sched: remove condition from set_task_cpu()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175
176 struct cfs_rq;
177
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
185 };
186
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
191
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
194
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
197 */
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
201 };
202
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
208
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
210
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
213 {
214 struct task_grp *tg;
215
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
221
222 return tg;
223 }
224
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
227 {
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
230 }
231
232 #else
233
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
235
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
237
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
242
243 u64 exec_clock;
244 u64 min_vruntime;
245
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
251 */
252 struct sched_entity *curr;
253
254 unsigned long nr_spread_over;
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
258
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
262 *
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
265 */
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
267 struct task_grp *tg; /* group that "owns" this runqueue */
268 struct rcu_head rcu;
269 #endif
270 };
271
272 /* Real-Time classes' related field in a runqueue: */
273 struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
277 };
278
279 /*
280 * This is the main, per-CPU runqueue data structure.
281 *
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
285 */
286 struct rq {
287 spinlock_t lock; /* runqueue lock */
288
289 /*
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
292 */
293 unsigned long nr_running;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296 unsigned char idle_at_tick;
297 #ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299 #endif
300 struct load_weight load; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates;
302 u64 nr_switches;
303
304 struct cfs_rq cfs;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
307 #endif
308 struct rt_rq rt;
309
310 /*
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
315 */
316 unsigned long nr_uninterruptible;
317
318 struct task_struct *curr, *idle;
319 unsigned long next_balance;
320 struct mm_struct *prev_mm;
321
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
324
325 unsigned int clock_warps, clock_overflows;
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
328 u64 tick_timestamp;
329
330 atomic_t nr_iowait;
331
332 #ifdef CONFIG_SMP
333 struct sched_domain *sd;
334
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
338 int cpu; /* cpu of this runqueue */
339
340 struct task_struct *migration_thread;
341 struct list_head migration_queue;
342 #endif
343
344 #ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
347
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_cnt;
353
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_cnt;
357 unsigned long sched_goidle;
358
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_cnt;
361 unsigned long ttwu_local;
362
363 /* BKL stats */
364 unsigned long bkl_cnt;
365 #endif
366 struct lock_class_key rq_lock_key;
367 };
368
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370 static DEFINE_MUTEX(sched_hotcpu_mutex);
371
372 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
373 {
374 rq->curr->sched_class->check_preempt_curr(rq, p);
375 }
376
377 static inline int cpu_of(struct rq *rq)
378 {
379 #ifdef CONFIG_SMP
380 return rq->cpu;
381 #else
382 return 0;
383 #endif
384 }
385
386 /*
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
389 */
390 static void __update_rq_clock(struct rq *rq)
391 {
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
396
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399 #endif
400 /*
401 * Protect against sched_clock() occasionally going backwards:
402 */
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
407 /*
408 * Catch too large forward jumps too:
409 */
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
420 }
421 }
422
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
425 }
426
427 static void update_rq_clock(struct rq *rq)
428 {
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
431 }
432
433 /*
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
436 *
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
439 */
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
442
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
447
448 /*
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
450 */
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
453 #else
454 # define const_debug static const
455 #endif
456
457 /*
458 * Debugging: various feature bits
459 */
460 enum {
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
465 };
466
467 const_debug unsigned int sysctl_sched_features =
468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
472
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
475 /*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479 unsigned long long cpu_clock(int cpu)
480 {
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
484
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
490
491 return now;
492 }
493
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
496 #endif
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
499 #endif
500
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq *rq, struct task_struct *p)
503 {
504 return rq->curr == p;
505 }
506
507 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
508 {
509 }
510
511 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
512 {
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516 #endif
517 /*
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
521 */
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
523
524 spin_unlock_irq(&rq->lock);
525 }
526
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq *rq, struct task_struct *p)
529 {
530 #ifdef CONFIG_SMP
531 return p->oncpu;
532 #else
533 return rq->curr == p;
534 #endif
535 }
536
537 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
538 {
539 #ifdef CONFIG_SMP
540 /*
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
544 */
545 next->oncpu = 1;
546 #endif
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549 #else
550 spin_unlock(&rq->lock);
551 #endif
552 }
553
554 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
555 {
556 #ifdef CONFIG_SMP
557 /*
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
561 */
562 smp_wmb();
563 prev->oncpu = 0;
564 #endif
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
567 #endif
568 }
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
570
571 /*
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
574 */
575 static inline struct rq *__task_rq_lock(struct task_struct *p)
576 __acquires(rq->lock)
577 {
578 struct rq *rq;
579
580 repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
586 }
587 return rq;
588 }
589
590 /*
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
594 */
595 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
596 __acquires(rq->lock)
597 {
598 struct rq *rq;
599
600 repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
607 }
608 return rq;
609 }
610
611 static inline void __task_rq_unlock(struct rq *rq)
612 __releases(rq->lock)
613 {
614 spin_unlock(&rq->lock);
615 }
616
617 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
618 __releases(rq->lock)
619 {
620 spin_unlock_irqrestore(&rq->lock, *flags);
621 }
622
623 /*
624 * this_rq_lock - lock this runqueue and disable interrupts.
625 */
626 static inline struct rq *this_rq_lock(void)
627 __acquires(rq->lock)
628 {
629 struct rq *rq;
630
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
634
635 return rq;
636 }
637
638 /*
639 * We are going deep-idle (irqs are disabled):
640 */
641 void sched_clock_idle_sleep_event(void)
642 {
643 struct rq *rq = cpu_rq(smp_processor_id());
644
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
649 }
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
651
652 /*
653 * We just idled delta nanoseconds (called with irqs disabled):
654 */
655 void sched_clock_idle_wakeup_event(u64 delta_ns)
656 {
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
659
660 rq->idle_clock += delta_ns;
661 /*
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
666 */
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
671 }
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
673
674 /*
675 * resched_task - mark a task 'to be rescheduled now'.
676 *
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
680 */
681 #ifdef CONFIG_SMP
682
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 #endif
686
687 static void resched_task(struct task_struct *p)
688 {
689 int cpu;
690
691 assert_spin_locked(&task_rq(p)->lock);
692
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
695
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
697
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
701
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
706 }
707
708 static void resched_cpu(int cpu)
709 {
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
712
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
717 }
718 #else
719 static inline void resched_task(struct task_struct *p)
720 {
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
723 }
724 #endif
725
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
728 #else
729 # define WMULT_CONST (1UL << 32)
730 #endif
731
732 #define WMULT_SHIFT 32
733
734 /*
735 * Shift right and round:
736 */
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
738
739 static unsigned long
740 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
742 {
743 u64 tmp;
744
745 if (unlikely(!lw->inv_weight))
746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
747
748 tmp = (u64)delta_exec * weight;
749 /*
750 * Check whether we'd overflow the 64-bit multiplication:
751 */
752 if (unlikely(tmp > WMULT_CONST))
753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
754 WMULT_SHIFT/2);
755 else
756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
757
758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
759 }
760
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
763 {
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
765 }
766
767 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
768 {
769 lw->weight += inc;
770 }
771
772 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
773 {
774 lw->weight -= dec;
775 }
776
777 /*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
788
789 /*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
800 */
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
810 };
811
812 /*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829
830 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
831
832 /*
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
836 */
837 struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
841 };
842
843 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
847 int *this_best_prio, struct rq_iterator *iterator);
848
849 #include "sched_stats.h"
850 #include "sched_rt.c"
851 #include "sched_fair.c"
852 #include "sched_idletask.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
855 #endif
856
857 #define sched_class_highest (&rt_sched_class)
858
859 /*
860 * Update delta_exec, delta_fair fields for rq.
861 *
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
866 *
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
870 *
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
873 */
874 static inline void inc_load(struct rq *rq, const struct task_struct *p)
875 {
876 update_load_add(&rq->load, p->se.load.weight);
877 }
878
879 static inline void dec_load(struct rq *rq, const struct task_struct *p)
880 {
881 update_load_sub(&rq->load, p->se.load.weight);
882 }
883
884 static void inc_nr_running(struct task_struct *p, struct rq *rq)
885 {
886 rq->nr_running++;
887 inc_load(rq, p);
888 }
889
890 static void dec_nr_running(struct task_struct *p, struct rq *rq)
891 {
892 rq->nr_running--;
893 dec_load(rq, p);
894 }
895
896 static void set_load_weight(struct task_struct *p)
897 {
898 if (task_has_rt_policy(p)) {
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
902 }
903
904 /*
905 * SCHED_IDLE tasks get minimal weight:
906 */
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
911 }
912
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
915 }
916
917 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
918 {
919 sched_info_queued(p);
920 p->sched_class->enqueue_task(rq, p, wakeup);
921 p->se.on_rq = 1;
922 }
923
924 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
925 {
926 p->sched_class->dequeue_task(rq, p, sleep);
927 p->se.on_rq = 0;
928 }
929
930 /*
931 * __normal_prio - return the priority that is based on the static prio
932 */
933 static inline int __normal_prio(struct task_struct *p)
934 {
935 return p->static_prio;
936 }
937
938 /*
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
944 */
945 static inline int normal_prio(struct task_struct *p)
946 {
947 int prio;
948
949 if (task_has_rt_policy(p))
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
954 }
955
956 /*
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
962 */
963 static int effective_prio(struct task_struct *p)
964 {
965 p->normal_prio = normal_prio(p);
966 /*
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
970 */
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
974 }
975
976 /*
977 * activate_task - move a task to the runqueue.
978 */
979 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
980 {
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
983
984 enqueue_task(rq, p, wakeup);
985 inc_nr_running(p, rq);
986 }
987
988 /*
989 * activate_idle_task - move idle task to the _front_ of runqueue.
990 */
991 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
992 {
993 update_rq_clock(rq);
994
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
997
998 enqueue_task(rq, p, 0);
999 inc_nr_running(p, rq);
1000 }
1001
1002 /*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1006 {
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1009
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1012 }
1013
1014 /**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
1018 inline int task_curr(const struct task_struct *p)
1019 {
1020 return cpu_curr(task_cpu(p)) == p;
1021 }
1022
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1025 {
1026 return cpu_rq(cpu)->load.weight;
1027 }
1028
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030 {
1031 #ifdef CONFIG_SMP
1032 task_thread_info(p)->cpu = cpu;
1033 #endif
1034 set_task_cfs_rq(p);
1035 }
1036
1037 #ifdef CONFIG_SMP
1038
1039 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1040 {
1041 int old_cpu = task_cpu(p);
1042 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1043 u64 clock_offset;
1044
1045 clock_offset = old_rq->clock - new_rq->clock;
1046
1047 #ifdef CONFIG_SCHEDSTATS
1048 if (p->se.wait_start)
1049 p->se.wait_start -= clock_offset;
1050 if (p->se.sleep_start)
1051 p->se.sleep_start -= clock_offset;
1052 if (p->se.block_start)
1053 p->se.block_start -= clock_offset;
1054 #endif
1055 p->se.vruntime -= old_rq->cfs.min_vruntime - new_rq->cfs.min_vruntime;
1056
1057 __set_task_cpu(p, new_cpu);
1058 }
1059
1060 struct migration_req {
1061 struct list_head list;
1062
1063 struct task_struct *task;
1064 int dest_cpu;
1065
1066 struct completion done;
1067 };
1068
1069 /*
1070 * The task's runqueue lock must be held.
1071 * Returns true if you have to wait for migration thread.
1072 */
1073 static int
1074 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 {
1076 struct rq *rq = task_rq(p);
1077
1078 /*
1079 * If the task is not on a runqueue (and not running), then
1080 * it is sufficient to simply update the task's cpu field.
1081 */
1082 if (!p->se.on_rq && !task_running(rq, p)) {
1083 set_task_cpu(p, dest_cpu);
1084 return 0;
1085 }
1086
1087 init_completion(&req->done);
1088 req->task = p;
1089 req->dest_cpu = dest_cpu;
1090 list_add(&req->list, &rq->migration_queue);
1091
1092 return 1;
1093 }
1094
1095 /*
1096 * wait_task_inactive - wait for a thread to unschedule.
1097 *
1098 * The caller must ensure that the task *will* unschedule sometime soon,
1099 * else this function might spin for a *long* time. This function can't
1100 * be called with interrupts off, or it may introduce deadlock with
1101 * smp_call_function() if an IPI is sent by the same process we are
1102 * waiting to become inactive.
1103 */
1104 void wait_task_inactive(struct task_struct *p)
1105 {
1106 unsigned long flags;
1107 int running, on_rq;
1108 struct rq *rq;
1109
1110 repeat:
1111 /*
1112 * We do the initial early heuristics without holding
1113 * any task-queue locks at all. We'll only try to get
1114 * the runqueue lock when things look like they will
1115 * work out!
1116 */
1117 rq = task_rq(p);
1118
1119 /*
1120 * If the task is actively running on another CPU
1121 * still, just relax and busy-wait without holding
1122 * any locks.
1123 *
1124 * NOTE! Since we don't hold any locks, it's not
1125 * even sure that "rq" stays as the right runqueue!
1126 * But we don't care, since "task_running()" will
1127 * return false if the runqueue has changed and p
1128 * is actually now running somewhere else!
1129 */
1130 while (task_running(rq, p))
1131 cpu_relax();
1132
1133 /*
1134 * Ok, time to look more closely! We need the rq
1135 * lock now, to be *sure*. If we're wrong, we'll
1136 * just go back and repeat.
1137 */
1138 rq = task_rq_lock(p, &flags);
1139 running = task_running(rq, p);
1140 on_rq = p->se.on_rq;
1141 task_rq_unlock(rq, &flags);
1142
1143 /*
1144 * Was it really running after all now that we
1145 * checked with the proper locks actually held?
1146 *
1147 * Oops. Go back and try again..
1148 */
1149 if (unlikely(running)) {
1150 cpu_relax();
1151 goto repeat;
1152 }
1153
1154 /*
1155 * It's not enough that it's not actively running,
1156 * it must be off the runqueue _entirely_, and not
1157 * preempted!
1158 *
1159 * So if it wa still runnable (but just not actively
1160 * running right now), it's preempted, and we should
1161 * yield - it could be a while.
1162 */
1163 if (unlikely(on_rq)) {
1164 yield();
1165 goto repeat;
1166 }
1167
1168 /*
1169 * Ahh, all good. It wasn't running, and it wasn't
1170 * runnable, which means that it will never become
1171 * running in the future either. We're all done!
1172 */
1173 }
1174
1175 /***
1176 * kick_process - kick a running thread to enter/exit the kernel
1177 * @p: the to-be-kicked thread
1178 *
1179 * Cause a process which is running on another CPU to enter
1180 * kernel-mode, without any delay. (to get signals handled.)
1181 *
1182 * NOTE: this function doesnt have to take the runqueue lock,
1183 * because all it wants to ensure is that the remote task enters
1184 * the kernel. If the IPI races and the task has been migrated
1185 * to another CPU then no harm is done and the purpose has been
1186 * achieved as well.
1187 */
1188 void kick_process(struct task_struct *p)
1189 {
1190 int cpu;
1191
1192 preempt_disable();
1193 cpu = task_cpu(p);
1194 if ((cpu != smp_processor_id()) && task_curr(p))
1195 smp_send_reschedule(cpu);
1196 preempt_enable();
1197 }
1198
1199 /*
1200 * Return a low guess at the load of a migration-source cpu weighted
1201 * according to the scheduling class and "nice" value.
1202 *
1203 * We want to under-estimate the load of migration sources, to
1204 * balance conservatively.
1205 */
1206 static inline unsigned long source_load(int cpu, int type)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210
1211 if (type == 0)
1212 return total;
1213
1214 return min(rq->cpu_load[type-1], total);
1215 }
1216
1217 /*
1218 * Return a high guess at the load of a migration-target cpu weighted
1219 * according to the scheduling class and "nice" value.
1220 */
1221 static inline unsigned long target_load(int cpu, int type)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long total = weighted_cpuload(cpu);
1225
1226 if (type == 0)
1227 return total;
1228
1229 return max(rq->cpu_load[type-1], total);
1230 }
1231
1232 /*
1233 * Return the average load per task on the cpu's run queue
1234 */
1235 static inline unsigned long cpu_avg_load_per_task(int cpu)
1236 {
1237 struct rq *rq = cpu_rq(cpu);
1238 unsigned long total = weighted_cpuload(cpu);
1239 unsigned long n = rq->nr_running;
1240
1241 return n ? total / n : SCHED_LOAD_SCALE;
1242 }
1243
1244 /*
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1247 */
1248 static struct sched_group *
1249 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1250 {
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1255
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1260
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1264
1265 local_group = cpu_isset(this_cpu, group->cpumask);
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 nextgroup:
1292 group = group->next;
1293 } while (group != sd->groups);
1294
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1298 }
1299
1300 /*
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1302 */
1303 static int
1304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1305 {
1306 cpumask_t tmp;
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313
1314 for_each_cpu_mask(i, tmp) {
1315 load = weighted_cpuload(i);
1316
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1320 }
1321 }
1322
1323 return idlest;
1324 }
1325
1326 /*
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1330 *
1331 * Balance, ie. select the least loaded group.
1332 *
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 *
1335 * preempt must be disabled.
1336 */
1337 static int sched_balance_self(int cpu, int flag)
1338 {
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
1341
1342 for_each_domain(cpu, tmp) {
1343 /*
1344 * If power savings logic is enabled for a domain, stop there.
1345 */
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
1348 if (tmp->flags & flag)
1349 sd = tmp;
1350 }
1351
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1355 int new_cpu, weight;
1356
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1360 }
1361
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1367 }
1368
1369 new_cpu = find_idlest_cpu(group, t, cpu);
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1374 }
1375
1376 /* Now try balancing at a lower domain level of new_cpu */
1377 cpu = new_cpu;
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1385 }
1386 /* while loop will break here if sd == NULL */
1387 }
1388
1389 return cpu;
1390 }
1391
1392 #endif /* CONFIG_SMP */
1393
1394 /*
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1399 *
1400 * Returns the CPU we should wake onto.
1401 */
1402 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403 static int wake_idle(int cpu, struct task_struct *p)
1404 {
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1408
1409 /*
1410 * If it is idle, then it is the best cpu to run this task.
1411 *
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1417 */
1418 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1419 return cpu;
1420
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_IDLE) {
1423 cpus_and(tmp, sd->span, p->cpus_allowed);
1424 for_each_cpu_mask(i, tmp) {
1425 if (idle_cpu(i))
1426 return i;
1427 }
1428 } else {
1429 break;
1430 }
1431 }
1432 return cpu;
1433 }
1434 #else
1435 static inline int wake_idle(int cpu, struct task_struct *p)
1436 {
1437 return cpu;
1438 }
1439 #endif
1440
1441 /***
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
1453 * returns failure only if the task is already active.
1454 */
1455 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1456 {
1457 int cpu, this_cpu, success = 0;
1458 unsigned long flags;
1459 long old_state;
1460 struct rq *rq;
1461 #ifdef CONFIG_SMP
1462 struct sched_domain *sd, *this_sd = NULL;
1463 unsigned long load, this_load;
1464 int new_cpu;
1465 #endif
1466
1467 rq = task_rq_lock(p, &flags);
1468 old_state = p->state;
1469 if (!(old_state & state))
1470 goto out;
1471
1472 if (p->se.on_rq)
1473 goto out_running;
1474
1475 cpu = task_cpu(p);
1476 this_cpu = smp_processor_id();
1477
1478 #ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1481
1482 new_cpu = cpu;
1483
1484 schedstat_inc(rq, ttwu_cnt);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
1487 goto out_set_cpu;
1488 }
1489
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1495 }
1496 }
1497
1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1499 goto out_set_cpu;
1500
1501 /*
1502 * Check for affine wakeup and passive balancing possibilities.
1503 */
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1507
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1509
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1512
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1514
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
1517 unsigned long tl_per_task;
1518
1519 tl_per_task = cpu_avg_load_per_task(this_cpu);
1520
1521 /*
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1525 */
1526 if (sync)
1527 tl -= current->se.load.weight;
1528
1529 if ((tl <= load &&
1530 tl + target_load(cpu, idx) <= tl_per_task) ||
1531 100*(tl + p->se.load.weight) <= imbalance*load) {
1532 /*
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1536 */
1537 schedstat_inc(this_sd, ttwu_move_affine);
1538 goto out_set_cpu;
1539 }
1540 }
1541
1542 /*
1543 * Start passive balancing when half the imbalance_pct
1544 * limit is reached.
1545 */
1546 if (this_sd->flags & SD_WAKE_BALANCE) {
1547 if (imbalance*this_load <= 100*load) {
1548 schedstat_inc(this_sd, ttwu_move_balance);
1549 goto out_set_cpu;
1550 }
1551 }
1552 }
1553
1554 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1555 out_set_cpu:
1556 new_cpu = wake_idle(new_cpu, p);
1557 if (new_cpu != cpu) {
1558 set_task_cpu(p, new_cpu);
1559 task_rq_unlock(rq, &flags);
1560 /* might preempt at this point */
1561 rq = task_rq_lock(p, &flags);
1562 old_state = p->state;
1563 if (!(old_state & state))
1564 goto out;
1565 if (p->se.on_rq)
1566 goto out_running;
1567
1568 this_cpu = smp_processor_id();
1569 cpu = task_cpu(p);
1570 }
1571
1572 out_activate:
1573 #endif /* CONFIG_SMP */
1574 update_rq_clock(rq);
1575 activate_task(rq, p, 1);
1576 /*
1577 * Sync wakeups (i.e. those types of wakeups where the waker
1578 * has indicated that it will leave the CPU in short order)
1579 * don't trigger a preemption, if the woken up task will run on
1580 * this cpu. (in this case the 'I will reschedule' promise of
1581 * the waker guarantees that the freshly woken up task is going
1582 * to be considered on this CPU.)
1583 */
1584 if (!sync || cpu != this_cpu)
1585 check_preempt_curr(rq, p);
1586 success = 1;
1587
1588 out_running:
1589 p->state = TASK_RUNNING;
1590 out:
1591 task_rq_unlock(rq, &flags);
1592
1593 return success;
1594 }
1595
1596 int fastcall wake_up_process(struct task_struct *p)
1597 {
1598 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1599 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1600 }
1601 EXPORT_SYMBOL(wake_up_process);
1602
1603 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1604 {
1605 return try_to_wake_up(p, state, 0);
1606 }
1607
1608 /*
1609 * Perform scheduler related setup for a newly forked process p.
1610 * p is forked by current.
1611 *
1612 * __sched_fork() is basic setup used by init_idle() too:
1613 */
1614 static void __sched_fork(struct task_struct *p)
1615 {
1616 p->se.exec_start = 0;
1617 p->se.sum_exec_runtime = 0;
1618 p->se.prev_sum_exec_runtime = 0;
1619 p->se.last_min_vruntime = 0;
1620
1621 #ifdef CONFIG_SCHEDSTATS
1622 p->se.wait_start = 0;
1623 p->se.sum_sleep_runtime = 0;
1624 p->se.sleep_start = 0;
1625 p->se.block_start = 0;
1626 p->se.sleep_max = 0;
1627 p->se.block_max = 0;
1628 p->se.exec_max = 0;
1629 p->se.slice_max = 0;
1630 p->se.wait_max = 0;
1631 #endif
1632
1633 INIT_LIST_HEAD(&p->run_list);
1634 p->se.on_rq = 0;
1635
1636 #ifdef CONFIG_PREEMPT_NOTIFIERS
1637 INIT_HLIST_HEAD(&p->preempt_notifiers);
1638 #endif
1639
1640 /*
1641 * We mark the process as running here, but have not actually
1642 * inserted it onto the runqueue yet. This guarantees that
1643 * nobody will actually run it, and a signal or other external
1644 * event cannot wake it up and insert it on the runqueue either.
1645 */
1646 p->state = TASK_RUNNING;
1647 }
1648
1649 /*
1650 * fork()/clone()-time setup:
1651 */
1652 void sched_fork(struct task_struct *p, int clone_flags)
1653 {
1654 int cpu = get_cpu();
1655
1656 __sched_fork(p);
1657
1658 #ifdef CONFIG_SMP
1659 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1660 #endif
1661 __set_task_cpu(p, cpu);
1662
1663 /*
1664 * Make sure we do not leak PI boosting priority to the child:
1665 */
1666 p->prio = current->normal_prio;
1667
1668 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1669 if (likely(sched_info_on()))
1670 memset(&p->sched_info, 0, sizeof(p->sched_info));
1671 #endif
1672 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1673 p->oncpu = 0;
1674 #endif
1675 #ifdef CONFIG_PREEMPT
1676 /* Want to start with kernel preemption disabled. */
1677 task_thread_info(p)->preempt_count = 1;
1678 #endif
1679 put_cpu();
1680 }
1681
1682 /*
1683 * wake_up_new_task - wake up a newly created task for the first time.
1684 *
1685 * This function will do some initial scheduler statistics housekeeping
1686 * that must be done for every newly created context, then puts the task
1687 * on the runqueue and wakes it.
1688 */
1689 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1690 {
1691 unsigned long flags;
1692 struct rq *rq;
1693 int this_cpu;
1694
1695 rq = task_rq_lock(p, &flags);
1696 BUG_ON(p->state != TASK_RUNNING);
1697 this_cpu = smp_processor_id(); /* parent's CPU */
1698 update_rq_clock(rq);
1699
1700 p->prio = effective_prio(p);
1701
1702 if (rt_prio(p->prio))
1703 p->sched_class = &rt_sched_class;
1704 else
1705 p->sched_class = &fair_sched_class;
1706
1707 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1708 !current->se.on_rq) {
1709 activate_task(rq, p, 0);
1710 } else {
1711 /*
1712 * Let the scheduling class do new task startup
1713 * management (if any):
1714 */
1715 p->sched_class->task_new(rq, p);
1716 inc_nr_running(p, rq);
1717 }
1718 check_preempt_curr(rq, p);
1719 task_rq_unlock(rq, &flags);
1720 }
1721
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723
1724 /**
1725 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1726 * @notifier: notifier struct to register
1727 */
1728 void preempt_notifier_register(struct preempt_notifier *notifier)
1729 {
1730 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1731 }
1732 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1733
1734 /**
1735 * preempt_notifier_unregister - no longer interested in preemption notifications
1736 * @notifier: notifier struct to unregister
1737 *
1738 * This is safe to call from within a preemption notifier.
1739 */
1740 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1741 {
1742 hlist_del(&notifier->link);
1743 }
1744 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1745
1746 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1747 {
1748 struct preempt_notifier *notifier;
1749 struct hlist_node *node;
1750
1751 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1752 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1753 }
1754
1755 static void
1756 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1757 struct task_struct *next)
1758 {
1759 struct preempt_notifier *notifier;
1760 struct hlist_node *node;
1761
1762 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1763 notifier->ops->sched_out(notifier, next);
1764 }
1765
1766 #else
1767
1768 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1769 {
1770 }
1771
1772 static void
1773 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1774 struct task_struct *next)
1775 {
1776 }
1777
1778 #endif
1779
1780 /**
1781 * prepare_task_switch - prepare to switch tasks
1782 * @rq: the runqueue preparing to switch
1783 * @prev: the current task that is being switched out
1784 * @next: the task we are going to switch to.
1785 *
1786 * This is called with the rq lock held and interrupts off. It must
1787 * be paired with a subsequent finish_task_switch after the context
1788 * switch.
1789 *
1790 * prepare_task_switch sets up locking and calls architecture specific
1791 * hooks.
1792 */
1793 static inline void
1794 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1795 struct task_struct *next)
1796 {
1797 fire_sched_out_preempt_notifiers(prev, next);
1798 prepare_lock_switch(rq, next);
1799 prepare_arch_switch(next);
1800 }
1801
1802 /**
1803 * finish_task_switch - clean up after a task-switch
1804 * @rq: runqueue associated with task-switch
1805 * @prev: the thread we just switched away from.
1806 *
1807 * finish_task_switch must be called after the context switch, paired
1808 * with a prepare_task_switch call before the context switch.
1809 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1810 * and do any other architecture-specific cleanup actions.
1811 *
1812 * Note that we may have delayed dropping an mm in context_switch(). If
1813 * so, we finish that here outside of the runqueue lock. (Doing it
1814 * with the lock held can cause deadlocks; see schedule() for
1815 * details.)
1816 */
1817 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1818 __releases(rq->lock)
1819 {
1820 struct mm_struct *mm = rq->prev_mm;
1821 long prev_state;
1822
1823 rq->prev_mm = NULL;
1824
1825 /*
1826 * A task struct has one reference for the use as "current".
1827 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1828 * schedule one last time. The schedule call will never return, and
1829 * the scheduled task must drop that reference.
1830 * The test for TASK_DEAD must occur while the runqueue locks are
1831 * still held, otherwise prev could be scheduled on another cpu, die
1832 * there before we look at prev->state, and then the reference would
1833 * be dropped twice.
1834 * Manfred Spraul <manfred@colorfullife.com>
1835 */
1836 prev_state = prev->state;
1837 finish_arch_switch(prev);
1838 finish_lock_switch(rq, prev);
1839 fire_sched_in_preempt_notifiers(current);
1840 if (mm)
1841 mmdrop(mm);
1842 if (unlikely(prev_state == TASK_DEAD)) {
1843 /*
1844 * Remove function-return probe instances associated with this
1845 * task and put them back on the free list.
1846 */
1847 kprobe_flush_task(prev);
1848 put_task_struct(prev);
1849 }
1850 }
1851
1852 /**
1853 * schedule_tail - first thing a freshly forked thread must call.
1854 * @prev: the thread we just switched away from.
1855 */
1856 asmlinkage void schedule_tail(struct task_struct *prev)
1857 __releases(rq->lock)
1858 {
1859 struct rq *rq = this_rq();
1860
1861 finish_task_switch(rq, prev);
1862 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1863 /* In this case, finish_task_switch does not reenable preemption */
1864 preempt_enable();
1865 #endif
1866 if (current->set_child_tid)
1867 put_user(current->pid, current->set_child_tid);
1868 }
1869
1870 /*
1871 * context_switch - switch to the new MM and the new
1872 * thread's register state.
1873 */
1874 static inline void
1875 context_switch(struct rq *rq, struct task_struct *prev,
1876 struct task_struct *next)
1877 {
1878 struct mm_struct *mm, *oldmm;
1879
1880 prepare_task_switch(rq, prev, next);
1881 mm = next->mm;
1882 oldmm = prev->active_mm;
1883 /*
1884 * For paravirt, this is coupled with an exit in switch_to to
1885 * combine the page table reload and the switch backend into
1886 * one hypercall.
1887 */
1888 arch_enter_lazy_cpu_mode();
1889
1890 if (unlikely(!mm)) {
1891 next->active_mm = oldmm;
1892 atomic_inc(&oldmm->mm_count);
1893 enter_lazy_tlb(oldmm, next);
1894 } else
1895 switch_mm(oldmm, mm, next);
1896
1897 if (unlikely(!prev->mm)) {
1898 prev->active_mm = NULL;
1899 rq->prev_mm = oldmm;
1900 }
1901 /*
1902 * Since the runqueue lock will be released by the next
1903 * task (which is an invalid locking op but in the case
1904 * of the scheduler it's an obvious special-case), so we
1905 * do an early lockdep release here:
1906 */
1907 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1908 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1909 #endif
1910
1911 /* Here we just switch the register state and the stack. */
1912 switch_to(prev, next, prev);
1913
1914 barrier();
1915 /*
1916 * this_rq must be evaluated again because prev may have moved
1917 * CPUs since it called schedule(), thus the 'rq' on its stack
1918 * frame will be invalid.
1919 */
1920 finish_task_switch(this_rq(), prev);
1921 }
1922
1923 /*
1924 * nr_running, nr_uninterruptible and nr_context_switches:
1925 *
1926 * externally visible scheduler statistics: current number of runnable
1927 * threads, current number of uninterruptible-sleeping threads, total
1928 * number of context switches performed since bootup.
1929 */
1930 unsigned long nr_running(void)
1931 {
1932 unsigned long i, sum = 0;
1933
1934 for_each_online_cpu(i)
1935 sum += cpu_rq(i)->nr_running;
1936
1937 return sum;
1938 }
1939
1940 unsigned long nr_uninterruptible(void)
1941 {
1942 unsigned long i, sum = 0;
1943
1944 for_each_possible_cpu(i)
1945 sum += cpu_rq(i)->nr_uninterruptible;
1946
1947 /*
1948 * Since we read the counters lockless, it might be slightly
1949 * inaccurate. Do not allow it to go below zero though:
1950 */
1951 if (unlikely((long)sum < 0))
1952 sum = 0;
1953
1954 return sum;
1955 }
1956
1957 unsigned long long nr_context_switches(void)
1958 {
1959 int i;
1960 unsigned long long sum = 0;
1961
1962 for_each_possible_cpu(i)
1963 sum += cpu_rq(i)->nr_switches;
1964
1965 return sum;
1966 }
1967
1968 unsigned long nr_iowait(void)
1969 {
1970 unsigned long i, sum = 0;
1971
1972 for_each_possible_cpu(i)
1973 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1974
1975 return sum;
1976 }
1977
1978 unsigned long nr_active(void)
1979 {
1980 unsigned long i, running = 0, uninterruptible = 0;
1981
1982 for_each_online_cpu(i) {
1983 running += cpu_rq(i)->nr_running;
1984 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1985 }
1986
1987 if (unlikely((long)uninterruptible < 0))
1988 uninterruptible = 0;
1989
1990 return running + uninterruptible;
1991 }
1992
1993 /*
1994 * Update rq->cpu_load[] statistics. This function is usually called every
1995 * scheduler tick (TICK_NSEC).
1996 */
1997 static void update_cpu_load(struct rq *this_rq)
1998 {
1999 unsigned long this_load = this_rq->load.weight;
2000 int i, scale;
2001
2002 this_rq->nr_load_updates++;
2003
2004 /* Update our load: */
2005 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2006 unsigned long old_load, new_load;
2007
2008 /* scale is effectively 1 << i now, and >> i divides by scale */
2009
2010 old_load = this_rq->cpu_load[i];
2011 new_load = this_load;
2012 /*
2013 * Round up the averaging division if load is increasing. This
2014 * prevents us from getting stuck on 9 if the load is 10, for
2015 * example.
2016 */
2017 if (new_load > old_load)
2018 new_load += scale-1;
2019 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2020 }
2021 }
2022
2023 #ifdef CONFIG_SMP
2024
2025 /*
2026 * double_rq_lock - safely lock two runqueues
2027 *
2028 * Note this does not disable interrupts like task_rq_lock,
2029 * you need to do so manually before calling.
2030 */
2031 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2032 __acquires(rq1->lock)
2033 __acquires(rq2->lock)
2034 {
2035 BUG_ON(!irqs_disabled());
2036 if (rq1 == rq2) {
2037 spin_lock(&rq1->lock);
2038 __acquire(rq2->lock); /* Fake it out ;) */
2039 } else {
2040 if (rq1 < rq2) {
2041 spin_lock(&rq1->lock);
2042 spin_lock(&rq2->lock);
2043 } else {
2044 spin_lock(&rq2->lock);
2045 spin_lock(&rq1->lock);
2046 }
2047 }
2048 update_rq_clock(rq1);
2049 update_rq_clock(rq2);
2050 }
2051
2052 /*
2053 * double_rq_unlock - safely unlock two runqueues
2054 *
2055 * Note this does not restore interrupts like task_rq_unlock,
2056 * you need to do so manually after calling.
2057 */
2058 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2059 __releases(rq1->lock)
2060 __releases(rq2->lock)
2061 {
2062 spin_unlock(&rq1->lock);
2063 if (rq1 != rq2)
2064 spin_unlock(&rq2->lock);
2065 else
2066 __release(rq2->lock);
2067 }
2068
2069 /*
2070 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2071 */
2072 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2073 __releases(this_rq->lock)
2074 __acquires(busiest->lock)
2075 __acquires(this_rq->lock)
2076 {
2077 if (unlikely(!irqs_disabled())) {
2078 /* printk() doesn't work good under rq->lock */
2079 spin_unlock(&this_rq->lock);
2080 BUG_ON(1);
2081 }
2082 if (unlikely(!spin_trylock(&busiest->lock))) {
2083 if (busiest < this_rq) {
2084 spin_unlock(&this_rq->lock);
2085 spin_lock(&busiest->lock);
2086 spin_lock(&this_rq->lock);
2087 } else
2088 spin_lock(&busiest->lock);
2089 }
2090 }
2091
2092 /*
2093 * If dest_cpu is allowed for this process, migrate the task to it.
2094 * This is accomplished by forcing the cpu_allowed mask to only
2095 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2096 * the cpu_allowed mask is restored.
2097 */
2098 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2099 {
2100 struct migration_req req;
2101 unsigned long flags;
2102 struct rq *rq;
2103
2104 rq = task_rq_lock(p, &flags);
2105 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2106 || unlikely(cpu_is_offline(dest_cpu)))
2107 goto out;
2108
2109 /* force the process onto the specified CPU */
2110 if (migrate_task(p, dest_cpu, &req)) {
2111 /* Need to wait for migration thread (might exit: take ref). */
2112 struct task_struct *mt = rq->migration_thread;
2113
2114 get_task_struct(mt);
2115 task_rq_unlock(rq, &flags);
2116 wake_up_process(mt);
2117 put_task_struct(mt);
2118 wait_for_completion(&req.done);
2119
2120 return;
2121 }
2122 out:
2123 task_rq_unlock(rq, &flags);
2124 }
2125
2126 /*
2127 * sched_exec - execve() is a valuable balancing opportunity, because at
2128 * this point the task has the smallest effective memory and cache footprint.
2129 */
2130 void sched_exec(void)
2131 {
2132 int new_cpu, this_cpu = get_cpu();
2133 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2134 put_cpu();
2135 if (new_cpu != this_cpu)
2136 sched_migrate_task(current, new_cpu);
2137 }
2138
2139 /*
2140 * pull_task - move a task from a remote runqueue to the local runqueue.
2141 * Both runqueues must be locked.
2142 */
2143 static void pull_task(struct rq *src_rq, struct task_struct *p,
2144 struct rq *this_rq, int this_cpu)
2145 {
2146 deactivate_task(src_rq, p, 0);
2147 set_task_cpu(p, this_cpu);
2148 activate_task(this_rq, p, 0);
2149 /*
2150 * Note that idle threads have a prio of MAX_PRIO, for this test
2151 * to be always true for them.
2152 */
2153 check_preempt_curr(this_rq, p);
2154 }
2155
2156 /*
2157 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2158 */
2159 static
2160 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2161 struct sched_domain *sd, enum cpu_idle_type idle,
2162 int *all_pinned)
2163 {
2164 /*
2165 * We do not migrate tasks that are:
2166 * 1) running (obviously), or
2167 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2168 * 3) are cache-hot on their current CPU.
2169 */
2170 if (!cpu_isset(this_cpu, p->cpus_allowed))
2171 return 0;
2172 *all_pinned = 0;
2173
2174 if (task_running(rq, p))
2175 return 0;
2176
2177 return 1;
2178 }
2179
2180 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2181 unsigned long max_nr_move, unsigned long max_load_move,
2182 struct sched_domain *sd, enum cpu_idle_type idle,
2183 int *all_pinned, unsigned long *load_moved,
2184 int *this_best_prio, struct rq_iterator *iterator)
2185 {
2186 int pulled = 0, pinned = 0, skip_for_load;
2187 struct task_struct *p;
2188 long rem_load_move = max_load_move;
2189
2190 if (max_nr_move == 0 || max_load_move == 0)
2191 goto out;
2192
2193 pinned = 1;
2194
2195 /*
2196 * Start the load-balancing iterator:
2197 */
2198 p = iterator->start(iterator->arg);
2199 next:
2200 if (!p)
2201 goto out;
2202 /*
2203 * To help distribute high priority tasks accross CPUs we don't
2204 * skip a task if it will be the highest priority task (i.e. smallest
2205 * prio value) on its new queue regardless of its load weight
2206 */
2207 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2208 SCHED_LOAD_SCALE_FUZZ;
2209 if ((skip_for_load && p->prio >= *this_best_prio) ||
2210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2211 p = iterator->next(iterator->arg);
2212 goto next;
2213 }
2214
2215 pull_task(busiest, p, this_rq, this_cpu);
2216 pulled++;
2217 rem_load_move -= p->se.load.weight;
2218
2219 /*
2220 * We only want to steal up to the prescribed number of tasks
2221 * and the prescribed amount of weighted load.
2222 */
2223 if (pulled < max_nr_move && rem_load_move > 0) {
2224 if (p->prio < *this_best_prio)
2225 *this_best_prio = p->prio;
2226 p = iterator->next(iterator->arg);
2227 goto next;
2228 }
2229 out:
2230 /*
2231 * Right now, this is the only place pull_task() is called,
2232 * so we can safely collect pull_task() stats here rather than
2233 * inside pull_task().
2234 */
2235 schedstat_add(sd, lb_gained[idle], pulled);
2236
2237 if (all_pinned)
2238 *all_pinned = pinned;
2239 *load_moved = max_load_move - rem_load_move;
2240 return pulled;
2241 }
2242
2243 /*
2244 * move_tasks tries to move up to max_load_move weighted load from busiest to
2245 * this_rq, as part of a balancing operation within domain "sd".
2246 * Returns 1 if successful and 0 otherwise.
2247 *
2248 * Called with both runqueues locked.
2249 */
2250 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2251 unsigned long max_load_move,
2252 struct sched_domain *sd, enum cpu_idle_type idle,
2253 int *all_pinned)
2254 {
2255 struct sched_class *class = sched_class_highest;
2256 unsigned long total_load_moved = 0;
2257 int this_best_prio = this_rq->curr->prio;
2258
2259 do {
2260 total_load_moved +=
2261 class->load_balance(this_rq, this_cpu, busiest,
2262 ULONG_MAX, max_load_move - total_load_moved,
2263 sd, idle, all_pinned, &this_best_prio);
2264 class = class->next;
2265 } while (class && max_load_move > total_load_moved);
2266
2267 return total_load_moved > 0;
2268 }
2269
2270 /*
2271 * move_one_task tries to move exactly one task from busiest to this_rq, as
2272 * part of active balancing operations within "domain".
2273 * Returns 1 if successful and 0 otherwise.
2274 *
2275 * Called with both runqueues locked.
2276 */
2277 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2278 struct sched_domain *sd, enum cpu_idle_type idle)
2279 {
2280 struct sched_class *class;
2281 int this_best_prio = MAX_PRIO;
2282
2283 for (class = sched_class_highest; class; class = class->next)
2284 if (class->load_balance(this_rq, this_cpu, busiest,
2285 1, ULONG_MAX, sd, idle, NULL,
2286 &this_best_prio))
2287 return 1;
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * find_busiest_group finds and returns the busiest CPU group within the
2294 * domain. It calculates and returns the amount of weighted load which
2295 * should be moved to restore balance via the imbalance parameter.
2296 */
2297 static struct sched_group *
2298 find_busiest_group(struct sched_domain *sd, int this_cpu,
2299 unsigned long *imbalance, enum cpu_idle_type idle,
2300 int *sd_idle, cpumask_t *cpus, int *balance)
2301 {
2302 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2303 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2304 unsigned long max_pull;
2305 unsigned long busiest_load_per_task, busiest_nr_running;
2306 unsigned long this_load_per_task, this_nr_running;
2307 int load_idx;
2308 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2309 int power_savings_balance = 1;
2310 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2311 unsigned long min_nr_running = ULONG_MAX;
2312 struct sched_group *group_min = NULL, *group_leader = NULL;
2313 #endif
2314
2315 max_load = this_load = total_load = total_pwr = 0;
2316 busiest_load_per_task = busiest_nr_running = 0;
2317 this_load_per_task = this_nr_running = 0;
2318 if (idle == CPU_NOT_IDLE)
2319 load_idx = sd->busy_idx;
2320 else if (idle == CPU_NEWLY_IDLE)
2321 load_idx = sd->newidle_idx;
2322 else
2323 load_idx = sd->idle_idx;
2324
2325 do {
2326 unsigned long load, group_capacity;
2327 int local_group;
2328 int i;
2329 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2330 unsigned long sum_nr_running, sum_weighted_load;
2331
2332 local_group = cpu_isset(this_cpu, group->cpumask);
2333
2334 if (local_group)
2335 balance_cpu = first_cpu(group->cpumask);
2336
2337 /* Tally up the load of all CPUs in the group */
2338 sum_weighted_load = sum_nr_running = avg_load = 0;
2339
2340 for_each_cpu_mask(i, group->cpumask) {
2341 struct rq *rq;
2342
2343 if (!cpu_isset(i, *cpus))
2344 continue;
2345
2346 rq = cpu_rq(i);
2347
2348 if (*sd_idle && rq->nr_running)
2349 *sd_idle = 0;
2350
2351 /* Bias balancing toward cpus of our domain */
2352 if (local_group) {
2353 if (idle_cpu(i) && !first_idle_cpu) {
2354 first_idle_cpu = 1;
2355 balance_cpu = i;
2356 }
2357
2358 load = target_load(i, load_idx);
2359 } else
2360 load = source_load(i, load_idx);
2361
2362 avg_load += load;
2363 sum_nr_running += rq->nr_running;
2364 sum_weighted_load += weighted_cpuload(i);
2365 }
2366
2367 /*
2368 * First idle cpu or the first cpu(busiest) in this sched group
2369 * is eligible for doing load balancing at this and above
2370 * domains. In the newly idle case, we will allow all the cpu's
2371 * to do the newly idle load balance.
2372 */
2373 if (idle != CPU_NEWLY_IDLE && local_group &&
2374 balance_cpu != this_cpu && balance) {
2375 *balance = 0;
2376 goto ret;
2377 }
2378
2379 total_load += avg_load;
2380 total_pwr += group->__cpu_power;
2381
2382 /* Adjust by relative CPU power of the group */
2383 avg_load = sg_div_cpu_power(group,
2384 avg_load * SCHED_LOAD_SCALE);
2385
2386 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2387
2388 if (local_group) {
2389 this_load = avg_load;
2390 this = group;
2391 this_nr_running = sum_nr_running;
2392 this_load_per_task = sum_weighted_load;
2393 } else if (avg_load > max_load &&
2394 sum_nr_running > group_capacity) {
2395 max_load = avg_load;
2396 busiest = group;
2397 busiest_nr_running = sum_nr_running;
2398 busiest_load_per_task = sum_weighted_load;
2399 }
2400
2401 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2402 /*
2403 * Busy processors will not participate in power savings
2404 * balance.
2405 */
2406 if (idle == CPU_NOT_IDLE ||
2407 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2408 goto group_next;
2409
2410 /*
2411 * If the local group is idle or completely loaded
2412 * no need to do power savings balance at this domain
2413 */
2414 if (local_group && (this_nr_running >= group_capacity ||
2415 !this_nr_running))
2416 power_savings_balance = 0;
2417
2418 /*
2419 * If a group is already running at full capacity or idle,
2420 * don't include that group in power savings calculations
2421 */
2422 if (!power_savings_balance || sum_nr_running >= group_capacity
2423 || !sum_nr_running)
2424 goto group_next;
2425
2426 /*
2427 * Calculate the group which has the least non-idle load.
2428 * This is the group from where we need to pick up the load
2429 * for saving power
2430 */
2431 if ((sum_nr_running < min_nr_running) ||
2432 (sum_nr_running == min_nr_running &&
2433 first_cpu(group->cpumask) <
2434 first_cpu(group_min->cpumask))) {
2435 group_min = group;
2436 min_nr_running = sum_nr_running;
2437 min_load_per_task = sum_weighted_load /
2438 sum_nr_running;
2439 }
2440
2441 /*
2442 * Calculate the group which is almost near its
2443 * capacity but still has some space to pick up some load
2444 * from other group and save more power
2445 */
2446 if (sum_nr_running <= group_capacity - 1) {
2447 if (sum_nr_running > leader_nr_running ||
2448 (sum_nr_running == leader_nr_running &&
2449 first_cpu(group->cpumask) >
2450 first_cpu(group_leader->cpumask))) {
2451 group_leader = group;
2452 leader_nr_running = sum_nr_running;
2453 }
2454 }
2455 group_next:
2456 #endif
2457 group = group->next;
2458 } while (group != sd->groups);
2459
2460 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2461 goto out_balanced;
2462
2463 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2464
2465 if (this_load >= avg_load ||
2466 100*max_load <= sd->imbalance_pct*this_load)
2467 goto out_balanced;
2468
2469 busiest_load_per_task /= busiest_nr_running;
2470 /*
2471 * We're trying to get all the cpus to the average_load, so we don't
2472 * want to push ourselves above the average load, nor do we wish to
2473 * reduce the max loaded cpu below the average load, as either of these
2474 * actions would just result in more rebalancing later, and ping-pong
2475 * tasks around. Thus we look for the minimum possible imbalance.
2476 * Negative imbalances (*we* are more loaded than anyone else) will
2477 * be counted as no imbalance for these purposes -- we can't fix that
2478 * by pulling tasks to us. Be careful of negative numbers as they'll
2479 * appear as very large values with unsigned longs.
2480 */
2481 if (max_load <= busiest_load_per_task)
2482 goto out_balanced;
2483
2484 /*
2485 * In the presence of smp nice balancing, certain scenarios can have
2486 * max load less than avg load(as we skip the groups at or below
2487 * its cpu_power, while calculating max_load..)
2488 */
2489 if (max_load < avg_load) {
2490 *imbalance = 0;
2491 goto small_imbalance;
2492 }
2493
2494 /* Don't want to pull so many tasks that a group would go idle */
2495 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2496
2497 /* How much load to actually move to equalise the imbalance */
2498 *imbalance = min(max_pull * busiest->__cpu_power,
2499 (avg_load - this_load) * this->__cpu_power)
2500 / SCHED_LOAD_SCALE;
2501
2502 /*
2503 * if *imbalance is less than the average load per runnable task
2504 * there is no gaurantee that any tasks will be moved so we'll have
2505 * a think about bumping its value to force at least one task to be
2506 * moved
2507 */
2508 if (*imbalance < busiest_load_per_task) {
2509 unsigned long tmp, pwr_now, pwr_move;
2510 unsigned int imbn;
2511
2512 small_imbalance:
2513 pwr_move = pwr_now = 0;
2514 imbn = 2;
2515 if (this_nr_running) {
2516 this_load_per_task /= this_nr_running;
2517 if (busiest_load_per_task > this_load_per_task)
2518 imbn = 1;
2519 } else
2520 this_load_per_task = SCHED_LOAD_SCALE;
2521
2522 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2523 busiest_load_per_task * imbn) {
2524 *imbalance = busiest_load_per_task;
2525 return busiest;
2526 }
2527
2528 /*
2529 * OK, we don't have enough imbalance to justify moving tasks,
2530 * however we may be able to increase total CPU power used by
2531 * moving them.
2532 */
2533
2534 pwr_now += busiest->__cpu_power *
2535 min(busiest_load_per_task, max_load);
2536 pwr_now += this->__cpu_power *
2537 min(this_load_per_task, this_load);
2538 pwr_now /= SCHED_LOAD_SCALE;
2539
2540 /* Amount of load we'd subtract */
2541 tmp = sg_div_cpu_power(busiest,
2542 busiest_load_per_task * SCHED_LOAD_SCALE);
2543 if (max_load > tmp)
2544 pwr_move += busiest->__cpu_power *
2545 min(busiest_load_per_task, max_load - tmp);
2546
2547 /* Amount of load we'd add */
2548 if (max_load * busiest->__cpu_power <
2549 busiest_load_per_task * SCHED_LOAD_SCALE)
2550 tmp = sg_div_cpu_power(this,
2551 max_load * busiest->__cpu_power);
2552 else
2553 tmp = sg_div_cpu_power(this,
2554 busiest_load_per_task * SCHED_LOAD_SCALE);
2555 pwr_move += this->__cpu_power *
2556 min(this_load_per_task, this_load + tmp);
2557 pwr_move /= SCHED_LOAD_SCALE;
2558
2559 /* Move if we gain throughput */
2560 if (pwr_move > pwr_now)
2561 *imbalance = busiest_load_per_task;
2562 }
2563
2564 return busiest;
2565
2566 out_balanced:
2567 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2568 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2569 goto ret;
2570
2571 if (this == group_leader && group_leader != group_min) {
2572 *imbalance = min_load_per_task;
2573 return group_min;
2574 }
2575 #endif
2576 ret:
2577 *imbalance = 0;
2578 return NULL;
2579 }
2580
2581 /*
2582 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2583 */
2584 static struct rq *
2585 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2586 unsigned long imbalance, cpumask_t *cpus)
2587 {
2588 struct rq *busiest = NULL, *rq;
2589 unsigned long max_load = 0;
2590 int i;
2591
2592 for_each_cpu_mask(i, group->cpumask) {
2593 unsigned long wl;
2594
2595 if (!cpu_isset(i, *cpus))
2596 continue;
2597
2598 rq = cpu_rq(i);
2599 wl = weighted_cpuload(i);
2600
2601 if (rq->nr_running == 1 && wl > imbalance)
2602 continue;
2603
2604 if (wl > max_load) {
2605 max_load = wl;
2606 busiest = rq;
2607 }
2608 }
2609
2610 return busiest;
2611 }
2612
2613 /*
2614 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2615 * so long as it is large enough.
2616 */
2617 #define MAX_PINNED_INTERVAL 512
2618
2619 /*
2620 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2621 * tasks if there is an imbalance.
2622 */
2623 static int load_balance(int this_cpu, struct rq *this_rq,
2624 struct sched_domain *sd, enum cpu_idle_type idle,
2625 int *balance)
2626 {
2627 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2628 struct sched_group *group;
2629 unsigned long imbalance;
2630 struct rq *busiest;
2631 cpumask_t cpus = CPU_MASK_ALL;
2632 unsigned long flags;
2633
2634 /*
2635 * When power savings policy is enabled for the parent domain, idle
2636 * sibling can pick up load irrespective of busy siblings. In this case,
2637 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2638 * portraying it as CPU_NOT_IDLE.
2639 */
2640 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2641 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2642 sd_idle = 1;
2643
2644 schedstat_inc(sd, lb_cnt[idle]);
2645
2646 redo:
2647 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2648 &cpus, balance);
2649
2650 if (*balance == 0)
2651 goto out_balanced;
2652
2653 if (!group) {
2654 schedstat_inc(sd, lb_nobusyg[idle]);
2655 goto out_balanced;
2656 }
2657
2658 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2659 if (!busiest) {
2660 schedstat_inc(sd, lb_nobusyq[idle]);
2661 goto out_balanced;
2662 }
2663
2664 BUG_ON(busiest == this_rq);
2665
2666 schedstat_add(sd, lb_imbalance[idle], imbalance);
2667
2668 ld_moved = 0;
2669 if (busiest->nr_running > 1) {
2670 /*
2671 * Attempt to move tasks. If find_busiest_group has found
2672 * an imbalance but busiest->nr_running <= 1, the group is
2673 * still unbalanced. ld_moved simply stays zero, so it is
2674 * correctly treated as an imbalance.
2675 */
2676 local_irq_save(flags);
2677 double_rq_lock(this_rq, busiest);
2678 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2679 imbalance, sd, idle, &all_pinned);
2680 double_rq_unlock(this_rq, busiest);
2681 local_irq_restore(flags);
2682
2683 /*
2684 * some other cpu did the load balance for us.
2685 */
2686 if (ld_moved && this_cpu != smp_processor_id())
2687 resched_cpu(this_cpu);
2688
2689 /* All tasks on this runqueue were pinned by CPU affinity */
2690 if (unlikely(all_pinned)) {
2691 cpu_clear(cpu_of(busiest), cpus);
2692 if (!cpus_empty(cpus))
2693 goto redo;
2694 goto out_balanced;
2695 }
2696 }
2697
2698 if (!ld_moved) {
2699 schedstat_inc(sd, lb_failed[idle]);
2700 sd->nr_balance_failed++;
2701
2702 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2703
2704 spin_lock_irqsave(&busiest->lock, flags);
2705
2706 /* don't kick the migration_thread, if the curr
2707 * task on busiest cpu can't be moved to this_cpu
2708 */
2709 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2710 spin_unlock_irqrestore(&busiest->lock, flags);
2711 all_pinned = 1;
2712 goto out_one_pinned;
2713 }
2714
2715 if (!busiest->active_balance) {
2716 busiest->active_balance = 1;
2717 busiest->push_cpu = this_cpu;
2718 active_balance = 1;
2719 }
2720 spin_unlock_irqrestore(&busiest->lock, flags);
2721 if (active_balance)
2722 wake_up_process(busiest->migration_thread);
2723
2724 /*
2725 * We've kicked active balancing, reset the failure
2726 * counter.
2727 */
2728 sd->nr_balance_failed = sd->cache_nice_tries+1;
2729 }
2730 } else
2731 sd->nr_balance_failed = 0;
2732
2733 if (likely(!active_balance)) {
2734 /* We were unbalanced, so reset the balancing interval */
2735 sd->balance_interval = sd->min_interval;
2736 } else {
2737 /*
2738 * If we've begun active balancing, start to back off. This
2739 * case may not be covered by the all_pinned logic if there
2740 * is only 1 task on the busy runqueue (because we don't call
2741 * move_tasks).
2742 */
2743 if (sd->balance_interval < sd->max_interval)
2744 sd->balance_interval *= 2;
2745 }
2746
2747 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2748 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2749 return -1;
2750 return ld_moved;
2751
2752 out_balanced:
2753 schedstat_inc(sd, lb_balanced[idle]);
2754
2755 sd->nr_balance_failed = 0;
2756
2757 out_one_pinned:
2758 /* tune up the balancing interval */
2759 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2760 (sd->balance_interval < sd->max_interval))
2761 sd->balance_interval *= 2;
2762
2763 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2764 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2765 return -1;
2766 return 0;
2767 }
2768
2769 /*
2770 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2771 * tasks if there is an imbalance.
2772 *
2773 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2774 * this_rq is locked.
2775 */
2776 static int
2777 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2778 {
2779 struct sched_group *group;
2780 struct rq *busiest = NULL;
2781 unsigned long imbalance;
2782 int ld_moved = 0;
2783 int sd_idle = 0;
2784 int all_pinned = 0;
2785 cpumask_t cpus = CPU_MASK_ALL;
2786
2787 /*
2788 * When power savings policy is enabled for the parent domain, idle
2789 * sibling can pick up load irrespective of busy siblings. In this case,
2790 * let the state of idle sibling percolate up as IDLE, instead of
2791 * portraying it as CPU_NOT_IDLE.
2792 */
2793 if (sd->flags & SD_SHARE_CPUPOWER &&
2794 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2795 sd_idle = 1;
2796
2797 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2798 redo:
2799 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2800 &sd_idle, &cpus, NULL);
2801 if (!group) {
2802 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2803 goto out_balanced;
2804 }
2805
2806 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2807 &cpus);
2808 if (!busiest) {
2809 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2810 goto out_balanced;
2811 }
2812
2813 BUG_ON(busiest == this_rq);
2814
2815 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2816
2817 ld_moved = 0;
2818 if (busiest->nr_running > 1) {
2819 /* Attempt to move tasks */
2820 double_lock_balance(this_rq, busiest);
2821 /* this_rq->clock is already updated */
2822 update_rq_clock(busiest);
2823 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2824 imbalance, sd, CPU_NEWLY_IDLE,
2825 &all_pinned);
2826 spin_unlock(&busiest->lock);
2827
2828 if (unlikely(all_pinned)) {
2829 cpu_clear(cpu_of(busiest), cpus);
2830 if (!cpus_empty(cpus))
2831 goto redo;
2832 }
2833 }
2834
2835 if (!ld_moved) {
2836 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2837 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2838 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2839 return -1;
2840 } else
2841 sd->nr_balance_failed = 0;
2842
2843 return ld_moved;
2844
2845 out_balanced:
2846 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2847 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2849 return -1;
2850 sd->nr_balance_failed = 0;
2851
2852 return 0;
2853 }
2854
2855 /*
2856 * idle_balance is called by schedule() if this_cpu is about to become
2857 * idle. Attempts to pull tasks from other CPUs.
2858 */
2859 static void idle_balance(int this_cpu, struct rq *this_rq)
2860 {
2861 struct sched_domain *sd;
2862 int pulled_task = -1;
2863 unsigned long next_balance = jiffies + HZ;
2864
2865 for_each_domain(this_cpu, sd) {
2866 unsigned long interval;
2867
2868 if (!(sd->flags & SD_LOAD_BALANCE))
2869 continue;
2870
2871 if (sd->flags & SD_BALANCE_NEWIDLE)
2872 /* If we've pulled tasks over stop searching: */
2873 pulled_task = load_balance_newidle(this_cpu,
2874 this_rq, sd);
2875
2876 interval = msecs_to_jiffies(sd->balance_interval);
2877 if (time_after(next_balance, sd->last_balance + interval))
2878 next_balance = sd->last_balance + interval;
2879 if (pulled_task)
2880 break;
2881 }
2882 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2883 /*
2884 * We are going idle. next_balance may be set based on
2885 * a busy processor. So reset next_balance.
2886 */
2887 this_rq->next_balance = next_balance;
2888 }
2889 }
2890
2891 /*
2892 * active_load_balance is run by migration threads. It pushes running tasks
2893 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2894 * running on each physical CPU where possible, and avoids physical /
2895 * logical imbalances.
2896 *
2897 * Called with busiest_rq locked.
2898 */
2899 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2900 {
2901 int target_cpu = busiest_rq->push_cpu;
2902 struct sched_domain *sd;
2903 struct rq *target_rq;
2904
2905 /* Is there any task to move? */
2906 if (busiest_rq->nr_running <= 1)
2907 return;
2908
2909 target_rq = cpu_rq(target_cpu);
2910
2911 /*
2912 * This condition is "impossible", if it occurs
2913 * we need to fix it. Originally reported by
2914 * Bjorn Helgaas on a 128-cpu setup.
2915 */
2916 BUG_ON(busiest_rq == target_rq);
2917
2918 /* move a task from busiest_rq to target_rq */
2919 double_lock_balance(busiest_rq, target_rq);
2920 update_rq_clock(busiest_rq);
2921 update_rq_clock(target_rq);
2922
2923 /* Search for an sd spanning us and the target CPU. */
2924 for_each_domain(target_cpu, sd) {
2925 if ((sd->flags & SD_LOAD_BALANCE) &&
2926 cpu_isset(busiest_cpu, sd->span))
2927 break;
2928 }
2929
2930 if (likely(sd)) {
2931 schedstat_inc(sd, alb_cnt);
2932
2933 if (move_one_task(target_rq, target_cpu, busiest_rq,
2934 sd, CPU_IDLE))
2935 schedstat_inc(sd, alb_pushed);
2936 else
2937 schedstat_inc(sd, alb_failed);
2938 }
2939 spin_unlock(&target_rq->lock);
2940 }
2941
2942 #ifdef CONFIG_NO_HZ
2943 static struct {
2944 atomic_t load_balancer;
2945 cpumask_t cpu_mask;
2946 } nohz ____cacheline_aligned = {
2947 .load_balancer = ATOMIC_INIT(-1),
2948 .cpu_mask = CPU_MASK_NONE,
2949 };
2950
2951 /*
2952 * This routine will try to nominate the ilb (idle load balancing)
2953 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2954 * load balancing on behalf of all those cpus. If all the cpus in the system
2955 * go into this tickless mode, then there will be no ilb owner (as there is
2956 * no need for one) and all the cpus will sleep till the next wakeup event
2957 * arrives...
2958 *
2959 * For the ilb owner, tick is not stopped. And this tick will be used
2960 * for idle load balancing. ilb owner will still be part of
2961 * nohz.cpu_mask..
2962 *
2963 * While stopping the tick, this cpu will become the ilb owner if there
2964 * is no other owner. And will be the owner till that cpu becomes busy
2965 * or if all cpus in the system stop their ticks at which point
2966 * there is no need for ilb owner.
2967 *
2968 * When the ilb owner becomes busy, it nominates another owner, during the
2969 * next busy scheduler_tick()
2970 */
2971 int select_nohz_load_balancer(int stop_tick)
2972 {
2973 int cpu = smp_processor_id();
2974
2975 if (stop_tick) {
2976 cpu_set(cpu, nohz.cpu_mask);
2977 cpu_rq(cpu)->in_nohz_recently = 1;
2978
2979 /*
2980 * If we are going offline and still the leader, give up!
2981 */
2982 if (cpu_is_offline(cpu) &&
2983 atomic_read(&nohz.load_balancer) == cpu) {
2984 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2985 BUG();
2986 return 0;
2987 }
2988
2989 /* time for ilb owner also to sleep */
2990 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2991 if (atomic_read(&nohz.load_balancer) == cpu)
2992 atomic_set(&nohz.load_balancer, -1);
2993 return 0;
2994 }
2995
2996 if (atomic_read(&nohz.load_balancer) == -1) {
2997 /* make me the ilb owner */
2998 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2999 return 1;
3000 } else if (atomic_read(&nohz.load_balancer) == cpu)
3001 return 1;
3002 } else {
3003 if (!cpu_isset(cpu, nohz.cpu_mask))
3004 return 0;
3005
3006 cpu_clear(cpu, nohz.cpu_mask);
3007
3008 if (atomic_read(&nohz.load_balancer) == cpu)
3009 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3010 BUG();
3011 }
3012 return 0;
3013 }
3014 #endif
3015
3016 static DEFINE_SPINLOCK(balancing);
3017
3018 /*
3019 * It checks each scheduling domain to see if it is due to be balanced,
3020 * and initiates a balancing operation if so.
3021 *
3022 * Balancing parameters are set up in arch_init_sched_domains.
3023 */
3024 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3025 {
3026 int balance = 1;
3027 struct rq *rq = cpu_rq(cpu);
3028 unsigned long interval;
3029 struct sched_domain *sd;
3030 /* Earliest time when we have to do rebalance again */
3031 unsigned long next_balance = jiffies + 60*HZ;
3032 int update_next_balance = 0;
3033
3034 for_each_domain(cpu, sd) {
3035 if (!(sd->flags & SD_LOAD_BALANCE))
3036 continue;
3037
3038 interval = sd->balance_interval;
3039 if (idle != CPU_IDLE)
3040 interval *= sd->busy_factor;
3041
3042 /* scale ms to jiffies */
3043 interval = msecs_to_jiffies(interval);
3044 if (unlikely(!interval))
3045 interval = 1;
3046 if (interval > HZ*NR_CPUS/10)
3047 interval = HZ*NR_CPUS/10;
3048
3049
3050 if (sd->flags & SD_SERIALIZE) {
3051 if (!spin_trylock(&balancing))
3052 goto out;
3053 }
3054
3055 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3056 if (load_balance(cpu, rq, sd, idle, &balance)) {
3057 /*
3058 * We've pulled tasks over so either we're no
3059 * longer idle, or one of our SMT siblings is
3060 * not idle.
3061 */
3062 idle = CPU_NOT_IDLE;
3063 }
3064 sd->last_balance = jiffies;
3065 }
3066 if (sd->flags & SD_SERIALIZE)
3067 spin_unlock(&balancing);
3068 out:
3069 if (time_after(next_balance, sd->last_balance + interval)) {
3070 next_balance = sd->last_balance + interval;
3071 update_next_balance = 1;
3072 }
3073
3074 /*
3075 * Stop the load balance at this level. There is another
3076 * CPU in our sched group which is doing load balancing more
3077 * actively.
3078 */
3079 if (!balance)
3080 break;
3081 }
3082
3083 /*
3084 * next_balance will be updated only when there is a need.
3085 * When the cpu is attached to null domain for ex, it will not be
3086 * updated.
3087 */
3088 if (likely(update_next_balance))
3089 rq->next_balance = next_balance;
3090 }
3091
3092 /*
3093 * run_rebalance_domains is triggered when needed from the scheduler tick.
3094 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3095 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3096 */
3097 static void run_rebalance_domains(struct softirq_action *h)
3098 {
3099 int this_cpu = smp_processor_id();
3100 struct rq *this_rq = cpu_rq(this_cpu);
3101 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3102 CPU_IDLE : CPU_NOT_IDLE;
3103
3104 rebalance_domains(this_cpu, idle);
3105
3106 #ifdef CONFIG_NO_HZ
3107 /*
3108 * If this cpu is the owner for idle load balancing, then do the
3109 * balancing on behalf of the other idle cpus whose ticks are
3110 * stopped.
3111 */
3112 if (this_rq->idle_at_tick &&
3113 atomic_read(&nohz.load_balancer) == this_cpu) {
3114 cpumask_t cpus = nohz.cpu_mask;
3115 struct rq *rq;
3116 int balance_cpu;
3117
3118 cpu_clear(this_cpu, cpus);
3119 for_each_cpu_mask(balance_cpu, cpus) {
3120 /*
3121 * If this cpu gets work to do, stop the load balancing
3122 * work being done for other cpus. Next load
3123 * balancing owner will pick it up.
3124 */
3125 if (need_resched())
3126 break;
3127
3128 rebalance_domains(balance_cpu, CPU_IDLE);
3129
3130 rq = cpu_rq(balance_cpu);
3131 if (time_after(this_rq->next_balance, rq->next_balance))
3132 this_rq->next_balance = rq->next_balance;
3133 }
3134 }
3135 #endif
3136 }
3137
3138 /*
3139 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3140 *
3141 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3142 * idle load balancing owner or decide to stop the periodic load balancing,
3143 * if the whole system is idle.
3144 */
3145 static inline void trigger_load_balance(struct rq *rq, int cpu)
3146 {
3147 #ifdef CONFIG_NO_HZ
3148 /*
3149 * If we were in the nohz mode recently and busy at the current
3150 * scheduler tick, then check if we need to nominate new idle
3151 * load balancer.
3152 */
3153 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3154 rq->in_nohz_recently = 0;
3155
3156 if (atomic_read(&nohz.load_balancer) == cpu) {
3157 cpu_clear(cpu, nohz.cpu_mask);
3158 atomic_set(&nohz.load_balancer, -1);
3159 }
3160
3161 if (atomic_read(&nohz.load_balancer) == -1) {
3162 /*
3163 * simple selection for now: Nominate the
3164 * first cpu in the nohz list to be the next
3165 * ilb owner.
3166 *
3167 * TBD: Traverse the sched domains and nominate
3168 * the nearest cpu in the nohz.cpu_mask.
3169 */
3170 int ilb = first_cpu(nohz.cpu_mask);
3171
3172 if (ilb != NR_CPUS)
3173 resched_cpu(ilb);
3174 }
3175 }
3176
3177 /*
3178 * If this cpu is idle and doing idle load balancing for all the
3179 * cpus with ticks stopped, is it time for that to stop?
3180 */
3181 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3182 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3183 resched_cpu(cpu);
3184 return;
3185 }
3186
3187 /*
3188 * If this cpu is idle and the idle load balancing is done by
3189 * someone else, then no need raise the SCHED_SOFTIRQ
3190 */
3191 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3192 cpu_isset(cpu, nohz.cpu_mask))
3193 return;
3194 #endif
3195 if (time_after_eq(jiffies, rq->next_balance))
3196 raise_softirq(SCHED_SOFTIRQ);
3197 }
3198
3199 #else /* CONFIG_SMP */
3200
3201 /*
3202 * on UP we do not need to balance between CPUs:
3203 */
3204 static inline void idle_balance(int cpu, struct rq *rq)
3205 {
3206 }
3207
3208 /* Avoid "used but not defined" warning on UP */
3209 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3210 unsigned long max_nr_move, unsigned long max_load_move,
3211 struct sched_domain *sd, enum cpu_idle_type idle,
3212 int *all_pinned, unsigned long *load_moved,
3213 int *this_best_prio, struct rq_iterator *iterator)
3214 {
3215 *load_moved = 0;
3216
3217 return 0;
3218 }
3219
3220 #endif
3221
3222 DEFINE_PER_CPU(struct kernel_stat, kstat);
3223
3224 EXPORT_PER_CPU_SYMBOL(kstat);
3225
3226 /*
3227 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3228 * that have not yet been banked in case the task is currently running.
3229 */
3230 unsigned long long task_sched_runtime(struct task_struct *p)
3231 {
3232 unsigned long flags;
3233 u64 ns, delta_exec;
3234 struct rq *rq;
3235
3236 rq = task_rq_lock(p, &flags);
3237 ns = p->se.sum_exec_runtime;
3238 if (rq->curr == p) {
3239 update_rq_clock(rq);
3240 delta_exec = rq->clock - p->se.exec_start;
3241 if ((s64)delta_exec > 0)
3242 ns += delta_exec;
3243 }
3244 task_rq_unlock(rq, &flags);
3245
3246 return ns;
3247 }
3248
3249 /*
3250 * Account user cpu time to a process.
3251 * @p: the process that the cpu time gets accounted to
3252 * @hardirq_offset: the offset to subtract from hardirq_count()
3253 * @cputime: the cpu time spent in user space since the last update
3254 */
3255 void account_user_time(struct task_struct *p, cputime_t cputime)
3256 {
3257 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3258 cputime64_t tmp;
3259
3260 p->utime = cputime_add(p->utime, cputime);
3261
3262 /* Add user time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime);
3264 if (TASK_NICE(p) > 0)
3265 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3266 else
3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3268 }
3269
3270 /*
3271 * Account system cpu time to a process.
3272 * @p: the process that the cpu time gets accounted to
3273 * @hardirq_offset: the offset to subtract from hardirq_count()
3274 * @cputime: the cpu time spent in kernel space since the last update
3275 */
3276 void account_system_time(struct task_struct *p, int hardirq_offset,
3277 cputime_t cputime)
3278 {
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 struct rq *rq = this_rq();
3281 cputime64_t tmp;
3282
3283 p->stime = cputime_add(p->stime, cputime);
3284
3285 /* Add system time to cpustat. */
3286 tmp = cputime_to_cputime64(cputime);
3287 if (hardirq_count() - hardirq_offset)
3288 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3289 else if (softirq_count())
3290 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3291 else if (p != rq->idle)
3292 cpustat->system = cputime64_add(cpustat->system, tmp);
3293 else if (atomic_read(&rq->nr_iowait) > 0)
3294 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3295 else
3296 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3297 /* Account for system time used */
3298 acct_update_integrals(p);
3299 }
3300
3301 /*
3302 * Account for involuntary wait time.
3303 * @p: the process from which the cpu time has been stolen
3304 * @steal: the cpu time spent in involuntary wait
3305 */
3306 void account_steal_time(struct task_struct *p, cputime_t steal)
3307 {
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309 cputime64_t tmp = cputime_to_cputime64(steal);
3310 struct rq *rq = this_rq();
3311
3312 if (p == rq->idle) {
3313 p->stime = cputime_add(p->stime, steal);
3314 if (atomic_read(&rq->nr_iowait) > 0)
3315 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3316 else
3317 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3318 } else
3319 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3320 }
3321
3322 /*
3323 * This function gets called by the timer code, with HZ frequency.
3324 * We call it with interrupts disabled.
3325 *
3326 * It also gets called by the fork code, when changing the parent's
3327 * timeslices.
3328 */
3329 void scheduler_tick(void)
3330 {
3331 int cpu = smp_processor_id();
3332 struct rq *rq = cpu_rq(cpu);
3333 struct task_struct *curr = rq->curr;
3334 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3335
3336 spin_lock(&rq->lock);
3337 __update_rq_clock(rq);
3338 /*
3339 * Let rq->clock advance by at least TICK_NSEC:
3340 */
3341 if (unlikely(rq->clock < next_tick))
3342 rq->clock = next_tick;
3343 rq->tick_timestamp = rq->clock;
3344 update_cpu_load(rq);
3345 if (curr != rq->idle) /* FIXME: needed? */
3346 curr->sched_class->task_tick(rq, curr);
3347 spin_unlock(&rq->lock);
3348
3349 #ifdef CONFIG_SMP
3350 rq->idle_at_tick = idle_cpu(cpu);
3351 trigger_load_balance(rq, cpu);
3352 #endif
3353 }
3354
3355 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3356
3357 void fastcall add_preempt_count(int val)
3358 {
3359 /*
3360 * Underflow?
3361 */
3362 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3363 return;
3364 preempt_count() += val;
3365 /*
3366 * Spinlock count overflowing soon?
3367 */
3368 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3369 PREEMPT_MASK - 10);
3370 }
3371 EXPORT_SYMBOL(add_preempt_count);
3372
3373 void fastcall sub_preempt_count(int val)
3374 {
3375 /*
3376 * Underflow?
3377 */
3378 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3379 return;
3380 /*
3381 * Is the spinlock portion underflowing?
3382 */
3383 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3384 !(preempt_count() & PREEMPT_MASK)))
3385 return;
3386
3387 preempt_count() -= val;
3388 }
3389 EXPORT_SYMBOL(sub_preempt_count);
3390
3391 #endif
3392
3393 /*
3394 * Print scheduling while atomic bug:
3395 */
3396 static noinline void __schedule_bug(struct task_struct *prev)
3397 {
3398 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3399 prev->comm, preempt_count(), prev->pid);
3400 debug_show_held_locks(prev);
3401 if (irqs_disabled())
3402 print_irqtrace_events(prev);
3403 dump_stack();
3404 }
3405
3406 /*
3407 * Various schedule()-time debugging checks and statistics:
3408 */
3409 static inline void schedule_debug(struct task_struct *prev)
3410 {
3411 /*
3412 * Test if we are atomic. Since do_exit() needs to call into
3413 * schedule() atomically, we ignore that path for now.
3414 * Otherwise, whine if we are scheduling when we should not be.
3415 */
3416 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3417 __schedule_bug(prev);
3418
3419 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3420
3421 schedstat_inc(this_rq(), sched_cnt);
3422 #ifdef CONFIG_SCHEDSTATS
3423 if (unlikely(prev->lock_depth >= 0)) {
3424 schedstat_inc(this_rq(), bkl_cnt);
3425 schedstat_inc(prev, sched_info.bkl_cnt);
3426 }
3427 #endif
3428 }
3429
3430 /*
3431 * Pick up the highest-prio task:
3432 */
3433 static inline struct task_struct *
3434 pick_next_task(struct rq *rq, struct task_struct *prev)
3435 {
3436 struct sched_class *class;
3437 struct task_struct *p;
3438
3439 /*
3440 * Optimization: we know that if all tasks are in
3441 * the fair class we can call that function directly:
3442 */
3443 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3444 p = fair_sched_class.pick_next_task(rq);
3445 if (likely(p))
3446 return p;
3447 }
3448
3449 class = sched_class_highest;
3450 for ( ; ; ) {
3451 p = class->pick_next_task(rq);
3452 if (p)
3453 return p;
3454 /*
3455 * Will never be NULL as the idle class always
3456 * returns a non-NULL p:
3457 */
3458 class = class->next;
3459 }
3460 }
3461
3462 /*
3463 * schedule() is the main scheduler function.
3464 */
3465 asmlinkage void __sched schedule(void)
3466 {
3467 struct task_struct *prev, *next;
3468 long *switch_count;
3469 struct rq *rq;
3470 int cpu;
3471
3472 need_resched:
3473 preempt_disable();
3474 cpu = smp_processor_id();
3475 rq = cpu_rq(cpu);
3476 rcu_qsctr_inc(cpu);
3477 prev = rq->curr;
3478 switch_count = &prev->nivcsw;
3479
3480 release_kernel_lock(prev);
3481 need_resched_nonpreemptible:
3482
3483 schedule_debug(prev);
3484
3485 spin_lock_irq(&rq->lock);
3486 clear_tsk_need_resched(prev);
3487 __update_rq_clock(rq);
3488
3489 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3490 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3491 unlikely(signal_pending(prev)))) {
3492 prev->state = TASK_RUNNING;
3493 } else {
3494 deactivate_task(rq, prev, 1);
3495 }
3496 switch_count = &prev->nvcsw;
3497 }
3498
3499 if (unlikely(!rq->nr_running))
3500 idle_balance(cpu, rq);
3501
3502 prev->sched_class->put_prev_task(rq, prev);
3503 next = pick_next_task(rq, prev);
3504
3505 sched_info_switch(prev, next);
3506
3507 if (likely(prev != next)) {
3508 rq->nr_switches++;
3509 rq->curr = next;
3510 ++*switch_count;
3511
3512 context_switch(rq, prev, next); /* unlocks the rq */
3513 } else
3514 spin_unlock_irq(&rq->lock);
3515
3516 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3517 cpu = smp_processor_id();
3518 rq = cpu_rq(cpu);
3519 goto need_resched_nonpreemptible;
3520 }
3521 preempt_enable_no_resched();
3522 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3523 goto need_resched;
3524 }
3525 EXPORT_SYMBOL(schedule);
3526
3527 #ifdef CONFIG_PREEMPT
3528 /*
3529 * this is the entry point to schedule() from in-kernel preemption
3530 * off of preempt_enable. Kernel preemptions off return from interrupt
3531 * occur there and call schedule directly.
3532 */
3533 asmlinkage void __sched preempt_schedule(void)
3534 {
3535 struct thread_info *ti = current_thread_info();
3536 #ifdef CONFIG_PREEMPT_BKL
3537 struct task_struct *task = current;
3538 int saved_lock_depth;
3539 #endif
3540 /*
3541 * If there is a non-zero preempt_count or interrupts are disabled,
3542 * we do not want to preempt the current task. Just return..
3543 */
3544 if (likely(ti->preempt_count || irqs_disabled()))
3545 return;
3546
3547 need_resched:
3548 add_preempt_count(PREEMPT_ACTIVE);
3549 /*
3550 * We keep the big kernel semaphore locked, but we
3551 * clear ->lock_depth so that schedule() doesnt
3552 * auto-release the semaphore:
3553 */
3554 #ifdef CONFIG_PREEMPT_BKL
3555 saved_lock_depth = task->lock_depth;
3556 task->lock_depth = -1;
3557 #endif
3558 schedule();
3559 #ifdef CONFIG_PREEMPT_BKL
3560 task->lock_depth = saved_lock_depth;
3561 #endif
3562 sub_preempt_count(PREEMPT_ACTIVE);
3563
3564 /* we could miss a preemption opportunity between schedule and now */
3565 barrier();
3566 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3567 goto need_resched;
3568 }
3569 EXPORT_SYMBOL(preempt_schedule);
3570
3571 /*
3572 * this is the entry point to schedule() from kernel preemption
3573 * off of irq context.
3574 * Note, that this is called and return with irqs disabled. This will
3575 * protect us against recursive calling from irq.
3576 */
3577 asmlinkage void __sched preempt_schedule_irq(void)
3578 {
3579 struct thread_info *ti = current_thread_info();
3580 #ifdef CONFIG_PREEMPT_BKL
3581 struct task_struct *task = current;
3582 int saved_lock_depth;
3583 #endif
3584 /* Catch callers which need to be fixed */
3585 BUG_ON(ti->preempt_count || !irqs_disabled());
3586
3587 need_resched:
3588 add_preempt_count(PREEMPT_ACTIVE);
3589 /*
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3593 */
3594 #ifdef CONFIG_PREEMPT_BKL
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
3597 #endif
3598 local_irq_enable();
3599 schedule();
3600 local_irq_disable();
3601 #ifdef CONFIG_PREEMPT_BKL
3602 task->lock_depth = saved_lock_depth;
3603 #endif
3604 sub_preempt_count(PREEMPT_ACTIVE);
3605
3606 /* we could miss a preemption opportunity between schedule and now */
3607 barrier();
3608 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3609 goto need_resched;
3610 }
3611
3612 #endif /* CONFIG_PREEMPT */
3613
3614 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3615 void *key)
3616 {
3617 return try_to_wake_up(curr->private, mode, sync);
3618 }
3619 EXPORT_SYMBOL(default_wake_function);
3620
3621 /*
3622 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3623 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3624 * number) then we wake all the non-exclusive tasks and one exclusive task.
3625 *
3626 * There are circumstances in which we can try to wake a task which has already
3627 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3628 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3629 */
3630 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3631 int nr_exclusive, int sync, void *key)
3632 {
3633 wait_queue_t *curr, *next;
3634
3635 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3636 unsigned flags = curr->flags;
3637
3638 if (curr->func(curr, mode, sync, key) &&
3639 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3640 break;
3641 }
3642 }
3643
3644 /**
3645 * __wake_up - wake up threads blocked on a waitqueue.
3646 * @q: the waitqueue
3647 * @mode: which threads
3648 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3649 * @key: is directly passed to the wakeup function
3650 */
3651 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3652 int nr_exclusive, void *key)
3653 {
3654 unsigned long flags;
3655
3656 spin_lock_irqsave(&q->lock, flags);
3657 __wake_up_common(q, mode, nr_exclusive, 0, key);
3658 spin_unlock_irqrestore(&q->lock, flags);
3659 }
3660 EXPORT_SYMBOL(__wake_up);
3661
3662 /*
3663 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3664 */
3665 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3666 {
3667 __wake_up_common(q, mode, 1, 0, NULL);
3668 }
3669
3670 /**
3671 * __wake_up_sync - wake up threads blocked on a waitqueue.
3672 * @q: the waitqueue
3673 * @mode: which threads
3674 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3675 *
3676 * The sync wakeup differs that the waker knows that it will schedule
3677 * away soon, so while the target thread will be woken up, it will not
3678 * be migrated to another CPU - ie. the two threads are 'synchronized'
3679 * with each other. This can prevent needless bouncing between CPUs.
3680 *
3681 * On UP it can prevent extra preemption.
3682 */
3683 void fastcall
3684 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3685 {
3686 unsigned long flags;
3687 int sync = 1;
3688
3689 if (unlikely(!q))
3690 return;
3691
3692 if (unlikely(!nr_exclusive))
3693 sync = 0;
3694
3695 spin_lock_irqsave(&q->lock, flags);
3696 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3697 spin_unlock_irqrestore(&q->lock, flags);
3698 }
3699 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3700
3701 void fastcall complete(struct completion *x)
3702 {
3703 unsigned long flags;
3704
3705 spin_lock_irqsave(&x->wait.lock, flags);
3706 x->done++;
3707 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3708 1, 0, NULL);
3709 spin_unlock_irqrestore(&x->wait.lock, flags);
3710 }
3711 EXPORT_SYMBOL(complete);
3712
3713 void fastcall complete_all(struct completion *x)
3714 {
3715 unsigned long flags;
3716
3717 spin_lock_irqsave(&x->wait.lock, flags);
3718 x->done += UINT_MAX/2;
3719 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3720 0, 0, NULL);
3721 spin_unlock_irqrestore(&x->wait.lock, flags);
3722 }
3723 EXPORT_SYMBOL(complete_all);
3724
3725 void fastcall __sched wait_for_completion(struct completion *x)
3726 {
3727 might_sleep();
3728
3729 spin_lock_irq(&x->wait.lock);
3730 if (!x->done) {
3731 DECLARE_WAITQUEUE(wait, current);
3732
3733 wait.flags |= WQ_FLAG_EXCLUSIVE;
3734 __add_wait_queue_tail(&x->wait, &wait);
3735 do {
3736 __set_current_state(TASK_UNINTERRUPTIBLE);
3737 spin_unlock_irq(&x->wait.lock);
3738 schedule();
3739 spin_lock_irq(&x->wait.lock);
3740 } while (!x->done);
3741 __remove_wait_queue(&x->wait, &wait);
3742 }
3743 x->done--;
3744 spin_unlock_irq(&x->wait.lock);
3745 }
3746 EXPORT_SYMBOL(wait_for_completion);
3747
3748 unsigned long fastcall __sched
3749 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3750 {
3751 might_sleep();
3752
3753 spin_lock_irq(&x->wait.lock);
3754 if (!x->done) {
3755 DECLARE_WAITQUEUE(wait, current);
3756
3757 wait.flags |= WQ_FLAG_EXCLUSIVE;
3758 __add_wait_queue_tail(&x->wait, &wait);
3759 do {
3760 __set_current_state(TASK_UNINTERRUPTIBLE);
3761 spin_unlock_irq(&x->wait.lock);
3762 timeout = schedule_timeout(timeout);
3763 spin_lock_irq(&x->wait.lock);
3764 if (!timeout) {
3765 __remove_wait_queue(&x->wait, &wait);
3766 goto out;
3767 }
3768 } while (!x->done);
3769 __remove_wait_queue(&x->wait, &wait);
3770 }
3771 x->done--;
3772 out:
3773 spin_unlock_irq(&x->wait.lock);
3774 return timeout;
3775 }
3776 EXPORT_SYMBOL(wait_for_completion_timeout);
3777
3778 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3779 {
3780 int ret = 0;
3781
3782 might_sleep();
3783
3784 spin_lock_irq(&x->wait.lock);
3785 if (!x->done) {
3786 DECLARE_WAITQUEUE(wait, current);
3787
3788 wait.flags |= WQ_FLAG_EXCLUSIVE;
3789 __add_wait_queue_tail(&x->wait, &wait);
3790 do {
3791 if (signal_pending(current)) {
3792 ret = -ERESTARTSYS;
3793 __remove_wait_queue(&x->wait, &wait);
3794 goto out;
3795 }
3796 __set_current_state(TASK_INTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 schedule();
3799 spin_lock_irq(&x->wait.lock);
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3802 }
3803 x->done--;
3804 out:
3805 spin_unlock_irq(&x->wait.lock);
3806
3807 return ret;
3808 }
3809 EXPORT_SYMBOL(wait_for_completion_interruptible);
3810
3811 unsigned long fastcall __sched
3812 wait_for_completion_interruptible_timeout(struct completion *x,
3813 unsigned long timeout)
3814 {
3815 might_sleep();
3816
3817 spin_lock_irq(&x->wait.lock);
3818 if (!x->done) {
3819 DECLARE_WAITQUEUE(wait, current);
3820
3821 wait.flags |= WQ_FLAG_EXCLUSIVE;
3822 __add_wait_queue_tail(&x->wait, &wait);
3823 do {
3824 if (signal_pending(current)) {
3825 timeout = -ERESTARTSYS;
3826 __remove_wait_queue(&x->wait, &wait);
3827 goto out;
3828 }
3829 __set_current_state(TASK_INTERRUPTIBLE);
3830 spin_unlock_irq(&x->wait.lock);
3831 timeout = schedule_timeout(timeout);
3832 spin_lock_irq(&x->wait.lock);
3833 if (!timeout) {
3834 __remove_wait_queue(&x->wait, &wait);
3835 goto out;
3836 }
3837 } while (!x->done);
3838 __remove_wait_queue(&x->wait, &wait);
3839 }
3840 x->done--;
3841 out:
3842 spin_unlock_irq(&x->wait.lock);
3843 return timeout;
3844 }
3845 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3846
3847 static inline void
3848 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3849 {
3850 spin_lock_irqsave(&q->lock, *flags);
3851 __add_wait_queue(q, wait);
3852 spin_unlock(&q->lock);
3853 }
3854
3855 static inline void
3856 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3857 {
3858 spin_lock_irq(&q->lock);
3859 __remove_wait_queue(q, wait);
3860 spin_unlock_irqrestore(&q->lock, *flags);
3861 }
3862
3863 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3864 {
3865 unsigned long flags;
3866 wait_queue_t wait;
3867
3868 init_waitqueue_entry(&wait, current);
3869
3870 current->state = TASK_INTERRUPTIBLE;
3871
3872 sleep_on_head(q, &wait, &flags);
3873 schedule();
3874 sleep_on_tail(q, &wait, &flags);
3875 }
3876 EXPORT_SYMBOL(interruptible_sleep_on);
3877
3878 long __sched
3879 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3880 {
3881 unsigned long flags;
3882 wait_queue_t wait;
3883
3884 init_waitqueue_entry(&wait, current);
3885
3886 current->state = TASK_INTERRUPTIBLE;
3887
3888 sleep_on_head(q, &wait, &flags);
3889 timeout = schedule_timeout(timeout);
3890 sleep_on_tail(q, &wait, &flags);
3891
3892 return timeout;
3893 }
3894 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3895
3896 void __sched sleep_on(wait_queue_head_t *q)
3897 {
3898 unsigned long flags;
3899 wait_queue_t wait;
3900
3901 init_waitqueue_entry(&wait, current);
3902
3903 current->state = TASK_UNINTERRUPTIBLE;
3904
3905 sleep_on_head(q, &wait, &flags);
3906 schedule();
3907 sleep_on_tail(q, &wait, &flags);
3908 }
3909 EXPORT_SYMBOL(sleep_on);
3910
3911 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3912 {
3913 unsigned long flags;
3914 wait_queue_t wait;
3915
3916 init_waitqueue_entry(&wait, current);
3917
3918 current->state = TASK_UNINTERRUPTIBLE;
3919
3920 sleep_on_head(q, &wait, &flags);
3921 timeout = schedule_timeout(timeout);
3922 sleep_on_tail(q, &wait, &flags);
3923
3924 return timeout;
3925 }
3926 EXPORT_SYMBOL(sleep_on_timeout);
3927
3928 #ifdef CONFIG_RT_MUTEXES
3929
3930 /*
3931 * rt_mutex_setprio - set the current priority of a task
3932 * @p: task
3933 * @prio: prio value (kernel-internal form)
3934 *
3935 * This function changes the 'effective' priority of a task. It does
3936 * not touch ->normal_prio like __setscheduler().
3937 *
3938 * Used by the rt_mutex code to implement priority inheritance logic.
3939 */
3940 void rt_mutex_setprio(struct task_struct *p, int prio)
3941 {
3942 unsigned long flags;
3943 int oldprio, on_rq, running;
3944 struct rq *rq;
3945
3946 BUG_ON(prio < 0 || prio > MAX_PRIO);
3947
3948 rq = task_rq_lock(p, &flags);
3949 update_rq_clock(rq);
3950
3951 oldprio = p->prio;
3952 on_rq = p->se.on_rq;
3953 running = task_running(rq, p);
3954 if (on_rq) {
3955 dequeue_task(rq, p, 0);
3956 if (running)
3957 p->sched_class->put_prev_task(rq, p);
3958 }
3959
3960 if (rt_prio(prio))
3961 p->sched_class = &rt_sched_class;
3962 else
3963 p->sched_class = &fair_sched_class;
3964
3965 p->prio = prio;
3966
3967 if (on_rq) {
3968 if (running)
3969 p->sched_class->set_curr_task(rq);
3970 enqueue_task(rq, p, 0);
3971 /*
3972 * Reschedule if we are currently running on this runqueue and
3973 * our priority decreased, or if we are not currently running on
3974 * this runqueue and our priority is higher than the current's
3975 */
3976 if (running) {
3977 if (p->prio > oldprio)
3978 resched_task(rq->curr);
3979 } else {
3980 check_preempt_curr(rq, p);
3981 }
3982 }
3983 task_rq_unlock(rq, &flags);
3984 }
3985
3986 #endif
3987
3988 void set_user_nice(struct task_struct *p, long nice)
3989 {
3990 int old_prio, delta, on_rq;
3991 unsigned long flags;
3992 struct rq *rq;
3993
3994 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3995 return;
3996 /*
3997 * We have to be careful, if called from sys_setpriority(),
3998 * the task might be in the middle of scheduling on another CPU.
3999 */
4000 rq = task_rq_lock(p, &flags);
4001 update_rq_clock(rq);
4002 /*
4003 * The RT priorities are set via sched_setscheduler(), but we still
4004 * allow the 'normal' nice value to be set - but as expected
4005 * it wont have any effect on scheduling until the task is
4006 * SCHED_FIFO/SCHED_RR:
4007 */
4008 if (task_has_rt_policy(p)) {
4009 p->static_prio = NICE_TO_PRIO(nice);
4010 goto out_unlock;
4011 }
4012 on_rq = p->se.on_rq;
4013 if (on_rq) {
4014 dequeue_task(rq, p, 0);
4015 dec_load(rq, p);
4016 }
4017
4018 p->static_prio = NICE_TO_PRIO(nice);
4019 set_load_weight(p);
4020 old_prio = p->prio;
4021 p->prio = effective_prio(p);
4022 delta = p->prio - old_prio;
4023
4024 if (on_rq) {
4025 enqueue_task(rq, p, 0);
4026 inc_load(rq, p);
4027 /*
4028 * If the task increased its priority or is running and
4029 * lowered its priority, then reschedule its CPU:
4030 */
4031 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4032 resched_task(rq->curr);
4033 }
4034 out_unlock:
4035 task_rq_unlock(rq, &flags);
4036 }
4037 EXPORT_SYMBOL(set_user_nice);
4038
4039 /*
4040 * can_nice - check if a task can reduce its nice value
4041 * @p: task
4042 * @nice: nice value
4043 */
4044 int can_nice(const struct task_struct *p, const int nice)
4045 {
4046 /* convert nice value [19,-20] to rlimit style value [1,40] */
4047 int nice_rlim = 20 - nice;
4048
4049 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4050 capable(CAP_SYS_NICE));
4051 }
4052
4053 #ifdef __ARCH_WANT_SYS_NICE
4054
4055 /*
4056 * sys_nice - change the priority of the current process.
4057 * @increment: priority increment
4058 *
4059 * sys_setpriority is a more generic, but much slower function that
4060 * does similar things.
4061 */
4062 asmlinkage long sys_nice(int increment)
4063 {
4064 long nice, retval;
4065
4066 /*
4067 * Setpriority might change our priority at the same moment.
4068 * We don't have to worry. Conceptually one call occurs first
4069 * and we have a single winner.
4070 */
4071 if (increment < -40)
4072 increment = -40;
4073 if (increment > 40)
4074 increment = 40;
4075
4076 nice = PRIO_TO_NICE(current->static_prio) + increment;
4077 if (nice < -20)
4078 nice = -20;
4079 if (nice > 19)
4080 nice = 19;
4081
4082 if (increment < 0 && !can_nice(current, nice))
4083 return -EPERM;
4084
4085 retval = security_task_setnice(current, nice);
4086 if (retval)
4087 return retval;
4088
4089 set_user_nice(current, nice);
4090 return 0;
4091 }
4092
4093 #endif
4094
4095 /**
4096 * task_prio - return the priority value of a given task.
4097 * @p: the task in question.
4098 *
4099 * This is the priority value as seen by users in /proc.
4100 * RT tasks are offset by -200. Normal tasks are centered
4101 * around 0, value goes from -16 to +15.
4102 */
4103 int task_prio(const struct task_struct *p)
4104 {
4105 return p->prio - MAX_RT_PRIO;
4106 }
4107
4108 /**
4109 * task_nice - return the nice value of a given task.
4110 * @p: the task in question.
4111 */
4112 int task_nice(const struct task_struct *p)
4113 {
4114 return TASK_NICE(p);
4115 }
4116 EXPORT_SYMBOL_GPL(task_nice);
4117
4118 /**
4119 * idle_cpu - is a given cpu idle currently?
4120 * @cpu: the processor in question.
4121 */
4122 int idle_cpu(int cpu)
4123 {
4124 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4125 }
4126
4127 /**
4128 * idle_task - return the idle task for a given cpu.
4129 * @cpu: the processor in question.
4130 */
4131 struct task_struct *idle_task(int cpu)
4132 {
4133 return cpu_rq(cpu)->idle;
4134 }
4135
4136 /**
4137 * find_process_by_pid - find a process with a matching PID value.
4138 * @pid: the pid in question.
4139 */
4140 static inline struct task_struct *find_process_by_pid(pid_t pid)
4141 {
4142 return pid ? find_task_by_pid(pid) : current;
4143 }
4144
4145 /* Actually do priority change: must hold rq lock. */
4146 static void
4147 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4148 {
4149 BUG_ON(p->se.on_rq);
4150
4151 p->policy = policy;
4152 switch (p->policy) {
4153 case SCHED_NORMAL:
4154 case SCHED_BATCH:
4155 case SCHED_IDLE:
4156 p->sched_class = &fair_sched_class;
4157 break;
4158 case SCHED_FIFO:
4159 case SCHED_RR:
4160 p->sched_class = &rt_sched_class;
4161 break;
4162 }
4163
4164 p->rt_priority = prio;
4165 p->normal_prio = normal_prio(p);
4166 /* we are holding p->pi_lock already */
4167 p->prio = rt_mutex_getprio(p);
4168 set_load_weight(p);
4169 }
4170
4171 /**
4172 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4173 * @p: the task in question.
4174 * @policy: new policy.
4175 * @param: structure containing the new RT priority.
4176 *
4177 * NOTE that the task may be already dead.
4178 */
4179 int sched_setscheduler(struct task_struct *p, int policy,
4180 struct sched_param *param)
4181 {
4182 int retval, oldprio, oldpolicy = -1, on_rq, running;
4183 unsigned long flags;
4184 struct rq *rq;
4185
4186 /* may grab non-irq protected spin_locks */
4187 BUG_ON(in_interrupt());
4188 recheck:
4189 /* double check policy once rq lock held */
4190 if (policy < 0)
4191 policy = oldpolicy = p->policy;
4192 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4193 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4194 policy != SCHED_IDLE)
4195 return -EINVAL;
4196 /*
4197 * Valid priorities for SCHED_FIFO and SCHED_RR are
4198 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4199 * SCHED_BATCH and SCHED_IDLE is 0.
4200 */
4201 if (param->sched_priority < 0 ||
4202 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4203 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4204 return -EINVAL;
4205 if (rt_policy(policy) != (param->sched_priority != 0))
4206 return -EINVAL;
4207
4208 /*
4209 * Allow unprivileged RT tasks to decrease priority:
4210 */
4211 if (!capable(CAP_SYS_NICE)) {
4212 if (rt_policy(policy)) {
4213 unsigned long rlim_rtprio;
4214
4215 if (!lock_task_sighand(p, &flags))
4216 return -ESRCH;
4217 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4218 unlock_task_sighand(p, &flags);
4219
4220 /* can't set/change the rt policy */
4221 if (policy != p->policy && !rlim_rtprio)
4222 return -EPERM;
4223
4224 /* can't increase priority */
4225 if (param->sched_priority > p->rt_priority &&
4226 param->sched_priority > rlim_rtprio)
4227 return -EPERM;
4228 }
4229 /*
4230 * Like positive nice levels, dont allow tasks to
4231 * move out of SCHED_IDLE either:
4232 */
4233 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4234 return -EPERM;
4235
4236 /* can't change other user's priorities */
4237 if ((current->euid != p->euid) &&
4238 (current->euid != p->uid))
4239 return -EPERM;
4240 }
4241
4242 retval = security_task_setscheduler(p, policy, param);
4243 if (retval)
4244 return retval;
4245 /*
4246 * make sure no PI-waiters arrive (or leave) while we are
4247 * changing the priority of the task:
4248 */
4249 spin_lock_irqsave(&p->pi_lock, flags);
4250 /*
4251 * To be able to change p->policy safely, the apropriate
4252 * runqueue lock must be held.
4253 */
4254 rq = __task_rq_lock(p);
4255 /* recheck policy now with rq lock held */
4256 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4257 policy = oldpolicy = -1;
4258 __task_rq_unlock(rq);
4259 spin_unlock_irqrestore(&p->pi_lock, flags);
4260 goto recheck;
4261 }
4262 update_rq_clock(rq);
4263 on_rq = p->se.on_rq;
4264 running = task_running(rq, p);
4265 if (on_rq) {
4266 deactivate_task(rq, p, 0);
4267 if (running)
4268 p->sched_class->put_prev_task(rq, p);
4269 }
4270
4271 oldprio = p->prio;
4272 __setscheduler(rq, p, policy, param->sched_priority);
4273
4274 if (on_rq) {
4275 if (running)
4276 p->sched_class->set_curr_task(rq);
4277 activate_task(rq, p, 0);
4278 /*
4279 * Reschedule if we are currently running on this runqueue and
4280 * our priority decreased, or if we are not currently running on
4281 * this runqueue and our priority is higher than the current's
4282 */
4283 if (running) {
4284 if (p->prio > oldprio)
4285 resched_task(rq->curr);
4286 } else {
4287 check_preempt_curr(rq, p);
4288 }
4289 }
4290 __task_rq_unlock(rq);
4291 spin_unlock_irqrestore(&p->pi_lock, flags);
4292
4293 rt_mutex_adjust_pi(p);
4294
4295 return 0;
4296 }
4297 EXPORT_SYMBOL_GPL(sched_setscheduler);
4298
4299 static int
4300 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4301 {
4302 struct sched_param lparam;
4303 struct task_struct *p;
4304 int retval;
4305
4306 if (!param || pid < 0)
4307 return -EINVAL;
4308 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4309 return -EFAULT;
4310
4311 rcu_read_lock();
4312 retval = -ESRCH;
4313 p = find_process_by_pid(pid);
4314 if (p != NULL)
4315 retval = sched_setscheduler(p, policy, &lparam);
4316 rcu_read_unlock();
4317
4318 return retval;
4319 }
4320
4321 /**
4322 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4323 * @pid: the pid in question.
4324 * @policy: new policy.
4325 * @param: structure containing the new RT priority.
4326 */
4327 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4328 struct sched_param __user *param)
4329 {
4330 /* negative values for policy are not valid */
4331 if (policy < 0)
4332 return -EINVAL;
4333
4334 return do_sched_setscheduler(pid, policy, param);
4335 }
4336
4337 /**
4338 * sys_sched_setparam - set/change the RT priority of a thread
4339 * @pid: the pid in question.
4340 * @param: structure containing the new RT priority.
4341 */
4342 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4343 {
4344 return do_sched_setscheduler(pid, -1, param);
4345 }
4346
4347 /**
4348 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4349 * @pid: the pid in question.
4350 */
4351 asmlinkage long sys_sched_getscheduler(pid_t pid)
4352 {
4353 struct task_struct *p;
4354 int retval = -EINVAL;
4355
4356 if (pid < 0)
4357 goto out_nounlock;
4358
4359 retval = -ESRCH;
4360 read_lock(&tasklist_lock);
4361 p = find_process_by_pid(pid);
4362 if (p) {
4363 retval = security_task_getscheduler(p);
4364 if (!retval)
4365 retval = p->policy;
4366 }
4367 read_unlock(&tasklist_lock);
4368
4369 out_nounlock:
4370 return retval;
4371 }
4372
4373 /**
4374 * sys_sched_getscheduler - get the RT priority of a thread
4375 * @pid: the pid in question.
4376 * @param: structure containing the RT priority.
4377 */
4378 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4379 {
4380 struct sched_param lp;
4381 struct task_struct *p;
4382 int retval = -EINVAL;
4383
4384 if (!param || pid < 0)
4385 goto out_nounlock;
4386
4387 read_lock(&tasklist_lock);
4388 p = find_process_by_pid(pid);
4389 retval = -ESRCH;
4390 if (!p)
4391 goto out_unlock;
4392
4393 retval = security_task_getscheduler(p);
4394 if (retval)
4395 goto out_unlock;
4396
4397 lp.sched_priority = p->rt_priority;
4398 read_unlock(&tasklist_lock);
4399
4400 /*
4401 * This one might sleep, we cannot do it with a spinlock held ...
4402 */
4403 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4404
4405 out_nounlock:
4406 return retval;
4407
4408 out_unlock:
4409 read_unlock(&tasklist_lock);
4410 return retval;
4411 }
4412
4413 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4414 {
4415 cpumask_t cpus_allowed;
4416 struct task_struct *p;
4417 int retval;
4418
4419 mutex_lock(&sched_hotcpu_mutex);
4420 read_lock(&tasklist_lock);
4421
4422 p = find_process_by_pid(pid);
4423 if (!p) {
4424 read_unlock(&tasklist_lock);
4425 mutex_unlock(&sched_hotcpu_mutex);
4426 return -ESRCH;
4427 }
4428
4429 /*
4430 * It is not safe to call set_cpus_allowed with the
4431 * tasklist_lock held. We will bump the task_struct's
4432 * usage count and then drop tasklist_lock.
4433 */
4434 get_task_struct(p);
4435 read_unlock(&tasklist_lock);
4436
4437 retval = -EPERM;
4438 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4439 !capable(CAP_SYS_NICE))
4440 goto out_unlock;
4441
4442 retval = security_task_setscheduler(p, 0, NULL);
4443 if (retval)
4444 goto out_unlock;
4445
4446 cpus_allowed = cpuset_cpus_allowed(p);
4447 cpus_and(new_mask, new_mask, cpus_allowed);
4448 retval = set_cpus_allowed(p, new_mask);
4449
4450 out_unlock:
4451 put_task_struct(p);
4452 mutex_unlock(&sched_hotcpu_mutex);
4453 return retval;
4454 }
4455
4456 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4457 cpumask_t *new_mask)
4458 {
4459 if (len < sizeof(cpumask_t)) {
4460 memset(new_mask, 0, sizeof(cpumask_t));
4461 } else if (len > sizeof(cpumask_t)) {
4462 len = sizeof(cpumask_t);
4463 }
4464 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4465 }
4466
4467 /**
4468 * sys_sched_setaffinity - set the cpu affinity of a process
4469 * @pid: pid of the process
4470 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4471 * @user_mask_ptr: user-space pointer to the new cpu mask
4472 */
4473 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4474 unsigned long __user *user_mask_ptr)
4475 {
4476 cpumask_t new_mask;
4477 int retval;
4478
4479 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4480 if (retval)
4481 return retval;
4482
4483 return sched_setaffinity(pid, new_mask);
4484 }
4485
4486 /*
4487 * Represents all cpu's present in the system
4488 * In systems capable of hotplug, this map could dynamically grow
4489 * as new cpu's are detected in the system via any platform specific
4490 * method, such as ACPI for e.g.
4491 */
4492
4493 cpumask_t cpu_present_map __read_mostly;
4494 EXPORT_SYMBOL(cpu_present_map);
4495
4496 #ifndef CONFIG_SMP
4497 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4498 EXPORT_SYMBOL(cpu_online_map);
4499
4500 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4501 EXPORT_SYMBOL(cpu_possible_map);
4502 #endif
4503
4504 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4505 {
4506 struct task_struct *p;
4507 int retval;
4508
4509 mutex_lock(&sched_hotcpu_mutex);
4510 read_lock(&tasklist_lock);
4511
4512 retval = -ESRCH;
4513 p = find_process_by_pid(pid);
4514 if (!p)
4515 goto out_unlock;
4516
4517 retval = security_task_getscheduler(p);
4518 if (retval)
4519 goto out_unlock;
4520
4521 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4522
4523 out_unlock:
4524 read_unlock(&tasklist_lock);
4525 mutex_unlock(&sched_hotcpu_mutex);
4526
4527 return retval;
4528 }
4529
4530 /**
4531 * sys_sched_getaffinity - get the cpu affinity of a process
4532 * @pid: pid of the process
4533 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4534 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4535 */
4536 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4537 unsigned long __user *user_mask_ptr)
4538 {
4539 int ret;
4540 cpumask_t mask;
4541
4542 if (len < sizeof(cpumask_t))
4543 return -EINVAL;
4544
4545 ret = sched_getaffinity(pid, &mask);
4546 if (ret < 0)
4547 return ret;
4548
4549 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4550 return -EFAULT;
4551
4552 return sizeof(cpumask_t);
4553 }
4554
4555 /**
4556 * sys_sched_yield - yield the current processor to other threads.
4557 *
4558 * This function yields the current CPU to other tasks. If there are no
4559 * other threads running on this CPU then this function will return.
4560 */
4561 asmlinkage long sys_sched_yield(void)
4562 {
4563 struct rq *rq = this_rq_lock();
4564
4565 schedstat_inc(rq, yld_cnt);
4566 current->sched_class->yield_task(rq);
4567
4568 /*
4569 * Since we are going to call schedule() anyway, there's
4570 * no need to preempt or enable interrupts:
4571 */
4572 __release(rq->lock);
4573 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4574 _raw_spin_unlock(&rq->lock);
4575 preempt_enable_no_resched();
4576
4577 schedule();
4578
4579 return 0;
4580 }
4581
4582 static void __cond_resched(void)
4583 {
4584 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4585 __might_sleep(__FILE__, __LINE__);
4586 #endif
4587 /*
4588 * The BKS might be reacquired before we have dropped
4589 * PREEMPT_ACTIVE, which could trigger a second
4590 * cond_resched() call.
4591 */
4592 do {
4593 add_preempt_count(PREEMPT_ACTIVE);
4594 schedule();
4595 sub_preempt_count(PREEMPT_ACTIVE);
4596 } while (need_resched());
4597 }
4598
4599 int __sched cond_resched(void)
4600 {
4601 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4602 system_state == SYSTEM_RUNNING) {
4603 __cond_resched();
4604 return 1;
4605 }
4606 return 0;
4607 }
4608 EXPORT_SYMBOL(cond_resched);
4609
4610 /*
4611 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4612 * call schedule, and on return reacquire the lock.
4613 *
4614 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4615 * operations here to prevent schedule() from being called twice (once via
4616 * spin_unlock(), once by hand).
4617 */
4618 int cond_resched_lock(spinlock_t *lock)
4619 {
4620 int ret = 0;
4621
4622 if (need_lockbreak(lock)) {
4623 spin_unlock(lock);
4624 cpu_relax();
4625 ret = 1;
4626 spin_lock(lock);
4627 }
4628 if (need_resched() && system_state == SYSTEM_RUNNING) {
4629 spin_release(&lock->dep_map, 1, _THIS_IP_);
4630 _raw_spin_unlock(lock);
4631 preempt_enable_no_resched();
4632 __cond_resched();
4633 ret = 1;
4634 spin_lock(lock);
4635 }
4636 return ret;
4637 }
4638 EXPORT_SYMBOL(cond_resched_lock);
4639
4640 int __sched cond_resched_softirq(void)
4641 {
4642 BUG_ON(!in_softirq());
4643
4644 if (need_resched() && system_state == SYSTEM_RUNNING) {
4645 local_bh_enable();
4646 __cond_resched();
4647 local_bh_disable();
4648 return 1;
4649 }
4650 return 0;
4651 }
4652 EXPORT_SYMBOL(cond_resched_softirq);
4653
4654 /**
4655 * yield - yield the current processor to other threads.
4656 *
4657 * This is a shortcut for kernel-space yielding - it marks the
4658 * thread runnable and calls sys_sched_yield().
4659 */
4660 void __sched yield(void)
4661 {
4662 set_current_state(TASK_RUNNING);
4663 sys_sched_yield();
4664 }
4665 EXPORT_SYMBOL(yield);
4666
4667 /*
4668 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4669 * that process accounting knows that this is a task in IO wait state.
4670 *
4671 * But don't do that if it is a deliberate, throttling IO wait (this task
4672 * has set its backing_dev_info: the queue against which it should throttle)
4673 */
4674 void __sched io_schedule(void)
4675 {
4676 struct rq *rq = &__raw_get_cpu_var(runqueues);
4677
4678 delayacct_blkio_start();
4679 atomic_inc(&rq->nr_iowait);
4680 schedule();
4681 atomic_dec(&rq->nr_iowait);
4682 delayacct_blkio_end();
4683 }
4684 EXPORT_SYMBOL(io_schedule);
4685
4686 long __sched io_schedule_timeout(long timeout)
4687 {
4688 struct rq *rq = &__raw_get_cpu_var(runqueues);
4689 long ret;
4690
4691 delayacct_blkio_start();
4692 atomic_inc(&rq->nr_iowait);
4693 ret = schedule_timeout(timeout);
4694 atomic_dec(&rq->nr_iowait);
4695 delayacct_blkio_end();
4696 return ret;
4697 }
4698
4699 /**
4700 * sys_sched_get_priority_max - return maximum RT priority.
4701 * @policy: scheduling class.
4702 *
4703 * this syscall returns the maximum rt_priority that can be used
4704 * by a given scheduling class.
4705 */
4706 asmlinkage long sys_sched_get_priority_max(int policy)
4707 {
4708 int ret = -EINVAL;
4709
4710 switch (policy) {
4711 case SCHED_FIFO:
4712 case SCHED_RR:
4713 ret = MAX_USER_RT_PRIO-1;
4714 break;
4715 case SCHED_NORMAL:
4716 case SCHED_BATCH:
4717 case SCHED_IDLE:
4718 ret = 0;
4719 break;
4720 }
4721 return ret;
4722 }
4723
4724 /**
4725 * sys_sched_get_priority_min - return minimum RT priority.
4726 * @policy: scheduling class.
4727 *
4728 * this syscall returns the minimum rt_priority that can be used
4729 * by a given scheduling class.
4730 */
4731 asmlinkage long sys_sched_get_priority_min(int policy)
4732 {
4733 int ret = -EINVAL;
4734
4735 switch (policy) {
4736 case SCHED_FIFO:
4737 case SCHED_RR:
4738 ret = 1;
4739 break;
4740 case SCHED_NORMAL:
4741 case SCHED_BATCH:
4742 case SCHED_IDLE:
4743 ret = 0;
4744 }
4745 return ret;
4746 }
4747
4748 /**
4749 * sys_sched_rr_get_interval - return the default timeslice of a process.
4750 * @pid: pid of the process.
4751 * @interval: userspace pointer to the timeslice value.
4752 *
4753 * this syscall writes the default timeslice value of a given process
4754 * into the user-space timespec buffer. A value of '0' means infinity.
4755 */
4756 asmlinkage
4757 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4758 {
4759 struct task_struct *p;
4760 int retval = -EINVAL;
4761 struct timespec t;
4762
4763 if (pid < 0)
4764 goto out_nounlock;
4765
4766 retval = -ESRCH;
4767 read_lock(&tasklist_lock);
4768 p = find_process_by_pid(pid);
4769 if (!p)
4770 goto out_unlock;
4771
4772 retval = security_task_getscheduler(p);
4773 if (retval)
4774 goto out_unlock;
4775
4776 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4777 0 : static_prio_timeslice(p->static_prio), &t);
4778 read_unlock(&tasklist_lock);
4779 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4780 out_nounlock:
4781 return retval;
4782 out_unlock:
4783 read_unlock(&tasklist_lock);
4784 return retval;
4785 }
4786
4787 static const char stat_nam[] = "RSDTtZX";
4788
4789 static void show_task(struct task_struct *p)
4790 {
4791 unsigned long free = 0;
4792 unsigned state;
4793
4794 state = p->state ? __ffs(p->state) + 1 : 0;
4795 printk("%-13.13s %c", p->comm,
4796 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4797 #if BITS_PER_LONG == 32
4798 if (state == TASK_RUNNING)
4799 printk(" running ");
4800 else
4801 printk(" %08lx ", thread_saved_pc(p));
4802 #else
4803 if (state == TASK_RUNNING)
4804 printk(" running task ");
4805 else
4806 printk(" %016lx ", thread_saved_pc(p));
4807 #endif
4808 #ifdef CONFIG_DEBUG_STACK_USAGE
4809 {
4810 unsigned long *n = end_of_stack(p);
4811 while (!*n)
4812 n++;
4813 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4814 }
4815 #endif
4816 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4817
4818 if (state != TASK_RUNNING)
4819 show_stack(p, NULL);
4820 }
4821
4822 void show_state_filter(unsigned long state_filter)
4823 {
4824 struct task_struct *g, *p;
4825
4826 #if BITS_PER_LONG == 32
4827 printk(KERN_INFO
4828 " task PC stack pid father\n");
4829 #else
4830 printk(KERN_INFO
4831 " task PC stack pid father\n");
4832 #endif
4833 read_lock(&tasklist_lock);
4834 do_each_thread(g, p) {
4835 /*
4836 * reset the NMI-timeout, listing all files on a slow
4837 * console might take alot of time:
4838 */
4839 touch_nmi_watchdog();
4840 if (!state_filter || (p->state & state_filter))
4841 show_task(p);
4842 } while_each_thread(g, p);
4843
4844 touch_all_softlockup_watchdogs();
4845
4846 #ifdef CONFIG_SCHED_DEBUG
4847 sysrq_sched_debug_show();
4848 #endif
4849 read_unlock(&tasklist_lock);
4850 /*
4851 * Only show locks if all tasks are dumped:
4852 */
4853 if (state_filter == -1)
4854 debug_show_all_locks();
4855 }
4856
4857 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4858 {
4859 idle->sched_class = &idle_sched_class;
4860 }
4861
4862 /**
4863 * init_idle - set up an idle thread for a given CPU
4864 * @idle: task in question
4865 * @cpu: cpu the idle task belongs to
4866 *
4867 * NOTE: this function does not set the idle thread's NEED_RESCHED
4868 * flag, to make booting more robust.
4869 */
4870 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4871 {
4872 struct rq *rq = cpu_rq(cpu);
4873 unsigned long flags;
4874
4875 __sched_fork(idle);
4876 idle->se.exec_start = sched_clock();
4877
4878 idle->prio = idle->normal_prio = MAX_PRIO;
4879 idle->cpus_allowed = cpumask_of_cpu(cpu);
4880 __set_task_cpu(idle, cpu);
4881
4882 spin_lock_irqsave(&rq->lock, flags);
4883 rq->curr = rq->idle = idle;
4884 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4885 idle->oncpu = 1;
4886 #endif
4887 spin_unlock_irqrestore(&rq->lock, flags);
4888
4889 /* Set the preempt count _outside_ the spinlocks! */
4890 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4891 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4892 #else
4893 task_thread_info(idle)->preempt_count = 0;
4894 #endif
4895 /*
4896 * The idle tasks have their own, simple scheduling class:
4897 */
4898 idle->sched_class = &idle_sched_class;
4899 }
4900
4901 /*
4902 * In a system that switches off the HZ timer nohz_cpu_mask
4903 * indicates which cpus entered this state. This is used
4904 * in the rcu update to wait only for active cpus. For system
4905 * which do not switch off the HZ timer nohz_cpu_mask should
4906 * always be CPU_MASK_NONE.
4907 */
4908 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4909
4910 #ifdef CONFIG_SMP
4911 /*
4912 * This is how migration works:
4913 *
4914 * 1) we queue a struct migration_req structure in the source CPU's
4915 * runqueue and wake up that CPU's migration thread.
4916 * 2) we down() the locked semaphore => thread blocks.
4917 * 3) migration thread wakes up (implicitly it forces the migrated
4918 * thread off the CPU)
4919 * 4) it gets the migration request and checks whether the migrated
4920 * task is still in the wrong runqueue.
4921 * 5) if it's in the wrong runqueue then the migration thread removes
4922 * it and puts it into the right queue.
4923 * 6) migration thread up()s the semaphore.
4924 * 7) we wake up and the migration is done.
4925 */
4926
4927 /*
4928 * Change a given task's CPU affinity. Migrate the thread to a
4929 * proper CPU and schedule it away if the CPU it's executing on
4930 * is removed from the allowed bitmask.
4931 *
4932 * NOTE: the caller must have a valid reference to the task, the
4933 * task must not exit() & deallocate itself prematurely. The
4934 * call is not atomic; no spinlocks may be held.
4935 */
4936 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4937 {
4938 struct migration_req req;
4939 unsigned long flags;
4940 struct rq *rq;
4941 int ret = 0;
4942
4943 rq = task_rq_lock(p, &flags);
4944 if (!cpus_intersects(new_mask, cpu_online_map)) {
4945 ret = -EINVAL;
4946 goto out;
4947 }
4948
4949 p->cpus_allowed = new_mask;
4950 /* Can the task run on the task's current CPU? If so, we're done */
4951 if (cpu_isset(task_cpu(p), new_mask))
4952 goto out;
4953
4954 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4955 /* Need help from migration thread: drop lock and wait. */
4956 task_rq_unlock(rq, &flags);
4957 wake_up_process(rq->migration_thread);
4958 wait_for_completion(&req.done);
4959 tlb_migrate_finish(p->mm);
4960 return 0;
4961 }
4962 out:
4963 task_rq_unlock(rq, &flags);
4964
4965 return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4968
4969 /*
4970 * Move (not current) task off this cpu, onto dest cpu. We're doing
4971 * this because either it can't run here any more (set_cpus_allowed()
4972 * away from this CPU, or CPU going down), or because we're
4973 * attempting to rebalance this task on exec (sched_exec).
4974 *
4975 * So we race with normal scheduler movements, but that's OK, as long
4976 * as the task is no longer on this CPU.
4977 *
4978 * Returns non-zero if task was successfully migrated.
4979 */
4980 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4981 {
4982 struct rq *rq_dest, *rq_src;
4983 int ret = 0, on_rq;
4984
4985 if (unlikely(cpu_is_offline(dest_cpu)))
4986 return ret;
4987
4988 rq_src = cpu_rq(src_cpu);
4989 rq_dest = cpu_rq(dest_cpu);
4990
4991 double_rq_lock(rq_src, rq_dest);
4992 /* Already moved. */
4993 if (task_cpu(p) != src_cpu)
4994 goto out;
4995 /* Affinity changed (again). */
4996 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4997 goto out;
4998
4999 on_rq = p->se.on_rq;
5000 if (on_rq)
5001 deactivate_task(rq_src, p, 0);
5002
5003 set_task_cpu(p, dest_cpu);
5004 if (on_rq) {
5005 activate_task(rq_dest, p, 0);
5006 check_preempt_curr(rq_dest, p);
5007 }
5008 ret = 1;
5009 out:
5010 double_rq_unlock(rq_src, rq_dest);
5011 return ret;
5012 }
5013
5014 /*
5015 * migration_thread - this is a highprio system thread that performs
5016 * thread migration by bumping thread off CPU then 'pushing' onto
5017 * another runqueue.
5018 */
5019 static int migration_thread(void *data)
5020 {
5021 int cpu = (long)data;
5022 struct rq *rq;
5023
5024 rq = cpu_rq(cpu);
5025 BUG_ON(rq->migration_thread != current);
5026
5027 set_current_state(TASK_INTERRUPTIBLE);
5028 while (!kthread_should_stop()) {
5029 struct migration_req *req;
5030 struct list_head *head;
5031
5032 spin_lock_irq(&rq->lock);
5033
5034 if (cpu_is_offline(cpu)) {
5035 spin_unlock_irq(&rq->lock);
5036 goto wait_to_die;
5037 }
5038
5039 if (rq->active_balance) {
5040 active_load_balance(rq, cpu);
5041 rq->active_balance = 0;
5042 }
5043
5044 head = &rq->migration_queue;
5045
5046 if (list_empty(head)) {
5047 spin_unlock_irq(&rq->lock);
5048 schedule();
5049 set_current_state(TASK_INTERRUPTIBLE);
5050 continue;
5051 }
5052 req = list_entry(head->next, struct migration_req, list);
5053 list_del_init(head->next);
5054
5055 spin_unlock(&rq->lock);
5056 __migrate_task(req->task, cpu, req->dest_cpu);
5057 local_irq_enable();
5058
5059 complete(&req->done);
5060 }
5061 __set_current_state(TASK_RUNNING);
5062 return 0;
5063
5064 wait_to_die:
5065 /* Wait for kthread_stop */
5066 set_current_state(TASK_INTERRUPTIBLE);
5067 while (!kthread_should_stop()) {
5068 schedule();
5069 set_current_state(TASK_INTERRUPTIBLE);
5070 }
5071 __set_current_state(TASK_RUNNING);
5072 return 0;
5073 }
5074
5075 #ifdef CONFIG_HOTPLUG_CPU
5076 /*
5077 * Figure out where task on dead CPU should go, use force if neccessary.
5078 * NOTE: interrupts should be disabled by the caller
5079 */
5080 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5081 {
5082 unsigned long flags;
5083 cpumask_t mask;
5084 struct rq *rq;
5085 int dest_cpu;
5086
5087 restart:
5088 /* On same node? */
5089 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5090 cpus_and(mask, mask, p->cpus_allowed);
5091 dest_cpu = any_online_cpu(mask);
5092
5093 /* On any allowed CPU? */
5094 if (dest_cpu == NR_CPUS)
5095 dest_cpu = any_online_cpu(p->cpus_allowed);
5096
5097 /* No more Mr. Nice Guy. */
5098 if (dest_cpu == NR_CPUS) {
5099 rq = task_rq_lock(p, &flags);
5100 cpus_setall(p->cpus_allowed);
5101 dest_cpu = any_online_cpu(p->cpus_allowed);
5102 task_rq_unlock(rq, &flags);
5103
5104 /*
5105 * Don't tell them about moving exiting tasks or
5106 * kernel threads (both mm NULL), since they never
5107 * leave kernel.
5108 */
5109 if (p->mm && printk_ratelimit())
5110 printk(KERN_INFO "process %d (%s) no "
5111 "longer affine to cpu%d\n",
5112 p->pid, p->comm, dead_cpu);
5113 }
5114 if (!__migrate_task(p, dead_cpu, dest_cpu))
5115 goto restart;
5116 }
5117
5118 /*
5119 * While a dead CPU has no uninterruptible tasks queued at this point,
5120 * it might still have a nonzero ->nr_uninterruptible counter, because
5121 * for performance reasons the counter is not stricly tracking tasks to
5122 * their home CPUs. So we just add the counter to another CPU's counter,
5123 * to keep the global sum constant after CPU-down:
5124 */
5125 static void migrate_nr_uninterruptible(struct rq *rq_src)
5126 {
5127 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5128 unsigned long flags;
5129
5130 local_irq_save(flags);
5131 double_rq_lock(rq_src, rq_dest);
5132 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5133 rq_src->nr_uninterruptible = 0;
5134 double_rq_unlock(rq_src, rq_dest);
5135 local_irq_restore(flags);
5136 }
5137
5138 /* Run through task list and migrate tasks from the dead cpu. */
5139 static void migrate_live_tasks(int src_cpu)
5140 {
5141 struct task_struct *p, *t;
5142
5143 write_lock_irq(&tasklist_lock);
5144
5145 do_each_thread(t, p) {
5146 if (p == current)
5147 continue;
5148
5149 if (task_cpu(p) == src_cpu)
5150 move_task_off_dead_cpu(src_cpu, p);
5151 } while_each_thread(t, p);
5152
5153 write_unlock_irq(&tasklist_lock);
5154 }
5155
5156 /*
5157 * Schedules idle task to be the next runnable task on current CPU.
5158 * It does so by boosting its priority to highest possible and adding it to
5159 * the _front_ of the runqueue. Used by CPU offline code.
5160 */
5161 void sched_idle_next(void)
5162 {
5163 int this_cpu = smp_processor_id();
5164 struct rq *rq = cpu_rq(this_cpu);
5165 struct task_struct *p = rq->idle;
5166 unsigned long flags;
5167
5168 /* cpu has to be offline */
5169 BUG_ON(cpu_online(this_cpu));
5170
5171 /*
5172 * Strictly not necessary since rest of the CPUs are stopped by now
5173 * and interrupts disabled on the current cpu.
5174 */
5175 spin_lock_irqsave(&rq->lock, flags);
5176
5177 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5178
5179 /* Add idle task to the _front_ of its priority queue: */
5180 activate_idle_task(p, rq);
5181
5182 spin_unlock_irqrestore(&rq->lock, flags);
5183 }
5184
5185 /*
5186 * Ensures that the idle task is using init_mm right before its cpu goes
5187 * offline.
5188 */
5189 void idle_task_exit(void)
5190 {
5191 struct mm_struct *mm = current->active_mm;
5192
5193 BUG_ON(cpu_online(smp_processor_id()));
5194
5195 if (mm != &init_mm)
5196 switch_mm(mm, &init_mm, current);
5197 mmdrop(mm);
5198 }
5199
5200 /* called under rq->lock with disabled interrupts */
5201 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5202 {
5203 struct rq *rq = cpu_rq(dead_cpu);
5204
5205 /* Must be exiting, otherwise would be on tasklist. */
5206 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5207
5208 /* Cannot have done final schedule yet: would have vanished. */
5209 BUG_ON(p->state == TASK_DEAD);
5210
5211 get_task_struct(p);
5212
5213 /*
5214 * Drop lock around migration; if someone else moves it,
5215 * that's OK. No task can be added to this CPU, so iteration is
5216 * fine.
5217 * NOTE: interrupts should be left disabled --dev@
5218 */
5219 spin_unlock(&rq->lock);
5220 move_task_off_dead_cpu(dead_cpu, p);
5221 spin_lock(&rq->lock);
5222
5223 put_task_struct(p);
5224 }
5225
5226 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5227 static void migrate_dead_tasks(unsigned int dead_cpu)
5228 {
5229 struct rq *rq = cpu_rq(dead_cpu);
5230 struct task_struct *next;
5231
5232 for ( ; ; ) {
5233 if (!rq->nr_running)
5234 break;
5235 update_rq_clock(rq);
5236 next = pick_next_task(rq, rq->curr);
5237 if (!next)
5238 break;
5239 migrate_dead(dead_cpu, next);
5240
5241 }
5242 }
5243 #endif /* CONFIG_HOTPLUG_CPU */
5244
5245 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5246
5247 static struct ctl_table sd_ctl_dir[] = {
5248 {
5249 .procname = "sched_domain",
5250 .mode = 0555,
5251 },
5252 {0,},
5253 };
5254
5255 static struct ctl_table sd_ctl_root[] = {
5256 {
5257 .ctl_name = CTL_KERN,
5258 .procname = "kernel",
5259 .mode = 0555,
5260 .child = sd_ctl_dir,
5261 },
5262 {0,},
5263 };
5264
5265 static struct ctl_table *sd_alloc_ctl_entry(int n)
5266 {
5267 struct ctl_table *entry =
5268 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5269
5270 BUG_ON(!entry);
5271 memset(entry, 0, n * sizeof(struct ctl_table));
5272
5273 return entry;
5274 }
5275
5276 static void
5277 set_table_entry(struct ctl_table *entry,
5278 const char *procname, void *data, int maxlen,
5279 mode_t mode, proc_handler *proc_handler)
5280 {
5281 entry->procname = procname;
5282 entry->data = data;
5283 entry->maxlen = maxlen;
5284 entry->mode = mode;
5285 entry->proc_handler = proc_handler;
5286 }
5287
5288 static struct ctl_table *
5289 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5290 {
5291 struct ctl_table *table = sd_alloc_ctl_entry(14);
5292
5293 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5294 sizeof(long), 0644, proc_doulongvec_minmax);
5295 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5296 sizeof(long), 0644, proc_doulongvec_minmax);
5297 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5310 sizeof(int), 0644, proc_dointvec_minmax);
5311 set_table_entry(&table[10], "cache_nice_tries",
5312 &sd->cache_nice_tries,
5313 sizeof(int), 0644, proc_dointvec_minmax);
5314 set_table_entry(&table[12], "flags", &sd->flags,
5315 sizeof(int), 0644, proc_dointvec_minmax);
5316
5317 return table;
5318 }
5319
5320 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5321 {
5322 struct ctl_table *entry, *table;
5323 struct sched_domain *sd;
5324 int domain_num = 0, i;
5325 char buf[32];
5326
5327 for_each_domain(cpu, sd)
5328 domain_num++;
5329 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5330
5331 i = 0;
5332 for_each_domain(cpu, sd) {
5333 snprintf(buf, 32, "domain%d", i);
5334 entry->procname = kstrdup(buf, GFP_KERNEL);
5335 entry->mode = 0555;
5336 entry->child = sd_alloc_ctl_domain_table(sd);
5337 entry++;
5338 i++;
5339 }
5340 return table;
5341 }
5342
5343 static struct ctl_table_header *sd_sysctl_header;
5344 static void init_sched_domain_sysctl(void)
5345 {
5346 int i, cpu_num = num_online_cpus();
5347 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5348 char buf[32];
5349
5350 sd_ctl_dir[0].child = entry;
5351
5352 for (i = 0; i < cpu_num; i++, entry++) {
5353 snprintf(buf, 32, "cpu%d", i);
5354 entry->procname = kstrdup(buf, GFP_KERNEL);
5355 entry->mode = 0555;
5356 entry->child = sd_alloc_ctl_cpu_table(i);
5357 }
5358 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5359 }
5360 #else
5361 static void init_sched_domain_sysctl(void)
5362 {
5363 }
5364 #endif
5365
5366 /*
5367 * migration_call - callback that gets triggered when a CPU is added.
5368 * Here we can start up the necessary migration thread for the new CPU.
5369 */
5370 static int __cpuinit
5371 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5372 {
5373 struct task_struct *p;
5374 int cpu = (long)hcpu;
5375 unsigned long flags;
5376 struct rq *rq;
5377
5378 switch (action) {
5379 case CPU_LOCK_ACQUIRE:
5380 mutex_lock(&sched_hotcpu_mutex);
5381 break;
5382
5383 case CPU_UP_PREPARE:
5384 case CPU_UP_PREPARE_FROZEN:
5385 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5386 if (IS_ERR(p))
5387 return NOTIFY_BAD;
5388 kthread_bind(p, cpu);
5389 /* Must be high prio: stop_machine expects to yield to it. */
5390 rq = task_rq_lock(p, &flags);
5391 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5392 task_rq_unlock(rq, &flags);
5393 cpu_rq(cpu)->migration_thread = p;
5394 break;
5395
5396 case CPU_ONLINE:
5397 case CPU_ONLINE_FROZEN:
5398 /* Strictly unneccessary, as first user will wake it. */
5399 wake_up_process(cpu_rq(cpu)->migration_thread);
5400 break;
5401
5402 #ifdef CONFIG_HOTPLUG_CPU
5403 case CPU_UP_CANCELED:
5404 case CPU_UP_CANCELED_FROZEN:
5405 if (!cpu_rq(cpu)->migration_thread)
5406 break;
5407 /* Unbind it from offline cpu so it can run. Fall thru. */
5408 kthread_bind(cpu_rq(cpu)->migration_thread,
5409 any_online_cpu(cpu_online_map));
5410 kthread_stop(cpu_rq(cpu)->migration_thread);
5411 cpu_rq(cpu)->migration_thread = NULL;
5412 break;
5413
5414 case CPU_DEAD:
5415 case CPU_DEAD_FROZEN:
5416 migrate_live_tasks(cpu);
5417 rq = cpu_rq(cpu);
5418 kthread_stop(rq->migration_thread);
5419 rq->migration_thread = NULL;
5420 /* Idle task back to normal (off runqueue, low prio) */
5421 rq = task_rq_lock(rq->idle, &flags);
5422 update_rq_clock(rq);
5423 deactivate_task(rq, rq->idle, 0);
5424 rq->idle->static_prio = MAX_PRIO;
5425 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5426 rq->idle->sched_class = &idle_sched_class;
5427 migrate_dead_tasks(cpu);
5428 task_rq_unlock(rq, &flags);
5429 migrate_nr_uninterruptible(rq);
5430 BUG_ON(rq->nr_running != 0);
5431
5432 /* No need to migrate the tasks: it was best-effort if
5433 * they didn't take sched_hotcpu_mutex. Just wake up
5434 * the requestors. */
5435 spin_lock_irq(&rq->lock);
5436 while (!list_empty(&rq->migration_queue)) {
5437 struct migration_req *req;
5438
5439 req = list_entry(rq->migration_queue.next,
5440 struct migration_req, list);
5441 list_del_init(&req->list);
5442 complete(&req->done);
5443 }
5444 spin_unlock_irq(&rq->lock);
5445 break;
5446 #endif
5447 case CPU_LOCK_RELEASE:
5448 mutex_unlock(&sched_hotcpu_mutex);
5449 break;
5450 }
5451 return NOTIFY_OK;
5452 }
5453
5454 /* Register at highest priority so that task migration (migrate_all_tasks)
5455 * happens before everything else.
5456 */
5457 static struct notifier_block __cpuinitdata migration_notifier = {
5458 .notifier_call = migration_call,
5459 .priority = 10
5460 };
5461
5462 int __init migration_init(void)
5463 {
5464 void *cpu = (void *)(long)smp_processor_id();
5465 int err;
5466
5467 /* Start one for the boot CPU: */
5468 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5469 BUG_ON(err == NOTIFY_BAD);
5470 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5471 register_cpu_notifier(&migration_notifier);
5472
5473 return 0;
5474 }
5475 #endif
5476
5477 #ifdef CONFIG_SMP
5478
5479 /* Number of possible processor ids */
5480 int nr_cpu_ids __read_mostly = NR_CPUS;
5481 EXPORT_SYMBOL(nr_cpu_ids);
5482
5483 #undef SCHED_DOMAIN_DEBUG
5484 #ifdef SCHED_DOMAIN_DEBUG
5485 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5486 {
5487 int level = 0;
5488
5489 if (!sd) {
5490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5491 return;
5492 }
5493
5494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5495
5496 do {
5497 int i;
5498 char str[NR_CPUS];
5499 struct sched_group *group = sd->groups;
5500 cpumask_t groupmask;
5501
5502 cpumask_scnprintf(str, NR_CPUS, sd->span);
5503 cpus_clear(groupmask);
5504
5505 printk(KERN_DEBUG);
5506 for (i = 0; i < level + 1; i++)
5507 printk(" ");
5508 printk("domain %d: ", level);
5509
5510 if (!(sd->flags & SD_LOAD_BALANCE)) {
5511 printk("does not load-balance\n");
5512 if (sd->parent)
5513 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5514 " has parent");
5515 break;
5516 }
5517
5518 printk("span %s\n", str);
5519
5520 if (!cpu_isset(cpu, sd->span))
5521 printk(KERN_ERR "ERROR: domain->span does not contain "
5522 "CPU%d\n", cpu);
5523 if (!cpu_isset(cpu, group->cpumask))
5524 printk(KERN_ERR "ERROR: domain->groups does not contain"
5525 " CPU%d\n", cpu);
5526
5527 printk(KERN_DEBUG);
5528 for (i = 0; i < level + 2; i++)
5529 printk(" ");
5530 printk("groups:");
5531 do {
5532 if (!group) {
5533 printk("\n");
5534 printk(KERN_ERR "ERROR: group is NULL\n");
5535 break;
5536 }
5537
5538 if (!group->__cpu_power) {
5539 printk("\n");
5540 printk(KERN_ERR "ERROR: domain->cpu_power not "
5541 "set\n");
5542 }
5543
5544 if (!cpus_weight(group->cpumask)) {
5545 printk("\n");
5546 printk(KERN_ERR "ERROR: empty group\n");
5547 }
5548
5549 if (cpus_intersects(groupmask, group->cpumask)) {
5550 printk("\n");
5551 printk(KERN_ERR "ERROR: repeated CPUs\n");
5552 }
5553
5554 cpus_or(groupmask, groupmask, group->cpumask);
5555
5556 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5557 printk(" %s", str);
5558
5559 group = group->next;
5560 } while (group != sd->groups);
5561 printk("\n");
5562
5563 if (!cpus_equal(sd->span, groupmask))
5564 printk(KERN_ERR "ERROR: groups don't span "
5565 "domain->span\n");
5566
5567 level++;
5568 sd = sd->parent;
5569 if (!sd)
5570 continue;
5571
5572 if (!cpus_subset(groupmask, sd->span))
5573 printk(KERN_ERR "ERROR: parent span is not a superset "
5574 "of domain->span\n");
5575
5576 } while (sd);
5577 }
5578 #else
5579 # define sched_domain_debug(sd, cpu) do { } while (0)
5580 #endif
5581
5582 static int sd_degenerate(struct sched_domain *sd)
5583 {
5584 if (cpus_weight(sd->span) == 1)
5585 return 1;
5586
5587 /* Following flags need at least 2 groups */
5588 if (sd->flags & (SD_LOAD_BALANCE |
5589 SD_BALANCE_NEWIDLE |
5590 SD_BALANCE_FORK |
5591 SD_BALANCE_EXEC |
5592 SD_SHARE_CPUPOWER |
5593 SD_SHARE_PKG_RESOURCES)) {
5594 if (sd->groups != sd->groups->next)
5595 return 0;
5596 }
5597
5598 /* Following flags don't use groups */
5599 if (sd->flags & (SD_WAKE_IDLE |
5600 SD_WAKE_AFFINE |
5601 SD_WAKE_BALANCE))
5602 return 0;
5603
5604 return 1;
5605 }
5606
5607 static int
5608 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5609 {
5610 unsigned long cflags = sd->flags, pflags = parent->flags;
5611
5612 if (sd_degenerate(parent))
5613 return 1;
5614
5615 if (!cpus_equal(sd->span, parent->span))
5616 return 0;
5617
5618 /* Does parent contain flags not in child? */
5619 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5620 if (cflags & SD_WAKE_AFFINE)
5621 pflags &= ~SD_WAKE_BALANCE;
5622 /* Flags needing groups don't count if only 1 group in parent */
5623 if (parent->groups == parent->groups->next) {
5624 pflags &= ~(SD_LOAD_BALANCE |
5625 SD_BALANCE_NEWIDLE |
5626 SD_BALANCE_FORK |
5627 SD_BALANCE_EXEC |
5628 SD_SHARE_CPUPOWER |
5629 SD_SHARE_PKG_RESOURCES);
5630 }
5631 if (~cflags & pflags)
5632 return 0;
5633
5634 return 1;
5635 }
5636
5637 /*
5638 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5639 * hold the hotplug lock.
5640 */
5641 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5642 {
5643 struct rq *rq = cpu_rq(cpu);
5644 struct sched_domain *tmp;
5645
5646 /* Remove the sched domains which do not contribute to scheduling. */
5647 for (tmp = sd; tmp; tmp = tmp->parent) {
5648 struct sched_domain *parent = tmp->parent;
5649 if (!parent)
5650 break;
5651 if (sd_parent_degenerate(tmp, parent)) {
5652 tmp->parent = parent->parent;
5653 if (parent->parent)
5654 parent->parent->child = tmp;
5655 }
5656 }
5657
5658 if (sd && sd_degenerate(sd)) {
5659 sd = sd->parent;
5660 if (sd)
5661 sd->child = NULL;
5662 }
5663
5664 sched_domain_debug(sd, cpu);
5665
5666 rcu_assign_pointer(rq->sd, sd);
5667 }
5668
5669 /* cpus with isolated domains */
5670 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5671
5672 /* Setup the mask of cpus configured for isolated domains */
5673 static int __init isolated_cpu_setup(char *str)
5674 {
5675 int ints[NR_CPUS], i;
5676
5677 str = get_options(str, ARRAY_SIZE(ints), ints);
5678 cpus_clear(cpu_isolated_map);
5679 for (i = 1; i <= ints[0]; i++)
5680 if (ints[i] < NR_CPUS)
5681 cpu_set(ints[i], cpu_isolated_map);
5682 return 1;
5683 }
5684
5685 __setup ("isolcpus=", isolated_cpu_setup);
5686
5687 /*
5688 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5689 * to a function which identifies what group(along with sched group) a CPU
5690 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5691 * (due to the fact that we keep track of groups covered with a cpumask_t).
5692 *
5693 * init_sched_build_groups will build a circular linked list of the groups
5694 * covered by the given span, and will set each group's ->cpumask correctly,
5695 * and ->cpu_power to 0.
5696 */
5697 static void
5698 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5699 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5700 struct sched_group **sg))
5701 {
5702 struct sched_group *first = NULL, *last = NULL;
5703 cpumask_t covered = CPU_MASK_NONE;
5704 int i;
5705
5706 for_each_cpu_mask(i, span) {
5707 struct sched_group *sg;
5708 int group = group_fn(i, cpu_map, &sg);
5709 int j;
5710
5711 if (cpu_isset(i, covered))
5712 continue;
5713
5714 sg->cpumask = CPU_MASK_NONE;
5715 sg->__cpu_power = 0;
5716
5717 for_each_cpu_mask(j, span) {
5718 if (group_fn(j, cpu_map, NULL) != group)
5719 continue;
5720
5721 cpu_set(j, covered);
5722 cpu_set(j, sg->cpumask);
5723 }
5724 if (!first)
5725 first = sg;
5726 if (last)
5727 last->next = sg;
5728 last = sg;
5729 }
5730 last->next = first;
5731 }
5732
5733 #define SD_NODES_PER_DOMAIN 16
5734
5735 #ifdef CONFIG_NUMA
5736
5737 /**
5738 * find_next_best_node - find the next node to include in a sched_domain
5739 * @node: node whose sched_domain we're building
5740 * @used_nodes: nodes already in the sched_domain
5741 *
5742 * Find the next node to include in a given scheduling domain. Simply
5743 * finds the closest node not already in the @used_nodes map.
5744 *
5745 * Should use nodemask_t.
5746 */
5747 static int find_next_best_node(int node, unsigned long *used_nodes)
5748 {
5749 int i, n, val, min_val, best_node = 0;
5750
5751 min_val = INT_MAX;
5752
5753 for (i = 0; i < MAX_NUMNODES; i++) {
5754 /* Start at @node */
5755 n = (node + i) % MAX_NUMNODES;
5756
5757 if (!nr_cpus_node(n))
5758 continue;
5759
5760 /* Skip already used nodes */
5761 if (test_bit(n, used_nodes))
5762 continue;
5763
5764 /* Simple min distance search */
5765 val = node_distance(node, n);
5766
5767 if (val < min_val) {
5768 min_val = val;
5769 best_node = n;
5770 }
5771 }
5772
5773 set_bit(best_node, used_nodes);
5774 return best_node;
5775 }
5776
5777 /**
5778 * sched_domain_node_span - get a cpumask for a node's sched_domain
5779 * @node: node whose cpumask we're constructing
5780 * @size: number of nodes to include in this span
5781 *
5782 * Given a node, construct a good cpumask for its sched_domain to span. It
5783 * should be one that prevents unnecessary balancing, but also spreads tasks
5784 * out optimally.
5785 */
5786 static cpumask_t sched_domain_node_span(int node)
5787 {
5788 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5789 cpumask_t span, nodemask;
5790 int i;
5791
5792 cpus_clear(span);
5793 bitmap_zero(used_nodes, MAX_NUMNODES);
5794
5795 nodemask = node_to_cpumask(node);
5796 cpus_or(span, span, nodemask);
5797 set_bit(node, used_nodes);
5798
5799 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5800 int next_node = find_next_best_node(node, used_nodes);
5801
5802 nodemask = node_to_cpumask(next_node);
5803 cpus_or(span, span, nodemask);
5804 }
5805
5806 return span;
5807 }
5808 #endif
5809
5810 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5811
5812 /*
5813 * SMT sched-domains:
5814 */
5815 #ifdef CONFIG_SCHED_SMT
5816 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5817 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5818
5819 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5820 struct sched_group **sg)
5821 {
5822 if (sg)
5823 *sg = &per_cpu(sched_group_cpus, cpu);
5824 return cpu;
5825 }
5826 #endif
5827
5828 /*
5829 * multi-core sched-domains:
5830 */
5831 #ifdef CONFIG_SCHED_MC
5832 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5833 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5834 #endif
5835
5836 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5837 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg)
5839 {
5840 int group;
5841 cpumask_t mask = cpu_sibling_map[cpu];
5842 cpus_and(mask, mask, *cpu_map);
5843 group = first_cpu(mask);
5844 if (sg)
5845 *sg = &per_cpu(sched_group_core, group);
5846 return group;
5847 }
5848 #elif defined(CONFIG_SCHED_MC)
5849 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5850 struct sched_group **sg)
5851 {
5852 if (sg)
5853 *sg = &per_cpu(sched_group_core, cpu);
5854 return cpu;
5855 }
5856 #endif
5857
5858 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5859 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5860
5861 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5862 struct sched_group **sg)
5863 {
5864 int group;
5865 #ifdef CONFIG_SCHED_MC
5866 cpumask_t mask = cpu_coregroup_map(cpu);
5867 cpus_and(mask, mask, *cpu_map);
5868 group = first_cpu(mask);
5869 #elif defined(CONFIG_SCHED_SMT)
5870 cpumask_t mask = cpu_sibling_map[cpu];
5871 cpus_and(mask, mask, *cpu_map);
5872 group = first_cpu(mask);
5873 #else
5874 group = cpu;
5875 #endif
5876 if (sg)
5877 *sg = &per_cpu(sched_group_phys, group);
5878 return group;
5879 }
5880
5881 #ifdef CONFIG_NUMA
5882 /*
5883 * The init_sched_build_groups can't handle what we want to do with node
5884 * groups, so roll our own. Now each node has its own list of groups which
5885 * gets dynamically allocated.
5886 */
5887 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5888 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5889
5890 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5891 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5892
5893 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5894 struct sched_group **sg)
5895 {
5896 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5897 int group;
5898
5899 cpus_and(nodemask, nodemask, *cpu_map);
5900 group = first_cpu(nodemask);
5901
5902 if (sg)
5903 *sg = &per_cpu(sched_group_allnodes, group);
5904 return group;
5905 }
5906
5907 static void init_numa_sched_groups_power(struct sched_group *group_head)
5908 {
5909 struct sched_group *sg = group_head;
5910 int j;
5911
5912 if (!sg)
5913 return;
5914 next_sg:
5915 for_each_cpu_mask(j, sg->cpumask) {
5916 struct sched_domain *sd;
5917
5918 sd = &per_cpu(phys_domains, j);
5919 if (j != first_cpu(sd->groups->cpumask)) {
5920 /*
5921 * Only add "power" once for each
5922 * physical package.
5923 */
5924 continue;
5925 }
5926
5927 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5928 }
5929 sg = sg->next;
5930 if (sg != group_head)
5931 goto next_sg;
5932 }
5933 #endif
5934
5935 #ifdef CONFIG_NUMA
5936 /* Free memory allocated for various sched_group structures */
5937 static void free_sched_groups(const cpumask_t *cpu_map)
5938 {
5939 int cpu, i;
5940
5941 for_each_cpu_mask(cpu, *cpu_map) {
5942 struct sched_group **sched_group_nodes
5943 = sched_group_nodes_bycpu[cpu];
5944
5945 if (!sched_group_nodes)
5946 continue;
5947
5948 for (i = 0; i < MAX_NUMNODES; i++) {
5949 cpumask_t nodemask = node_to_cpumask(i);
5950 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5951
5952 cpus_and(nodemask, nodemask, *cpu_map);
5953 if (cpus_empty(nodemask))
5954 continue;
5955
5956 if (sg == NULL)
5957 continue;
5958 sg = sg->next;
5959 next_sg:
5960 oldsg = sg;
5961 sg = sg->next;
5962 kfree(oldsg);
5963 if (oldsg != sched_group_nodes[i])
5964 goto next_sg;
5965 }
5966 kfree(sched_group_nodes);
5967 sched_group_nodes_bycpu[cpu] = NULL;
5968 }
5969 }
5970 #else
5971 static void free_sched_groups(const cpumask_t *cpu_map)
5972 {
5973 }
5974 #endif
5975
5976 /*
5977 * Initialize sched groups cpu_power.
5978 *
5979 * cpu_power indicates the capacity of sched group, which is used while
5980 * distributing the load between different sched groups in a sched domain.
5981 * Typically cpu_power for all the groups in a sched domain will be same unless
5982 * there are asymmetries in the topology. If there are asymmetries, group
5983 * having more cpu_power will pickup more load compared to the group having
5984 * less cpu_power.
5985 *
5986 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5987 * the maximum number of tasks a group can handle in the presence of other idle
5988 * or lightly loaded groups in the same sched domain.
5989 */
5990 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5991 {
5992 struct sched_domain *child;
5993 struct sched_group *group;
5994
5995 WARN_ON(!sd || !sd->groups);
5996
5997 if (cpu != first_cpu(sd->groups->cpumask))
5998 return;
5999
6000 child = sd->child;
6001
6002 sd->groups->__cpu_power = 0;
6003
6004 /*
6005 * For perf policy, if the groups in child domain share resources
6006 * (for example cores sharing some portions of the cache hierarchy
6007 * or SMT), then set this domain groups cpu_power such that each group
6008 * can handle only one task, when there are other idle groups in the
6009 * same sched domain.
6010 */
6011 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6012 (child->flags &
6013 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6014 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6015 return;
6016 }
6017
6018 /*
6019 * add cpu_power of each child group to this groups cpu_power
6020 */
6021 group = child->groups;
6022 do {
6023 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6024 group = group->next;
6025 } while (group != child->groups);
6026 }
6027
6028 /*
6029 * Build sched domains for a given set of cpus and attach the sched domains
6030 * to the individual cpus
6031 */
6032 static int build_sched_domains(const cpumask_t *cpu_map)
6033 {
6034 int i;
6035 #ifdef CONFIG_NUMA
6036 struct sched_group **sched_group_nodes = NULL;
6037 int sd_allnodes = 0;
6038
6039 /*
6040 * Allocate the per-node list of sched groups
6041 */
6042 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6043 GFP_KERNEL);
6044 if (!sched_group_nodes) {
6045 printk(KERN_WARNING "Can not alloc sched group node list\n");
6046 return -ENOMEM;
6047 }
6048 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6049 #endif
6050
6051 /*
6052 * Set up domains for cpus specified by the cpu_map.
6053 */
6054 for_each_cpu_mask(i, *cpu_map) {
6055 struct sched_domain *sd = NULL, *p;
6056 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6057
6058 cpus_and(nodemask, nodemask, *cpu_map);
6059
6060 #ifdef CONFIG_NUMA
6061 if (cpus_weight(*cpu_map) >
6062 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6063 sd = &per_cpu(allnodes_domains, i);
6064 *sd = SD_ALLNODES_INIT;
6065 sd->span = *cpu_map;
6066 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6067 p = sd;
6068 sd_allnodes = 1;
6069 } else
6070 p = NULL;
6071
6072 sd = &per_cpu(node_domains, i);
6073 *sd = SD_NODE_INIT;
6074 sd->span = sched_domain_node_span(cpu_to_node(i));
6075 sd->parent = p;
6076 if (p)
6077 p->child = sd;
6078 cpus_and(sd->span, sd->span, *cpu_map);
6079 #endif
6080
6081 p = sd;
6082 sd = &per_cpu(phys_domains, i);
6083 *sd = SD_CPU_INIT;
6084 sd->span = nodemask;
6085 sd->parent = p;
6086 if (p)
6087 p->child = sd;
6088 cpu_to_phys_group(i, cpu_map, &sd->groups);
6089
6090 #ifdef CONFIG_SCHED_MC
6091 p = sd;
6092 sd = &per_cpu(core_domains, i);
6093 *sd = SD_MC_INIT;
6094 sd->span = cpu_coregroup_map(i);
6095 cpus_and(sd->span, sd->span, *cpu_map);
6096 sd->parent = p;
6097 p->child = sd;
6098 cpu_to_core_group(i, cpu_map, &sd->groups);
6099 #endif
6100
6101 #ifdef CONFIG_SCHED_SMT
6102 p = sd;
6103 sd = &per_cpu(cpu_domains, i);
6104 *sd = SD_SIBLING_INIT;
6105 sd->span = cpu_sibling_map[i];
6106 cpus_and(sd->span, sd->span, *cpu_map);
6107 sd->parent = p;
6108 p->child = sd;
6109 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6110 #endif
6111 }
6112
6113 #ifdef CONFIG_SCHED_SMT
6114 /* Set up CPU (sibling) groups */
6115 for_each_cpu_mask(i, *cpu_map) {
6116 cpumask_t this_sibling_map = cpu_sibling_map[i];
6117 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6118 if (i != first_cpu(this_sibling_map))
6119 continue;
6120
6121 init_sched_build_groups(this_sibling_map, cpu_map,
6122 &cpu_to_cpu_group);
6123 }
6124 #endif
6125
6126 #ifdef CONFIG_SCHED_MC
6127 /* Set up multi-core groups */
6128 for_each_cpu_mask(i, *cpu_map) {
6129 cpumask_t this_core_map = cpu_coregroup_map(i);
6130 cpus_and(this_core_map, this_core_map, *cpu_map);
6131 if (i != first_cpu(this_core_map))
6132 continue;
6133 init_sched_build_groups(this_core_map, cpu_map,
6134 &cpu_to_core_group);
6135 }
6136 #endif
6137
6138 /* Set up physical groups */
6139 for (i = 0; i < MAX_NUMNODES; i++) {
6140 cpumask_t nodemask = node_to_cpumask(i);
6141
6142 cpus_and(nodemask, nodemask, *cpu_map);
6143 if (cpus_empty(nodemask))
6144 continue;
6145
6146 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6147 }
6148
6149 #ifdef CONFIG_NUMA
6150 /* Set up node groups */
6151 if (sd_allnodes)
6152 init_sched_build_groups(*cpu_map, cpu_map,
6153 &cpu_to_allnodes_group);
6154
6155 for (i = 0; i < MAX_NUMNODES; i++) {
6156 /* Set up node groups */
6157 struct sched_group *sg, *prev;
6158 cpumask_t nodemask = node_to_cpumask(i);
6159 cpumask_t domainspan;
6160 cpumask_t covered = CPU_MASK_NONE;
6161 int j;
6162
6163 cpus_and(nodemask, nodemask, *cpu_map);
6164 if (cpus_empty(nodemask)) {
6165 sched_group_nodes[i] = NULL;
6166 continue;
6167 }
6168
6169 domainspan = sched_domain_node_span(i);
6170 cpus_and(domainspan, domainspan, *cpu_map);
6171
6172 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6173 if (!sg) {
6174 printk(KERN_WARNING "Can not alloc domain group for "
6175 "node %d\n", i);
6176 goto error;
6177 }
6178 sched_group_nodes[i] = sg;
6179 for_each_cpu_mask(j, nodemask) {
6180 struct sched_domain *sd;
6181
6182 sd = &per_cpu(node_domains, j);
6183 sd->groups = sg;
6184 }
6185 sg->__cpu_power = 0;
6186 sg->cpumask = nodemask;
6187 sg->next = sg;
6188 cpus_or(covered, covered, nodemask);
6189 prev = sg;
6190
6191 for (j = 0; j < MAX_NUMNODES; j++) {
6192 cpumask_t tmp, notcovered;
6193 int n = (i + j) % MAX_NUMNODES;
6194
6195 cpus_complement(notcovered, covered);
6196 cpus_and(tmp, notcovered, *cpu_map);
6197 cpus_and(tmp, tmp, domainspan);
6198 if (cpus_empty(tmp))
6199 break;
6200
6201 nodemask = node_to_cpumask(n);
6202 cpus_and(tmp, tmp, nodemask);
6203 if (cpus_empty(tmp))
6204 continue;
6205
6206 sg = kmalloc_node(sizeof(struct sched_group),
6207 GFP_KERNEL, i);
6208 if (!sg) {
6209 printk(KERN_WARNING
6210 "Can not alloc domain group for node %d\n", j);
6211 goto error;
6212 }
6213 sg->__cpu_power = 0;
6214 sg->cpumask = tmp;
6215 sg->next = prev->next;
6216 cpus_or(covered, covered, tmp);
6217 prev->next = sg;
6218 prev = sg;
6219 }
6220 }
6221 #endif
6222
6223 /* Calculate CPU power for physical packages and nodes */
6224 #ifdef CONFIG_SCHED_SMT
6225 for_each_cpu_mask(i, *cpu_map) {
6226 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6227
6228 init_sched_groups_power(i, sd);
6229 }
6230 #endif
6231 #ifdef CONFIG_SCHED_MC
6232 for_each_cpu_mask(i, *cpu_map) {
6233 struct sched_domain *sd = &per_cpu(core_domains, i);
6234
6235 init_sched_groups_power(i, sd);
6236 }
6237 #endif
6238
6239 for_each_cpu_mask(i, *cpu_map) {
6240 struct sched_domain *sd = &per_cpu(phys_domains, i);
6241
6242 init_sched_groups_power(i, sd);
6243 }
6244
6245 #ifdef CONFIG_NUMA
6246 for (i = 0; i < MAX_NUMNODES; i++)
6247 init_numa_sched_groups_power(sched_group_nodes[i]);
6248
6249 if (sd_allnodes) {
6250 struct sched_group *sg;
6251
6252 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6253 init_numa_sched_groups_power(sg);
6254 }
6255 #endif
6256
6257 /* Attach the domains */
6258 for_each_cpu_mask(i, *cpu_map) {
6259 struct sched_domain *sd;
6260 #ifdef CONFIG_SCHED_SMT
6261 sd = &per_cpu(cpu_domains, i);
6262 #elif defined(CONFIG_SCHED_MC)
6263 sd = &per_cpu(core_domains, i);
6264 #else
6265 sd = &per_cpu(phys_domains, i);
6266 #endif
6267 cpu_attach_domain(sd, i);
6268 }
6269
6270 return 0;
6271
6272 #ifdef CONFIG_NUMA
6273 error:
6274 free_sched_groups(cpu_map);
6275 return -ENOMEM;
6276 #endif
6277 }
6278 /*
6279 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6280 */
6281 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6282 {
6283 cpumask_t cpu_default_map;
6284 int err;
6285
6286 /*
6287 * Setup mask for cpus without special case scheduling requirements.
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
6290 */
6291 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6292
6293 err = build_sched_domains(&cpu_default_map);
6294
6295 return err;
6296 }
6297
6298 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6299 {
6300 free_sched_groups(cpu_map);
6301 }
6302
6303 /*
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6306 */
6307 static void detach_destroy_domains(const cpumask_t *cpu_map)
6308 {
6309 int i;
6310
6311 for_each_cpu_mask(i, *cpu_map)
6312 cpu_attach_domain(NULL, i);
6313 synchronize_sched();
6314 arch_destroy_sched_domains(cpu_map);
6315 }
6316
6317 /*
6318 * Partition sched domains as specified by the cpumasks below.
6319 * This attaches all cpus from the cpumasks to the NULL domain,
6320 * waits for a RCU quiescent period, recalculates sched
6321 * domain information and then attaches them back to the
6322 * correct sched domains
6323 * Call with hotplug lock held
6324 */
6325 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6326 {
6327 cpumask_t change_map;
6328 int err = 0;
6329
6330 cpus_and(*partition1, *partition1, cpu_online_map);
6331 cpus_and(*partition2, *partition2, cpu_online_map);
6332 cpus_or(change_map, *partition1, *partition2);
6333
6334 /* Detach sched domains from all of the affected cpus */
6335 detach_destroy_domains(&change_map);
6336 if (!cpus_empty(*partition1))
6337 err = build_sched_domains(partition1);
6338 if (!err && !cpus_empty(*partition2))
6339 err = build_sched_domains(partition2);
6340
6341 return err;
6342 }
6343
6344 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6345 static int arch_reinit_sched_domains(void)
6346 {
6347 int err;
6348
6349 mutex_lock(&sched_hotcpu_mutex);
6350 detach_destroy_domains(&cpu_online_map);
6351 err = arch_init_sched_domains(&cpu_online_map);
6352 mutex_unlock(&sched_hotcpu_mutex);
6353
6354 return err;
6355 }
6356
6357 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6358 {
6359 int ret;
6360
6361 if (buf[0] != '0' && buf[0] != '1')
6362 return -EINVAL;
6363
6364 if (smt)
6365 sched_smt_power_savings = (buf[0] == '1');
6366 else
6367 sched_mc_power_savings = (buf[0] == '1');
6368
6369 ret = arch_reinit_sched_domains();
6370
6371 return ret ? ret : count;
6372 }
6373
6374 #ifdef CONFIG_SCHED_MC
6375 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6376 {
6377 return sprintf(page, "%u\n", sched_mc_power_savings);
6378 }
6379 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6380 const char *buf, size_t count)
6381 {
6382 return sched_power_savings_store(buf, count, 0);
6383 }
6384 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6385 sched_mc_power_savings_store);
6386 #endif
6387
6388 #ifdef CONFIG_SCHED_SMT
6389 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6390 {
6391 return sprintf(page, "%u\n", sched_smt_power_savings);
6392 }
6393 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6394 const char *buf, size_t count)
6395 {
6396 return sched_power_savings_store(buf, count, 1);
6397 }
6398 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6399 sched_smt_power_savings_store);
6400 #endif
6401
6402 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6403 {
6404 int err = 0;
6405
6406 #ifdef CONFIG_SCHED_SMT
6407 if (smt_capable())
6408 err = sysfs_create_file(&cls->kset.kobj,
6409 &attr_sched_smt_power_savings.attr);
6410 #endif
6411 #ifdef CONFIG_SCHED_MC
6412 if (!err && mc_capable())
6413 err = sysfs_create_file(&cls->kset.kobj,
6414 &attr_sched_mc_power_savings.attr);
6415 #endif
6416 return err;
6417 }
6418 #endif
6419
6420 /*
6421 * Force a reinitialization of the sched domains hierarchy. The domains
6422 * and groups cannot be updated in place without racing with the balancing
6423 * code, so we temporarily attach all running cpus to the NULL domain
6424 * which will prevent rebalancing while the sched domains are recalculated.
6425 */
6426 static int update_sched_domains(struct notifier_block *nfb,
6427 unsigned long action, void *hcpu)
6428 {
6429 switch (action) {
6430 case CPU_UP_PREPARE:
6431 case CPU_UP_PREPARE_FROZEN:
6432 case CPU_DOWN_PREPARE:
6433 case CPU_DOWN_PREPARE_FROZEN:
6434 detach_destroy_domains(&cpu_online_map);
6435 return NOTIFY_OK;
6436
6437 case CPU_UP_CANCELED:
6438 case CPU_UP_CANCELED_FROZEN:
6439 case CPU_DOWN_FAILED:
6440 case CPU_DOWN_FAILED_FROZEN:
6441 case CPU_ONLINE:
6442 case CPU_ONLINE_FROZEN:
6443 case CPU_DEAD:
6444 case CPU_DEAD_FROZEN:
6445 /*
6446 * Fall through and re-initialise the domains.
6447 */
6448 break;
6449 default:
6450 return NOTIFY_DONE;
6451 }
6452
6453 /* The hotplug lock is already held by cpu_up/cpu_down */
6454 arch_init_sched_domains(&cpu_online_map);
6455
6456 return NOTIFY_OK;
6457 }
6458
6459 void __init sched_init_smp(void)
6460 {
6461 cpumask_t non_isolated_cpus;
6462
6463 mutex_lock(&sched_hotcpu_mutex);
6464 arch_init_sched_domains(&cpu_online_map);
6465 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6466 if (cpus_empty(non_isolated_cpus))
6467 cpu_set(smp_processor_id(), non_isolated_cpus);
6468 mutex_unlock(&sched_hotcpu_mutex);
6469 /* XXX: Theoretical race here - CPU may be hotplugged now */
6470 hotcpu_notifier(update_sched_domains, 0);
6471
6472 init_sched_domain_sysctl();
6473
6474 /* Move init over to a non-isolated CPU */
6475 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6476 BUG();
6477 }
6478 #else
6479 void __init sched_init_smp(void)
6480 {
6481 }
6482 #endif /* CONFIG_SMP */
6483
6484 int in_sched_functions(unsigned long addr)
6485 {
6486 /* Linker adds these: start and end of __sched functions */
6487 extern char __sched_text_start[], __sched_text_end[];
6488
6489 return in_lock_functions(addr) ||
6490 (addr >= (unsigned long)__sched_text_start
6491 && addr < (unsigned long)__sched_text_end);
6492 }
6493
6494 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6495 {
6496 cfs_rq->tasks_timeline = RB_ROOT;
6497 #ifdef CONFIG_FAIR_GROUP_SCHED
6498 cfs_rq->rq = rq;
6499 #endif
6500 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6501 }
6502
6503 void __init sched_init(void)
6504 {
6505 int highest_cpu = 0;
6506 int i, j;
6507
6508 /*
6509 * Link up the scheduling class hierarchy:
6510 */
6511 rt_sched_class.next = &fair_sched_class;
6512 fair_sched_class.next = &idle_sched_class;
6513 idle_sched_class.next = NULL;
6514
6515 for_each_possible_cpu(i) {
6516 struct rt_prio_array *array;
6517 struct rq *rq;
6518
6519 rq = cpu_rq(i);
6520 spin_lock_init(&rq->lock);
6521 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6522 rq->nr_running = 0;
6523 rq->clock = 1;
6524 init_cfs_rq(&rq->cfs, rq);
6525 #ifdef CONFIG_FAIR_GROUP_SCHED
6526 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6527 {
6528 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6529 struct sched_entity *se =
6530 &per_cpu(init_sched_entity, i);
6531
6532 init_cfs_rq_p[i] = cfs_rq;
6533 init_cfs_rq(cfs_rq, rq);
6534 cfs_rq->tg = &init_task_grp;
6535 list_add(&cfs_rq->leaf_cfs_rq_list,
6536 &rq->leaf_cfs_rq_list);
6537
6538 init_sched_entity_p[i] = se;
6539 se->cfs_rq = &rq->cfs;
6540 se->my_q = cfs_rq;
6541 se->load.weight = init_task_grp_load;
6542 se->load.inv_weight =
6543 div64_64(1ULL<<32, init_task_grp_load);
6544 se->parent = NULL;
6545 }
6546 init_task_grp.shares = init_task_grp_load;
6547 #endif
6548
6549 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6550 rq->cpu_load[j] = 0;
6551 #ifdef CONFIG_SMP
6552 rq->sd = NULL;
6553 rq->active_balance = 0;
6554 rq->next_balance = jiffies;
6555 rq->push_cpu = 0;
6556 rq->cpu = i;
6557 rq->migration_thread = NULL;
6558 INIT_LIST_HEAD(&rq->migration_queue);
6559 #endif
6560 atomic_set(&rq->nr_iowait, 0);
6561
6562 array = &rq->rt.active;
6563 for (j = 0; j < MAX_RT_PRIO; j++) {
6564 INIT_LIST_HEAD(array->queue + j);
6565 __clear_bit(j, array->bitmap);
6566 }
6567 highest_cpu = i;
6568 /* delimiter for bitsearch: */
6569 __set_bit(MAX_RT_PRIO, array->bitmap);
6570 }
6571
6572 set_load_weight(&init_task);
6573
6574 #ifdef CONFIG_PREEMPT_NOTIFIERS
6575 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6576 #endif
6577
6578 #ifdef CONFIG_SMP
6579 nr_cpu_ids = highest_cpu + 1;
6580 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6581 #endif
6582
6583 #ifdef CONFIG_RT_MUTEXES
6584 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6585 #endif
6586
6587 /*
6588 * The boot idle thread does lazy MMU switching as well:
6589 */
6590 atomic_inc(&init_mm.mm_count);
6591 enter_lazy_tlb(&init_mm, current);
6592
6593 /*
6594 * Make us the idle thread. Technically, schedule() should not be
6595 * called from this thread, however somewhere below it might be,
6596 * but because we are the idle thread, we just pick up running again
6597 * when this runqueue becomes "idle".
6598 */
6599 init_idle(current, smp_processor_id());
6600 /*
6601 * During early bootup we pretend to be a normal task:
6602 */
6603 current->sched_class = &fair_sched_class;
6604 }
6605
6606 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6607 void __might_sleep(char *file, int line)
6608 {
6609 #ifdef in_atomic
6610 static unsigned long prev_jiffy; /* ratelimiting */
6611
6612 if ((in_atomic() || irqs_disabled()) &&
6613 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6614 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6615 return;
6616 prev_jiffy = jiffies;
6617 printk(KERN_ERR "BUG: sleeping function called from invalid"
6618 " context at %s:%d\n", file, line);
6619 printk("in_atomic():%d, irqs_disabled():%d\n",
6620 in_atomic(), irqs_disabled());
6621 debug_show_held_locks(current);
6622 if (irqs_disabled())
6623 print_irqtrace_events(current);
6624 dump_stack();
6625 }
6626 #endif
6627 }
6628 EXPORT_SYMBOL(__might_sleep);
6629 #endif
6630
6631 #ifdef CONFIG_MAGIC_SYSRQ
6632 void normalize_rt_tasks(void)
6633 {
6634 struct task_struct *g, *p;
6635 unsigned long flags;
6636 struct rq *rq;
6637 int on_rq;
6638
6639 read_lock_irq(&tasklist_lock);
6640 do_each_thread(g, p) {
6641 p->se.exec_start = 0;
6642 #ifdef CONFIG_SCHEDSTATS
6643 p->se.wait_start = 0;
6644 p->se.sleep_start = 0;
6645 p->se.block_start = 0;
6646 #endif
6647 task_rq(p)->clock = 0;
6648
6649 if (!rt_task(p)) {
6650 /*
6651 * Renice negative nice level userspace
6652 * tasks back to 0:
6653 */
6654 if (TASK_NICE(p) < 0 && p->mm)
6655 set_user_nice(p, 0);
6656 continue;
6657 }
6658
6659 spin_lock_irqsave(&p->pi_lock, flags);
6660 rq = __task_rq_lock(p);
6661 #ifdef CONFIG_SMP
6662 /*
6663 * Do not touch the migration thread:
6664 */
6665 if (p == rq->migration_thread)
6666 goto out_unlock;
6667 #endif
6668
6669 update_rq_clock(rq);
6670 on_rq = p->se.on_rq;
6671 if (on_rq)
6672 deactivate_task(rq, p, 0);
6673 __setscheduler(rq, p, SCHED_NORMAL, 0);
6674 if (on_rq) {
6675 activate_task(rq, p, 0);
6676 resched_task(rq->curr);
6677 }
6678 #ifdef CONFIG_SMP
6679 out_unlock:
6680 #endif
6681 __task_rq_unlock(rq);
6682 spin_unlock_irqrestore(&p->pi_lock, flags);
6683 } while_each_thread(g, p);
6684
6685 read_unlock_irq(&tasklist_lock);
6686 }
6687
6688 #endif /* CONFIG_MAGIC_SYSRQ */
6689
6690 #ifdef CONFIG_IA64
6691 /*
6692 * These functions are only useful for the IA64 MCA handling.
6693 *
6694 * They can only be called when the whole system has been
6695 * stopped - every CPU needs to be quiescent, and no scheduling
6696 * activity can take place. Using them for anything else would
6697 * be a serious bug, and as a result, they aren't even visible
6698 * under any other configuration.
6699 */
6700
6701 /**
6702 * curr_task - return the current task for a given cpu.
6703 * @cpu: the processor in question.
6704 *
6705 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6706 */
6707 struct task_struct *curr_task(int cpu)
6708 {
6709 return cpu_curr(cpu);
6710 }
6711
6712 /**
6713 * set_curr_task - set the current task for a given cpu.
6714 * @cpu: the processor in question.
6715 * @p: the task pointer to set.
6716 *
6717 * Description: This function must only be used when non-maskable interrupts
6718 * are serviced on a separate stack. It allows the architecture to switch the
6719 * notion of the current task on a cpu in a non-blocking manner. This function
6720 * must be called with all CPU's synchronized, and interrupts disabled, the
6721 * and caller must save the original value of the current task (see
6722 * curr_task() above) and restore that value before reenabling interrupts and
6723 * re-starting the system.
6724 *
6725 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6726 */
6727 void set_curr_task(int cpu, struct task_struct *p)
6728 {
6729 cpu_curr(cpu) = p;
6730 }
6731
6732 #endif
6733
6734 #ifdef CONFIG_FAIR_GROUP_SCHED
6735
6736 /* allocate runqueue etc for a new task group */
6737 struct task_grp *sched_create_group(void)
6738 {
6739 struct task_grp *tg;
6740 struct cfs_rq *cfs_rq;
6741 struct sched_entity *se;
6742 struct rq *rq;
6743 int i;
6744
6745 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6746 if (!tg)
6747 return ERR_PTR(-ENOMEM);
6748
6749 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6750 if (!tg->cfs_rq)
6751 goto err;
6752 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6753 if (!tg->se)
6754 goto err;
6755
6756 for_each_possible_cpu(i) {
6757 rq = cpu_rq(i);
6758
6759 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6760 cpu_to_node(i));
6761 if (!cfs_rq)
6762 goto err;
6763
6764 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6765 cpu_to_node(i));
6766 if (!se)
6767 goto err;
6768
6769 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6770 memset(se, 0, sizeof(struct sched_entity));
6771
6772 tg->cfs_rq[i] = cfs_rq;
6773 init_cfs_rq(cfs_rq, rq);
6774 cfs_rq->tg = tg;
6775
6776 tg->se[i] = se;
6777 se->cfs_rq = &rq->cfs;
6778 se->my_q = cfs_rq;
6779 se->load.weight = NICE_0_LOAD;
6780 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6781 se->parent = NULL;
6782 }
6783
6784 for_each_possible_cpu(i) {
6785 rq = cpu_rq(i);
6786 cfs_rq = tg->cfs_rq[i];
6787 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6788 }
6789
6790 tg->shares = NICE_0_LOAD;
6791
6792 return tg;
6793
6794 err:
6795 for_each_possible_cpu(i) {
6796 if (tg->cfs_rq && tg->cfs_rq[i])
6797 kfree(tg->cfs_rq[i]);
6798 if (tg->se && tg->se[i])
6799 kfree(tg->se[i]);
6800 }
6801 if (tg->cfs_rq)
6802 kfree(tg->cfs_rq);
6803 if (tg->se)
6804 kfree(tg->se);
6805 if (tg)
6806 kfree(tg);
6807
6808 return ERR_PTR(-ENOMEM);
6809 }
6810
6811 /* rcu callback to free various structures associated with a task group */
6812 static void free_sched_group(struct rcu_head *rhp)
6813 {
6814 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6815 struct task_grp *tg = cfs_rq->tg;
6816 struct sched_entity *se;
6817 int i;
6818
6819 /* now it should be safe to free those cfs_rqs */
6820 for_each_possible_cpu(i) {
6821 cfs_rq = tg->cfs_rq[i];
6822 kfree(cfs_rq);
6823
6824 se = tg->se[i];
6825 kfree(se);
6826 }
6827
6828 kfree(tg->cfs_rq);
6829 kfree(tg->se);
6830 kfree(tg);
6831 }
6832
6833 /* Destroy runqueue etc associated with a task group */
6834 void sched_destroy_group(struct task_grp *tg)
6835 {
6836 struct cfs_rq *cfs_rq;
6837 int i;
6838
6839 for_each_possible_cpu(i) {
6840 cfs_rq = tg->cfs_rq[i];
6841 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6842 }
6843
6844 cfs_rq = tg->cfs_rq[0];
6845
6846 /* wait for possible concurrent references to cfs_rqs complete */
6847 call_rcu(&cfs_rq->rcu, free_sched_group);
6848 }
6849
6850 /* change task's runqueue when it moves between groups.
6851 * The caller of this function should have put the task in its new group
6852 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6853 * reflect its new group.
6854 */
6855 void sched_move_task(struct task_struct *tsk)
6856 {
6857 int on_rq, running;
6858 unsigned long flags;
6859 struct rq *rq;
6860
6861 rq = task_rq_lock(tsk, &flags);
6862
6863 if (tsk->sched_class != &fair_sched_class)
6864 goto done;
6865
6866 update_rq_clock(rq);
6867
6868 running = task_running(rq, tsk);
6869 on_rq = tsk->se.on_rq;
6870
6871 if (on_rq) {
6872 dequeue_task(rq, tsk, 0);
6873 if (unlikely(running))
6874 tsk->sched_class->put_prev_task(rq, tsk);
6875 }
6876
6877 set_task_cfs_rq(tsk);
6878
6879 if (on_rq) {
6880 if (unlikely(running))
6881 tsk->sched_class->set_curr_task(rq);
6882 enqueue_task(rq, tsk, 0);
6883 }
6884
6885 done:
6886 task_rq_unlock(rq, &flags);
6887 }
6888
6889 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6890 {
6891 struct cfs_rq *cfs_rq = se->cfs_rq;
6892 struct rq *rq = cfs_rq->rq;
6893 int on_rq;
6894
6895 spin_lock_irq(&rq->lock);
6896
6897 on_rq = se->on_rq;
6898 if (on_rq)
6899 dequeue_entity(cfs_rq, se, 0);
6900
6901 se->load.weight = shares;
6902 se->load.inv_weight = div64_64((1ULL<<32), shares);
6903
6904 if (on_rq)
6905 enqueue_entity(cfs_rq, se, 0);
6906
6907 spin_unlock_irq(&rq->lock);
6908 }
6909
6910 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6911 {
6912 int i;
6913
6914 if (tg->shares == shares)
6915 return 0;
6916
6917 /* return -EINVAL if the new value is not sane */
6918
6919 tg->shares = shares;
6920 for_each_possible_cpu(i)
6921 set_se_shares(tg->se[i], shares);
6922
6923 return 0;
6924 }
6925
6926 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.258404 seconds and 6 git commands to generate.