Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177
178 /*
179 * shares assigned to a task group governs how much of cpu bandwidth
180 * is allocated to the group. The more shares a group has, the more is
181 * the cpu bandwidth allocated to it.
182 *
183 * For ex, lets say that there are three task groups, A, B and C which
184 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
185 * cpu bandwidth allocated by the scheduler to task groups A, B and C
186 * should be:
187 *
188 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
189 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
191 *
192 * The weight assigned to a task group's schedulable entities on every
193 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
194 * group's shares. For ex: lets say that task group A has been
195 * assigned shares of 1000 and there are two CPUs in a system. Then,
196 *
197 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
198 *
199 * Note: It's not necessary that each of a task's group schedulable
200 * entity have the same weight on all CPUs. If the group
201 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
202 * better distribution of weight could be:
203 *
204 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
205 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
206 *
207 * rebalance_shares() is responsible for distributing the shares of a
208 * task groups like this among the group's schedulable entities across
209 * cpus.
210 *
211 */
212 unsigned long shares;
213 #endif
214
215 #ifdef CONFIG_RT_GROUP_SCHED
216 struct sched_rt_entity **rt_se;
217 struct rt_rq **rt_rq;
218
219 u64 rt_runtime;
220 #endif
221
222 struct rcu_head rcu;
223 struct list_head list;
224 };
225
226 #ifdef CONFIG_FAIR_GROUP_SCHED
227 /* Default task group's sched entity on each cpu */
228 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
229 /* Default task group's cfs_rq on each cpu */
230 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
231
232 static struct sched_entity *init_sched_entity_p[NR_CPUS];
233 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
238 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
239
240 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
241 static struct rt_rq *init_rt_rq_p[NR_CPUS];
242 #endif
243
244 /* task_group_lock serializes add/remove of task groups and also changes to
245 * a task group's cpu shares.
246 */
247 static DEFINE_SPINLOCK(task_group_lock);
248
249 /* doms_cur_mutex serializes access to doms_cur[] array */
250 static DEFINE_MUTEX(doms_cur_mutex);
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 #ifdef CONFIG_SMP
254 /* kernel thread that runs rebalance_shares() periodically */
255 static struct task_struct *lb_monitor_task;
256 static int load_balance_monitor(void *unused);
257 #endif
258
259 static void set_se_shares(struct sched_entity *se, unsigned long shares);
260
261 #ifdef CONFIG_USER_SCHED
262 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
263 #else
264 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
265 #endif
266
267 #define MIN_GROUP_SHARES 2
268
269 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
270 #endif
271
272 /* Default task group.
273 * Every task in system belong to this group at bootup.
274 */
275 struct task_group init_task_group = {
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 .se = init_sched_entity_p,
278 .cfs_rq = init_cfs_rq_p,
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 .rt_se = init_sched_rt_entity_p,
283 .rt_rq = init_rt_rq_p,
284 #endif
285 };
286
287 /* return group to which a task belongs */
288 static inline struct task_group *task_group(struct task_struct *p)
289 {
290 struct task_group *tg;
291
292 #ifdef CONFIG_USER_SCHED
293 tg = p->user->tg;
294 #elif defined(CONFIG_CGROUP_SCHED)
295 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
296 struct task_group, css);
297 #else
298 tg = &init_task_group;
299 #endif
300 return tg;
301 }
302
303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
304 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
305 {
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
308 p->se.parent = task_group(p)->se[cpu];
309 #endif
310
311 #ifdef CONFIG_RT_GROUP_SCHED
312 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
313 p->rt.parent = task_group(p)->rt_se[cpu];
314 #endif
315 }
316
317 static inline void lock_doms_cur(void)
318 {
319 mutex_lock(&doms_cur_mutex);
320 }
321
322 static inline void unlock_doms_cur(void)
323 {
324 mutex_unlock(&doms_cur_mutex);
325 }
326
327 #else
328
329 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
330 static inline void lock_doms_cur(void) { }
331 static inline void unlock_doms_cur(void) { }
332
333 #endif /* CONFIG_GROUP_SCHED */
334
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned long nr_running;
339
340 u64 exec_clock;
341 u64 min_vruntime;
342
343 struct rb_root tasks_timeline;
344 struct rb_node *rb_leftmost;
345 struct rb_node *rb_load_balance_curr;
346 /* 'curr' points to currently running entity on this cfs_rq.
347 * It is set to NULL otherwise (i.e when none are currently running).
348 */
349 struct sched_entity *curr;
350
351 unsigned long nr_spread_over;
352
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
355
356 /*
357 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
358 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
359 * (like users, containers etc.)
360 *
361 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
362 * list is used during load balance.
363 */
364 struct list_head leaf_cfs_rq_list;
365 struct task_group *tg; /* group that "owns" this runqueue */
366 #endif
367 };
368
369 /* Real-Time classes' related field in a runqueue: */
370 struct rt_rq {
371 struct rt_prio_array active;
372 unsigned long rt_nr_running;
373 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
374 int highest_prio; /* highest queued rt task prio */
375 #endif
376 #ifdef CONFIG_SMP
377 unsigned long rt_nr_migratory;
378 int overloaded;
379 #endif
380 int rt_throttled;
381 u64 rt_time;
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 unsigned long rt_nr_boosted;
385
386 struct rq *rq;
387 struct list_head leaf_rt_rq_list;
388 struct task_group *tg;
389 struct sched_rt_entity *rt_se;
390 #endif
391 };
392
393 #ifdef CONFIG_SMP
394
395 /*
396 * We add the notion of a root-domain which will be used to define per-domain
397 * variables. Each exclusive cpuset essentially defines an island domain by
398 * fully partitioning the member cpus from any other cpuset. Whenever a new
399 * exclusive cpuset is created, we also create and attach a new root-domain
400 * object.
401 *
402 */
403 struct root_domain {
404 atomic_t refcount;
405 cpumask_t span;
406 cpumask_t online;
407
408 /*
409 * The "RT overload" flag: it gets set if a CPU has more than
410 * one runnable RT task.
411 */
412 cpumask_t rto_mask;
413 atomic_t rto_count;
414 };
415
416 /*
417 * By default the system creates a single root-domain with all cpus as
418 * members (mimicking the global state we have today).
419 */
420 static struct root_domain def_root_domain;
421
422 #endif
423
424 /*
425 * This is the main, per-CPU runqueue data structure.
426 *
427 * Locking rule: those places that want to lock multiple runqueues
428 * (such as the load balancing or the thread migration code), lock
429 * acquire operations must be ordered by ascending &runqueue.
430 */
431 struct rq {
432 /* runqueue lock: */
433 spinlock_t lock;
434
435 /*
436 * nr_running and cpu_load should be in the same cacheline because
437 * remote CPUs use both these fields when doing load calculation.
438 */
439 unsigned long nr_running;
440 #define CPU_LOAD_IDX_MAX 5
441 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
442 unsigned char idle_at_tick;
443 #ifdef CONFIG_NO_HZ
444 unsigned char in_nohz_recently;
445 #endif
446 /* capture load from *all* tasks on this cpu: */
447 struct load_weight load;
448 unsigned long nr_load_updates;
449 u64 nr_switches;
450
451 struct cfs_rq cfs;
452 struct rt_rq rt;
453 u64 rt_period_expire;
454 int rt_throttled;
455
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 /* list of leaf cfs_rq on this cpu: */
458 struct list_head leaf_cfs_rq_list;
459 #endif
460 #ifdef CONFIG_RT_GROUP_SCHED
461 struct list_head leaf_rt_rq_list;
462 #endif
463
464 /*
465 * This is part of a global counter where only the total sum
466 * over all CPUs matters. A task can increase this counter on
467 * one CPU and if it got migrated afterwards it may decrease
468 * it on another CPU. Always updated under the runqueue lock:
469 */
470 unsigned long nr_uninterruptible;
471
472 struct task_struct *curr, *idle;
473 unsigned long next_balance;
474 struct mm_struct *prev_mm;
475
476 u64 clock, prev_clock_raw;
477 s64 clock_max_delta;
478
479 unsigned int clock_warps, clock_overflows, clock_underflows;
480 u64 idle_clock;
481 unsigned int clock_deep_idle_events;
482 u64 tick_timestamp;
483
484 atomic_t nr_iowait;
485
486 #ifdef CONFIG_SMP
487 struct root_domain *rd;
488 struct sched_domain *sd;
489
490 /* For active balancing */
491 int active_balance;
492 int push_cpu;
493 /* cpu of this runqueue: */
494 int cpu;
495
496 struct task_struct *migration_thread;
497 struct list_head migration_queue;
498 #endif
499
500 #ifdef CONFIG_SCHED_HRTICK
501 unsigned long hrtick_flags;
502 ktime_t hrtick_expire;
503 struct hrtimer hrtick_timer;
504 #endif
505
506 #ifdef CONFIG_SCHEDSTATS
507 /* latency stats */
508 struct sched_info rq_sched_info;
509
510 /* sys_sched_yield() stats */
511 unsigned int yld_exp_empty;
512 unsigned int yld_act_empty;
513 unsigned int yld_both_empty;
514 unsigned int yld_count;
515
516 /* schedule() stats */
517 unsigned int sched_switch;
518 unsigned int sched_count;
519 unsigned int sched_goidle;
520
521 /* try_to_wake_up() stats */
522 unsigned int ttwu_count;
523 unsigned int ttwu_local;
524
525 /* BKL stats */
526 unsigned int bkl_count;
527 #endif
528 struct lock_class_key rq_lock_key;
529 };
530
531 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
532
533 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
534 {
535 rq->curr->sched_class->check_preempt_curr(rq, p);
536 }
537
538 static inline int cpu_of(struct rq *rq)
539 {
540 #ifdef CONFIG_SMP
541 return rq->cpu;
542 #else
543 return 0;
544 #endif
545 }
546
547 /*
548 * Update the per-runqueue clock, as finegrained as the platform can give
549 * us, but without assuming monotonicity, etc.:
550 */
551 static void __update_rq_clock(struct rq *rq)
552 {
553 u64 prev_raw = rq->prev_clock_raw;
554 u64 now = sched_clock();
555 s64 delta = now - prev_raw;
556 u64 clock = rq->clock;
557
558 #ifdef CONFIG_SCHED_DEBUG
559 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
560 #endif
561 /*
562 * Protect against sched_clock() occasionally going backwards:
563 */
564 if (unlikely(delta < 0)) {
565 clock++;
566 rq->clock_warps++;
567 } else {
568 /*
569 * Catch too large forward jumps too:
570 */
571 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
572 if (clock < rq->tick_timestamp + TICK_NSEC)
573 clock = rq->tick_timestamp + TICK_NSEC;
574 else
575 clock++;
576 rq->clock_overflows++;
577 } else {
578 if (unlikely(delta > rq->clock_max_delta))
579 rq->clock_max_delta = delta;
580 clock += delta;
581 }
582 }
583
584 rq->prev_clock_raw = now;
585 rq->clock = clock;
586 }
587
588 static void update_rq_clock(struct rq *rq)
589 {
590 if (likely(smp_processor_id() == cpu_of(rq)))
591 __update_rq_clock(rq);
592 }
593
594 /*
595 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596 * See detach_destroy_domains: synchronize_sched for details.
597 *
598 * The domain tree of any CPU may only be accessed from within
599 * preempt-disabled sections.
600 */
601 #define for_each_domain(cpu, __sd) \
602 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
603
604 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
605 #define this_rq() (&__get_cpu_var(runqueues))
606 #define task_rq(p) cpu_rq(task_cpu(p))
607 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
608
609 unsigned long rt_needs_cpu(int cpu)
610 {
611 struct rq *rq = cpu_rq(cpu);
612 u64 delta;
613
614 if (!rq->rt_throttled)
615 return 0;
616
617 if (rq->clock > rq->rt_period_expire)
618 return 1;
619
620 delta = rq->rt_period_expire - rq->clock;
621 do_div(delta, NSEC_PER_SEC / HZ);
622
623 return (unsigned long)delta;
624 }
625
626 /*
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
628 */
629 #ifdef CONFIG_SCHED_DEBUG
630 # define const_debug __read_mostly
631 #else
632 # define const_debug static const
633 #endif
634
635 /*
636 * Debugging: various feature bits
637 */
638 enum {
639 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
640 SCHED_FEAT_WAKEUP_PREEMPT = 2,
641 SCHED_FEAT_START_DEBIT = 4,
642 SCHED_FEAT_TREE_AVG = 8,
643 SCHED_FEAT_APPROX_AVG = 16,
644 SCHED_FEAT_HRTICK = 32,
645 SCHED_FEAT_DOUBLE_TICK = 64,
646 };
647
648 const_debug unsigned int sysctl_sched_features =
649 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
650 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
651 SCHED_FEAT_START_DEBIT * 1 |
652 SCHED_FEAT_TREE_AVG * 0 |
653 SCHED_FEAT_APPROX_AVG * 0 |
654 SCHED_FEAT_HRTICK * 1 |
655 SCHED_FEAT_DOUBLE_TICK * 0;
656
657 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
658
659 /*
660 * Number of tasks to iterate in a single balance run.
661 * Limited because this is done with IRQs disabled.
662 */
663 const_debug unsigned int sysctl_sched_nr_migrate = 32;
664
665 /*
666 * period over which we measure -rt task cpu usage in us.
667 * default: 1s
668 */
669 unsigned int sysctl_sched_rt_period = 1000000;
670
671 static __read_mostly int scheduler_running;
672
673 /*
674 * part of the period that we allow rt tasks to run in us.
675 * default: 0.95s
676 */
677 int sysctl_sched_rt_runtime = 950000;
678
679 /*
680 * single value that denotes runtime == period, ie unlimited time.
681 */
682 #define RUNTIME_INF ((u64)~0ULL)
683
684 /*
685 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
686 * clock constructed from sched_clock():
687 */
688 unsigned long long cpu_clock(int cpu)
689 {
690 unsigned long long now;
691 unsigned long flags;
692 struct rq *rq;
693
694 /*
695 * Only call sched_clock() if the scheduler has already been
696 * initialized (some code might call cpu_clock() very early):
697 */
698 if (unlikely(!scheduler_running))
699 return 0;
700
701 local_irq_save(flags);
702 rq = cpu_rq(cpu);
703 update_rq_clock(rq);
704 now = rq->clock;
705 local_irq_restore(flags);
706
707 return now;
708 }
709 EXPORT_SYMBOL_GPL(cpu_clock);
710
711 #ifndef prepare_arch_switch
712 # define prepare_arch_switch(next) do { } while (0)
713 #endif
714 #ifndef finish_arch_switch
715 # define finish_arch_switch(prev) do { } while (0)
716 #endif
717
718 static inline int task_current(struct rq *rq, struct task_struct *p)
719 {
720 return rq->curr == p;
721 }
722
723 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
724 static inline int task_running(struct rq *rq, struct task_struct *p)
725 {
726 return task_current(rq, p);
727 }
728
729 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
730 {
731 }
732
733 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
734 {
735 #ifdef CONFIG_DEBUG_SPINLOCK
736 /* this is a valid case when another task releases the spinlock */
737 rq->lock.owner = current;
738 #endif
739 /*
740 * If we are tracking spinlock dependencies then we have to
741 * fix up the runqueue lock - which gets 'carried over' from
742 * prev into current:
743 */
744 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
745
746 spin_unlock_irq(&rq->lock);
747 }
748
749 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
750 static inline int task_running(struct rq *rq, struct task_struct *p)
751 {
752 #ifdef CONFIG_SMP
753 return p->oncpu;
754 #else
755 return task_current(rq, p);
756 #endif
757 }
758
759 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
760 {
761 #ifdef CONFIG_SMP
762 /*
763 * We can optimise this out completely for !SMP, because the
764 * SMP rebalancing from interrupt is the only thing that cares
765 * here.
766 */
767 next->oncpu = 1;
768 #endif
769 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
770 spin_unlock_irq(&rq->lock);
771 #else
772 spin_unlock(&rq->lock);
773 #endif
774 }
775
776 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
777 {
778 #ifdef CONFIG_SMP
779 /*
780 * After ->oncpu is cleared, the task can be moved to a different CPU.
781 * We must ensure this doesn't happen until the switch is completely
782 * finished.
783 */
784 smp_wmb();
785 prev->oncpu = 0;
786 #endif
787 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
788 local_irq_enable();
789 #endif
790 }
791 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
792
793 /*
794 * __task_rq_lock - lock the runqueue a given task resides on.
795 * Must be called interrupts disabled.
796 */
797 static inline struct rq *__task_rq_lock(struct task_struct *p)
798 __acquires(rq->lock)
799 {
800 for (;;) {
801 struct rq *rq = task_rq(p);
802 spin_lock(&rq->lock);
803 if (likely(rq == task_rq(p)))
804 return rq;
805 spin_unlock(&rq->lock);
806 }
807 }
808
809 /*
810 * task_rq_lock - lock the runqueue a given task resides on and disable
811 * interrupts. Note the ordering: we can safely lookup the task_rq without
812 * explicitly disabling preemption.
813 */
814 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
815 __acquires(rq->lock)
816 {
817 struct rq *rq;
818
819 for (;;) {
820 local_irq_save(*flags);
821 rq = task_rq(p);
822 spin_lock(&rq->lock);
823 if (likely(rq == task_rq(p)))
824 return rq;
825 spin_unlock_irqrestore(&rq->lock, *flags);
826 }
827 }
828
829 static void __task_rq_unlock(struct rq *rq)
830 __releases(rq->lock)
831 {
832 spin_unlock(&rq->lock);
833 }
834
835 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
836 __releases(rq->lock)
837 {
838 spin_unlock_irqrestore(&rq->lock, *flags);
839 }
840
841 /*
842 * this_rq_lock - lock this runqueue and disable interrupts.
843 */
844 static struct rq *this_rq_lock(void)
845 __acquires(rq->lock)
846 {
847 struct rq *rq;
848
849 local_irq_disable();
850 rq = this_rq();
851 spin_lock(&rq->lock);
852
853 return rq;
854 }
855
856 /*
857 * We are going deep-idle (irqs are disabled):
858 */
859 void sched_clock_idle_sleep_event(void)
860 {
861 struct rq *rq = cpu_rq(smp_processor_id());
862
863 spin_lock(&rq->lock);
864 __update_rq_clock(rq);
865 spin_unlock(&rq->lock);
866 rq->clock_deep_idle_events++;
867 }
868 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
869
870 /*
871 * We just idled delta nanoseconds (called with irqs disabled):
872 */
873 void sched_clock_idle_wakeup_event(u64 delta_ns)
874 {
875 struct rq *rq = cpu_rq(smp_processor_id());
876 u64 now = sched_clock();
877
878 rq->idle_clock += delta_ns;
879 /*
880 * Override the previous timestamp and ignore all
881 * sched_clock() deltas that occured while we idled,
882 * and use the PM-provided delta_ns to advance the
883 * rq clock:
884 */
885 spin_lock(&rq->lock);
886 rq->prev_clock_raw = now;
887 rq->clock += delta_ns;
888 spin_unlock(&rq->lock);
889 touch_softlockup_watchdog();
890 }
891 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
892
893 static void __resched_task(struct task_struct *p, int tif_bit);
894
895 static inline void resched_task(struct task_struct *p)
896 {
897 __resched_task(p, TIF_NEED_RESCHED);
898 }
899
900 #ifdef CONFIG_SCHED_HRTICK
901 /*
902 * Use HR-timers to deliver accurate preemption points.
903 *
904 * Its all a bit involved since we cannot program an hrt while holding the
905 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
906 * reschedule event.
907 *
908 * When we get rescheduled we reprogram the hrtick_timer outside of the
909 * rq->lock.
910 */
911 static inline void resched_hrt(struct task_struct *p)
912 {
913 __resched_task(p, TIF_HRTICK_RESCHED);
914 }
915
916 static inline void resched_rq(struct rq *rq)
917 {
918 unsigned long flags;
919
920 spin_lock_irqsave(&rq->lock, flags);
921 resched_task(rq->curr);
922 spin_unlock_irqrestore(&rq->lock, flags);
923 }
924
925 enum {
926 HRTICK_SET, /* re-programm hrtick_timer */
927 HRTICK_RESET, /* not a new slice */
928 };
929
930 /*
931 * Use hrtick when:
932 * - enabled by features
933 * - hrtimer is actually high res
934 */
935 static inline int hrtick_enabled(struct rq *rq)
936 {
937 if (!sched_feat(HRTICK))
938 return 0;
939 return hrtimer_is_hres_active(&rq->hrtick_timer);
940 }
941
942 /*
943 * Called to set the hrtick timer state.
944 *
945 * called with rq->lock held and irqs disabled
946 */
947 static void hrtick_start(struct rq *rq, u64 delay, int reset)
948 {
949 assert_spin_locked(&rq->lock);
950
951 /*
952 * preempt at: now + delay
953 */
954 rq->hrtick_expire =
955 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
956 /*
957 * indicate we need to program the timer
958 */
959 __set_bit(HRTICK_SET, &rq->hrtick_flags);
960 if (reset)
961 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
962
963 /*
964 * New slices are called from the schedule path and don't need a
965 * forced reschedule.
966 */
967 if (reset)
968 resched_hrt(rq->curr);
969 }
970
971 static void hrtick_clear(struct rq *rq)
972 {
973 if (hrtimer_active(&rq->hrtick_timer))
974 hrtimer_cancel(&rq->hrtick_timer);
975 }
976
977 /*
978 * Update the timer from the possible pending state.
979 */
980 static void hrtick_set(struct rq *rq)
981 {
982 ktime_t time;
983 int set, reset;
984 unsigned long flags;
985
986 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
987
988 spin_lock_irqsave(&rq->lock, flags);
989 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
990 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
991 time = rq->hrtick_expire;
992 clear_thread_flag(TIF_HRTICK_RESCHED);
993 spin_unlock_irqrestore(&rq->lock, flags);
994
995 if (set) {
996 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
997 if (reset && !hrtimer_active(&rq->hrtick_timer))
998 resched_rq(rq);
999 } else
1000 hrtick_clear(rq);
1001 }
1002
1003 /*
1004 * High-resolution timer tick.
1005 * Runs from hardirq context with interrupts disabled.
1006 */
1007 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1008 {
1009 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1010
1011 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1012
1013 spin_lock(&rq->lock);
1014 __update_rq_clock(rq);
1015 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1016 spin_unlock(&rq->lock);
1017
1018 return HRTIMER_NORESTART;
1019 }
1020
1021 static inline void init_rq_hrtick(struct rq *rq)
1022 {
1023 rq->hrtick_flags = 0;
1024 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1025 rq->hrtick_timer.function = hrtick;
1026 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1027 }
1028
1029 void hrtick_resched(void)
1030 {
1031 struct rq *rq;
1032 unsigned long flags;
1033
1034 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1035 return;
1036
1037 local_irq_save(flags);
1038 rq = cpu_rq(smp_processor_id());
1039 hrtick_set(rq);
1040 local_irq_restore(flags);
1041 }
1042 #else
1043 static inline void hrtick_clear(struct rq *rq)
1044 {
1045 }
1046
1047 static inline void hrtick_set(struct rq *rq)
1048 {
1049 }
1050
1051 static inline void init_rq_hrtick(struct rq *rq)
1052 {
1053 }
1054
1055 void hrtick_resched(void)
1056 {
1057 }
1058 #endif
1059
1060 /*
1061 * resched_task - mark a task 'to be rescheduled now'.
1062 *
1063 * On UP this means the setting of the need_resched flag, on SMP it
1064 * might also involve a cross-CPU call to trigger the scheduler on
1065 * the target CPU.
1066 */
1067 #ifdef CONFIG_SMP
1068
1069 #ifndef tsk_is_polling
1070 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1071 #endif
1072
1073 static void __resched_task(struct task_struct *p, int tif_bit)
1074 {
1075 int cpu;
1076
1077 assert_spin_locked(&task_rq(p)->lock);
1078
1079 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1080 return;
1081
1082 set_tsk_thread_flag(p, tif_bit);
1083
1084 cpu = task_cpu(p);
1085 if (cpu == smp_processor_id())
1086 return;
1087
1088 /* NEED_RESCHED must be visible before we test polling */
1089 smp_mb();
1090 if (!tsk_is_polling(p))
1091 smp_send_reschedule(cpu);
1092 }
1093
1094 static void resched_cpu(int cpu)
1095 {
1096 struct rq *rq = cpu_rq(cpu);
1097 unsigned long flags;
1098
1099 if (!spin_trylock_irqsave(&rq->lock, flags))
1100 return;
1101 resched_task(cpu_curr(cpu));
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103 }
1104 #else
1105 static void __resched_task(struct task_struct *p, int tif_bit)
1106 {
1107 assert_spin_locked(&task_rq(p)->lock);
1108 set_tsk_thread_flag(p, tif_bit);
1109 }
1110 #endif
1111
1112 #if BITS_PER_LONG == 32
1113 # define WMULT_CONST (~0UL)
1114 #else
1115 # define WMULT_CONST (1UL << 32)
1116 #endif
1117
1118 #define WMULT_SHIFT 32
1119
1120 /*
1121 * Shift right and round:
1122 */
1123 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1124
1125 static unsigned long
1126 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1127 struct load_weight *lw)
1128 {
1129 u64 tmp;
1130
1131 if (unlikely(!lw->inv_weight))
1132 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1133
1134 tmp = (u64)delta_exec * weight;
1135 /*
1136 * Check whether we'd overflow the 64-bit multiplication:
1137 */
1138 if (unlikely(tmp > WMULT_CONST))
1139 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1140 WMULT_SHIFT/2);
1141 else
1142 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1143
1144 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1145 }
1146
1147 static inline unsigned long
1148 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1149 {
1150 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1151 }
1152
1153 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1154 {
1155 lw->weight += inc;
1156 }
1157
1158 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1159 {
1160 lw->weight -= dec;
1161 }
1162
1163 /*
1164 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1165 * of tasks with abnormal "nice" values across CPUs the contribution that
1166 * each task makes to its run queue's load is weighted according to its
1167 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1168 * scaled version of the new time slice allocation that they receive on time
1169 * slice expiry etc.
1170 */
1171
1172 #define WEIGHT_IDLEPRIO 2
1173 #define WMULT_IDLEPRIO (1 << 31)
1174
1175 /*
1176 * Nice levels are multiplicative, with a gentle 10% change for every
1177 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1178 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1179 * that remained on nice 0.
1180 *
1181 * The "10% effect" is relative and cumulative: from _any_ nice level,
1182 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1183 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1184 * If a task goes up by ~10% and another task goes down by ~10% then
1185 * the relative distance between them is ~25%.)
1186 */
1187 static const int prio_to_weight[40] = {
1188 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1189 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1190 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1191 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1192 /* 0 */ 1024, 820, 655, 526, 423,
1193 /* 5 */ 335, 272, 215, 172, 137,
1194 /* 10 */ 110, 87, 70, 56, 45,
1195 /* 15 */ 36, 29, 23, 18, 15,
1196 };
1197
1198 /*
1199 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1200 *
1201 * In cases where the weight does not change often, we can use the
1202 * precalculated inverse to speed up arithmetics by turning divisions
1203 * into multiplications:
1204 */
1205 static const u32 prio_to_wmult[40] = {
1206 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1207 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1208 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1209 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1210 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1211 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1212 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1213 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1214 };
1215
1216 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1217
1218 /*
1219 * runqueue iterator, to support SMP load-balancing between different
1220 * scheduling classes, without having to expose their internal data
1221 * structures to the load-balancing proper:
1222 */
1223 struct rq_iterator {
1224 void *arg;
1225 struct task_struct *(*start)(void *);
1226 struct task_struct *(*next)(void *);
1227 };
1228
1229 #ifdef CONFIG_SMP
1230 static unsigned long
1231 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1232 unsigned long max_load_move, struct sched_domain *sd,
1233 enum cpu_idle_type idle, int *all_pinned,
1234 int *this_best_prio, struct rq_iterator *iterator);
1235
1236 static int
1237 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1238 struct sched_domain *sd, enum cpu_idle_type idle,
1239 struct rq_iterator *iterator);
1240 #endif
1241
1242 #ifdef CONFIG_CGROUP_CPUACCT
1243 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1244 #else
1245 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1246 #endif
1247
1248 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1249 {
1250 update_load_add(&rq->load, load);
1251 }
1252
1253 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1254 {
1255 update_load_sub(&rq->load, load);
1256 }
1257
1258 #ifdef CONFIG_SMP
1259 static unsigned long source_load(int cpu, int type);
1260 static unsigned long target_load(int cpu, int type);
1261 static unsigned long cpu_avg_load_per_task(int cpu);
1262 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1263 #endif /* CONFIG_SMP */
1264
1265 #include "sched_stats.h"
1266 #include "sched_idletask.c"
1267 #include "sched_fair.c"
1268 #include "sched_rt.c"
1269 #ifdef CONFIG_SCHED_DEBUG
1270 # include "sched_debug.c"
1271 #endif
1272
1273 #define sched_class_highest (&rt_sched_class)
1274
1275 static void inc_nr_running(struct rq *rq)
1276 {
1277 rq->nr_running++;
1278 }
1279
1280 static void dec_nr_running(struct rq *rq)
1281 {
1282 rq->nr_running--;
1283 }
1284
1285 static void set_load_weight(struct task_struct *p)
1286 {
1287 if (task_has_rt_policy(p)) {
1288 p->se.load.weight = prio_to_weight[0] * 2;
1289 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1290 return;
1291 }
1292
1293 /*
1294 * SCHED_IDLE tasks get minimal weight:
1295 */
1296 if (p->policy == SCHED_IDLE) {
1297 p->se.load.weight = WEIGHT_IDLEPRIO;
1298 p->se.load.inv_weight = WMULT_IDLEPRIO;
1299 return;
1300 }
1301
1302 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1303 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1304 }
1305
1306 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1307 {
1308 sched_info_queued(p);
1309 p->sched_class->enqueue_task(rq, p, wakeup);
1310 p->se.on_rq = 1;
1311 }
1312
1313 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1314 {
1315 p->sched_class->dequeue_task(rq, p, sleep);
1316 p->se.on_rq = 0;
1317 }
1318
1319 /*
1320 * __normal_prio - return the priority that is based on the static prio
1321 */
1322 static inline int __normal_prio(struct task_struct *p)
1323 {
1324 return p->static_prio;
1325 }
1326
1327 /*
1328 * Calculate the expected normal priority: i.e. priority
1329 * without taking RT-inheritance into account. Might be
1330 * boosted by interactivity modifiers. Changes upon fork,
1331 * setprio syscalls, and whenever the interactivity
1332 * estimator recalculates.
1333 */
1334 static inline int normal_prio(struct task_struct *p)
1335 {
1336 int prio;
1337
1338 if (task_has_rt_policy(p))
1339 prio = MAX_RT_PRIO-1 - p->rt_priority;
1340 else
1341 prio = __normal_prio(p);
1342 return prio;
1343 }
1344
1345 /*
1346 * Calculate the current priority, i.e. the priority
1347 * taken into account by the scheduler. This value might
1348 * be boosted by RT tasks, or might be boosted by
1349 * interactivity modifiers. Will be RT if the task got
1350 * RT-boosted. If not then it returns p->normal_prio.
1351 */
1352 static int effective_prio(struct task_struct *p)
1353 {
1354 p->normal_prio = normal_prio(p);
1355 /*
1356 * If we are RT tasks or we were boosted to RT priority,
1357 * keep the priority unchanged. Otherwise, update priority
1358 * to the normal priority:
1359 */
1360 if (!rt_prio(p->prio))
1361 return p->normal_prio;
1362 return p->prio;
1363 }
1364
1365 /*
1366 * activate_task - move a task to the runqueue.
1367 */
1368 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1369 {
1370 if (task_contributes_to_load(p))
1371 rq->nr_uninterruptible--;
1372
1373 enqueue_task(rq, p, wakeup);
1374 inc_nr_running(rq);
1375 }
1376
1377 /*
1378 * deactivate_task - remove a task from the runqueue.
1379 */
1380 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1381 {
1382 if (task_contributes_to_load(p))
1383 rq->nr_uninterruptible++;
1384
1385 dequeue_task(rq, p, sleep);
1386 dec_nr_running(rq);
1387 }
1388
1389 /**
1390 * task_curr - is this task currently executing on a CPU?
1391 * @p: the task in question.
1392 */
1393 inline int task_curr(const struct task_struct *p)
1394 {
1395 return cpu_curr(task_cpu(p)) == p;
1396 }
1397
1398 /* Used instead of source_load when we know the type == 0 */
1399 unsigned long weighted_cpuload(const int cpu)
1400 {
1401 return cpu_rq(cpu)->load.weight;
1402 }
1403
1404 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1405 {
1406 set_task_rq(p, cpu);
1407 #ifdef CONFIG_SMP
1408 /*
1409 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1410 * successfuly executed on another CPU. We must ensure that updates of
1411 * per-task data have been completed by this moment.
1412 */
1413 smp_wmb();
1414 task_thread_info(p)->cpu = cpu;
1415 #endif
1416 }
1417
1418 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1419 const struct sched_class *prev_class,
1420 int oldprio, int running)
1421 {
1422 if (prev_class != p->sched_class) {
1423 if (prev_class->switched_from)
1424 prev_class->switched_from(rq, p, running);
1425 p->sched_class->switched_to(rq, p, running);
1426 } else
1427 p->sched_class->prio_changed(rq, p, oldprio, running);
1428 }
1429
1430 #ifdef CONFIG_SMP
1431
1432 /*
1433 * Is this task likely cache-hot:
1434 */
1435 static int
1436 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1437 {
1438 s64 delta;
1439
1440 if (p->sched_class != &fair_sched_class)
1441 return 0;
1442
1443 if (sysctl_sched_migration_cost == -1)
1444 return 1;
1445 if (sysctl_sched_migration_cost == 0)
1446 return 0;
1447
1448 delta = now - p->se.exec_start;
1449
1450 return delta < (s64)sysctl_sched_migration_cost;
1451 }
1452
1453
1454 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1455 {
1456 int old_cpu = task_cpu(p);
1457 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1458 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1459 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1460 u64 clock_offset;
1461
1462 clock_offset = old_rq->clock - new_rq->clock;
1463
1464 #ifdef CONFIG_SCHEDSTATS
1465 if (p->se.wait_start)
1466 p->se.wait_start -= clock_offset;
1467 if (p->se.sleep_start)
1468 p->se.sleep_start -= clock_offset;
1469 if (p->se.block_start)
1470 p->se.block_start -= clock_offset;
1471 if (old_cpu != new_cpu) {
1472 schedstat_inc(p, se.nr_migrations);
1473 if (task_hot(p, old_rq->clock, NULL))
1474 schedstat_inc(p, se.nr_forced2_migrations);
1475 }
1476 #endif
1477 p->se.vruntime -= old_cfsrq->min_vruntime -
1478 new_cfsrq->min_vruntime;
1479
1480 __set_task_cpu(p, new_cpu);
1481 }
1482
1483 struct migration_req {
1484 struct list_head list;
1485
1486 struct task_struct *task;
1487 int dest_cpu;
1488
1489 struct completion done;
1490 };
1491
1492 /*
1493 * The task's runqueue lock must be held.
1494 * Returns true if you have to wait for migration thread.
1495 */
1496 static int
1497 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 /*
1502 * If the task is not on a runqueue (and not running), then
1503 * it is sufficient to simply update the task's cpu field.
1504 */
1505 if (!p->se.on_rq && !task_running(rq, p)) {
1506 set_task_cpu(p, dest_cpu);
1507 return 0;
1508 }
1509
1510 init_completion(&req->done);
1511 req->task = p;
1512 req->dest_cpu = dest_cpu;
1513 list_add(&req->list, &rq->migration_queue);
1514
1515 return 1;
1516 }
1517
1518 /*
1519 * wait_task_inactive - wait for a thread to unschedule.
1520 *
1521 * The caller must ensure that the task *will* unschedule sometime soon,
1522 * else this function might spin for a *long* time. This function can't
1523 * be called with interrupts off, or it may introduce deadlock with
1524 * smp_call_function() if an IPI is sent by the same process we are
1525 * waiting to become inactive.
1526 */
1527 void wait_task_inactive(struct task_struct *p)
1528 {
1529 unsigned long flags;
1530 int running, on_rq;
1531 struct rq *rq;
1532
1533 for (;;) {
1534 /*
1535 * We do the initial early heuristics without holding
1536 * any task-queue locks at all. We'll only try to get
1537 * the runqueue lock when things look like they will
1538 * work out!
1539 */
1540 rq = task_rq(p);
1541
1542 /*
1543 * If the task is actively running on another CPU
1544 * still, just relax and busy-wait without holding
1545 * any locks.
1546 *
1547 * NOTE! Since we don't hold any locks, it's not
1548 * even sure that "rq" stays as the right runqueue!
1549 * But we don't care, since "task_running()" will
1550 * return false if the runqueue has changed and p
1551 * is actually now running somewhere else!
1552 */
1553 while (task_running(rq, p))
1554 cpu_relax();
1555
1556 /*
1557 * Ok, time to look more closely! We need the rq
1558 * lock now, to be *sure*. If we're wrong, we'll
1559 * just go back and repeat.
1560 */
1561 rq = task_rq_lock(p, &flags);
1562 running = task_running(rq, p);
1563 on_rq = p->se.on_rq;
1564 task_rq_unlock(rq, &flags);
1565
1566 /*
1567 * Was it really running after all now that we
1568 * checked with the proper locks actually held?
1569 *
1570 * Oops. Go back and try again..
1571 */
1572 if (unlikely(running)) {
1573 cpu_relax();
1574 continue;
1575 }
1576
1577 /*
1578 * It's not enough that it's not actively running,
1579 * it must be off the runqueue _entirely_, and not
1580 * preempted!
1581 *
1582 * So if it wa still runnable (but just not actively
1583 * running right now), it's preempted, and we should
1584 * yield - it could be a while.
1585 */
1586 if (unlikely(on_rq)) {
1587 schedule_timeout_uninterruptible(1);
1588 continue;
1589 }
1590
1591 /*
1592 * Ahh, all good. It wasn't running, and it wasn't
1593 * runnable, which means that it will never become
1594 * running in the future either. We're all done!
1595 */
1596 break;
1597 }
1598 }
1599
1600 /***
1601 * kick_process - kick a running thread to enter/exit the kernel
1602 * @p: the to-be-kicked thread
1603 *
1604 * Cause a process which is running on another CPU to enter
1605 * kernel-mode, without any delay. (to get signals handled.)
1606 *
1607 * NOTE: this function doesnt have to take the runqueue lock,
1608 * because all it wants to ensure is that the remote task enters
1609 * the kernel. If the IPI races and the task has been migrated
1610 * to another CPU then no harm is done and the purpose has been
1611 * achieved as well.
1612 */
1613 void kick_process(struct task_struct *p)
1614 {
1615 int cpu;
1616
1617 preempt_disable();
1618 cpu = task_cpu(p);
1619 if ((cpu != smp_processor_id()) && task_curr(p))
1620 smp_send_reschedule(cpu);
1621 preempt_enable();
1622 }
1623
1624 /*
1625 * Return a low guess at the load of a migration-source cpu weighted
1626 * according to the scheduling class and "nice" value.
1627 *
1628 * We want to under-estimate the load of migration sources, to
1629 * balance conservatively.
1630 */
1631 static unsigned long source_load(int cpu, int type)
1632 {
1633 struct rq *rq = cpu_rq(cpu);
1634 unsigned long total = weighted_cpuload(cpu);
1635
1636 if (type == 0)
1637 return total;
1638
1639 return min(rq->cpu_load[type-1], total);
1640 }
1641
1642 /*
1643 * Return a high guess at the load of a migration-target cpu weighted
1644 * according to the scheduling class and "nice" value.
1645 */
1646 static unsigned long target_load(int cpu, int type)
1647 {
1648 struct rq *rq = cpu_rq(cpu);
1649 unsigned long total = weighted_cpuload(cpu);
1650
1651 if (type == 0)
1652 return total;
1653
1654 return max(rq->cpu_load[type-1], total);
1655 }
1656
1657 /*
1658 * Return the average load per task on the cpu's run queue
1659 */
1660 static unsigned long cpu_avg_load_per_task(int cpu)
1661 {
1662 struct rq *rq = cpu_rq(cpu);
1663 unsigned long total = weighted_cpuload(cpu);
1664 unsigned long n = rq->nr_running;
1665
1666 return n ? total / n : SCHED_LOAD_SCALE;
1667 }
1668
1669 /*
1670 * find_idlest_group finds and returns the least busy CPU group within the
1671 * domain.
1672 */
1673 static struct sched_group *
1674 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1675 {
1676 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1677 unsigned long min_load = ULONG_MAX, this_load = 0;
1678 int load_idx = sd->forkexec_idx;
1679 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1680
1681 do {
1682 unsigned long load, avg_load;
1683 int local_group;
1684 int i;
1685
1686 /* Skip over this group if it has no CPUs allowed */
1687 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1688 continue;
1689
1690 local_group = cpu_isset(this_cpu, group->cpumask);
1691
1692 /* Tally up the load of all CPUs in the group */
1693 avg_load = 0;
1694
1695 for_each_cpu_mask(i, group->cpumask) {
1696 /* Bias balancing toward cpus of our domain */
1697 if (local_group)
1698 load = source_load(i, load_idx);
1699 else
1700 load = target_load(i, load_idx);
1701
1702 avg_load += load;
1703 }
1704
1705 /* Adjust by relative CPU power of the group */
1706 avg_load = sg_div_cpu_power(group,
1707 avg_load * SCHED_LOAD_SCALE);
1708
1709 if (local_group) {
1710 this_load = avg_load;
1711 this = group;
1712 } else if (avg_load < min_load) {
1713 min_load = avg_load;
1714 idlest = group;
1715 }
1716 } while (group = group->next, group != sd->groups);
1717
1718 if (!idlest || 100*this_load < imbalance*min_load)
1719 return NULL;
1720 return idlest;
1721 }
1722
1723 /*
1724 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1725 */
1726 static int
1727 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1728 {
1729 cpumask_t tmp;
1730 unsigned long load, min_load = ULONG_MAX;
1731 int idlest = -1;
1732 int i;
1733
1734 /* Traverse only the allowed CPUs */
1735 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1736
1737 for_each_cpu_mask(i, tmp) {
1738 load = weighted_cpuload(i);
1739
1740 if (load < min_load || (load == min_load && i == this_cpu)) {
1741 min_load = load;
1742 idlest = i;
1743 }
1744 }
1745
1746 return idlest;
1747 }
1748
1749 /*
1750 * sched_balance_self: balance the current task (running on cpu) in domains
1751 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1752 * SD_BALANCE_EXEC.
1753 *
1754 * Balance, ie. select the least loaded group.
1755 *
1756 * Returns the target CPU number, or the same CPU if no balancing is needed.
1757 *
1758 * preempt must be disabled.
1759 */
1760 static int sched_balance_self(int cpu, int flag)
1761 {
1762 struct task_struct *t = current;
1763 struct sched_domain *tmp, *sd = NULL;
1764
1765 for_each_domain(cpu, tmp) {
1766 /*
1767 * If power savings logic is enabled for a domain, stop there.
1768 */
1769 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1770 break;
1771 if (tmp->flags & flag)
1772 sd = tmp;
1773 }
1774
1775 while (sd) {
1776 cpumask_t span;
1777 struct sched_group *group;
1778 int new_cpu, weight;
1779
1780 if (!(sd->flags & flag)) {
1781 sd = sd->child;
1782 continue;
1783 }
1784
1785 span = sd->span;
1786 group = find_idlest_group(sd, t, cpu);
1787 if (!group) {
1788 sd = sd->child;
1789 continue;
1790 }
1791
1792 new_cpu = find_idlest_cpu(group, t, cpu);
1793 if (new_cpu == -1 || new_cpu == cpu) {
1794 /* Now try balancing at a lower domain level of cpu */
1795 sd = sd->child;
1796 continue;
1797 }
1798
1799 /* Now try balancing at a lower domain level of new_cpu */
1800 cpu = new_cpu;
1801 sd = NULL;
1802 weight = cpus_weight(span);
1803 for_each_domain(cpu, tmp) {
1804 if (weight <= cpus_weight(tmp->span))
1805 break;
1806 if (tmp->flags & flag)
1807 sd = tmp;
1808 }
1809 /* while loop will break here if sd == NULL */
1810 }
1811
1812 return cpu;
1813 }
1814
1815 #endif /* CONFIG_SMP */
1816
1817 /***
1818 * try_to_wake_up - wake up a thread
1819 * @p: the to-be-woken-up thread
1820 * @state: the mask of task states that can be woken
1821 * @sync: do a synchronous wakeup?
1822 *
1823 * Put it on the run-queue if it's not already there. The "current"
1824 * thread is always on the run-queue (except when the actual
1825 * re-schedule is in progress), and as such you're allowed to do
1826 * the simpler "current->state = TASK_RUNNING" to mark yourself
1827 * runnable without the overhead of this.
1828 *
1829 * returns failure only if the task is already active.
1830 */
1831 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1832 {
1833 int cpu, orig_cpu, this_cpu, success = 0;
1834 unsigned long flags;
1835 long old_state;
1836 struct rq *rq;
1837
1838 smp_wmb();
1839 rq = task_rq_lock(p, &flags);
1840 old_state = p->state;
1841 if (!(old_state & state))
1842 goto out;
1843
1844 if (p->se.on_rq)
1845 goto out_running;
1846
1847 cpu = task_cpu(p);
1848 orig_cpu = cpu;
1849 this_cpu = smp_processor_id();
1850
1851 #ifdef CONFIG_SMP
1852 if (unlikely(task_running(rq, p)))
1853 goto out_activate;
1854
1855 cpu = p->sched_class->select_task_rq(p, sync);
1856 if (cpu != orig_cpu) {
1857 set_task_cpu(p, cpu);
1858 task_rq_unlock(rq, &flags);
1859 /* might preempt at this point */
1860 rq = task_rq_lock(p, &flags);
1861 old_state = p->state;
1862 if (!(old_state & state))
1863 goto out;
1864 if (p->se.on_rq)
1865 goto out_running;
1866
1867 this_cpu = smp_processor_id();
1868 cpu = task_cpu(p);
1869 }
1870
1871 #ifdef CONFIG_SCHEDSTATS
1872 schedstat_inc(rq, ttwu_count);
1873 if (cpu == this_cpu)
1874 schedstat_inc(rq, ttwu_local);
1875 else {
1876 struct sched_domain *sd;
1877 for_each_domain(this_cpu, sd) {
1878 if (cpu_isset(cpu, sd->span)) {
1879 schedstat_inc(sd, ttwu_wake_remote);
1880 break;
1881 }
1882 }
1883 }
1884 #endif
1885
1886 out_activate:
1887 #endif /* CONFIG_SMP */
1888 schedstat_inc(p, se.nr_wakeups);
1889 if (sync)
1890 schedstat_inc(p, se.nr_wakeups_sync);
1891 if (orig_cpu != cpu)
1892 schedstat_inc(p, se.nr_wakeups_migrate);
1893 if (cpu == this_cpu)
1894 schedstat_inc(p, se.nr_wakeups_local);
1895 else
1896 schedstat_inc(p, se.nr_wakeups_remote);
1897 update_rq_clock(rq);
1898 activate_task(rq, p, 1);
1899 check_preempt_curr(rq, p);
1900 success = 1;
1901
1902 out_running:
1903 p->state = TASK_RUNNING;
1904 #ifdef CONFIG_SMP
1905 if (p->sched_class->task_wake_up)
1906 p->sched_class->task_wake_up(rq, p);
1907 #endif
1908 out:
1909 task_rq_unlock(rq, &flags);
1910
1911 return success;
1912 }
1913
1914 int wake_up_process(struct task_struct *p)
1915 {
1916 return try_to_wake_up(p, TASK_ALL, 0);
1917 }
1918 EXPORT_SYMBOL(wake_up_process);
1919
1920 int wake_up_state(struct task_struct *p, unsigned int state)
1921 {
1922 return try_to_wake_up(p, state, 0);
1923 }
1924
1925 /*
1926 * Perform scheduler related setup for a newly forked process p.
1927 * p is forked by current.
1928 *
1929 * __sched_fork() is basic setup used by init_idle() too:
1930 */
1931 static void __sched_fork(struct task_struct *p)
1932 {
1933 p->se.exec_start = 0;
1934 p->se.sum_exec_runtime = 0;
1935 p->se.prev_sum_exec_runtime = 0;
1936
1937 #ifdef CONFIG_SCHEDSTATS
1938 p->se.wait_start = 0;
1939 p->se.sum_sleep_runtime = 0;
1940 p->se.sleep_start = 0;
1941 p->se.block_start = 0;
1942 p->se.sleep_max = 0;
1943 p->se.block_max = 0;
1944 p->se.exec_max = 0;
1945 p->se.slice_max = 0;
1946 p->se.wait_max = 0;
1947 #endif
1948
1949 INIT_LIST_HEAD(&p->rt.run_list);
1950 p->se.on_rq = 0;
1951
1952 #ifdef CONFIG_PREEMPT_NOTIFIERS
1953 INIT_HLIST_HEAD(&p->preempt_notifiers);
1954 #endif
1955
1956 /*
1957 * We mark the process as running here, but have not actually
1958 * inserted it onto the runqueue yet. This guarantees that
1959 * nobody will actually run it, and a signal or other external
1960 * event cannot wake it up and insert it on the runqueue either.
1961 */
1962 p->state = TASK_RUNNING;
1963 }
1964
1965 /*
1966 * fork()/clone()-time setup:
1967 */
1968 void sched_fork(struct task_struct *p, int clone_flags)
1969 {
1970 int cpu = get_cpu();
1971
1972 __sched_fork(p);
1973
1974 #ifdef CONFIG_SMP
1975 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1976 #endif
1977 set_task_cpu(p, cpu);
1978
1979 /*
1980 * Make sure we do not leak PI boosting priority to the child:
1981 */
1982 p->prio = current->normal_prio;
1983 if (!rt_prio(p->prio))
1984 p->sched_class = &fair_sched_class;
1985
1986 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1987 if (likely(sched_info_on()))
1988 memset(&p->sched_info, 0, sizeof(p->sched_info));
1989 #endif
1990 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1991 p->oncpu = 0;
1992 #endif
1993 #ifdef CONFIG_PREEMPT
1994 /* Want to start with kernel preemption disabled. */
1995 task_thread_info(p)->preempt_count = 1;
1996 #endif
1997 put_cpu();
1998 }
1999
2000 /*
2001 * wake_up_new_task - wake up a newly created task for the first time.
2002 *
2003 * This function will do some initial scheduler statistics housekeeping
2004 * that must be done for every newly created context, then puts the task
2005 * on the runqueue and wakes it.
2006 */
2007 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2008 {
2009 unsigned long flags;
2010 struct rq *rq;
2011
2012 rq = task_rq_lock(p, &flags);
2013 BUG_ON(p->state != TASK_RUNNING);
2014 update_rq_clock(rq);
2015
2016 p->prio = effective_prio(p);
2017
2018 if (!p->sched_class->task_new || !current->se.on_rq) {
2019 activate_task(rq, p, 0);
2020 } else {
2021 /*
2022 * Let the scheduling class do new task startup
2023 * management (if any):
2024 */
2025 p->sched_class->task_new(rq, p);
2026 inc_nr_running(rq);
2027 }
2028 check_preempt_curr(rq, p);
2029 #ifdef CONFIG_SMP
2030 if (p->sched_class->task_wake_up)
2031 p->sched_class->task_wake_up(rq, p);
2032 #endif
2033 task_rq_unlock(rq, &flags);
2034 }
2035
2036 #ifdef CONFIG_PREEMPT_NOTIFIERS
2037
2038 /**
2039 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2040 * @notifier: notifier struct to register
2041 */
2042 void preempt_notifier_register(struct preempt_notifier *notifier)
2043 {
2044 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2045 }
2046 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2047
2048 /**
2049 * preempt_notifier_unregister - no longer interested in preemption notifications
2050 * @notifier: notifier struct to unregister
2051 *
2052 * This is safe to call from within a preemption notifier.
2053 */
2054 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2055 {
2056 hlist_del(&notifier->link);
2057 }
2058 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2059
2060 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2061 {
2062 struct preempt_notifier *notifier;
2063 struct hlist_node *node;
2064
2065 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2066 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2067 }
2068
2069 static void
2070 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2071 struct task_struct *next)
2072 {
2073 struct preempt_notifier *notifier;
2074 struct hlist_node *node;
2075
2076 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2077 notifier->ops->sched_out(notifier, next);
2078 }
2079
2080 #else
2081
2082 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2083 {
2084 }
2085
2086 static void
2087 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2088 struct task_struct *next)
2089 {
2090 }
2091
2092 #endif
2093
2094 /**
2095 * prepare_task_switch - prepare to switch tasks
2096 * @rq: the runqueue preparing to switch
2097 * @prev: the current task that is being switched out
2098 * @next: the task we are going to switch to.
2099 *
2100 * This is called with the rq lock held and interrupts off. It must
2101 * be paired with a subsequent finish_task_switch after the context
2102 * switch.
2103 *
2104 * prepare_task_switch sets up locking and calls architecture specific
2105 * hooks.
2106 */
2107 static inline void
2108 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2109 struct task_struct *next)
2110 {
2111 fire_sched_out_preempt_notifiers(prev, next);
2112 prepare_lock_switch(rq, next);
2113 prepare_arch_switch(next);
2114 }
2115
2116 /**
2117 * finish_task_switch - clean up after a task-switch
2118 * @rq: runqueue associated with task-switch
2119 * @prev: the thread we just switched away from.
2120 *
2121 * finish_task_switch must be called after the context switch, paired
2122 * with a prepare_task_switch call before the context switch.
2123 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2124 * and do any other architecture-specific cleanup actions.
2125 *
2126 * Note that we may have delayed dropping an mm in context_switch(). If
2127 * so, we finish that here outside of the runqueue lock. (Doing it
2128 * with the lock held can cause deadlocks; see schedule() for
2129 * details.)
2130 */
2131 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2132 __releases(rq->lock)
2133 {
2134 struct mm_struct *mm = rq->prev_mm;
2135 long prev_state;
2136
2137 rq->prev_mm = NULL;
2138
2139 /*
2140 * A task struct has one reference for the use as "current".
2141 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2142 * schedule one last time. The schedule call will never return, and
2143 * the scheduled task must drop that reference.
2144 * The test for TASK_DEAD must occur while the runqueue locks are
2145 * still held, otherwise prev could be scheduled on another cpu, die
2146 * there before we look at prev->state, and then the reference would
2147 * be dropped twice.
2148 * Manfred Spraul <manfred@colorfullife.com>
2149 */
2150 prev_state = prev->state;
2151 finish_arch_switch(prev);
2152 finish_lock_switch(rq, prev);
2153 #ifdef CONFIG_SMP
2154 if (current->sched_class->post_schedule)
2155 current->sched_class->post_schedule(rq);
2156 #endif
2157
2158 fire_sched_in_preempt_notifiers(current);
2159 if (mm)
2160 mmdrop(mm);
2161 if (unlikely(prev_state == TASK_DEAD)) {
2162 /*
2163 * Remove function-return probe instances associated with this
2164 * task and put them back on the free list.
2165 */
2166 kprobe_flush_task(prev);
2167 put_task_struct(prev);
2168 }
2169 }
2170
2171 /**
2172 * schedule_tail - first thing a freshly forked thread must call.
2173 * @prev: the thread we just switched away from.
2174 */
2175 asmlinkage void schedule_tail(struct task_struct *prev)
2176 __releases(rq->lock)
2177 {
2178 struct rq *rq = this_rq();
2179
2180 finish_task_switch(rq, prev);
2181 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2182 /* In this case, finish_task_switch does not reenable preemption */
2183 preempt_enable();
2184 #endif
2185 if (current->set_child_tid)
2186 put_user(task_pid_vnr(current), current->set_child_tid);
2187 }
2188
2189 /*
2190 * context_switch - switch to the new MM and the new
2191 * thread's register state.
2192 */
2193 static inline void
2194 context_switch(struct rq *rq, struct task_struct *prev,
2195 struct task_struct *next)
2196 {
2197 struct mm_struct *mm, *oldmm;
2198
2199 prepare_task_switch(rq, prev, next);
2200 mm = next->mm;
2201 oldmm = prev->active_mm;
2202 /*
2203 * For paravirt, this is coupled with an exit in switch_to to
2204 * combine the page table reload and the switch backend into
2205 * one hypercall.
2206 */
2207 arch_enter_lazy_cpu_mode();
2208
2209 if (unlikely(!mm)) {
2210 next->active_mm = oldmm;
2211 atomic_inc(&oldmm->mm_count);
2212 enter_lazy_tlb(oldmm, next);
2213 } else
2214 switch_mm(oldmm, mm, next);
2215
2216 if (unlikely(!prev->mm)) {
2217 prev->active_mm = NULL;
2218 rq->prev_mm = oldmm;
2219 }
2220 /*
2221 * Since the runqueue lock will be released by the next
2222 * task (which is an invalid locking op but in the case
2223 * of the scheduler it's an obvious special-case), so we
2224 * do an early lockdep release here:
2225 */
2226 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2227 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2228 #endif
2229
2230 /* Here we just switch the register state and the stack. */
2231 switch_to(prev, next, prev);
2232
2233 barrier();
2234 /*
2235 * this_rq must be evaluated again because prev may have moved
2236 * CPUs since it called schedule(), thus the 'rq' on its stack
2237 * frame will be invalid.
2238 */
2239 finish_task_switch(this_rq(), prev);
2240 }
2241
2242 /*
2243 * nr_running, nr_uninterruptible and nr_context_switches:
2244 *
2245 * externally visible scheduler statistics: current number of runnable
2246 * threads, current number of uninterruptible-sleeping threads, total
2247 * number of context switches performed since bootup.
2248 */
2249 unsigned long nr_running(void)
2250 {
2251 unsigned long i, sum = 0;
2252
2253 for_each_online_cpu(i)
2254 sum += cpu_rq(i)->nr_running;
2255
2256 return sum;
2257 }
2258
2259 unsigned long nr_uninterruptible(void)
2260 {
2261 unsigned long i, sum = 0;
2262
2263 for_each_possible_cpu(i)
2264 sum += cpu_rq(i)->nr_uninterruptible;
2265
2266 /*
2267 * Since we read the counters lockless, it might be slightly
2268 * inaccurate. Do not allow it to go below zero though:
2269 */
2270 if (unlikely((long)sum < 0))
2271 sum = 0;
2272
2273 return sum;
2274 }
2275
2276 unsigned long long nr_context_switches(void)
2277 {
2278 int i;
2279 unsigned long long sum = 0;
2280
2281 for_each_possible_cpu(i)
2282 sum += cpu_rq(i)->nr_switches;
2283
2284 return sum;
2285 }
2286
2287 unsigned long nr_iowait(void)
2288 {
2289 unsigned long i, sum = 0;
2290
2291 for_each_possible_cpu(i)
2292 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2293
2294 return sum;
2295 }
2296
2297 unsigned long nr_active(void)
2298 {
2299 unsigned long i, running = 0, uninterruptible = 0;
2300
2301 for_each_online_cpu(i) {
2302 running += cpu_rq(i)->nr_running;
2303 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2304 }
2305
2306 if (unlikely((long)uninterruptible < 0))
2307 uninterruptible = 0;
2308
2309 return running + uninterruptible;
2310 }
2311
2312 /*
2313 * Update rq->cpu_load[] statistics. This function is usually called every
2314 * scheduler tick (TICK_NSEC).
2315 */
2316 static void update_cpu_load(struct rq *this_rq)
2317 {
2318 unsigned long this_load = this_rq->load.weight;
2319 int i, scale;
2320
2321 this_rq->nr_load_updates++;
2322
2323 /* Update our load: */
2324 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2325 unsigned long old_load, new_load;
2326
2327 /* scale is effectively 1 << i now, and >> i divides by scale */
2328
2329 old_load = this_rq->cpu_load[i];
2330 new_load = this_load;
2331 /*
2332 * Round up the averaging division if load is increasing. This
2333 * prevents us from getting stuck on 9 if the load is 10, for
2334 * example.
2335 */
2336 if (new_load > old_load)
2337 new_load += scale-1;
2338 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2339 }
2340 }
2341
2342 #ifdef CONFIG_SMP
2343
2344 /*
2345 * double_rq_lock - safely lock two runqueues
2346 *
2347 * Note this does not disable interrupts like task_rq_lock,
2348 * you need to do so manually before calling.
2349 */
2350 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2351 __acquires(rq1->lock)
2352 __acquires(rq2->lock)
2353 {
2354 BUG_ON(!irqs_disabled());
2355 if (rq1 == rq2) {
2356 spin_lock(&rq1->lock);
2357 __acquire(rq2->lock); /* Fake it out ;) */
2358 } else {
2359 if (rq1 < rq2) {
2360 spin_lock(&rq1->lock);
2361 spin_lock(&rq2->lock);
2362 } else {
2363 spin_lock(&rq2->lock);
2364 spin_lock(&rq1->lock);
2365 }
2366 }
2367 update_rq_clock(rq1);
2368 update_rq_clock(rq2);
2369 }
2370
2371 /*
2372 * double_rq_unlock - safely unlock two runqueues
2373 *
2374 * Note this does not restore interrupts like task_rq_unlock,
2375 * you need to do so manually after calling.
2376 */
2377 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2378 __releases(rq1->lock)
2379 __releases(rq2->lock)
2380 {
2381 spin_unlock(&rq1->lock);
2382 if (rq1 != rq2)
2383 spin_unlock(&rq2->lock);
2384 else
2385 __release(rq2->lock);
2386 }
2387
2388 /*
2389 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2390 */
2391 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2392 __releases(this_rq->lock)
2393 __acquires(busiest->lock)
2394 __acquires(this_rq->lock)
2395 {
2396 int ret = 0;
2397
2398 if (unlikely(!irqs_disabled())) {
2399 /* printk() doesn't work good under rq->lock */
2400 spin_unlock(&this_rq->lock);
2401 BUG_ON(1);
2402 }
2403 if (unlikely(!spin_trylock(&busiest->lock))) {
2404 if (busiest < this_rq) {
2405 spin_unlock(&this_rq->lock);
2406 spin_lock(&busiest->lock);
2407 spin_lock(&this_rq->lock);
2408 ret = 1;
2409 } else
2410 spin_lock(&busiest->lock);
2411 }
2412 return ret;
2413 }
2414
2415 /*
2416 * If dest_cpu is allowed for this process, migrate the task to it.
2417 * This is accomplished by forcing the cpu_allowed mask to only
2418 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2419 * the cpu_allowed mask is restored.
2420 */
2421 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2422 {
2423 struct migration_req req;
2424 unsigned long flags;
2425 struct rq *rq;
2426
2427 rq = task_rq_lock(p, &flags);
2428 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2429 || unlikely(cpu_is_offline(dest_cpu)))
2430 goto out;
2431
2432 /* force the process onto the specified CPU */
2433 if (migrate_task(p, dest_cpu, &req)) {
2434 /* Need to wait for migration thread (might exit: take ref). */
2435 struct task_struct *mt = rq->migration_thread;
2436
2437 get_task_struct(mt);
2438 task_rq_unlock(rq, &flags);
2439 wake_up_process(mt);
2440 put_task_struct(mt);
2441 wait_for_completion(&req.done);
2442
2443 return;
2444 }
2445 out:
2446 task_rq_unlock(rq, &flags);
2447 }
2448
2449 /*
2450 * sched_exec - execve() is a valuable balancing opportunity, because at
2451 * this point the task has the smallest effective memory and cache footprint.
2452 */
2453 void sched_exec(void)
2454 {
2455 int new_cpu, this_cpu = get_cpu();
2456 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2457 put_cpu();
2458 if (new_cpu != this_cpu)
2459 sched_migrate_task(current, new_cpu);
2460 }
2461
2462 /*
2463 * pull_task - move a task from a remote runqueue to the local runqueue.
2464 * Both runqueues must be locked.
2465 */
2466 static void pull_task(struct rq *src_rq, struct task_struct *p,
2467 struct rq *this_rq, int this_cpu)
2468 {
2469 deactivate_task(src_rq, p, 0);
2470 set_task_cpu(p, this_cpu);
2471 activate_task(this_rq, p, 0);
2472 /*
2473 * Note that idle threads have a prio of MAX_PRIO, for this test
2474 * to be always true for them.
2475 */
2476 check_preempt_curr(this_rq, p);
2477 }
2478
2479 /*
2480 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2481 */
2482 static
2483 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2484 struct sched_domain *sd, enum cpu_idle_type idle,
2485 int *all_pinned)
2486 {
2487 /*
2488 * We do not migrate tasks that are:
2489 * 1) running (obviously), or
2490 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2491 * 3) are cache-hot on their current CPU.
2492 */
2493 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2494 schedstat_inc(p, se.nr_failed_migrations_affine);
2495 return 0;
2496 }
2497 *all_pinned = 0;
2498
2499 if (task_running(rq, p)) {
2500 schedstat_inc(p, se.nr_failed_migrations_running);
2501 return 0;
2502 }
2503
2504 /*
2505 * Aggressive migration if:
2506 * 1) task is cache cold, or
2507 * 2) too many balance attempts have failed.
2508 */
2509
2510 if (!task_hot(p, rq->clock, sd) ||
2511 sd->nr_balance_failed > sd->cache_nice_tries) {
2512 #ifdef CONFIG_SCHEDSTATS
2513 if (task_hot(p, rq->clock, sd)) {
2514 schedstat_inc(sd, lb_hot_gained[idle]);
2515 schedstat_inc(p, se.nr_forced_migrations);
2516 }
2517 #endif
2518 return 1;
2519 }
2520
2521 if (task_hot(p, rq->clock, sd)) {
2522 schedstat_inc(p, se.nr_failed_migrations_hot);
2523 return 0;
2524 }
2525 return 1;
2526 }
2527
2528 static unsigned long
2529 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2530 unsigned long max_load_move, struct sched_domain *sd,
2531 enum cpu_idle_type idle, int *all_pinned,
2532 int *this_best_prio, struct rq_iterator *iterator)
2533 {
2534 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2535 struct task_struct *p;
2536 long rem_load_move = max_load_move;
2537
2538 if (max_load_move == 0)
2539 goto out;
2540
2541 pinned = 1;
2542
2543 /*
2544 * Start the load-balancing iterator:
2545 */
2546 p = iterator->start(iterator->arg);
2547 next:
2548 if (!p || loops++ > sysctl_sched_nr_migrate)
2549 goto out;
2550 /*
2551 * To help distribute high priority tasks across CPUs we don't
2552 * skip a task if it will be the highest priority task (i.e. smallest
2553 * prio value) on its new queue regardless of its load weight
2554 */
2555 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2556 SCHED_LOAD_SCALE_FUZZ;
2557 if ((skip_for_load && p->prio >= *this_best_prio) ||
2558 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2559 p = iterator->next(iterator->arg);
2560 goto next;
2561 }
2562
2563 pull_task(busiest, p, this_rq, this_cpu);
2564 pulled++;
2565 rem_load_move -= p->se.load.weight;
2566
2567 /*
2568 * We only want to steal up to the prescribed amount of weighted load.
2569 */
2570 if (rem_load_move > 0) {
2571 if (p->prio < *this_best_prio)
2572 *this_best_prio = p->prio;
2573 p = iterator->next(iterator->arg);
2574 goto next;
2575 }
2576 out:
2577 /*
2578 * Right now, this is one of only two places pull_task() is called,
2579 * so we can safely collect pull_task() stats here rather than
2580 * inside pull_task().
2581 */
2582 schedstat_add(sd, lb_gained[idle], pulled);
2583
2584 if (all_pinned)
2585 *all_pinned = pinned;
2586
2587 return max_load_move - rem_load_move;
2588 }
2589
2590 /*
2591 * move_tasks tries to move up to max_load_move weighted load from busiest to
2592 * this_rq, as part of a balancing operation within domain "sd".
2593 * Returns 1 if successful and 0 otherwise.
2594 *
2595 * Called with both runqueues locked.
2596 */
2597 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2598 unsigned long max_load_move,
2599 struct sched_domain *sd, enum cpu_idle_type idle,
2600 int *all_pinned)
2601 {
2602 const struct sched_class *class = sched_class_highest;
2603 unsigned long total_load_moved = 0;
2604 int this_best_prio = this_rq->curr->prio;
2605
2606 do {
2607 total_load_moved +=
2608 class->load_balance(this_rq, this_cpu, busiest,
2609 max_load_move - total_load_moved,
2610 sd, idle, all_pinned, &this_best_prio);
2611 class = class->next;
2612 } while (class && max_load_move > total_load_moved);
2613
2614 return total_load_moved > 0;
2615 }
2616
2617 static int
2618 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2619 struct sched_domain *sd, enum cpu_idle_type idle,
2620 struct rq_iterator *iterator)
2621 {
2622 struct task_struct *p = iterator->start(iterator->arg);
2623 int pinned = 0;
2624
2625 while (p) {
2626 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2627 pull_task(busiest, p, this_rq, this_cpu);
2628 /*
2629 * Right now, this is only the second place pull_task()
2630 * is called, so we can safely collect pull_task()
2631 * stats here rather than inside pull_task().
2632 */
2633 schedstat_inc(sd, lb_gained[idle]);
2634
2635 return 1;
2636 }
2637 p = iterator->next(iterator->arg);
2638 }
2639
2640 return 0;
2641 }
2642
2643 /*
2644 * move_one_task tries to move exactly one task from busiest to this_rq, as
2645 * part of active balancing operations within "domain".
2646 * Returns 1 if successful and 0 otherwise.
2647 *
2648 * Called with both runqueues locked.
2649 */
2650 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2651 struct sched_domain *sd, enum cpu_idle_type idle)
2652 {
2653 const struct sched_class *class;
2654
2655 for (class = sched_class_highest; class; class = class->next)
2656 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2657 return 1;
2658
2659 return 0;
2660 }
2661
2662 /*
2663 * find_busiest_group finds and returns the busiest CPU group within the
2664 * domain. It calculates and returns the amount of weighted load which
2665 * should be moved to restore balance via the imbalance parameter.
2666 */
2667 static struct sched_group *
2668 find_busiest_group(struct sched_domain *sd, int this_cpu,
2669 unsigned long *imbalance, enum cpu_idle_type idle,
2670 int *sd_idle, cpumask_t *cpus, int *balance)
2671 {
2672 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2673 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2674 unsigned long max_pull;
2675 unsigned long busiest_load_per_task, busiest_nr_running;
2676 unsigned long this_load_per_task, this_nr_running;
2677 int load_idx, group_imb = 0;
2678 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2679 int power_savings_balance = 1;
2680 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2681 unsigned long min_nr_running = ULONG_MAX;
2682 struct sched_group *group_min = NULL, *group_leader = NULL;
2683 #endif
2684
2685 max_load = this_load = total_load = total_pwr = 0;
2686 busiest_load_per_task = busiest_nr_running = 0;
2687 this_load_per_task = this_nr_running = 0;
2688 if (idle == CPU_NOT_IDLE)
2689 load_idx = sd->busy_idx;
2690 else if (idle == CPU_NEWLY_IDLE)
2691 load_idx = sd->newidle_idx;
2692 else
2693 load_idx = sd->idle_idx;
2694
2695 do {
2696 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2697 int local_group;
2698 int i;
2699 int __group_imb = 0;
2700 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2701 unsigned long sum_nr_running, sum_weighted_load;
2702
2703 local_group = cpu_isset(this_cpu, group->cpumask);
2704
2705 if (local_group)
2706 balance_cpu = first_cpu(group->cpumask);
2707
2708 /* Tally up the load of all CPUs in the group */
2709 sum_weighted_load = sum_nr_running = avg_load = 0;
2710 max_cpu_load = 0;
2711 min_cpu_load = ~0UL;
2712
2713 for_each_cpu_mask(i, group->cpumask) {
2714 struct rq *rq;
2715
2716 if (!cpu_isset(i, *cpus))
2717 continue;
2718
2719 rq = cpu_rq(i);
2720
2721 if (*sd_idle && rq->nr_running)
2722 *sd_idle = 0;
2723
2724 /* Bias balancing toward cpus of our domain */
2725 if (local_group) {
2726 if (idle_cpu(i) && !first_idle_cpu) {
2727 first_idle_cpu = 1;
2728 balance_cpu = i;
2729 }
2730
2731 load = target_load(i, load_idx);
2732 } else {
2733 load = source_load(i, load_idx);
2734 if (load > max_cpu_load)
2735 max_cpu_load = load;
2736 if (min_cpu_load > load)
2737 min_cpu_load = load;
2738 }
2739
2740 avg_load += load;
2741 sum_nr_running += rq->nr_running;
2742 sum_weighted_load += weighted_cpuload(i);
2743 }
2744
2745 /*
2746 * First idle cpu or the first cpu(busiest) in this sched group
2747 * is eligible for doing load balancing at this and above
2748 * domains. In the newly idle case, we will allow all the cpu's
2749 * to do the newly idle load balance.
2750 */
2751 if (idle != CPU_NEWLY_IDLE && local_group &&
2752 balance_cpu != this_cpu && balance) {
2753 *balance = 0;
2754 goto ret;
2755 }
2756
2757 total_load += avg_load;
2758 total_pwr += group->__cpu_power;
2759
2760 /* Adjust by relative CPU power of the group */
2761 avg_load = sg_div_cpu_power(group,
2762 avg_load * SCHED_LOAD_SCALE);
2763
2764 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2765 __group_imb = 1;
2766
2767 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2768
2769 if (local_group) {
2770 this_load = avg_load;
2771 this = group;
2772 this_nr_running = sum_nr_running;
2773 this_load_per_task = sum_weighted_load;
2774 } else if (avg_load > max_load &&
2775 (sum_nr_running > group_capacity || __group_imb)) {
2776 max_load = avg_load;
2777 busiest = group;
2778 busiest_nr_running = sum_nr_running;
2779 busiest_load_per_task = sum_weighted_load;
2780 group_imb = __group_imb;
2781 }
2782
2783 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2784 /*
2785 * Busy processors will not participate in power savings
2786 * balance.
2787 */
2788 if (idle == CPU_NOT_IDLE ||
2789 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2790 goto group_next;
2791
2792 /*
2793 * If the local group is idle or completely loaded
2794 * no need to do power savings balance at this domain
2795 */
2796 if (local_group && (this_nr_running >= group_capacity ||
2797 !this_nr_running))
2798 power_savings_balance = 0;
2799
2800 /*
2801 * If a group is already running at full capacity or idle,
2802 * don't include that group in power savings calculations
2803 */
2804 if (!power_savings_balance || sum_nr_running >= group_capacity
2805 || !sum_nr_running)
2806 goto group_next;
2807
2808 /*
2809 * Calculate the group which has the least non-idle load.
2810 * This is the group from where we need to pick up the load
2811 * for saving power
2812 */
2813 if ((sum_nr_running < min_nr_running) ||
2814 (sum_nr_running == min_nr_running &&
2815 first_cpu(group->cpumask) <
2816 first_cpu(group_min->cpumask))) {
2817 group_min = group;
2818 min_nr_running = sum_nr_running;
2819 min_load_per_task = sum_weighted_load /
2820 sum_nr_running;
2821 }
2822
2823 /*
2824 * Calculate the group which is almost near its
2825 * capacity but still has some space to pick up some load
2826 * from other group and save more power
2827 */
2828 if (sum_nr_running <= group_capacity - 1) {
2829 if (sum_nr_running > leader_nr_running ||
2830 (sum_nr_running == leader_nr_running &&
2831 first_cpu(group->cpumask) >
2832 first_cpu(group_leader->cpumask))) {
2833 group_leader = group;
2834 leader_nr_running = sum_nr_running;
2835 }
2836 }
2837 group_next:
2838 #endif
2839 group = group->next;
2840 } while (group != sd->groups);
2841
2842 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2843 goto out_balanced;
2844
2845 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2846
2847 if (this_load >= avg_load ||
2848 100*max_load <= sd->imbalance_pct*this_load)
2849 goto out_balanced;
2850
2851 busiest_load_per_task /= busiest_nr_running;
2852 if (group_imb)
2853 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2854
2855 /*
2856 * We're trying to get all the cpus to the average_load, so we don't
2857 * want to push ourselves above the average load, nor do we wish to
2858 * reduce the max loaded cpu below the average load, as either of these
2859 * actions would just result in more rebalancing later, and ping-pong
2860 * tasks around. Thus we look for the minimum possible imbalance.
2861 * Negative imbalances (*we* are more loaded than anyone else) will
2862 * be counted as no imbalance for these purposes -- we can't fix that
2863 * by pulling tasks to us. Be careful of negative numbers as they'll
2864 * appear as very large values with unsigned longs.
2865 */
2866 if (max_load <= busiest_load_per_task)
2867 goto out_balanced;
2868
2869 /*
2870 * In the presence of smp nice balancing, certain scenarios can have
2871 * max load less than avg load(as we skip the groups at or below
2872 * its cpu_power, while calculating max_load..)
2873 */
2874 if (max_load < avg_load) {
2875 *imbalance = 0;
2876 goto small_imbalance;
2877 }
2878
2879 /* Don't want to pull so many tasks that a group would go idle */
2880 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2881
2882 /* How much load to actually move to equalise the imbalance */
2883 *imbalance = min(max_pull * busiest->__cpu_power,
2884 (avg_load - this_load) * this->__cpu_power)
2885 / SCHED_LOAD_SCALE;
2886
2887 /*
2888 * if *imbalance is less than the average load per runnable task
2889 * there is no gaurantee that any tasks will be moved so we'll have
2890 * a think about bumping its value to force at least one task to be
2891 * moved
2892 */
2893 if (*imbalance < busiest_load_per_task) {
2894 unsigned long tmp, pwr_now, pwr_move;
2895 unsigned int imbn;
2896
2897 small_imbalance:
2898 pwr_move = pwr_now = 0;
2899 imbn = 2;
2900 if (this_nr_running) {
2901 this_load_per_task /= this_nr_running;
2902 if (busiest_load_per_task > this_load_per_task)
2903 imbn = 1;
2904 } else
2905 this_load_per_task = SCHED_LOAD_SCALE;
2906
2907 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2908 busiest_load_per_task * imbn) {
2909 *imbalance = busiest_load_per_task;
2910 return busiest;
2911 }
2912
2913 /*
2914 * OK, we don't have enough imbalance to justify moving tasks,
2915 * however we may be able to increase total CPU power used by
2916 * moving them.
2917 */
2918
2919 pwr_now += busiest->__cpu_power *
2920 min(busiest_load_per_task, max_load);
2921 pwr_now += this->__cpu_power *
2922 min(this_load_per_task, this_load);
2923 pwr_now /= SCHED_LOAD_SCALE;
2924
2925 /* Amount of load we'd subtract */
2926 tmp = sg_div_cpu_power(busiest,
2927 busiest_load_per_task * SCHED_LOAD_SCALE);
2928 if (max_load > tmp)
2929 pwr_move += busiest->__cpu_power *
2930 min(busiest_load_per_task, max_load - tmp);
2931
2932 /* Amount of load we'd add */
2933 if (max_load * busiest->__cpu_power <
2934 busiest_load_per_task * SCHED_LOAD_SCALE)
2935 tmp = sg_div_cpu_power(this,
2936 max_load * busiest->__cpu_power);
2937 else
2938 tmp = sg_div_cpu_power(this,
2939 busiest_load_per_task * SCHED_LOAD_SCALE);
2940 pwr_move += this->__cpu_power *
2941 min(this_load_per_task, this_load + tmp);
2942 pwr_move /= SCHED_LOAD_SCALE;
2943
2944 /* Move if we gain throughput */
2945 if (pwr_move > pwr_now)
2946 *imbalance = busiest_load_per_task;
2947 }
2948
2949 return busiest;
2950
2951 out_balanced:
2952 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2953 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2954 goto ret;
2955
2956 if (this == group_leader && group_leader != group_min) {
2957 *imbalance = min_load_per_task;
2958 return group_min;
2959 }
2960 #endif
2961 ret:
2962 *imbalance = 0;
2963 return NULL;
2964 }
2965
2966 /*
2967 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2968 */
2969 static struct rq *
2970 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2971 unsigned long imbalance, cpumask_t *cpus)
2972 {
2973 struct rq *busiest = NULL, *rq;
2974 unsigned long max_load = 0;
2975 int i;
2976
2977 for_each_cpu_mask(i, group->cpumask) {
2978 unsigned long wl;
2979
2980 if (!cpu_isset(i, *cpus))
2981 continue;
2982
2983 rq = cpu_rq(i);
2984 wl = weighted_cpuload(i);
2985
2986 if (rq->nr_running == 1 && wl > imbalance)
2987 continue;
2988
2989 if (wl > max_load) {
2990 max_load = wl;
2991 busiest = rq;
2992 }
2993 }
2994
2995 return busiest;
2996 }
2997
2998 /*
2999 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3000 * so long as it is large enough.
3001 */
3002 #define MAX_PINNED_INTERVAL 512
3003
3004 /*
3005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3006 * tasks if there is an imbalance.
3007 */
3008 static int load_balance(int this_cpu, struct rq *this_rq,
3009 struct sched_domain *sd, enum cpu_idle_type idle,
3010 int *balance)
3011 {
3012 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3013 struct sched_group *group;
3014 unsigned long imbalance;
3015 struct rq *busiest;
3016 cpumask_t cpus = CPU_MASK_ALL;
3017 unsigned long flags;
3018
3019 /*
3020 * When power savings policy is enabled for the parent domain, idle
3021 * sibling can pick up load irrespective of busy siblings. In this case,
3022 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3023 * portraying it as CPU_NOT_IDLE.
3024 */
3025 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3026 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3027 sd_idle = 1;
3028
3029 schedstat_inc(sd, lb_count[idle]);
3030
3031 redo:
3032 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3033 &cpus, balance);
3034
3035 if (*balance == 0)
3036 goto out_balanced;
3037
3038 if (!group) {
3039 schedstat_inc(sd, lb_nobusyg[idle]);
3040 goto out_balanced;
3041 }
3042
3043 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3044 if (!busiest) {
3045 schedstat_inc(sd, lb_nobusyq[idle]);
3046 goto out_balanced;
3047 }
3048
3049 BUG_ON(busiest == this_rq);
3050
3051 schedstat_add(sd, lb_imbalance[idle], imbalance);
3052
3053 ld_moved = 0;
3054 if (busiest->nr_running > 1) {
3055 /*
3056 * Attempt to move tasks. If find_busiest_group has found
3057 * an imbalance but busiest->nr_running <= 1, the group is
3058 * still unbalanced. ld_moved simply stays zero, so it is
3059 * correctly treated as an imbalance.
3060 */
3061 local_irq_save(flags);
3062 double_rq_lock(this_rq, busiest);
3063 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3064 imbalance, sd, idle, &all_pinned);
3065 double_rq_unlock(this_rq, busiest);
3066 local_irq_restore(flags);
3067
3068 /*
3069 * some other cpu did the load balance for us.
3070 */
3071 if (ld_moved && this_cpu != smp_processor_id())
3072 resched_cpu(this_cpu);
3073
3074 /* All tasks on this runqueue were pinned by CPU affinity */
3075 if (unlikely(all_pinned)) {
3076 cpu_clear(cpu_of(busiest), cpus);
3077 if (!cpus_empty(cpus))
3078 goto redo;
3079 goto out_balanced;
3080 }
3081 }
3082
3083 if (!ld_moved) {
3084 schedstat_inc(sd, lb_failed[idle]);
3085 sd->nr_balance_failed++;
3086
3087 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3088
3089 spin_lock_irqsave(&busiest->lock, flags);
3090
3091 /* don't kick the migration_thread, if the curr
3092 * task on busiest cpu can't be moved to this_cpu
3093 */
3094 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3095 spin_unlock_irqrestore(&busiest->lock, flags);
3096 all_pinned = 1;
3097 goto out_one_pinned;
3098 }
3099
3100 if (!busiest->active_balance) {
3101 busiest->active_balance = 1;
3102 busiest->push_cpu = this_cpu;
3103 active_balance = 1;
3104 }
3105 spin_unlock_irqrestore(&busiest->lock, flags);
3106 if (active_balance)
3107 wake_up_process(busiest->migration_thread);
3108
3109 /*
3110 * We've kicked active balancing, reset the failure
3111 * counter.
3112 */
3113 sd->nr_balance_failed = sd->cache_nice_tries+1;
3114 }
3115 } else
3116 sd->nr_balance_failed = 0;
3117
3118 if (likely(!active_balance)) {
3119 /* We were unbalanced, so reset the balancing interval */
3120 sd->balance_interval = sd->min_interval;
3121 } else {
3122 /*
3123 * If we've begun active balancing, start to back off. This
3124 * case may not be covered by the all_pinned logic if there
3125 * is only 1 task on the busy runqueue (because we don't call
3126 * move_tasks).
3127 */
3128 if (sd->balance_interval < sd->max_interval)
3129 sd->balance_interval *= 2;
3130 }
3131
3132 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3133 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3134 return -1;
3135 return ld_moved;
3136
3137 out_balanced:
3138 schedstat_inc(sd, lb_balanced[idle]);
3139
3140 sd->nr_balance_failed = 0;
3141
3142 out_one_pinned:
3143 /* tune up the balancing interval */
3144 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3145 (sd->balance_interval < sd->max_interval))
3146 sd->balance_interval *= 2;
3147
3148 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3149 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3150 return -1;
3151 return 0;
3152 }
3153
3154 /*
3155 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3156 * tasks if there is an imbalance.
3157 *
3158 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3159 * this_rq is locked.
3160 */
3161 static int
3162 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3163 {
3164 struct sched_group *group;
3165 struct rq *busiest = NULL;
3166 unsigned long imbalance;
3167 int ld_moved = 0;
3168 int sd_idle = 0;
3169 int all_pinned = 0;
3170 cpumask_t cpus = CPU_MASK_ALL;
3171
3172 /*
3173 * When power savings policy is enabled for the parent domain, idle
3174 * sibling can pick up load irrespective of busy siblings. In this case,
3175 * let the state of idle sibling percolate up as IDLE, instead of
3176 * portraying it as CPU_NOT_IDLE.
3177 */
3178 if (sd->flags & SD_SHARE_CPUPOWER &&
3179 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3180 sd_idle = 1;
3181
3182 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3183 redo:
3184 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3185 &sd_idle, &cpus, NULL);
3186 if (!group) {
3187 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3188 goto out_balanced;
3189 }
3190
3191 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3192 &cpus);
3193 if (!busiest) {
3194 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3195 goto out_balanced;
3196 }
3197
3198 BUG_ON(busiest == this_rq);
3199
3200 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3201
3202 ld_moved = 0;
3203 if (busiest->nr_running > 1) {
3204 /* Attempt to move tasks */
3205 double_lock_balance(this_rq, busiest);
3206 /* this_rq->clock is already updated */
3207 update_rq_clock(busiest);
3208 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3209 imbalance, sd, CPU_NEWLY_IDLE,
3210 &all_pinned);
3211 spin_unlock(&busiest->lock);
3212
3213 if (unlikely(all_pinned)) {
3214 cpu_clear(cpu_of(busiest), cpus);
3215 if (!cpus_empty(cpus))
3216 goto redo;
3217 }
3218 }
3219
3220 if (!ld_moved) {
3221 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3222 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3223 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3224 return -1;
3225 } else
3226 sd->nr_balance_failed = 0;
3227
3228 return ld_moved;
3229
3230 out_balanced:
3231 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3232 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3234 return -1;
3235 sd->nr_balance_failed = 0;
3236
3237 return 0;
3238 }
3239
3240 /*
3241 * idle_balance is called by schedule() if this_cpu is about to become
3242 * idle. Attempts to pull tasks from other CPUs.
3243 */
3244 static void idle_balance(int this_cpu, struct rq *this_rq)
3245 {
3246 struct sched_domain *sd;
3247 int pulled_task = -1;
3248 unsigned long next_balance = jiffies + HZ;
3249
3250 for_each_domain(this_cpu, sd) {
3251 unsigned long interval;
3252
3253 if (!(sd->flags & SD_LOAD_BALANCE))
3254 continue;
3255
3256 if (sd->flags & SD_BALANCE_NEWIDLE)
3257 /* If we've pulled tasks over stop searching: */
3258 pulled_task = load_balance_newidle(this_cpu,
3259 this_rq, sd);
3260
3261 interval = msecs_to_jiffies(sd->balance_interval);
3262 if (time_after(next_balance, sd->last_balance + interval))
3263 next_balance = sd->last_balance + interval;
3264 if (pulled_task)
3265 break;
3266 }
3267 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3268 /*
3269 * We are going idle. next_balance may be set based on
3270 * a busy processor. So reset next_balance.
3271 */
3272 this_rq->next_balance = next_balance;
3273 }
3274 }
3275
3276 /*
3277 * active_load_balance is run by migration threads. It pushes running tasks
3278 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3279 * running on each physical CPU where possible, and avoids physical /
3280 * logical imbalances.
3281 *
3282 * Called with busiest_rq locked.
3283 */
3284 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3285 {
3286 int target_cpu = busiest_rq->push_cpu;
3287 struct sched_domain *sd;
3288 struct rq *target_rq;
3289
3290 /* Is there any task to move? */
3291 if (busiest_rq->nr_running <= 1)
3292 return;
3293
3294 target_rq = cpu_rq(target_cpu);
3295
3296 /*
3297 * This condition is "impossible", if it occurs
3298 * we need to fix it. Originally reported by
3299 * Bjorn Helgaas on a 128-cpu setup.
3300 */
3301 BUG_ON(busiest_rq == target_rq);
3302
3303 /* move a task from busiest_rq to target_rq */
3304 double_lock_balance(busiest_rq, target_rq);
3305 update_rq_clock(busiest_rq);
3306 update_rq_clock(target_rq);
3307
3308 /* Search for an sd spanning us and the target CPU. */
3309 for_each_domain(target_cpu, sd) {
3310 if ((sd->flags & SD_LOAD_BALANCE) &&
3311 cpu_isset(busiest_cpu, sd->span))
3312 break;
3313 }
3314
3315 if (likely(sd)) {
3316 schedstat_inc(sd, alb_count);
3317
3318 if (move_one_task(target_rq, target_cpu, busiest_rq,
3319 sd, CPU_IDLE))
3320 schedstat_inc(sd, alb_pushed);
3321 else
3322 schedstat_inc(sd, alb_failed);
3323 }
3324 spin_unlock(&target_rq->lock);
3325 }
3326
3327 #ifdef CONFIG_NO_HZ
3328 static struct {
3329 atomic_t load_balancer;
3330 cpumask_t cpu_mask;
3331 } nohz ____cacheline_aligned = {
3332 .load_balancer = ATOMIC_INIT(-1),
3333 .cpu_mask = CPU_MASK_NONE,
3334 };
3335
3336 /*
3337 * This routine will try to nominate the ilb (idle load balancing)
3338 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3339 * load balancing on behalf of all those cpus. If all the cpus in the system
3340 * go into this tickless mode, then there will be no ilb owner (as there is
3341 * no need for one) and all the cpus will sleep till the next wakeup event
3342 * arrives...
3343 *
3344 * For the ilb owner, tick is not stopped. And this tick will be used
3345 * for idle load balancing. ilb owner will still be part of
3346 * nohz.cpu_mask..
3347 *
3348 * While stopping the tick, this cpu will become the ilb owner if there
3349 * is no other owner. And will be the owner till that cpu becomes busy
3350 * or if all cpus in the system stop their ticks at which point
3351 * there is no need for ilb owner.
3352 *
3353 * When the ilb owner becomes busy, it nominates another owner, during the
3354 * next busy scheduler_tick()
3355 */
3356 int select_nohz_load_balancer(int stop_tick)
3357 {
3358 int cpu = smp_processor_id();
3359
3360 if (stop_tick) {
3361 cpu_set(cpu, nohz.cpu_mask);
3362 cpu_rq(cpu)->in_nohz_recently = 1;
3363
3364 /*
3365 * If we are going offline and still the leader, give up!
3366 */
3367 if (cpu_is_offline(cpu) &&
3368 atomic_read(&nohz.load_balancer) == cpu) {
3369 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3370 BUG();
3371 return 0;
3372 }
3373
3374 /* time for ilb owner also to sleep */
3375 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3376 if (atomic_read(&nohz.load_balancer) == cpu)
3377 atomic_set(&nohz.load_balancer, -1);
3378 return 0;
3379 }
3380
3381 if (atomic_read(&nohz.load_balancer) == -1) {
3382 /* make me the ilb owner */
3383 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3384 return 1;
3385 } else if (atomic_read(&nohz.load_balancer) == cpu)
3386 return 1;
3387 } else {
3388 if (!cpu_isset(cpu, nohz.cpu_mask))
3389 return 0;
3390
3391 cpu_clear(cpu, nohz.cpu_mask);
3392
3393 if (atomic_read(&nohz.load_balancer) == cpu)
3394 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3395 BUG();
3396 }
3397 return 0;
3398 }
3399 #endif
3400
3401 static DEFINE_SPINLOCK(balancing);
3402
3403 /*
3404 * It checks each scheduling domain to see if it is due to be balanced,
3405 * and initiates a balancing operation if so.
3406 *
3407 * Balancing parameters are set up in arch_init_sched_domains.
3408 */
3409 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3410 {
3411 int balance = 1;
3412 struct rq *rq = cpu_rq(cpu);
3413 unsigned long interval;
3414 struct sched_domain *sd;
3415 /* Earliest time when we have to do rebalance again */
3416 unsigned long next_balance = jiffies + 60*HZ;
3417 int update_next_balance = 0;
3418
3419 for_each_domain(cpu, sd) {
3420 if (!(sd->flags & SD_LOAD_BALANCE))
3421 continue;
3422
3423 interval = sd->balance_interval;
3424 if (idle != CPU_IDLE)
3425 interval *= sd->busy_factor;
3426
3427 /* scale ms to jiffies */
3428 interval = msecs_to_jiffies(interval);
3429 if (unlikely(!interval))
3430 interval = 1;
3431 if (interval > HZ*NR_CPUS/10)
3432 interval = HZ*NR_CPUS/10;
3433
3434
3435 if (sd->flags & SD_SERIALIZE) {
3436 if (!spin_trylock(&balancing))
3437 goto out;
3438 }
3439
3440 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3441 if (load_balance(cpu, rq, sd, idle, &balance)) {
3442 /*
3443 * We've pulled tasks over so either we're no
3444 * longer idle, or one of our SMT siblings is
3445 * not idle.
3446 */
3447 idle = CPU_NOT_IDLE;
3448 }
3449 sd->last_balance = jiffies;
3450 }
3451 if (sd->flags & SD_SERIALIZE)
3452 spin_unlock(&balancing);
3453 out:
3454 if (time_after(next_balance, sd->last_balance + interval)) {
3455 next_balance = sd->last_balance + interval;
3456 update_next_balance = 1;
3457 }
3458
3459 /*
3460 * Stop the load balance at this level. There is another
3461 * CPU in our sched group which is doing load balancing more
3462 * actively.
3463 */
3464 if (!balance)
3465 break;
3466 }
3467
3468 /*
3469 * next_balance will be updated only when there is a need.
3470 * When the cpu is attached to null domain for ex, it will not be
3471 * updated.
3472 */
3473 if (likely(update_next_balance))
3474 rq->next_balance = next_balance;
3475 }
3476
3477 /*
3478 * run_rebalance_domains is triggered when needed from the scheduler tick.
3479 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3480 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3481 */
3482 static void run_rebalance_domains(struct softirq_action *h)
3483 {
3484 int this_cpu = smp_processor_id();
3485 struct rq *this_rq = cpu_rq(this_cpu);
3486 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3487 CPU_IDLE : CPU_NOT_IDLE;
3488
3489 rebalance_domains(this_cpu, idle);
3490
3491 #ifdef CONFIG_NO_HZ
3492 /*
3493 * If this cpu is the owner for idle load balancing, then do the
3494 * balancing on behalf of the other idle cpus whose ticks are
3495 * stopped.
3496 */
3497 if (this_rq->idle_at_tick &&
3498 atomic_read(&nohz.load_balancer) == this_cpu) {
3499 cpumask_t cpus = nohz.cpu_mask;
3500 struct rq *rq;
3501 int balance_cpu;
3502
3503 cpu_clear(this_cpu, cpus);
3504 for_each_cpu_mask(balance_cpu, cpus) {
3505 /*
3506 * If this cpu gets work to do, stop the load balancing
3507 * work being done for other cpus. Next load
3508 * balancing owner will pick it up.
3509 */
3510 if (need_resched())
3511 break;
3512
3513 rebalance_domains(balance_cpu, CPU_IDLE);
3514
3515 rq = cpu_rq(balance_cpu);
3516 if (time_after(this_rq->next_balance, rq->next_balance))
3517 this_rq->next_balance = rq->next_balance;
3518 }
3519 }
3520 #endif
3521 }
3522
3523 /*
3524 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3525 *
3526 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3527 * idle load balancing owner or decide to stop the periodic load balancing,
3528 * if the whole system is idle.
3529 */
3530 static inline void trigger_load_balance(struct rq *rq, int cpu)
3531 {
3532 #ifdef CONFIG_NO_HZ
3533 /*
3534 * If we were in the nohz mode recently and busy at the current
3535 * scheduler tick, then check if we need to nominate new idle
3536 * load balancer.
3537 */
3538 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3539 rq->in_nohz_recently = 0;
3540
3541 if (atomic_read(&nohz.load_balancer) == cpu) {
3542 cpu_clear(cpu, nohz.cpu_mask);
3543 atomic_set(&nohz.load_balancer, -1);
3544 }
3545
3546 if (atomic_read(&nohz.load_balancer) == -1) {
3547 /*
3548 * simple selection for now: Nominate the
3549 * first cpu in the nohz list to be the next
3550 * ilb owner.
3551 *
3552 * TBD: Traverse the sched domains and nominate
3553 * the nearest cpu in the nohz.cpu_mask.
3554 */
3555 int ilb = first_cpu(nohz.cpu_mask);
3556
3557 if (ilb != NR_CPUS)
3558 resched_cpu(ilb);
3559 }
3560 }
3561
3562 /*
3563 * If this cpu is idle and doing idle load balancing for all the
3564 * cpus with ticks stopped, is it time for that to stop?
3565 */
3566 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3567 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3568 resched_cpu(cpu);
3569 return;
3570 }
3571
3572 /*
3573 * If this cpu is idle and the idle load balancing is done by
3574 * someone else, then no need raise the SCHED_SOFTIRQ
3575 */
3576 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3577 cpu_isset(cpu, nohz.cpu_mask))
3578 return;
3579 #endif
3580 if (time_after_eq(jiffies, rq->next_balance))
3581 raise_softirq(SCHED_SOFTIRQ);
3582 }
3583
3584 #else /* CONFIG_SMP */
3585
3586 /*
3587 * on UP we do not need to balance between CPUs:
3588 */
3589 static inline void idle_balance(int cpu, struct rq *rq)
3590 {
3591 }
3592
3593 #endif
3594
3595 DEFINE_PER_CPU(struct kernel_stat, kstat);
3596
3597 EXPORT_PER_CPU_SYMBOL(kstat);
3598
3599 /*
3600 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3601 * that have not yet been banked in case the task is currently running.
3602 */
3603 unsigned long long task_sched_runtime(struct task_struct *p)
3604 {
3605 unsigned long flags;
3606 u64 ns, delta_exec;
3607 struct rq *rq;
3608
3609 rq = task_rq_lock(p, &flags);
3610 ns = p->se.sum_exec_runtime;
3611 if (task_current(rq, p)) {
3612 update_rq_clock(rq);
3613 delta_exec = rq->clock - p->se.exec_start;
3614 if ((s64)delta_exec > 0)
3615 ns += delta_exec;
3616 }
3617 task_rq_unlock(rq, &flags);
3618
3619 return ns;
3620 }
3621
3622 /*
3623 * Account user cpu time to a process.
3624 * @p: the process that the cpu time gets accounted to
3625 * @cputime: the cpu time spent in user space since the last update
3626 */
3627 void account_user_time(struct task_struct *p, cputime_t cputime)
3628 {
3629 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3630 cputime64_t tmp;
3631
3632 p->utime = cputime_add(p->utime, cputime);
3633
3634 /* Add user time to cpustat. */
3635 tmp = cputime_to_cputime64(cputime);
3636 if (TASK_NICE(p) > 0)
3637 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3638 else
3639 cpustat->user = cputime64_add(cpustat->user, tmp);
3640 }
3641
3642 /*
3643 * Account guest cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @cputime: the cpu time spent in virtual machine since the last update
3646 */
3647 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3648 {
3649 cputime64_t tmp;
3650 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3651
3652 tmp = cputime_to_cputime64(cputime);
3653
3654 p->utime = cputime_add(p->utime, cputime);
3655 p->gtime = cputime_add(p->gtime, cputime);
3656
3657 cpustat->user = cputime64_add(cpustat->user, tmp);
3658 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3659 }
3660
3661 /*
3662 * Account scaled user cpu time to a process.
3663 * @p: the process that the cpu time gets accounted to
3664 * @cputime: the cpu time spent in user space since the last update
3665 */
3666 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3667 {
3668 p->utimescaled = cputime_add(p->utimescaled, cputime);
3669 }
3670
3671 /*
3672 * Account system cpu time to a process.
3673 * @p: the process that the cpu time gets accounted to
3674 * @hardirq_offset: the offset to subtract from hardirq_count()
3675 * @cputime: the cpu time spent in kernel space since the last update
3676 */
3677 void account_system_time(struct task_struct *p, int hardirq_offset,
3678 cputime_t cputime)
3679 {
3680 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3681 struct rq *rq = this_rq();
3682 cputime64_t tmp;
3683
3684 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3685 return account_guest_time(p, cputime);
3686
3687 p->stime = cputime_add(p->stime, cputime);
3688
3689 /* Add system time to cpustat. */
3690 tmp = cputime_to_cputime64(cputime);
3691 if (hardirq_count() - hardirq_offset)
3692 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3693 else if (softirq_count())
3694 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3695 else if (p != rq->idle)
3696 cpustat->system = cputime64_add(cpustat->system, tmp);
3697 else if (atomic_read(&rq->nr_iowait) > 0)
3698 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3699 else
3700 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3701 /* Account for system time used */
3702 acct_update_integrals(p);
3703 }
3704
3705 /*
3706 * Account scaled system cpu time to a process.
3707 * @p: the process that the cpu time gets accounted to
3708 * @hardirq_offset: the offset to subtract from hardirq_count()
3709 * @cputime: the cpu time spent in kernel space since the last update
3710 */
3711 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3712 {
3713 p->stimescaled = cputime_add(p->stimescaled, cputime);
3714 }
3715
3716 /*
3717 * Account for involuntary wait time.
3718 * @p: the process from which the cpu time has been stolen
3719 * @steal: the cpu time spent in involuntary wait
3720 */
3721 void account_steal_time(struct task_struct *p, cputime_t steal)
3722 {
3723 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3724 cputime64_t tmp = cputime_to_cputime64(steal);
3725 struct rq *rq = this_rq();
3726
3727 if (p == rq->idle) {
3728 p->stime = cputime_add(p->stime, steal);
3729 if (atomic_read(&rq->nr_iowait) > 0)
3730 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3731 else
3732 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3733 } else
3734 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3735 }
3736
3737 /*
3738 * This function gets called by the timer code, with HZ frequency.
3739 * We call it with interrupts disabled.
3740 *
3741 * It also gets called by the fork code, when changing the parent's
3742 * timeslices.
3743 */
3744 void scheduler_tick(void)
3745 {
3746 int cpu = smp_processor_id();
3747 struct rq *rq = cpu_rq(cpu);
3748 struct task_struct *curr = rq->curr;
3749 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3750
3751 spin_lock(&rq->lock);
3752 __update_rq_clock(rq);
3753 /*
3754 * Let rq->clock advance by at least TICK_NSEC:
3755 */
3756 if (unlikely(rq->clock < next_tick)) {
3757 rq->clock = next_tick;
3758 rq->clock_underflows++;
3759 }
3760 rq->tick_timestamp = rq->clock;
3761 update_cpu_load(rq);
3762 curr->sched_class->task_tick(rq, curr, 0);
3763 update_sched_rt_period(rq);
3764 spin_unlock(&rq->lock);
3765
3766 #ifdef CONFIG_SMP
3767 rq->idle_at_tick = idle_cpu(cpu);
3768 trigger_load_balance(rq, cpu);
3769 #endif
3770 }
3771
3772 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3773
3774 void __kprobes add_preempt_count(int val)
3775 {
3776 /*
3777 * Underflow?
3778 */
3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3780 return;
3781 preempt_count() += val;
3782 /*
3783 * Spinlock count overflowing soon?
3784 */
3785 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3786 PREEMPT_MASK - 10);
3787 }
3788 EXPORT_SYMBOL(add_preempt_count);
3789
3790 void __kprobes sub_preempt_count(int val)
3791 {
3792 /*
3793 * Underflow?
3794 */
3795 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3796 return;
3797 /*
3798 * Is the spinlock portion underflowing?
3799 */
3800 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3801 !(preempt_count() & PREEMPT_MASK)))
3802 return;
3803
3804 preempt_count() -= val;
3805 }
3806 EXPORT_SYMBOL(sub_preempt_count);
3807
3808 #endif
3809
3810 /*
3811 * Print scheduling while atomic bug:
3812 */
3813 static noinline void __schedule_bug(struct task_struct *prev)
3814 {
3815 struct pt_regs *regs = get_irq_regs();
3816
3817 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3818 prev->comm, prev->pid, preempt_count());
3819
3820 debug_show_held_locks(prev);
3821 if (irqs_disabled())
3822 print_irqtrace_events(prev);
3823
3824 if (regs)
3825 show_regs(regs);
3826 else
3827 dump_stack();
3828 }
3829
3830 /*
3831 * Various schedule()-time debugging checks and statistics:
3832 */
3833 static inline void schedule_debug(struct task_struct *prev)
3834 {
3835 /*
3836 * Test if we are atomic. Since do_exit() needs to call into
3837 * schedule() atomically, we ignore that path for now.
3838 * Otherwise, whine if we are scheduling when we should not be.
3839 */
3840 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3841 __schedule_bug(prev);
3842
3843 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3844
3845 schedstat_inc(this_rq(), sched_count);
3846 #ifdef CONFIG_SCHEDSTATS
3847 if (unlikely(prev->lock_depth >= 0)) {
3848 schedstat_inc(this_rq(), bkl_count);
3849 schedstat_inc(prev, sched_info.bkl_count);
3850 }
3851 #endif
3852 }
3853
3854 /*
3855 * Pick up the highest-prio task:
3856 */
3857 static inline struct task_struct *
3858 pick_next_task(struct rq *rq, struct task_struct *prev)
3859 {
3860 const struct sched_class *class;
3861 struct task_struct *p;
3862
3863 /*
3864 * Optimization: we know that if all tasks are in
3865 * the fair class we can call that function directly:
3866 */
3867 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3868 p = fair_sched_class.pick_next_task(rq);
3869 if (likely(p))
3870 return p;
3871 }
3872
3873 class = sched_class_highest;
3874 for ( ; ; ) {
3875 p = class->pick_next_task(rq);
3876 if (p)
3877 return p;
3878 /*
3879 * Will never be NULL as the idle class always
3880 * returns a non-NULL p:
3881 */
3882 class = class->next;
3883 }
3884 }
3885
3886 /*
3887 * schedule() is the main scheduler function.
3888 */
3889 asmlinkage void __sched schedule(void)
3890 {
3891 struct task_struct *prev, *next;
3892 unsigned long *switch_count;
3893 struct rq *rq;
3894 int cpu;
3895
3896 need_resched:
3897 preempt_disable();
3898 cpu = smp_processor_id();
3899 rq = cpu_rq(cpu);
3900 rcu_qsctr_inc(cpu);
3901 prev = rq->curr;
3902 switch_count = &prev->nivcsw;
3903
3904 release_kernel_lock(prev);
3905 need_resched_nonpreemptible:
3906
3907 schedule_debug(prev);
3908
3909 hrtick_clear(rq);
3910
3911 /*
3912 * Do the rq-clock update outside the rq lock:
3913 */
3914 local_irq_disable();
3915 __update_rq_clock(rq);
3916 spin_lock(&rq->lock);
3917 clear_tsk_need_resched(prev);
3918
3919 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3920 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3921 unlikely(signal_pending(prev)))) {
3922 prev->state = TASK_RUNNING;
3923 } else {
3924 deactivate_task(rq, prev, 1);
3925 }
3926 switch_count = &prev->nvcsw;
3927 }
3928
3929 #ifdef CONFIG_SMP
3930 if (prev->sched_class->pre_schedule)
3931 prev->sched_class->pre_schedule(rq, prev);
3932 #endif
3933
3934 if (unlikely(!rq->nr_running))
3935 idle_balance(cpu, rq);
3936
3937 prev->sched_class->put_prev_task(rq, prev);
3938 next = pick_next_task(rq, prev);
3939
3940 sched_info_switch(prev, next);
3941
3942 if (likely(prev != next)) {
3943 rq->nr_switches++;
3944 rq->curr = next;
3945 ++*switch_count;
3946
3947 context_switch(rq, prev, next); /* unlocks the rq */
3948 /*
3949 * the context switch might have flipped the stack from under
3950 * us, hence refresh the local variables.
3951 */
3952 cpu = smp_processor_id();
3953 rq = cpu_rq(cpu);
3954 } else
3955 spin_unlock_irq(&rq->lock);
3956
3957 hrtick_set(rq);
3958
3959 if (unlikely(reacquire_kernel_lock(current) < 0))
3960 goto need_resched_nonpreemptible;
3961
3962 preempt_enable_no_resched();
3963 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3964 goto need_resched;
3965 }
3966 EXPORT_SYMBOL(schedule);
3967
3968 #ifdef CONFIG_PREEMPT
3969 /*
3970 * this is the entry point to schedule() from in-kernel preemption
3971 * off of preempt_enable. Kernel preemptions off return from interrupt
3972 * occur there and call schedule directly.
3973 */
3974 asmlinkage void __sched preempt_schedule(void)
3975 {
3976 struct thread_info *ti = current_thread_info();
3977 struct task_struct *task = current;
3978 int saved_lock_depth;
3979
3980 /*
3981 * If there is a non-zero preempt_count or interrupts are disabled,
3982 * we do not want to preempt the current task. Just return..
3983 */
3984 if (likely(ti->preempt_count || irqs_disabled()))
3985 return;
3986
3987 do {
3988 add_preempt_count(PREEMPT_ACTIVE);
3989
3990 /*
3991 * We keep the big kernel semaphore locked, but we
3992 * clear ->lock_depth so that schedule() doesnt
3993 * auto-release the semaphore:
3994 */
3995 saved_lock_depth = task->lock_depth;
3996 task->lock_depth = -1;
3997 schedule();
3998 task->lock_depth = saved_lock_depth;
3999 sub_preempt_count(PREEMPT_ACTIVE);
4000
4001 /*
4002 * Check again in case we missed a preemption opportunity
4003 * between schedule and now.
4004 */
4005 barrier();
4006 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4007 }
4008 EXPORT_SYMBOL(preempt_schedule);
4009
4010 /*
4011 * this is the entry point to schedule() from kernel preemption
4012 * off of irq context.
4013 * Note, that this is called and return with irqs disabled. This will
4014 * protect us against recursive calling from irq.
4015 */
4016 asmlinkage void __sched preempt_schedule_irq(void)
4017 {
4018 struct thread_info *ti = current_thread_info();
4019 struct task_struct *task = current;
4020 int saved_lock_depth;
4021
4022 /* Catch callers which need to be fixed */
4023 BUG_ON(ti->preempt_count || !irqs_disabled());
4024
4025 do {
4026 add_preempt_count(PREEMPT_ACTIVE);
4027
4028 /*
4029 * We keep the big kernel semaphore locked, but we
4030 * clear ->lock_depth so that schedule() doesnt
4031 * auto-release the semaphore:
4032 */
4033 saved_lock_depth = task->lock_depth;
4034 task->lock_depth = -1;
4035 local_irq_enable();
4036 schedule();
4037 local_irq_disable();
4038 task->lock_depth = saved_lock_depth;
4039 sub_preempt_count(PREEMPT_ACTIVE);
4040
4041 /*
4042 * Check again in case we missed a preemption opportunity
4043 * between schedule and now.
4044 */
4045 barrier();
4046 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4047 }
4048
4049 #endif /* CONFIG_PREEMPT */
4050
4051 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4052 void *key)
4053 {
4054 return try_to_wake_up(curr->private, mode, sync);
4055 }
4056 EXPORT_SYMBOL(default_wake_function);
4057
4058 /*
4059 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4060 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4061 * number) then we wake all the non-exclusive tasks and one exclusive task.
4062 *
4063 * There are circumstances in which we can try to wake a task which has already
4064 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4065 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4066 */
4067 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4068 int nr_exclusive, int sync, void *key)
4069 {
4070 wait_queue_t *curr, *next;
4071
4072 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4073 unsigned flags = curr->flags;
4074
4075 if (curr->func(curr, mode, sync, key) &&
4076 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4077 break;
4078 }
4079 }
4080
4081 /**
4082 * __wake_up - wake up threads blocked on a waitqueue.
4083 * @q: the waitqueue
4084 * @mode: which threads
4085 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4086 * @key: is directly passed to the wakeup function
4087 */
4088 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4089 int nr_exclusive, void *key)
4090 {
4091 unsigned long flags;
4092
4093 spin_lock_irqsave(&q->lock, flags);
4094 __wake_up_common(q, mode, nr_exclusive, 0, key);
4095 spin_unlock_irqrestore(&q->lock, flags);
4096 }
4097 EXPORT_SYMBOL(__wake_up);
4098
4099 /*
4100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4101 */
4102 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4103 {
4104 __wake_up_common(q, mode, 1, 0, NULL);
4105 }
4106
4107 /**
4108 * __wake_up_sync - wake up threads blocked on a waitqueue.
4109 * @q: the waitqueue
4110 * @mode: which threads
4111 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4112 *
4113 * The sync wakeup differs that the waker knows that it will schedule
4114 * away soon, so while the target thread will be woken up, it will not
4115 * be migrated to another CPU - ie. the two threads are 'synchronized'
4116 * with each other. This can prevent needless bouncing between CPUs.
4117 *
4118 * On UP it can prevent extra preemption.
4119 */
4120 void
4121 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4122 {
4123 unsigned long flags;
4124 int sync = 1;
4125
4126 if (unlikely(!q))
4127 return;
4128
4129 if (unlikely(!nr_exclusive))
4130 sync = 0;
4131
4132 spin_lock_irqsave(&q->lock, flags);
4133 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4134 spin_unlock_irqrestore(&q->lock, flags);
4135 }
4136 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4137
4138 void complete(struct completion *x)
4139 {
4140 unsigned long flags;
4141
4142 spin_lock_irqsave(&x->wait.lock, flags);
4143 x->done++;
4144 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4145 spin_unlock_irqrestore(&x->wait.lock, flags);
4146 }
4147 EXPORT_SYMBOL(complete);
4148
4149 void complete_all(struct completion *x)
4150 {
4151 unsigned long flags;
4152
4153 spin_lock_irqsave(&x->wait.lock, flags);
4154 x->done += UINT_MAX/2;
4155 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4156 spin_unlock_irqrestore(&x->wait.lock, flags);
4157 }
4158 EXPORT_SYMBOL(complete_all);
4159
4160 static inline long __sched
4161 do_wait_for_common(struct completion *x, long timeout, int state)
4162 {
4163 if (!x->done) {
4164 DECLARE_WAITQUEUE(wait, current);
4165
4166 wait.flags |= WQ_FLAG_EXCLUSIVE;
4167 __add_wait_queue_tail(&x->wait, &wait);
4168 do {
4169 if ((state == TASK_INTERRUPTIBLE &&
4170 signal_pending(current)) ||
4171 (state == TASK_KILLABLE &&
4172 fatal_signal_pending(current))) {
4173 __remove_wait_queue(&x->wait, &wait);
4174 return -ERESTARTSYS;
4175 }
4176 __set_current_state(state);
4177 spin_unlock_irq(&x->wait.lock);
4178 timeout = schedule_timeout(timeout);
4179 spin_lock_irq(&x->wait.lock);
4180 if (!timeout) {
4181 __remove_wait_queue(&x->wait, &wait);
4182 return timeout;
4183 }
4184 } while (!x->done);
4185 __remove_wait_queue(&x->wait, &wait);
4186 }
4187 x->done--;
4188 return timeout;
4189 }
4190
4191 static long __sched
4192 wait_for_common(struct completion *x, long timeout, int state)
4193 {
4194 might_sleep();
4195
4196 spin_lock_irq(&x->wait.lock);
4197 timeout = do_wait_for_common(x, timeout, state);
4198 spin_unlock_irq(&x->wait.lock);
4199 return timeout;
4200 }
4201
4202 void __sched wait_for_completion(struct completion *x)
4203 {
4204 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4205 }
4206 EXPORT_SYMBOL(wait_for_completion);
4207
4208 unsigned long __sched
4209 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4210 {
4211 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4212 }
4213 EXPORT_SYMBOL(wait_for_completion_timeout);
4214
4215 int __sched wait_for_completion_interruptible(struct completion *x)
4216 {
4217 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4218 if (t == -ERESTARTSYS)
4219 return t;
4220 return 0;
4221 }
4222 EXPORT_SYMBOL(wait_for_completion_interruptible);
4223
4224 unsigned long __sched
4225 wait_for_completion_interruptible_timeout(struct completion *x,
4226 unsigned long timeout)
4227 {
4228 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4229 }
4230 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4231
4232 int __sched wait_for_completion_killable(struct completion *x)
4233 {
4234 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4235 if (t == -ERESTARTSYS)
4236 return t;
4237 return 0;
4238 }
4239 EXPORT_SYMBOL(wait_for_completion_killable);
4240
4241 static long __sched
4242 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4243 {
4244 unsigned long flags;
4245 wait_queue_t wait;
4246
4247 init_waitqueue_entry(&wait, current);
4248
4249 __set_current_state(state);
4250
4251 spin_lock_irqsave(&q->lock, flags);
4252 __add_wait_queue(q, &wait);
4253 spin_unlock(&q->lock);
4254 timeout = schedule_timeout(timeout);
4255 spin_lock_irq(&q->lock);
4256 __remove_wait_queue(q, &wait);
4257 spin_unlock_irqrestore(&q->lock, flags);
4258
4259 return timeout;
4260 }
4261
4262 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4263 {
4264 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4265 }
4266 EXPORT_SYMBOL(interruptible_sleep_on);
4267
4268 long __sched
4269 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4270 {
4271 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4272 }
4273 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4274
4275 void __sched sleep_on(wait_queue_head_t *q)
4276 {
4277 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4278 }
4279 EXPORT_SYMBOL(sleep_on);
4280
4281 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4282 {
4283 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4284 }
4285 EXPORT_SYMBOL(sleep_on_timeout);
4286
4287 #ifdef CONFIG_RT_MUTEXES
4288
4289 /*
4290 * rt_mutex_setprio - set the current priority of a task
4291 * @p: task
4292 * @prio: prio value (kernel-internal form)
4293 *
4294 * This function changes the 'effective' priority of a task. It does
4295 * not touch ->normal_prio like __setscheduler().
4296 *
4297 * Used by the rt_mutex code to implement priority inheritance logic.
4298 */
4299 void rt_mutex_setprio(struct task_struct *p, int prio)
4300 {
4301 unsigned long flags;
4302 int oldprio, on_rq, running;
4303 struct rq *rq;
4304 const struct sched_class *prev_class = p->sched_class;
4305
4306 BUG_ON(prio < 0 || prio > MAX_PRIO);
4307
4308 rq = task_rq_lock(p, &flags);
4309 update_rq_clock(rq);
4310
4311 oldprio = p->prio;
4312 on_rq = p->se.on_rq;
4313 running = task_current(rq, p);
4314 if (on_rq) {
4315 dequeue_task(rq, p, 0);
4316 if (running)
4317 p->sched_class->put_prev_task(rq, p);
4318 }
4319
4320 if (rt_prio(prio))
4321 p->sched_class = &rt_sched_class;
4322 else
4323 p->sched_class = &fair_sched_class;
4324
4325 p->prio = prio;
4326
4327 if (on_rq) {
4328 if (running)
4329 p->sched_class->set_curr_task(rq);
4330
4331 enqueue_task(rq, p, 0);
4332
4333 check_class_changed(rq, p, prev_class, oldprio, running);
4334 }
4335 task_rq_unlock(rq, &flags);
4336 }
4337
4338 #endif
4339
4340 void set_user_nice(struct task_struct *p, long nice)
4341 {
4342 int old_prio, delta, on_rq;
4343 unsigned long flags;
4344 struct rq *rq;
4345
4346 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4347 return;
4348 /*
4349 * We have to be careful, if called from sys_setpriority(),
4350 * the task might be in the middle of scheduling on another CPU.
4351 */
4352 rq = task_rq_lock(p, &flags);
4353 update_rq_clock(rq);
4354 /*
4355 * The RT priorities are set via sched_setscheduler(), but we still
4356 * allow the 'normal' nice value to be set - but as expected
4357 * it wont have any effect on scheduling until the task is
4358 * SCHED_FIFO/SCHED_RR:
4359 */
4360 if (task_has_rt_policy(p)) {
4361 p->static_prio = NICE_TO_PRIO(nice);
4362 goto out_unlock;
4363 }
4364 on_rq = p->se.on_rq;
4365 if (on_rq)
4366 dequeue_task(rq, p, 0);
4367
4368 p->static_prio = NICE_TO_PRIO(nice);
4369 set_load_weight(p);
4370 old_prio = p->prio;
4371 p->prio = effective_prio(p);
4372 delta = p->prio - old_prio;
4373
4374 if (on_rq) {
4375 enqueue_task(rq, p, 0);
4376 /*
4377 * If the task increased its priority or is running and
4378 * lowered its priority, then reschedule its CPU:
4379 */
4380 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4381 resched_task(rq->curr);
4382 }
4383 out_unlock:
4384 task_rq_unlock(rq, &flags);
4385 }
4386 EXPORT_SYMBOL(set_user_nice);
4387
4388 /*
4389 * can_nice - check if a task can reduce its nice value
4390 * @p: task
4391 * @nice: nice value
4392 */
4393 int can_nice(const struct task_struct *p, const int nice)
4394 {
4395 /* convert nice value [19,-20] to rlimit style value [1,40] */
4396 int nice_rlim = 20 - nice;
4397
4398 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4399 capable(CAP_SYS_NICE));
4400 }
4401
4402 #ifdef __ARCH_WANT_SYS_NICE
4403
4404 /*
4405 * sys_nice - change the priority of the current process.
4406 * @increment: priority increment
4407 *
4408 * sys_setpriority is a more generic, but much slower function that
4409 * does similar things.
4410 */
4411 asmlinkage long sys_nice(int increment)
4412 {
4413 long nice, retval;
4414
4415 /*
4416 * Setpriority might change our priority at the same moment.
4417 * We don't have to worry. Conceptually one call occurs first
4418 * and we have a single winner.
4419 */
4420 if (increment < -40)
4421 increment = -40;
4422 if (increment > 40)
4423 increment = 40;
4424
4425 nice = PRIO_TO_NICE(current->static_prio) + increment;
4426 if (nice < -20)
4427 nice = -20;
4428 if (nice > 19)
4429 nice = 19;
4430
4431 if (increment < 0 && !can_nice(current, nice))
4432 return -EPERM;
4433
4434 retval = security_task_setnice(current, nice);
4435 if (retval)
4436 return retval;
4437
4438 set_user_nice(current, nice);
4439 return 0;
4440 }
4441
4442 #endif
4443
4444 /**
4445 * task_prio - return the priority value of a given task.
4446 * @p: the task in question.
4447 *
4448 * This is the priority value as seen by users in /proc.
4449 * RT tasks are offset by -200. Normal tasks are centered
4450 * around 0, value goes from -16 to +15.
4451 */
4452 int task_prio(const struct task_struct *p)
4453 {
4454 return p->prio - MAX_RT_PRIO;
4455 }
4456
4457 /**
4458 * task_nice - return the nice value of a given task.
4459 * @p: the task in question.
4460 */
4461 int task_nice(const struct task_struct *p)
4462 {
4463 return TASK_NICE(p);
4464 }
4465 EXPORT_SYMBOL_GPL(task_nice);
4466
4467 /**
4468 * idle_cpu - is a given cpu idle currently?
4469 * @cpu: the processor in question.
4470 */
4471 int idle_cpu(int cpu)
4472 {
4473 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4474 }
4475
4476 /**
4477 * idle_task - return the idle task for a given cpu.
4478 * @cpu: the processor in question.
4479 */
4480 struct task_struct *idle_task(int cpu)
4481 {
4482 return cpu_rq(cpu)->idle;
4483 }
4484
4485 /**
4486 * find_process_by_pid - find a process with a matching PID value.
4487 * @pid: the pid in question.
4488 */
4489 static struct task_struct *find_process_by_pid(pid_t pid)
4490 {
4491 return pid ? find_task_by_vpid(pid) : current;
4492 }
4493
4494 /* Actually do priority change: must hold rq lock. */
4495 static void
4496 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4497 {
4498 BUG_ON(p->se.on_rq);
4499
4500 p->policy = policy;
4501 switch (p->policy) {
4502 case SCHED_NORMAL:
4503 case SCHED_BATCH:
4504 case SCHED_IDLE:
4505 p->sched_class = &fair_sched_class;
4506 break;
4507 case SCHED_FIFO:
4508 case SCHED_RR:
4509 p->sched_class = &rt_sched_class;
4510 break;
4511 }
4512
4513 p->rt_priority = prio;
4514 p->normal_prio = normal_prio(p);
4515 /* we are holding p->pi_lock already */
4516 p->prio = rt_mutex_getprio(p);
4517 set_load_weight(p);
4518 }
4519
4520 /**
4521 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4522 * @p: the task in question.
4523 * @policy: new policy.
4524 * @param: structure containing the new RT priority.
4525 *
4526 * NOTE that the task may be already dead.
4527 */
4528 int sched_setscheduler(struct task_struct *p, int policy,
4529 struct sched_param *param)
4530 {
4531 int retval, oldprio, oldpolicy = -1, on_rq, running;
4532 unsigned long flags;
4533 const struct sched_class *prev_class = p->sched_class;
4534 struct rq *rq;
4535
4536 /* may grab non-irq protected spin_locks */
4537 BUG_ON(in_interrupt());
4538 recheck:
4539 /* double check policy once rq lock held */
4540 if (policy < 0)
4541 policy = oldpolicy = p->policy;
4542 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4543 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4544 policy != SCHED_IDLE)
4545 return -EINVAL;
4546 /*
4547 * Valid priorities for SCHED_FIFO and SCHED_RR are
4548 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4549 * SCHED_BATCH and SCHED_IDLE is 0.
4550 */
4551 if (param->sched_priority < 0 ||
4552 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4553 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4554 return -EINVAL;
4555 if (rt_policy(policy) != (param->sched_priority != 0))
4556 return -EINVAL;
4557
4558 /*
4559 * Allow unprivileged RT tasks to decrease priority:
4560 */
4561 if (!capable(CAP_SYS_NICE)) {
4562 if (rt_policy(policy)) {
4563 unsigned long rlim_rtprio;
4564
4565 if (!lock_task_sighand(p, &flags))
4566 return -ESRCH;
4567 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4568 unlock_task_sighand(p, &flags);
4569
4570 /* can't set/change the rt policy */
4571 if (policy != p->policy && !rlim_rtprio)
4572 return -EPERM;
4573
4574 /* can't increase priority */
4575 if (param->sched_priority > p->rt_priority &&
4576 param->sched_priority > rlim_rtprio)
4577 return -EPERM;
4578 }
4579 /*
4580 * Like positive nice levels, dont allow tasks to
4581 * move out of SCHED_IDLE either:
4582 */
4583 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4584 return -EPERM;
4585
4586 /* can't change other user's priorities */
4587 if ((current->euid != p->euid) &&
4588 (current->euid != p->uid))
4589 return -EPERM;
4590 }
4591
4592 #ifdef CONFIG_RT_GROUP_SCHED
4593 /*
4594 * Do not allow realtime tasks into groups that have no runtime
4595 * assigned.
4596 */
4597 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4598 return -EPERM;
4599 #endif
4600
4601 retval = security_task_setscheduler(p, policy, param);
4602 if (retval)
4603 return retval;
4604 /*
4605 * make sure no PI-waiters arrive (or leave) while we are
4606 * changing the priority of the task:
4607 */
4608 spin_lock_irqsave(&p->pi_lock, flags);
4609 /*
4610 * To be able to change p->policy safely, the apropriate
4611 * runqueue lock must be held.
4612 */
4613 rq = __task_rq_lock(p);
4614 /* recheck policy now with rq lock held */
4615 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4616 policy = oldpolicy = -1;
4617 __task_rq_unlock(rq);
4618 spin_unlock_irqrestore(&p->pi_lock, flags);
4619 goto recheck;
4620 }
4621 update_rq_clock(rq);
4622 on_rq = p->se.on_rq;
4623 running = task_current(rq, p);
4624 if (on_rq) {
4625 deactivate_task(rq, p, 0);
4626 if (running)
4627 p->sched_class->put_prev_task(rq, p);
4628 }
4629
4630 oldprio = p->prio;
4631 __setscheduler(rq, p, policy, param->sched_priority);
4632
4633 if (on_rq) {
4634 if (running)
4635 p->sched_class->set_curr_task(rq);
4636
4637 activate_task(rq, p, 0);
4638
4639 check_class_changed(rq, p, prev_class, oldprio, running);
4640 }
4641 __task_rq_unlock(rq);
4642 spin_unlock_irqrestore(&p->pi_lock, flags);
4643
4644 rt_mutex_adjust_pi(p);
4645
4646 return 0;
4647 }
4648 EXPORT_SYMBOL_GPL(sched_setscheduler);
4649
4650 static int
4651 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4652 {
4653 struct sched_param lparam;
4654 struct task_struct *p;
4655 int retval;
4656
4657 if (!param || pid < 0)
4658 return -EINVAL;
4659 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4660 return -EFAULT;
4661
4662 rcu_read_lock();
4663 retval = -ESRCH;
4664 p = find_process_by_pid(pid);
4665 if (p != NULL)
4666 retval = sched_setscheduler(p, policy, &lparam);
4667 rcu_read_unlock();
4668
4669 return retval;
4670 }
4671
4672 /**
4673 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4674 * @pid: the pid in question.
4675 * @policy: new policy.
4676 * @param: structure containing the new RT priority.
4677 */
4678 asmlinkage long
4679 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4680 {
4681 /* negative values for policy are not valid */
4682 if (policy < 0)
4683 return -EINVAL;
4684
4685 return do_sched_setscheduler(pid, policy, param);
4686 }
4687
4688 /**
4689 * sys_sched_setparam - set/change the RT priority of a thread
4690 * @pid: the pid in question.
4691 * @param: structure containing the new RT priority.
4692 */
4693 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4694 {
4695 return do_sched_setscheduler(pid, -1, param);
4696 }
4697
4698 /**
4699 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4700 * @pid: the pid in question.
4701 */
4702 asmlinkage long sys_sched_getscheduler(pid_t pid)
4703 {
4704 struct task_struct *p;
4705 int retval;
4706
4707 if (pid < 0)
4708 return -EINVAL;
4709
4710 retval = -ESRCH;
4711 read_lock(&tasklist_lock);
4712 p = find_process_by_pid(pid);
4713 if (p) {
4714 retval = security_task_getscheduler(p);
4715 if (!retval)
4716 retval = p->policy;
4717 }
4718 read_unlock(&tasklist_lock);
4719 return retval;
4720 }
4721
4722 /**
4723 * sys_sched_getscheduler - get the RT priority of a thread
4724 * @pid: the pid in question.
4725 * @param: structure containing the RT priority.
4726 */
4727 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4728 {
4729 struct sched_param lp;
4730 struct task_struct *p;
4731 int retval;
4732
4733 if (!param || pid < 0)
4734 return -EINVAL;
4735
4736 read_lock(&tasklist_lock);
4737 p = find_process_by_pid(pid);
4738 retval = -ESRCH;
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
4746 lp.sched_priority = p->rt_priority;
4747 read_unlock(&tasklist_lock);
4748
4749 /*
4750 * This one might sleep, we cannot do it with a spinlock held ...
4751 */
4752 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4753
4754 return retval;
4755
4756 out_unlock:
4757 read_unlock(&tasklist_lock);
4758 return retval;
4759 }
4760
4761 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4762 {
4763 cpumask_t cpus_allowed;
4764 struct task_struct *p;
4765 int retval;
4766
4767 get_online_cpus();
4768 read_lock(&tasklist_lock);
4769
4770 p = find_process_by_pid(pid);
4771 if (!p) {
4772 read_unlock(&tasklist_lock);
4773 put_online_cpus();
4774 return -ESRCH;
4775 }
4776
4777 /*
4778 * It is not safe to call set_cpus_allowed with the
4779 * tasklist_lock held. We will bump the task_struct's
4780 * usage count and then drop tasklist_lock.
4781 */
4782 get_task_struct(p);
4783 read_unlock(&tasklist_lock);
4784
4785 retval = -EPERM;
4786 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4787 !capable(CAP_SYS_NICE))
4788 goto out_unlock;
4789
4790 retval = security_task_setscheduler(p, 0, NULL);
4791 if (retval)
4792 goto out_unlock;
4793
4794 cpus_allowed = cpuset_cpus_allowed(p);
4795 cpus_and(new_mask, new_mask, cpus_allowed);
4796 again:
4797 retval = set_cpus_allowed(p, new_mask);
4798
4799 if (!retval) {
4800 cpus_allowed = cpuset_cpus_allowed(p);
4801 if (!cpus_subset(new_mask, cpus_allowed)) {
4802 /*
4803 * We must have raced with a concurrent cpuset
4804 * update. Just reset the cpus_allowed to the
4805 * cpuset's cpus_allowed
4806 */
4807 new_mask = cpus_allowed;
4808 goto again;
4809 }
4810 }
4811 out_unlock:
4812 put_task_struct(p);
4813 put_online_cpus();
4814 return retval;
4815 }
4816
4817 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4818 cpumask_t *new_mask)
4819 {
4820 if (len < sizeof(cpumask_t)) {
4821 memset(new_mask, 0, sizeof(cpumask_t));
4822 } else if (len > sizeof(cpumask_t)) {
4823 len = sizeof(cpumask_t);
4824 }
4825 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4826 }
4827
4828 /**
4829 * sys_sched_setaffinity - set the cpu affinity of a process
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4832 * @user_mask_ptr: user-space pointer to the new cpu mask
4833 */
4834 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4835 unsigned long __user *user_mask_ptr)
4836 {
4837 cpumask_t new_mask;
4838 int retval;
4839
4840 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4841 if (retval)
4842 return retval;
4843
4844 return sched_setaffinity(pid, new_mask);
4845 }
4846
4847 /*
4848 * Represents all cpu's present in the system
4849 * In systems capable of hotplug, this map could dynamically grow
4850 * as new cpu's are detected in the system via any platform specific
4851 * method, such as ACPI for e.g.
4852 */
4853
4854 cpumask_t cpu_present_map __read_mostly;
4855 EXPORT_SYMBOL(cpu_present_map);
4856
4857 #ifndef CONFIG_SMP
4858 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4859 EXPORT_SYMBOL(cpu_online_map);
4860
4861 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4862 EXPORT_SYMBOL(cpu_possible_map);
4863 #endif
4864
4865 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4866 {
4867 struct task_struct *p;
4868 int retval;
4869
4870 get_online_cpus();
4871 read_lock(&tasklist_lock);
4872
4873 retval = -ESRCH;
4874 p = find_process_by_pid(pid);
4875 if (!p)
4876 goto out_unlock;
4877
4878 retval = security_task_getscheduler(p);
4879 if (retval)
4880 goto out_unlock;
4881
4882 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4883
4884 out_unlock:
4885 read_unlock(&tasklist_lock);
4886 put_online_cpus();
4887
4888 return retval;
4889 }
4890
4891 /**
4892 * sys_sched_getaffinity - get the cpu affinity of a process
4893 * @pid: pid of the process
4894 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4895 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4896 */
4897 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4898 unsigned long __user *user_mask_ptr)
4899 {
4900 int ret;
4901 cpumask_t mask;
4902
4903 if (len < sizeof(cpumask_t))
4904 return -EINVAL;
4905
4906 ret = sched_getaffinity(pid, &mask);
4907 if (ret < 0)
4908 return ret;
4909
4910 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4911 return -EFAULT;
4912
4913 return sizeof(cpumask_t);
4914 }
4915
4916 /**
4917 * sys_sched_yield - yield the current processor to other threads.
4918 *
4919 * This function yields the current CPU to other tasks. If there are no
4920 * other threads running on this CPU then this function will return.
4921 */
4922 asmlinkage long sys_sched_yield(void)
4923 {
4924 struct rq *rq = this_rq_lock();
4925
4926 schedstat_inc(rq, yld_count);
4927 current->sched_class->yield_task(rq);
4928
4929 /*
4930 * Since we are going to call schedule() anyway, there's
4931 * no need to preempt or enable interrupts:
4932 */
4933 __release(rq->lock);
4934 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4935 _raw_spin_unlock(&rq->lock);
4936 preempt_enable_no_resched();
4937
4938 schedule();
4939
4940 return 0;
4941 }
4942
4943 static void __cond_resched(void)
4944 {
4945 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4946 __might_sleep(__FILE__, __LINE__);
4947 #endif
4948 /*
4949 * The BKS might be reacquired before we have dropped
4950 * PREEMPT_ACTIVE, which could trigger a second
4951 * cond_resched() call.
4952 */
4953 do {
4954 add_preempt_count(PREEMPT_ACTIVE);
4955 schedule();
4956 sub_preempt_count(PREEMPT_ACTIVE);
4957 } while (need_resched());
4958 }
4959
4960 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4961 int __sched _cond_resched(void)
4962 {
4963 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4964 system_state == SYSTEM_RUNNING) {
4965 __cond_resched();
4966 return 1;
4967 }
4968 return 0;
4969 }
4970 EXPORT_SYMBOL(_cond_resched);
4971 #endif
4972
4973 /*
4974 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4975 * call schedule, and on return reacquire the lock.
4976 *
4977 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4978 * operations here to prevent schedule() from being called twice (once via
4979 * spin_unlock(), once by hand).
4980 */
4981 int cond_resched_lock(spinlock_t *lock)
4982 {
4983 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4984 int ret = 0;
4985
4986 if (spin_needbreak(lock) || resched) {
4987 spin_unlock(lock);
4988 if (resched && need_resched())
4989 __cond_resched();
4990 else
4991 cpu_relax();
4992 ret = 1;
4993 spin_lock(lock);
4994 }
4995 return ret;
4996 }
4997 EXPORT_SYMBOL(cond_resched_lock);
4998
4999 int __sched cond_resched_softirq(void)
5000 {
5001 BUG_ON(!in_softirq());
5002
5003 if (need_resched() && system_state == SYSTEM_RUNNING) {
5004 local_bh_enable();
5005 __cond_resched();
5006 local_bh_disable();
5007 return 1;
5008 }
5009 return 0;
5010 }
5011 EXPORT_SYMBOL(cond_resched_softirq);
5012
5013 /**
5014 * yield - yield the current processor to other threads.
5015 *
5016 * This is a shortcut for kernel-space yielding - it marks the
5017 * thread runnable and calls sys_sched_yield().
5018 */
5019 void __sched yield(void)
5020 {
5021 set_current_state(TASK_RUNNING);
5022 sys_sched_yield();
5023 }
5024 EXPORT_SYMBOL(yield);
5025
5026 /*
5027 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5028 * that process accounting knows that this is a task in IO wait state.
5029 *
5030 * But don't do that if it is a deliberate, throttling IO wait (this task
5031 * has set its backing_dev_info: the queue against which it should throttle)
5032 */
5033 void __sched io_schedule(void)
5034 {
5035 struct rq *rq = &__raw_get_cpu_var(runqueues);
5036
5037 delayacct_blkio_start();
5038 atomic_inc(&rq->nr_iowait);
5039 schedule();
5040 atomic_dec(&rq->nr_iowait);
5041 delayacct_blkio_end();
5042 }
5043 EXPORT_SYMBOL(io_schedule);
5044
5045 long __sched io_schedule_timeout(long timeout)
5046 {
5047 struct rq *rq = &__raw_get_cpu_var(runqueues);
5048 long ret;
5049
5050 delayacct_blkio_start();
5051 atomic_inc(&rq->nr_iowait);
5052 ret = schedule_timeout(timeout);
5053 atomic_dec(&rq->nr_iowait);
5054 delayacct_blkio_end();
5055 return ret;
5056 }
5057
5058 /**
5059 * sys_sched_get_priority_max - return maximum RT priority.
5060 * @policy: scheduling class.
5061 *
5062 * this syscall returns the maximum rt_priority that can be used
5063 * by a given scheduling class.
5064 */
5065 asmlinkage long sys_sched_get_priority_max(int policy)
5066 {
5067 int ret = -EINVAL;
5068
5069 switch (policy) {
5070 case SCHED_FIFO:
5071 case SCHED_RR:
5072 ret = MAX_USER_RT_PRIO-1;
5073 break;
5074 case SCHED_NORMAL:
5075 case SCHED_BATCH:
5076 case SCHED_IDLE:
5077 ret = 0;
5078 break;
5079 }
5080 return ret;
5081 }
5082
5083 /**
5084 * sys_sched_get_priority_min - return minimum RT priority.
5085 * @policy: scheduling class.
5086 *
5087 * this syscall returns the minimum rt_priority that can be used
5088 * by a given scheduling class.
5089 */
5090 asmlinkage long sys_sched_get_priority_min(int policy)
5091 {
5092 int ret = -EINVAL;
5093
5094 switch (policy) {
5095 case SCHED_FIFO:
5096 case SCHED_RR:
5097 ret = 1;
5098 break;
5099 case SCHED_NORMAL:
5100 case SCHED_BATCH:
5101 case SCHED_IDLE:
5102 ret = 0;
5103 }
5104 return ret;
5105 }
5106
5107 /**
5108 * sys_sched_rr_get_interval - return the default timeslice of a process.
5109 * @pid: pid of the process.
5110 * @interval: userspace pointer to the timeslice value.
5111 *
5112 * this syscall writes the default timeslice value of a given process
5113 * into the user-space timespec buffer. A value of '0' means infinity.
5114 */
5115 asmlinkage
5116 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5117 {
5118 struct task_struct *p;
5119 unsigned int time_slice;
5120 int retval;
5121 struct timespec t;
5122
5123 if (pid < 0)
5124 return -EINVAL;
5125
5126 retval = -ESRCH;
5127 read_lock(&tasklist_lock);
5128 p = find_process_by_pid(pid);
5129 if (!p)
5130 goto out_unlock;
5131
5132 retval = security_task_getscheduler(p);
5133 if (retval)
5134 goto out_unlock;
5135
5136 /*
5137 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5138 * tasks that are on an otherwise idle runqueue:
5139 */
5140 time_slice = 0;
5141 if (p->policy == SCHED_RR) {
5142 time_slice = DEF_TIMESLICE;
5143 } else {
5144 struct sched_entity *se = &p->se;
5145 unsigned long flags;
5146 struct rq *rq;
5147
5148 rq = task_rq_lock(p, &flags);
5149 if (rq->cfs.load.weight)
5150 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5151 task_rq_unlock(rq, &flags);
5152 }
5153 read_unlock(&tasklist_lock);
5154 jiffies_to_timespec(time_slice, &t);
5155 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5156 return retval;
5157
5158 out_unlock:
5159 read_unlock(&tasklist_lock);
5160 return retval;
5161 }
5162
5163 static const char stat_nam[] = "RSDTtZX";
5164
5165 void sched_show_task(struct task_struct *p)
5166 {
5167 unsigned long free = 0;
5168 unsigned state;
5169
5170 state = p->state ? __ffs(p->state) + 1 : 0;
5171 printk(KERN_INFO "%-13.13s %c", p->comm,
5172 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5173 #if BITS_PER_LONG == 32
5174 if (state == TASK_RUNNING)
5175 printk(KERN_CONT " running ");
5176 else
5177 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5178 #else
5179 if (state == TASK_RUNNING)
5180 printk(KERN_CONT " running task ");
5181 else
5182 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5183 #endif
5184 #ifdef CONFIG_DEBUG_STACK_USAGE
5185 {
5186 unsigned long *n = end_of_stack(p);
5187 while (!*n)
5188 n++;
5189 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5190 }
5191 #endif
5192 printk(KERN_CONT "%5lu %5d %6d\n", free,
5193 task_pid_nr(p), task_pid_nr(p->real_parent));
5194
5195 show_stack(p, NULL);
5196 }
5197
5198 void show_state_filter(unsigned long state_filter)
5199 {
5200 struct task_struct *g, *p;
5201
5202 #if BITS_PER_LONG == 32
5203 printk(KERN_INFO
5204 " task PC stack pid father\n");
5205 #else
5206 printk(KERN_INFO
5207 " task PC stack pid father\n");
5208 #endif
5209 read_lock(&tasklist_lock);
5210 do_each_thread(g, p) {
5211 /*
5212 * reset the NMI-timeout, listing all files on a slow
5213 * console might take alot of time:
5214 */
5215 touch_nmi_watchdog();
5216 if (!state_filter || (p->state & state_filter))
5217 sched_show_task(p);
5218 } while_each_thread(g, p);
5219
5220 touch_all_softlockup_watchdogs();
5221
5222 #ifdef CONFIG_SCHED_DEBUG
5223 sysrq_sched_debug_show();
5224 #endif
5225 read_unlock(&tasklist_lock);
5226 /*
5227 * Only show locks if all tasks are dumped:
5228 */
5229 if (state_filter == -1)
5230 debug_show_all_locks();
5231 }
5232
5233 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5234 {
5235 idle->sched_class = &idle_sched_class;
5236 }
5237
5238 /**
5239 * init_idle - set up an idle thread for a given CPU
5240 * @idle: task in question
5241 * @cpu: cpu the idle task belongs to
5242 *
5243 * NOTE: this function does not set the idle thread's NEED_RESCHED
5244 * flag, to make booting more robust.
5245 */
5246 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5247 {
5248 struct rq *rq = cpu_rq(cpu);
5249 unsigned long flags;
5250
5251 __sched_fork(idle);
5252 idle->se.exec_start = sched_clock();
5253
5254 idle->prio = idle->normal_prio = MAX_PRIO;
5255 idle->cpus_allowed = cpumask_of_cpu(cpu);
5256 __set_task_cpu(idle, cpu);
5257
5258 spin_lock_irqsave(&rq->lock, flags);
5259 rq->curr = rq->idle = idle;
5260 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5261 idle->oncpu = 1;
5262 #endif
5263 spin_unlock_irqrestore(&rq->lock, flags);
5264
5265 /* Set the preempt count _outside_ the spinlocks! */
5266 task_thread_info(idle)->preempt_count = 0;
5267
5268 /*
5269 * The idle tasks have their own, simple scheduling class:
5270 */
5271 idle->sched_class = &idle_sched_class;
5272 }
5273
5274 /*
5275 * In a system that switches off the HZ timer nohz_cpu_mask
5276 * indicates which cpus entered this state. This is used
5277 * in the rcu update to wait only for active cpus. For system
5278 * which do not switch off the HZ timer nohz_cpu_mask should
5279 * always be CPU_MASK_NONE.
5280 */
5281 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5282
5283 /*
5284 * Increase the granularity value when there are more CPUs,
5285 * because with more CPUs the 'effective latency' as visible
5286 * to users decreases. But the relationship is not linear,
5287 * so pick a second-best guess by going with the log2 of the
5288 * number of CPUs.
5289 *
5290 * This idea comes from the SD scheduler of Con Kolivas:
5291 */
5292 static inline void sched_init_granularity(void)
5293 {
5294 unsigned int factor = 1 + ilog2(num_online_cpus());
5295 const unsigned long limit = 200000000;
5296
5297 sysctl_sched_min_granularity *= factor;
5298 if (sysctl_sched_min_granularity > limit)
5299 sysctl_sched_min_granularity = limit;
5300
5301 sysctl_sched_latency *= factor;
5302 if (sysctl_sched_latency > limit)
5303 sysctl_sched_latency = limit;
5304
5305 sysctl_sched_wakeup_granularity *= factor;
5306 sysctl_sched_batch_wakeup_granularity *= factor;
5307 }
5308
5309 #ifdef CONFIG_SMP
5310 /*
5311 * This is how migration works:
5312 *
5313 * 1) we queue a struct migration_req structure in the source CPU's
5314 * runqueue and wake up that CPU's migration thread.
5315 * 2) we down() the locked semaphore => thread blocks.
5316 * 3) migration thread wakes up (implicitly it forces the migrated
5317 * thread off the CPU)
5318 * 4) it gets the migration request and checks whether the migrated
5319 * task is still in the wrong runqueue.
5320 * 5) if it's in the wrong runqueue then the migration thread removes
5321 * it and puts it into the right queue.
5322 * 6) migration thread up()s the semaphore.
5323 * 7) we wake up and the migration is done.
5324 */
5325
5326 /*
5327 * Change a given task's CPU affinity. Migrate the thread to a
5328 * proper CPU and schedule it away if the CPU it's executing on
5329 * is removed from the allowed bitmask.
5330 *
5331 * NOTE: the caller must have a valid reference to the task, the
5332 * task must not exit() & deallocate itself prematurely. The
5333 * call is not atomic; no spinlocks may be held.
5334 */
5335 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5336 {
5337 struct migration_req req;
5338 unsigned long flags;
5339 struct rq *rq;
5340 int ret = 0;
5341
5342 rq = task_rq_lock(p, &flags);
5343 if (!cpus_intersects(new_mask, cpu_online_map)) {
5344 ret = -EINVAL;
5345 goto out;
5346 }
5347
5348 if (p->sched_class->set_cpus_allowed)
5349 p->sched_class->set_cpus_allowed(p, &new_mask);
5350 else {
5351 p->cpus_allowed = new_mask;
5352 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5353 }
5354
5355 /* Can the task run on the task's current CPU? If so, we're done */
5356 if (cpu_isset(task_cpu(p), new_mask))
5357 goto out;
5358
5359 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5360 /* Need help from migration thread: drop lock and wait. */
5361 task_rq_unlock(rq, &flags);
5362 wake_up_process(rq->migration_thread);
5363 wait_for_completion(&req.done);
5364 tlb_migrate_finish(p->mm);
5365 return 0;
5366 }
5367 out:
5368 task_rq_unlock(rq, &flags);
5369
5370 return ret;
5371 }
5372 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5373
5374 /*
5375 * Move (not current) task off this cpu, onto dest cpu. We're doing
5376 * this because either it can't run here any more (set_cpus_allowed()
5377 * away from this CPU, or CPU going down), or because we're
5378 * attempting to rebalance this task on exec (sched_exec).
5379 *
5380 * So we race with normal scheduler movements, but that's OK, as long
5381 * as the task is no longer on this CPU.
5382 *
5383 * Returns non-zero if task was successfully migrated.
5384 */
5385 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5386 {
5387 struct rq *rq_dest, *rq_src;
5388 int ret = 0, on_rq;
5389
5390 if (unlikely(cpu_is_offline(dest_cpu)))
5391 return ret;
5392
5393 rq_src = cpu_rq(src_cpu);
5394 rq_dest = cpu_rq(dest_cpu);
5395
5396 double_rq_lock(rq_src, rq_dest);
5397 /* Already moved. */
5398 if (task_cpu(p) != src_cpu)
5399 goto out;
5400 /* Affinity changed (again). */
5401 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5402 goto out;
5403
5404 on_rq = p->se.on_rq;
5405 if (on_rq)
5406 deactivate_task(rq_src, p, 0);
5407
5408 set_task_cpu(p, dest_cpu);
5409 if (on_rq) {
5410 activate_task(rq_dest, p, 0);
5411 check_preempt_curr(rq_dest, p);
5412 }
5413 ret = 1;
5414 out:
5415 double_rq_unlock(rq_src, rq_dest);
5416 return ret;
5417 }
5418
5419 /*
5420 * migration_thread - this is a highprio system thread that performs
5421 * thread migration by bumping thread off CPU then 'pushing' onto
5422 * another runqueue.
5423 */
5424 static int migration_thread(void *data)
5425 {
5426 int cpu = (long)data;
5427 struct rq *rq;
5428
5429 rq = cpu_rq(cpu);
5430 BUG_ON(rq->migration_thread != current);
5431
5432 set_current_state(TASK_INTERRUPTIBLE);
5433 while (!kthread_should_stop()) {
5434 struct migration_req *req;
5435 struct list_head *head;
5436
5437 spin_lock_irq(&rq->lock);
5438
5439 if (cpu_is_offline(cpu)) {
5440 spin_unlock_irq(&rq->lock);
5441 goto wait_to_die;
5442 }
5443
5444 if (rq->active_balance) {
5445 active_load_balance(rq, cpu);
5446 rq->active_balance = 0;
5447 }
5448
5449 head = &rq->migration_queue;
5450
5451 if (list_empty(head)) {
5452 spin_unlock_irq(&rq->lock);
5453 schedule();
5454 set_current_state(TASK_INTERRUPTIBLE);
5455 continue;
5456 }
5457 req = list_entry(head->next, struct migration_req, list);
5458 list_del_init(head->next);
5459
5460 spin_unlock(&rq->lock);
5461 __migrate_task(req->task, cpu, req->dest_cpu);
5462 local_irq_enable();
5463
5464 complete(&req->done);
5465 }
5466 __set_current_state(TASK_RUNNING);
5467 return 0;
5468
5469 wait_to_die:
5470 /* Wait for kthread_stop */
5471 set_current_state(TASK_INTERRUPTIBLE);
5472 while (!kthread_should_stop()) {
5473 schedule();
5474 set_current_state(TASK_INTERRUPTIBLE);
5475 }
5476 __set_current_state(TASK_RUNNING);
5477 return 0;
5478 }
5479
5480 #ifdef CONFIG_HOTPLUG_CPU
5481
5482 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5483 {
5484 int ret;
5485
5486 local_irq_disable();
5487 ret = __migrate_task(p, src_cpu, dest_cpu);
5488 local_irq_enable();
5489 return ret;
5490 }
5491
5492 /*
5493 * Figure out where task on dead CPU should go, use force if necessary.
5494 * NOTE: interrupts should be disabled by the caller
5495 */
5496 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5497 {
5498 unsigned long flags;
5499 cpumask_t mask;
5500 struct rq *rq;
5501 int dest_cpu;
5502
5503 do {
5504 /* On same node? */
5505 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5506 cpus_and(mask, mask, p->cpus_allowed);
5507 dest_cpu = any_online_cpu(mask);
5508
5509 /* On any allowed CPU? */
5510 if (dest_cpu == NR_CPUS)
5511 dest_cpu = any_online_cpu(p->cpus_allowed);
5512
5513 /* No more Mr. Nice Guy. */
5514 if (dest_cpu == NR_CPUS) {
5515 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5516 /*
5517 * Try to stay on the same cpuset, where the
5518 * current cpuset may be a subset of all cpus.
5519 * The cpuset_cpus_allowed_locked() variant of
5520 * cpuset_cpus_allowed() will not block. It must be
5521 * called within calls to cpuset_lock/cpuset_unlock.
5522 */
5523 rq = task_rq_lock(p, &flags);
5524 p->cpus_allowed = cpus_allowed;
5525 dest_cpu = any_online_cpu(p->cpus_allowed);
5526 task_rq_unlock(rq, &flags);
5527
5528 /*
5529 * Don't tell them about moving exiting tasks or
5530 * kernel threads (both mm NULL), since they never
5531 * leave kernel.
5532 */
5533 if (p->mm && printk_ratelimit()) {
5534 printk(KERN_INFO "process %d (%s) no "
5535 "longer affine to cpu%d\n",
5536 task_pid_nr(p), p->comm, dead_cpu);
5537 }
5538 }
5539 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5540 }
5541
5542 /*
5543 * While a dead CPU has no uninterruptible tasks queued at this point,
5544 * it might still have a nonzero ->nr_uninterruptible counter, because
5545 * for performance reasons the counter is not stricly tracking tasks to
5546 * their home CPUs. So we just add the counter to another CPU's counter,
5547 * to keep the global sum constant after CPU-down:
5548 */
5549 static void migrate_nr_uninterruptible(struct rq *rq_src)
5550 {
5551 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5552 unsigned long flags;
5553
5554 local_irq_save(flags);
5555 double_rq_lock(rq_src, rq_dest);
5556 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5557 rq_src->nr_uninterruptible = 0;
5558 double_rq_unlock(rq_src, rq_dest);
5559 local_irq_restore(flags);
5560 }
5561
5562 /* Run through task list and migrate tasks from the dead cpu. */
5563 static void migrate_live_tasks(int src_cpu)
5564 {
5565 struct task_struct *p, *t;
5566
5567 read_lock(&tasklist_lock);
5568
5569 do_each_thread(t, p) {
5570 if (p == current)
5571 continue;
5572
5573 if (task_cpu(p) == src_cpu)
5574 move_task_off_dead_cpu(src_cpu, p);
5575 } while_each_thread(t, p);
5576
5577 read_unlock(&tasklist_lock);
5578 }
5579
5580 /*
5581 * Schedules idle task to be the next runnable task on current CPU.
5582 * It does so by boosting its priority to highest possible.
5583 * Used by CPU offline code.
5584 */
5585 void sched_idle_next(void)
5586 {
5587 int this_cpu = smp_processor_id();
5588 struct rq *rq = cpu_rq(this_cpu);
5589 struct task_struct *p = rq->idle;
5590 unsigned long flags;
5591
5592 /* cpu has to be offline */
5593 BUG_ON(cpu_online(this_cpu));
5594
5595 /*
5596 * Strictly not necessary since rest of the CPUs are stopped by now
5597 * and interrupts disabled on the current cpu.
5598 */
5599 spin_lock_irqsave(&rq->lock, flags);
5600
5601 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5602
5603 update_rq_clock(rq);
5604 activate_task(rq, p, 0);
5605
5606 spin_unlock_irqrestore(&rq->lock, flags);
5607 }
5608
5609 /*
5610 * Ensures that the idle task is using init_mm right before its cpu goes
5611 * offline.
5612 */
5613 void idle_task_exit(void)
5614 {
5615 struct mm_struct *mm = current->active_mm;
5616
5617 BUG_ON(cpu_online(smp_processor_id()));
5618
5619 if (mm != &init_mm)
5620 switch_mm(mm, &init_mm, current);
5621 mmdrop(mm);
5622 }
5623
5624 /* called under rq->lock with disabled interrupts */
5625 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5626 {
5627 struct rq *rq = cpu_rq(dead_cpu);
5628
5629 /* Must be exiting, otherwise would be on tasklist. */
5630 BUG_ON(!p->exit_state);
5631
5632 /* Cannot have done final schedule yet: would have vanished. */
5633 BUG_ON(p->state == TASK_DEAD);
5634
5635 get_task_struct(p);
5636
5637 /*
5638 * Drop lock around migration; if someone else moves it,
5639 * that's OK. No task can be added to this CPU, so iteration is
5640 * fine.
5641 */
5642 spin_unlock_irq(&rq->lock);
5643 move_task_off_dead_cpu(dead_cpu, p);
5644 spin_lock_irq(&rq->lock);
5645
5646 put_task_struct(p);
5647 }
5648
5649 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5650 static void migrate_dead_tasks(unsigned int dead_cpu)
5651 {
5652 struct rq *rq = cpu_rq(dead_cpu);
5653 struct task_struct *next;
5654
5655 for ( ; ; ) {
5656 if (!rq->nr_running)
5657 break;
5658 update_rq_clock(rq);
5659 next = pick_next_task(rq, rq->curr);
5660 if (!next)
5661 break;
5662 migrate_dead(dead_cpu, next);
5663
5664 }
5665 }
5666 #endif /* CONFIG_HOTPLUG_CPU */
5667
5668 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5669
5670 static struct ctl_table sd_ctl_dir[] = {
5671 {
5672 .procname = "sched_domain",
5673 .mode = 0555,
5674 },
5675 {0, },
5676 };
5677
5678 static struct ctl_table sd_ctl_root[] = {
5679 {
5680 .ctl_name = CTL_KERN,
5681 .procname = "kernel",
5682 .mode = 0555,
5683 .child = sd_ctl_dir,
5684 },
5685 {0, },
5686 };
5687
5688 static struct ctl_table *sd_alloc_ctl_entry(int n)
5689 {
5690 struct ctl_table *entry =
5691 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5692
5693 return entry;
5694 }
5695
5696 static void sd_free_ctl_entry(struct ctl_table **tablep)
5697 {
5698 struct ctl_table *entry;
5699
5700 /*
5701 * In the intermediate directories, both the child directory and
5702 * procname are dynamically allocated and could fail but the mode
5703 * will always be set. In the lowest directory the names are
5704 * static strings and all have proc handlers.
5705 */
5706 for (entry = *tablep; entry->mode; entry++) {
5707 if (entry->child)
5708 sd_free_ctl_entry(&entry->child);
5709 if (entry->proc_handler == NULL)
5710 kfree(entry->procname);
5711 }
5712
5713 kfree(*tablep);
5714 *tablep = NULL;
5715 }
5716
5717 static void
5718 set_table_entry(struct ctl_table *entry,
5719 const char *procname, void *data, int maxlen,
5720 mode_t mode, proc_handler *proc_handler)
5721 {
5722 entry->procname = procname;
5723 entry->data = data;
5724 entry->maxlen = maxlen;
5725 entry->mode = mode;
5726 entry->proc_handler = proc_handler;
5727 }
5728
5729 static struct ctl_table *
5730 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5731 {
5732 struct ctl_table *table = sd_alloc_ctl_entry(12);
5733
5734 if (table == NULL)
5735 return NULL;
5736
5737 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5738 sizeof(long), 0644, proc_doulongvec_minmax);
5739 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5740 sizeof(long), 0644, proc_doulongvec_minmax);
5741 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5742 sizeof(int), 0644, proc_dointvec_minmax);
5743 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5744 sizeof(int), 0644, proc_dointvec_minmax);
5745 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5746 sizeof(int), 0644, proc_dointvec_minmax);
5747 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5748 sizeof(int), 0644, proc_dointvec_minmax);
5749 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5750 sizeof(int), 0644, proc_dointvec_minmax);
5751 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5752 sizeof(int), 0644, proc_dointvec_minmax);
5753 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5754 sizeof(int), 0644, proc_dointvec_minmax);
5755 set_table_entry(&table[9], "cache_nice_tries",
5756 &sd->cache_nice_tries,
5757 sizeof(int), 0644, proc_dointvec_minmax);
5758 set_table_entry(&table[10], "flags", &sd->flags,
5759 sizeof(int), 0644, proc_dointvec_minmax);
5760 /* &table[11] is terminator */
5761
5762 return table;
5763 }
5764
5765 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5766 {
5767 struct ctl_table *entry, *table;
5768 struct sched_domain *sd;
5769 int domain_num = 0, i;
5770 char buf[32];
5771
5772 for_each_domain(cpu, sd)
5773 domain_num++;
5774 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5775 if (table == NULL)
5776 return NULL;
5777
5778 i = 0;
5779 for_each_domain(cpu, sd) {
5780 snprintf(buf, 32, "domain%d", i);
5781 entry->procname = kstrdup(buf, GFP_KERNEL);
5782 entry->mode = 0555;
5783 entry->child = sd_alloc_ctl_domain_table(sd);
5784 entry++;
5785 i++;
5786 }
5787 return table;
5788 }
5789
5790 static struct ctl_table_header *sd_sysctl_header;
5791 static void register_sched_domain_sysctl(void)
5792 {
5793 int i, cpu_num = num_online_cpus();
5794 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5795 char buf[32];
5796
5797 WARN_ON(sd_ctl_dir[0].child);
5798 sd_ctl_dir[0].child = entry;
5799
5800 if (entry == NULL)
5801 return;
5802
5803 for_each_online_cpu(i) {
5804 snprintf(buf, 32, "cpu%d", i);
5805 entry->procname = kstrdup(buf, GFP_KERNEL);
5806 entry->mode = 0555;
5807 entry->child = sd_alloc_ctl_cpu_table(i);
5808 entry++;
5809 }
5810
5811 WARN_ON(sd_sysctl_header);
5812 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5813 }
5814
5815 /* may be called multiple times per register */
5816 static void unregister_sched_domain_sysctl(void)
5817 {
5818 if (sd_sysctl_header)
5819 unregister_sysctl_table(sd_sysctl_header);
5820 sd_sysctl_header = NULL;
5821 if (sd_ctl_dir[0].child)
5822 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5823 }
5824 #else
5825 static void register_sched_domain_sysctl(void)
5826 {
5827 }
5828 static void unregister_sched_domain_sysctl(void)
5829 {
5830 }
5831 #endif
5832
5833 /*
5834 * migration_call - callback that gets triggered when a CPU is added.
5835 * Here we can start up the necessary migration thread for the new CPU.
5836 */
5837 static int __cpuinit
5838 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5839 {
5840 struct task_struct *p;
5841 int cpu = (long)hcpu;
5842 unsigned long flags;
5843 struct rq *rq;
5844
5845 switch (action) {
5846
5847 case CPU_UP_PREPARE:
5848 case CPU_UP_PREPARE_FROZEN:
5849 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5850 if (IS_ERR(p))
5851 return NOTIFY_BAD;
5852 kthread_bind(p, cpu);
5853 /* Must be high prio: stop_machine expects to yield to it. */
5854 rq = task_rq_lock(p, &flags);
5855 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5856 task_rq_unlock(rq, &flags);
5857 cpu_rq(cpu)->migration_thread = p;
5858 break;
5859
5860 case CPU_ONLINE:
5861 case CPU_ONLINE_FROZEN:
5862 /* Strictly unnecessary, as first user will wake it. */
5863 wake_up_process(cpu_rq(cpu)->migration_thread);
5864
5865 /* Update our root-domain */
5866 rq = cpu_rq(cpu);
5867 spin_lock_irqsave(&rq->lock, flags);
5868 if (rq->rd) {
5869 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5870 cpu_set(cpu, rq->rd->online);
5871 }
5872 spin_unlock_irqrestore(&rq->lock, flags);
5873 break;
5874
5875 #ifdef CONFIG_HOTPLUG_CPU
5876 case CPU_UP_CANCELED:
5877 case CPU_UP_CANCELED_FROZEN:
5878 if (!cpu_rq(cpu)->migration_thread)
5879 break;
5880 /* Unbind it from offline cpu so it can run. Fall thru. */
5881 kthread_bind(cpu_rq(cpu)->migration_thread,
5882 any_online_cpu(cpu_online_map));
5883 kthread_stop(cpu_rq(cpu)->migration_thread);
5884 cpu_rq(cpu)->migration_thread = NULL;
5885 break;
5886
5887 case CPU_DEAD:
5888 case CPU_DEAD_FROZEN:
5889 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5890 migrate_live_tasks(cpu);
5891 rq = cpu_rq(cpu);
5892 kthread_stop(rq->migration_thread);
5893 rq->migration_thread = NULL;
5894 /* Idle task back to normal (off runqueue, low prio) */
5895 spin_lock_irq(&rq->lock);
5896 update_rq_clock(rq);
5897 deactivate_task(rq, rq->idle, 0);
5898 rq->idle->static_prio = MAX_PRIO;
5899 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5900 rq->idle->sched_class = &idle_sched_class;
5901 migrate_dead_tasks(cpu);
5902 spin_unlock_irq(&rq->lock);
5903 cpuset_unlock();
5904 migrate_nr_uninterruptible(rq);
5905 BUG_ON(rq->nr_running != 0);
5906
5907 /*
5908 * No need to migrate the tasks: it was best-effort if
5909 * they didn't take sched_hotcpu_mutex. Just wake up
5910 * the requestors.
5911 */
5912 spin_lock_irq(&rq->lock);
5913 while (!list_empty(&rq->migration_queue)) {
5914 struct migration_req *req;
5915
5916 req = list_entry(rq->migration_queue.next,
5917 struct migration_req, list);
5918 list_del_init(&req->list);
5919 complete(&req->done);
5920 }
5921 spin_unlock_irq(&rq->lock);
5922 break;
5923
5924 case CPU_DOWN_PREPARE:
5925 /* Update our root-domain */
5926 rq = cpu_rq(cpu);
5927 spin_lock_irqsave(&rq->lock, flags);
5928 if (rq->rd) {
5929 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5930 cpu_clear(cpu, rq->rd->online);
5931 }
5932 spin_unlock_irqrestore(&rq->lock, flags);
5933 break;
5934 #endif
5935 }
5936 return NOTIFY_OK;
5937 }
5938
5939 /* Register at highest priority so that task migration (migrate_all_tasks)
5940 * happens before everything else.
5941 */
5942 static struct notifier_block __cpuinitdata migration_notifier = {
5943 .notifier_call = migration_call,
5944 .priority = 10
5945 };
5946
5947 void __init migration_init(void)
5948 {
5949 void *cpu = (void *)(long)smp_processor_id();
5950 int err;
5951
5952 /* Start one for the boot CPU: */
5953 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5954 BUG_ON(err == NOTIFY_BAD);
5955 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5956 register_cpu_notifier(&migration_notifier);
5957 }
5958 #endif
5959
5960 #ifdef CONFIG_SMP
5961
5962 /* Number of possible processor ids */
5963 int nr_cpu_ids __read_mostly = NR_CPUS;
5964 EXPORT_SYMBOL(nr_cpu_ids);
5965
5966 #ifdef CONFIG_SCHED_DEBUG
5967
5968 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5969 {
5970 struct sched_group *group = sd->groups;
5971 cpumask_t groupmask;
5972 char str[NR_CPUS];
5973
5974 cpumask_scnprintf(str, NR_CPUS, sd->span);
5975 cpus_clear(groupmask);
5976
5977 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5978
5979 if (!(sd->flags & SD_LOAD_BALANCE)) {
5980 printk("does not load-balance\n");
5981 if (sd->parent)
5982 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5983 " has parent");
5984 return -1;
5985 }
5986
5987 printk(KERN_CONT "span %s\n", str);
5988
5989 if (!cpu_isset(cpu, sd->span)) {
5990 printk(KERN_ERR "ERROR: domain->span does not contain "
5991 "CPU%d\n", cpu);
5992 }
5993 if (!cpu_isset(cpu, group->cpumask)) {
5994 printk(KERN_ERR "ERROR: domain->groups does not contain"
5995 " CPU%d\n", cpu);
5996 }
5997
5998 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5999 do {
6000 if (!group) {
6001 printk("\n");
6002 printk(KERN_ERR "ERROR: group is NULL\n");
6003 break;
6004 }
6005
6006 if (!group->__cpu_power) {
6007 printk(KERN_CONT "\n");
6008 printk(KERN_ERR "ERROR: domain->cpu_power not "
6009 "set\n");
6010 break;
6011 }
6012
6013 if (!cpus_weight(group->cpumask)) {
6014 printk(KERN_CONT "\n");
6015 printk(KERN_ERR "ERROR: empty group\n");
6016 break;
6017 }
6018
6019 if (cpus_intersects(groupmask, group->cpumask)) {
6020 printk(KERN_CONT "\n");
6021 printk(KERN_ERR "ERROR: repeated CPUs\n");
6022 break;
6023 }
6024
6025 cpus_or(groupmask, groupmask, group->cpumask);
6026
6027 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6028 printk(KERN_CONT " %s", str);
6029
6030 group = group->next;
6031 } while (group != sd->groups);
6032 printk(KERN_CONT "\n");
6033
6034 if (!cpus_equal(sd->span, groupmask))
6035 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6036
6037 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6038 printk(KERN_ERR "ERROR: parent span is not a superset "
6039 "of domain->span\n");
6040 return 0;
6041 }
6042
6043 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6044 {
6045 int level = 0;
6046
6047 if (!sd) {
6048 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6049 return;
6050 }
6051
6052 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6053
6054 for (;;) {
6055 if (sched_domain_debug_one(sd, cpu, level))
6056 break;
6057 level++;
6058 sd = sd->parent;
6059 if (!sd)
6060 break;
6061 }
6062 }
6063 #else
6064 # define sched_domain_debug(sd, cpu) do { } while (0)
6065 #endif
6066
6067 static int sd_degenerate(struct sched_domain *sd)
6068 {
6069 if (cpus_weight(sd->span) == 1)
6070 return 1;
6071
6072 /* Following flags need at least 2 groups */
6073 if (sd->flags & (SD_LOAD_BALANCE |
6074 SD_BALANCE_NEWIDLE |
6075 SD_BALANCE_FORK |
6076 SD_BALANCE_EXEC |
6077 SD_SHARE_CPUPOWER |
6078 SD_SHARE_PKG_RESOURCES)) {
6079 if (sd->groups != sd->groups->next)
6080 return 0;
6081 }
6082
6083 /* Following flags don't use groups */
6084 if (sd->flags & (SD_WAKE_IDLE |
6085 SD_WAKE_AFFINE |
6086 SD_WAKE_BALANCE))
6087 return 0;
6088
6089 return 1;
6090 }
6091
6092 static int
6093 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6094 {
6095 unsigned long cflags = sd->flags, pflags = parent->flags;
6096
6097 if (sd_degenerate(parent))
6098 return 1;
6099
6100 if (!cpus_equal(sd->span, parent->span))
6101 return 0;
6102
6103 /* Does parent contain flags not in child? */
6104 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6105 if (cflags & SD_WAKE_AFFINE)
6106 pflags &= ~SD_WAKE_BALANCE;
6107 /* Flags needing groups don't count if only 1 group in parent */
6108 if (parent->groups == parent->groups->next) {
6109 pflags &= ~(SD_LOAD_BALANCE |
6110 SD_BALANCE_NEWIDLE |
6111 SD_BALANCE_FORK |
6112 SD_BALANCE_EXEC |
6113 SD_SHARE_CPUPOWER |
6114 SD_SHARE_PKG_RESOURCES);
6115 }
6116 if (~cflags & pflags)
6117 return 0;
6118
6119 return 1;
6120 }
6121
6122 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6123 {
6124 unsigned long flags;
6125 const struct sched_class *class;
6126
6127 spin_lock_irqsave(&rq->lock, flags);
6128
6129 if (rq->rd) {
6130 struct root_domain *old_rd = rq->rd;
6131
6132 for (class = sched_class_highest; class; class = class->next) {
6133 if (class->leave_domain)
6134 class->leave_domain(rq);
6135 }
6136
6137 cpu_clear(rq->cpu, old_rd->span);
6138 cpu_clear(rq->cpu, old_rd->online);
6139
6140 if (atomic_dec_and_test(&old_rd->refcount))
6141 kfree(old_rd);
6142 }
6143
6144 atomic_inc(&rd->refcount);
6145 rq->rd = rd;
6146
6147 cpu_set(rq->cpu, rd->span);
6148 if (cpu_isset(rq->cpu, cpu_online_map))
6149 cpu_set(rq->cpu, rd->online);
6150
6151 for (class = sched_class_highest; class; class = class->next) {
6152 if (class->join_domain)
6153 class->join_domain(rq);
6154 }
6155
6156 spin_unlock_irqrestore(&rq->lock, flags);
6157 }
6158
6159 static void init_rootdomain(struct root_domain *rd)
6160 {
6161 memset(rd, 0, sizeof(*rd));
6162
6163 cpus_clear(rd->span);
6164 cpus_clear(rd->online);
6165 }
6166
6167 static void init_defrootdomain(void)
6168 {
6169 init_rootdomain(&def_root_domain);
6170 atomic_set(&def_root_domain.refcount, 1);
6171 }
6172
6173 static struct root_domain *alloc_rootdomain(void)
6174 {
6175 struct root_domain *rd;
6176
6177 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6178 if (!rd)
6179 return NULL;
6180
6181 init_rootdomain(rd);
6182
6183 return rd;
6184 }
6185
6186 /*
6187 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6188 * hold the hotplug lock.
6189 */
6190 static void
6191 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6192 {
6193 struct rq *rq = cpu_rq(cpu);
6194 struct sched_domain *tmp;
6195
6196 /* Remove the sched domains which do not contribute to scheduling. */
6197 for (tmp = sd; tmp; tmp = tmp->parent) {
6198 struct sched_domain *parent = tmp->parent;
6199 if (!parent)
6200 break;
6201 if (sd_parent_degenerate(tmp, parent)) {
6202 tmp->parent = parent->parent;
6203 if (parent->parent)
6204 parent->parent->child = tmp;
6205 }
6206 }
6207
6208 if (sd && sd_degenerate(sd)) {
6209 sd = sd->parent;
6210 if (sd)
6211 sd->child = NULL;
6212 }
6213
6214 sched_domain_debug(sd, cpu);
6215
6216 rq_attach_root(rq, rd);
6217 rcu_assign_pointer(rq->sd, sd);
6218 }
6219
6220 /* cpus with isolated domains */
6221 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6222
6223 /* Setup the mask of cpus configured for isolated domains */
6224 static int __init isolated_cpu_setup(char *str)
6225 {
6226 int ints[NR_CPUS], i;
6227
6228 str = get_options(str, ARRAY_SIZE(ints), ints);
6229 cpus_clear(cpu_isolated_map);
6230 for (i = 1; i <= ints[0]; i++)
6231 if (ints[i] < NR_CPUS)
6232 cpu_set(ints[i], cpu_isolated_map);
6233 return 1;
6234 }
6235
6236 __setup("isolcpus=", isolated_cpu_setup);
6237
6238 /*
6239 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6240 * to a function which identifies what group(along with sched group) a CPU
6241 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6242 * (due to the fact that we keep track of groups covered with a cpumask_t).
6243 *
6244 * init_sched_build_groups will build a circular linked list of the groups
6245 * covered by the given span, and will set each group's ->cpumask correctly,
6246 * and ->cpu_power to 0.
6247 */
6248 static void
6249 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6250 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6251 struct sched_group **sg))
6252 {
6253 struct sched_group *first = NULL, *last = NULL;
6254 cpumask_t covered = CPU_MASK_NONE;
6255 int i;
6256
6257 for_each_cpu_mask(i, span) {
6258 struct sched_group *sg;
6259 int group = group_fn(i, cpu_map, &sg);
6260 int j;
6261
6262 if (cpu_isset(i, covered))
6263 continue;
6264
6265 sg->cpumask = CPU_MASK_NONE;
6266 sg->__cpu_power = 0;
6267
6268 for_each_cpu_mask(j, span) {
6269 if (group_fn(j, cpu_map, NULL) != group)
6270 continue;
6271
6272 cpu_set(j, covered);
6273 cpu_set(j, sg->cpumask);
6274 }
6275 if (!first)
6276 first = sg;
6277 if (last)
6278 last->next = sg;
6279 last = sg;
6280 }
6281 last->next = first;
6282 }
6283
6284 #define SD_NODES_PER_DOMAIN 16
6285
6286 #ifdef CONFIG_NUMA
6287
6288 /**
6289 * find_next_best_node - find the next node to include in a sched_domain
6290 * @node: node whose sched_domain we're building
6291 * @used_nodes: nodes already in the sched_domain
6292 *
6293 * Find the next node to include in a given scheduling domain. Simply
6294 * finds the closest node not already in the @used_nodes map.
6295 *
6296 * Should use nodemask_t.
6297 */
6298 static int find_next_best_node(int node, unsigned long *used_nodes)
6299 {
6300 int i, n, val, min_val, best_node = 0;
6301
6302 min_val = INT_MAX;
6303
6304 for (i = 0; i < MAX_NUMNODES; i++) {
6305 /* Start at @node */
6306 n = (node + i) % MAX_NUMNODES;
6307
6308 if (!nr_cpus_node(n))
6309 continue;
6310
6311 /* Skip already used nodes */
6312 if (test_bit(n, used_nodes))
6313 continue;
6314
6315 /* Simple min distance search */
6316 val = node_distance(node, n);
6317
6318 if (val < min_val) {
6319 min_val = val;
6320 best_node = n;
6321 }
6322 }
6323
6324 set_bit(best_node, used_nodes);
6325 return best_node;
6326 }
6327
6328 /**
6329 * sched_domain_node_span - get a cpumask for a node's sched_domain
6330 * @node: node whose cpumask we're constructing
6331 * @size: number of nodes to include in this span
6332 *
6333 * Given a node, construct a good cpumask for its sched_domain to span. It
6334 * should be one that prevents unnecessary balancing, but also spreads tasks
6335 * out optimally.
6336 */
6337 static cpumask_t sched_domain_node_span(int node)
6338 {
6339 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6340 cpumask_t span, nodemask;
6341 int i;
6342
6343 cpus_clear(span);
6344 bitmap_zero(used_nodes, MAX_NUMNODES);
6345
6346 nodemask = node_to_cpumask(node);
6347 cpus_or(span, span, nodemask);
6348 set_bit(node, used_nodes);
6349
6350 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6351 int next_node = find_next_best_node(node, used_nodes);
6352
6353 nodemask = node_to_cpumask(next_node);
6354 cpus_or(span, span, nodemask);
6355 }
6356
6357 return span;
6358 }
6359 #endif
6360
6361 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6362
6363 /*
6364 * SMT sched-domains:
6365 */
6366 #ifdef CONFIG_SCHED_SMT
6367 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6368 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6369
6370 static int
6371 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6372 {
6373 if (sg)
6374 *sg = &per_cpu(sched_group_cpus, cpu);
6375 return cpu;
6376 }
6377 #endif
6378
6379 /*
6380 * multi-core sched-domains:
6381 */
6382 #ifdef CONFIG_SCHED_MC
6383 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6384 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6385 #endif
6386
6387 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6388 static int
6389 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6390 {
6391 int group;
6392 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6393 cpus_and(mask, mask, *cpu_map);
6394 group = first_cpu(mask);
6395 if (sg)
6396 *sg = &per_cpu(sched_group_core, group);
6397 return group;
6398 }
6399 #elif defined(CONFIG_SCHED_MC)
6400 static int
6401 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6402 {
6403 if (sg)
6404 *sg = &per_cpu(sched_group_core, cpu);
6405 return cpu;
6406 }
6407 #endif
6408
6409 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6410 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6411
6412 static int
6413 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6414 {
6415 int group;
6416 #ifdef CONFIG_SCHED_MC
6417 cpumask_t mask = cpu_coregroup_map(cpu);
6418 cpus_and(mask, mask, *cpu_map);
6419 group = first_cpu(mask);
6420 #elif defined(CONFIG_SCHED_SMT)
6421 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6422 cpus_and(mask, mask, *cpu_map);
6423 group = first_cpu(mask);
6424 #else
6425 group = cpu;
6426 #endif
6427 if (sg)
6428 *sg = &per_cpu(sched_group_phys, group);
6429 return group;
6430 }
6431
6432 #ifdef CONFIG_NUMA
6433 /*
6434 * The init_sched_build_groups can't handle what we want to do with node
6435 * groups, so roll our own. Now each node has its own list of groups which
6436 * gets dynamically allocated.
6437 */
6438 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6439 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6440
6441 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6442 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6443
6444 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6445 struct sched_group **sg)
6446 {
6447 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6448 int group;
6449
6450 cpus_and(nodemask, nodemask, *cpu_map);
6451 group = first_cpu(nodemask);
6452
6453 if (sg)
6454 *sg = &per_cpu(sched_group_allnodes, group);
6455 return group;
6456 }
6457
6458 static void init_numa_sched_groups_power(struct sched_group *group_head)
6459 {
6460 struct sched_group *sg = group_head;
6461 int j;
6462
6463 if (!sg)
6464 return;
6465 do {
6466 for_each_cpu_mask(j, sg->cpumask) {
6467 struct sched_domain *sd;
6468
6469 sd = &per_cpu(phys_domains, j);
6470 if (j != first_cpu(sd->groups->cpumask)) {
6471 /*
6472 * Only add "power" once for each
6473 * physical package.
6474 */
6475 continue;
6476 }
6477
6478 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6479 }
6480 sg = sg->next;
6481 } while (sg != group_head);
6482 }
6483 #endif
6484
6485 #ifdef CONFIG_NUMA
6486 /* Free memory allocated for various sched_group structures */
6487 static void free_sched_groups(const cpumask_t *cpu_map)
6488 {
6489 int cpu, i;
6490
6491 for_each_cpu_mask(cpu, *cpu_map) {
6492 struct sched_group **sched_group_nodes
6493 = sched_group_nodes_bycpu[cpu];
6494
6495 if (!sched_group_nodes)
6496 continue;
6497
6498 for (i = 0; i < MAX_NUMNODES; i++) {
6499 cpumask_t nodemask = node_to_cpumask(i);
6500 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6501
6502 cpus_and(nodemask, nodemask, *cpu_map);
6503 if (cpus_empty(nodemask))
6504 continue;
6505
6506 if (sg == NULL)
6507 continue;
6508 sg = sg->next;
6509 next_sg:
6510 oldsg = sg;
6511 sg = sg->next;
6512 kfree(oldsg);
6513 if (oldsg != sched_group_nodes[i])
6514 goto next_sg;
6515 }
6516 kfree(sched_group_nodes);
6517 sched_group_nodes_bycpu[cpu] = NULL;
6518 }
6519 }
6520 #else
6521 static void free_sched_groups(const cpumask_t *cpu_map)
6522 {
6523 }
6524 #endif
6525
6526 /*
6527 * Initialize sched groups cpu_power.
6528 *
6529 * cpu_power indicates the capacity of sched group, which is used while
6530 * distributing the load between different sched groups in a sched domain.
6531 * Typically cpu_power for all the groups in a sched domain will be same unless
6532 * there are asymmetries in the topology. If there are asymmetries, group
6533 * having more cpu_power will pickup more load compared to the group having
6534 * less cpu_power.
6535 *
6536 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6537 * the maximum number of tasks a group can handle in the presence of other idle
6538 * or lightly loaded groups in the same sched domain.
6539 */
6540 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6541 {
6542 struct sched_domain *child;
6543 struct sched_group *group;
6544
6545 WARN_ON(!sd || !sd->groups);
6546
6547 if (cpu != first_cpu(sd->groups->cpumask))
6548 return;
6549
6550 child = sd->child;
6551
6552 sd->groups->__cpu_power = 0;
6553
6554 /*
6555 * For perf policy, if the groups in child domain share resources
6556 * (for example cores sharing some portions of the cache hierarchy
6557 * or SMT), then set this domain groups cpu_power such that each group
6558 * can handle only one task, when there are other idle groups in the
6559 * same sched domain.
6560 */
6561 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6562 (child->flags &
6563 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6564 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6565 return;
6566 }
6567
6568 /*
6569 * add cpu_power of each child group to this groups cpu_power
6570 */
6571 group = child->groups;
6572 do {
6573 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6574 group = group->next;
6575 } while (group != child->groups);
6576 }
6577
6578 /*
6579 * Build sched domains for a given set of cpus and attach the sched domains
6580 * to the individual cpus
6581 */
6582 static int build_sched_domains(const cpumask_t *cpu_map)
6583 {
6584 int i;
6585 struct root_domain *rd;
6586 #ifdef CONFIG_NUMA
6587 struct sched_group **sched_group_nodes = NULL;
6588 int sd_allnodes = 0;
6589
6590 /*
6591 * Allocate the per-node list of sched groups
6592 */
6593 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6594 GFP_KERNEL);
6595 if (!sched_group_nodes) {
6596 printk(KERN_WARNING "Can not alloc sched group node list\n");
6597 return -ENOMEM;
6598 }
6599 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6600 #endif
6601
6602 rd = alloc_rootdomain();
6603 if (!rd) {
6604 printk(KERN_WARNING "Cannot alloc root domain\n");
6605 return -ENOMEM;
6606 }
6607
6608 /*
6609 * Set up domains for cpus specified by the cpu_map.
6610 */
6611 for_each_cpu_mask(i, *cpu_map) {
6612 struct sched_domain *sd = NULL, *p;
6613 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6614
6615 cpus_and(nodemask, nodemask, *cpu_map);
6616
6617 #ifdef CONFIG_NUMA
6618 if (cpus_weight(*cpu_map) >
6619 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6620 sd = &per_cpu(allnodes_domains, i);
6621 *sd = SD_ALLNODES_INIT;
6622 sd->span = *cpu_map;
6623 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6624 p = sd;
6625 sd_allnodes = 1;
6626 } else
6627 p = NULL;
6628
6629 sd = &per_cpu(node_domains, i);
6630 *sd = SD_NODE_INIT;
6631 sd->span = sched_domain_node_span(cpu_to_node(i));
6632 sd->parent = p;
6633 if (p)
6634 p->child = sd;
6635 cpus_and(sd->span, sd->span, *cpu_map);
6636 #endif
6637
6638 p = sd;
6639 sd = &per_cpu(phys_domains, i);
6640 *sd = SD_CPU_INIT;
6641 sd->span = nodemask;
6642 sd->parent = p;
6643 if (p)
6644 p->child = sd;
6645 cpu_to_phys_group(i, cpu_map, &sd->groups);
6646
6647 #ifdef CONFIG_SCHED_MC
6648 p = sd;
6649 sd = &per_cpu(core_domains, i);
6650 *sd = SD_MC_INIT;
6651 sd->span = cpu_coregroup_map(i);
6652 cpus_and(sd->span, sd->span, *cpu_map);
6653 sd->parent = p;
6654 p->child = sd;
6655 cpu_to_core_group(i, cpu_map, &sd->groups);
6656 #endif
6657
6658 #ifdef CONFIG_SCHED_SMT
6659 p = sd;
6660 sd = &per_cpu(cpu_domains, i);
6661 *sd = SD_SIBLING_INIT;
6662 sd->span = per_cpu(cpu_sibling_map, i);
6663 cpus_and(sd->span, sd->span, *cpu_map);
6664 sd->parent = p;
6665 p->child = sd;
6666 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6667 #endif
6668 }
6669
6670 #ifdef CONFIG_SCHED_SMT
6671 /* Set up CPU (sibling) groups */
6672 for_each_cpu_mask(i, *cpu_map) {
6673 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6674 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6675 if (i != first_cpu(this_sibling_map))
6676 continue;
6677
6678 init_sched_build_groups(this_sibling_map, cpu_map,
6679 &cpu_to_cpu_group);
6680 }
6681 #endif
6682
6683 #ifdef CONFIG_SCHED_MC
6684 /* Set up multi-core groups */
6685 for_each_cpu_mask(i, *cpu_map) {
6686 cpumask_t this_core_map = cpu_coregroup_map(i);
6687 cpus_and(this_core_map, this_core_map, *cpu_map);
6688 if (i != first_cpu(this_core_map))
6689 continue;
6690 init_sched_build_groups(this_core_map, cpu_map,
6691 &cpu_to_core_group);
6692 }
6693 #endif
6694
6695 /* Set up physical groups */
6696 for (i = 0; i < MAX_NUMNODES; i++) {
6697 cpumask_t nodemask = node_to_cpumask(i);
6698
6699 cpus_and(nodemask, nodemask, *cpu_map);
6700 if (cpus_empty(nodemask))
6701 continue;
6702
6703 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6704 }
6705
6706 #ifdef CONFIG_NUMA
6707 /* Set up node groups */
6708 if (sd_allnodes)
6709 init_sched_build_groups(*cpu_map, cpu_map,
6710 &cpu_to_allnodes_group);
6711
6712 for (i = 0; i < MAX_NUMNODES; i++) {
6713 /* Set up node groups */
6714 struct sched_group *sg, *prev;
6715 cpumask_t nodemask = node_to_cpumask(i);
6716 cpumask_t domainspan;
6717 cpumask_t covered = CPU_MASK_NONE;
6718 int j;
6719
6720 cpus_and(nodemask, nodemask, *cpu_map);
6721 if (cpus_empty(nodemask)) {
6722 sched_group_nodes[i] = NULL;
6723 continue;
6724 }
6725
6726 domainspan = sched_domain_node_span(i);
6727 cpus_and(domainspan, domainspan, *cpu_map);
6728
6729 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6730 if (!sg) {
6731 printk(KERN_WARNING "Can not alloc domain group for "
6732 "node %d\n", i);
6733 goto error;
6734 }
6735 sched_group_nodes[i] = sg;
6736 for_each_cpu_mask(j, nodemask) {
6737 struct sched_domain *sd;
6738
6739 sd = &per_cpu(node_domains, j);
6740 sd->groups = sg;
6741 }
6742 sg->__cpu_power = 0;
6743 sg->cpumask = nodemask;
6744 sg->next = sg;
6745 cpus_or(covered, covered, nodemask);
6746 prev = sg;
6747
6748 for (j = 0; j < MAX_NUMNODES; j++) {
6749 cpumask_t tmp, notcovered;
6750 int n = (i + j) % MAX_NUMNODES;
6751
6752 cpus_complement(notcovered, covered);
6753 cpus_and(tmp, notcovered, *cpu_map);
6754 cpus_and(tmp, tmp, domainspan);
6755 if (cpus_empty(tmp))
6756 break;
6757
6758 nodemask = node_to_cpumask(n);
6759 cpus_and(tmp, tmp, nodemask);
6760 if (cpus_empty(tmp))
6761 continue;
6762
6763 sg = kmalloc_node(sizeof(struct sched_group),
6764 GFP_KERNEL, i);
6765 if (!sg) {
6766 printk(KERN_WARNING
6767 "Can not alloc domain group for node %d\n", j);
6768 goto error;
6769 }
6770 sg->__cpu_power = 0;
6771 sg->cpumask = tmp;
6772 sg->next = prev->next;
6773 cpus_or(covered, covered, tmp);
6774 prev->next = sg;
6775 prev = sg;
6776 }
6777 }
6778 #endif
6779
6780 /* Calculate CPU power for physical packages and nodes */
6781 #ifdef CONFIG_SCHED_SMT
6782 for_each_cpu_mask(i, *cpu_map) {
6783 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6784
6785 init_sched_groups_power(i, sd);
6786 }
6787 #endif
6788 #ifdef CONFIG_SCHED_MC
6789 for_each_cpu_mask(i, *cpu_map) {
6790 struct sched_domain *sd = &per_cpu(core_domains, i);
6791
6792 init_sched_groups_power(i, sd);
6793 }
6794 #endif
6795
6796 for_each_cpu_mask(i, *cpu_map) {
6797 struct sched_domain *sd = &per_cpu(phys_domains, i);
6798
6799 init_sched_groups_power(i, sd);
6800 }
6801
6802 #ifdef CONFIG_NUMA
6803 for (i = 0; i < MAX_NUMNODES; i++)
6804 init_numa_sched_groups_power(sched_group_nodes[i]);
6805
6806 if (sd_allnodes) {
6807 struct sched_group *sg;
6808
6809 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6810 init_numa_sched_groups_power(sg);
6811 }
6812 #endif
6813
6814 /* Attach the domains */
6815 for_each_cpu_mask(i, *cpu_map) {
6816 struct sched_domain *sd;
6817 #ifdef CONFIG_SCHED_SMT
6818 sd = &per_cpu(cpu_domains, i);
6819 #elif defined(CONFIG_SCHED_MC)
6820 sd = &per_cpu(core_domains, i);
6821 #else
6822 sd = &per_cpu(phys_domains, i);
6823 #endif
6824 cpu_attach_domain(sd, rd, i);
6825 }
6826
6827 return 0;
6828
6829 #ifdef CONFIG_NUMA
6830 error:
6831 free_sched_groups(cpu_map);
6832 return -ENOMEM;
6833 #endif
6834 }
6835
6836 static cpumask_t *doms_cur; /* current sched domains */
6837 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6838
6839 /*
6840 * Special case: If a kmalloc of a doms_cur partition (array of
6841 * cpumask_t) fails, then fallback to a single sched domain,
6842 * as determined by the single cpumask_t fallback_doms.
6843 */
6844 static cpumask_t fallback_doms;
6845
6846 /*
6847 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6848 * For now this just excludes isolated cpus, but could be used to
6849 * exclude other special cases in the future.
6850 */
6851 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6852 {
6853 int err;
6854
6855 ndoms_cur = 1;
6856 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6857 if (!doms_cur)
6858 doms_cur = &fallback_doms;
6859 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6860 err = build_sched_domains(doms_cur);
6861 register_sched_domain_sysctl();
6862
6863 return err;
6864 }
6865
6866 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6867 {
6868 free_sched_groups(cpu_map);
6869 }
6870
6871 /*
6872 * Detach sched domains from a group of cpus specified in cpu_map
6873 * These cpus will now be attached to the NULL domain
6874 */
6875 static void detach_destroy_domains(const cpumask_t *cpu_map)
6876 {
6877 int i;
6878
6879 unregister_sched_domain_sysctl();
6880
6881 for_each_cpu_mask(i, *cpu_map)
6882 cpu_attach_domain(NULL, &def_root_domain, i);
6883 synchronize_sched();
6884 arch_destroy_sched_domains(cpu_map);
6885 }
6886
6887 /*
6888 * Partition sched domains as specified by the 'ndoms_new'
6889 * cpumasks in the array doms_new[] of cpumasks. This compares
6890 * doms_new[] to the current sched domain partitioning, doms_cur[].
6891 * It destroys each deleted domain and builds each new domain.
6892 *
6893 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6894 * The masks don't intersect (don't overlap.) We should setup one
6895 * sched domain for each mask. CPUs not in any of the cpumasks will
6896 * not be load balanced. If the same cpumask appears both in the
6897 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6898 * it as it is.
6899 *
6900 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6901 * ownership of it and will kfree it when done with it. If the caller
6902 * failed the kmalloc call, then it can pass in doms_new == NULL,
6903 * and partition_sched_domains() will fallback to the single partition
6904 * 'fallback_doms'.
6905 *
6906 * Call with hotplug lock held
6907 */
6908 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6909 {
6910 int i, j;
6911
6912 lock_doms_cur();
6913
6914 /* always unregister in case we don't destroy any domains */
6915 unregister_sched_domain_sysctl();
6916
6917 if (doms_new == NULL) {
6918 ndoms_new = 1;
6919 doms_new = &fallback_doms;
6920 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6921 }
6922
6923 /* Destroy deleted domains */
6924 for (i = 0; i < ndoms_cur; i++) {
6925 for (j = 0; j < ndoms_new; j++) {
6926 if (cpus_equal(doms_cur[i], doms_new[j]))
6927 goto match1;
6928 }
6929 /* no match - a current sched domain not in new doms_new[] */
6930 detach_destroy_domains(doms_cur + i);
6931 match1:
6932 ;
6933 }
6934
6935 /* Build new domains */
6936 for (i = 0; i < ndoms_new; i++) {
6937 for (j = 0; j < ndoms_cur; j++) {
6938 if (cpus_equal(doms_new[i], doms_cur[j]))
6939 goto match2;
6940 }
6941 /* no match - add a new doms_new */
6942 build_sched_domains(doms_new + i);
6943 match2:
6944 ;
6945 }
6946
6947 /* Remember the new sched domains */
6948 if (doms_cur != &fallback_doms)
6949 kfree(doms_cur);
6950 doms_cur = doms_new;
6951 ndoms_cur = ndoms_new;
6952
6953 register_sched_domain_sysctl();
6954
6955 unlock_doms_cur();
6956 }
6957
6958 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6959 static int arch_reinit_sched_domains(void)
6960 {
6961 int err;
6962
6963 get_online_cpus();
6964 detach_destroy_domains(&cpu_online_map);
6965 err = arch_init_sched_domains(&cpu_online_map);
6966 put_online_cpus();
6967
6968 return err;
6969 }
6970
6971 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6972 {
6973 int ret;
6974
6975 if (buf[0] != '0' && buf[0] != '1')
6976 return -EINVAL;
6977
6978 if (smt)
6979 sched_smt_power_savings = (buf[0] == '1');
6980 else
6981 sched_mc_power_savings = (buf[0] == '1');
6982
6983 ret = arch_reinit_sched_domains();
6984
6985 return ret ? ret : count;
6986 }
6987
6988 #ifdef CONFIG_SCHED_MC
6989 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6990 {
6991 return sprintf(page, "%u\n", sched_mc_power_savings);
6992 }
6993 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6994 const char *buf, size_t count)
6995 {
6996 return sched_power_savings_store(buf, count, 0);
6997 }
6998 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6999 sched_mc_power_savings_store);
7000 #endif
7001
7002 #ifdef CONFIG_SCHED_SMT
7003 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7004 {
7005 return sprintf(page, "%u\n", sched_smt_power_savings);
7006 }
7007 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7008 const char *buf, size_t count)
7009 {
7010 return sched_power_savings_store(buf, count, 1);
7011 }
7012 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7013 sched_smt_power_savings_store);
7014 #endif
7015
7016 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7017 {
7018 int err = 0;
7019
7020 #ifdef CONFIG_SCHED_SMT
7021 if (smt_capable())
7022 err = sysfs_create_file(&cls->kset.kobj,
7023 &attr_sched_smt_power_savings.attr);
7024 #endif
7025 #ifdef CONFIG_SCHED_MC
7026 if (!err && mc_capable())
7027 err = sysfs_create_file(&cls->kset.kobj,
7028 &attr_sched_mc_power_savings.attr);
7029 #endif
7030 return err;
7031 }
7032 #endif
7033
7034 /*
7035 * Force a reinitialization of the sched domains hierarchy. The domains
7036 * and groups cannot be updated in place without racing with the balancing
7037 * code, so we temporarily attach all running cpus to the NULL domain
7038 * which will prevent rebalancing while the sched domains are recalculated.
7039 */
7040 static int update_sched_domains(struct notifier_block *nfb,
7041 unsigned long action, void *hcpu)
7042 {
7043 switch (action) {
7044 case CPU_UP_PREPARE:
7045 case CPU_UP_PREPARE_FROZEN:
7046 case CPU_DOWN_PREPARE:
7047 case CPU_DOWN_PREPARE_FROZEN:
7048 detach_destroy_domains(&cpu_online_map);
7049 return NOTIFY_OK;
7050
7051 case CPU_UP_CANCELED:
7052 case CPU_UP_CANCELED_FROZEN:
7053 case CPU_DOWN_FAILED:
7054 case CPU_DOWN_FAILED_FROZEN:
7055 case CPU_ONLINE:
7056 case CPU_ONLINE_FROZEN:
7057 case CPU_DEAD:
7058 case CPU_DEAD_FROZEN:
7059 /*
7060 * Fall through and re-initialise the domains.
7061 */
7062 break;
7063 default:
7064 return NOTIFY_DONE;
7065 }
7066
7067 /* The hotplug lock is already held by cpu_up/cpu_down */
7068 arch_init_sched_domains(&cpu_online_map);
7069
7070 return NOTIFY_OK;
7071 }
7072
7073 void __init sched_init_smp(void)
7074 {
7075 cpumask_t non_isolated_cpus;
7076
7077 get_online_cpus();
7078 arch_init_sched_domains(&cpu_online_map);
7079 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7080 if (cpus_empty(non_isolated_cpus))
7081 cpu_set(smp_processor_id(), non_isolated_cpus);
7082 put_online_cpus();
7083 /* XXX: Theoretical race here - CPU may be hotplugged now */
7084 hotcpu_notifier(update_sched_domains, 0);
7085
7086 /* Move init over to a non-isolated CPU */
7087 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7088 BUG();
7089 sched_init_granularity();
7090
7091 #ifdef CONFIG_FAIR_GROUP_SCHED
7092 if (nr_cpu_ids == 1)
7093 return;
7094
7095 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7096 "group_balance");
7097 if (!IS_ERR(lb_monitor_task)) {
7098 lb_monitor_task->flags |= PF_NOFREEZE;
7099 wake_up_process(lb_monitor_task);
7100 } else {
7101 printk(KERN_ERR "Could not create load balance monitor thread"
7102 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7103 }
7104 #endif
7105 }
7106 #else
7107 void __init sched_init_smp(void)
7108 {
7109 sched_init_granularity();
7110 }
7111 #endif /* CONFIG_SMP */
7112
7113 int in_sched_functions(unsigned long addr)
7114 {
7115 return in_lock_functions(addr) ||
7116 (addr >= (unsigned long)__sched_text_start
7117 && addr < (unsigned long)__sched_text_end);
7118 }
7119
7120 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7121 {
7122 cfs_rq->tasks_timeline = RB_ROOT;
7123 #ifdef CONFIG_FAIR_GROUP_SCHED
7124 cfs_rq->rq = rq;
7125 #endif
7126 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7127 }
7128
7129 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7130 {
7131 struct rt_prio_array *array;
7132 int i;
7133
7134 array = &rt_rq->active;
7135 for (i = 0; i < MAX_RT_PRIO; i++) {
7136 INIT_LIST_HEAD(array->queue + i);
7137 __clear_bit(i, array->bitmap);
7138 }
7139 /* delimiter for bitsearch: */
7140 __set_bit(MAX_RT_PRIO, array->bitmap);
7141
7142 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7143 rt_rq->highest_prio = MAX_RT_PRIO;
7144 #endif
7145 #ifdef CONFIG_SMP
7146 rt_rq->rt_nr_migratory = 0;
7147 rt_rq->overloaded = 0;
7148 #endif
7149
7150 rt_rq->rt_time = 0;
7151 rt_rq->rt_throttled = 0;
7152
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 rt_rq->rt_nr_boosted = 0;
7155 rt_rq->rq = rq;
7156 #endif
7157 }
7158
7159 #ifdef CONFIG_FAIR_GROUP_SCHED
7160 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7161 struct cfs_rq *cfs_rq, struct sched_entity *se,
7162 int cpu, int add)
7163 {
7164 tg->cfs_rq[cpu] = cfs_rq;
7165 init_cfs_rq(cfs_rq, rq);
7166 cfs_rq->tg = tg;
7167 if (add)
7168 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7169
7170 tg->se[cpu] = se;
7171 se->cfs_rq = &rq->cfs;
7172 se->my_q = cfs_rq;
7173 se->load.weight = tg->shares;
7174 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7175 se->parent = NULL;
7176 }
7177 #endif
7178
7179 #ifdef CONFIG_RT_GROUP_SCHED
7180 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7181 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7182 int cpu, int add)
7183 {
7184 tg->rt_rq[cpu] = rt_rq;
7185 init_rt_rq(rt_rq, rq);
7186 rt_rq->tg = tg;
7187 rt_rq->rt_se = rt_se;
7188 if (add)
7189 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7190
7191 tg->rt_se[cpu] = rt_se;
7192 rt_se->rt_rq = &rq->rt;
7193 rt_se->my_q = rt_rq;
7194 rt_se->parent = NULL;
7195 INIT_LIST_HEAD(&rt_se->run_list);
7196 }
7197 #endif
7198
7199 void __init sched_init(void)
7200 {
7201 int highest_cpu = 0;
7202 int i, j;
7203
7204 #ifdef CONFIG_SMP
7205 init_defrootdomain();
7206 #endif
7207
7208 #ifdef CONFIG_GROUP_SCHED
7209 list_add(&init_task_group.list, &task_groups);
7210 #endif
7211
7212 for_each_possible_cpu(i) {
7213 struct rq *rq;
7214
7215 rq = cpu_rq(i);
7216 spin_lock_init(&rq->lock);
7217 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7218 rq->nr_running = 0;
7219 rq->clock = 1;
7220 init_cfs_rq(&rq->cfs, rq);
7221 init_rt_rq(&rq->rt, rq);
7222 #ifdef CONFIG_FAIR_GROUP_SCHED
7223 init_task_group.shares = init_task_group_load;
7224 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7225 init_tg_cfs_entry(rq, &init_task_group,
7226 &per_cpu(init_cfs_rq, i),
7227 &per_cpu(init_sched_entity, i), i, 1);
7228
7229 #endif
7230 #ifdef CONFIG_RT_GROUP_SCHED
7231 init_task_group.rt_runtime =
7232 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7233 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7234 init_tg_rt_entry(rq, &init_task_group,
7235 &per_cpu(init_rt_rq, i),
7236 &per_cpu(init_sched_rt_entity, i), i, 1);
7237 #endif
7238 rq->rt_period_expire = 0;
7239 rq->rt_throttled = 0;
7240
7241 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7242 rq->cpu_load[j] = 0;
7243 #ifdef CONFIG_SMP
7244 rq->sd = NULL;
7245 rq->rd = NULL;
7246 rq->active_balance = 0;
7247 rq->next_balance = jiffies;
7248 rq->push_cpu = 0;
7249 rq->cpu = i;
7250 rq->migration_thread = NULL;
7251 INIT_LIST_HEAD(&rq->migration_queue);
7252 rq_attach_root(rq, &def_root_domain);
7253 #endif
7254 init_rq_hrtick(rq);
7255 atomic_set(&rq->nr_iowait, 0);
7256 highest_cpu = i;
7257 }
7258
7259 set_load_weight(&init_task);
7260
7261 #ifdef CONFIG_PREEMPT_NOTIFIERS
7262 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7263 #endif
7264
7265 #ifdef CONFIG_SMP
7266 nr_cpu_ids = highest_cpu + 1;
7267 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7268 #endif
7269
7270 #ifdef CONFIG_RT_MUTEXES
7271 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7272 #endif
7273
7274 /*
7275 * The boot idle thread does lazy MMU switching as well:
7276 */
7277 atomic_inc(&init_mm.mm_count);
7278 enter_lazy_tlb(&init_mm, current);
7279
7280 /*
7281 * Make us the idle thread. Technically, schedule() should not be
7282 * called from this thread, however somewhere below it might be,
7283 * but because we are the idle thread, we just pick up running again
7284 * when this runqueue becomes "idle".
7285 */
7286 init_idle(current, smp_processor_id());
7287 /*
7288 * During early bootup we pretend to be a normal task:
7289 */
7290 current->sched_class = &fair_sched_class;
7291
7292 scheduler_running = 1;
7293 }
7294
7295 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7296 void __might_sleep(char *file, int line)
7297 {
7298 #ifdef in_atomic
7299 static unsigned long prev_jiffy; /* ratelimiting */
7300
7301 if ((in_atomic() || irqs_disabled()) &&
7302 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7303 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7304 return;
7305 prev_jiffy = jiffies;
7306 printk(KERN_ERR "BUG: sleeping function called from invalid"
7307 " context at %s:%d\n", file, line);
7308 printk("in_atomic():%d, irqs_disabled():%d\n",
7309 in_atomic(), irqs_disabled());
7310 debug_show_held_locks(current);
7311 if (irqs_disabled())
7312 print_irqtrace_events(current);
7313 dump_stack();
7314 }
7315 #endif
7316 }
7317 EXPORT_SYMBOL(__might_sleep);
7318 #endif
7319
7320 #ifdef CONFIG_MAGIC_SYSRQ
7321 static void normalize_task(struct rq *rq, struct task_struct *p)
7322 {
7323 int on_rq;
7324 update_rq_clock(rq);
7325 on_rq = p->se.on_rq;
7326 if (on_rq)
7327 deactivate_task(rq, p, 0);
7328 __setscheduler(rq, p, SCHED_NORMAL, 0);
7329 if (on_rq) {
7330 activate_task(rq, p, 0);
7331 resched_task(rq->curr);
7332 }
7333 }
7334
7335 void normalize_rt_tasks(void)
7336 {
7337 struct task_struct *g, *p;
7338 unsigned long flags;
7339 struct rq *rq;
7340
7341 read_lock_irqsave(&tasklist_lock, flags);
7342 do_each_thread(g, p) {
7343 /*
7344 * Only normalize user tasks:
7345 */
7346 if (!p->mm)
7347 continue;
7348
7349 p->se.exec_start = 0;
7350 #ifdef CONFIG_SCHEDSTATS
7351 p->se.wait_start = 0;
7352 p->se.sleep_start = 0;
7353 p->se.block_start = 0;
7354 #endif
7355 task_rq(p)->clock = 0;
7356
7357 if (!rt_task(p)) {
7358 /*
7359 * Renice negative nice level userspace
7360 * tasks back to 0:
7361 */
7362 if (TASK_NICE(p) < 0 && p->mm)
7363 set_user_nice(p, 0);
7364 continue;
7365 }
7366
7367 spin_lock(&p->pi_lock);
7368 rq = __task_rq_lock(p);
7369
7370 normalize_task(rq, p);
7371
7372 __task_rq_unlock(rq);
7373 spin_unlock(&p->pi_lock);
7374 } while_each_thread(g, p);
7375
7376 read_unlock_irqrestore(&tasklist_lock, flags);
7377 }
7378
7379 #endif /* CONFIG_MAGIC_SYSRQ */
7380
7381 #ifdef CONFIG_IA64
7382 /*
7383 * These functions are only useful for the IA64 MCA handling.
7384 *
7385 * They can only be called when the whole system has been
7386 * stopped - every CPU needs to be quiescent, and no scheduling
7387 * activity can take place. Using them for anything else would
7388 * be a serious bug, and as a result, they aren't even visible
7389 * under any other configuration.
7390 */
7391
7392 /**
7393 * curr_task - return the current task for a given cpu.
7394 * @cpu: the processor in question.
7395 *
7396 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7397 */
7398 struct task_struct *curr_task(int cpu)
7399 {
7400 return cpu_curr(cpu);
7401 }
7402
7403 /**
7404 * set_curr_task - set the current task for a given cpu.
7405 * @cpu: the processor in question.
7406 * @p: the task pointer to set.
7407 *
7408 * Description: This function must only be used when non-maskable interrupts
7409 * are serviced on a separate stack. It allows the architecture to switch the
7410 * notion of the current task on a cpu in a non-blocking manner. This function
7411 * must be called with all CPU's synchronized, and interrupts disabled, the
7412 * and caller must save the original value of the current task (see
7413 * curr_task() above) and restore that value before reenabling interrupts and
7414 * re-starting the system.
7415 *
7416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7417 */
7418 void set_curr_task(int cpu, struct task_struct *p)
7419 {
7420 cpu_curr(cpu) = p;
7421 }
7422
7423 #endif
7424
7425 #ifdef CONFIG_GROUP_SCHED
7426
7427 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7428 /*
7429 * distribute shares of all task groups among their schedulable entities,
7430 * to reflect load distribution across cpus.
7431 */
7432 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7433 {
7434 struct cfs_rq *cfs_rq;
7435 struct rq *rq = cpu_rq(this_cpu);
7436 cpumask_t sdspan = sd->span;
7437 int balanced = 1;
7438
7439 /* Walk thr' all the task groups that we have */
7440 for_each_leaf_cfs_rq(rq, cfs_rq) {
7441 int i;
7442 unsigned long total_load = 0, total_shares;
7443 struct task_group *tg = cfs_rq->tg;
7444
7445 /* Gather total task load of this group across cpus */
7446 for_each_cpu_mask(i, sdspan)
7447 total_load += tg->cfs_rq[i]->load.weight;
7448
7449 /* Nothing to do if this group has no load */
7450 if (!total_load)
7451 continue;
7452
7453 /*
7454 * tg->shares represents the number of cpu shares the task group
7455 * is eligible to hold on a single cpu. On N cpus, it is
7456 * eligible to hold (N * tg->shares) number of cpu shares.
7457 */
7458 total_shares = tg->shares * cpus_weight(sdspan);
7459
7460 /*
7461 * redistribute total_shares across cpus as per the task load
7462 * distribution.
7463 */
7464 for_each_cpu_mask(i, sdspan) {
7465 unsigned long local_load, local_shares;
7466
7467 local_load = tg->cfs_rq[i]->load.weight;
7468 local_shares = (local_load * total_shares) / total_load;
7469 if (!local_shares)
7470 local_shares = MIN_GROUP_SHARES;
7471 if (local_shares == tg->se[i]->load.weight)
7472 continue;
7473
7474 spin_lock_irq(&cpu_rq(i)->lock);
7475 set_se_shares(tg->se[i], local_shares);
7476 spin_unlock_irq(&cpu_rq(i)->lock);
7477 balanced = 0;
7478 }
7479 }
7480
7481 return balanced;
7482 }
7483
7484 /*
7485 * How frequently should we rebalance_shares() across cpus?
7486 *
7487 * The more frequently we rebalance shares, the more accurate is the fairness
7488 * of cpu bandwidth distribution between task groups. However higher frequency
7489 * also implies increased scheduling overhead.
7490 *
7491 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7492 * consecutive calls to rebalance_shares() in the same sched domain.
7493 *
7494 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7495 * consecutive calls to rebalance_shares() in the same sched domain.
7496 *
7497 * These settings allows for the appropriate trade-off between accuracy of
7498 * fairness and the associated overhead.
7499 *
7500 */
7501
7502 /* default: 8ms, units: milliseconds */
7503 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7504
7505 /* default: 128ms, units: milliseconds */
7506 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7507
7508 /* kernel thread that runs rebalance_shares() periodically */
7509 static int load_balance_monitor(void *unused)
7510 {
7511 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7512 struct sched_param schedparm;
7513 int ret;
7514
7515 /*
7516 * We don't want this thread's execution to be limited by the shares
7517 * assigned to default group (init_task_group). Hence make it run
7518 * as a SCHED_RR RT task at the lowest priority.
7519 */
7520 schedparm.sched_priority = 1;
7521 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7522 if (ret)
7523 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7524 " monitor thread (error = %d) \n", ret);
7525
7526 while (!kthread_should_stop()) {
7527 int i, cpu, balanced = 1;
7528
7529 /* Prevent cpus going down or coming up */
7530 get_online_cpus();
7531 /* lockout changes to doms_cur[] array */
7532 lock_doms_cur();
7533 /*
7534 * Enter a rcu read-side critical section to safely walk rq->sd
7535 * chain on various cpus and to walk task group list
7536 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7537 */
7538 rcu_read_lock();
7539
7540 for (i = 0; i < ndoms_cur; i++) {
7541 cpumask_t cpumap = doms_cur[i];
7542 struct sched_domain *sd = NULL, *sd_prev = NULL;
7543
7544 cpu = first_cpu(cpumap);
7545
7546 /* Find the highest domain at which to balance shares */
7547 for_each_domain(cpu, sd) {
7548 if (!(sd->flags & SD_LOAD_BALANCE))
7549 continue;
7550 sd_prev = sd;
7551 }
7552
7553 sd = sd_prev;
7554 /* sd == NULL? No load balance reqd in this domain */
7555 if (!sd)
7556 continue;
7557
7558 balanced &= rebalance_shares(sd, cpu);
7559 }
7560
7561 rcu_read_unlock();
7562
7563 unlock_doms_cur();
7564 put_online_cpus();
7565
7566 if (!balanced)
7567 timeout = sysctl_sched_min_bal_int_shares;
7568 else if (timeout < sysctl_sched_max_bal_int_shares)
7569 timeout *= 2;
7570
7571 msleep_interruptible(timeout);
7572 }
7573
7574 return 0;
7575 }
7576 #endif /* CONFIG_SMP */
7577
7578 #ifdef CONFIG_FAIR_GROUP_SCHED
7579 static void free_fair_sched_group(struct task_group *tg)
7580 {
7581 int i;
7582
7583 for_each_possible_cpu(i) {
7584 if (tg->cfs_rq)
7585 kfree(tg->cfs_rq[i]);
7586 if (tg->se)
7587 kfree(tg->se[i]);
7588 }
7589
7590 kfree(tg->cfs_rq);
7591 kfree(tg->se);
7592 }
7593
7594 static int alloc_fair_sched_group(struct task_group *tg)
7595 {
7596 struct cfs_rq *cfs_rq;
7597 struct sched_entity *se;
7598 struct rq *rq;
7599 int i;
7600
7601 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7602 if (!tg->cfs_rq)
7603 goto err;
7604 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7605 if (!tg->se)
7606 goto err;
7607
7608 tg->shares = NICE_0_LOAD;
7609
7610 for_each_possible_cpu(i) {
7611 rq = cpu_rq(i);
7612
7613 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7614 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7615 if (!cfs_rq)
7616 goto err;
7617
7618 se = kmalloc_node(sizeof(struct sched_entity),
7619 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7620 if (!se)
7621 goto err;
7622
7623 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7624 }
7625
7626 return 1;
7627
7628 err:
7629 return 0;
7630 }
7631
7632 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7633 {
7634 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7635 &cpu_rq(cpu)->leaf_cfs_rq_list);
7636 }
7637
7638 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7639 {
7640 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7641 }
7642 #else
7643 static inline void free_fair_sched_group(struct task_group *tg)
7644 {
7645 }
7646
7647 static inline int alloc_fair_sched_group(struct task_group *tg)
7648 {
7649 return 1;
7650 }
7651
7652 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7653 {
7654 }
7655
7656 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7657 {
7658 }
7659 #endif
7660
7661 #ifdef CONFIG_RT_GROUP_SCHED
7662 static void free_rt_sched_group(struct task_group *tg)
7663 {
7664 int i;
7665
7666 for_each_possible_cpu(i) {
7667 if (tg->rt_rq)
7668 kfree(tg->rt_rq[i]);
7669 if (tg->rt_se)
7670 kfree(tg->rt_se[i]);
7671 }
7672
7673 kfree(tg->rt_rq);
7674 kfree(tg->rt_se);
7675 }
7676
7677 static int alloc_rt_sched_group(struct task_group *tg)
7678 {
7679 struct rt_rq *rt_rq;
7680 struct sched_rt_entity *rt_se;
7681 struct rq *rq;
7682 int i;
7683
7684 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7685 if (!tg->rt_rq)
7686 goto err;
7687 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7688 if (!tg->rt_se)
7689 goto err;
7690
7691 tg->rt_runtime = 0;
7692
7693 for_each_possible_cpu(i) {
7694 rq = cpu_rq(i);
7695
7696 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7697 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7698 if (!rt_rq)
7699 goto err;
7700
7701 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7702 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7703 if (!rt_se)
7704 goto err;
7705
7706 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7707 }
7708
7709 return 1;
7710
7711 err:
7712 return 0;
7713 }
7714
7715 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7716 {
7717 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7718 &cpu_rq(cpu)->leaf_rt_rq_list);
7719 }
7720
7721 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7722 {
7723 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7724 }
7725 #else
7726 static inline void free_rt_sched_group(struct task_group *tg)
7727 {
7728 }
7729
7730 static inline int alloc_rt_sched_group(struct task_group *tg)
7731 {
7732 return 1;
7733 }
7734
7735 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7736 {
7737 }
7738
7739 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7740 {
7741 }
7742 #endif
7743
7744 static void free_sched_group(struct task_group *tg)
7745 {
7746 free_fair_sched_group(tg);
7747 free_rt_sched_group(tg);
7748 kfree(tg);
7749 }
7750
7751 /* allocate runqueue etc for a new task group */
7752 struct task_group *sched_create_group(void)
7753 {
7754 struct task_group *tg;
7755 unsigned long flags;
7756 int i;
7757
7758 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7759 if (!tg)
7760 return ERR_PTR(-ENOMEM);
7761
7762 if (!alloc_fair_sched_group(tg))
7763 goto err;
7764
7765 if (!alloc_rt_sched_group(tg))
7766 goto err;
7767
7768 spin_lock_irqsave(&task_group_lock, flags);
7769 for_each_possible_cpu(i) {
7770 register_fair_sched_group(tg, i);
7771 register_rt_sched_group(tg, i);
7772 }
7773 list_add_rcu(&tg->list, &task_groups);
7774 spin_unlock_irqrestore(&task_group_lock, flags);
7775
7776 return tg;
7777
7778 err:
7779 free_sched_group(tg);
7780 return ERR_PTR(-ENOMEM);
7781 }
7782
7783 /* rcu callback to free various structures associated with a task group */
7784 static void free_sched_group_rcu(struct rcu_head *rhp)
7785 {
7786 /* now it should be safe to free those cfs_rqs */
7787 free_sched_group(container_of(rhp, struct task_group, rcu));
7788 }
7789
7790 /* Destroy runqueue etc associated with a task group */
7791 void sched_destroy_group(struct task_group *tg)
7792 {
7793 unsigned long flags;
7794 int i;
7795
7796 spin_lock_irqsave(&task_group_lock, flags);
7797 for_each_possible_cpu(i) {
7798 unregister_fair_sched_group(tg, i);
7799 unregister_rt_sched_group(tg, i);
7800 }
7801 list_del_rcu(&tg->list);
7802 spin_unlock_irqrestore(&task_group_lock, flags);
7803
7804 /* wait for possible concurrent references to cfs_rqs complete */
7805 call_rcu(&tg->rcu, free_sched_group_rcu);
7806 }
7807
7808 /* change task's runqueue when it moves between groups.
7809 * The caller of this function should have put the task in its new group
7810 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7811 * reflect its new group.
7812 */
7813 void sched_move_task(struct task_struct *tsk)
7814 {
7815 int on_rq, running;
7816 unsigned long flags;
7817 struct rq *rq;
7818
7819 rq = task_rq_lock(tsk, &flags);
7820
7821 update_rq_clock(rq);
7822
7823 running = task_current(rq, tsk);
7824 on_rq = tsk->se.on_rq;
7825
7826 if (on_rq) {
7827 dequeue_task(rq, tsk, 0);
7828 if (unlikely(running))
7829 tsk->sched_class->put_prev_task(rq, tsk);
7830 }
7831
7832 set_task_rq(tsk, task_cpu(tsk));
7833
7834 if (on_rq) {
7835 if (unlikely(running))
7836 tsk->sched_class->set_curr_task(rq);
7837 enqueue_task(rq, tsk, 0);
7838 }
7839
7840 task_rq_unlock(rq, &flags);
7841 }
7842
7843 #ifdef CONFIG_FAIR_GROUP_SCHED
7844 /* rq->lock to be locked by caller */
7845 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7846 {
7847 struct cfs_rq *cfs_rq = se->cfs_rq;
7848 struct rq *rq = cfs_rq->rq;
7849 int on_rq;
7850
7851 if (!shares)
7852 shares = MIN_GROUP_SHARES;
7853
7854 on_rq = se->on_rq;
7855 if (on_rq) {
7856 dequeue_entity(cfs_rq, se, 0);
7857 dec_cpu_load(rq, se->load.weight);
7858 }
7859
7860 se->load.weight = shares;
7861 se->load.inv_weight = div64_64((1ULL<<32), shares);
7862
7863 if (on_rq) {
7864 enqueue_entity(cfs_rq, se, 0);
7865 inc_cpu_load(rq, se->load.weight);
7866 }
7867 }
7868
7869 static DEFINE_MUTEX(shares_mutex);
7870
7871 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7872 {
7873 int i;
7874 unsigned long flags;
7875
7876 mutex_lock(&shares_mutex);
7877 if (tg->shares == shares)
7878 goto done;
7879
7880 if (shares < MIN_GROUP_SHARES)
7881 shares = MIN_GROUP_SHARES;
7882
7883 /*
7884 * Prevent any load balance activity (rebalance_shares,
7885 * load_balance_fair) from referring to this group first,
7886 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7887 */
7888 spin_lock_irqsave(&task_group_lock, flags);
7889 for_each_possible_cpu(i)
7890 unregister_fair_sched_group(tg, i);
7891 spin_unlock_irqrestore(&task_group_lock, flags);
7892
7893 /* wait for any ongoing reference to this group to finish */
7894 synchronize_sched();
7895
7896 /*
7897 * Now we are free to modify the group's share on each cpu
7898 * w/o tripping rebalance_share or load_balance_fair.
7899 */
7900 tg->shares = shares;
7901 for_each_possible_cpu(i) {
7902 spin_lock_irq(&cpu_rq(i)->lock);
7903 set_se_shares(tg->se[i], shares);
7904 spin_unlock_irq(&cpu_rq(i)->lock);
7905 }
7906
7907 /*
7908 * Enable load balance activity on this group, by inserting it back on
7909 * each cpu's rq->leaf_cfs_rq_list.
7910 */
7911 spin_lock_irqsave(&task_group_lock, flags);
7912 for_each_possible_cpu(i)
7913 register_fair_sched_group(tg, i);
7914 spin_unlock_irqrestore(&task_group_lock, flags);
7915 done:
7916 mutex_unlock(&shares_mutex);
7917 return 0;
7918 }
7919
7920 unsigned long sched_group_shares(struct task_group *tg)
7921 {
7922 return tg->shares;
7923 }
7924 #endif
7925
7926 #ifdef CONFIG_RT_GROUP_SCHED
7927 /*
7928 * Ensure that the real time constraints are schedulable.
7929 */
7930 static DEFINE_MUTEX(rt_constraints_mutex);
7931
7932 static unsigned long to_ratio(u64 period, u64 runtime)
7933 {
7934 if (runtime == RUNTIME_INF)
7935 return 1ULL << 16;
7936
7937 runtime *= (1ULL << 16);
7938 div64_64(runtime, period);
7939 return runtime;
7940 }
7941
7942 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7943 {
7944 struct task_group *tgi;
7945 unsigned long total = 0;
7946 unsigned long global_ratio =
7947 to_ratio(sysctl_sched_rt_period,
7948 sysctl_sched_rt_runtime < 0 ?
7949 RUNTIME_INF : sysctl_sched_rt_runtime);
7950
7951 rcu_read_lock();
7952 list_for_each_entry_rcu(tgi, &task_groups, list) {
7953 if (tgi == tg)
7954 continue;
7955
7956 total += to_ratio(period, tgi->rt_runtime);
7957 }
7958 rcu_read_unlock();
7959
7960 return total + to_ratio(period, runtime) < global_ratio;
7961 }
7962
7963 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7964 {
7965 u64 rt_runtime, rt_period;
7966 int err = 0;
7967
7968 rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
7969 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7970 if (rt_runtime_us == -1)
7971 rt_runtime = rt_period;
7972
7973 mutex_lock(&rt_constraints_mutex);
7974 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7975 err = -EINVAL;
7976 goto unlock;
7977 }
7978 if (rt_runtime_us == -1)
7979 rt_runtime = RUNTIME_INF;
7980 tg->rt_runtime = rt_runtime;
7981 unlock:
7982 mutex_unlock(&rt_constraints_mutex);
7983
7984 return err;
7985 }
7986
7987 long sched_group_rt_runtime(struct task_group *tg)
7988 {
7989 u64 rt_runtime_us;
7990
7991 if (tg->rt_runtime == RUNTIME_INF)
7992 return -1;
7993
7994 rt_runtime_us = tg->rt_runtime;
7995 do_div(rt_runtime_us, NSEC_PER_USEC);
7996 return rt_runtime_us;
7997 }
7998 #endif
7999 #endif /* CONFIG_GROUP_SCHED */
8000
8001 #ifdef CONFIG_CGROUP_SCHED
8002
8003 /* return corresponding task_group object of a cgroup */
8004 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8005 {
8006 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8007 struct task_group, css);
8008 }
8009
8010 static struct cgroup_subsys_state *
8011 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8012 {
8013 struct task_group *tg;
8014
8015 if (!cgrp->parent) {
8016 /* This is early initialization for the top cgroup */
8017 init_task_group.css.cgroup = cgrp;
8018 return &init_task_group.css;
8019 }
8020
8021 /* we support only 1-level deep hierarchical scheduler atm */
8022 if (cgrp->parent->parent)
8023 return ERR_PTR(-EINVAL);
8024
8025 tg = sched_create_group();
8026 if (IS_ERR(tg))
8027 return ERR_PTR(-ENOMEM);
8028
8029 /* Bind the cgroup to task_group object we just created */
8030 tg->css.cgroup = cgrp;
8031
8032 return &tg->css;
8033 }
8034
8035 static void
8036 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8037 {
8038 struct task_group *tg = cgroup_tg(cgrp);
8039
8040 sched_destroy_group(tg);
8041 }
8042
8043 static int
8044 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8045 struct task_struct *tsk)
8046 {
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 /* Don't accept realtime tasks when there is no way for them to run */
8049 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
8050 return -EINVAL;
8051 #else
8052 /* We don't support RT-tasks being in separate groups */
8053 if (tsk->sched_class != &fair_sched_class)
8054 return -EINVAL;
8055 #endif
8056
8057 return 0;
8058 }
8059
8060 static void
8061 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8062 struct cgroup *old_cont, struct task_struct *tsk)
8063 {
8064 sched_move_task(tsk);
8065 }
8066
8067 #ifdef CONFIG_FAIR_GROUP_SCHED
8068 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8069 u64 shareval)
8070 {
8071 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8072 }
8073
8074 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8075 {
8076 struct task_group *tg = cgroup_tg(cgrp);
8077
8078 return (u64) tg->shares;
8079 }
8080 #endif
8081
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8084 struct file *file,
8085 const char __user *userbuf,
8086 size_t nbytes, loff_t *unused_ppos)
8087 {
8088 char buffer[64];
8089 int retval = 0;
8090 s64 val;
8091 char *end;
8092
8093 if (!nbytes)
8094 return -EINVAL;
8095 if (nbytes >= sizeof(buffer))
8096 return -E2BIG;
8097 if (copy_from_user(buffer, userbuf, nbytes))
8098 return -EFAULT;
8099
8100 buffer[nbytes] = 0; /* nul-terminate */
8101
8102 /* strip newline if necessary */
8103 if (nbytes && (buffer[nbytes-1] == '\n'))
8104 buffer[nbytes-1] = 0;
8105 val = simple_strtoll(buffer, &end, 0);
8106 if (*end)
8107 return -EINVAL;
8108
8109 /* Pass to subsystem */
8110 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8111 if (!retval)
8112 retval = nbytes;
8113 return retval;
8114 }
8115
8116 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8117 struct file *file,
8118 char __user *buf, size_t nbytes,
8119 loff_t *ppos)
8120 {
8121 char tmp[64];
8122 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8123 int len = sprintf(tmp, "%ld\n", val);
8124
8125 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8126 }
8127 #endif
8128
8129 static struct cftype cpu_files[] = {
8130 #ifdef CONFIG_FAIR_GROUP_SCHED
8131 {
8132 .name = "shares",
8133 .read_uint = cpu_shares_read_uint,
8134 .write_uint = cpu_shares_write_uint,
8135 },
8136 #endif
8137 #ifdef CONFIG_RT_GROUP_SCHED
8138 {
8139 .name = "rt_runtime_us",
8140 .read = cpu_rt_runtime_read,
8141 .write = cpu_rt_runtime_write,
8142 },
8143 #endif
8144 };
8145
8146 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8147 {
8148 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8149 }
8150
8151 struct cgroup_subsys cpu_cgroup_subsys = {
8152 .name = "cpu",
8153 .create = cpu_cgroup_create,
8154 .destroy = cpu_cgroup_destroy,
8155 .can_attach = cpu_cgroup_can_attach,
8156 .attach = cpu_cgroup_attach,
8157 .populate = cpu_cgroup_populate,
8158 .subsys_id = cpu_cgroup_subsys_id,
8159 .early_init = 1,
8160 };
8161
8162 #endif /* CONFIG_CGROUP_SCHED */
8163
8164 #ifdef CONFIG_CGROUP_CPUACCT
8165
8166 /*
8167 * CPU accounting code for task groups.
8168 *
8169 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8170 * (balbir@in.ibm.com).
8171 */
8172
8173 /* track cpu usage of a group of tasks */
8174 struct cpuacct {
8175 struct cgroup_subsys_state css;
8176 /* cpuusage holds pointer to a u64-type object on every cpu */
8177 u64 *cpuusage;
8178 };
8179
8180 struct cgroup_subsys cpuacct_subsys;
8181
8182 /* return cpu accounting group corresponding to this container */
8183 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8184 {
8185 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8186 struct cpuacct, css);
8187 }
8188
8189 /* return cpu accounting group to which this task belongs */
8190 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8191 {
8192 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8193 struct cpuacct, css);
8194 }
8195
8196 /* create a new cpu accounting group */
8197 static struct cgroup_subsys_state *cpuacct_create(
8198 struct cgroup_subsys *ss, struct cgroup *cont)
8199 {
8200 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8201
8202 if (!ca)
8203 return ERR_PTR(-ENOMEM);
8204
8205 ca->cpuusage = alloc_percpu(u64);
8206 if (!ca->cpuusage) {
8207 kfree(ca);
8208 return ERR_PTR(-ENOMEM);
8209 }
8210
8211 return &ca->css;
8212 }
8213
8214 /* destroy an existing cpu accounting group */
8215 static void
8216 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8217 {
8218 struct cpuacct *ca = cgroup_ca(cont);
8219
8220 free_percpu(ca->cpuusage);
8221 kfree(ca);
8222 }
8223
8224 /* return total cpu usage (in nanoseconds) of a group */
8225 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8226 {
8227 struct cpuacct *ca = cgroup_ca(cont);
8228 u64 totalcpuusage = 0;
8229 int i;
8230
8231 for_each_possible_cpu(i) {
8232 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8233
8234 /*
8235 * Take rq->lock to make 64-bit addition safe on 32-bit
8236 * platforms.
8237 */
8238 spin_lock_irq(&cpu_rq(i)->lock);
8239 totalcpuusage += *cpuusage;
8240 spin_unlock_irq(&cpu_rq(i)->lock);
8241 }
8242
8243 return totalcpuusage;
8244 }
8245
8246 static struct cftype files[] = {
8247 {
8248 .name = "usage",
8249 .read_uint = cpuusage_read,
8250 },
8251 };
8252
8253 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8254 {
8255 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8256 }
8257
8258 /*
8259 * charge this task's execution time to its accounting group.
8260 *
8261 * called with rq->lock held.
8262 */
8263 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8264 {
8265 struct cpuacct *ca;
8266
8267 if (!cpuacct_subsys.active)
8268 return;
8269
8270 ca = task_ca(tsk);
8271 if (ca) {
8272 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8273
8274 *cpuusage += cputime;
8275 }
8276 }
8277
8278 struct cgroup_subsys cpuacct_subsys = {
8279 .name = "cpuacct",
8280 .create = cpuacct_create,
8281 .destroy = cpuacct_destroy,
8282 .populate = cpuacct_populate,
8283 .subsys_id = cpuacct_subsys_id,
8284 };
8285 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.200605 seconds and 6 git commands to generate.