Merge commit 'v2.6.29-rc2' into perfcounters/core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243 }
244
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247 {
248 hrtimer_cancel(&rt_b->rt_period_timer);
249 }
250 #endif
251
252 /*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256 static DEFINE_MUTEX(sched_domains_mutex);
257
258 #ifdef CONFIG_GROUP_SCHED
259
260 #include <linux/cgroup.h>
261
262 struct cfs_rq;
263
264 static LIST_HEAD(task_groups);
265
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
271
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
283
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
288 struct rt_bandwidth rt_bandwidth;
289 #endif
290
291 struct rcu_head rcu;
292 struct list_head list;
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
297 };
298
299 #ifdef CONFIG_USER_SCHED
300
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
303 {
304 user->tg->uid = user->uid;
305 }
306
307 /*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312 struct task_group root_task_group;
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
328
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
331 */
332 static DEFINE_SPINLOCK(task_group_lock);
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
340
341 /*
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
351
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
354
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
357 */
358 struct task_group init_task_group;
359
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
362 {
363 struct task_group *tg;
364
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
376 }
377
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
380 {
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
385
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
390 }
391
392 #else
393
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
396 {
397 return NULL;
398 }
399
400 #endif /* CONFIG_GROUP_SCHED */
401
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
407 u64 exec_clock;
408 u64 min_vruntime;
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
420 struct sched_entity *curr, *next, *last;
421
422 unsigned int nr_spread_over;
423
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
437
438 #ifdef CONFIG_SMP
439 /*
440 * the part of load.weight contributed by tasks
441 */
442 unsigned long task_weight;
443
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
451
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
461 #endif
462 #endif
463 };
464
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
481
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
490 };
491
492 #ifdef CONFIG_SMP
493
494 /*
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
501 */
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
507 /*
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
524 };
525
526 /*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
530 static struct root_domain def_root_domain;
531
532 #endif
533
534 /*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
563 struct rt_rq rt;
564
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
571 #endif
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
584
585 u64 clock;
586
587 atomic_t nr_iowait;
588
589 #ifdef CONFIG_SMP
590 struct root_domain *rd;
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
596 /* cpu of this runqueue: */
597 int cpu;
598 int online;
599
600 unsigned long avg_load_per_task;
601
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
604 #endif
605
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
613
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
619
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
625
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
630
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
634
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
638 };
639
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
641
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
643 {
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
645 }
646
647 static inline int cpu_of(struct rq *rq)
648 {
649 #ifdef CONFIG_SMP
650 return rq->cpu;
651 #else
652 return 0;
653 #endif
654 }
655
656 /*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
665
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
671 inline void update_rq_clock(struct rq *rq)
672 {
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674 }
675
676 /*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
684
685 /**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692 int runqueue_is_locked(void)
693 {
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701 }
702
703 /*
704 * Debugging: various feature bits
705 */
706
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
710 enum {
711 #include "sched_features.h"
712 };
713
714 #undef SCHED_FEAT
715
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
721 0;
722
723 #undef SCHED_FEAT
724
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
727 #name ,
728
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 NULL
732 };
733
734 #undef SCHED_FEAT
735
736 static int sched_feat_show(struct seq_file *m, void *v)
737 {
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
744 }
745 seq_puts(m, "\n");
746
747 return 0;
748 }
749
750 static ssize_t
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753 {
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
767 if (strncmp(buf, "NO_", 3) == 0) {
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790 }
791
792 static int sched_feat_open(struct inode *inode, struct file *filp)
793 {
794 return single_open(filp, sched_feat_show, NULL);
795 }
796
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
803 };
804
805 static __init int sched_init_debug(void)
806 {
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811 }
812 late_initcall(sched_init_debug);
813
814 #endif
815
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
817
818 /*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
824 /*
825 * ratelimit for updating the group shares.
826 * default: 0.25ms
827 */
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
829
830 /*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835 unsigned int sysctl_sched_shares_thresh = 4;
836
837 /*
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
840 */
841 unsigned int sysctl_sched_rt_period = 1000000;
842
843 static __read_mostly int scheduler_running;
844
845 /*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849 int sysctl_sched_rt_runtime = 950000;
850
851 static inline u64 global_rt_period(void)
852 {
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 }
855
856 static inline u64 global_rt_runtime(void)
857 {
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 }
863
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
870
871 static inline int task_current(struct rq *rq, struct task_struct *p)
872 {
873 return rq->curr == p;
874 }
875
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
878 {
879 return task_current(rq, p);
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 }
885
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 {
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
899 spin_unlock_irq(&rq->lock);
900 }
901
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
904 {
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
910 }
911
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
927 }
928
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 {
931 #ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
943 }
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945
946 /*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
952 {
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
959 }
960 }
961
962 /*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
966 */
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
969 {
970 struct rq *rq;
971
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980 }
981
982 void curr_rq_lock_irq_save(unsigned long *flags)
983 __acquires(rq->lock)
984 {
985 struct rq *rq;
986
987 local_irq_save(*flags);
988 rq = cpu_rq(smp_processor_id());
989 spin_lock(&rq->lock);
990 }
991
992 void curr_rq_unlock_irq_restore(unsigned long *flags)
993 __releases(rq->lock)
994 {
995 struct rq *rq;
996
997 rq = cpu_rq(smp_processor_id());
998 spin_unlock(&rq->lock);
999 local_irq_restore(*flags);
1000 }
1001
1002 void task_rq_unlock_wait(struct task_struct *p)
1003 {
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008 }
1009
1010 static void __task_rq_unlock(struct rq *rq)
1011 __releases(rq->lock)
1012 {
1013 spin_unlock(&rq->lock);
1014 }
1015
1016 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1017 __releases(rq->lock)
1018 {
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020 }
1021
1022 /*
1023 * this_rq_lock - lock this runqueue and disable interrupts.
1024 */
1025 static struct rq *this_rq_lock(void)
1026 __acquires(rq->lock)
1027 {
1028 struct rq *rq;
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035 }
1036
1037 #ifdef CONFIG_SCHED_HRTICK
1038 /*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
1048
1049 /*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054 static inline int hrtick_enabled(struct rq *rq)
1055 {
1056 if (!sched_feat(HRTICK))
1057 return 0;
1058 if (!cpu_active(cpu_of(rq)))
1059 return 0;
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061 }
1062
1063 static void hrtick_clear(struct rq *rq)
1064 {
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067 }
1068
1069 /*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074 {
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
1080 update_rq_clock(rq);
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085 }
1086
1087 #ifdef CONFIG_SMP
1088 /*
1089 * called from hardirq (IPI) context
1090 */
1091 static void __hrtick_start(void *arg)
1092 {
1093 struct rq *rq = arg;
1094
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
1099 }
1100
1101 /*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106 static void hrtick_start(struct rq *rq, u64 delay)
1107 {
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1110
1111 hrtimer_set_expires(timer, time);
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1117 rq->hrtick_csd_pending = 1;
1118 }
1119 }
1120
1121 static int
1122 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123 {
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
1133 hrtick_clear(cpu_rq(cpu));
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138 }
1139
1140 static __init void init_hrtick(void)
1141 {
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143 }
1144 #else
1145 /*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150 static void hrtick_start(struct rq *rq, u64 delay)
1151 {
1152 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1153 }
1154
1155 static inline void init_hrtick(void)
1156 {
1157 }
1158 #endif /* CONFIG_SMP */
1159
1160 static void init_rq_hrtick(struct rq *rq)
1161 {
1162 #ifdef CONFIG_SMP
1163 rq->hrtick_csd_pending = 0;
1164
1165 rq->hrtick_csd.flags = 0;
1166 rq->hrtick_csd.func = __hrtick_start;
1167 rq->hrtick_csd.info = rq;
1168 #endif
1169
1170 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1171 rq->hrtick_timer.function = hrtick;
1172 }
1173 #else /* CONFIG_SCHED_HRTICK */
1174 static inline void hrtick_clear(struct rq *rq)
1175 {
1176 }
1177
1178 static inline void init_rq_hrtick(struct rq *rq)
1179 {
1180 }
1181
1182 static inline void init_hrtick(void)
1183 {
1184 }
1185 #endif /* CONFIG_SCHED_HRTICK */
1186
1187 /*
1188 * resched_task - mark a task 'to be rescheduled now'.
1189 *
1190 * On UP this means the setting of the need_resched flag, on SMP it
1191 * might also involve a cross-CPU call to trigger the scheduler on
1192 * the target CPU.
1193 */
1194 #ifdef CONFIG_SMP
1195
1196 #ifndef tsk_is_polling
1197 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1198 #endif
1199
1200 static void resched_task(struct task_struct *p)
1201 {
1202 int cpu;
1203
1204 assert_spin_locked(&task_rq(p)->lock);
1205
1206 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1207 return;
1208
1209 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1210
1211 cpu = task_cpu(p);
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /* NEED_RESCHED must be visible before we test polling */
1216 smp_mb();
1217 if (!tsk_is_polling(p))
1218 smp_send_reschedule(cpu);
1219 }
1220
1221 static void resched_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long flags;
1225
1226 if (!spin_trylock_irqsave(&rq->lock, flags))
1227 return;
1228 resched_task(cpu_curr(cpu));
1229 spin_unlock_irqrestore(&rq->lock, flags);
1230 }
1231
1232 #ifdef CONFIG_NO_HZ
1233 /*
1234 * When add_timer_on() enqueues a timer into the timer wheel of an
1235 * idle CPU then this timer might expire before the next timer event
1236 * which is scheduled to wake up that CPU. In case of a completely
1237 * idle system the next event might even be infinite time into the
1238 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1239 * leaves the inner idle loop so the newly added timer is taken into
1240 * account when the CPU goes back to idle and evaluates the timer
1241 * wheel for the next timer event.
1242 */
1243 void wake_up_idle_cpu(int cpu)
1244 {
1245 struct rq *rq = cpu_rq(cpu);
1246
1247 if (cpu == smp_processor_id())
1248 return;
1249
1250 /*
1251 * This is safe, as this function is called with the timer
1252 * wheel base lock of (cpu) held. When the CPU is on the way
1253 * to idle and has not yet set rq->curr to idle then it will
1254 * be serialized on the timer wheel base lock and take the new
1255 * timer into account automatically.
1256 */
1257 if (rq->curr != rq->idle)
1258 return;
1259
1260 /*
1261 * We can set TIF_RESCHED on the idle task of the other CPU
1262 * lockless. The worst case is that the other CPU runs the
1263 * idle task through an additional NOOP schedule()
1264 */
1265 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1266
1267 /* NEED_RESCHED must be visible before we test polling */
1268 smp_mb();
1269 if (!tsk_is_polling(rq->idle))
1270 smp_send_reschedule(cpu);
1271 }
1272 #endif /* CONFIG_NO_HZ */
1273
1274 #else /* !CONFIG_SMP */
1275 static void resched_task(struct task_struct *p)
1276 {
1277 assert_spin_locked(&task_rq(p)->lock);
1278 set_tsk_need_resched(p);
1279 }
1280 #endif /* CONFIG_SMP */
1281
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1284 #else
1285 # define WMULT_CONST (1UL << 32)
1286 #endif
1287
1288 #define WMULT_SHIFT 32
1289
1290 /*
1291 * Shift right and round:
1292 */
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1294
1295 /*
1296 * delta *= weight / lw
1297 */
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301 {
1302 u64 tmp;
1303
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
1316 if (unlikely(tmp > WMULT_CONST))
1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1318 WMULT_SHIFT/2);
1319 else
1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321
1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1323 }
1324
1325 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 {
1327 lw->weight += inc;
1328 lw->inv_weight = 0;
1329 }
1330
1331 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 {
1333 lw->weight -= dec;
1334 lw->inv_weight = 0;
1335 }
1336
1337 /*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1348
1349 /*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1360 */
1361 static const int prio_to_weight[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1370 };
1371
1372 /*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
1379 static const u32 prio_to_wmult[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1388 };
1389
1390 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392 /*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397 struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401 };
1402
1403 #ifdef CONFIG_SMP
1404 static unsigned long
1405 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410 static int
1411 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
1414 #endif
1415
1416 #ifdef CONFIG_CGROUP_CPUACCT
1417 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418 #else
1419 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1420 #endif
1421
1422 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423 {
1424 update_load_add(&rq->load, load);
1425 }
1426
1427 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428 {
1429 update_load_sub(&rq->load, load);
1430 }
1431
1432 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1433 typedef int (*tg_visitor)(struct task_group *, void *);
1434
1435 /*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
1439 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1440 {
1441 struct task_group *parent, *child;
1442 int ret;
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446 down:
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454 up:
1455 continue;
1456 }
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
1465 out_unlock:
1466 rcu_read_unlock();
1467
1468 return ret;
1469 }
1470
1471 static int tg_nop(struct task_group *tg, void *data)
1472 {
1473 return 0;
1474 }
1475 #endif
1476
1477 #ifdef CONFIG_SMP
1478 static unsigned long source_load(int cpu, int type);
1479 static unsigned long target_load(int cpu, int type);
1480 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1481
1482 static unsigned long cpu_avg_load_per_task(int cpu)
1483 {
1484 struct rq *rq = cpu_rq(cpu);
1485 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1486
1487 if (nr_running)
1488 rq->avg_load_per_task = rq->load.weight / nr_running;
1489 else
1490 rq->avg_load_per_task = 0;
1491
1492 return rq->avg_load_per_task;
1493 }
1494
1495 #ifdef CONFIG_FAIR_GROUP_SCHED
1496
1497 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1498
1499 /*
1500 * Calculate and set the cpu's group shares.
1501 */
1502 static void
1503 update_group_shares_cpu(struct task_group *tg, int cpu,
1504 unsigned long sd_shares, unsigned long sd_rq_weight)
1505 {
1506 unsigned long shares;
1507 unsigned long rq_weight;
1508
1509 if (!tg->se[cpu])
1510 return;
1511
1512 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1513
1514 /*
1515 * \Sum shares * rq_weight
1516 * shares = -----------------------
1517 * \Sum rq_weight
1518 *
1519 */
1520 shares = (sd_shares * rq_weight) / sd_rq_weight;
1521 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1522
1523 if (abs(shares - tg->se[cpu]->load.weight) >
1524 sysctl_sched_shares_thresh) {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long flags;
1527
1528 spin_lock_irqsave(&rq->lock, flags);
1529 tg->cfs_rq[cpu]->shares = shares;
1530
1531 __set_se_shares(tg->se[cpu], shares);
1532 spin_unlock_irqrestore(&rq->lock, flags);
1533 }
1534 }
1535
1536 /*
1537 * Re-compute the task group their per cpu shares over the given domain.
1538 * This needs to be done in a bottom-up fashion because the rq weight of a
1539 * parent group depends on the shares of its child groups.
1540 */
1541 static int tg_shares_up(struct task_group *tg, void *data)
1542 {
1543 unsigned long weight, rq_weight = 0;
1544 unsigned long shares = 0;
1545 struct sched_domain *sd = data;
1546 int i;
1547
1548 for_each_cpu(i, sched_domain_span(sd)) {
1549 /*
1550 * If there are currently no tasks on the cpu pretend there
1551 * is one of average load so that when a new task gets to
1552 * run here it will not get delayed by group starvation.
1553 */
1554 weight = tg->cfs_rq[i]->load.weight;
1555 if (!weight)
1556 weight = NICE_0_LOAD;
1557
1558 tg->cfs_rq[i]->rq_weight = weight;
1559 rq_weight += weight;
1560 shares += tg->cfs_rq[i]->shares;
1561 }
1562
1563 if ((!shares && rq_weight) || shares > tg->shares)
1564 shares = tg->shares;
1565
1566 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1567 shares = tg->shares;
1568
1569 for_each_cpu(i, sched_domain_span(sd))
1570 update_group_shares_cpu(tg, i, shares, rq_weight);
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * Compute the cpu's hierarchical load factor for each task group.
1577 * This needs to be done in a top-down fashion because the load of a child
1578 * group is a fraction of its parents load.
1579 */
1580 static int tg_load_down(struct task_group *tg, void *data)
1581 {
1582 unsigned long load;
1583 long cpu = (long)data;
1584
1585 if (!tg->parent) {
1586 load = cpu_rq(cpu)->load.weight;
1587 } else {
1588 load = tg->parent->cfs_rq[cpu]->h_load;
1589 load *= tg->cfs_rq[cpu]->shares;
1590 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1591 }
1592
1593 tg->cfs_rq[cpu]->h_load = load;
1594
1595 return 0;
1596 }
1597
1598 static void update_shares(struct sched_domain *sd)
1599 {
1600 u64 now = cpu_clock(raw_smp_processor_id());
1601 s64 elapsed = now - sd->last_update;
1602
1603 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1604 sd->last_update = now;
1605 walk_tg_tree(tg_nop, tg_shares_up, sd);
1606 }
1607 }
1608
1609 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610 {
1611 spin_unlock(&rq->lock);
1612 update_shares(sd);
1613 spin_lock(&rq->lock);
1614 }
1615
1616 static void update_h_load(long cpu)
1617 {
1618 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1619 }
1620
1621 #else
1622
1623 static inline void update_shares(struct sched_domain *sd)
1624 {
1625 }
1626
1627 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629 }
1630
1631 #endif
1632
1633 /*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637 __releases(this_rq->lock)
1638 __acquires(busiest->lock)
1639 __acquires(this_rq->lock)
1640 {
1641 int ret = 0;
1642
1643 if (unlikely(!irqs_disabled())) {
1644 /* printk() doesn't work good under rq->lock */
1645 spin_unlock(&this_rq->lock);
1646 BUG_ON(1);
1647 }
1648 if (unlikely(!spin_trylock(&busiest->lock))) {
1649 if (busiest < this_rq) {
1650 spin_unlock(&this_rq->lock);
1651 spin_lock(&busiest->lock);
1652 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1653 ret = 1;
1654 } else
1655 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1656 }
1657 return ret;
1658 }
1659
1660 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(busiest->lock)
1662 {
1663 spin_unlock(&busiest->lock);
1664 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1665 }
1666 #endif
1667
1668 #ifdef CONFIG_FAIR_GROUP_SCHED
1669 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1670 {
1671 #ifdef CONFIG_SMP
1672 cfs_rq->shares = shares;
1673 #endif
1674 }
1675 #endif
1676
1677 #include "sched_stats.h"
1678 #include "sched_idletask.c"
1679 #include "sched_fair.c"
1680 #include "sched_rt.c"
1681 #ifdef CONFIG_SCHED_DEBUG
1682 # include "sched_debug.c"
1683 #endif
1684
1685 #define sched_class_highest (&rt_sched_class)
1686 #define for_each_class(class) \
1687 for (class = sched_class_highest; class; class = class->next)
1688
1689 static void inc_nr_running(struct rq *rq)
1690 {
1691 rq->nr_running++;
1692 }
1693
1694 static void dec_nr_running(struct rq *rq)
1695 {
1696 rq->nr_running--;
1697 }
1698
1699 static void set_load_weight(struct task_struct *p)
1700 {
1701 if (task_has_rt_policy(p)) {
1702 p->se.load.weight = prio_to_weight[0] * 2;
1703 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1704 return;
1705 }
1706
1707 /*
1708 * SCHED_IDLE tasks get minimal weight:
1709 */
1710 if (p->policy == SCHED_IDLE) {
1711 p->se.load.weight = WEIGHT_IDLEPRIO;
1712 p->se.load.inv_weight = WMULT_IDLEPRIO;
1713 return;
1714 }
1715
1716 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1717 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1718 }
1719
1720 static void update_avg(u64 *avg, u64 sample)
1721 {
1722 s64 diff = sample - *avg;
1723 *avg += diff >> 3;
1724 }
1725
1726 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1727 {
1728 sched_info_queued(p);
1729 p->sched_class->enqueue_task(rq, p, wakeup);
1730 p->se.on_rq = 1;
1731 }
1732
1733 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1734 {
1735 if (sleep && p->se.last_wakeup) {
1736 update_avg(&p->se.avg_overlap,
1737 p->se.sum_exec_runtime - p->se.last_wakeup);
1738 p->se.last_wakeup = 0;
1739 }
1740
1741 sched_info_dequeued(p);
1742 p->sched_class->dequeue_task(rq, p, sleep);
1743 p->se.on_rq = 0;
1744 }
1745
1746 /*
1747 * __normal_prio - return the priority that is based on the static prio
1748 */
1749 static inline int __normal_prio(struct task_struct *p)
1750 {
1751 return p->static_prio;
1752 }
1753
1754 /*
1755 * Calculate the expected normal priority: i.e. priority
1756 * without taking RT-inheritance into account. Might be
1757 * boosted by interactivity modifiers. Changes upon fork,
1758 * setprio syscalls, and whenever the interactivity
1759 * estimator recalculates.
1760 */
1761 static inline int normal_prio(struct task_struct *p)
1762 {
1763 int prio;
1764
1765 if (task_has_rt_policy(p))
1766 prio = MAX_RT_PRIO-1 - p->rt_priority;
1767 else
1768 prio = __normal_prio(p);
1769 return prio;
1770 }
1771
1772 /*
1773 * Calculate the current priority, i.e. the priority
1774 * taken into account by the scheduler. This value might
1775 * be boosted by RT tasks, or might be boosted by
1776 * interactivity modifiers. Will be RT if the task got
1777 * RT-boosted. If not then it returns p->normal_prio.
1778 */
1779 static int effective_prio(struct task_struct *p)
1780 {
1781 p->normal_prio = normal_prio(p);
1782 /*
1783 * If we are RT tasks or we were boosted to RT priority,
1784 * keep the priority unchanged. Otherwise, update priority
1785 * to the normal priority:
1786 */
1787 if (!rt_prio(p->prio))
1788 return p->normal_prio;
1789 return p->prio;
1790 }
1791
1792 /*
1793 * activate_task - move a task to the runqueue.
1794 */
1795 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1796 {
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible--;
1799
1800 enqueue_task(rq, p, wakeup);
1801 inc_nr_running(rq);
1802 }
1803
1804 /*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
1807 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1808 {
1809 if (task_contributes_to_load(p))
1810 rq->nr_uninterruptible++;
1811
1812 dequeue_task(rq, p, sleep);
1813 dec_nr_running(rq);
1814 }
1815
1816 /**
1817 * task_curr - is this task currently executing on a CPU?
1818 * @p: the task in question.
1819 */
1820 inline int task_curr(const struct task_struct *p)
1821 {
1822 return cpu_curr(task_cpu(p)) == p;
1823 }
1824
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826 {
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1837 }
1838
1839 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1840 const struct sched_class *prev_class,
1841 int oldprio, int running)
1842 {
1843 if (prev_class != p->sched_class) {
1844 if (prev_class->switched_from)
1845 prev_class->switched_from(rq, p, running);
1846 p->sched_class->switched_to(rq, p, running);
1847 } else
1848 p->sched_class->prio_changed(rq, p, oldprio, running);
1849 }
1850
1851 #ifdef CONFIG_SMP
1852
1853 /* Used instead of source_load when we know the type == 0 */
1854 static unsigned long weighted_cpuload(const int cpu)
1855 {
1856 return cpu_rq(cpu)->load.weight;
1857 }
1858
1859 /*
1860 * Is this task likely cache-hot:
1861 */
1862 static int
1863 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1864 {
1865 s64 delta;
1866
1867 /*
1868 * Buddy candidates are cache hot:
1869 */
1870 if (sched_feat(CACHE_HOT_BUDDY) &&
1871 (&p->se == cfs_rq_of(&p->se)->next ||
1872 &p->se == cfs_rq_of(&p->se)->last))
1873 return 1;
1874
1875 if (p->sched_class != &fair_sched_class)
1876 return 0;
1877
1878 if (sysctl_sched_migration_cost == -1)
1879 return 1;
1880 if (sysctl_sched_migration_cost == 0)
1881 return 0;
1882
1883 delta = now - p->se.exec_start;
1884
1885 return delta < (s64)sysctl_sched_migration_cost;
1886 }
1887
1888
1889 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1890 {
1891 int old_cpu = task_cpu(p);
1892 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1893 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1894 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1895 u64 clock_offset;
1896
1897 clock_offset = old_rq->clock - new_rq->clock;
1898
1899 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1900
1901 #ifdef CONFIG_SCHEDSTATS
1902 if (p->se.wait_start)
1903 p->se.wait_start -= clock_offset;
1904 if (p->se.sleep_start)
1905 p->se.sleep_start -= clock_offset;
1906 if (p->se.block_start)
1907 p->se.block_start -= clock_offset;
1908 #endif
1909 if (old_cpu != new_cpu) {
1910 p->se.nr_migrations++;
1911 #ifdef CONFIG_SCHEDSTATS
1912 if (task_hot(p, old_rq->clock, NULL))
1913 schedstat_inc(p, se.nr_forced2_migrations);
1914 #endif
1915 }
1916 p->se.vruntime -= old_cfsrq->min_vruntime -
1917 new_cfsrq->min_vruntime;
1918
1919 __set_task_cpu(p, new_cpu);
1920 }
1921
1922 struct migration_req {
1923 struct list_head list;
1924
1925 struct task_struct *task;
1926 int dest_cpu;
1927
1928 struct completion done;
1929 };
1930
1931 /*
1932 * The task's runqueue lock must be held.
1933 * Returns true if you have to wait for migration thread.
1934 */
1935 static int
1936 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1937 {
1938 struct rq *rq = task_rq(p);
1939
1940 /*
1941 * If the task is not on a runqueue (and not running), then
1942 * it is sufficient to simply update the task's cpu field.
1943 */
1944 if (!p->se.on_rq && !task_running(rq, p)) {
1945 set_task_cpu(p, dest_cpu);
1946 return 0;
1947 }
1948
1949 init_completion(&req->done);
1950 req->task = p;
1951 req->dest_cpu = dest_cpu;
1952 list_add(&req->list, &rq->migration_queue);
1953
1954 return 1;
1955 }
1956
1957 /*
1958 * wait_task_inactive - wait for a thread to unschedule.
1959 *
1960 * If @match_state is nonzero, it's the @p->state value just checked and
1961 * not expected to change. If it changes, i.e. @p might have woken up,
1962 * then return zero. When we succeed in waiting for @p to be off its CPU,
1963 * we return a positive number (its total switch count). If a second call
1964 * a short while later returns the same number, the caller can be sure that
1965 * @p has remained unscheduled the whole time.
1966 *
1967 * The caller must ensure that the task *will* unschedule sometime soon,
1968 * else this function might spin for a *long* time. This function can't
1969 * be called with interrupts off, or it may introduce deadlock with
1970 * smp_call_function() if an IPI is sent by the same process we are
1971 * waiting to become inactive.
1972 */
1973 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1974 {
1975 unsigned long flags;
1976 int running, on_rq;
1977 unsigned long ncsw;
1978 struct rq *rq;
1979
1980 for (;;) {
1981 /*
1982 * We do the initial early heuristics without holding
1983 * any task-queue locks at all. We'll only try to get
1984 * the runqueue lock when things look like they will
1985 * work out!
1986 */
1987 rq = task_rq(p);
1988
1989 /*
1990 * If the task is actively running on another CPU
1991 * still, just relax and busy-wait without holding
1992 * any locks.
1993 *
1994 * NOTE! Since we don't hold any locks, it's not
1995 * even sure that "rq" stays as the right runqueue!
1996 * But we don't care, since "task_running()" will
1997 * return false if the runqueue has changed and p
1998 * is actually now running somewhere else!
1999 */
2000 while (task_running(rq, p)) {
2001 if (match_state && unlikely(p->state != match_state))
2002 return 0;
2003 cpu_relax();
2004 }
2005
2006 /*
2007 * Ok, time to look more closely! We need the rq
2008 * lock now, to be *sure*. If we're wrong, we'll
2009 * just go back and repeat.
2010 */
2011 rq = task_rq_lock(p, &flags);
2012 trace_sched_wait_task(rq, p);
2013 running = task_running(rq, p);
2014 on_rq = p->se.on_rq;
2015 ncsw = 0;
2016 if (!match_state || p->state == match_state)
2017 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2018 task_rq_unlock(rq, &flags);
2019
2020 /*
2021 * If it changed from the expected state, bail out now.
2022 */
2023 if (unlikely(!ncsw))
2024 break;
2025
2026 /*
2027 * Was it really running after all now that we
2028 * checked with the proper locks actually held?
2029 *
2030 * Oops. Go back and try again..
2031 */
2032 if (unlikely(running)) {
2033 cpu_relax();
2034 continue;
2035 }
2036
2037 /*
2038 * It's not enough that it's not actively running,
2039 * it must be off the runqueue _entirely_, and not
2040 * preempted!
2041 *
2042 * So if it wa still runnable (but just not actively
2043 * running right now), it's preempted, and we should
2044 * yield - it could be a while.
2045 */
2046 if (unlikely(on_rq)) {
2047 schedule_timeout_uninterruptible(1);
2048 continue;
2049 }
2050
2051 /*
2052 * Ahh, all good. It wasn't running, and it wasn't
2053 * runnable, which means that it will never become
2054 * running in the future either. We're all done!
2055 */
2056 break;
2057 }
2058
2059 return ncsw;
2060 }
2061
2062 /***
2063 * kick_process - kick a running thread to enter/exit the kernel
2064 * @p: the to-be-kicked thread
2065 *
2066 * Cause a process which is running on another CPU to enter
2067 * kernel-mode, without any delay. (to get signals handled.)
2068 *
2069 * NOTE: this function doesnt have to take the runqueue lock,
2070 * because all it wants to ensure is that the remote task enters
2071 * the kernel. If the IPI races and the task has been migrated
2072 * to another CPU then no harm is done and the purpose has been
2073 * achieved as well.
2074 */
2075 void kick_process(struct task_struct *p)
2076 {
2077 int cpu;
2078
2079 preempt_disable();
2080 cpu = task_cpu(p);
2081 if ((cpu != smp_processor_id()) && task_curr(p))
2082 smp_send_reschedule(cpu);
2083 preempt_enable();
2084 }
2085
2086 /*
2087 * Return a low guess at the load of a migration-source cpu weighted
2088 * according to the scheduling class and "nice" value.
2089 *
2090 * We want to under-estimate the load of migration sources, to
2091 * balance conservatively.
2092 */
2093 static unsigned long source_load(int cpu, int type)
2094 {
2095 struct rq *rq = cpu_rq(cpu);
2096 unsigned long total = weighted_cpuload(cpu);
2097
2098 if (type == 0 || !sched_feat(LB_BIAS))
2099 return total;
2100
2101 return min(rq->cpu_load[type-1], total);
2102 }
2103
2104 /*
2105 * Return a high guess at the load of a migration-target cpu weighted
2106 * according to the scheduling class and "nice" value.
2107 */
2108 static unsigned long target_load(int cpu, int type)
2109 {
2110 struct rq *rq = cpu_rq(cpu);
2111 unsigned long total = weighted_cpuload(cpu);
2112
2113 if (type == 0 || !sched_feat(LB_BIAS))
2114 return total;
2115
2116 return max(rq->cpu_load[type-1], total);
2117 }
2118
2119 /*
2120 * find_idlest_group finds and returns the least busy CPU group within the
2121 * domain.
2122 */
2123 static struct sched_group *
2124 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2125 {
2126 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2127 unsigned long min_load = ULONG_MAX, this_load = 0;
2128 int load_idx = sd->forkexec_idx;
2129 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2130
2131 do {
2132 unsigned long load, avg_load;
2133 int local_group;
2134 int i;
2135
2136 /* Skip over this group if it has no CPUs allowed */
2137 if (!cpumask_intersects(sched_group_cpus(group),
2138 &p->cpus_allowed))
2139 continue;
2140
2141 local_group = cpumask_test_cpu(this_cpu,
2142 sched_group_cpus(group));
2143
2144 /* Tally up the load of all CPUs in the group */
2145 avg_load = 0;
2146
2147 for_each_cpu(i, sched_group_cpus(group)) {
2148 /* Bias balancing toward cpus of our domain */
2149 if (local_group)
2150 load = source_load(i, load_idx);
2151 else
2152 load = target_load(i, load_idx);
2153
2154 avg_load += load;
2155 }
2156
2157 /* Adjust by relative CPU power of the group */
2158 avg_load = sg_div_cpu_power(group,
2159 avg_load * SCHED_LOAD_SCALE);
2160
2161 if (local_group) {
2162 this_load = avg_load;
2163 this = group;
2164 } else if (avg_load < min_load) {
2165 min_load = avg_load;
2166 idlest = group;
2167 }
2168 } while (group = group->next, group != sd->groups);
2169
2170 if (!idlest || 100*this_load < imbalance*min_load)
2171 return NULL;
2172 return idlest;
2173 }
2174
2175 /*
2176 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2177 */
2178 static int
2179 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2180 {
2181 unsigned long load, min_load = ULONG_MAX;
2182 int idlest = -1;
2183 int i;
2184
2185 /* Traverse only the allowed CPUs */
2186 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2187 load = weighted_cpuload(i);
2188
2189 if (load < min_load || (load == min_load && i == this_cpu)) {
2190 min_load = load;
2191 idlest = i;
2192 }
2193 }
2194
2195 return idlest;
2196 }
2197
2198 /*
2199 * sched_balance_self: balance the current task (running on cpu) in domains
2200 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2201 * SD_BALANCE_EXEC.
2202 *
2203 * Balance, ie. select the least loaded group.
2204 *
2205 * Returns the target CPU number, or the same CPU if no balancing is needed.
2206 *
2207 * preempt must be disabled.
2208 */
2209 static int sched_balance_self(int cpu, int flag)
2210 {
2211 struct task_struct *t = current;
2212 struct sched_domain *tmp, *sd = NULL;
2213
2214 for_each_domain(cpu, tmp) {
2215 /*
2216 * If power savings logic is enabled for a domain, stop there.
2217 */
2218 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2219 break;
2220 if (tmp->flags & flag)
2221 sd = tmp;
2222 }
2223
2224 if (sd)
2225 update_shares(sd);
2226
2227 while (sd) {
2228 struct sched_group *group;
2229 int new_cpu, weight;
2230
2231 if (!(sd->flags & flag)) {
2232 sd = sd->child;
2233 continue;
2234 }
2235
2236 group = find_idlest_group(sd, t, cpu);
2237 if (!group) {
2238 sd = sd->child;
2239 continue;
2240 }
2241
2242 new_cpu = find_idlest_cpu(group, t, cpu);
2243 if (new_cpu == -1 || new_cpu == cpu) {
2244 /* Now try balancing at a lower domain level of cpu */
2245 sd = sd->child;
2246 continue;
2247 }
2248
2249 /* Now try balancing at a lower domain level of new_cpu */
2250 cpu = new_cpu;
2251 weight = cpumask_weight(sched_domain_span(sd));
2252 sd = NULL;
2253 for_each_domain(cpu, tmp) {
2254 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2255 break;
2256 if (tmp->flags & flag)
2257 sd = tmp;
2258 }
2259 /* while loop will break here if sd == NULL */
2260 }
2261
2262 return cpu;
2263 }
2264
2265 #endif /* CONFIG_SMP */
2266
2267 /**
2268 * task_oncpu_function_call - call a function on the cpu on which a task runs
2269 * @p: the task to evaluate
2270 * @func: the function to be called
2271 * @info: the function call argument
2272 *
2273 * Calls the function @func when the task is currently running. This might
2274 * be on the current CPU, which just calls the function directly
2275 */
2276 void task_oncpu_function_call(struct task_struct *p,
2277 void (*func) (void *info), void *info)
2278 {
2279 int cpu;
2280
2281 preempt_disable();
2282 cpu = task_cpu(p);
2283 if (task_curr(p))
2284 smp_call_function_single(cpu, func, info, 1);
2285 preempt_enable();
2286 }
2287
2288 /***
2289 * try_to_wake_up - wake up a thread
2290 * @p: the to-be-woken-up thread
2291 * @state: the mask of task states that can be woken
2292 * @sync: do a synchronous wakeup?
2293 *
2294 * Put it on the run-queue if it's not already there. The "current"
2295 * thread is always on the run-queue (except when the actual
2296 * re-schedule is in progress), and as such you're allowed to do
2297 * the simpler "current->state = TASK_RUNNING" to mark yourself
2298 * runnable without the overhead of this.
2299 *
2300 * returns failure only if the task is already active.
2301 */
2302 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2303 {
2304 int cpu, orig_cpu, this_cpu, success = 0;
2305 unsigned long flags;
2306 long old_state;
2307 struct rq *rq;
2308
2309 if (!sched_feat(SYNC_WAKEUPS))
2310 sync = 0;
2311
2312 #ifdef CONFIG_SMP
2313 if (sched_feat(LB_WAKEUP_UPDATE)) {
2314 struct sched_domain *sd;
2315
2316 this_cpu = raw_smp_processor_id();
2317 cpu = task_cpu(p);
2318
2319 for_each_domain(this_cpu, sd) {
2320 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2321 update_shares(sd);
2322 break;
2323 }
2324 }
2325 }
2326 #endif
2327
2328 smp_wmb();
2329 rq = task_rq_lock(p, &flags);
2330 update_rq_clock(rq);
2331 old_state = p->state;
2332 if (!(old_state & state))
2333 goto out;
2334
2335 if (p->se.on_rq)
2336 goto out_running;
2337
2338 cpu = task_cpu(p);
2339 orig_cpu = cpu;
2340 this_cpu = smp_processor_id();
2341
2342 #ifdef CONFIG_SMP
2343 if (unlikely(task_running(rq, p)))
2344 goto out_activate;
2345
2346 cpu = p->sched_class->select_task_rq(p, sync);
2347 if (cpu != orig_cpu) {
2348 set_task_cpu(p, cpu);
2349 task_rq_unlock(rq, &flags);
2350 /* might preempt at this point */
2351 rq = task_rq_lock(p, &flags);
2352 old_state = p->state;
2353 if (!(old_state & state))
2354 goto out;
2355 if (p->se.on_rq)
2356 goto out_running;
2357
2358 this_cpu = smp_processor_id();
2359 cpu = task_cpu(p);
2360 }
2361
2362 #ifdef CONFIG_SCHEDSTATS
2363 schedstat_inc(rq, ttwu_count);
2364 if (cpu == this_cpu)
2365 schedstat_inc(rq, ttwu_local);
2366 else {
2367 struct sched_domain *sd;
2368 for_each_domain(this_cpu, sd) {
2369 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2370 schedstat_inc(sd, ttwu_wake_remote);
2371 break;
2372 }
2373 }
2374 }
2375 #endif /* CONFIG_SCHEDSTATS */
2376
2377 out_activate:
2378 #endif /* CONFIG_SMP */
2379 schedstat_inc(p, se.nr_wakeups);
2380 if (sync)
2381 schedstat_inc(p, se.nr_wakeups_sync);
2382 if (orig_cpu != cpu)
2383 schedstat_inc(p, se.nr_wakeups_migrate);
2384 if (cpu == this_cpu)
2385 schedstat_inc(p, se.nr_wakeups_local);
2386 else
2387 schedstat_inc(p, se.nr_wakeups_remote);
2388 activate_task(rq, p, 1);
2389 success = 1;
2390
2391 out_running:
2392 trace_sched_wakeup(rq, p, success);
2393 check_preempt_curr(rq, p, sync);
2394
2395 p->state = TASK_RUNNING;
2396 #ifdef CONFIG_SMP
2397 if (p->sched_class->task_wake_up)
2398 p->sched_class->task_wake_up(rq, p);
2399 #endif
2400 out:
2401 current->se.last_wakeup = current->se.sum_exec_runtime;
2402
2403 task_rq_unlock(rq, &flags);
2404
2405 return success;
2406 }
2407
2408 int wake_up_process(struct task_struct *p)
2409 {
2410 return try_to_wake_up(p, TASK_ALL, 0);
2411 }
2412 EXPORT_SYMBOL(wake_up_process);
2413
2414 int wake_up_state(struct task_struct *p, unsigned int state)
2415 {
2416 return try_to_wake_up(p, state, 0);
2417 }
2418
2419 /*
2420 * Perform scheduler related setup for a newly forked process p.
2421 * p is forked by current.
2422 *
2423 * __sched_fork() is basic setup used by init_idle() too:
2424 */
2425 static void __sched_fork(struct task_struct *p)
2426 {
2427 p->se.exec_start = 0;
2428 p->se.sum_exec_runtime = 0;
2429 p->se.prev_sum_exec_runtime = 0;
2430 p->se.nr_migrations = 0;
2431 p->se.last_wakeup = 0;
2432 p->se.avg_overlap = 0;
2433
2434 #ifdef CONFIG_SCHEDSTATS
2435 p->se.wait_start = 0;
2436 p->se.sum_sleep_runtime = 0;
2437 p->se.sleep_start = 0;
2438 p->se.block_start = 0;
2439 p->se.sleep_max = 0;
2440 p->se.block_max = 0;
2441 p->se.exec_max = 0;
2442 p->se.slice_max = 0;
2443 p->se.wait_max = 0;
2444 #endif
2445
2446 INIT_LIST_HEAD(&p->rt.run_list);
2447 p->se.on_rq = 0;
2448 INIT_LIST_HEAD(&p->se.group_node);
2449
2450 #ifdef CONFIG_PREEMPT_NOTIFIERS
2451 INIT_HLIST_HEAD(&p->preempt_notifiers);
2452 #endif
2453
2454 /*
2455 * We mark the process as running here, but have not actually
2456 * inserted it onto the runqueue yet. This guarantees that
2457 * nobody will actually run it, and a signal or other external
2458 * event cannot wake it up and insert it on the runqueue either.
2459 */
2460 p->state = TASK_RUNNING;
2461 }
2462
2463 /*
2464 * fork()/clone()-time setup:
2465 */
2466 void sched_fork(struct task_struct *p, int clone_flags)
2467 {
2468 int cpu = get_cpu();
2469
2470 __sched_fork(p);
2471
2472 #ifdef CONFIG_SMP
2473 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2474 #endif
2475 set_task_cpu(p, cpu);
2476
2477 /*
2478 * Make sure we do not leak PI boosting priority to the child:
2479 */
2480 p->prio = current->normal_prio;
2481 if (!rt_prio(p->prio))
2482 p->sched_class = &fair_sched_class;
2483
2484 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2485 if (likely(sched_info_on()))
2486 memset(&p->sched_info, 0, sizeof(p->sched_info));
2487 #endif
2488 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2489 p->oncpu = 0;
2490 #endif
2491 #ifdef CONFIG_PREEMPT
2492 /* Want to start with kernel preemption disabled. */
2493 task_thread_info(p)->preempt_count = 1;
2494 #endif
2495 put_cpu();
2496 }
2497
2498 /*
2499 * wake_up_new_task - wake up a newly created task for the first time.
2500 *
2501 * This function will do some initial scheduler statistics housekeeping
2502 * that must be done for every newly created context, then puts the task
2503 * on the runqueue and wakes it.
2504 */
2505 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2506 {
2507 unsigned long flags;
2508 struct rq *rq;
2509
2510 rq = task_rq_lock(p, &flags);
2511 BUG_ON(p->state != TASK_RUNNING);
2512 update_rq_clock(rq);
2513
2514 p->prio = effective_prio(p);
2515
2516 if (!p->sched_class->task_new || !current->se.on_rq) {
2517 activate_task(rq, p, 0);
2518 } else {
2519 /*
2520 * Let the scheduling class do new task startup
2521 * management (if any):
2522 */
2523 p->sched_class->task_new(rq, p);
2524 inc_nr_running(rq);
2525 }
2526 trace_sched_wakeup_new(rq, p, 1);
2527 check_preempt_curr(rq, p, 0);
2528 #ifdef CONFIG_SMP
2529 if (p->sched_class->task_wake_up)
2530 p->sched_class->task_wake_up(rq, p);
2531 #endif
2532 task_rq_unlock(rq, &flags);
2533 }
2534
2535 #ifdef CONFIG_PREEMPT_NOTIFIERS
2536
2537 /**
2538 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2539 * @notifier: notifier struct to register
2540 */
2541 void preempt_notifier_register(struct preempt_notifier *notifier)
2542 {
2543 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2544 }
2545 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2546
2547 /**
2548 * preempt_notifier_unregister - no longer interested in preemption notifications
2549 * @notifier: notifier struct to unregister
2550 *
2551 * This is safe to call from within a preemption notifier.
2552 */
2553 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2554 {
2555 hlist_del(&notifier->link);
2556 }
2557 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2558
2559 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2560 {
2561 struct preempt_notifier *notifier;
2562 struct hlist_node *node;
2563
2564 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2565 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2566 }
2567
2568 static void
2569 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2571 {
2572 struct preempt_notifier *notifier;
2573 struct hlist_node *node;
2574
2575 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2576 notifier->ops->sched_out(notifier, next);
2577 }
2578
2579 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2580
2581 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2582 {
2583 }
2584
2585 static void
2586 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2587 struct task_struct *next)
2588 {
2589 }
2590
2591 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2592
2593 /**
2594 * prepare_task_switch - prepare to switch tasks
2595 * @rq: the runqueue preparing to switch
2596 * @prev: the current task that is being switched out
2597 * @next: the task we are going to switch to.
2598 *
2599 * This is called with the rq lock held and interrupts off. It must
2600 * be paired with a subsequent finish_task_switch after the context
2601 * switch.
2602 *
2603 * prepare_task_switch sets up locking and calls architecture specific
2604 * hooks.
2605 */
2606 static inline void
2607 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2608 struct task_struct *next)
2609 {
2610 fire_sched_out_preempt_notifiers(prev, next);
2611 prepare_lock_switch(rq, next);
2612 prepare_arch_switch(next);
2613 }
2614
2615 /**
2616 * finish_task_switch - clean up after a task-switch
2617 * @rq: runqueue associated with task-switch
2618 * @prev: the thread we just switched away from.
2619 *
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
2624 *
2625 * Note that we may have delayed dropping an mm in context_switch(). If
2626 * so, we finish that here outside of the runqueue lock. (Doing it
2627 * with the lock held can cause deadlocks; see schedule() for
2628 * details.)
2629 */
2630 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2631 __releases(rq->lock)
2632 {
2633 struct mm_struct *mm = rq->prev_mm;
2634 long prev_state;
2635
2636 rq->prev_mm = NULL;
2637
2638 /*
2639 * A task struct has one reference for the use as "current".
2640 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2641 * schedule one last time. The schedule call will never return, and
2642 * the scheduled task must drop that reference.
2643 * The test for TASK_DEAD must occur while the runqueue locks are
2644 * still held, otherwise prev could be scheduled on another cpu, die
2645 * there before we look at prev->state, and then the reference would
2646 * be dropped twice.
2647 * Manfred Spraul <manfred@colorfullife.com>
2648 */
2649 prev_state = prev->state;
2650 finish_arch_switch(prev);
2651 perf_counter_task_sched_in(current, cpu_of(rq));
2652 finish_lock_switch(rq, prev);
2653 #ifdef CONFIG_SMP
2654 if (current->sched_class->post_schedule)
2655 current->sched_class->post_schedule(rq);
2656 #endif
2657
2658 fire_sched_in_preempt_notifiers(current);
2659 if (mm)
2660 mmdrop(mm);
2661 if (unlikely(prev_state == TASK_DEAD)) {
2662 /*
2663 * Remove function-return probe instances associated with this
2664 * task and put them back on the free list.
2665 */
2666 kprobe_flush_task(prev);
2667 put_task_struct(prev);
2668 }
2669 }
2670
2671 /**
2672 * schedule_tail - first thing a freshly forked thread must call.
2673 * @prev: the thread we just switched away from.
2674 */
2675 asmlinkage void schedule_tail(struct task_struct *prev)
2676 __releases(rq->lock)
2677 {
2678 struct rq *rq = this_rq();
2679
2680 finish_task_switch(rq, prev);
2681 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2682 /* In this case, finish_task_switch does not reenable preemption */
2683 preempt_enable();
2684 #endif
2685 if (current->set_child_tid)
2686 put_user(task_pid_vnr(current), current->set_child_tid);
2687 }
2688
2689 /*
2690 * context_switch - switch to the new MM and the new
2691 * thread's register state.
2692 */
2693 static inline void
2694 context_switch(struct rq *rq, struct task_struct *prev,
2695 struct task_struct *next)
2696 {
2697 struct mm_struct *mm, *oldmm;
2698
2699 prepare_task_switch(rq, prev, next);
2700 trace_sched_switch(rq, prev, next);
2701 mm = next->mm;
2702 oldmm = prev->active_mm;
2703 /*
2704 * For paravirt, this is coupled with an exit in switch_to to
2705 * combine the page table reload and the switch backend into
2706 * one hypercall.
2707 */
2708 arch_enter_lazy_cpu_mode();
2709
2710 if (unlikely(!mm)) {
2711 next->active_mm = oldmm;
2712 atomic_inc(&oldmm->mm_count);
2713 enter_lazy_tlb(oldmm, next);
2714 } else
2715 switch_mm(oldmm, mm, next);
2716
2717 if (unlikely(!prev->mm)) {
2718 prev->active_mm = NULL;
2719 rq->prev_mm = oldmm;
2720 }
2721 /*
2722 * Since the runqueue lock will be released by the next
2723 * task (which is an invalid locking op but in the case
2724 * of the scheduler it's an obvious special-case), so we
2725 * do an early lockdep release here:
2726 */
2727 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2728 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2729 #endif
2730
2731 /* Here we just switch the register state and the stack. */
2732 switch_to(prev, next, prev);
2733
2734 barrier();
2735 /*
2736 * this_rq must be evaluated again because prev may have moved
2737 * CPUs since it called schedule(), thus the 'rq' on its stack
2738 * frame will be invalid.
2739 */
2740 finish_task_switch(this_rq(), prev);
2741 }
2742
2743 /*
2744 * nr_running, nr_uninterruptible and nr_context_switches:
2745 *
2746 * externally visible scheduler statistics: current number of runnable
2747 * threads, current number of uninterruptible-sleeping threads, total
2748 * number of context switches performed since bootup.
2749 */
2750 unsigned long nr_running(void)
2751 {
2752 unsigned long i, sum = 0;
2753
2754 for_each_online_cpu(i)
2755 sum += cpu_rq(i)->nr_running;
2756
2757 return sum;
2758 }
2759
2760 unsigned long nr_uninterruptible(void)
2761 {
2762 unsigned long i, sum = 0;
2763
2764 for_each_possible_cpu(i)
2765 sum += cpu_rq(i)->nr_uninterruptible;
2766
2767 /*
2768 * Since we read the counters lockless, it might be slightly
2769 * inaccurate. Do not allow it to go below zero though:
2770 */
2771 if (unlikely((long)sum < 0))
2772 sum = 0;
2773
2774 return sum;
2775 }
2776
2777 unsigned long long nr_context_switches(void)
2778 {
2779 int i;
2780 unsigned long long sum = 0;
2781
2782 for_each_possible_cpu(i)
2783 sum += cpu_rq(i)->nr_switches;
2784
2785 return sum;
2786 }
2787
2788 unsigned long nr_iowait(void)
2789 {
2790 unsigned long i, sum = 0;
2791
2792 for_each_possible_cpu(i)
2793 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2794
2795 return sum;
2796 }
2797
2798 unsigned long nr_active(void)
2799 {
2800 unsigned long i, running = 0, uninterruptible = 0;
2801
2802 for_each_online_cpu(i) {
2803 running += cpu_rq(i)->nr_running;
2804 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2805 }
2806
2807 if (unlikely((long)uninterruptible < 0))
2808 uninterruptible = 0;
2809
2810 return running + uninterruptible;
2811 }
2812
2813 /*
2814 * Update rq->cpu_load[] statistics. This function is usually called every
2815 * scheduler tick (TICK_NSEC).
2816 */
2817 static void update_cpu_load(struct rq *this_rq)
2818 {
2819 unsigned long this_load = this_rq->load.weight;
2820 int i, scale;
2821
2822 this_rq->nr_load_updates++;
2823
2824 /* Update our load: */
2825 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2826 unsigned long old_load, new_load;
2827
2828 /* scale is effectively 1 << i now, and >> i divides by scale */
2829
2830 old_load = this_rq->cpu_load[i];
2831 new_load = this_load;
2832 /*
2833 * Round up the averaging division if load is increasing. This
2834 * prevents us from getting stuck on 9 if the load is 10, for
2835 * example.
2836 */
2837 if (new_load > old_load)
2838 new_load += scale-1;
2839 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2840 }
2841 }
2842
2843 #ifdef CONFIG_SMP
2844
2845 /*
2846 * double_rq_lock - safely lock two runqueues
2847 *
2848 * Note this does not disable interrupts like task_rq_lock,
2849 * you need to do so manually before calling.
2850 */
2851 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2852 __acquires(rq1->lock)
2853 __acquires(rq2->lock)
2854 {
2855 BUG_ON(!irqs_disabled());
2856 if (rq1 == rq2) {
2857 spin_lock(&rq1->lock);
2858 __acquire(rq2->lock); /* Fake it out ;) */
2859 } else {
2860 if (rq1 < rq2) {
2861 spin_lock(&rq1->lock);
2862 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2863 } else {
2864 spin_lock(&rq2->lock);
2865 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2866 }
2867 }
2868 update_rq_clock(rq1);
2869 update_rq_clock(rq2);
2870 }
2871
2872 /*
2873 * double_rq_unlock - safely unlock two runqueues
2874 *
2875 * Note this does not restore interrupts like task_rq_unlock,
2876 * you need to do so manually after calling.
2877 */
2878 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2879 __releases(rq1->lock)
2880 __releases(rq2->lock)
2881 {
2882 spin_unlock(&rq1->lock);
2883 if (rq1 != rq2)
2884 spin_unlock(&rq2->lock);
2885 else
2886 __release(rq2->lock);
2887 }
2888
2889 /*
2890 * If dest_cpu is allowed for this process, migrate the task to it.
2891 * This is accomplished by forcing the cpu_allowed mask to only
2892 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2893 * the cpu_allowed mask is restored.
2894 */
2895 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2896 {
2897 struct migration_req req;
2898 unsigned long flags;
2899 struct rq *rq;
2900
2901 rq = task_rq_lock(p, &flags);
2902 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2903 || unlikely(!cpu_active(dest_cpu)))
2904 goto out;
2905
2906 /* force the process onto the specified CPU */
2907 if (migrate_task(p, dest_cpu, &req)) {
2908 /* Need to wait for migration thread (might exit: take ref). */
2909 struct task_struct *mt = rq->migration_thread;
2910
2911 get_task_struct(mt);
2912 task_rq_unlock(rq, &flags);
2913 wake_up_process(mt);
2914 put_task_struct(mt);
2915 wait_for_completion(&req.done);
2916
2917 return;
2918 }
2919 out:
2920 task_rq_unlock(rq, &flags);
2921 }
2922
2923 /*
2924 * sched_exec - execve() is a valuable balancing opportunity, because at
2925 * this point the task has the smallest effective memory and cache footprint.
2926 */
2927 void sched_exec(void)
2928 {
2929 int new_cpu, this_cpu = get_cpu();
2930 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2931 put_cpu();
2932 if (new_cpu != this_cpu)
2933 sched_migrate_task(current, new_cpu);
2934 }
2935
2936 /*
2937 * pull_task - move a task from a remote runqueue to the local runqueue.
2938 * Both runqueues must be locked.
2939 */
2940 static void pull_task(struct rq *src_rq, struct task_struct *p,
2941 struct rq *this_rq, int this_cpu)
2942 {
2943 deactivate_task(src_rq, p, 0);
2944 set_task_cpu(p, this_cpu);
2945 activate_task(this_rq, p, 0);
2946 /*
2947 * Note that idle threads have a prio of MAX_PRIO, for this test
2948 * to be always true for them.
2949 */
2950 check_preempt_curr(this_rq, p, 0);
2951 }
2952
2953 /*
2954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2955 */
2956 static
2957 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2958 struct sched_domain *sd, enum cpu_idle_type idle,
2959 int *all_pinned)
2960 {
2961 /*
2962 * We do not migrate tasks that are:
2963 * 1) running (obviously), or
2964 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2965 * 3) are cache-hot on their current CPU.
2966 */
2967 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2968 schedstat_inc(p, se.nr_failed_migrations_affine);
2969 return 0;
2970 }
2971 *all_pinned = 0;
2972
2973 if (task_running(rq, p)) {
2974 schedstat_inc(p, se.nr_failed_migrations_running);
2975 return 0;
2976 }
2977
2978 /*
2979 * Aggressive migration if:
2980 * 1) task is cache cold, or
2981 * 2) too many balance attempts have failed.
2982 */
2983
2984 if (!task_hot(p, rq->clock, sd) ||
2985 sd->nr_balance_failed > sd->cache_nice_tries) {
2986 #ifdef CONFIG_SCHEDSTATS
2987 if (task_hot(p, rq->clock, sd)) {
2988 schedstat_inc(sd, lb_hot_gained[idle]);
2989 schedstat_inc(p, se.nr_forced_migrations);
2990 }
2991 #endif
2992 return 1;
2993 }
2994
2995 if (task_hot(p, rq->clock, sd)) {
2996 schedstat_inc(p, se.nr_failed_migrations_hot);
2997 return 0;
2998 }
2999 return 1;
3000 }
3001
3002 static unsigned long
3003 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3004 unsigned long max_load_move, struct sched_domain *sd,
3005 enum cpu_idle_type idle, int *all_pinned,
3006 int *this_best_prio, struct rq_iterator *iterator)
3007 {
3008 int loops = 0, pulled = 0, pinned = 0;
3009 struct task_struct *p;
3010 long rem_load_move = max_load_move;
3011
3012 if (max_load_move == 0)
3013 goto out;
3014
3015 pinned = 1;
3016
3017 /*
3018 * Start the load-balancing iterator:
3019 */
3020 p = iterator->start(iterator->arg);
3021 next:
3022 if (!p || loops++ > sysctl_sched_nr_migrate)
3023 goto out;
3024
3025 if ((p->se.load.weight >> 1) > rem_load_move ||
3026 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3027 p = iterator->next(iterator->arg);
3028 goto next;
3029 }
3030
3031 pull_task(busiest, p, this_rq, this_cpu);
3032 pulled++;
3033 rem_load_move -= p->se.load.weight;
3034
3035 /*
3036 * We only want to steal up to the prescribed amount of weighted load.
3037 */
3038 if (rem_load_move > 0) {
3039 if (p->prio < *this_best_prio)
3040 *this_best_prio = p->prio;
3041 p = iterator->next(iterator->arg);
3042 goto next;
3043 }
3044 out:
3045 /*
3046 * Right now, this is one of only two places pull_task() is called,
3047 * so we can safely collect pull_task() stats here rather than
3048 * inside pull_task().
3049 */
3050 schedstat_add(sd, lb_gained[idle], pulled);
3051
3052 if (all_pinned)
3053 *all_pinned = pinned;
3054
3055 return max_load_move - rem_load_move;
3056 }
3057
3058 /*
3059 * move_tasks tries to move up to max_load_move weighted load from busiest to
3060 * this_rq, as part of a balancing operation within domain "sd".
3061 * Returns 1 if successful and 0 otherwise.
3062 *
3063 * Called with both runqueues locked.
3064 */
3065 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3066 unsigned long max_load_move,
3067 struct sched_domain *sd, enum cpu_idle_type idle,
3068 int *all_pinned)
3069 {
3070 const struct sched_class *class = sched_class_highest;
3071 unsigned long total_load_moved = 0;
3072 int this_best_prio = this_rq->curr->prio;
3073
3074 do {
3075 total_load_moved +=
3076 class->load_balance(this_rq, this_cpu, busiest,
3077 max_load_move - total_load_moved,
3078 sd, idle, all_pinned, &this_best_prio);
3079 class = class->next;
3080
3081 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3082 break;
3083
3084 } while (class && max_load_move > total_load_moved);
3085
3086 return total_load_moved > 0;
3087 }
3088
3089 static int
3090 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3091 struct sched_domain *sd, enum cpu_idle_type idle,
3092 struct rq_iterator *iterator)
3093 {
3094 struct task_struct *p = iterator->start(iterator->arg);
3095 int pinned = 0;
3096
3097 while (p) {
3098 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3099 pull_task(busiest, p, this_rq, this_cpu);
3100 /*
3101 * Right now, this is only the second place pull_task()
3102 * is called, so we can safely collect pull_task()
3103 * stats here rather than inside pull_task().
3104 */
3105 schedstat_inc(sd, lb_gained[idle]);
3106
3107 return 1;
3108 }
3109 p = iterator->next(iterator->arg);
3110 }
3111
3112 return 0;
3113 }
3114
3115 /*
3116 * move_one_task tries to move exactly one task from busiest to this_rq, as
3117 * part of active balancing operations within "domain".
3118 * Returns 1 if successful and 0 otherwise.
3119 *
3120 * Called with both runqueues locked.
3121 */
3122 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3123 struct sched_domain *sd, enum cpu_idle_type idle)
3124 {
3125 const struct sched_class *class;
3126
3127 for (class = sched_class_highest; class; class = class->next)
3128 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3129 return 1;
3130
3131 return 0;
3132 }
3133
3134 /*
3135 * find_busiest_group finds and returns the busiest CPU group within the
3136 * domain. It calculates and returns the amount of weighted load which
3137 * should be moved to restore balance via the imbalance parameter.
3138 */
3139 static struct sched_group *
3140 find_busiest_group(struct sched_domain *sd, int this_cpu,
3141 unsigned long *imbalance, enum cpu_idle_type idle,
3142 int *sd_idle, const struct cpumask *cpus, int *balance)
3143 {
3144 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3145 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3146 unsigned long max_pull;
3147 unsigned long busiest_load_per_task, busiest_nr_running;
3148 unsigned long this_load_per_task, this_nr_running;
3149 int load_idx, group_imb = 0;
3150 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3151 int power_savings_balance = 1;
3152 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3153 unsigned long min_nr_running = ULONG_MAX;
3154 struct sched_group *group_min = NULL, *group_leader = NULL;
3155 #endif
3156
3157 max_load = this_load = total_load = total_pwr = 0;
3158 busiest_load_per_task = busiest_nr_running = 0;
3159 this_load_per_task = this_nr_running = 0;
3160
3161 if (idle == CPU_NOT_IDLE)
3162 load_idx = sd->busy_idx;
3163 else if (idle == CPU_NEWLY_IDLE)
3164 load_idx = sd->newidle_idx;
3165 else
3166 load_idx = sd->idle_idx;
3167
3168 do {
3169 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3170 int local_group;
3171 int i;
3172 int __group_imb = 0;
3173 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3174 unsigned long sum_nr_running, sum_weighted_load;
3175 unsigned long sum_avg_load_per_task;
3176 unsigned long avg_load_per_task;
3177
3178 local_group = cpumask_test_cpu(this_cpu,
3179 sched_group_cpus(group));
3180
3181 if (local_group)
3182 balance_cpu = cpumask_first(sched_group_cpus(group));
3183
3184 /* Tally up the load of all CPUs in the group */
3185 sum_weighted_load = sum_nr_running = avg_load = 0;
3186 sum_avg_load_per_task = avg_load_per_task = 0;
3187
3188 max_cpu_load = 0;
3189 min_cpu_load = ~0UL;
3190
3191 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3192 struct rq *rq = cpu_rq(i);
3193
3194 if (*sd_idle && rq->nr_running)
3195 *sd_idle = 0;
3196
3197 /* Bias balancing toward cpus of our domain */
3198 if (local_group) {
3199 if (idle_cpu(i) && !first_idle_cpu) {
3200 first_idle_cpu = 1;
3201 balance_cpu = i;
3202 }
3203
3204 load = target_load(i, load_idx);
3205 } else {
3206 load = source_load(i, load_idx);
3207 if (load > max_cpu_load)
3208 max_cpu_load = load;
3209 if (min_cpu_load > load)
3210 min_cpu_load = load;
3211 }
3212
3213 avg_load += load;
3214 sum_nr_running += rq->nr_running;
3215 sum_weighted_load += weighted_cpuload(i);
3216
3217 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3218 }
3219
3220 /*
3221 * First idle cpu or the first cpu(busiest) in this sched group
3222 * is eligible for doing load balancing at this and above
3223 * domains. In the newly idle case, we will allow all the cpu's
3224 * to do the newly idle load balance.
3225 */
3226 if (idle != CPU_NEWLY_IDLE && local_group &&
3227 balance_cpu != this_cpu && balance) {
3228 *balance = 0;
3229 goto ret;
3230 }
3231
3232 total_load += avg_load;
3233 total_pwr += group->__cpu_power;
3234
3235 /* Adjust by relative CPU power of the group */
3236 avg_load = sg_div_cpu_power(group,
3237 avg_load * SCHED_LOAD_SCALE);
3238
3239
3240 /*
3241 * Consider the group unbalanced when the imbalance is larger
3242 * than the average weight of two tasks.
3243 *
3244 * APZ: with cgroup the avg task weight can vary wildly and
3245 * might not be a suitable number - should we keep a
3246 * normalized nr_running number somewhere that negates
3247 * the hierarchy?
3248 */
3249 avg_load_per_task = sg_div_cpu_power(group,
3250 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3251
3252 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3253 __group_imb = 1;
3254
3255 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3256
3257 if (local_group) {
3258 this_load = avg_load;
3259 this = group;
3260 this_nr_running = sum_nr_running;
3261 this_load_per_task = sum_weighted_load;
3262 } else if (avg_load > max_load &&
3263 (sum_nr_running > group_capacity || __group_imb)) {
3264 max_load = avg_load;
3265 busiest = group;
3266 busiest_nr_running = sum_nr_running;
3267 busiest_load_per_task = sum_weighted_load;
3268 group_imb = __group_imb;
3269 }
3270
3271 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3272 /*
3273 * Busy processors will not participate in power savings
3274 * balance.
3275 */
3276 if (idle == CPU_NOT_IDLE ||
3277 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3278 goto group_next;
3279
3280 /*
3281 * If the local group is idle or completely loaded
3282 * no need to do power savings balance at this domain
3283 */
3284 if (local_group && (this_nr_running >= group_capacity ||
3285 !this_nr_running))
3286 power_savings_balance = 0;
3287
3288 /*
3289 * If a group is already running at full capacity or idle,
3290 * don't include that group in power savings calculations
3291 */
3292 if (!power_savings_balance || sum_nr_running >= group_capacity
3293 || !sum_nr_running)
3294 goto group_next;
3295
3296 /*
3297 * Calculate the group which has the least non-idle load.
3298 * This is the group from where we need to pick up the load
3299 * for saving power
3300 */
3301 if ((sum_nr_running < min_nr_running) ||
3302 (sum_nr_running == min_nr_running &&
3303 cpumask_first(sched_group_cpus(group)) >
3304 cpumask_first(sched_group_cpus(group_min)))) {
3305 group_min = group;
3306 min_nr_running = sum_nr_running;
3307 min_load_per_task = sum_weighted_load /
3308 sum_nr_running;
3309 }
3310
3311 /*
3312 * Calculate the group which is almost near its
3313 * capacity but still has some space to pick up some load
3314 * from other group and save more power
3315 */
3316 if (sum_nr_running <= group_capacity - 1) {
3317 if (sum_nr_running > leader_nr_running ||
3318 (sum_nr_running == leader_nr_running &&
3319 cpumask_first(sched_group_cpus(group)) <
3320 cpumask_first(sched_group_cpus(group_leader)))) {
3321 group_leader = group;
3322 leader_nr_running = sum_nr_running;
3323 }
3324 }
3325 group_next:
3326 #endif
3327 group = group->next;
3328 } while (group != sd->groups);
3329
3330 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3331 goto out_balanced;
3332
3333 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3334
3335 if (this_load >= avg_load ||
3336 100*max_load <= sd->imbalance_pct*this_load)
3337 goto out_balanced;
3338
3339 busiest_load_per_task /= busiest_nr_running;
3340 if (group_imb)
3341 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3342
3343 /*
3344 * We're trying to get all the cpus to the average_load, so we don't
3345 * want to push ourselves above the average load, nor do we wish to
3346 * reduce the max loaded cpu below the average load, as either of these
3347 * actions would just result in more rebalancing later, and ping-pong
3348 * tasks around. Thus we look for the minimum possible imbalance.
3349 * Negative imbalances (*we* are more loaded than anyone else) will
3350 * be counted as no imbalance for these purposes -- we can't fix that
3351 * by pulling tasks to us. Be careful of negative numbers as they'll
3352 * appear as very large values with unsigned longs.
3353 */
3354 if (max_load <= busiest_load_per_task)
3355 goto out_balanced;
3356
3357 /*
3358 * In the presence of smp nice balancing, certain scenarios can have
3359 * max load less than avg load(as we skip the groups at or below
3360 * its cpu_power, while calculating max_load..)
3361 */
3362 if (max_load < avg_load) {
3363 *imbalance = 0;
3364 goto small_imbalance;
3365 }
3366
3367 /* Don't want to pull so many tasks that a group would go idle */
3368 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3369
3370 /* How much load to actually move to equalise the imbalance */
3371 *imbalance = min(max_pull * busiest->__cpu_power,
3372 (avg_load - this_load) * this->__cpu_power)
3373 / SCHED_LOAD_SCALE;
3374
3375 /*
3376 * if *imbalance is less than the average load per runnable task
3377 * there is no gaurantee that any tasks will be moved so we'll have
3378 * a think about bumping its value to force at least one task to be
3379 * moved
3380 */
3381 if (*imbalance < busiest_load_per_task) {
3382 unsigned long tmp, pwr_now, pwr_move;
3383 unsigned int imbn;
3384
3385 small_imbalance:
3386 pwr_move = pwr_now = 0;
3387 imbn = 2;
3388 if (this_nr_running) {
3389 this_load_per_task /= this_nr_running;
3390 if (busiest_load_per_task > this_load_per_task)
3391 imbn = 1;
3392 } else
3393 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3394
3395 if (max_load - this_load + busiest_load_per_task >=
3396 busiest_load_per_task * imbn) {
3397 *imbalance = busiest_load_per_task;
3398 return busiest;
3399 }
3400
3401 /*
3402 * OK, we don't have enough imbalance to justify moving tasks,
3403 * however we may be able to increase total CPU power used by
3404 * moving them.
3405 */
3406
3407 pwr_now += busiest->__cpu_power *
3408 min(busiest_load_per_task, max_load);
3409 pwr_now += this->__cpu_power *
3410 min(this_load_per_task, this_load);
3411 pwr_now /= SCHED_LOAD_SCALE;
3412
3413 /* Amount of load we'd subtract */
3414 tmp = sg_div_cpu_power(busiest,
3415 busiest_load_per_task * SCHED_LOAD_SCALE);
3416 if (max_load > tmp)
3417 pwr_move += busiest->__cpu_power *
3418 min(busiest_load_per_task, max_load - tmp);
3419
3420 /* Amount of load we'd add */
3421 if (max_load * busiest->__cpu_power <
3422 busiest_load_per_task * SCHED_LOAD_SCALE)
3423 tmp = sg_div_cpu_power(this,
3424 max_load * busiest->__cpu_power);
3425 else
3426 tmp = sg_div_cpu_power(this,
3427 busiest_load_per_task * SCHED_LOAD_SCALE);
3428 pwr_move += this->__cpu_power *
3429 min(this_load_per_task, this_load + tmp);
3430 pwr_move /= SCHED_LOAD_SCALE;
3431
3432 /* Move if we gain throughput */
3433 if (pwr_move > pwr_now)
3434 *imbalance = busiest_load_per_task;
3435 }
3436
3437 return busiest;
3438
3439 out_balanced:
3440 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3441 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3442 goto ret;
3443
3444 if (this == group_leader && group_leader != group_min) {
3445 *imbalance = min_load_per_task;
3446 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3447 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3448 cpumask_first(sched_group_cpus(group_leader));
3449 }
3450 return group_min;
3451 }
3452 #endif
3453 ret:
3454 *imbalance = 0;
3455 return NULL;
3456 }
3457
3458 /*
3459 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3460 */
3461 static struct rq *
3462 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3463 unsigned long imbalance, const struct cpumask *cpus)
3464 {
3465 struct rq *busiest = NULL, *rq;
3466 unsigned long max_load = 0;
3467 int i;
3468
3469 for_each_cpu(i, sched_group_cpus(group)) {
3470 unsigned long wl;
3471
3472 if (!cpumask_test_cpu(i, cpus))
3473 continue;
3474
3475 rq = cpu_rq(i);
3476 wl = weighted_cpuload(i);
3477
3478 if (rq->nr_running == 1 && wl > imbalance)
3479 continue;
3480
3481 if (wl > max_load) {
3482 max_load = wl;
3483 busiest = rq;
3484 }
3485 }
3486
3487 return busiest;
3488 }
3489
3490 /*
3491 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3492 * so long as it is large enough.
3493 */
3494 #define MAX_PINNED_INTERVAL 512
3495
3496 /*
3497 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3498 * tasks if there is an imbalance.
3499 */
3500 static int load_balance(int this_cpu, struct rq *this_rq,
3501 struct sched_domain *sd, enum cpu_idle_type idle,
3502 int *balance, struct cpumask *cpus)
3503 {
3504 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3505 struct sched_group *group;
3506 unsigned long imbalance;
3507 struct rq *busiest;
3508 unsigned long flags;
3509
3510 cpumask_setall(cpus);
3511
3512 /*
3513 * When power savings policy is enabled for the parent domain, idle
3514 * sibling can pick up load irrespective of busy siblings. In this case,
3515 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3516 * portraying it as CPU_NOT_IDLE.
3517 */
3518 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3519 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3520 sd_idle = 1;
3521
3522 schedstat_inc(sd, lb_count[idle]);
3523
3524 redo:
3525 update_shares(sd);
3526 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3527 cpus, balance);
3528
3529 if (*balance == 0)
3530 goto out_balanced;
3531
3532 if (!group) {
3533 schedstat_inc(sd, lb_nobusyg[idle]);
3534 goto out_balanced;
3535 }
3536
3537 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3538 if (!busiest) {
3539 schedstat_inc(sd, lb_nobusyq[idle]);
3540 goto out_balanced;
3541 }
3542
3543 BUG_ON(busiest == this_rq);
3544
3545 schedstat_add(sd, lb_imbalance[idle], imbalance);
3546
3547 ld_moved = 0;
3548 if (busiest->nr_running > 1) {
3549 /*
3550 * Attempt to move tasks. If find_busiest_group has found
3551 * an imbalance but busiest->nr_running <= 1, the group is
3552 * still unbalanced. ld_moved simply stays zero, so it is
3553 * correctly treated as an imbalance.
3554 */
3555 local_irq_save(flags);
3556 double_rq_lock(this_rq, busiest);
3557 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3558 imbalance, sd, idle, &all_pinned);
3559 double_rq_unlock(this_rq, busiest);
3560 local_irq_restore(flags);
3561
3562 /*
3563 * some other cpu did the load balance for us.
3564 */
3565 if (ld_moved && this_cpu != smp_processor_id())
3566 resched_cpu(this_cpu);
3567
3568 /* All tasks on this runqueue were pinned by CPU affinity */
3569 if (unlikely(all_pinned)) {
3570 cpumask_clear_cpu(cpu_of(busiest), cpus);
3571 if (!cpumask_empty(cpus))
3572 goto redo;
3573 goto out_balanced;
3574 }
3575 }
3576
3577 if (!ld_moved) {
3578 schedstat_inc(sd, lb_failed[idle]);
3579 sd->nr_balance_failed++;
3580
3581 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3582
3583 spin_lock_irqsave(&busiest->lock, flags);
3584
3585 /* don't kick the migration_thread, if the curr
3586 * task on busiest cpu can't be moved to this_cpu
3587 */
3588 if (!cpumask_test_cpu(this_cpu,
3589 &busiest->curr->cpus_allowed)) {
3590 spin_unlock_irqrestore(&busiest->lock, flags);
3591 all_pinned = 1;
3592 goto out_one_pinned;
3593 }
3594
3595 if (!busiest->active_balance) {
3596 busiest->active_balance = 1;
3597 busiest->push_cpu = this_cpu;
3598 active_balance = 1;
3599 }
3600 spin_unlock_irqrestore(&busiest->lock, flags);
3601 if (active_balance)
3602 wake_up_process(busiest->migration_thread);
3603
3604 /*
3605 * We've kicked active balancing, reset the failure
3606 * counter.
3607 */
3608 sd->nr_balance_failed = sd->cache_nice_tries+1;
3609 }
3610 } else
3611 sd->nr_balance_failed = 0;
3612
3613 if (likely(!active_balance)) {
3614 /* We were unbalanced, so reset the balancing interval */
3615 sd->balance_interval = sd->min_interval;
3616 } else {
3617 /*
3618 * If we've begun active balancing, start to back off. This
3619 * case may not be covered by the all_pinned logic if there
3620 * is only 1 task on the busy runqueue (because we don't call
3621 * move_tasks).
3622 */
3623 if (sd->balance_interval < sd->max_interval)
3624 sd->balance_interval *= 2;
3625 }
3626
3627 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3629 ld_moved = -1;
3630
3631 goto out;
3632
3633 out_balanced:
3634 schedstat_inc(sd, lb_balanced[idle]);
3635
3636 sd->nr_balance_failed = 0;
3637
3638 out_one_pinned:
3639 /* tune up the balancing interval */
3640 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3641 (sd->balance_interval < sd->max_interval))
3642 sd->balance_interval *= 2;
3643
3644 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3646 ld_moved = -1;
3647 else
3648 ld_moved = 0;
3649 out:
3650 if (ld_moved)
3651 update_shares(sd);
3652 return ld_moved;
3653 }
3654
3655 /*
3656 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3657 * tasks if there is an imbalance.
3658 *
3659 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3660 * this_rq is locked.
3661 */
3662 static int
3663 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3664 struct cpumask *cpus)
3665 {
3666 struct sched_group *group;
3667 struct rq *busiest = NULL;
3668 unsigned long imbalance;
3669 int ld_moved = 0;
3670 int sd_idle = 0;
3671 int all_pinned = 0;
3672
3673 cpumask_setall(cpus);
3674
3675 /*
3676 * When power savings policy is enabled for the parent domain, idle
3677 * sibling can pick up load irrespective of busy siblings. In this case,
3678 * let the state of idle sibling percolate up as IDLE, instead of
3679 * portraying it as CPU_NOT_IDLE.
3680 */
3681 if (sd->flags & SD_SHARE_CPUPOWER &&
3682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3683 sd_idle = 1;
3684
3685 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3686 redo:
3687 update_shares_locked(this_rq, sd);
3688 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3689 &sd_idle, cpus, NULL);
3690 if (!group) {
3691 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3692 goto out_balanced;
3693 }
3694
3695 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3696 if (!busiest) {
3697 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3698 goto out_balanced;
3699 }
3700
3701 BUG_ON(busiest == this_rq);
3702
3703 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3704
3705 ld_moved = 0;
3706 if (busiest->nr_running > 1) {
3707 /* Attempt to move tasks */
3708 double_lock_balance(this_rq, busiest);
3709 /* this_rq->clock is already updated */
3710 update_rq_clock(busiest);
3711 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3712 imbalance, sd, CPU_NEWLY_IDLE,
3713 &all_pinned);
3714 double_unlock_balance(this_rq, busiest);
3715
3716 if (unlikely(all_pinned)) {
3717 cpumask_clear_cpu(cpu_of(busiest), cpus);
3718 if (!cpumask_empty(cpus))
3719 goto redo;
3720 }
3721 }
3722
3723 if (!ld_moved) {
3724 int active_balance = 0;
3725
3726 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3727 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3729 return -1;
3730
3731 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3732 return -1;
3733
3734 if (sd->nr_balance_failed++ < 2)
3735 return -1;
3736
3737 /*
3738 * The only task running in a non-idle cpu can be moved to this
3739 * cpu in an attempt to completely freeup the other CPU
3740 * package. The same method used to move task in load_balance()
3741 * have been extended for load_balance_newidle() to speedup
3742 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3743 *
3744 * The package power saving logic comes from
3745 * find_busiest_group(). If there are no imbalance, then
3746 * f_b_g() will return NULL. However when sched_mc={1,2} then
3747 * f_b_g() will select a group from which a running task may be
3748 * pulled to this cpu in order to make the other package idle.
3749 * If there is no opportunity to make a package idle and if
3750 * there are no imbalance, then f_b_g() will return NULL and no
3751 * action will be taken in load_balance_newidle().
3752 *
3753 * Under normal task pull operation due to imbalance, there
3754 * will be more than one task in the source run queue and
3755 * move_tasks() will succeed. ld_moved will be true and this
3756 * active balance code will not be triggered.
3757 */
3758
3759 /* Lock busiest in correct order while this_rq is held */
3760 double_lock_balance(this_rq, busiest);
3761
3762 /*
3763 * don't kick the migration_thread, if the curr
3764 * task on busiest cpu can't be moved to this_cpu
3765 */
3766 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3767 double_unlock_balance(this_rq, busiest);
3768 all_pinned = 1;
3769 return ld_moved;
3770 }
3771
3772 if (!busiest->active_balance) {
3773 busiest->active_balance = 1;
3774 busiest->push_cpu = this_cpu;
3775 active_balance = 1;
3776 }
3777
3778 double_unlock_balance(this_rq, busiest);
3779 /*
3780 * Should not call ttwu while holding a rq->lock
3781 */
3782 spin_unlock(&this_rq->lock);
3783 if (active_balance)
3784 wake_up_process(busiest->migration_thread);
3785 spin_lock(&this_rq->lock);
3786
3787 } else
3788 sd->nr_balance_failed = 0;
3789
3790 update_shares_locked(this_rq, sd);
3791 return ld_moved;
3792
3793 out_balanced:
3794 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3797 return -1;
3798 sd->nr_balance_failed = 0;
3799
3800 return 0;
3801 }
3802
3803 /*
3804 * idle_balance is called by schedule() if this_cpu is about to become
3805 * idle. Attempts to pull tasks from other CPUs.
3806 */
3807 static void idle_balance(int this_cpu, struct rq *this_rq)
3808 {
3809 struct sched_domain *sd;
3810 int pulled_task = 0;
3811 unsigned long next_balance = jiffies + HZ;
3812 cpumask_var_t tmpmask;
3813
3814 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3815 return;
3816
3817 for_each_domain(this_cpu, sd) {
3818 unsigned long interval;
3819
3820 if (!(sd->flags & SD_LOAD_BALANCE))
3821 continue;
3822
3823 if (sd->flags & SD_BALANCE_NEWIDLE)
3824 /* If we've pulled tasks over stop searching: */
3825 pulled_task = load_balance_newidle(this_cpu, this_rq,
3826 sd, tmpmask);
3827
3828 interval = msecs_to_jiffies(sd->balance_interval);
3829 if (time_after(next_balance, sd->last_balance + interval))
3830 next_balance = sd->last_balance + interval;
3831 if (pulled_task)
3832 break;
3833 }
3834 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3835 /*
3836 * We are going idle. next_balance may be set based on
3837 * a busy processor. So reset next_balance.
3838 */
3839 this_rq->next_balance = next_balance;
3840 }
3841 free_cpumask_var(tmpmask);
3842 }
3843
3844 /*
3845 * active_load_balance is run by migration threads. It pushes running tasks
3846 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3847 * running on each physical CPU where possible, and avoids physical /
3848 * logical imbalances.
3849 *
3850 * Called with busiest_rq locked.
3851 */
3852 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3853 {
3854 int target_cpu = busiest_rq->push_cpu;
3855 struct sched_domain *sd;
3856 struct rq *target_rq;
3857
3858 /* Is there any task to move? */
3859 if (busiest_rq->nr_running <= 1)
3860 return;
3861
3862 target_rq = cpu_rq(target_cpu);
3863
3864 /*
3865 * This condition is "impossible", if it occurs
3866 * we need to fix it. Originally reported by
3867 * Bjorn Helgaas on a 128-cpu setup.
3868 */
3869 BUG_ON(busiest_rq == target_rq);
3870
3871 /* move a task from busiest_rq to target_rq */
3872 double_lock_balance(busiest_rq, target_rq);
3873 update_rq_clock(busiest_rq);
3874 update_rq_clock(target_rq);
3875
3876 /* Search for an sd spanning us and the target CPU. */
3877 for_each_domain(target_cpu, sd) {
3878 if ((sd->flags & SD_LOAD_BALANCE) &&
3879 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3880 break;
3881 }
3882
3883 if (likely(sd)) {
3884 schedstat_inc(sd, alb_count);
3885
3886 if (move_one_task(target_rq, target_cpu, busiest_rq,
3887 sd, CPU_IDLE))
3888 schedstat_inc(sd, alb_pushed);
3889 else
3890 schedstat_inc(sd, alb_failed);
3891 }
3892 double_unlock_balance(busiest_rq, target_rq);
3893 }
3894
3895 #ifdef CONFIG_NO_HZ
3896 static struct {
3897 atomic_t load_balancer;
3898 cpumask_var_t cpu_mask;
3899 } nohz ____cacheline_aligned = {
3900 .load_balancer = ATOMIC_INIT(-1),
3901 };
3902
3903 /*
3904 * This routine will try to nominate the ilb (idle load balancing)
3905 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3906 * load balancing on behalf of all those cpus. If all the cpus in the system
3907 * go into this tickless mode, then there will be no ilb owner (as there is
3908 * no need for one) and all the cpus will sleep till the next wakeup event
3909 * arrives...
3910 *
3911 * For the ilb owner, tick is not stopped. And this tick will be used
3912 * for idle load balancing. ilb owner will still be part of
3913 * nohz.cpu_mask..
3914 *
3915 * While stopping the tick, this cpu will become the ilb owner if there
3916 * is no other owner. And will be the owner till that cpu becomes busy
3917 * or if all cpus in the system stop their ticks at which point
3918 * there is no need for ilb owner.
3919 *
3920 * When the ilb owner becomes busy, it nominates another owner, during the
3921 * next busy scheduler_tick()
3922 */
3923 int select_nohz_load_balancer(int stop_tick)
3924 {
3925 int cpu = smp_processor_id();
3926
3927 if (stop_tick) {
3928 cpumask_set_cpu(cpu, nohz.cpu_mask);
3929 cpu_rq(cpu)->in_nohz_recently = 1;
3930
3931 /*
3932 * If we are going offline and still the leader, give up!
3933 */
3934 if (!cpu_active(cpu) &&
3935 atomic_read(&nohz.load_balancer) == cpu) {
3936 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3937 BUG();
3938 return 0;
3939 }
3940
3941 /* time for ilb owner also to sleep */
3942 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3943 if (atomic_read(&nohz.load_balancer) == cpu)
3944 atomic_set(&nohz.load_balancer, -1);
3945 return 0;
3946 }
3947
3948 if (atomic_read(&nohz.load_balancer) == -1) {
3949 /* make me the ilb owner */
3950 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3951 return 1;
3952 } else if (atomic_read(&nohz.load_balancer) == cpu)
3953 return 1;
3954 } else {
3955 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3956 return 0;
3957
3958 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3959
3960 if (atomic_read(&nohz.load_balancer) == cpu)
3961 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3962 BUG();
3963 }
3964 return 0;
3965 }
3966 #endif
3967
3968 static DEFINE_SPINLOCK(balancing);
3969
3970 /*
3971 * It checks each scheduling domain to see if it is due to be balanced,
3972 * and initiates a balancing operation if so.
3973 *
3974 * Balancing parameters are set up in arch_init_sched_domains.
3975 */
3976 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3977 {
3978 int balance = 1;
3979 struct rq *rq = cpu_rq(cpu);
3980 unsigned long interval;
3981 struct sched_domain *sd;
3982 /* Earliest time when we have to do rebalance again */
3983 unsigned long next_balance = jiffies + 60*HZ;
3984 int update_next_balance = 0;
3985 int need_serialize;
3986 cpumask_var_t tmp;
3987
3988 /* Fails alloc? Rebalancing probably not a priority right now. */
3989 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3990 return;
3991
3992 for_each_domain(cpu, sd) {
3993 if (!(sd->flags & SD_LOAD_BALANCE))
3994 continue;
3995
3996 interval = sd->balance_interval;
3997 if (idle != CPU_IDLE)
3998 interval *= sd->busy_factor;
3999
4000 /* scale ms to jiffies */
4001 interval = msecs_to_jiffies(interval);
4002 if (unlikely(!interval))
4003 interval = 1;
4004 if (interval > HZ*NR_CPUS/10)
4005 interval = HZ*NR_CPUS/10;
4006
4007 need_serialize = sd->flags & SD_SERIALIZE;
4008
4009 if (need_serialize) {
4010 if (!spin_trylock(&balancing))
4011 goto out;
4012 }
4013
4014 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4015 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4016 /*
4017 * We've pulled tasks over so either we're no
4018 * longer idle, or one of our SMT siblings is
4019 * not idle.
4020 */
4021 idle = CPU_NOT_IDLE;
4022 }
4023 sd->last_balance = jiffies;
4024 }
4025 if (need_serialize)
4026 spin_unlock(&balancing);
4027 out:
4028 if (time_after(next_balance, sd->last_balance + interval)) {
4029 next_balance = sd->last_balance + interval;
4030 update_next_balance = 1;
4031 }
4032
4033 /*
4034 * Stop the load balance at this level. There is another
4035 * CPU in our sched group which is doing load balancing more
4036 * actively.
4037 */
4038 if (!balance)
4039 break;
4040 }
4041
4042 /*
4043 * next_balance will be updated only when there is a need.
4044 * When the cpu is attached to null domain for ex, it will not be
4045 * updated.
4046 */
4047 if (likely(update_next_balance))
4048 rq->next_balance = next_balance;
4049
4050 free_cpumask_var(tmp);
4051 }
4052
4053 /*
4054 * run_rebalance_domains is triggered when needed from the scheduler tick.
4055 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4056 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4057 */
4058 static void run_rebalance_domains(struct softirq_action *h)
4059 {
4060 int this_cpu = smp_processor_id();
4061 struct rq *this_rq = cpu_rq(this_cpu);
4062 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4063 CPU_IDLE : CPU_NOT_IDLE;
4064
4065 rebalance_domains(this_cpu, idle);
4066
4067 #ifdef CONFIG_NO_HZ
4068 /*
4069 * If this cpu is the owner for idle load balancing, then do the
4070 * balancing on behalf of the other idle cpus whose ticks are
4071 * stopped.
4072 */
4073 if (this_rq->idle_at_tick &&
4074 atomic_read(&nohz.load_balancer) == this_cpu) {
4075 struct rq *rq;
4076 int balance_cpu;
4077
4078 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4079 if (balance_cpu == this_cpu)
4080 continue;
4081
4082 /*
4083 * If this cpu gets work to do, stop the load balancing
4084 * work being done for other cpus. Next load
4085 * balancing owner will pick it up.
4086 */
4087 if (need_resched())
4088 break;
4089
4090 rebalance_domains(balance_cpu, CPU_IDLE);
4091
4092 rq = cpu_rq(balance_cpu);
4093 if (time_after(this_rq->next_balance, rq->next_balance))
4094 this_rq->next_balance = rq->next_balance;
4095 }
4096 }
4097 #endif
4098 }
4099
4100 /*
4101 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4102 *
4103 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4104 * idle load balancing owner or decide to stop the periodic load balancing,
4105 * if the whole system is idle.
4106 */
4107 static inline void trigger_load_balance(struct rq *rq, int cpu)
4108 {
4109 #ifdef CONFIG_NO_HZ
4110 /*
4111 * If we were in the nohz mode recently and busy at the current
4112 * scheduler tick, then check if we need to nominate new idle
4113 * load balancer.
4114 */
4115 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4116 rq->in_nohz_recently = 0;
4117
4118 if (atomic_read(&nohz.load_balancer) == cpu) {
4119 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4120 atomic_set(&nohz.load_balancer, -1);
4121 }
4122
4123 if (atomic_read(&nohz.load_balancer) == -1) {
4124 /*
4125 * simple selection for now: Nominate the
4126 * first cpu in the nohz list to be the next
4127 * ilb owner.
4128 *
4129 * TBD: Traverse the sched domains and nominate
4130 * the nearest cpu in the nohz.cpu_mask.
4131 */
4132 int ilb = cpumask_first(nohz.cpu_mask);
4133
4134 if (ilb < nr_cpu_ids)
4135 resched_cpu(ilb);
4136 }
4137 }
4138
4139 /*
4140 * If this cpu is idle and doing idle load balancing for all the
4141 * cpus with ticks stopped, is it time for that to stop?
4142 */
4143 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4144 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4145 resched_cpu(cpu);
4146 return;
4147 }
4148
4149 /*
4150 * If this cpu is idle and the idle load balancing is done by
4151 * someone else, then no need raise the SCHED_SOFTIRQ
4152 */
4153 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4154 cpumask_test_cpu(cpu, nohz.cpu_mask))
4155 return;
4156 #endif
4157 if (time_after_eq(jiffies, rq->next_balance))
4158 raise_softirq(SCHED_SOFTIRQ);
4159 }
4160
4161 #else /* CONFIG_SMP */
4162
4163 /*
4164 * on UP we do not need to balance between CPUs:
4165 */
4166 static inline void idle_balance(int cpu, struct rq *rq)
4167 {
4168 }
4169
4170 #endif
4171
4172 DEFINE_PER_CPU(struct kernel_stat, kstat);
4173
4174 EXPORT_PER_CPU_SYMBOL(kstat);
4175
4176 /*
4177 * Return any ns on the sched_clock that have not yet been banked in
4178 * @p in case that task is currently running.
4179 */
4180 unsigned long long __task_delta_exec(struct task_struct *p, int update)
4181 {
4182 s64 delta_exec;
4183 struct rq *rq;
4184
4185 rq = task_rq(p);
4186 WARN_ON_ONCE(!runqueue_is_locked());
4187 WARN_ON_ONCE(!task_current(rq, p));
4188
4189 if (update)
4190 update_rq_clock(rq);
4191
4192 delta_exec = rq->clock - p->se.exec_start;
4193
4194 WARN_ON_ONCE(delta_exec < 0);
4195
4196 return delta_exec;
4197 }
4198
4199 /*
4200 * Return any ns on the sched_clock that have not yet been banked in
4201 * @p in case that task is currently running.
4202 */
4203 unsigned long long task_delta_exec(struct task_struct *p)
4204 {
4205 unsigned long flags;
4206 struct rq *rq;
4207 u64 ns = 0;
4208
4209 rq = task_rq_lock(p, &flags);
4210
4211 if (task_current(rq, p)) {
4212 u64 delta_exec;
4213
4214 update_rq_clock(rq);
4215 delta_exec = rq->clock - p->se.exec_start;
4216 if ((s64)delta_exec > 0)
4217 ns = delta_exec;
4218 }
4219
4220 task_rq_unlock(rq, &flags);
4221
4222 return ns;
4223 }
4224
4225 /*
4226 * Account user cpu time to a process.
4227 * @p: the process that the cpu time gets accounted to
4228 * @cputime: the cpu time spent in user space since the last update
4229 * @cputime_scaled: cputime scaled by cpu frequency
4230 */
4231 void account_user_time(struct task_struct *p, cputime_t cputime,
4232 cputime_t cputime_scaled)
4233 {
4234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4235 cputime64_t tmp;
4236
4237 /* Add user time to process. */
4238 p->utime = cputime_add(p->utime, cputime);
4239 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4240 account_group_user_time(p, cputime);
4241
4242 /* Add user time to cpustat. */
4243 tmp = cputime_to_cputime64(cputime);
4244 if (TASK_NICE(p) > 0)
4245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4246 else
4247 cpustat->user = cputime64_add(cpustat->user, tmp);
4248 /* Account for user time used */
4249 acct_update_integrals(p);
4250 }
4251
4252 /*
4253 * Account guest cpu time to a process.
4254 * @p: the process that the cpu time gets accounted to
4255 * @cputime: the cpu time spent in virtual machine since the last update
4256 * @cputime_scaled: cputime scaled by cpu frequency
4257 */
4258 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4259 cputime_t cputime_scaled)
4260 {
4261 cputime64_t tmp;
4262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4263
4264 tmp = cputime_to_cputime64(cputime);
4265
4266 /* Add guest time to process. */
4267 p->utime = cputime_add(p->utime, cputime);
4268 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4269 account_group_user_time(p, cputime);
4270 p->gtime = cputime_add(p->gtime, cputime);
4271
4272 /* Add guest time to cpustat. */
4273 cpustat->user = cputime64_add(cpustat->user, tmp);
4274 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4275 }
4276
4277 /*
4278 * Account system cpu time to a process.
4279 * @p: the process that the cpu time gets accounted to
4280 * @hardirq_offset: the offset to subtract from hardirq_count()
4281 * @cputime: the cpu time spent in kernel space since the last update
4282 * @cputime_scaled: cputime scaled by cpu frequency
4283 */
4284 void account_system_time(struct task_struct *p, int hardirq_offset,
4285 cputime_t cputime, cputime_t cputime_scaled)
4286 {
4287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4288 cputime64_t tmp;
4289
4290 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4291 account_guest_time(p, cputime, cputime_scaled);
4292 return;
4293 }
4294
4295 /* Add system time to process. */
4296 p->stime = cputime_add(p->stime, cputime);
4297 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4298 account_group_system_time(p, cputime);
4299
4300 /* Add system time to cpustat. */
4301 tmp = cputime_to_cputime64(cputime);
4302 if (hardirq_count() - hardirq_offset)
4303 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4304 else if (softirq_count())
4305 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4306 else
4307 cpustat->system = cputime64_add(cpustat->system, tmp);
4308
4309 /* Account for system time used */
4310 acct_update_integrals(p);
4311 }
4312
4313 /*
4314 * Account for involuntary wait time.
4315 * @steal: the cpu time spent in involuntary wait
4316 */
4317 void account_steal_time(cputime_t cputime)
4318 {
4319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4320 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4321
4322 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4323 }
4324
4325 /*
4326 * Account for idle time.
4327 * @cputime: the cpu time spent in idle wait
4328 */
4329 void account_idle_time(cputime_t cputime)
4330 {
4331 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4332 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4333 struct rq *rq = this_rq();
4334
4335 if (atomic_read(&rq->nr_iowait) > 0)
4336 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4337 else
4338 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4339 }
4340
4341 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4342
4343 /*
4344 * Account a single tick of cpu time.
4345 * @p: the process that the cpu time gets accounted to
4346 * @user_tick: indicates if the tick is a user or a system tick
4347 */
4348 void account_process_tick(struct task_struct *p, int user_tick)
4349 {
4350 cputime_t one_jiffy = jiffies_to_cputime(1);
4351 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4352 struct rq *rq = this_rq();
4353
4354 if (user_tick)
4355 account_user_time(p, one_jiffy, one_jiffy_scaled);
4356 else if (p != rq->idle)
4357 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4358 one_jiffy_scaled);
4359 else
4360 account_idle_time(one_jiffy);
4361 }
4362
4363 /*
4364 * Account multiple ticks of steal time.
4365 * @p: the process from which the cpu time has been stolen
4366 * @ticks: number of stolen ticks
4367 */
4368 void account_steal_ticks(unsigned long ticks)
4369 {
4370 account_steal_time(jiffies_to_cputime(ticks));
4371 }
4372
4373 /*
4374 * Account multiple ticks of idle time.
4375 * @ticks: number of stolen ticks
4376 */
4377 void account_idle_ticks(unsigned long ticks)
4378 {
4379 account_idle_time(jiffies_to_cputime(ticks));
4380 }
4381
4382 #endif
4383
4384 /*
4385 * Use precise platform statistics if available:
4386 */
4387 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4388 cputime_t task_utime(struct task_struct *p)
4389 {
4390 return p->utime;
4391 }
4392
4393 cputime_t task_stime(struct task_struct *p)
4394 {
4395 return p->stime;
4396 }
4397 #else
4398 cputime_t task_utime(struct task_struct *p)
4399 {
4400 clock_t utime = cputime_to_clock_t(p->utime),
4401 total = utime + cputime_to_clock_t(p->stime);
4402 u64 temp;
4403
4404 /*
4405 * Use CFS's precise accounting:
4406 */
4407 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4408
4409 if (total) {
4410 temp *= utime;
4411 do_div(temp, total);
4412 }
4413 utime = (clock_t)temp;
4414
4415 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4416 return p->prev_utime;
4417 }
4418
4419 cputime_t task_stime(struct task_struct *p)
4420 {
4421 clock_t stime;
4422
4423 /*
4424 * Use CFS's precise accounting. (we subtract utime from
4425 * the total, to make sure the total observed by userspace
4426 * grows monotonically - apps rely on that):
4427 */
4428 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4429 cputime_to_clock_t(task_utime(p));
4430
4431 if (stime >= 0)
4432 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4433
4434 return p->prev_stime;
4435 }
4436 #endif
4437
4438 inline cputime_t task_gtime(struct task_struct *p)
4439 {
4440 return p->gtime;
4441 }
4442
4443 /*
4444 * This function gets called by the timer code, with HZ frequency.
4445 * We call it with interrupts disabled.
4446 *
4447 * It also gets called by the fork code, when changing the parent's
4448 * timeslices.
4449 */
4450 void scheduler_tick(void)
4451 {
4452 int cpu = smp_processor_id();
4453 struct rq *rq = cpu_rq(cpu);
4454 struct task_struct *curr = rq->curr;
4455
4456 sched_clock_tick();
4457
4458 spin_lock(&rq->lock);
4459 update_rq_clock(rq);
4460 update_cpu_load(rq);
4461 curr->sched_class->task_tick(rq, curr, 0);
4462 perf_counter_task_tick(curr, cpu);
4463 spin_unlock(&rq->lock);
4464
4465 #ifdef CONFIG_SMP
4466 rq->idle_at_tick = idle_cpu(cpu);
4467 trigger_load_balance(rq, cpu);
4468 #endif
4469 }
4470
4471 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4472 defined(CONFIG_PREEMPT_TRACER))
4473
4474 static inline unsigned long get_parent_ip(unsigned long addr)
4475 {
4476 if (in_lock_functions(addr)) {
4477 addr = CALLER_ADDR2;
4478 if (in_lock_functions(addr))
4479 addr = CALLER_ADDR3;
4480 }
4481 return addr;
4482 }
4483
4484 void __kprobes add_preempt_count(int val)
4485 {
4486 #ifdef CONFIG_DEBUG_PREEMPT
4487 /*
4488 * Underflow?
4489 */
4490 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4491 return;
4492 #endif
4493 preempt_count() += val;
4494 #ifdef CONFIG_DEBUG_PREEMPT
4495 /*
4496 * Spinlock count overflowing soon?
4497 */
4498 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4499 PREEMPT_MASK - 10);
4500 #endif
4501 if (preempt_count() == val)
4502 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4503 }
4504 EXPORT_SYMBOL(add_preempt_count);
4505
4506 void __kprobes sub_preempt_count(int val)
4507 {
4508 #ifdef CONFIG_DEBUG_PREEMPT
4509 /*
4510 * Underflow?
4511 */
4512 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4513 return;
4514 /*
4515 * Is the spinlock portion underflowing?
4516 */
4517 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4518 !(preempt_count() & PREEMPT_MASK)))
4519 return;
4520 #endif
4521
4522 if (preempt_count() == val)
4523 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4524 preempt_count() -= val;
4525 }
4526 EXPORT_SYMBOL(sub_preempt_count);
4527
4528 #endif
4529
4530 /*
4531 * Print scheduling while atomic bug:
4532 */
4533 static noinline void __schedule_bug(struct task_struct *prev)
4534 {
4535 struct pt_regs *regs = get_irq_regs();
4536
4537 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4538 prev->comm, prev->pid, preempt_count());
4539
4540 debug_show_held_locks(prev);
4541 print_modules();
4542 if (irqs_disabled())
4543 print_irqtrace_events(prev);
4544
4545 if (regs)
4546 show_regs(regs);
4547 else
4548 dump_stack();
4549 }
4550
4551 /*
4552 * Various schedule()-time debugging checks and statistics:
4553 */
4554 static inline void schedule_debug(struct task_struct *prev)
4555 {
4556 /*
4557 * Test if we are atomic. Since do_exit() needs to call into
4558 * schedule() atomically, we ignore that path for now.
4559 * Otherwise, whine if we are scheduling when we should not be.
4560 */
4561 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4562 __schedule_bug(prev);
4563
4564 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4565
4566 schedstat_inc(this_rq(), sched_count);
4567 #ifdef CONFIG_SCHEDSTATS
4568 if (unlikely(prev->lock_depth >= 0)) {
4569 schedstat_inc(this_rq(), bkl_count);
4570 schedstat_inc(prev, sched_info.bkl_count);
4571 }
4572 #endif
4573 }
4574
4575 /*
4576 * Pick up the highest-prio task:
4577 */
4578 static inline struct task_struct *
4579 pick_next_task(struct rq *rq, struct task_struct *prev)
4580 {
4581 const struct sched_class *class;
4582 struct task_struct *p;
4583
4584 /*
4585 * Optimization: we know that if all tasks are in
4586 * the fair class we can call that function directly:
4587 */
4588 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4589 p = fair_sched_class.pick_next_task(rq);
4590 if (likely(p))
4591 return p;
4592 }
4593
4594 class = sched_class_highest;
4595 for ( ; ; ) {
4596 p = class->pick_next_task(rq);
4597 if (p)
4598 return p;
4599 /*
4600 * Will never be NULL as the idle class always
4601 * returns a non-NULL p:
4602 */
4603 class = class->next;
4604 }
4605 }
4606
4607 /*
4608 * schedule() is the main scheduler function.
4609 */
4610 asmlinkage void __sched schedule(void)
4611 {
4612 struct task_struct *prev, *next;
4613 unsigned long *switch_count;
4614 struct rq *rq;
4615 int cpu;
4616
4617 need_resched:
4618 preempt_disable();
4619 cpu = smp_processor_id();
4620 rq = cpu_rq(cpu);
4621 rcu_qsctr_inc(cpu);
4622 prev = rq->curr;
4623 switch_count = &prev->nivcsw;
4624
4625 release_kernel_lock(prev);
4626 need_resched_nonpreemptible:
4627
4628 schedule_debug(prev);
4629
4630 if (sched_feat(HRTICK))
4631 hrtick_clear(rq);
4632
4633 spin_lock_irq(&rq->lock);
4634 update_rq_clock(rq);
4635 clear_tsk_need_resched(prev);
4636
4637 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4638 if (unlikely(signal_pending_state(prev->state, prev)))
4639 prev->state = TASK_RUNNING;
4640 else
4641 deactivate_task(rq, prev, 1);
4642 switch_count = &prev->nvcsw;
4643 }
4644
4645 #ifdef CONFIG_SMP
4646 if (prev->sched_class->pre_schedule)
4647 prev->sched_class->pre_schedule(rq, prev);
4648 #endif
4649
4650 if (unlikely(!rq->nr_running))
4651 idle_balance(cpu, rq);
4652
4653 prev->sched_class->put_prev_task(rq, prev);
4654 next = pick_next_task(rq, prev);
4655
4656 if (likely(prev != next)) {
4657 sched_info_switch(prev, next);
4658 perf_counter_task_sched_out(prev, cpu);
4659
4660 rq->nr_switches++;
4661 rq->curr = next;
4662 ++*switch_count;
4663
4664 context_switch(rq, prev, next); /* unlocks the rq */
4665 /*
4666 * the context switch might have flipped the stack from under
4667 * us, hence refresh the local variables.
4668 */
4669 cpu = smp_processor_id();
4670 rq = cpu_rq(cpu);
4671 } else
4672 spin_unlock_irq(&rq->lock);
4673
4674 if (unlikely(reacquire_kernel_lock(current) < 0))
4675 goto need_resched_nonpreemptible;
4676
4677 preempt_enable_no_resched();
4678 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4679 goto need_resched;
4680 }
4681 EXPORT_SYMBOL(schedule);
4682
4683 #ifdef CONFIG_PREEMPT
4684 /*
4685 * this is the entry point to schedule() from in-kernel preemption
4686 * off of preempt_enable. Kernel preemptions off return from interrupt
4687 * occur there and call schedule directly.
4688 */
4689 asmlinkage void __sched preempt_schedule(void)
4690 {
4691 struct thread_info *ti = current_thread_info();
4692
4693 /*
4694 * If there is a non-zero preempt_count or interrupts are disabled,
4695 * we do not want to preempt the current task. Just return..
4696 */
4697 if (likely(ti->preempt_count || irqs_disabled()))
4698 return;
4699
4700 do {
4701 add_preempt_count(PREEMPT_ACTIVE);
4702 schedule();
4703 sub_preempt_count(PREEMPT_ACTIVE);
4704
4705 /*
4706 * Check again in case we missed a preemption opportunity
4707 * between schedule and now.
4708 */
4709 barrier();
4710 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4711 }
4712 EXPORT_SYMBOL(preempt_schedule);
4713
4714 /*
4715 * this is the entry point to schedule() from kernel preemption
4716 * off of irq context.
4717 * Note, that this is called and return with irqs disabled. This will
4718 * protect us against recursive calling from irq.
4719 */
4720 asmlinkage void __sched preempt_schedule_irq(void)
4721 {
4722 struct thread_info *ti = current_thread_info();
4723
4724 /* Catch callers which need to be fixed */
4725 BUG_ON(ti->preempt_count || !irqs_disabled());
4726
4727 do {
4728 add_preempt_count(PREEMPT_ACTIVE);
4729 local_irq_enable();
4730 schedule();
4731 local_irq_disable();
4732 sub_preempt_count(PREEMPT_ACTIVE);
4733
4734 /*
4735 * Check again in case we missed a preemption opportunity
4736 * between schedule and now.
4737 */
4738 barrier();
4739 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4740 }
4741
4742 #endif /* CONFIG_PREEMPT */
4743
4744 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4745 void *key)
4746 {
4747 return try_to_wake_up(curr->private, mode, sync);
4748 }
4749 EXPORT_SYMBOL(default_wake_function);
4750
4751 /*
4752 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4753 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4754 * number) then we wake all the non-exclusive tasks and one exclusive task.
4755 *
4756 * There are circumstances in which we can try to wake a task which has already
4757 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4758 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4759 */
4760 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4761 int nr_exclusive, int sync, void *key)
4762 {
4763 wait_queue_t *curr, *next;
4764
4765 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4766 unsigned flags = curr->flags;
4767
4768 if (curr->func(curr, mode, sync, key) &&
4769 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4770 break;
4771 }
4772 }
4773
4774 /**
4775 * __wake_up - wake up threads blocked on a waitqueue.
4776 * @q: the waitqueue
4777 * @mode: which threads
4778 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4779 * @key: is directly passed to the wakeup function
4780 */
4781 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4782 int nr_exclusive, void *key)
4783 {
4784 unsigned long flags;
4785
4786 spin_lock_irqsave(&q->lock, flags);
4787 __wake_up_common(q, mode, nr_exclusive, 0, key);
4788 spin_unlock_irqrestore(&q->lock, flags);
4789 }
4790 EXPORT_SYMBOL(__wake_up);
4791
4792 /*
4793 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4794 */
4795 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4796 {
4797 __wake_up_common(q, mode, 1, 0, NULL);
4798 }
4799
4800 /**
4801 * __wake_up_sync - wake up threads blocked on a waitqueue.
4802 * @q: the waitqueue
4803 * @mode: which threads
4804 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4805 *
4806 * The sync wakeup differs that the waker knows that it will schedule
4807 * away soon, so while the target thread will be woken up, it will not
4808 * be migrated to another CPU - ie. the two threads are 'synchronized'
4809 * with each other. This can prevent needless bouncing between CPUs.
4810 *
4811 * On UP it can prevent extra preemption.
4812 */
4813 void
4814 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4815 {
4816 unsigned long flags;
4817 int sync = 1;
4818
4819 if (unlikely(!q))
4820 return;
4821
4822 if (unlikely(!nr_exclusive))
4823 sync = 0;
4824
4825 spin_lock_irqsave(&q->lock, flags);
4826 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4827 spin_unlock_irqrestore(&q->lock, flags);
4828 }
4829 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4830
4831 /**
4832 * complete: - signals a single thread waiting on this completion
4833 * @x: holds the state of this particular completion
4834 *
4835 * This will wake up a single thread waiting on this completion. Threads will be
4836 * awakened in the same order in which they were queued.
4837 *
4838 * See also complete_all(), wait_for_completion() and related routines.
4839 */
4840 void complete(struct completion *x)
4841 {
4842 unsigned long flags;
4843
4844 spin_lock_irqsave(&x->wait.lock, flags);
4845 x->done++;
4846 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4847 spin_unlock_irqrestore(&x->wait.lock, flags);
4848 }
4849 EXPORT_SYMBOL(complete);
4850
4851 /**
4852 * complete_all: - signals all threads waiting on this completion
4853 * @x: holds the state of this particular completion
4854 *
4855 * This will wake up all threads waiting on this particular completion event.
4856 */
4857 void complete_all(struct completion *x)
4858 {
4859 unsigned long flags;
4860
4861 spin_lock_irqsave(&x->wait.lock, flags);
4862 x->done += UINT_MAX/2;
4863 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4864 spin_unlock_irqrestore(&x->wait.lock, flags);
4865 }
4866 EXPORT_SYMBOL(complete_all);
4867
4868 static inline long __sched
4869 do_wait_for_common(struct completion *x, long timeout, int state)
4870 {
4871 if (!x->done) {
4872 DECLARE_WAITQUEUE(wait, current);
4873
4874 wait.flags |= WQ_FLAG_EXCLUSIVE;
4875 __add_wait_queue_tail(&x->wait, &wait);
4876 do {
4877 if (signal_pending_state(state, current)) {
4878 timeout = -ERESTARTSYS;
4879 break;
4880 }
4881 __set_current_state(state);
4882 spin_unlock_irq(&x->wait.lock);
4883 timeout = schedule_timeout(timeout);
4884 spin_lock_irq(&x->wait.lock);
4885 } while (!x->done && timeout);
4886 __remove_wait_queue(&x->wait, &wait);
4887 if (!x->done)
4888 return timeout;
4889 }
4890 x->done--;
4891 return timeout ?: 1;
4892 }
4893
4894 static long __sched
4895 wait_for_common(struct completion *x, long timeout, int state)
4896 {
4897 might_sleep();
4898
4899 spin_lock_irq(&x->wait.lock);
4900 timeout = do_wait_for_common(x, timeout, state);
4901 spin_unlock_irq(&x->wait.lock);
4902 return timeout;
4903 }
4904
4905 /**
4906 * wait_for_completion: - waits for completion of a task
4907 * @x: holds the state of this particular completion
4908 *
4909 * This waits to be signaled for completion of a specific task. It is NOT
4910 * interruptible and there is no timeout.
4911 *
4912 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4913 * and interrupt capability. Also see complete().
4914 */
4915 void __sched wait_for_completion(struct completion *x)
4916 {
4917 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4918 }
4919 EXPORT_SYMBOL(wait_for_completion);
4920
4921 /**
4922 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4923 * @x: holds the state of this particular completion
4924 * @timeout: timeout value in jiffies
4925 *
4926 * This waits for either a completion of a specific task to be signaled or for a
4927 * specified timeout to expire. The timeout is in jiffies. It is not
4928 * interruptible.
4929 */
4930 unsigned long __sched
4931 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4932 {
4933 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4934 }
4935 EXPORT_SYMBOL(wait_for_completion_timeout);
4936
4937 /**
4938 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4939 * @x: holds the state of this particular completion
4940 *
4941 * This waits for completion of a specific task to be signaled. It is
4942 * interruptible.
4943 */
4944 int __sched wait_for_completion_interruptible(struct completion *x)
4945 {
4946 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4947 if (t == -ERESTARTSYS)
4948 return t;
4949 return 0;
4950 }
4951 EXPORT_SYMBOL(wait_for_completion_interruptible);
4952
4953 /**
4954 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4955 * @x: holds the state of this particular completion
4956 * @timeout: timeout value in jiffies
4957 *
4958 * This waits for either a completion of a specific task to be signaled or for a
4959 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4960 */
4961 unsigned long __sched
4962 wait_for_completion_interruptible_timeout(struct completion *x,
4963 unsigned long timeout)
4964 {
4965 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4966 }
4967 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4968
4969 /**
4970 * wait_for_completion_killable: - waits for completion of a task (killable)
4971 * @x: holds the state of this particular completion
4972 *
4973 * This waits to be signaled for completion of a specific task. It can be
4974 * interrupted by a kill signal.
4975 */
4976 int __sched wait_for_completion_killable(struct completion *x)
4977 {
4978 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4979 if (t == -ERESTARTSYS)
4980 return t;
4981 return 0;
4982 }
4983 EXPORT_SYMBOL(wait_for_completion_killable);
4984
4985 /**
4986 * try_wait_for_completion - try to decrement a completion without blocking
4987 * @x: completion structure
4988 *
4989 * Returns: 0 if a decrement cannot be done without blocking
4990 * 1 if a decrement succeeded.
4991 *
4992 * If a completion is being used as a counting completion,
4993 * attempt to decrement the counter without blocking. This
4994 * enables us to avoid waiting if the resource the completion
4995 * is protecting is not available.
4996 */
4997 bool try_wait_for_completion(struct completion *x)
4998 {
4999 int ret = 1;
5000
5001 spin_lock_irq(&x->wait.lock);
5002 if (!x->done)
5003 ret = 0;
5004 else
5005 x->done--;
5006 spin_unlock_irq(&x->wait.lock);
5007 return ret;
5008 }
5009 EXPORT_SYMBOL(try_wait_for_completion);
5010
5011 /**
5012 * completion_done - Test to see if a completion has any waiters
5013 * @x: completion structure
5014 *
5015 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5016 * 1 if there are no waiters.
5017 *
5018 */
5019 bool completion_done(struct completion *x)
5020 {
5021 int ret = 1;
5022
5023 spin_lock_irq(&x->wait.lock);
5024 if (!x->done)
5025 ret = 0;
5026 spin_unlock_irq(&x->wait.lock);
5027 return ret;
5028 }
5029 EXPORT_SYMBOL(completion_done);
5030
5031 static long __sched
5032 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5033 {
5034 unsigned long flags;
5035 wait_queue_t wait;
5036
5037 init_waitqueue_entry(&wait, current);
5038
5039 __set_current_state(state);
5040
5041 spin_lock_irqsave(&q->lock, flags);
5042 __add_wait_queue(q, &wait);
5043 spin_unlock(&q->lock);
5044 timeout = schedule_timeout(timeout);
5045 spin_lock_irq(&q->lock);
5046 __remove_wait_queue(q, &wait);
5047 spin_unlock_irqrestore(&q->lock, flags);
5048
5049 return timeout;
5050 }
5051
5052 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5053 {
5054 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5055 }
5056 EXPORT_SYMBOL(interruptible_sleep_on);
5057
5058 long __sched
5059 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5060 {
5061 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5062 }
5063 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5064
5065 void __sched sleep_on(wait_queue_head_t *q)
5066 {
5067 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5068 }
5069 EXPORT_SYMBOL(sleep_on);
5070
5071 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5072 {
5073 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5074 }
5075 EXPORT_SYMBOL(sleep_on_timeout);
5076
5077 #ifdef CONFIG_RT_MUTEXES
5078
5079 /*
5080 * rt_mutex_setprio - set the current priority of a task
5081 * @p: task
5082 * @prio: prio value (kernel-internal form)
5083 *
5084 * This function changes the 'effective' priority of a task. It does
5085 * not touch ->normal_prio like __setscheduler().
5086 *
5087 * Used by the rt_mutex code to implement priority inheritance logic.
5088 */
5089 void rt_mutex_setprio(struct task_struct *p, int prio)
5090 {
5091 unsigned long flags;
5092 int oldprio, on_rq, running;
5093 struct rq *rq;
5094 const struct sched_class *prev_class = p->sched_class;
5095
5096 BUG_ON(prio < 0 || prio > MAX_PRIO);
5097
5098 rq = task_rq_lock(p, &flags);
5099 update_rq_clock(rq);
5100
5101 oldprio = p->prio;
5102 on_rq = p->se.on_rq;
5103 running = task_current(rq, p);
5104 if (on_rq)
5105 dequeue_task(rq, p, 0);
5106 if (running)
5107 p->sched_class->put_prev_task(rq, p);
5108
5109 if (rt_prio(prio))
5110 p->sched_class = &rt_sched_class;
5111 else
5112 p->sched_class = &fair_sched_class;
5113
5114 p->prio = prio;
5115
5116 if (running)
5117 p->sched_class->set_curr_task(rq);
5118 if (on_rq) {
5119 enqueue_task(rq, p, 0);
5120
5121 check_class_changed(rq, p, prev_class, oldprio, running);
5122 }
5123 task_rq_unlock(rq, &flags);
5124 }
5125
5126 #endif
5127
5128 void set_user_nice(struct task_struct *p, long nice)
5129 {
5130 int old_prio, delta, on_rq;
5131 unsigned long flags;
5132 struct rq *rq;
5133
5134 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5135 return;
5136 /*
5137 * We have to be careful, if called from sys_setpriority(),
5138 * the task might be in the middle of scheduling on another CPU.
5139 */
5140 rq = task_rq_lock(p, &flags);
5141 update_rq_clock(rq);
5142 /*
5143 * The RT priorities are set via sched_setscheduler(), but we still
5144 * allow the 'normal' nice value to be set - but as expected
5145 * it wont have any effect on scheduling until the task is
5146 * SCHED_FIFO/SCHED_RR:
5147 */
5148 if (task_has_rt_policy(p)) {
5149 p->static_prio = NICE_TO_PRIO(nice);
5150 goto out_unlock;
5151 }
5152 on_rq = p->se.on_rq;
5153 if (on_rq)
5154 dequeue_task(rq, p, 0);
5155
5156 p->static_prio = NICE_TO_PRIO(nice);
5157 set_load_weight(p);
5158 old_prio = p->prio;
5159 p->prio = effective_prio(p);
5160 delta = p->prio - old_prio;
5161
5162 if (on_rq) {
5163 enqueue_task(rq, p, 0);
5164 /*
5165 * If the task increased its priority or is running and
5166 * lowered its priority, then reschedule its CPU:
5167 */
5168 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5169 resched_task(rq->curr);
5170 }
5171 out_unlock:
5172 task_rq_unlock(rq, &flags);
5173 }
5174 EXPORT_SYMBOL(set_user_nice);
5175
5176 /*
5177 * can_nice - check if a task can reduce its nice value
5178 * @p: task
5179 * @nice: nice value
5180 */
5181 int can_nice(const struct task_struct *p, const int nice)
5182 {
5183 /* convert nice value [19,-20] to rlimit style value [1,40] */
5184 int nice_rlim = 20 - nice;
5185
5186 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5187 capable(CAP_SYS_NICE));
5188 }
5189
5190 #ifdef __ARCH_WANT_SYS_NICE
5191
5192 /*
5193 * sys_nice - change the priority of the current process.
5194 * @increment: priority increment
5195 *
5196 * sys_setpriority is a more generic, but much slower function that
5197 * does similar things.
5198 */
5199 SYSCALL_DEFINE1(nice, int, increment)
5200 {
5201 long nice, retval;
5202
5203 /*
5204 * Setpriority might change our priority at the same moment.
5205 * We don't have to worry. Conceptually one call occurs first
5206 * and we have a single winner.
5207 */
5208 if (increment < -40)
5209 increment = -40;
5210 if (increment > 40)
5211 increment = 40;
5212
5213 nice = PRIO_TO_NICE(current->static_prio) + increment;
5214 if (nice < -20)
5215 nice = -20;
5216 if (nice > 19)
5217 nice = 19;
5218
5219 if (increment < 0 && !can_nice(current, nice))
5220 return -EPERM;
5221
5222 retval = security_task_setnice(current, nice);
5223 if (retval)
5224 return retval;
5225
5226 set_user_nice(current, nice);
5227 return 0;
5228 }
5229
5230 #endif
5231
5232 /**
5233 * task_prio - return the priority value of a given task.
5234 * @p: the task in question.
5235 *
5236 * This is the priority value as seen by users in /proc.
5237 * RT tasks are offset by -200. Normal tasks are centered
5238 * around 0, value goes from -16 to +15.
5239 */
5240 int task_prio(const struct task_struct *p)
5241 {
5242 return p->prio - MAX_RT_PRIO;
5243 }
5244
5245 /**
5246 * task_nice - return the nice value of a given task.
5247 * @p: the task in question.
5248 */
5249 int task_nice(const struct task_struct *p)
5250 {
5251 return TASK_NICE(p);
5252 }
5253 EXPORT_SYMBOL(task_nice);
5254
5255 /**
5256 * idle_cpu - is a given cpu idle currently?
5257 * @cpu: the processor in question.
5258 */
5259 int idle_cpu(int cpu)
5260 {
5261 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5262 }
5263
5264 /**
5265 * idle_task - return the idle task for a given cpu.
5266 * @cpu: the processor in question.
5267 */
5268 struct task_struct *idle_task(int cpu)
5269 {
5270 return cpu_rq(cpu)->idle;
5271 }
5272
5273 /**
5274 * find_process_by_pid - find a process with a matching PID value.
5275 * @pid: the pid in question.
5276 */
5277 static struct task_struct *find_process_by_pid(pid_t pid)
5278 {
5279 return pid ? find_task_by_vpid(pid) : current;
5280 }
5281
5282 /* Actually do priority change: must hold rq lock. */
5283 static void
5284 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5285 {
5286 BUG_ON(p->se.on_rq);
5287
5288 p->policy = policy;
5289 switch (p->policy) {
5290 case SCHED_NORMAL:
5291 case SCHED_BATCH:
5292 case SCHED_IDLE:
5293 p->sched_class = &fair_sched_class;
5294 break;
5295 case SCHED_FIFO:
5296 case SCHED_RR:
5297 p->sched_class = &rt_sched_class;
5298 break;
5299 }
5300
5301 p->rt_priority = prio;
5302 p->normal_prio = normal_prio(p);
5303 /* we are holding p->pi_lock already */
5304 p->prio = rt_mutex_getprio(p);
5305 set_load_weight(p);
5306 }
5307
5308 /*
5309 * check the target process has a UID that matches the current process's
5310 */
5311 static bool check_same_owner(struct task_struct *p)
5312 {
5313 const struct cred *cred = current_cred(), *pcred;
5314 bool match;
5315
5316 rcu_read_lock();
5317 pcred = __task_cred(p);
5318 match = (cred->euid == pcred->euid ||
5319 cred->euid == pcred->uid);
5320 rcu_read_unlock();
5321 return match;
5322 }
5323
5324 static int __sched_setscheduler(struct task_struct *p, int policy,
5325 struct sched_param *param, bool user)
5326 {
5327 int retval, oldprio, oldpolicy = -1, on_rq, running;
5328 unsigned long flags;
5329 const struct sched_class *prev_class = p->sched_class;
5330 struct rq *rq;
5331
5332 /* may grab non-irq protected spin_locks */
5333 BUG_ON(in_interrupt());
5334 recheck:
5335 /* double check policy once rq lock held */
5336 if (policy < 0)
5337 policy = oldpolicy = p->policy;
5338 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5339 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5340 policy != SCHED_IDLE)
5341 return -EINVAL;
5342 /*
5343 * Valid priorities for SCHED_FIFO and SCHED_RR are
5344 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5345 * SCHED_BATCH and SCHED_IDLE is 0.
5346 */
5347 if (param->sched_priority < 0 ||
5348 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5349 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5350 return -EINVAL;
5351 if (rt_policy(policy) != (param->sched_priority != 0))
5352 return -EINVAL;
5353
5354 /*
5355 * Allow unprivileged RT tasks to decrease priority:
5356 */
5357 if (user && !capable(CAP_SYS_NICE)) {
5358 if (rt_policy(policy)) {
5359 unsigned long rlim_rtprio;
5360
5361 if (!lock_task_sighand(p, &flags))
5362 return -ESRCH;
5363 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5364 unlock_task_sighand(p, &flags);
5365
5366 /* can't set/change the rt policy */
5367 if (policy != p->policy && !rlim_rtprio)
5368 return -EPERM;
5369
5370 /* can't increase priority */
5371 if (param->sched_priority > p->rt_priority &&
5372 param->sched_priority > rlim_rtprio)
5373 return -EPERM;
5374 }
5375 /*
5376 * Like positive nice levels, dont allow tasks to
5377 * move out of SCHED_IDLE either:
5378 */
5379 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5380 return -EPERM;
5381
5382 /* can't change other user's priorities */
5383 if (!check_same_owner(p))
5384 return -EPERM;
5385 }
5386
5387 if (user) {
5388 #ifdef CONFIG_RT_GROUP_SCHED
5389 /*
5390 * Do not allow realtime tasks into groups that have no runtime
5391 * assigned.
5392 */
5393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5394 task_group(p)->rt_bandwidth.rt_runtime == 0)
5395 return -EPERM;
5396 #endif
5397
5398 retval = security_task_setscheduler(p, policy, param);
5399 if (retval)
5400 return retval;
5401 }
5402
5403 /*
5404 * make sure no PI-waiters arrive (or leave) while we are
5405 * changing the priority of the task:
5406 */
5407 spin_lock_irqsave(&p->pi_lock, flags);
5408 /*
5409 * To be able to change p->policy safely, the apropriate
5410 * runqueue lock must be held.
5411 */
5412 rq = __task_rq_lock(p);
5413 /* recheck policy now with rq lock held */
5414 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5415 policy = oldpolicy = -1;
5416 __task_rq_unlock(rq);
5417 spin_unlock_irqrestore(&p->pi_lock, flags);
5418 goto recheck;
5419 }
5420 update_rq_clock(rq);
5421 on_rq = p->se.on_rq;
5422 running = task_current(rq, p);
5423 if (on_rq)
5424 deactivate_task(rq, p, 0);
5425 if (running)
5426 p->sched_class->put_prev_task(rq, p);
5427
5428 oldprio = p->prio;
5429 __setscheduler(rq, p, policy, param->sched_priority);
5430
5431 if (running)
5432 p->sched_class->set_curr_task(rq);
5433 if (on_rq) {
5434 activate_task(rq, p, 0);
5435
5436 check_class_changed(rq, p, prev_class, oldprio, running);
5437 }
5438 __task_rq_unlock(rq);
5439 spin_unlock_irqrestore(&p->pi_lock, flags);
5440
5441 rt_mutex_adjust_pi(p);
5442
5443 return 0;
5444 }
5445
5446 /**
5447 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5448 * @p: the task in question.
5449 * @policy: new policy.
5450 * @param: structure containing the new RT priority.
5451 *
5452 * NOTE that the task may be already dead.
5453 */
5454 int sched_setscheduler(struct task_struct *p, int policy,
5455 struct sched_param *param)
5456 {
5457 return __sched_setscheduler(p, policy, param, true);
5458 }
5459 EXPORT_SYMBOL_GPL(sched_setscheduler);
5460
5461 /**
5462 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5463 * @p: the task in question.
5464 * @policy: new policy.
5465 * @param: structure containing the new RT priority.
5466 *
5467 * Just like sched_setscheduler, only don't bother checking if the
5468 * current context has permission. For example, this is needed in
5469 * stop_machine(): we create temporary high priority worker threads,
5470 * but our caller might not have that capability.
5471 */
5472 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5473 struct sched_param *param)
5474 {
5475 return __sched_setscheduler(p, policy, param, false);
5476 }
5477
5478 static int
5479 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5480 {
5481 struct sched_param lparam;
5482 struct task_struct *p;
5483 int retval;
5484
5485 if (!param || pid < 0)
5486 return -EINVAL;
5487 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5488 return -EFAULT;
5489
5490 rcu_read_lock();
5491 retval = -ESRCH;
5492 p = find_process_by_pid(pid);
5493 if (p != NULL)
5494 retval = sched_setscheduler(p, policy, &lparam);
5495 rcu_read_unlock();
5496
5497 return retval;
5498 }
5499
5500 /**
5501 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5502 * @pid: the pid in question.
5503 * @policy: new policy.
5504 * @param: structure containing the new RT priority.
5505 */
5506 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5507 struct sched_param __user *, param)
5508 {
5509 /* negative values for policy are not valid */
5510 if (policy < 0)
5511 return -EINVAL;
5512
5513 return do_sched_setscheduler(pid, policy, param);
5514 }
5515
5516 /**
5517 * sys_sched_setparam - set/change the RT priority of a thread
5518 * @pid: the pid in question.
5519 * @param: structure containing the new RT priority.
5520 */
5521 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5522 {
5523 return do_sched_setscheduler(pid, -1, param);
5524 }
5525
5526 /**
5527 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5528 * @pid: the pid in question.
5529 */
5530 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5531 {
5532 struct task_struct *p;
5533 int retval;
5534
5535 if (pid < 0)
5536 return -EINVAL;
5537
5538 retval = -ESRCH;
5539 read_lock(&tasklist_lock);
5540 p = find_process_by_pid(pid);
5541 if (p) {
5542 retval = security_task_getscheduler(p);
5543 if (!retval)
5544 retval = p->policy;
5545 }
5546 read_unlock(&tasklist_lock);
5547 return retval;
5548 }
5549
5550 /**
5551 * sys_sched_getscheduler - get the RT priority of a thread
5552 * @pid: the pid in question.
5553 * @param: structure containing the RT priority.
5554 */
5555 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5556 {
5557 struct sched_param lp;
5558 struct task_struct *p;
5559 int retval;
5560
5561 if (!param || pid < 0)
5562 return -EINVAL;
5563
5564 read_lock(&tasklist_lock);
5565 p = find_process_by_pid(pid);
5566 retval = -ESRCH;
5567 if (!p)
5568 goto out_unlock;
5569
5570 retval = security_task_getscheduler(p);
5571 if (retval)
5572 goto out_unlock;
5573
5574 lp.sched_priority = p->rt_priority;
5575 read_unlock(&tasklist_lock);
5576
5577 /*
5578 * This one might sleep, we cannot do it with a spinlock held ...
5579 */
5580 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5581
5582 return retval;
5583
5584 out_unlock:
5585 read_unlock(&tasklist_lock);
5586 return retval;
5587 }
5588
5589 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5590 {
5591 cpumask_var_t cpus_allowed, new_mask;
5592 struct task_struct *p;
5593 int retval;
5594
5595 get_online_cpus();
5596 read_lock(&tasklist_lock);
5597
5598 p = find_process_by_pid(pid);
5599 if (!p) {
5600 read_unlock(&tasklist_lock);
5601 put_online_cpus();
5602 return -ESRCH;
5603 }
5604
5605 /*
5606 * It is not safe to call set_cpus_allowed with the
5607 * tasklist_lock held. We will bump the task_struct's
5608 * usage count and then drop tasklist_lock.
5609 */
5610 get_task_struct(p);
5611 read_unlock(&tasklist_lock);
5612
5613 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5614 retval = -ENOMEM;
5615 goto out_put_task;
5616 }
5617 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5618 retval = -ENOMEM;
5619 goto out_free_cpus_allowed;
5620 }
5621 retval = -EPERM;
5622 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5623 goto out_unlock;
5624
5625 retval = security_task_setscheduler(p, 0, NULL);
5626 if (retval)
5627 goto out_unlock;
5628
5629 cpuset_cpus_allowed(p, cpus_allowed);
5630 cpumask_and(new_mask, in_mask, cpus_allowed);
5631 again:
5632 retval = set_cpus_allowed_ptr(p, new_mask);
5633
5634 if (!retval) {
5635 cpuset_cpus_allowed(p, cpus_allowed);
5636 if (!cpumask_subset(new_mask, cpus_allowed)) {
5637 /*
5638 * We must have raced with a concurrent cpuset
5639 * update. Just reset the cpus_allowed to the
5640 * cpuset's cpus_allowed
5641 */
5642 cpumask_copy(new_mask, cpus_allowed);
5643 goto again;
5644 }
5645 }
5646 out_unlock:
5647 free_cpumask_var(new_mask);
5648 out_free_cpus_allowed:
5649 free_cpumask_var(cpus_allowed);
5650 out_put_task:
5651 put_task_struct(p);
5652 put_online_cpus();
5653 return retval;
5654 }
5655
5656 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5657 struct cpumask *new_mask)
5658 {
5659 if (len < cpumask_size())
5660 cpumask_clear(new_mask);
5661 else if (len > cpumask_size())
5662 len = cpumask_size();
5663
5664 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5665 }
5666
5667 /**
5668 * sys_sched_setaffinity - set the cpu affinity of a process
5669 * @pid: pid of the process
5670 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5671 * @user_mask_ptr: user-space pointer to the new cpu mask
5672 */
5673 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5674 unsigned long __user *, user_mask_ptr)
5675 {
5676 cpumask_var_t new_mask;
5677 int retval;
5678
5679 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5680 return -ENOMEM;
5681
5682 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5683 if (retval == 0)
5684 retval = sched_setaffinity(pid, new_mask);
5685 free_cpumask_var(new_mask);
5686 return retval;
5687 }
5688
5689 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5690 {
5691 struct task_struct *p;
5692 int retval;
5693
5694 get_online_cpus();
5695 read_lock(&tasklist_lock);
5696
5697 retval = -ESRCH;
5698 p = find_process_by_pid(pid);
5699 if (!p)
5700 goto out_unlock;
5701
5702 retval = security_task_getscheduler(p);
5703 if (retval)
5704 goto out_unlock;
5705
5706 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5707
5708 out_unlock:
5709 read_unlock(&tasklist_lock);
5710 put_online_cpus();
5711
5712 return retval;
5713 }
5714
5715 /**
5716 * sys_sched_getaffinity - get the cpu affinity of a process
5717 * @pid: pid of the process
5718 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5719 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5720 */
5721 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5722 unsigned long __user *, user_mask_ptr)
5723 {
5724 int ret;
5725 cpumask_var_t mask;
5726
5727 if (len < cpumask_size())
5728 return -EINVAL;
5729
5730 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5731 return -ENOMEM;
5732
5733 ret = sched_getaffinity(pid, mask);
5734 if (ret == 0) {
5735 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5736 ret = -EFAULT;
5737 else
5738 ret = cpumask_size();
5739 }
5740 free_cpumask_var(mask);
5741
5742 return ret;
5743 }
5744
5745 /**
5746 * sys_sched_yield - yield the current processor to other threads.
5747 *
5748 * This function yields the current CPU to other tasks. If there are no
5749 * other threads running on this CPU then this function will return.
5750 */
5751 SYSCALL_DEFINE0(sched_yield)
5752 {
5753 struct rq *rq = this_rq_lock();
5754
5755 schedstat_inc(rq, yld_count);
5756 current->sched_class->yield_task(rq);
5757
5758 /*
5759 * Since we are going to call schedule() anyway, there's
5760 * no need to preempt or enable interrupts:
5761 */
5762 __release(rq->lock);
5763 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5764 _raw_spin_unlock(&rq->lock);
5765 preempt_enable_no_resched();
5766
5767 schedule();
5768
5769 return 0;
5770 }
5771
5772 static void __cond_resched(void)
5773 {
5774 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5775 __might_sleep(__FILE__, __LINE__);
5776 #endif
5777 /*
5778 * The BKS might be reacquired before we have dropped
5779 * PREEMPT_ACTIVE, which could trigger a second
5780 * cond_resched() call.
5781 */
5782 do {
5783 add_preempt_count(PREEMPT_ACTIVE);
5784 schedule();
5785 sub_preempt_count(PREEMPT_ACTIVE);
5786 } while (need_resched());
5787 }
5788
5789 int __sched _cond_resched(void)
5790 {
5791 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5792 system_state == SYSTEM_RUNNING) {
5793 __cond_resched();
5794 return 1;
5795 }
5796 return 0;
5797 }
5798 EXPORT_SYMBOL(_cond_resched);
5799
5800 /*
5801 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5802 * call schedule, and on return reacquire the lock.
5803 *
5804 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5805 * operations here to prevent schedule() from being called twice (once via
5806 * spin_unlock(), once by hand).
5807 */
5808 int cond_resched_lock(spinlock_t *lock)
5809 {
5810 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5811 int ret = 0;
5812
5813 if (spin_needbreak(lock) || resched) {
5814 spin_unlock(lock);
5815 if (resched && need_resched())
5816 __cond_resched();
5817 else
5818 cpu_relax();
5819 ret = 1;
5820 spin_lock(lock);
5821 }
5822 return ret;
5823 }
5824 EXPORT_SYMBOL(cond_resched_lock);
5825
5826 int __sched cond_resched_softirq(void)
5827 {
5828 BUG_ON(!in_softirq());
5829
5830 if (need_resched() && system_state == SYSTEM_RUNNING) {
5831 local_bh_enable();
5832 __cond_resched();
5833 local_bh_disable();
5834 return 1;
5835 }
5836 return 0;
5837 }
5838 EXPORT_SYMBOL(cond_resched_softirq);
5839
5840 /**
5841 * yield - yield the current processor to other threads.
5842 *
5843 * This is a shortcut for kernel-space yielding - it marks the
5844 * thread runnable and calls sys_sched_yield().
5845 */
5846 void __sched yield(void)
5847 {
5848 set_current_state(TASK_RUNNING);
5849 sys_sched_yield();
5850 }
5851 EXPORT_SYMBOL(yield);
5852
5853 /*
5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5855 * that process accounting knows that this is a task in IO wait state.
5856 *
5857 * But don't do that if it is a deliberate, throttling IO wait (this task
5858 * has set its backing_dev_info: the queue against which it should throttle)
5859 */
5860 void __sched io_schedule(void)
5861 {
5862 struct rq *rq = &__raw_get_cpu_var(runqueues);
5863
5864 delayacct_blkio_start();
5865 atomic_inc(&rq->nr_iowait);
5866 schedule();
5867 atomic_dec(&rq->nr_iowait);
5868 delayacct_blkio_end();
5869 }
5870 EXPORT_SYMBOL(io_schedule);
5871
5872 long __sched io_schedule_timeout(long timeout)
5873 {
5874 struct rq *rq = &__raw_get_cpu_var(runqueues);
5875 long ret;
5876
5877 delayacct_blkio_start();
5878 atomic_inc(&rq->nr_iowait);
5879 ret = schedule_timeout(timeout);
5880 atomic_dec(&rq->nr_iowait);
5881 delayacct_blkio_end();
5882 return ret;
5883 }
5884
5885 /**
5886 * sys_sched_get_priority_max - return maximum RT priority.
5887 * @policy: scheduling class.
5888 *
5889 * this syscall returns the maximum rt_priority that can be used
5890 * by a given scheduling class.
5891 */
5892 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5893 {
5894 int ret = -EINVAL;
5895
5896 switch (policy) {
5897 case SCHED_FIFO:
5898 case SCHED_RR:
5899 ret = MAX_USER_RT_PRIO-1;
5900 break;
5901 case SCHED_NORMAL:
5902 case SCHED_BATCH:
5903 case SCHED_IDLE:
5904 ret = 0;
5905 break;
5906 }
5907 return ret;
5908 }
5909
5910 /**
5911 * sys_sched_get_priority_min - return minimum RT priority.
5912 * @policy: scheduling class.
5913 *
5914 * this syscall returns the minimum rt_priority that can be used
5915 * by a given scheduling class.
5916 */
5917 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5918 {
5919 int ret = -EINVAL;
5920
5921 switch (policy) {
5922 case SCHED_FIFO:
5923 case SCHED_RR:
5924 ret = 1;
5925 break;
5926 case SCHED_NORMAL:
5927 case SCHED_BATCH:
5928 case SCHED_IDLE:
5929 ret = 0;
5930 }
5931 return ret;
5932 }
5933
5934 /**
5935 * sys_sched_rr_get_interval - return the default timeslice of a process.
5936 * @pid: pid of the process.
5937 * @interval: userspace pointer to the timeslice value.
5938 *
5939 * this syscall writes the default timeslice value of a given process
5940 * into the user-space timespec buffer. A value of '0' means infinity.
5941 */
5942 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5943 struct timespec __user *, interval)
5944 {
5945 struct task_struct *p;
5946 unsigned int time_slice;
5947 int retval;
5948 struct timespec t;
5949
5950 if (pid < 0)
5951 return -EINVAL;
5952
5953 retval = -ESRCH;
5954 read_lock(&tasklist_lock);
5955 p = find_process_by_pid(pid);
5956 if (!p)
5957 goto out_unlock;
5958
5959 retval = security_task_getscheduler(p);
5960 if (retval)
5961 goto out_unlock;
5962
5963 /*
5964 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5965 * tasks that are on an otherwise idle runqueue:
5966 */
5967 time_slice = 0;
5968 if (p->policy == SCHED_RR) {
5969 time_slice = DEF_TIMESLICE;
5970 } else if (p->policy != SCHED_FIFO) {
5971 struct sched_entity *se = &p->se;
5972 unsigned long flags;
5973 struct rq *rq;
5974
5975 rq = task_rq_lock(p, &flags);
5976 if (rq->cfs.load.weight)
5977 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5978 task_rq_unlock(rq, &flags);
5979 }
5980 read_unlock(&tasklist_lock);
5981 jiffies_to_timespec(time_slice, &t);
5982 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5983 return retval;
5984
5985 out_unlock:
5986 read_unlock(&tasklist_lock);
5987 return retval;
5988 }
5989
5990 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5991
5992 void sched_show_task(struct task_struct *p)
5993 {
5994 unsigned long free = 0;
5995 unsigned state;
5996
5997 state = p->state ? __ffs(p->state) + 1 : 0;
5998 printk(KERN_INFO "%-13.13s %c", p->comm,
5999 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6000 #if BITS_PER_LONG == 32
6001 if (state == TASK_RUNNING)
6002 printk(KERN_CONT " running ");
6003 else
6004 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6005 #else
6006 if (state == TASK_RUNNING)
6007 printk(KERN_CONT " running task ");
6008 else
6009 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6010 #endif
6011 #ifdef CONFIG_DEBUG_STACK_USAGE
6012 {
6013 unsigned long *n = end_of_stack(p);
6014 while (!*n)
6015 n++;
6016 free = (unsigned long)n - (unsigned long)end_of_stack(p);
6017 }
6018 #endif
6019 printk(KERN_CONT "%5lu %5d %6d\n", free,
6020 task_pid_nr(p), task_pid_nr(p->real_parent));
6021
6022 show_stack(p, NULL);
6023 }
6024
6025 void show_state_filter(unsigned long state_filter)
6026 {
6027 struct task_struct *g, *p;
6028
6029 #if BITS_PER_LONG == 32
6030 printk(KERN_INFO
6031 " task PC stack pid father\n");
6032 #else
6033 printk(KERN_INFO
6034 " task PC stack pid father\n");
6035 #endif
6036 read_lock(&tasklist_lock);
6037 do_each_thread(g, p) {
6038 /*
6039 * reset the NMI-timeout, listing all files on a slow
6040 * console might take alot of time:
6041 */
6042 touch_nmi_watchdog();
6043 if (!state_filter || (p->state & state_filter))
6044 sched_show_task(p);
6045 } while_each_thread(g, p);
6046
6047 touch_all_softlockup_watchdogs();
6048
6049 #ifdef CONFIG_SCHED_DEBUG
6050 sysrq_sched_debug_show();
6051 #endif
6052 read_unlock(&tasklist_lock);
6053 /*
6054 * Only show locks if all tasks are dumped:
6055 */
6056 if (state_filter == -1)
6057 debug_show_all_locks();
6058 }
6059
6060 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6061 {
6062 idle->sched_class = &idle_sched_class;
6063 }
6064
6065 /**
6066 * init_idle - set up an idle thread for a given CPU
6067 * @idle: task in question
6068 * @cpu: cpu the idle task belongs to
6069 *
6070 * NOTE: this function does not set the idle thread's NEED_RESCHED
6071 * flag, to make booting more robust.
6072 */
6073 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6074 {
6075 struct rq *rq = cpu_rq(cpu);
6076 unsigned long flags;
6077
6078 spin_lock_irqsave(&rq->lock, flags);
6079
6080 __sched_fork(idle);
6081 idle->se.exec_start = sched_clock();
6082
6083 idle->prio = idle->normal_prio = MAX_PRIO;
6084 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6085 __set_task_cpu(idle, cpu);
6086
6087 rq->curr = rq->idle = idle;
6088 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6089 idle->oncpu = 1;
6090 #endif
6091 spin_unlock_irqrestore(&rq->lock, flags);
6092
6093 /* Set the preempt count _outside_ the spinlocks! */
6094 #if defined(CONFIG_PREEMPT)
6095 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6096 #else
6097 task_thread_info(idle)->preempt_count = 0;
6098 #endif
6099 /*
6100 * The idle tasks have their own, simple scheduling class:
6101 */
6102 idle->sched_class = &idle_sched_class;
6103 ftrace_graph_init_task(idle);
6104 }
6105
6106 /*
6107 * In a system that switches off the HZ timer nohz_cpu_mask
6108 * indicates which cpus entered this state. This is used
6109 * in the rcu update to wait only for active cpus. For system
6110 * which do not switch off the HZ timer nohz_cpu_mask should
6111 * always be CPU_BITS_NONE.
6112 */
6113 cpumask_var_t nohz_cpu_mask;
6114
6115 /*
6116 * Increase the granularity value when there are more CPUs,
6117 * because with more CPUs the 'effective latency' as visible
6118 * to users decreases. But the relationship is not linear,
6119 * so pick a second-best guess by going with the log2 of the
6120 * number of CPUs.
6121 *
6122 * This idea comes from the SD scheduler of Con Kolivas:
6123 */
6124 static inline void sched_init_granularity(void)
6125 {
6126 unsigned int factor = 1 + ilog2(num_online_cpus());
6127 const unsigned long limit = 200000000;
6128
6129 sysctl_sched_min_granularity *= factor;
6130 if (sysctl_sched_min_granularity > limit)
6131 sysctl_sched_min_granularity = limit;
6132
6133 sysctl_sched_latency *= factor;
6134 if (sysctl_sched_latency > limit)
6135 sysctl_sched_latency = limit;
6136
6137 sysctl_sched_wakeup_granularity *= factor;
6138
6139 sysctl_sched_shares_ratelimit *= factor;
6140 }
6141
6142 #ifdef CONFIG_SMP
6143 /*
6144 * This is how migration works:
6145 *
6146 * 1) we queue a struct migration_req structure in the source CPU's
6147 * runqueue and wake up that CPU's migration thread.
6148 * 2) we down() the locked semaphore => thread blocks.
6149 * 3) migration thread wakes up (implicitly it forces the migrated
6150 * thread off the CPU)
6151 * 4) it gets the migration request and checks whether the migrated
6152 * task is still in the wrong runqueue.
6153 * 5) if it's in the wrong runqueue then the migration thread removes
6154 * it and puts it into the right queue.
6155 * 6) migration thread up()s the semaphore.
6156 * 7) we wake up and the migration is done.
6157 */
6158
6159 /*
6160 * Change a given task's CPU affinity. Migrate the thread to a
6161 * proper CPU and schedule it away if the CPU it's executing on
6162 * is removed from the allowed bitmask.
6163 *
6164 * NOTE: the caller must have a valid reference to the task, the
6165 * task must not exit() & deallocate itself prematurely. The
6166 * call is not atomic; no spinlocks may be held.
6167 */
6168 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6169 {
6170 struct migration_req req;
6171 unsigned long flags;
6172 struct rq *rq;
6173 int ret = 0;
6174
6175 rq = task_rq_lock(p, &flags);
6176 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6177 ret = -EINVAL;
6178 goto out;
6179 }
6180
6181 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6182 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6183 ret = -EINVAL;
6184 goto out;
6185 }
6186
6187 if (p->sched_class->set_cpus_allowed)
6188 p->sched_class->set_cpus_allowed(p, new_mask);
6189 else {
6190 cpumask_copy(&p->cpus_allowed, new_mask);
6191 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6192 }
6193
6194 /* Can the task run on the task's current CPU? If so, we're done */
6195 if (cpumask_test_cpu(task_cpu(p), new_mask))
6196 goto out;
6197
6198 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6199 /* Need help from migration thread: drop lock and wait. */
6200 task_rq_unlock(rq, &flags);
6201 wake_up_process(rq->migration_thread);
6202 wait_for_completion(&req.done);
6203 tlb_migrate_finish(p->mm);
6204 return 0;
6205 }
6206 out:
6207 task_rq_unlock(rq, &flags);
6208
6209 return ret;
6210 }
6211 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6212
6213 /*
6214 * Move (not current) task off this cpu, onto dest cpu. We're doing
6215 * this because either it can't run here any more (set_cpus_allowed()
6216 * away from this CPU, or CPU going down), or because we're
6217 * attempting to rebalance this task on exec (sched_exec).
6218 *
6219 * So we race with normal scheduler movements, but that's OK, as long
6220 * as the task is no longer on this CPU.
6221 *
6222 * Returns non-zero if task was successfully migrated.
6223 */
6224 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6225 {
6226 struct rq *rq_dest, *rq_src;
6227 int ret = 0, on_rq;
6228
6229 if (unlikely(!cpu_active(dest_cpu)))
6230 return ret;
6231
6232 rq_src = cpu_rq(src_cpu);
6233 rq_dest = cpu_rq(dest_cpu);
6234
6235 double_rq_lock(rq_src, rq_dest);
6236 /* Already moved. */
6237 if (task_cpu(p) != src_cpu)
6238 goto done;
6239 /* Affinity changed (again). */
6240 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6241 goto fail;
6242
6243 on_rq = p->se.on_rq;
6244 if (on_rq)
6245 deactivate_task(rq_src, p, 0);
6246
6247 set_task_cpu(p, dest_cpu);
6248 if (on_rq) {
6249 activate_task(rq_dest, p, 0);
6250 check_preempt_curr(rq_dest, p, 0);
6251 }
6252 done:
6253 ret = 1;
6254 fail:
6255 double_rq_unlock(rq_src, rq_dest);
6256 return ret;
6257 }
6258
6259 /*
6260 * migration_thread - this is a highprio system thread that performs
6261 * thread migration by bumping thread off CPU then 'pushing' onto
6262 * another runqueue.
6263 */
6264 static int migration_thread(void *data)
6265 {
6266 int cpu = (long)data;
6267 struct rq *rq;
6268
6269 rq = cpu_rq(cpu);
6270 BUG_ON(rq->migration_thread != current);
6271
6272 set_current_state(TASK_INTERRUPTIBLE);
6273 while (!kthread_should_stop()) {
6274 struct migration_req *req;
6275 struct list_head *head;
6276
6277 spin_lock_irq(&rq->lock);
6278
6279 if (cpu_is_offline(cpu)) {
6280 spin_unlock_irq(&rq->lock);
6281 goto wait_to_die;
6282 }
6283
6284 if (rq->active_balance) {
6285 active_load_balance(rq, cpu);
6286 rq->active_balance = 0;
6287 }
6288
6289 head = &rq->migration_queue;
6290
6291 if (list_empty(head)) {
6292 spin_unlock_irq(&rq->lock);
6293 schedule();
6294 set_current_state(TASK_INTERRUPTIBLE);
6295 continue;
6296 }
6297 req = list_entry(head->next, struct migration_req, list);
6298 list_del_init(head->next);
6299
6300 spin_unlock(&rq->lock);
6301 __migrate_task(req->task, cpu, req->dest_cpu);
6302 local_irq_enable();
6303
6304 complete(&req->done);
6305 }
6306 __set_current_state(TASK_RUNNING);
6307 return 0;
6308
6309 wait_to_die:
6310 /* Wait for kthread_stop */
6311 set_current_state(TASK_INTERRUPTIBLE);
6312 while (!kthread_should_stop()) {
6313 schedule();
6314 set_current_state(TASK_INTERRUPTIBLE);
6315 }
6316 __set_current_state(TASK_RUNNING);
6317 return 0;
6318 }
6319
6320 #ifdef CONFIG_HOTPLUG_CPU
6321
6322 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6323 {
6324 int ret;
6325
6326 local_irq_disable();
6327 ret = __migrate_task(p, src_cpu, dest_cpu);
6328 local_irq_enable();
6329 return ret;
6330 }
6331
6332 /*
6333 * Figure out where task on dead CPU should go, use force if necessary.
6334 */
6335 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6336 {
6337 int dest_cpu;
6338 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6339
6340 again:
6341 /* Look for allowed, online CPU in same node. */
6342 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6343 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6344 goto move;
6345
6346 /* Any allowed, online CPU? */
6347 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6348 if (dest_cpu < nr_cpu_ids)
6349 goto move;
6350
6351 /* No more Mr. Nice Guy. */
6352 if (dest_cpu >= nr_cpu_ids) {
6353 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6354 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6355
6356 /*
6357 * Don't tell them about moving exiting tasks or
6358 * kernel threads (both mm NULL), since they never
6359 * leave kernel.
6360 */
6361 if (p->mm && printk_ratelimit()) {
6362 printk(KERN_INFO "process %d (%s) no "
6363 "longer affine to cpu%d\n",
6364 task_pid_nr(p), p->comm, dead_cpu);
6365 }
6366 }
6367
6368 move:
6369 /* It can have affinity changed while we were choosing. */
6370 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6371 goto again;
6372 }
6373
6374 /*
6375 * While a dead CPU has no uninterruptible tasks queued at this point,
6376 * it might still have a nonzero ->nr_uninterruptible counter, because
6377 * for performance reasons the counter is not stricly tracking tasks to
6378 * their home CPUs. So we just add the counter to another CPU's counter,
6379 * to keep the global sum constant after CPU-down:
6380 */
6381 static void migrate_nr_uninterruptible(struct rq *rq_src)
6382 {
6383 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6384 unsigned long flags;
6385
6386 local_irq_save(flags);
6387 double_rq_lock(rq_src, rq_dest);
6388 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6389 rq_src->nr_uninterruptible = 0;
6390 double_rq_unlock(rq_src, rq_dest);
6391 local_irq_restore(flags);
6392 }
6393
6394 /* Run through task list and migrate tasks from the dead cpu. */
6395 static void migrate_live_tasks(int src_cpu)
6396 {
6397 struct task_struct *p, *t;
6398
6399 read_lock(&tasklist_lock);
6400
6401 do_each_thread(t, p) {
6402 if (p == current)
6403 continue;
6404
6405 if (task_cpu(p) == src_cpu)
6406 move_task_off_dead_cpu(src_cpu, p);
6407 } while_each_thread(t, p);
6408
6409 read_unlock(&tasklist_lock);
6410 }
6411
6412 /*
6413 * Schedules idle task to be the next runnable task on current CPU.
6414 * It does so by boosting its priority to highest possible.
6415 * Used by CPU offline code.
6416 */
6417 void sched_idle_next(void)
6418 {
6419 int this_cpu = smp_processor_id();
6420 struct rq *rq = cpu_rq(this_cpu);
6421 struct task_struct *p = rq->idle;
6422 unsigned long flags;
6423
6424 /* cpu has to be offline */
6425 BUG_ON(cpu_online(this_cpu));
6426
6427 /*
6428 * Strictly not necessary since rest of the CPUs are stopped by now
6429 * and interrupts disabled on the current cpu.
6430 */
6431 spin_lock_irqsave(&rq->lock, flags);
6432
6433 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6434
6435 update_rq_clock(rq);
6436 activate_task(rq, p, 0);
6437
6438 spin_unlock_irqrestore(&rq->lock, flags);
6439 }
6440
6441 /*
6442 * Ensures that the idle task is using init_mm right before its cpu goes
6443 * offline.
6444 */
6445 void idle_task_exit(void)
6446 {
6447 struct mm_struct *mm = current->active_mm;
6448
6449 BUG_ON(cpu_online(smp_processor_id()));
6450
6451 if (mm != &init_mm)
6452 switch_mm(mm, &init_mm, current);
6453 mmdrop(mm);
6454 }
6455
6456 /* called under rq->lock with disabled interrupts */
6457 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6458 {
6459 struct rq *rq = cpu_rq(dead_cpu);
6460
6461 /* Must be exiting, otherwise would be on tasklist. */
6462 BUG_ON(!p->exit_state);
6463
6464 /* Cannot have done final schedule yet: would have vanished. */
6465 BUG_ON(p->state == TASK_DEAD);
6466
6467 get_task_struct(p);
6468
6469 /*
6470 * Drop lock around migration; if someone else moves it,
6471 * that's OK. No task can be added to this CPU, so iteration is
6472 * fine.
6473 */
6474 spin_unlock_irq(&rq->lock);
6475 move_task_off_dead_cpu(dead_cpu, p);
6476 spin_lock_irq(&rq->lock);
6477
6478 put_task_struct(p);
6479 }
6480
6481 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6482 static void migrate_dead_tasks(unsigned int dead_cpu)
6483 {
6484 struct rq *rq = cpu_rq(dead_cpu);
6485 struct task_struct *next;
6486
6487 for ( ; ; ) {
6488 if (!rq->nr_running)
6489 break;
6490 update_rq_clock(rq);
6491 next = pick_next_task(rq, rq->curr);
6492 if (!next)
6493 break;
6494 next->sched_class->put_prev_task(rq, next);
6495 migrate_dead(dead_cpu, next);
6496
6497 }
6498 }
6499 #endif /* CONFIG_HOTPLUG_CPU */
6500
6501 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6502
6503 static struct ctl_table sd_ctl_dir[] = {
6504 {
6505 .procname = "sched_domain",
6506 .mode = 0555,
6507 },
6508 {0, },
6509 };
6510
6511 static struct ctl_table sd_ctl_root[] = {
6512 {
6513 .ctl_name = CTL_KERN,
6514 .procname = "kernel",
6515 .mode = 0555,
6516 .child = sd_ctl_dir,
6517 },
6518 {0, },
6519 };
6520
6521 static struct ctl_table *sd_alloc_ctl_entry(int n)
6522 {
6523 struct ctl_table *entry =
6524 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6525
6526 return entry;
6527 }
6528
6529 static void sd_free_ctl_entry(struct ctl_table **tablep)
6530 {
6531 struct ctl_table *entry;
6532
6533 /*
6534 * In the intermediate directories, both the child directory and
6535 * procname are dynamically allocated and could fail but the mode
6536 * will always be set. In the lowest directory the names are
6537 * static strings and all have proc handlers.
6538 */
6539 for (entry = *tablep; entry->mode; entry++) {
6540 if (entry->child)
6541 sd_free_ctl_entry(&entry->child);
6542 if (entry->proc_handler == NULL)
6543 kfree(entry->procname);
6544 }
6545
6546 kfree(*tablep);
6547 *tablep = NULL;
6548 }
6549
6550 static void
6551 set_table_entry(struct ctl_table *entry,
6552 const char *procname, void *data, int maxlen,
6553 mode_t mode, proc_handler *proc_handler)
6554 {
6555 entry->procname = procname;
6556 entry->data = data;
6557 entry->maxlen = maxlen;
6558 entry->mode = mode;
6559 entry->proc_handler = proc_handler;
6560 }
6561
6562 static struct ctl_table *
6563 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6564 {
6565 struct ctl_table *table = sd_alloc_ctl_entry(13);
6566
6567 if (table == NULL)
6568 return NULL;
6569
6570 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6571 sizeof(long), 0644, proc_doulongvec_minmax);
6572 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6573 sizeof(long), 0644, proc_doulongvec_minmax);
6574 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6575 sizeof(int), 0644, proc_dointvec_minmax);
6576 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6577 sizeof(int), 0644, proc_dointvec_minmax);
6578 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6579 sizeof(int), 0644, proc_dointvec_minmax);
6580 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6581 sizeof(int), 0644, proc_dointvec_minmax);
6582 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6583 sizeof(int), 0644, proc_dointvec_minmax);
6584 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6585 sizeof(int), 0644, proc_dointvec_minmax);
6586 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6587 sizeof(int), 0644, proc_dointvec_minmax);
6588 set_table_entry(&table[9], "cache_nice_tries",
6589 &sd->cache_nice_tries,
6590 sizeof(int), 0644, proc_dointvec_minmax);
6591 set_table_entry(&table[10], "flags", &sd->flags,
6592 sizeof(int), 0644, proc_dointvec_minmax);
6593 set_table_entry(&table[11], "name", sd->name,
6594 CORENAME_MAX_SIZE, 0444, proc_dostring);
6595 /* &table[12] is terminator */
6596
6597 return table;
6598 }
6599
6600 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6601 {
6602 struct ctl_table *entry, *table;
6603 struct sched_domain *sd;
6604 int domain_num = 0, i;
6605 char buf[32];
6606
6607 for_each_domain(cpu, sd)
6608 domain_num++;
6609 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6610 if (table == NULL)
6611 return NULL;
6612
6613 i = 0;
6614 for_each_domain(cpu, sd) {
6615 snprintf(buf, 32, "domain%d", i);
6616 entry->procname = kstrdup(buf, GFP_KERNEL);
6617 entry->mode = 0555;
6618 entry->child = sd_alloc_ctl_domain_table(sd);
6619 entry++;
6620 i++;
6621 }
6622 return table;
6623 }
6624
6625 static struct ctl_table_header *sd_sysctl_header;
6626 static void register_sched_domain_sysctl(void)
6627 {
6628 int i, cpu_num = num_online_cpus();
6629 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6630 char buf[32];
6631
6632 WARN_ON(sd_ctl_dir[0].child);
6633 sd_ctl_dir[0].child = entry;
6634
6635 if (entry == NULL)
6636 return;
6637
6638 for_each_online_cpu(i) {
6639 snprintf(buf, 32, "cpu%d", i);
6640 entry->procname = kstrdup(buf, GFP_KERNEL);
6641 entry->mode = 0555;
6642 entry->child = sd_alloc_ctl_cpu_table(i);
6643 entry++;
6644 }
6645
6646 WARN_ON(sd_sysctl_header);
6647 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6648 }
6649
6650 /* may be called multiple times per register */
6651 static void unregister_sched_domain_sysctl(void)
6652 {
6653 if (sd_sysctl_header)
6654 unregister_sysctl_table(sd_sysctl_header);
6655 sd_sysctl_header = NULL;
6656 if (sd_ctl_dir[0].child)
6657 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6658 }
6659 #else
6660 static void register_sched_domain_sysctl(void)
6661 {
6662 }
6663 static void unregister_sched_domain_sysctl(void)
6664 {
6665 }
6666 #endif
6667
6668 static void set_rq_online(struct rq *rq)
6669 {
6670 if (!rq->online) {
6671 const struct sched_class *class;
6672
6673 cpumask_set_cpu(rq->cpu, rq->rd->online);
6674 rq->online = 1;
6675
6676 for_each_class(class) {
6677 if (class->rq_online)
6678 class->rq_online(rq);
6679 }
6680 }
6681 }
6682
6683 static void set_rq_offline(struct rq *rq)
6684 {
6685 if (rq->online) {
6686 const struct sched_class *class;
6687
6688 for_each_class(class) {
6689 if (class->rq_offline)
6690 class->rq_offline(rq);
6691 }
6692
6693 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6694 rq->online = 0;
6695 }
6696 }
6697
6698 /*
6699 * migration_call - callback that gets triggered when a CPU is added.
6700 * Here we can start up the necessary migration thread for the new CPU.
6701 */
6702 static int __cpuinit
6703 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6704 {
6705 struct task_struct *p;
6706 int cpu = (long)hcpu;
6707 unsigned long flags;
6708 struct rq *rq;
6709
6710 switch (action) {
6711
6712 case CPU_UP_PREPARE:
6713 case CPU_UP_PREPARE_FROZEN:
6714 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6715 if (IS_ERR(p))
6716 return NOTIFY_BAD;
6717 kthread_bind(p, cpu);
6718 /* Must be high prio: stop_machine expects to yield to it. */
6719 rq = task_rq_lock(p, &flags);
6720 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6721 task_rq_unlock(rq, &flags);
6722 cpu_rq(cpu)->migration_thread = p;
6723 break;
6724
6725 case CPU_ONLINE:
6726 case CPU_ONLINE_FROZEN:
6727 /* Strictly unnecessary, as first user will wake it. */
6728 wake_up_process(cpu_rq(cpu)->migration_thread);
6729
6730 /* Update our root-domain */
6731 rq = cpu_rq(cpu);
6732 spin_lock_irqsave(&rq->lock, flags);
6733 if (rq->rd) {
6734 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6735
6736 set_rq_online(rq);
6737 }
6738 spin_unlock_irqrestore(&rq->lock, flags);
6739 break;
6740
6741 #ifdef CONFIG_HOTPLUG_CPU
6742 case CPU_UP_CANCELED:
6743 case CPU_UP_CANCELED_FROZEN:
6744 if (!cpu_rq(cpu)->migration_thread)
6745 break;
6746 /* Unbind it from offline cpu so it can run. Fall thru. */
6747 kthread_bind(cpu_rq(cpu)->migration_thread,
6748 cpumask_any(cpu_online_mask));
6749 kthread_stop(cpu_rq(cpu)->migration_thread);
6750 cpu_rq(cpu)->migration_thread = NULL;
6751 break;
6752
6753 case CPU_DEAD:
6754 case CPU_DEAD_FROZEN:
6755 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6756 migrate_live_tasks(cpu);
6757 rq = cpu_rq(cpu);
6758 kthread_stop(rq->migration_thread);
6759 rq->migration_thread = NULL;
6760 /* Idle task back to normal (off runqueue, low prio) */
6761 spin_lock_irq(&rq->lock);
6762 update_rq_clock(rq);
6763 deactivate_task(rq, rq->idle, 0);
6764 rq->idle->static_prio = MAX_PRIO;
6765 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6766 rq->idle->sched_class = &idle_sched_class;
6767 migrate_dead_tasks(cpu);
6768 spin_unlock_irq(&rq->lock);
6769 cpuset_unlock();
6770 migrate_nr_uninterruptible(rq);
6771 BUG_ON(rq->nr_running != 0);
6772
6773 /*
6774 * No need to migrate the tasks: it was best-effort if
6775 * they didn't take sched_hotcpu_mutex. Just wake up
6776 * the requestors.
6777 */
6778 spin_lock_irq(&rq->lock);
6779 while (!list_empty(&rq->migration_queue)) {
6780 struct migration_req *req;
6781
6782 req = list_entry(rq->migration_queue.next,
6783 struct migration_req, list);
6784 list_del_init(&req->list);
6785 spin_unlock_irq(&rq->lock);
6786 complete(&req->done);
6787 spin_lock_irq(&rq->lock);
6788 }
6789 spin_unlock_irq(&rq->lock);
6790 break;
6791
6792 case CPU_DYING:
6793 case CPU_DYING_FROZEN:
6794 /* Update our root-domain */
6795 rq = cpu_rq(cpu);
6796 spin_lock_irqsave(&rq->lock, flags);
6797 if (rq->rd) {
6798 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6799 set_rq_offline(rq);
6800 }
6801 spin_unlock_irqrestore(&rq->lock, flags);
6802 break;
6803 #endif
6804 }
6805 return NOTIFY_OK;
6806 }
6807
6808 /* Register at highest priority so that task migration (migrate_all_tasks)
6809 * happens before everything else.
6810 */
6811 static struct notifier_block __cpuinitdata migration_notifier = {
6812 .notifier_call = migration_call,
6813 .priority = 10
6814 };
6815
6816 static int __init migration_init(void)
6817 {
6818 void *cpu = (void *)(long)smp_processor_id();
6819 int err;
6820
6821 /* Start one for the boot CPU: */
6822 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6823 BUG_ON(err == NOTIFY_BAD);
6824 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6825 register_cpu_notifier(&migration_notifier);
6826
6827 return err;
6828 }
6829 early_initcall(migration_init);
6830 #endif
6831
6832 #ifdef CONFIG_SMP
6833
6834 #ifdef CONFIG_SCHED_DEBUG
6835
6836 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6837 struct cpumask *groupmask)
6838 {
6839 struct sched_group *group = sd->groups;
6840 char str[256];
6841
6842 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6843 cpumask_clear(groupmask);
6844
6845 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6846
6847 if (!(sd->flags & SD_LOAD_BALANCE)) {
6848 printk("does not load-balance\n");
6849 if (sd->parent)
6850 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6851 " has parent");
6852 return -1;
6853 }
6854
6855 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6856
6857 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6858 printk(KERN_ERR "ERROR: domain->span does not contain "
6859 "CPU%d\n", cpu);
6860 }
6861 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6862 printk(KERN_ERR "ERROR: domain->groups does not contain"
6863 " CPU%d\n", cpu);
6864 }
6865
6866 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6867 do {
6868 if (!group) {
6869 printk("\n");
6870 printk(KERN_ERR "ERROR: group is NULL\n");
6871 break;
6872 }
6873
6874 if (!group->__cpu_power) {
6875 printk(KERN_CONT "\n");
6876 printk(KERN_ERR "ERROR: domain->cpu_power not "
6877 "set\n");
6878 break;
6879 }
6880
6881 if (!cpumask_weight(sched_group_cpus(group))) {
6882 printk(KERN_CONT "\n");
6883 printk(KERN_ERR "ERROR: empty group\n");
6884 break;
6885 }
6886
6887 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6888 printk(KERN_CONT "\n");
6889 printk(KERN_ERR "ERROR: repeated CPUs\n");
6890 break;
6891 }
6892
6893 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6894
6895 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6896 printk(KERN_CONT " %s", str);
6897
6898 group = group->next;
6899 } while (group != sd->groups);
6900 printk(KERN_CONT "\n");
6901
6902 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6903 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6904
6905 if (sd->parent &&
6906 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6907 printk(KERN_ERR "ERROR: parent span is not a superset "
6908 "of domain->span\n");
6909 return 0;
6910 }
6911
6912 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6913 {
6914 cpumask_var_t groupmask;
6915 int level = 0;
6916
6917 if (!sd) {
6918 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6919 return;
6920 }
6921
6922 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6923
6924 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6925 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6926 return;
6927 }
6928
6929 for (;;) {
6930 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6931 break;
6932 level++;
6933 sd = sd->parent;
6934 if (!sd)
6935 break;
6936 }
6937 free_cpumask_var(groupmask);
6938 }
6939 #else /* !CONFIG_SCHED_DEBUG */
6940 # define sched_domain_debug(sd, cpu) do { } while (0)
6941 #endif /* CONFIG_SCHED_DEBUG */
6942
6943 static int sd_degenerate(struct sched_domain *sd)
6944 {
6945 if (cpumask_weight(sched_domain_span(sd)) == 1)
6946 return 1;
6947
6948 /* Following flags need at least 2 groups */
6949 if (sd->flags & (SD_LOAD_BALANCE |
6950 SD_BALANCE_NEWIDLE |
6951 SD_BALANCE_FORK |
6952 SD_BALANCE_EXEC |
6953 SD_SHARE_CPUPOWER |
6954 SD_SHARE_PKG_RESOURCES)) {
6955 if (sd->groups != sd->groups->next)
6956 return 0;
6957 }
6958
6959 /* Following flags don't use groups */
6960 if (sd->flags & (SD_WAKE_IDLE |
6961 SD_WAKE_AFFINE |
6962 SD_WAKE_BALANCE))
6963 return 0;
6964
6965 return 1;
6966 }
6967
6968 static int
6969 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6970 {
6971 unsigned long cflags = sd->flags, pflags = parent->flags;
6972
6973 if (sd_degenerate(parent))
6974 return 1;
6975
6976 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6977 return 0;
6978
6979 /* Does parent contain flags not in child? */
6980 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6981 if (cflags & SD_WAKE_AFFINE)
6982 pflags &= ~SD_WAKE_BALANCE;
6983 /* Flags needing groups don't count if only 1 group in parent */
6984 if (parent->groups == parent->groups->next) {
6985 pflags &= ~(SD_LOAD_BALANCE |
6986 SD_BALANCE_NEWIDLE |
6987 SD_BALANCE_FORK |
6988 SD_BALANCE_EXEC |
6989 SD_SHARE_CPUPOWER |
6990 SD_SHARE_PKG_RESOURCES);
6991 if (nr_node_ids == 1)
6992 pflags &= ~SD_SERIALIZE;
6993 }
6994 if (~cflags & pflags)
6995 return 0;
6996
6997 return 1;
6998 }
6999
7000 static void free_rootdomain(struct root_domain *rd)
7001 {
7002 cpupri_cleanup(&rd->cpupri);
7003
7004 free_cpumask_var(rd->rto_mask);
7005 free_cpumask_var(rd->online);
7006 free_cpumask_var(rd->span);
7007 kfree(rd);
7008 }
7009
7010 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7011 {
7012 unsigned long flags;
7013
7014 spin_lock_irqsave(&rq->lock, flags);
7015
7016 if (rq->rd) {
7017 struct root_domain *old_rd = rq->rd;
7018
7019 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7020 set_rq_offline(rq);
7021
7022 cpumask_clear_cpu(rq->cpu, old_rd->span);
7023
7024 if (atomic_dec_and_test(&old_rd->refcount))
7025 free_rootdomain(old_rd);
7026 }
7027
7028 atomic_inc(&rd->refcount);
7029 rq->rd = rd;
7030
7031 cpumask_set_cpu(rq->cpu, rd->span);
7032 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7033 set_rq_online(rq);
7034
7035 spin_unlock_irqrestore(&rq->lock, flags);
7036 }
7037
7038 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7039 {
7040 memset(rd, 0, sizeof(*rd));
7041
7042 if (bootmem) {
7043 alloc_bootmem_cpumask_var(&def_root_domain.span);
7044 alloc_bootmem_cpumask_var(&def_root_domain.online);
7045 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7046 cpupri_init(&rd->cpupri, true);
7047 return 0;
7048 }
7049
7050 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7051 goto out;
7052 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7053 goto free_span;
7054 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7055 goto free_online;
7056
7057 if (cpupri_init(&rd->cpupri, false) != 0)
7058 goto free_rto_mask;
7059 return 0;
7060
7061 free_rto_mask:
7062 free_cpumask_var(rd->rto_mask);
7063 free_online:
7064 free_cpumask_var(rd->online);
7065 free_span:
7066 free_cpumask_var(rd->span);
7067 out:
7068 return -ENOMEM;
7069 }
7070
7071 static void init_defrootdomain(void)
7072 {
7073 init_rootdomain(&def_root_domain, true);
7074
7075 atomic_set(&def_root_domain.refcount, 1);
7076 }
7077
7078 static struct root_domain *alloc_rootdomain(void)
7079 {
7080 struct root_domain *rd;
7081
7082 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7083 if (!rd)
7084 return NULL;
7085
7086 if (init_rootdomain(rd, false) != 0) {
7087 kfree(rd);
7088 return NULL;
7089 }
7090
7091 return rd;
7092 }
7093
7094 /*
7095 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7096 * hold the hotplug lock.
7097 */
7098 static void
7099 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7100 {
7101 struct rq *rq = cpu_rq(cpu);
7102 struct sched_domain *tmp;
7103
7104 /* Remove the sched domains which do not contribute to scheduling. */
7105 for (tmp = sd; tmp; ) {
7106 struct sched_domain *parent = tmp->parent;
7107 if (!parent)
7108 break;
7109
7110 if (sd_parent_degenerate(tmp, parent)) {
7111 tmp->parent = parent->parent;
7112 if (parent->parent)
7113 parent->parent->child = tmp;
7114 } else
7115 tmp = tmp->parent;
7116 }
7117
7118 if (sd && sd_degenerate(sd)) {
7119 sd = sd->parent;
7120 if (sd)
7121 sd->child = NULL;
7122 }
7123
7124 sched_domain_debug(sd, cpu);
7125
7126 rq_attach_root(rq, rd);
7127 rcu_assign_pointer(rq->sd, sd);
7128 }
7129
7130 /* cpus with isolated domains */
7131 static cpumask_var_t cpu_isolated_map;
7132
7133 /* Setup the mask of cpus configured for isolated domains */
7134 static int __init isolated_cpu_setup(char *str)
7135 {
7136 cpulist_parse(str, cpu_isolated_map);
7137 return 1;
7138 }
7139
7140 __setup("isolcpus=", isolated_cpu_setup);
7141
7142 /*
7143 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7144 * to a function which identifies what group(along with sched group) a CPU
7145 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7146 * (due to the fact that we keep track of groups covered with a struct cpumask).
7147 *
7148 * init_sched_build_groups will build a circular linked list of the groups
7149 * covered by the given span, and will set each group's ->cpumask correctly,
7150 * and ->cpu_power to 0.
7151 */
7152 static void
7153 init_sched_build_groups(const struct cpumask *span,
7154 const struct cpumask *cpu_map,
7155 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7156 struct sched_group **sg,
7157 struct cpumask *tmpmask),
7158 struct cpumask *covered, struct cpumask *tmpmask)
7159 {
7160 struct sched_group *first = NULL, *last = NULL;
7161 int i;
7162
7163 cpumask_clear(covered);
7164
7165 for_each_cpu(i, span) {
7166 struct sched_group *sg;
7167 int group = group_fn(i, cpu_map, &sg, tmpmask);
7168 int j;
7169
7170 if (cpumask_test_cpu(i, covered))
7171 continue;
7172
7173 cpumask_clear(sched_group_cpus(sg));
7174 sg->__cpu_power = 0;
7175
7176 for_each_cpu(j, span) {
7177 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7178 continue;
7179
7180 cpumask_set_cpu(j, covered);
7181 cpumask_set_cpu(j, sched_group_cpus(sg));
7182 }
7183 if (!first)
7184 first = sg;
7185 if (last)
7186 last->next = sg;
7187 last = sg;
7188 }
7189 last->next = first;
7190 }
7191
7192 #define SD_NODES_PER_DOMAIN 16
7193
7194 #ifdef CONFIG_NUMA
7195
7196 /**
7197 * find_next_best_node - find the next node to include in a sched_domain
7198 * @node: node whose sched_domain we're building
7199 * @used_nodes: nodes already in the sched_domain
7200 *
7201 * Find the next node to include in a given scheduling domain. Simply
7202 * finds the closest node not already in the @used_nodes map.
7203 *
7204 * Should use nodemask_t.
7205 */
7206 static int find_next_best_node(int node, nodemask_t *used_nodes)
7207 {
7208 int i, n, val, min_val, best_node = 0;
7209
7210 min_val = INT_MAX;
7211
7212 for (i = 0; i < nr_node_ids; i++) {
7213 /* Start at @node */
7214 n = (node + i) % nr_node_ids;
7215
7216 if (!nr_cpus_node(n))
7217 continue;
7218
7219 /* Skip already used nodes */
7220 if (node_isset(n, *used_nodes))
7221 continue;
7222
7223 /* Simple min distance search */
7224 val = node_distance(node, n);
7225
7226 if (val < min_val) {
7227 min_val = val;
7228 best_node = n;
7229 }
7230 }
7231
7232 node_set(best_node, *used_nodes);
7233 return best_node;
7234 }
7235
7236 /**
7237 * sched_domain_node_span - get a cpumask for a node's sched_domain
7238 * @node: node whose cpumask we're constructing
7239 * @span: resulting cpumask
7240 *
7241 * Given a node, construct a good cpumask for its sched_domain to span. It
7242 * should be one that prevents unnecessary balancing, but also spreads tasks
7243 * out optimally.
7244 */
7245 static void sched_domain_node_span(int node, struct cpumask *span)
7246 {
7247 nodemask_t used_nodes;
7248 int i;
7249
7250 cpumask_clear(span);
7251 nodes_clear(used_nodes);
7252
7253 cpumask_or(span, span, cpumask_of_node(node));
7254 node_set(node, used_nodes);
7255
7256 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7257 int next_node = find_next_best_node(node, &used_nodes);
7258
7259 cpumask_or(span, span, cpumask_of_node(next_node));
7260 }
7261 }
7262 #endif /* CONFIG_NUMA */
7263
7264 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7265
7266 /*
7267 * The cpus mask in sched_group and sched_domain hangs off the end.
7268 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7269 * for nr_cpu_ids < CONFIG_NR_CPUS.
7270 */
7271 struct static_sched_group {
7272 struct sched_group sg;
7273 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7274 };
7275
7276 struct static_sched_domain {
7277 struct sched_domain sd;
7278 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7279 };
7280
7281 /*
7282 * SMT sched-domains:
7283 */
7284 #ifdef CONFIG_SCHED_SMT
7285 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7286 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7287
7288 static int
7289 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7290 struct sched_group **sg, struct cpumask *unused)
7291 {
7292 if (sg)
7293 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7294 return cpu;
7295 }
7296 #endif /* CONFIG_SCHED_SMT */
7297
7298 /*
7299 * multi-core sched-domains:
7300 */
7301 #ifdef CONFIG_SCHED_MC
7302 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7303 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7304 #endif /* CONFIG_SCHED_MC */
7305
7306 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7307 static int
7308 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7309 struct sched_group **sg, struct cpumask *mask)
7310 {
7311 int group;
7312
7313 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7314 group = cpumask_first(mask);
7315 if (sg)
7316 *sg = &per_cpu(sched_group_core, group).sg;
7317 return group;
7318 }
7319 #elif defined(CONFIG_SCHED_MC)
7320 static int
7321 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7322 struct sched_group **sg, struct cpumask *unused)
7323 {
7324 if (sg)
7325 *sg = &per_cpu(sched_group_core, cpu).sg;
7326 return cpu;
7327 }
7328 #endif
7329
7330 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7331 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7332
7333 static int
7334 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7335 struct sched_group **sg, struct cpumask *mask)
7336 {
7337 int group;
7338 #ifdef CONFIG_SCHED_MC
7339 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7340 group = cpumask_first(mask);
7341 #elif defined(CONFIG_SCHED_SMT)
7342 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7343 group = cpumask_first(mask);
7344 #else
7345 group = cpu;
7346 #endif
7347 if (sg)
7348 *sg = &per_cpu(sched_group_phys, group).sg;
7349 return group;
7350 }
7351
7352 #ifdef CONFIG_NUMA
7353 /*
7354 * The init_sched_build_groups can't handle what we want to do with node
7355 * groups, so roll our own. Now each node has its own list of groups which
7356 * gets dynamically allocated.
7357 */
7358 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7359 static struct sched_group ***sched_group_nodes_bycpu;
7360
7361 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7362 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7363
7364 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7365 struct sched_group **sg,
7366 struct cpumask *nodemask)
7367 {
7368 int group;
7369
7370 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7371 group = cpumask_first(nodemask);
7372
7373 if (sg)
7374 *sg = &per_cpu(sched_group_allnodes, group).sg;
7375 return group;
7376 }
7377
7378 static void init_numa_sched_groups_power(struct sched_group *group_head)
7379 {
7380 struct sched_group *sg = group_head;
7381 int j;
7382
7383 if (!sg)
7384 return;
7385 do {
7386 for_each_cpu(j, sched_group_cpus(sg)) {
7387 struct sched_domain *sd;
7388
7389 sd = &per_cpu(phys_domains, j).sd;
7390 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7391 /*
7392 * Only add "power" once for each
7393 * physical package.
7394 */
7395 continue;
7396 }
7397
7398 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7399 }
7400 sg = sg->next;
7401 } while (sg != group_head);
7402 }
7403 #endif /* CONFIG_NUMA */
7404
7405 #ifdef CONFIG_NUMA
7406 /* Free memory allocated for various sched_group structures */
7407 static void free_sched_groups(const struct cpumask *cpu_map,
7408 struct cpumask *nodemask)
7409 {
7410 int cpu, i;
7411
7412 for_each_cpu(cpu, cpu_map) {
7413 struct sched_group **sched_group_nodes
7414 = sched_group_nodes_bycpu[cpu];
7415
7416 if (!sched_group_nodes)
7417 continue;
7418
7419 for (i = 0; i < nr_node_ids; i++) {
7420 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7421
7422 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7423 if (cpumask_empty(nodemask))
7424 continue;
7425
7426 if (sg == NULL)
7427 continue;
7428 sg = sg->next;
7429 next_sg:
7430 oldsg = sg;
7431 sg = sg->next;
7432 kfree(oldsg);
7433 if (oldsg != sched_group_nodes[i])
7434 goto next_sg;
7435 }
7436 kfree(sched_group_nodes);
7437 sched_group_nodes_bycpu[cpu] = NULL;
7438 }
7439 }
7440 #else /* !CONFIG_NUMA */
7441 static void free_sched_groups(const struct cpumask *cpu_map,
7442 struct cpumask *nodemask)
7443 {
7444 }
7445 #endif /* CONFIG_NUMA */
7446
7447 /*
7448 * Initialize sched groups cpu_power.
7449 *
7450 * cpu_power indicates the capacity of sched group, which is used while
7451 * distributing the load between different sched groups in a sched domain.
7452 * Typically cpu_power for all the groups in a sched domain will be same unless
7453 * there are asymmetries in the topology. If there are asymmetries, group
7454 * having more cpu_power will pickup more load compared to the group having
7455 * less cpu_power.
7456 *
7457 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7458 * the maximum number of tasks a group can handle in the presence of other idle
7459 * or lightly loaded groups in the same sched domain.
7460 */
7461 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7462 {
7463 struct sched_domain *child;
7464 struct sched_group *group;
7465
7466 WARN_ON(!sd || !sd->groups);
7467
7468 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7469 return;
7470
7471 child = sd->child;
7472
7473 sd->groups->__cpu_power = 0;
7474
7475 /*
7476 * For perf policy, if the groups in child domain share resources
7477 * (for example cores sharing some portions of the cache hierarchy
7478 * or SMT), then set this domain groups cpu_power such that each group
7479 * can handle only one task, when there are other idle groups in the
7480 * same sched domain.
7481 */
7482 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7483 (child->flags &
7484 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7485 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7486 return;
7487 }
7488
7489 /*
7490 * add cpu_power of each child group to this groups cpu_power
7491 */
7492 group = child->groups;
7493 do {
7494 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7495 group = group->next;
7496 } while (group != child->groups);
7497 }
7498
7499 /*
7500 * Initializers for schedule domains
7501 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7502 */
7503
7504 #ifdef CONFIG_SCHED_DEBUG
7505 # define SD_INIT_NAME(sd, type) sd->name = #type
7506 #else
7507 # define SD_INIT_NAME(sd, type) do { } while (0)
7508 #endif
7509
7510 #define SD_INIT(sd, type) sd_init_##type(sd)
7511
7512 #define SD_INIT_FUNC(type) \
7513 static noinline void sd_init_##type(struct sched_domain *sd) \
7514 { \
7515 memset(sd, 0, sizeof(*sd)); \
7516 *sd = SD_##type##_INIT; \
7517 sd->level = SD_LV_##type; \
7518 SD_INIT_NAME(sd, type); \
7519 }
7520
7521 SD_INIT_FUNC(CPU)
7522 #ifdef CONFIG_NUMA
7523 SD_INIT_FUNC(ALLNODES)
7524 SD_INIT_FUNC(NODE)
7525 #endif
7526 #ifdef CONFIG_SCHED_SMT
7527 SD_INIT_FUNC(SIBLING)
7528 #endif
7529 #ifdef CONFIG_SCHED_MC
7530 SD_INIT_FUNC(MC)
7531 #endif
7532
7533 static int default_relax_domain_level = -1;
7534
7535 static int __init setup_relax_domain_level(char *str)
7536 {
7537 unsigned long val;
7538
7539 val = simple_strtoul(str, NULL, 0);
7540 if (val < SD_LV_MAX)
7541 default_relax_domain_level = val;
7542
7543 return 1;
7544 }
7545 __setup("relax_domain_level=", setup_relax_domain_level);
7546
7547 static void set_domain_attribute(struct sched_domain *sd,
7548 struct sched_domain_attr *attr)
7549 {
7550 int request;
7551
7552 if (!attr || attr->relax_domain_level < 0) {
7553 if (default_relax_domain_level < 0)
7554 return;
7555 else
7556 request = default_relax_domain_level;
7557 } else
7558 request = attr->relax_domain_level;
7559 if (request < sd->level) {
7560 /* turn off idle balance on this domain */
7561 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7562 } else {
7563 /* turn on idle balance on this domain */
7564 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7565 }
7566 }
7567
7568 /*
7569 * Build sched domains for a given set of cpus and attach the sched domains
7570 * to the individual cpus
7571 */
7572 static int __build_sched_domains(const struct cpumask *cpu_map,
7573 struct sched_domain_attr *attr)
7574 {
7575 int i, err = -ENOMEM;
7576 struct root_domain *rd;
7577 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7578 tmpmask;
7579 #ifdef CONFIG_NUMA
7580 cpumask_var_t domainspan, covered, notcovered;
7581 struct sched_group **sched_group_nodes = NULL;
7582 int sd_allnodes = 0;
7583
7584 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7585 goto out;
7586 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7587 goto free_domainspan;
7588 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7589 goto free_covered;
7590 #endif
7591
7592 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7593 goto free_notcovered;
7594 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7595 goto free_nodemask;
7596 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7597 goto free_this_sibling_map;
7598 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7599 goto free_this_core_map;
7600 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7601 goto free_send_covered;
7602
7603 #ifdef CONFIG_NUMA
7604 /*
7605 * Allocate the per-node list of sched groups
7606 */
7607 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7608 GFP_KERNEL);
7609 if (!sched_group_nodes) {
7610 printk(KERN_WARNING "Can not alloc sched group node list\n");
7611 goto free_tmpmask;
7612 }
7613 #endif
7614
7615 rd = alloc_rootdomain();
7616 if (!rd) {
7617 printk(KERN_WARNING "Cannot alloc root domain\n");
7618 goto free_sched_groups;
7619 }
7620
7621 #ifdef CONFIG_NUMA
7622 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7623 #endif
7624
7625 /*
7626 * Set up domains for cpus specified by the cpu_map.
7627 */
7628 for_each_cpu(i, cpu_map) {
7629 struct sched_domain *sd = NULL, *p;
7630
7631 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7632
7633 #ifdef CONFIG_NUMA
7634 if (cpumask_weight(cpu_map) >
7635 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7636 sd = &per_cpu(allnodes_domains, i).sd;
7637 SD_INIT(sd, ALLNODES);
7638 set_domain_attribute(sd, attr);
7639 cpumask_copy(sched_domain_span(sd), cpu_map);
7640 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7641 p = sd;
7642 sd_allnodes = 1;
7643 } else
7644 p = NULL;
7645
7646 sd = &per_cpu(node_domains, i).sd;
7647 SD_INIT(sd, NODE);
7648 set_domain_attribute(sd, attr);
7649 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7650 sd->parent = p;
7651 if (p)
7652 p->child = sd;
7653 cpumask_and(sched_domain_span(sd),
7654 sched_domain_span(sd), cpu_map);
7655 #endif
7656
7657 p = sd;
7658 sd = &per_cpu(phys_domains, i).sd;
7659 SD_INIT(sd, CPU);
7660 set_domain_attribute(sd, attr);
7661 cpumask_copy(sched_domain_span(sd), nodemask);
7662 sd->parent = p;
7663 if (p)
7664 p->child = sd;
7665 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7666
7667 #ifdef CONFIG_SCHED_MC
7668 p = sd;
7669 sd = &per_cpu(core_domains, i).sd;
7670 SD_INIT(sd, MC);
7671 set_domain_attribute(sd, attr);
7672 cpumask_and(sched_domain_span(sd), cpu_map,
7673 cpu_coregroup_mask(i));
7674 sd->parent = p;
7675 p->child = sd;
7676 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7677 #endif
7678
7679 #ifdef CONFIG_SCHED_SMT
7680 p = sd;
7681 sd = &per_cpu(cpu_domains, i).sd;
7682 SD_INIT(sd, SIBLING);
7683 set_domain_attribute(sd, attr);
7684 cpumask_and(sched_domain_span(sd),
7685 &per_cpu(cpu_sibling_map, i), cpu_map);
7686 sd->parent = p;
7687 p->child = sd;
7688 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7689 #endif
7690 }
7691
7692 #ifdef CONFIG_SCHED_SMT
7693 /* Set up CPU (sibling) groups */
7694 for_each_cpu(i, cpu_map) {
7695 cpumask_and(this_sibling_map,
7696 &per_cpu(cpu_sibling_map, i), cpu_map);
7697 if (i != cpumask_first(this_sibling_map))
7698 continue;
7699
7700 init_sched_build_groups(this_sibling_map, cpu_map,
7701 &cpu_to_cpu_group,
7702 send_covered, tmpmask);
7703 }
7704 #endif
7705
7706 #ifdef CONFIG_SCHED_MC
7707 /* Set up multi-core groups */
7708 for_each_cpu(i, cpu_map) {
7709 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7710 if (i != cpumask_first(this_core_map))
7711 continue;
7712
7713 init_sched_build_groups(this_core_map, cpu_map,
7714 &cpu_to_core_group,
7715 send_covered, tmpmask);
7716 }
7717 #endif
7718
7719 /* Set up physical groups */
7720 for (i = 0; i < nr_node_ids; i++) {
7721 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7722 if (cpumask_empty(nodemask))
7723 continue;
7724
7725 init_sched_build_groups(nodemask, cpu_map,
7726 &cpu_to_phys_group,
7727 send_covered, tmpmask);
7728 }
7729
7730 #ifdef CONFIG_NUMA
7731 /* Set up node groups */
7732 if (sd_allnodes) {
7733 init_sched_build_groups(cpu_map, cpu_map,
7734 &cpu_to_allnodes_group,
7735 send_covered, tmpmask);
7736 }
7737
7738 for (i = 0; i < nr_node_ids; i++) {
7739 /* Set up node groups */
7740 struct sched_group *sg, *prev;
7741 int j;
7742
7743 cpumask_clear(covered);
7744 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7745 if (cpumask_empty(nodemask)) {
7746 sched_group_nodes[i] = NULL;
7747 continue;
7748 }
7749
7750 sched_domain_node_span(i, domainspan);
7751 cpumask_and(domainspan, domainspan, cpu_map);
7752
7753 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7754 GFP_KERNEL, i);
7755 if (!sg) {
7756 printk(KERN_WARNING "Can not alloc domain group for "
7757 "node %d\n", i);
7758 goto error;
7759 }
7760 sched_group_nodes[i] = sg;
7761 for_each_cpu(j, nodemask) {
7762 struct sched_domain *sd;
7763
7764 sd = &per_cpu(node_domains, j).sd;
7765 sd->groups = sg;
7766 }
7767 sg->__cpu_power = 0;
7768 cpumask_copy(sched_group_cpus(sg), nodemask);
7769 sg->next = sg;
7770 cpumask_or(covered, covered, nodemask);
7771 prev = sg;
7772
7773 for (j = 0; j < nr_node_ids; j++) {
7774 int n = (i + j) % nr_node_ids;
7775
7776 cpumask_complement(notcovered, covered);
7777 cpumask_and(tmpmask, notcovered, cpu_map);
7778 cpumask_and(tmpmask, tmpmask, domainspan);
7779 if (cpumask_empty(tmpmask))
7780 break;
7781
7782 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7783 if (cpumask_empty(tmpmask))
7784 continue;
7785
7786 sg = kmalloc_node(sizeof(struct sched_group) +
7787 cpumask_size(),
7788 GFP_KERNEL, i);
7789 if (!sg) {
7790 printk(KERN_WARNING
7791 "Can not alloc domain group for node %d\n", j);
7792 goto error;
7793 }
7794 sg->__cpu_power = 0;
7795 cpumask_copy(sched_group_cpus(sg), tmpmask);
7796 sg->next = prev->next;
7797 cpumask_or(covered, covered, tmpmask);
7798 prev->next = sg;
7799 prev = sg;
7800 }
7801 }
7802 #endif
7803
7804 /* Calculate CPU power for physical packages and nodes */
7805 #ifdef CONFIG_SCHED_SMT
7806 for_each_cpu(i, cpu_map) {
7807 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7808
7809 init_sched_groups_power(i, sd);
7810 }
7811 #endif
7812 #ifdef CONFIG_SCHED_MC
7813 for_each_cpu(i, cpu_map) {
7814 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7815
7816 init_sched_groups_power(i, sd);
7817 }
7818 #endif
7819
7820 for_each_cpu(i, cpu_map) {
7821 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7822
7823 init_sched_groups_power(i, sd);
7824 }
7825
7826 #ifdef CONFIG_NUMA
7827 for (i = 0; i < nr_node_ids; i++)
7828 init_numa_sched_groups_power(sched_group_nodes[i]);
7829
7830 if (sd_allnodes) {
7831 struct sched_group *sg;
7832
7833 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7834 tmpmask);
7835 init_numa_sched_groups_power(sg);
7836 }
7837 #endif
7838
7839 /* Attach the domains */
7840 for_each_cpu(i, cpu_map) {
7841 struct sched_domain *sd;
7842 #ifdef CONFIG_SCHED_SMT
7843 sd = &per_cpu(cpu_domains, i).sd;
7844 #elif defined(CONFIG_SCHED_MC)
7845 sd = &per_cpu(core_domains, i).sd;
7846 #else
7847 sd = &per_cpu(phys_domains, i).sd;
7848 #endif
7849 cpu_attach_domain(sd, rd, i);
7850 }
7851
7852 err = 0;
7853
7854 free_tmpmask:
7855 free_cpumask_var(tmpmask);
7856 free_send_covered:
7857 free_cpumask_var(send_covered);
7858 free_this_core_map:
7859 free_cpumask_var(this_core_map);
7860 free_this_sibling_map:
7861 free_cpumask_var(this_sibling_map);
7862 free_nodemask:
7863 free_cpumask_var(nodemask);
7864 free_notcovered:
7865 #ifdef CONFIG_NUMA
7866 free_cpumask_var(notcovered);
7867 free_covered:
7868 free_cpumask_var(covered);
7869 free_domainspan:
7870 free_cpumask_var(domainspan);
7871 out:
7872 #endif
7873 return err;
7874
7875 free_sched_groups:
7876 #ifdef CONFIG_NUMA
7877 kfree(sched_group_nodes);
7878 #endif
7879 goto free_tmpmask;
7880
7881 #ifdef CONFIG_NUMA
7882 error:
7883 free_sched_groups(cpu_map, tmpmask);
7884 free_rootdomain(rd);
7885 goto free_tmpmask;
7886 #endif
7887 }
7888
7889 static int build_sched_domains(const struct cpumask *cpu_map)
7890 {
7891 return __build_sched_domains(cpu_map, NULL);
7892 }
7893
7894 static struct cpumask *doms_cur; /* current sched domains */
7895 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7896 static struct sched_domain_attr *dattr_cur;
7897 /* attribues of custom domains in 'doms_cur' */
7898
7899 /*
7900 * Special case: If a kmalloc of a doms_cur partition (array of
7901 * cpumask) fails, then fallback to a single sched domain,
7902 * as determined by the single cpumask fallback_doms.
7903 */
7904 static cpumask_var_t fallback_doms;
7905
7906 /*
7907 * arch_update_cpu_topology lets virtualized architectures update the
7908 * cpu core maps. It is supposed to return 1 if the topology changed
7909 * or 0 if it stayed the same.
7910 */
7911 int __attribute__((weak)) arch_update_cpu_topology(void)
7912 {
7913 return 0;
7914 }
7915
7916 /*
7917 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7918 * For now this just excludes isolated cpus, but could be used to
7919 * exclude other special cases in the future.
7920 */
7921 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7922 {
7923 int err;
7924
7925 arch_update_cpu_topology();
7926 ndoms_cur = 1;
7927 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7928 if (!doms_cur)
7929 doms_cur = fallback_doms;
7930 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7931 dattr_cur = NULL;
7932 err = build_sched_domains(doms_cur);
7933 register_sched_domain_sysctl();
7934
7935 return err;
7936 }
7937
7938 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7939 struct cpumask *tmpmask)
7940 {
7941 free_sched_groups(cpu_map, tmpmask);
7942 }
7943
7944 /*
7945 * Detach sched domains from a group of cpus specified in cpu_map
7946 * These cpus will now be attached to the NULL domain
7947 */
7948 static void detach_destroy_domains(const struct cpumask *cpu_map)
7949 {
7950 /* Save because hotplug lock held. */
7951 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7952 int i;
7953
7954 for_each_cpu(i, cpu_map)
7955 cpu_attach_domain(NULL, &def_root_domain, i);
7956 synchronize_sched();
7957 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7958 }
7959
7960 /* handle null as "default" */
7961 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7962 struct sched_domain_attr *new, int idx_new)
7963 {
7964 struct sched_domain_attr tmp;
7965
7966 /* fast path */
7967 if (!new && !cur)
7968 return 1;
7969
7970 tmp = SD_ATTR_INIT;
7971 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7972 new ? (new + idx_new) : &tmp,
7973 sizeof(struct sched_domain_attr));
7974 }
7975
7976 /*
7977 * Partition sched domains as specified by the 'ndoms_new'
7978 * cpumasks in the array doms_new[] of cpumasks. This compares
7979 * doms_new[] to the current sched domain partitioning, doms_cur[].
7980 * It destroys each deleted domain and builds each new domain.
7981 *
7982 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7983 * The masks don't intersect (don't overlap.) We should setup one
7984 * sched domain for each mask. CPUs not in any of the cpumasks will
7985 * not be load balanced. If the same cpumask appears both in the
7986 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7987 * it as it is.
7988 *
7989 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7990 * ownership of it and will kfree it when done with it. If the caller
7991 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7992 * ndoms_new == 1, and partition_sched_domains() will fallback to
7993 * the single partition 'fallback_doms', it also forces the domains
7994 * to be rebuilt.
7995 *
7996 * If doms_new == NULL it will be replaced with cpu_online_mask.
7997 * ndoms_new == 0 is a special case for destroying existing domains,
7998 * and it will not create the default domain.
7999 *
8000 * Call with hotplug lock held
8001 */
8002 /* FIXME: Change to struct cpumask *doms_new[] */
8003 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8004 struct sched_domain_attr *dattr_new)
8005 {
8006 int i, j, n;
8007 int new_topology;
8008
8009 mutex_lock(&sched_domains_mutex);
8010
8011 /* always unregister in case we don't destroy any domains */
8012 unregister_sched_domain_sysctl();
8013
8014 /* Let architecture update cpu core mappings. */
8015 new_topology = arch_update_cpu_topology();
8016
8017 n = doms_new ? ndoms_new : 0;
8018
8019 /* Destroy deleted domains */
8020 for (i = 0; i < ndoms_cur; i++) {
8021 for (j = 0; j < n && !new_topology; j++) {
8022 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8023 && dattrs_equal(dattr_cur, i, dattr_new, j))
8024 goto match1;
8025 }
8026 /* no match - a current sched domain not in new doms_new[] */
8027 detach_destroy_domains(doms_cur + i);
8028 match1:
8029 ;
8030 }
8031
8032 if (doms_new == NULL) {
8033 ndoms_cur = 0;
8034 doms_new = fallback_doms;
8035 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8036 WARN_ON_ONCE(dattr_new);
8037 }
8038
8039 /* Build new domains */
8040 for (i = 0; i < ndoms_new; i++) {
8041 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8042 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8043 && dattrs_equal(dattr_new, i, dattr_cur, j))
8044 goto match2;
8045 }
8046 /* no match - add a new doms_new */
8047 __build_sched_domains(doms_new + i,
8048 dattr_new ? dattr_new + i : NULL);
8049 match2:
8050 ;
8051 }
8052
8053 /* Remember the new sched domains */
8054 if (doms_cur != fallback_doms)
8055 kfree(doms_cur);
8056 kfree(dattr_cur); /* kfree(NULL) is safe */
8057 doms_cur = doms_new;
8058 dattr_cur = dattr_new;
8059 ndoms_cur = ndoms_new;
8060
8061 register_sched_domain_sysctl();
8062
8063 mutex_unlock(&sched_domains_mutex);
8064 }
8065
8066 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8067 static void arch_reinit_sched_domains(void)
8068 {
8069 get_online_cpus();
8070
8071 /* Destroy domains first to force the rebuild */
8072 partition_sched_domains(0, NULL, NULL);
8073
8074 rebuild_sched_domains();
8075 put_online_cpus();
8076 }
8077
8078 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8079 {
8080 unsigned int level = 0;
8081
8082 if (sscanf(buf, "%u", &level) != 1)
8083 return -EINVAL;
8084
8085 /*
8086 * level is always be positive so don't check for
8087 * level < POWERSAVINGS_BALANCE_NONE which is 0
8088 * What happens on 0 or 1 byte write,
8089 * need to check for count as well?
8090 */
8091
8092 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8093 return -EINVAL;
8094
8095 if (smt)
8096 sched_smt_power_savings = level;
8097 else
8098 sched_mc_power_savings = level;
8099
8100 arch_reinit_sched_domains();
8101
8102 return count;
8103 }
8104
8105 #ifdef CONFIG_SCHED_MC
8106 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8107 char *page)
8108 {
8109 return sprintf(page, "%u\n", sched_mc_power_savings);
8110 }
8111 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8112 const char *buf, size_t count)
8113 {
8114 return sched_power_savings_store(buf, count, 0);
8115 }
8116 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8117 sched_mc_power_savings_show,
8118 sched_mc_power_savings_store);
8119 #endif
8120
8121 #ifdef CONFIG_SCHED_SMT
8122 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8123 char *page)
8124 {
8125 return sprintf(page, "%u\n", sched_smt_power_savings);
8126 }
8127 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8128 const char *buf, size_t count)
8129 {
8130 return sched_power_savings_store(buf, count, 1);
8131 }
8132 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8133 sched_smt_power_savings_show,
8134 sched_smt_power_savings_store);
8135 #endif
8136
8137 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8138 {
8139 int err = 0;
8140
8141 #ifdef CONFIG_SCHED_SMT
8142 if (smt_capable())
8143 err = sysfs_create_file(&cls->kset.kobj,
8144 &attr_sched_smt_power_savings.attr);
8145 #endif
8146 #ifdef CONFIG_SCHED_MC
8147 if (!err && mc_capable())
8148 err = sysfs_create_file(&cls->kset.kobj,
8149 &attr_sched_mc_power_savings.attr);
8150 #endif
8151 return err;
8152 }
8153 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8154
8155 #ifndef CONFIG_CPUSETS
8156 /*
8157 * Add online and remove offline CPUs from the scheduler domains.
8158 * When cpusets are enabled they take over this function.
8159 */
8160 static int update_sched_domains(struct notifier_block *nfb,
8161 unsigned long action, void *hcpu)
8162 {
8163 switch (action) {
8164 case CPU_ONLINE:
8165 case CPU_ONLINE_FROZEN:
8166 case CPU_DEAD:
8167 case CPU_DEAD_FROZEN:
8168 partition_sched_domains(1, NULL, NULL);
8169 return NOTIFY_OK;
8170
8171 default:
8172 return NOTIFY_DONE;
8173 }
8174 }
8175 #endif
8176
8177 static int update_runtime(struct notifier_block *nfb,
8178 unsigned long action, void *hcpu)
8179 {
8180 int cpu = (int)(long)hcpu;
8181
8182 switch (action) {
8183 case CPU_DOWN_PREPARE:
8184 case CPU_DOWN_PREPARE_FROZEN:
8185 disable_runtime(cpu_rq(cpu));
8186 return NOTIFY_OK;
8187
8188 case CPU_DOWN_FAILED:
8189 case CPU_DOWN_FAILED_FROZEN:
8190 case CPU_ONLINE:
8191 case CPU_ONLINE_FROZEN:
8192 enable_runtime(cpu_rq(cpu));
8193 return NOTIFY_OK;
8194
8195 default:
8196 return NOTIFY_DONE;
8197 }
8198 }
8199
8200 void __init sched_init_smp(void)
8201 {
8202 cpumask_var_t non_isolated_cpus;
8203
8204 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8205
8206 #if defined(CONFIG_NUMA)
8207 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8208 GFP_KERNEL);
8209 BUG_ON(sched_group_nodes_bycpu == NULL);
8210 #endif
8211 get_online_cpus();
8212 mutex_lock(&sched_domains_mutex);
8213 arch_init_sched_domains(cpu_online_mask);
8214 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8215 if (cpumask_empty(non_isolated_cpus))
8216 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8217 mutex_unlock(&sched_domains_mutex);
8218 put_online_cpus();
8219
8220 #ifndef CONFIG_CPUSETS
8221 /* XXX: Theoretical race here - CPU may be hotplugged now */
8222 hotcpu_notifier(update_sched_domains, 0);
8223 #endif
8224
8225 /* RT runtime code needs to handle some hotplug events */
8226 hotcpu_notifier(update_runtime, 0);
8227
8228 init_hrtick();
8229
8230 /* Move init over to a non-isolated CPU */
8231 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8232 BUG();
8233 sched_init_granularity();
8234 free_cpumask_var(non_isolated_cpus);
8235
8236 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8237 init_sched_rt_class();
8238 }
8239 #else
8240 void __init sched_init_smp(void)
8241 {
8242 sched_init_granularity();
8243 }
8244 #endif /* CONFIG_SMP */
8245
8246 int in_sched_functions(unsigned long addr)
8247 {
8248 return in_lock_functions(addr) ||
8249 (addr >= (unsigned long)__sched_text_start
8250 && addr < (unsigned long)__sched_text_end);
8251 }
8252
8253 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8254 {
8255 cfs_rq->tasks_timeline = RB_ROOT;
8256 INIT_LIST_HEAD(&cfs_rq->tasks);
8257 #ifdef CONFIG_FAIR_GROUP_SCHED
8258 cfs_rq->rq = rq;
8259 #endif
8260 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8261 }
8262
8263 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8264 {
8265 struct rt_prio_array *array;
8266 int i;
8267
8268 array = &rt_rq->active;
8269 for (i = 0; i < MAX_RT_PRIO; i++) {
8270 INIT_LIST_HEAD(array->queue + i);
8271 __clear_bit(i, array->bitmap);
8272 }
8273 /* delimiter for bitsearch: */
8274 __set_bit(MAX_RT_PRIO, array->bitmap);
8275
8276 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8277 rt_rq->highest_prio = MAX_RT_PRIO;
8278 #endif
8279 #ifdef CONFIG_SMP
8280 rt_rq->rt_nr_migratory = 0;
8281 rt_rq->overloaded = 0;
8282 #endif
8283
8284 rt_rq->rt_time = 0;
8285 rt_rq->rt_throttled = 0;
8286 rt_rq->rt_runtime = 0;
8287 spin_lock_init(&rt_rq->rt_runtime_lock);
8288
8289 #ifdef CONFIG_RT_GROUP_SCHED
8290 rt_rq->rt_nr_boosted = 0;
8291 rt_rq->rq = rq;
8292 #endif
8293 }
8294
8295 #ifdef CONFIG_FAIR_GROUP_SCHED
8296 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8297 struct sched_entity *se, int cpu, int add,
8298 struct sched_entity *parent)
8299 {
8300 struct rq *rq = cpu_rq(cpu);
8301 tg->cfs_rq[cpu] = cfs_rq;
8302 init_cfs_rq(cfs_rq, rq);
8303 cfs_rq->tg = tg;
8304 if (add)
8305 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8306
8307 tg->se[cpu] = se;
8308 /* se could be NULL for init_task_group */
8309 if (!se)
8310 return;
8311
8312 if (!parent)
8313 se->cfs_rq = &rq->cfs;
8314 else
8315 se->cfs_rq = parent->my_q;
8316
8317 se->my_q = cfs_rq;
8318 se->load.weight = tg->shares;
8319 se->load.inv_weight = 0;
8320 se->parent = parent;
8321 }
8322 #endif
8323
8324 #ifdef CONFIG_RT_GROUP_SCHED
8325 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8326 struct sched_rt_entity *rt_se, int cpu, int add,
8327 struct sched_rt_entity *parent)
8328 {
8329 struct rq *rq = cpu_rq(cpu);
8330
8331 tg->rt_rq[cpu] = rt_rq;
8332 init_rt_rq(rt_rq, rq);
8333 rt_rq->tg = tg;
8334 rt_rq->rt_se = rt_se;
8335 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8336 if (add)
8337 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8338
8339 tg->rt_se[cpu] = rt_se;
8340 if (!rt_se)
8341 return;
8342
8343 if (!parent)
8344 rt_se->rt_rq = &rq->rt;
8345 else
8346 rt_se->rt_rq = parent->my_q;
8347
8348 rt_se->my_q = rt_rq;
8349 rt_se->parent = parent;
8350 INIT_LIST_HEAD(&rt_se->run_list);
8351 }
8352 #endif
8353
8354 void __init sched_init(void)
8355 {
8356 int i, j;
8357 unsigned long alloc_size = 0, ptr;
8358
8359 #ifdef CONFIG_FAIR_GROUP_SCHED
8360 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8361 #endif
8362 #ifdef CONFIG_RT_GROUP_SCHED
8363 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8364 #endif
8365 #ifdef CONFIG_USER_SCHED
8366 alloc_size *= 2;
8367 #endif
8368 /*
8369 * As sched_init() is called before page_alloc is setup,
8370 * we use alloc_bootmem().
8371 */
8372 if (alloc_size) {
8373 ptr = (unsigned long)alloc_bootmem(alloc_size);
8374
8375 #ifdef CONFIG_FAIR_GROUP_SCHED
8376 init_task_group.se = (struct sched_entity **)ptr;
8377 ptr += nr_cpu_ids * sizeof(void **);
8378
8379 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8380 ptr += nr_cpu_ids * sizeof(void **);
8381
8382 #ifdef CONFIG_USER_SCHED
8383 root_task_group.se = (struct sched_entity **)ptr;
8384 ptr += nr_cpu_ids * sizeof(void **);
8385
8386 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8387 ptr += nr_cpu_ids * sizeof(void **);
8388 #endif /* CONFIG_USER_SCHED */
8389 #endif /* CONFIG_FAIR_GROUP_SCHED */
8390 #ifdef CONFIG_RT_GROUP_SCHED
8391 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8392 ptr += nr_cpu_ids * sizeof(void **);
8393
8394 init_task_group.rt_rq = (struct rt_rq **)ptr;
8395 ptr += nr_cpu_ids * sizeof(void **);
8396
8397 #ifdef CONFIG_USER_SCHED
8398 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8399 ptr += nr_cpu_ids * sizeof(void **);
8400
8401 root_task_group.rt_rq = (struct rt_rq **)ptr;
8402 ptr += nr_cpu_ids * sizeof(void **);
8403 #endif /* CONFIG_USER_SCHED */
8404 #endif /* CONFIG_RT_GROUP_SCHED */
8405 }
8406
8407 #ifdef CONFIG_SMP
8408 init_defrootdomain();
8409 #endif
8410
8411 init_rt_bandwidth(&def_rt_bandwidth,
8412 global_rt_period(), global_rt_runtime());
8413
8414 #ifdef CONFIG_RT_GROUP_SCHED
8415 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8416 global_rt_period(), global_rt_runtime());
8417 #ifdef CONFIG_USER_SCHED
8418 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8419 global_rt_period(), RUNTIME_INF);
8420 #endif /* CONFIG_USER_SCHED */
8421 #endif /* CONFIG_RT_GROUP_SCHED */
8422
8423 #ifdef CONFIG_GROUP_SCHED
8424 list_add(&init_task_group.list, &task_groups);
8425 INIT_LIST_HEAD(&init_task_group.children);
8426
8427 #ifdef CONFIG_USER_SCHED
8428 INIT_LIST_HEAD(&root_task_group.children);
8429 init_task_group.parent = &root_task_group;
8430 list_add(&init_task_group.siblings, &root_task_group.children);
8431 #endif /* CONFIG_USER_SCHED */
8432 #endif /* CONFIG_GROUP_SCHED */
8433
8434 for_each_possible_cpu(i) {
8435 struct rq *rq;
8436
8437 rq = cpu_rq(i);
8438 spin_lock_init(&rq->lock);
8439 rq->nr_running = 0;
8440 init_cfs_rq(&rq->cfs, rq);
8441 init_rt_rq(&rq->rt, rq);
8442 #ifdef CONFIG_FAIR_GROUP_SCHED
8443 init_task_group.shares = init_task_group_load;
8444 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8445 #ifdef CONFIG_CGROUP_SCHED
8446 /*
8447 * How much cpu bandwidth does init_task_group get?
8448 *
8449 * In case of task-groups formed thr' the cgroup filesystem, it
8450 * gets 100% of the cpu resources in the system. This overall
8451 * system cpu resource is divided among the tasks of
8452 * init_task_group and its child task-groups in a fair manner,
8453 * based on each entity's (task or task-group's) weight
8454 * (se->load.weight).
8455 *
8456 * In other words, if init_task_group has 10 tasks of weight
8457 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8458 * then A0's share of the cpu resource is:
8459 *
8460 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8461 *
8462 * We achieve this by letting init_task_group's tasks sit
8463 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8464 */
8465 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8466 #elif defined CONFIG_USER_SCHED
8467 root_task_group.shares = NICE_0_LOAD;
8468 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8469 /*
8470 * In case of task-groups formed thr' the user id of tasks,
8471 * init_task_group represents tasks belonging to root user.
8472 * Hence it forms a sibling of all subsequent groups formed.
8473 * In this case, init_task_group gets only a fraction of overall
8474 * system cpu resource, based on the weight assigned to root
8475 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8476 * by letting tasks of init_task_group sit in a separate cfs_rq
8477 * (init_cfs_rq) and having one entity represent this group of
8478 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8479 */
8480 init_tg_cfs_entry(&init_task_group,
8481 &per_cpu(init_cfs_rq, i),
8482 &per_cpu(init_sched_entity, i), i, 1,
8483 root_task_group.se[i]);
8484
8485 #endif
8486 #endif /* CONFIG_FAIR_GROUP_SCHED */
8487
8488 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8489 #ifdef CONFIG_RT_GROUP_SCHED
8490 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8491 #ifdef CONFIG_CGROUP_SCHED
8492 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8493 #elif defined CONFIG_USER_SCHED
8494 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8495 init_tg_rt_entry(&init_task_group,
8496 &per_cpu(init_rt_rq, i),
8497 &per_cpu(init_sched_rt_entity, i), i, 1,
8498 root_task_group.rt_se[i]);
8499 #endif
8500 #endif
8501
8502 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8503 rq->cpu_load[j] = 0;
8504 #ifdef CONFIG_SMP
8505 rq->sd = NULL;
8506 rq->rd = NULL;
8507 rq->active_balance = 0;
8508 rq->next_balance = jiffies;
8509 rq->push_cpu = 0;
8510 rq->cpu = i;
8511 rq->online = 0;
8512 rq->migration_thread = NULL;
8513 INIT_LIST_HEAD(&rq->migration_queue);
8514 rq_attach_root(rq, &def_root_domain);
8515 #endif
8516 init_rq_hrtick(rq);
8517 atomic_set(&rq->nr_iowait, 0);
8518 }
8519
8520 set_load_weight(&init_task);
8521
8522 #ifdef CONFIG_PREEMPT_NOTIFIERS
8523 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8524 #endif
8525
8526 #ifdef CONFIG_SMP
8527 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8528 #endif
8529
8530 #ifdef CONFIG_RT_MUTEXES
8531 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8532 #endif
8533
8534 /*
8535 * The boot idle thread does lazy MMU switching as well:
8536 */
8537 atomic_inc(&init_mm.mm_count);
8538 enter_lazy_tlb(&init_mm, current);
8539
8540 /*
8541 * Make us the idle thread. Technically, schedule() should not be
8542 * called from this thread, however somewhere below it might be,
8543 * but because we are the idle thread, we just pick up running again
8544 * when this runqueue becomes "idle".
8545 */
8546 init_idle(current, smp_processor_id());
8547 /*
8548 * During early bootup we pretend to be a normal task:
8549 */
8550 current->sched_class = &fair_sched_class;
8551
8552 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8553 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8554 #ifdef CONFIG_SMP
8555 #ifdef CONFIG_NO_HZ
8556 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8557 #endif
8558 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8559 #endif /* SMP */
8560
8561 scheduler_running = 1;
8562 }
8563
8564 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8565 void __might_sleep(char *file, int line)
8566 {
8567 #ifdef in_atomic
8568 static unsigned long prev_jiffy; /* ratelimiting */
8569
8570 if ((!in_atomic() && !irqs_disabled()) ||
8571 system_state != SYSTEM_RUNNING || oops_in_progress)
8572 return;
8573 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8574 return;
8575 prev_jiffy = jiffies;
8576
8577 printk(KERN_ERR
8578 "BUG: sleeping function called from invalid context at %s:%d\n",
8579 file, line);
8580 printk(KERN_ERR
8581 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8582 in_atomic(), irqs_disabled(),
8583 current->pid, current->comm);
8584
8585 debug_show_held_locks(current);
8586 if (irqs_disabled())
8587 print_irqtrace_events(current);
8588 dump_stack();
8589 #endif
8590 }
8591 EXPORT_SYMBOL(__might_sleep);
8592 #endif
8593
8594 #ifdef CONFIG_MAGIC_SYSRQ
8595 static void normalize_task(struct rq *rq, struct task_struct *p)
8596 {
8597 int on_rq;
8598
8599 update_rq_clock(rq);
8600 on_rq = p->se.on_rq;
8601 if (on_rq)
8602 deactivate_task(rq, p, 0);
8603 __setscheduler(rq, p, SCHED_NORMAL, 0);
8604 if (on_rq) {
8605 activate_task(rq, p, 0);
8606 resched_task(rq->curr);
8607 }
8608 }
8609
8610 void normalize_rt_tasks(void)
8611 {
8612 struct task_struct *g, *p;
8613 unsigned long flags;
8614 struct rq *rq;
8615
8616 read_lock_irqsave(&tasklist_lock, flags);
8617 do_each_thread(g, p) {
8618 /*
8619 * Only normalize user tasks:
8620 */
8621 if (!p->mm)
8622 continue;
8623
8624 p->se.exec_start = 0;
8625 #ifdef CONFIG_SCHEDSTATS
8626 p->se.wait_start = 0;
8627 p->se.sleep_start = 0;
8628 p->se.block_start = 0;
8629 #endif
8630
8631 if (!rt_task(p)) {
8632 /*
8633 * Renice negative nice level userspace
8634 * tasks back to 0:
8635 */
8636 if (TASK_NICE(p) < 0 && p->mm)
8637 set_user_nice(p, 0);
8638 continue;
8639 }
8640
8641 spin_lock(&p->pi_lock);
8642 rq = __task_rq_lock(p);
8643
8644 normalize_task(rq, p);
8645
8646 __task_rq_unlock(rq);
8647 spin_unlock(&p->pi_lock);
8648 } while_each_thread(g, p);
8649
8650 read_unlock_irqrestore(&tasklist_lock, flags);
8651 }
8652
8653 #endif /* CONFIG_MAGIC_SYSRQ */
8654
8655 #ifdef CONFIG_IA64
8656 /*
8657 * These functions are only useful for the IA64 MCA handling.
8658 *
8659 * They can only be called when the whole system has been
8660 * stopped - every CPU needs to be quiescent, and no scheduling
8661 * activity can take place. Using them for anything else would
8662 * be a serious bug, and as a result, they aren't even visible
8663 * under any other configuration.
8664 */
8665
8666 /**
8667 * curr_task - return the current task for a given cpu.
8668 * @cpu: the processor in question.
8669 *
8670 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8671 */
8672 struct task_struct *curr_task(int cpu)
8673 {
8674 return cpu_curr(cpu);
8675 }
8676
8677 /**
8678 * set_curr_task - set the current task for a given cpu.
8679 * @cpu: the processor in question.
8680 * @p: the task pointer to set.
8681 *
8682 * Description: This function must only be used when non-maskable interrupts
8683 * are serviced on a separate stack. It allows the architecture to switch the
8684 * notion of the current task on a cpu in a non-blocking manner. This function
8685 * must be called with all CPU's synchronized, and interrupts disabled, the
8686 * and caller must save the original value of the current task (see
8687 * curr_task() above) and restore that value before reenabling interrupts and
8688 * re-starting the system.
8689 *
8690 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8691 */
8692 void set_curr_task(int cpu, struct task_struct *p)
8693 {
8694 cpu_curr(cpu) = p;
8695 }
8696
8697 #endif
8698
8699 #ifdef CONFIG_FAIR_GROUP_SCHED
8700 static void free_fair_sched_group(struct task_group *tg)
8701 {
8702 int i;
8703
8704 for_each_possible_cpu(i) {
8705 if (tg->cfs_rq)
8706 kfree(tg->cfs_rq[i]);
8707 if (tg->se)
8708 kfree(tg->se[i]);
8709 }
8710
8711 kfree(tg->cfs_rq);
8712 kfree(tg->se);
8713 }
8714
8715 static
8716 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8717 {
8718 struct cfs_rq *cfs_rq;
8719 struct sched_entity *se;
8720 struct rq *rq;
8721 int i;
8722
8723 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8724 if (!tg->cfs_rq)
8725 goto err;
8726 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8727 if (!tg->se)
8728 goto err;
8729
8730 tg->shares = NICE_0_LOAD;
8731
8732 for_each_possible_cpu(i) {
8733 rq = cpu_rq(i);
8734
8735 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8736 GFP_KERNEL, cpu_to_node(i));
8737 if (!cfs_rq)
8738 goto err;
8739
8740 se = kzalloc_node(sizeof(struct sched_entity),
8741 GFP_KERNEL, cpu_to_node(i));
8742 if (!se)
8743 goto err;
8744
8745 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8746 }
8747
8748 return 1;
8749
8750 err:
8751 return 0;
8752 }
8753
8754 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8755 {
8756 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8757 &cpu_rq(cpu)->leaf_cfs_rq_list);
8758 }
8759
8760 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8761 {
8762 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8763 }
8764 #else /* !CONFG_FAIR_GROUP_SCHED */
8765 static inline void free_fair_sched_group(struct task_group *tg)
8766 {
8767 }
8768
8769 static inline
8770 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8771 {
8772 return 1;
8773 }
8774
8775 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8776 {
8777 }
8778
8779 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8780 {
8781 }
8782 #endif /* CONFIG_FAIR_GROUP_SCHED */
8783
8784 #ifdef CONFIG_RT_GROUP_SCHED
8785 static void free_rt_sched_group(struct task_group *tg)
8786 {
8787 int i;
8788
8789 destroy_rt_bandwidth(&tg->rt_bandwidth);
8790
8791 for_each_possible_cpu(i) {
8792 if (tg->rt_rq)
8793 kfree(tg->rt_rq[i]);
8794 if (tg->rt_se)
8795 kfree(tg->rt_se[i]);
8796 }
8797
8798 kfree(tg->rt_rq);
8799 kfree(tg->rt_se);
8800 }
8801
8802 static
8803 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8804 {
8805 struct rt_rq *rt_rq;
8806 struct sched_rt_entity *rt_se;
8807 struct rq *rq;
8808 int i;
8809
8810 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8811 if (!tg->rt_rq)
8812 goto err;
8813 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8814 if (!tg->rt_se)
8815 goto err;
8816
8817 init_rt_bandwidth(&tg->rt_bandwidth,
8818 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8819
8820 for_each_possible_cpu(i) {
8821 rq = cpu_rq(i);
8822
8823 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8824 GFP_KERNEL, cpu_to_node(i));
8825 if (!rt_rq)
8826 goto err;
8827
8828 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8829 GFP_KERNEL, cpu_to_node(i));
8830 if (!rt_se)
8831 goto err;
8832
8833 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8834 }
8835
8836 return 1;
8837
8838 err:
8839 return 0;
8840 }
8841
8842 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8843 {
8844 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8845 &cpu_rq(cpu)->leaf_rt_rq_list);
8846 }
8847
8848 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8849 {
8850 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8851 }
8852 #else /* !CONFIG_RT_GROUP_SCHED */
8853 static inline void free_rt_sched_group(struct task_group *tg)
8854 {
8855 }
8856
8857 static inline
8858 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8859 {
8860 return 1;
8861 }
8862
8863 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8864 {
8865 }
8866
8867 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8868 {
8869 }
8870 #endif /* CONFIG_RT_GROUP_SCHED */
8871
8872 #ifdef CONFIG_GROUP_SCHED
8873 static void free_sched_group(struct task_group *tg)
8874 {
8875 free_fair_sched_group(tg);
8876 free_rt_sched_group(tg);
8877 kfree(tg);
8878 }
8879
8880 /* allocate runqueue etc for a new task group */
8881 struct task_group *sched_create_group(struct task_group *parent)
8882 {
8883 struct task_group *tg;
8884 unsigned long flags;
8885 int i;
8886
8887 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8888 if (!tg)
8889 return ERR_PTR(-ENOMEM);
8890
8891 if (!alloc_fair_sched_group(tg, parent))
8892 goto err;
8893
8894 if (!alloc_rt_sched_group(tg, parent))
8895 goto err;
8896
8897 spin_lock_irqsave(&task_group_lock, flags);
8898 for_each_possible_cpu(i) {
8899 register_fair_sched_group(tg, i);
8900 register_rt_sched_group(tg, i);
8901 }
8902 list_add_rcu(&tg->list, &task_groups);
8903
8904 WARN_ON(!parent); /* root should already exist */
8905
8906 tg->parent = parent;
8907 INIT_LIST_HEAD(&tg->children);
8908 list_add_rcu(&tg->siblings, &parent->children);
8909 spin_unlock_irqrestore(&task_group_lock, flags);
8910
8911 return tg;
8912
8913 err:
8914 free_sched_group(tg);
8915 return ERR_PTR(-ENOMEM);
8916 }
8917
8918 /* rcu callback to free various structures associated with a task group */
8919 static void free_sched_group_rcu(struct rcu_head *rhp)
8920 {
8921 /* now it should be safe to free those cfs_rqs */
8922 free_sched_group(container_of(rhp, struct task_group, rcu));
8923 }
8924
8925 /* Destroy runqueue etc associated with a task group */
8926 void sched_destroy_group(struct task_group *tg)
8927 {
8928 unsigned long flags;
8929 int i;
8930
8931 spin_lock_irqsave(&task_group_lock, flags);
8932 for_each_possible_cpu(i) {
8933 unregister_fair_sched_group(tg, i);
8934 unregister_rt_sched_group(tg, i);
8935 }
8936 list_del_rcu(&tg->list);
8937 list_del_rcu(&tg->siblings);
8938 spin_unlock_irqrestore(&task_group_lock, flags);
8939
8940 /* wait for possible concurrent references to cfs_rqs complete */
8941 call_rcu(&tg->rcu, free_sched_group_rcu);
8942 }
8943
8944 /* change task's runqueue when it moves between groups.
8945 * The caller of this function should have put the task in its new group
8946 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8947 * reflect its new group.
8948 */
8949 void sched_move_task(struct task_struct *tsk)
8950 {
8951 int on_rq, running;
8952 unsigned long flags;
8953 struct rq *rq;
8954
8955 rq = task_rq_lock(tsk, &flags);
8956
8957 update_rq_clock(rq);
8958
8959 running = task_current(rq, tsk);
8960 on_rq = tsk->se.on_rq;
8961
8962 if (on_rq)
8963 dequeue_task(rq, tsk, 0);
8964 if (unlikely(running))
8965 tsk->sched_class->put_prev_task(rq, tsk);
8966
8967 set_task_rq(tsk, task_cpu(tsk));
8968
8969 #ifdef CONFIG_FAIR_GROUP_SCHED
8970 if (tsk->sched_class->moved_group)
8971 tsk->sched_class->moved_group(tsk);
8972 #endif
8973
8974 if (unlikely(running))
8975 tsk->sched_class->set_curr_task(rq);
8976 if (on_rq)
8977 enqueue_task(rq, tsk, 0);
8978
8979 task_rq_unlock(rq, &flags);
8980 }
8981 #endif /* CONFIG_GROUP_SCHED */
8982
8983 #ifdef CONFIG_FAIR_GROUP_SCHED
8984 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8985 {
8986 struct cfs_rq *cfs_rq = se->cfs_rq;
8987 int on_rq;
8988
8989 on_rq = se->on_rq;
8990 if (on_rq)
8991 dequeue_entity(cfs_rq, se, 0);
8992
8993 se->load.weight = shares;
8994 se->load.inv_weight = 0;
8995
8996 if (on_rq)
8997 enqueue_entity(cfs_rq, se, 0);
8998 }
8999
9000 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9001 {
9002 struct cfs_rq *cfs_rq = se->cfs_rq;
9003 struct rq *rq = cfs_rq->rq;
9004 unsigned long flags;
9005
9006 spin_lock_irqsave(&rq->lock, flags);
9007 __set_se_shares(se, shares);
9008 spin_unlock_irqrestore(&rq->lock, flags);
9009 }
9010
9011 static DEFINE_MUTEX(shares_mutex);
9012
9013 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9014 {
9015 int i;
9016 unsigned long flags;
9017
9018 /*
9019 * We can't change the weight of the root cgroup.
9020 */
9021 if (!tg->se[0])
9022 return -EINVAL;
9023
9024 if (shares < MIN_SHARES)
9025 shares = MIN_SHARES;
9026 else if (shares > MAX_SHARES)
9027 shares = MAX_SHARES;
9028
9029 mutex_lock(&shares_mutex);
9030 if (tg->shares == shares)
9031 goto done;
9032
9033 spin_lock_irqsave(&task_group_lock, flags);
9034 for_each_possible_cpu(i)
9035 unregister_fair_sched_group(tg, i);
9036 list_del_rcu(&tg->siblings);
9037 spin_unlock_irqrestore(&task_group_lock, flags);
9038
9039 /* wait for any ongoing reference to this group to finish */
9040 synchronize_sched();
9041
9042 /*
9043 * Now we are free to modify the group's share on each cpu
9044 * w/o tripping rebalance_share or load_balance_fair.
9045 */
9046 tg->shares = shares;
9047 for_each_possible_cpu(i) {
9048 /*
9049 * force a rebalance
9050 */
9051 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9052 set_se_shares(tg->se[i], shares);
9053 }
9054
9055 /*
9056 * Enable load balance activity on this group, by inserting it back on
9057 * each cpu's rq->leaf_cfs_rq_list.
9058 */
9059 spin_lock_irqsave(&task_group_lock, flags);
9060 for_each_possible_cpu(i)
9061 register_fair_sched_group(tg, i);
9062 list_add_rcu(&tg->siblings, &tg->parent->children);
9063 spin_unlock_irqrestore(&task_group_lock, flags);
9064 done:
9065 mutex_unlock(&shares_mutex);
9066 return 0;
9067 }
9068
9069 unsigned long sched_group_shares(struct task_group *tg)
9070 {
9071 return tg->shares;
9072 }
9073 #endif
9074
9075 #ifdef CONFIG_RT_GROUP_SCHED
9076 /*
9077 * Ensure that the real time constraints are schedulable.
9078 */
9079 static DEFINE_MUTEX(rt_constraints_mutex);
9080
9081 static unsigned long to_ratio(u64 period, u64 runtime)
9082 {
9083 if (runtime == RUNTIME_INF)
9084 return 1ULL << 20;
9085
9086 return div64_u64(runtime << 20, period);
9087 }
9088
9089 /* Must be called with tasklist_lock held */
9090 static inline int tg_has_rt_tasks(struct task_group *tg)
9091 {
9092 struct task_struct *g, *p;
9093
9094 do_each_thread(g, p) {
9095 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9096 return 1;
9097 } while_each_thread(g, p);
9098
9099 return 0;
9100 }
9101
9102 struct rt_schedulable_data {
9103 struct task_group *tg;
9104 u64 rt_period;
9105 u64 rt_runtime;
9106 };
9107
9108 static int tg_schedulable(struct task_group *tg, void *data)
9109 {
9110 struct rt_schedulable_data *d = data;
9111 struct task_group *child;
9112 unsigned long total, sum = 0;
9113 u64 period, runtime;
9114
9115 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9116 runtime = tg->rt_bandwidth.rt_runtime;
9117
9118 if (tg == d->tg) {
9119 period = d->rt_period;
9120 runtime = d->rt_runtime;
9121 }
9122
9123 #ifdef CONFIG_USER_SCHED
9124 if (tg == &root_task_group) {
9125 period = global_rt_period();
9126 runtime = global_rt_runtime();
9127 }
9128 #endif
9129
9130 /*
9131 * Cannot have more runtime than the period.
9132 */
9133 if (runtime > period && runtime != RUNTIME_INF)
9134 return -EINVAL;
9135
9136 /*
9137 * Ensure we don't starve existing RT tasks.
9138 */
9139 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9140 return -EBUSY;
9141
9142 total = to_ratio(period, runtime);
9143
9144 /*
9145 * Nobody can have more than the global setting allows.
9146 */
9147 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9148 return -EINVAL;
9149
9150 /*
9151 * The sum of our children's runtime should not exceed our own.
9152 */
9153 list_for_each_entry_rcu(child, &tg->children, siblings) {
9154 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9155 runtime = child->rt_bandwidth.rt_runtime;
9156
9157 if (child == d->tg) {
9158 period = d->rt_period;
9159 runtime = d->rt_runtime;
9160 }
9161
9162 sum += to_ratio(period, runtime);
9163 }
9164
9165 if (sum > total)
9166 return -EINVAL;
9167
9168 return 0;
9169 }
9170
9171 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9172 {
9173 struct rt_schedulable_data data = {
9174 .tg = tg,
9175 .rt_period = period,
9176 .rt_runtime = runtime,
9177 };
9178
9179 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9180 }
9181
9182 static int tg_set_bandwidth(struct task_group *tg,
9183 u64 rt_period, u64 rt_runtime)
9184 {
9185 int i, err = 0;
9186
9187 mutex_lock(&rt_constraints_mutex);
9188 read_lock(&tasklist_lock);
9189 err = __rt_schedulable(tg, rt_period, rt_runtime);
9190 if (err)
9191 goto unlock;
9192
9193 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9194 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9195 tg->rt_bandwidth.rt_runtime = rt_runtime;
9196
9197 for_each_possible_cpu(i) {
9198 struct rt_rq *rt_rq = tg->rt_rq[i];
9199
9200 spin_lock(&rt_rq->rt_runtime_lock);
9201 rt_rq->rt_runtime = rt_runtime;
9202 spin_unlock(&rt_rq->rt_runtime_lock);
9203 }
9204 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9205 unlock:
9206 read_unlock(&tasklist_lock);
9207 mutex_unlock(&rt_constraints_mutex);
9208
9209 return err;
9210 }
9211
9212 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9213 {
9214 u64 rt_runtime, rt_period;
9215
9216 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9217 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9218 if (rt_runtime_us < 0)
9219 rt_runtime = RUNTIME_INF;
9220
9221 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9222 }
9223
9224 long sched_group_rt_runtime(struct task_group *tg)
9225 {
9226 u64 rt_runtime_us;
9227
9228 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9229 return -1;
9230
9231 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9232 do_div(rt_runtime_us, NSEC_PER_USEC);
9233 return rt_runtime_us;
9234 }
9235
9236 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9237 {
9238 u64 rt_runtime, rt_period;
9239
9240 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9241 rt_runtime = tg->rt_bandwidth.rt_runtime;
9242
9243 if (rt_period == 0)
9244 return -EINVAL;
9245
9246 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9247 }
9248
9249 long sched_group_rt_period(struct task_group *tg)
9250 {
9251 u64 rt_period_us;
9252
9253 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9254 do_div(rt_period_us, NSEC_PER_USEC);
9255 return rt_period_us;
9256 }
9257
9258 static int sched_rt_global_constraints(void)
9259 {
9260 u64 runtime, period;
9261 int ret = 0;
9262
9263 if (sysctl_sched_rt_period <= 0)
9264 return -EINVAL;
9265
9266 runtime = global_rt_runtime();
9267 period = global_rt_period();
9268
9269 /*
9270 * Sanity check on the sysctl variables.
9271 */
9272 if (runtime > period && runtime != RUNTIME_INF)
9273 return -EINVAL;
9274
9275 mutex_lock(&rt_constraints_mutex);
9276 read_lock(&tasklist_lock);
9277 ret = __rt_schedulable(NULL, 0, 0);
9278 read_unlock(&tasklist_lock);
9279 mutex_unlock(&rt_constraints_mutex);
9280
9281 return ret;
9282 }
9283 #else /* !CONFIG_RT_GROUP_SCHED */
9284 static int sched_rt_global_constraints(void)
9285 {
9286 unsigned long flags;
9287 int i;
9288
9289 if (sysctl_sched_rt_period <= 0)
9290 return -EINVAL;
9291
9292 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9293 for_each_possible_cpu(i) {
9294 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9295
9296 spin_lock(&rt_rq->rt_runtime_lock);
9297 rt_rq->rt_runtime = global_rt_runtime();
9298 spin_unlock(&rt_rq->rt_runtime_lock);
9299 }
9300 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9301
9302 return 0;
9303 }
9304 #endif /* CONFIG_RT_GROUP_SCHED */
9305
9306 int sched_rt_handler(struct ctl_table *table, int write,
9307 struct file *filp, void __user *buffer, size_t *lenp,
9308 loff_t *ppos)
9309 {
9310 int ret;
9311 int old_period, old_runtime;
9312 static DEFINE_MUTEX(mutex);
9313
9314 mutex_lock(&mutex);
9315 old_period = sysctl_sched_rt_period;
9316 old_runtime = sysctl_sched_rt_runtime;
9317
9318 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9319
9320 if (!ret && write) {
9321 ret = sched_rt_global_constraints();
9322 if (ret) {
9323 sysctl_sched_rt_period = old_period;
9324 sysctl_sched_rt_runtime = old_runtime;
9325 } else {
9326 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9327 def_rt_bandwidth.rt_period =
9328 ns_to_ktime(global_rt_period());
9329 }
9330 }
9331 mutex_unlock(&mutex);
9332
9333 return ret;
9334 }
9335
9336 #ifdef CONFIG_CGROUP_SCHED
9337
9338 /* return corresponding task_group object of a cgroup */
9339 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9340 {
9341 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9342 struct task_group, css);
9343 }
9344
9345 static struct cgroup_subsys_state *
9346 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9347 {
9348 struct task_group *tg, *parent;
9349
9350 if (!cgrp->parent) {
9351 /* This is early initialization for the top cgroup */
9352 return &init_task_group.css;
9353 }
9354
9355 parent = cgroup_tg(cgrp->parent);
9356 tg = sched_create_group(parent);
9357 if (IS_ERR(tg))
9358 return ERR_PTR(-ENOMEM);
9359
9360 return &tg->css;
9361 }
9362
9363 static void
9364 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9365 {
9366 struct task_group *tg = cgroup_tg(cgrp);
9367
9368 sched_destroy_group(tg);
9369 }
9370
9371 static int
9372 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9373 struct task_struct *tsk)
9374 {
9375 #ifdef CONFIG_RT_GROUP_SCHED
9376 /* Don't accept realtime tasks when there is no way for them to run */
9377 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9378 return -EINVAL;
9379 #else
9380 /* We don't support RT-tasks being in separate groups */
9381 if (tsk->sched_class != &fair_sched_class)
9382 return -EINVAL;
9383 #endif
9384
9385 return 0;
9386 }
9387
9388 static void
9389 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9390 struct cgroup *old_cont, struct task_struct *tsk)
9391 {
9392 sched_move_task(tsk);
9393 }
9394
9395 #ifdef CONFIG_FAIR_GROUP_SCHED
9396 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9397 u64 shareval)
9398 {
9399 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9400 }
9401
9402 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9403 {
9404 struct task_group *tg = cgroup_tg(cgrp);
9405
9406 return (u64) tg->shares;
9407 }
9408 #endif /* CONFIG_FAIR_GROUP_SCHED */
9409
9410 #ifdef CONFIG_RT_GROUP_SCHED
9411 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9412 s64 val)
9413 {
9414 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9415 }
9416
9417 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9418 {
9419 return sched_group_rt_runtime(cgroup_tg(cgrp));
9420 }
9421
9422 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9423 u64 rt_period_us)
9424 {
9425 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9426 }
9427
9428 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9429 {
9430 return sched_group_rt_period(cgroup_tg(cgrp));
9431 }
9432 #endif /* CONFIG_RT_GROUP_SCHED */
9433
9434 static struct cftype cpu_files[] = {
9435 #ifdef CONFIG_FAIR_GROUP_SCHED
9436 {
9437 .name = "shares",
9438 .read_u64 = cpu_shares_read_u64,
9439 .write_u64 = cpu_shares_write_u64,
9440 },
9441 #endif
9442 #ifdef CONFIG_RT_GROUP_SCHED
9443 {
9444 .name = "rt_runtime_us",
9445 .read_s64 = cpu_rt_runtime_read,
9446 .write_s64 = cpu_rt_runtime_write,
9447 },
9448 {
9449 .name = "rt_period_us",
9450 .read_u64 = cpu_rt_period_read_uint,
9451 .write_u64 = cpu_rt_period_write_uint,
9452 },
9453 #endif
9454 };
9455
9456 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9457 {
9458 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9459 }
9460
9461 struct cgroup_subsys cpu_cgroup_subsys = {
9462 .name = "cpu",
9463 .create = cpu_cgroup_create,
9464 .destroy = cpu_cgroup_destroy,
9465 .can_attach = cpu_cgroup_can_attach,
9466 .attach = cpu_cgroup_attach,
9467 .populate = cpu_cgroup_populate,
9468 .subsys_id = cpu_cgroup_subsys_id,
9469 .early_init = 1,
9470 };
9471
9472 #endif /* CONFIG_CGROUP_SCHED */
9473
9474 #ifdef CONFIG_CGROUP_CPUACCT
9475
9476 /*
9477 * CPU accounting code for task groups.
9478 *
9479 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9480 * (balbir@in.ibm.com).
9481 */
9482
9483 /* track cpu usage of a group of tasks and its child groups */
9484 struct cpuacct {
9485 struct cgroup_subsys_state css;
9486 /* cpuusage holds pointer to a u64-type object on every cpu */
9487 u64 *cpuusage;
9488 struct cpuacct *parent;
9489 };
9490
9491 struct cgroup_subsys cpuacct_subsys;
9492
9493 /* return cpu accounting group corresponding to this container */
9494 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9495 {
9496 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9497 struct cpuacct, css);
9498 }
9499
9500 /* return cpu accounting group to which this task belongs */
9501 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9502 {
9503 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9504 struct cpuacct, css);
9505 }
9506
9507 /* create a new cpu accounting group */
9508 static struct cgroup_subsys_state *cpuacct_create(
9509 struct cgroup_subsys *ss, struct cgroup *cgrp)
9510 {
9511 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9512
9513 if (!ca)
9514 return ERR_PTR(-ENOMEM);
9515
9516 ca->cpuusage = alloc_percpu(u64);
9517 if (!ca->cpuusage) {
9518 kfree(ca);
9519 return ERR_PTR(-ENOMEM);
9520 }
9521
9522 if (cgrp->parent)
9523 ca->parent = cgroup_ca(cgrp->parent);
9524
9525 return &ca->css;
9526 }
9527
9528 /* destroy an existing cpu accounting group */
9529 static void
9530 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9531 {
9532 struct cpuacct *ca = cgroup_ca(cgrp);
9533
9534 free_percpu(ca->cpuusage);
9535 kfree(ca);
9536 }
9537
9538 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9539 {
9540 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9541 u64 data;
9542
9543 #ifndef CONFIG_64BIT
9544 /*
9545 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9546 */
9547 spin_lock_irq(&cpu_rq(cpu)->lock);
9548 data = *cpuusage;
9549 spin_unlock_irq(&cpu_rq(cpu)->lock);
9550 #else
9551 data = *cpuusage;
9552 #endif
9553
9554 return data;
9555 }
9556
9557 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9558 {
9559 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9560
9561 #ifndef CONFIG_64BIT
9562 /*
9563 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9564 */
9565 spin_lock_irq(&cpu_rq(cpu)->lock);
9566 *cpuusage = val;
9567 spin_unlock_irq(&cpu_rq(cpu)->lock);
9568 #else
9569 *cpuusage = val;
9570 #endif
9571 }
9572
9573 /* return total cpu usage (in nanoseconds) of a group */
9574 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9575 {
9576 struct cpuacct *ca = cgroup_ca(cgrp);
9577 u64 totalcpuusage = 0;
9578 int i;
9579
9580 for_each_present_cpu(i)
9581 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9582
9583 return totalcpuusage;
9584 }
9585
9586 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9587 u64 reset)
9588 {
9589 struct cpuacct *ca = cgroup_ca(cgrp);
9590 int err = 0;
9591 int i;
9592
9593 if (reset) {
9594 err = -EINVAL;
9595 goto out;
9596 }
9597
9598 for_each_present_cpu(i)
9599 cpuacct_cpuusage_write(ca, i, 0);
9600
9601 out:
9602 return err;
9603 }
9604
9605 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9606 struct seq_file *m)
9607 {
9608 struct cpuacct *ca = cgroup_ca(cgroup);
9609 u64 percpu;
9610 int i;
9611
9612 for_each_present_cpu(i) {
9613 percpu = cpuacct_cpuusage_read(ca, i);
9614 seq_printf(m, "%llu ", (unsigned long long) percpu);
9615 }
9616 seq_printf(m, "\n");
9617 return 0;
9618 }
9619
9620 static struct cftype files[] = {
9621 {
9622 .name = "usage",
9623 .read_u64 = cpuusage_read,
9624 .write_u64 = cpuusage_write,
9625 },
9626 {
9627 .name = "usage_percpu",
9628 .read_seq_string = cpuacct_percpu_seq_read,
9629 },
9630
9631 };
9632
9633 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9634 {
9635 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9636 }
9637
9638 /*
9639 * charge this task's execution time to its accounting group.
9640 *
9641 * called with rq->lock held.
9642 */
9643 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9644 {
9645 struct cpuacct *ca;
9646 int cpu;
9647
9648 if (!cpuacct_subsys.active)
9649 return;
9650
9651 cpu = task_cpu(tsk);
9652 ca = task_ca(tsk);
9653
9654 for (; ca; ca = ca->parent) {
9655 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9656 *cpuusage += cputime;
9657 }
9658 }
9659
9660 struct cgroup_subsys cpuacct_subsys = {
9661 .name = "cpuacct",
9662 .create = cpuacct_create,
9663 .destroy = cpuacct_destroy,
9664 .populate = cpuacct_populate,
9665 .subsys_id = cpuacct_subsys_id,
9666 };
9667 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.218567 seconds and 6 git commands to generate.