Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
76
77 #include "sched_cpupri.h"
78
79 /*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88 /*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97 /*
98 * Helpers for converting nanosecond timing to jiffy resolution
99 */
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 /*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116 #define RUNTIME_INF ((u64)~0ULL)
117
118 #ifdef CONFIG_SMP
119 /*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 {
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 }
127
128 /*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 {
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 }
137 #endif
138
139 static inline int rt_policy(int policy)
140 {
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
144 }
145
146 static inline int task_has_rt_policy(struct task_struct *p)
147 {
148 return rt_policy(p->policy);
149 }
150
151 /*
152 * This is the priority-queue data structure of the RT scheduling class:
153 */
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
157 };
158
159 struct rt_bandwidth {
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
165 };
166
167 static struct rt_bandwidth def_rt_bandwidth;
168
169 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172 {
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190 }
191
192 static
193 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194 {
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204 }
205
206 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207 {
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228 }
229
230 #ifdef CONFIG_RT_GROUP_SCHED
231 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232 {
233 hrtimer_cancel(&rt_b->rt_period_timer);
234 }
235 #endif
236
237 /*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241 static DEFINE_MUTEX(sched_domains_mutex);
242
243 #ifdef CONFIG_GROUP_SCHED
244
245 #include <linux/cgroup.h>
246
247 struct cfs_rq;
248
249 static LIST_HEAD(task_groups);
250
251 /* task group related information */
252 struct task_group {
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css;
255 #endif
256
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
263 #endif
264
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
269 struct rt_bandwidth rt_bandwidth;
270 #endif
271
272 struct rcu_head rcu;
273 struct list_head list;
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
278 };
279
280 #ifdef CONFIG_USER_SCHED
281
282 /*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287 struct task_group root_task_group;
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* Default task group's sched entity on each cpu */
291 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292 /* Default task group's cfs_rq on each cpu */
293 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294 #endif /* CONFIG_FAIR_GROUP_SCHED */
295
296 #ifdef CONFIG_RT_GROUP_SCHED
297 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 #endif /* CONFIG_RT_GROUP_SCHED */
300 #else /* !CONFIG_FAIR_GROUP_SCHED */
301 #define root_task_group init_task_group
302 #endif /* CONFIG_FAIR_GROUP_SCHED */
303
304 /* task_group_lock serializes add/remove of task groups and also changes to
305 * a task group's cpu shares.
306 */
307 static DEFINE_SPINLOCK(task_group_lock);
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 #ifdef CONFIG_USER_SCHED
311 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
312 #else /* !CONFIG_USER_SCHED */
313 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
314 #endif /* CONFIG_USER_SCHED */
315
316 /*
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
324 #define MIN_SHARES 2
325 #define MAX_SHARES (1UL << 18)
326
327 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328 #endif
329
330 /* Default task group.
331 * Every task in system belong to this group at bootup.
332 */
333 struct task_group init_task_group;
334
335 /* return group to which a task belongs */
336 static inline struct task_group *task_group(struct task_struct *p)
337 {
338 struct task_group *tg;
339
340 #ifdef CONFIG_USER_SCHED
341 tg = p->user->tg;
342 #elif defined(CONFIG_CGROUP_SCHED)
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
345 #else
346 tg = &init_task_group;
347 #endif
348 return tg;
349 }
350
351 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
352 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
353 {
354 #ifdef CONFIG_FAIR_GROUP_SCHED
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
357 #endif
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
362 #endif
363 }
364
365 #else
366
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 static inline struct task_group *task_group(struct task_struct *p)
369 {
370 return NULL;
371 }
372
373 #endif /* CONFIG_GROUP_SCHED */
374
375 /* CFS-related fields in a runqueue */
376 struct cfs_rq {
377 struct load_weight load;
378 unsigned long nr_running;
379
380 u64 exec_clock;
381 u64 min_vruntime;
382 u64 pair_start;
383
384 struct rb_root tasks_timeline;
385 struct rb_node *rb_leftmost;
386
387 struct list_head tasks;
388 struct list_head *balance_iterator;
389
390 /*
391 * 'curr' points to currently running entity on this cfs_rq.
392 * It is set to NULL otherwise (i.e when none are currently running).
393 */
394 struct sched_entity *curr, *next;
395
396 unsigned long nr_spread_over;
397
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
409 struct list_head leaf_cfs_rq_list;
410 struct task_group *tg; /* group that "owns" this runqueue */
411
412 #ifdef CONFIG_SMP
413 /*
414 * the part of load.weight contributed by tasks
415 */
416 unsigned long task_weight;
417
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
425
426 /*
427 * this cpu's part of tg->shares
428 */
429 unsigned long shares;
430
431 /*
432 * load.weight at the time we set shares
433 */
434 unsigned long rq_weight;
435 #endif
436 #endif
437 };
438
439 /* Real-Time classes' related field in a runqueue: */
440 struct rt_rq {
441 struct rt_prio_array active;
442 unsigned long rt_nr_running;
443 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
444 int highest_prio; /* highest queued rt task prio */
445 #endif
446 #ifdef CONFIG_SMP
447 unsigned long rt_nr_migratory;
448 int overloaded;
449 #endif
450 int rt_throttled;
451 u64 rt_time;
452 u64 rt_runtime;
453 /* Nests inside the rq lock: */
454 spinlock_t rt_runtime_lock;
455
456 #ifdef CONFIG_RT_GROUP_SCHED
457 unsigned long rt_nr_boosted;
458
459 struct rq *rq;
460 struct list_head leaf_rt_rq_list;
461 struct task_group *tg;
462 struct sched_rt_entity *rt_se;
463 #endif
464 };
465
466 #ifdef CONFIG_SMP
467
468 /*
469 * We add the notion of a root-domain which will be used to define per-domain
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
474 *
475 */
476 struct root_domain {
477 atomic_t refcount;
478 cpumask_t span;
479 cpumask_t online;
480
481 /*
482 * The "RT overload" flag: it gets set if a CPU has more than
483 * one runnable RT task.
484 */
485 cpumask_t rto_mask;
486 atomic_t rto_count;
487 #ifdef CONFIG_SMP
488 struct cpupri cpupri;
489 #endif
490 };
491
492 /*
493 * By default the system creates a single root-domain with all cpus as
494 * members (mimicking the global state we have today).
495 */
496 static struct root_domain def_root_domain;
497
498 #endif
499
500 /*
501 * This is the main, per-CPU runqueue data structure.
502 *
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
506 */
507 struct rq {
508 /* runqueue lock: */
509 spinlock_t lock;
510
511 /*
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
514 */
515 unsigned long nr_running;
516 #define CPU_LOAD_IDX_MAX 5
517 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
518 unsigned char idle_at_tick;
519 #ifdef CONFIG_NO_HZ
520 unsigned long last_tick_seen;
521 unsigned char in_nohz_recently;
522 #endif
523 /* capture load from *all* tasks on this cpu: */
524 struct load_weight load;
525 unsigned long nr_load_updates;
526 u64 nr_switches;
527
528 struct cfs_rq cfs;
529 struct rt_rq rt;
530
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532 /* list of leaf cfs_rq on this cpu: */
533 struct list_head leaf_cfs_rq_list;
534 #endif
535 #ifdef CONFIG_RT_GROUP_SCHED
536 struct list_head leaf_rt_rq_list;
537 #endif
538
539 /*
540 * This is part of a global counter where only the total sum
541 * over all CPUs matters. A task can increase this counter on
542 * one CPU and if it got migrated afterwards it may decrease
543 * it on another CPU. Always updated under the runqueue lock:
544 */
545 unsigned long nr_uninterruptible;
546
547 struct task_struct *curr, *idle;
548 unsigned long next_balance;
549 struct mm_struct *prev_mm;
550
551 u64 clock;
552
553 atomic_t nr_iowait;
554
555 #ifdef CONFIG_SMP
556 struct root_domain *rd;
557 struct sched_domain *sd;
558
559 /* For active balancing */
560 int active_balance;
561 int push_cpu;
562 /* cpu of this runqueue: */
563 int cpu;
564 int online;
565
566 unsigned long avg_load_per_task;
567
568 struct task_struct *migration_thread;
569 struct list_head migration_queue;
570 #endif
571
572 #ifdef CONFIG_SCHED_HRTICK
573 unsigned long hrtick_flags;
574 ktime_t hrtick_expire;
575 struct hrtimer hrtick_timer;
576 #endif
577
578 #ifdef CONFIG_SCHEDSTATS
579 /* latency stats */
580 struct sched_info rq_sched_info;
581
582 /* sys_sched_yield() stats */
583 unsigned int yld_exp_empty;
584 unsigned int yld_act_empty;
585 unsigned int yld_both_empty;
586 unsigned int yld_count;
587
588 /* schedule() stats */
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
592
593 /* try_to_wake_up() stats */
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
596
597 /* BKL stats */
598 unsigned int bkl_count;
599 #endif
600 struct lock_class_key rq_lock_key;
601 };
602
603 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
604
605 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
606 {
607 rq->curr->sched_class->check_preempt_curr(rq, p);
608 }
609
610 static inline int cpu_of(struct rq *rq)
611 {
612 #ifdef CONFIG_SMP
613 return rq->cpu;
614 #else
615 return 0;
616 #endif
617 }
618
619 /*
620 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
621 * See detach_destroy_domains: synchronize_sched for details.
622 *
623 * The domain tree of any CPU may only be accessed from within
624 * preempt-disabled sections.
625 */
626 #define for_each_domain(cpu, __sd) \
627 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
628
629 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
630 #define this_rq() (&__get_cpu_var(runqueues))
631 #define task_rq(p) cpu_rq(task_cpu(p))
632 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
633
634 static inline void update_rq_clock(struct rq *rq)
635 {
636 rq->clock = sched_clock_cpu(cpu_of(rq));
637 }
638
639 /*
640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
641 */
642 #ifdef CONFIG_SCHED_DEBUG
643 # define const_debug __read_mostly
644 #else
645 # define const_debug static const
646 #endif
647
648 /*
649 * Debugging: various feature bits
650 */
651
652 #define SCHED_FEAT(name, enabled) \
653 __SCHED_FEAT_##name ,
654
655 enum {
656 #include "sched_features.h"
657 };
658
659 #undef SCHED_FEAT
660
661 #define SCHED_FEAT(name, enabled) \
662 (1UL << __SCHED_FEAT_##name) * enabled |
663
664 const_debug unsigned int sysctl_sched_features =
665 #include "sched_features.h"
666 0;
667
668 #undef SCHED_FEAT
669
670 #ifdef CONFIG_SCHED_DEBUG
671 #define SCHED_FEAT(name, enabled) \
672 #name ,
673
674 static __read_mostly char *sched_feat_names[] = {
675 #include "sched_features.h"
676 NULL
677 };
678
679 #undef SCHED_FEAT
680
681 static int sched_feat_open(struct inode *inode, struct file *filp)
682 {
683 filp->private_data = inode->i_private;
684 return 0;
685 }
686
687 static ssize_t
688 sched_feat_read(struct file *filp, char __user *ubuf,
689 size_t cnt, loff_t *ppos)
690 {
691 char *buf;
692 int r = 0;
693 int len = 0;
694 int i;
695
696 for (i = 0; sched_feat_names[i]; i++) {
697 len += strlen(sched_feat_names[i]);
698 len += 4;
699 }
700
701 buf = kmalloc(len + 2, GFP_KERNEL);
702 if (!buf)
703 return -ENOMEM;
704
705 for (i = 0; sched_feat_names[i]; i++) {
706 if (sysctl_sched_features & (1UL << i))
707 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
708 else
709 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
710 }
711
712 r += sprintf(buf + r, "\n");
713 WARN_ON(r >= len + 2);
714
715 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
716
717 kfree(buf);
718
719 return r;
720 }
721
722 static ssize_t
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725 {
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
739 if (strncmp(buf, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 filp->f_pos += cnt;
760
761 return cnt;
762 }
763
764 static struct file_operations sched_feat_fops = {
765 .open = sched_feat_open,
766 .read = sched_feat_read,
767 .write = sched_feat_write,
768 };
769
770 static __init int sched_init_debug(void)
771 {
772 debugfs_create_file("sched_features", 0644, NULL, NULL,
773 &sched_feat_fops);
774
775 return 0;
776 }
777 late_initcall(sched_init_debug);
778
779 #endif
780
781 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
782
783 /*
784 * Number of tasks to iterate in a single balance run.
785 * Limited because this is done with IRQs disabled.
786 */
787 const_debug unsigned int sysctl_sched_nr_migrate = 32;
788
789 /*
790 * ratelimit for updating the group shares.
791 * default: 0.5ms
792 */
793 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
794
795 /*
796 * period over which we measure -rt task cpu usage in us.
797 * default: 1s
798 */
799 unsigned int sysctl_sched_rt_period = 1000000;
800
801 static __read_mostly int scheduler_running;
802
803 /*
804 * part of the period that we allow rt tasks to run in us.
805 * default: 0.95s
806 */
807 int sysctl_sched_rt_runtime = 950000;
808
809 static inline u64 global_rt_period(void)
810 {
811 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
812 }
813
814 static inline u64 global_rt_runtime(void)
815 {
816 if (sysctl_sched_rt_period < 0)
817 return RUNTIME_INF;
818
819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
820 }
821
822 #ifndef prepare_arch_switch
823 # define prepare_arch_switch(next) do { } while (0)
824 #endif
825 #ifndef finish_arch_switch
826 # define finish_arch_switch(prev) do { } while (0)
827 #endif
828
829 static inline int task_current(struct rq *rq, struct task_struct *p)
830 {
831 return rq->curr == p;
832 }
833
834 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
835 static inline int task_running(struct rq *rq, struct task_struct *p)
836 {
837 return task_current(rq, p);
838 }
839
840 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
841 {
842 }
843
844 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
845 {
846 #ifdef CONFIG_DEBUG_SPINLOCK
847 /* this is a valid case when another task releases the spinlock */
848 rq->lock.owner = current;
849 #endif
850 /*
851 * If we are tracking spinlock dependencies then we have to
852 * fix up the runqueue lock - which gets 'carried over' from
853 * prev into current:
854 */
855 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
856
857 spin_unlock_irq(&rq->lock);
858 }
859
860 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
861 static inline int task_running(struct rq *rq, struct task_struct *p)
862 {
863 #ifdef CONFIG_SMP
864 return p->oncpu;
865 #else
866 return task_current(rq, p);
867 #endif
868 }
869
870 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 {
872 #ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->oncpu = 1;
879 #endif
880 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
881 spin_unlock_irq(&rq->lock);
882 #else
883 spin_unlock(&rq->lock);
884 #endif
885 }
886
887 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 {
889 #ifdef CONFIG_SMP
890 /*
891 * After ->oncpu is cleared, the task can be moved to a different CPU.
892 * We must ensure this doesn't happen until the switch is completely
893 * finished.
894 */
895 smp_wmb();
896 prev->oncpu = 0;
897 #endif
898 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 local_irq_enable();
900 #endif
901 }
902 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
903
904 /*
905 * __task_rq_lock - lock the runqueue a given task resides on.
906 * Must be called interrupts disabled.
907 */
908 static inline struct rq *__task_rq_lock(struct task_struct *p)
909 __acquires(rq->lock)
910 {
911 for (;;) {
912 struct rq *rq = task_rq(p);
913 spin_lock(&rq->lock);
914 if (likely(rq == task_rq(p)))
915 return rq;
916 spin_unlock(&rq->lock);
917 }
918 }
919
920 /*
921 * task_rq_lock - lock the runqueue a given task resides on and disable
922 * interrupts. Note the ordering: we can safely lookup the task_rq without
923 * explicitly disabling preemption.
924 */
925 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
926 __acquires(rq->lock)
927 {
928 struct rq *rq;
929
930 for (;;) {
931 local_irq_save(*flags);
932 rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
936 spin_unlock_irqrestore(&rq->lock, *flags);
937 }
938 }
939
940 static void __task_rq_unlock(struct rq *rq)
941 __releases(rq->lock)
942 {
943 spin_unlock(&rq->lock);
944 }
945
946 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
947 __releases(rq->lock)
948 {
949 spin_unlock_irqrestore(&rq->lock, *flags);
950 }
951
952 /*
953 * this_rq_lock - lock this runqueue and disable interrupts.
954 */
955 static struct rq *this_rq_lock(void)
956 __acquires(rq->lock)
957 {
958 struct rq *rq;
959
960 local_irq_disable();
961 rq = this_rq();
962 spin_lock(&rq->lock);
963
964 return rq;
965 }
966
967 static void __resched_task(struct task_struct *p, int tif_bit);
968
969 static inline void resched_task(struct task_struct *p)
970 {
971 __resched_task(p, TIF_NEED_RESCHED);
972 }
973
974 #ifdef CONFIG_SCHED_HRTICK
975 /*
976 * Use HR-timers to deliver accurate preemption points.
977 *
978 * Its all a bit involved since we cannot program an hrt while holding the
979 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
980 * reschedule event.
981 *
982 * When we get rescheduled we reprogram the hrtick_timer outside of the
983 * rq->lock.
984 */
985 static inline void resched_hrt(struct task_struct *p)
986 {
987 __resched_task(p, TIF_HRTICK_RESCHED);
988 }
989
990 static inline void resched_rq(struct rq *rq)
991 {
992 unsigned long flags;
993
994 spin_lock_irqsave(&rq->lock, flags);
995 resched_task(rq->curr);
996 spin_unlock_irqrestore(&rq->lock, flags);
997 }
998
999 enum {
1000 HRTICK_SET, /* re-programm hrtick_timer */
1001 HRTICK_RESET, /* not a new slice */
1002 HRTICK_BLOCK, /* stop hrtick operations */
1003 };
1004
1005 /*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010 static inline int hrtick_enabled(struct rq *rq)
1011 {
1012 if (!sched_feat(HRTICK))
1013 return 0;
1014 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1015 return 0;
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017 }
1018
1019 /*
1020 * Called to set the hrtick timer state.
1021 *
1022 * called with rq->lock held and irqs disabled
1023 */
1024 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1025 {
1026 assert_spin_locked(&rq->lock);
1027
1028 /*
1029 * preempt at: now + delay
1030 */
1031 rq->hrtick_expire =
1032 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1033 /*
1034 * indicate we need to program the timer
1035 */
1036 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1037 if (reset)
1038 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1039
1040 /*
1041 * New slices are called from the schedule path and don't need a
1042 * forced reschedule.
1043 */
1044 if (reset)
1045 resched_hrt(rq->curr);
1046 }
1047
1048 static void hrtick_clear(struct rq *rq)
1049 {
1050 if (hrtimer_active(&rq->hrtick_timer))
1051 hrtimer_cancel(&rq->hrtick_timer);
1052 }
1053
1054 /*
1055 * Update the timer from the possible pending state.
1056 */
1057 static void hrtick_set(struct rq *rq)
1058 {
1059 ktime_t time;
1060 int set, reset;
1061 unsigned long flags;
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock_irqsave(&rq->lock, flags);
1066 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1067 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1068 time = rq->hrtick_expire;
1069 clear_thread_flag(TIF_HRTICK_RESCHED);
1070 spin_unlock_irqrestore(&rq->lock, flags);
1071
1072 if (set) {
1073 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1074 if (reset && !hrtimer_active(&rq->hrtick_timer))
1075 resched_rq(rq);
1076 } else
1077 hrtick_clear(rq);
1078 }
1079
1080 /*
1081 * High-resolution timer tick.
1082 * Runs from hardirq context with interrupts disabled.
1083 */
1084 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1085 {
1086 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1087
1088 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1089
1090 spin_lock(&rq->lock);
1091 update_rq_clock(rq);
1092 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1093 spin_unlock(&rq->lock);
1094
1095 return HRTIMER_NORESTART;
1096 }
1097
1098 #ifdef CONFIG_SMP
1099 static void hotplug_hrtick_disable(int cpu)
1100 {
1101 struct rq *rq = cpu_rq(cpu);
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&rq->lock, flags);
1105 rq->hrtick_flags = 0;
1106 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1107 spin_unlock_irqrestore(&rq->lock, flags);
1108
1109 hrtick_clear(rq);
1110 }
1111
1112 static void hotplug_hrtick_enable(int cpu)
1113 {
1114 struct rq *rq = cpu_rq(cpu);
1115 unsigned long flags;
1116
1117 spin_lock_irqsave(&rq->lock, flags);
1118 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1119 spin_unlock_irqrestore(&rq->lock, flags);
1120 }
1121
1122 static int
1123 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124 {
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hotplug_hrtick_disable(cpu);
1135 return NOTIFY_OK;
1136
1137 case CPU_UP_PREPARE:
1138 case CPU_UP_PREPARE_FROZEN:
1139 case CPU_DOWN_FAILED:
1140 case CPU_DOWN_FAILED_FROZEN:
1141 case CPU_ONLINE:
1142 case CPU_ONLINE_FROZEN:
1143 hotplug_hrtick_enable(cpu);
1144 return NOTIFY_OK;
1145 }
1146
1147 return NOTIFY_DONE;
1148 }
1149
1150 static void init_hrtick(void)
1151 {
1152 hotcpu_notifier(hotplug_hrtick, 0);
1153 }
1154 #endif /* CONFIG_SMP */
1155
1156 static void init_rq_hrtick(struct rq *rq)
1157 {
1158 rq->hrtick_flags = 0;
1159 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1160 rq->hrtick_timer.function = hrtick;
1161 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1162 }
1163
1164 void hrtick_resched(void)
1165 {
1166 struct rq *rq;
1167 unsigned long flags;
1168
1169 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1170 return;
1171
1172 local_irq_save(flags);
1173 rq = cpu_rq(smp_processor_id());
1174 hrtick_set(rq);
1175 local_irq_restore(flags);
1176 }
1177 #else
1178 static inline void hrtick_clear(struct rq *rq)
1179 {
1180 }
1181
1182 static inline void hrtick_set(struct rq *rq)
1183 {
1184 }
1185
1186 static inline void init_rq_hrtick(struct rq *rq)
1187 {
1188 }
1189
1190 void hrtick_resched(void)
1191 {
1192 }
1193
1194 static inline void init_hrtick(void)
1195 {
1196 }
1197 #endif
1198
1199 /*
1200 * resched_task - mark a task 'to be rescheduled now'.
1201 *
1202 * On UP this means the setting of the need_resched flag, on SMP it
1203 * might also involve a cross-CPU call to trigger the scheduler on
1204 * the target CPU.
1205 */
1206 #ifdef CONFIG_SMP
1207
1208 #ifndef tsk_is_polling
1209 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1210 #endif
1211
1212 static void __resched_task(struct task_struct *p, int tif_bit)
1213 {
1214 int cpu;
1215
1216 assert_spin_locked(&task_rq(p)->lock);
1217
1218 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1219 return;
1220
1221 set_tsk_thread_flag(p, tif_bit);
1222
1223 cpu = task_cpu(p);
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(p))
1230 smp_send_reschedule(cpu);
1231 }
1232
1233 static void resched_cpu(int cpu)
1234 {
1235 struct rq *rq = cpu_rq(cpu);
1236 unsigned long flags;
1237
1238 if (!spin_trylock_irqsave(&rq->lock, flags))
1239 return;
1240 resched_task(cpu_curr(cpu));
1241 spin_unlock_irqrestore(&rq->lock, flags);
1242 }
1243
1244 #ifdef CONFIG_NO_HZ
1245 /*
1246 * When add_timer_on() enqueues a timer into the timer wheel of an
1247 * idle CPU then this timer might expire before the next timer event
1248 * which is scheduled to wake up that CPU. In case of a completely
1249 * idle system the next event might even be infinite time into the
1250 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1251 * leaves the inner idle loop so the newly added timer is taken into
1252 * account when the CPU goes back to idle and evaluates the timer
1253 * wheel for the next timer event.
1254 */
1255 void wake_up_idle_cpu(int cpu)
1256 {
1257 struct rq *rq = cpu_rq(cpu);
1258
1259 if (cpu == smp_processor_id())
1260 return;
1261
1262 /*
1263 * This is safe, as this function is called with the timer
1264 * wheel base lock of (cpu) held. When the CPU is on the way
1265 * to idle and has not yet set rq->curr to idle then it will
1266 * be serialized on the timer wheel base lock and take the new
1267 * timer into account automatically.
1268 */
1269 if (rq->curr != rq->idle)
1270 return;
1271
1272 /*
1273 * We can set TIF_RESCHED on the idle task of the other CPU
1274 * lockless. The worst case is that the other CPU runs the
1275 * idle task through an additional NOOP schedule()
1276 */
1277 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1278
1279 /* NEED_RESCHED must be visible before we test polling */
1280 smp_mb();
1281 if (!tsk_is_polling(rq->idle))
1282 smp_send_reschedule(cpu);
1283 }
1284 #endif /* CONFIG_NO_HZ */
1285
1286 #else /* !CONFIG_SMP */
1287 static void __resched_task(struct task_struct *p, int tif_bit)
1288 {
1289 assert_spin_locked(&task_rq(p)->lock);
1290 set_tsk_thread_flag(p, tif_bit);
1291 }
1292 #endif /* CONFIG_SMP */
1293
1294 #if BITS_PER_LONG == 32
1295 # define WMULT_CONST (~0UL)
1296 #else
1297 # define WMULT_CONST (1UL << 32)
1298 #endif
1299
1300 #define WMULT_SHIFT 32
1301
1302 /*
1303 * Shift right and round:
1304 */
1305 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1306
1307 /*
1308 * delta *= weight / lw
1309 */
1310 static unsigned long
1311 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313 {
1314 u64 tmp;
1315
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
1328 if (unlikely(tmp > WMULT_CONST))
1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1330 WMULT_SHIFT/2);
1331 else
1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333
1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 }
1336
1337 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 {
1339 lw->weight += inc;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 {
1345 lw->weight -= dec;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 2
1359 #define WMULT_IDLEPRIO (1 << 31)
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404 /*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409 struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413 };
1414
1415 #ifdef CONFIG_SMP
1416 static unsigned long
1417 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422 static int
1423 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
1426 #endif
1427
1428 #ifdef CONFIG_CGROUP_CPUACCT
1429 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1430 #else
1431 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432 #endif
1433
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435 {
1436 update_load_add(&rq->load, load);
1437 }
1438
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_sub(&rq->load, load);
1442 }
1443
1444 #ifdef CONFIG_SMP
1445 static unsigned long source_load(int cpu, int type);
1446 static unsigned long target_load(int cpu, int type);
1447 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1448
1449 static unsigned long cpu_avg_load_per_task(int cpu)
1450 {
1451 struct rq *rq = cpu_rq(cpu);
1452
1453 if (rq->nr_running)
1454 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1455
1456 return rq->avg_load_per_task;
1457 }
1458
1459 #ifdef CONFIG_FAIR_GROUP_SCHED
1460
1461 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1462
1463 /*
1464 * Iterate the full tree, calling @down when first entering a node and @up when
1465 * leaving it for the final time.
1466 */
1467 static void
1468 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1469 {
1470 struct task_group *parent, *child;
1471
1472 rcu_read_lock();
1473 parent = &root_task_group;
1474 down:
1475 (*down)(parent, cpu, sd);
1476 list_for_each_entry_rcu(child, &parent->children, siblings) {
1477 parent = child;
1478 goto down;
1479
1480 up:
1481 continue;
1482 }
1483 (*up)(parent, cpu, sd);
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 rcu_read_unlock();
1490 }
1491
1492 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1493
1494 /*
1495 * Calculate and set the cpu's group shares.
1496 */
1497 static void
1498 __update_group_shares_cpu(struct task_group *tg, int cpu,
1499 unsigned long sd_shares, unsigned long sd_rq_weight)
1500 {
1501 int boost = 0;
1502 unsigned long shares;
1503 unsigned long rq_weight;
1504
1505 if (!tg->se[cpu])
1506 return;
1507
1508 rq_weight = tg->cfs_rq[cpu]->load.weight;
1509
1510 /*
1511 * If there are currently no tasks on the cpu pretend there is one of
1512 * average load so that when a new task gets to run here it will not
1513 * get delayed by group starvation.
1514 */
1515 if (!rq_weight) {
1516 boost = 1;
1517 rq_weight = NICE_0_LOAD;
1518 }
1519
1520 if (unlikely(rq_weight > sd_rq_weight))
1521 rq_weight = sd_rq_weight;
1522
1523 /*
1524 * \Sum shares * rq_weight
1525 * shares = -----------------------
1526 * \Sum rq_weight
1527 *
1528 */
1529 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1530
1531 /*
1532 * record the actual number of shares, not the boosted amount.
1533 */
1534 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1535 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1536
1537 if (shares < MIN_SHARES)
1538 shares = MIN_SHARES;
1539 else if (shares > MAX_SHARES)
1540 shares = MAX_SHARES;
1541
1542 __set_se_shares(tg->se[cpu], shares);
1543 }
1544
1545 /*
1546 * Re-compute the task group their per cpu shares over the given domain.
1547 * This needs to be done in a bottom-up fashion because the rq weight of a
1548 * parent group depends on the shares of its child groups.
1549 */
1550 static void
1551 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1552 {
1553 unsigned long rq_weight = 0;
1554 unsigned long shares = 0;
1555 int i;
1556
1557 for_each_cpu_mask(i, sd->span) {
1558 rq_weight += tg->cfs_rq[i]->load.weight;
1559 shares += tg->cfs_rq[i]->shares;
1560 }
1561
1562 if ((!shares && rq_weight) || shares > tg->shares)
1563 shares = tg->shares;
1564
1565 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1566 shares = tg->shares;
1567
1568 if (!rq_weight)
1569 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1570
1571 for_each_cpu_mask(i, sd->span) {
1572 struct rq *rq = cpu_rq(i);
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&rq->lock, flags);
1576 __update_group_shares_cpu(tg, i, shares, rq_weight);
1577 spin_unlock_irqrestore(&rq->lock, flags);
1578 }
1579 }
1580
1581 /*
1582 * Compute the cpu's hierarchical load factor for each task group.
1583 * This needs to be done in a top-down fashion because the load of a child
1584 * group is a fraction of its parents load.
1585 */
1586 static void
1587 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1588 {
1589 unsigned long load;
1590
1591 if (!tg->parent) {
1592 load = cpu_rq(cpu)->load.weight;
1593 } else {
1594 load = tg->parent->cfs_rq[cpu]->h_load;
1595 load *= tg->cfs_rq[cpu]->shares;
1596 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1597 }
1598
1599 tg->cfs_rq[cpu]->h_load = load;
1600 }
1601
1602 static void
1603 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1604 {
1605 }
1606
1607 static void update_shares(struct sched_domain *sd)
1608 {
1609 u64 now = cpu_clock(raw_smp_processor_id());
1610 s64 elapsed = now - sd->last_update;
1611
1612 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1613 sd->last_update = now;
1614 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1615 }
1616 }
1617
1618 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1619 {
1620 spin_unlock(&rq->lock);
1621 update_shares(sd);
1622 spin_lock(&rq->lock);
1623 }
1624
1625 static void update_h_load(int cpu)
1626 {
1627 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1628 }
1629
1630 #else
1631
1632 static inline void update_shares(struct sched_domain *sd)
1633 {
1634 }
1635
1636 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1637 {
1638 }
1639
1640 #endif
1641
1642 #endif
1643
1644 #ifdef CONFIG_FAIR_GROUP_SCHED
1645 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1646 {
1647 #ifdef CONFIG_SMP
1648 cfs_rq->shares = shares;
1649 #endif
1650 }
1651 #endif
1652
1653 #include "sched_stats.h"
1654 #include "sched_idletask.c"
1655 #include "sched_fair.c"
1656 #include "sched_rt.c"
1657 #ifdef CONFIG_SCHED_DEBUG
1658 # include "sched_debug.c"
1659 #endif
1660
1661 #define sched_class_highest (&rt_sched_class)
1662 #define for_each_class(class) \
1663 for (class = sched_class_highest; class; class = class->next)
1664
1665 static void inc_nr_running(struct rq *rq)
1666 {
1667 rq->nr_running++;
1668 }
1669
1670 static void dec_nr_running(struct rq *rq)
1671 {
1672 rq->nr_running--;
1673 }
1674
1675 static void set_load_weight(struct task_struct *p)
1676 {
1677 if (task_has_rt_policy(p)) {
1678 p->se.load.weight = prio_to_weight[0] * 2;
1679 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1680 return;
1681 }
1682
1683 /*
1684 * SCHED_IDLE tasks get minimal weight:
1685 */
1686 if (p->policy == SCHED_IDLE) {
1687 p->se.load.weight = WEIGHT_IDLEPRIO;
1688 p->se.load.inv_weight = WMULT_IDLEPRIO;
1689 return;
1690 }
1691
1692 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1693 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1694 }
1695
1696 static void update_avg(u64 *avg, u64 sample)
1697 {
1698 s64 diff = sample - *avg;
1699 *avg += diff >> 3;
1700 }
1701
1702 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1703 {
1704 sched_info_queued(p);
1705 p->sched_class->enqueue_task(rq, p, wakeup);
1706 p->se.on_rq = 1;
1707 }
1708
1709 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1710 {
1711 if (sleep && p->se.last_wakeup) {
1712 update_avg(&p->se.avg_overlap,
1713 p->se.sum_exec_runtime - p->se.last_wakeup);
1714 p->se.last_wakeup = 0;
1715 }
1716
1717 sched_info_dequeued(p);
1718 p->sched_class->dequeue_task(rq, p, sleep);
1719 p->se.on_rq = 0;
1720 }
1721
1722 /*
1723 * __normal_prio - return the priority that is based on the static prio
1724 */
1725 static inline int __normal_prio(struct task_struct *p)
1726 {
1727 return p->static_prio;
1728 }
1729
1730 /*
1731 * Calculate the expected normal priority: i.e. priority
1732 * without taking RT-inheritance into account. Might be
1733 * boosted by interactivity modifiers. Changes upon fork,
1734 * setprio syscalls, and whenever the interactivity
1735 * estimator recalculates.
1736 */
1737 static inline int normal_prio(struct task_struct *p)
1738 {
1739 int prio;
1740
1741 if (task_has_rt_policy(p))
1742 prio = MAX_RT_PRIO-1 - p->rt_priority;
1743 else
1744 prio = __normal_prio(p);
1745 return prio;
1746 }
1747
1748 /*
1749 * Calculate the current priority, i.e. the priority
1750 * taken into account by the scheduler. This value might
1751 * be boosted by RT tasks, or might be boosted by
1752 * interactivity modifiers. Will be RT if the task got
1753 * RT-boosted. If not then it returns p->normal_prio.
1754 */
1755 static int effective_prio(struct task_struct *p)
1756 {
1757 p->normal_prio = normal_prio(p);
1758 /*
1759 * If we are RT tasks or we were boosted to RT priority,
1760 * keep the priority unchanged. Otherwise, update priority
1761 * to the normal priority:
1762 */
1763 if (!rt_prio(p->prio))
1764 return p->normal_prio;
1765 return p->prio;
1766 }
1767
1768 /*
1769 * activate_task - move a task to the runqueue.
1770 */
1771 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1772 {
1773 if (task_contributes_to_load(p))
1774 rq->nr_uninterruptible--;
1775
1776 enqueue_task(rq, p, wakeup);
1777 inc_nr_running(rq);
1778 }
1779
1780 /*
1781 * deactivate_task - remove a task from the runqueue.
1782 */
1783 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1784 {
1785 if (task_contributes_to_load(p))
1786 rq->nr_uninterruptible++;
1787
1788 dequeue_task(rq, p, sleep);
1789 dec_nr_running(rq);
1790 }
1791
1792 /**
1793 * task_curr - is this task currently executing on a CPU?
1794 * @p: the task in question.
1795 */
1796 inline int task_curr(const struct task_struct *p)
1797 {
1798 return cpu_curr(task_cpu(p)) == p;
1799 }
1800
1801 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1802 {
1803 set_task_rq(p, cpu);
1804 #ifdef CONFIG_SMP
1805 /*
1806 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1807 * successfuly executed on another CPU. We must ensure that updates of
1808 * per-task data have been completed by this moment.
1809 */
1810 smp_wmb();
1811 task_thread_info(p)->cpu = cpu;
1812 #endif
1813 }
1814
1815 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1816 const struct sched_class *prev_class,
1817 int oldprio, int running)
1818 {
1819 if (prev_class != p->sched_class) {
1820 if (prev_class->switched_from)
1821 prev_class->switched_from(rq, p, running);
1822 p->sched_class->switched_to(rq, p, running);
1823 } else
1824 p->sched_class->prio_changed(rq, p, oldprio, running);
1825 }
1826
1827 #ifdef CONFIG_SMP
1828
1829 /* Used instead of source_load when we know the type == 0 */
1830 static unsigned long weighted_cpuload(const int cpu)
1831 {
1832 return cpu_rq(cpu)->load.weight;
1833 }
1834
1835 /*
1836 * Is this task likely cache-hot:
1837 */
1838 static int
1839 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1840 {
1841 s64 delta;
1842
1843 /*
1844 * Buddy candidates are cache hot:
1845 */
1846 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1847 return 1;
1848
1849 if (p->sched_class != &fair_sched_class)
1850 return 0;
1851
1852 if (sysctl_sched_migration_cost == -1)
1853 return 1;
1854 if (sysctl_sched_migration_cost == 0)
1855 return 0;
1856
1857 delta = now - p->se.exec_start;
1858
1859 return delta < (s64)sysctl_sched_migration_cost;
1860 }
1861
1862
1863 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1864 {
1865 int old_cpu = task_cpu(p);
1866 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1867 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1868 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1869 u64 clock_offset;
1870
1871 clock_offset = old_rq->clock - new_rq->clock;
1872
1873 #ifdef CONFIG_SCHEDSTATS
1874 if (p->se.wait_start)
1875 p->se.wait_start -= clock_offset;
1876 if (p->se.sleep_start)
1877 p->se.sleep_start -= clock_offset;
1878 if (p->se.block_start)
1879 p->se.block_start -= clock_offset;
1880 if (old_cpu != new_cpu) {
1881 schedstat_inc(p, se.nr_migrations);
1882 if (task_hot(p, old_rq->clock, NULL))
1883 schedstat_inc(p, se.nr_forced2_migrations);
1884 }
1885 #endif
1886 p->se.vruntime -= old_cfsrq->min_vruntime -
1887 new_cfsrq->min_vruntime;
1888
1889 __set_task_cpu(p, new_cpu);
1890 }
1891
1892 struct migration_req {
1893 struct list_head list;
1894
1895 struct task_struct *task;
1896 int dest_cpu;
1897
1898 struct completion done;
1899 };
1900
1901 /*
1902 * The task's runqueue lock must be held.
1903 * Returns true if you have to wait for migration thread.
1904 */
1905 static int
1906 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1907 {
1908 struct rq *rq = task_rq(p);
1909
1910 /*
1911 * If the task is not on a runqueue (and not running), then
1912 * it is sufficient to simply update the task's cpu field.
1913 */
1914 if (!p->se.on_rq && !task_running(rq, p)) {
1915 set_task_cpu(p, dest_cpu);
1916 return 0;
1917 }
1918
1919 init_completion(&req->done);
1920 req->task = p;
1921 req->dest_cpu = dest_cpu;
1922 list_add(&req->list, &rq->migration_queue);
1923
1924 return 1;
1925 }
1926
1927 /*
1928 * wait_task_inactive - wait for a thread to unschedule.
1929 *
1930 * The caller must ensure that the task *will* unschedule sometime soon,
1931 * else this function might spin for a *long* time. This function can't
1932 * be called with interrupts off, or it may introduce deadlock with
1933 * smp_call_function() if an IPI is sent by the same process we are
1934 * waiting to become inactive.
1935 */
1936 void wait_task_inactive(struct task_struct *p)
1937 {
1938 unsigned long flags;
1939 int running, on_rq;
1940 struct rq *rq;
1941
1942 for (;;) {
1943 /*
1944 * We do the initial early heuristics without holding
1945 * any task-queue locks at all. We'll only try to get
1946 * the runqueue lock when things look like they will
1947 * work out!
1948 */
1949 rq = task_rq(p);
1950
1951 /*
1952 * If the task is actively running on another CPU
1953 * still, just relax and busy-wait without holding
1954 * any locks.
1955 *
1956 * NOTE! Since we don't hold any locks, it's not
1957 * even sure that "rq" stays as the right runqueue!
1958 * But we don't care, since "task_running()" will
1959 * return false if the runqueue has changed and p
1960 * is actually now running somewhere else!
1961 */
1962 while (task_running(rq, p))
1963 cpu_relax();
1964
1965 /*
1966 * Ok, time to look more closely! We need the rq
1967 * lock now, to be *sure*. If we're wrong, we'll
1968 * just go back and repeat.
1969 */
1970 rq = task_rq_lock(p, &flags);
1971 running = task_running(rq, p);
1972 on_rq = p->se.on_rq;
1973 task_rq_unlock(rq, &flags);
1974
1975 /*
1976 * Was it really running after all now that we
1977 * checked with the proper locks actually held?
1978 *
1979 * Oops. Go back and try again..
1980 */
1981 if (unlikely(running)) {
1982 cpu_relax();
1983 continue;
1984 }
1985
1986 /*
1987 * It's not enough that it's not actively running,
1988 * it must be off the runqueue _entirely_, and not
1989 * preempted!
1990 *
1991 * So if it wa still runnable (but just not actively
1992 * running right now), it's preempted, and we should
1993 * yield - it could be a while.
1994 */
1995 if (unlikely(on_rq)) {
1996 schedule_timeout_uninterruptible(1);
1997 continue;
1998 }
1999
2000 /*
2001 * Ahh, all good. It wasn't running, and it wasn't
2002 * runnable, which means that it will never become
2003 * running in the future either. We're all done!
2004 */
2005 break;
2006 }
2007 }
2008
2009 /***
2010 * kick_process - kick a running thread to enter/exit the kernel
2011 * @p: the to-be-kicked thread
2012 *
2013 * Cause a process which is running on another CPU to enter
2014 * kernel-mode, without any delay. (to get signals handled.)
2015 *
2016 * NOTE: this function doesnt have to take the runqueue lock,
2017 * because all it wants to ensure is that the remote task enters
2018 * the kernel. If the IPI races and the task has been migrated
2019 * to another CPU then no harm is done and the purpose has been
2020 * achieved as well.
2021 */
2022 void kick_process(struct task_struct *p)
2023 {
2024 int cpu;
2025
2026 preempt_disable();
2027 cpu = task_cpu(p);
2028 if ((cpu != smp_processor_id()) && task_curr(p))
2029 smp_send_reschedule(cpu);
2030 preempt_enable();
2031 }
2032
2033 /*
2034 * Return a low guess at the load of a migration-source cpu weighted
2035 * according to the scheduling class and "nice" value.
2036 *
2037 * We want to under-estimate the load of migration sources, to
2038 * balance conservatively.
2039 */
2040 static unsigned long source_load(int cpu, int type)
2041 {
2042 struct rq *rq = cpu_rq(cpu);
2043 unsigned long total = weighted_cpuload(cpu);
2044
2045 if (type == 0 || !sched_feat(LB_BIAS))
2046 return total;
2047
2048 return min(rq->cpu_load[type-1], total);
2049 }
2050
2051 /*
2052 * Return a high guess at the load of a migration-target cpu weighted
2053 * according to the scheduling class and "nice" value.
2054 */
2055 static unsigned long target_load(int cpu, int type)
2056 {
2057 struct rq *rq = cpu_rq(cpu);
2058 unsigned long total = weighted_cpuload(cpu);
2059
2060 if (type == 0 || !sched_feat(LB_BIAS))
2061 return total;
2062
2063 return max(rq->cpu_load[type-1], total);
2064 }
2065
2066 /*
2067 * find_idlest_group finds and returns the least busy CPU group within the
2068 * domain.
2069 */
2070 static struct sched_group *
2071 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2072 {
2073 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2074 unsigned long min_load = ULONG_MAX, this_load = 0;
2075 int load_idx = sd->forkexec_idx;
2076 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2077
2078 do {
2079 unsigned long load, avg_load;
2080 int local_group;
2081 int i;
2082
2083 /* Skip over this group if it has no CPUs allowed */
2084 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085 continue;
2086
2087 local_group = cpu_isset(this_cpu, group->cpumask);
2088
2089 /* Tally up the load of all CPUs in the group */
2090 avg_load = 0;
2091
2092 for_each_cpu_mask(i, group->cpumask) {
2093 /* Bias balancing toward cpus of our domain */
2094 if (local_group)
2095 load = source_load(i, load_idx);
2096 else
2097 load = target_load(i, load_idx);
2098
2099 avg_load += load;
2100 }
2101
2102 /* Adjust by relative CPU power of the group */
2103 avg_load = sg_div_cpu_power(group,
2104 avg_load * SCHED_LOAD_SCALE);
2105
2106 if (local_group) {
2107 this_load = avg_load;
2108 this = group;
2109 } else if (avg_load < min_load) {
2110 min_load = avg_load;
2111 idlest = group;
2112 }
2113 } while (group = group->next, group != sd->groups);
2114
2115 if (!idlest || 100*this_load < imbalance*min_load)
2116 return NULL;
2117 return idlest;
2118 }
2119
2120 /*
2121 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2122 */
2123 static int
2124 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 cpumask_t *tmp)
2126 {
2127 unsigned long load, min_load = ULONG_MAX;
2128 int idlest = -1;
2129 int i;
2130
2131 /* Traverse only the allowed CPUs */
2132 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2133
2134 for_each_cpu_mask(i, *tmp) {
2135 load = weighted_cpuload(i);
2136
2137 if (load < min_load || (load == min_load && i == this_cpu)) {
2138 min_load = load;
2139 idlest = i;
2140 }
2141 }
2142
2143 return idlest;
2144 }
2145
2146 /*
2147 * sched_balance_self: balance the current task (running on cpu) in domains
2148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * SD_BALANCE_EXEC.
2150 *
2151 * Balance, ie. select the least loaded group.
2152 *
2153 * Returns the target CPU number, or the same CPU if no balancing is needed.
2154 *
2155 * preempt must be disabled.
2156 */
2157 static int sched_balance_self(int cpu, int flag)
2158 {
2159 struct task_struct *t = current;
2160 struct sched_domain *tmp, *sd = NULL;
2161
2162 for_each_domain(cpu, tmp) {
2163 /*
2164 * If power savings logic is enabled for a domain, stop there.
2165 */
2166 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2167 break;
2168 if (tmp->flags & flag)
2169 sd = tmp;
2170 }
2171
2172 if (sd)
2173 update_shares(sd);
2174
2175 while (sd) {
2176 cpumask_t span, tmpmask;
2177 struct sched_group *group;
2178 int new_cpu, weight;
2179
2180 if (!(sd->flags & flag)) {
2181 sd = sd->child;
2182 continue;
2183 }
2184
2185 span = sd->span;
2186 group = find_idlest_group(sd, t, cpu);
2187 if (!group) {
2188 sd = sd->child;
2189 continue;
2190 }
2191
2192 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2193 if (new_cpu == -1 || new_cpu == cpu) {
2194 /* Now try balancing at a lower domain level of cpu */
2195 sd = sd->child;
2196 continue;
2197 }
2198
2199 /* Now try balancing at a lower domain level of new_cpu */
2200 cpu = new_cpu;
2201 sd = NULL;
2202 weight = cpus_weight(span);
2203 for_each_domain(cpu, tmp) {
2204 if (weight <= cpus_weight(tmp->span))
2205 break;
2206 if (tmp->flags & flag)
2207 sd = tmp;
2208 }
2209 /* while loop will break here if sd == NULL */
2210 }
2211
2212 return cpu;
2213 }
2214
2215 #endif /* CONFIG_SMP */
2216
2217 /***
2218 * try_to_wake_up - wake up a thread
2219 * @p: the to-be-woken-up thread
2220 * @state: the mask of task states that can be woken
2221 * @sync: do a synchronous wakeup?
2222 *
2223 * Put it on the run-queue if it's not already there. The "current"
2224 * thread is always on the run-queue (except when the actual
2225 * re-schedule is in progress), and as such you're allowed to do
2226 * the simpler "current->state = TASK_RUNNING" to mark yourself
2227 * runnable without the overhead of this.
2228 *
2229 * returns failure only if the task is already active.
2230 */
2231 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2232 {
2233 int cpu, orig_cpu, this_cpu, success = 0;
2234 unsigned long flags;
2235 long old_state;
2236 struct rq *rq;
2237
2238 if (!sched_feat(SYNC_WAKEUPS))
2239 sync = 0;
2240
2241 #ifdef CONFIG_SMP
2242 if (sched_feat(LB_WAKEUP_UPDATE)) {
2243 struct sched_domain *sd;
2244
2245 this_cpu = raw_smp_processor_id();
2246 cpu = task_cpu(p);
2247
2248 for_each_domain(this_cpu, sd) {
2249 if (cpu_isset(cpu, sd->span)) {
2250 update_shares(sd);
2251 break;
2252 }
2253 }
2254 }
2255 #endif
2256
2257 smp_wmb();
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2261 goto out;
2262
2263 if (p->se.on_rq)
2264 goto out_running;
2265
2266 cpu = task_cpu(p);
2267 orig_cpu = cpu;
2268 this_cpu = smp_processor_id();
2269
2270 #ifdef CONFIG_SMP
2271 if (unlikely(task_running(rq, p)))
2272 goto out_activate;
2273
2274 cpu = p->sched_class->select_task_rq(p, sync);
2275 if (cpu != orig_cpu) {
2276 set_task_cpu(p, cpu);
2277 task_rq_unlock(rq, &flags);
2278 /* might preempt at this point */
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283 if (p->se.on_rq)
2284 goto out_running;
2285
2286 this_cpu = smp_processor_id();
2287 cpu = task_cpu(p);
2288 }
2289
2290 #ifdef CONFIG_SCHEDSTATS
2291 schedstat_inc(rq, ttwu_count);
2292 if (cpu == this_cpu)
2293 schedstat_inc(rq, ttwu_local);
2294 else {
2295 struct sched_domain *sd;
2296 for_each_domain(this_cpu, sd) {
2297 if (cpu_isset(cpu, sd->span)) {
2298 schedstat_inc(sd, ttwu_wake_remote);
2299 break;
2300 }
2301 }
2302 }
2303 #endif /* CONFIG_SCHEDSTATS */
2304
2305 out_activate:
2306 #endif /* CONFIG_SMP */
2307 schedstat_inc(p, se.nr_wakeups);
2308 if (sync)
2309 schedstat_inc(p, se.nr_wakeups_sync);
2310 if (orig_cpu != cpu)
2311 schedstat_inc(p, se.nr_wakeups_migrate);
2312 if (cpu == this_cpu)
2313 schedstat_inc(p, se.nr_wakeups_local);
2314 else
2315 schedstat_inc(p, se.nr_wakeups_remote);
2316 update_rq_clock(rq);
2317 activate_task(rq, p, 1);
2318 success = 1;
2319
2320 out_running:
2321 check_preempt_curr(rq, p);
2322
2323 p->state = TASK_RUNNING;
2324 #ifdef CONFIG_SMP
2325 if (p->sched_class->task_wake_up)
2326 p->sched_class->task_wake_up(rq, p);
2327 #endif
2328 out:
2329 current->se.last_wakeup = current->se.sum_exec_runtime;
2330
2331 task_rq_unlock(rq, &flags);
2332
2333 return success;
2334 }
2335
2336 int wake_up_process(struct task_struct *p)
2337 {
2338 return try_to_wake_up(p, TASK_ALL, 0);
2339 }
2340 EXPORT_SYMBOL(wake_up_process);
2341
2342 int wake_up_state(struct task_struct *p, unsigned int state)
2343 {
2344 return try_to_wake_up(p, state, 0);
2345 }
2346
2347 /*
2348 * Perform scheduler related setup for a newly forked process p.
2349 * p is forked by current.
2350 *
2351 * __sched_fork() is basic setup used by init_idle() too:
2352 */
2353 static void __sched_fork(struct task_struct *p)
2354 {
2355 p->se.exec_start = 0;
2356 p->se.sum_exec_runtime = 0;
2357 p->se.prev_sum_exec_runtime = 0;
2358 p->se.last_wakeup = 0;
2359 p->se.avg_overlap = 0;
2360
2361 #ifdef CONFIG_SCHEDSTATS
2362 p->se.wait_start = 0;
2363 p->se.sum_sleep_runtime = 0;
2364 p->se.sleep_start = 0;
2365 p->se.block_start = 0;
2366 p->se.sleep_max = 0;
2367 p->se.block_max = 0;
2368 p->se.exec_max = 0;
2369 p->se.slice_max = 0;
2370 p->se.wait_max = 0;
2371 #endif
2372
2373 INIT_LIST_HEAD(&p->rt.run_list);
2374 p->se.on_rq = 0;
2375 INIT_LIST_HEAD(&p->se.group_node);
2376
2377 #ifdef CONFIG_PREEMPT_NOTIFIERS
2378 INIT_HLIST_HEAD(&p->preempt_notifiers);
2379 #endif
2380
2381 /*
2382 * We mark the process as running here, but have not actually
2383 * inserted it onto the runqueue yet. This guarantees that
2384 * nobody will actually run it, and a signal or other external
2385 * event cannot wake it up and insert it on the runqueue either.
2386 */
2387 p->state = TASK_RUNNING;
2388 }
2389
2390 /*
2391 * fork()/clone()-time setup:
2392 */
2393 void sched_fork(struct task_struct *p, int clone_flags)
2394 {
2395 int cpu = get_cpu();
2396
2397 __sched_fork(p);
2398
2399 #ifdef CONFIG_SMP
2400 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2401 #endif
2402 set_task_cpu(p, cpu);
2403
2404 /*
2405 * Make sure we do not leak PI boosting priority to the child:
2406 */
2407 p->prio = current->normal_prio;
2408 if (!rt_prio(p->prio))
2409 p->sched_class = &fair_sched_class;
2410
2411 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2412 if (likely(sched_info_on()))
2413 memset(&p->sched_info, 0, sizeof(p->sched_info));
2414 #endif
2415 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2416 p->oncpu = 0;
2417 #endif
2418 #ifdef CONFIG_PREEMPT
2419 /* Want to start with kernel preemption disabled. */
2420 task_thread_info(p)->preempt_count = 1;
2421 #endif
2422 put_cpu();
2423 }
2424
2425 /*
2426 * wake_up_new_task - wake up a newly created task for the first time.
2427 *
2428 * This function will do some initial scheduler statistics housekeeping
2429 * that must be done for every newly created context, then puts the task
2430 * on the runqueue and wakes it.
2431 */
2432 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2433 {
2434 unsigned long flags;
2435 struct rq *rq;
2436
2437 rq = task_rq_lock(p, &flags);
2438 BUG_ON(p->state != TASK_RUNNING);
2439 update_rq_clock(rq);
2440
2441 p->prio = effective_prio(p);
2442
2443 if (!p->sched_class->task_new || !current->se.on_rq) {
2444 activate_task(rq, p, 0);
2445 } else {
2446 /*
2447 * Let the scheduling class do new task startup
2448 * management (if any):
2449 */
2450 p->sched_class->task_new(rq, p);
2451 inc_nr_running(rq);
2452 }
2453 check_preempt_curr(rq, p);
2454 #ifdef CONFIG_SMP
2455 if (p->sched_class->task_wake_up)
2456 p->sched_class->task_wake_up(rq, p);
2457 #endif
2458 task_rq_unlock(rq, &flags);
2459 }
2460
2461 #ifdef CONFIG_PREEMPT_NOTIFIERS
2462
2463 /**
2464 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2465 * @notifier: notifier struct to register
2466 */
2467 void preempt_notifier_register(struct preempt_notifier *notifier)
2468 {
2469 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2472
2473 /**
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
2475 * @notifier: notifier struct to unregister
2476 *
2477 * This is safe to call from within a preemption notifier.
2478 */
2479 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2480 {
2481 hlist_del(&notifier->link);
2482 }
2483 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2484
2485 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 {
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2489
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2492 }
2493
2494 static void
2495 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2497 {
2498 struct preempt_notifier *notifier;
2499 struct hlist_node *node;
2500
2501 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_out(notifier, next);
2503 }
2504
2505 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2506
2507 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 {
2509 }
2510
2511 static void
2512 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2514 {
2515 }
2516
2517 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2518
2519 /**
2520 * prepare_task_switch - prepare to switch tasks
2521 * @rq: the runqueue preparing to switch
2522 * @prev: the current task that is being switched out
2523 * @next: the task we are going to switch to.
2524 *
2525 * This is called with the rq lock held and interrupts off. It must
2526 * be paired with a subsequent finish_task_switch after the context
2527 * switch.
2528 *
2529 * prepare_task_switch sets up locking and calls architecture specific
2530 * hooks.
2531 */
2532 static inline void
2533 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2534 struct task_struct *next)
2535 {
2536 fire_sched_out_preempt_notifiers(prev, next);
2537 prepare_lock_switch(rq, next);
2538 prepare_arch_switch(next);
2539 }
2540
2541 /**
2542 * finish_task_switch - clean up after a task-switch
2543 * @rq: runqueue associated with task-switch
2544 * @prev: the thread we just switched away from.
2545 *
2546 * finish_task_switch must be called after the context switch, paired
2547 * with a prepare_task_switch call before the context switch.
2548 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2549 * and do any other architecture-specific cleanup actions.
2550 *
2551 * Note that we may have delayed dropping an mm in context_switch(). If
2552 * so, we finish that here outside of the runqueue lock. (Doing it
2553 * with the lock held can cause deadlocks; see schedule() for
2554 * details.)
2555 */
2556 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2557 __releases(rq->lock)
2558 {
2559 struct mm_struct *mm = rq->prev_mm;
2560 long prev_state;
2561
2562 rq->prev_mm = NULL;
2563
2564 /*
2565 * A task struct has one reference for the use as "current".
2566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2567 * schedule one last time. The schedule call will never return, and
2568 * the scheduled task must drop that reference.
2569 * The test for TASK_DEAD must occur while the runqueue locks are
2570 * still held, otherwise prev could be scheduled on another cpu, die
2571 * there before we look at prev->state, and then the reference would
2572 * be dropped twice.
2573 * Manfred Spraul <manfred@colorfullife.com>
2574 */
2575 prev_state = prev->state;
2576 finish_arch_switch(prev);
2577 finish_lock_switch(rq, prev);
2578 #ifdef CONFIG_SMP
2579 if (current->sched_class->post_schedule)
2580 current->sched_class->post_schedule(rq);
2581 #endif
2582
2583 fire_sched_in_preempt_notifiers(current);
2584 if (mm)
2585 mmdrop(mm);
2586 if (unlikely(prev_state == TASK_DEAD)) {
2587 /*
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
2590 */
2591 kprobe_flush_task(prev);
2592 put_task_struct(prev);
2593 }
2594 }
2595
2596 /**
2597 * schedule_tail - first thing a freshly forked thread must call.
2598 * @prev: the thread we just switched away from.
2599 */
2600 asmlinkage void schedule_tail(struct task_struct *prev)
2601 __releases(rq->lock)
2602 {
2603 struct rq *rq = this_rq();
2604
2605 finish_task_switch(rq, prev);
2606 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2607 /* In this case, finish_task_switch does not reenable preemption */
2608 preempt_enable();
2609 #endif
2610 if (current->set_child_tid)
2611 put_user(task_pid_vnr(current), current->set_child_tid);
2612 }
2613
2614 /*
2615 * context_switch - switch to the new MM and the new
2616 * thread's register state.
2617 */
2618 static inline void
2619 context_switch(struct rq *rq, struct task_struct *prev,
2620 struct task_struct *next)
2621 {
2622 struct mm_struct *mm, *oldmm;
2623
2624 prepare_task_switch(rq, prev, next);
2625 mm = next->mm;
2626 oldmm = prev->active_mm;
2627 /*
2628 * For paravirt, this is coupled with an exit in switch_to to
2629 * combine the page table reload and the switch backend into
2630 * one hypercall.
2631 */
2632 arch_enter_lazy_cpu_mode();
2633
2634 if (unlikely(!mm)) {
2635 next->active_mm = oldmm;
2636 atomic_inc(&oldmm->mm_count);
2637 enter_lazy_tlb(oldmm, next);
2638 } else
2639 switch_mm(oldmm, mm, next);
2640
2641 if (unlikely(!prev->mm)) {
2642 prev->active_mm = NULL;
2643 rq->prev_mm = oldmm;
2644 }
2645 /*
2646 * Since the runqueue lock will be released by the next
2647 * task (which is an invalid locking op but in the case
2648 * of the scheduler it's an obvious special-case), so we
2649 * do an early lockdep release here:
2650 */
2651 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653 #endif
2654
2655 /* Here we just switch the register state and the stack. */
2656 switch_to(prev, next, prev);
2657
2658 barrier();
2659 /*
2660 * this_rq must be evaluated again because prev may have moved
2661 * CPUs since it called schedule(), thus the 'rq' on its stack
2662 * frame will be invalid.
2663 */
2664 finish_task_switch(this_rq(), prev);
2665 }
2666
2667 /*
2668 * nr_running, nr_uninterruptible and nr_context_switches:
2669 *
2670 * externally visible scheduler statistics: current number of runnable
2671 * threads, current number of uninterruptible-sleeping threads, total
2672 * number of context switches performed since bootup.
2673 */
2674 unsigned long nr_running(void)
2675 {
2676 unsigned long i, sum = 0;
2677
2678 for_each_online_cpu(i)
2679 sum += cpu_rq(i)->nr_running;
2680
2681 return sum;
2682 }
2683
2684 unsigned long nr_uninterruptible(void)
2685 {
2686 unsigned long i, sum = 0;
2687
2688 for_each_possible_cpu(i)
2689 sum += cpu_rq(i)->nr_uninterruptible;
2690
2691 /*
2692 * Since we read the counters lockless, it might be slightly
2693 * inaccurate. Do not allow it to go below zero though:
2694 */
2695 if (unlikely((long)sum < 0))
2696 sum = 0;
2697
2698 return sum;
2699 }
2700
2701 unsigned long long nr_context_switches(void)
2702 {
2703 int i;
2704 unsigned long long sum = 0;
2705
2706 for_each_possible_cpu(i)
2707 sum += cpu_rq(i)->nr_switches;
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_iowait(void)
2713 {
2714 unsigned long i, sum = 0;
2715
2716 for_each_possible_cpu(i)
2717 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2718
2719 return sum;
2720 }
2721
2722 unsigned long nr_active(void)
2723 {
2724 unsigned long i, running = 0, uninterruptible = 0;
2725
2726 for_each_online_cpu(i) {
2727 running += cpu_rq(i)->nr_running;
2728 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2729 }
2730
2731 if (unlikely((long)uninterruptible < 0))
2732 uninterruptible = 0;
2733
2734 return running + uninterruptible;
2735 }
2736
2737 /*
2738 * Update rq->cpu_load[] statistics. This function is usually called every
2739 * scheduler tick (TICK_NSEC).
2740 */
2741 static void update_cpu_load(struct rq *this_rq)
2742 {
2743 unsigned long this_load = this_rq->load.weight;
2744 int i, scale;
2745
2746 this_rq->nr_load_updates++;
2747
2748 /* Update our load: */
2749 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2750 unsigned long old_load, new_load;
2751
2752 /* scale is effectively 1 << i now, and >> i divides by scale */
2753
2754 old_load = this_rq->cpu_load[i];
2755 new_load = this_load;
2756 /*
2757 * Round up the averaging division if load is increasing. This
2758 * prevents us from getting stuck on 9 if the load is 10, for
2759 * example.
2760 */
2761 if (new_load > old_load)
2762 new_load += scale-1;
2763 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2764 }
2765 }
2766
2767 #ifdef CONFIG_SMP
2768
2769 /*
2770 * double_rq_lock - safely lock two runqueues
2771 *
2772 * Note this does not disable interrupts like task_rq_lock,
2773 * you need to do so manually before calling.
2774 */
2775 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2776 __acquires(rq1->lock)
2777 __acquires(rq2->lock)
2778 {
2779 BUG_ON(!irqs_disabled());
2780 if (rq1 == rq2) {
2781 spin_lock(&rq1->lock);
2782 __acquire(rq2->lock); /* Fake it out ;) */
2783 } else {
2784 if (rq1 < rq2) {
2785 spin_lock(&rq1->lock);
2786 spin_lock(&rq2->lock);
2787 } else {
2788 spin_lock(&rq2->lock);
2789 spin_lock(&rq1->lock);
2790 }
2791 }
2792 update_rq_clock(rq1);
2793 update_rq_clock(rq2);
2794 }
2795
2796 /*
2797 * double_rq_unlock - safely unlock two runqueues
2798 *
2799 * Note this does not restore interrupts like task_rq_unlock,
2800 * you need to do so manually after calling.
2801 */
2802 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2803 __releases(rq1->lock)
2804 __releases(rq2->lock)
2805 {
2806 spin_unlock(&rq1->lock);
2807 if (rq1 != rq2)
2808 spin_unlock(&rq2->lock);
2809 else
2810 __release(rq2->lock);
2811 }
2812
2813 /*
2814 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2815 */
2816 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2817 __releases(this_rq->lock)
2818 __acquires(busiest->lock)
2819 __acquires(this_rq->lock)
2820 {
2821 int ret = 0;
2822
2823 if (unlikely(!irqs_disabled())) {
2824 /* printk() doesn't work good under rq->lock */
2825 spin_unlock(&this_rq->lock);
2826 BUG_ON(1);
2827 }
2828 if (unlikely(!spin_trylock(&busiest->lock))) {
2829 if (busiest < this_rq) {
2830 spin_unlock(&this_rq->lock);
2831 spin_lock(&busiest->lock);
2832 spin_lock(&this_rq->lock);
2833 ret = 1;
2834 } else
2835 spin_lock(&busiest->lock);
2836 }
2837 return ret;
2838 }
2839
2840 /*
2841 * If dest_cpu is allowed for this process, migrate the task to it.
2842 * This is accomplished by forcing the cpu_allowed mask to only
2843 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2844 * the cpu_allowed mask is restored.
2845 */
2846 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2847 {
2848 struct migration_req req;
2849 unsigned long flags;
2850 struct rq *rq;
2851
2852 rq = task_rq_lock(p, &flags);
2853 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2854 || unlikely(cpu_is_offline(dest_cpu)))
2855 goto out;
2856
2857 /* force the process onto the specified CPU */
2858 if (migrate_task(p, dest_cpu, &req)) {
2859 /* Need to wait for migration thread (might exit: take ref). */
2860 struct task_struct *mt = rq->migration_thread;
2861
2862 get_task_struct(mt);
2863 task_rq_unlock(rq, &flags);
2864 wake_up_process(mt);
2865 put_task_struct(mt);
2866 wait_for_completion(&req.done);
2867
2868 return;
2869 }
2870 out:
2871 task_rq_unlock(rq, &flags);
2872 }
2873
2874 /*
2875 * sched_exec - execve() is a valuable balancing opportunity, because at
2876 * this point the task has the smallest effective memory and cache footprint.
2877 */
2878 void sched_exec(void)
2879 {
2880 int new_cpu, this_cpu = get_cpu();
2881 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2882 put_cpu();
2883 if (new_cpu != this_cpu)
2884 sched_migrate_task(current, new_cpu);
2885 }
2886
2887 /*
2888 * pull_task - move a task from a remote runqueue to the local runqueue.
2889 * Both runqueues must be locked.
2890 */
2891 static void pull_task(struct rq *src_rq, struct task_struct *p,
2892 struct rq *this_rq, int this_cpu)
2893 {
2894 deactivate_task(src_rq, p, 0);
2895 set_task_cpu(p, this_cpu);
2896 activate_task(this_rq, p, 0);
2897 /*
2898 * Note that idle threads have a prio of MAX_PRIO, for this test
2899 * to be always true for them.
2900 */
2901 check_preempt_curr(this_rq, p);
2902 }
2903
2904 /*
2905 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2906 */
2907 static
2908 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2909 struct sched_domain *sd, enum cpu_idle_type idle,
2910 int *all_pinned)
2911 {
2912 /*
2913 * We do not migrate tasks that are:
2914 * 1) running (obviously), or
2915 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2916 * 3) are cache-hot on their current CPU.
2917 */
2918 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2919 schedstat_inc(p, se.nr_failed_migrations_affine);
2920 return 0;
2921 }
2922 *all_pinned = 0;
2923
2924 if (task_running(rq, p)) {
2925 schedstat_inc(p, se.nr_failed_migrations_running);
2926 return 0;
2927 }
2928
2929 /*
2930 * Aggressive migration if:
2931 * 1) task is cache cold, or
2932 * 2) too many balance attempts have failed.
2933 */
2934
2935 if (!task_hot(p, rq->clock, sd) ||
2936 sd->nr_balance_failed > sd->cache_nice_tries) {
2937 #ifdef CONFIG_SCHEDSTATS
2938 if (task_hot(p, rq->clock, sd)) {
2939 schedstat_inc(sd, lb_hot_gained[idle]);
2940 schedstat_inc(p, se.nr_forced_migrations);
2941 }
2942 #endif
2943 return 1;
2944 }
2945
2946 if (task_hot(p, rq->clock, sd)) {
2947 schedstat_inc(p, se.nr_failed_migrations_hot);
2948 return 0;
2949 }
2950 return 1;
2951 }
2952
2953 static unsigned long
2954 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2955 unsigned long max_load_move, struct sched_domain *sd,
2956 enum cpu_idle_type idle, int *all_pinned,
2957 int *this_best_prio, struct rq_iterator *iterator)
2958 {
2959 int loops = 0, pulled = 0, pinned = 0;
2960 struct task_struct *p;
2961 long rem_load_move = max_load_move;
2962
2963 if (max_load_move == 0)
2964 goto out;
2965
2966 pinned = 1;
2967
2968 /*
2969 * Start the load-balancing iterator:
2970 */
2971 p = iterator->start(iterator->arg);
2972 next:
2973 if (!p || loops++ > sysctl_sched_nr_migrate)
2974 goto out;
2975
2976 if ((p->se.load.weight >> 1) > rem_load_move ||
2977 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2978 p = iterator->next(iterator->arg);
2979 goto next;
2980 }
2981
2982 pull_task(busiest, p, this_rq, this_cpu);
2983 pulled++;
2984 rem_load_move -= p->se.load.weight;
2985
2986 /*
2987 * We only want to steal up to the prescribed amount of weighted load.
2988 */
2989 if (rem_load_move > 0) {
2990 if (p->prio < *this_best_prio)
2991 *this_best_prio = p->prio;
2992 p = iterator->next(iterator->arg);
2993 goto next;
2994 }
2995 out:
2996 /*
2997 * Right now, this is one of only two places pull_task() is called,
2998 * so we can safely collect pull_task() stats here rather than
2999 * inside pull_task().
3000 */
3001 schedstat_add(sd, lb_gained[idle], pulled);
3002
3003 if (all_pinned)
3004 *all_pinned = pinned;
3005
3006 return max_load_move - rem_load_move;
3007 }
3008
3009 /*
3010 * move_tasks tries to move up to max_load_move weighted load from busiest to
3011 * this_rq, as part of a balancing operation within domain "sd".
3012 * Returns 1 if successful and 0 otherwise.
3013 *
3014 * Called with both runqueues locked.
3015 */
3016 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3017 unsigned long max_load_move,
3018 struct sched_domain *sd, enum cpu_idle_type idle,
3019 int *all_pinned)
3020 {
3021 const struct sched_class *class = sched_class_highest;
3022 unsigned long total_load_moved = 0;
3023 int this_best_prio = this_rq->curr->prio;
3024
3025 do {
3026 total_load_moved +=
3027 class->load_balance(this_rq, this_cpu, busiest,
3028 max_load_move - total_load_moved,
3029 sd, idle, all_pinned, &this_best_prio);
3030 class = class->next;
3031
3032 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3033 break;
3034
3035 } while (class && max_load_move > total_load_moved);
3036
3037 return total_load_moved > 0;
3038 }
3039
3040 static int
3041 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3042 struct sched_domain *sd, enum cpu_idle_type idle,
3043 struct rq_iterator *iterator)
3044 {
3045 struct task_struct *p = iterator->start(iterator->arg);
3046 int pinned = 0;
3047
3048 while (p) {
3049 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3050 pull_task(busiest, p, this_rq, this_cpu);
3051 /*
3052 * Right now, this is only the second place pull_task()
3053 * is called, so we can safely collect pull_task()
3054 * stats here rather than inside pull_task().
3055 */
3056 schedstat_inc(sd, lb_gained[idle]);
3057
3058 return 1;
3059 }
3060 p = iterator->next(iterator->arg);
3061 }
3062
3063 return 0;
3064 }
3065
3066 /*
3067 * move_one_task tries to move exactly one task from busiest to this_rq, as
3068 * part of active balancing operations within "domain".
3069 * Returns 1 if successful and 0 otherwise.
3070 *
3071 * Called with both runqueues locked.
3072 */
3073 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3074 struct sched_domain *sd, enum cpu_idle_type idle)
3075 {
3076 const struct sched_class *class;
3077
3078 for (class = sched_class_highest; class; class = class->next)
3079 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3080 return 1;
3081
3082 return 0;
3083 }
3084
3085 /*
3086 * find_busiest_group finds and returns the busiest CPU group within the
3087 * domain. It calculates and returns the amount of weighted load which
3088 * should be moved to restore balance via the imbalance parameter.
3089 */
3090 static struct sched_group *
3091 find_busiest_group(struct sched_domain *sd, int this_cpu,
3092 unsigned long *imbalance, enum cpu_idle_type idle,
3093 int *sd_idle, const cpumask_t *cpus, int *balance)
3094 {
3095 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3096 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3097 unsigned long max_pull;
3098 unsigned long busiest_load_per_task, busiest_nr_running;
3099 unsigned long this_load_per_task, this_nr_running;
3100 int load_idx, group_imb = 0;
3101 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3102 int power_savings_balance = 1;
3103 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3104 unsigned long min_nr_running = ULONG_MAX;
3105 struct sched_group *group_min = NULL, *group_leader = NULL;
3106 #endif
3107
3108 max_load = this_load = total_load = total_pwr = 0;
3109 busiest_load_per_task = busiest_nr_running = 0;
3110 this_load_per_task = this_nr_running = 0;
3111
3112 if (idle == CPU_NOT_IDLE)
3113 load_idx = sd->busy_idx;
3114 else if (idle == CPU_NEWLY_IDLE)
3115 load_idx = sd->newidle_idx;
3116 else
3117 load_idx = sd->idle_idx;
3118
3119 do {
3120 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3121 int local_group;
3122 int i;
3123 int __group_imb = 0;
3124 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3125 unsigned long sum_nr_running, sum_weighted_load;
3126 unsigned long sum_avg_load_per_task;
3127 unsigned long avg_load_per_task;
3128
3129 local_group = cpu_isset(this_cpu, group->cpumask);
3130
3131 if (local_group)
3132 balance_cpu = first_cpu(group->cpumask);
3133
3134 /* Tally up the load of all CPUs in the group */
3135 sum_weighted_load = sum_nr_running = avg_load = 0;
3136 sum_avg_load_per_task = avg_load_per_task = 0;
3137
3138 max_cpu_load = 0;
3139 min_cpu_load = ~0UL;
3140
3141 for_each_cpu_mask(i, group->cpumask) {
3142 struct rq *rq;
3143
3144 if (!cpu_isset(i, *cpus))
3145 continue;
3146
3147 rq = cpu_rq(i);
3148
3149 if (*sd_idle && rq->nr_running)
3150 *sd_idle = 0;
3151
3152 /* Bias balancing toward cpus of our domain */
3153 if (local_group) {
3154 if (idle_cpu(i) && !first_idle_cpu) {
3155 first_idle_cpu = 1;
3156 balance_cpu = i;
3157 }
3158
3159 load = target_load(i, load_idx);
3160 } else {
3161 load = source_load(i, load_idx);
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3166 }
3167
3168 avg_load += load;
3169 sum_nr_running += rq->nr_running;
3170 sum_weighted_load += weighted_cpuload(i);
3171
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3173 }
3174
3175 /*
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
3180 */
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
3183 *balance = 0;
3184 goto ret;
3185 }
3186
3187 total_load += avg_load;
3188 total_pwr += group->__cpu_power;
3189
3190 /* Adjust by relative CPU power of the group */
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
3193
3194
3195 /*
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3198 *
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3203 */
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3206
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3208 __group_imb = 1;
3209
3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3211
3212 if (local_group) {
3213 this_load = avg_load;
3214 this = group;
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
3218 (sum_nr_running > group_capacity || __group_imb)) {
3219 max_load = avg_load;
3220 busiest = group;
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
3223 group_imb = __group_imb;
3224 }
3225
3226 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3227 /*
3228 * Busy processors will not participate in power savings
3229 * balance.
3230 */
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3233 goto group_next;
3234
3235 /*
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3238 */
3239 if (local_group && (this_nr_running >= group_capacity ||
3240 !this_nr_running))
3241 power_savings_balance = 0;
3242
3243 /*
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
3246 */
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
3248 || !sum_nr_running)
3249 goto group_next;
3250
3251 /*
3252 * Calculate the group which has the least non-idle load.
3253 * This is the group from where we need to pick up the load
3254 * for saving power
3255 */
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
3258 first_cpu(group->cpumask) <
3259 first_cpu(group_min->cpumask))) {
3260 group_min = group;
3261 min_nr_running = sum_nr_running;
3262 min_load_per_task = sum_weighted_load /
3263 sum_nr_running;
3264 }
3265
3266 /*
3267 * Calculate the group which is almost near its
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3270 */
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
3274 first_cpu(group->cpumask) >
3275 first_cpu(group_leader->cpumask))) {
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3278 }
3279 }
3280 group_next:
3281 #endif
3282 group = group->next;
3283 } while (group != sd->groups);
3284
3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3286 goto out_balanced;
3287
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3289
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3292 goto out_balanced;
3293
3294 busiest_load_per_task /= busiest_nr_running;
3295 if (group_imb)
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3297
3298 /*
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
3306 * by pulling tasks to us. Be careful of negative numbers as they'll
3307 * appear as very large values with unsigned longs.
3308 */
3309 if (max_load <= busiest_load_per_task)
3310 goto out_balanced;
3311
3312 /*
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3316 */
3317 if (max_load < avg_load) {
3318 *imbalance = 0;
3319 goto small_imbalance;
3320 }
3321
3322 /* Don't want to pull so many tasks that a group would go idle */
3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3324
3325 /* How much load to actually move to equalise the imbalance */
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
3328 / SCHED_LOAD_SCALE;
3329
3330 /*
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3334 * moved
3335 */
3336 if (*imbalance < busiest_load_per_task) {
3337 unsigned long tmp, pwr_now, pwr_move;
3338 unsigned int imbn;
3339
3340 small_imbalance:
3341 pwr_move = pwr_now = 0;
3342 imbn = 2;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3346 imbn = 1;
3347 } else
3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3349
3350 if (max_load - this_load + 2*busiest_load_per_task >=
3351 busiest_load_per_task * imbn) {
3352 *imbalance = busiest_load_per_task;
3353 return busiest;
3354 }
3355
3356 /*
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3359 * moving them.
3360 */
3361
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
3366 pwr_now /= SCHED_LOAD_SCALE;
3367
3368 /* Amount of load we'd subtract */
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
3371 if (max_load > tmp)
3372 pwr_move += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load - tmp);
3374
3375 /* Amount of load we'd add */
3376 if (max_load * busiest->__cpu_power <
3377 busiest_load_per_task * SCHED_LOAD_SCALE)
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
3380 else
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
3385 pwr_move /= SCHED_LOAD_SCALE;
3386
3387 /* Move if we gain throughput */
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
3390 }
3391
3392 return busiest;
3393
3394 out_balanced:
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3397 goto ret;
3398
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
3401 return group_min;
3402 }
3403 #endif
3404 ret:
3405 *imbalance = 0;
3406 return NULL;
3407 }
3408
3409 /*
3410 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3411 */
3412 static struct rq *
3413 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3414 unsigned long imbalance, const cpumask_t *cpus)
3415 {
3416 struct rq *busiest = NULL, *rq;
3417 unsigned long max_load = 0;
3418 int i;
3419
3420 for_each_cpu_mask(i, group->cpumask) {
3421 unsigned long wl;
3422
3423 if (!cpu_isset(i, *cpus))
3424 continue;
3425
3426 rq = cpu_rq(i);
3427 wl = weighted_cpuload(i);
3428
3429 if (rq->nr_running == 1 && wl > imbalance)
3430 continue;
3431
3432 if (wl > max_load) {
3433 max_load = wl;
3434 busiest = rq;
3435 }
3436 }
3437
3438 return busiest;
3439 }
3440
3441 /*
3442 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3443 * so long as it is large enough.
3444 */
3445 #define MAX_PINNED_INTERVAL 512
3446
3447 /*
3448 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3449 * tasks if there is an imbalance.
3450 */
3451 static int load_balance(int this_cpu, struct rq *this_rq,
3452 struct sched_domain *sd, enum cpu_idle_type idle,
3453 int *balance, cpumask_t *cpus)
3454 {
3455 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3456 struct sched_group *group;
3457 unsigned long imbalance;
3458 struct rq *busiest;
3459 unsigned long flags;
3460
3461 cpus_setall(*cpus);
3462
3463 /*
3464 * When power savings policy is enabled for the parent domain, idle
3465 * sibling can pick up load irrespective of busy siblings. In this case,
3466 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3467 * portraying it as CPU_NOT_IDLE.
3468 */
3469 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3470 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3471 sd_idle = 1;
3472
3473 schedstat_inc(sd, lb_count[idle]);
3474
3475 redo:
3476 update_shares(sd);
3477 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3478 cpus, balance);
3479
3480 if (*balance == 0)
3481 goto out_balanced;
3482
3483 if (!group) {
3484 schedstat_inc(sd, lb_nobusyg[idle]);
3485 goto out_balanced;
3486 }
3487
3488 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3489 if (!busiest) {
3490 schedstat_inc(sd, lb_nobusyq[idle]);
3491 goto out_balanced;
3492 }
3493
3494 BUG_ON(busiest == this_rq);
3495
3496 schedstat_add(sd, lb_imbalance[idle], imbalance);
3497
3498 ld_moved = 0;
3499 if (busiest->nr_running > 1) {
3500 /*
3501 * Attempt to move tasks. If find_busiest_group has found
3502 * an imbalance but busiest->nr_running <= 1, the group is
3503 * still unbalanced. ld_moved simply stays zero, so it is
3504 * correctly treated as an imbalance.
3505 */
3506 local_irq_save(flags);
3507 double_rq_lock(this_rq, busiest);
3508 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3509 imbalance, sd, idle, &all_pinned);
3510 double_rq_unlock(this_rq, busiest);
3511 local_irq_restore(flags);
3512
3513 /*
3514 * some other cpu did the load balance for us.
3515 */
3516 if (ld_moved && this_cpu != smp_processor_id())
3517 resched_cpu(this_cpu);
3518
3519 /* All tasks on this runqueue were pinned by CPU affinity */
3520 if (unlikely(all_pinned)) {
3521 cpu_clear(cpu_of(busiest), *cpus);
3522 if (!cpus_empty(*cpus))
3523 goto redo;
3524 goto out_balanced;
3525 }
3526 }
3527
3528 if (!ld_moved) {
3529 schedstat_inc(sd, lb_failed[idle]);
3530 sd->nr_balance_failed++;
3531
3532 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3533
3534 spin_lock_irqsave(&busiest->lock, flags);
3535
3536 /* don't kick the migration_thread, if the curr
3537 * task on busiest cpu can't be moved to this_cpu
3538 */
3539 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3540 spin_unlock_irqrestore(&busiest->lock, flags);
3541 all_pinned = 1;
3542 goto out_one_pinned;
3543 }
3544
3545 if (!busiest->active_balance) {
3546 busiest->active_balance = 1;
3547 busiest->push_cpu = this_cpu;
3548 active_balance = 1;
3549 }
3550 spin_unlock_irqrestore(&busiest->lock, flags);
3551 if (active_balance)
3552 wake_up_process(busiest->migration_thread);
3553
3554 /*
3555 * We've kicked active balancing, reset the failure
3556 * counter.
3557 */
3558 sd->nr_balance_failed = sd->cache_nice_tries+1;
3559 }
3560 } else
3561 sd->nr_balance_failed = 0;
3562
3563 if (likely(!active_balance)) {
3564 /* We were unbalanced, so reset the balancing interval */
3565 sd->balance_interval = sd->min_interval;
3566 } else {
3567 /*
3568 * If we've begun active balancing, start to back off. This
3569 * case may not be covered by the all_pinned logic if there
3570 * is only 1 task on the busy runqueue (because we don't call
3571 * move_tasks).
3572 */
3573 if (sd->balance_interval < sd->max_interval)
3574 sd->balance_interval *= 2;
3575 }
3576
3577 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3578 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3579 ld_moved = -1;
3580
3581 goto out;
3582
3583 out_balanced:
3584 schedstat_inc(sd, lb_balanced[idle]);
3585
3586 sd->nr_balance_failed = 0;
3587
3588 out_one_pinned:
3589 /* tune up the balancing interval */
3590 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3591 (sd->balance_interval < sd->max_interval))
3592 sd->balance_interval *= 2;
3593
3594 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3595 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3596 ld_moved = -1;
3597 else
3598 ld_moved = 0;
3599 out:
3600 if (ld_moved)
3601 update_shares(sd);
3602 return ld_moved;
3603 }
3604
3605 /*
3606 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3607 * tasks if there is an imbalance.
3608 *
3609 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3610 * this_rq is locked.
3611 */
3612 static int
3613 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3614 cpumask_t *cpus)
3615 {
3616 struct sched_group *group;
3617 struct rq *busiest = NULL;
3618 unsigned long imbalance;
3619 int ld_moved = 0;
3620 int sd_idle = 0;
3621 int all_pinned = 0;
3622
3623 cpus_setall(*cpus);
3624
3625 /*
3626 * When power savings policy is enabled for the parent domain, idle
3627 * sibling can pick up load irrespective of busy siblings. In this case,
3628 * let the state of idle sibling percolate up as IDLE, instead of
3629 * portraying it as CPU_NOT_IDLE.
3630 */
3631 if (sd->flags & SD_SHARE_CPUPOWER &&
3632 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3633 sd_idle = 1;
3634
3635 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3636 redo:
3637 update_shares_locked(this_rq, sd);
3638 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3639 &sd_idle, cpus, NULL);
3640 if (!group) {
3641 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3642 goto out_balanced;
3643 }
3644
3645 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3646 if (!busiest) {
3647 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3648 goto out_balanced;
3649 }
3650
3651 BUG_ON(busiest == this_rq);
3652
3653 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3654
3655 ld_moved = 0;
3656 if (busiest->nr_running > 1) {
3657 /* Attempt to move tasks */
3658 double_lock_balance(this_rq, busiest);
3659 /* this_rq->clock is already updated */
3660 update_rq_clock(busiest);
3661 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3662 imbalance, sd, CPU_NEWLY_IDLE,
3663 &all_pinned);
3664 spin_unlock(&busiest->lock);
3665
3666 if (unlikely(all_pinned)) {
3667 cpu_clear(cpu_of(busiest), *cpus);
3668 if (!cpus_empty(*cpus))
3669 goto redo;
3670 }
3671 }
3672
3673 if (!ld_moved) {
3674 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3675 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3676 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3677 return -1;
3678 } else
3679 sd->nr_balance_failed = 0;
3680
3681 update_shares_locked(this_rq, sd);
3682 return ld_moved;
3683
3684 out_balanced:
3685 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3686 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3688 return -1;
3689 sd->nr_balance_failed = 0;
3690
3691 return 0;
3692 }
3693
3694 /*
3695 * idle_balance is called by schedule() if this_cpu is about to become
3696 * idle. Attempts to pull tasks from other CPUs.
3697 */
3698 static void idle_balance(int this_cpu, struct rq *this_rq)
3699 {
3700 struct sched_domain *sd;
3701 int pulled_task = -1;
3702 unsigned long next_balance = jiffies + HZ;
3703 cpumask_t tmpmask;
3704
3705 for_each_domain(this_cpu, sd) {
3706 unsigned long interval;
3707
3708 if (!(sd->flags & SD_LOAD_BALANCE))
3709 continue;
3710
3711 if (sd->flags & SD_BALANCE_NEWIDLE)
3712 /* If we've pulled tasks over stop searching: */
3713 pulled_task = load_balance_newidle(this_cpu, this_rq,
3714 sd, &tmpmask);
3715
3716 interval = msecs_to_jiffies(sd->balance_interval);
3717 if (time_after(next_balance, sd->last_balance + interval))
3718 next_balance = sd->last_balance + interval;
3719 if (pulled_task)
3720 break;
3721 }
3722 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3723 /*
3724 * We are going idle. next_balance may be set based on
3725 * a busy processor. So reset next_balance.
3726 */
3727 this_rq->next_balance = next_balance;
3728 }
3729 }
3730
3731 /*
3732 * active_load_balance is run by migration threads. It pushes running tasks
3733 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3734 * running on each physical CPU where possible, and avoids physical /
3735 * logical imbalances.
3736 *
3737 * Called with busiest_rq locked.
3738 */
3739 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3740 {
3741 int target_cpu = busiest_rq->push_cpu;
3742 struct sched_domain *sd;
3743 struct rq *target_rq;
3744
3745 /* Is there any task to move? */
3746 if (busiest_rq->nr_running <= 1)
3747 return;
3748
3749 target_rq = cpu_rq(target_cpu);
3750
3751 /*
3752 * This condition is "impossible", if it occurs
3753 * we need to fix it. Originally reported by
3754 * Bjorn Helgaas on a 128-cpu setup.
3755 */
3756 BUG_ON(busiest_rq == target_rq);
3757
3758 /* move a task from busiest_rq to target_rq */
3759 double_lock_balance(busiest_rq, target_rq);
3760 update_rq_clock(busiest_rq);
3761 update_rq_clock(target_rq);
3762
3763 /* Search for an sd spanning us and the target CPU. */
3764 for_each_domain(target_cpu, sd) {
3765 if ((sd->flags & SD_LOAD_BALANCE) &&
3766 cpu_isset(busiest_cpu, sd->span))
3767 break;
3768 }
3769
3770 if (likely(sd)) {
3771 schedstat_inc(sd, alb_count);
3772
3773 if (move_one_task(target_rq, target_cpu, busiest_rq,
3774 sd, CPU_IDLE))
3775 schedstat_inc(sd, alb_pushed);
3776 else
3777 schedstat_inc(sd, alb_failed);
3778 }
3779 spin_unlock(&target_rq->lock);
3780 }
3781
3782 #ifdef CONFIG_NO_HZ
3783 static struct {
3784 atomic_t load_balancer;
3785 cpumask_t cpu_mask;
3786 } nohz ____cacheline_aligned = {
3787 .load_balancer = ATOMIC_INIT(-1),
3788 .cpu_mask = CPU_MASK_NONE,
3789 };
3790
3791 /*
3792 * This routine will try to nominate the ilb (idle load balancing)
3793 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3794 * load balancing on behalf of all those cpus. If all the cpus in the system
3795 * go into this tickless mode, then there will be no ilb owner (as there is
3796 * no need for one) and all the cpus will sleep till the next wakeup event
3797 * arrives...
3798 *
3799 * For the ilb owner, tick is not stopped. And this tick will be used
3800 * for idle load balancing. ilb owner will still be part of
3801 * nohz.cpu_mask..
3802 *
3803 * While stopping the tick, this cpu will become the ilb owner if there
3804 * is no other owner. And will be the owner till that cpu becomes busy
3805 * or if all cpus in the system stop their ticks at which point
3806 * there is no need for ilb owner.
3807 *
3808 * When the ilb owner becomes busy, it nominates another owner, during the
3809 * next busy scheduler_tick()
3810 */
3811 int select_nohz_load_balancer(int stop_tick)
3812 {
3813 int cpu = smp_processor_id();
3814
3815 if (stop_tick) {
3816 cpu_set(cpu, nohz.cpu_mask);
3817 cpu_rq(cpu)->in_nohz_recently = 1;
3818
3819 /*
3820 * If we are going offline and still the leader, give up!
3821 */
3822 if (cpu_is_offline(cpu) &&
3823 atomic_read(&nohz.load_balancer) == cpu) {
3824 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3825 BUG();
3826 return 0;
3827 }
3828
3829 /* time for ilb owner also to sleep */
3830 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3831 if (atomic_read(&nohz.load_balancer) == cpu)
3832 atomic_set(&nohz.load_balancer, -1);
3833 return 0;
3834 }
3835
3836 if (atomic_read(&nohz.load_balancer) == -1) {
3837 /* make me the ilb owner */
3838 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3839 return 1;
3840 } else if (atomic_read(&nohz.load_balancer) == cpu)
3841 return 1;
3842 } else {
3843 if (!cpu_isset(cpu, nohz.cpu_mask))
3844 return 0;
3845
3846 cpu_clear(cpu, nohz.cpu_mask);
3847
3848 if (atomic_read(&nohz.load_balancer) == cpu)
3849 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3850 BUG();
3851 }
3852 return 0;
3853 }
3854 #endif
3855
3856 static DEFINE_SPINLOCK(balancing);
3857
3858 /*
3859 * It checks each scheduling domain to see if it is due to be balanced,
3860 * and initiates a balancing operation if so.
3861 *
3862 * Balancing parameters are set up in arch_init_sched_domains.
3863 */
3864 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3865 {
3866 int balance = 1;
3867 struct rq *rq = cpu_rq(cpu);
3868 unsigned long interval;
3869 struct sched_domain *sd;
3870 /* Earliest time when we have to do rebalance again */
3871 unsigned long next_balance = jiffies + 60*HZ;
3872 int update_next_balance = 0;
3873 int need_serialize;
3874 cpumask_t tmp;
3875
3876 for_each_domain(cpu, sd) {
3877 if (!(sd->flags & SD_LOAD_BALANCE))
3878 continue;
3879
3880 interval = sd->balance_interval;
3881 if (idle != CPU_IDLE)
3882 interval *= sd->busy_factor;
3883
3884 /* scale ms to jiffies */
3885 interval = msecs_to_jiffies(interval);
3886 if (unlikely(!interval))
3887 interval = 1;
3888 if (interval > HZ*NR_CPUS/10)
3889 interval = HZ*NR_CPUS/10;
3890
3891 need_serialize = sd->flags & SD_SERIALIZE;
3892
3893 if (need_serialize) {
3894 if (!spin_trylock(&balancing))
3895 goto out;
3896 }
3897
3898 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3899 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3900 /*
3901 * We've pulled tasks over so either we're no
3902 * longer idle, or one of our SMT siblings is
3903 * not idle.
3904 */
3905 idle = CPU_NOT_IDLE;
3906 }
3907 sd->last_balance = jiffies;
3908 }
3909 if (need_serialize)
3910 spin_unlock(&balancing);
3911 out:
3912 if (time_after(next_balance, sd->last_balance + interval)) {
3913 next_balance = sd->last_balance + interval;
3914 update_next_balance = 1;
3915 }
3916
3917 /*
3918 * Stop the load balance at this level. There is another
3919 * CPU in our sched group which is doing load balancing more
3920 * actively.
3921 */
3922 if (!balance)
3923 break;
3924 }
3925
3926 /*
3927 * next_balance will be updated only when there is a need.
3928 * When the cpu is attached to null domain for ex, it will not be
3929 * updated.
3930 */
3931 if (likely(update_next_balance))
3932 rq->next_balance = next_balance;
3933 }
3934
3935 /*
3936 * run_rebalance_domains is triggered when needed from the scheduler tick.
3937 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3938 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3939 */
3940 static void run_rebalance_domains(struct softirq_action *h)
3941 {
3942 int this_cpu = smp_processor_id();
3943 struct rq *this_rq = cpu_rq(this_cpu);
3944 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3945 CPU_IDLE : CPU_NOT_IDLE;
3946
3947 rebalance_domains(this_cpu, idle);
3948
3949 #ifdef CONFIG_NO_HZ
3950 /*
3951 * If this cpu is the owner for idle load balancing, then do the
3952 * balancing on behalf of the other idle cpus whose ticks are
3953 * stopped.
3954 */
3955 if (this_rq->idle_at_tick &&
3956 atomic_read(&nohz.load_balancer) == this_cpu) {
3957 cpumask_t cpus = nohz.cpu_mask;
3958 struct rq *rq;
3959 int balance_cpu;
3960
3961 cpu_clear(this_cpu, cpus);
3962 for_each_cpu_mask(balance_cpu, cpus) {
3963 /*
3964 * If this cpu gets work to do, stop the load balancing
3965 * work being done for other cpus. Next load
3966 * balancing owner will pick it up.
3967 */
3968 if (need_resched())
3969 break;
3970
3971 rebalance_domains(balance_cpu, CPU_IDLE);
3972
3973 rq = cpu_rq(balance_cpu);
3974 if (time_after(this_rq->next_balance, rq->next_balance))
3975 this_rq->next_balance = rq->next_balance;
3976 }
3977 }
3978 #endif
3979 }
3980
3981 /*
3982 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3983 *
3984 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3985 * idle load balancing owner or decide to stop the periodic load balancing,
3986 * if the whole system is idle.
3987 */
3988 static inline void trigger_load_balance(struct rq *rq, int cpu)
3989 {
3990 #ifdef CONFIG_NO_HZ
3991 /*
3992 * If we were in the nohz mode recently and busy at the current
3993 * scheduler tick, then check if we need to nominate new idle
3994 * load balancer.
3995 */
3996 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3997 rq->in_nohz_recently = 0;
3998
3999 if (atomic_read(&nohz.load_balancer) == cpu) {
4000 cpu_clear(cpu, nohz.cpu_mask);
4001 atomic_set(&nohz.load_balancer, -1);
4002 }
4003
4004 if (atomic_read(&nohz.load_balancer) == -1) {
4005 /*
4006 * simple selection for now: Nominate the
4007 * first cpu in the nohz list to be the next
4008 * ilb owner.
4009 *
4010 * TBD: Traverse the sched domains and nominate
4011 * the nearest cpu in the nohz.cpu_mask.
4012 */
4013 int ilb = first_cpu(nohz.cpu_mask);
4014
4015 if (ilb < nr_cpu_ids)
4016 resched_cpu(ilb);
4017 }
4018 }
4019
4020 /*
4021 * If this cpu is idle and doing idle load balancing for all the
4022 * cpus with ticks stopped, is it time for that to stop?
4023 */
4024 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4025 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4026 resched_cpu(cpu);
4027 return;
4028 }
4029
4030 /*
4031 * If this cpu is idle and the idle load balancing is done by
4032 * someone else, then no need raise the SCHED_SOFTIRQ
4033 */
4034 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4035 cpu_isset(cpu, nohz.cpu_mask))
4036 return;
4037 #endif
4038 if (time_after_eq(jiffies, rq->next_balance))
4039 raise_softirq(SCHED_SOFTIRQ);
4040 }
4041
4042 #else /* CONFIG_SMP */
4043
4044 /*
4045 * on UP we do not need to balance between CPUs:
4046 */
4047 static inline void idle_balance(int cpu, struct rq *rq)
4048 {
4049 }
4050
4051 #endif
4052
4053 DEFINE_PER_CPU(struct kernel_stat, kstat);
4054
4055 EXPORT_PER_CPU_SYMBOL(kstat);
4056
4057 /*
4058 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4059 * that have not yet been banked in case the task is currently running.
4060 */
4061 unsigned long long task_sched_runtime(struct task_struct *p)
4062 {
4063 unsigned long flags;
4064 u64 ns, delta_exec;
4065 struct rq *rq;
4066
4067 rq = task_rq_lock(p, &flags);
4068 ns = p->se.sum_exec_runtime;
4069 if (task_current(rq, p)) {
4070 update_rq_clock(rq);
4071 delta_exec = rq->clock - p->se.exec_start;
4072 if ((s64)delta_exec > 0)
4073 ns += delta_exec;
4074 }
4075 task_rq_unlock(rq, &flags);
4076
4077 return ns;
4078 }
4079
4080 /*
4081 * Account user cpu time to a process.
4082 * @p: the process that the cpu time gets accounted to
4083 * @cputime: the cpu time spent in user space since the last update
4084 */
4085 void account_user_time(struct task_struct *p, cputime_t cputime)
4086 {
4087 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4088 cputime64_t tmp;
4089
4090 p->utime = cputime_add(p->utime, cputime);
4091
4092 /* Add user time to cpustat. */
4093 tmp = cputime_to_cputime64(cputime);
4094 if (TASK_NICE(p) > 0)
4095 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4096 else
4097 cpustat->user = cputime64_add(cpustat->user, tmp);
4098 }
4099
4100 /*
4101 * Account guest cpu time to a process.
4102 * @p: the process that the cpu time gets accounted to
4103 * @cputime: the cpu time spent in virtual machine since the last update
4104 */
4105 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4106 {
4107 cputime64_t tmp;
4108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4109
4110 tmp = cputime_to_cputime64(cputime);
4111
4112 p->utime = cputime_add(p->utime, cputime);
4113 p->gtime = cputime_add(p->gtime, cputime);
4114
4115 cpustat->user = cputime64_add(cpustat->user, tmp);
4116 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4117 }
4118
4119 /*
4120 * Account scaled user cpu time to a process.
4121 * @p: the process that the cpu time gets accounted to
4122 * @cputime: the cpu time spent in user space since the last update
4123 */
4124 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4125 {
4126 p->utimescaled = cputime_add(p->utimescaled, cputime);
4127 }
4128
4129 /*
4130 * Account system cpu time to a process.
4131 * @p: the process that the cpu time gets accounted to
4132 * @hardirq_offset: the offset to subtract from hardirq_count()
4133 * @cputime: the cpu time spent in kernel space since the last update
4134 */
4135 void account_system_time(struct task_struct *p, int hardirq_offset,
4136 cputime_t cputime)
4137 {
4138 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4139 struct rq *rq = this_rq();
4140 cputime64_t tmp;
4141
4142 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4143 account_guest_time(p, cputime);
4144 return;
4145 }
4146
4147 p->stime = cputime_add(p->stime, cputime);
4148
4149 /* Add system time to cpustat. */
4150 tmp = cputime_to_cputime64(cputime);
4151 if (hardirq_count() - hardirq_offset)
4152 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4153 else if (softirq_count())
4154 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4155 else if (p != rq->idle)
4156 cpustat->system = cputime64_add(cpustat->system, tmp);
4157 else if (atomic_read(&rq->nr_iowait) > 0)
4158 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4159 else
4160 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4161 /* Account for system time used */
4162 acct_update_integrals(p);
4163 }
4164
4165 /*
4166 * Account scaled system cpu time to a process.
4167 * @p: the process that the cpu time gets accounted to
4168 * @hardirq_offset: the offset to subtract from hardirq_count()
4169 * @cputime: the cpu time spent in kernel space since the last update
4170 */
4171 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4172 {
4173 p->stimescaled = cputime_add(p->stimescaled, cputime);
4174 }
4175
4176 /*
4177 * Account for involuntary wait time.
4178 * @p: the process from which the cpu time has been stolen
4179 * @steal: the cpu time spent in involuntary wait
4180 */
4181 void account_steal_time(struct task_struct *p, cputime_t steal)
4182 {
4183 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4184 cputime64_t tmp = cputime_to_cputime64(steal);
4185 struct rq *rq = this_rq();
4186
4187 if (p == rq->idle) {
4188 p->stime = cputime_add(p->stime, steal);
4189 if (atomic_read(&rq->nr_iowait) > 0)
4190 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4191 else
4192 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4193 } else
4194 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4195 }
4196
4197 /*
4198 * This function gets called by the timer code, with HZ frequency.
4199 * We call it with interrupts disabled.
4200 *
4201 * It also gets called by the fork code, when changing the parent's
4202 * timeslices.
4203 */
4204 void scheduler_tick(void)
4205 {
4206 int cpu = smp_processor_id();
4207 struct rq *rq = cpu_rq(cpu);
4208 struct task_struct *curr = rq->curr;
4209
4210 sched_clock_tick();
4211
4212 spin_lock(&rq->lock);
4213 update_rq_clock(rq);
4214 update_cpu_load(rq);
4215 curr->sched_class->task_tick(rq, curr, 0);
4216 spin_unlock(&rq->lock);
4217
4218 #ifdef CONFIG_SMP
4219 rq->idle_at_tick = idle_cpu(cpu);
4220 trigger_load_balance(rq, cpu);
4221 #endif
4222 }
4223
4224 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4225
4226 void __kprobes add_preempt_count(int val)
4227 {
4228 /*
4229 * Underflow?
4230 */
4231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4232 return;
4233 preempt_count() += val;
4234 /*
4235 * Spinlock count overflowing soon?
4236 */
4237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4238 PREEMPT_MASK - 10);
4239 }
4240 EXPORT_SYMBOL(add_preempt_count);
4241
4242 void __kprobes sub_preempt_count(int val)
4243 {
4244 /*
4245 * Underflow?
4246 */
4247 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4248 return;
4249 /*
4250 * Is the spinlock portion underflowing?
4251 */
4252 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4253 !(preempt_count() & PREEMPT_MASK)))
4254 return;
4255
4256 preempt_count() -= val;
4257 }
4258 EXPORT_SYMBOL(sub_preempt_count);
4259
4260 #endif
4261
4262 /*
4263 * Print scheduling while atomic bug:
4264 */
4265 static noinline void __schedule_bug(struct task_struct *prev)
4266 {
4267 struct pt_regs *regs = get_irq_regs();
4268
4269 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4270 prev->comm, prev->pid, preempt_count());
4271
4272 debug_show_held_locks(prev);
4273 print_modules();
4274 if (irqs_disabled())
4275 print_irqtrace_events(prev);
4276
4277 if (regs)
4278 show_regs(regs);
4279 else
4280 dump_stack();
4281 }
4282
4283 /*
4284 * Various schedule()-time debugging checks and statistics:
4285 */
4286 static inline void schedule_debug(struct task_struct *prev)
4287 {
4288 /*
4289 * Test if we are atomic. Since do_exit() needs to call into
4290 * schedule() atomically, we ignore that path for now.
4291 * Otherwise, whine if we are scheduling when we should not be.
4292 */
4293 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4294 __schedule_bug(prev);
4295
4296 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4297
4298 schedstat_inc(this_rq(), sched_count);
4299 #ifdef CONFIG_SCHEDSTATS
4300 if (unlikely(prev->lock_depth >= 0)) {
4301 schedstat_inc(this_rq(), bkl_count);
4302 schedstat_inc(prev, sched_info.bkl_count);
4303 }
4304 #endif
4305 }
4306
4307 /*
4308 * Pick up the highest-prio task:
4309 */
4310 static inline struct task_struct *
4311 pick_next_task(struct rq *rq, struct task_struct *prev)
4312 {
4313 const struct sched_class *class;
4314 struct task_struct *p;
4315
4316 /*
4317 * Optimization: we know that if all tasks are in
4318 * the fair class we can call that function directly:
4319 */
4320 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4321 p = fair_sched_class.pick_next_task(rq);
4322 if (likely(p))
4323 return p;
4324 }
4325
4326 class = sched_class_highest;
4327 for ( ; ; ) {
4328 p = class->pick_next_task(rq);
4329 if (p)
4330 return p;
4331 /*
4332 * Will never be NULL as the idle class always
4333 * returns a non-NULL p:
4334 */
4335 class = class->next;
4336 }
4337 }
4338
4339 /*
4340 * schedule() is the main scheduler function.
4341 */
4342 asmlinkage void __sched schedule(void)
4343 {
4344 struct task_struct *prev, *next;
4345 unsigned long *switch_count;
4346 struct rq *rq;
4347 int cpu, hrtick = sched_feat(HRTICK);
4348
4349 need_resched:
4350 preempt_disable();
4351 cpu = smp_processor_id();
4352 rq = cpu_rq(cpu);
4353 rcu_qsctr_inc(cpu);
4354 prev = rq->curr;
4355 switch_count = &prev->nivcsw;
4356
4357 release_kernel_lock(prev);
4358 need_resched_nonpreemptible:
4359
4360 schedule_debug(prev);
4361
4362 if (hrtick)
4363 hrtick_clear(rq);
4364
4365 /*
4366 * Do the rq-clock update outside the rq lock:
4367 */
4368 local_irq_disable();
4369 update_rq_clock(rq);
4370 spin_lock(&rq->lock);
4371 clear_tsk_need_resched(prev);
4372
4373 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4374 if (unlikely(signal_pending_state(prev->state, prev)))
4375 prev->state = TASK_RUNNING;
4376 else
4377 deactivate_task(rq, prev, 1);
4378 switch_count = &prev->nvcsw;
4379 }
4380
4381 #ifdef CONFIG_SMP
4382 if (prev->sched_class->pre_schedule)
4383 prev->sched_class->pre_schedule(rq, prev);
4384 #endif
4385
4386 if (unlikely(!rq->nr_running))
4387 idle_balance(cpu, rq);
4388
4389 prev->sched_class->put_prev_task(rq, prev);
4390 next = pick_next_task(rq, prev);
4391
4392 if (likely(prev != next)) {
4393 sched_info_switch(prev, next);
4394
4395 rq->nr_switches++;
4396 rq->curr = next;
4397 ++*switch_count;
4398
4399 context_switch(rq, prev, next); /* unlocks the rq */
4400 /*
4401 * the context switch might have flipped the stack from under
4402 * us, hence refresh the local variables.
4403 */
4404 cpu = smp_processor_id();
4405 rq = cpu_rq(cpu);
4406 } else
4407 spin_unlock_irq(&rq->lock);
4408
4409 if (hrtick)
4410 hrtick_set(rq);
4411
4412 if (unlikely(reacquire_kernel_lock(current) < 0))
4413 goto need_resched_nonpreemptible;
4414
4415 preempt_enable_no_resched();
4416 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4417 goto need_resched;
4418 }
4419 EXPORT_SYMBOL(schedule);
4420
4421 #ifdef CONFIG_PREEMPT
4422 /*
4423 * this is the entry point to schedule() from in-kernel preemption
4424 * off of preempt_enable. Kernel preemptions off return from interrupt
4425 * occur there and call schedule directly.
4426 */
4427 asmlinkage void __sched preempt_schedule(void)
4428 {
4429 struct thread_info *ti = current_thread_info();
4430
4431 /*
4432 * If there is a non-zero preempt_count or interrupts are disabled,
4433 * we do not want to preempt the current task. Just return..
4434 */
4435 if (likely(ti->preempt_count || irqs_disabled()))
4436 return;
4437
4438 do {
4439 add_preempt_count(PREEMPT_ACTIVE);
4440 schedule();
4441 sub_preempt_count(PREEMPT_ACTIVE);
4442
4443 /*
4444 * Check again in case we missed a preemption opportunity
4445 * between schedule and now.
4446 */
4447 barrier();
4448 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4449 }
4450 EXPORT_SYMBOL(preempt_schedule);
4451
4452 /*
4453 * this is the entry point to schedule() from kernel preemption
4454 * off of irq context.
4455 * Note, that this is called and return with irqs disabled. This will
4456 * protect us against recursive calling from irq.
4457 */
4458 asmlinkage void __sched preempt_schedule_irq(void)
4459 {
4460 struct thread_info *ti = current_thread_info();
4461
4462 /* Catch callers which need to be fixed */
4463 BUG_ON(ti->preempt_count || !irqs_disabled());
4464
4465 do {
4466 add_preempt_count(PREEMPT_ACTIVE);
4467 local_irq_enable();
4468 schedule();
4469 local_irq_disable();
4470 sub_preempt_count(PREEMPT_ACTIVE);
4471
4472 /*
4473 * Check again in case we missed a preemption opportunity
4474 * between schedule and now.
4475 */
4476 barrier();
4477 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4478 }
4479
4480 #endif /* CONFIG_PREEMPT */
4481
4482 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4483 void *key)
4484 {
4485 return try_to_wake_up(curr->private, mode, sync);
4486 }
4487 EXPORT_SYMBOL(default_wake_function);
4488
4489 /*
4490 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4491 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4492 * number) then we wake all the non-exclusive tasks and one exclusive task.
4493 *
4494 * There are circumstances in which we can try to wake a task which has already
4495 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4496 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4497 */
4498 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4499 int nr_exclusive, int sync, void *key)
4500 {
4501 wait_queue_t *curr, *next;
4502
4503 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4504 unsigned flags = curr->flags;
4505
4506 if (curr->func(curr, mode, sync, key) &&
4507 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4508 break;
4509 }
4510 }
4511
4512 /**
4513 * __wake_up - wake up threads blocked on a waitqueue.
4514 * @q: the waitqueue
4515 * @mode: which threads
4516 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4517 * @key: is directly passed to the wakeup function
4518 */
4519 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4520 int nr_exclusive, void *key)
4521 {
4522 unsigned long flags;
4523
4524 spin_lock_irqsave(&q->lock, flags);
4525 __wake_up_common(q, mode, nr_exclusive, 0, key);
4526 spin_unlock_irqrestore(&q->lock, flags);
4527 }
4528 EXPORT_SYMBOL(__wake_up);
4529
4530 /*
4531 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4532 */
4533 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4534 {
4535 __wake_up_common(q, mode, 1, 0, NULL);
4536 }
4537
4538 /**
4539 * __wake_up_sync - wake up threads blocked on a waitqueue.
4540 * @q: the waitqueue
4541 * @mode: which threads
4542 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4543 *
4544 * The sync wakeup differs that the waker knows that it will schedule
4545 * away soon, so while the target thread will be woken up, it will not
4546 * be migrated to another CPU - ie. the two threads are 'synchronized'
4547 * with each other. This can prevent needless bouncing between CPUs.
4548 *
4549 * On UP it can prevent extra preemption.
4550 */
4551 void
4552 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4553 {
4554 unsigned long flags;
4555 int sync = 1;
4556
4557 if (unlikely(!q))
4558 return;
4559
4560 if (unlikely(!nr_exclusive))
4561 sync = 0;
4562
4563 spin_lock_irqsave(&q->lock, flags);
4564 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4565 spin_unlock_irqrestore(&q->lock, flags);
4566 }
4567 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4568
4569 void complete(struct completion *x)
4570 {
4571 unsigned long flags;
4572
4573 spin_lock_irqsave(&x->wait.lock, flags);
4574 x->done++;
4575 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4576 spin_unlock_irqrestore(&x->wait.lock, flags);
4577 }
4578 EXPORT_SYMBOL(complete);
4579
4580 void complete_all(struct completion *x)
4581 {
4582 unsigned long flags;
4583
4584 spin_lock_irqsave(&x->wait.lock, flags);
4585 x->done += UINT_MAX/2;
4586 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4587 spin_unlock_irqrestore(&x->wait.lock, flags);
4588 }
4589 EXPORT_SYMBOL(complete_all);
4590
4591 static inline long __sched
4592 do_wait_for_common(struct completion *x, long timeout, int state)
4593 {
4594 if (!x->done) {
4595 DECLARE_WAITQUEUE(wait, current);
4596
4597 wait.flags |= WQ_FLAG_EXCLUSIVE;
4598 __add_wait_queue_tail(&x->wait, &wait);
4599 do {
4600 if ((state == TASK_INTERRUPTIBLE &&
4601 signal_pending(current)) ||
4602 (state == TASK_KILLABLE &&
4603 fatal_signal_pending(current))) {
4604 timeout = -ERESTARTSYS;
4605 break;
4606 }
4607 __set_current_state(state);
4608 spin_unlock_irq(&x->wait.lock);
4609 timeout = schedule_timeout(timeout);
4610 spin_lock_irq(&x->wait.lock);
4611 } while (!x->done && timeout);
4612 __remove_wait_queue(&x->wait, &wait);
4613 if (!x->done)
4614 return timeout;
4615 }
4616 x->done--;
4617 return timeout ?: 1;
4618 }
4619
4620 static long __sched
4621 wait_for_common(struct completion *x, long timeout, int state)
4622 {
4623 might_sleep();
4624
4625 spin_lock_irq(&x->wait.lock);
4626 timeout = do_wait_for_common(x, timeout, state);
4627 spin_unlock_irq(&x->wait.lock);
4628 return timeout;
4629 }
4630
4631 void __sched wait_for_completion(struct completion *x)
4632 {
4633 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4634 }
4635 EXPORT_SYMBOL(wait_for_completion);
4636
4637 unsigned long __sched
4638 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4639 {
4640 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4641 }
4642 EXPORT_SYMBOL(wait_for_completion_timeout);
4643
4644 int __sched wait_for_completion_interruptible(struct completion *x)
4645 {
4646 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4647 if (t == -ERESTARTSYS)
4648 return t;
4649 return 0;
4650 }
4651 EXPORT_SYMBOL(wait_for_completion_interruptible);
4652
4653 unsigned long __sched
4654 wait_for_completion_interruptible_timeout(struct completion *x,
4655 unsigned long timeout)
4656 {
4657 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4658 }
4659 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4660
4661 int __sched wait_for_completion_killable(struct completion *x)
4662 {
4663 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4664 if (t == -ERESTARTSYS)
4665 return t;
4666 return 0;
4667 }
4668 EXPORT_SYMBOL(wait_for_completion_killable);
4669
4670 static long __sched
4671 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4672 {
4673 unsigned long flags;
4674 wait_queue_t wait;
4675
4676 init_waitqueue_entry(&wait, current);
4677
4678 __set_current_state(state);
4679
4680 spin_lock_irqsave(&q->lock, flags);
4681 __add_wait_queue(q, &wait);
4682 spin_unlock(&q->lock);
4683 timeout = schedule_timeout(timeout);
4684 spin_lock_irq(&q->lock);
4685 __remove_wait_queue(q, &wait);
4686 spin_unlock_irqrestore(&q->lock, flags);
4687
4688 return timeout;
4689 }
4690
4691 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4692 {
4693 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4694 }
4695 EXPORT_SYMBOL(interruptible_sleep_on);
4696
4697 long __sched
4698 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4699 {
4700 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4701 }
4702 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4703
4704 void __sched sleep_on(wait_queue_head_t *q)
4705 {
4706 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4707 }
4708 EXPORT_SYMBOL(sleep_on);
4709
4710 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4711 {
4712 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4713 }
4714 EXPORT_SYMBOL(sleep_on_timeout);
4715
4716 #ifdef CONFIG_RT_MUTEXES
4717
4718 /*
4719 * rt_mutex_setprio - set the current priority of a task
4720 * @p: task
4721 * @prio: prio value (kernel-internal form)
4722 *
4723 * This function changes the 'effective' priority of a task. It does
4724 * not touch ->normal_prio like __setscheduler().
4725 *
4726 * Used by the rt_mutex code to implement priority inheritance logic.
4727 */
4728 void rt_mutex_setprio(struct task_struct *p, int prio)
4729 {
4730 unsigned long flags;
4731 int oldprio, on_rq, running;
4732 struct rq *rq;
4733 const struct sched_class *prev_class = p->sched_class;
4734
4735 BUG_ON(prio < 0 || prio > MAX_PRIO);
4736
4737 rq = task_rq_lock(p, &flags);
4738 update_rq_clock(rq);
4739
4740 oldprio = p->prio;
4741 on_rq = p->se.on_rq;
4742 running = task_current(rq, p);
4743 if (on_rq)
4744 dequeue_task(rq, p, 0);
4745 if (running)
4746 p->sched_class->put_prev_task(rq, p);
4747
4748 if (rt_prio(prio))
4749 p->sched_class = &rt_sched_class;
4750 else
4751 p->sched_class = &fair_sched_class;
4752
4753 p->prio = prio;
4754
4755 if (running)
4756 p->sched_class->set_curr_task(rq);
4757 if (on_rq) {
4758 enqueue_task(rq, p, 0);
4759
4760 check_class_changed(rq, p, prev_class, oldprio, running);
4761 }
4762 task_rq_unlock(rq, &flags);
4763 }
4764
4765 #endif
4766
4767 void set_user_nice(struct task_struct *p, long nice)
4768 {
4769 int old_prio, delta, on_rq;
4770 unsigned long flags;
4771 struct rq *rq;
4772
4773 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4774 return;
4775 /*
4776 * We have to be careful, if called from sys_setpriority(),
4777 * the task might be in the middle of scheduling on another CPU.
4778 */
4779 rq = task_rq_lock(p, &flags);
4780 update_rq_clock(rq);
4781 /*
4782 * The RT priorities are set via sched_setscheduler(), but we still
4783 * allow the 'normal' nice value to be set - but as expected
4784 * it wont have any effect on scheduling until the task is
4785 * SCHED_FIFO/SCHED_RR:
4786 */
4787 if (task_has_rt_policy(p)) {
4788 p->static_prio = NICE_TO_PRIO(nice);
4789 goto out_unlock;
4790 }
4791 on_rq = p->se.on_rq;
4792 if (on_rq)
4793 dequeue_task(rq, p, 0);
4794
4795 p->static_prio = NICE_TO_PRIO(nice);
4796 set_load_weight(p);
4797 old_prio = p->prio;
4798 p->prio = effective_prio(p);
4799 delta = p->prio - old_prio;
4800
4801 if (on_rq) {
4802 enqueue_task(rq, p, 0);
4803 /*
4804 * If the task increased its priority or is running and
4805 * lowered its priority, then reschedule its CPU:
4806 */
4807 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4808 resched_task(rq->curr);
4809 }
4810 out_unlock:
4811 task_rq_unlock(rq, &flags);
4812 }
4813 EXPORT_SYMBOL(set_user_nice);
4814
4815 /*
4816 * can_nice - check if a task can reduce its nice value
4817 * @p: task
4818 * @nice: nice value
4819 */
4820 int can_nice(const struct task_struct *p, const int nice)
4821 {
4822 /* convert nice value [19,-20] to rlimit style value [1,40] */
4823 int nice_rlim = 20 - nice;
4824
4825 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4826 capable(CAP_SYS_NICE));
4827 }
4828
4829 #ifdef __ARCH_WANT_SYS_NICE
4830
4831 /*
4832 * sys_nice - change the priority of the current process.
4833 * @increment: priority increment
4834 *
4835 * sys_setpriority is a more generic, but much slower function that
4836 * does similar things.
4837 */
4838 asmlinkage long sys_nice(int increment)
4839 {
4840 long nice, retval;
4841
4842 /*
4843 * Setpriority might change our priority at the same moment.
4844 * We don't have to worry. Conceptually one call occurs first
4845 * and we have a single winner.
4846 */
4847 if (increment < -40)
4848 increment = -40;
4849 if (increment > 40)
4850 increment = 40;
4851
4852 nice = PRIO_TO_NICE(current->static_prio) + increment;
4853 if (nice < -20)
4854 nice = -20;
4855 if (nice > 19)
4856 nice = 19;
4857
4858 if (increment < 0 && !can_nice(current, nice))
4859 return -EPERM;
4860
4861 retval = security_task_setnice(current, nice);
4862 if (retval)
4863 return retval;
4864
4865 set_user_nice(current, nice);
4866 return 0;
4867 }
4868
4869 #endif
4870
4871 /**
4872 * task_prio - return the priority value of a given task.
4873 * @p: the task in question.
4874 *
4875 * This is the priority value as seen by users in /proc.
4876 * RT tasks are offset by -200. Normal tasks are centered
4877 * around 0, value goes from -16 to +15.
4878 */
4879 int task_prio(const struct task_struct *p)
4880 {
4881 return p->prio - MAX_RT_PRIO;
4882 }
4883
4884 /**
4885 * task_nice - return the nice value of a given task.
4886 * @p: the task in question.
4887 */
4888 int task_nice(const struct task_struct *p)
4889 {
4890 return TASK_NICE(p);
4891 }
4892 EXPORT_SYMBOL(task_nice);
4893
4894 /**
4895 * idle_cpu - is a given cpu idle currently?
4896 * @cpu: the processor in question.
4897 */
4898 int idle_cpu(int cpu)
4899 {
4900 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4901 }
4902
4903 /**
4904 * idle_task - return the idle task for a given cpu.
4905 * @cpu: the processor in question.
4906 */
4907 struct task_struct *idle_task(int cpu)
4908 {
4909 return cpu_rq(cpu)->idle;
4910 }
4911
4912 /**
4913 * find_process_by_pid - find a process with a matching PID value.
4914 * @pid: the pid in question.
4915 */
4916 static struct task_struct *find_process_by_pid(pid_t pid)
4917 {
4918 return pid ? find_task_by_vpid(pid) : current;
4919 }
4920
4921 /* Actually do priority change: must hold rq lock. */
4922 static void
4923 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4924 {
4925 BUG_ON(p->se.on_rq);
4926
4927 p->policy = policy;
4928 switch (p->policy) {
4929 case SCHED_NORMAL:
4930 case SCHED_BATCH:
4931 case SCHED_IDLE:
4932 p->sched_class = &fair_sched_class;
4933 break;
4934 case SCHED_FIFO:
4935 case SCHED_RR:
4936 p->sched_class = &rt_sched_class;
4937 break;
4938 }
4939
4940 p->rt_priority = prio;
4941 p->normal_prio = normal_prio(p);
4942 /* we are holding p->pi_lock already */
4943 p->prio = rt_mutex_getprio(p);
4944 set_load_weight(p);
4945 }
4946
4947 /**
4948 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4949 * @p: the task in question.
4950 * @policy: new policy.
4951 * @param: structure containing the new RT priority.
4952 *
4953 * NOTE that the task may be already dead.
4954 */
4955 int sched_setscheduler(struct task_struct *p, int policy,
4956 struct sched_param *param)
4957 {
4958 int retval, oldprio, oldpolicy = -1, on_rq, running;
4959 unsigned long flags;
4960 const struct sched_class *prev_class = p->sched_class;
4961 struct rq *rq;
4962
4963 /* may grab non-irq protected spin_locks */
4964 BUG_ON(in_interrupt());
4965 recheck:
4966 /* double check policy once rq lock held */
4967 if (policy < 0)
4968 policy = oldpolicy = p->policy;
4969 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4970 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4971 policy != SCHED_IDLE)
4972 return -EINVAL;
4973 /*
4974 * Valid priorities for SCHED_FIFO and SCHED_RR are
4975 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4976 * SCHED_BATCH and SCHED_IDLE is 0.
4977 */
4978 if (param->sched_priority < 0 ||
4979 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4980 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4981 return -EINVAL;
4982 if (rt_policy(policy) != (param->sched_priority != 0))
4983 return -EINVAL;
4984
4985 /*
4986 * Allow unprivileged RT tasks to decrease priority:
4987 */
4988 if (!capable(CAP_SYS_NICE)) {
4989 if (rt_policy(policy)) {
4990 unsigned long rlim_rtprio;
4991
4992 if (!lock_task_sighand(p, &flags))
4993 return -ESRCH;
4994 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4995 unlock_task_sighand(p, &flags);
4996
4997 /* can't set/change the rt policy */
4998 if (policy != p->policy && !rlim_rtprio)
4999 return -EPERM;
5000
5001 /* can't increase priority */
5002 if (param->sched_priority > p->rt_priority &&
5003 param->sched_priority > rlim_rtprio)
5004 return -EPERM;
5005 }
5006 /*
5007 * Like positive nice levels, dont allow tasks to
5008 * move out of SCHED_IDLE either:
5009 */
5010 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5011 return -EPERM;
5012
5013 /* can't change other user's priorities */
5014 if ((current->euid != p->euid) &&
5015 (current->euid != p->uid))
5016 return -EPERM;
5017 }
5018
5019 #ifdef CONFIG_RT_GROUP_SCHED
5020 /*
5021 * Do not allow realtime tasks into groups that have no runtime
5022 * assigned.
5023 */
5024 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5025 return -EPERM;
5026 #endif
5027
5028 retval = security_task_setscheduler(p, policy, param);
5029 if (retval)
5030 return retval;
5031 /*
5032 * make sure no PI-waiters arrive (or leave) while we are
5033 * changing the priority of the task:
5034 */
5035 spin_lock_irqsave(&p->pi_lock, flags);
5036 /*
5037 * To be able to change p->policy safely, the apropriate
5038 * runqueue lock must be held.
5039 */
5040 rq = __task_rq_lock(p);
5041 /* recheck policy now with rq lock held */
5042 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 policy = oldpolicy = -1;
5044 __task_rq_unlock(rq);
5045 spin_unlock_irqrestore(&p->pi_lock, flags);
5046 goto recheck;
5047 }
5048 update_rq_clock(rq);
5049 on_rq = p->se.on_rq;
5050 running = task_current(rq, p);
5051 if (on_rq)
5052 deactivate_task(rq, p, 0);
5053 if (running)
5054 p->sched_class->put_prev_task(rq, p);
5055
5056 oldprio = p->prio;
5057 __setscheduler(rq, p, policy, param->sched_priority);
5058
5059 if (running)
5060 p->sched_class->set_curr_task(rq);
5061 if (on_rq) {
5062 activate_task(rq, p, 0);
5063
5064 check_class_changed(rq, p, prev_class, oldprio, running);
5065 }
5066 __task_rq_unlock(rq);
5067 spin_unlock_irqrestore(&p->pi_lock, flags);
5068
5069 rt_mutex_adjust_pi(p);
5070
5071 return 0;
5072 }
5073 EXPORT_SYMBOL_GPL(sched_setscheduler);
5074
5075 static int
5076 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5077 {
5078 struct sched_param lparam;
5079 struct task_struct *p;
5080 int retval;
5081
5082 if (!param || pid < 0)
5083 return -EINVAL;
5084 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5085 return -EFAULT;
5086
5087 rcu_read_lock();
5088 retval = -ESRCH;
5089 p = find_process_by_pid(pid);
5090 if (p != NULL)
5091 retval = sched_setscheduler(p, policy, &lparam);
5092 rcu_read_unlock();
5093
5094 return retval;
5095 }
5096
5097 /**
5098 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5099 * @pid: the pid in question.
5100 * @policy: new policy.
5101 * @param: structure containing the new RT priority.
5102 */
5103 asmlinkage long
5104 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5105 {
5106 /* negative values for policy are not valid */
5107 if (policy < 0)
5108 return -EINVAL;
5109
5110 return do_sched_setscheduler(pid, policy, param);
5111 }
5112
5113 /**
5114 * sys_sched_setparam - set/change the RT priority of a thread
5115 * @pid: the pid in question.
5116 * @param: structure containing the new RT priority.
5117 */
5118 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5119 {
5120 return do_sched_setscheduler(pid, -1, param);
5121 }
5122
5123 /**
5124 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5125 * @pid: the pid in question.
5126 */
5127 asmlinkage long sys_sched_getscheduler(pid_t pid)
5128 {
5129 struct task_struct *p;
5130 int retval;
5131
5132 if (pid < 0)
5133 return -EINVAL;
5134
5135 retval = -ESRCH;
5136 read_lock(&tasklist_lock);
5137 p = find_process_by_pid(pid);
5138 if (p) {
5139 retval = security_task_getscheduler(p);
5140 if (!retval)
5141 retval = p->policy;
5142 }
5143 read_unlock(&tasklist_lock);
5144 return retval;
5145 }
5146
5147 /**
5148 * sys_sched_getscheduler - get the RT priority of a thread
5149 * @pid: the pid in question.
5150 * @param: structure containing the RT priority.
5151 */
5152 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5153 {
5154 struct sched_param lp;
5155 struct task_struct *p;
5156 int retval;
5157
5158 if (!param || pid < 0)
5159 return -EINVAL;
5160
5161 read_lock(&tasklist_lock);
5162 p = find_process_by_pid(pid);
5163 retval = -ESRCH;
5164 if (!p)
5165 goto out_unlock;
5166
5167 retval = security_task_getscheduler(p);
5168 if (retval)
5169 goto out_unlock;
5170
5171 lp.sched_priority = p->rt_priority;
5172 read_unlock(&tasklist_lock);
5173
5174 /*
5175 * This one might sleep, we cannot do it with a spinlock held ...
5176 */
5177 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5178
5179 return retval;
5180
5181 out_unlock:
5182 read_unlock(&tasklist_lock);
5183 return retval;
5184 }
5185
5186 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5187 {
5188 cpumask_t cpus_allowed;
5189 cpumask_t new_mask = *in_mask;
5190 struct task_struct *p;
5191 int retval;
5192
5193 get_online_cpus();
5194 read_lock(&tasklist_lock);
5195
5196 p = find_process_by_pid(pid);
5197 if (!p) {
5198 read_unlock(&tasklist_lock);
5199 put_online_cpus();
5200 return -ESRCH;
5201 }
5202
5203 /*
5204 * It is not safe to call set_cpus_allowed with the
5205 * tasklist_lock held. We will bump the task_struct's
5206 * usage count and then drop tasklist_lock.
5207 */
5208 get_task_struct(p);
5209 read_unlock(&tasklist_lock);
5210
5211 retval = -EPERM;
5212 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5213 !capable(CAP_SYS_NICE))
5214 goto out_unlock;
5215
5216 retval = security_task_setscheduler(p, 0, NULL);
5217 if (retval)
5218 goto out_unlock;
5219
5220 cpuset_cpus_allowed(p, &cpus_allowed);
5221 cpus_and(new_mask, new_mask, cpus_allowed);
5222 again:
5223 retval = set_cpus_allowed_ptr(p, &new_mask);
5224
5225 if (!retval) {
5226 cpuset_cpus_allowed(p, &cpus_allowed);
5227 if (!cpus_subset(new_mask, cpus_allowed)) {
5228 /*
5229 * We must have raced with a concurrent cpuset
5230 * update. Just reset the cpus_allowed to the
5231 * cpuset's cpus_allowed
5232 */
5233 new_mask = cpus_allowed;
5234 goto again;
5235 }
5236 }
5237 out_unlock:
5238 put_task_struct(p);
5239 put_online_cpus();
5240 return retval;
5241 }
5242
5243 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5244 cpumask_t *new_mask)
5245 {
5246 if (len < sizeof(cpumask_t)) {
5247 memset(new_mask, 0, sizeof(cpumask_t));
5248 } else if (len > sizeof(cpumask_t)) {
5249 len = sizeof(cpumask_t);
5250 }
5251 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5252 }
5253
5254 /**
5255 * sys_sched_setaffinity - set the cpu affinity of a process
5256 * @pid: pid of the process
5257 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5258 * @user_mask_ptr: user-space pointer to the new cpu mask
5259 */
5260 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5261 unsigned long __user *user_mask_ptr)
5262 {
5263 cpumask_t new_mask;
5264 int retval;
5265
5266 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5267 if (retval)
5268 return retval;
5269
5270 return sched_setaffinity(pid, &new_mask);
5271 }
5272
5273 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5274 {
5275 struct task_struct *p;
5276 int retval;
5277
5278 get_online_cpus();
5279 read_lock(&tasklist_lock);
5280
5281 retval = -ESRCH;
5282 p = find_process_by_pid(pid);
5283 if (!p)
5284 goto out_unlock;
5285
5286 retval = security_task_getscheduler(p);
5287 if (retval)
5288 goto out_unlock;
5289
5290 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5291
5292 out_unlock:
5293 read_unlock(&tasklist_lock);
5294 put_online_cpus();
5295
5296 return retval;
5297 }
5298
5299 /**
5300 * sys_sched_getaffinity - get the cpu affinity of a process
5301 * @pid: pid of the process
5302 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5303 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5304 */
5305 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5306 unsigned long __user *user_mask_ptr)
5307 {
5308 int ret;
5309 cpumask_t mask;
5310
5311 if (len < sizeof(cpumask_t))
5312 return -EINVAL;
5313
5314 ret = sched_getaffinity(pid, &mask);
5315 if (ret < 0)
5316 return ret;
5317
5318 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5319 return -EFAULT;
5320
5321 return sizeof(cpumask_t);
5322 }
5323
5324 /**
5325 * sys_sched_yield - yield the current processor to other threads.
5326 *
5327 * This function yields the current CPU to other tasks. If there are no
5328 * other threads running on this CPU then this function will return.
5329 */
5330 asmlinkage long sys_sched_yield(void)
5331 {
5332 struct rq *rq = this_rq_lock();
5333
5334 schedstat_inc(rq, yld_count);
5335 current->sched_class->yield_task(rq);
5336
5337 /*
5338 * Since we are going to call schedule() anyway, there's
5339 * no need to preempt or enable interrupts:
5340 */
5341 __release(rq->lock);
5342 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5343 _raw_spin_unlock(&rq->lock);
5344 preempt_enable_no_resched();
5345
5346 schedule();
5347
5348 return 0;
5349 }
5350
5351 static void __cond_resched(void)
5352 {
5353 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5354 __might_sleep(__FILE__, __LINE__);
5355 #endif
5356 /*
5357 * The BKS might be reacquired before we have dropped
5358 * PREEMPT_ACTIVE, which could trigger a second
5359 * cond_resched() call.
5360 */
5361 do {
5362 add_preempt_count(PREEMPT_ACTIVE);
5363 schedule();
5364 sub_preempt_count(PREEMPT_ACTIVE);
5365 } while (need_resched());
5366 }
5367
5368 int __sched _cond_resched(void)
5369 {
5370 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5371 system_state == SYSTEM_RUNNING) {
5372 __cond_resched();
5373 return 1;
5374 }
5375 return 0;
5376 }
5377 EXPORT_SYMBOL(_cond_resched);
5378
5379 /*
5380 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5381 * call schedule, and on return reacquire the lock.
5382 *
5383 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5384 * operations here to prevent schedule() from being called twice (once via
5385 * spin_unlock(), once by hand).
5386 */
5387 int cond_resched_lock(spinlock_t *lock)
5388 {
5389 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5390 int ret = 0;
5391
5392 if (spin_needbreak(lock) || resched) {
5393 spin_unlock(lock);
5394 if (resched && need_resched())
5395 __cond_resched();
5396 else
5397 cpu_relax();
5398 ret = 1;
5399 spin_lock(lock);
5400 }
5401 return ret;
5402 }
5403 EXPORT_SYMBOL(cond_resched_lock);
5404
5405 int __sched cond_resched_softirq(void)
5406 {
5407 BUG_ON(!in_softirq());
5408
5409 if (need_resched() && system_state == SYSTEM_RUNNING) {
5410 local_bh_enable();
5411 __cond_resched();
5412 local_bh_disable();
5413 return 1;
5414 }
5415 return 0;
5416 }
5417 EXPORT_SYMBOL(cond_resched_softirq);
5418
5419 /**
5420 * yield - yield the current processor to other threads.
5421 *
5422 * This is a shortcut for kernel-space yielding - it marks the
5423 * thread runnable and calls sys_sched_yield().
5424 */
5425 void __sched yield(void)
5426 {
5427 set_current_state(TASK_RUNNING);
5428 sys_sched_yield();
5429 }
5430 EXPORT_SYMBOL(yield);
5431
5432 /*
5433 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5434 * that process accounting knows that this is a task in IO wait state.
5435 *
5436 * But don't do that if it is a deliberate, throttling IO wait (this task
5437 * has set its backing_dev_info: the queue against which it should throttle)
5438 */
5439 void __sched io_schedule(void)
5440 {
5441 struct rq *rq = &__raw_get_cpu_var(runqueues);
5442
5443 delayacct_blkio_start();
5444 atomic_inc(&rq->nr_iowait);
5445 schedule();
5446 atomic_dec(&rq->nr_iowait);
5447 delayacct_blkio_end();
5448 }
5449 EXPORT_SYMBOL(io_schedule);
5450
5451 long __sched io_schedule_timeout(long timeout)
5452 {
5453 struct rq *rq = &__raw_get_cpu_var(runqueues);
5454 long ret;
5455
5456 delayacct_blkio_start();
5457 atomic_inc(&rq->nr_iowait);
5458 ret = schedule_timeout(timeout);
5459 atomic_dec(&rq->nr_iowait);
5460 delayacct_blkio_end();
5461 return ret;
5462 }
5463
5464 /**
5465 * sys_sched_get_priority_max - return maximum RT priority.
5466 * @policy: scheduling class.
5467 *
5468 * this syscall returns the maximum rt_priority that can be used
5469 * by a given scheduling class.
5470 */
5471 asmlinkage long sys_sched_get_priority_max(int policy)
5472 {
5473 int ret = -EINVAL;
5474
5475 switch (policy) {
5476 case SCHED_FIFO:
5477 case SCHED_RR:
5478 ret = MAX_USER_RT_PRIO-1;
5479 break;
5480 case SCHED_NORMAL:
5481 case SCHED_BATCH:
5482 case SCHED_IDLE:
5483 ret = 0;
5484 break;
5485 }
5486 return ret;
5487 }
5488
5489 /**
5490 * sys_sched_get_priority_min - return minimum RT priority.
5491 * @policy: scheduling class.
5492 *
5493 * this syscall returns the minimum rt_priority that can be used
5494 * by a given scheduling class.
5495 */
5496 asmlinkage long sys_sched_get_priority_min(int policy)
5497 {
5498 int ret = -EINVAL;
5499
5500 switch (policy) {
5501 case SCHED_FIFO:
5502 case SCHED_RR:
5503 ret = 1;
5504 break;
5505 case SCHED_NORMAL:
5506 case SCHED_BATCH:
5507 case SCHED_IDLE:
5508 ret = 0;
5509 }
5510 return ret;
5511 }
5512
5513 /**
5514 * sys_sched_rr_get_interval - return the default timeslice of a process.
5515 * @pid: pid of the process.
5516 * @interval: userspace pointer to the timeslice value.
5517 *
5518 * this syscall writes the default timeslice value of a given process
5519 * into the user-space timespec buffer. A value of '0' means infinity.
5520 */
5521 asmlinkage
5522 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5523 {
5524 struct task_struct *p;
5525 unsigned int time_slice;
5526 int retval;
5527 struct timespec t;
5528
5529 if (pid < 0)
5530 return -EINVAL;
5531
5532 retval = -ESRCH;
5533 read_lock(&tasklist_lock);
5534 p = find_process_by_pid(pid);
5535 if (!p)
5536 goto out_unlock;
5537
5538 retval = security_task_getscheduler(p);
5539 if (retval)
5540 goto out_unlock;
5541
5542 /*
5543 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5544 * tasks that are on an otherwise idle runqueue:
5545 */
5546 time_slice = 0;
5547 if (p->policy == SCHED_RR) {
5548 time_slice = DEF_TIMESLICE;
5549 } else if (p->policy != SCHED_FIFO) {
5550 struct sched_entity *se = &p->se;
5551 unsigned long flags;
5552 struct rq *rq;
5553
5554 rq = task_rq_lock(p, &flags);
5555 if (rq->cfs.load.weight)
5556 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5557 task_rq_unlock(rq, &flags);
5558 }
5559 read_unlock(&tasklist_lock);
5560 jiffies_to_timespec(time_slice, &t);
5561 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5562 return retval;
5563
5564 out_unlock:
5565 read_unlock(&tasklist_lock);
5566 return retval;
5567 }
5568
5569 static const char stat_nam[] = "RSDTtZX";
5570
5571 void sched_show_task(struct task_struct *p)
5572 {
5573 unsigned long free = 0;
5574 unsigned state;
5575
5576 state = p->state ? __ffs(p->state) + 1 : 0;
5577 printk(KERN_INFO "%-13.13s %c", p->comm,
5578 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5579 #if BITS_PER_LONG == 32
5580 if (state == TASK_RUNNING)
5581 printk(KERN_CONT " running ");
5582 else
5583 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5584 #else
5585 if (state == TASK_RUNNING)
5586 printk(KERN_CONT " running task ");
5587 else
5588 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5589 #endif
5590 #ifdef CONFIG_DEBUG_STACK_USAGE
5591 {
5592 unsigned long *n = end_of_stack(p);
5593 while (!*n)
5594 n++;
5595 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5596 }
5597 #endif
5598 printk(KERN_CONT "%5lu %5d %6d\n", free,
5599 task_pid_nr(p), task_pid_nr(p->real_parent));
5600
5601 show_stack(p, NULL);
5602 }
5603
5604 void show_state_filter(unsigned long state_filter)
5605 {
5606 struct task_struct *g, *p;
5607
5608 #if BITS_PER_LONG == 32
5609 printk(KERN_INFO
5610 " task PC stack pid father\n");
5611 #else
5612 printk(KERN_INFO
5613 " task PC stack pid father\n");
5614 #endif
5615 read_lock(&tasklist_lock);
5616 do_each_thread(g, p) {
5617 /*
5618 * reset the NMI-timeout, listing all files on a slow
5619 * console might take alot of time:
5620 */
5621 touch_nmi_watchdog();
5622 if (!state_filter || (p->state & state_filter))
5623 sched_show_task(p);
5624 } while_each_thread(g, p);
5625
5626 touch_all_softlockup_watchdogs();
5627
5628 #ifdef CONFIG_SCHED_DEBUG
5629 sysrq_sched_debug_show();
5630 #endif
5631 read_unlock(&tasklist_lock);
5632 /*
5633 * Only show locks if all tasks are dumped:
5634 */
5635 if (state_filter == -1)
5636 debug_show_all_locks();
5637 }
5638
5639 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5640 {
5641 idle->sched_class = &idle_sched_class;
5642 }
5643
5644 /**
5645 * init_idle - set up an idle thread for a given CPU
5646 * @idle: task in question
5647 * @cpu: cpu the idle task belongs to
5648 *
5649 * NOTE: this function does not set the idle thread's NEED_RESCHED
5650 * flag, to make booting more robust.
5651 */
5652 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5653 {
5654 struct rq *rq = cpu_rq(cpu);
5655 unsigned long flags;
5656
5657 __sched_fork(idle);
5658 idle->se.exec_start = sched_clock();
5659
5660 idle->prio = idle->normal_prio = MAX_PRIO;
5661 idle->cpus_allowed = cpumask_of_cpu(cpu);
5662 __set_task_cpu(idle, cpu);
5663
5664 spin_lock_irqsave(&rq->lock, flags);
5665 rq->curr = rq->idle = idle;
5666 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5667 idle->oncpu = 1;
5668 #endif
5669 spin_unlock_irqrestore(&rq->lock, flags);
5670
5671 /* Set the preempt count _outside_ the spinlocks! */
5672 #if defined(CONFIG_PREEMPT)
5673 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5674 #else
5675 task_thread_info(idle)->preempt_count = 0;
5676 #endif
5677 /*
5678 * The idle tasks have their own, simple scheduling class:
5679 */
5680 idle->sched_class = &idle_sched_class;
5681 }
5682
5683 /*
5684 * In a system that switches off the HZ timer nohz_cpu_mask
5685 * indicates which cpus entered this state. This is used
5686 * in the rcu update to wait only for active cpus. For system
5687 * which do not switch off the HZ timer nohz_cpu_mask should
5688 * always be CPU_MASK_NONE.
5689 */
5690 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5691
5692 /*
5693 * Increase the granularity value when there are more CPUs,
5694 * because with more CPUs the 'effective latency' as visible
5695 * to users decreases. But the relationship is not linear,
5696 * so pick a second-best guess by going with the log2 of the
5697 * number of CPUs.
5698 *
5699 * This idea comes from the SD scheduler of Con Kolivas:
5700 */
5701 static inline void sched_init_granularity(void)
5702 {
5703 unsigned int factor = 1 + ilog2(num_online_cpus());
5704 const unsigned long limit = 200000000;
5705
5706 sysctl_sched_min_granularity *= factor;
5707 if (sysctl_sched_min_granularity > limit)
5708 sysctl_sched_min_granularity = limit;
5709
5710 sysctl_sched_latency *= factor;
5711 if (sysctl_sched_latency > limit)
5712 sysctl_sched_latency = limit;
5713
5714 sysctl_sched_wakeup_granularity *= factor;
5715 }
5716
5717 #ifdef CONFIG_SMP
5718 /*
5719 * This is how migration works:
5720 *
5721 * 1) we queue a struct migration_req structure in the source CPU's
5722 * runqueue and wake up that CPU's migration thread.
5723 * 2) we down() the locked semaphore => thread blocks.
5724 * 3) migration thread wakes up (implicitly it forces the migrated
5725 * thread off the CPU)
5726 * 4) it gets the migration request and checks whether the migrated
5727 * task is still in the wrong runqueue.
5728 * 5) if it's in the wrong runqueue then the migration thread removes
5729 * it and puts it into the right queue.
5730 * 6) migration thread up()s the semaphore.
5731 * 7) we wake up and the migration is done.
5732 */
5733
5734 /*
5735 * Change a given task's CPU affinity. Migrate the thread to a
5736 * proper CPU and schedule it away if the CPU it's executing on
5737 * is removed from the allowed bitmask.
5738 *
5739 * NOTE: the caller must have a valid reference to the task, the
5740 * task must not exit() & deallocate itself prematurely. The
5741 * call is not atomic; no spinlocks may be held.
5742 */
5743 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5744 {
5745 struct migration_req req;
5746 unsigned long flags;
5747 struct rq *rq;
5748 int ret = 0;
5749
5750 rq = task_rq_lock(p, &flags);
5751 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5752 ret = -EINVAL;
5753 goto out;
5754 }
5755
5756 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5757 !cpus_equal(p->cpus_allowed, *new_mask))) {
5758 ret = -EINVAL;
5759 goto out;
5760 }
5761
5762 if (p->sched_class->set_cpus_allowed)
5763 p->sched_class->set_cpus_allowed(p, new_mask);
5764 else {
5765 p->cpus_allowed = *new_mask;
5766 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5767 }
5768
5769 /* Can the task run on the task's current CPU? If so, we're done */
5770 if (cpu_isset(task_cpu(p), *new_mask))
5771 goto out;
5772
5773 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5774 /* Need help from migration thread: drop lock and wait. */
5775 task_rq_unlock(rq, &flags);
5776 wake_up_process(rq->migration_thread);
5777 wait_for_completion(&req.done);
5778 tlb_migrate_finish(p->mm);
5779 return 0;
5780 }
5781 out:
5782 task_rq_unlock(rq, &flags);
5783
5784 return ret;
5785 }
5786 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5787
5788 /*
5789 * Move (not current) task off this cpu, onto dest cpu. We're doing
5790 * this because either it can't run here any more (set_cpus_allowed()
5791 * away from this CPU, or CPU going down), or because we're
5792 * attempting to rebalance this task on exec (sched_exec).
5793 *
5794 * So we race with normal scheduler movements, but that's OK, as long
5795 * as the task is no longer on this CPU.
5796 *
5797 * Returns non-zero if task was successfully migrated.
5798 */
5799 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5800 {
5801 struct rq *rq_dest, *rq_src;
5802 int ret = 0, on_rq;
5803
5804 if (unlikely(cpu_is_offline(dest_cpu)))
5805 return ret;
5806
5807 rq_src = cpu_rq(src_cpu);
5808 rq_dest = cpu_rq(dest_cpu);
5809
5810 double_rq_lock(rq_src, rq_dest);
5811 /* Already moved. */
5812 if (task_cpu(p) != src_cpu)
5813 goto done;
5814 /* Affinity changed (again). */
5815 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5816 goto fail;
5817
5818 on_rq = p->se.on_rq;
5819 if (on_rq)
5820 deactivate_task(rq_src, p, 0);
5821
5822 set_task_cpu(p, dest_cpu);
5823 if (on_rq) {
5824 activate_task(rq_dest, p, 0);
5825 check_preempt_curr(rq_dest, p);
5826 }
5827 done:
5828 ret = 1;
5829 fail:
5830 double_rq_unlock(rq_src, rq_dest);
5831 return ret;
5832 }
5833
5834 /*
5835 * migration_thread - this is a highprio system thread that performs
5836 * thread migration by bumping thread off CPU then 'pushing' onto
5837 * another runqueue.
5838 */
5839 static int migration_thread(void *data)
5840 {
5841 int cpu = (long)data;
5842 struct rq *rq;
5843
5844 rq = cpu_rq(cpu);
5845 BUG_ON(rq->migration_thread != current);
5846
5847 set_current_state(TASK_INTERRUPTIBLE);
5848 while (!kthread_should_stop()) {
5849 struct migration_req *req;
5850 struct list_head *head;
5851
5852 spin_lock_irq(&rq->lock);
5853
5854 if (cpu_is_offline(cpu)) {
5855 spin_unlock_irq(&rq->lock);
5856 goto wait_to_die;
5857 }
5858
5859 if (rq->active_balance) {
5860 active_load_balance(rq, cpu);
5861 rq->active_balance = 0;
5862 }
5863
5864 head = &rq->migration_queue;
5865
5866 if (list_empty(head)) {
5867 spin_unlock_irq(&rq->lock);
5868 schedule();
5869 set_current_state(TASK_INTERRUPTIBLE);
5870 continue;
5871 }
5872 req = list_entry(head->next, struct migration_req, list);
5873 list_del_init(head->next);
5874
5875 spin_unlock(&rq->lock);
5876 __migrate_task(req->task, cpu, req->dest_cpu);
5877 local_irq_enable();
5878
5879 complete(&req->done);
5880 }
5881 __set_current_state(TASK_RUNNING);
5882 return 0;
5883
5884 wait_to_die:
5885 /* Wait for kthread_stop */
5886 set_current_state(TASK_INTERRUPTIBLE);
5887 while (!kthread_should_stop()) {
5888 schedule();
5889 set_current_state(TASK_INTERRUPTIBLE);
5890 }
5891 __set_current_state(TASK_RUNNING);
5892 return 0;
5893 }
5894
5895 #ifdef CONFIG_HOTPLUG_CPU
5896
5897 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5898 {
5899 int ret;
5900
5901 local_irq_disable();
5902 ret = __migrate_task(p, src_cpu, dest_cpu);
5903 local_irq_enable();
5904 return ret;
5905 }
5906
5907 /*
5908 * Figure out where task on dead CPU should go, use force if necessary.
5909 * NOTE: interrupts should be disabled by the caller
5910 */
5911 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5912 {
5913 unsigned long flags;
5914 cpumask_t mask;
5915 struct rq *rq;
5916 int dest_cpu;
5917
5918 do {
5919 /* On same node? */
5920 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5921 cpus_and(mask, mask, p->cpus_allowed);
5922 dest_cpu = any_online_cpu(mask);
5923
5924 /* On any allowed CPU? */
5925 if (dest_cpu >= nr_cpu_ids)
5926 dest_cpu = any_online_cpu(p->cpus_allowed);
5927
5928 /* No more Mr. Nice Guy. */
5929 if (dest_cpu >= nr_cpu_ids) {
5930 cpumask_t cpus_allowed;
5931
5932 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5933 /*
5934 * Try to stay on the same cpuset, where the
5935 * current cpuset may be a subset of all cpus.
5936 * The cpuset_cpus_allowed_locked() variant of
5937 * cpuset_cpus_allowed() will not block. It must be
5938 * called within calls to cpuset_lock/cpuset_unlock.
5939 */
5940 rq = task_rq_lock(p, &flags);
5941 p->cpus_allowed = cpus_allowed;
5942 dest_cpu = any_online_cpu(p->cpus_allowed);
5943 task_rq_unlock(rq, &flags);
5944
5945 /*
5946 * Don't tell them about moving exiting tasks or
5947 * kernel threads (both mm NULL), since they never
5948 * leave kernel.
5949 */
5950 if (p->mm && printk_ratelimit()) {
5951 printk(KERN_INFO "process %d (%s) no "
5952 "longer affine to cpu%d\n",
5953 task_pid_nr(p), p->comm, dead_cpu);
5954 }
5955 }
5956 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5957 }
5958
5959 /*
5960 * While a dead CPU has no uninterruptible tasks queued at this point,
5961 * it might still have a nonzero ->nr_uninterruptible counter, because
5962 * for performance reasons the counter is not stricly tracking tasks to
5963 * their home CPUs. So we just add the counter to another CPU's counter,
5964 * to keep the global sum constant after CPU-down:
5965 */
5966 static void migrate_nr_uninterruptible(struct rq *rq_src)
5967 {
5968 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5969 unsigned long flags;
5970
5971 local_irq_save(flags);
5972 double_rq_lock(rq_src, rq_dest);
5973 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5974 rq_src->nr_uninterruptible = 0;
5975 double_rq_unlock(rq_src, rq_dest);
5976 local_irq_restore(flags);
5977 }
5978
5979 /* Run through task list and migrate tasks from the dead cpu. */
5980 static void migrate_live_tasks(int src_cpu)
5981 {
5982 struct task_struct *p, *t;
5983
5984 read_lock(&tasklist_lock);
5985
5986 do_each_thread(t, p) {
5987 if (p == current)
5988 continue;
5989
5990 if (task_cpu(p) == src_cpu)
5991 move_task_off_dead_cpu(src_cpu, p);
5992 } while_each_thread(t, p);
5993
5994 read_unlock(&tasklist_lock);
5995 }
5996
5997 /*
5998 * Schedules idle task to be the next runnable task on current CPU.
5999 * It does so by boosting its priority to highest possible.
6000 * Used by CPU offline code.
6001 */
6002 void sched_idle_next(void)
6003 {
6004 int this_cpu = smp_processor_id();
6005 struct rq *rq = cpu_rq(this_cpu);
6006 struct task_struct *p = rq->idle;
6007 unsigned long flags;
6008
6009 /* cpu has to be offline */
6010 BUG_ON(cpu_online(this_cpu));
6011
6012 /*
6013 * Strictly not necessary since rest of the CPUs are stopped by now
6014 * and interrupts disabled on the current cpu.
6015 */
6016 spin_lock_irqsave(&rq->lock, flags);
6017
6018 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6019
6020 update_rq_clock(rq);
6021 activate_task(rq, p, 0);
6022
6023 spin_unlock_irqrestore(&rq->lock, flags);
6024 }
6025
6026 /*
6027 * Ensures that the idle task is using init_mm right before its cpu goes
6028 * offline.
6029 */
6030 void idle_task_exit(void)
6031 {
6032 struct mm_struct *mm = current->active_mm;
6033
6034 BUG_ON(cpu_online(smp_processor_id()));
6035
6036 if (mm != &init_mm)
6037 switch_mm(mm, &init_mm, current);
6038 mmdrop(mm);
6039 }
6040
6041 /* called under rq->lock with disabled interrupts */
6042 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6043 {
6044 struct rq *rq = cpu_rq(dead_cpu);
6045
6046 /* Must be exiting, otherwise would be on tasklist. */
6047 BUG_ON(!p->exit_state);
6048
6049 /* Cannot have done final schedule yet: would have vanished. */
6050 BUG_ON(p->state == TASK_DEAD);
6051
6052 get_task_struct(p);
6053
6054 /*
6055 * Drop lock around migration; if someone else moves it,
6056 * that's OK. No task can be added to this CPU, so iteration is
6057 * fine.
6058 */
6059 spin_unlock_irq(&rq->lock);
6060 move_task_off_dead_cpu(dead_cpu, p);
6061 spin_lock_irq(&rq->lock);
6062
6063 put_task_struct(p);
6064 }
6065
6066 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6067 static void migrate_dead_tasks(unsigned int dead_cpu)
6068 {
6069 struct rq *rq = cpu_rq(dead_cpu);
6070 struct task_struct *next;
6071
6072 for ( ; ; ) {
6073 if (!rq->nr_running)
6074 break;
6075 update_rq_clock(rq);
6076 next = pick_next_task(rq, rq->curr);
6077 if (!next)
6078 break;
6079 next->sched_class->put_prev_task(rq, next);
6080 migrate_dead(dead_cpu, next);
6081
6082 }
6083 }
6084 #endif /* CONFIG_HOTPLUG_CPU */
6085
6086 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6087
6088 static struct ctl_table sd_ctl_dir[] = {
6089 {
6090 .procname = "sched_domain",
6091 .mode = 0555,
6092 },
6093 {0, },
6094 };
6095
6096 static struct ctl_table sd_ctl_root[] = {
6097 {
6098 .ctl_name = CTL_KERN,
6099 .procname = "kernel",
6100 .mode = 0555,
6101 .child = sd_ctl_dir,
6102 },
6103 {0, },
6104 };
6105
6106 static struct ctl_table *sd_alloc_ctl_entry(int n)
6107 {
6108 struct ctl_table *entry =
6109 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6110
6111 return entry;
6112 }
6113
6114 static void sd_free_ctl_entry(struct ctl_table **tablep)
6115 {
6116 struct ctl_table *entry;
6117
6118 /*
6119 * In the intermediate directories, both the child directory and
6120 * procname are dynamically allocated and could fail but the mode
6121 * will always be set. In the lowest directory the names are
6122 * static strings and all have proc handlers.
6123 */
6124 for (entry = *tablep; entry->mode; entry++) {
6125 if (entry->child)
6126 sd_free_ctl_entry(&entry->child);
6127 if (entry->proc_handler == NULL)
6128 kfree(entry->procname);
6129 }
6130
6131 kfree(*tablep);
6132 *tablep = NULL;
6133 }
6134
6135 static void
6136 set_table_entry(struct ctl_table *entry,
6137 const char *procname, void *data, int maxlen,
6138 mode_t mode, proc_handler *proc_handler)
6139 {
6140 entry->procname = procname;
6141 entry->data = data;
6142 entry->maxlen = maxlen;
6143 entry->mode = mode;
6144 entry->proc_handler = proc_handler;
6145 }
6146
6147 static struct ctl_table *
6148 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6149 {
6150 struct ctl_table *table = sd_alloc_ctl_entry(12);
6151
6152 if (table == NULL)
6153 return NULL;
6154
6155 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6156 sizeof(long), 0644, proc_doulongvec_minmax);
6157 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6158 sizeof(long), 0644, proc_doulongvec_minmax);
6159 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6160 sizeof(int), 0644, proc_dointvec_minmax);
6161 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6162 sizeof(int), 0644, proc_dointvec_minmax);
6163 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6164 sizeof(int), 0644, proc_dointvec_minmax);
6165 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6166 sizeof(int), 0644, proc_dointvec_minmax);
6167 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6168 sizeof(int), 0644, proc_dointvec_minmax);
6169 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6170 sizeof(int), 0644, proc_dointvec_minmax);
6171 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6172 sizeof(int), 0644, proc_dointvec_minmax);
6173 set_table_entry(&table[9], "cache_nice_tries",
6174 &sd->cache_nice_tries,
6175 sizeof(int), 0644, proc_dointvec_minmax);
6176 set_table_entry(&table[10], "flags", &sd->flags,
6177 sizeof(int), 0644, proc_dointvec_minmax);
6178 /* &table[11] is terminator */
6179
6180 return table;
6181 }
6182
6183 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6184 {
6185 struct ctl_table *entry, *table;
6186 struct sched_domain *sd;
6187 int domain_num = 0, i;
6188 char buf[32];
6189
6190 for_each_domain(cpu, sd)
6191 domain_num++;
6192 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6193 if (table == NULL)
6194 return NULL;
6195
6196 i = 0;
6197 for_each_domain(cpu, sd) {
6198 snprintf(buf, 32, "domain%d", i);
6199 entry->procname = kstrdup(buf, GFP_KERNEL);
6200 entry->mode = 0555;
6201 entry->child = sd_alloc_ctl_domain_table(sd);
6202 entry++;
6203 i++;
6204 }
6205 return table;
6206 }
6207
6208 static struct ctl_table_header *sd_sysctl_header;
6209 static void register_sched_domain_sysctl(void)
6210 {
6211 int i, cpu_num = num_online_cpus();
6212 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6213 char buf[32];
6214
6215 WARN_ON(sd_ctl_dir[0].child);
6216 sd_ctl_dir[0].child = entry;
6217
6218 if (entry == NULL)
6219 return;
6220
6221 for_each_online_cpu(i) {
6222 snprintf(buf, 32, "cpu%d", i);
6223 entry->procname = kstrdup(buf, GFP_KERNEL);
6224 entry->mode = 0555;
6225 entry->child = sd_alloc_ctl_cpu_table(i);
6226 entry++;
6227 }
6228
6229 WARN_ON(sd_sysctl_header);
6230 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6231 }
6232
6233 /* may be called multiple times per register */
6234 static void unregister_sched_domain_sysctl(void)
6235 {
6236 if (sd_sysctl_header)
6237 unregister_sysctl_table(sd_sysctl_header);
6238 sd_sysctl_header = NULL;
6239 if (sd_ctl_dir[0].child)
6240 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6241 }
6242 #else
6243 static void register_sched_domain_sysctl(void)
6244 {
6245 }
6246 static void unregister_sched_domain_sysctl(void)
6247 {
6248 }
6249 #endif
6250
6251 static void set_rq_online(struct rq *rq)
6252 {
6253 if (!rq->online) {
6254 const struct sched_class *class;
6255
6256 cpu_set(rq->cpu, rq->rd->online);
6257 rq->online = 1;
6258
6259 for_each_class(class) {
6260 if (class->rq_online)
6261 class->rq_online(rq);
6262 }
6263 }
6264 }
6265
6266 static void set_rq_offline(struct rq *rq)
6267 {
6268 if (rq->online) {
6269 const struct sched_class *class;
6270
6271 for_each_class(class) {
6272 if (class->rq_offline)
6273 class->rq_offline(rq);
6274 }
6275
6276 cpu_clear(rq->cpu, rq->rd->online);
6277 rq->online = 0;
6278 }
6279 }
6280
6281 /*
6282 * migration_call - callback that gets triggered when a CPU is added.
6283 * Here we can start up the necessary migration thread for the new CPU.
6284 */
6285 static int __cpuinit
6286 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6287 {
6288 struct task_struct *p;
6289 int cpu = (long)hcpu;
6290 unsigned long flags;
6291 struct rq *rq;
6292
6293 switch (action) {
6294
6295 case CPU_UP_PREPARE:
6296 case CPU_UP_PREPARE_FROZEN:
6297 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6298 if (IS_ERR(p))
6299 return NOTIFY_BAD;
6300 kthread_bind(p, cpu);
6301 /* Must be high prio: stop_machine expects to yield to it. */
6302 rq = task_rq_lock(p, &flags);
6303 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6304 task_rq_unlock(rq, &flags);
6305 cpu_rq(cpu)->migration_thread = p;
6306 break;
6307
6308 case CPU_ONLINE:
6309 case CPU_ONLINE_FROZEN:
6310 /* Strictly unnecessary, as first user will wake it. */
6311 wake_up_process(cpu_rq(cpu)->migration_thread);
6312
6313 /* Update our root-domain */
6314 rq = cpu_rq(cpu);
6315 spin_lock_irqsave(&rq->lock, flags);
6316 if (rq->rd) {
6317 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6318
6319 set_rq_online(rq);
6320 }
6321 spin_unlock_irqrestore(&rq->lock, flags);
6322 break;
6323
6324 #ifdef CONFIG_HOTPLUG_CPU
6325 case CPU_UP_CANCELED:
6326 case CPU_UP_CANCELED_FROZEN:
6327 if (!cpu_rq(cpu)->migration_thread)
6328 break;
6329 /* Unbind it from offline cpu so it can run. Fall thru. */
6330 kthread_bind(cpu_rq(cpu)->migration_thread,
6331 any_online_cpu(cpu_online_map));
6332 kthread_stop(cpu_rq(cpu)->migration_thread);
6333 cpu_rq(cpu)->migration_thread = NULL;
6334 break;
6335
6336 case CPU_DEAD:
6337 case CPU_DEAD_FROZEN:
6338 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6339 migrate_live_tasks(cpu);
6340 rq = cpu_rq(cpu);
6341 kthread_stop(rq->migration_thread);
6342 rq->migration_thread = NULL;
6343 /* Idle task back to normal (off runqueue, low prio) */
6344 spin_lock_irq(&rq->lock);
6345 update_rq_clock(rq);
6346 deactivate_task(rq, rq->idle, 0);
6347 rq->idle->static_prio = MAX_PRIO;
6348 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6349 rq->idle->sched_class = &idle_sched_class;
6350 migrate_dead_tasks(cpu);
6351 spin_unlock_irq(&rq->lock);
6352 cpuset_unlock();
6353 migrate_nr_uninterruptible(rq);
6354 BUG_ON(rq->nr_running != 0);
6355
6356 /*
6357 * No need to migrate the tasks: it was best-effort if
6358 * they didn't take sched_hotcpu_mutex. Just wake up
6359 * the requestors.
6360 */
6361 spin_lock_irq(&rq->lock);
6362 while (!list_empty(&rq->migration_queue)) {
6363 struct migration_req *req;
6364
6365 req = list_entry(rq->migration_queue.next,
6366 struct migration_req, list);
6367 list_del_init(&req->list);
6368 complete(&req->done);
6369 }
6370 spin_unlock_irq(&rq->lock);
6371 break;
6372
6373 case CPU_DYING:
6374 case CPU_DYING_FROZEN:
6375 /* Update our root-domain */
6376 rq = cpu_rq(cpu);
6377 spin_lock_irqsave(&rq->lock, flags);
6378 if (rq->rd) {
6379 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6380 set_rq_offline(rq);
6381 }
6382 spin_unlock_irqrestore(&rq->lock, flags);
6383 break;
6384 #endif
6385 }
6386 return NOTIFY_OK;
6387 }
6388
6389 /* Register at highest priority so that task migration (migrate_all_tasks)
6390 * happens before everything else.
6391 */
6392 static struct notifier_block __cpuinitdata migration_notifier = {
6393 .notifier_call = migration_call,
6394 .priority = 10
6395 };
6396
6397 void __init migration_init(void)
6398 {
6399 void *cpu = (void *)(long)smp_processor_id();
6400 int err;
6401
6402 /* Start one for the boot CPU: */
6403 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6404 BUG_ON(err == NOTIFY_BAD);
6405 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6406 register_cpu_notifier(&migration_notifier);
6407 }
6408 #endif
6409
6410 #ifdef CONFIG_SMP
6411
6412 #ifdef CONFIG_SCHED_DEBUG
6413
6414 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6415 {
6416 switch (lvl) {
6417 case SD_LV_NONE:
6418 return "NONE";
6419 case SD_LV_SIBLING:
6420 return "SIBLING";
6421 case SD_LV_MC:
6422 return "MC";
6423 case SD_LV_CPU:
6424 return "CPU";
6425 case SD_LV_NODE:
6426 return "NODE";
6427 case SD_LV_ALLNODES:
6428 return "ALLNODES";
6429 case SD_LV_MAX:
6430 return "MAX";
6431
6432 }
6433 return "MAX";
6434 }
6435
6436 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6437 cpumask_t *groupmask)
6438 {
6439 struct sched_group *group = sd->groups;
6440 char str[256];
6441
6442 cpulist_scnprintf(str, sizeof(str), sd->span);
6443 cpus_clear(*groupmask);
6444
6445 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6446
6447 if (!(sd->flags & SD_LOAD_BALANCE)) {
6448 printk("does not load-balance\n");
6449 if (sd->parent)
6450 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6451 " has parent");
6452 return -1;
6453 }
6454
6455 printk(KERN_CONT "span %s level %s\n",
6456 str, sd_level_to_string(sd->level));
6457
6458 if (!cpu_isset(cpu, sd->span)) {
6459 printk(KERN_ERR "ERROR: domain->span does not contain "
6460 "CPU%d\n", cpu);
6461 }
6462 if (!cpu_isset(cpu, group->cpumask)) {
6463 printk(KERN_ERR "ERROR: domain->groups does not contain"
6464 " CPU%d\n", cpu);
6465 }
6466
6467 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6468 do {
6469 if (!group) {
6470 printk("\n");
6471 printk(KERN_ERR "ERROR: group is NULL\n");
6472 break;
6473 }
6474
6475 if (!group->__cpu_power) {
6476 printk(KERN_CONT "\n");
6477 printk(KERN_ERR "ERROR: domain->cpu_power not "
6478 "set\n");
6479 break;
6480 }
6481
6482 if (!cpus_weight(group->cpumask)) {
6483 printk(KERN_CONT "\n");
6484 printk(KERN_ERR "ERROR: empty group\n");
6485 break;
6486 }
6487
6488 if (cpus_intersects(*groupmask, group->cpumask)) {
6489 printk(KERN_CONT "\n");
6490 printk(KERN_ERR "ERROR: repeated CPUs\n");
6491 break;
6492 }
6493
6494 cpus_or(*groupmask, *groupmask, group->cpumask);
6495
6496 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6497 printk(KERN_CONT " %s", str);
6498
6499 group = group->next;
6500 } while (group != sd->groups);
6501 printk(KERN_CONT "\n");
6502
6503 if (!cpus_equal(sd->span, *groupmask))
6504 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6505
6506 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6507 printk(KERN_ERR "ERROR: parent span is not a superset "
6508 "of domain->span\n");
6509 return 0;
6510 }
6511
6512 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6513 {
6514 cpumask_t *groupmask;
6515 int level = 0;
6516
6517 if (!sd) {
6518 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6519 return;
6520 }
6521
6522 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6523
6524 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6525 if (!groupmask) {
6526 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6527 return;
6528 }
6529
6530 for (;;) {
6531 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6532 break;
6533 level++;
6534 sd = sd->parent;
6535 if (!sd)
6536 break;
6537 }
6538 kfree(groupmask);
6539 }
6540 #else /* !CONFIG_SCHED_DEBUG */
6541 # define sched_domain_debug(sd, cpu) do { } while (0)
6542 #endif /* CONFIG_SCHED_DEBUG */
6543
6544 static int sd_degenerate(struct sched_domain *sd)
6545 {
6546 if (cpus_weight(sd->span) == 1)
6547 return 1;
6548
6549 /* Following flags need at least 2 groups */
6550 if (sd->flags & (SD_LOAD_BALANCE |
6551 SD_BALANCE_NEWIDLE |
6552 SD_BALANCE_FORK |
6553 SD_BALANCE_EXEC |
6554 SD_SHARE_CPUPOWER |
6555 SD_SHARE_PKG_RESOURCES)) {
6556 if (sd->groups != sd->groups->next)
6557 return 0;
6558 }
6559
6560 /* Following flags don't use groups */
6561 if (sd->flags & (SD_WAKE_IDLE |
6562 SD_WAKE_AFFINE |
6563 SD_WAKE_BALANCE))
6564 return 0;
6565
6566 return 1;
6567 }
6568
6569 static int
6570 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6571 {
6572 unsigned long cflags = sd->flags, pflags = parent->flags;
6573
6574 if (sd_degenerate(parent))
6575 return 1;
6576
6577 if (!cpus_equal(sd->span, parent->span))
6578 return 0;
6579
6580 /* Does parent contain flags not in child? */
6581 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6582 if (cflags & SD_WAKE_AFFINE)
6583 pflags &= ~SD_WAKE_BALANCE;
6584 /* Flags needing groups don't count if only 1 group in parent */
6585 if (parent->groups == parent->groups->next) {
6586 pflags &= ~(SD_LOAD_BALANCE |
6587 SD_BALANCE_NEWIDLE |
6588 SD_BALANCE_FORK |
6589 SD_BALANCE_EXEC |
6590 SD_SHARE_CPUPOWER |
6591 SD_SHARE_PKG_RESOURCES);
6592 }
6593 if (~cflags & pflags)
6594 return 0;
6595
6596 return 1;
6597 }
6598
6599 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6600 {
6601 unsigned long flags;
6602
6603 spin_lock_irqsave(&rq->lock, flags);
6604
6605 if (rq->rd) {
6606 struct root_domain *old_rd = rq->rd;
6607
6608 if (cpu_isset(rq->cpu, old_rd->online))
6609 set_rq_offline(rq);
6610
6611 cpu_clear(rq->cpu, old_rd->span);
6612
6613 if (atomic_dec_and_test(&old_rd->refcount))
6614 kfree(old_rd);
6615 }
6616
6617 atomic_inc(&rd->refcount);
6618 rq->rd = rd;
6619
6620 cpu_set(rq->cpu, rd->span);
6621 if (cpu_isset(rq->cpu, cpu_online_map))
6622 set_rq_online(rq);
6623
6624 spin_unlock_irqrestore(&rq->lock, flags);
6625 }
6626
6627 static void init_rootdomain(struct root_domain *rd)
6628 {
6629 memset(rd, 0, sizeof(*rd));
6630
6631 cpus_clear(rd->span);
6632 cpus_clear(rd->online);
6633
6634 cpupri_init(&rd->cpupri);
6635 }
6636
6637 static void init_defrootdomain(void)
6638 {
6639 init_rootdomain(&def_root_domain);
6640 atomic_set(&def_root_domain.refcount, 1);
6641 }
6642
6643 static struct root_domain *alloc_rootdomain(void)
6644 {
6645 struct root_domain *rd;
6646
6647 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6648 if (!rd)
6649 return NULL;
6650
6651 init_rootdomain(rd);
6652
6653 return rd;
6654 }
6655
6656 /*
6657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6658 * hold the hotplug lock.
6659 */
6660 static void
6661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6662 {
6663 struct rq *rq = cpu_rq(cpu);
6664 struct sched_domain *tmp;
6665
6666 /* Remove the sched domains which do not contribute to scheduling. */
6667 for (tmp = sd; tmp; tmp = tmp->parent) {
6668 struct sched_domain *parent = tmp->parent;
6669 if (!parent)
6670 break;
6671 if (sd_parent_degenerate(tmp, parent)) {
6672 tmp->parent = parent->parent;
6673 if (parent->parent)
6674 parent->parent->child = tmp;
6675 }
6676 }
6677
6678 if (sd && sd_degenerate(sd)) {
6679 sd = sd->parent;
6680 if (sd)
6681 sd->child = NULL;
6682 }
6683
6684 sched_domain_debug(sd, cpu);
6685
6686 rq_attach_root(rq, rd);
6687 rcu_assign_pointer(rq->sd, sd);
6688 }
6689
6690 /* cpus with isolated domains */
6691 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6692
6693 /* Setup the mask of cpus configured for isolated domains */
6694 static int __init isolated_cpu_setup(char *str)
6695 {
6696 int ints[NR_CPUS], i;
6697
6698 str = get_options(str, ARRAY_SIZE(ints), ints);
6699 cpus_clear(cpu_isolated_map);
6700 for (i = 1; i <= ints[0]; i++)
6701 if (ints[i] < NR_CPUS)
6702 cpu_set(ints[i], cpu_isolated_map);
6703 return 1;
6704 }
6705
6706 __setup("isolcpus=", isolated_cpu_setup);
6707
6708 /*
6709 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6710 * to a function which identifies what group(along with sched group) a CPU
6711 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6712 * (due to the fact that we keep track of groups covered with a cpumask_t).
6713 *
6714 * init_sched_build_groups will build a circular linked list of the groups
6715 * covered by the given span, and will set each group's ->cpumask correctly,
6716 * and ->cpu_power to 0.
6717 */
6718 static void
6719 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6720 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6721 struct sched_group **sg,
6722 cpumask_t *tmpmask),
6723 cpumask_t *covered, cpumask_t *tmpmask)
6724 {
6725 struct sched_group *first = NULL, *last = NULL;
6726 int i;
6727
6728 cpus_clear(*covered);
6729
6730 for_each_cpu_mask(i, *span) {
6731 struct sched_group *sg;
6732 int group = group_fn(i, cpu_map, &sg, tmpmask);
6733 int j;
6734
6735 if (cpu_isset(i, *covered))
6736 continue;
6737
6738 cpus_clear(sg->cpumask);
6739 sg->__cpu_power = 0;
6740
6741 for_each_cpu_mask(j, *span) {
6742 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6743 continue;
6744
6745 cpu_set(j, *covered);
6746 cpu_set(j, sg->cpumask);
6747 }
6748 if (!first)
6749 first = sg;
6750 if (last)
6751 last->next = sg;
6752 last = sg;
6753 }
6754 last->next = first;
6755 }
6756
6757 #define SD_NODES_PER_DOMAIN 16
6758
6759 #ifdef CONFIG_NUMA
6760
6761 /**
6762 * find_next_best_node - find the next node to include in a sched_domain
6763 * @node: node whose sched_domain we're building
6764 * @used_nodes: nodes already in the sched_domain
6765 *
6766 * Find the next node to include in a given scheduling domain. Simply
6767 * finds the closest node not already in the @used_nodes map.
6768 *
6769 * Should use nodemask_t.
6770 */
6771 static int find_next_best_node(int node, nodemask_t *used_nodes)
6772 {
6773 int i, n, val, min_val, best_node = 0;
6774
6775 min_val = INT_MAX;
6776
6777 for (i = 0; i < nr_node_ids; i++) {
6778 /* Start at @node */
6779 n = (node + i) % nr_node_ids;
6780
6781 if (!nr_cpus_node(n))
6782 continue;
6783
6784 /* Skip already used nodes */
6785 if (node_isset(n, *used_nodes))
6786 continue;
6787
6788 /* Simple min distance search */
6789 val = node_distance(node, n);
6790
6791 if (val < min_val) {
6792 min_val = val;
6793 best_node = n;
6794 }
6795 }
6796
6797 node_set(best_node, *used_nodes);
6798 return best_node;
6799 }
6800
6801 /**
6802 * sched_domain_node_span - get a cpumask for a node's sched_domain
6803 * @node: node whose cpumask we're constructing
6804 * @span: resulting cpumask
6805 *
6806 * Given a node, construct a good cpumask for its sched_domain to span. It
6807 * should be one that prevents unnecessary balancing, but also spreads tasks
6808 * out optimally.
6809 */
6810 static void sched_domain_node_span(int node, cpumask_t *span)
6811 {
6812 nodemask_t used_nodes;
6813 node_to_cpumask_ptr(nodemask, node);
6814 int i;
6815
6816 cpus_clear(*span);
6817 nodes_clear(used_nodes);
6818
6819 cpus_or(*span, *span, *nodemask);
6820 node_set(node, used_nodes);
6821
6822 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6823 int next_node = find_next_best_node(node, &used_nodes);
6824
6825 node_to_cpumask_ptr_next(nodemask, next_node);
6826 cpus_or(*span, *span, *nodemask);
6827 }
6828 }
6829 #endif /* CONFIG_NUMA */
6830
6831 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6832
6833 /*
6834 * SMT sched-domains:
6835 */
6836 #ifdef CONFIG_SCHED_SMT
6837 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6838 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6839
6840 static int
6841 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6842 cpumask_t *unused)
6843 {
6844 if (sg)
6845 *sg = &per_cpu(sched_group_cpus, cpu);
6846 return cpu;
6847 }
6848 #endif /* CONFIG_SCHED_SMT */
6849
6850 /*
6851 * multi-core sched-domains:
6852 */
6853 #ifdef CONFIG_SCHED_MC
6854 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6855 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6856 #endif /* CONFIG_SCHED_MC */
6857
6858 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6859 static int
6860 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6861 cpumask_t *mask)
6862 {
6863 int group;
6864
6865 *mask = per_cpu(cpu_sibling_map, cpu);
6866 cpus_and(*mask, *mask, *cpu_map);
6867 group = first_cpu(*mask);
6868 if (sg)
6869 *sg = &per_cpu(sched_group_core, group);
6870 return group;
6871 }
6872 #elif defined(CONFIG_SCHED_MC)
6873 static int
6874 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6875 cpumask_t *unused)
6876 {
6877 if (sg)
6878 *sg = &per_cpu(sched_group_core, cpu);
6879 return cpu;
6880 }
6881 #endif
6882
6883 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6884 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6885
6886 static int
6887 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6888 cpumask_t *mask)
6889 {
6890 int group;
6891 #ifdef CONFIG_SCHED_MC
6892 *mask = cpu_coregroup_map(cpu);
6893 cpus_and(*mask, *mask, *cpu_map);
6894 group = first_cpu(*mask);
6895 #elif defined(CONFIG_SCHED_SMT)
6896 *mask = per_cpu(cpu_sibling_map, cpu);
6897 cpus_and(*mask, *mask, *cpu_map);
6898 group = first_cpu(*mask);
6899 #else
6900 group = cpu;
6901 #endif
6902 if (sg)
6903 *sg = &per_cpu(sched_group_phys, group);
6904 return group;
6905 }
6906
6907 #ifdef CONFIG_NUMA
6908 /*
6909 * The init_sched_build_groups can't handle what we want to do with node
6910 * groups, so roll our own. Now each node has its own list of groups which
6911 * gets dynamically allocated.
6912 */
6913 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6914 static struct sched_group ***sched_group_nodes_bycpu;
6915
6916 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6917 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6918
6919 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6920 struct sched_group **sg, cpumask_t *nodemask)
6921 {
6922 int group;
6923
6924 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6925 cpus_and(*nodemask, *nodemask, *cpu_map);
6926 group = first_cpu(*nodemask);
6927
6928 if (sg)
6929 *sg = &per_cpu(sched_group_allnodes, group);
6930 return group;
6931 }
6932
6933 static void init_numa_sched_groups_power(struct sched_group *group_head)
6934 {
6935 struct sched_group *sg = group_head;
6936 int j;
6937
6938 if (!sg)
6939 return;
6940 do {
6941 for_each_cpu_mask(j, sg->cpumask) {
6942 struct sched_domain *sd;
6943
6944 sd = &per_cpu(phys_domains, j);
6945 if (j != first_cpu(sd->groups->cpumask)) {
6946 /*
6947 * Only add "power" once for each
6948 * physical package.
6949 */
6950 continue;
6951 }
6952
6953 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6954 }
6955 sg = sg->next;
6956 } while (sg != group_head);
6957 }
6958 #endif /* CONFIG_NUMA */
6959
6960 #ifdef CONFIG_NUMA
6961 /* Free memory allocated for various sched_group structures */
6962 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6963 {
6964 int cpu, i;
6965
6966 for_each_cpu_mask(cpu, *cpu_map) {
6967 struct sched_group **sched_group_nodes
6968 = sched_group_nodes_bycpu[cpu];
6969
6970 if (!sched_group_nodes)
6971 continue;
6972
6973 for (i = 0; i < nr_node_ids; i++) {
6974 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6975
6976 *nodemask = node_to_cpumask(i);
6977 cpus_and(*nodemask, *nodemask, *cpu_map);
6978 if (cpus_empty(*nodemask))
6979 continue;
6980
6981 if (sg == NULL)
6982 continue;
6983 sg = sg->next;
6984 next_sg:
6985 oldsg = sg;
6986 sg = sg->next;
6987 kfree(oldsg);
6988 if (oldsg != sched_group_nodes[i])
6989 goto next_sg;
6990 }
6991 kfree(sched_group_nodes);
6992 sched_group_nodes_bycpu[cpu] = NULL;
6993 }
6994 }
6995 #else /* !CONFIG_NUMA */
6996 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6997 {
6998 }
6999 #endif /* CONFIG_NUMA */
7000
7001 /*
7002 * Initialize sched groups cpu_power.
7003 *
7004 * cpu_power indicates the capacity of sched group, which is used while
7005 * distributing the load between different sched groups in a sched domain.
7006 * Typically cpu_power for all the groups in a sched domain will be same unless
7007 * there are asymmetries in the topology. If there are asymmetries, group
7008 * having more cpu_power will pickup more load compared to the group having
7009 * less cpu_power.
7010 *
7011 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7012 * the maximum number of tasks a group can handle in the presence of other idle
7013 * or lightly loaded groups in the same sched domain.
7014 */
7015 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7016 {
7017 struct sched_domain *child;
7018 struct sched_group *group;
7019
7020 WARN_ON(!sd || !sd->groups);
7021
7022 if (cpu != first_cpu(sd->groups->cpumask))
7023 return;
7024
7025 child = sd->child;
7026
7027 sd->groups->__cpu_power = 0;
7028
7029 /*
7030 * For perf policy, if the groups in child domain share resources
7031 * (for example cores sharing some portions of the cache hierarchy
7032 * or SMT), then set this domain groups cpu_power such that each group
7033 * can handle only one task, when there are other idle groups in the
7034 * same sched domain.
7035 */
7036 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7037 (child->flags &
7038 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7039 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7040 return;
7041 }
7042
7043 /*
7044 * add cpu_power of each child group to this groups cpu_power
7045 */
7046 group = child->groups;
7047 do {
7048 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7049 group = group->next;
7050 } while (group != child->groups);
7051 }
7052
7053 /*
7054 * Initializers for schedule domains
7055 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7056 */
7057
7058 #define SD_INIT(sd, type) sd_init_##type(sd)
7059 #define SD_INIT_FUNC(type) \
7060 static noinline void sd_init_##type(struct sched_domain *sd) \
7061 { \
7062 memset(sd, 0, sizeof(*sd)); \
7063 *sd = SD_##type##_INIT; \
7064 sd->level = SD_LV_##type; \
7065 }
7066
7067 SD_INIT_FUNC(CPU)
7068 #ifdef CONFIG_NUMA
7069 SD_INIT_FUNC(ALLNODES)
7070 SD_INIT_FUNC(NODE)
7071 #endif
7072 #ifdef CONFIG_SCHED_SMT
7073 SD_INIT_FUNC(SIBLING)
7074 #endif
7075 #ifdef CONFIG_SCHED_MC
7076 SD_INIT_FUNC(MC)
7077 #endif
7078
7079 /*
7080 * To minimize stack usage kmalloc room for cpumasks and share the
7081 * space as the usage in build_sched_domains() dictates. Used only
7082 * if the amount of space is significant.
7083 */
7084 struct allmasks {
7085 cpumask_t tmpmask; /* make this one first */
7086 union {
7087 cpumask_t nodemask;
7088 cpumask_t this_sibling_map;
7089 cpumask_t this_core_map;
7090 };
7091 cpumask_t send_covered;
7092
7093 #ifdef CONFIG_NUMA
7094 cpumask_t domainspan;
7095 cpumask_t covered;
7096 cpumask_t notcovered;
7097 #endif
7098 };
7099
7100 #if NR_CPUS > 128
7101 #define SCHED_CPUMASK_ALLOC 1
7102 #define SCHED_CPUMASK_FREE(v) kfree(v)
7103 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7104 #else
7105 #define SCHED_CPUMASK_ALLOC 0
7106 #define SCHED_CPUMASK_FREE(v)
7107 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7108 #endif
7109
7110 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7111 ((unsigned long)(a) + offsetof(struct allmasks, v))
7112
7113 static int default_relax_domain_level = -1;
7114
7115 static int __init setup_relax_domain_level(char *str)
7116 {
7117 unsigned long val;
7118
7119 val = simple_strtoul(str, NULL, 0);
7120 if (val < SD_LV_MAX)
7121 default_relax_domain_level = val;
7122
7123 return 1;
7124 }
7125 __setup("relax_domain_level=", setup_relax_domain_level);
7126
7127 static void set_domain_attribute(struct sched_domain *sd,
7128 struct sched_domain_attr *attr)
7129 {
7130 int request;
7131
7132 if (!attr || attr->relax_domain_level < 0) {
7133 if (default_relax_domain_level < 0)
7134 return;
7135 else
7136 request = default_relax_domain_level;
7137 } else
7138 request = attr->relax_domain_level;
7139 if (request < sd->level) {
7140 /* turn off idle balance on this domain */
7141 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7142 } else {
7143 /* turn on idle balance on this domain */
7144 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7145 }
7146 }
7147
7148 /*
7149 * Build sched domains for a given set of cpus and attach the sched domains
7150 * to the individual cpus
7151 */
7152 static int __build_sched_domains(const cpumask_t *cpu_map,
7153 struct sched_domain_attr *attr)
7154 {
7155 int i;
7156 struct root_domain *rd;
7157 SCHED_CPUMASK_DECLARE(allmasks);
7158 cpumask_t *tmpmask;
7159 #ifdef CONFIG_NUMA
7160 struct sched_group **sched_group_nodes = NULL;
7161 int sd_allnodes = 0;
7162
7163 /*
7164 * Allocate the per-node list of sched groups
7165 */
7166 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7167 GFP_KERNEL);
7168 if (!sched_group_nodes) {
7169 printk(KERN_WARNING "Can not alloc sched group node list\n");
7170 return -ENOMEM;
7171 }
7172 #endif
7173
7174 rd = alloc_rootdomain();
7175 if (!rd) {
7176 printk(KERN_WARNING "Cannot alloc root domain\n");
7177 #ifdef CONFIG_NUMA
7178 kfree(sched_group_nodes);
7179 #endif
7180 return -ENOMEM;
7181 }
7182
7183 #if SCHED_CPUMASK_ALLOC
7184 /* get space for all scratch cpumask variables */
7185 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7186 if (!allmasks) {
7187 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7188 kfree(rd);
7189 #ifdef CONFIG_NUMA
7190 kfree(sched_group_nodes);
7191 #endif
7192 return -ENOMEM;
7193 }
7194 #endif
7195 tmpmask = (cpumask_t *)allmasks;
7196
7197
7198 #ifdef CONFIG_NUMA
7199 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7200 #endif
7201
7202 /*
7203 * Set up domains for cpus specified by the cpu_map.
7204 */
7205 for_each_cpu_mask(i, *cpu_map) {
7206 struct sched_domain *sd = NULL, *p;
7207 SCHED_CPUMASK_VAR(nodemask, allmasks);
7208
7209 *nodemask = node_to_cpumask(cpu_to_node(i));
7210 cpus_and(*nodemask, *nodemask, *cpu_map);
7211
7212 #ifdef CONFIG_NUMA
7213 if (cpus_weight(*cpu_map) >
7214 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7215 sd = &per_cpu(allnodes_domains, i);
7216 SD_INIT(sd, ALLNODES);
7217 set_domain_attribute(sd, attr);
7218 sd->span = *cpu_map;
7219 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7220 p = sd;
7221 sd_allnodes = 1;
7222 } else
7223 p = NULL;
7224
7225 sd = &per_cpu(node_domains, i);
7226 SD_INIT(sd, NODE);
7227 set_domain_attribute(sd, attr);
7228 sched_domain_node_span(cpu_to_node(i), &sd->span);
7229 sd->parent = p;
7230 if (p)
7231 p->child = sd;
7232 cpus_and(sd->span, sd->span, *cpu_map);
7233 #endif
7234
7235 p = sd;
7236 sd = &per_cpu(phys_domains, i);
7237 SD_INIT(sd, CPU);
7238 set_domain_attribute(sd, attr);
7239 sd->span = *nodemask;
7240 sd->parent = p;
7241 if (p)
7242 p->child = sd;
7243 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7244
7245 #ifdef CONFIG_SCHED_MC
7246 p = sd;
7247 sd = &per_cpu(core_domains, i);
7248 SD_INIT(sd, MC);
7249 set_domain_attribute(sd, attr);
7250 sd->span = cpu_coregroup_map(i);
7251 cpus_and(sd->span, sd->span, *cpu_map);
7252 sd->parent = p;
7253 p->child = sd;
7254 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7255 #endif
7256
7257 #ifdef CONFIG_SCHED_SMT
7258 p = sd;
7259 sd = &per_cpu(cpu_domains, i);
7260 SD_INIT(sd, SIBLING);
7261 set_domain_attribute(sd, attr);
7262 sd->span = per_cpu(cpu_sibling_map, i);
7263 cpus_and(sd->span, sd->span, *cpu_map);
7264 sd->parent = p;
7265 p->child = sd;
7266 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7267 #endif
7268 }
7269
7270 #ifdef CONFIG_SCHED_SMT
7271 /* Set up CPU (sibling) groups */
7272 for_each_cpu_mask(i, *cpu_map) {
7273 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7274 SCHED_CPUMASK_VAR(send_covered, allmasks);
7275
7276 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7277 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7278 if (i != first_cpu(*this_sibling_map))
7279 continue;
7280
7281 init_sched_build_groups(this_sibling_map, cpu_map,
7282 &cpu_to_cpu_group,
7283 send_covered, tmpmask);
7284 }
7285 #endif
7286
7287 #ifdef CONFIG_SCHED_MC
7288 /* Set up multi-core groups */
7289 for_each_cpu_mask(i, *cpu_map) {
7290 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7291 SCHED_CPUMASK_VAR(send_covered, allmasks);
7292
7293 *this_core_map = cpu_coregroup_map(i);
7294 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7295 if (i != first_cpu(*this_core_map))
7296 continue;
7297
7298 init_sched_build_groups(this_core_map, cpu_map,
7299 &cpu_to_core_group,
7300 send_covered, tmpmask);
7301 }
7302 #endif
7303
7304 /* Set up physical groups */
7305 for (i = 0; i < nr_node_ids; i++) {
7306 SCHED_CPUMASK_VAR(nodemask, allmasks);
7307 SCHED_CPUMASK_VAR(send_covered, allmasks);
7308
7309 *nodemask = node_to_cpumask(i);
7310 cpus_and(*nodemask, *nodemask, *cpu_map);
7311 if (cpus_empty(*nodemask))
7312 continue;
7313
7314 init_sched_build_groups(nodemask, cpu_map,
7315 &cpu_to_phys_group,
7316 send_covered, tmpmask);
7317 }
7318
7319 #ifdef CONFIG_NUMA
7320 /* Set up node groups */
7321 if (sd_allnodes) {
7322 SCHED_CPUMASK_VAR(send_covered, allmasks);
7323
7324 init_sched_build_groups(cpu_map, cpu_map,
7325 &cpu_to_allnodes_group,
7326 send_covered, tmpmask);
7327 }
7328
7329 for (i = 0; i < nr_node_ids; i++) {
7330 /* Set up node groups */
7331 struct sched_group *sg, *prev;
7332 SCHED_CPUMASK_VAR(nodemask, allmasks);
7333 SCHED_CPUMASK_VAR(domainspan, allmasks);
7334 SCHED_CPUMASK_VAR(covered, allmasks);
7335 int j;
7336
7337 *nodemask = node_to_cpumask(i);
7338 cpus_clear(*covered);
7339
7340 cpus_and(*nodemask, *nodemask, *cpu_map);
7341 if (cpus_empty(*nodemask)) {
7342 sched_group_nodes[i] = NULL;
7343 continue;
7344 }
7345
7346 sched_domain_node_span(i, domainspan);
7347 cpus_and(*domainspan, *domainspan, *cpu_map);
7348
7349 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7350 if (!sg) {
7351 printk(KERN_WARNING "Can not alloc domain group for "
7352 "node %d\n", i);
7353 goto error;
7354 }
7355 sched_group_nodes[i] = sg;
7356 for_each_cpu_mask(j, *nodemask) {
7357 struct sched_domain *sd;
7358
7359 sd = &per_cpu(node_domains, j);
7360 sd->groups = sg;
7361 }
7362 sg->__cpu_power = 0;
7363 sg->cpumask = *nodemask;
7364 sg->next = sg;
7365 cpus_or(*covered, *covered, *nodemask);
7366 prev = sg;
7367
7368 for (j = 0; j < nr_node_ids; j++) {
7369 SCHED_CPUMASK_VAR(notcovered, allmasks);
7370 int n = (i + j) % nr_node_ids;
7371 node_to_cpumask_ptr(pnodemask, n);
7372
7373 cpus_complement(*notcovered, *covered);
7374 cpus_and(*tmpmask, *notcovered, *cpu_map);
7375 cpus_and(*tmpmask, *tmpmask, *domainspan);
7376 if (cpus_empty(*tmpmask))
7377 break;
7378
7379 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7380 if (cpus_empty(*tmpmask))
7381 continue;
7382
7383 sg = kmalloc_node(sizeof(struct sched_group),
7384 GFP_KERNEL, i);
7385 if (!sg) {
7386 printk(KERN_WARNING
7387 "Can not alloc domain group for node %d\n", j);
7388 goto error;
7389 }
7390 sg->__cpu_power = 0;
7391 sg->cpumask = *tmpmask;
7392 sg->next = prev->next;
7393 cpus_or(*covered, *covered, *tmpmask);
7394 prev->next = sg;
7395 prev = sg;
7396 }
7397 }
7398 #endif
7399
7400 /* Calculate CPU power for physical packages and nodes */
7401 #ifdef CONFIG_SCHED_SMT
7402 for_each_cpu_mask(i, *cpu_map) {
7403 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7404
7405 init_sched_groups_power(i, sd);
7406 }
7407 #endif
7408 #ifdef CONFIG_SCHED_MC
7409 for_each_cpu_mask(i, *cpu_map) {
7410 struct sched_domain *sd = &per_cpu(core_domains, i);
7411
7412 init_sched_groups_power(i, sd);
7413 }
7414 #endif
7415
7416 for_each_cpu_mask(i, *cpu_map) {
7417 struct sched_domain *sd = &per_cpu(phys_domains, i);
7418
7419 init_sched_groups_power(i, sd);
7420 }
7421
7422 #ifdef CONFIG_NUMA
7423 for (i = 0; i < nr_node_ids; i++)
7424 init_numa_sched_groups_power(sched_group_nodes[i]);
7425
7426 if (sd_allnodes) {
7427 struct sched_group *sg;
7428
7429 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7430 tmpmask);
7431 init_numa_sched_groups_power(sg);
7432 }
7433 #endif
7434
7435 /* Attach the domains */
7436 for_each_cpu_mask(i, *cpu_map) {
7437 struct sched_domain *sd;
7438 #ifdef CONFIG_SCHED_SMT
7439 sd = &per_cpu(cpu_domains, i);
7440 #elif defined(CONFIG_SCHED_MC)
7441 sd = &per_cpu(core_domains, i);
7442 #else
7443 sd = &per_cpu(phys_domains, i);
7444 #endif
7445 cpu_attach_domain(sd, rd, i);
7446 }
7447
7448 SCHED_CPUMASK_FREE((void *)allmasks);
7449 return 0;
7450
7451 #ifdef CONFIG_NUMA
7452 error:
7453 free_sched_groups(cpu_map, tmpmask);
7454 SCHED_CPUMASK_FREE((void *)allmasks);
7455 return -ENOMEM;
7456 #endif
7457 }
7458
7459 static int build_sched_domains(const cpumask_t *cpu_map)
7460 {
7461 return __build_sched_domains(cpu_map, NULL);
7462 }
7463
7464 static cpumask_t *doms_cur; /* current sched domains */
7465 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7466 static struct sched_domain_attr *dattr_cur;
7467 /* attribues of custom domains in 'doms_cur' */
7468
7469 /*
7470 * Special case: If a kmalloc of a doms_cur partition (array of
7471 * cpumask_t) fails, then fallback to a single sched domain,
7472 * as determined by the single cpumask_t fallback_doms.
7473 */
7474 static cpumask_t fallback_doms;
7475
7476 void __attribute__((weak)) arch_update_cpu_topology(void)
7477 {
7478 }
7479
7480 /*
7481 * Free current domain masks.
7482 * Called after all cpus are attached to NULL domain.
7483 */
7484 static void free_sched_domains(void)
7485 {
7486 ndoms_cur = 0;
7487 if (doms_cur != &fallback_doms)
7488 kfree(doms_cur);
7489 doms_cur = &fallback_doms;
7490 }
7491
7492 /*
7493 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7494 * For now this just excludes isolated cpus, but could be used to
7495 * exclude other special cases in the future.
7496 */
7497 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7498 {
7499 int err;
7500
7501 arch_update_cpu_topology();
7502 ndoms_cur = 1;
7503 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7504 if (!doms_cur)
7505 doms_cur = &fallback_doms;
7506 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7507 dattr_cur = NULL;
7508 err = build_sched_domains(doms_cur);
7509 register_sched_domain_sysctl();
7510
7511 return err;
7512 }
7513
7514 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7515 cpumask_t *tmpmask)
7516 {
7517 free_sched_groups(cpu_map, tmpmask);
7518 }
7519
7520 /*
7521 * Detach sched domains from a group of cpus specified in cpu_map
7522 * These cpus will now be attached to the NULL domain
7523 */
7524 static void detach_destroy_domains(const cpumask_t *cpu_map)
7525 {
7526 cpumask_t tmpmask;
7527 int i;
7528
7529 unregister_sched_domain_sysctl();
7530
7531 for_each_cpu_mask(i, *cpu_map)
7532 cpu_attach_domain(NULL, &def_root_domain, i);
7533 synchronize_sched();
7534 arch_destroy_sched_domains(cpu_map, &tmpmask);
7535 }
7536
7537 /* handle null as "default" */
7538 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7539 struct sched_domain_attr *new, int idx_new)
7540 {
7541 struct sched_domain_attr tmp;
7542
7543 /* fast path */
7544 if (!new && !cur)
7545 return 1;
7546
7547 tmp = SD_ATTR_INIT;
7548 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7549 new ? (new + idx_new) : &tmp,
7550 sizeof(struct sched_domain_attr));
7551 }
7552
7553 /*
7554 * Partition sched domains as specified by the 'ndoms_new'
7555 * cpumasks in the array doms_new[] of cpumasks. This compares
7556 * doms_new[] to the current sched domain partitioning, doms_cur[].
7557 * It destroys each deleted domain and builds each new domain.
7558 *
7559 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7560 * The masks don't intersect (don't overlap.) We should setup one
7561 * sched domain for each mask. CPUs not in any of the cpumasks will
7562 * not be load balanced. If the same cpumask appears both in the
7563 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7564 * it as it is.
7565 *
7566 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7567 * ownership of it and will kfree it when done with it. If the caller
7568 * failed the kmalloc call, then it can pass in doms_new == NULL,
7569 * and partition_sched_domains() will fallback to the single partition
7570 * 'fallback_doms'.
7571 *
7572 * Call with hotplug lock held
7573 */
7574 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7575 struct sched_domain_attr *dattr_new)
7576 {
7577 int i, j;
7578
7579 mutex_lock(&sched_domains_mutex);
7580
7581 /* always unregister in case we don't destroy any domains */
7582 unregister_sched_domain_sysctl();
7583
7584 if (doms_new == NULL) {
7585 ndoms_new = 1;
7586 doms_new = &fallback_doms;
7587 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7588 dattr_new = NULL;
7589 }
7590
7591 /* Destroy deleted domains */
7592 for (i = 0; i < ndoms_cur; i++) {
7593 for (j = 0; j < ndoms_new; j++) {
7594 if (cpus_equal(doms_cur[i], doms_new[j])
7595 && dattrs_equal(dattr_cur, i, dattr_new, j))
7596 goto match1;
7597 }
7598 /* no match - a current sched domain not in new doms_new[] */
7599 detach_destroy_domains(doms_cur + i);
7600 match1:
7601 ;
7602 }
7603
7604 /* Build new domains */
7605 for (i = 0; i < ndoms_new; i++) {
7606 for (j = 0; j < ndoms_cur; j++) {
7607 if (cpus_equal(doms_new[i], doms_cur[j])
7608 && dattrs_equal(dattr_new, i, dattr_cur, j))
7609 goto match2;
7610 }
7611 /* no match - add a new doms_new */
7612 __build_sched_domains(doms_new + i,
7613 dattr_new ? dattr_new + i : NULL);
7614 match2:
7615 ;
7616 }
7617
7618 /* Remember the new sched domains */
7619 if (doms_cur != &fallback_doms)
7620 kfree(doms_cur);
7621 kfree(dattr_cur); /* kfree(NULL) is safe */
7622 doms_cur = doms_new;
7623 dattr_cur = dattr_new;
7624 ndoms_cur = ndoms_new;
7625
7626 register_sched_domain_sysctl();
7627
7628 mutex_unlock(&sched_domains_mutex);
7629 }
7630
7631 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7632 int arch_reinit_sched_domains(void)
7633 {
7634 int err;
7635
7636 get_online_cpus();
7637 mutex_lock(&sched_domains_mutex);
7638 detach_destroy_domains(&cpu_online_map);
7639 free_sched_domains();
7640 err = arch_init_sched_domains(&cpu_online_map);
7641 mutex_unlock(&sched_domains_mutex);
7642 put_online_cpus();
7643
7644 return err;
7645 }
7646
7647 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7648 {
7649 int ret;
7650
7651 if (buf[0] != '0' && buf[0] != '1')
7652 return -EINVAL;
7653
7654 if (smt)
7655 sched_smt_power_savings = (buf[0] == '1');
7656 else
7657 sched_mc_power_savings = (buf[0] == '1');
7658
7659 ret = arch_reinit_sched_domains();
7660
7661 return ret ? ret : count;
7662 }
7663
7664 #ifdef CONFIG_SCHED_MC
7665 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7666 {
7667 return sprintf(page, "%u\n", sched_mc_power_savings);
7668 }
7669 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7670 const char *buf, size_t count)
7671 {
7672 return sched_power_savings_store(buf, count, 0);
7673 }
7674 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7675 sched_mc_power_savings_store);
7676 #endif
7677
7678 #ifdef CONFIG_SCHED_SMT
7679 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7680 {
7681 return sprintf(page, "%u\n", sched_smt_power_savings);
7682 }
7683 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7684 const char *buf, size_t count)
7685 {
7686 return sched_power_savings_store(buf, count, 1);
7687 }
7688 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7689 sched_smt_power_savings_store);
7690 #endif
7691
7692 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7693 {
7694 int err = 0;
7695
7696 #ifdef CONFIG_SCHED_SMT
7697 if (smt_capable())
7698 err = sysfs_create_file(&cls->kset.kobj,
7699 &attr_sched_smt_power_savings.attr);
7700 #endif
7701 #ifdef CONFIG_SCHED_MC
7702 if (!err && mc_capable())
7703 err = sysfs_create_file(&cls->kset.kobj,
7704 &attr_sched_mc_power_savings.attr);
7705 #endif
7706 return err;
7707 }
7708 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7709
7710 /*
7711 * Force a reinitialization of the sched domains hierarchy. The domains
7712 * and groups cannot be updated in place without racing with the balancing
7713 * code, so we temporarily attach all running cpus to the NULL domain
7714 * which will prevent rebalancing while the sched domains are recalculated.
7715 */
7716 static int update_sched_domains(struct notifier_block *nfb,
7717 unsigned long action, void *hcpu)
7718 {
7719 int cpu = (int)(long)hcpu;
7720
7721 switch (action) {
7722 case CPU_DOWN_PREPARE:
7723 case CPU_DOWN_PREPARE_FROZEN:
7724 disable_runtime(cpu_rq(cpu));
7725 /* fall-through */
7726 case CPU_UP_PREPARE:
7727 case CPU_UP_PREPARE_FROZEN:
7728 detach_destroy_domains(&cpu_online_map);
7729 free_sched_domains();
7730 return NOTIFY_OK;
7731
7732
7733 case CPU_DOWN_FAILED:
7734 case CPU_DOWN_FAILED_FROZEN:
7735 case CPU_ONLINE:
7736 case CPU_ONLINE_FROZEN:
7737 enable_runtime(cpu_rq(cpu));
7738 /* fall-through */
7739 case CPU_UP_CANCELED:
7740 case CPU_UP_CANCELED_FROZEN:
7741 case CPU_DEAD:
7742 case CPU_DEAD_FROZEN:
7743 /*
7744 * Fall through and re-initialise the domains.
7745 */
7746 break;
7747 default:
7748 return NOTIFY_DONE;
7749 }
7750
7751 #ifndef CONFIG_CPUSETS
7752 /*
7753 * Create default domain partitioning if cpusets are disabled.
7754 * Otherwise we let cpusets rebuild the domains based on the
7755 * current setup.
7756 */
7757
7758 /* The hotplug lock is already held by cpu_up/cpu_down */
7759 arch_init_sched_domains(&cpu_online_map);
7760 #endif
7761
7762 return NOTIFY_OK;
7763 }
7764
7765 void __init sched_init_smp(void)
7766 {
7767 cpumask_t non_isolated_cpus;
7768
7769 #if defined(CONFIG_NUMA)
7770 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7771 GFP_KERNEL);
7772 BUG_ON(sched_group_nodes_bycpu == NULL);
7773 #endif
7774 get_online_cpus();
7775 mutex_lock(&sched_domains_mutex);
7776 arch_init_sched_domains(&cpu_online_map);
7777 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7778 if (cpus_empty(non_isolated_cpus))
7779 cpu_set(smp_processor_id(), non_isolated_cpus);
7780 mutex_unlock(&sched_domains_mutex);
7781 put_online_cpus();
7782 /* XXX: Theoretical race here - CPU may be hotplugged now */
7783 hotcpu_notifier(update_sched_domains, 0);
7784 init_hrtick();
7785
7786 /* Move init over to a non-isolated CPU */
7787 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7788 BUG();
7789 sched_init_granularity();
7790 }
7791 #else
7792 void __init sched_init_smp(void)
7793 {
7794 sched_init_granularity();
7795 }
7796 #endif /* CONFIG_SMP */
7797
7798 int in_sched_functions(unsigned long addr)
7799 {
7800 return in_lock_functions(addr) ||
7801 (addr >= (unsigned long)__sched_text_start
7802 && addr < (unsigned long)__sched_text_end);
7803 }
7804
7805 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7806 {
7807 cfs_rq->tasks_timeline = RB_ROOT;
7808 INIT_LIST_HEAD(&cfs_rq->tasks);
7809 #ifdef CONFIG_FAIR_GROUP_SCHED
7810 cfs_rq->rq = rq;
7811 #endif
7812 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7813 }
7814
7815 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7816 {
7817 struct rt_prio_array *array;
7818 int i;
7819
7820 array = &rt_rq->active;
7821 for (i = 0; i < MAX_RT_PRIO; i++) {
7822 INIT_LIST_HEAD(array->queue + i);
7823 __clear_bit(i, array->bitmap);
7824 }
7825 /* delimiter for bitsearch: */
7826 __set_bit(MAX_RT_PRIO, array->bitmap);
7827
7828 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7829 rt_rq->highest_prio = MAX_RT_PRIO;
7830 #endif
7831 #ifdef CONFIG_SMP
7832 rt_rq->rt_nr_migratory = 0;
7833 rt_rq->overloaded = 0;
7834 #endif
7835
7836 rt_rq->rt_time = 0;
7837 rt_rq->rt_throttled = 0;
7838 rt_rq->rt_runtime = 0;
7839 spin_lock_init(&rt_rq->rt_runtime_lock);
7840
7841 #ifdef CONFIG_RT_GROUP_SCHED
7842 rt_rq->rt_nr_boosted = 0;
7843 rt_rq->rq = rq;
7844 #endif
7845 }
7846
7847 #ifdef CONFIG_FAIR_GROUP_SCHED
7848 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7849 struct sched_entity *se, int cpu, int add,
7850 struct sched_entity *parent)
7851 {
7852 struct rq *rq = cpu_rq(cpu);
7853 tg->cfs_rq[cpu] = cfs_rq;
7854 init_cfs_rq(cfs_rq, rq);
7855 cfs_rq->tg = tg;
7856 if (add)
7857 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7858
7859 tg->se[cpu] = se;
7860 /* se could be NULL for init_task_group */
7861 if (!se)
7862 return;
7863
7864 if (!parent)
7865 se->cfs_rq = &rq->cfs;
7866 else
7867 se->cfs_rq = parent->my_q;
7868
7869 se->my_q = cfs_rq;
7870 se->load.weight = tg->shares;
7871 se->load.inv_weight = 0;
7872 se->parent = parent;
7873 }
7874 #endif
7875
7876 #ifdef CONFIG_RT_GROUP_SCHED
7877 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7878 struct sched_rt_entity *rt_se, int cpu, int add,
7879 struct sched_rt_entity *parent)
7880 {
7881 struct rq *rq = cpu_rq(cpu);
7882
7883 tg->rt_rq[cpu] = rt_rq;
7884 init_rt_rq(rt_rq, rq);
7885 rt_rq->tg = tg;
7886 rt_rq->rt_se = rt_se;
7887 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7888 if (add)
7889 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7890
7891 tg->rt_se[cpu] = rt_se;
7892 if (!rt_se)
7893 return;
7894
7895 if (!parent)
7896 rt_se->rt_rq = &rq->rt;
7897 else
7898 rt_se->rt_rq = parent->my_q;
7899
7900 rt_se->my_q = rt_rq;
7901 rt_se->parent = parent;
7902 INIT_LIST_HEAD(&rt_se->run_list);
7903 }
7904 #endif
7905
7906 void __init sched_init(void)
7907 {
7908 int i, j;
7909 unsigned long alloc_size = 0, ptr;
7910
7911 #ifdef CONFIG_FAIR_GROUP_SCHED
7912 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7913 #endif
7914 #ifdef CONFIG_RT_GROUP_SCHED
7915 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7916 #endif
7917 #ifdef CONFIG_USER_SCHED
7918 alloc_size *= 2;
7919 #endif
7920 /*
7921 * As sched_init() is called before page_alloc is setup,
7922 * we use alloc_bootmem().
7923 */
7924 if (alloc_size) {
7925 ptr = (unsigned long)alloc_bootmem(alloc_size);
7926
7927 #ifdef CONFIG_FAIR_GROUP_SCHED
7928 init_task_group.se = (struct sched_entity **)ptr;
7929 ptr += nr_cpu_ids * sizeof(void **);
7930
7931 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7932 ptr += nr_cpu_ids * sizeof(void **);
7933
7934 #ifdef CONFIG_USER_SCHED
7935 root_task_group.se = (struct sched_entity **)ptr;
7936 ptr += nr_cpu_ids * sizeof(void **);
7937
7938 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7939 ptr += nr_cpu_ids * sizeof(void **);
7940 #endif /* CONFIG_USER_SCHED */
7941 #endif /* CONFIG_FAIR_GROUP_SCHED */
7942 #ifdef CONFIG_RT_GROUP_SCHED
7943 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7944 ptr += nr_cpu_ids * sizeof(void **);
7945
7946 init_task_group.rt_rq = (struct rt_rq **)ptr;
7947 ptr += nr_cpu_ids * sizeof(void **);
7948
7949 #ifdef CONFIG_USER_SCHED
7950 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7951 ptr += nr_cpu_ids * sizeof(void **);
7952
7953 root_task_group.rt_rq = (struct rt_rq **)ptr;
7954 ptr += nr_cpu_ids * sizeof(void **);
7955 #endif /* CONFIG_USER_SCHED */
7956 #endif /* CONFIG_RT_GROUP_SCHED */
7957 }
7958
7959 #ifdef CONFIG_SMP
7960 init_defrootdomain();
7961 #endif
7962
7963 init_rt_bandwidth(&def_rt_bandwidth,
7964 global_rt_period(), global_rt_runtime());
7965
7966 #ifdef CONFIG_RT_GROUP_SCHED
7967 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7968 global_rt_period(), global_rt_runtime());
7969 #ifdef CONFIG_USER_SCHED
7970 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7971 global_rt_period(), RUNTIME_INF);
7972 #endif /* CONFIG_USER_SCHED */
7973 #endif /* CONFIG_RT_GROUP_SCHED */
7974
7975 #ifdef CONFIG_GROUP_SCHED
7976 list_add(&init_task_group.list, &task_groups);
7977 INIT_LIST_HEAD(&init_task_group.children);
7978
7979 #ifdef CONFIG_USER_SCHED
7980 INIT_LIST_HEAD(&root_task_group.children);
7981 init_task_group.parent = &root_task_group;
7982 list_add(&init_task_group.siblings, &root_task_group.children);
7983 #endif /* CONFIG_USER_SCHED */
7984 #endif /* CONFIG_GROUP_SCHED */
7985
7986 for_each_possible_cpu(i) {
7987 struct rq *rq;
7988
7989 rq = cpu_rq(i);
7990 spin_lock_init(&rq->lock);
7991 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7992 rq->nr_running = 0;
7993 init_cfs_rq(&rq->cfs, rq);
7994 init_rt_rq(&rq->rt, rq);
7995 #ifdef CONFIG_FAIR_GROUP_SCHED
7996 init_task_group.shares = init_task_group_load;
7997 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7998 #ifdef CONFIG_CGROUP_SCHED
7999 /*
8000 * How much cpu bandwidth does init_task_group get?
8001 *
8002 * In case of task-groups formed thr' the cgroup filesystem, it
8003 * gets 100% of the cpu resources in the system. This overall
8004 * system cpu resource is divided among the tasks of
8005 * init_task_group and its child task-groups in a fair manner,
8006 * based on each entity's (task or task-group's) weight
8007 * (se->load.weight).
8008 *
8009 * In other words, if init_task_group has 10 tasks of weight
8010 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8011 * then A0's share of the cpu resource is:
8012 *
8013 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8014 *
8015 * We achieve this by letting init_task_group's tasks sit
8016 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8017 */
8018 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8019 #elif defined CONFIG_USER_SCHED
8020 root_task_group.shares = NICE_0_LOAD;
8021 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8022 /*
8023 * In case of task-groups formed thr' the user id of tasks,
8024 * init_task_group represents tasks belonging to root user.
8025 * Hence it forms a sibling of all subsequent groups formed.
8026 * In this case, init_task_group gets only a fraction of overall
8027 * system cpu resource, based on the weight assigned to root
8028 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8029 * by letting tasks of init_task_group sit in a separate cfs_rq
8030 * (init_cfs_rq) and having one entity represent this group of
8031 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8032 */
8033 init_tg_cfs_entry(&init_task_group,
8034 &per_cpu(init_cfs_rq, i),
8035 &per_cpu(init_sched_entity, i), i, 1,
8036 root_task_group.se[i]);
8037
8038 #endif
8039 #endif /* CONFIG_FAIR_GROUP_SCHED */
8040
8041 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8042 #ifdef CONFIG_RT_GROUP_SCHED
8043 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8044 #ifdef CONFIG_CGROUP_SCHED
8045 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8046 #elif defined CONFIG_USER_SCHED
8047 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8048 init_tg_rt_entry(&init_task_group,
8049 &per_cpu(init_rt_rq, i),
8050 &per_cpu(init_sched_rt_entity, i), i, 1,
8051 root_task_group.rt_se[i]);
8052 #endif
8053 #endif
8054
8055 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8056 rq->cpu_load[j] = 0;
8057 #ifdef CONFIG_SMP
8058 rq->sd = NULL;
8059 rq->rd = NULL;
8060 rq->active_balance = 0;
8061 rq->next_balance = jiffies;
8062 rq->push_cpu = 0;
8063 rq->cpu = i;
8064 rq->online = 0;
8065 rq->migration_thread = NULL;
8066 INIT_LIST_HEAD(&rq->migration_queue);
8067 rq_attach_root(rq, &def_root_domain);
8068 #endif
8069 init_rq_hrtick(rq);
8070 atomic_set(&rq->nr_iowait, 0);
8071 }
8072
8073 set_load_weight(&init_task);
8074
8075 #ifdef CONFIG_PREEMPT_NOTIFIERS
8076 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8077 #endif
8078
8079 #ifdef CONFIG_SMP
8080 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8081 #endif
8082
8083 #ifdef CONFIG_RT_MUTEXES
8084 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8085 #endif
8086
8087 /*
8088 * The boot idle thread does lazy MMU switching as well:
8089 */
8090 atomic_inc(&init_mm.mm_count);
8091 enter_lazy_tlb(&init_mm, current);
8092
8093 /*
8094 * Make us the idle thread. Technically, schedule() should not be
8095 * called from this thread, however somewhere below it might be,
8096 * but because we are the idle thread, we just pick up running again
8097 * when this runqueue becomes "idle".
8098 */
8099 init_idle(current, smp_processor_id());
8100 /*
8101 * During early bootup we pretend to be a normal task:
8102 */
8103 current->sched_class = &fair_sched_class;
8104
8105 scheduler_running = 1;
8106 }
8107
8108 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8109 void __might_sleep(char *file, int line)
8110 {
8111 #ifdef in_atomic
8112 static unsigned long prev_jiffy; /* ratelimiting */
8113
8114 if ((in_atomic() || irqs_disabled()) &&
8115 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8116 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8117 return;
8118 prev_jiffy = jiffies;
8119 printk(KERN_ERR "BUG: sleeping function called from invalid"
8120 " context at %s:%d\n", file, line);
8121 printk("in_atomic():%d, irqs_disabled():%d\n",
8122 in_atomic(), irqs_disabled());
8123 debug_show_held_locks(current);
8124 if (irqs_disabled())
8125 print_irqtrace_events(current);
8126 dump_stack();
8127 }
8128 #endif
8129 }
8130 EXPORT_SYMBOL(__might_sleep);
8131 #endif
8132
8133 #ifdef CONFIG_MAGIC_SYSRQ
8134 static void normalize_task(struct rq *rq, struct task_struct *p)
8135 {
8136 int on_rq;
8137
8138 update_rq_clock(rq);
8139 on_rq = p->se.on_rq;
8140 if (on_rq)
8141 deactivate_task(rq, p, 0);
8142 __setscheduler(rq, p, SCHED_NORMAL, 0);
8143 if (on_rq) {
8144 activate_task(rq, p, 0);
8145 resched_task(rq->curr);
8146 }
8147 }
8148
8149 void normalize_rt_tasks(void)
8150 {
8151 struct task_struct *g, *p;
8152 unsigned long flags;
8153 struct rq *rq;
8154
8155 read_lock_irqsave(&tasklist_lock, flags);
8156 do_each_thread(g, p) {
8157 /*
8158 * Only normalize user tasks:
8159 */
8160 if (!p->mm)
8161 continue;
8162
8163 p->se.exec_start = 0;
8164 #ifdef CONFIG_SCHEDSTATS
8165 p->se.wait_start = 0;
8166 p->se.sleep_start = 0;
8167 p->se.block_start = 0;
8168 #endif
8169
8170 if (!rt_task(p)) {
8171 /*
8172 * Renice negative nice level userspace
8173 * tasks back to 0:
8174 */
8175 if (TASK_NICE(p) < 0 && p->mm)
8176 set_user_nice(p, 0);
8177 continue;
8178 }
8179
8180 spin_lock(&p->pi_lock);
8181 rq = __task_rq_lock(p);
8182
8183 normalize_task(rq, p);
8184
8185 __task_rq_unlock(rq);
8186 spin_unlock(&p->pi_lock);
8187 } while_each_thread(g, p);
8188
8189 read_unlock_irqrestore(&tasklist_lock, flags);
8190 }
8191
8192 #endif /* CONFIG_MAGIC_SYSRQ */
8193
8194 #ifdef CONFIG_IA64
8195 /*
8196 * These functions are only useful for the IA64 MCA handling.
8197 *
8198 * They can only be called when the whole system has been
8199 * stopped - every CPU needs to be quiescent, and no scheduling
8200 * activity can take place. Using them for anything else would
8201 * be a serious bug, and as a result, they aren't even visible
8202 * under any other configuration.
8203 */
8204
8205 /**
8206 * curr_task - return the current task for a given cpu.
8207 * @cpu: the processor in question.
8208 *
8209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8210 */
8211 struct task_struct *curr_task(int cpu)
8212 {
8213 return cpu_curr(cpu);
8214 }
8215
8216 /**
8217 * set_curr_task - set the current task for a given cpu.
8218 * @cpu: the processor in question.
8219 * @p: the task pointer to set.
8220 *
8221 * Description: This function must only be used when non-maskable interrupts
8222 * are serviced on a separate stack. It allows the architecture to switch the
8223 * notion of the current task on a cpu in a non-blocking manner. This function
8224 * must be called with all CPU's synchronized, and interrupts disabled, the
8225 * and caller must save the original value of the current task (see
8226 * curr_task() above) and restore that value before reenabling interrupts and
8227 * re-starting the system.
8228 *
8229 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8230 */
8231 void set_curr_task(int cpu, struct task_struct *p)
8232 {
8233 cpu_curr(cpu) = p;
8234 }
8235
8236 #endif
8237
8238 #ifdef CONFIG_FAIR_GROUP_SCHED
8239 static void free_fair_sched_group(struct task_group *tg)
8240 {
8241 int i;
8242
8243 for_each_possible_cpu(i) {
8244 if (tg->cfs_rq)
8245 kfree(tg->cfs_rq[i]);
8246 if (tg->se)
8247 kfree(tg->se[i]);
8248 }
8249
8250 kfree(tg->cfs_rq);
8251 kfree(tg->se);
8252 }
8253
8254 static
8255 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8256 {
8257 struct cfs_rq *cfs_rq;
8258 struct sched_entity *se, *parent_se;
8259 struct rq *rq;
8260 int i;
8261
8262 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8263 if (!tg->cfs_rq)
8264 goto err;
8265 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8266 if (!tg->se)
8267 goto err;
8268
8269 tg->shares = NICE_0_LOAD;
8270
8271 for_each_possible_cpu(i) {
8272 rq = cpu_rq(i);
8273
8274 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8275 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8276 if (!cfs_rq)
8277 goto err;
8278
8279 se = kmalloc_node(sizeof(struct sched_entity),
8280 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8281 if (!se)
8282 goto err;
8283
8284 parent_se = parent ? parent->se[i] : NULL;
8285 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8286 }
8287
8288 return 1;
8289
8290 err:
8291 return 0;
8292 }
8293
8294 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8295 {
8296 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8297 &cpu_rq(cpu)->leaf_cfs_rq_list);
8298 }
8299
8300 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8301 {
8302 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8303 }
8304 #else /* !CONFG_FAIR_GROUP_SCHED */
8305 static inline void free_fair_sched_group(struct task_group *tg)
8306 {
8307 }
8308
8309 static inline
8310 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8311 {
8312 return 1;
8313 }
8314
8315 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8316 {
8317 }
8318
8319 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8320 {
8321 }
8322 #endif /* CONFIG_FAIR_GROUP_SCHED */
8323
8324 #ifdef CONFIG_RT_GROUP_SCHED
8325 static void free_rt_sched_group(struct task_group *tg)
8326 {
8327 int i;
8328
8329 destroy_rt_bandwidth(&tg->rt_bandwidth);
8330
8331 for_each_possible_cpu(i) {
8332 if (tg->rt_rq)
8333 kfree(tg->rt_rq[i]);
8334 if (tg->rt_se)
8335 kfree(tg->rt_se[i]);
8336 }
8337
8338 kfree(tg->rt_rq);
8339 kfree(tg->rt_se);
8340 }
8341
8342 static
8343 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8344 {
8345 struct rt_rq *rt_rq;
8346 struct sched_rt_entity *rt_se, *parent_se;
8347 struct rq *rq;
8348 int i;
8349
8350 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8351 if (!tg->rt_rq)
8352 goto err;
8353 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8354 if (!tg->rt_se)
8355 goto err;
8356
8357 init_rt_bandwidth(&tg->rt_bandwidth,
8358 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8359
8360 for_each_possible_cpu(i) {
8361 rq = cpu_rq(i);
8362
8363 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8364 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8365 if (!rt_rq)
8366 goto err;
8367
8368 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8369 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8370 if (!rt_se)
8371 goto err;
8372
8373 parent_se = parent ? parent->rt_se[i] : NULL;
8374 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8375 }
8376
8377 return 1;
8378
8379 err:
8380 return 0;
8381 }
8382
8383 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8384 {
8385 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8386 &cpu_rq(cpu)->leaf_rt_rq_list);
8387 }
8388
8389 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8390 {
8391 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8392 }
8393 #else /* !CONFIG_RT_GROUP_SCHED */
8394 static inline void free_rt_sched_group(struct task_group *tg)
8395 {
8396 }
8397
8398 static inline
8399 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8400 {
8401 return 1;
8402 }
8403
8404 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8405 {
8406 }
8407
8408 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8409 {
8410 }
8411 #endif /* CONFIG_RT_GROUP_SCHED */
8412
8413 #ifdef CONFIG_GROUP_SCHED
8414 static void free_sched_group(struct task_group *tg)
8415 {
8416 free_fair_sched_group(tg);
8417 free_rt_sched_group(tg);
8418 kfree(tg);
8419 }
8420
8421 /* allocate runqueue etc for a new task group */
8422 struct task_group *sched_create_group(struct task_group *parent)
8423 {
8424 struct task_group *tg;
8425 unsigned long flags;
8426 int i;
8427
8428 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8429 if (!tg)
8430 return ERR_PTR(-ENOMEM);
8431
8432 if (!alloc_fair_sched_group(tg, parent))
8433 goto err;
8434
8435 if (!alloc_rt_sched_group(tg, parent))
8436 goto err;
8437
8438 spin_lock_irqsave(&task_group_lock, flags);
8439 for_each_possible_cpu(i) {
8440 register_fair_sched_group(tg, i);
8441 register_rt_sched_group(tg, i);
8442 }
8443 list_add_rcu(&tg->list, &task_groups);
8444
8445 WARN_ON(!parent); /* root should already exist */
8446
8447 tg->parent = parent;
8448 list_add_rcu(&tg->siblings, &parent->children);
8449 INIT_LIST_HEAD(&tg->children);
8450 spin_unlock_irqrestore(&task_group_lock, flags);
8451
8452 return tg;
8453
8454 err:
8455 free_sched_group(tg);
8456 return ERR_PTR(-ENOMEM);
8457 }
8458
8459 /* rcu callback to free various structures associated with a task group */
8460 static void free_sched_group_rcu(struct rcu_head *rhp)
8461 {
8462 /* now it should be safe to free those cfs_rqs */
8463 free_sched_group(container_of(rhp, struct task_group, rcu));
8464 }
8465
8466 /* Destroy runqueue etc associated with a task group */
8467 void sched_destroy_group(struct task_group *tg)
8468 {
8469 unsigned long flags;
8470 int i;
8471
8472 spin_lock_irqsave(&task_group_lock, flags);
8473 for_each_possible_cpu(i) {
8474 unregister_fair_sched_group(tg, i);
8475 unregister_rt_sched_group(tg, i);
8476 }
8477 list_del_rcu(&tg->list);
8478 list_del_rcu(&tg->siblings);
8479 spin_unlock_irqrestore(&task_group_lock, flags);
8480
8481 /* wait for possible concurrent references to cfs_rqs complete */
8482 call_rcu(&tg->rcu, free_sched_group_rcu);
8483 }
8484
8485 /* change task's runqueue when it moves between groups.
8486 * The caller of this function should have put the task in its new group
8487 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8488 * reflect its new group.
8489 */
8490 void sched_move_task(struct task_struct *tsk)
8491 {
8492 int on_rq, running;
8493 unsigned long flags;
8494 struct rq *rq;
8495
8496 rq = task_rq_lock(tsk, &flags);
8497
8498 update_rq_clock(rq);
8499
8500 running = task_current(rq, tsk);
8501 on_rq = tsk->se.on_rq;
8502
8503 if (on_rq)
8504 dequeue_task(rq, tsk, 0);
8505 if (unlikely(running))
8506 tsk->sched_class->put_prev_task(rq, tsk);
8507
8508 set_task_rq(tsk, task_cpu(tsk));
8509
8510 #ifdef CONFIG_FAIR_GROUP_SCHED
8511 if (tsk->sched_class->moved_group)
8512 tsk->sched_class->moved_group(tsk);
8513 #endif
8514
8515 if (unlikely(running))
8516 tsk->sched_class->set_curr_task(rq);
8517 if (on_rq)
8518 enqueue_task(rq, tsk, 0);
8519
8520 task_rq_unlock(rq, &flags);
8521 }
8522 #endif /* CONFIG_GROUP_SCHED */
8523
8524 #ifdef CONFIG_FAIR_GROUP_SCHED
8525 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8526 {
8527 struct cfs_rq *cfs_rq = se->cfs_rq;
8528 int on_rq;
8529
8530 on_rq = se->on_rq;
8531 if (on_rq)
8532 dequeue_entity(cfs_rq, se, 0);
8533
8534 se->load.weight = shares;
8535 se->load.inv_weight = 0;
8536
8537 if (on_rq)
8538 enqueue_entity(cfs_rq, se, 0);
8539 }
8540
8541 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8542 {
8543 struct cfs_rq *cfs_rq = se->cfs_rq;
8544 struct rq *rq = cfs_rq->rq;
8545 unsigned long flags;
8546
8547 spin_lock_irqsave(&rq->lock, flags);
8548 __set_se_shares(se, shares);
8549 spin_unlock_irqrestore(&rq->lock, flags);
8550 }
8551
8552 static DEFINE_MUTEX(shares_mutex);
8553
8554 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8555 {
8556 int i;
8557 unsigned long flags;
8558
8559 /*
8560 * We can't change the weight of the root cgroup.
8561 */
8562 if (!tg->se[0])
8563 return -EINVAL;
8564
8565 if (shares < MIN_SHARES)
8566 shares = MIN_SHARES;
8567 else if (shares > MAX_SHARES)
8568 shares = MAX_SHARES;
8569
8570 mutex_lock(&shares_mutex);
8571 if (tg->shares == shares)
8572 goto done;
8573
8574 spin_lock_irqsave(&task_group_lock, flags);
8575 for_each_possible_cpu(i)
8576 unregister_fair_sched_group(tg, i);
8577 list_del_rcu(&tg->siblings);
8578 spin_unlock_irqrestore(&task_group_lock, flags);
8579
8580 /* wait for any ongoing reference to this group to finish */
8581 synchronize_sched();
8582
8583 /*
8584 * Now we are free to modify the group's share on each cpu
8585 * w/o tripping rebalance_share or load_balance_fair.
8586 */
8587 tg->shares = shares;
8588 for_each_possible_cpu(i) {
8589 /*
8590 * force a rebalance
8591 */
8592 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8593 set_se_shares(tg->se[i], shares);
8594 }
8595
8596 /*
8597 * Enable load balance activity on this group, by inserting it back on
8598 * each cpu's rq->leaf_cfs_rq_list.
8599 */
8600 spin_lock_irqsave(&task_group_lock, flags);
8601 for_each_possible_cpu(i)
8602 register_fair_sched_group(tg, i);
8603 list_add_rcu(&tg->siblings, &tg->parent->children);
8604 spin_unlock_irqrestore(&task_group_lock, flags);
8605 done:
8606 mutex_unlock(&shares_mutex);
8607 return 0;
8608 }
8609
8610 unsigned long sched_group_shares(struct task_group *tg)
8611 {
8612 return tg->shares;
8613 }
8614 #endif
8615
8616 #ifdef CONFIG_RT_GROUP_SCHED
8617 /*
8618 * Ensure that the real time constraints are schedulable.
8619 */
8620 static DEFINE_MUTEX(rt_constraints_mutex);
8621
8622 static unsigned long to_ratio(u64 period, u64 runtime)
8623 {
8624 if (runtime == RUNTIME_INF)
8625 return 1ULL << 16;
8626
8627 return div64_u64(runtime << 16, period);
8628 }
8629
8630 #ifdef CONFIG_CGROUP_SCHED
8631 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8632 {
8633 struct task_group *tgi, *parent = tg->parent;
8634 unsigned long total = 0;
8635
8636 if (!parent) {
8637 if (global_rt_period() < period)
8638 return 0;
8639
8640 return to_ratio(period, runtime) <
8641 to_ratio(global_rt_period(), global_rt_runtime());
8642 }
8643
8644 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8645 return 0;
8646
8647 rcu_read_lock();
8648 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8649 if (tgi == tg)
8650 continue;
8651
8652 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8653 tgi->rt_bandwidth.rt_runtime);
8654 }
8655 rcu_read_unlock();
8656
8657 return total + to_ratio(period, runtime) <=
8658 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8659 parent->rt_bandwidth.rt_runtime);
8660 }
8661 #elif defined CONFIG_USER_SCHED
8662 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8663 {
8664 struct task_group *tgi;
8665 unsigned long total = 0;
8666 unsigned long global_ratio =
8667 to_ratio(global_rt_period(), global_rt_runtime());
8668
8669 rcu_read_lock();
8670 list_for_each_entry_rcu(tgi, &task_groups, list) {
8671 if (tgi == tg)
8672 continue;
8673
8674 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8675 tgi->rt_bandwidth.rt_runtime);
8676 }
8677 rcu_read_unlock();
8678
8679 return total + to_ratio(period, runtime) < global_ratio;
8680 }
8681 #endif
8682
8683 /* Must be called with tasklist_lock held */
8684 static inline int tg_has_rt_tasks(struct task_group *tg)
8685 {
8686 struct task_struct *g, *p;
8687 do_each_thread(g, p) {
8688 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8689 return 1;
8690 } while_each_thread(g, p);
8691 return 0;
8692 }
8693
8694 static int tg_set_bandwidth(struct task_group *tg,
8695 u64 rt_period, u64 rt_runtime)
8696 {
8697 int i, err = 0;
8698
8699 mutex_lock(&rt_constraints_mutex);
8700 read_lock(&tasklist_lock);
8701 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8702 err = -EBUSY;
8703 goto unlock;
8704 }
8705 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8706 err = -EINVAL;
8707 goto unlock;
8708 }
8709
8710 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8711 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8712 tg->rt_bandwidth.rt_runtime = rt_runtime;
8713
8714 for_each_possible_cpu(i) {
8715 struct rt_rq *rt_rq = tg->rt_rq[i];
8716
8717 spin_lock(&rt_rq->rt_runtime_lock);
8718 rt_rq->rt_runtime = rt_runtime;
8719 spin_unlock(&rt_rq->rt_runtime_lock);
8720 }
8721 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8722 unlock:
8723 read_unlock(&tasklist_lock);
8724 mutex_unlock(&rt_constraints_mutex);
8725
8726 return err;
8727 }
8728
8729 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8730 {
8731 u64 rt_runtime, rt_period;
8732
8733 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8734 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8735 if (rt_runtime_us < 0)
8736 rt_runtime = RUNTIME_INF;
8737
8738 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8739 }
8740
8741 long sched_group_rt_runtime(struct task_group *tg)
8742 {
8743 u64 rt_runtime_us;
8744
8745 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8746 return -1;
8747
8748 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8749 do_div(rt_runtime_us, NSEC_PER_USEC);
8750 return rt_runtime_us;
8751 }
8752
8753 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8754 {
8755 u64 rt_runtime, rt_period;
8756
8757 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8758 rt_runtime = tg->rt_bandwidth.rt_runtime;
8759
8760 if (rt_period == 0)
8761 return -EINVAL;
8762
8763 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8764 }
8765
8766 long sched_group_rt_period(struct task_group *tg)
8767 {
8768 u64 rt_period_us;
8769
8770 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8771 do_div(rt_period_us, NSEC_PER_USEC);
8772 return rt_period_us;
8773 }
8774
8775 static int sched_rt_global_constraints(void)
8776 {
8777 struct task_group *tg = &root_task_group;
8778 u64 rt_runtime, rt_period;
8779 int ret = 0;
8780
8781 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8782 rt_runtime = tg->rt_bandwidth.rt_runtime;
8783
8784 mutex_lock(&rt_constraints_mutex);
8785 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8786 ret = -EINVAL;
8787 mutex_unlock(&rt_constraints_mutex);
8788
8789 return ret;
8790 }
8791 #else /* !CONFIG_RT_GROUP_SCHED */
8792 static int sched_rt_global_constraints(void)
8793 {
8794 unsigned long flags;
8795 int i;
8796
8797 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8798 for_each_possible_cpu(i) {
8799 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8800
8801 spin_lock(&rt_rq->rt_runtime_lock);
8802 rt_rq->rt_runtime = global_rt_runtime();
8803 spin_unlock(&rt_rq->rt_runtime_lock);
8804 }
8805 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8806
8807 return 0;
8808 }
8809 #endif /* CONFIG_RT_GROUP_SCHED */
8810
8811 int sched_rt_handler(struct ctl_table *table, int write,
8812 struct file *filp, void __user *buffer, size_t *lenp,
8813 loff_t *ppos)
8814 {
8815 int ret;
8816 int old_period, old_runtime;
8817 static DEFINE_MUTEX(mutex);
8818
8819 mutex_lock(&mutex);
8820 old_period = sysctl_sched_rt_period;
8821 old_runtime = sysctl_sched_rt_runtime;
8822
8823 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8824
8825 if (!ret && write) {
8826 ret = sched_rt_global_constraints();
8827 if (ret) {
8828 sysctl_sched_rt_period = old_period;
8829 sysctl_sched_rt_runtime = old_runtime;
8830 } else {
8831 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8832 def_rt_bandwidth.rt_period =
8833 ns_to_ktime(global_rt_period());
8834 }
8835 }
8836 mutex_unlock(&mutex);
8837
8838 return ret;
8839 }
8840
8841 #ifdef CONFIG_CGROUP_SCHED
8842
8843 /* return corresponding task_group object of a cgroup */
8844 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8845 {
8846 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8847 struct task_group, css);
8848 }
8849
8850 static struct cgroup_subsys_state *
8851 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8852 {
8853 struct task_group *tg, *parent;
8854
8855 if (!cgrp->parent) {
8856 /* This is early initialization for the top cgroup */
8857 init_task_group.css.cgroup = cgrp;
8858 return &init_task_group.css;
8859 }
8860
8861 parent = cgroup_tg(cgrp->parent);
8862 tg = sched_create_group(parent);
8863 if (IS_ERR(tg))
8864 return ERR_PTR(-ENOMEM);
8865
8866 /* Bind the cgroup to task_group object we just created */
8867 tg->css.cgroup = cgrp;
8868
8869 return &tg->css;
8870 }
8871
8872 static void
8873 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8874 {
8875 struct task_group *tg = cgroup_tg(cgrp);
8876
8877 sched_destroy_group(tg);
8878 }
8879
8880 static int
8881 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8882 struct task_struct *tsk)
8883 {
8884 #ifdef CONFIG_RT_GROUP_SCHED
8885 /* Don't accept realtime tasks when there is no way for them to run */
8886 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8887 return -EINVAL;
8888 #else
8889 /* We don't support RT-tasks being in separate groups */
8890 if (tsk->sched_class != &fair_sched_class)
8891 return -EINVAL;
8892 #endif
8893
8894 return 0;
8895 }
8896
8897 static void
8898 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8899 struct cgroup *old_cont, struct task_struct *tsk)
8900 {
8901 sched_move_task(tsk);
8902 }
8903
8904 #ifdef CONFIG_FAIR_GROUP_SCHED
8905 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8906 u64 shareval)
8907 {
8908 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8909 }
8910
8911 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8912 {
8913 struct task_group *tg = cgroup_tg(cgrp);
8914
8915 return (u64) tg->shares;
8916 }
8917 #endif /* CONFIG_FAIR_GROUP_SCHED */
8918
8919 #ifdef CONFIG_RT_GROUP_SCHED
8920 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8921 s64 val)
8922 {
8923 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8924 }
8925
8926 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8927 {
8928 return sched_group_rt_runtime(cgroup_tg(cgrp));
8929 }
8930
8931 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8932 u64 rt_period_us)
8933 {
8934 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8935 }
8936
8937 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8938 {
8939 return sched_group_rt_period(cgroup_tg(cgrp));
8940 }
8941 #endif /* CONFIG_RT_GROUP_SCHED */
8942
8943 static struct cftype cpu_files[] = {
8944 #ifdef CONFIG_FAIR_GROUP_SCHED
8945 {
8946 .name = "shares",
8947 .read_u64 = cpu_shares_read_u64,
8948 .write_u64 = cpu_shares_write_u64,
8949 },
8950 #endif
8951 #ifdef CONFIG_RT_GROUP_SCHED
8952 {
8953 .name = "rt_runtime_us",
8954 .read_s64 = cpu_rt_runtime_read,
8955 .write_s64 = cpu_rt_runtime_write,
8956 },
8957 {
8958 .name = "rt_period_us",
8959 .read_u64 = cpu_rt_period_read_uint,
8960 .write_u64 = cpu_rt_period_write_uint,
8961 },
8962 #endif
8963 };
8964
8965 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8966 {
8967 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8968 }
8969
8970 struct cgroup_subsys cpu_cgroup_subsys = {
8971 .name = "cpu",
8972 .create = cpu_cgroup_create,
8973 .destroy = cpu_cgroup_destroy,
8974 .can_attach = cpu_cgroup_can_attach,
8975 .attach = cpu_cgroup_attach,
8976 .populate = cpu_cgroup_populate,
8977 .subsys_id = cpu_cgroup_subsys_id,
8978 .early_init = 1,
8979 };
8980
8981 #endif /* CONFIG_CGROUP_SCHED */
8982
8983 #ifdef CONFIG_CGROUP_CPUACCT
8984
8985 /*
8986 * CPU accounting code for task groups.
8987 *
8988 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8989 * (balbir@in.ibm.com).
8990 */
8991
8992 /* track cpu usage of a group of tasks */
8993 struct cpuacct {
8994 struct cgroup_subsys_state css;
8995 /* cpuusage holds pointer to a u64-type object on every cpu */
8996 u64 *cpuusage;
8997 };
8998
8999 struct cgroup_subsys cpuacct_subsys;
9000
9001 /* return cpu accounting group corresponding to this container */
9002 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9003 {
9004 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9005 struct cpuacct, css);
9006 }
9007
9008 /* return cpu accounting group to which this task belongs */
9009 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9010 {
9011 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9012 struct cpuacct, css);
9013 }
9014
9015 /* create a new cpu accounting group */
9016 static struct cgroup_subsys_state *cpuacct_create(
9017 struct cgroup_subsys *ss, struct cgroup *cgrp)
9018 {
9019 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9020
9021 if (!ca)
9022 return ERR_PTR(-ENOMEM);
9023
9024 ca->cpuusage = alloc_percpu(u64);
9025 if (!ca->cpuusage) {
9026 kfree(ca);
9027 return ERR_PTR(-ENOMEM);
9028 }
9029
9030 return &ca->css;
9031 }
9032
9033 /* destroy an existing cpu accounting group */
9034 static void
9035 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9036 {
9037 struct cpuacct *ca = cgroup_ca(cgrp);
9038
9039 free_percpu(ca->cpuusage);
9040 kfree(ca);
9041 }
9042
9043 /* return total cpu usage (in nanoseconds) of a group */
9044 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9045 {
9046 struct cpuacct *ca = cgroup_ca(cgrp);
9047 u64 totalcpuusage = 0;
9048 int i;
9049
9050 for_each_possible_cpu(i) {
9051 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9052
9053 /*
9054 * Take rq->lock to make 64-bit addition safe on 32-bit
9055 * platforms.
9056 */
9057 spin_lock_irq(&cpu_rq(i)->lock);
9058 totalcpuusage += *cpuusage;
9059 spin_unlock_irq(&cpu_rq(i)->lock);
9060 }
9061
9062 return totalcpuusage;
9063 }
9064
9065 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9066 u64 reset)
9067 {
9068 struct cpuacct *ca = cgroup_ca(cgrp);
9069 int err = 0;
9070 int i;
9071
9072 if (reset) {
9073 err = -EINVAL;
9074 goto out;
9075 }
9076
9077 for_each_possible_cpu(i) {
9078 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9079
9080 spin_lock_irq(&cpu_rq(i)->lock);
9081 *cpuusage = 0;
9082 spin_unlock_irq(&cpu_rq(i)->lock);
9083 }
9084 out:
9085 return err;
9086 }
9087
9088 static struct cftype files[] = {
9089 {
9090 .name = "usage",
9091 .read_u64 = cpuusage_read,
9092 .write_u64 = cpuusage_write,
9093 },
9094 };
9095
9096 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9097 {
9098 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9099 }
9100
9101 /*
9102 * charge this task's execution time to its accounting group.
9103 *
9104 * called with rq->lock held.
9105 */
9106 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9107 {
9108 struct cpuacct *ca;
9109
9110 if (!cpuacct_subsys.active)
9111 return;
9112
9113 ca = task_ca(tsk);
9114 if (ca) {
9115 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9116
9117 *cpuusage += cputime;
9118 }
9119 }
9120
9121 struct cgroup_subsys cpuacct_subsys = {
9122 .name = "cpuacct",
9123 .create = cpuacct_create,
9124 .destroy = cpuacct_destroy,
9125 .populate = cpuacct_populate,
9126 .subsys_id = cpuacct_subsys_id,
9127 };
9128 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.206941 seconds and 6 git commands to generate.