * @p: the task in question.
5063 */
5064 int task_nice(const struct task_struct *p)
5065 {
5066 return TASK_NICE(p);
5067 }
5068 EXPORT_SYMBOL(task_nice);
5069
5070 /**
5071 * idle_cpu - is a given cpu idle currently?
5072 * @cpu: the processor in question.
5073 */
5074 int idle_cpu(int cpu)
5075 {
5076 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5077 }
5078
5079 /**
5080 * idle_task - return the idle task for a given cpu.
5081 * @cpu: the processor in question.
5082 */
5083 struct task_struct *idle_task(int cpu)
5084 {
5085 return cpu_rq(cpu)->idle;
5086 }
5087
5088 /**
5089 * find_process_by_pid - find a process with a matching PID value.
5090 * @pid: the pid in question.
5091 */
5092 static struct task_struct *find_process_by_pid(pid_t pid)
5093 {
5094 return pid ? find_task_by_vpid(pid) : current;
5095 }
5096
5097 /* Actually do priority change: must hold rq lock. */
5098 static void
5099 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5100 {
5101 BUG_ON(p->se.on_rq);
5102
5103 p->policy = policy;
5104 switch (p->policy) {
5105 case SCHED_NORMAL:
5106 case SCHED_BATCH:
5107 case SCHED_IDLE:
5108 p->sched_class = &fair_sched_class;
5109 break;
5110 case SCHED_FIFO:
5111 case SCHED_RR:
5112 p->sched_class = &rt_sched_class;
5113 break;
5114 }
5115
5116 p->rt_priority = prio;
5117 p->normal_prio = normal_prio(p);
5118 /* we are holding p->pi_lock already */
5119 p->prio = rt_mutex_getprio(p);
5120 set_load_weight(p);
5121 }
5122
5123 /*
5124 * check the target process has a UID that matches the current process's
5125 */
5126 static bool check_same_owner(struct task_struct *p)
5127 {
5128 const struct cred *cred = current_cred(), *pcred;
5129 bool match;
5130
5131 rcu_read_lock();
5132 pcred = __task_cred(p);
5133 match = (cred->euid == pcred->euid ||
5134 cred->euid == pcred->uid);
5135 rcu_read_unlock();
5136 return match;
5137 }
5138
5139 static int __sched_setscheduler(struct task_struct *p, int policy,
5140 struct sched_param *param, bool user)
5141 {
5142 int retval, oldprio, oldpolicy = -1, on_rq, running;
5143 unsigned long flags;
5144 const struct sched_class *prev_class = p->sched_class;
5145 struct rq *rq;
5146
5147 /* may grab non-irq protected spin_locks */
5148 BUG_ON(in_interrupt());
5149 recheck:
5150 /* double check policy once rq lock held */
5151 if (policy < 0)
5152 policy = oldpolicy = p->policy;
5153 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5154 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5155 policy != SCHED_IDLE)
5156 return -EINVAL;
5157 /*
5158 * Valid priorities for SCHED_FIFO and SCHED_RR are
5159 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5160 * SCHED_BATCH and SCHED_IDLE is 0.
5161 */
5162 if (param->sched_priority < 0 ||
5163 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5164 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5165 return -EINVAL;
5166 if (rt_policy(policy) != (param->sched_priority != 0))
5167 return -EINVAL;
5168
5169 /*
5170 * Allow unprivileged RT tasks to decrease priority:
5171 */
5172 if (user && !capable(CAP_SYS_NICE)) {
5173 if (rt_policy(policy)) {
5174 unsigned long rlim_rtprio;
5175
5176 if (!lock_task_sighand(p, &flags))
5177 return -ESRCH;
5178 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5179 unlock_task_sighand(p, &flags);
5180
5181 /* can't set/change the rt policy */
5182 if (policy != p->policy && !rlim_rtprio)
5183 return -EPERM;
5184
5185 /* can't increase priority */
5186 if (param->sched_priority > p->rt_priority &&
5187 param->sched_priority > rlim_rtprio)
5188 return -EPERM;
5189 }
5190 /*
5191 * Like positive nice levels, dont allow tasks to
5192 * move out of SCHED_IDLE either:
5193 */
5194 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5195 return -EPERM;
5196
5197 /* can't change other user's priorities */
5198 if (!check_same_owner(p))
5199 return -EPERM;
5200 }
5201
5202 if (user) {
5203 #ifdef CONFIG_RT_GROUP_SCHED
5204 /*
5205 * Do not allow realtime tasks into groups that have no runtime
5206 * assigned.
5207 */
5208 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5209 task_group(p)->rt_bandwidth.rt_runtime == 0)
5210 return -EPERM;
5211 #endif
5212
5213 retval = security_task_setscheduler(p, policy, param);
5214 if (retval)
5215 return retval;
5216 }
5217
5218 /*
5219 * make sure no PI-waiters arrive (or leave) while we are
5220 * changing the priority of the task:
5221 */
5222 spin_lock_irqsave(&p->pi_lock, flags);
5223 /*
5224 * To be able to change p->policy safely, the apropriate
5225 * runqueue lock must be held.
5226 */
5227 rq = __task_rq_lock(p);
5228 /* recheck policy now with rq lock held */
5229 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5230 policy = oldpolicy = -1;
5231 __task_rq_unlock(rq);
5232 spin_unlock_irqrestore(&p->pi_lock, flags);
5233 goto recheck;
5234 }
5235 update_rq_clock(rq);
5236 on_rq = p->se.on_rq;
5237 running = task_current(rq, p);
5238 if (on_rq)
5239 deactivate_task(rq, p, 0);
5240 if (running)
5241 p->sched_class->put_prev_task(rq, p);
5242
5243 oldprio = p->prio;
5244 __setscheduler(rq, p, policy, param->sched_priority);
5245
5246 if (running)
5247 p->sched_class->set_curr_task(rq);
5248 if (on_rq) {
5249 activate_task(rq, p, 0);
5250
5251 check_class_changed(rq, p, prev_class, oldprio, running);
5252 }
5253 __task_rq_unlock(rq);
5254 spin_unlock_irqrestore(&p->pi_lock, flags);
5255
5256 rt_mutex_adjust_pi(p);
5257
5258 return 0;
5259 }
5260
5261 /**
5262 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5263 * @p: the task in question.
5264 * @policy: new policy.
5265 * @param: structure containing the new RT priority.
5266 *
5267 * NOTE that the task may be already dead.
5268 */
5269 int sched_setscheduler(struct task_struct *p, int policy,
5270 struct sched_param *param)
5271 {
5272 return __sched_setscheduler(p, policy, param, true);
5273 }
5274 EXPORT_SYMBOL_GPL(sched_setscheduler);
5275
5276 /**
5277 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5278 * @p: the task in question.
5279 * @policy: new policy.
5280 * @param: structure containing the new RT priority.
5281 *
5282 * Just like sched_setscheduler, only don't bother checking if the
5283 * current context has permission. For example, this is needed in
5284 * stop_machine(): we create temporary high priority worker threads,
5285 * but our caller might not have that capability.
5286 */
5287 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5288 struct sched_param *param)
5289 {
5290 return __sched_setscheduler(p, policy, param, false);
5291 }
5292
5293 static int
5294 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5295 {
5296 struct sched_param lparam;
5297 struct task_struct *p;
5298 int retval;
5299
5300 if (!param || pid < 0)
5301 return -EINVAL;
5302 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5303 return -EFAULT;
5304
5305 rcu_read_lock();
5306 retval = -ESRCH;
5307 p = find_process_by_pid(pid);
5308 if (p != NULL)
5309 retval = sched_setscheduler(p, policy, &lparam);
5310 rcu_read_unlock();
5311
5312 return retval;
5313 }
5314
5315 /**
5316 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5317 * @pid: the pid in question.
5318 * @policy: new policy.
5319 * @param: structure containing the new RT priority.
5320 */
5321 asmlinkage long
5322 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5323 {
5324 /* negative values for policy are not valid */
5325 if (policy < 0)
5326 return -EINVAL;
5327
5328 return do_sched_setscheduler(pid, policy, param);
5329 }
5330
5331 /**
5332 * sys_sched_setparam - set/change the RT priority of a thread
5333 * @pid: the pid in question.
5334 * @param: structure containing the new RT priority.
5335 */
5336 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5337 {
5338 return do_sched_setscheduler(pid, -1, param);
5339 }
5340
5341 /**
5342 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5343 * @pid: the pid in question.
5344 */
5345 asmlinkage long sys_sched_getscheduler(pid_t pid)
5346 {
5347 struct task_struct *p;
5348 int retval;
5349
5350 if (pid < 0)
5351 return -EINVAL;
5352
5353 retval = -ESRCH;
5354 read_lock(&tasklist_lock);
5355 p = find_process_by_pid(pid);
5356 if (p) {
5357 retval = security_task_getscheduler(p);
5358 if (!retval)
5359 retval = p->policy;
5360 }
5361 read_unlock(&tasklist_lock);
5362 return retval;
5363 }
5364
5365 /**
5366 * sys_sched_getscheduler - get the RT priority of a thread
5367 * @pid: the pid in question.
5368 * @param: structure containing the RT priority.
5369 */
5370 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5371 {
5372 struct sched_param lp;
5373 struct task_struct *p;
5374 int retval;
5375
5376 if (!param || pid < 0)
5377 return -EINVAL;
5378
5379 read_lock(&tasklist_lock);
5380 p = find_process_by_pid(pid);
5381 retval = -ESRCH;
5382 if (!p)
5383 goto out_unlock;
5384
5385 retval = security_task_getscheduler(p);
5386 if (retval)
5387 goto out_unlock;
5388
5389 lp.sched_priority = p->rt_priority;
5390 read_unlock(&tasklist_lock);
5391
5392 /*
5393 * This one might sleep, we cannot do it with a spinlock held ...
5394 */
5395 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5396
5397 return retval;
5398
5399 out_unlock:
5400 read_unlock(&tasklist_lock);
5401 return retval;
5402 }
5403
5404 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5405 {
5406 cpumask_t cpus_allowed;
5407 cpumask_t new_mask = *in_mask;
5408 struct task_struct *p;
5409 int retval;
5410
5411 get_online_cpus();
5412 read_lock(&tasklist_lock);
5413
5414 p = find_process_by_pid(pid);
5415 if (!p) {
5416 read_unlock(&tasklist_lock);
5417 put_online_cpus();
5418 return -ESRCH;
5419 }
5420
5421 /*
5422 * It is not safe to call set_cpus_allowed with the
5423 * tasklist_lock held. We will bump the task_struct's
5424 * usage count and then drop tasklist_lock.
5425 */
5426 get_task_struct(p);
5427 read_unlock(&tasklist_lock);
5428
5429 retval = -EPERM;
5430 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5431 goto out_unlock;
5432
5433 retval = security_task_setscheduler(p, 0, NULL);
5434 if (retval)
5435 goto out_unlock;
5436
5437 cpuset_cpus_allowed(p, &cpus_allowed);
5438 cpus_and(new_mask, new_mask, cpus_allowed);
5439 again:
5440 retval = set_cpus_allowed_ptr(p, &new_mask);
5441
5442 if (!retval) {
5443 cpuset_cpus_allowed(p, &cpus_allowed);
5444 if (!cpus_subset(new_mask, cpus_allowed)) {
5445 /*
5446 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed
5449 */
5450 new_mask = cpus_allowed;
5451 goto again;
5452 }
5453 }
5454 out_unlock:
5455 put_task_struct(p);
5456 put_online_cpus();
5457 return retval;
5458 }
5459
5460 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5461 cpumask_t *new_mask)
5462 {
5463 if (len < sizeof(cpumask_t)) {
5464 memset(new_mask, 0, sizeof(cpumask_t));
5465 } else if (len > sizeof(cpumask_t)) {
5466 len = sizeof(cpumask_t);
5467 }
5468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5469 }
5470
5471 /**
5472 * sys_sched_setaffinity - set the cpu affinity of a process
5473 * @pid: pid of the process
5474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5475 * @user_mask_ptr: user-space pointer to the new cpu mask
5476 */
5477 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5478 unsigned long __user *user_mask_ptr)
5479 {
5480 cpumask_t new_mask;
5481 int retval;
5482
5483 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5484 if (retval)
5485 return retval;
5486
5487 return sched_setaffinity(pid, &new_mask);
5488 }
5489
5490 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5491 {
5492 struct task_struct *p;
5493 int retval;
5494
5495 get_online_cpus();
5496 read_lock(&tasklist_lock);
5497
5498 retval = -ESRCH;
5499 p = find_process_by_pid(pid);
5500 if (!p)
5501 goto out_unlock;
5502
5503 retval = security_task_getscheduler(p);
5504 if (retval)
5505 goto out_unlock;
5506
5507 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5508
5509 out_unlock:
5510 read_unlock(&tasklist_lock);
5511 put_online_cpus();
5512
5513 return retval;
5514 }
5515
5516 /**
5517 * sys_sched_getaffinity - get the cpu affinity of a process
5518 * @pid: pid of the process
5519 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5520 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5521 */
5522 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5523 unsigned long __user *user_mask_ptr)
5524 {
5525 int ret;
5526 cpumask_t mask;
5527
5528 if (len < sizeof(cpumask_t))
5529 return -EINVAL;
5530
5531 ret = sched_getaffinity(pid, &mask);
5532 if (ret < 0)
5533 return ret;
5534
5535 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5536 return -EFAULT;
5537
5538 return sizeof(cpumask_t);
5539 }
5540
5541 /**
5542 * sys_sched_yield - yield the current processor to other threads.
5543 *
5544 * This function yields the current CPU to other tasks. If there are no
5545 * other threads running on this CPU then this function will return.
5546 */
5547 asmlinkage long sys_sched_yield(void)
5548 {
5549 struct rq *rq = this_rq_lock();
5550
5551 schedstat_inc(rq, yld_count);
5552 current->sched_class->yield_task(rq);
5553
5554 /*
5555 * Since we are going to call schedule() anyway, there's
5556 * no need to preempt or enable interrupts:
5557 */
5558 __release(rq->lock);
5559 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5560 _raw_spin_unlock(&rq->lock);
5561 preempt_enable_no_resched();
5562
5563 schedule();
5564
5565 return 0;
5566 }
5567
5568 static void __cond_resched(void)
5569 {
5570 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5571 __might_sleep(__FILE__, __LINE__);
5572 #endif
5573 /*
5574 * The BKS might be reacquired before we have dropped
5575 * PREEMPT_ACTIVE, which could trigger a second
5576 * cond_resched() call.
5577 */
5578 do {
5579 add_preempt_count(PREEMPT_ACTIVE);
5580 schedule();
5581 sub_preempt_count(PREEMPT_ACTIVE);
5582 } while (need_resched());
5583 }
5584
5585 int __sched _cond_resched(void)
5586 {
5587 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5588 system_state == SYSTEM_RUNNING) {
5589 __cond_resched();
5590 return 1;
5591 }
5592 return 0;
5593 }
5594 EXPORT_SYMBOL(_cond_resched);
5595
5596 /*
5597 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5598 * call schedule, and on return reacquire the lock.
5599 *
5600 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5601 * operations here to prevent schedule() from being called twice (once via
5602 * spin_unlock(), once by hand).
5603 */
5604 int cond_resched_lock(spinlock_t *lock)
5605 {
5606 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5607 int ret = 0;
5608
5609 if (spin_needbreak(lock) || resched) {
5610 spin_unlock(lock);
5611 if (resched && need_resched())
5612 __cond_resched();
5613 else
5614 cpu_relax();
5615 ret = 1;
5616 spin_lock(lock);
5617 }
5618 return ret;
5619 }
5620 EXPORT_SYMBOL(cond_resched_lock);
5621
5622 int __sched cond_resched_softirq(void)
5623 {
5624 BUG_ON(!in_softirq());
5625
5626 if (need_resched() && system_state == SYSTEM_RUNNING) {
5627 local_bh_enable();
5628 __cond_resched();
5629 local_bh_disable();
5630 return 1;
5631 }
5632 return 0;
5633 }
5634 EXPORT_SYMBOL(cond_resched_softirq);
5635
5636 /**
5637 * yield - yield the current processor to other threads.
5638 *
5639 * This is a shortcut for kernel-space yielding - it marks the
5640 * thread runnable and calls sys_sched_yield().
5641 */
5642 void __sched yield(void)
5643 {
5644 set_current_state(TASK_RUNNING);
5645 sys_sched_yield();
5646 }
5647 EXPORT_SYMBOL(yield);
5648
5649 /*
5650 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5651 * that process accounting knows that this is a task in IO wait state.
5652 *
5653 * But don't do that if it is a deliberate, throttling IO wait (this task
5654 * has set its backing_dev_info: the queue against which it should throttle)
5655 */
5656 void __sched io_schedule(void)
5657 {
5658 struct rq *rq = &__raw_get_cpu_var(runqueues);
5659
5660 delayacct_blkio_start();
5661 atomic_inc(&rq->nr_iowait);
5662 schedule();
5663 atomic_dec(&rq->nr_iowait);
5664 delayacct_blkio_end();
5665 }
5666 EXPORT_SYMBOL(io_schedule);
5667
5668 long __sched io_schedule_timeout(long timeout)
5669 {
5670 struct rq *rq = &__raw_get_cpu_var(runqueues);
5671 long ret;
5672
5673 delayacct_blkio_start();
5674 atomic_inc(&rq->nr_iowait);
5675 ret = schedule_timeout(timeout);
5676 atomic_dec(&rq->nr_iowait);
5677 delayacct_blkio_end();
5678 return ret;
5679 }
5680
5681 /**
5682 * sys_sched_get_priority_max - return maximum RT priority.
5683 * @policy: scheduling class.
5684 *
5685 * this syscall returns the maximum rt_priority that can be used
5686 * by a given scheduling class.
5687 */
5688 asmlinkage long sys_sched_get_priority_max(int policy)
5689 {
5690 int ret = -EINVAL;
5691
5692 switch (policy) {
5693 case SCHED_FIFO:
5694 case SCHED_RR:
5695 ret = MAX_USER_RT_PRIO-1;
5696 break;
5697 case SCHED_NORMAL:
5698 case SCHED_BATCH:
5699 case SCHED_IDLE:
5700 ret = 0;
5701 break;
5702 }
5703 return ret;
5704 }
5705
5706 /**
5707 * sys_sched_get_priority_min - return minimum RT priority.
5708 * @policy: scheduling class.
5709 *
5710 * this syscall returns the minimum rt_priority that can be used
5711 * by a given scheduling class.
5712 */
5713 asmlinkage long sys_sched_get_priority_min(int policy)
5714 {
5715 int ret = -EINVAL;
5716
5717 switch (policy) {
5718 case SCHED_FIFO:
5719 case SCHED_RR:
5720 ret = 1;
5721 break;
5722 case SCHED_NORMAL:
5723 case SCHED_BATCH:
5724 case SCHED_IDLE:
5725 ret = 0;
5726 }
5727 return ret;
5728 }
5729
5730 /**
5731 * sys_sched_rr_get_interval - return the default timeslice of a process.
5732 * @pid: pid of the process.
5733 * @interval: userspace pointer to the timeslice value.
5734 *
5735 * this syscall writes the default timeslice value of a given process
5736 * into the user-space timespec buffer. A value of '0' means infinity.
5737 */
5738 asmlinkage
5739 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5740 {
5741 struct task_struct *p;
5742 unsigned int time_slice;
5743 int retval;
5744 struct timespec t;
5745
5746 if (pid < 0)
5747 return -EINVAL;
5748
5749 retval = -ESRCH;
5750 read_lock(&tasklist_lock);
5751 p = find_process_by_pid(pid);
5752 if (!p)
5753 goto out_unlock;
5754
5755 retval = security_task_getscheduler(p);
5756 if (retval)
5757 goto out_unlock;
5758
5759 /*
5760 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5761 * tasks that are on an otherwise idle runqueue:
5762 */
5763 time_slice = 0;
5764 if (p->policy == SCHED_RR) {
5765 time_slice = DEF_TIMESLICE;
5766 } else if (p->policy != SCHED_FIFO) {
5767 struct sched_entity *se = &p->se;
5768 unsigned long flags;
5769 struct rq *rq;
5770
5771 rq = task_rq_lock(p, &flags);
5772 if (rq->cfs.load.weight)
5773 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5774 task_rq_unlock(rq, &flags);
5775 }
5776 read_unlock(&tasklist_lock);
5777 jiffies_to_timespec(time_slice, &t);
5778 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5779 return retval;
5780
5781 out_unlock:
5782 read_unlock(&tasklist_lock);
5783 return retval;
5784 }
5785
5786 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5787
5788 void sched_show_task(struct task_struct *p)
5789 {
5790 unsigned long free = 0;
5791 unsigned state;
5792
5793 state = p->state ? __ffs(p->state) + 1 : 0;
5794 printk(KERN_INFO "%-13.13s %c", p->comm,
5795 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5796 #if BITS_PER_LONG == 32
5797 if (state == TASK_RUNNING)
5798 printk(KERN_CONT " running ");
5799 else
5800 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5801 #else
5802 if (state == TASK_RUNNING)
5803 printk(KERN_CONT " running task ");
5804 else
5805 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5806 #endif
5807 #ifdef CONFIG_DEBUG_STACK_USAGE
5808 {
5809 unsigned long *n = end_of_stack(p);
5810 while (!*n)
5811 n++;
5812 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5813 }
5814 #endif
5815 printk(KERN_CONT "%5lu %5d %6d\n", free,
5816 task_pid_nr(p), task_pid_nr(p->real_parent));
5817
5818 show_stack(p, NULL);
5819 }
5820
5821 void show_state_filter(unsigned long state_filter)
5822 {
5823 struct task_struct *g, *p;
5824
5825 #if BITS_PER_LONG == 32
5826 printk(KERN_INFO
5827 " task PC stack pid father\n");
5828 #else
5829 printk(KERN_INFO
5830 " task PC stack pid father\n");
5831 #endif
5832 read_lock(&tasklist_lock);
5833 do_each_thread(g, p) {
5834 /*
5835 * reset the NMI-timeout, listing all files on a slow
5836 * console might take alot of time:
5837 */
5838 touch_nmi_watchdog();
5839 if (!state_filter || (p->state & state_filter))
5840 sched_show_task(p);
5841 } while_each_thread(g, p);
5842
5843 touch_all_softlockup_watchdogs();
5844
5845 #ifdef CONFIG_SCHED_DEBUG
5846 sysrq_sched_debug_show();
5847 #endif
5848 read_unlock(&tasklist_lock);
5849 /*
5850 * Only show locks if all tasks are dumped:
5851 */
5852 if (state_filter == -1)
5853 debug_show_all_locks();
5854 }
5855
5856 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5857 {
5858 idle->sched_class = &idle_sched_class;
5859 }
5860
5861 /**
5862 * init_idle - set up an idle thread for a given CPU
5863 * @idle: task in question
5864 * @cpu: cpu the idle task belongs to
5865 *
5866 * NOTE: this function does not set the idle thread's NEED_RESCHED
5867 * flag, to make booting more robust.
5868 */
5869 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5870 {
5871 struct rq *rq = cpu_rq(cpu);
5872 unsigned long flags;
5873
5874 spin_lock_irqsave(&rq->lock, flags);
5875
5876 __sched_fork(idle);
5877 idle->se.exec_start = sched_clock();
5878
5879 idle->prio = idle->normal_prio = MAX_PRIO;
5880 idle->cpus_allowed = cpumask_of_cpu(cpu);
5881 __set_task_cpu(idle, cpu);
5882
5883 rq->curr = rq->idle = idle;
5884 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5885 idle->oncpu = 1;
5886 #endif
5887 spin_unlock_irqrestore(&rq->lock, flags);
5888
5889 /* Set the preempt count _outside_ the spinlocks! */
5890 #if defined(CONFIG_PREEMPT)
5891 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5892 #else
5893 task_thread_info(idle)->preempt_count = 0;
5894 #endif
5895 /*
5896 * The idle tasks have their own, simple scheduling class:
5897 */
5898 idle->sched_class = &idle_sched_class;
5899 ftrace_graph_init_task(idle);
5900 }
5901
5902 /*
5903 * In a system that switches off the HZ timer nohz_cpu_mask
5904 * indicates which cpus entered this state. This is used
5905 * in the rcu update to wait only for active cpus. For system
5906 * which do not switch off the HZ timer nohz_cpu_mask should
5907 * always be CPU_MASK_NONE.
5908 */
5909 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5910
5911 /*
5912 * Increase the granularity value when there are more CPUs,
5913 * because with more CPUs the 'effective latency' as visible
5914 * to users decreases. But the relationship is not linear,
5915 * so pick a second-best guess by going with the log2 of the
5916 * number of CPUs.
5917 *
5918 * This idea comes from the SD scheduler of Con Kolivas:
5919 */
5920 static inline void sched_init_granularity(void)
5921 {
5922 unsigned int factor = 1 + ilog2(num_online_cpus());
5923 const unsigned long limit = 200000000;
5924
5925 sysctl_sched_min_granularity *= factor;
5926 if (sysctl_sched_min_granularity > limit)
5927 sysctl_sched_min_granularity = limit;
5928
5929 sysctl_sched_latency *= factor;
5930 if (sysctl_sched_latency > limit)
5931 sysctl_sched_latency = limit;
5932
5933 sysctl_sched_wakeup_granularity *= factor;
5934
5935 sysctl_sched_shares_ratelimit *= factor;
5936 }
5937
5938 #ifdef CONFIG_SMP
5939 /*
5940 * This is how migration works:
5941 *
5942 * 1) we queue a struct migration_req structure in the source CPU's
5943 * runqueue and wake up that CPU's migration thread.
5944 * 2) we down() the locked semaphore => thread blocks.
5945 * 3) migration thread wakes up (implicitly it forces the migrated
5946 * thread off the CPU)
5947 * 4) it gets the migration request and checks whether the migrated
5948 * task is still in the wrong runqueue.
5949 * 5) if it's in the wrong runqueue then the migration thread removes
5950 * it and puts it into the right queue.
5951 * 6) migration thread up()s the semaphore.
5952 * 7) we wake up and the migration is done.
5953 */
5954
5955 /*
5956 * Change a given task's CPU affinity. Migrate the thread to a
5957 * proper CPU and schedule it away if the CPU it's executing on
5958 * is removed from the allowed bitmask.
5959 *
5960 * NOTE: the caller must have a valid reference to the task, the
5961 * task must not exit() & deallocate itself prematurely. The
5962 * call is not atomic; no spinlocks may be held.
5963 */
5964 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5965 {
5966 struct migration_req req;
5967 unsigned long flags;
5968 struct rq *rq;
5969 int ret = 0;
5970
5971 rq = task_rq_lock(p, &flags);
5972 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5973 ret = -EINVAL;
5974 goto out;
5975 }
5976
5977 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5978 !cpus_equal(p->cpus_allowed, *new_mask))) {
5979 ret = -EINVAL;
5980 goto out;
5981 }
5982
5983 if (p->sched_class->set_cpus_allowed)
5984 p->sched_class->set_cpus_allowed(p, new_mask);
5985 else {
5986 p->cpus_allowed = *new_mask;
5987 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5988 }
5989
5990 /* Can the task run on the task's current CPU? If so, we're done */
5991 if (cpu_isset(task_cpu(p), *new_mask))
5992 goto out;
5993
5994 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5995 /* Need help from migration thread: drop lock and wait. */
5996 task_rq_unlock(rq, &flags);
5997 wake_up_process(rq->migration_thread);
5998 wait_for_completion(&req.done);
5999 tlb_migrate_finish(p->mm);
6000 return 0;
6001 }
6002 out:
6003 task_rq_unlock(rq, &flags);
6004
6005 return ret;
6006 }
6007 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6008
6009 /*
6010 * Move (not current) task off this cpu, onto dest cpu. We're doing
6011 * this because either it can't run here any more (set_cpus_allowed()
6012 * away from this CPU, or CPU going down), or because we're
6013 * attempting to rebalance this task on exec (sched_exec).
6014 *
6015 * So we race with normal scheduler movements, but that's OK, as long
6016 * as the task is no longer on this CPU.
6017 *
6018 * Returns non-zero if task was successfully migrated.
6019 */
6020 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6021 {
6022 struct rq *rq_dest, *rq_src;
6023 int ret = 0, on_rq;
6024
6025 if (unlikely(!cpu_active(dest_cpu)))
6026 return ret;
6027
6028 rq_src = cpu_rq(src_cpu);
6029 rq_dest = cpu_rq(dest_cpu);
6030
6031 double_rq_lock(rq_src, rq_dest);
6032 /* Already moved. */
6033 if (task_cpu(p) != src_cpu)
6034 goto done;
6035 /* Affinity changed (again). */
6036 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6037 goto fail;
6038
6039 on_rq = p->se.on_rq;
6040 if (on_rq)
6041 deactivate_task(rq_src, p, 0);
6042
6043 set_task_cpu(p, dest_cpu);
6044 if (on_rq) {
6045 activate_task(rq_dest, p, 0);
6046 check_preempt_curr(rq_dest, p, 0);
6047 }
6048 done:
6049 ret = 1;
6050 fail:
6051 double_rq_unlock(rq_src, rq_dest);
6052 return ret;
6053 }
6054
6055 /*
6056 * migration_thread - this is a highprio system thread that performs
6057 * thread migration by bumping thread off CPU then 'pushing' onto
6058 * another runqueue.
6059 */
6060 static int migration_thread(void *data)
6061 {
6062 int cpu = (long)data;
6063 struct rq *rq;
6064
6065 rq = cpu_rq(cpu);
6066 BUG_ON(rq->migration_thread != current);
6067
6068 set_current_state(TASK_INTERRUPTIBLE);
6069 while (!kthread_should_stop()) {
6070 struct migration_req *req;
6071 struct list_head *head;
6072
6073 spin_lock_irq(&rq->lock);
6074
6075 if (cpu_is_offline(cpu)) {
6076 spin_unlock_irq(&rq->lock);
6077 goto wait_to_die;
6078 }
6079
6080 if (rq->active_balance) {
6081 active_load_balance(rq, cpu);
6082 rq->active_balance = 0;
6083 }
6084
6085 head = &rq->migration_queue;
6086
6087 if (list_empty(head)) {
6088 spin_unlock_irq(&rq->lock);
6089 schedule();
6090 set_current_state(TASK_INTERRUPTIBLE);
6091 continue;
6092 }
6093 req = list_entry(head->next, struct migration_req, list);
6094 list_del_init(head->next);
6095
6096 spin_unlock(&rq->lock);
6097 __migrate_task(req->task, cpu, req->dest_cpu);
6098 local_irq_enable();
6099
6100 complete(&req->done);
6101 }
6102 __set_current_state(TASK_RUNNING);
6103 return 0;
6104
6105 wait_to_die:
6106 /* Wait for kthread_stop */
6107 set_current_state(TASK_INTERRUPTIBLE);
6108 while (!kthread_should_stop()) {
6109 schedule();
6110 set_current_state(TASK_INTERRUPTIBLE);
6111 }
6112 __set_current_state(TASK_RUNNING);
6113 return 0;
6114 }
6115
6116 #ifdef CONFIG_HOTPLUG_CPU
6117
6118 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6119 {
6120 int ret;
6121
6122 local_irq_disable();
6123 ret = __migrate_task(p, src_cpu, dest_cpu);
6124 local_irq_enable();
6125 return ret;
6126 }
6127
6128 /*
6129 * Figure out where task on dead CPU should go, use force if necessary.
6130 */
6131 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6132 {
6133 unsigned long flags;
6134 cpumask_t mask;
6135 struct rq *rq;
6136 int dest_cpu;
6137
6138 do {
6139 /* On same node? */
6140 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6141 cpus_and(mask, mask, p->cpus_allowed);
6142 dest_cpu = any_online_cpu(mask);
6143
6144 /* On any allowed CPU? */
6145 if (dest_cpu >= nr_cpu_ids)
6146 dest_cpu = any_online_cpu(p->cpus_allowed);
6147
6148 /* No more Mr. Nice Guy. */
6149 if (dest_cpu >= nr_cpu_ids) {
6150 cpumask_t cpus_allowed;
6151
6152 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6153 /*
6154 * Try to stay on the same cpuset, where the
6155 * current cpuset may be a subset of all cpus.
6156 * The cpuset_cpus_allowed_locked() variant of
6157 * cpuset_cpus_allowed() will not block. It must be
6158 * called within calls to cpuset_lock/cpuset_unlock.
6159 */
6160 rq = task_rq_lock(p, &flags);
6161 p->cpus_allowed = cpus_allowed;
6162 dest_cpu = any_online_cpu(p->cpus_allowed);
6163 task_rq_unlock(rq, &flags);
6164
6165 /*
6166 * Don't tell them about moving exiting tasks or
6167 * kernel threads (both mm NULL), since they never
6168 * leave kernel.
6169 */
6170 if (p->mm && printk_ratelimit()) {
6171 printk(KERN_INFO "process %d (%s) no "
6172 "longer affine to cpu%d\n",
6173 task_pid_nr(p), p->comm, dead_cpu);
6174 }
6175 }
6176 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6177 }
6178
6179 /*
6180 * While a dead CPU has no uninterruptible tasks queued at this point,
6181 * it might still have a nonzero ->nr_uninterruptible counter, because
6182 * for performance reasons the counter is not stricly tracking tasks to
6183 * their home CPUs. So we just add the counter to another CPU's counter,
6184 * to keep the global sum constant after CPU-down:
6185 */
6186 static void migrate_nr_uninterruptible(struct rq *rq_src)
6187 {
6188 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6189 unsigned long flags;
6190
6191 local_irq_save(flags);
6192 double_rq_lock(rq_src, rq_dest);
6193 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6194 rq_src->nr_uninterruptible = 0;
6195 double_rq_unlock(rq_src, rq_dest);
6196 local_irq_restore(flags);
6197 }
6198
6199 /* Run through task list and migrate tasks from the dead cpu. */
6200 static void migrate_live_tasks(int src_cpu)
6201 {
6202 struct task_struct *p, *t;
6203
6204 read_lock(&tasklist_lock);
6205
6206 do_each_thread(t, p) {
6207 if (p == current)
6208 continue;
6209
6210 if (task_cpu(p) == src_cpu)
6211 move_task_off_dead_cpu(src_cpu, p);
6212 } while_each_thread(t, p);
6213
6214 read_unlock(&tasklist_lock);
6215 }
6216
6217 /*
6218 * Schedules idle task to be the next runnable task on current CPU.
6219 * It does so by boosting its priority to highest possible.
6220 * Used by CPU offline code.
6221 */
6222 void sched_idle_next(void)
6223 {
6224 int this_cpu = smp_processor_id();
6225 struct rq *rq = cpu_rq(this_cpu);
6226 struct task_struct *p = rq->idle;
6227 unsigned long flags;
6228
6229 /* cpu has to be offline */
6230 BUG_ON(cpu_online(this_cpu));
6231
6232 /*
6233 * Strictly not necessary since rest of the CPUs are stopped by now
6234 * and interrupts disabled on the current cpu.
6235 */
6236 spin_lock_irqsave(&rq->lock, flags);
6237
6238 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6239
6240 update_rq_clock(rq);
6241 activate_task(rq, p, 0);
6242
6243 spin_unlock_irqrestore(&rq->lock, flags);
6244 }
6245
6246 /*
6247 * Ensures that the idle task is using init_mm right before its cpu goes
6248 * offline.
6249 */
6250 void idle_task_exit(void)
6251 {
6252 struct mm_struct *mm = current->active_mm;
6253
6254 BUG_ON(cpu_online(smp_processor_id()));
6255
6256 if (mm != &init_mm)
6257 switch_mm(mm, &init_mm, current);
6258 mmdrop(mm);
6259 }
6260
6261 /* called under rq->lock with disabled interrupts */
6262 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6263 {
6264 struct rq *rq = cpu_rq(dead_cpu);
6265
6266 /* Must be exiting, otherwise would be on tasklist. */
6267 BUG_ON(!p->exit_state);
6268
6269 /* Cannot have done final schedule yet: would have vanished. */
6270 BUG_ON(p->state == TASK_DEAD);
6271
6272 get_task_struct(p);
6273
6274 /*
6275 * Drop lock around migration; if someone else moves it,
6276 * that's OK. No task can be added to this CPU, so iteration is
6277 * fine.
6278 */
6279 spin_unlock_irq(&rq->lock);
6280 move_task_off_dead_cpu(dead_cpu, p);
6281 spin_lock_irq(&rq->lock);
6282
6283 put_task_struct(p);
6284 }
6285
6286 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6287 static void migrate_dead_tasks(unsigned int dead_cpu)
6288 {
6289 struct rq *rq = cpu_rq(dead_cpu);
6290 struct task_struct *next;
6291
6292 for ( ; ; ) {
6293 if (!rq->nr_running)
6294 break;
6295 update_rq_clock(rq);
6296 next = pick_next_task(rq, rq->curr);
6297 if (!next)
6298 break;
6299 next->sched_class->put_prev_task(rq, next);
6300 migrate_dead(dead_cpu, next);
6301
6302 }
6303 }
6304 #endif /* CONFIG_HOTPLUG_CPU */
6305
6306 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6307
6308 static struct ctl_table sd_ctl_dir[] = {
6309 {
6310 .procname = "sched_domain",
6311 .mode = 0555,
6312 },
6313 {0, },
6314 };
6315
6316 static struct ctl_table sd_ctl_root[] = {
6317 {
6318 .ctl_name = CTL_KERN,
6319 .procname = "kernel",
6320 .mode = 0555,
6321 .child = sd_ctl_dir,
6322 },
6323 {0, },
6324 };
6325
6326 static struct ctl_table *sd_alloc_ctl_entry(int n)
6327 {
6328 struct ctl_table *entry =
6329 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6330
6331 return entry;
6332 }
6333
6334 static void sd_free_ctl_entry(struct ctl_table **tablep)
6335 {
6336 struct ctl_table *entry;
6337
6338 /*
6339 * In the intermediate directories, both the child directory and
6340 * procname are dynamically allocated and could fail but the mode
6341 * will always be set. In the lowest directory the names are
6342 * static strings and all have proc handlers.
6343 */
6344 for (entry = *tablep; entry->mode; entry++) {
6345 if (entry->child)
6346 sd_free_ctl_entry(&entry->child);
6347 if (entry->proc_handler == NULL)
6348 kfree(entry->procname);
6349 }
6350
6351 kfree(*tablep);
6352 *tablep = NULL;
6353 }
6354
6355 static void
6356 set_table_entry(struct ctl_table *entry,
6357 const char *procname, void *data, int maxlen,
6358 mode_t mode, proc_handler *proc_handler)
6359 {
6360 entry->procname = procname;
6361 entry->data = data;
6362 entry->maxlen = maxlen;
6363 entry->mode = mode;
6364 entry->proc_handler = proc_handler;
6365 }
6366
6367 static struct ctl_table *
6368 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6369 {
6370 struct ctl_table *table = sd_alloc_ctl_entry(13);
6371
6372 if (table == NULL)
6373 return NULL;
6374
6375 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6376 sizeof(long), 0644, proc_doulongvec_minmax);
6377 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6378 sizeof(long), 0644, proc_doulongvec_minmax);
6379 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6382 sizeof(int), 0644, proc_dointvec_minmax);
6383 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6384 sizeof(int), 0644, proc_dointvec_minmax);
6385 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6386 sizeof(int), 0644, proc_dointvec_minmax);
6387 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6388 sizeof(int), 0644, proc_dointvec_minmax);
6389 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6390 sizeof(int), 0644, proc_dointvec_minmax);
6391 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6392 sizeof(int), 0644, proc_dointvec_minmax);
6393 set_table_entry(&table[9], "cache_nice_tries",
6394 &sd->cache_nice_tries,
6395 sizeof(int), 0644, proc_dointvec_minmax);
6396 set_table_entry(&table[10], "flags", &sd->flags,
6397 sizeof(int), 0644, proc_dointvec_minmax);
6398 set_table_entry(&table[11], "name", sd->name,
6399 CORENAME_MAX_SIZE, 0444, proc_dostring);
6400 /* &table[12] is terminator */
6401
6402 return table;
6403 }
6404
6405 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6406 {
6407 struct ctl_table *entry, *table;
6408 struct sched_domain *sd;
6409 int domain_num = 0, i;
6410 char buf[32];
6411
6412 for_each_domain(cpu, sd)
6413 domain_num++;
6414 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6415 if (table == NULL)
6416 return NULL;
6417
6418 i = 0;
6419 for_each_domain(cpu, sd) {
6420 snprintf(buf, 32, "domain%d", i);
6421 entry->procname = kstrdup(buf, GFP_KERNEL);
6422 entry->mode = 0555;
6423 entry->child = sd_alloc_ctl_domain_table(sd);
6424 entry++;
6425 i++;
6426 }
6427 return table;
6428 }
6429
6430 static struct ctl_table_header *sd_sysctl_header;
6431 static void register_sched_domain_sysctl(void)
6432 {
6433 int i, cpu_num = num_online_cpus();
6434 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6435 char buf[32];
6436
6437 WARN_ON(sd_ctl_dir[0].child);
6438 sd_ctl_dir[0].child = entry;
6439
6440 if (entry == NULL)
6441 return;
6442
6443 for_each_online_cpu(i) {
6444 snprintf(buf, 32, "cpu%d", i);
6445 entry->procname = kstrdup(buf, GFP_KERNEL);
6446 entry->mode = 0555;
6447 entry->child = sd_alloc_ctl_cpu_table(i);
6448 entry++;
6449 }
6450
6451 WARN_ON(sd_sysctl_header);
6452 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6453 }
6454
6455 /* may be called multiple times per register */
6456 static void unregister_sched_domain_sysctl(void)
6457 {
6458 if (sd_sysctl_header)
6459 unregister_sysctl_table(sd_sysctl_header);
6460 sd_sysctl_header = NULL;
6461 if (sd_ctl_dir[0].child)
6462 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6463 }
6464 #else
6465 static void register_sched_domain_sysctl(void)
6466 {
6467 }
6468 static void unregister_sched_domain_sysctl(void)
6469 {
6470 }
6471 #endif
6472
6473 static void set_rq_online(struct rq *rq)
6474 {
6475 if (!rq->online) {
6476 const struct sched_class *class;
6477
6478 cpu_set(rq->cpu, rq->rd->online);
6479 rq->online = 1;
6480
6481 for_each_class(class) {
6482 if (class->rq_online)
6483 class->rq_online(rq);
6484 }
6485 }
6486 }
6487
6488 static void set_rq_offline(struct rq *rq)
6489 {
6490 if (rq->online) {
6491 const struct sched_class *class;
6492
6493 for_each_class(class) {
6494 if (class->rq_offline)
6495 class->rq_offline(rq);
6496 }
6497
6498 cpu_clear(rq->cpu, rq->rd->online);
6499 rq->online = 0;
6500 }
6501 }
6502
6503 /*
6504 * migration_call - callback that gets triggered when a CPU is added.
6505 * Here we can start up the necessary migration thread for the new CPU.
6506 */
6507 static int __cpuinit
6508 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6509 {
6510 struct task_struct *p;
6511 int cpu = (long)hcpu;
6512 unsigned long flags;
6513 struct rq *rq;
6514
6515 switch (action) {
6516
6517 case CPU_UP_PREPARE:
6518 case CPU_UP_PREPARE_FROZEN:
6519 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6520 if (IS_ERR(p))
6521 return NOTIFY_BAD;
6522 kthread_bind(p, cpu);
6523 /* Must be high prio: stop_machine expects to yield to it. */
6524 rq = task_rq_lock(p, &flags);
6525 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6526 task_rq_unlock(rq, &flags);
6527 cpu_rq(cpu)->migration_thread = p;
6528 break;
6529
6530 case CPU_ONLINE:
6531 case CPU_ONLINE_FROZEN:
6532 /* Strictly unnecessary, as first user will wake it. */
6533 wake_up_process(cpu_rq(cpu)->migration_thread);
6534
6535 /* Update our root-domain */
6536 rq = cpu_rq(cpu);
6537 spin_lock_irqsave(&rq->lock, flags);
6538 if (rq->rd) {
6539 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6540
6541 set_rq_online(rq);
6542 }
6543 spin_unlock_irqrestore(&rq->lock, flags);
6544 break;
6545
6546 #ifdef CONFIG_HOTPLUG_CPU
6547 case CPU_UP_CANCELED:
6548 case CPU_UP_CANCELED_FROZEN:
6549 if (!cpu_rq(cpu)->migration_thread)
6550 break;
6551 /* Unbind it from offline cpu so it can run. Fall thru. */
6552 kthread_bind(cpu_rq(cpu)->migration_thread,
6553 any_online_cpu(cpu_online_map));
6554 kthread_stop(cpu_rq(cpu)->migration_thread);
6555 cpu_rq(cpu)->migration_thread = NULL;
6556 break;
6557
6558 case CPU_DEAD:
6559 case CPU_DEAD_FROZEN:
6560 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6561 migrate_live_tasks(cpu);
6562 rq = cpu_rq(cpu);
6563 kthread_stop(rq->migration_thread);
6564 rq->migration_thread = NULL;
6565 /* Idle task back to normal (off runqueue, low prio) */
6566 spin_lock_irq(&rq->lock);
6567 update_rq_clock(rq);
6568 deactivate_task(rq, rq->idle, 0);
6569 rq->idle->static_prio = MAX_PRIO;
6570 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6571 rq->idle->sched_class = &idle_sched_class;
6572 migrate_dead_tasks(cpu);
6573 spin_unlock_irq(&rq->lock);
6574 cpuset_unlock();
6575 migrate_nr_uninterruptible(rq);
6576 BUG_ON(rq->nr_running != 0);
6577
6578 /*
6579 * No need to migrate the tasks: it was best-effort if
6580 * they didn't take sched_hotcpu_mutex. Just wake up
6581 * the requestors.
6582 */
6583 spin_lock_irq(&rq->lock);
6584 while (!list_empty(&rq->migration_queue)) {
6585 struct migration_req *req;
6586
6587 req = list_entry(rq->migration_queue.next,
6588 struct migration_req, list);
6589 list_del_init(&req->list);
6590 spin_unlock_irq(&rq->lock);
6591 complete(&req->done);
6592 spin_lock_irq(&rq->lock);
6593 }
6594 spin_unlock_irq(&rq->lock);
6595 break;
6596
6597 case CPU_DYING:
6598 case CPU_DYING_FROZEN:
6599 /* Update our root-domain */
6600 rq = cpu_rq(cpu);
6601 spin_lock_irqsave(&rq->lock, flags);
6602 if (rq->rd) {
6603 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6604 set_rq_offline(rq);
6605 }
6606 spin_unlock_irqrestore(&rq->lock, flags);
6607 break;
6608 #endif
6609 }
6610 return NOTIFY_OK;
6611 }
6612
6613 /* Register at highest priority so that task migration (migrate_all_tasks)
6614 * happens before everything else.
6615 */
6616 static struct notifier_block __cpuinitdata migration_notifier = {
6617 .notifier_call = migration_call,
6618 .priority = 10
6619 };
6620
6621 static int __init migration_init(void)
6622 {
6623 void *cpu = (void *)(long)smp_processor_id();
6624 int err;
6625
6626 /* Start one for the boot CPU: */
6627 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6628 BUG_ON(err == NOTIFY_BAD);
6629 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6630 register_cpu_notifier(&migration_notifier);
6631
6632 return err;
6633 }
6634 early_initcall(migration_init);
6635 #endif
6636
6637 #ifdef CONFIG_SMP
6638
6639 #ifdef CONFIG_SCHED_DEBUG
6640
6641 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6642 cpumask_t *groupmask)
6643 {
6644 struct sched_group *group = sd->groups;
6645 char str[256];
6646
6647 cpulist_scnprintf(str, sizeof(str), sd->span);
6648 cpus_clear(*groupmask);
6649
6650 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6651
6652 if (!(sd->flags & SD_LOAD_BALANCE)) {
6653 printk("does not load-balance\n");
6654 if (sd->parent)
6655 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6656 " has parent");
6657 return -1;
6658 }
6659
6660 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6661
6662 if (!cpu_isset(cpu, sd->span)) {
6663 printk(KERN_ERR "ERROR: domain->span does not contain "
6664 "CPU%d\n", cpu);
6665 }
6666 if (!cpu_isset(cpu, group->cpumask)) {
6667 printk(KERN_ERR "ERROR: domain->groups does not contain"
6668 " CPU%d\n", cpu);
6669 }
6670
6671 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6672 do {
6673 if (!group) {
6674 printk("\n");
6675 printk(KERN_ERR "ERROR: group is NULL\n");
6676 break;
6677 }
6678
6679 if (!group->__cpu_power) {
6680 printk(KERN_CONT "\n");
6681 printk(KERN_ERR "ERROR: domain->cpu_power not "
6682 "set\n");
6683 break;
6684 }
6685
6686 if (!cpus_weight(group->cpumask)) {
6687 printk(KERN_CONT "\n");
6688 printk(KERN_ERR "ERROR: empty group\n");
6689 break;
6690 }
6691
6692 if (cpus_intersects(*groupmask, group->cpumask)) {
6693 printk(KERN_CONT "\n");
6694 printk(KERN_ERR "ERROR: repeated CPUs\n");
6695 break;
6696 }
6697
6698 cpus_or(*groupmask, *groupmask, group->cpumask);
6699
6700 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6701 printk(KERN_CONT " %s", str);
6702
6703 group = group->next;
6704 } while (group != sd->groups);
6705 printk(KERN_CONT "\n");
6706
6707 if (!cpus_equal(sd->span, *groupmask))
6708 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6709
6710 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6711 printk(KERN_ERR "ERROR: parent span is not a superset "
6712 "of domain->span\n");
6713 return 0;
6714 }
6715
6716 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6717 {
6718 cpumask_t *groupmask;
6719 int level = 0;
6720
6721 if (!sd) {
6722 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6723 return;
6724 }
6725
6726 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6727
6728 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6729 if (!groupmask) {
6730 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6731 return;
6732 }
6733
6734 for (;;) {
6735 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6736 break;
6737 level++;
6738 sd = sd->parent;
6739 if (!sd)
6740 break;
6741 }
6742 kfree(groupmask);
6743 }
6744 #else /* !CONFIG_SCHED_DEBUG */
6745 # define sched_domain_debug(sd, cpu) do { } while (0)
6746 #endif /* CONFIG_SCHED_DEBUG */
6747
6748 static int sd_degenerate(struct sched_domain *sd)
6749 {
6750 if (cpus_weight(sd->span) == 1)
6751 return 1;
6752
6753 /* Following flags need at least 2 groups */
6754 if (sd->flags & (SD_LOAD_BALANCE |
6755 SD_BALANCE_NEWIDLE |
6756 SD_BALANCE_FORK |
6757 SD_BALANCE_EXEC |
6758 SD_SHARE_CPUPOWER |
6759 SD_SHARE_PKG_RESOURCES)) {
6760 if (sd->groups != sd->groups->next)
6761 return 0;
6762 }
6763
6764 /* Following flags don't use groups */
6765 if (sd->flags & (SD_WAKE_IDLE |
6766 SD_WAKE_AFFINE |
6767 SD_WAKE_BALANCE))
6768 return 0;
6769
6770 return 1;
6771 }
6772
6773 static int
6774 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6775 {
6776 unsigned long cflags = sd->flags, pflags = parent->flags;
6777
6778 if (sd_degenerate(parent))
6779 return 1;
6780
6781 if (!cpus_equal(sd->span, parent->span))
6782 return 0;
6783
6784 /* Does parent contain flags not in child? */
6785 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6786 if (cflags & SD_WAKE_AFFINE)
6787 pflags &= ~SD_WAKE_BALANCE;
6788 /* Flags needing groups don't count if only 1 group in parent */
6789 if (parent->groups == parent->groups->next) {
6790 pflags &= ~(SD_LOAD_BALANCE |
6791 SD_BALANCE_NEWIDLE |
6792 SD_BALANCE_FORK |
6793 SD_BALANCE_EXEC |
6794 SD_SHARE_CPUPOWER |
6795 SD_SHARE_PKG_RESOURCES);
6796 if (nr_node_ids == 1)
6797 pflags &= ~SD_SERIALIZE;
6798 }
6799 if (~cflags & pflags)
6800 return 0;
6801
6802 return 1;
6803 }
6804
6805 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6806 {
6807 unsigned long flags;
6808
6809 spin_lock_irqsave(&rq->lock, flags);
6810
6811 if (rq->rd) {
6812 struct root_domain *old_rd = rq->rd;
6813
6814 if (cpu_isset(rq->cpu, old_rd->online))
6815 set_rq_offline(rq);
6816
6817 cpu_clear(rq->cpu, old_rd->span);
6818
6819 if (atomic_dec_and_test(&old_rd->refcount))
6820 kfree(old_rd);
6821 }
6822
6823 atomic_inc(&rd->refcount);
6824 rq->rd = rd;
6825
6826 cpu_set(rq->cpu, rd->span);
6827 if (cpu_isset(rq->cpu, cpu_online_map))
6828 set_rq_online(rq);
6829
6830 spin_unlock_irqrestore(&rq->lock, flags);
6831 }
6832
6833 static void init_rootdomain(struct root_domain *rd)
6834 {
6835 memset(rd, 0, sizeof(*rd));
6836
6837 cpus_clear(rd->span);
6838 cpus_clear(rd->online);
6839
6840 cpupri_init(&rd->cpupri);
6841 }
6842
6843 static void init_defrootdomain(void)
6844 {
6845 init_rootdomain(&def_root_domain);
6846 atomic_set(&def_root_domain.refcount, 1);
6847 }
6848
6849 static struct root_domain *alloc_rootdomain(void)
6850 {
6851 struct root_domain *rd;
6852
6853 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6854 if (!rd)
6855 return NULL;
6856
6857 init_rootdomain(rd);
6858
6859 return rd;
6860 }
6861
6862 /*
6863 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6864 * hold the hotplug lock.
6865 */
6866 static void
6867 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6868 {
6869 struct rq *rq = cpu_rq(cpu);
6870 struct sched_domain *tmp;
6871
6872 /* Remove the sched domains which do not contribute to scheduling. */
6873 for (tmp = sd; tmp; ) {
6874 struct sched_domain *parent = tmp->parent;
6875 if (!parent)
6876 break;
6877
6878 if (sd_parent_degenerate(tmp, parent)) {
6879 tmp->parent = parent->parent;
6880 if (parent->parent)
6881 parent->parent->child = tmp;
6882 } else
6883 tmp = tmp->parent;
6884 }
6885
6886 if (sd && sd_degenerate(sd)) {
6887 sd = sd->parent;
6888 if (sd)
6889 sd->child = NULL;
6890 }
6891
6892 sched_domain_debug(sd, cpu);
6893
6894 rq_attach_root(rq, rd);
6895 rcu_assign_pointer(rq->sd, sd);
6896 }
6897
6898 /* cpus with isolated domains */
6899 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6900
6901 /* Setup the mask of cpus configured for isolated domains */
6902 static int __init isolated_cpu_setup(char *str)
6903 {
6904 static int __initdata ints[NR_CPUS];
6905 int i;
6906
6907 str = get_options(str, ARRAY_SIZE(ints), ints);
6908 cpus_clear(cpu_isolated_map);
6909 for (i = 1; i <= ints[0]; i++)
6910 if (ints[i] < NR_CPUS)
6911 cpu_set(ints[i], cpu_isolated_map);
6912 return 1;
6913 }
6914
6915 __setup("isolcpus=", isolated_cpu_setup);
6916
6917 /*
6918 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6919 * to a function which identifies what group(along with sched group) a CPU
6920 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6921 * (due to the fact that we keep track of groups covered with a cpumask_t).
6922 *
6923 * init_sched_build_groups will build a circular linked list of the groups
6924 * covered by the given span, and will set each group's ->cpumask correctly,
6925 * and ->cpu_power to 0.
6926 */
6927 static void
6928 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6929 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6930 struct sched_group **sg,
6931 cpumask_t *tmpmask),
6932 cpumask_t *covered, cpumask_t *tmpmask)
6933 {
6934 struct sched_group *first = NULL, *last = NULL;
6935 int i;
6936
6937 cpus_clear(*covered);
6938
6939 for_each_cpu_mask_nr(i, *span) {
6940 struct sched_group *sg;
6941 int group = group_fn(i, cpu_map, &sg, tmpmask);
6942 int j;
6943
6944 if (cpu_isset(i, *covered))
6945 continue;
6946
6947 cpus_clear(sg->cpumask);
6948 sg->__cpu_power = 0;
6949
6950 for_each_cpu_mask_nr(j, *span) {
6951 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6952 continue;
6953
6954 cpu_set(j, *covered);
6955 cpu_set(j, sg->cpumask);
6956 }
6957 if (!first)
6958 first = sg;
6959 if (last)
6960 last->next = sg;
6961 last = sg;
6962 }
6963 last->next = first;
6964 }
6965
6966 #define SD_NODES_PER_DOMAIN 16
6967
6968 #ifdef CONFIG_NUMA
6969
6970 /**
6971 * find_next_best_node - find the next node to include in a sched_domain
6972 * @node: node whose sched_domain we're building
6973 * @used_nodes: nodes already in the sched_domain
6974 *
6975 * Find the next node to include in a given scheduling domain. Simply
6976 * finds the closest node not already in the @used_nodes map.
6977 *
6978 * Should use nodemask_t.
6979 */
6980 static int find_next_best_node(int node, nodemask_t *used_nodes)
6981 {
6982 int i, n, val, min_val, best_node = 0;
6983
6984 min_val = INT_MAX;
6985
6986 for (i = 0; i < nr_node_ids; i++) {
6987 /* Start at @node */
6988 n = (node + i) % nr_node_ids;
6989
6990 if (!nr_cpus_node(n))
6991 continue;
6992
6993 /* Skip already used nodes */
6994 if (node_isset(n, *used_nodes))
6995 continue;
6996
6997 /* Simple min distance search */
6998 val = node_distance(node, n);
6999
7000 if (val < min_val) {
7001 min_val = val;
7002 best_node = n;
7003 }
7004 }
7005
7006 node_set(best_node, *used_nodes);
7007 return best_node;
7008 }
7009
7010 /**
7011 * sched_domain_node_span - get a cpumask for a node's sched_domain
7012 * @node: node whose cpumask we're constructing
7013 * @span: resulting cpumask
7014 *
7015 * Given a node, construct a good cpumask for its sched_domain to span. It
7016 * should be one that prevents unnecessary balancing, but also spreads tasks
7017 * out optimally.
7018 */
7019 static void sched_domain_node_span(int node, cpumask_t *span)
7020 {
7021 nodemask_t used_nodes;
7022 node_to_cpumask_ptr(nodemask, node);
7023 int i;
7024
7025 cpus_clear(*span);
7026 nodes_clear(used_nodes);
7027
7028 cpus_or(*span, *span, *nodemask);
7029 node_set(node, used_nodes);
7030
7031 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7032 int next_node = find_next_best_node(node, &used_nodes);
7033
7034 node_to_cpumask_ptr_next(nodemask, next_node);
7035 cpus_or(*span, *span, *nodemask);
7036 }
7037 }
7038 #endif /* CONFIG_NUMA */
7039
7040 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7041
7042 /*
7043 * SMT sched-domains:
7044 */
7045 #ifdef CONFIG_SCHED_SMT
7046 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7047 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7048
7049 static int
7050 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7051 cpumask_t *unused)
7052 {
7053 if (sg)
7054 *sg = &per_cpu(sched_group_cpus, cpu);
7055 return cpu;
7056 }
7057 #endif /* CONFIG_SCHED_SMT */
7058
7059 /*
7060 * multi-core sched-domains:
7061 */
7062 #ifdef CONFIG_SCHED_MC
7063 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7064 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7065 #endif /* CONFIG_SCHED_MC */
7066
7067 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7068 static int
7069 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7070 cpumask_t *mask)
7071 {
7072 int group;
7073
7074 *mask = per_cpu(cpu_sibling_map, cpu);
7075 cpus_and(*mask, *mask, *cpu_map);
7076 group = first_cpu(*mask);
7077 if (sg)
7078 *sg = &per_cpu(sched_group_core, group);
7079 return group;
7080 }
7081 #elif defined(CONFIG_SCHED_MC)
7082 static int
7083 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7084 cpumask_t *unused)
7085 {
7086 if (sg)
7087 *sg = &per_cpu(sched_group_core, cpu);
7088 return cpu;
7089 }
7090 #endif
7091
7092 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7093 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7094
7095 static int
7096 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7097 cpumask_t *mask)
7098 {
7099 int group;
7100 #ifdef CONFIG_SCHED_MC
7101 *mask = cpu_coregroup_map(cpu);
7102 cpus_and(*mask, *mask, *cpu_map);
7103 group = first_cpu(*mask);
7104 #elif defined(CONFIG_SCHED_SMT)
7105 *mask = per_cpu(cpu_sibling_map, cpu);
7106 cpus_and(*mask, *mask, *cpu_map);
7107 group = first_cpu(*mask);
7108 #else
7109 group = cpu;
7110 #endif
7111 if (sg)
7112 *sg = &per_cpu(sched_group_phys, group);
7113 return group;
7114 }
7115
7116 #ifdef CONFIG_NUMA
7117 /*
7118 * The init_sched_build_groups can't handle what we want to do with node
7119 * groups, so roll our own. Now each node has its own list of groups which
7120 * gets dynamically allocated.
7121 */
7122 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7123 static struct sched_group ***sched_group_nodes_bycpu;
7124
7125 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7126 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7127
7128 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7129 struct sched_group **sg, cpumask_t *nodemask)
7130 {
7131 int group;
7132
7133 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7134 cpus_and(*nodemask, *nodemask, *cpu_map);
7135 group = first_cpu(*nodemask);
7136
7137 if (sg)
7138 *sg = &per_cpu(sched_group_allnodes, group);
7139 return group;
7140 }
7141
7142 static void init_numa_sched_groups_power(struct sched_group *group_head)
7143 {
7144 struct sched_group *sg = group_head;
7145 int j;
7146
7147 if (!sg)
7148 return;
7149 do {
7150 for_each_cpu_mask_nr(j, sg->cpumask) {
7151 struct sched_domain *sd;
7152
7153 sd = &per_cpu(phys_domains, j);
7154 if (j != first_cpu(sd->groups->cpumask)) {
7155 /*
7156 * Only add "power" once for each
7157 * physical package.
7158 */
7159 continue;
7160 }
7161
7162 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7163 }
7164 sg = sg->next;
7165 } while (sg != group_head);
7166 }
7167 #endif /* CONFIG_NUMA */
7168
7169 #ifdef CONFIG_NUMA
7170 /* Free memory allocated for various sched_group structures */
7171 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7172 {
7173 int cpu, i;
7174
7175 for_each_cpu_mask_nr(cpu, *cpu_map) {
7176 struct sched_group **sched_group_nodes
7177 = sched_group_nodes_bycpu[cpu];
7178
7179 if (!sched_group_nodes)
7180 continue;
7181
7182 for (i = 0; i < nr_node_ids; i++) {
7183 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7184
7185 *nodemask = node_to_cpumask(i);
7186 cpus_and(*nodemask, *nodemask, *cpu_map);
7187 if (cpus_empty(*nodemask))
7188 continue;
7189
7190 if (sg == NULL)
7191 continue;
7192 sg = sg->next;
7193 next_sg:
7194 oldsg = sg;
7195 sg = sg->next;
7196 kfree(oldsg);
7197 if (oldsg != sched_group_nodes[i])
7198 goto next_sg;
7199 }
7200 kfree(sched_group_nodes);
7201 sched_group_nodes_bycpu[cpu] = NULL;
7202 }
7203 }
7204 #else /* !CONFIG_NUMA */
7205 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7206 {
7207 }
7208 #endif /* CONFIG_NUMA */
7209
7210 /*
7211 * Initialize sched groups cpu_power.
7212 *
7213 * cpu_power indicates the capacity of sched group, which is used while
7214 * distributing the load between different sched groups in a sched domain.
7215 * Typically cpu_power for all the groups in a sched domain will be same unless
7216 * there are asymmetries in the topology. If there are asymmetries, group
7217 * having more cpu_power will pickup more load compared to the group having
7218 * less cpu_power.
7219 *
7220 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7221 * the maximum number of tasks a group can handle in the presence of other idle
7222 * or lightly loaded groups in the same sched domain.
7223 */
7224 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7225 {
7226 struct sched_domain *child;
7227 struct sched_group *group;
7228
7229 WARN_ON(!sd || !sd->groups);
7230
7231 if (cpu != first_cpu(sd->groups->cpumask))
7232 return;
7233
7234 child = sd->child;
7235
7236 sd->groups->__cpu_power = 0;
7237
7238 /*
7239 * For perf policy, if the groups in child domain share resources
7240 * (for example cores sharing some portions of the cache hierarchy
7241 * or SMT), then set this domain groups cpu_power such that each group
7242 * can handle only one task, when there are other idle groups in the
7243 * same sched domain.
7244 */
7245 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7246 (child->flags &
7247 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7248 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7249 return;
7250 }
7251
7252 /*
7253 * add cpu_power of each child group to this groups cpu_power
7254 */
7255 group = child->groups;
7256 do {
7257 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7258 group = group->next;
7259 } while (group != child->groups);
7260 }
7261
7262 /*
7263 * Initializers for schedule domains
7264 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7265 */
7266
7267 #ifdef CONFIG_SCHED_DEBUG
7268 # define SD_INIT_NAME(sd, type) sd->name = #type
7269 #else
7270 # define SD_INIT_NAME(sd, type) do { } while (0)
7271 #endif
7272
7273 #define SD_INIT(sd, type) sd_init_##type(sd)
7274
7275 #define SD_INIT_FUNC(type) \
7276 static noinline void sd_init_##type(struct sched_domain *sd) \
7277 { \
7278 memset(sd, 0, sizeof(*sd)); \
7279 *sd = SD_##type##_INIT; \
7280 sd->level = SD_LV_##type; \
7281 SD_INIT_NAME(sd, type); \
7282 }
7283
7284 SD_INIT_FUNC(CPU)
7285 #ifdef CONFIG_NUMA
7286 SD_INIT_FUNC(ALLNODES)
7287 SD_INIT_FUNC(NODE)
7288 #endif
7289 #ifdef CONFIG_SCHED_SMT
7290 SD_INIT_FUNC(SIBLING)
7291 #endif
7292 #ifdef CONFIG_SCHED_MC
7293 SD_INIT_FUNC(MC)
7294 #endif
7295
7296 /*
7297 * To minimize stack usage kmalloc room for cpumasks and share the
7298 * space as the usage in build_sched_domains() dictates. Used only
7299 * if the amount of space is significant.
7300 */
7301 struct allmasks {
7302 cpumask_t tmpmask; /* make this one first */
7303 union {
7304 cpumask_t nodemask;
7305 cpumask_t this_sibling_map;
7306 cpumask_t this_core_map;
7307 };
7308 cpumask_t send_covered;
7309
7310 #ifdef CONFIG_NUMA
7311 cpumask_t domainspan;
7312 cpumask_t covered;
7313 cpumask_t notcovered;
7314 #endif
7315 };
7316
7317 #if NR_CPUS > 128
7318 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7319 static inline void sched_cpumask_alloc(struct allmasks **masks)
7320 {
7321 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7322 }
7323 static inline void sched_cpumask_free(struct allmasks *masks)
7324 {
7325 kfree(masks);
7326 }
7327 #else
7328 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7329 static inline void sched_cpumask_alloc(struct allmasks **masks)
7330 { }
7331 static inline void sched_cpumask_free(struct allmasks *masks)
7332 { }
7333 #endif
7334
7335 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7336 ((unsigned long)(a) + offsetof(struct allmasks, v))
7337
7338 static int default_relax_domain_level = -1;
7339
7340 static int __init setup_relax_domain_level(char *str)
7341 {
7342 unsigned long val;
7343
7344 val = simple_strtoul(str, NULL, 0);
7345 if (val < SD_LV_MAX)
7346 default_relax_domain_level = val;
7347
7348 return 1;
7349 }
7350 __setup("relax_domain_level=", setup_relax_domain_level);
7351
7352 static void set_domain_attribute(struct sched_domain *sd,
7353 struct sched_domain_attr *attr)
7354 {
7355 int request;
7356
7357 if (!attr || attr->relax_domain_level < 0) {
7358 if (default_relax_domain_level < 0)
7359 return;
7360 else
7361 request = default_relax_domain_level;
7362 } else
7363 request = attr->relax_domain_level;
7364 if (request < sd->level) {
7365 /* turn off idle balance on this domain */
7366 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7367 } else {
7368 /* turn on idle balance on this domain */
7369 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7370 }
7371 }
7372
7373 /*
7374 * Build sched domains for a given set of cpus and attach the sched domains
7375 * to the individual cpus
7376 */
7377 static int __build_sched_domains(const cpumask_t *cpu_map,
7378 struct sched_domain_attr *attr)
7379 {
7380 int i;
7381 struct root_domain *rd;
7382 SCHED_CPUMASK_DECLARE(allmasks);
7383 cpumask_t *tmpmask;
7384 #ifdef CONFIG_NUMA
7385 struct sched_group **sched_group_nodes = NULL;
7386 int sd_allnodes = 0;
7387
7388 /*
7389 * Allocate the per-node list of sched groups
7390 */
7391 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7392 GFP_KERNEL);
7393 if (!sched_group_nodes) {
7394 printk(KERN_WARNING "Can not alloc sched group node list\n");
7395 return -ENOMEM;
7396 }
7397 #endif
7398
7399 rd = alloc_rootdomain();
7400 if (!rd) {
7401 printk(KERN_WARNING "Cannot alloc root domain\n");
7402 #ifdef CONFIG_NUMA
7403 kfree(sched_group_nodes);
7404 #endif
7405 return -ENOMEM;
7406 }
7407
7408 /* get space for all scratch cpumask variables */
7409 sched_cpumask_alloc(&allmasks);
7410 if (!allmasks) {
7411 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7412 kfree(rd);
7413 #ifdef CONFIG_NUMA
7414 kfree(sched_group_nodes);
7415 #endif
7416 return -ENOMEM;
7417 }
7418
7419 tmpmask = (cpumask_t *)allmasks;
7420
7421
7422 #ifdef CONFIG_NUMA
7423 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7424 #endif
7425
7426 /*
7427 * Set up domains for cpus specified by the cpu_map.
7428 */
7429 for_each_cpu_mask_nr(i, *cpu_map) {
7430 struct sched_domain *sd = NULL, *p;
7431 SCHED_CPUMASK_VAR(nodemask, allmasks);
7432
7433 *nodemask = node_to_cpumask(cpu_to_node(i));
7434 cpus_and(*nodemask, *nodemask, *cpu_map);
7435
7436 #ifdef CONFIG_NUMA
7437 if (cpus_weight(*cpu_map) >
7438 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7439 sd = &per_cpu(allnodes_domains, i);
7440 SD_INIT(sd, ALLNODES);
7441 set_domain_attribute(sd, attr);
7442 sd->span = *cpu_map;
7443 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7444 p = sd;
7445 sd_allnodes = 1;
7446 } else
7447 p = NULL;
7448
7449 sd = &per_cpu(node_domains, i);
7450 SD_INIT(sd, NODE);
7451 set_domain_attribute(sd, attr);
7452 sched_domain_node_span(cpu_to_node(i), &sd->span);
7453 sd->parent = p;
7454 if (p)
7455 p->child = sd;
7456 cpus_and(sd->span, sd->span, *cpu_map);
7457 #endif
7458
7459 p = sd;
7460 sd = &per_cpu(phys_domains, i);
7461 SD_INIT(sd, CPU);
7462 set_domain_attribute(sd, attr);
7463 sd->span = *nodemask;
7464 sd->parent = p;
7465 if (p)
7466 p->child = sd;
7467 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7468
7469 #ifdef CONFIG_SCHED_MC
7470 p = sd;
7471 sd = &per_cpu(core_domains, i);
7472 SD_INIT(sd, MC);
7473 set_domain_attribute(sd, attr);
7474 sd->span = cpu_coregroup_map(i);
7475 cpus_and(sd->span, sd->span, *cpu_map);
7476 sd->parent = p;
7477 p->child = sd;
7478 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7479 #endif
7480
7481 #ifdef CONFIG_SCHED_SMT
7482 p = sd;
7483 sd = &per_cpu(cpu_domains, i);
7484 SD_INIT(sd, SIBLING);
7485 set_domain_attribute(sd, attr);
7486 sd->span = per_cpu(cpu_sibling_map, i);
7487 cpus_and(sd->span, sd->span, *cpu_map);
7488 sd->parent = p;
7489 p->child = sd;
7490 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7491 #endif
7492 }
7493
7494 #ifdef CONFIG_SCHED_SMT
7495 /* Set up CPU (sibling) groups */
7496 for_each_cpu_mask_nr(i, *cpu_map) {
7497 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7498 SCHED_CPUMASK_VAR(send_covered, allmasks);
7499
7500 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7501 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7502 if (i != first_cpu(*this_sibling_map))
7503 continue;
7504
7505 init_sched_build_groups(this_sibling_map, cpu_map,
7506 &cpu_to_cpu_group,
7507 send_covered, tmpmask);
7508 }
7509 #endif
7510
7511 #ifdef CONFIG_SCHED_MC
7512 /* Set up multi-core groups */
7513 for_each_cpu_mask_nr(i, *cpu_map) {
7514 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7515 SCHED_CPUMASK_VAR(send_covered, allmasks);
7516
7517 *this_core_map = cpu_coregroup_map(i);
7518 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7519 if (i != first_cpu(*this_core_map))
7520 continue;
7521
7522 init_sched_build_groups(this_core_map, cpu_map,
7523 &cpu_to_core_group,
7524 send_covered, tmpmask);
7525 }
7526 #endif
7527
7528 /* Set up physical groups */
7529 for (i = 0; i < nr_node_ids; i++) {
7530 SCHED_CPUMASK_VAR(nodemask, allmasks);
7531 SCHED_CPUMASK_VAR(send_covered, allmasks);
7532
7533 *nodemask = node_to_cpumask(i);
7534 cpus_and(*nodemask, *nodemask, *cpu_map);
7535 if (cpus_empty(*nodemask))
7536 continue;
7537
7538 init_sched_build_groups(nodemask, cpu_map,
7539 &cpu_to_phys_group,
7540 send_covered, tmpmask);
7541 }
7542
7543 #ifdef CONFIG_NUMA
7544 /* Set up node groups */
7545 if (sd_allnodes) {
7546 SCHED_CPUMASK_VAR(send_covered, allmasks);
7547
7548 init_sched_build_groups(cpu_map, cpu_map,
7549 &cpu_to_allnodes_group,
7550 send_covered, tmpmask);
7551 }
7552
7553 for (i = 0; i < nr_node_ids; i++) {
7554 /* Set up node groups */
7555 struct sched_group *sg, *prev;
7556 SCHED_CPUMASK_VAR(nodemask, allmasks);
7557 SCHED_CPUMASK_VAR(domainspan, allmasks);
7558 SCHED_CPUMASK_VAR(covered, allmasks);
7559 int j;
7560
7561 *nodemask = node_to_cpumask(i);
7562 cpus_clear(*covered);
7563
7564 cpus_and(*nodemask, *nodemask, *cpu_map);
7565 if (cpus_empty(*nodemask)) {
7566 sched_group_nodes[i] = NULL;
7567 continue;
7568 }
7569
7570 sched_domain_node_span(i, domainspan);
7571 cpus_and(*domainspan, *domainspan, *cpu_map);
7572
7573 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7574 if (!sg) {
7575 printk(KERN_WARNING "Can not alloc domain group for "
7576 "node %d\n", i);
7577 goto error;
7578 }
7579 sched_group_nodes[i] = sg;
7580 for_each_cpu_mask_nr(j, *nodemask) {
7581 struct sched_domain *sd;
7582
7583 sd = &per_cpu(node_domains, j);
7584 sd->groups = sg;
7585 }
7586 sg->__cpu_power = 0;
7587 sg->cpumask = *nodemask;
7588 sg->next = sg;
7589 cpus_or(*covered, *covered, *nodemask);
7590 prev = sg;
7591
7592 for (j = 0; j < nr_node_ids; j++) {
7593 SCHED_CPUMASK_VAR(notcovered, allmasks);
7594 int n = (i + j) % nr_node_ids;
7595 node_to_cpumask_ptr(pnodemask, n);
7596
7597 cpus_complement(*notcovered, *covered);
7598 cpus_and(*tmpmask, *notcovered, *cpu_map);
7599 cpus_and(*tmpmask, *tmpmask, *domainspan);
7600 if (cpus_empty(*tmpmask))
7601 break;
7602
7603 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7604 if (cpus_empty(*tmpmask))
7605 continue;
7606
7607 sg = kmalloc_node(sizeof(struct sched_group),
7608 GFP_KERNEL, i);
7609 if (!sg) {
7610 printk(KERN_WARNING
7611 "Can not alloc domain group for node %d\n", j);
7612 goto error;
7613 }
7614 sg->__cpu_power = 0;
7615 sg->cpumask = *tmpmask;
7616 sg->next = prev->next;
7617 cpus_or(*covered, *covered, *tmpmask);
7618 prev->next = sg;
7619 prev = sg;
7620 }
7621 }
7622 #endif
7623
7624 /* Calculate CPU power for physical packages and nodes */
7625 #ifdef CONFIG_SCHED_SMT
7626 for_each_cpu_mask_nr(i, *cpu_map) {
7627 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7628
7629 init_sched_groups_power(i, sd);
7630 }
7631 #endif
7632 #ifdef CONFIG_SCHED_MC
7633 for_each_cpu_mask_nr(i, *cpu_map) {
7634 struct sched_domain *sd = &per_cpu(core_domains, i);
7635
7636 init_sched_groups_power(i, sd);
7637 }
7638 #endif
7639
7640 for_each_cpu_mask_nr(i, *cpu_map) {
7641 struct sched_domain *sd = &per_cpu(phys_domains, i);
7642
7643 init_sched_groups_power(i, sd);
7644 }
7645
7646 #ifdef CONFIG_NUMA
7647 for (i = 0; i < nr_node_ids; i++)
7648 init_numa_sched_groups_power(sched_group_nodes[i]);
7649
7650 if (sd_allnodes) {
7651 struct sched_group *sg;
7652
7653 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7654 tmpmask);
7655 init_numa_sched_groups_power(sg);
7656 }
7657 #endif
7658
7659 /* Attach the domains */
7660 for_each_cpu_mask_nr(i, *cpu_map) {
7661 struct sched_domain *sd;
7662 #ifdef CONFIG_SCHED_SMT
7663 sd = &per_cpu(cpu_domains, i);
7664 #elif defined(CONFIG_SCHED_MC)
7665 sd = &per_cpu(core_domains, i);
7666 #else
7667 sd = &per_cpu(phys_domains, i);
7668 #endif
7669 cpu_attach_domain(sd, rd, i);
7670 }
7671
7672 sched_cpumask_free(allmasks);
7673 return 0;
7674
7675 #ifdef CONFIG_NUMA
7676 error:
7677 free_sched_groups(cpu_map, tmpmask);
7678 sched_cpumask_free(allmasks);
7679 kfree(rd);
7680 return -ENOMEM;
7681 #endif
7682 }
7683
7684 static int build_sched_domains(const cpumask_t *cpu_map)
7685 {
7686 return __build_sched_domains(cpu_map, NULL);
7687 }
7688
7689 static cpumask_t *doms_cur; /* current sched domains */
7690 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7691 static struct sched_domain_attr *dattr_cur;
7692 /* attribues of custom domains in 'doms_cur' */
7693
7694 /*
7695 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms.
7698 */
7699 static cpumask_t fallback_doms;
7700
7701 /*
7702 * arch_update_cpu_topology lets virtualized architectures update the
7703 * cpu core maps. It is supposed to return 1 if the topology changed
7704 * or 0 if it stayed the same.
7705 */
7706 int __attribute__((weak)) arch_update_cpu_topology(void)
7707 {
7708 return 0;
7709 }
7710
7711 /*
7712 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7713 * For now this just excludes isolated cpus, but could be used to
7714 * exclude other special cases in the future.
7715 */
7716 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7717 {
7718 int err;
7719
7720 arch_update_cpu_topology();
7721 ndoms_cur = 1;
7722 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7723 if (!doms_cur)
7724 doms_cur = &fallback_doms;
7725 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7726 dattr_cur = NULL;
7727 err = build_sched_domains(doms_cur);
7728 register_sched_domain_sysctl();
7729
7730 return err;
7731 }
7732
7733 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7734 cpumask_t *tmpmask)
7735 {
7736 free_sched_groups(cpu_map, tmpmask);
7737 }
7738
7739 /*
7740 * Detach sched domains from a group of cpus specified in cpu_map
7741 * These cpus will now be attached to the NULL domain
7742 */
7743 static void detach_destroy_domains(const cpumask_t *cpu_map)
7744 {
7745 cpumask_t tmpmask;
7746 int i;
7747
7748 for_each_cpu_mask_nr(i, *cpu_map)
7749 cpu_attach_domain(NULL, &def_root_domain, i);
7750 synchronize_sched();
7751 arch_destroy_sched_domains(cpu_map, &tmpmask);
7752 }
7753
7754 /* handle null as "default" */
7755 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7756 struct sched_domain_attr *new, int idx_new)
7757 {
7758 struct sched_domain_attr tmp;
7759
7760 /* fast path */
7761 if (!new && !cur)
7762 return 1;
7763
7764 tmp = SD_ATTR_INIT;
7765 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7766 new ? (new + idx_new) : &tmp,
7767 sizeof(struct sched_domain_attr));
7768 }
7769
7770 /*
7771 * Partition sched domains as specified by the 'ndoms_new'
7772 * cpumasks in the array doms_new[] of cpumasks. This compares
7773 * doms_new[] to the current sched domain partitioning, doms_cur[].
7774 * It destroys each deleted domain and builds each new domain.
7775 *
7776 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7777 * The masks don't intersect (don't overlap.) We should setup one
7778 * sched domain for each mask. CPUs not in any of the cpumasks will
7779 * not be load balanced. If the same cpumask appears both in the
7780 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7781 * it as it is.
7782 *
7783 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7784 * ownership of it and will kfree it when done with it. If the caller
7785 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7786 * ndoms_new == 1, and partition_sched_domains() will fallback to
7787 * the single partition 'fallback_doms', it also forces the domains
7788 * to be rebuilt.
7789 *
7790 * If doms_new == NULL it will be replaced with cpu_online_map.
7791 * ndoms_new == 0 is a special case for destroying existing domains,
7792 * and it will not create the default domain.
7793 *
7794 * Call with hotplug lock held
7795 */
7796 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7797 struct sched_domain_attr *dattr_new)
7798 {
7799 int i, j, n;
7800 int new_topology;
7801
7802 mutex_lock(&sched_domains_mutex);
7803
7804 /* always unregister in case we don't destroy any domains */
7805 unregister_sched_domain_sysctl();
7806
7807 /* Let architecture update cpu core mappings. */
7808 new_topology = arch_update_cpu_topology();
7809
7810 n = doms_new ? ndoms_new : 0;
7811
7812 /* Destroy deleted domains */
7813 for (i = 0; i < ndoms_cur; i++) {
7814 for (j = 0; j < n && !new_topology; j++) {
7815 if (cpus_equal(doms_cur[i], doms_new[j])
7816 && dattrs_equal(dattr_cur, i, dattr_new, j))
7817 goto match1;
7818 }
7819 /* no match - a current sched domain not in new doms_new[] */
7820 detach_destroy_domains(doms_cur + i);
7821 match1:
7822 ;
7823 }
7824
7825 if (doms_new == NULL) {
7826 ndoms_cur = 0;
7827 doms_new = &fallback_doms;
7828 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7829 WARN_ON_ONCE(dattr_new);
7830 }
7831
7832 /* Build new domains */
7833 for (i = 0; i < ndoms_new; i++) {
7834 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7835 if (cpus_equal(doms_new[i], doms_cur[j])
7836 && dattrs_equal(dattr_new, i, dattr_cur, j))
7837 goto match2;
7838 }
7839 /* no match - add a new doms_new */
7840 __build_sched_domains(doms_new + i,
7841 dattr_new ? dattr_new + i : NULL);
7842 match2:
7843 ;
7844 }
7845
7846 /* Remember the new sched domains */
7847 if (doms_cur != &fallback_doms)
7848 kfree(doms_cur);
7849 kfree(dattr_cur); /* kfree(NULL) is safe */
7850 doms_cur = doms_new;
7851 dattr_cur = dattr_new;
7852 ndoms_cur = ndoms_new;
7853
7854 register_sched_domain_sysctl();
7855
7856 mutex_unlock(&sched_domains_mutex);
7857 }
7858
7859 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7860 int arch_reinit_sched_domains(void)
7861 {
7862 get_online_cpus();
7863
7864 /* Destroy domains first to force the rebuild */
7865 partition_sched_domains(0, NULL, NULL);
7866
7867 rebuild_sched_domains();
7868 put_online_cpus();
7869
7870 return 0;
7871 }
7872
7873 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7874 {
7875 int ret;
7876
7877 if (buf[0] != '0' && buf[0] != '1')
7878 return -EINVAL;
7879
7880 if (smt)
7881 sched_smt_power_savings = (buf[0] == '1');
7882 else
7883 sched_mc_power_savings = (buf[0] == '1');
7884
7885 ret = arch_reinit_sched_domains();
7886
7887 return ret ? ret : count;
7888 }
7889
7890 #ifdef CONFIG_SCHED_MC
7891 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7892 char *page)
7893 {
7894 return sprintf(page, "%u\n", sched_mc_power_savings);
7895 }
7896 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7897 const char *buf, size_t count)
7898 {
7899 return sched_power_savings_store(buf, count, 0);
7900 }
7901 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7902 sched_mc_power_savings_show,
7903 sched_mc_power_savings_store);
7904 #endif
7905
7906 #ifdef CONFIG_SCHED_SMT
7907 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7908 char *page)
7909 {
7910 return sprintf(page, "%u\n", sched_smt_power_savings);
7911 }
7912 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7913 const char *buf, size_t count)
7914 {
7915 return sched_power_savings_store(buf, count, 1);
7916 }
7917 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7918 sched_smt_power_savings_show,
7919 sched_smt_power_savings_store);
7920 #endif
7921
7922 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7923 {
7924 int err = 0;
7925
7926 #ifdef CONFIG_SCHED_SMT
7927 if (smt_capable())
7928 err = sysfs_create_file(&cls->kset.kobj,
7929 &attr_sched_smt_power_savings.attr);
7930 #endif
7931 #ifdef CONFIG_SCHED_MC
7932 if (!err && mc_capable())
7933 err = sysfs_create_file(&cls->kset.kobj,
7934 &attr_sched_mc_power_savings.attr);
7935 #endif
7936 return err;
7937 }
7938 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7939
7940 #ifndef CONFIG_CPUSETS
7941 /*
7942 * Add online and remove offline CPUs from the scheduler domains.
7943 * When cpusets are enabled they take over this function.
7944 */
7945 static int update_sched_domains(struct notifier_block *nfb,
7946 unsigned long action, void *hcpu)
7947 {
7948 switch (action) {
7949 case CPU_ONLINE:
7950 case CPU_ONLINE_FROZEN:
7951 case CPU_DEAD:
7952 case CPU_DEAD_FROZEN:
7953 partition_sched_domains(1, NULL, NULL);
7954 return NOTIFY_OK;
7955
7956 default:
7957 return NOTIFY_DONE;
7958 }
7959 }
7960 #endif
7961
7962 static int update_runtime(struct notifier_block *nfb,
7963 unsigned long action, void *hcpu)
7964 {
7965 int cpu = (int)(long)hcpu;
7966
7967 switch (action) {
7968 case CPU_DOWN_PREPARE:
7969 case CPU_DOWN_PREPARE_FROZEN:
7970 disable_runtime(cpu_rq(cpu));
7971 return NOTIFY_OK;
7972
7973 case CPU_DOWN_FAILED:
7974 case CPU_DOWN_FAILED_FROZEN:
7975 case CPU_ONLINE:
7976 case CPU_ONLINE_FROZEN:
7977 enable_runtime(cpu_rq(cpu));
7978 return NOTIFY_OK;
7979
7980 default:
7981 return NOTIFY_DONE;
7982 }
7983 }
7984
7985 void __init sched_init_smp(void)
7986 {
7987 cpumask_t non_isolated_cpus;
7988
7989 #if defined(CONFIG_NUMA)
7990 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7991 GFP_KERNEL);
7992 BUG_ON(sched_group_nodes_bycpu == NULL);
7993 #endif
7994 get_online_cpus();
7995 mutex_lock(&sched_domains_mutex);
7996 arch_init_sched_domains(&cpu_online_map);
7997 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7998 if (cpus_empty(non_isolated_cpus))
7999 cpu_set(smp_processor_id(), non_isolated_cpus);
8000 mutex_unlock(&sched_domains_mutex);
8001 put_online_cpus();
8002
8003 #ifndef CONFIG_CPUSETS
8004 /* XXX: Theoretical race here - CPU may be hotplugged now */
8005 hotcpu_notifier(update_sched_domains, 0);
8006 #endif
8007
8008 /* RT runtime code needs to handle some hotplug events */
8009 hotcpu_notifier(update_runtime, 0);
8010
8011 init_hrtick();
8012
8013 /* Move init over to a non-isolated CPU */
8014 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8015 BUG();
8016 sched_init_granularity();
8017 }
8018 #else
8019 void __init sched_init_smp(void)
8020 {
8021 sched_init_granularity();
8022 }
8023 #endif /* CONFIG_SMP */
8024
8025 int in_sched_functions(unsigned long addr)
8026 {
8027 return in_lock_functions(addr) ||
8028 (addr >= (unsigned long)__sched_text_start
8029 && addr < (unsigned long)__sched_text_end);
8030 }
8031
8032 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8033 {
8034 cfs_rq->tasks_timeline = RB_ROOT;
8035 INIT_LIST_HEAD(&cfs_rq->tasks);
8036 #ifdef CONFIG_FAIR_GROUP_SCHED
8037 cfs_rq->rq = rq;
8038 #endif
8039 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8040 }
8041
8042 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8043 {
8044 struct rt_prio_array *array;
8045 int i;
8046
8047 array = &rt_rq->active;
8048 for (i = 0; i < MAX_RT_PRIO; i++) {
8049 INIT_LIST_HEAD(array->queue + i);
8050 __clear_bit(i, array->bitmap);
8051 }
8052 /* delimiter for bitsearch: */
8053 __set_bit(MAX_RT_PRIO, array->bitmap);
8054
8055 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8056 rt_rq->highest_prio = MAX_RT_PRIO;
8057 #endif
8058 #ifdef CONFIG_SMP
8059 rt_rq->rt_nr_migratory = 0;
8060 rt_rq->overloaded = 0;
8061 #endif
8062
8063 rt_rq->rt_time = 0;
8064 rt_rq->rt_throttled = 0;
8065 rt_rq->rt_runtime = 0;
8066 spin_lock_init(&rt_rq->rt_runtime_lock);
8067
8068 #ifdef CONFIG_RT_GROUP_SCHED
8069 rt_rq->rt_nr_boosted = 0;
8070 rt_rq->rq = rq;
8071 #endif
8072 }
8073
8074 #ifdef CONFIG_FAIR_GROUP_SCHED
8075 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8076 struct sched_entity *se, int cpu, int add,
8077 struct sched_entity *parent)
8078 {
8079 struct rq *rq = cpu_rq(cpu);
8080 tg->cfs_rq[cpu] = cfs_rq;
8081 init_cfs_rq(cfs_rq, rq);
8082 cfs_rq->tg = tg;
8083 if (add)
8084 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8085
8086 tg->se[cpu] = se;
8087 /* se could be NULL for init_task_group */
8088 if (!se)
8089 return;
8090
8091 if (!parent)
8092 se->cfs_rq = &rq->cfs;
8093 else
8094 se->cfs_rq = parent->my_q;
8095
8096 se->my_q = cfs_rq;
8097 se->load.weight = tg->shares;
8098 se->load.inv_weight = 0;
8099 se->parent = parent;
8100 }
8101 #endif
8102
8103 #ifdef CONFIG_RT_GROUP_SCHED
8104 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8105 struct sched_rt_entity *rt_se, int cpu, int add,
8106 struct sched_rt_entity *parent)
8107 {
8108 struct rq *rq = cpu_rq(cpu);
8109
8110 tg->rt_rq[cpu] = rt_rq;
8111 init_rt_rq(rt_rq, rq);
8112 rt_rq->tg = tg;
8113 rt_rq->rt_se = rt_se;
8114 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8115 if (add)
8116 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8117
8118 tg->rt_se[cpu] = rt_se;
8119 if (!rt_se)
8120 return;
8121
8122 if (!parent)
8123 rt_se->rt_rq = &rq->rt;
8124 else
8125 rt_se->rt_rq = parent->my_q;
8126
8127 rt_se->my_q = rt_rq;
8128 rt_se->parent = parent;
8129 INIT_LIST_HEAD(&rt_se->run_list);
8130 }
8131 #endif
8132
8133 void __init sched_init(void)
8134 {
8135 int i, j;
8136 unsigned long alloc_size = 0, ptr;
8137
8138 #ifdef CONFIG_FAIR_GROUP_SCHED
8139 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8140 #endif
8141 #ifdef CONFIG_RT_GROUP_SCHED
8142 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8143 #endif
8144 #ifdef CONFIG_USER_SCHED
8145 alloc_size *= 2;
8146 #endif
8147 /*
8148 * As sched_init() is called before page_alloc is setup,
8149 * we use alloc_bootmem().
8150 */
8151 if (alloc_size) {
8152 ptr = (unsigned long)alloc_bootmem(alloc_size);
8153
8154 #ifdef CONFIG_FAIR_GROUP_SCHED
8155 init_task_group.se = (struct sched_entity **)ptr;
8156 ptr += nr_cpu_ids * sizeof(void **);
8157
8158 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8159 ptr += nr_cpu_ids * sizeof(void **);
8160
8161 #ifdef CONFIG_USER_SCHED
8162 root_task_group.se = (struct sched_entity **)ptr;
8163 ptr += nr_cpu_ids * sizeof(void **);
8164
8165 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8166 ptr += nr_cpu_ids * sizeof(void **);
8167 #endif /* CONFIG_USER_SCHED */
8168 #endif /* CONFIG_FAIR_GROUP_SCHED */
8169 #ifdef CONFIG_RT_GROUP_SCHED
8170 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8171 ptr += nr_cpu_ids * sizeof(void **);
8172
8173 init_task_group.rt_rq = (struct rt_rq **)ptr;
8174 ptr += nr_cpu_ids * sizeof(void **);
8175
8176 #ifdef CONFIG_USER_SCHED
8177 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8178 ptr += nr_cpu_ids * sizeof(void **);
8179
8180 root_task_group.rt_rq = (struct rt_rq **)ptr;
8181 ptr += nr_cpu_ids * sizeof(void **);
8182 #endif /* CONFIG_USER_SCHED */
8183 #endif /* CONFIG_RT_GROUP_SCHED */
8184 }
8185
8186 #ifdef CONFIG_SMP
8187 init_defrootdomain();
8188 #endif
8189
8190 init_rt_bandwidth(&def_rt_bandwidth,
8191 global_rt_period(), global_rt_runtime());
8192
8193 #ifdef CONFIG_RT_GROUP_SCHED
8194 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8195 global_rt_period(), global_rt_runtime());
8196 #ifdef CONFIG_USER_SCHED
8197 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8198 global_rt_period(), RUNTIME_INF);
8199 #endif /* CONFIG_USER_SCHED */
8200 #endif /* CONFIG_RT_GROUP_SCHED */
8201
8202 #ifdef CONFIG_GROUP_SCHED
8203 list_add(&init_task_group.list, &task_groups);
8204 INIT_LIST_HEAD(&init_task_group.children);
8205
8206 #ifdef CONFIG_USER_SCHED
8207 INIT_LIST_HEAD(&root_task_group.children);
8208 init_task_group.parent = &root_task_group;
8209 list_add(&init_task_group.siblings, &root_task_group.children);
8210 #endif /* CONFIG_USER_SCHED */
8211 #endif /* CONFIG_GROUP_SCHED */
8212
8213 for_each_possible_cpu(i) {
8214 struct rq *rq;
8215
8216 rq = cpu_rq(i);
8217 spin_lock_init(&rq->lock);
8218 rq->nr_running = 0;
8219 init_cfs_rq(&rq->cfs, rq);
8220 init_rt_rq(&rq->rt, rq);
8221 #ifdef CONFIG_FAIR_GROUP_SCHED
8222 init_task_group.shares = init_task_group_load;
8223 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8224 #ifdef CONFIG_CGROUP_SCHED
8225 /*
8226 * How much cpu bandwidth does init_task_group get?
8227 *
8228 * In case of task-groups formed thr' the cgroup filesystem, it
8229 * gets 100% of the cpu resources in the system. This overall
8230 * system cpu resource is divided among the tasks of
8231 * init_task_group and its child task-groups in a fair manner,
8232 * based on each entity's (task or task-group's) weight
8233 * (se->load.weight).
8234 *
8235 * In other words, if init_task_group has 10 tasks of weight
8236 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8237 * then A0's share of the cpu resource is:
8238 *
8239 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8240 *
8241 * We achieve this by letting init_task_group's tasks sit
8242 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8243 */
8244 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8245 #elif defined CONFIG_USER_SCHED
8246 root_task_group.shares = NICE_0_LOAD;
8247 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8248 /*
8249 * In case of task-groups formed thr' the user id of tasks,
8250 * init_task_group represents tasks belonging to root user.
8251 * Hence it forms a sibling of all subsequent groups formed.
8252 * In this case, init_task_group gets only a fraction of overall
8253 * system cpu resource, based on the weight assigned to root
8254 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8255 * by letting tasks of init_task_group sit in a separate cfs_rq
8256 * (init_cfs_rq) and having one entity represent this group of
8257 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8258 */
8259 init_tg_cfs_entry(&init_task_group,
8260 &per_cpu(init_cfs_rq, i),
8261 &per_cpu(init_sched_entity, i), i, 1,
8262 root_task_group.se[i]);
8263
8264 #endif
8265 #endif /* CONFIG_FAIR_GROUP_SCHED */
8266
8267 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8268 #ifdef CONFIG_RT_GROUP_SCHED
8269 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8270 #ifdef CONFIG_CGROUP_SCHED
8271 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8272 #elif defined CONFIG_USER_SCHED
8273 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8274 init_tg_rt_entry(&init_task_group,
8275 &per_cpu(init_rt_rq, i),
8276 &per_cpu(init_sched_rt_entity, i), i, 1,
8277 root_task_group.rt_se[i]);
8278 #endif
8279 #endif
8280
8281 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8282 rq->cpu_load[j] = 0;
8283 #ifdef CONFIG_SMP
8284 rq->sd = NULL;
8285 rq->rd = NULL;
8286 rq->active_balance = 0;
8287 rq->next_balance = jiffies;
8288 rq->push_cpu = 0;
8289 rq->cpu = i;
8290 rq->online = 0;
8291 rq->migration_thread = NULL;
8292 INIT_LIST_HEAD(&rq->migration_queue);
8293 rq_attach_root(rq, &def_root_domain);
8294 #endif
8295 init_rq_hrtick(rq);
8296 atomic_set(&rq->nr_iowait, 0);
8297 }
8298
8299 set_load_weight(&init_task);
8300
8301 #ifdef CONFIG_PREEMPT_NOTIFIERS
8302 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8303 #endif
8304
8305 #ifdef CONFIG_SMP
8306 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8307 #endif
8308
8309 #ifdef CONFIG_RT_MUTEXES
8310 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8311 #endif
8312
8313 /*
8314 * The boot idle thread does lazy MMU switching as well:
8315 */
8316 atomic_inc(&init_mm.mm_count);
8317 enter_lazy_tlb(&init_mm, current);
8318
8319 /*
8320 * Make us the idle thread. Technically, schedule() should not be
8321 * called from this thread, however somewhere below it might be,
8322 * but because we are the idle thread, we just pick up running again
8323 * when this runqueue becomes "idle".
8324 */
8325 init_idle(current, smp_processor_id());
8326 /*
8327 * During early bootup we pretend to be a normal task:
8328 */
8329 current->sched_class = &fair_sched_class;
8330
8331 scheduler_running = 1;
8332 }
8333
8334 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8335 void __might_sleep(char *file, int line)
8336 {
8337 #ifdef in_atomic
8338 static unsigned long prev_jiffy; /* ratelimiting */
8339
8340 if ((!in_atomic() && !irqs_disabled()) ||
8341 system_state != SYSTEM_RUNNING || oops_in_progress)
8342 return;
8343 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8344 return;
8345 prev_jiffy = jiffies;
8346
8347 printk(KERN_ERR
8348 "BUG: sleeping function called from invalid context at %s:%d\n",
8349 file, line);
8350 printk(KERN_ERR
8351 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8352 in_atomic(), irqs_disabled(),
8353 current->pid, current->comm);
8354
8355 debug_show_held_locks(current);
8356 if (irqs_disabled())
8357 print_irqtrace_events(current);
8358 dump_stack();
8359 #endif
8360 }
8361 EXPORT_SYMBOL(__might_sleep);
8362 #endif
8363
8364 #ifdef CONFIG_MAGIC_SYSRQ
8365 static void normalize_task(struct rq *rq, struct task_struct *p)
8366 {
8367 int on_rq;
8368
8369 update_rq_clock(rq);
8370 on_rq = p->se.on_rq;
8371 if (on_rq)
8372 deactivate_task(rq, p, 0);
8373 __setscheduler(rq, p, SCHED_NORMAL, 0);
8374 if (on_rq) {
8375 activate_task(rq, p, 0);
8376 resched_task(rq->curr);
8377 }
8378 }
8379
8380 void normalize_rt_tasks(void)
8381 {
8382 struct task_struct *g, *p;
8383 unsigned long flags;
8384 struct rq *rq;
8385
8386 read_lock_irqsave(&tasklist_lock, flags);
8387 do_each_thread(g, p) {
8388 /*
8389 * Only normalize user tasks:
8390 */
8391 if (!p->mm)
8392 continue;
8393
8394 p->se.exec_start = 0;
8395 #ifdef CONFIG_SCHEDSTATS
8396 p->se.wait_start = 0;
8397 p->se.sleep_start = 0;
8398 p->se.block_start = 0;
8399 #endif
8400
8401 if (!rt_task(p)) {
8402 /*
8403 * Renice negative nice level userspace
8404 * tasks back to 0:
8405 */
8406 if (TASK_NICE(p) < 0 && p->mm)
8407 set_user_nice(p, 0);
8408 continue;
8409 }
8410
8411 spin_lock(&p->pi_lock);
8412 rq = __task_rq_lock(p);
8413
8414 normalize_task(rq, p);
8415
8416 __task_rq_unlock(rq);
8417 spin_unlock(&p->pi_lock);
8418 } while_each_thread(g, p);
8419
8420 read_unlock_irqrestore(&tasklist_lock, flags);
8421 }
8422
8423 #endif /* CONFIG_MAGIC_SYSRQ */
8424
8425 #ifdef CONFIG_IA64
8426 /*
8427 * These functions are only useful for the IA64 MCA handling.
8428 *
8429 * They can only be called when the whole system has been
8430 * stopped - every CPU needs to be quiescent, and no scheduling
8431 * activity can take place. Using them for anything else would
8432 * be a serious bug, and as a result, they aren't even visible
8433 * under any other configuration.
8434 */
8435
8436 /**
8437 * curr_task - return the current task for a given cpu.
8438 * @cpu: the processor in question.
8439 *
8440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 */
8442 struct task_struct *curr_task(int cpu)
8443 {
8444 return cpu_curr(cpu);
8445 }
8446
8447 /**
8448 * set_curr_task - set the current task for a given cpu.
8449 * @cpu: the processor in question.
8450 * @p: the task pointer to set.
8451 *
8452 * Description: This function must only be used when non-maskable interrupts
8453 * are serviced on a separate stack. It allows the architecture to switch the
8454 * notion of the current task on a cpu in a non-blocking manner. This function
8455 * must be called with all CPU's synchronized, and interrupts disabled, the
8456 * and caller must save the original value of the current task (see
8457 * curr_task() above) and restore that value before reenabling interrupts and
8458 * re-starting the system.
8459 *
8460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8461 */
8462 void set_curr_task(int cpu, struct task_struct *p)
8463 {
8464 cpu_curr(cpu) = p;
8465 }
8466
8467 #endif
8468
8469 #ifdef CONFIG_FAIR_GROUP_SCHED
8470 static void free_fair_sched_group(struct task_group *tg)
8471 {
8472 int i;
8473
8474 for_each_possible_cpu(i) {
8475 if (tg->cfs_rq)
8476 kfree(tg->cfs_rq[i]);
8477 if (tg->se)
8478 kfree(tg->se[i]);
8479 }
8480
8481 kfree(tg->cfs_rq);
8482 kfree(tg->se);
8483 }
8484
8485 static
8486 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8487 {
8488 struct cfs_rq *cfs_rq;
8489 struct sched_entity *se;
8490 struct rq *rq;
8491 int i;
8492
8493 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8494 if (!tg->cfs_rq)
8495 goto err;
8496 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8497 if (!tg->se)
8498 goto err;
8499
8500 tg->shares = NICE_0_LOAD;
8501
8502 for_each_possible_cpu(i) {
8503 rq = cpu_rq(i);
8504
8505 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8506 GFP_KERNEL, cpu_to_node(i));
8507 if (!cfs_rq)
8508 goto err;
8509
8510 se = kzalloc_node(sizeof(struct sched_entity),
8511 GFP_KERNEL, cpu_to_node(i));
8512 if (!se)
8513 goto err;
8514
8515 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8516 }
8517
8518 return 1;
8519
8520 err:
8521 return 0;
8522 }
8523
8524 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8525 {
8526 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8527 &cpu_rq(cpu)->leaf_cfs_rq_list);
8528 }
8529
8530 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8531 {
8532 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8533 }
8534 #else /* !CONFG_FAIR_GROUP_SCHED */
8535 static inline void free_fair_sched_group(struct task_group *tg)
8536 {
8537 }
8538
8539 static inline
8540 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8541 {
8542 return 1;
8543 }
8544
8545 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8546 {
8547 }
8548
8549 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8550 {
8551 }
8552 #endif /* CONFIG_FAIR_GROUP_SCHED */
8553
8554 #ifdef CONFIG_RT_GROUP_SCHED
8555 static void free_rt_sched_group(struct task_group *tg)
8556 {
8557 int i;
8558
8559 destroy_rt_bandwidth(&tg->rt_bandwidth);
8560
8561 for_each_possible_cpu(i) {
8562 if (tg->rt_rq)
8563 kfree(tg->rt_rq[i]);
8564 if (tg->rt_se)
8565 kfree(tg->rt_se[i]);
8566 }
8567
8568 kfree(tg->rt_rq);
8569 kfree(tg->rt_se);
8570 }
8571
8572 static
8573 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8574 {
8575 struct rt_rq *rt_rq;
8576 struct sched_rt_entity *rt_se;
8577 struct rq *rq;
8578 int i;
8579
8580 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8581 if (!tg->rt_rq)
8582 goto err;
8583 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8584 if (!tg->rt_se)
8585 goto err;
8586
8587 init_rt_bandwidth(&tg->rt_bandwidth,
8588 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8589
8590 for_each_possible_cpu(i) {
8591 rq = cpu_rq(i);
8592
8593 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8594 GFP_KERNEL, cpu_to_node(i));
8595 if (!rt_rq)
8596 goto err;
8597
8598 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8599 GFP_KERNEL, cpu_to_node(i));
8600 if (!rt_se)
8601 goto err;
8602
8603 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8604 }
8605
8606 return 1;
8607
8608 err:
8609 return 0;
8610 }
8611
8612 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8613 {
8614 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8615 &cpu_rq(cpu)->leaf_rt_rq_list);
8616 }
8617
8618 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8619 {
8620 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8621 }
8622 #else /* !CONFIG_RT_GROUP_SCHED */
8623 static inline void free_rt_sched_group(struct task_group *tg)
8624 {
8625 }
8626
8627 static inline
8628 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8629 {
8630 return 1;
8631 }
8632
8633 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8634 {
8635 }
8636
8637 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8638 {
8639 }
8640 #endif /* CONFIG_RT_GROUP_SCHED */
8641
8642 #ifdef CONFIG_GROUP_SCHED
8643 static void free_sched_group(struct task_group *tg)
8644 {
8645 free_fair_sched_group(tg);
8646 free_rt_sched_group(tg);
8647 kfree(tg);
8648 }
8649
8650 /* allocate runqueue etc for a new task group */
8651 struct task_group *sched_create_group(struct task_group *parent)
8652 {
8653 struct task_group *tg;
8654 unsigned long flags;
8655 int i;
8656
8657 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8658 if (!tg)
8659 return ERR_PTR(-ENOMEM);
8660
8661 if (!alloc_fair_sched_group(tg, parent))
8662 goto err;
8663
8664 if (!alloc_rt_sched_group(tg, parent))
8665 goto err;
8666
8667 spin_lock_irqsave(&task_group_lock, flags);
8668 for_each_possible_cpu(i) {
8669 register_fair_sched_group(tg, i);
8670 register_rt_sched_group(tg, i);
8671 }
8672 list_add_rcu(&tg->list, &task_groups);
8673
8674 WARN_ON(!parent); /* root should already exist */
8675
8676 tg->parent = parent;
8677 INIT_LIST_HEAD(&tg->children);
8678 list_add_rcu(&tg->siblings, &parent->children);
8679 spin_unlock_irqrestore(&task_group_lock, flags);
8680
8681 return tg;
8682
8683 err:
8684 free_sched_group(tg);
8685 return ERR_PTR(-ENOMEM);
8686 }
8687
8688 /* rcu callback to free various structures associated with a task group */
8689 static void free_sched_group_rcu(struct rcu_head *rhp)
8690 {
8691 /* now it should be safe to free those cfs_rqs */
8692 free_sched_group(container_of(rhp, struct task_group, rcu));
8693 }
8694
8695 /* Destroy runqueue etc associated with a task group */
8696 void sched_destroy_group(struct task_group *tg)
8697 {
8698 unsigned long flags;
8699 int i;
8700
8701 spin_lock_irqsave(&task_group_lock, flags);
8702 for_each_possible_cpu(i) {
8703 unregister_fair_sched_group(tg, i);
8704 unregister_rt_sched_group(tg, i);
8705 }
8706 list_del_rcu(&tg->list);
8707 list_del_rcu(&tg->siblings);
8708 spin_unlock_irqrestore(&task_group_lock, flags);
8709
8710 /* wait for possible concurrent references to cfs_rqs complete */
8711 call_rcu(&tg->rcu, free_sched_group_rcu);
8712 }
8713
8714 /* change task's runqueue when it moves between groups.
8715 * The caller of this function should have put the task in its new group
8716 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8717 * reflect its new group.
8718 */
8719 void sched_move_task(struct task_struct *tsk)
8720 {
8721 int on_rq, running;
8722 unsigned long flags;
8723 struct rq *rq;
8724
8725 rq = task_rq_lock(tsk, &flags);
8726
8727 update_rq_clock(rq);
8728
8729 running = task_current(rq, tsk);
8730 on_rq = tsk->se.on_rq;
8731
8732 if (on_rq)
8733 dequeue_task(rq, tsk, 0);
8734 if (unlikely(running))
8735 tsk->sched_class->put_prev_task(rq, tsk);
8736
8737 set_task_rq(tsk, task_cpu(tsk));
8738
8739 #ifdef CONFIG_FAIR_GROUP_SCHED
8740 if (tsk->sched_class->moved_group)
8741 tsk->sched_class->moved_group(tsk);
8742 #endif
8743
8744 if (unlikely(running))
8745 tsk->sched_class->set_curr_task(rq);
8746 if (on_rq)
8747 enqueue_task(rq, tsk, 0);
8748
8749 task_rq_unlock(rq, &flags);
8750 }
8751 #endif /* CONFIG_GROUP_SCHED */
8752
8753 #ifdef CONFIG_FAIR_GROUP_SCHED
8754 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8755 {
8756 struct cfs_rq *cfs_rq = se->cfs_rq;
8757 int on_rq;
8758
8759 on_rq = se->on_rq;
8760 if (on_rq)
8761 dequeue_entity(cfs_rq, se, 0);
8762
8763 se->load.weight = shares;
8764 se->load.inv_weight = 0;
8765
8766 if (on_rq)
8767 enqueue_entity(cfs_rq, se, 0);
8768 }
8769
8770 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8771 {
8772 struct cfs_rq *cfs_rq = se->cfs_rq;
8773 struct rq *rq = cfs_rq->rq;
8774 unsigned long flags;
8775
8776 spin_lock_irqsave(&rq->lock, flags);
8777 __set_se_shares(se, shares);
8778 spin_unlock_irqrestore(&rq->lock, flags);
8779 }
8780
8781 static DEFINE_MUTEX(shares_mutex);
8782
8783 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8784 {
8785 int i;
8786 unsigned long flags;
8787
8788 /*
8789 * We can't change the weight of the root cgroup.
8790 */
8791 if (!tg->se[0])
8792 return -EINVAL;
8793
8794 if (shares < MIN_SHARES)
8795 shares = MIN_SHARES;
8796 else if (shares > MAX_SHARES)
8797 shares = MAX_SHARES;
8798
8799 mutex_lock(&shares_mutex);
8800 if (tg->shares == shares)
8801 goto done;
8802
8803 spin_lock_irqsave(&task_group_lock, flags);
8804 for_each_possible_cpu(i)
8805 unregister_fair_sched_group(tg, i);
8806 list_del_rcu(&tg->siblings);
8807 spin_unlock_irqrestore(&task_group_lock, flags);
8808
8809 /* wait for any ongoing reference to this group to finish */
8810 synchronize_sched();
8811
8812 /*
8813 * Now we are free to modify the group's share on each cpu
8814 * w/o tripping rebalance_share or load_balance_fair.
8815 */
8816 tg->shares = shares;
8817 for_each_possible_cpu(i) {
8818 /*
8819 * force a rebalance
8820 */
8821 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8822 set_se_shares(tg->se[i], shares);
8823 }
8824
8825 /*
8826 * Enable load balance activity on this group, by inserting it back on
8827 * each cpu's rq->leaf_cfs_rq_list.
8828 */
8829 spin_lock_irqsave(&task_group_lock, flags);
8830 for_each_possible_cpu(i)
8831 register_fair_sched_group(tg, i);
8832 list_add_rcu(&tg->siblings, &tg->parent->children);
8833 spin_unlock_irqrestore(&task_group_lock, flags);
8834 done:
8835 mutex_unlock(&shares_mutex);
8836 return 0;
8837 }
8838
8839 unsigned long sched_group_shares(struct task_group *tg)
8840 {
8841 return tg->shares;
8842 }
8843 #endif
8844
8845 #ifdef CONFIG_RT_GROUP_SCHED
8846 /*
8847 * Ensure that the real time constraints are schedulable.
8848 */
8849 static DEFINE_MUTEX(rt_constraints_mutex);
8850
8851 static unsigned long to_ratio(u64 period, u64 runtime)
8852 {
8853 if (runtime == RUNTIME_INF)
8854 return 1ULL << 20;
8855
8856 return div64_u64(runtime << 20, period);
8857 }
8858
8859 /* Must be called with tasklist_lock held */
8860 static inline int tg_has_rt_tasks(struct task_group *tg)
8861 {
8862 struct task_struct *g, *p;
8863
8864 do_each_thread(g, p) {
8865 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8866 return 1;
8867 } while_each_thread(g, p);
8868
8869 return 0;
8870 }
8871
8872 struct rt_schedulable_data {
8873 struct task_group *tg;
8874 u64 rt_period;
8875 u64 rt_runtime;
8876 };
8877
8878 static int tg_schedulable(struct task_group *tg, void *data)
8879 {
8880 struct rt_schedulable_data *d = data;
8881 struct task_group *child;
8882 unsigned long total, sum = 0;
8883 u64 period, runtime;
8884
8885 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8886 runtime = tg->rt_bandwidth.rt_runtime;
8887
8888 if (tg == d->tg) {
8889 period = d->rt_period;
8890 runtime = d->rt_runtime;
8891 }
8892
8893 /*
8894 * Cannot have more runtime than the period.
8895 */
8896 if (runtime > period && runtime != RUNTIME_INF)
8897 return -EINVAL;
8898
8899 /*
8900 * Ensure we don't starve existing RT tasks.
8901 */
8902 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8903 return -EBUSY;
8904
8905 total = to_ratio(period, runtime);
8906
8907 /*
8908 * Nobody can have more than the global setting allows.
8909 */
8910 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8911 return -EINVAL;
8912
8913 /*
8914 * The sum of our children's runtime should not exceed our own.
8915 */
8916 list_for_each_entry_rcu(child, &tg->children, siblings) {
8917 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8918 runtime = child->rt_bandwidth.rt_runtime;
8919
8920 if (child == d->tg) {
8921 period = d->rt_period;
8922 runtime = d->rt_runtime;
8923 }
8924
8925 sum += to_ratio(period, runtime);
8926 }
8927
8928 if (sum > total)
8929 return -EINVAL;
8930
8931 return 0;
8932 }
8933
8934 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8935 {
8936 struct rt_schedulable_data data = {
8937 .tg = tg,
8938 .rt_period = period,
8939 .rt_runtime = runtime,
8940 };
8941
8942 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8943 }
8944
8945 static int tg_set_bandwidth(struct task_group *tg,
8946 u64 rt_period, u64 rt_runtime)
8947 {
8948 int i, err = 0;
8949
8950 mutex_lock(&rt_constraints_mutex);
8951 read_lock(&tasklist_lock);
8952 err = __rt_schedulable(tg, rt_period, rt_runtime);
8953 if (err)
8954 goto unlock;
8955
8956 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8957 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8958 tg->rt_bandwidth.rt_runtime = rt_runtime;
8959
8960 for_each_possible_cpu(i) {
8961 struct rt_rq *rt_rq = tg->rt_rq[i];
8962
8963 spin_lock(&rt_rq->rt_runtime_lock);
8964 rt_rq->rt_runtime = rt_runtime;
8965 spin_unlock(&rt_rq->rt_runtime_lock);
8966 }
8967 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8968 unlock:
8969 read_unlock(&tasklist_lock);
8970 mutex_unlock(&rt_constraints_mutex);
8971
8972 return err;
8973 }
8974
8975 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8976 {
8977 u64 rt_runtime, rt_period;
8978
8979 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8980 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8981 if (rt_runtime_us < 0)
8982 rt_runtime = RUNTIME_INF;
8983
8984 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8985 }
8986
8987 long sched_group_rt_runtime(struct task_group *tg)
8988 {
8989 u64 rt_runtime_us;
8990
8991 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8992 return -1;
8993
8994 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8995 do_div(rt_runtime_us, NSEC_PER_USEC);
8996 return rt_runtime_us;
8997 }
8998
8999 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9000 {
9001 u64 rt_runtime, rt_period;
9002
9003 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9004 rt_runtime = tg->rt_bandwidth.rt_runtime;
9005
9006 if (rt_period == 0)
9007 return -EINVAL;
9008
9009 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9010 }
9011
9012 long sched_group_rt_period(struct task_group *tg)
9013 {
9014 u64 rt_period_us;
9015
9016 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9017 do_div(rt_period_us, NSEC_PER_USEC);
9018 return rt_period_us;
9019 }
9020
9021 static int sched_rt_global_constraints(void)
9022 {
9023 u64 runtime, period;
9024 int ret = 0;
9025
9026 if (sysctl_sched_rt_period <= 0)
9027 return -EINVAL;
9028
9029 runtime = global_rt_runtime();
9030 period = global_rt_period();
9031
9032 /*
9033 * Sanity check on the sysctl variables.
9034 */
9035 if (runtime > period && runtime != RUNTIME_INF)
9036 return -EINVAL;
9037
9038 mutex_lock(&rt_constraints_mutex);
9039 read_lock(&tasklist_lock);
9040 ret = __rt_schedulable(NULL, 0, 0);
9041 read_unlock(&tasklist_lock);
9042 mutex_unlock(&rt_constraints_mutex);
9043
9044 return ret;
9045 }
9046 #else /* !CONFIG_RT_GROUP_SCHED */
9047 static int sched_rt_global_constraints(void)
9048 {
9049 unsigned long flags;
9050 int i;
9051
9052 if (sysctl_sched_rt_period <= 0)
9053 return -EINVAL;
9054
9055 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9056 for_each_possible_cpu(i) {
9057 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9058
9059 spin_lock(&rt_rq->rt_runtime_lock);
9060 rt_rq->rt_runtime = global_rt_runtime();
9061 spin_unlock(&rt_rq->rt_runtime_lock);
9062 }
9063 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9064
9065 return 0;
9066 }
9067 #endif /* CONFIG_RT_GROUP_SCHED */
9068
9069 int sched_rt_handler(struct ctl_table *table, int write,
9070 struct file *filp, void __user *buffer, size_t *lenp,
9071 loff_t *ppos)
9072 {
9073 int ret;
9074 int old_period, old_runtime;
9075 static DEFINE_MUTEX(mutex);
9076
9077 mutex_lock(&mutex);
9078 old_period = sysctl_sched_rt_period;
9079 old_runtime = sysctl_sched_rt_runtime;
9080
9081 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9082
9083 if (!ret && write) {
9084 ret = sched_rt_global_constraints();
9085 if (ret) {
9086 sysctl_sched_rt_period = old_period;
9087 sysctl_sched_rt_runtime = old_runtime;
9088 } else {
9089 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9090 def_rt_bandwidth.rt_period =
9091 ns_to_ktime(global_rt_period());
9092 }
9093 }
9094 mutex_unlock(&mutex);
9095
9096 return ret;
9097 }
9098
9099 #ifdef CONFIG_CGROUP_SCHED
9100
9101 /* return corresponding task_group object of a cgroup */
9102 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9103 {
9104 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9105 struct task_group, css);
9106 }
9107
9108 static struct cgroup_subsys_state *
9109 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9110 {
9111 struct task_group *tg, *parent;
9112
9113 if (!cgrp->parent) {
9114 /* This is early initialization for the top cgroup */
9115 return &init_task_group.css;
9116 }
9117
9118 parent = cgroup_tg(cgrp->parent);
9119 tg = sched_create_group(parent);
9120 if (IS_ERR(tg))
9121 return ERR_PTR(-ENOMEM);
9122
9123 return &tg->css;
9124 }
9125
9126 static void
9127 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9128 {
9129 struct task_group *tg = cgroup_tg(cgrp);
9130
9131 sched_destroy_group(tg);
9132 }
9133
9134 static int
9135 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9136 struct task_struct *tsk)
9137 {
9138 #ifdef CONFIG_RT_GROUP_SCHED
9139 /* Don't accept realtime tasks when there is no way for them to run */
9140 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9141 return -EINVAL;
9142 #else
9143 /* We don't support RT-tasks being in separate groups */
9144 if (tsk->sched_class != &fair_sched_class)
9145 return -EINVAL;
9146 #endif
9147
9148 return 0;
9149 }
9150
9151 static void
9152 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9153 struct cgroup *old_cont, struct task_struct *tsk)
9154 {
9155 sched_move_task(tsk);
9156 }
9157
9158 #ifdef CONFIG_FAIR_GROUP_SCHED
9159 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9160 u64 shareval)
9161 {
9162 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9163 }
9164
9165 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9166 {
9167 struct task_group *tg = cgroup_tg(cgrp);
9168
9169 return (u64) tg->shares;
9170 }
9171 #endif /* CONFIG_FAIR_GROUP_SCHED */
9172
9173 #ifdef CONFIG_RT_GROUP_SCHED
9174 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9175 s64 val)
9176 {
9177 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9178 }
9179
9180 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9181 {
9182 return sched_group_rt_runtime(cgroup_tg(cgrp));
9183 }
9184
9185 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9186 u64 rt_period_us)
9187 {
9188 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9189 }
9190
9191 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9192 {
9193 return sched_group_rt_period(cgroup_tg(cgrp));
9194 }
9195 #endif /* CONFIG_RT_GROUP_SCHED */
9196
9197 static struct cftype cpu_files[] = {
9198 #ifdef CONFIG_FAIR_GROUP_SCHED
9199 {
9200 .name = "shares",
9201 .read_u64 = cpu_shares_read_u64,
9202 .write_u64 = cpu_shares_write_u64,
9203 },
9204 #endif
9205 #ifdef CONFIG_RT_GROUP_SCHED
9206 {
9207 .name = "rt_runtime_us",
9208 .read_s64 = cpu_rt_runtime_read,
9209 .write_s64 = cpu_rt_runtime_write,
9210 },
9211 {
9212 .name = "rt_period_us",
9213 .read_u64 = cpu_rt_period_read_uint,
9214 .write_u64 = cpu_rt_period_write_uint,
9215 },
9216 #endif
9217 };
9218
9219 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9220 {
9221 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9222 }
9223
9224 struct cgroup_subsys cpu_cgroup_subsys = {
9225 .name = "cpu",
9226 .create = cpu_cgroup_create,
9227 .destroy = cpu_cgroup_destroy,
9228 .can_attach = cpu_cgroup_can_attach,
9229 .attach = cpu_cgroup_attach,
9230 .populate = cpu_cgroup_populate,
9231 .subsys_id = cpu_cgroup_subsys_id,
9232 .early_init = 1,
9233 };
9234
9235 #endif /* CONFIG_CGROUP_SCHED */
9236
9237 #ifdef CONFIG_CGROUP_CPUACCT
9238
9239 /*
9240 * CPU accounting code for task groups.
9241 *
9242 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9243 * (balbir@in.ibm.com).
9244 */
9245
9246 /* track cpu usage of a group of tasks and its child groups */
9247 struct cpuacct {
9248 struct cgroup_subsys_state css;
9249 /* cpuusage holds pointer to a u64-type object on every cpu */
9250 u64 *cpuusage;
9251 struct cpuacct *parent;
9252 };
9253
9254 struct cgroup_subsys cpuacct_subsys;
9255
9256 /* return cpu accounting group corresponding to this container */
9257 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9258 {
9259 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9260 struct cpuacct, css);
9261 }
9262
9263 /* return cpu accounting group to which this task belongs */
9264 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9265 {
9266 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9267 struct cpuacct, css);
9268 }
9269
9270 /* create a new cpu accounting group */
9271 static struct cgroup_subsys_state *cpuacct_create(
9272 struct cgroup_subsys *ss, struct cgroup *cgrp)
9273 {
9274 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9275
9276 if (!ca)
9277 return ERR_PTR(-ENOMEM);
9278
9279 ca->cpuusage = alloc_percpu(u64);
9280 if (!ca->cpuusage) {
9281 kfree(ca);
9282 return ERR_PTR(-ENOMEM);
9283 }
9284
9285 if (cgrp->parent)
9286 ca->parent = cgroup_ca(cgrp->parent);
9287
9288 return &ca->css;
9289 }
9290
9291 /* destroy an existing cpu accounting group */
9292 static void
9293 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9294 {
9295 struct cpuacct *ca = cgroup_ca(cgrp);
9296
9297 free_percpu(ca->cpuusage);
9298 kfree(ca);
9299 }
9300
9301 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9302 {
9303 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9304 u64 data;
9305
9306 #ifndef CONFIG_64BIT
9307 /*
9308 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9309 */
9310 spin_lock_irq(&cpu_rq(cpu)->lock);
9311 data = *cpuusage;
9312 spin_unlock_irq(&cpu_rq(cpu)->lock);
9313 #else
9314 data = *cpuusage;
9315 #endif
9316
9317 return data;
9318 }
9319
9320 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9321 {
9322 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9323
9324 #ifndef CONFIG_64BIT
9325 /*
9326 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9327 */
9328 spin_lock_irq(&cpu_rq(cpu)->lock);
9329 *cpuusage = val;
9330 spin_unlock_irq(&cpu_rq(cpu)->lock);
9331 #else
9332 *cpuusage = val;
9333 #endif
9334 }
9335
9336 /* return total cpu usage (in nanoseconds) of a group */
9337 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9338 {
9339 struct cpuacct *ca = cgroup_ca(cgrp);
9340 u64 totalcpuusage = 0;
9341 int i;
9342
9343 for_each_present_cpu(i)
9344 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9345
9346 return totalcpuusage;
9347 }
9348
9349 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9350 u64 reset)
9351 {
9352 struct cpuacct *ca = cgroup_ca(cgrp);
9353 int err = 0;
9354 int i;
9355
9356 if (reset) {
9357 err = -EINVAL;
9358 goto out;
9359 }
9360
9361 for_each_present_cpu(i)
9362 cpuacct_cpuusage_write(ca, i, 0);
9363
9364 out:
9365 return err;
9366 }
9367
9368 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9369 struct seq_file *m)
9370 {
9371 struct cpuacct *ca = cgroup_ca(cgroup);
9372 u64 percpu;
9373 int i;
9374
9375 for_each_present_cpu(i) {
9376 percpu = cpuacct_cpuusage_read(ca, i);
9377 seq_printf(m, "%llu ", (unsigned long long) percpu);
9378 }
9379 seq_printf(m, "\n");
9380 return 0;
9381 }
9382
9383 static struct cftype files[] = {
9384 {
9385 .name = "usage",
9386 .read_u64 = cpuusage_read,
9387 .write_u64 = cpuusage_write,
9388 },
9389 {
9390 .name = "usage_percpu",
9391 .read_seq_string = cpuacct_percpu_seq_read,
9392 },
9393
9394 };
9395
9396 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9397 {
9398 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9399 }
9400
9401 /*
9402 * charge this task's execution time to its accounting group.
9403 *
9404 * called with rq->lock held.
9405 */
9406 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9407 {
9408 struct cpuacct *ca;
9409 int cpu;
9410
9411 if (!cpuacct_subsys.active)
9412 return;
9413
9414 cpu = task_cpu(tsk);
9415 ca = task_ca(tsk);
9416
9417 for (; ca; ca = ca->parent) {
9418 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9419 *cpuusage += cputime;
9420 }
9421 }
9422
9423 struct cgroup_subsys cpuacct_subsys = {
9424 .name = "cpuacct",
9425 .create = cpuacct_create,
9426 .destroy = cpuacct_destroy,
9427 .populate = cpuacct_populate,
9428 .subsys_id = cpuacct_subsys_id,
9429 };
9430 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.297265 seconds and 6 git commands to generate.