sched: Request for idle balance during nohz idle load balance
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 /*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98 /*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107 /*
108 * Helpers for converting nanosecond timing to jiffy resolution
109 */
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 *
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
120 */
121 #define DEF_TIMESLICE (100 * HZ / 1000)
122
123 /*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126 #define RUNTIME_INF ((u64)~0ULL)
127
128 static inline int rt_policy(int policy)
129 {
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
133 }
134
135 static inline int task_has_rt_policy(struct task_struct *p)
136 {
137 return rt_policy(p->policy);
138 }
139
140 /*
141 * This is the priority-queue data structure of the RT scheduling class:
142 */
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146 };
147
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
154 };
155
156 static struct rt_bandwidth def_rt_bandwidth;
157
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161 {
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 }
180
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183 {
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
188
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 }
193
194 static inline int rt_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
200 {
201 unsigned long delta;
202 ktime_t soft, hard, now;
203
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
227 raw_spin_lock(&rt_b->rt_runtime_lock);
228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229 raw_spin_unlock(&rt_b->rt_runtime_lock);
230 }
231
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 {
235 hrtimer_cancel(&rt_b->rt_period_timer);
236 }
237 #endif
238
239 /*
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
242 */
243 static DEFINE_MUTEX(sched_domains_mutex);
244
245 #ifdef CONFIG_CGROUP_SCHED
246
247 #include <linux/cgroup.h>
248
249 struct cfs_rq;
250
251 static LIST_HEAD(task_groups);
252
253 struct cfs_bandwidth {
254 #ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
257 u64 quota, runtime;
258 s64 hierarchal_quota;
259 u64 runtime_expires;
260
261 int idle, timer_active;
262 struct hrtimer period_timer, slack_timer;
263 struct list_head throttled_cfs_rq;
264
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
268 #endif
269 };
270
271 /* task group related information */
272 struct task_group {
273 struct cgroup_subsys_state css;
274
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
281
282 atomic_t load_weight;
283 #endif
284
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
289 struct rt_bandwidth rt_bandwidth;
290 #endif
291
292 struct rcu_head rcu;
293 struct list_head list;
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
298
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301 #endif
302
303 struct cfs_bandwidth cfs_bandwidth;
304 };
305
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock);
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
312
313 /*
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
323
324 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 #endif
326
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
329 */
330 struct task_group root_task_group;
331
332 #endif /* CONFIG_CGROUP_SCHED */
333
334 /* CFS-related fields in a runqueue */
335 struct cfs_rq {
336 struct load_weight load;
337 unsigned long nr_running, h_nr_running;
338
339 u64 exec_clock;
340 u64 min_vruntime;
341 #ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343 #endif
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
355 struct sched_entity *curr, *next, *last, *skip;
356
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over;
359 #endif
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_SMP
377 /*
378 * the part of load.weight contributed by tasks
379 */
380 unsigned long task_weight;
381
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
389
390 /*
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
396 */
397 u64 load_avg;
398 u64 load_period;
399 u64 load_stamp, load_last, load_unacc_exec_time;
400
401 unsigned long load_contribution;
402 #endif
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
408 u64 throttled_timestamp;
409 int throttled, throttle_count;
410 struct list_head throttled_list;
411 #endif
412 #endif
413 };
414
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418 {
419 return &tg->cfs_bandwidth;
420 }
421
422 static inline u64 default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427 {
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433 }
434
435 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436 {
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454 }
455
456 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457 {
458 raw_spin_lock_init(&cfs_b->lock);
459 cfs_b->runtime = 0;
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
462
463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
468 }
469
470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471 {
472 cfs_rq->runtime_enabled = 0;
473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
474 }
475
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478 {
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498 }
499
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
501 {
502 hrtimer_cancel(&cfs_b->period_timer);
503 hrtimer_cancel(&cfs_b->slack_timer);
504 }
505 #else
506 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511 {
512 return NULL;
513 }
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
516
517 /* Real-Time classes' related field in a runqueue: */
518 struct rt_rq {
519 struct rt_prio_array active;
520 unsigned long rt_nr_running;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 struct {
523 int curr; /* highest queued rt task prio */
524 #ifdef CONFIG_SMP
525 int next; /* next highest */
526 #endif
527 } highest_prio;
528 #endif
529 #ifdef CONFIG_SMP
530 unsigned long rt_nr_migratory;
531 unsigned long rt_nr_total;
532 int overloaded;
533 struct plist_head pushable_tasks;
534 #endif
535 int rt_throttled;
536 u64 rt_time;
537 u64 rt_runtime;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock;
540
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted;
543
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
547 #endif
548 };
549
550 #ifdef CONFIG_SMP
551
552 /*
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
559 */
560 struct root_domain {
561 atomic_t refcount;
562 atomic_t rto_count;
563 struct rcu_head rcu;
564 cpumask_var_t span;
565 cpumask_var_t online;
566
567 /*
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
571 cpumask_var_t rto_mask;
572 struct cpupri cpupri;
573 };
574
575 /*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
579 static struct root_domain def_root_domain;
580
581 #endif /* CONFIG_SMP */
582
583 /*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601 unsigned long last_load_update_tick;
602 #ifdef CONFIG_NO_HZ
603 u64 nohz_stamp;
604 unsigned char nohz_balance_kick;
605 #endif
606 int skip_clock_update;
607
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
614 struct rt_rq rt;
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list;
622 #endif
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
632 struct task_struct *curr, *idle, *stop;
633 unsigned long next_balance;
634 struct mm_struct *prev_mm;
635
636 u64 clock;
637 u64 clock_task;
638
639 atomic_t nr_iowait;
640
641 #ifdef CONFIG_SMP
642 struct root_domain *rd;
643 struct sched_domain *sd;
644
645 unsigned long cpu_power;
646
647 unsigned char idle_balance;
648 /* For active balancing */
649 int post_schedule;
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661 #endif
662
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665 #endif
666 #ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671 #endif
672
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
677 #ifdef CONFIG_SCHED_HRTICK
678 #ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681 #endif
682 struct hrtimer hrtick_timer;
683 #endif
684
685 #ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
690
691 /* sys_sched_yield() stats */
692 unsigned int yld_count;
693
694 /* schedule() stats */
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
698
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
702 #endif
703
704 #ifdef CONFIG_SMP
705 struct llist_head wake_list;
706 #endif
707 };
708
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
710
711
712 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
713
714 static inline int cpu_of(struct rq *rq)
715 {
716 #ifdef CONFIG_SMP
717 return rq->cpu;
718 #else
719 return 0;
720 #endif
721 }
722
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
726
727 /*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
736
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
742
743 #ifdef CONFIG_CGROUP_SCHED
744
745 /*
746 * Return the group to which this tasks belongs.
747 *
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
752 */
753 static inline struct task_group *task_group(struct task_struct *p)
754 {
755 struct task_group *tg;
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
764 }
765
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768 {
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772 #endif
773
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777 #endif
778 }
779
780 #else /* CONFIG_CGROUP_SCHED */
781
782 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783 static inline struct task_group *task_group(struct task_struct *p)
784 {
785 return NULL;
786 }
787
788 #endif /* CONFIG_CGROUP_SCHED */
789
790 static void update_rq_clock_task(struct rq *rq, s64 delta);
791
792 static void update_rq_clock(struct rq *rq)
793 {
794 s64 delta;
795
796 if (rq->skip_clock_update > 0)
797 return;
798
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
802 }
803
804 /*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
809 #else
810 # define const_debug static const
811 #endif
812
813 /**
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
816 *
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
820 int runqueue_is_locked(int cpu)
821 {
822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
823 }
824
825 /*
826 * Debugging: various feature bits
827 */
828
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
832 enum {
833 #include "sched_features.h"
834 };
835
836 #undef SCHED_FEAT
837
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
841 const_debug unsigned int sysctl_sched_features =
842 #include "sched_features.h"
843 0;
844
845 #undef SCHED_FEAT
846
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
849 #name ,
850
851 static __read_mostly char *sched_feat_names[] = {
852 #include "sched_features.h"
853 NULL
854 };
855
856 #undef SCHED_FEAT
857
858 static int sched_feat_show(struct seq_file *m, void *v)
859 {
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
866 }
867 seq_puts(m, "\n");
868
869 return 0;
870 }
871
872 static ssize_t
873 sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875 {
876 char buf[64];
877 char *cmp;
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
888 cmp = strstrip(buf);
889
890 if (strncmp(cmp, "NO_", 3) == 0) {
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
908 *ppos += cnt;
909
910 return cnt;
911 }
912
913 static int sched_feat_open(struct inode *inode, struct file *filp)
914 {
915 return single_open(filp, sched_feat_show, NULL);
916 }
917
918 static const struct file_operations sched_feat_fops = {
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
924 };
925
926 static __init int sched_init_debug(void)
927 {
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932 }
933 late_initcall(sched_init_debug);
934
935 #endif
936
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938
939 /*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943 const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
945 /*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
953 /*
954 * period over which we measure -rt task cpu usage in us.
955 * default: 1s
956 */
957 unsigned int sysctl_sched_rt_period = 1000000;
958
959 static __read_mostly int scheduler_running;
960
961 /*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965 int sysctl_sched_rt_runtime = 950000;
966
967 static inline u64 global_rt_period(void)
968 {
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970 }
971
972 static inline u64 global_rt_runtime(void)
973 {
974 if (sysctl_sched_rt_runtime < 0)
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978 }
979
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
982 #endif
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
985 #endif
986
987 static inline int task_current(struct rq *rq, struct task_struct *p)
988 {
989 return rq->curr == p;
990 }
991
992 static inline int task_running(struct rq *rq, struct task_struct *p)
993 {
994 #ifdef CONFIG_SMP
995 return p->on_cpu;
996 #else
997 return task_current(rq, p);
998 #endif
999 }
1000
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003 {
1004 #ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011 #endif
1012 }
1013
1014 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1015 {
1016 #ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024 #endif
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028 #endif
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
1036 raw_spin_unlock_irq(&rq->lock);
1037 }
1038
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1041 {
1042 #ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
1048 next->on_cpu = 1;
1049 #endif
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq->lock);
1052 #else
1053 raw_spin_unlock(&rq->lock);
1054 #endif
1055 }
1056
1057 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058 {
1059 #ifdef CONFIG_SMP
1060 /*
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067 #endif
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1070 #endif
1071 }
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073
1074 /*
1075 * __task_rq_lock - lock the rq @p resides on.
1076 */
1077 static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 __acquires(rq->lock)
1079 {
1080 struct rq *rq;
1081
1082 lockdep_assert_held(&p->pi_lock);
1083
1084 for (;;) {
1085 rq = task_rq(p);
1086 raw_spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1089 raw_spin_unlock(&rq->lock);
1090 }
1091 }
1092
1093 /*
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1095 */
1096 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097 __acquires(p->pi_lock)
1098 __acquires(rq->lock)
1099 {
1100 struct rq *rq;
1101
1102 for (;;) {
1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104 rq = task_rq(p);
1105 raw_spin_lock(&rq->lock);
1106 if (likely(rq == task_rq(p)))
1107 return rq;
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1110 }
1111 }
1112
1113 static void __task_rq_unlock(struct rq *rq)
1114 __releases(rq->lock)
1115 {
1116 raw_spin_unlock(&rq->lock);
1117 }
1118
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1123 {
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1126 }
1127
1128 /*
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1130 */
1131 static struct rq *this_rq_lock(void)
1132 __acquires(rq->lock)
1133 {
1134 struct rq *rq;
1135
1136 local_irq_disable();
1137 rq = this_rq();
1138 raw_spin_lock(&rq->lock);
1139
1140 return rq;
1141 }
1142
1143 #ifdef CONFIG_SCHED_HRTICK
1144 /*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
1154
1155 /*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160 static inline int hrtick_enabled(struct rq *rq)
1161 {
1162 if (!sched_feat(HRTICK))
1163 return 0;
1164 if (!cpu_active(cpu_of(rq)))
1165 return 0;
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167 }
1168
1169 static void hrtick_clear(struct rq *rq)
1170 {
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173 }
1174
1175 /*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180 {
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
1185 raw_spin_lock(&rq->lock);
1186 update_rq_clock(rq);
1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188 raw_spin_unlock(&rq->lock);
1189
1190 return HRTIMER_NORESTART;
1191 }
1192
1193 #ifdef CONFIG_SMP
1194 /*
1195 * called from hardirq (IPI) context
1196 */
1197 static void __hrtick_start(void *arg)
1198 {
1199 struct rq *rq = arg;
1200
1201 raw_spin_lock(&rq->lock);
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
1204 raw_spin_unlock(&rq->lock);
1205 }
1206
1207 /*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212 static void hrtick_start(struct rq *rq, u64 delay)
1213 {
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1216
1217 hrtimer_set_expires(timer, time);
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 rq->hrtick_csd_pending = 1;
1224 }
1225 }
1226
1227 static int
1228 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229 {
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
1239 hrtick_clear(cpu_rq(cpu));
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244 }
1245
1246 static __init void init_hrtick(void)
1247 {
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249 }
1250 #else
1251 /*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256 static void hrtick_start(struct rq *rq, u64 delay)
1257 {
1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259 HRTIMER_MODE_REL_PINNED, 0);
1260 }
1261
1262 static inline void init_hrtick(void)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 static void init_rq_hrtick(struct rq *rq)
1268 {
1269 #ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
1271
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275 #endif
1276
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
1279 }
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq *rq)
1282 {
1283 }
1284
1285 static inline void init_rq_hrtick(struct rq *rq)
1286 {
1287 }
1288
1289 static inline void init_hrtick(void)
1290 {
1291 }
1292 #endif /* CONFIG_SCHED_HRTICK */
1293
1294 /*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301 #ifdef CONFIG_SMP
1302
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 #endif
1306
1307 static void resched_task(struct task_struct *p)
1308 {
1309 int cpu;
1310
1311 assert_raw_spin_locked(&task_rq(p)->lock);
1312
1313 if (test_tsk_need_resched(p))
1314 return;
1315
1316 set_tsk_need_resched(p);
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326 }
1327
1328 static void resched_cpu(int cpu)
1329 {
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1334 return;
1335 resched_task(cpu_curr(cpu));
1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
1337 }
1338
1339 #ifdef CONFIG_NO_HZ
1340 /*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348 int get_nohz_timer_target(void)
1349 {
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
1354 rcu_read_lock();
1355 for_each_domain(cpu, sd) {
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
1362 }
1363 unlock:
1364 rcu_read_unlock();
1365 return cpu;
1366 }
1367 /*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377 void wake_up_idle_cpu(int cpu)
1378 {
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
1399 set_tsk_need_resched(rq->idle);
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405 }
1406
1407 static inline bool got_nohz_idle_kick(void)
1408 {
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410 }
1411
1412 #else /* CONFIG_NO_HZ */
1413
1414 static inline bool got_nohz_idle_kick(void)
1415 {
1416 return false;
1417 }
1418
1419 #endif /* CONFIG_NO_HZ */
1420
1421 static u64 sched_avg_period(void)
1422 {
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424 }
1425
1426 static void sched_avg_update(struct rq *rq)
1427 {
1428 s64 period = sched_avg_period();
1429
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
1431 /*
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1435 */
1436 asm("" : "+rm" (rq->age_stamp));
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1439 }
1440 }
1441
1442 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1443 {
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1446 }
1447
1448 #else /* !CONFIG_SMP */
1449 static void resched_task(struct task_struct *p)
1450 {
1451 assert_raw_spin_locked(&task_rq(p)->lock);
1452 set_tsk_need_resched(p);
1453 }
1454
1455 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456 {
1457 }
1458
1459 static void sched_avg_update(struct rq *rq)
1460 {
1461 }
1462 #endif /* CONFIG_SMP */
1463
1464 #if BITS_PER_LONG == 32
1465 # define WMULT_CONST (~0UL)
1466 #else
1467 # define WMULT_CONST (1UL << 32)
1468 #endif
1469
1470 #define WMULT_SHIFT 32
1471
1472 /*
1473 * Shift right and round:
1474 */
1475 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476
1477 /*
1478 * delta *= weight / lw
1479 */
1480 static unsigned long
1481 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1483 {
1484 u64 tmp;
1485
1486 /*
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1490 */
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
1495
1496 if (!lw->inv_weight) {
1497 unsigned long w = scale_load_down(lw->weight);
1498
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1500 lw->inv_weight = 1;
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
1503 else
1504 lw->inv_weight = WMULT_CONST / w;
1505 }
1506
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
1510 if (unlikely(tmp > WMULT_CONST))
1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1512 WMULT_SHIFT/2);
1513 else
1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1515
1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 }
1518
1519 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1520 {
1521 lw->weight += inc;
1522 lw->inv_weight = 0;
1523 }
1524
1525 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1526 {
1527 lw->weight -= dec;
1528 lw->inv_weight = 0;
1529 }
1530
1531 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1532 {
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1535 }
1536
1537 /*
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1544 */
1545
1546 #define WEIGHT_IDLEPRIO 3
1547 #define WMULT_IDLEPRIO 1431655765
1548
1549 /*
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1554 *
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
1560 */
1561 static const int prio_to_weight[40] = {
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
1570 };
1571
1572 /*
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1574 *
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1578 */
1579 static const u32 prio_to_wmult[40] = {
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 };
1589
1590 /* Time spent by the tasks of the cpu accounting group executing in ... */
1591 enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1594
1595 CPUACCT_STAT_NSTATS,
1596 };
1597
1598 #ifdef CONFIG_CGROUP_CPUACCT
1599 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1600 static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
1602 #else
1603 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1604 static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
1606 #endif
1607
1608 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1609 {
1610 update_load_add(&rq->load, load);
1611 }
1612
1613 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1614 {
1615 update_load_sub(&rq->load, load);
1616 }
1617
1618 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1620 typedef int (*tg_visitor)(struct task_group *, void *);
1621
1622 /*
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1625 *
1626 * Caller must hold rcu_lock or sufficient equivalent.
1627 */
1628 static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
1630 {
1631 struct task_group *parent, *child;
1632 int ret;
1633
1634 parent = from;
1635
1636 down:
1637 ret = (*down)(parent, data);
1638 if (ret)
1639 goto out;
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1643
1644 up:
1645 continue;
1646 }
1647 ret = (*up)(parent, data);
1648 if (ret || parent == from)
1649 goto out;
1650
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
1655 out:
1656 return ret;
1657 }
1658
1659 /*
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1662 *
1663 * Caller must hold rcu_lock or sufficient equivalent.
1664 */
1665
1666 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1667 {
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1669 }
1670
1671 static int tg_nop(struct task_group *tg, void *data)
1672 {
1673 return 0;
1674 }
1675 #endif
1676
1677 #ifdef CONFIG_SMP
1678 /* Used instead of source_load when we know the type == 0 */
1679 static unsigned long weighted_cpuload(const int cpu)
1680 {
1681 return cpu_rq(cpu)->load.weight;
1682 }
1683
1684 /*
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1687 *
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1690 */
1691 static unsigned long source_load(int cpu, int type)
1692 {
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1695
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1698
1699 return min(rq->cpu_load[type-1], total);
1700 }
1701
1702 /*
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1705 */
1706 static unsigned long target_load(int cpu, int type)
1707 {
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1710
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1713
1714 return max(rq->cpu_load[type-1], total);
1715 }
1716
1717 static unsigned long power_of(int cpu)
1718 {
1719 return cpu_rq(cpu)->cpu_power;
1720 }
1721
1722 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1723
1724 static unsigned long cpu_avg_load_per_task(int cpu)
1725 {
1726 struct rq *rq = cpu_rq(cpu);
1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1728
1729 if (nr_running)
1730 return rq->load.weight / nr_running;
1731
1732 return 0;
1733 }
1734
1735 #ifdef CONFIG_PREEMPT
1736
1737 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738
1739 /*
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
1746 */
1747 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1751 {
1752 raw_spin_unlock(&this_rq->lock);
1753 double_rq_lock(this_rq, busiest);
1754
1755 return 1;
1756 }
1757
1758 #else
1759 /*
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1765 */
1766 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1770 {
1771 int ret = 0;
1772
1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1774 if (busiest < this_rq) {
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 raw_spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 raw_spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809
1810 /*
1811 * double_rq_lock - safely lock two runqueues
1812 *
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1815 */
1816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1819 {
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1831 }
1832 }
1833 }
1834
1835 /*
1836 * double_rq_unlock - safely unlock two runqueues
1837 *
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1840 */
1841 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1844 {
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1850 }
1851
1852 #else /* CONFIG_SMP */
1853
1854 /*
1855 * double_rq_lock - safely lock two runqueues
1856 *
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1859 */
1860 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1863 {
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1868 }
1869
1870 /*
1871 * double_rq_unlock - safely unlock two runqueues
1872 *
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1875 */
1876 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1879 {
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1883 }
1884
1885 #endif
1886
1887 static void calc_load_account_idle(struct rq *this_rq);
1888 static void update_sysctl(void);
1889 static int get_update_sysctl_factor(void);
1890 static void update_cpu_load(struct rq *this_rq);
1891
1892 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893 {
1894 set_task_rq(p, cpu);
1895 #ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903 #endif
1904 }
1905
1906 static const struct sched_class rt_sched_class;
1907
1908 #define sched_class_highest (&stop_sched_class)
1909 #define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
1911
1912 #include "sched_stats.h"
1913
1914 static void inc_nr_running(struct rq *rq)
1915 {
1916 rq->nr_running++;
1917 }
1918
1919 static void dec_nr_running(struct rq *rq)
1920 {
1921 rq->nr_running--;
1922 }
1923
1924 static void set_load_weight(struct task_struct *p)
1925 {
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1928
1929 /*
1930 * SCHED_IDLE tasks get minimal weight:
1931 */
1932 if (p->policy == SCHED_IDLE) {
1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
1934 load->inv_weight = WMULT_IDLEPRIO;
1935 return;
1936 }
1937
1938 load->weight = scale_load(prio_to_weight[prio]);
1939 load->inv_weight = prio_to_wmult[prio];
1940 }
1941
1942 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1943 {
1944 update_rq_clock(rq);
1945 sched_info_queued(p);
1946 p->sched_class->enqueue_task(rq, p, flags);
1947 }
1948
1949 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1950 {
1951 update_rq_clock(rq);
1952 sched_info_dequeued(p);
1953 p->sched_class->dequeue_task(rq, p, flags);
1954 }
1955
1956 /*
1957 * activate_task - move a task to the runqueue.
1958 */
1959 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1960 {
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1963
1964 enqueue_task(rq, p, flags);
1965 }
1966
1967 /*
1968 * deactivate_task - remove a task from the runqueue.
1969 */
1970 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1971 {
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1974
1975 dequeue_task(rq, p, flags);
1976 }
1977
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979
1980 /*
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
1990 */
1991 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1993
1994 static DEFINE_PER_CPU(u64, irq_start_time);
1995 static int sched_clock_irqtime;
1996
1997 void enable_sched_clock_irqtime(void)
1998 {
1999 sched_clock_irqtime = 1;
2000 }
2001
2002 void disable_sched_clock_irqtime(void)
2003 {
2004 sched_clock_irqtime = 0;
2005 }
2006
2007 #ifndef CONFIG_64BIT
2008 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2009
2010 static inline void irq_time_write_begin(void)
2011 {
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2014 }
2015
2016 static inline void irq_time_write_end(void)
2017 {
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2020 }
2021
2022 static inline u64 irq_time_read(int cpu)
2023 {
2024 u64 irq_time;
2025 unsigned seq;
2026
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2032
2033 return irq_time;
2034 }
2035 #else /* CONFIG_64BIT */
2036 static inline void irq_time_write_begin(void)
2037 {
2038 }
2039
2040 static inline void irq_time_write_end(void)
2041 {
2042 }
2043
2044 static inline u64 irq_time_read(int cpu)
2045 {
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2047 }
2048 #endif /* CONFIG_64BIT */
2049
2050 /*
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2053 */
2054 void account_system_vtime(struct task_struct *curr)
2055 {
2056 unsigned long flags;
2057 s64 delta;
2058 int cpu;
2059
2060 if (!sched_clock_irqtime)
2061 return;
2062
2063 local_irq_save(flags);
2064
2065 cpu = smp_processor_id();
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2068
2069 irq_time_write_begin();
2070 /*
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2075 */
2076 if (hardirq_count())
2077 __this_cpu_add(cpu_hardirq_time, delta);
2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2079 __this_cpu_add(cpu_softirq_time, delta);
2080
2081 irq_time_write_end();
2082 local_irq_restore(flags);
2083 }
2084 EXPORT_SYMBOL_GPL(account_system_vtime);
2085
2086 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2087
2088 #ifdef CONFIG_PARAVIRT
2089 static inline u64 steal_ticks(u64 steal)
2090 {
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
2093
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2095 }
2096 #endif
2097
2098 static void update_rq_clock_task(struct rq *rq, s64 delta)
2099 {
2100 /*
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2103 */
2104 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106 #endif
2107 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2109
2110 /*
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2114 *
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2119 *
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2124 */
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2127
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
2130 #endif
2131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2134
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2137
2138 if (unlikely(steal > delta))
2139 steal = delta;
2140
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2143
2144 rq->prev_steal_time_rq += steal;
2145
2146 delta -= steal;
2147 }
2148 #endif
2149
2150 rq->clock_task += delta;
2151
2152 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155 #endif
2156 }
2157
2158 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 static int irqtime_account_hi_update(void)
2160 {
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2165
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2172 }
2173
2174 static int irqtime_account_si_update(void)
2175 {
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2180
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2187 }
2188
2189 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2190
2191 #define sched_clock_irqtime (0)
2192
2193 #endif
2194
2195 #include "sched_idletask.c"
2196 #include "sched_fair.c"
2197 #include "sched_rt.c"
2198 #include "sched_autogroup.c"
2199 #include "sched_stoptask.c"
2200 #ifdef CONFIG_SCHED_DEBUG
2201 # include "sched_debug.c"
2202 #endif
2203
2204 void sched_set_stop_task(int cpu, struct task_struct *stop)
2205 {
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2208
2209 if (stop) {
2210 /*
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2213 *
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2217 */
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2219
2220 stop->sched_class = &stop_sched_class;
2221 }
2222
2223 cpu_rq(cpu)->stop = stop;
2224
2225 if (old_stop) {
2226 /*
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2229 */
2230 old_stop->sched_class = &rt_sched_class;
2231 }
2232 }
2233
2234 /*
2235 * __normal_prio - return the priority that is based on the static prio
2236 */
2237 static inline int __normal_prio(struct task_struct *p)
2238 {
2239 return p->static_prio;
2240 }
2241
2242 /*
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2248 */
2249 static inline int normal_prio(struct task_struct *p)
2250 {
2251 int prio;
2252
2253 if (task_has_rt_policy(p))
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2258 }
2259
2260 /*
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2266 */
2267 static int effective_prio(struct task_struct *p)
2268 {
2269 p->normal_prio = normal_prio(p);
2270 /*
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2274 */
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2278 }
2279
2280 /**
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2283 */
2284 inline int task_curr(const struct task_struct *p)
2285 {
2286 return cpu_curr(task_cpu(p)) == p;
2287 }
2288
2289 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
2291 int oldprio)
2292 {
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
2299 }
2300
2301 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2302 {
2303 const struct sched_class *class;
2304
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2321 */
2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2323 rq->skip_clock_update = 1;
2324 }
2325
2326 #ifdef CONFIG_SMP
2327 /*
2328 * Is this task likely cache-hot:
2329 */
2330 static int
2331 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2332 {
2333 s64 delta;
2334
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2337
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2340
2341 /*
2342 * Buddy candidates are cache hot:
2343 */
2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
2347 return 1;
2348
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2353
2354 delta = now - p->se.exec_start;
2355
2356 return delta < (s64)sysctl_sched_migration_cost;
2357 }
2358
2359 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2360 {
2361 #ifdef CONFIG_SCHED_DEBUG
2362 /*
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2365 */
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2368
2369 #ifdef CONFIG_LOCKDEP
2370 /*
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2373 *
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2376 *
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2379 */
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382 #endif
2383 #endif
2384
2385 trace_sched_migrate_task(p, new_cpu);
2386
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2390 }
2391
2392 __set_task_cpu(p, new_cpu);
2393 }
2394
2395 struct migration_arg {
2396 struct task_struct *task;
2397 int dest_cpu;
2398 };
2399
2400 static int migration_cpu_stop(void *data);
2401
2402 /*
2403 * wait_task_inactive - wait for a thread to unschedule.
2404 *
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2411 *
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2417 */
2418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2419 {
2420 unsigned long flags;
2421 int running, on_rq;
2422 unsigned long ncsw;
2423 struct rq *rq;
2424
2425 for (;;) {
2426 /*
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2431 */
2432 rq = task_rq(p);
2433
2434 /*
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2438 *
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2444 */
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
2448 cpu_relax();
2449 }
2450
2451 /*
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2455 */
2456 rq = task_rq_lock(p, &flags);
2457 trace_sched_wait_task(p);
2458 running = task_running(rq, p);
2459 on_rq = p->on_rq;
2460 ncsw = 0;
2461 if (!match_state || p->state == match_state)
2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2463 task_rq_unlock(rq, p, &flags);
2464
2465 /*
2466 * If it changed from the expected state, bail out now.
2467 */
2468 if (unlikely(!ncsw))
2469 break;
2470
2471 /*
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2474 *
2475 * Oops. Go back and try again..
2476 */
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2480 }
2481
2482 /*
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2486 *
2487 * So if it was still runnable (but just not actively
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2490 */
2491 if (unlikely(on_rq)) {
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2493
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2496 continue;
2497 }
2498
2499 /*
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2503 */
2504 break;
2505 }
2506
2507 return ncsw;
2508 }
2509
2510 /***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2513 *
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2516 *
2517 * NOTE: this function doesn't have to take the runqueue lock,
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2522 */
2523 void kick_process(struct task_struct *p)
2524 {
2525 int cpu;
2526
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2532 }
2533 EXPORT_SYMBOL_GPL(kick_process);
2534 #endif /* CONFIG_SMP */
2535
2536 #ifdef CONFIG_SMP
2537 /*
2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2539 */
2540 static int select_fallback_rq(int cpu, struct task_struct *p)
2541 {
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2544
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2548 return dest_cpu;
2549
2550 /* Any allowed, online CPU? */
2551 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2554
2555 /* No more Mr. Nice Guy. */
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2557 /*
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2561 */
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
2565 }
2566
2567 return dest_cpu;
2568 }
2569
2570 /*
2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2572 */
2573 static inline
2574 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2575 {
2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2577
2578 /*
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2582 *
2583 * Since this is common to all placement strategies, this lives here.
2584 *
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2587 */
2588 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2589 !cpu_online(cpu)))
2590 cpu = select_fallback_rq(task_cpu(p), p);
2591
2592 return cpu;
2593 }
2594
2595 static void update_avg(u64 *avg, u64 sample)
2596 {
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2599 }
2600 #endif
2601
2602 static void
2603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2604 {
2605 #ifdef CONFIG_SCHEDSTATS
2606 struct rq *rq = this_rq();
2607
2608 #ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2610
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2616
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2618 rcu_read_lock();
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2623 }
2624 }
2625 rcu_read_unlock();
2626 }
2627
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2630
2631 #endif /* CONFIG_SMP */
2632
2633 schedstat_inc(rq, ttwu_count);
2634 schedstat_inc(p, se.statistics.nr_wakeups);
2635
2636 if (wake_flags & WF_SYNC)
2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2638
2639 #endif /* CONFIG_SCHEDSTATS */
2640 }
2641
2642 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2643 {
2644 activate_task(rq, p, en_flags);
2645 p->on_rq = 1;
2646
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
2650 }
2651
2652 /*
2653 * Mark the task runnable and perform wakeup-preemption.
2654 */
2655 static void
2656 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2657 {
2658 trace_sched_wakeup(p, true);
2659 check_preempt_curr(rq, p, wake_flags);
2660
2661 p->state = TASK_RUNNING;
2662 #ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2665
2666 if (rq->idle_stamp) {
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2669
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2675 }
2676 #endif
2677 }
2678
2679 static void
2680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2681 {
2682 #ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685 #endif
2686
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2689 }
2690
2691 /*
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2696 */
2697 static int ttwu_remote(struct task_struct *p, int wake_flags)
2698 {
2699 struct rq *rq;
2700 int ret = 0;
2701
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2706 }
2707 __task_rq_unlock(rq);
2708
2709 return ret;
2710 }
2711
2712 #ifdef CONFIG_SMP
2713 static void sched_ttwu_pending(void)
2714 {
2715 struct rq *rq = this_rq();
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
2718
2719 raw_spin_lock(&rq->lock);
2720
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
2724 ttwu_do_activate(rq, p, 0);
2725 }
2726
2727 raw_spin_unlock(&rq->lock);
2728 }
2729
2730 void scheduler_ipi(void)
2731 {
2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2733 return;
2734
2735 /*
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2740 *
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2743 *
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2747 */
2748 irq_enter();
2749 sched_ttwu_pending();
2750
2751 /*
2752 * Check if someone kicked us for doing the nohz idle load balance.
2753 */
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance = 1;
2756 raise_softirq_irqoff(SCHED_SOFTIRQ);
2757 }
2758 irq_exit();
2759 }
2760
2761 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2762 {
2763 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2764 smp_send_reschedule(cpu);
2765 }
2766
2767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2769 {
2770 struct rq *rq;
2771 int ret = 0;
2772
2773 rq = __task_rq_lock(p);
2774 if (p->on_cpu) {
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776 ttwu_do_wakeup(rq, p, wake_flags);
2777 ret = 1;
2778 }
2779 __task_rq_unlock(rq);
2780
2781 return ret;
2782
2783 }
2784 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785 #endif /* CONFIG_SMP */
2786
2787 static void ttwu_queue(struct task_struct *p, int cpu)
2788 {
2789 struct rq *rq = cpu_rq(cpu);
2790
2791 #if defined(CONFIG_SMP)
2792 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2793 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2794 ttwu_queue_remote(p, cpu);
2795 return;
2796 }
2797 #endif
2798
2799 raw_spin_lock(&rq->lock);
2800 ttwu_do_activate(rq, p, 0);
2801 raw_spin_unlock(&rq->lock);
2802 }
2803
2804 /**
2805 * try_to_wake_up - wake up a thread
2806 * @p: the thread to be awakened
2807 * @state: the mask of task states that can be woken
2808 * @wake_flags: wake modifier flags (WF_*)
2809 *
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2815 *
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
2818 */
2819 static int
2820 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2821 {
2822 unsigned long flags;
2823 int cpu, success = 0;
2824
2825 smp_wmb();
2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
2827 if (!(p->state & state))
2828 goto out;
2829
2830 success = 1; /* we're going to change ->state */
2831 cpu = task_cpu(p);
2832
2833 if (p->on_rq && ttwu_remote(p, wake_flags))
2834 goto stat;
2835
2836 #ifdef CONFIG_SMP
2837 /*
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
2840 */
2841 while (p->on_cpu) {
2842 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2843 /*
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2848 * remote wakeup.
2849 */
2850 if (ttwu_activate_remote(p, wake_flags))
2851 goto stat;
2852 #else
2853 cpu_relax();
2854 #endif
2855 }
2856 /*
2857 * Pairs with the smp_wmb() in finish_lock_switch().
2858 */
2859 smp_rmb();
2860
2861 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2862 p->state = TASK_WAKING;
2863
2864 if (p->sched_class->task_waking)
2865 p->sched_class->task_waking(p);
2866
2867 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2868 if (task_cpu(p) != cpu) {
2869 wake_flags |= WF_MIGRATED;
2870 set_task_cpu(p, cpu);
2871 }
2872 #endif /* CONFIG_SMP */
2873
2874 ttwu_queue(p, cpu);
2875 stat:
2876 ttwu_stat(p, cpu, wake_flags);
2877 out:
2878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2879
2880 return success;
2881 }
2882
2883 /**
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2886 *
2887 * Put @p on the run-queue if it's not already there. The caller must
2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2889 * the current task.
2890 */
2891 static void try_to_wake_up_local(struct task_struct *p)
2892 {
2893 struct rq *rq = task_rq(p);
2894
2895 BUG_ON(rq != this_rq());
2896 BUG_ON(p == current);
2897 lockdep_assert_held(&rq->lock);
2898
2899 if (!raw_spin_trylock(&p->pi_lock)) {
2900 raw_spin_unlock(&rq->lock);
2901 raw_spin_lock(&p->pi_lock);
2902 raw_spin_lock(&rq->lock);
2903 }
2904
2905 if (!(p->state & TASK_NORMAL))
2906 goto out;
2907
2908 if (!p->on_rq)
2909 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2910
2911 ttwu_do_wakeup(rq, p, 0);
2912 ttwu_stat(p, smp_processor_id(), 0);
2913 out:
2914 raw_spin_unlock(&p->pi_lock);
2915 }
2916
2917 /**
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2920 *
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2923 * running.
2924 *
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2927 */
2928 int wake_up_process(struct task_struct *p)
2929 {
2930 return try_to_wake_up(p, TASK_ALL, 0);
2931 }
2932 EXPORT_SYMBOL(wake_up_process);
2933
2934 int wake_up_state(struct task_struct *p, unsigned int state)
2935 {
2936 return try_to_wake_up(p, state, 0);
2937 }
2938
2939 /*
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2942 *
2943 * __sched_fork() is basic setup used by init_idle() too:
2944 */
2945 static void __sched_fork(struct task_struct *p)
2946 {
2947 p->on_rq = 0;
2948
2949 p->se.on_rq = 0;
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
2952 p->se.prev_sum_exec_runtime = 0;
2953 p->se.nr_migrations = 0;
2954 p->se.vruntime = 0;
2955 INIT_LIST_HEAD(&p->se.group_node);
2956
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2959 #endif
2960
2961 INIT_LIST_HEAD(&p->rt.run_list);
2962
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965 #endif
2966 }
2967
2968 /*
2969 * fork()/clone()-time setup:
2970 */
2971 void sched_fork(struct task_struct *p)
2972 {
2973 unsigned long flags;
2974 int cpu = get_cpu();
2975
2976 __sched_fork(p);
2977 /*
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2981 */
2982 p->state = TASK_RUNNING;
2983
2984 /*
2985 * Make sure we do not leak PI boosting priority to the child.
2986 */
2987 p->prio = current->normal_prio;
2988
2989 /*
2990 * Revert to default priority/policy on fork if requested.
2991 */
2992 if (unlikely(p->sched_reset_on_fork)) {
2993 if (task_has_rt_policy(p)) {
2994 p->policy = SCHED_NORMAL;
2995 p->static_prio = NICE_TO_PRIO(0);
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
2999
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
3002
3003 /*
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3006 */
3007 p->sched_reset_on_fork = 0;
3008 }
3009
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
3012
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3015
3016 /*
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3020 *
3021 * Silence PROVE_RCU.
3022 */
3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
3024 set_task_cpu(p, cpu);
3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3026
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
3030 #endif
3031 #if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
3033 #endif
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p)->preempt_count = 1;
3037 #endif
3038 #ifdef CONFIG_SMP
3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3040 #endif
3041
3042 put_cpu();
3043 }
3044
3045 /*
3046 * wake_up_new_task - wake up a newly created task for the first time.
3047 *
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3051 */
3052 void wake_up_new_task(struct task_struct *p)
3053 {
3054 unsigned long flags;
3055 struct rq *rq;
3056
3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
3058 #ifdef CONFIG_SMP
3059 /*
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3063 */
3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3065 #endif
3066
3067 rq = __task_rq_lock(p);
3068 activate_task(rq, p, 0);
3069 p->on_rq = 1;
3070 trace_sched_wakeup_new(p, true);
3071 check_preempt_curr(rq, p, WF_FORK);
3072 #ifdef CONFIG_SMP
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
3075 #endif
3076 task_rq_unlock(rq, p, &flags);
3077 }
3078
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3080
3081 /**
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3084 */
3085 void preempt_notifier_register(struct preempt_notifier *notifier)
3086 {
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3088 }
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3090
3091 /**
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3094 *
3095 * This is safe to call from within a preemption notifier.
3096 */
3097 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3098 {
3099 hlist_del(&notifier->link);
3100 }
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3102
3103 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3104 {
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3107
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3110 }
3111
3112 static void
3113 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3115 {
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3118
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3121 }
3122
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3124
3125 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3126 {
3127 }
3128
3129 static void
3130 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3132 {
3133 }
3134
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3136
3137 /**
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3142 *
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3146 *
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3149 */
3150 static inline void
3151 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
3153 {
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
3156 fire_sched_out_preempt_notifiers(prev, next);
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
3159 trace_sched_switch(prev, next);
3160 }
3161
3162 /**
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3166 *
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3171 *
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3176 */
3177 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3178 __releases(rq->lock)
3179 {
3180 struct mm_struct *mm = rq->prev_mm;
3181 long prev_state;
3182
3183 rq->prev_mm = NULL;
3184
3185 /*
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3195 */
3196 prev_state = prev->state;
3197 finish_arch_switch(prev);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev, current);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq, prev);
3206
3207 fire_sched_in_preempt_notifiers(current);
3208 if (mm)
3209 mmdrop(mm);
3210 if (unlikely(prev_state == TASK_DEAD)) {
3211 /*
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3214 */
3215 kprobe_flush_task(prev);
3216 put_task_struct(prev);
3217 }
3218 }
3219
3220 #ifdef CONFIG_SMP
3221
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3224 {
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3227 }
3228
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq *rq)
3231 {
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3234
3235 raw_spin_lock_irqsave(&rq->lock, flags);
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3239
3240 rq->post_schedule = 0;
3241 }
3242 }
3243
3244 #else
3245
3246 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3247 {
3248 }
3249
3250 static inline void post_schedule(struct rq *rq)
3251 {
3252 }
3253
3254 #endif
3255
3256 /**
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3259 */
3260 asmlinkage void schedule_tail(struct task_struct *prev)
3261 __releases(rq->lock)
3262 {
3263 struct rq *rq = this_rq();
3264
3265 finish_task_switch(rq, prev);
3266
3267 /*
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3270 */
3271 post_schedule(rq);
3272
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276 #endif
3277 if (current->set_child_tid)
3278 put_user(task_pid_vnr(current), current->set_child_tid);
3279 }
3280
3281 /*
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3284 */
3285 static inline void
3286 context_switch(struct rq *rq, struct task_struct *prev,
3287 struct task_struct *next)
3288 {
3289 struct mm_struct *mm, *oldmm;
3290
3291 prepare_task_switch(rq, prev, next);
3292
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
3295 /*
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3299 */
3300 arch_start_context_switch(prev);
3301
3302 if (!mm) {
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3308
3309 if (!prev->mm) {
3310 prev->active_mm = NULL;
3311 rq->prev_mm = oldmm;
3312 }
3313 /*
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3318 */
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3321 #endif
3322
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3325
3326 barrier();
3327 /*
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3331 */
3332 finish_task_switch(this_rq(), prev);
3333 }
3334
3335 /*
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3337 *
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3341 */
3342 unsigned long nr_running(void)
3343 {
3344 unsigned long i, sum = 0;
3345
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3348
3349 return sum;
3350 }
3351
3352 unsigned long nr_uninterruptible(void)
3353 {
3354 unsigned long i, sum = 0;
3355
3356 for_each_possible_cpu(i)
3357 sum += cpu_rq(i)->nr_uninterruptible;
3358
3359 /*
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3362 */
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
3365
3366 return sum;
3367 }
3368
3369 unsigned long long nr_context_switches(void)
3370 {
3371 int i;
3372 unsigned long long sum = 0;
3373
3374 for_each_possible_cpu(i)
3375 sum += cpu_rq(i)->nr_switches;
3376
3377 return sum;
3378 }
3379
3380 unsigned long nr_iowait(void)
3381 {
3382 unsigned long i, sum = 0;
3383
3384 for_each_possible_cpu(i)
3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3386
3387 return sum;
3388 }
3389
3390 unsigned long nr_iowait_cpu(int cpu)
3391 {
3392 struct rq *this = cpu_rq(cpu);
3393 return atomic_read(&this->nr_iowait);
3394 }
3395
3396 unsigned long this_cpu_load(void)
3397 {
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3400 }
3401
3402
3403 /* Variables and functions for calc_load */
3404 static atomic_long_t calc_load_tasks;
3405 static unsigned long calc_load_update;
3406 unsigned long avenrun[3];
3407 EXPORT_SYMBOL(avenrun);
3408
3409 static long calc_load_fold_active(struct rq *this_rq)
3410 {
3411 long nr_active, delta = 0;
3412
3413 nr_active = this_rq->nr_running;
3414 nr_active += (long) this_rq->nr_uninterruptible;
3415
3416 if (nr_active != this_rq->calc_load_active) {
3417 delta = nr_active - this_rq->calc_load_active;
3418 this_rq->calc_load_active = nr_active;
3419 }
3420
3421 return delta;
3422 }
3423
3424 static unsigned long
3425 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3426 {
3427 load *= exp;
3428 load += active * (FIXED_1 - exp);
3429 load += 1UL << (FSHIFT - 1);
3430 return load >> FSHIFT;
3431 }
3432
3433 #ifdef CONFIG_NO_HZ
3434 /*
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3436 *
3437 * When making the ILB scale, we should try to pull this in as well.
3438 */
3439 static atomic_long_t calc_load_tasks_idle;
3440
3441 static void calc_load_account_idle(struct rq *this_rq)
3442 {
3443 long delta;
3444
3445 delta = calc_load_fold_active(this_rq);
3446 if (delta)
3447 atomic_long_add(delta, &calc_load_tasks_idle);
3448 }
3449
3450 static long calc_load_fold_idle(void)
3451 {
3452 long delta = 0;
3453
3454 /*
3455 * Its got a race, we don't care...
3456 */
3457 if (atomic_long_read(&calc_load_tasks_idle))
3458 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3459
3460 return delta;
3461 }
3462
3463 /**
3464 * fixed_power_int - compute: x^n, in O(log n) time
3465 *
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3469 *
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3476 * vector.
3477 */
3478 static unsigned long
3479 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3480 {
3481 unsigned long result = 1UL << frac_bits;
3482
3483 if (n) for (;;) {
3484 if (n & 1) {
3485 result *= x;
3486 result += 1UL << (frac_bits - 1);
3487 result >>= frac_bits;
3488 }
3489 n >>= 1;
3490 if (!n)
3491 break;
3492 x *= x;
3493 x += 1UL << (frac_bits - 1);
3494 x >>= frac_bits;
3495 }
3496
3497 return result;
3498 }
3499
3500 /*
3501 * a1 = a0 * e + a * (1 - e)
3502 *
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3506 *
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3510 *
3511 * ...
3512 *
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3516 *
3517 * [1] application of the geometric series:
3518 *
3519 * n 1 - x^(n+1)
3520 * S_n := \Sum x^i = -------------
3521 * i=0 1 - x
3522 */
3523 static unsigned long
3524 calc_load_n(unsigned long load, unsigned long exp,
3525 unsigned long active, unsigned int n)
3526 {
3527
3528 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3529 }
3530
3531 /*
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3536 *
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3539 */
3540 static void calc_global_nohz(unsigned long ticks)
3541 {
3542 long delta, active, n;
3543
3544 if (time_before(jiffies, calc_load_update))
3545 return;
3546
3547 /*
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3551 * due to NO_HZ.
3552 */
3553 delta = calc_load_fold_idle();
3554 if (delta)
3555 atomic_long_add(delta, &calc_load_tasks);
3556
3557 /*
3558 * If we were idle for multiple load cycles, apply them.
3559 */
3560 if (ticks >= LOAD_FREQ) {
3561 n = ticks / LOAD_FREQ;
3562
3563 active = atomic_long_read(&calc_load_tasks);
3564 active = active > 0 ? active * FIXED_1 : 0;
3565
3566 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3567 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3568 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3569
3570 calc_load_update += n * LOAD_FREQ;
3571 }
3572
3573 /*
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3577 *
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3582 */
3583 }
3584 #else
3585 static void calc_load_account_idle(struct rq *this_rq)
3586 {
3587 }
3588
3589 static inline long calc_load_fold_idle(void)
3590 {
3591 return 0;
3592 }
3593
3594 static void calc_global_nohz(unsigned long ticks)
3595 {
3596 }
3597 #endif
3598
3599 /**
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3604 *
3605 * These values are estimates at best, so no need for locking.
3606 */
3607 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3608 {
3609 loads[0] = (avenrun[0] + offset) << shift;
3610 loads[1] = (avenrun[1] + offset) << shift;
3611 loads[2] = (avenrun[2] + offset) << shift;
3612 }
3613
3614 /*
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
3617 */
3618 void calc_global_load(unsigned long ticks)
3619 {
3620 long active;
3621
3622 calc_global_nohz(ticks);
3623
3624 if (time_before(jiffies, calc_load_update + 10))
3625 return;
3626
3627 active = atomic_long_read(&calc_load_tasks);
3628 active = active > 0 ? active * FIXED_1 : 0;
3629
3630 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3631 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3632 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3633
3634 calc_load_update += LOAD_FREQ;
3635 }
3636
3637 /*
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
3640 */
3641 static void calc_load_account_active(struct rq *this_rq)
3642 {
3643 long delta;
3644
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
3647
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
3651 atomic_long_add(delta, &calc_load_tasks);
3652
3653 this_rq->calc_load_update += LOAD_FREQ;
3654 }
3655
3656 /*
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3659 *
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3664 *
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3668 *
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3678 *
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3682 */
3683 #define DEGRADE_SHIFT 7
3684 static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686 static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3693
3694 /*
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3698 */
3699 static unsigned long
3700 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3701 {
3702 int j = 0;
3703
3704 if (!missed_updates)
3705 return load;
3706
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3709
3710 if (idx == 1)
3711 return load >> missed_updates;
3712
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3716
3717 missed_updates >>= 1;
3718 j++;
3719 }
3720 return load;
3721 }
3722
3723 /*
3724 * Update rq->cpu_load[] statistics. This function is usually called every
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
3727 */
3728 static void update_cpu_load(struct rq *this_rq)
3729 {
3730 unsigned long this_load = this_rq->load.weight;
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
3733 int i, scale;
3734
3735 this_rq->nr_load_updates++;
3736
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3740
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3743
3744 /* Update our load: */
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3747 unsigned long old_load, new_load;
3748
3749 /* scale is effectively 1 << i now, and >> i divides by scale */
3750
3751 old_load = this_rq->cpu_load[i];
3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3753 new_load = this_load;
3754 /*
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3758 */
3759 if (new_load > old_load)
3760 new_load += scale - 1;
3761
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3763 }
3764
3765 sched_avg_update(this_rq);
3766 }
3767
3768 static void update_cpu_load_active(struct rq *this_rq)
3769 {
3770 update_cpu_load(this_rq);
3771
3772 calc_load_account_active(this_rq);
3773 }
3774
3775 #ifdef CONFIG_SMP
3776
3777 /*
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
3780 */
3781 void sched_exec(void)
3782 {
3783 struct task_struct *p = current;
3784 unsigned long flags;
3785 int dest_cpu;
3786
3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
3791
3792 if (likely(cpu_active(dest_cpu))) {
3793 struct migration_arg arg = { p, dest_cpu };
3794
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3797 return;
3798 }
3799 unlock:
3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3801 }
3802
3803 #endif
3804
3805 DEFINE_PER_CPU(struct kernel_stat, kstat);
3806
3807 EXPORT_PER_CPU_SYMBOL(kstat);
3808
3809 /*
3810 * Return any ns on the sched_clock that have not yet been accounted in
3811 * @p in case that task is currently running.
3812 *
3813 * Called with task_rq_lock() held on @rq.
3814 */
3815 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3816 {
3817 u64 ns = 0;
3818
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
3821 ns = rq->clock_task - p->se.exec_start;
3822 if ((s64)ns < 0)
3823 ns = 0;
3824 }
3825
3826 return ns;
3827 }
3828
3829 unsigned long long task_delta_exec(struct task_struct *p)
3830 {
3831 unsigned long flags;
3832 struct rq *rq;
3833 u64 ns = 0;
3834
3835 rq = task_rq_lock(p, &flags);
3836 ns = do_task_delta_exec(p, rq);
3837 task_rq_unlock(rq, p, &flags);
3838
3839 return ns;
3840 }
3841
3842 /*
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3846 */
3847 unsigned long long task_sched_runtime(struct task_struct *p)
3848 {
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3852
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3855 task_rq_unlock(rq, p, &flags);
3856
3857 return ns;
3858 }
3859
3860 /*
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @cputime: the cpu time spent in user space since the last update
3864 * @cputime_scaled: cputime scaled by cpu frequency
3865 */
3866 void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
3868 {
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3871
3872 /* Add user time to process. */
3873 p->utime = cputime_add(p->utime, cputime);
3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3875 account_group_user_time(p, cputime);
3876
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
3883
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3885 /* Account for user time used */
3886 acct_update_integrals(p);
3887 }
3888
3889 /*
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
3893 * @cputime_scaled: cputime scaled by cpu frequency
3894 */
3895 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
3897 {
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900
3901 tmp = cputime_to_cputime64(cputime);
3902
3903 /* Add guest time to process. */
3904 p->utime = cputime_add(p->utime, cputime);
3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3906 account_group_user_time(p, cputime);
3907 p->gtime = cputime_add(p->gtime, cputime);
3908
3909 /* Add guest time to cpustat. */
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3916 }
3917 }
3918
3919 /*
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3925 */
3926 static inline
3927 void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3929 {
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3931
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3936
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3940
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3943 }
3944
3945 /*
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
3950 * @cputime_scaled: cputime scaled by cpu frequency
3951 */
3952 void account_system_time(struct task_struct *p, int hardirq_offset,
3953 cputime_t cputime, cputime_t cputime_scaled)
3954 {
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3956 cputime64_t *target_cputime64;
3957
3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3959 account_guest_time(p, cputime, cputime_scaled);
3960 return;
3961 }
3962
3963 if (hardirq_count() - hardirq_offset)
3964 target_cputime64 = &cpustat->irq;
3965 else if (in_serving_softirq())
3966 target_cputime64 = &cpustat->softirq;
3967 else
3968 target_cputime64 = &cpustat->system;
3969
3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3971 }
3972
3973 /*
3974 * Account for involuntary wait time.
3975 * @cputime: the cpu time spent in involuntary wait
3976 */
3977 void account_steal_time(cputime_t cputime)
3978 {
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3981
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3983 }
3984
3985 /*
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
3988 */
3989 void account_idle_time(cputime_t cputime)
3990 {
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3993 struct rq *rq = this_rq();
3994
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3999 }
4000
4001 static __always_inline bool steal_account_process_tick(void)
4002 {
4003 #ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4006
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4009
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4012
4013 account_steal_time(st);
4014 return st;
4015 }
4016 #endif
4017 return false;
4018 }
4019
4020 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4021
4022 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4023 /*
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4028 *
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4037 *
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4043 */
4044 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4046 {
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4050
4051 if (steal_account_process_tick())
4052 return;
4053
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4058 } else if (this_cpu_ksoftirqd() == p) {
4059 /*
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4063 */
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4075 }
4076 }
4077
4078 static void irqtime_account_idle_ticks(int ticks)
4079 {
4080 int i;
4081 struct rq *rq = this_rq();
4082
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4085 }
4086 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 static void irqtime_account_idle_ticks(int ticks) {}
4088 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
4090 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4091
4092 /*
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4096 */
4097 void account_process_tick(struct task_struct *p, int user_tick)
4098 {
4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4100 struct rq *rq = this_rq();
4101
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4105 }
4106
4107 if (steal_account_process_tick())
4108 return;
4109
4110 if (user_tick)
4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4114 one_jiffy_scaled);
4115 else
4116 account_idle_time(cputime_one_jiffy);
4117 }
4118
4119 /*
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4123 */
4124 void account_steal_ticks(unsigned long ticks)
4125 {
4126 account_steal_time(jiffies_to_cputime(ticks));
4127 }
4128
4129 /*
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4132 */
4133 void account_idle_ticks(unsigned long ticks)
4134 {
4135
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4139 }
4140
4141 account_idle_time(jiffies_to_cputime(ticks));
4142 }
4143
4144 #endif
4145
4146 /*
4147 * Use precise platform statistics if available:
4148 */
4149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4151 {
4152 *ut = p->utime;
4153 *st = p->stime;
4154 }
4155
4156 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4157 {
4158 struct task_cputime cputime;
4159
4160 thread_group_cputime(p, &cputime);
4161
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
4164 }
4165 #else
4166
4167 #ifndef nsecs_to_cputime
4168 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4169 #endif
4170
4171 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4172 {
4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4174
4175 /*
4176 * Use CFS's precise accounting:
4177 */
4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4179
4180 if (total) {
4181 u64 temp = rtime;
4182
4183 temp *= utime;
4184 do_div(temp, total);
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
4188
4189 /*
4190 * Compare with previous values, to keep monotonicity:
4191 */
4192 p->prev_utime = max(p->prev_utime, utime);
4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4194
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
4197 }
4198
4199 /*
4200 * Must be called with siglock held.
4201 */
4202 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4203 {
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
4207
4208 thread_group_cputime(p, &cputime);
4209
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4212
4213 if (total) {
4214 u64 temp = rtime;
4215
4216 temp *= cputime.utime;
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4221
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4225
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
4228 }
4229 #endif
4230
4231 /*
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
4234 */
4235 void scheduler_tick(void)
4236 {
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
4239 struct task_struct *curr = rq->curr;
4240
4241 sched_clock_tick();
4242
4243 raw_spin_lock(&rq->lock);
4244 update_rq_clock(rq);
4245 update_cpu_load_active(rq);
4246 curr->sched_class->task_tick(rq, curr, 0);
4247 raw_spin_unlock(&rq->lock);
4248
4249 perf_event_task_tick();
4250
4251 #ifdef CONFIG_SMP
4252 rq->idle_balance = idle_cpu(cpu);
4253 trigger_load_balance(rq, cpu);
4254 #endif
4255 }
4256
4257 notrace unsigned long get_parent_ip(unsigned long addr)
4258 {
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265 }
4266
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
4270 void __kprobes add_preempt_count(int val)
4271 {
4272 #ifdef CONFIG_DEBUG_PREEMPT
4273 /*
4274 * Underflow?
4275 */
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
4278 #endif
4279 preempt_count() += val;
4280 #ifdef CONFIG_DEBUG_PREEMPT
4281 /*
4282 * Spinlock count overflowing soon?
4283 */
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
4286 #endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4289 }
4290 EXPORT_SYMBOL(add_preempt_count);
4291
4292 void __kprobes sub_preempt_count(int val)
4293 {
4294 #ifdef CONFIG_DEBUG_PREEMPT
4295 /*
4296 * Underflow?
4297 */
4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4299 return;
4300 /*
4301 * Is the spinlock portion underflowing?
4302 */
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
4306 #endif
4307
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4310 preempt_count() -= val;
4311 }
4312 EXPORT_SYMBOL(sub_preempt_count);
4313
4314 #endif
4315
4316 /*
4317 * Print scheduling while atomic bug:
4318 */
4319 static noinline void __schedule_bug(struct task_struct *prev)
4320 {
4321 struct pt_regs *regs = get_irq_regs();
4322
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
4325
4326 debug_show_held_locks(prev);
4327 print_modules();
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
4330
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
4335 }
4336
4337 /*
4338 * Various schedule()-time debugging checks and statistics:
4339 */
4340 static inline void schedule_debug(struct task_struct *prev)
4341 {
4342 /*
4343 * Test if we are atomic. Since do_exit() needs to call into
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4346 */
4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4348 __schedule_bug(prev);
4349
4350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4351
4352 schedstat_inc(this_rq(), sched_count);
4353 }
4354
4355 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4356 {
4357 if (prev->on_rq || rq->skip_clock_update < 0)
4358 update_rq_clock(rq);
4359 prev->sched_class->put_prev_task(rq, prev);
4360 }
4361
4362 /*
4363 * Pick up the highest-prio task:
4364 */
4365 static inline struct task_struct *
4366 pick_next_task(struct rq *rq)
4367 {
4368 const struct sched_class *class;
4369 struct task_struct *p;
4370
4371 /*
4372 * Optimization: we know that if all tasks are in
4373 * the fair class we can call that function directly:
4374 */
4375 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4376 p = fair_sched_class.pick_next_task(rq);
4377 if (likely(p))
4378 return p;
4379 }
4380
4381 for_each_class(class) {
4382 p = class->pick_next_task(rq);
4383 if (p)
4384 return p;
4385 }
4386
4387 BUG(); /* the idle class will always have a runnable task */
4388 }
4389
4390 /*
4391 * __schedule() is the main scheduler function.
4392 */
4393 static void __sched __schedule(void)
4394 {
4395 struct task_struct *prev, *next;
4396 unsigned long *switch_count;
4397 struct rq *rq;
4398 int cpu;
4399
4400 need_resched:
4401 preempt_disable();
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
4404 rcu_note_context_switch(cpu);
4405 prev = rq->curr;
4406
4407 schedule_debug(prev);
4408
4409 if (sched_feat(HRTICK))
4410 hrtick_clear(rq);
4411
4412 raw_spin_lock_irq(&rq->lock);
4413
4414 switch_count = &prev->nivcsw;
4415 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4416 if (unlikely(signal_pending_state(prev->state, prev))) {
4417 prev->state = TASK_RUNNING;
4418 } else {
4419 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4420 prev->on_rq = 0;
4421
4422 /*
4423 * If a worker went to sleep, notify and ask workqueue
4424 * whether it wants to wake up a task to maintain
4425 * concurrency.
4426 */
4427 if (prev->flags & PF_WQ_WORKER) {
4428 struct task_struct *to_wakeup;
4429
4430 to_wakeup = wq_worker_sleeping(prev, cpu);
4431 if (to_wakeup)
4432 try_to_wake_up_local(to_wakeup);
4433 }
4434 }
4435 switch_count = &prev->nvcsw;
4436 }
4437
4438 pre_schedule(rq, prev);
4439
4440 if (unlikely(!rq->nr_running))
4441 idle_balance(cpu, rq);
4442
4443 put_prev_task(rq, prev);
4444 next = pick_next_task(rq);
4445 clear_tsk_need_resched(prev);
4446 rq->skip_clock_update = 0;
4447
4448 if (likely(prev != next)) {
4449 rq->nr_switches++;
4450 rq->curr = next;
4451 ++*switch_count;
4452
4453 context_switch(rq, prev, next); /* unlocks the rq */
4454 /*
4455 * The context switch have flipped the stack from under us
4456 * and restored the local variables which were saved when
4457 * this task called schedule() in the past. prev == current
4458 * is still correct, but it can be moved to another cpu/rq.
4459 */
4460 cpu = smp_processor_id();
4461 rq = cpu_rq(cpu);
4462 } else
4463 raw_spin_unlock_irq(&rq->lock);
4464
4465 post_schedule(rq);
4466
4467 preempt_enable_no_resched();
4468 if (need_resched())
4469 goto need_resched;
4470 }
4471
4472 static inline void sched_submit_work(struct task_struct *tsk)
4473 {
4474 if (!tsk->state)
4475 return;
4476 /*
4477 * If we are going to sleep and we have plugged IO queued,
4478 * make sure to submit it to avoid deadlocks.
4479 */
4480 if (blk_needs_flush_plug(tsk))
4481 blk_schedule_flush_plug(tsk);
4482 }
4483
4484 asmlinkage void __sched schedule(void)
4485 {
4486 struct task_struct *tsk = current;
4487
4488 sched_submit_work(tsk);
4489 __schedule();
4490 }
4491 EXPORT_SYMBOL(schedule);
4492
4493 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4494
4495 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4496 {
4497 if (lock->owner != owner)
4498 return false;
4499
4500 /*
4501 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4502 * lock->owner still matches owner, if that fails, owner might
4503 * point to free()d memory, if it still matches, the rcu_read_lock()
4504 * ensures the memory stays valid.
4505 */
4506 barrier();
4507
4508 return owner->on_cpu;
4509 }
4510
4511 /*
4512 * Look out! "owner" is an entirely speculative pointer
4513 * access and not reliable.
4514 */
4515 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4516 {
4517 if (!sched_feat(OWNER_SPIN))
4518 return 0;
4519
4520 rcu_read_lock();
4521 while (owner_running(lock, owner)) {
4522 if (need_resched())
4523 break;
4524
4525 arch_mutex_cpu_relax();
4526 }
4527 rcu_read_unlock();
4528
4529 /*
4530 * We break out the loop above on need_resched() and when the
4531 * owner changed, which is a sign for heavy contention. Return
4532 * success only when lock->owner is NULL.
4533 */
4534 return lock->owner == NULL;
4535 }
4536 #endif
4537
4538 #ifdef CONFIG_PREEMPT
4539 /*
4540 * this is the entry point to schedule() from in-kernel preemption
4541 * off of preempt_enable. Kernel preemptions off return from interrupt
4542 * occur there and call schedule directly.
4543 */
4544 asmlinkage void __sched notrace preempt_schedule(void)
4545 {
4546 struct thread_info *ti = current_thread_info();
4547
4548 /*
4549 * If there is a non-zero preempt_count or interrupts are disabled,
4550 * we do not want to preempt the current task. Just return..
4551 */
4552 if (likely(ti->preempt_count || irqs_disabled()))
4553 return;
4554
4555 do {
4556 add_preempt_count_notrace(PREEMPT_ACTIVE);
4557 __schedule();
4558 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4559
4560 /*
4561 * Check again in case we missed a preemption opportunity
4562 * between schedule and now.
4563 */
4564 barrier();
4565 } while (need_resched());
4566 }
4567 EXPORT_SYMBOL(preempt_schedule);
4568
4569 /*
4570 * this is the entry point to schedule() from kernel preemption
4571 * off of irq context.
4572 * Note, that this is called and return with irqs disabled. This will
4573 * protect us against recursive calling from irq.
4574 */
4575 asmlinkage void __sched preempt_schedule_irq(void)
4576 {
4577 struct thread_info *ti = current_thread_info();
4578
4579 /* Catch callers which need to be fixed */
4580 BUG_ON(ti->preempt_count || !irqs_disabled());
4581
4582 do {
4583 add_preempt_count(PREEMPT_ACTIVE);
4584 local_irq_enable();
4585 __schedule();
4586 local_irq_disable();
4587 sub_preempt_count(PREEMPT_ACTIVE);
4588
4589 /*
4590 * Check again in case we missed a preemption opportunity
4591 * between schedule and now.
4592 */
4593 barrier();
4594 } while (need_resched());
4595 }
4596
4597 #endif /* CONFIG_PREEMPT */
4598
4599 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4600 void *key)
4601 {
4602 return try_to_wake_up(curr->private, mode, wake_flags);
4603 }
4604 EXPORT_SYMBOL(default_wake_function);
4605
4606 /*
4607 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4608 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4609 * number) then we wake all the non-exclusive tasks and one exclusive task.
4610 *
4611 * There are circumstances in which we can try to wake a task which has already
4612 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4613 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4614 */
4615 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4616 int nr_exclusive, int wake_flags, void *key)
4617 {
4618 wait_queue_t *curr, *next;
4619
4620 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4621 unsigned flags = curr->flags;
4622
4623 if (curr->func(curr, mode, wake_flags, key) &&
4624 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4625 break;
4626 }
4627 }
4628
4629 /**
4630 * __wake_up - wake up threads blocked on a waitqueue.
4631 * @q: the waitqueue
4632 * @mode: which threads
4633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4634 * @key: is directly passed to the wakeup function
4635 *
4636 * It may be assumed that this function implies a write memory barrier before
4637 * changing the task state if and only if any tasks are woken up.
4638 */
4639 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4640 int nr_exclusive, void *key)
4641 {
4642 unsigned long flags;
4643
4644 spin_lock_irqsave(&q->lock, flags);
4645 __wake_up_common(q, mode, nr_exclusive, 0, key);
4646 spin_unlock_irqrestore(&q->lock, flags);
4647 }
4648 EXPORT_SYMBOL(__wake_up);
4649
4650 /*
4651 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4652 */
4653 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4654 {
4655 __wake_up_common(q, mode, 1, 0, NULL);
4656 }
4657 EXPORT_SYMBOL_GPL(__wake_up_locked);
4658
4659 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4660 {
4661 __wake_up_common(q, mode, 1, 0, key);
4662 }
4663 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4664
4665 /**
4666 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4667 * @q: the waitqueue
4668 * @mode: which threads
4669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4670 * @key: opaque value to be passed to wakeup targets
4671 *
4672 * The sync wakeup differs that the waker knows that it will schedule
4673 * away soon, so while the target thread will be woken up, it will not
4674 * be migrated to another CPU - ie. the two threads are 'synchronized'
4675 * with each other. This can prevent needless bouncing between CPUs.
4676 *
4677 * On UP it can prevent extra preemption.
4678 *
4679 * It may be assumed that this function implies a write memory barrier before
4680 * changing the task state if and only if any tasks are woken up.
4681 */
4682 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4683 int nr_exclusive, void *key)
4684 {
4685 unsigned long flags;
4686 int wake_flags = WF_SYNC;
4687
4688 if (unlikely(!q))
4689 return;
4690
4691 if (unlikely(!nr_exclusive))
4692 wake_flags = 0;
4693
4694 spin_lock_irqsave(&q->lock, flags);
4695 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4696 spin_unlock_irqrestore(&q->lock, flags);
4697 }
4698 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4699
4700 /*
4701 * __wake_up_sync - see __wake_up_sync_key()
4702 */
4703 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4704 {
4705 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4706 }
4707 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4708
4709 /**
4710 * complete: - signals a single thread waiting on this completion
4711 * @x: holds the state of this particular completion
4712 *
4713 * This will wake up a single thread waiting on this completion. Threads will be
4714 * awakened in the same order in which they were queued.
4715 *
4716 * See also complete_all(), wait_for_completion() and related routines.
4717 *
4718 * It may be assumed that this function implies a write memory barrier before
4719 * changing the task state if and only if any tasks are woken up.
4720 */
4721 void complete(struct completion *x)
4722 {
4723 unsigned long flags;
4724
4725 spin_lock_irqsave(&x->wait.lock, flags);
4726 x->done++;
4727 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4728 spin_unlock_irqrestore(&x->wait.lock, flags);
4729 }
4730 EXPORT_SYMBOL(complete);
4731
4732 /**
4733 * complete_all: - signals all threads waiting on this completion
4734 * @x: holds the state of this particular completion
4735 *
4736 * This will wake up all threads waiting on this particular completion event.
4737 *
4738 * It may be assumed that this function implies a write memory barrier before
4739 * changing the task state if and only if any tasks are woken up.
4740 */
4741 void complete_all(struct completion *x)
4742 {
4743 unsigned long flags;
4744
4745 spin_lock_irqsave(&x->wait.lock, flags);
4746 x->done += UINT_MAX/2;
4747 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4748 spin_unlock_irqrestore(&x->wait.lock, flags);
4749 }
4750 EXPORT_SYMBOL(complete_all);
4751
4752 static inline long __sched
4753 do_wait_for_common(struct completion *x, long timeout, int state)
4754 {
4755 if (!x->done) {
4756 DECLARE_WAITQUEUE(wait, current);
4757
4758 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4759 do {
4760 if (signal_pending_state(state, current)) {
4761 timeout = -ERESTARTSYS;
4762 break;
4763 }
4764 __set_current_state(state);
4765 spin_unlock_irq(&x->wait.lock);
4766 timeout = schedule_timeout(timeout);
4767 spin_lock_irq(&x->wait.lock);
4768 } while (!x->done && timeout);
4769 __remove_wait_queue(&x->wait, &wait);
4770 if (!x->done)
4771 return timeout;
4772 }
4773 x->done--;
4774 return timeout ?: 1;
4775 }
4776
4777 static long __sched
4778 wait_for_common(struct completion *x, long timeout, int state)
4779 {
4780 might_sleep();
4781
4782 spin_lock_irq(&x->wait.lock);
4783 timeout = do_wait_for_common(x, timeout, state);
4784 spin_unlock_irq(&x->wait.lock);
4785 return timeout;
4786 }
4787
4788 /**
4789 * wait_for_completion: - waits for completion of a task
4790 * @x: holds the state of this particular completion
4791 *
4792 * This waits to be signaled for completion of a specific task. It is NOT
4793 * interruptible and there is no timeout.
4794 *
4795 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4796 * and interrupt capability. Also see complete().
4797 */
4798 void __sched wait_for_completion(struct completion *x)
4799 {
4800 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4801 }
4802 EXPORT_SYMBOL(wait_for_completion);
4803
4804 /**
4805 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4806 * @x: holds the state of this particular completion
4807 * @timeout: timeout value in jiffies
4808 *
4809 * This waits for either a completion of a specific task to be signaled or for a
4810 * specified timeout to expire. The timeout is in jiffies. It is not
4811 * interruptible.
4812 */
4813 unsigned long __sched
4814 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4815 {
4816 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4817 }
4818 EXPORT_SYMBOL(wait_for_completion_timeout);
4819
4820 /**
4821 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4822 * @x: holds the state of this particular completion
4823 *
4824 * This waits for completion of a specific task to be signaled. It is
4825 * interruptible.
4826 */
4827 int __sched wait_for_completion_interruptible(struct completion *x)
4828 {
4829 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4830 if (t == -ERESTARTSYS)
4831 return t;
4832 return 0;
4833 }
4834 EXPORT_SYMBOL(wait_for_completion_interruptible);
4835
4836 /**
4837 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4838 * @x: holds the state of this particular completion
4839 * @timeout: timeout value in jiffies
4840 *
4841 * This waits for either a completion of a specific task to be signaled or for a
4842 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4843 */
4844 long __sched
4845 wait_for_completion_interruptible_timeout(struct completion *x,
4846 unsigned long timeout)
4847 {
4848 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4849 }
4850 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4851
4852 /**
4853 * wait_for_completion_killable: - waits for completion of a task (killable)
4854 * @x: holds the state of this particular completion
4855 *
4856 * This waits to be signaled for completion of a specific task. It can be
4857 * interrupted by a kill signal.
4858 */
4859 int __sched wait_for_completion_killable(struct completion *x)
4860 {
4861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4862 if (t == -ERESTARTSYS)
4863 return t;
4864 return 0;
4865 }
4866 EXPORT_SYMBOL(wait_for_completion_killable);
4867
4868 /**
4869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4870 * @x: holds the state of this particular completion
4871 * @timeout: timeout value in jiffies
4872 *
4873 * This waits for either a completion of a specific task to be
4874 * signaled or for a specified timeout to expire. It can be
4875 * interrupted by a kill signal. The timeout is in jiffies.
4876 */
4877 long __sched
4878 wait_for_completion_killable_timeout(struct completion *x,
4879 unsigned long timeout)
4880 {
4881 return wait_for_common(x, timeout, TASK_KILLABLE);
4882 }
4883 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4884
4885 /**
4886 * try_wait_for_completion - try to decrement a completion without blocking
4887 * @x: completion structure
4888 *
4889 * Returns: 0 if a decrement cannot be done without blocking
4890 * 1 if a decrement succeeded.
4891 *
4892 * If a completion is being used as a counting completion,
4893 * attempt to decrement the counter without blocking. This
4894 * enables us to avoid waiting if the resource the completion
4895 * is protecting is not available.
4896 */
4897 bool try_wait_for_completion(struct completion *x)
4898 {
4899 unsigned long flags;
4900 int ret = 1;
4901
4902 spin_lock_irqsave(&x->wait.lock, flags);
4903 if (!x->done)
4904 ret = 0;
4905 else
4906 x->done--;
4907 spin_unlock_irqrestore(&x->wait.lock, flags);
4908 return ret;
4909 }
4910 EXPORT_SYMBOL(try_wait_for_completion);
4911
4912 /**
4913 * completion_done - Test to see if a completion has any waiters
4914 * @x: completion structure
4915 *
4916 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4917 * 1 if there are no waiters.
4918 *
4919 */
4920 bool completion_done(struct completion *x)
4921 {
4922 unsigned long flags;
4923 int ret = 1;
4924
4925 spin_lock_irqsave(&x->wait.lock, flags);
4926 if (!x->done)
4927 ret = 0;
4928 spin_unlock_irqrestore(&x->wait.lock, flags);
4929 return ret;
4930 }
4931 EXPORT_SYMBOL(completion_done);
4932
4933 static long __sched
4934 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4935 {
4936 unsigned long flags;
4937 wait_queue_t wait;
4938
4939 init_waitqueue_entry(&wait, current);
4940
4941 __set_current_state(state);
4942
4943 spin_lock_irqsave(&q->lock, flags);
4944 __add_wait_queue(q, &wait);
4945 spin_unlock(&q->lock);
4946 timeout = schedule_timeout(timeout);
4947 spin_lock_irq(&q->lock);
4948 __remove_wait_queue(q, &wait);
4949 spin_unlock_irqrestore(&q->lock, flags);
4950
4951 return timeout;
4952 }
4953
4954 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4955 {
4956 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4957 }
4958 EXPORT_SYMBOL(interruptible_sleep_on);
4959
4960 long __sched
4961 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4962 {
4963 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4964 }
4965 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4966
4967 void __sched sleep_on(wait_queue_head_t *q)
4968 {
4969 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4970 }
4971 EXPORT_SYMBOL(sleep_on);
4972
4973 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4974 {
4975 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4976 }
4977 EXPORT_SYMBOL(sleep_on_timeout);
4978
4979 #ifdef CONFIG_RT_MUTEXES
4980
4981 /*
4982 * rt_mutex_setprio - set the current priority of a task
4983 * @p: task
4984 * @prio: prio value (kernel-internal form)
4985 *
4986 * This function changes the 'effective' priority of a task. It does
4987 * not touch ->normal_prio like __setscheduler().
4988 *
4989 * Used by the rt_mutex code to implement priority inheritance logic.
4990 */
4991 void rt_mutex_setprio(struct task_struct *p, int prio)
4992 {
4993 int oldprio, on_rq, running;
4994 struct rq *rq;
4995 const struct sched_class *prev_class;
4996
4997 BUG_ON(prio < 0 || prio > MAX_PRIO);
4998
4999 rq = __task_rq_lock(p);
5000
5001 trace_sched_pi_setprio(p, prio);
5002 oldprio = p->prio;
5003 prev_class = p->sched_class;
5004 on_rq = p->on_rq;
5005 running = task_current(rq, p);
5006 if (on_rq)
5007 dequeue_task(rq, p, 0);
5008 if (running)
5009 p->sched_class->put_prev_task(rq, p);
5010
5011 if (rt_prio(prio))
5012 p->sched_class = &rt_sched_class;
5013 else
5014 p->sched_class = &fair_sched_class;
5015
5016 p->prio = prio;
5017
5018 if (running)
5019 p->sched_class->set_curr_task(rq);
5020 if (on_rq)
5021 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5022
5023 check_class_changed(rq, p, prev_class, oldprio);
5024 __task_rq_unlock(rq);
5025 }
5026
5027 #endif
5028
5029 void set_user_nice(struct task_struct *p, long nice)
5030 {
5031 int old_prio, delta, on_rq;
5032 unsigned long flags;
5033 struct rq *rq;
5034
5035 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5036 return;
5037 /*
5038 * We have to be careful, if called from sys_setpriority(),
5039 * the task might be in the middle of scheduling on another CPU.
5040 */
5041 rq = task_rq_lock(p, &flags);
5042 /*
5043 * The RT priorities are set via sched_setscheduler(), but we still
5044 * allow the 'normal' nice value to be set - but as expected
5045 * it wont have any effect on scheduling until the task is
5046 * SCHED_FIFO/SCHED_RR:
5047 */
5048 if (task_has_rt_policy(p)) {
5049 p->static_prio = NICE_TO_PRIO(nice);
5050 goto out_unlock;
5051 }
5052 on_rq = p->on_rq;
5053 if (on_rq)
5054 dequeue_task(rq, p, 0);
5055
5056 p->static_prio = NICE_TO_PRIO(nice);
5057 set_load_weight(p);
5058 old_prio = p->prio;
5059 p->prio = effective_prio(p);
5060 delta = p->prio - old_prio;
5061
5062 if (on_rq) {
5063 enqueue_task(rq, p, 0);
5064 /*
5065 * If the task increased its priority or is running and
5066 * lowered its priority, then reschedule its CPU:
5067 */
5068 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5069 resched_task(rq->curr);
5070 }
5071 out_unlock:
5072 task_rq_unlock(rq, p, &flags);
5073 }
5074 EXPORT_SYMBOL(set_user_nice);
5075
5076 /*
5077 * can_nice - check if a task can reduce its nice value
5078 * @p: task
5079 * @nice: nice value
5080 */
5081 int can_nice(const struct task_struct *p, const int nice)
5082 {
5083 /* convert nice value [19,-20] to rlimit style value [1,40] */
5084 int nice_rlim = 20 - nice;
5085
5086 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5087 capable(CAP_SYS_NICE));
5088 }
5089
5090 #ifdef __ARCH_WANT_SYS_NICE
5091
5092 /*
5093 * sys_nice - change the priority of the current process.
5094 * @increment: priority increment
5095 *
5096 * sys_setpriority is a more generic, but much slower function that
5097 * does similar things.
5098 */
5099 SYSCALL_DEFINE1(nice, int, increment)
5100 {
5101 long nice, retval;
5102
5103 /*
5104 * Setpriority might change our priority at the same moment.
5105 * We don't have to worry. Conceptually one call occurs first
5106 * and we have a single winner.
5107 */
5108 if (increment < -40)
5109 increment = -40;
5110 if (increment > 40)
5111 increment = 40;
5112
5113 nice = TASK_NICE(current) + increment;
5114 if (nice < -20)
5115 nice = -20;
5116 if (nice > 19)
5117 nice = 19;
5118
5119 if (increment < 0 && !can_nice(current, nice))
5120 return -EPERM;
5121
5122 retval = security_task_setnice(current, nice);
5123 if (retval)
5124 return retval;
5125
5126 set_user_nice(current, nice);
5127 return 0;
5128 }
5129
5130 #endif
5131
5132 /**
5133 * task_prio - return the priority value of a given task.
5134 * @p: the task in question.
5135 *
5136 * This is the priority value as seen by users in /proc.
5137 * RT tasks are offset by -200. Normal tasks are centered
5138 * around 0, value goes from -16 to +15.
5139 */
5140 int task_prio(const struct task_struct *p)
5141 {
5142 return p->prio - MAX_RT_PRIO;
5143 }
5144
5145 /**
5146 * task_nice - return the nice value of a given task.
5147 * @p: the task in question.
5148 */
5149 int task_nice(const struct task_struct *p)
5150 {
5151 return TASK_NICE(p);
5152 }
5153 EXPORT_SYMBOL(task_nice);
5154
5155 /**
5156 * idle_cpu - is a given cpu idle currently?
5157 * @cpu: the processor in question.
5158 */
5159 int idle_cpu(int cpu)
5160 {
5161 struct rq *rq = cpu_rq(cpu);
5162
5163 if (rq->curr != rq->idle)
5164 return 0;
5165
5166 if (rq->nr_running)
5167 return 0;
5168
5169 #ifdef CONFIG_SMP
5170 if (!llist_empty(&rq->wake_list))
5171 return 0;
5172 #endif
5173
5174 return 1;
5175 }
5176
5177 /**
5178 * idle_task - return the idle task for a given cpu.
5179 * @cpu: the processor in question.
5180 */
5181 struct task_struct *idle_task(int cpu)
5182 {
5183 return cpu_rq(cpu)->idle;
5184 }
5185
5186 /**
5187 * find_process_by_pid - find a process with a matching PID value.
5188 * @pid: the pid in question.
5189 */
5190 static struct task_struct *find_process_by_pid(pid_t pid)
5191 {
5192 return pid ? find_task_by_vpid(pid) : current;
5193 }
5194
5195 /* Actually do priority change: must hold rq lock. */
5196 static void
5197 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5198 {
5199 p->policy = policy;
5200 p->rt_priority = prio;
5201 p->normal_prio = normal_prio(p);
5202 /* we are holding p->pi_lock already */
5203 p->prio = rt_mutex_getprio(p);
5204 if (rt_prio(p->prio))
5205 p->sched_class = &rt_sched_class;
5206 else
5207 p->sched_class = &fair_sched_class;
5208 set_load_weight(p);
5209 }
5210
5211 /*
5212 * check the target process has a UID that matches the current process's
5213 */
5214 static bool check_same_owner(struct task_struct *p)
5215 {
5216 const struct cred *cred = current_cred(), *pcred;
5217 bool match;
5218
5219 rcu_read_lock();
5220 pcred = __task_cred(p);
5221 if (cred->user->user_ns == pcred->user->user_ns)
5222 match = (cred->euid == pcred->euid ||
5223 cred->euid == pcred->uid);
5224 else
5225 match = false;
5226 rcu_read_unlock();
5227 return match;
5228 }
5229
5230 static int __sched_setscheduler(struct task_struct *p, int policy,
5231 const struct sched_param *param, bool user)
5232 {
5233 int retval, oldprio, oldpolicy = -1, on_rq, running;
5234 unsigned long flags;
5235 const struct sched_class *prev_class;
5236 struct rq *rq;
5237 int reset_on_fork;
5238
5239 /* may grab non-irq protected spin_locks */
5240 BUG_ON(in_interrupt());
5241 recheck:
5242 /* double check policy once rq lock held */
5243 if (policy < 0) {
5244 reset_on_fork = p->sched_reset_on_fork;
5245 policy = oldpolicy = p->policy;
5246 } else {
5247 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5248 policy &= ~SCHED_RESET_ON_FORK;
5249
5250 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5251 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5252 policy != SCHED_IDLE)
5253 return -EINVAL;
5254 }
5255
5256 /*
5257 * Valid priorities for SCHED_FIFO and SCHED_RR are
5258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5259 * SCHED_BATCH and SCHED_IDLE is 0.
5260 */
5261 if (param->sched_priority < 0 ||
5262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5264 return -EINVAL;
5265 if (rt_policy(policy) != (param->sched_priority != 0))
5266 return -EINVAL;
5267
5268 /*
5269 * Allow unprivileged RT tasks to decrease priority:
5270 */
5271 if (user && !capable(CAP_SYS_NICE)) {
5272 if (rt_policy(policy)) {
5273 unsigned long rlim_rtprio =
5274 task_rlimit(p, RLIMIT_RTPRIO);
5275
5276 /* can't set/change the rt policy */
5277 if (policy != p->policy && !rlim_rtprio)
5278 return -EPERM;
5279
5280 /* can't increase priority */
5281 if (param->sched_priority > p->rt_priority &&
5282 param->sched_priority > rlim_rtprio)
5283 return -EPERM;
5284 }
5285
5286 /*
5287 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5288 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5289 */
5290 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5291 if (!can_nice(p, TASK_NICE(p)))
5292 return -EPERM;
5293 }
5294
5295 /* can't change other user's priorities */
5296 if (!check_same_owner(p))
5297 return -EPERM;
5298
5299 /* Normal users shall not reset the sched_reset_on_fork flag */
5300 if (p->sched_reset_on_fork && !reset_on_fork)
5301 return -EPERM;
5302 }
5303
5304 if (user) {
5305 retval = security_task_setscheduler(p);
5306 if (retval)
5307 return retval;
5308 }
5309
5310 /*
5311 * make sure no PI-waiters arrive (or leave) while we are
5312 * changing the priority of the task:
5313 *
5314 * To be able to change p->policy safely, the appropriate
5315 * runqueue lock must be held.
5316 */
5317 rq = task_rq_lock(p, &flags);
5318
5319 /*
5320 * Changing the policy of the stop threads its a very bad idea
5321 */
5322 if (p == rq->stop) {
5323 task_rq_unlock(rq, p, &flags);
5324 return -EINVAL;
5325 }
5326
5327 /*
5328 * If not changing anything there's no need to proceed further:
5329 */
5330 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5331 param->sched_priority == p->rt_priority))) {
5332
5333 __task_rq_unlock(rq);
5334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5335 return 0;
5336 }
5337
5338 #ifdef CONFIG_RT_GROUP_SCHED
5339 if (user) {
5340 /*
5341 * Do not allow realtime tasks into groups that have no runtime
5342 * assigned.
5343 */
5344 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5345 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5346 !task_group_is_autogroup(task_group(p))) {
5347 task_rq_unlock(rq, p, &flags);
5348 return -EPERM;
5349 }
5350 }
5351 #endif
5352
5353 /* recheck policy now with rq lock held */
5354 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5355 policy = oldpolicy = -1;
5356 task_rq_unlock(rq, p, &flags);
5357 goto recheck;
5358 }
5359 on_rq = p->on_rq;
5360 running = task_current(rq, p);
5361 if (on_rq)
5362 deactivate_task(rq, p, 0);
5363 if (running)
5364 p->sched_class->put_prev_task(rq, p);
5365
5366 p->sched_reset_on_fork = reset_on_fork;
5367
5368 oldprio = p->prio;
5369 prev_class = p->sched_class;
5370 __setscheduler(rq, p, policy, param->sched_priority);
5371
5372 if (running)
5373 p->sched_class->set_curr_task(rq);
5374 if (on_rq)
5375 activate_task(rq, p, 0);
5376
5377 check_class_changed(rq, p, prev_class, oldprio);
5378 task_rq_unlock(rq, p, &flags);
5379
5380 rt_mutex_adjust_pi(p);
5381
5382 return 0;
5383 }
5384
5385 /**
5386 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5387 * @p: the task in question.
5388 * @policy: new policy.
5389 * @param: structure containing the new RT priority.
5390 *
5391 * NOTE that the task may be already dead.
5392 */
5393 int sched_setscheduler(struct task_struct *p, int policy,
5394 const struct sched_param *param)
5395 {
5396 return __sched_setscheduler(p, policy, param, true);
5397 }
5398 EXPORT_SYMBOL_GPL(sched_setscheduler);
5399
5400 /**
5401 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5402 * @p: the task in question.
5403 * @policy: new policy.
5404 * @param: structure containing the new RT priority.
5405 *
5406 * Just like sched_setscheduler, only don't bother checking if the
5407 * current context has permission. For example, this is needed in
5408 * stop_machine(): we create temporary high priority worker threads,
5409 * but our caller might not have that capability.
5410 */
5411 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5412 const struct sched_param *param)
5413 {
5414 return __sched_setscheduler(p, policy, param, false);
5415 }
5416
5417 static int
5418 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5419 {
5420 struct sched_param lparam;
5421 struct task_struct *p;
5422 int retval;
5423
5424 if (!param || pid < 0)
5425 return -EINVAL;
5426 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5427 return -EFAULT;
5428
5429 rcu_read_lock();
5430 retval = -ESRCH;
5431 p = find_process_by_pid(pid);
5432 if (p != NULL)
5433 retval = sched_setscheduler(p, policy, &lparam);
5434 rcu_read_unlock();
5435
5436 return retval;
5437 }
5438
5439 /**
5440 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5441 * @pid: the pid in question.
5442 * @policy: new policy.
5443 * @param: structure containing the new RT priority.
5444 */
5445 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5446 struct sched_param __user *, param)
5447 {
5448 /* negative values for policy are not valid */
5449 if (policy < 0)
5450 return -EINVAL;
5451
5452 return do_sched_setscheduler(pid, policy, param);
5453 }
5454
5455 /**
5456 * sys_sched_setparam - set/change the RT priority of a thread
5457 * @pid: the pid in question.
5458 * @param: structure containing the new RT priority.
5459 */
5460 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5461 {
5462 return do_sched_setscheduler(pid, -1, param);
5463 }
5464
5465 /**
5466 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5467 * @pid: the pid in question.
5468 */
5469 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5470 {
5471 struct task_struct *p;
5472 int retval;
5473
5474 if (pid < 0)
5475 return -EINVAL;
5476
5477 retval = -ESRCH;
5478 rcu_read_lock();
5479 p = find_process_by_pid(pid);
5480 if (p) {
5481 retval = security_task_getscheduler(p);
5482 if (!retval)
5483 retval = p->policy
5484 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5485 }
5486 rcu_read_unlock();
5487 return retval;
5488 }
5489
5490 /**
5491 * sys_sched_getparam - get the RT priority of a thread
5492 * @pid: the pid in question.
5493 * @param: structure containing the RT priority.
5494 */
5495 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5496 {
5497 struct sched_param lp;
5498 struct task_struct *p;
5499 int retval;
5500
5501 if (!param || pid < 0)
5502 return -EINVAL;
5503
5504 rcu_read_lock();
5505 p = find_process_by_pid(pid);
5506 retval = -ESRCH;
5507 if (!p)
5508 goto out_unlock;
5509
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5513
5514 lp.sched_priority = p->rt_priority;
5515 rcu_read_unlock();
5516
5517 /*
5518 * This one might sleep, we cannot do it with a spinlock held ...
5519 */
5520 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5521
5522 return retval;
5523
5524 out_unlock:
5525 rcu_read_unlock();
5526 return retval;
5527 }
5528
5529 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5530 {
5531 cpumask_var_t cpus_allowed, new_mask;
5532 struct task_struct *p;
5533 int retval;
5534
5535 get_online_cpus();
5536 rcu_read_lock();
5537
5538 p = find_process_by_pid(pid);
5539 if (!p) {
5540 rcu_read_unlock();
5541 put_online_cpus();
5542 return -ESRCH;
5543 }
5544
5545 /* Prevent p going away */
5546 get_task_struct(p);
5547 rcu_read_unlock();
5548
5549 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5550 retval = -ENOMEM;
5551 goto out_put_task;
5552 }
5553 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5554 retval = -ENOMEM;
5555 goto out_free_cpus_allowed;
5556 }
5557 retval = -EPERM;
5558 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5559 goto out_unlock;
5560
5561 retval = security_task_setscheduler(p);
5562 if (retval)
5563 goto out_unlock;
5564
5565 cpuset_cpus_allowed(p, cpus_allowed);
5566 cpumask_and(new_mask, in_mask, cpus_allowed);
5567 again:
5568 retval = set_cpus_allowed_ptr(p, new_mask);
5569
5570 if (!retval) {
5571 cpuset_cpus_allowed(p, cpus_allowed);
5572 if (!cpumask_subset(new_mask, cpus_allowed)) {
5573 /*
5574 * We must have raced with a concurrent cpuset
5575 * update. Just reset the cpus_allowed to the
5576 * cpuset's cpus_allowed
5577 */
5578 cpumask_copy(new_mask, cpus_allowed);
5579 goto again;
5580 }
5581 }
5582 out_unlock:
5583 free_cpumask_var(new_mask);
5584 out_free_cpus_allowed:
5585 free_cpumask_var(cpus_allowed);
5586 out_put_task:
5587 put_task_struct(p);
5588 put_online_cpus();
5589 return retval;
5590 }
5591
5592 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5593 struct cpumask *new_mask)
5594 {
5595 if (len < cpumask_size())
5596 cpumask_clear(new_mask);
5597 else if (len > cpumask_size())
5598 len = cpumask_size();
5599
5600 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5601 }
5602
5603 /**
5604 * sys_sched_setaffinity - set the cpu affinity of a process
5605 * @pid: pid of the process
5606 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5607 * @user_mask_ptr: user-space pointer to the new cpu mask
5608 */
5609 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5610 unsigned long __user *, user_mask_ptr)
5611 {
5612 cpumask_var_t new_mask;
5613 int retval;
5614
5615 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5616 return -ENOMEM;
5617
5618 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5619 if (retval == 0)
5620 retval = sched_setaffinity(pid, new_mask);
5621 free_cpumask_var(new_mask);
5622 return retval;
5623 }
5624
5625 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5626 {
5627 struct task_struct *p;
5628 unsigned long flags;
5629 int retval;
5630
5631 get_online_cpus();
5632 rcu_read_lock();
5633
5634 retval = -ESRCH;
5635 p = find_process_by_pid(pid);
5636 if (!p)
5637 goto out_unlock;
5638
5639 retval = security_task_getscheduler(p);
5640 if (retval)
5641 goto out_unlock;
5642
5643 raw_spin_lock_irqsave(&p->pi_lock, flags);
5644 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5646
5647 out_unlock:
5648 rcu_read_unlock();
5649 put_online_cpus();
5650
5651 return retval;
5652 }
5653
5654 /**
5655 * sys_sched_getaffinity - get the cpu affinity of a process
5656 * @pid: pid of the process
5657 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5658 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5659 */
5660 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5661 unsigned long __user *, user_mask_ptr)
5662 {
5663 int ret;
5664 cpumask_var_t mask;
5665
5666 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5667 return -EINVAL;
5668 if (len & (sizeof(unsigned long)-1))
5669 return -EINVAL;
5670
5671 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5672 return -ENOMEM;
5673
5674 ret = sched_getaffinity(pid, mask);
5675 if (ret == 0) {
5676 size_t retlen = min_t(size_t, len, cpumask_size());
5677
5678 if (copy_to_user(user_mask_ptr, mask, retlen))
5679 ret = -EFAULT;
5680 else
5681 ret = retlen;
5682 }
5683 free_cpumask_var(mask);
5684
5685 return ret;
5686 }
5687
5688 /**
5689 * sys_sched_yield - yield the current processor to other threads.
5690 *
5691 * This function yields the current CPU to other tasks. If there are no
5692 * other threads running on this CPU then this function will return.
5693 */
5694 SYSCALL_DEFINE0(sched_yield)
5695 {
5696 struct rq *rq = this_rq_lock();
5697
5698 schedstat_inc(rq, yld_count);
5699 current->sched_class->yield_task(rq);
5700
5701 /*
5702 * Since we are going to call schedule() anyway, there's
5703 * no need to preempt or enable interrupts:
5704 */
5705 __release(rq->lock);
5706 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5707 do_raw_spin_unlock(&rq->lock);
5708 preempt_enable_no_resched();
5709
5710 schedule();
5711
5712 return 0;
5713 }
5714
5715 static inline int should_resched(void)
5716 {
5717 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5718 }
5719
5720 static void __cond_resched(void)
5721 {
5722 add_preempt_count(PREEMPT_ACTIVE);
5723 __schedule();
5724 sub_preempt_count(PREEMPT_ACTIVE);
5725 }
5726
5727 int __sched _cond_resched(void)
5728 {
5729 if (should_resched()) {
5730 __cond_resched();
5731 return 1;
5732 }
5733 return 0;
5734 }
5735 EXPORT_SYMBOL(_cond_resched);
5736
5737 /*
5738 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5739 * call schedule, and on return reacquire the lock.
5740 *
5741 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5742 * operations here to prevent schedule() from being called twice (once via
5743 * spin_unlock(), once by hand).
5744 */
5745 int __cond_resched_lock(spinlock_t *lock)
5746 {
5747 int resched = should_resched();
5748 int ret = 0;
5749
5750 lockdep_assert_held(lock);
5751
5752 if (spin_needbreak(lock) || resched) {
5753 spin_unlock(lock);
5754 if (resched)
5755 __cond_resched();
5756 else
5757 cpu_relax();
5758 ret = 1;
5759 spin_lock(lock);
5760 }
5761 return ret;
5762 }
5763 EXPORT_SYMBOL(__cond_resched_lock);
5764
5765 int __sched __cond_resched_softirq(void)
5766 {
5767 BUG_ON(!in_softirq());
5768
5769 if (should_resched()) {
5770 local_bh_enable();
5771 __cond_resched();
5772 local_bh_disable();
5773 return 1;
5774 }
5775 return 0;
5776 }
5777 EXPORT_SYMBOL(__cond_resched_softirq);
5778
5779 /**
5780 * yield - yield the current processor to other threads.
5781 *
5782 * This is a shortcut for kernel-space yielding - it marks the
5783 * thread runnable and calls sys_sched_yield().
5784 */
5785 void __sched yield(void)
5786 {
5787 set_current_state(TASK_RUNNING);
5788 sys_sched_yield();
5789 }
5790 EXPORT_SYMBOL(yield);
5791
5792 /**
5793 * yield_to - yield the current processor to another thread in
5794 * your thread group, or accelerate that thread toward the
5795 * processor it's on.
5796 * @p: target task
5797 * @preempt: whether task preemption is allowed or not
5798 *
5799 * It's the caller's job to ensure that the target task struct
5800 * can't go away on us before we can do any checks.
5801 *
5802 * Returns true if we indeed boosted the target task.
5803 */
5804 bool __sched yield_to(struct task_struct *p, bool preempt)
5805 {
5806 struct task_struct *curr = current;
5807 struct rq *rq, *p_rq;
5808 unsigned long flags;
5809 bool yielded = 0;
5810
5811 local_irq_save(flags);
5812 rq = this_rq();
5813
5814 again:
5815 p_rq = task_rq(p);
5816 double_rq_lock(rq, p_rq);
5817 while (task_rq(p) != p_rq) {
5818 double_rq_unlock(rq, p_rq);
5819 goto again;
5820 }
5821
5822 if (!curr->sched_class->yield_to_task)
5823 goto out;
5824
5825 if (curr->sched_class != p->sched_class)
5826 goto out;
5827
5828 if (task_running(p_rq, p) || p->state)
5829 goto out;
5830
5831 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5832 if (yielded) {
5833 schedstat_inc(rq, yld_count);
5834 /*
5835 * Make p's CPU reschedule; pick_next_entity takes care of
5836 * fairness.
5837 */
5838 if (preempt && rq != p_rq)
5839 resched_task(p_rq->curr);
5840 }
5841
5842 out:
5843 double_rq_unlock(rq, p_rq);
5844 local_irq_restore(flags);
5845
5846 if (yielded)
5847 schedule();
5848
5849 return yielded;
5850 }
5851 EXPORT_SYMBOL_GPL(yield_to);
5852
5853 /*
5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5855 * that process accounting knows that this is a task in IO wait state.
5856 */
5857 void __sched io_schedule(void)
5858 {
5859 struct rq *rq = raw_rq();
5860
5861 delayacct_blkio_start();
5862 atomic_inc(&rq->nr_iowait);
5863 blk_flush_plug(current);
5864 current->in_iowait = 1;
5865 schedule();
5866 current->in_iowait = 0;
5867 atomic_dec(&rq->nr_iowait);
5868 delayacct_blkio_end();
5869 }
5870 EXPORT_SYMBOL(io_schedule);
5871
5872 long __sched io_schedule_timeout(long timeout)
5873 {
5874 struct rq *rq = raw_rq();
5875 long ret;
5876
5877 delayacct_blkio_start();
5878 atomic_inc(&rq->nr_iowait);
5879 blk_flush_plug(current);
5880 current->in_iowait = 1;
5881 ret = schedule_timeout(timeout);
5882 current->in_iowait = 0;
5883 atomic_dec(&rq->nr_iowait);
5884 delayacct_blkio_end();
5885 return ret;
5886 }
5887
5888 /**
5889 * sys_sched_get_priority_max - return maximum RT priority.
5890 * @policy: scheduling class.
5891 *
5892 * this syscall returns the maximum rt_priority that can be used
5893 * by a given scheduling class.
5894 */
5895 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5896 {
5897 int ret = -EINVAL;
5898
5899 switch (policy) {
5900 case SCHED_FIFO:
5901 case SCHED_RR:
5902 ret = MAX_USER_RT_PRIO-1;
5903 break;
5904 case SCHED_NORMAL:
5905 case SCHED_BATCH:
5906 case SCHED_IDLE:
5907 ret = 0;
5908 break;
5909 }
5910 return ret;
5911 }
5912
5913 /**
5914 * sys_sched_get_priority_min - return minimum RT priority.
5915 * @policy: scheduling class.
5916 *
5917 * this syscall returns the minimum rt_priority that can be used
5918 * by a given scheduling class.
5919 */
5920 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5921 {
5922 int ret = -EINVAL;
5923
5924 switch (policy) {
5925 case SCHED_FIFO:
5926 case SCHED_RR:
5927 ret = 1;
5928 break;
5929 case SCHED_NORMAL:
5930 case SCHED_BATCH:
5931 case SCHED_IDLE:
5932 ret = 0;
5933 }
5934 return ret;
5935 }
5936
5937 /**
5938 * sys_sched_rr_get_interval - return the default timeslice of a process.
5939 * @pid: pid of the process.
5940 * @interval: userspace pointer to the timeslice value.
5941 *
5942 * this syscall writes the default timeslice value of a given process
5943 * into the user-space timespec buffer. A value of '0' means infinity.
5944 */
5945 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5946 struct timespec __user *, interval)
5947 {
5948 struct task_struct *p;
5949 unsigned int time_slice;
5950 unsigned long flags;
5951 struct rq *rq;
5952 int retval;
5953 struct timespec t;
5954
5955 if (pid < 0)
5956 return -EINVAL;
5957
5958 retval = -ESRCH;
5959 rcu_read_lock();
5960 p = find_process_by_pid(pid);
5961 if (!p)
5962 goto out_unlock;
5963
5964 retval = security_task_getscheduler(p);
5965 if (retval)
5966 goto out_unlock;
5967
5968 rq = task_rq_lock(p, &flags);
5969 time_slice = p->sched_class->get_rr_interval(rq, p);
5970 task_rq_unlock(rq, p, &flags);
5971
5972 rcu_read_unlock();
5973 jiffies_to_timespec(time_slice, &t);
5974 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5975 return retval;
5976
5977 out_unlock:
5978 rcu_read_unlock();
5979 return retval;
5980 }
5981
5982 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5983
5984 void sched_show_task(struct task_struct *p)
5985 {
5986 unsigned long free = 0;
5987 unsigned state;
5988
5989 state = p->state ? __ffs(p->state) + 1 : 0;
5990 printk(KERN_INFO "%-15.15s %c", p->comm,
5991 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5992 #if BITS_PER_LONG == 32
5993 if (state == TASK_RUNNING)
5994 printk(KERN_CONT " running ");
5995 else
5996 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5997 #else
5998 if (state == TASK_RUNNING)
5999 printk(KERN_CONT " running task ");
6000 else
6001 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6002 #endif
6003 #ifdef CONFIG_DEBUG_STACK_USAGE
6004 free = stack_not_used(p);
6005 #endif
6006 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6007 task_pid_nr(p), task_pid_nr(p->real_parent),
6008 (unsigned long)task_thread_info(p)->flags);
6009
6010 show_stack(p, NULL);
6011 }
6012
6013 void show_state_filter(unsigned long state_filter)
6014 {
6015 struct task_struct *g, *p;
6016
6017 #if BITS_PER_LONG == 32
6018 printk(KERN_INFO
6019 " task PC stack pid father\n");
6020 #else
6021 printk(KERN_INFO
6022 " task PC stack pid father\n");
6023 #endif
6024 read_lock(&tasklist_lock);
6025 do_each_thread(g, p) {
6026 /*
6027 * reset the NMI-timeout, listing all files on a slow
6028 * console might take a lot of time:
6029 */
6030 touch_nmi_watchdog();
6031 if (!state_filter || (p->state & state_filter))
6032 sched_show_task(p);
6033 } while_each_thread(g, p);
6034
6035 touch_all_softlockup_watchdogs();
6036
6037 #ifdef CONFIG_SCHED_DEBUG
6038 sysrq_sched_debug_show();
6039 #endif
6040 read_unlock(&tasklist_lock);
6041 /*
6042 * Only show locks if all tasks are dumped:
6043 */
6044 if (!state_filter)
6045 debug_show_all_locks();
6046 }
6047
6048 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6049 {
6050 idle->sched_class = &idle_sched_class;
6051 }
6052
6053 /**
6054 * init_idle - set up an idle thread for a given CPU
6055 * @idle: task in question
6056 * @cpu: cpu the idle task belongs to
6057 *
6058 * NOTE: this function does not set the idle thread's NEED_RESCHED
6059 * flag, to make booting more robust.
6060 */
6061 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6062 {
6063 struct rq *rq = cpu_rq(cpu);
6064 unsigned long flags;
6065
6066 raw_spin_lock_irqsave(&rq->lock, flags);
6067
6068 __sched_fork(idle);
6069 idle->state = TASK_RUNNING;
6070 idle->se.exec_start = sched_clock();
6071
6072 do_set_cpus_allowed(idle, cpumask_of(cpu));
6073 /*
6074 * We're having a chicken and egg problem, even though we are
6075 * holding rq->lock, the cpu isn't yet set to this cpu so the
6076 * lockdep check in task_group() will fail.
6077 *
6078 * Similar case to sched_fork(). / Alternatively we could
6079 * use task_rq_lock() here and obtain the other rq->lock.
6080 *
6081 * Silence PROVE_RCU
6082 */
6083 rcu_read_lock();
6084 __set_task_cpu(idle, cpu);
6085 rcu_read_unlock();
6086
6087 rq->curr = rq->idle = idle;
6088 #if defined(CONFIG_SMP)
6089 idle->on_cpu = 1;
6090 #endif
6091 raw_spin_unlock_irqrestore(&rq->lock, flags);
6092
6093 /* Set the preempt count _outside_ the spinlocks! */
6094 task_thread_info(idle)->preempt_count = 0;
6095
6096 /*
6097 * The idle tasks have their own, simple scheduling class:
6098 */
6099 idle->sched_class = &idle_sched_class;
6100 ftrace_graph_init_idle_task(idle, cpu);
6101 }
6102
6103 /*
6104 * In a system that switches off the HZ timer nohz_cpu_mask
6105 * indicates which cpus entered this state. This is used
6106 * in the rcu update to wait only for active cpus. For system
6107 * which do not switch off the HZ timer nohz_cpu_mask should
6108 * always be CPU_BITS_NONE.
6109 */
6110 cpumask_var_t nohz_cpu_mask;
6111
6112 /*
6113 * Increase the granularity value when there are more CPUs,
6114 * because with more CPUs the 'effective latency' as visible
6115 * to users decreases. But the relationship is not linear,
6116 * so pick a second-best guess by going with the log2 of the
6117 * number of CPUs.
6118 *
6119 * This idea comes from the SD scheduler of Con Kolivas:
6120 */
6121 static int get_update_sysctl_factor(void)
6122 {
6123 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6124 unsigned int factor;
6125
6126 switch (sysctl_sched_tunable_scaling) {
6127 case SCHED_TUNABLESCALING_NONE:
6128 factor = 1;
6129 break;
6130 case SCHED_TUNABLESCALING_LINEAR:
6131 factor = cpus;
6132 break;
6133 case SCHED_TUNABLESCALING_LOG:
6134 default:
6135 factor = 1 + ilog2(cpus);
6136 break;
6137 }
6138
6139 return factor;
6140 }
6141
6142 static void update_sysctl(void)
6143 {
6144 unsigned int factor = get_update_sysctl_factor();
6145
6146 #define SET_SYSCTL(name) \
6147 (sysctl_##name = (factor) * normalized_sysctl_##name)
6148 SET_SYSCTL(sched_min_granularity);
6149 SET_SYSCTL(sched_latency);
6150 SET_SYSCTL(sched_wakeup_granularity);
6151 #undef SET_SYSCTL
6152 }
6153
6154 static inline void sched_init_granularity(void)
6155 {
6156 update_sysctl();
6157 }
6158
6159 #ifdef CONFIG_SMP
6160 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6161 {
6162 if (p->sched_class && p->sched_class->set_cpus_allowed)
6163 p->sched_class->set_cpus_allowed(p, new_mask);
6164 else {
6165 cpumask_copy(&p->cpus_allowed, new_mask);
6166 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6167 }
6168 }
6169
6170 /*
6171 * This is how migration works:
6172 *
6173 * 1) we invoke migration_cpu_stop() on the target CPU using
6174 * stop_one_cpu().
6175 * 2) stopper starts to run (implicitly forcing the migrated thread
6176 * off the CPU)
6177 * 3) it checks whether the migrated task is still in the wrong runqueue.
6178 * 4) if it's in the wrong runqueue then the migration thread removes
6179 * it and puts it into the right queue.
6180 * 5) stopper completes and stop_one_cpu() returns and the migration
6181 * is done.
6182 */
6183
6184 /*
6185 * Change a given task's CPU affinity. Migrate the thread to a
6186 * proper CPU and schedule it away if the CPU it's executing on
6187 * is removed from the allowed bitmask.
6188 *
6189 * NOTE: the caller must have a valid reference to the task, the
6190 * task must not exit() & deallocate itself prematurely. The
6191 * call is not atomic; no spinlocks may be held.
6192 */
6193 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6194 {
6195 unsigned long flags;
6196 struct rq *rq;
6197 unsigned int dest_cpu;
6198 int ret = 0;
6199
6200 rq = task_rq_lock(p, &flags);
6201
6202 if (cpumask_equal(&p->cpus_allowed, new_mask))
6203 goto out;
6204
6205 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6206 ret = -EINVAL;
6207 goto out;
6208 }
6209
6210 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6211 ret = -EINVAL;
6212 goto out;
6213 }
6214
6215 do_set_cpus_allowed(p, new_mask);
6216
6217 /* Can the task run on the task's current CPU? If so, we're done */
6218 if (cpumask_test_cpu(task_cpu(p), new_mask))
6219 goto out;
6220
6221 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6222 if (p->on_rq) {
6223 struct migration_arg arg = { p, dest_cpu };
6224 /* Need help from migration thread: drop lock and wait. */
6225 task_rq_unlock(rq, p, &flags);
6226 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6227 tlb_migrate_finish(p->mm);
6228 return 0;
6229 }
6230 out:
6231 task_rq_unlock(rq, p, &flags);
6232
6233 return ret;
6234 }
6235 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6236
6237 /*
6238 * Move (not current) task off this cpu, onto dest cpu. We're doing
6239 * this because either it can't run here any more (set_cpus_allowed()
6240 * away from this CPU, or CPU going down), or because we're
6241 * attempting to rebalance this task on exec (sched_exec).
6242 *
6243 * So we race with normal scheduler movements, but that's OK, as long
6244 * as the task is no longer on this CPU.
6245 *
6246 * Returns non-zero if task was successfully migrated.
6247 */
6248 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6249 {
6250 struct rq *rq_dest, *rq_src;
6251 int ret = 0;
6252
6253 if (unlikely(!cpu_active(dest_cpu)))
6254 return ret;
6255
6256 rq_src = cpu_rq(src_cpu);
6257 rq_dest = cpu_rq(dest_cpu);
6258
6259 raw_spin_lock(&p->pi_lock);
6260 double_rq_lock(rq_src, rq_dest);
6261 /* Already moved. */
6262 if (task_cpu(p) != src_cpu)
6263 goto done;
6264 /* Affinity changed (again). */
6265 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6266 goto fail;
6267
6268 /*
6269 * If we're not on a rq, the next wake-up will ensure we're
6270 * placed properly.
6271 */
6272 if (p->on_rq) {
6273 deactivate_task(rq_src, p, 0);
6274 set_task_cpu(p, dest_cpu);
6275 activate_task(rq_dest, p, 0);
6276 check_preempt_curr(rq_dest, p, 0);
6277 }
6278 done:
6279 ret = 1;
6280 fail:
6281 double_rq_unlock(rq_src, rq_dest);
6282 raw_spin_unlock(&p->pi_lock);
6283 return ret;
6284 }
6285
6286 /*
6287 * migration_cpu_stop - this will be executed by a highprio stopper thread
6288 * and performs thread migration by bumping thread off CPU then
6289 * 'pushing' onto another runqueue.
6290 */
6291 static int migration_cpu_stop(void *data)
6292 {
6293 struct migration_arg *arg = data;
6294
6295 /*
6296 * The original target cpu might have gone down and we might
6297 * be on another cpu but it doesn't matter.
6298 */
6299 local_irq_disable();
6300 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6301 local_irq_enable();
6302 return 0;
6303 }
6304
6305 #ifdef CONFIG_HOTPLUG_CPU
6306
6307 /*
6308 * Ensures that the idle task is using init_mm right before its cpu goes
6309 * offline.
6310 */
6311 void idle_task_exit(void)
6312 {
6313 struct mm_struct *mm = current->active_mm;
6314
6315 BUG_ON(cpu_online(smp_processor_id()));
6316
6317 if (mm != &init_mm)
6318 switch_mm(mm, &init_mm, current);
6319 mmdrop(mm);
6320 }
6321
6322 /*
6323 * While a dead CPU has no uninterruptible tasks queued at this point,
6324 * it might still have a nonzero ->nr_uninterruptible counter, because
6325 * for performance reasons the counter is not stricly tracking tasks to
6326 * their home CPUs. So we just add the counter to another CPU's counter,
6327 * to keep the global sum constant after CPU-down:
6328 */
6329 static void migrate_nr_uninterruptible(struct rq *rq_src)
6330 {
6331 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6332
6333 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6334 rq_src->nr_uninterruptible = 0;
6335 }
6336
6337 /*
6338 * remove the tasks which were accounted by rq from calc_load_tasks.
6339 */
6340 static void calc_global_load_remove(struct rq *rq)
6341 {
6342 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6343 rq->calc_load_active = 0;
6344 }
6345
6346 #ifdef CONFIG_CFS_BANDWIDTH
6347 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6348 {
6349 struct cfs_rq *cfs_rq;
6350
6351 for_each_leaf_cfs_rq(rq, cfs_rq) {
6352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6353
6354 if (!cfs_rq->runtime_enabled)
6355 continue;
6356
6357 /*
6358 * clock_task is not advancing so we just need to make sure
6359 * there's some valid quota amount
6360 */
6361 cfs_rq->runtime_remaining = cfs_b->quota;
6362 if (cfs_rq_throttled(cfs_rq))
6363 unthrottle_cfs_rq(cfs_rq);
6364 }
6365 }
6366 #else
6367 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6368 #endif
6369
6370 /*
6371 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6372 * try_to_wake_up()->select_task_rq().
6373 *
6374 * Called with rq->lock held even though we'er in stop_machine() and
6375 * there's no concurrency possible, we hold the required locks anyway
6376 * because of lock validation efforts.
6377 */
6378 static void migrate_tasks(unsigned int dead_cpu)
6379 {
6380 struct rq *rq = cpu_rq(dead_cpu);
6381 struct task_struct *next, *stop = rq->stop;
6382 int dest_cpu;
6383
6384 /*
6385 * Fudge the rq selection such that the below task selection loop
6386 * doesn't get stuck on the currently eligible stop task.
6387 *
6388 * We're currently inside stop_machine() and the rq is either stuck
6389 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6390 * either way we should never end up calling schedule() until we're
6391 * done here.
6392 */
6393 rq->stop = NULL;
6394
6395 /* Ensure any throttled groups are reachable by pick_next_task */
6396 unthrottle_offline_cfs_rqs(rq);
6397
6398 for ( ; ; ) {
6399 /*
6400 * There's this thread running, bail when that's the only
6401 * remaining thread.
6402 */
6403 if (rq->nr_running == 1)
6404 break;
6405
6406 next = pick_next_task(rq);
6407 BUG_ON(!next);
6408 next->sched_class->put_prev_task(rq, next);
6409
6410 /* Find suitable destination for @next, with force if needed. */
6411 dest_cpu = select_fallback_rq(dead_cpu, next);
6412 raw_spin_unlock(&rq->lock);
6413
6414 __migrate_task(next, dead_cpu, dest_cpu);
6415
6416 raw_spin_lock(&rq->lock);
6417 }
6418
6419 rq->stop = stop;
6420 }
6421
6422 #endif /* CONFIG_HOTPLUG_CPU */
6423
6424 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6425
6426 static struct ctl_table sd_ctl_dir[] = {
6427 {
6428 .procname = "sched_domain",
6429 .mode = 0555,
6430 },
6431 {}
6432 };
6433
6434 static struct ctl_table sd_ctl_root[] = {
6435 {
6436 .procname = "kernel",
6437 .mode = 0555,
6438 .child = sd_ctl_dir,
6439 },
6440 {}
6441 };
6442
6443 static struct ctl_table *sd_alloc_ctl_entry(int n)
6444 {
6445 struct ctl_table *entry =
6446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6447
6448 return entry;
6449 }
6450
6451 static void sd_free_ctl_entry(struct ctl_table **tablep)
6452 {
6453 struct ctl_table *entry;
6454
6455 /*
6456 * In the intermediate directories, both the child directory and
6457 * procname are dynamically allocated and could fail but the mode
6458 * will always be set. In the lowest directory the names are
6459 * static strings and all have proc handlers.
6460 */
6461 for (entry = *tablep; entry->mode; entry++) {
6462 if (entry->child)
6463 sd_free_ctl_entry(&entry->child);
6464 if (entry->proc_handler == NULL)
6465 kfree(entry->procname);
6466 }
6467
6468 kfree(*tablep);
6469 *tablep = NULL;
6470 }
6471
6472 static void
6473 set_table_entry(struct ctl_table *entry,
6474 const char *procname, void *data, int maxlen,
6475 mode_t mode, proc_handler *proc_handler)
6476 {
6477 entry->procname = procname;
6478 entry->data = data;
6479 entry->maxlen = maxlen;
6480 entry->mode = mode;
6481 entry->proc_handler = proc_handler;
6482 }
6483
6484 static struct ctl_table *
6485 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486 {
6487 struct ctl_table *table = sd_alloc_ctl_entry(13);
6488
6489 if (table == NULL)
6490 return NULL;
6491
6492 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6493 sizeof(long), 0644, proc_doulongvec_minmax);
6494 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6495 sizeof(long), 0644, proc_doulongvec_minmax);
6496 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6497 sizeof(int), 0644, proc_dointvec_minmax);
6498 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6499 sizeof(int), 0644, proc_dointvec_minmax);
6500 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6501 sizeof(int), 0644, proc_dointvec_minmax);
6502 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6503 sizeof(int), 0644, proc_dointvec_minmax);
6504 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6505 sizeof(int), 0644, proc_dointvec_minmax);
6506 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6507 sizeof(int), 0644, proc_dointvec_minmax);
6508 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6509 sizeof(int), 0644, proc_dointvec_minmax);
6510 set_table_entry(&table[9], "cache_nice_tries",
6511 &sd->cache_nice_tries,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[10], "flags", &sd->flags,
6514 sizeof(int), 0644, proc_dointvec_minmax);
6515 set_table_entry(&table[11], "name", sd->name,
6516 CORENAME_MAX_SIZE, 0444, proc_dostring);
6517 /* &table[12] is terminator */
6518
6519 return table;
6520 }
6521
6522 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6523 {
6524 struct ctl_table *entry, *table;
6525 struct sched_domain *sd;
6526 int domain_num = 0, i;
6527 char buf[32];
6528
6529 for_each_domain(cpu, sd)
6530 domain_num++;
6531 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6532 if (table == NULL)
6533 return NULL;
6534
6535 i = 0;
6536 for_each_domain(cpu, sd) {
6537 snprintf(buf, 32, "domain%d", i);
6538 entry->procname = kstrdup(buf, GFP_KERNEL);
6539 entry->mode = 0555;
6540 entry->child = sd_alloc_ctl_domain_table(sd);
6541 entry++;
6542 i++;
6543 }
6544 return table;
6545 }
6546
6547 static struct ctl_table_header *sd_sysctl_header;
6548 static void register_sched_domain_sysctl(void)
6549 {
6550 int i, cpu_num = num_possible_cpus();
6551 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6552 char buf[32];
6553
6554 WARN_ON(sd_ctl_dir[0].child);
6555 sd_ctl_dir[0].child = entry;
6556
6557 if (entry == NULL)
6558 return;
6559
6560 for_each_possible_cpu(i) {
6561 snprintf(buf, 32, "cpu%d", i);
6562 entry->procname = kstrdup(buf, GFP_KERNEL);
6563 entry->mode = 0555;
6564 entry->child = sd_alloc_ctl_cpu_table(i);
6565 entry++;
6566 }
6567
6568 WARN_ON(sd_sysctl_header);
6569 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6570 }
6571
6572 /* may be called multiple times per register */
6573 static void unregister_sched_domain_sysctl(void)
6574 {
6575 if (sd_sysctl_header)
6576 unregister_sysctl_table(sd_sysctl_header);
6577 sd_sysctl_header = NULL;
6578 if (sd_ctl_dir[0].child)
6579 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6580 }
6581 #else
6582 static void register_sched_domain_sysctl(void)
6583 {
6584 }
6585 static void unregister_sched_domain_sysctl(void)
6586 {
6587 }
6588 #endif
6589
6590 static void set_rq_online(struct rq *rq)
6591 {
6592 if (!rq->online) {
6593 const struct sched_class *class;
6594
6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
6596 rq->online = 1;
6597
6598 for_each_class(class) {
6599 if (class->rq_online)
6600 class->rq_online(rq);
6601 }
6602 }
6603 }
6604
6605 static void set_rq_offline(struct rq *rq)
6606 {
6607 if (rq->online) {
6608 const struct sched_class *class;
6609
6610 for_each_class(class) {
6611 if (class->rq_offline)
6612 class->rq_offline(rq);
6613 }
6614
6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6616 rq->online = 0;
6617 }
6618 }
6619
6620 /*
6621 * migration_call - callback that gets triggered when a CPU is added.
6622 * Here we can start up the necessary migration thread for the new CPU.
6623 */
6624 static int __cpuinit
6625 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6626 {
6627 int cpu = (long)hcpu;
6628 unsigned long flags;
6629 struct rq *rq = cpu_rq(cpu);
6630
6631 switch (action & ~CPU_TASKS_FROZEN) {
6632
6633 case CPU_UP_PREPARE:
6634 rq->calc_load_update = calc_load_update;
6635 break;
6636
6637 case CPU_ONLINE:
6638 /* Update our root-domain */
6639 raw_spin_lock_irqsave(&rq->lock, flags);
6640 if (rq->rd) {
6641 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6642
6643 set_rq_online(rq);
6644 }
6645 raw_spin_unlock_irqrestore(&rq->lock, flags);
6646 break;
6647
6648 #ifdef CONFIG_HOTPLUG_CPU
6649 case CPU_DYING:
6650 sched_ttwu_pending();
6651 /* Update our root-domain */
6652 raw_spin_lock_irqsave(&rq->lock, flags);
6653 if (rq->rd) {
6654 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6655 set_rq_offline(rq);
6656 }
6657 migrate_tasks(cpu);
6658 BUG_ON(rq->nr_running != 1); /* the migration thread */
6659 raw_spin_unlock_irqrestore(&rq->lock, flags);
6660
6661 migrate_nr_uninterruptible(rq);
6662 calc_global_load_remove(rq);
6663 break;
6664 #endif
6665 }
6666
6667 update_max_interval();
6668
6669 return NOTIFY_OK;
6670 }
6671
6672 /*
6673 * Register at high priority so that task migration (migrate_all_tasks)
6674 * happens before everything else. This has to be lower priority than
6675 * the notifier in the perf_event subsystem, though.
6676 */
6677 static struct notifier_block __cpuinitdata migration_notifier = {
6678 .notifier_call = migration_call,
6679 .priority = CPU_PRI_MIGRATION,
6680 };
6681
6682 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6683 unsigned long action, void *hcpu)
6684 {
6685 switch (action & ~CPU_TASKS_FROZEN) {
6686 case CPU_ONLINE:
6687 case CPU_DOWN_FAILED:
6688 set_cpu_active((long)hcpu, true);
6689 return NOTIFY_OK;
6690 default:
6691 return NOTIFY_DONE;
6692 }
6693 }
6694
6695 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6696 unsigned long action, void *hcpu)
6697 {
6698 switch (action & ~CPU_TASKS_FROZEN) {
6699 case CPU_DOWN_PREPARE:
6700 set_cpu_active((long)hcpu, false);
6701 return NOTIFY_OK;
6702 default:
6703 return NOTIFY_DONE;
6704 }
6705 }
6706
6707 static int __init migration_init(void)
6708 {
6709 void *cpu = (void *)(long)smp_processor_id();
6710 int err;
6711
6712 /* Initialize migration for the boot CPU */
6713 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6714 BUG_ON(err == NOTIFY_BAD);
6715 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6716 register_cpu_notifier(&migration_notifier);
6717
6718 /* Register cpu active notifiers */
6719 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6720 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6721
6722 return 0;
6723 }
6724 early_initcall(migration_init);
6725 #endif
6726
6727 #ifdef CONFIG_SMP
6728
6729 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6730
6731 #ifdef CONFIG_SCHED_DEBUG
6732
6733 static __read_mostly int sched_domain_debug_enabled;
6734
6735 static int __init sched_domain_debug_setup(char *str)
6736 {
6737 sched_domain_debug_enabled = 1;
6738
6739 return 0;
6740 }
6741 early_param("sched_debug", sched_domain_debug_setup);
6742
6743 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6744 struct cpumask *groupmask)
6745 {
6746 struct sched_group *group = sd->groups;
6747 char str[256];
6748
6749 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6750 cpumask_clear(groupmask);
6751
6752 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6753
6754 if (!(sd->flags & SD_LOAD_BALANCE)) {
6755 printk("does not load-balance\n");
6756 if (sd->parent)
6757 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6758 " has parent");
6759 return -1;
6760 }
6761
6762 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6763
6764 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6765 printk(KERN_ERR "ERROR: domain->span does not contain "
6766 "CPU%d\n", cpu);
6767 }
6768 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6769 printk(KERN_ERR "ERROR: domain->groups does not contain"
6770 " CPU%d\n", cpu);
6771 }
6772
6773 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6774 do {
6775 if (!group) {
6776 printk("\n");
6777 printk(KERN_ERR "ERROR: group is NULL\n");
6778 break;
6779 }
6780
6781 if (!group->sgp->power) {
6782 printk(KERN_CONT "\n");
6783 printk(KERN_ERR "ERROR: domain->cpu_power not "
6784 "set\n");
6785 break;
6786 }
6787
6788 if (!cpumask_weight(sched_group_cpus(group))) {
6789 printk(KERN_CONT "\n");
6790 printk(KERN_ERR "ERROR: empty group\n");
6791 break;
6792 }
6793
6794 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6795 printk(KERN_CONT "\n");
6796 printk(KERN_ERR "ERROR: repeated CPUs\n");
6797 break;
6798 }
6799
6800 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6801
6802 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6803
6804 printk(KERN_CONT " %s", str);
6805 if (group->sgp->power != SCHED_POWER_SCALE) {
6806 printk(KERN_CONT " (cpu_power = %d)",
6807 group->sgp->power);
6808 }
6809
6810 group = group->next;
6811 } while (group != sd->groups);
6812 printk(KERN_CONT "\n");
6813
6814 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6815 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6816
6817 if (sd->parent &&
6818 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6819 printk(KERN_ERR "ERROR: parent span is not a superset "
6820 "of domain->span\n");
6821 return 0;
6822 }
6823
6824 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6825 {
6826 int level = 0;
6827
6828 if (!sched_domain_debug_enabled)
6829 return;
6830
6831 if (!sd) {
6832 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6833 return;
6834 }
6835
6836 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6837
6838 for (;;) {
6839 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6840 break;
6841 level++;
6842 sd = sd->parent;
6843 if (!sd)
6844 break;
6845 }
6846 }
6847 #else /* !CONFIG_SCHED_DEBUG */
6848 # define sched_domain_debug(sd, cpu) do { } while (0)
6849 #endif /* CONFIG_SCHED_DEBUG */
6850
6851 static int sd_degenerate(struct sched_domain *sd)
6852 {
6853 if (cpumask_weight(sched_domain_span(sd)) == 1)
6854 return 1;
6855
6856 /* Following flags need at least 2 groups */
6857 if (sd->flags & (SD_LOAD_BALANCE |
6858 SD_BALANCE_NEWIDLE |
6859 SD_BALANCE_FORK |
6860 SD_BALANCE_EXEC |
6861 SD_SHARE_CPUPOWER |
6862 SD_SHARE_PKG_RESOURCES)) {
6863 if (sd->groups != sd->groups->next)
6864 return 0;
6865 }
6866
6867 /* Following flags don't use groups */
6868 if (sd->flags & (SD_WAKE_AFFINE))
6869 return 0;
6870
6871 return 1;
6872 }
6873
6874 static int
6875 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6876 {
6877 unsigned long cflags = sd->flags, pflags = parent->flags;
6878
6879 if (sd_degenerate(parent))
6880 return 1;
6881
6882 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6883 return 0;
6884
6885 /* Flags needing groups don't count if only 1 group in parent */
6886 if (parent->groups == parent->groups->next) {
6887 pflags &= ~(SD_LOAD_BALANCE |
6888 SD_BALANCE_NEWIDLE |
6889 SD_BALANCE_FORK |
6890 SD_BALANCE_EXEC |
6891 SD_SHARE_CPUPOWER |
6892 SD_SHARE_PKG_RESOURCES);
6893 if (nr_node_ids == 1)
6894 pflags &= ~SD_SERIALIZE;
6895 }
6896 if (~cflags & pflags)
6897 return 0;
6898
6899 return 1;
6900 }
6901
6902 static void free_rootdomain(struct rcu_head *rcu)
6903 {
6904 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6905
6906 cpupri_cleanup(&rd->cpupri);
6907 free_cpumask_var(rd->rto_mask);
6908 free_cpumask_var(rd->online);
6909 free_cpumask_var(rd->span);
6910 kfree(rd);
6911 }
6912
6913 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6914 {
6915 struct root_domain *old_rd = NULL;
6916 unsigned long flags;
6917
6918 raw_spin_lock_irqsave(&rq->lock, flags);
6919
6920 if (rq->rd) {
6921 old_rd = rq->rd;
6922
6923 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6924 set_rq_offline(rq);
6925
6926 cpumask_clear_cpu(rq->cpu, old_rd->span);
6927
6928 /*
6929 * If we dont want to free the old_rt yet then
6930 * set old_rd to NULL to skip the freeing later
6931 * in this function:
6932 */
6933 if (!atomic_dec_and_test(&old_rd->refcount))
6934 old_rd = NULL;
6935 }
6936
6937 atomic_inc(&rd->refcount);
6938 rq->rd = rd;
6939
6940 cpumask_set_cpu(rq->cpu, rd->span);
6941 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6942 set_rq_online(rq);
6943
6944 raw_spin_unlock_irqrestore(&rq->lock, flags);
6945
6946 if (old_rd)
6947 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6948 }
6949
6950 static int init_rootdomain(struct root_domain *rd)
6951 {
6952 memset(rd, 0, sizeof(*rd));
6953
6954 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6955 goto out;
6956 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6957 goto free_span;
6958 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6959 goto free_online;
6960
6961 if (cpupri_init(&rd->cpupri) != 0)
6962 goto free_rto_mask;
6963 return 0;
6964
6965 free_rto_mask:
6966 free_cpumask_var(rd->rto_mask);
6967 free_online:
6968 free_cpumask_var(rd->online);
6969 free_span:
6970 free_cpumask_var(rd->span);
6971 out:
6972 return -ENOMEM;
6973 }
6974
6975 static void init_defrootdomain(void)
6976 {
6977 init_rootdomain(&def_root_domain);
6978
6979 atomic_set(&def_root_domain.refcount, 1);
6980 }
6981
6982 static struct root_domain *alloc_rootdomain(void)
6983 {
6984 struct root_domain *rd;
6985
6986 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6987 if (!rd)
6988 return NULL;
6989
6990 if (init_rootdomain(rd) != 0) {
6991 kfree(rd);
6992 return NULL;
6993 }
6994
6995 return rd;
6996 }
6997
6998 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6999 {
7000 struct sched_group *tmp, *first;
7001
7002 if (!sg)
7003 return;
7004
7005 first = sg;
7006 do {
7007 tmp = sg->next;
7008
7009 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7010 kfree(sg->sgp);
7011
7012 kfree(sg);
7013 sg = tmp;
7014 } while (sg != first);
7015 }
7016
7017 static void free_sched_domain(struct rcu_head *rcu)
7018 {
7019 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7020
7021 /*
7022 * If its an overlapping domain it has private groups, iterate and
7023 * nuke them all.
7024 */
7025 if (sd->flags & SD_OVERLAP) {
7026 free_sched_groups(sd->groups, 1);
7027 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7028 kfree(sd->groups->sgp);
7029 kfree(sd->groups);
7030 }
7031 kfree(sd);
7032 }
7033
7034 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7035 {
7036 call_rcu(&sd->rcu, free_sched_domain);
7037 }
7038
7039 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7040 {
7041 for (; sd; sd = sd->parent)
7042 destroy_sched_domain(sd, cpu);
7043 }
7044
7045 /*
7046 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7047 * hold the hotplug lock.
7048 */
7049 static void
7050 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7051 {
7052 struct rq *rq = cpu_rq(cpu);
7053 struct sched_domain *tmp;
7054
7055 /* Remove the sched domains which do not contribute to scheduling. */
7056 for (tmp = sd; tmp; ) {
7057 struct sched_domain *parent = tmp->parent;
7058 if (!parent)
7059 break;
7060
7061 if (sd_parent_degenerate(tmp, parent)) {
7062 tmp->parent = parent->parent;
7063 if (parent->parent)
7064 parent->parent->child = tmp;
7065 destroy_sched_domain(parent, cpu);
7066 } else
7067 tmp = tmp->parent;
7068 }
7069
7070 if (sd && sd_degenerate(sd)) {
7071 tmp = sd;
7072 sd = sd->parent;
7073 destroy_sched_domain(tmp, cpu);
7074 if (sd)
7075 sd->child = NULL;
7076 }
7077
7078 sched_domain_debug(sd, cpu);
7079
7080 rq_attach_root(rq, rd);
7081 tmp = rq->sd;
7082 rcu_assign_pointer(rq->sd, sd);
7083 destroy_sched_domains(tmp, cpu);
7084 }
7085
7086 /* cpus with isolated domains */
7087 static cpumask_var_t cpu_isolated_map;
7088
7089 /* Setup the mask of cpus configured for isolated domains */
7090 static int __init isolated_cpu_setup(char *str)
7091 {
7092 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7093 cpulist_parse(str, cpu_isolated_map);
7094 return 1;
7095 }
7096
7097 __setup("isolcpus=", isolated_cpu_setup);
7098
7099 #define SD_NODES_PER_DOMAIN 16
7100
7101 #ifdef CONFIG_NUMA
7102
7103 /**
7104 * find_next_best_node - find the next node to include in a sched_domain
7105 * @node: node whose sched_domain we're building
7106 * @used_nodes: nodes already in the sched_domain
7107 *
7108 * Find the next node to include in a given scheduling domain. Simply
7109 * finds the closest node not already in the @used_nodes map.
7110 *
7111 * Should use nodemask_t.
7112 */
7113 static int find_next_best_node(int node, nodemask_t *used_nodes)
7114 {
7115 int i, n, val, min_val, best_node = -1;
7116
7117 min_val = INT_MAX;
7118
7119 for (i = 0; i < nr_node_ids; i++) {
7120 /* Start at @node */
7121 n = (node + i) % nr_node_ids;
7122
7123 if (!nr_cpus_node(n))
7124 continue;
7125
7126 /* Skip already used nodes */
7127 if (node_isset(n, *used_nodes))
7128 continue;
7129
7130 /* Simple min distance search */
7131 val = node_distance(node, n);
7132
7133 if (val < min_val) {
7134 min_val = val;
7135 best_node = n;
7136 }
7137 }
7138
7139 if (best_node != -1)
7140 node_set(best_node, *used_nodes);
7141 return best_node;
7142 }
7143
7144 /**
7145 * sched_domain_node_span - get a cpumask for a node's sched_domain
7146 * @node: node whose cpumask we're constructing
7147 * @span: resulting cpumask
7148 *
7149 * Given a node, construct a good cpumask for its sched_domain to span. It
7150 * should be one that prevents unnecessary balancing, but also spreads tasks
7151 * out optimally.
7152 */
7153 static void sched_domain_node_span(int node, struct cpumask *span)
7154 {
7155 nodemask_t used_nodes;
7156 int i;
7157
7158 cpumask_clear(span);
7159 nodes_clear(used_nodes);
7160
7161 cpumask_or(span, span, cpumask_of_node(node));
7162 node_set(node, used_nodes);
7163
7164 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7165 int next_node = find_next_best_node(node, &used_nodes);
7166 if (next_node < 0)
7167 break;
7168 cpumask_or(span, span, cpumask_of_node(next_node));
7169 }
7170 }
7171
7172 static const struct cpumask *cpu_node_mask(int cpu)
7173 {
7174 lockdep_assert_held(&sched_domains_mutex);
7175
7176 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7177
7178 return sched_domains_tmpmask;
7179 }
7180
7181 static const struct cpumask *cpu_allnodes_mask(int cpu)
7182 {
7183 return cpu_possible_mask;
7184 }
7185 #endif /* CONFIG_NUMA */
7186
7187 static const struct cpumask *cpu_cpu_mask(int cpu)
7188 {
7189 return cpumask_of_node(cpu_to_node(cpu));
7190 }
7191
7192 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7193
7194 struct sd_data {
7195 struct sched_domain **__percpu sd;
7196 struct sched_group **__percpu sg;
7197 struct sched_group_power **__percpu sgp;
7198 };
7199
7200 struct s_data {
7201 struct sched_domain ** __percpu sd;
7202 struct root_domain *rd;
7203 };
7204
7205 enum s_alloc {
7206 sa_rootdomain,
7207 sa_sd,
7208 sa_sd_storage,
7209 sa_none,
7210 };
7211
7212 struct sched_domain_topology_level;
7213
7214 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7215 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7216
7217 #define SDTL_OVERLAP 0x01
7218
7219 struct sched_domain_topology_level {
7220 sched_domain_init_f init;
7221 sched_domain_mask_f mask;
7222 int flags;
7223 struct sd_data data;
7224 };
7225
7226 static int
7227 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7228 {
7229 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7230 const struct cpumask *span = sched_domain_span(sd);
7231 struct cpumask *covered = sched_domains_tmpmask;
7232 struct sd_data *sdd = sd->private;
7233 struct sched_domain *child;
7234 int i;
7235
7236 cpumask_clear(covered);
7237
7238 for_each_cpu(i, span) {
7239 struct cpumask *sg_span;
7240
7241 if (cpumask_test_cpu(i, covered))
7242 continue;
7243
7244 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7245 GFP_KERNEL, cpu_to_node(i));
7246
7247 if (!sg)
7248 goto fail;
7249
7250 sg_span = sched_group_cpus(sg);
7251
7252 child = *per_cpu_ptr(sdd->sd, i);
7253 if (child->child) {
7254 child = child->child;
7255 cpumask_copy(sg_span, sched_domain_span(child));
7256 } else
7257 cpumask_set_cpu(i, sg_span);
7258
7259 cpumask_or(covered, covered, sg_span);
7260
7261 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7262 atomic_inc(&sg->sgp->ref);
7263
7264 if (cpumask_test_cpu(cpu, sg_span))
7265 groups = sg;
7266
7267 if (!first)
7268 first = sg;
7269 if (last)
7270 last->next = sg;
7271 last = sg;
7272 last->next = first;
7273 }
7274 sd->groups = groups;
7275
7276 return 0;
7277
7278 fail:
7279 free_sched_groups(first, 0);
7280
7281 return -ENOMEM;
7282 }
7283
7284 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7285 {
7286 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7287 struct sched_domain *child = sd->child;
7288
7289 if (child)
7290 cpu = cpumask_first(sched_domain_span(child));
7291
7292 if (sg) {
7293 *sg = *per_cpu_ptr(sdd->sg, cpu);
7294 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7295 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7296 }
7297
7298 return cpu;
7299 }
7300
7301 /*
7302 * build_sched_groups will build a circular linked list of the groups
7303 * covered by the given span, and will set each group's ->cpumask correctly,
7304 * and ->cpu_power to 0.
7305 *
7306 * Assumes the sched_domain tree is fully constructed
7307 */
7308 static int
7309 build_sched_groups(struct sched_domain *sd, int cpu)
7310 {
7311 struct sched_group *first = NULL, *last = NULL;
7312 struct sd_data *sdd = sd->private;
7313 const struct cpumask *span = sched_domain_span(sd);
7314 struct cpumask *covered;
7315 int i;
7316
7317 get_group(cpu, sdd, &sd->groups);
7318 atomic_inc(&sd->groups->ref);
7319
7320 if (cpu != cpumask_first(sched_domain_span(sd)))
7321 return 0;
7322
7323 lockdep_assert_held(&sched_domains_mutex);
7324 covered = sched_domains_tmpmask;
7325
7326 cpumask_clear(covered);
7327
7328 for_each_cpu(i, span) {
7329 struct sched_group *sg;
7330 int group = get_group(i, sdd, &sg);
7331 int j;
7332
7333 if (cpumask_test_cpu(i, covered))
7334 continue;
7335
7336 cpumask_clear(sched_group_cpus(sg));
7337 sg->sgp->power = 0;
7338
7339 for_each_cpu(j, span) {
7340 if (get_group(j, sdd, NULL) != group)
7341 continue;
7342
7343 cpumask_set_cpu(j, covered);
7344 cpumask_set_cpu(j, sched_group_cpus(sg));
7345 }
7346
7347 if (!first)
7348 first = sg;
7349 if (last)
7350 last->next = sg;
7351 last = sg;
7352 }
7353 last->next = first;
7354
7355 return 0;
7356 }
7357
7358 /*
7359 * Initialize sched groups cpu_power.
7360 *
7361 * cpu_power indicates the capacity of sched group, which is used while
7362 * distributing the load between different sched groups in a sched domain.
7363 * Typically cpu_power for all the groups in a sched domain will be same unless
7364 * there are asymmetries in the topology. If there are asymmetries, group
7365 * having more cpu_power will pickup more load compared to the group having
7366 * less cpu_power.
7367 */
7368 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7369 {
7370 struct sched_group *sg = sd->groups;
7371
7372 WARN_ON(!sd || !sg);
7373
7374 do {
7375 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7376 sg = sg->next;
7377 } while (sg != sd->groups);
7378
7379 if (cpu != group_first_cpu(sg))
7380 return;
7381
7382 update_group_power(sd, cpu);
7383 }
7384
7385 /*
7386 * Initializers for schedule domains
7387 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7388 */
7389
7390 #ifdef CONFIG_SCHED_DEBUG
7391 # define SD_INIT_NAME(sd, type) sd->name = #type
7392 #else
7393 # define SD_INIT_NAME(sd, type) do { } while (0)
7394 #endif
7395
7396 #define SD_INIT_FUNC(type) \
7397 static noinline struct sched_domain * \
7398 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7399 { \
7400 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7401 *sd = SD_##type##_INIT; \
7402 SD_INIT_NAME(sd, type); \
7403 sd->private = &tl->data; \
7404 return sd; \
7405 }
7406
7407 SD_INIT_FUNC(CPU)
7408 #ifdef CONFIG_NUMA
7409 SD_INIT_FUNC(ALLNODES)
7410 SD_INIT_FUNC(NODE)
7411 #endif
7412 #ifdef CONFIG_SCHED_SMT
7413 SD_INIT_FUNC(SIBLING)
7414 #endif
7415 #ifdef CONFIG_SCHED_MC
7416 SD_INIT_FUNC(MC)
7417 #endif
7418 #ifdef CONFIG_SCHED_BOOK
7419 SD_INIT_FUNC(BOOK)
7420 #endif
7421
7422 static int default_relax_domain_level = -1;
7423 int sched_domain_level_max;
7424
7425 static int __init setup_relax_domain_level(char *str)
7426 {
7427 unsigned long val;
7428
7429 val = simple_strtoul(str, NULL, 0);
7430 if (val < sched_domain_level_max)
7431 default_relax_domain_level = val;
7432
7433 return 1;
7434 }
7435 __setup("relax_domain_level=", setup_relax_domain_level);
7436
7437 static void set_domain_attribute(struct sched_domain *sd,
7438 struct sched_domain_attr *attr)
7439 {
7440 int request;
7441
7442 if (!attr || attr->relax_domain_level < 0) {
7443 if (default_relax_domain_level < 0)
7444 return;
7445 else
7446 request = default_relax_domain_level;
7447 } else
7448 request = attr->relax_domain_level;
7449 if (request < sd->level) {
7450 /* turn off idle balance on this domain */
7451 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7452 } else {
7453 /* turn on idle balance on this domain */
7454 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7455 }
7456 }
7457
7458 static void __sdt_free(const struct cpumask *cpu_map);
7459 static int __sdt_alloc(const struct cpumask *cpu_map);
7460
7461 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7462 const struct cpumask *cpu_map)
7463 {
7464 switch (what) {
7465 case sa_rootdomain:
7466 if (!atomic_read(&d->rd->refcount))
7467 free_rootdomain(&d->rd->rcu); /* fall through */
7468 case sa_sd:
7469 free_percpu(d->sd); /* fall through */
7470 case sa_sd_storage:
7471 __sdt_free(cpu_map); /* fall through */
7472 case sa_none:
7473 break;
7474 }
7475 }
7476
7477 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7478 const struct cpumask *cpu_map)
7479 {
7480 memset(d, 0, sizeof(*d));
7481
7482 if (__sdt_alloc(cpu_map))
7483 return sa_sd_storage;
7484 d->sd = alloc_percpu(struct sched_domain *);
7485 if (!d->sd)
7486 return sa_sd_storage;
7487 d->rd = alloc_rootdomain();
7488 if (!d->rd)
7489 return sa_sd;
7490 return sa_rootdomain;
7491 }
7492
7493 /*
7494 * NULL the sd_data elements we've used to build the sched_domain and
7495 * sched_group structure so that the subsequent __free_domain_allocs()
7496 * will not free the data we're using.
7497 */
7498 static void claim_allocations(int cpu, struct sched_domain *sd)
7499 {
7500 struct sd_data *sdd = sd->private;
7501
7502 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7503 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7504
7505 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7506 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7507
7508 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7509 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7510 }
7511
7512 #ifdef CONFIG_SCHED_SMT
7513 static const struct cpumask *cpu_smt_mask(int cpu)
7514 {
7515 return topology_thread_cpumask(cpu);
7516 }
7517 #endif
7518
7519 /*
7520 * Topology list, bottom-up.
7521 */
7522 static struct sched_domain_topology_level default_topology[] = {
7523 #ifdef CONFIG_SCHED_SMT
7524 { sd_init_SIBLING, cpu_smt_mask, },
7525 #endif
7526 #ifdef CONFIG_SCHED_MC
7527 { sd_init_MC, cpu_coregroup_mask, },
7528 #endif
7529 #ifdef CONFIG_SCHED_BOOK
7530 { sd_init_BOOK, cpu_book_mask, },
7531 #endif
7532 { sd_init_CPU, cpu_cpu_mask, },
7533 #ifdef CONFIG_NUMA
7534 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7535 { sd_init_ALLNODES, cpu_allnodes_mask, },
7536 #endif
7537 { NULL, },
7538 };
7539
7540 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7541
7542 static int __sdt_alloc(const struct cpumask *cpu_map)
7543 {
7544 struct sched_domain_topology_level *tl;
7545 int j;
7546
7547 for (tl = sched_domain_topology; tl->init; tl++) {
7548 struct sd_data *sdd = &tl->data;
7549
7550 sdd->sd = alloc_percpu(struct sched_domain *);
7551 if (!sdd->sd)
7552 return -ENOMEM;
7553
7554 sdd->sg = alloc_percpu(struct sched_group *);
7555 if (!sdd->sg)
7556 return -ENOMEM;
7557
7558 sdd->sgp = alloc_percpu(struct sched_group_power *);
7559 if (!sdd->sgp)
7560 return -ENOMEM;
7561
7562 for_each_cpu(j, cpu_map) {
7563 struct sched_domain *sd;
7564 struct sched_group *sg;
7565 struct sched_group_power *sgp;
7566
7567 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7568 GFP_KERNEL, cpu_to_node(j));
7569 if (!sd)
7570 return -ENOMEM;
7571
7572 *per_cpu_ptr(sdd->sd, j) = sd;
7573
7574 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7575 GFP_KERNEL, cpu_to_node(j));
7576 if (!sg)
7577 return -ENOMEM;
7578
7579 *per_cpu_ptr(sdd->sg, j) = sg;
7580
7581 sgp = kzalloc_node(sizeof(struct sched_group_power),
7582 GFP_KERNEL, cpu_to_node(j));
7583 if (!sgp)
7584 return -ENOMEM;
7585
7586 *per_cpu_ptr(sdd->sgp, j) = sgp;
7587 }
7588 }
7589
7590 return 0;
7591 }
7592
7593 static void __sdt_free(const struct cpumask *cpu_map)
7594 {
7595 struct sched_domain_topology_level *tl;
7596 int j;
7597
7598 for (tl = sched_domain_topology; tl->init; tl++) {
7599 struct sd_data *sdd = &tl->data;
7600
7601 for_each_cpu(j, cpu_map) {
7602 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7603 if (sd && (sd->flags & SD_OVERLAP))
7604 free_sched_groups(sd->groups, 0);
7605 kfree(*per_cpu_ptr(sdd->sd, j));
7606 kfree(*per_cpu_ptr(sdd->sg, j));
7607 kfree(*per_cpu_ptr(sdd->sgp, j));
7608 }
7609 free_percpu(sdd->sd);
7610 free_percpu(sdd->sg);
7611 free_percpu(sdd->sgp);
7612 }
7613 }
7614
7615 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7616 struct s_data *d, const struct cpumask *cpu_map,
7617 struct sched_domain_attr *attr, struct sched_domain *child,
7618 int cpu)
7619 {
7620 struct sched_domain *sd = tl->init(tl, cpu);
7621 if (!sd)
7622 return child;
7623
7624 set_domain_attribute(sd, attr);
7625 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7626 if (child) {
7627 sd->level = child->level + 1;
7628 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7629 child->parent = sd;
7630 }
7631 sd->child = child;
7632
7633 return sd;
7634 }
7635
7636 /*
7637 * Build sched domains for a given set of cpus and attach the sched domains
7638 * to the individual cpus
7639 */
7640 static int build_sched_domains(const struct cpumask *cpu_map,
7641 struct sched_domain_attr *attr)
7642 {
7643 enum s_alloc alloc_state = sa_none;
7644 struct sched_domain *sd;
7645 struct s_data d;
7646 int i, ret = -ENOMEM;
7647
7648 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7649 if (alloc_state != sa_rootdomain)
7650 goto error;
7651
7652 /* Set up domains for cpus specified by the cpu_map. */
7653 for_each_cpu(i, cpu_map) {
7654 struct sched_domain_topology_level *tl;
7655
7656 sd = NULL;
7657 for (tl = sched_domain_topology; tl->init; tl++) {
7658 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7659 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7660 sd->flags |= SD_OVERLAP;
7661 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7662 break;
7663 }
7664
7665 while (sd->child)
7666 sd = sd->child;
7667
7668 *per_cpu_ptr(d.sd, i) = sd;
7669 }
7670
7671 /* Build the groups for the domains */
7672 for_each_cpu(i, cpu_map) {
7673 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7674 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7675 if (sd->flags & SD_OVERLAP) {
7676 if (build_overlap_sched_groups(sd, i))
7677 goto error;
7678 } else {
7679 if (build_sched_groups(sd, i))
7680 goto error;
7681 }
7682 }
7683 }
7684
7685 /* Calculate CPU power for physical packages and nodes */
7686 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7687 if (!cpumask_test_cpu(i, cpu_map))
7688 continue;
7689
7690 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7691 claim_allocations(i, sd);
7692 init_sched_groups_power(i, sd);
7693 }
7694 }
7695
7696 /* Attach the domains */
7697 rcu_read_lock();
7698 for_each_cpu(i, cpu_map) {
7699 sd = *per_cpu_ptr(d.sd, i);
7700 cpu_attach_domain(sd, d.rd, i);
7701 }
7702 rcu_read_unlock();
7703
7704 ret = 0;
7705 error:
7706 __free_domain_allocs(&d, alloc_state, cpu_map);
7707 return ret;
7708 }
7709
7710 static cpumask_var_t *doms_cur; /* current sched domains */
7711 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7712 static struct sched_domain_attr *dattr_cur;
7713 /* attribues of custom domains in 'doms_cur' */
7714
7715 /*
7716 * Special case: If a kmalloc of a doms_cur partition (array of
7717 * cpumask) fails, then fallback to a single sched domain,
7718 * as determined by the single cpumask fallback_doms.
7719 */
7720 static cpumask_var_t fallback_doms;
7721
7722 /*
7723 * arch_update_cpu_topology lets virtualized architectures update the
7724 * cpu core maps. It is supposed to return 1 if the topology changed
7725 * or 0 if it stayed the same.
7726 */
7727 int __attribute__((weak)) arch_update_cpu_topology(void)
7728 {
7729 return 0;
7730 }
7731
7732 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7733 {
7734 int i;
7735 cpumask_var_t *doms;
7736
7737 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7738 if (!doms)
7739 return NULL;
7740 for (i = 0; i < ndoms; i++) {
7741 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7742 free_sched_domains(doms, i);
7743 return NULL;
7744 }
7745 }
7746 return doms;
7747 }
7748
7749 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7750 {
7751 unsigned int i;
7752 for (i = 0; i < ndoms; i++)
7753 free_cpumask_var(doms[i]);
7754 kfree(doms);
7755 }
7756
7757 /*
7758 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7759 * For now this just excludes isolated cpus, but could be used to
7760 * exclude other special cases in the future.
7761 */
7762 static int init_sched_domains(const struct cpumask *cpu_map)
7763 {
7764 int err;
7765
7766 arch_update_cpu_topology();
7767 ndoms_cur = 1;
7768 doms_cur = alloc_sched_domains(ndoms_cur);
7769 if (!doms_cur)
7770 doms_cur = &fallback_doms;
7771 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7772 dattr_cur = NULL;
7773 err = build_sched_domains(doms_cur[0], NULL);
7774 register_sched_domain_sysctl();
7775
7776 return err;
7777 }
7778
7779 /*
7780 * Detach sched domains from a group of cpus specified in cpu_map
7781 * These cpus will now be attached to the NULL domain
7782 */
7783 static void detach_destroy_domains(const struct cpumask *cpu_map)
7784 {
7785 int i;
7786
7787 rcu_read_lock();
7788 for_each_cpu(i, cpu_map)
7789 cpu_attach_domain(NULL, &def_root_domain, i);
7790 rcu_read_unlock();
7791 }
7792
7793 /* handle null as "default" */
7794 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7795 struct sched_domain_attr *new, int idx_new)
7796 {
7797 struct sched_domain_attr tmp;
7798
7799 /* fast path */
7800 if (!new && !cur)
7801 return 1;
7802
7803 tmp = SD_ATTR_INIT;
7804 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7805 new ? (new + idx_new) : &tmp,
7806 sizeof(struct sched_domain_attr));
7807 }
7808
7809 /*
7810 * Partition sched domains as specified by the 'ndoms_new'
7811 * cpumasks in the array doms_new[] of cpumasks. This compares
7812 * doms_new[] to the current sched domain partitioning, doms_cur[].
7813 * It destroys each deleted domain and builds each new domain.
7814 *
7815 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7816 * The masks don't intersect (don't overlap.) We should setup one
7817 * sched domain for each mask. CPUs not in any of the cpumasks will
7818 * not be load balanced. If the same cpumask appears both in the
7819 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7820 * it as it is.
7821 *
7822 * The passed in 'doms_new' should be allocated using
7823 * alloc_sched_domains. This routine takes ownership of it and will
7824 * free_sched_domains it when done with it. If the caller failed the
7825 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7826 * and partition_sched_domains() will fallback to the single partition
7827 * 'fallback_doms', it also forces the domains to be rebuilt.
7828 *
7829 * If doms_new == NULL it will be replaced with cpu_online_mask.
7830 * ndoms_new == 0 is a special case for destroying existing domains,
7831 * and it will not create the default domain.
7832 *
7833 * Call with hotplug lock held
7834 */
7835 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7836 struct sched_domain_attr *dattr_new)
7837 {
7838 int i, j, n;
7839 int new_topology;
7840
7841 mutex_lock(&sched_domains_mutex);
7842
7843 /* always unregister in case we don't destroy any domains */
7844 unregister_sched_domain_sysctl();
7845
7846 /* Let architecture update cpu core mappings. */
7847 new_topology = arch_update_cpu_topology();
7848
7849 n = doms_new ? ndoms_new : 0;
7850
7851 /* Destroy deleted domains */
7852 for (i = 0; i < ndoms_cur; i++) {
7853 for (j = 0; j < n && !new_topology; j++) {
7854 if (cpumask_equal(doms_cur[i], doms_new[j])
7855 && dattrs_equal(dattr_cur, i, dattr_new, j))
7856 goto match1;
7857 }
7858 /* no match - a current sched domain not in new doms_new[] */
7859 detach_destroy_domains(doms_cur[i]);
7860 match1:
7861 ;
7862 }
7863
7864 if (doms_new == NULL) {
7865 ndoms_cur = 0;
7866 doms_new = &fallback_doms;
7867 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7868 WARN_ON_ONCE(dattr_new);
7869 }
7870
7871 /* Build new domains */
7872 for (i = 0; i < ndoms_new; i++) {
7873 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7874 if (cpumask_equal(doms_new[i], doms_cur[j])
7875 && dattrs_equal(dattr_new, i, dattr_cur, j))
7876 goto match2;
7877 }
7878 /* no match - add a new doms_new */
7879 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7880 match2:
7881 ;
7882 }
7883
7884 /* Remember the new sched domains */
7885 if (doms_cur != &fallback_doms)
7886 free_sched_domains(doms_cur, ndoms_cur);
7887 kfree(dattr_cur); /* kfree(NULL) is safe */
7888 doms_cur = doms_new;
7889 dattr_cur = dattr_new;
7890 ndoms_cur = ndoms_new;
7891
7892 register_sched_domain_sysctl();
7893
7894 mutex_unlock(&sched_domains_mutex);
7895 }
7896
7897 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7898 static void reinit_sched_domains(void)
7899 {
7900 get_online_cpus();
7901
7902 /* Destroy domains first to force the rebuild */
7903 partition_sched_domains(0, NULL, NULL);
7904
7905 rebuild_sched_domains();
7906 put_online_cpus();
7907 }
7908
7909 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7910 {
7911 unsigned int level = 0;
7912
7913 if (sscanf(buf, "%u", &level) != 1)
7914 return -EINVAL;
7915
7916 /*
7917 * level is always be positive so don't check for
7918 * level < POWERSAVINGS_BALANCE_NONE which is 0
7919 * What happens on 0 or 1 byte write,
7920 * need to check for count as well?
7921 */
7922
7923 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7924 return -EINVAL;
7925
7926 if (smt)
7927 sched_smt_power_savings = level;
7928 else
7929 sched_mc_power_savings = level;
7930
7931 reinit_sched_domains();
7932
7933 return count;
7934 }
7935
7936 #ifdef CONFIG_SCHED_MC
7937 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7938 struct sysdev_class_attribute *attr,
7939 char *page)
7940 {
7941 return sprintf(page, "%u\n", sched_mc_power_savings);
7942 }
7943 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7944 struct sysdev_class_attribute *attr,
7945 const char *buf, size_t count)
7946 {
7947 return sched_power_savings_store(buf, count, 0);
7948 }
7949 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7950 sched_mc_power_savings_show,
7951 sched_mc_power_savings_store);
7952 #endif
7953
7954 #ifdef CONFIG_SCHED_SMT
7955 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7956 struct sysdev_class_attribute *attr,
7957 char *page)
7958 {
7959 return sprintf(page, "%u\n", sched_smt_power_savings);
7960 }
7961 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7962 struct sysdev_class_attribute *attr,
7963 const char *buf, size_t count)
7964 {
7965 return sched_power_savings_store(buf, count, 1);
7966 }
7967 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7968 sched_smt_power_savings_show,
7969 sched_smt_power_savings_store);
7970 #endif
7971
7972 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7973 {
7974 int err = 0;
7975
7976 #ifdef CONFIG_SCHED_SMT
7977 if (smt_capable())
7978 err = sysfs_create_file(&cls->kset.kobj,
7979 &attr_sched_smt_power_savings.attr);
7980 #endif
7981 #ifdef CONFIG_SCHED_MC
7982 if (!err && mc_capable())
7983 err = sysfs_create_file(&cls->kset.kobj,
7984 &attr_sched_mc_power_savings.attr);
7985 #endif
7986 return err;
7987 }
7988 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7989
7990 /*
7991 * Update cpusets according to cpu_active mask. If cpusets are
7992 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7993 * around partition_sched_domains().
7994 */
7995 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7996 void *hcpu)
7997 {
7998 switch (action & ~CPU_TASKS_FROZEN) {
7999 case CPU_ONLINE:
8000 case CPU_DOWN_FAILED:
8001 cpuset_update_active_cpus();
8002 return NOTIFY_OK;
8003 default:
8004 return NOTIFY_DONE;
8005 }
8006 }
8007
8008 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8009 void *hcpu)
8010 {
8011 switch (action & ~CPU_TASKS_FROZEN) {
8012 case CPU_DOWN_PREPARE:
8013 cpuset_update_active_cpus();
8014 return NOTIFY_OK;
8015 default:
8016 return NOTIFY_DONE;
8017 }
8018 }
8019
8020 static int update_runtime(struct notifier_block *nfb,
8021 unsigned long action, void *hcpu)
8022 {
8023 int cpu = (int)(long)hcpu;
8024
8025 switch (action) {
8026 case CPU_DOWN_PREPARE:
8027 case CPU_DOWN_PREPARE_FROZEN:
8028 disable_runtime(cpu_rq(cpu));
8029 return NOTIFY_OK;
8030
8031 case CPU_DOWN_FAILED:
8032 case CPU_DOWN_FAILED_FROZEN:
8033 case CPU_ONLINE:
8034 case CPU_ONLINE_FROZEN:
8035 enable_runtime(cpu_rq(cpu));
8036 return NOTIFY_OK;
8037
8038 default:
8039 return NOTIFY_DONE;
8040 }
8041 }
8042
8043 void __init sched_init_smp(void)
8044 {
8045 cpumask_var_t non_isolated_cpus;
8046
8047 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8048 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8049
8050 get_online_cpus();
8051 mutex_lock(&sched_domains_mutex);
8052 init_sched_domains(cpu_active_mask);
8053 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8054 if (cpumask_empty(non_isolated_cpus))
8055 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8056 mutex_unlock(&sched_domains_mutex);
8057 put_online_cpus();
8058
8059 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8060 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8061
8062 /* RT runtime code needs to handle some hotplug events */
8063 hotcpu_notifier(update_runtime, 0);
8064
8065 init_hrtick();
8066
8067 /* Move init over to a non-isolated CPU */
8068 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8069 BUG();
8070 sched_init_granularity();
8071 free_cpumask_var(non_isolated_cpus);
8072
8073 init_sched_rt_class();
8074 }
8075 #else
8076 void __init sched_init_smp(void)
8077 {
8078 sched_init_granularity();
8079 }
8080 #endif /* CONFIG_SMP */
8081
8082 const_debug unsigned int sysctl_timer_migration = 1;
8083
8084 int in_sched_functions(unsigned long addr)
8085 {
8086 return in_lock_functions(addr) ||
8087 (addr >= (unsigned long)__sched_text_start
8088 && addr < (unsigned long)__sched_text_end);
8089 }
8090
8091 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8092 {
8093 cfs_rq->tasks_timeline = RB_ROOT;
8094 INIT_LIST_HEAD(&cfs_rq->tasks);
8095 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8096 #ifndef CONFIG_64BIT
8097 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8098 #endif
8099 }
8100
8101 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8102 {
8103 struct rt_prio_array *array;
8104 int i;
8105
8106 array = &rt_rq->active;
8107 for (i = 0; i < MAX_RT_PRIO; i++) {
8108 INIT_LIST_HEAD(array->queue + i);
8109 __clear_bit(i, array->bitmap);
8110 }
8111 /* delimiter for bitsearch: */
8112 __set_bit(MAX_RT_PRIO, array->bitmap);
8113
8114 #if defined CONFIG_SMP
8115 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8116 rt_rq->highest_prio.next = MAX_RT_PRIO;
8117 rt_rq->rt_nr_migratory = 0;
8118 rt_rq->overloaded = 0;
8119 plist_head_init(&rt_rq->pushable_tasks);
8120 #endif
8121
8122 rt_rq->rt_time = 0;
8123 rt_rq->rt_throttled = 0;
8124 rt_rq->rt_runtime = 0;
8125 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8126 }
8127
8128 #ifdef CONFIG_FAIR_GROUP_SCHED
8129 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8130 struct sched_entity *se, int cpu,
8131 struct sched_entity *parent)
8132 {
8133 struct rq *rq = cpu_rq(cpu);
8134
8135 cfs_rq->tg = tg;
8136 cfs_rq->rq = rq;
8137 #ifdef CONFIG_SMP
8138 /* allow initial update_cfs_load() to truncate */
8139 cfs_rq->load_stamp = 1;
8140 #endif
8141 init_cfs_rq_runtime(cfs_rq);
8142
8143 tg->cfs_rq[cpu] = cfs_rq;
8144 tg->se[cpu] = se;
8145
8146 /* se could be NULL for root_task_group */
8147 if (!se)
8148 return;
8149
8150 if (!parent)
8151 se->cfs_rq = &rq->cfs;
8152 else
8153 se->cfs_rq = parent->my_q;
8154
8155 se->my_q = cfs_rq;
8156 update_load_set(&se->load, 0);
8157 se->parent = parent;
8158 }
8159 #endif
8160
8161 #ifdef CONFIG_RT_GROUP_SCHED
8162 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8163 struct sched_rt_entity *rt_se, int cpu,
8164 struct sched_rt_entity *parent)
8165 {
8166 struct rq *rq = cpu_rq(cpu);
8167
8168 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8169 rt_rq->rt_nr_boosted = 0;
8170 rt_rq->rq = rq;
8171 rt_rq->tg = tg;
8172
8173 tg->rt_rq[cpu] = rt_rq;
8174 tg->rt_se[cpu] = rt_se;
8175
8176 if (!rt_se)
8177 return;
8178
8179 if (!parent)
8180 rt_se->rt_rq = &rq->rt;
8181 else
8182 rt_se->rt_rq = parent->my_q;
8183
8184 rt_se->my_q = rt_rq;
8185 rt_se->parent = parent;
8186 INIT_LIST_HEAD(&rt_se->run_list);
8187 }
8188 #endif
8189
8190 void __init sched_init(void)
8191 {
8192 int i, j;
8193 unsigned long alloc_size = 0, ptr;
8194
8195 #ifdef CONFIG_FAIR_GROUP_SCHED
8196 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8197 #endif
8198 #ifdef CONFIG_RT_GROUP_SCHED
8199 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8200 #endif
8201 #ifdef CONFIG_CPUMASK_OFFSTACK
8202 alloc_size += num_possible_cpus() * cpumask_size();
8203 #endif
8204 if (alloc_size) {
8205 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8206
8207 #ifdef CONFIG_FAIR_GROUP_SCHED
8208 root_task_group.se = (struct sched_entity **)ptr;
8209 ptr += nr_cpu_ids * sizeof(void **);
8210
8211 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8212 ptr += nr_cpu_ids * sizeof(void **);
8213
8214 #endif /* CONFIG_FAIR_GROUP_SCHED */
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8217 ptr += nr_cpu_ids * sizeof(void **);
8218
8219 root_task_group.rt_rq = (struct rt_rq **)ptr;
8220 ptr += nr_cpu_ids * sizeof(void **);
8221
8222 #endif /* CONFIG_RT_GROUP_SCHED */
8223 #ifdef CONFIG_CPUMASK_OFFSTACK
8224 for_each_possible_cpu(i) {
8225 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8226 ptr += cpumask_size();
8227 }
8228 #endif /* CONFIG_CPUMASK_OFFSTACK */
8229 }
8230
8231 #ifdef CONFIG_SMP
8232 init_defrootdomain();
8233 #endif
8234
8235 init_rt_bandwidth(&def_rt_bandwidth,
8236 global_rt_period(), global_rt_runtime());
8237
8238 #ifdef CONFIG_RT_GROUP_SCHED
8239 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8240 global_rt_period(), global_rt_runtime());
8241 #endif /* CONFIG_RT_GROUP_SCHED */
8242
8243 #ifdef CONFIG_CGROUP_SCHED
8244 list_add(&root_task_group.list, &task_groups);
8245 INIT_LIST_HEAD(&root_task_group.children);
8246 autogroup_init(&init_task);
8247 #endif /* CONFIG_CGROUP_SCHED */
8248
8249 for_each_possible_cpu(i) {
8250 struct rq *rq;
8251
8252 rq = cpu_rq(i);
8253 raw_spin_lock_init(&rq->lock);
8254 rq->nr_running = 0;
8255 rq->calc_load_active = 0;
8256 rq->calc_load_update = jiffies + LOAD_FREQ;
8257 init_cfs_rq(&rq->cfs);
8258 init_rt_rq(&rq->rt, rq);
8259 #ifdef CONFIG_FAIR_GROUP_SCHED
8260 root_task_group.shares = root_task_group_load;
8261 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8262 /*
8263 * How much cpu bandwidth does root_task_group get?
8264 *
8265 * In case of task-groups formed thr' the cgroup filesystem, it
8266 * gets 100% of the cpu resources in the system. This overall
8267 * system cpu resource is divided among the tasks of
8268 * root_task_group and its child task-groups in a fair manner,
8269 * based on each entity's (task or task-group's) weight
8270 * (se->load.weight).
8271 *
8272 * In other words, if root_task_group has 10 tasks of weight
8273 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8274 * then A0's share of the cpu resource is:
8275 *
8276 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8277 *
8278 * We achieve this by letting root_task_group's tasks sit
8279 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8280 */
8281 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8282 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8283 #endif /* CONFIG_FAIR_GROUP_SCHED */
8284
8285 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8286 #ifdef CONFIG_RT_GROUP_SCHED
8287 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8288 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8289 #endif
8290
8291 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8292 rq->cpu_load[j] = 0;
8293
8294 rq->last_load_update_tick = jiffies;
8295
8296 #ifdef CONFIG_SMP
8297 rq->sd = NULL;
8298 rq->rd = NULL;
8299 rq->cpu_power = SCHED_POWER_SCALE;
8300 rq->post_schedule = 0;
8301 rq->active_balance = 0;
8302 rq->next_balance = jiffies;
8303 rq->push_cpu = 0;
8304 rq->cpu = i;
8305 rq->online = 0;
8306 rq->idle_stamp = 0;
8307 rq->avg_idle = 2*sysctl_sched_migration_cost;
8308 rq_attach_root(rq, &def_root_domain);
8309 #ifdef CONFIG_NO_HZ
8310 rq->nohz_balance_kick = 0;
8311 #endif
8312 #endif
8313 init_rq_hrtick(rq);
8314 atomic_set(&rq->nr_iowait, 0);
8315 }
8316
8317 set_load_weight(&init_task);
8318
8319 #ifdef CONFIG_PREEMPT_NOTIFIERS
8320 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8321 #endif
8322
8323 #ifdef CONFIG_SMP
8324 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8325 #endif
8326
8327 #ifdef CONFIG_RT_MUTEXES
8328 plist_head_init(&init_task.pi_waiters);
8329 #endif
8330
8331 /*
8332 * The boot idle thread does lazy MMU switching as well:
8333 */
8334 atomic_inc(&init_mm.mm_count);
8335 enter_lazy_tlb(&init_mm, current);
8336
8337 /*
8338 * Make us the idle thread. Technically, schedule() should not be
8339 * called from this thread, however somewhere below it might be,
8340 * but because we are the idle thread, we just pick up running again
8341 * when this runqueue becomes "idle".
8342 */
8343 init_idle(current, smp_processor_id());
8344
8345 calc_load_update = jiffies + LOAD_FREQ;
8346
8347 /*
8348 * During early bootup we pretend to be a normal task:
8349 */
8350 current->sched_class = &fair_sched_class;
8351
8352 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8353 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8354 #ifdef CONFIG_SMP
8355 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8356 #ifdef CONFIG_NO_HZ
8357 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8358 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8359 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8360 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8361 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8362 #endif
8363 /* May be allocated at isolcpus cmdline parse time */
8364 if (cpu_isolated_map == NULL)
8365 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8366 #endif /* SMP */
8367
8368 scheduler_running = 1;
8369 }
8370
8371 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8372 static inline int preempt_count_equals(int preempt_offset)
8373 {
8374 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8375
8376 return (nested == preempt_offset);
8377 }
8378
8379 void __might_sleep(const char *file, int line, int preempt_offset)
8380 {
8381 static unsigned long prev_jiffy; /* ratelimiting */
8382
8383 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8384 system_state != SYSTEM_RUNNING || oops_in_progress)
8385 return;
8386 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8387 return;
8388 prev_jiffy = jiffies;
8389
8390 printk(KERN_ERR
8391 "BUG: sleeping function called from invalid context at %s:%d\n",
8392 file, line);
8393 printk(KERN_ERR
8394 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8395 in_atomic(), irqs_disabled(),
8396 current->pid, current->comm);
8397
8398 debug_show_held_locks(current);
8399 if (irqs_disabled())
8400 print_irqtrace_events(current);
8401 dump_stack();
8402 }
8403 EXPORT_SYMBOL(__might_sleep);
8404 #endif
8405
8406 #ifdef CONFIG_MAGIC_SYSRQ
8407 static void normalize_task(struct rq *rq, struct task_struct *p)
8408 {
8409 const struct sched_class *prev_class = p->sched_class;
8410 int old_prio = p->prio;
8411 int on_rq;
8412
8413 on_rq = p->on_rq;
8414 if (on_rq)
8415 deactivate_task(rq, p, 0);
8416 __setscheduler(rq, p, SCHED_NORMAL, 0);
8417 if (on_rq) {
8418 activate_task(rq, p, 0);
8419 resched_task(rq->curr);
8420 }
8421
8422 check_class_changed(rq, p, prev_class, old_prio);
8423 }
8424
8425 void normalize_rt_tasks(void)
8426 {
8427 struct task_struct *g, *p;
8428 unsigned long flags;
8429 struct rq *rq;
8430
8431 read_lock_irqsave(&tasklist_lock, flags);
8432 do_each_thread(g, p) {
8433 /*
8434 * Only normalize user tasks:
8435 */
8436 if (!p->mm)
8437 continue;
8438
8439 p->se.exec_start = 0;
8440 #ifdef CONFIG_SCHEDSTATS
8441 p->se.statistics.wait_start = 0;
8442 p->se.statistics.sleep_start = 0;
8443 p->se.statistics.block_start = 0;
8444 #endif
8445
8446 if (!rt_task(p)) {
8447 /*
8448 * Renice negative nice level userspace
8449 * tasks back to 0:
8450 */
8451 if (TASK_NICE(p) < 0 && p->mm)
8452 set_user_nice(p, 0);
8453 continue;
8454 }
8455
8456 raw_spin_lock(&p->pi_lock);
8457 rq = __task_rq_lock(p);
8458
8459 normalize_task(rq, p);
8460
8461 __task_rq_unlock(rq);
8462 raw_spin_unlock(&p->pi_lock);
8463 } while_each_thread(g, p);
8464
8465 read_unlock_irqrestore(&tasklist_lock, flags);
8466 }
8467
8468 #endif /* CONFIG_MAGIC_SYSRQ */
8469
8470 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8471 /*
8472 * These functions are only useful for the IA64 MCA handling, or kdb.
8473 *
8474 * They can only be called when the whole system has been
8475 * stopped - every CPU needs to be quiescent, and no scheduling
8476 * activity can take place. Using them for anything else would
8477 * be a serious bug, and as a result, they aren't even visible
8478 * under any other configuration.
8479 */
8480
8481 /**
8482 * curr_task - return the current task for a given cpu.
8483 * @cpu: the processor in question.
8484 *
8485 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8486 */
8487 struct task_struct *curr_task(int cpu)
8488 {
8489 return cpu_curr(cpu);
8490 }
8491
8492 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8493
8494 #ifdef CONFIG_IA64
8495 /**
8496 * set_curr_task - set the current task for a given cpu.
8497 * @cpu: the processor in question.
8498 * @p: the task pointer to set.
8499 *
8500 * Description: This function must only be used when non-maskable interrupts
8501 * are serviced on a separate stack. It allows the architecture to switch the
8502 * notion of the current task on a cpu in a non-blocking manner. This function
8503 * must be called with all CPU's synchronized, and interrupts disabled, the
8504 * and caller must save the original value of the current task (see
8505 * curr_task() above) and restore that value before reenabling interrupts and
8506 * re-starting the system.
8507 *
8508 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8509 */
8510 void set_curr_task(int cpu, struct task_struct *p)
8511 {
8512 cpu_curr(cpu) = p;
8513 }
8514
8515 #endif
8516
8517 #ifdef CONFIG_FAIR_GROUP_SCHED
8518 static void free_fair_sched_group(struct task_group *tg)
8519 {
8520 int i;
8521
8522 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8523
8524 for_each_possible_cpu(i) {
8525 if (tg->cfs_rq)
8526 kfree(tg->cfs_rq[i]);
8527 if (tg->se)
8528 kfree(tg->se[i]);
8529 }
8530
8531 kfree(tg->cfs_rq);
8532 kfree(tg->se);
8533 }
8534
8535 static
8536 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8537 {
8538 struct cfs_rq *cfs_rq;
8539 struct sched_entity *se;
8540 int i;
8541
8542 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8543 if (!tg->cfs_rq)
8544 goto err;
8545 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8546 if (!tg->se)
8547 goto err;
8548
8549 tg->shares = NICE_0_LOAD;
8550
8551 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8552
8553 for_each_possible_cpu(i) {
8554 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8555 GFP_KERNEL, cpu_to_node(i));
8556 if (!cfs_rq)
8557 goto err;
8558
8559 se = kzalloc_node(sizeof(struct sched_entity),
8560 GFP_KERNEL, cpu_to_node(i));
8561 if (!se)
8562 goto err_free_rq;
8563
8564 init_cfs_rq(cfs_rq);
8565 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8566 }
8567
8568 return 1;
8569
8570 err_free_rq:
8571 kfree(cfs_rq);
8572 err:
8573 return 0;
8574 }
8575
8576 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8577 {
8578 struct rq *rq = cpu_rq(cpu);
8579 unsigned long flags;
8580
8581 /*
8582 * Only empty task groups can be destroyed; so we can speculatively
8583 * check on_list without danger of it being re-added.
8584 */
8585 if (!tg->cfs_rq[cpu]->on_list)
8586 return;
8587
8588 raw_spin_lock_irqsave(&rq->lock, flags);
8589 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8590 raw_spin_unlock_irqrestore(&rq->lock, flags);
8591 }
8592 #else /* !CONFIG_FAIR_GROUP_SCHED */
8593 static inline void free_fair_sched_group(struct task_group *tg)
8594 {
8595 }
8596
8597 static inline
8598 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8599 {
8600 return 1;
8601 }
8602
8603 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8604 {
8605 }
8606 #endif /* CONFIG_FAIR_GROUP_SCHED */
8607
8608 #ifdef CONFIG_RT_GROUP_SCHED
8609 static void free_rt_sched_group(struct task_group *tg)
8610 {
8611 int i;
8612
8613 if (tg->rt_se)
8614 destroy_rt_bandwidth(&tg->rt_bandwidth);
8615
8616 for_each_possible_cpu(i) {
8617 if (tg->rt_rq)
8618 kfree(tg->rt_rq[i]);
8619 if (tg->rt_se)
8620 kfree(tg->rt_se[i]);
8621 }
8622
8623 kfree(tg->rt_rq);
8624 kfree(tg->rt_se);
8625 }
8626
8627 static
8628 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8629 {
8630 struct rt_rq *rt_rq;
8631 struct sched_rt_entity *rt_se;
8632 int i;
8633
8634 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8635 if (!tg->rt_rq)
8636 goto err;
8637 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8638 if (!tg->rt_se)
8639 goto err;
8640
8641 init_rt_bandwidth(&tg->rt_bandwidth,
8642 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8643
8644 for_each_possible_cpu(i) {
8645 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8646 GFP_KERNEL, cpu_to_node(i));
8647 if (!rt_rq)
8648 goto err;
8649
8650 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8651 GFP_KERNEL, cpu_to_node(i));
8652 if (!rt_se)
8653 goto err_free_rq;
8654
8655 init_rt_rq(rt_rq, cpu_rq(i));
8656 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8657 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8658 }
8659
8660 return 1;
8661
8662 err_free_rq:
8663 kfree(rt_rq);
8664 err:
8665 return 0;
8666 }
8667 #else /* !CONFIG_RT_GROUP_SCHED */
8668 static inline void free_rt_sched_group(struct task_group *tg)
8669 {
8670 }
8671
8672 static inline
8673 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8674 {
8675 return 1;
8676 }
8677 #endif /* CONFIG_RT_GROUP_SCHED */
8678
8679 #ifdef CONFIG_CGROUP_SCHED
8680 static void free_sched_group(struct task_group *tg)
8681 {
8682 free_fair_sched_group(tg);
8683 free_rt_sched_group(tg);
8684 autogroup_free(tg);
8685 kfree(tg);
8686 }
8687
8688 /* allocate runqueue etc for a new task group */
8689 struct task_group *sched_create_group(struct task_group *parent)
8690 {
8691 struct task_group *tg;
8692 unsigned long flags;
8693
8694 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8695 if (!tg)
8696 return ERR_PTR(-ENOMEM);
8697
8698 if (!alloc_fair_sched_group(tg, parent))
8699 goto err;
8700
8701 if (!alloc_rt_sched_group(tg, parent))
8702 goto err;
8703
8704 spin_lock_irqsave(&task_group_lock, flags);
8705 list_add_rcu(&tg->list, &task_groups);
8706
8707 WARN_ON(!parent); /* root should already exist */
8708
8709 tg->parent = parent;
8710 INIT_LIST_HEAD(&tg->children);
8711 list_add_rcu(&tg->siblings, &parent->children);
8712 spin_unlock_irqrestore(&task_group_lock, flags);
8713
8714 return tg;
8715
8716 err:
8717 free_sched_group(tg);
8718 return ERR_PTR(-ENOMEM);
8719 }
8720
8721 /* rcu callback to free various structures associated with a task group */
8722 static void free_sched_group_rcu(struct rcu_head *rhp)
8723 {
8724 /* now it should be safe to free those cfs_rqs */
8725 free_sched_group(container_of(rhp, struct task_group, rcu));
8726 }
8727
8728 /* Destroy runqueue etc associated with a task group */
8729 void sched_destroy_group(struct task_group *tg)
8730 {
8731 unsigned long flags;
8732 int i;
8733
8734 /* end participation in shares distribution */
8735 for_each_possible_cpu(i)
8736 unregister_fair_sched_group(tg, i);
8737
8738 spin_lock_irqsave(&task_group_lock, flags);
8739 list_del_rcu(&tg->list);
8740 list_del_rcu(&tg->siblings);
8741 spin_unlock_irqrestore(&task_group_lock, flags);
8742
8743 /* wait for possible concurrent references to cfs_rqs complete */
8744 call_rcu(&tg->rcu, free_sched_group_rcu);
8745 }
8746
8747 /* change task's runqueue when it moves between groups.
8748 * The caller of this function should have put the task in its new group
8749 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8750 * reflect its new group.
8751 */
8752 void sched_move_task(struct task_struct *tsk)
8753 {
8754 int on_rq, running;
8755 unsigned long flags;
8756 struct rq *rq;
8757
8758 rq = task_rq_lock(tsk, &flags);
8759
8760 running = task_current(rq, tsk);
8761 on_rq = tsk->on_rq;
8762
8763 if (on_rq)
8764 dequeue_task(rq, tsk, 0);
8765 if (unlikely(running))
8766 tsk->sched_class->put_prev_task(rq, tsk);
8767
8768 #ifdef CONFIG_FAIR_GROUP_SCHED
8769 if (tsk->sched_class->task_move_group)
8770 tsk->sched_class->task_move_group(tsk, on_rq);
8771 else
8772 #endif
8773 set_task_rq(tsk, task_cpu(tsk));
8774
8775 if (unlikely(running))
8776 tsk->sched_class->set_curr_task(rq);
8777 if (on_rq)
8778 enqueue_task(rq, tsk, 0);
8779
8780 task_rq_unlock(rq, tsk, &flags);
8781 }
8782 #endif /* CONFIG_CGROUP_SCHED */
8783
8784 #ifdef CONFIG_FAIR_GROUP_SCHED
8785 static DEFINE_MUTEX(shares_mutex);
8786
8787 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8788 {
8789 int i;
8790 unsigned long flags;
8791
8792 /*
8793 * We can't change the weight of the root cgroup.
8794 */
8795 if (!tg->se[0])
8796 return -EINVAL;
8797
8798 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8799
8800 mutex_lock(&shares_mutex);
8801 if (tg->shares == shares)
8802 goto done;
8803
8804 tg->shares = shares;
8805 for_each_possible_cpu(i) {
8806 struct rq *rq = cpu_rq(i);
8807 struct sched_entity *se;
8808
8809 se = tg->se[i];
8810 /* Propagate contribution to hierarchy */
8811 raw_spin_lock_irqsave(&rq->lock, flags);
8812 for_each_sched_entity(se)
8813 update_cfs_shares(group_cfs_rq(se));
8814 raw_spin_unlock_irqrestore(&rq->lock, flags);
8815 }
8816
8817 done:
8818 mutex_unlock(&shares_mutex);
8819 return 0;
8820 }
8821
8822 unsigned long sched_group_shares(struct task_group *tg)
8823 {
8824 return tg->shares;
8825 }
8826 #endif
8827
8828 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8829 static unsigned long to_ratio(u64 period, u64 runtime)
8830 {
8831 if (runtime == RUNTIME_INF)
8832 return 1ULL << 20;
8833
8834 return div64_u64(runtime << 20, period);
8835 }
8836 #endif
8837
8838 #ifdef CONFIG_RT_GROUP_SCHED
8839 /*
8840 * Ensure that the real time constraints are schedulable.
8841 */
8842 static DEFINE_MUTEX(rt_constraints_mutex);
8843
8844 /* Must be called with tasklist_lock held */
8845 static inline int tg_has_rt_tasks(struct task_group *tg)
8846 {
8847 struct task_struct *g, *p;
8848
8849 do_each_thread(g, p) {
8850 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8851 return 1;
8852 } while_each_thread(g, p);
8853
8854 return 0;
8855 }
8856
8857 struct rt_schedulable_data {
8858 struct task_group *tg;
8859 u64 rt_period;
8860 u64 rt_runtime;
8861 };
8862
8863 static int tg_rt_schedulable(struct task_group *tg, void *data)
8864 {
8865 struct rt_schedulable_data *d = data;
8866 struct task_group *child;
8867 unsigned long total, sum = 0;
8868 u64 period, runtime;
8869
8870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8871 runtime = tg->rt_bandwidth.rt_runtime;
8872
8873 if (tg == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
8876 }
8877
8878 /*
8879 * Cannot have more runtime than the period.
8880 */
8881 if (runtime > period && runtime != RUNTIME_INF)
8882 return -EINVAL;
8883
8884 /*
8885 * Ensure we don't starve existing RT tasks.
8886 */
8887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8888 return -EBUSY;
8889
8890 total = to_ratio(period, runtime);
8891
8892 /*
8893 * Nobody can have more than the global setting allows.
8894 */
8895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8896 return -EINVAL;
8897
8898 /*
8899 * The sum of our children's runtime should not exceed our own.
8900 */
8901 list_for_each_entry_rcu(child, &tg->children, siblings) {
8902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8903 runtime = child->rt_bandwidth.rt_runtime;
8904
8905 if (child == d->tg) {
8906 period = d->rt_period;
8907 runtime = d->rt_runtime;
8908 }
8909
8910 sum += to_ratio(period, runtime);
8911 }
8912
8913 if (sum > total)
8914 return -EINVAL;
8915
8916 return 0;
8917 }
8918
8919 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8920 {
8921 int ret;
8922
8923 struct rt_schedulable_data data = {
8924 .tg = tg,
8925 .rt_period = period,
8926 .rt_runtime = runtime,
8927 };
8928
8929 rcu_read_lock();
8930 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8931 rcu_read_unlock();
8932
8933 return ret;
8934 }
8935
8936 static int tg_set_rt_bandwidth(struct task_group *tg,
8937 u64 rt_period, u64 rt_runtime)
8938 {
8939 int i, err = 0;
8940
8941 mutex_lock(&rt_constraints_mutex);
8942 read_lock(&tasklist_lock);
8943 err = __rt_schedulable(tg, rt_period, rt_runtime);
8944 if (err)
8945 goto unlock;
8946
8947 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8948 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8949 tg->rt_bandwidth.rt_runtime = rt_runtime;
8950
8951 for_each_possible_cpu(i) {
8952 struct rt_rq *rt_rq = tg->rt_rq[i];
8953
8954 raw_spin_lock(&rt_rq->rt_runtime_lock);
8955 rt_rq->rt_runtime = rt_runtime;
8956 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8957 }
8958 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8959 unlock:
8960 read_unlock(&tasklist_lock);
8961 mutex_unlock(&rt_constraints_mutex);
8962
8963 return err;
8964 }
8965
8966 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8967 {
8968 u64 rt_runtime, rt_period;
8969
8970 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8971 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8972 if (rt_runtime_us < 0)
8973 rt_runtime = RUNTIME_INF;
8974
8975 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8976 }
8977
8978 long sched_group_rt_runtime(struct task_group *tg)
8979 {
8980 u64 rt_runtime_us;
8981
8982 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8983 return -1;
8984
8985 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8986 do_div(rt_runtime_us, NSEC_PER_USEC);
8987 return rt_runtime_us;
8988 }
8989
8990 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8991 {
8992 u64 rt_runtime, rt_period;
8993
8994 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8995 rt_runtime = tg->rt_bandwidth.rt_runtime;
8996
8997 if (rt_period == 0)
8998 return -EINVAL;
8999
9000 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9001 }
9002
9003 long sched_group_rt_period(struct task_group *tg)
9004 {
9005 u64 rt_period_us;
9006
9007 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9008 do_div(rt_period_us, NSEC_PER_USEC);
9009 return rt_period_us;
9010 }
9011
9012 static int sched_rt_global_constraints(void)
9013 {
9014 u64 runtime, period;
9015 int ret = 0;
9016
9017 if (sysctl_sched_rt_period <= 0)
9018 return -EINVAL;
9019
9020 runtime = global_rt_runtime();
9021 period = global_rt_period();
9022
9023 /*
9024 * Sanity check on the sysctl variables.
9025 */
9026 if (runtime > period && runtime != RUNTIME_INF)
9027 return -EINVAL;
9028
9029 mutex_lock(&rt_constraints_mutex);
9030 read_lock(&tasklist_lock);
9031 ret = __rt_schedulable(NULL, 0, 0);
9032 read_unlock(&tasklist_lock);
9033 mutex_unlock(&rt_constraints_mutex);
9034
9035 return ret;
9036 }
9037
9038 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9039 {
9040 /* Don't accept realtime tasks when there is no way for them to run */
9041 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9042 return 0;
9043
9044 return 1;
9045 }
9046
9047 #else /* !CONFIG_RT_GROUP_SCHED */
9048 static int sched_rt_global_constraints(void)
9049 {
9050 unsigned long flags;
9051 int i;
9052
9053 if (sysctl_sched_rt_period <= 0)
9054 return -EINVAL;
9055
9056 /*
9057 * There's always some RT tasks in the root group
9058 * -- migration, kstopmachine etc..
9059 */
9060 if (sysctl_sched_rt_runtime == 0)
9061 return -EBUSY;
9062
9063 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9064 for_each_possible_cpu(i) {
9065 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9066
9067 raw_spin_lock(&rt_rq->rt_runtime_lock);
9068 rt_rq->rt_runtime = global_rt_runtime();
9069 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9070 }
9071 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9072
9073 return 0;
9074 }
9075 #endif /* CONFIG_RT_GROUP_SCHED */
9076
9077 int sched_rt_handler(struct ctl_table *table, int write,
9078 void __user *buffer, size_t *lenp,
9079 loff_t *ppos)
9080 {
9081 int ret;
9082 int old_period, old_runtime;
9083 static DEFINE_MUTEX(mutex);
9084
9085 mutex_lock(&mutex);
9086 old_period = sysctl_sched_rt_period;
9087 old_runtime = sysctl_sched_rt_runtime;
9088
9089 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9090
9091 if (!ret && write) {
9092 ret = sched_rt_global_constraints();
9093 if (ret) {
9094 sysctl_sched_rt_period = old_period;
9095 sysctl_sched_rt_runtime = old_runtime;
9096 } else {
9097 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9098 def_rt_bandwidth.rt_period =
9099 ns_to_ktime(global_rt_period());
9100 }
9101 }
9102 mutex_unlock(&mutex);
9103
9104 return ret;
9105 }
9106
9107 #ifdef CONFIG_CGROUP_SCHED
9108
9109 /* return corresponding task_group object of a cgroup */
9110 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9111 {
9112 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9113 struct task_group, css);
9114 }
9115
9116 static struct cgroup_subsys_state *
9117 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9118 {
9119 struct task_group *tg, *parent;
9120
9121 if (!cgrp->parent) {
9122 /* This is early initialization for the top cgroup */
9123 return &root_task_group.css;
9124 }
9125
9126 parent = cgroup_tg(cgrp->parent);
9127 tg = sched_create_group(parent);
9128 if (IS_ERR(tg))
9129 return ERR_PTR(-ENOMEM);
9130
9131 return &tg->css;
9132 }
9133
9134 static void
9135 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9136 {
9137 struct task_group *tg = cgroup_tg(cgrp);
9138
9139 sched_destroy_group(tg);
9140 }
9141
9142 static int
9143 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9144 {
9145 #ifdef CONFIG_RT_GROUP_SCHED
9146 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9147 return -EINVAL;
9148 #else
9149 /* We don't support RT-tasks being in separate groups */
9150 if (tsk->sched_class != &fair_sched_class)
9151 return -EINVAL;
9152 #endif
9153 return 0;
9154 }
9155
9156 static void
9157 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9158 {
9159 sched_move_task(tsk);
9160 }
9161
9162 static void
9163 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9164 struct cgroup *old_cgrp, struct task_struct *task)
9165 {
9166 /*
9167 * cgroup_exit() is called in the copy_process() failure path.
9168 * Ignore this case since the task hasn't ran yet, this avoids
9169 * trying to poke a half freed task state from generic code.
9170 */
9171 if (!(task->flags & PF_EXITING))
9172 return;
9173
9174 sched_move_task(task);
9175 }
9176
9177 #ifdef CONFIG_FAIR_GROUP_SCHED
9178 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9179 u64 shareval)
9180 {
9181 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9182 }
9183
9184 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9185 {
9186 struct task_group *tg = cgroup_tg(cgrp);
9187
9188 return (u64) scale_load_down(tg->shares);
9189 }
9190
9191 #ifdef CONFIG_CFS_BANDWIDTH
9192 static DEFINE_MUTEX(cfs_constraints_mutex);
9193
9194 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9195 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9196
9197 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9198
9199 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9200 {
9201 int i, ret = 0, runtime_enabled;
9202 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9203
9204 if (tg == &root_task_group)
9205 return -EINVAL;
9206
9207 /*
9208 * Ensure we have at some amount of bandwidth every period. This is
9209 * to prevent reaching a state of large arrears when throttled via
9210 * entity_tick() resulting in prolonged exit starvation.
9211 */
9212 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9213 return -EINVAL;
9214
9215 /*
9216 * Likewise, bound things on the otherside by preventing insane quota
9217 * periods. This also allows us to normalize in computing quota
9218 * feasibility.
9219 */
9220 if (period > max_cfs_quota_period)
9221 return -EINVAL;
9222
9223 mutex_lock(&cfs_constraints_mutex);
9224 ret = __cfs_schedulable(tg, period, quota);
9225 if (ret)
9226 goto out_unlock;
9227
9228 runtime_enabled = quota != RUNTIME_INF;
9229 raw_spin_lock_irq(&cfs_b->lock);
9230 cfs_b->period = ns_to_ktime(period);
9231 cfs_b->quota = quota;
9232
9233 __refill_cfs_bandwidth_runtime(cfs_b);
9234 /* restart the period timer (if active) to handle new period expiry */
9235 if (runtime_enabled && cfs_b->timer_active) {
9236 /* force a reprogram */
9237 cfs_b->timer_active = 0;
9238 __start_cfs_bandwidth(cfs_b);
9239 }
9240 raw_spin_unlock_irq(&cfs_b->lock);
9241
9242 for_each_possible_cpu(i) {
9243 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9244 struct rq *rq = rq_of(cfs_rq);
9245
9246 raw_spin_lock_irq(&rq->lock);
9247 cfs_rq->runtime_enabled = runtime_enabled;
9248 cfs_rq->runtime_remaining = 0;
9249
9250 if (cfs_rq_throttled(cfs_rq))
9251 unthrottle_cfs_rq(cfs_rq);
9252 raw_spin_unlock_irq(&rq->lock);
9253 }
9254 out_unlock:
9255 mutex_unlock(&cfs_constraints_mutex);
9256
9257 return ret;
9258 }
9259
9260 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9261 {
9262 u64 quota, period;
9263
9264 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9265 if (cfs_quota_us < 0)
9266 quota = RUNTIME_INF;
9267 else
9268 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9269
9270 return tg_set_cfs_bandwidth(tg, period, quota);
9271 }
9272
9273 long tg_get_cfs_quota(struct task_group *tg)
9274 {
9275 u64 quota_us;
9276
9277 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9278 return -1;
9279
9280 quota_us = tg_cfs_bandwidth(tg)->quota;
9281 do_div(quota_us, NSEC_PER_USEC);
9282
9283 return quota_us;
9284 }
9285
9286 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9287 {
9288 u64 quota, period;
9289
9290 period = (u64)cfs_period_us * NSEC_PER_USEC;
9291 quota = tg_cfs_bandwidth(tg)->quota;
9292
9293 if (period <= 0)
9294 return -EINVAL;
9295
9296 return tg_set_cfs_bandwidth(tg, period, quota);
9297 }
9298
9299 long tg_get_cfs_period(struct task_group *tg)
9300 {
9301 u64 cfs_period_us;
9302
9303 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9304 do_div(cfs_period_us, NSEC_PER_USEC);
9305
9306 return cfs_period_us;
9307 }
9308
9309 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9310 {
9311 return tg_get_cfs_quota(cgroup_tg(cgrp));
9312 }
9313
9314 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9315 s64 cfs_quota_us)
9316 {
9317 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9318 }
9319
9320 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9321 {
9322 return tg_get_cfs_period(cgroup_tg(cgrp));
9323 }
9324
9325 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9326 u64 cfs_period_us)
9327 {
9328 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9329 }
9330
9331 struct cfs_schedulable_data {
9332 struct task_group *tg;
9333 u64 period, quota;
9334 };
9335
9336 /*
9337 * normalize group quota/period to be quota/max_period
9338 * note: units are usecs
9339 */
9340 static u64 normalize_cfs_quota(struct task_group *tg,
9341 struct cfs_schedulable_data *d)
9342 {
9343 u64 quota, period;
9344
9345 if (tg == d->tg) {
9346 period = d->period;
9347 quota = d->quota;
9348 } else {
9349 period = tg_get_cfs_period(tg);
9350 quota = tg_get_cfs_quota(tg);
9351 }
9352
9353 /* note: these should typically be equivalent */
9354 if (quota == RUNTIME_INF || quota == -1)
9355 return RUNTIME_INF;
9356
9357 return to_ratio(period, quota);
9358 }
9359
9360 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9361 {
9362 struct cfs_schedulable_data *d = data;
9363 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9364 s64 quota = 0, parent_quota = -1;
9365
9366 if (!tg->parent) {
9367 quota = RUNTIME_INF;
9368 } else {
9369 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9370
9371 quota = normalize_cfs_quota(tg, d);
9372 parent_quota = parent_b->hierarchal_quota;
9373
9374 /*
9375 * ensure max(child_quota) <= parent_quota, inherit when no
9376 * limit is set
9377 */
9378 if (quota == RUNTIME_INF)
9379 quota = parent_quota;
9380 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9381 return -EINVAL;
9382 }
9383 cfs_b->hierarchal_quota = quota;
9384
9385 return 0;
9386 }
9387
9388 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9389 {
9390 int ret;
9391 struct cfs_schedulable_data data = {
9392 .tg = tg,
9393 .period = period,
9394 .quota = quota,
9395 };
9396
9397 if (quota != RUNTIME_INF) {
9398 do_div(data.period, NSEC_PER_USEC);
9399 do_div(data.quota, NSEC_PER_USEC);
9400 }
9401
9402 rcu_read_lock();
9403 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9404 rcu_read_unlock();
9405
9406 return ret;
9407 }
9408
9409 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9410 struct cgroup_map_cb *cb)
9411 {
9412 struct task_group *tg = cgroup_tg(cgrp);
9413 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9414
9415 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9416 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9417 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9418
9419 return 0;
9420 }
9421 #endif /* CONFIG_CFS_BANDWIDTH */
9422 #endif /* CONFIG_FAIR_GROUP_SCHED */
9423
9424 #ifdef CONFIG_RT_GROUP_SCHED
9425 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9426 s64 val)
9427 {
9428 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9429 }
9430
9431 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9432 {
9433 return sched_group_rt_runtime(cgroup_tg(cgrp));
9434 }
9435
9436 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9437 u64 rt_period_us)
9438 {
9439 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9440 }
9441
9442 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9443 {
9444 return sched_group_rt_period(cgroup_tg(cgrp));
9445 }
9446 #endif /* CONFIG_RT_GROUP_SCHED */
9447
9448 static struct cftype cpu_files[] = {
9449 #ifdef CONFIG_FAIR_GROUP_SCHED
9450 {
9451 .name = "shares",
9452 .read_u64 = cpu_shares_read_u64,
9453 .write_u64 = cpu_shares_write_u64,
9454 },
9455 #endif
9456 #ifdef CONFIG_CFS_BANDWIDTH
9457 {
9458 .name = "cfs_quota_us",
9459 .read_s64 = cpu_cfs_quota_read_s64,
9460 .write_s64 = cpu_cfs_quota_write_s64,
9461 },
9462 {
9463 .name = "cfs_period_us",
9464 .read_u64 = cpu_cfs_period_read_u64,
9465 .write_u64 = cpu_cfs_period_write_u64,
9466 },
9467 {
9468 .name = "stat",
9469 .read_map = cpu_stats_show,
9470 },
9471 #endif
9472 #ifdef CONFIG_RT_GROUP_SCHED
9473 {
9474 .name = "rt_runtime_us",
9475 .read_s64 = cpu_rt_runtime_read,
9476 .write_s64 = cpu_rt_runtime_write,
9477 },
9478 {
9479 .name = "rt_period_us",
9480 .read_u64 = cpu_rt_period_read_uint,
9481 .write_u64 = cpu_rt_period_write_uint,
9482 },
9483 #endif
9484 };
9485
9486 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9487 {
9488 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9489 }
9490
9491 struct cgroup_subsys cpu_cgroup_subsys = {
9492 .name = "cpu",
9493 .create = cpu_cgroup_create,
9494 .destroy = cpu_cgroup_destroy,
9495 .can_attach_task = cpu_cgroup_can_attach_task,
9496 .attach_task = cpu_cgroup_attach_task,
9497 .exit = cpu_cgroup_exit,
9498 .populate = cpu_cgroup_populate,
9499 .subsys_id = cpu_cgroup_subsys_id,
9500 .early_init = 1,
9501 };
9502
9503 #endif /* CONFIG_CGROUP_SCHED */
9504
9505 #ifdef CONFIG_CGROUP_CPUACCT
9506
9507 /*
9508 * CPU accounting code for task groups.
9509 *
9510 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9511 * (balbir@in.ibm.com).
9512 */
9513
9514 /* track cpu usage of a group of tasks and its child groups */
9515 struct cpuacct {
9516 struct cgroup_subsys_state css;
9517 /* cpuusage holds pointer to a u64-type object on every cpu */
9518 u64 __percpu *cpuusage;
9519 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9520 struct cpuacct *parent;
9521 };
9522
9523 struct cgroup_subsys cpuacct_subsys;
9524
9525 /* return cpu accounting group corresponding to this container */
9526 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9527 {
9528 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9529 struct cpuacct, css);
9530 }
9531
9532 /* return cpu accounting group to which this task belongs */
9533 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9534 {
9535 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9536 struct cpuacct, css);
9537 }
9538
9539 /* create a new cpu accounting group */
9540 static struct cgroup_subsys_state *cpuacct_create(
9541 struct cgroup_subsys *ss, struct cgroup *cgrp)
9542 {
9543 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9544 int i;
9545
9546 if (!ca)
9547 goto out;
9548
9549 ca->cpuusage = alloc_percpu(u64);
9550 if (!ca->cpuusage)
9551 goto out_free_ca;
9552
9553 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9554 if (percpu_counter_init(&ca->cpustat[i], 0))
9555 goto out_free_counters;
9556
9557 if (cgrp->parent)
9558 ca->parent = cgroup_ca(cgrp->parent);
9559
9560 return &ca->css;
9561
9562 out_free_counters:
9563 while (--i >= 0)
9564 percpu_counter_destroy(&ca->cpustat[i]);
9565 free_percpu(ca->cpuusage);
9566 out_free_ca:
9567 kfree(ca);
9568 out:
9569 return ERR_PTR(-ENOMEM);
9570 }
9571
9572 /* destroy an existing cpu accounting group */
9573 static void
9574 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9575 {
9576 struct cpuacct *ca = cgroup_ca(cgrp);
9577 int i;
9578
9579 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9580 percpu_counter_destroy(&ca->cpustat[i]);
9581 free_percpu(ca->cpuusage);
9582 kfree(ca);
9583 }
9584
9585 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9586 {
9587 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9588 u64 data;
9589
9590 #ifndef CONFIG_64BIT
9591 /*
9592 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9593 */
9594 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9595 data = *cpuusage;
9596 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9597 #else
9598 data = *cpuusage;
9599 #endif
9600
9601 return data;
9602 }
9603
9604 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9605 {
9606 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9607
9608 #ifndef CONFIG_64BIT
9609 /*
9610 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9611 */
9612 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9613 *cpuusage = val;
9614 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9615 #else
9616 *cpuusage = val;
9617 #endif
9618 }
9619
9620 /* return total cpu usage (in nanoseconds) of a group */
9621 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9622 {
9623 struct cpuacct *ca = cgroup_ca(cgrp);
9624 u64 totalcpuusage = 0;
9625 int i;
9626
9627 for_each_present_cpu(i)
9628 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9629
9630 return totalcpuusage;
9631 }
9632
9633 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9634 u64 reset)
9635 {
9636 struct cpuacct *ca = cgroup_ca(cgrp);
9637 int err = 0;
9638 int i;
9639
9640 if (reset) {
9641 err = -EINVAL;
9642 goto out;
9643 }
9644
9645 for_each_present_cpu(i)
9646 cpuacct_cpuusage_write(ca, i, 0);
9647
9648 out:
9649 return err;
9650 }
9651
9652 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9653 struct seq_file *m)
9654 {
9655 struct cpuacct *ca = cgroup_ca(cgroup);
9656 u64 percpu;
9657 int i;
9658
9659 for_each_present_cpu(i) {
9660 percpu = cpuacct_cpuusage_read(ca, i);
9661 seq_printf(m, "%llu ", (unsigned long long) percpu);
9662 }
9663 seq_printf(m, "\n");
9664 return 0;
9665 }
9666
9667 static const char *cpuacct_stat_desc[] = {
9668 [CPUACCT_STAT_USER] = "user",
9669 [CPUACCT_STAT_SYSTEM] = "system",
9670 };
9671
9672 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9673 struct cgroup_map_cb *cb)
9674 {
9675 struct cpuacct *ca = cgroup_ca(cgrp);
9676 int i;
9677
9678 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9679 s64 val = percpu_counter_read(&ca->cpustat[i]);
9680 val = cputime64_to_clock_t(val);
9681 cb->fill(cb, cpuacct_stat_desc[i], val);
9682 }
9683 return 0;
9684 }
9685
9686 static struct cftype files[] = {
9687 {
9688 .name = "usage",
9689 .read_u64 = cpuusage_read,
9690 .write_u64 = cpuusage_write,
9691 },
9692 {
9693 .name = "usage_percpu",
9694 .read_seq_string = cpuacct_percpu_seq_read,
9695 },
9696 {
9697 .name = "stat",
9698 .read_map = cpuacct_stats_show,
9699 },
9700 };
9701
9702 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9703 {
9704 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9705 }
9706
9707 /*
9708 * charge this task's execution time to its accounting group.
9709 *
9710 * called with rq->lock held.
9711 */
9712 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9713 {
9714 struct cpuacct *ca;
9715 int cpu;
9716
9717 if (unlikely(!cpuacct_subsys.active))
9718 return;
9719
9720 cpu = task_cpu(tsk);
9721
9722 rcu_read_lock();
9723
9724 ca = task_ca(tsk);
9725
9726 for (; ca; ca = ca->parent) {
9727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9728 *cpuusage += cputime;
9729 }
9730
9731 rcu_read_unlock();
9732 }
9733
9734 /*
9735 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9736 * in cputime_t units. As a result, cpuacct_update_stats calls
9737 * percpu_counter_add with values large enough to always overflow the
9738 * per cpu batch limit causing bad SMP scalability.
9739 *
9740 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9741 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9742 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9743 */
9744 #ifdef CONFIG_SMP
9745 #define CPUACCT_BATCH \
9746 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9747 #else
9748 #define CPUACCT_BATCH 0
9749 #endif
9750
9751 /*
9752 * Charge the system/user time to the task's accounting group.
9753 */
9754 static void cpuacct_update_stats(struct task_struct *tsk,
9755 enum cpuacct_stat_index idx, cputime_t val)
9756 {
9757 struct cpuacct *ca;
9758 int batch = CPUACCT_BATCH;
9759
9760 if (unlikely(!cpuacct_subsys.active))
9761 return;
9762
9763 rcu_read_lock();
9764 ca = task_ca(tsk);
9765
9766 do {
9767 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9768 ca = ca->parent;
9769 } while (ca);
9770 rcu_read_unlock();
9771 }
9772
9773 struct cgroup_subsys cpuacct_subsys = {
9774 .name = "cpuacct",
9775 .create = cpuacct_create,
9776 .destroy = cpuacct_destroy,
9777 .populate = cpuacct_populate,
9778 .subsys_id = cpuacct_subsys_id,
9779 };
9780 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.262344 seconds and 6 git commands to generate.