Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 /*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98 /*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107 /*
108 * Helpers for converting nanosecond timing to jiffy resolution
109 */
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 *
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
120 */
121 #define DEF_TIMESLICE (100 * HZ / 1000)
122
123 /*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126 #define RUNTIME_INF ((u64)~0ULL)
127
128 static inline int rt_policy(int policy)
129 {
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
133 }
134
135 static inline int task_has_rt_policy(struct task_struct *p)
136 {
137 return rt_policy(p->policy);
138 }
139
140 /*
141 * This is the priority-queue data structure of the RT scheduling class:
142 */
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146 };
147
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
154 };
155
156 static struct rt_bandwidth def_rt_bandwidth;
157
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161 {
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 }
180
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183 {
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
188
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 }
193
194 static inline int rt_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 {
201 ktime_t now;
202
203 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
204 return;
205
206 if (hrtimer_active(&rt_b->rt_period_timer))
207 return;
208
209 raw_spin_lock(&rt_b->rt_runtime_lock);
210 for (;;) {
211 unsigned long delta;
212 ktime_t soft, hard;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 break;
216
217 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
218 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
219
220 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
221 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
222 delta = ktime_to_ns(ktime_sub(hard, soft));
223 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
224 HRTIMER_MODE_ABS_PINNED, 0);
225 }
226 raw_spin_unlock(&rt_b->rt_runtime_lock);
227 }
228
229 #ifdef CONFIG_RT_GROUP_SCHED
230 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231 {
232 hrtimer_cancel(&rt_b->rt_period_timer);
233 }
234 #endif
235
236 /*
237 * sched_domains_mutex serializes calls to init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
239 */
240 static DEFINE_MUTEX(sched_domains_mutex);
241
242 #ifdef CONFIG_CGROUP_SCHED
243
244 #include <linux/cgroup.h>
245
246 struct cfs_rq;
247
248 static LIST_HEAD(task_groups);
249
250 /* task group related information */
251 struct task_group {
252 struct cgroup_subsys_state css;
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260
261 atomic_t load_weight;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277
278 #ifdef CONFIG_SCHED_AUTOGROUP
279 struct autogroup *autogroup;
280 #endif
281 };
282
283 /* task_group_lock serializes the addition/removal of task groups */
284 static DEFINE_SPINLOCK(task_group_lock);
285
286 #ifdef CONFIG_FAIR_GROUP_SCHED
287
288 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES (1UL << 1)
299 #define MAX_SHARES (1UL << 18)
300
301 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group root_task_group;
308
309 #endif /* CONFIG_CGROUP_SCHED */
310
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
316 u64 exec_clock;
317 u64 min_vruntime;
318 #ifndef CONFIG_64BIT
319 u64 min_vruntime_copy;
320 #endif
321
322 struct rb_root tasks_timeline;
323 struct rb_node *rb_leftmost;
324
325 struct list_head tasks;
326 struct list_head *balance_iterator;
327
328 /*
329 * 'curr' points to currently running entity on this cfs_rq.
330 * It is set to NULL otherwise (i.e when none are currently running).
331 */
332 struct sched_entity *curr, *next, *last, *skip;
333
334 #ifdef CONFIG_SCHED_DEBUG
335 unsigned int nr_spread_over;
336 #endif
337
338 #ifdef CONFIG_FAIR_GROUP_SCHED
339 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
340
341 /*
342 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
343 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
344 * (like users, containers etc.)
345 *
346 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
347 * list is used during load balance.
348 */
349 int on_list;
350 struct list_head leaf_cfs_rq_list;
351 struct task_group *tg; /* group that "owns" this runqueue */
352
353 #ifdef CONFIG_SMP
354 /*
355 * the part of load.weight contributed by tasks
356 */
357 unsigned long task_weight;
358
359 /*
360 * h_load = weight * f(tg)
361 *
362 * Where f(tg) is the recursive weight fraction assigned to
363 * this group.
364 */
365 unsigned long h_load;
366
367 /*
368 * Maintaining per-cpu shares distribution for group scheduling
369 *
370 * load_stamp is the last time we updated the load average
371 * load_last is the last time we updated the load average and saw load
372 * load_unacc_exec_time is currently unaccounted execution time
373 */
374 u64 load_avg;
375 u64 load_period;
376 u64 load_stamp, load_last, load_unacc_exec_time;
377
378 unsigned long load_contribution;
379 #endif
380 #endif
381 };
382
383 /* Real-Time classes' related field in a runqueue: */
384 struct rt_rq {
385 struct rt_prio_array active;
386 unsigned long rt_nr_running;
387 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
388 struct {
389 int curr; /* highest queued rt task prio */
390 #ifdef CONFIG_SMP
391 int next; /* next highest */
392 #endif
393 } highest_prio;
394 #endif
395 #ifdef CONFIG_SMP
396 unsigned long rt_nr_migratory;
397 unsigned long rt_nr_total;
398 int overloaded;
399 struct plist_head pushable_tasks;
400 #endif
401 int rt_throttled;
402 u64 rt_time;
403 u64 rt_runtime;
404 /* Nests inside the rq lock: */
405 raw_spinlock_t rt_runtime_lock;
406
407 #ifdef CONFIG_RT_GROUP_SCHED
408 unsigned long rt_nr_boosted;
409
410 struct rq *rq;
411 struct list_head leaf_rt_rq_list;
412 struct task_group *tg;
413 #endif
414 };
415
416 #ifdef CONFIG_SMP
417
418 /*
419 * We add the notion of a root-domain which will be used to define per-domain
420 * variables. Each exclusive cpuset essentially defines an island domain by
421 * fully partitioning the member cpus from any other cpuset. Whenever a new
422 * exclusive cpuset is created, we also create and attach a new root-domain
423 * object.
424 *
425 */
426 struct root_domain {
427 atomic_t refcount;
428 atomic_t rto_count;
429 struct rcu_head rcu;
430 cpumask_var_t span;
431 cpumask_var_t online;
432
433 /*
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
436 */
437 cpumask_var_t rto_mask;
438 struct cpupri cpupri;
439 };
440
441 /*
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
444 */
445 static struct root_domain def_root_domain;
446
447 #endif /* CONFIG_SMP */
448
449 /*
450 * This is the main, per-CPU runqueue data structure.
451 *
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
455 */
456 struct rq {
457 /* runqueue lock: */
458 raw_spinlock_t lock;
459
460 /*
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
463 */
464 unsigned long nr_running;
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
467 unsigned long last_load_update_tick;
468 #ifdef CONFIG_NO_HZ
469 u64 nohz_stamp;
470 unsigned char nohz_balance_kick;
471 #endif
472 int skip_clock_update;
473
474 /* capture load from *all* tasks on this cpu: */
475 struct load_weight load;
476 unsigned long nr_load_updates;
477 u64 nr_switches;
478
479 struct cfs_rq cfs;
480 struct rt_rq rt;
481
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 /* list of leaf cfs_rq on this cpu: */
484 struct list_head leaf_cfs_rq_list;
485 #endif
486 #ifdef CONFIG_RT_GROUP_SCHED
487 struct list_head leaf_rt_rq_list;
488 #endif
489
490 /*
491 * This is part of a global counter where only the total sum
492 * over all CPUs matters. A task can increase this counter on
493 * one CPU and if it got migrated afterwards it may decrease
494 * it on another CPU. Always updated under the runqueue lock:
495 */
496 unsigned long nr_uninterruptible;
497
498 struct task_struct *curr, *idle, *stop;
499 unsigned long next_balance;
500 struct mm_struct *prev_mm;
501
502 u64 clock;
503 u64 clock_task;
504
505 atomic_t nr_iowait;
506
507 #ifdef CONFIG_SMP
508 struct root_domain *rd;
509 struct sched_domain *sd;
510
511 unsigned long cpu_power;
512
513 unsigned char idle_at_tick;
514 /* For active balancing */
515 int post_schedule;
516 int active_balance;
517 int push_cpu;
518 struct cpu_stop_work active_balance_work;
519 /* cpu of this runqueue: */
520 int cpu;
521 int online;
522
523 unsigned long avg_load_per_task;
524
525 u64 rt_avg;
526 u64 age_stamp;
527 u64 idle_stamp;
528 u64 avg_idle;
529 #endif
530
531 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
532 u64 prev_irq_time;
533 #endif
534 #ifdef CONFIG_PARAVIRT
535 u64 prev_steal_time;
536 #endif
537 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
538 u64 prev_steal_time_rq;
539 #endif
540
541 /* calc_load related fields */
542 unsigned long calc_load_update;
543 long calc_load_active;
544
545 #ifdef CONFIG_SCHED_HRTICK
546 #ifdef CONFIG_SMP
547 int hrtick_csd_pending;
548 struct call_single_data hrtick_csd;
549 #endif
550 struct hrtimer hrtick_timer;
551 #endif
552
553 #ifdef CONFIG_SCHEDSTATS
554 /* latency stats */
555 struct sched_info rq_sched_info;
556 unsigned long long rq_cpu_time;
557 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
558
559 /* sys_sched_yield() stats */
560 unsigned int yld_count;
561
562 /* schedule() stats */
563 unsigned int sched_switch;
564 unsigned int sched_count;
565 unsigned int sched_goidle;
566
567 /* try_to_wake_up() stats */
568 unsigned int ttwu_count;
569 unsigned int ttwu_local;
570 #endif
571
572 #ifdef CONFIG_SMP
573 struct task_struct *wake_list;
574 #endif
575 };
576
577 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
578
579
580 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
581
582 static inline int cpu_of(struct rq *rq)
583 {
584 #ifdef CONFIG_SMP
585 return rq->cpu;
586 #else
587 return 0;
588 #endif
589 }
590
591 #define rcu_dereference_check_sched_domain(p) \
592 rcu_dereference_check((p), \
593 lockdep_is_held(&sched_domains_mutex))
594
595 /*
596 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
597 * See detach_destroy_domains: synchronize_sched for details.
598 *
599 * The domain tree of any CPU may only be accessed from within
600 * preempt-disabled sections.
601 */
602 #define for_each_domain(cpu, __sd) \
603 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
604
605 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
606 #define this_rq() (&__get_cpu_var(runqueues))
607 #define task_rq(p) cpu_rq(task_cpu(p))
608 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
609 #define raw_rq() (&__raw_get_cpu_var(runqueues))
610
611 #ifdef CONFIG_CGROUP_SCHED
612
613 /*
614 * Return the group to which this tasks belongs.
615 *
616 * We use task_subsys_state_check() and extend the RCU verification with
617 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
618 * task it moves into the cgroup. Therefore by holding either of those locks,
619 * we pin the task to the current cgroup.
620 */
621 static inline struct task_group *task_group(struct task_struct *p)
622 {
623 struct task_group *tg;
624 struct cgroup_subsys_state *css;
625
626 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
627 lockdep_is_held(&p->pi_lock) ||
628 lockdep_is_held(&task_rq(p)->lock));
629 tg = container_of(css, struct task_group, css);
630
631 return autogroup_task_group(p, tg);
632 }
633
634 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
636 {
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
639 p->se.parent = task_group(p)->se[cpu];
640 #endif
641
642 #ifdef CONFIG_RT_GROUP_SCHED
643 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
644 p->rt.parent = task_group(p)->rt_se[cpu];
645 #endif
646 }
647
648 #else /* CONFIG_CGROUP_SCHED */
649
650 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
651 static inline struct task_group *task_group(struct task_struct *p)
652 {
653 return NULL;
654 }
655
656 #endif /* CONFIG_CGROUP_SCHED */
657
658 static void update_rq_clock_task(struct rq *rq, s64 delta);
659
660 static void update_rq_clock(struct rq *rq)
661 {
662 s64 delta;
663
664 if (rq->skip_clock_update > 0)
665 return;
666
667 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
668 rq->clock += delta;
669 update_rq_clock_task(rq, delta);
670 }
671
672 /*
673 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 */
675 #ifdef CONFIG_SCHED_DEBUG
676 # define const_debug __read_mostly
677 #else
678 # define const_debug static const
679 #endif
680
681 /**
682 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
683 * @cpu: the processor in question.
684 *
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756 cmp = strstrip(buf);
757
758 if (strncmp(cmp, "NO_", 3) == 0) {
759 neg = 1;
760 cmp += 3;
761 }
762
763 for (i = 0; sched_feat_names[i]; i++) {
764 if (strcmp(cmp, sched_feat_names[i]) == 0) {
765 if (neg)
766 sysctl_sched_features &= ~(1UL << i);
767 else
768 sysctl_sched_features |= (1UL << i);
769 break;
770 }
771 }
772
773 if (!sched_feat_names[i])
774 return -EINVAL;
775
776 *ppos += cnt;
777
778 return cnt;
779 }
780
781 static int sched_feat_open(struct inode *inode, struct file *filp)
782 {
783 return single_open(filp, sched_feat_show, NULL);
784 }
785
786 static const struct file_operations sched_feat_fops = {
787 .open = sched_feat_open,
788 .write = sched_feat_write,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
792 };
793
794 static __init int sched_init_debug(void)
795 {
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800 }
801 late_initcall(sched_init_debug);
802
803 #endif
804
805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806
807 /*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811 const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
813 /*
814 * period over which we average the RT time consumption, measured
815 * in ms.
816 *
817 * default: 1s
818 */
819 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
820
821 /*
822 * period over which we measure -rt task cpu usage in us.
823 * default: 1s
824 */
825 unsigned int sysctl_sched_rt_period = 1000000;
826
827 static __read_mostly int scheduler_running;
828
829 /*
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
832 */
833 int sysctl_sched_rt_runtime = 950000;
834
835 static inline u64 global_rt_period(void)
836 {
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
838 }
839
840 static inline u64 global_rt_runtime(void)
841 {
842 if (sysctl_sched_rt_runtime < 0)
843 return RUNTIME_INF;
844
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
846 }
847
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
850 #endif
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
853 #endif
854
855 static inline int task_current(struct rq *rq, struct task_struct *p)
856 {
857 return rq->curr == p;
858 }
859
860 static inline int task_running(struct rq *rq, struct task_struct *p)
861 {
862 #ifdef CONFIG_SMP
863 return p->on_cpu;
864 #else
865 return task_current(rq, p);
866 #endif
867 }
868
869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
870 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 {
872 #ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->on_cpu = 1;
879 #endif
880 }
881
882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * After ->on_cpu is cleared, the task can be moved to a different CPU.
887 * We must ensure this doesn't happen until the switch is completely
888 * finished.
889 */
890 smp_wmb();
891 prev->on_cpu = 0;
892 #endif
893 #ifdef CONFIG_DEBUG_SPINLOCK
894 /* this is a valid case when another task releases the spinlock */
895 rq->lock.owner = current;
896 #endif
897 /*
898 * If we are tracking spinlock dependencies then we have to
899 * fix up the runqueue lock - which gets 'carried over' from
900 * prev into current:
901 */
902 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
903
904 raw_spin_unlock_irq(&rq->lock);
905 }
906
907 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->on_cpu = 1;
917 #endif
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 raw_spin_unlock_irq(&rq->lock);
920 #else
921 raw_spin_unlock(&rq->lock);
922 #endif
923 }
924
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 {
927 #ifdef CONFIG_SMP
928 /*
929 * After ->on_cpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->on_cpu = 0;
935 #endif
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
938 #endif
939 }
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941
942 /*
943 * __task_rq_lock - lock the rq @p resides on.
944 */
945 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 __acquires(rq->lock)
947 {
948 struct rq *rq;
949
950 lockdep_assert_held(&p->pi_lock);
951
952 for (;;) {
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(p->pi_lock)
966 __acquires(rq->lock)
967 {
968 struct rq *rq;
969
970 for (;;) {
971 raw_spin_lock_irqsave(&p->pi_lock, *flags);
972 rq = task_rq(p);
973 raw_spin_lock(&rq->lock);
974 if (likely(rq == task_rq(p)))
975 return rq;
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
978 }
979 }
980
981 static void __task_rq_unlock(struct rq *rq)
982 __releases(rq->lock)
983 {
984 raw_spin_unlock(&rq->lock);
985 }
986
987 static inline void
988 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
989 __releases(rq->lock)
990 __releases(p->pi_lock)
991 {
992 raw_spin_unlock(&rq->lock);
993 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
994 }
995
996 /*
997 * this_rq_lock - lock this runqueue and disable interrupts.
998 */
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1001 {
1002 struct rq *rq;
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 raw_spin_lock(&rq->lock);
1007
1008 return rq;
1009 }
1010
1011 #ifdef CONFIG_SCHED_HRTICK
1012 /*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
1022
1023 /*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028 static inline int hrtick_enabled(struct rq *rq)
1029 {
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035 }
1036
1037 static void hrtick_clear(struct rq *rq)
1038 {
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041 }
1042
1043 /*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048 {
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 raw_spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 raw_spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059 }
1060
1061 #ifdef CONFIG_SMP
1062 /*
1063 * called from hardirq (IPI) context
1064 */
1065 static void __hrtick_start(void *arg)
1066 {
1067 struct rq *rq = arg;
1068
1069 raw_spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 raw_spin_unlock(&rq->lock);
1073 }
1074
1075 /*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080 static void hrtick_start(struct rq *rq, u64 delay)
1081 {
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084
1085 hrtimer_set_expires(timer, time);
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1092 }
1093 }
1094
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097 {
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112 }
1113
1114 static __init void init_hrtick(void)
1115 {
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117 }
1118 #else
1119 /*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124 static void hrtick_start(struct rq *rq, u64 delay)
1125 {
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1128 }
1129
1130 static inline void init_hrtick(void)
1131 {
1132 }
1133 #endif /* CONFIG_SMP */
1134
1135 static void init_rq_hrtick(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1139
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1144
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1147 }
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1150 {
1151 }
1152
1153 static inline void init_rq_hrtick(struct rq *rq)
1154 {
1155 }
1156
1157 static inline void init_hrtick(void)
1158 {
1159 }
1160 #endif /* CONFIG_SCHED_HRTICK */
1161
1162 /*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169 #ifdef CONFIG_SMP
1170
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1174
1175 static void resched_task(struct task_struct *p)
1176 {
1177 int cpu;
1178
1179 assert_raw_spin_locked(&task_rq(p)->lock);
1180
1181 if (test_tsk_need_resched(p))
1182 return;
1183
1184 set_tsk_need_resched(p);
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194 }
1195
1196 static void resched_cpu(int cpu)
1197 {
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 raw_spin_unlock_irqrestore(&rq->lock, flags);
1205 }
1206
1207 #ifdef CONFIG_NO_HZ
1208 /*
1209 * In the semi idle case, use the nearest busy cpu for migrating timers
1210 * from an idle cpu. This is good for power-savings.
1211 *
1212 * We don't do similar optimization for completely idle system, as
1213 * selecting an idle cpu will add more delays to the timers than intended
1214 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1215 */
1216 int get_nohz_timer_target(void)
1217 {
1218 int cpu = smp_processor_id();
1219 int i;
1220 struct sched_domain *sd;
1221
1222 rcu_read_lock();
1223 for_each_domain(cpu, sd) {
1224 for_each_cpu(i, sched_domain_span(sd)) {
1225 if (!idle_cpu(i)) {
1226 cpu = i;
1227 goto unlock;
1228 }
1229 }
1230 }
1231 unlock:
1232 rcu_read_unlock();
1233 return cpu;
1234 }
1235 /*
1236 * When add_timer_on() enqueues a timer into the timer wheel of an
1237 * idle CPU then this timer might expire before the next timer event
1238 * which is scheduled to wake up that CPU. In case of a completely
1239 * idle system the next event might even be infinite time into the
1240 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1241 * leaves the inner idle loop so the newly added timer is taken into
1242 * account when the CPU goes back to idle and evaluates the timer
1243 * wheel for the next timer event.
1244 */
1245 void wake_up_idle_cpu(int cpu)
1246 {
1247 struct rq *rq = cpu_rq(cpu);
1248
1249 if (cpu == smp_processor_id())
1250 return;
1251
1252 /*
1253 * This is safe, as this function is called with the timer
1254 * wheel base lock of (cpu) held. When the CPU is on the way
1255 * to idle and has not yet set rq->curr to idle then it will
1256 * be serialized on the timer wheel base lock and take the new
1257 * timer into account automatically.
1258 */
1259 if (rq->curr != rq->idle)
1260 return;
1261
1262 /*
1263 * We can set TIF_RESCHED on the idle task of the other CPU
1264 * lockless. The worst case is that the other CPU runs the
1265 * idle task through an additional NOOP schedule()
1266 */
1267 set_tsk_need_resched(rq->idle);
1268
1269 /* NEED_RESCHED must be visible before we test polling */
1270 smp_mb();
1271 if (!tsk_is_polling(rq->idle))
1272 smp_send_reschedule(cpu);
1273 }
1274
1275 #endif /* CONFIG_NO_HZ */
1276
1277 static u64 sched_avg_period(void)
1278 {
1279 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1280 }
1281
1282 static void sched_avg_update(struct rq *rq)
1283 {
1284 s64 period = sched_avg_period();
1285
1286 while ((s64)(rq->clock - rq->age_stamp) > period) {
1287 /*
1288 * Inline assembly required to prevent the compiler
1289 * optimising this loop into a divmod call.
1290 * See __iter_div_u64_rem() for another example of this.
1291 */
1292 asm("" : "+rm" (rq->age_stamp));
1293 rq->age_stamp += period;
1294 rq->rt_avg /= 2;
1295 }
1296 }
1297
1298 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299 {
1300 rq->rt_avg += rt_delta;
1301 sched_avg_update(rq);
1302 }
1303
1304 #else /* !CONFIG_SMP */
1305 static void resched_task(struct task_struct *p)
1306 {
1307 assert_raw_spin_locked(&task_rq(p)->lock);
1308 set_tsk_need_resched(p);
1309 }
1310
1311 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1312 {
1313 }
1314
1315 static void sched_avg_update(struct rq *rq)
1316 {
1317 }
1318 #endif /* CONFIG_SMP */
1319
1320 #if BITS_PER_LONG == 32
1321 # define WMULT_CONST (~0UL)
1322 #else
1323 # define WMULT_CONST (1UL << 32)
1324 #endif
1325
1326 #define WMULT_SHIFT 32
1327
1328 /*
1329 * Shift right and round:
1330 */
1331 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1332
1333 /*
1334 * delta *= weight / lw
1335 */
1336 static unsigned long
1337 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1338 struct load_weight *lw)
1339 {
1340 u64 tmp;
1341
1342 /*
1343 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1344 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1345 * 2^SCHED_LOAD_RESOLUTION.
1346 */
1347 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1348 tmp = (u64)delta_exec * scale_load_down(weight);
1349 else
1350 tmp = (u64)delta_exec;
1351
1352 if (!lw->inv_weight) {
1353 unsigned long w = scale_load_down(lw->weight);
1354
1355 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1356 lw->inv_weight = 1;
1357 else if (unlikely(!w))
1358 lw->inv_weight = WMULT_CONST;
1359 else
1360 lw->inv_weight = WMULT_CONST / w;
1361 }
1362
1363 /*
1364 * Check whether we'd overflow the 64-bit multiplication:
1365 */
1366 if (unlikely(tmp > WMULT_CONST))
1367 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1368 WMULT_SHIFT/2);
1369 else
1370 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1371
1372 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1373 }
1374
1375 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1376 {
1377 lw->weight += inc;
1378 lw->inv_weight = 0;
1379 }
1380
1381 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1382 {
1383 lw->weight -= dec;
1384 lw->inv_weight = 0;
1385 }
1386
1387 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1388 {
1389 lw->weight = w;
1390 lw->inv_weight = 0;
1391 }
1392
1393 /*
1394 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1395 * of tasks with abnormal "nice" values across CPUs the contribution that
1396 * each task makes to its run queue's load is weighted according to its
1397 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1398 * scaled version of the new time slice allocation that they receive on time
1399 * slice expiry etc.
1400 */
1401
1402 #define WEIGHT_IDLEPRIO 3
1403 #define WMULT_IDLEPRIO 1431655765
1404
1405 /*
1406 * Nice levels are multiplicative, with a gentle 10% change for every
1407 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1408 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1409 * that remained on nice 0.
1410 *
1411 * The "10% effect" is relative and cumulative: from _any_ nice level,
1412 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1413 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1414 * If a task goes up by ~10% and another task goes down by ~10% then
1415 * the relative distance between them is ~25%.)
1416 */
1417 static const int prio_to_weight[40] = {
1418 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1419 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1420 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1421 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1422 /* 0 */ 1024, 820, 655, 526, 423,
1423 /* 5 */ 335, 272, 215, 172, 137,
1424 /* 10 */ 110, 87, 70, 56, 45,
1425 /* 15 */ 36, 29, 23, 18, 15,
1426 };
1427
1428 /*
1429 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1430 *
1431 * In cases where the weight does not change often, we can use the
1432 * precalculated inverse to speed up arithmetics by turning divisions
1433 * into multiplications:
1434 */
1435 static const u32 prio_to_wmult[40] = {
1436 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1437 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1438 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1439 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1440 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1441 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1442 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1443 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1444 };
1445
1446 /* Time spent by the tasks of the cpu accounting group executing in ... */
1447 enum cpuacct_stat_index {
1448 CPUACCT_STAT_USER, /* ... user mode */
1449 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1450
1451 CPUACCT_STAT_NSTATS,
1452 };
1453
1454 #ifdef CONFIG_CGROUP_CPUACCT
1455 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1456 static void cpuacct_update_stats(struct task_struct *tsk,
1457 enum cpuacct_stat_index idx, cputime_t val);
1458 #else
1459 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1460 static inline void cpuacct_update_stats(struct task_struct *tsk,
1461 enum cpuacct_stat_index idx, cputime_t val) {}
1462 #endif
1463
1464 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1465 {
1466 update_load_add(&rq->load, load);
1467 }
1468
1469 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1470 {
1471 update_load_sub(&rq->load, load);
1472 }
1473
1474 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1475 typedef int (*tg_visitor)(struct task_group *, void *);
1476
1477 /*
1478 * Iterate the full tree, calling @down when first entering a node and @up when
1479 * leaving it for the final time.
1480 */
1481 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1482 {
1483 struct task_group *parent, *child;
1484 int ret;
1485
1486 rcu_read_lock();
1487 parent = &root_task_group;
1488 down:
1489 ret = (*down)(parent, data);
1490 if (ret)
1491 goto out_unlock;
1492 list_for_each_entry_rcu(child, &parent->children, siblings) {
1493 parent = child;
1494 goto down;
1495
1496 up:
1497 continue;
1498 }
1499 ret = (*up)(parent, data);
1500 if (ret)
1501 goto out_unlock;
1502
1503 child = parent;
1504 parent = parent->parent;
1505 if (parent)
1506 goto up;
1507 out_unlock:
1508 rcu_read_unlock();
1509
1510 return ret;
1511 }
1512
1513 static int tg_nop(struct task_group *tg, void *data)
1514 {
1515 return 0;
1516 }
1517 #endif
1518
1519 #ifdef CONFIG_SMP
1520 /* Used instead of source_load when we know the type == 0 */
1521 static unsigned long weighted_cpuload(const int cpu)
1522 {
1523 return cpu_rq(cpu)->load.weight;
1524 }
1525
1526 /*
1527 * Return a low guess at the load of a migration-source cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 *
1530 * We want to under-estimate the load of migration sources, to
1531 * balance conservatively.
1532 */
1533 static unsigned long source_load(int cpu, int type)
1534 {
1535 struct rq *rq = cpu_rq(cpu);
1536 unsigned long total = weighted_cpuload(cpu);
1537
1538 if (type == 0 || !sched_feat(LB_BIAS))
1539 return total;
1540
1541 return min(rq->cpu_load[type-1], total);
1542 }
1543
1544 /*
1545 * Return a high guess at the load of a migration-target cpu weighted
1546 * according to the scheduling class and "nice" value.
1547 */
1548 static unsigned long target_load(int cpu, int type)
1549 {
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long total = weighted_cpuload(cpu);
1552
1553 if (type == 0 || !sched_feat(LB_BIAS))
1554 return total;
1555
1556 return max(rq->cpu_load[type-1], total);
1557 }
1558
1559 static unsigned long power_of(int cpu)
1560 {
1561 return cpu_rq(cpu)->cpu_power;
1562 }
1563
1564 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1565
1566 static unsigned long cpu_avg_load_per_task(int cpu)
1567 {
1568 struct rq *rq = cpu_rq(cpu);
1569 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1570
1571 if (nr_running)
1572 rq->avg_load_per_task = rq->load.weight / nr_running;
1573 else
1574 rq->avg_load_per_task = 0;
1575
1576 return rq->avg_load_per_task;
1577 }
1578
1579 #ifdef CONFIG_PREEMPT
1580
1581 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
1583 /*
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
1590 */
1591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595 {
1596 raw_spin_unlock(&this_rq->lock);
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600 }
1601
1602 #else
1603 /*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614 {
1615 int ret = 0;
1616
1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
1623 ret = 1;
1624 } else
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
1627 }
1628 return ret;
1629 }
1630
1631 #endif /* CONFIG_PREEMPT */
1632
1633 /*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637 {
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
1640 raw_spin_unlock(&this_rq->lock);
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645 }
1646
1647 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649 {
1650 raw_spin_unlock(&busiest->lock);
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652 }
1653
1654 /*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663 {
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1677 }
1678
1679 /*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688 {
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694 }
1695
1696 #else /* CONFIG_SMP */
1697
1698 /*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707 {
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712 }
1713
1714 /*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723 {
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727 }
1728
1729 #endif
1730
1731 static void calc_load_account_idle(struct rq *this_rq);
1732 static void update_sysctl(void);
1733 static int get_update_sysctl_factor(void);
1734 static void update_cpu_load(struct rq *this_rq);
1735
1736 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737 {
1738 set_task_rq(p, cpu);
1739 #ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfully executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747 #endif
1748 }
1749
1750 static const struct sched_class rt_sched_class;
1751
1752 #define sched_class_highest (&stop_sched_class)
1753 #define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
1755
1756 #include "sched_stats.h"
1757
1758 static void inc_nr_running(struct rq *rq)
1759 {
1760 rq->nr_running++;
1761 }
1762
1763 static void dec_nr_running(struct rq *rq)
1764 {
1765 rq->nr_running--;
1766 }
1767
1768 static void set_load_weight(struct task_struct *p)
1769 {
1770 int prio = p->static_prio - MAX_RT_PRIO;
1771 struct load_weight *load = &p->se.load;
1772
1773 /*
1774 * SCHED_IDLE tasks get minimal weight:
1775 */
1776 if (p->policy == SCHED_IDLE) {
1777 load->weight = scale_load(WEIGHT_IDLEPRIO);
1778 load->inv_weight = WMULT_IDLEPRIO;
1779 return;
1780 }
1781
1782 load->weight = scale_load(prio_to_weight[prio]);
1783 load->inv_weight = prio_to_wmult[prio];
1784 }
1785
1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1787 {
1788 update_rq_clock(rq);
1789 sched_info_queued(p);
1790 p->sched_class->enqueue_task(rq, p, flags);
1791 }
1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1794 {
1795 update_rq_clock(rq);
1796 sched_info_dequeued(p);
1797 p->sched_class->dequeue_task(rq, p, flags);
1798 }
1799
1800 /*
1801 * activate_task - move a task to the runqueue.
1802 */
1803 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1804 {
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1807
1808 enqueue_task(rq, p, flags);
1809 inc_nr_running(rq);
1810 }
1811
1812 /*
1813 * deactivate_task - remove a task from the runqueue.
1814 */
1815 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1816 {
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1819
1820 dequeue_task(rq, p, flags);
1821 dec_nr_running(rq);
1822 }
1823
1824 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1825
1826 /*
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
1836 */
1837 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1839
1840 static DEFINE_PER_CPU(u64, irq_start_time);
1841 static int sched_clock_irqtime;
1842
1843 void enable_sched_clock_irqtime(void)
1844 {
1845 sched_clock_irqtime = 1;
1846 }
1847
1848 void disable_sched_clock_irqtime(void)
1849 {
1850 sched_clock_irqtime = 0;
1851 }
1852
1853 #ifndef CONFIG_64BIT
1854 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1855
1856 static inline void irq_time_write_begin(void)
1857 {
1858 __this_cpu_inc(irq_time_seq.sequence);
1859 smp_wmb();
1860 }
1861
1862 static inline void irq_time_write_end(void)
1863 {
1864 smp_wmb();
1865 __this_cpu_inc(irq_time_seq.sequence);
1866 }
1867
1868 static inline u64 irq_time_read(int cpu)
1869 {
1870 u64 irq_time;
1871 unsigned seq;
1872
1873 do {
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1878
1879 return irq_time;
1880 }
1881 #else /* CONFIG_64BIT */
1882 static inline void irq_time_write_begin(void)
1883 {
1884 }
1885
1886 static inline void irq_time_write_end(void)
1887 {
1888 }
1889
1890 static inline u64 irq_time_read(int cpu)
1891 {
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1893 }
1894 #endif /* CONFIG_64BIT */
1895
1896 /*
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1899 */
1900 void account_system_vtime(struct task_struct *curr)
1901 {
1902 unsigned long flags;
1903 s64 delta;
1904 int cpu;
1905
1906 if (!sched_clock_irqtime)
1907 return;
1908
1909 local_irq_save(flags);
1910
1911 cpu = smp_processor_id();
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1914
1915 irq_time_write_begin();
1916 /*
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1921 */
1922 if (hardirq_count())
1923 __this_cpu_add(cpu_hardirq_time, delta);
1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1925 __this_cpu_add(cpu_softirq_time, delta);
1926
1927 irq_time_write_end();
1928 local_irq_restore(flags);
1929 }
1930 EXPORT_SYMBOL_GPL(account_system_vtime);
1931
1932 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1933
1934 #ifdef CONFIG_PARAVIRT
1935 static inline u64 steal_ticks(u64 steal)
1936 {
1937 if (unlikely(steal > NSEC_PER_SEC))
1938 return div_u64(steal, TICK_NSEC);
1939
1940 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1941 }
1942 #endif
1943
1944 static void update_rq_clock_task(struct rq *rq, s64 delta)
1945 {
1946 /*
1947 * In theory, the compile should just see 0 here, and optimize out the call
1948 * to sched_rt_avg_update. But I don't trust it...
1949 */
1950 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1951 s64 steal = 0, irq_delta = 0;
1952 #endif
1953 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1954 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1955
1956 /*
1957 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1958 * this case when a previous update_rq_clock() happened inside a
1959 * {soft,}irq region.
1960 *
1961 * When this happens, we stop ->clock_task and only update the
1962 * prev_irq_time stamp to account for the part that fit, so that a next
1963 * update will consume the rest. This ensures ->clock_task is
1964 * monotonic.
1965 *
1966 * It does however cause some slight miss-attribution of {soft,}irq
1967 * time, a more accurate solution would be to update the irq_time using
1968 * the current rq->clock timestamp, except that would require using
1969 * atomic ops.
1970 */
1971 if (irq_delta > delta)
1972 irq_delta = delta;
1973
1974 rq->prev_irq_time += irq_delta;
1975 delta -= irq_delta;
1976 #endif
1977 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1978 if (static_branch((&paravirt_steal_rq_enabled))) {
1979 u64 st;
1980
1981 steal = paravirt_steal_clock(cpu_of(rq));
1982 steal -= rq->prev_steal_time_rq;
1983
1984 if (unlikely(steal > delta))
1985 steal = delta;
1986
1987 st = steal_ticks(steal);
1988 steal = st * TICK_NSEC;
1989
1990 rq->prev_steal_time_rq += steal;
1991
1992 delta -= steal;
1993 }
1994 #endif
1995
1996 rq->clock_task += delta;
1997
1998 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1999 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2000 sched_rt_avg_update(rq, irq_delta + steal);
2001 #endif
2002 }
2003
2004 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2005 static int irqtime_account_hi_update(void)
2006 {
2007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2008 unsigned long flags;
2009 u64 latest_ns;
2010 int ret = 0;
2011
2012 local_irq_save(flags);
2013 latest_ns = this_cpu_read(cpu_hardirq_time);
2014 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2015 ret = 1;
2016 local_irq_restore(flags);
2017 return ret;
2018 }
2019
2020 static int irqtime_account_si_update(void)
2021 {
2022 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2023 unsigned long flags;
2024 u64 latest_ns;
2025 int ret = 0;
2026
2027 local_irq_save(flags);
2028 latest_ns = this_cpu_read(cpu_softirq_time);
2029 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2030 ret = 1;
2031 local_irq_restore(flags);
2032 return ret;
2033 }
2034
2035 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2036
2037 #define sched_clock_irqtime (0)
2038
2039 #endif
2040
2041 #include "sched_idletask.c"
2042 #include "sched_fair.c"
2043 #include "sched_rt.c"
2044 #include "sched_autogroup.c"
2045 #include "sched_stoptask.c"
2046 #ifdef CONFIG_SCHED_DEBUG
2047 # include "sched_debug.c"
2048 #endif
2049
2050 void sched_set_stop_task(int cpu, struct task_struct *stop)
2051 {
2052 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2053 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2054
2055 if (stop) {
2056 /*
2057 * Make it appear like a SCHED_FIFO task, its something
2058 * userspace knows about and won't get confused about.
2059 *
2060 * Also, it will make PI more or less work without too
2061 * much confusion -- but then, stop work should not
2062 * rely on PI working anyway.
2063 */
2064 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2065
2066 stop->sched_class = &stop_sched_class;
2067 }
2068
2069 cpu_rq(cpu)->stop = stop;
2070
2071 if (old_stop) {
2072 /*
2073 * Reset it back to a normal scheduling class so that
2074 * it can die in pieces.
2075 */
2076 old_stop->sched_class = &rt_sched_class;
2077 }
2078 }
2079
2080 /*
2081 * __normal_prio - return the priority that is based on the static prio
2082 */
2083 static inline int __normal_prio(struct task_struct *p)
2084 {
2085 return p->static_prio;
2086 }
2087
2088 /*
2089 * Calculate the expected normal priority: i.e. priority
2090 * without taking RT-inheritance into account. Might be
2091 * boosted by interactivity modifiers. Changes upon fork,
2092 * setprio syscalls, and whenever the interactivity
2093 * estimator recalculates.
2094 */
2095 static inline int normal_prio(struct task_struct *p)
2096 {
2097 int prio;
2098
2099 if (task_has_rt_policy(p))
2100 prio = MAX_RT_PRIO-1 - p->rt_priority;
2101 else
2102 prio = __normal_prio(p);
2103 return prio;
2104 }
2105
2106 /*
2107 * Calculate the current priority, i.e. the priority
2108 * taken into account by the scheduler. This value might
2109 * be boosted by RT tasks, or might be boosted by
2110 * interactivity modifiers. Will be RT if the task got
2111 * RT-boosted. If not then it returns p->normal_prio.
2112 */
2113 static int effective_prio(struct task_struct *p)
2114 {
2115 p->normal_prio = normal_prio(p);
2116 /*
2117 * If we are RT tasks or we were boosted to RT priority,
2118 * keep the priority unchanged. Otherwise, update priority
2119 * to the normal priority:
2120 */
2121 if (!rt_prio(p->prio))
2122 return p->normal_prio;
2123 return p->prio;
2124 }
2125
2126 /**
2127 * task_curr - is this task currently executing on a CPU?
2128 * @p: the task in question.
2129 */
2130 inline int task_curr(const struct task_struct *p)
2131 {
2132 return cpu_curr(task_cpu(p)) == p;
2133 }
2134
2135 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2136 const struct sched_class *prev_class,
2137 int oldprio)
2138 {
2139 if (prev_class != p->sched_class) {
2140 if (prev_class->switched_from)
2141 prev_class->switched_from(rq, p);
2142 p->sched_class->switched_to(rq, p);
2143 } else if (oldprio != p->prio)
2144 p->sched_class->prio_changed(rq, p, oldprio);
2145 }
2146
2147 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2148 {
2149 const struct sched_class *class;
2150
2151 if (p->sched_class == rq->curr->sched_class) {
2152 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2153 } else {
2154 for_each_class(class) {
2155 if (class == rq->curr->sched_class)
2156 break;
2157 if (class == p->sched_class) {
2158 resched_task(rq->curr);
2159 break;
2160 }
2161 }
2162 }
2163
2164 /*
2165 * A queue event has occurred, and we're going to schedule. In
2166 * this case, we can save a useless back to back clock update.
2167 */
2168 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2169 rq->skip_clock_update = 1;
2170 }
2171
2172 #ifdef CONFIG_SMP
2173 /*
2174 * Is this task likely cache-hot:
2175 */
2176 static int
2177 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2178 {
2179 s64 delta;
2180
2181 if (p->sched_class != &fair_sched_class)
2182 return 0;
2183
2184 if (unlikely(p->policy == SCHED_IDLE))
2185 return 0;
2186
2187 /*
2188 * Buddy candidates are cache hot:
2189 */
2190 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2191 (&p->se == cfs_rq_of(&p->se)->next ||
2192 &p->se == cfs_rq_of(&p->se)->last))
2193 return 1;
2194
2195 if (sysctl_sched_migration_cost == -1)
2196 return 1;
2197 if (sysctl_sched_migration_cost == 0)
2198 return 0;
2199
2200 delta = now - p->se.exec_start;
2201
2202 return delta < (s64)sysctl_sched_migration_cost;
2203 }
2204
2205 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2206 {
2207 #ifdef CONFIG_SCHED_DEBUG
2208 /*
2209 * We should never call set_task_cpu() on a blocked task,
2210 * ttwu() will sort out the placement.
2211 */
2212 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2213 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2214
2215 #ifdef CONFIG_LOCKDEP
2216 /*
2217 * The caller should hold either p->pi_lock or rq->lock, when changing
2218 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2219 *
2220 * sched_move_task() holds both and thus holding either pins the cgroup,
2221 * see set_task_rq().
2222 *
2223 * Furthermore, all task_rq users should acquire both locks, see
2224 * task_rq_lock().
2225 */
2226 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2227 lockdep_is_held(&task_rq(p)->lock)));
2228 #endif
2229 #endif
2230
2231 trace_sched_migrate_task(p, new_cpu);
2232
2233 if (task_cpu(p) != new_cpu) {
2234 p->se.nr_migrations++;
2235 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2236 }
2237
2238 __set_task_cpu(p, new_cpu);
2239 }
2240
2241 struct migration_arg {
2242 struct task_struct *task;
2243 int dest_cpu;
2244 };
2245
2246 static int migration_cpu_stop(void *data);
2247
2248 /*
2249 * wait_task_inactive - wait for a thread to unschedule.
2250 *
2251 * If @match_state is nonzero, it's the @p->state value just checked and
2252 * not expected to change. If it changes, i.e. @p might have woken up,
2253 * then return zero. When we succeed in waiting for @p to be off its CPU,
2254 * we return a positive number (its total switch count). If a second call
2255 * a short while later returns the same number, the caller can be sure that
2256 * @p has remained unscheduled the whole time.
2257 *
2258 * The caller must ensure that the task *will* unschedule sometime soon,
2259 * else this function might spin for a *long* time. This function can't
2260 * be called with interrupts off, or it may introduce deadlock with
2261 * smp_call_function() if an IPI is sent by the same process we are
2262 * waiting to become inactive.
2263 */
2264 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2265 {
2266 unsigned long flags;
2267 int running, on_rq;
2268 unsigned long ncsw;
2269 struct rq *rq;
2270
2271 for (;;) {
2272 /*
2273 * We do the initial early heuristics without holding
2274 * any task-queue locks at all. We'll only try to get
2275 * the runqueue lock when things look like they will
2276 * work out!
2277 */
2278 rq = task_rq(p);
2279
2280 /*
2281 * If the task is actively running on another CPU
2282 * still, just relax and busy-wait without holding
2283 * any locks.
2284 *
2285 * NOTE! Since we don't hold any locks, it's not
2286 * even sure that "rq" stays as the right runqueue!
2287 * But we don't care, since "task_running()" will
2288 * return false if the runqueue has changed and p
2289 * is actually now running somewhere else!
2290 */
2291 while (task_running(rq, p)) {
2292 if (match_state && unlikely(p->state != match_state))
2293 return 0;
2294 cpu_relax();
2295 }
2296
2297 /*
2298 * Ok, time to look more closely! We need the rq
2299 * lock now, to be *sure*. If we're wrong, we'll
2300 * just go back and repeat.
2301 */
2302 rq = task_rq_lock(p, &flags);
2303 trace_sched_wait_task(p);
2304 running = task_running(rq, p);
2305 on_rq = p->on_rq;
2306 ncsw = 0;
2307 if (!match_state || p->state == match_state)
2308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2309 task_rq_unlock(rq, p, &flags);
2310
2311 /*
2312 * If it changed from the expected state, bail out now.
2313 */
2314 if (unlikely(!ncsw))
2315 break;
2316
2317 /*
2318 * Was it really running after all now that we
2319 * checked with the proper locks actually held?
2320 *
2321 * Oops. Go back and try again..
2322 */
2323 if (unlikely(running)) {
2324 cpu_relax();
2325 continue;
2326 }
2327
2328 /*
2329 * It's not enough that it's not actively running,
2330 * it must be off the runqueue _entirely_, and not
2331 * preempted!
2332 *
2333 * So if it was still runnable (but just not actively
2334 * running right now), it's preempted, and we should
2335 * yield - it could be a while.
2336 */
2337 if (unlikely(on_rq)) {
2338 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2339
2340 set_current_state(TASK_UNINTERRUPTIBLE);
2341 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2342 continue;
2343 }
2344
2345 /*
2346 * Ahh, all good. It wasn't running, and it wasn't
2347 * runnable, which means that it will never become
2348 * running in the future either. We're all done!
2349 */
2350 break;
2351 }
2352
2353 return ncsw;
2354 }
2355
2356 /***
2357 * kick_process - kick a running thread to enter/exit the kernel
2358 * @p: the to-be-kicked thread
2359 *
2360 * Cause a process which is running on another CPU to enter
2361 * kernel-mode, without any delay. (to get signals handled.)
2362 *
2363 * NOTE: this function doesn't have to take the runqueue lock,
2364 * because all it wants to ensure is that the remote task enters
2365 * the kernel. If the IPI races and the task has been migrated
2366 * to another CPU then no harm is done and the purpose has been
2367 * achieved as well.
2368 */
2369 void kick_process(struct task_struct *p)
2370 {
2371 int cpu;
2372
2373 preempt_disable();
2374 cpu = task_cpu(p);
2375 if ((cpu != smp_processor_id()) && task_curr(p))
2376 smp_send_reschedule(cpu);
2377 preempt_enable();
2378 }
2379 EXPORT_SYMBOL_GPL(kick_process);
2380 #endif /* CONFIG_SMP */
2381
2382 #ifdef CONFIG_SMP
2383 /*
2384 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2385 */
2386 static int select_fallback_rq(int cpu, struct task_struct *p)
2387 {
2388 int dest_cpu;
2389 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2390
2391 /* Look for allowed, online CPU in same node. */
2392 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2393 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2394 return dest_cpu;
2395
2396 /* Any allowed, online CPU? */
2397 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2398 if (dest_cpu < nr_cpu_ids)
2399 return dest_cpu;
2400
2401 /* No more Mr. Nice Guy. */
2402 dest_cpu = cpuset_cpus_allowed_fallback(p);
2403 /*
2404 * Don't tell them about moving exiting tasks or
2405 * kernel threads (both mm NULL), since they never
2406 * leave kernel.
2407 */
2408 if (p->mm && printk_ratelimit()) {
2409 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2410 task_pid_nr(p), p->comm, cpu);
2411 }
2412
2413 return dest_cpu;
2414 }
2415
2416 /*
2417 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2418 */
2419 static inline
2420 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2421 {
2422 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2423
2424 /*
2425 * In order not to call set_task_cpu() on a blocking task we need
2426 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2427 * cpu.
2428 *
2429 * Since this is common to all placement strategies, this lives here.
2430 *
2431 * [ this allows ->select_task() to simply return task_cpu(p) and
2432 * not worry about this generic constraint ]
2433 */
2434 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2435 !cpu_online(cpu)))
2436 cpu = select_fallback_rq(task_cpu(p), p);
2437
2438 return cpu;
2439 }
2440
2441 static void update_avg(u64 *avg, u64 sample)
2442 {
2443 s64 diff = sample - *avg;
2444 *avg += diff >> 3;
2445 }
2446 #endif
2447
2448 static void
2449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2450 {
2451 #ifdef CONFIG_SCHEDSTATS
2452 struct rq *rq = this_rq();
2453
2454 #ifdef CONFIG_SMP
2455 int this_cpu = smp_processor_id();
2456
2457 if (cpu == this_cpu) {
2458 schedstat_inc(rq, ttwu_local);
2459 schedstat_inc(p, se.statistics.nr_wakeups_local);
2460 } else {
2461 struct sched_domain *sd;
2462
2463 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2464 rcu_read_lock();
2465 for_each_domain(this_cpu, sd) {
2466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2467 schedstat_inc(sd, ttwu_wake_remote);
2468 break;
2469 }
2470 }
2471 rcu_read_unlock();
2472 }
2473
2474 if (wake_flags & WF_MIGRATED)
2475 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2476
2477 #endif /* CONFIG_SMP */
2478
2479 schedstat_inc(rq, ttwu_count);
2480 schedstat_inc(p, se.statistics.nr_wakeups);
2481
2482 if (wake_flags & WF_SYNC)
2483 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2484
2485 #endif /* CONFIG_SCHEDSTATS */
2486 }
2487
2488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2489 {
2490 activate_task(rq, p, en_flags);
2491 p->on_rq = 1;
2492
2493 /* if a worker is waking up, notify workqueue */
2494 if (p->flags & PF_WQ_WORKER)
2495 wq_worker_waking_up(p, cpu_of(rq));
2496 }
2497
2498 /*
2499 * Mark the task runnable and perform wakeup-preemption.
2500 */
2501 static void
2502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2503 {
2504 trace_sched_wakeup(p, true);
2505 check_preempt_curr(rq, p, wake_flags);
2506
2507 p->state = TASK_RUNNING;
2508 #ifdef CONFIG_SMP
2509 if (p->sched_class->task_woken)
2510 p->sched_class->task_woken(rq, p);
2511
2512 if (rq->idle_stamp) {
2513 u64 delta = rq->clock - rq->idle_stamp;
2514 u64 max = 2*sysctl_sched_migration_cost;
2515
2516 if (delta > max)
2517 rq->avg_idle = max;
2518 else
2519 update_avg(&rq->avg_idle, delta);
2520 rq->idle_stamp = 0;
2521 }
2522 #endif
2523 }
2524
2525 static void
2526 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2527 {
2528 #ifdef CONFIG_SMP
2529 if (p->sched_contributes_to_load)
2530 rq->nr_uninterruptible--;
2531 #endif
2532
2533 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2534 ttwu_do_wakeup(rq, p, wake_flags);
2535 }
2536
2537 /*
2538 * Called in case the task @p isn't fully descheduled from its runqueue,
2539 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2540 * since all we need to do is flip p->state to TASK_RUNNING, since
2541 * the task is still ->on_rq.
2542 */
2543 static int ttwu_remote(struct task_struct *p, int wake_flags)
2544 {
2545 struct rq *rq;
2546 int ret = 0;
2547
2548 rq = __task_rq_lock(p);
2549 if (p->on_rq) {
2550 ttwu_do_wakeup(rq, p, wake_flags);
2551 ret = 1;
2552 }
2553 __task_rq_unlock(rq);
2554
2555 return ret;
2556 }
2557
2558 #ifdef CONFIG_SMP
2559 static void sched_ttwu_do_pending(struct task_struct *list)
2560 {
2561 struct rq *rq = this_rq();
2562
2563 raw_spin_lock(&rq->lock);
2564
2565 while (list) {
2566 struct task_struct *p = list;
2567 list = list->wake_entry;
2568 ttwu_do_activate(rq, p, 0);
2569 }
2570
2571 raw_spin_unlock(&rq->lock);
2572 }
2573
2574 #ifdef CONFIG_HOTPLUG_CPU
2575
2576 static void sched_ttwu_pending(void)
2577 {
2578 struct rq *rq = this_rq();
2579 struct task_struct *list = xchg(&rq->wake_list, NULL);
2580
2581 if (!list)
2582 return;
2583
2584 sched_ttwu_do_pending(list);
2585 }
2586
2587 #endif /* CONFIG_HOTPLUG_CPU */
2588
2589 void scheduler_ipi(void)
2590 {
2591 struct rq *rq = this_rq();
2592 struct task_struct *list = xchg(&rq->wake_list, NULL);
2593
2594 if (!list)
2595 return;
2596
2597 /*
2598 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2599 * traditionally all their work was done from the interrupt return
2600 * path. Now that we actually do some work, we need to make sure
2601 * we do call them.
2602 *
2603 * Some archs already do call them, luckily irq_enter/exit nest
2604 * properly.
2605 *
2606 * Arguably we should visit all archs and update all handlers,
2607 * however a fair share of IPIs are still resched only so this would
2608 * somewhat pessimize the simple resched case.
2609 */
2610 irq_enter();
2611 sched_ttwu_do_pending(list);
2612 irq_exit();
2613 }
2614
2615 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2616 {
2617 struct rq *rq = cpu_rq(cpu);
2618 struct task_struct *next = rq->wake_list;
2619
2620 for (;;) {
2621 struct task_struct *old = next;
2622
2623 p->wake_entry = next;
2624 next = cmpxchg(&rq->wake_list, old, p);
2625 if (next == old)
2626 break;
2627 }
2628
2629 if (!next)
2630 smp_send_reschedule(cpu);
2631 }
2632
2633 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2634 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2635 {
2636 struct rq *rq;
2637 int ret = 0;
2638
2639 rq = __task_rq_lock(p);
2640 if (p->on_cpu) {
2641 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2642 ttwu_do_wakeup(rq, p, wake_flags);
2643 ret = 1;
2644 }
2645 __task_rq_unlock(rq);
2646
2647 return ret;
2648
2649 }
2650 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2651 #endif /* CONFIG_SMP */
2652
2653 static void ttwu_queue(struct task_struct *p, int cpu)
2654 {
2655 struct rq *rq = cpu_rq(cpu);
2656
2657 #if defined(CONFIG_SMP)
2658 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2659 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2660 ttwu_queue_remote(p, cpu);
2661 return;
2662 }
2663 #endif
2664
2665 raw_spin_lock(&rq->lock);
2666 ttwu_do_activate(rq, p, 0);
2667 raw_spin_unlock(&rq->lock);
2668 }
2669
2670 /**
2671 * try_to_wake_up - wake up a thread
2672 * @p: the thread to be awakened
2673 * @state: the mask of task states that can be woken
2674 * @wake_flags: wake modifier flags (WF_*)
2675 *
2676 * Put it on the run-queue if it's not already there. The "current"
2677 * thread is always on the run-queue (except when the actual
2678 * re-schedule is in progress), and as such you're allowed to do
2679 * the simpler "current->state = TASK_RUNNING" to mark yourself
2680 * runnable without the overhead of this.
2681 *
2682 * Returns %true if @p was woken up, %false if it was already running
2683 * or @state didn't match @p's state.
2684 */
2685 static int
2686 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2687 {
2688 unsigned long flags;
2689 int cpu, success = 0;
2690
2691 smp_wmb();
2692 raw_spin_lock_irqsave(&p->pi_lock, flags);
2693 if (!(p->state & state))
2694 goto out;
2695
2696 success = 1; /* we're going to change ->state */
2697 cpu = task_cpu(p);
2698
2699 if (p->on_rq && ttwu_remote(p, wake_flags))
2700 goto stat;
2701
2702 #ifdef CONFIG_SMP
2703 /*
2704 * If the owning (remote) cpu is still in the middle of schedule() with
2705 * this task as prev, wait until its done referencing the task.
2706 */
2707 while (p->on_cpu) {
2708 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2709 /*
2710 * In case the architecture enables interrupts in
2711 * context_switch(), we cannot busy wait, since that
2712 * would lead to deadlocks when an interrupt hits and
2713 * tries to wake up @prev. So bail and do a complete
2714 * remote wakeup.
2715 */
2716 if (ttwu_activate_remote(p, wake_flags))
2717 goto stat;
2718 #else
2719 cpu_relax();
2720 #endif
2721 }
2722 /*
2723 * Pairs with the smp_wmb() in finish_lock_switch().
2724 */
2725 smp_rmb();
2726
2727 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2728 p->state = TASK_WAKING;
2729
2730 if (p->sched_class->task_waking)
2731 p->sched_class->task_waking(p);
2732
2733 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2734 if (task_cpu(p) != cpu) {
2735 wake_flags |= WF_MIGRATED;
2736 set_task_cpu(p, cpu);
2737 }
2738 #endif /* CONFIG_SMP */
2739
2740 ttwu_queue(p, cpu);
2741 stat:
2742 ttwu_stat(p, cpu, wake_flags);
2743 out:
2744 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2745
2746 return success;
2747 }
2748
2749 /**
2750 * try_to_wake_up_local - try to wake up a local task with rq lock held
2751 * @p: the thread to be awakened
2752 *
2753 * Put @p on the run-queue if it's not already there. The caller must
2754 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2755 * the current task.
2756 */
2757 static void try_to_wake_up_local(struct task_struct *p)
2758 {
2759 struct rq *rq = task_rq(p);
2760
2761 BUG_ON(rq != this_rq());
2762 BUG_ON(p == current);
2763 lockdep_assert_held(&rq->lock);
2764
2765 if (!raw_spin_trylock(&p->pi_lock)) {
2766 raw_spin_unlock(&rq->lock);
2767 raw_spin_lock(&p->pi_lock);
2768 raw_spin_lock(&rq->lock);
2769 }
2770
2771 if (!(p->state & TASK_NORMAL))
2772 goto out;
2773
2774 if (!p->on_rq)
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776
2777 ttwu_do_wakeup(rq, p, 0);
2778 ttwu_stat(p, smp_processor_id(), 0);
2779 out:
2780 raw_spin_unlock(&p->pi_lock);
2781 }
2782
2783 /**
2784 * wake_up_process - Wake up a specific process
2785 * @p: The process to be woken up.
2786 *
2787 * Attempt to wake up the nominated process and move it to the set of runnable
2788 * processes. Returns 1 if the process was woken up, 0 if it was already
2789 * running.
2790 *
2791 * It may be assumed that this function implies a write memory barrier before
2792 * changing the task state if and only if any tasks are woken up.
2793 */
2794 int wake_up_process(struct task_struct *p)
2795 {
2796 return try_to_wake_up(p, TASK_ALL, 0);
2797 }
2798 EXPORT_SYMBOL(wake_up_process);
2799
2800 int wake_up_state(struct task_struct *p, unsigned int state)
2801 {
2802 return try_to_wake_up(p, state, 0);
2803 }
2804
2805 /*
2806 * Perform scheduler related setup for a newly forked process p.
2807 * p is forked by current.
2808 *
2809 * __sched_fork() is basic setup used by init_idle() too:
2810 */
2811 static void __sched_fork(struct task_struct *p)
2812 {
2813 p->on_rq = 0;
2814
2815 p->se.on_rq = 0;
2816 p->se.exec_start = 0;
2817 p->se.sum_exec_runtime = 0;
2818 p->se.prev_sum_exec_runtime = 0;
2819 p->se.nr_migrations = 0;
2820 p->se.vruntime = 0;
2821 INIT_LIST_HEAD(&p->se.group_node);
2822
2823 #ifdef CONFIG_SCHEDSTATS
2824 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2825 #endif
2826
2827 INIT_LIST_HEAD(&p->rt.run_list);
2828
2829 #ifdef CONFIG_PREEMPT_NOTIFIERS
2830 INIT_HLIST_HEAD(&p->preempt_notifiers);
2831 #endif
2832 }
2833
2834 /*
2835 * fork()/clone()-time setup:
2836 */
2837 void sched_fork(struct task_struct *p)
2838 {
2839 unsigned long flags;
2840 int cpu = get_cpu();
2841
2842 __sched_fork(p);
2843 /*
2844 * We mark the process as running here. This guarantees that
2845 * nobody will actually run it, and a signal or other external
2846 * event cannot wake it up and insert it on the runqueue either.
2847 */
2848 p->state = TASK_RUNNING;
2849
2850 /*
2851 * Revert to default priority/policy on fork if requested.
2852 */
2853 if (unlikely(p->sched_reset_on_fork)) {
2854 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2855 p->policy = SCHED_NORMAL;
2856 p->normal_prio = p->static_prio;
2857 }
2858
2859 if (PRIO_TO_NICE(p->static_prio) < 0) {
2860 p->static_prio = NICE_TO_PRIO(0);
2861 p->normal_prio = p->static_prio;
2862 set_load_weight(p);
2863 }
2864
2865 /*
2866 * We don't need the reset flag anymore after the fork. It has
2867 * fulfilled its duty:
2868 */
2869 p->sched_reset_on_fork = 0;
2870 }
2871
2872 /*
2873 * Make sure we do not leak PI boosting priority to the child.
2874 */
2875 p->prio = current->normal_prio;
2876
2877 if (!rt_prio(p->prio))
2878 p->sched_class = &fair_sched_class;
2879
2880 if (p->sched_class->task_fork)
2881 p->sched_class->task_fork(p);
2882
2883 /*
2884 * The child is not yet in the pid-hash so no cgroup attach races,
2885 * and the cgroup is pinned to this child due to cgroup_fork()
2886 * is ran before sched_fork().
2887 *
2888 * Silence PROVE_RCU.
2889 */
2890 raw_spin_lock_irqsave(&p->pi_lock, flags);
2891 set_task_cpu(p, cpu);
2892 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2893
2894 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2895 if (likely(sched_info_on()))
2896 memset(&p->sched_info, 0, sizeof(p->sched_info));
2897 #endif
2898 #if defined(CONFIG_SMP)
2899 p->on_cpu = 0;
2900 #endif
2901 #ifdef CONFIG_PREEMPT_COUNT
2902 /* Want to start with kernel preemption disabled. */
2903 task_thread_info(p)->preempt_count = 1;
2904 #endif
2905 #ifdef CONFIG_SMP
2906 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2907 #endif
2908
2909 put_cpu();
2910 }
2911
2912 /*
2913 * wake_up_new_task - wake up a newly created task for the first time.
2914 *
2915 * This function will do some initial scheduler statistics housekeeping
2916 * that must be done for every newly created context, then puts the task
2917 * on the runqueue and wakes it.
2918 */
2919 void wake_up_new_task(struct task_struct *p)
2920 {
2921 unsigned long flags;
2922 struct rq *rq;
2923
2924 raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 #ifdef CONFIG_SMP
2926 /*
2927 * Fork balancing, do it here and not earlier because:
2928 * - cpus_allowed can change in the fork path
2929 * - any previously selected cpu might disappear through hotplug
2930 */
2931 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2932 #endif
2933
2934 rq = __task_rq_lock(p);
2935 activate_task(rq, p, 0);
2936 p->on_rq = 1;
2937 trace_sched_wakeup_new(p, true);
2938 check_preempt_curr(rq, p, WF_FORK);
2939 #ifdef CONFIG_SMP
2940 if (p->sched_class->task_woken)
2941 p->sched_class->task_woken(rq, p);
2942 #endif
2943 task_rq_unlock(rq, p, &flags);
2944 }
2945
2946 #ifdef CONFIG_PREEMPT_NOTIFIERS
2947
2948 /**
2949 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2950 * @notifier: notifier struct to register
2951 */
2952 void preempt_notifier_register(struct preempt_notifier *notifier)
2953 {
2954 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2955 }
2956 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2957
2958 /**
2959 * preempt_notifier_unregister - no longer interested in preemption notifications
2960 * @notifier: notifier struct to unregister
2961 *
2962 * This is safe to call from within a preemption notifier.
2963 */
2964 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2965 {
2966 hlist_del(&notifier->link);
2967 }
2968 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2969
2970 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2971 {
2972 struct preempt_notifier *notifier;
2973 struct hlist_node *node;
2974
2975 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2976 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2977 }
2978
2979 static void
2980 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2981 struct task_struct *next)
2982 {
2983 struct preempt_notifier *notifier;
2984 struct hlist_node *node;
2985
2986 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2987 notifier->ops->sched_out(notifier, next);
2988 }
2989
2990 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2991
2992 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2993 {
2994 }
2995
2996 static void
2997 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2998 struct task_struct *next)
2999 {
3000 }
3001
3002 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3003
3004 /**
3005 * prepare_task_switch - prepare to switch tasks
3006 * @rq: the runqueue preparing to switch
3007 * @prev: the current task that is being switched out
3008 * @next: the task we are going to switch to.
3009 *
3010 * This is called with the rq lock held and interrupts off. It must
3011 * be paired with a subsequent finish_task_switch after the context
3012 * switch.
3013 *
3014 * prepare_task_switch sets up locking and calls architecture specific
3015 * hooks.
3016 */
3017 static inline void
3018 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3019 struct task_struct *next)
3020 {
3021 sched_info_switch(prev, next);
3022 perf_event_task_sched_out(prev, next);
3023 fire_sched_out_preempt_notifiers(prev, next);
3024 prepare_lock_switch(rq, next);
3025 prepare_arch_switch(next);
3026 trace_sched_switch(prev, next);
3027 }
3028
3029 /**
3030 * finish_task_switch - clean up after a task-switch
3031 * @rq: runqueue associated with task-switch
3032 * @prev: the thread we just switched away from.
3033 *
3034 * finish_task_switch must be called after the context switch, paired
3035 * with a prepare_task_switch call before the context switch.
3036 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3037 * and do any other architecture-specific cleanup actions.
3038 *
3039 * Note that we may have delayed dropping an mm in context_switch(). If
3040 * so, we finish that here outside of the runqueue lock. (Doing it
3041 * with the lock held can cause deadlocks; see schedule() for
3042 * details.)
3043 */
3044 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3045 __releases(rq->lock)
3046 {
3047 struct mm_struct *mm = rq->prev_mm;
3048 long prev_state;
3049
3050 rq->prev_mm = NULL;
3051
3052 /*
3053 * A task struct has one reference for the use as "current".
3054 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3055 * schedule one last time. The schedule call will never return, and
3056 * the scheduled task must drop that reference.
3057 * The test for TASK_DEAD must occur while the runqueue locks are
3058 * still held, otherwise prev could be scheduled on another cpu, die
3059 * there before we look at prev->state, and then the reference would
3060 * be dropped twice.
3061 * Manfred Spraul <manfred@colorfullife.com>
3062 */
3063 prev_state = prev->state;
3064 finish_arch_switch(prev);
3065 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3066 local_irq_disable();
3067 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3068 perf_event_task_sched_in(prev, current);
3069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3070 local_irq_enable();
3071 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3072 finish_lock_switch(rq, prev);
3073
3074 fire_sched_in_preempt_notifiers(current);
3075 if (mm)
3076 mmdrop(mm);
3077 if (unlikely(prev_state == TASK_DEAD)) {
3078 /*
3079 * Remove function-return probe instances associated with this
3080 * task and put them back on the free list.
3081 */
3082 kprobe_flush_task(prev);
3083 put_task_struct(prev);
3084 }
3085 }
3086
3087 #ifdef CONFIG_SMP
3088
3089 /* assumes rq->lock is held */
3090 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3091 {
3092 if (prev->sched_class->pre_schedule)
3093 prev->sched_class->pre_schedule(rq, prev);
3094 }
3095
3096 /* rq->lock is NOT held, but preemption is disabled */
3097 static inline void post_schedule(struct rq *rq)
3098 {
3099 if (rq->post_schedule) {
3100 unsigned long flags;
3101
3102 raw_spin_lock_irqsave(&rq->lock, flags);
3103 if (rq->curr->sched_class->post_schedule)
3104 rq->curr->sched_class->post_schedule(rq);
3105 raw_spin_unlock_irqrestore(&rq->lock, flags);
3106
3107 rq->post_schedule = 0;
3108 }
3109 }
3110
3111 #else
3112
3113 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3114 {
3115 }
3116
3117 static inline void post_schedule(struct rq *rq)
3118 {
3119 }
3120
3121 #endif
3122
3123 /**
3124 * schedule_tail - first thing a freshly forked thread must call.
3125 * @prev: the thread we just switched away from.
3126 */
3127 asmlinkage void schedule_tail(struct task_struct *prev)
3128 __releases(rq->lock)
3129 {
3130 struct rq *rq = this_rq();
3131
3132 finish_task_switch(rq, prev);
3133
3134 /*
3135 * FIXME: do we need to worry about rq being invalidated by the
3136 * task_switch?
3137 */
3138 post_schedule(rq);
3139
3140 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3141 /* In this case, finish_task_switch does not reenable preemption */
3142 preempt_enable();
3143 #endif
3144 if (current->set_child_tid)
3145 put_user(task_pid_vnr(current), current->set_child_tid);
3146 }
3147
3148 /*
3149 * context_switch - switch to the new MM and the new
3150 * thread's register state.
3151 */
3152 static inline void
3153 context_switch(struct rq *rq, struct task_struct *prev,
3154 struct task_struct *next)
3155 {
3156 struct mm_struct *mm, *oldmm;
3157
3158 prepare_task_switch(rq, prev, next);
3159
3160 mm = next->mm;
3161 oldmm = prev->active_mm;
3162 /*
3163 * For paravirt, this is coupled with an exit in switch_to to
3164 * combine the page table reload and the switch backend into
3165 * one hypercall.
3166 */
3167 arch_start_context_switch(prev);
3168
3169 if (!mm) {
3170 next->active_mm = oldmm;
3171 atomic_inc(&oldmm->mm_count);
3172 enter_lazy_tlb(oldmm, next);
3173 } else
3174 switch_mm(oldmm, mm, next);
3175
3176 if (!prev->mm) {
3177 prev->active_mm = NULL;
3178 rq->prev_mm = oldmm;
3179 }
3180 /*
3181 * Since the runqueue lock will be released by the next
3182 * task (which is an invalid locking op but in the case
3183 * of the scheduler it's an obvious special-case), so we
3184 * do an early lockdep release here:
3185 */
3186 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3188 #endif
3189
3190 /* Here we just switch the register state and the stack. */
3191 switch_to(prev, next, prev);
3192
3193 barrier();
3194 /*
3195 * this_rq must be evaluated again because prev may have moved
3196 * CPUs since it called schedule(), thus the 'rq' on its stack
3197 * frame will be invalid.
3198 */
3199 finish_task_switch(this_rq(), prev);
3200 }
3201
3202 /*
3203 * nr_running, nr_uninterruptible and nr_context_switches:
3204 *
3205 * externally visible scheduler statistics: current number of runnable
3206 * threads, current number of uninterruptible-sleeping threads, total
3207 * number of context switches performed since bootup.
3208 */
3209 unsigned long nr_running(void)
3210 {
3211 unsigned long i, sum = 0;
3212
3213 for_each_online_cpu(i)
3214 sum += cpu_rq(i)->nr_running;
3215
3216 return sum;
3217 }
3218
3219 unsigned long nr_uninterruptible(void)
3220 {
3221 unsigned long i, sum = 0;
3222
3223 for_each_possible_cpu(i)
3224 sum += cpu_rq(i)->nr_uninterruptible;
3225
3226 /*
3227 * Since we read the counters lockless, it might be slightly
3228 * inaccurate. Do not allow it to go below zero though:
3229 */
3230 if (unlikely((long)sum < 0))
3231 sum = 0;
3232
3233 return sum;
3234 }
3235
3236 unsigned long long nr_context_switches(void)
3237 {
3238 int i;
3239 unsigned long long sum = 0;
3240
3241 for_each_possible_cpu(i)
3242 sum += cpu_rq(i)->nr_switches;
3243
3244 return sum;
3245 }
3246
3247 unsigned long nr_iowait(void)
3248 {
3249 unsigned long i, sum = 0;
3250
3251 for_each_possible_cpu(i)
3252 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3253
3254 return sum;
3255 }
3256
3257 unsigned long nr_iowait_cpu(int cpu)
3258 {
3259 struct rq *this = cpu_rq(cpu);
3260 return atomic_read(&this->nr_iowait);
3261 }
3262
3263 unsigned long this_cpu_load(void)
3264 {
3265 struct rq *this = this_rq();
3266 return this->cpu_load[0];
3267 }
3268
3269
3270 /* Variables and functions for calc_load */
3271 static atomic_long_t calc_load_tasks;
3272 static unsigned long calc_load_update;
3273 unsigned long avenrun[3];
3274 EXPORT_SYMBOL(avenrun);
3275
3276 static long calc_load_fold_active(struct rq *this_rq)
3277 {
3278 long nr_active, delta = 0;
3279
3280 nr_active = this_rq->nr_running;
3281 nr_active += (long) this_rq->nr_uninterruptible;
3282
3283 if (nr_active != this_rq->calc_load_active) {
3284 delta = nr_active - this_rq->calc_load_active;
3285 this_rq->calc_load_active = nr_active;
3286 }
3287
3288 return delta;
3289 }
3290
3291 static unsigned long
3292 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3293 {
3294 load *= exp;
3295 load += active * (FIXED_1 - exp);
3296 load += 1UL << (FSHIFT - 1);
3297 return load >> FSHIFT;
3298 }
3299
3300 #ifdef CONFIG_NO_HZ
3301 /*
3302 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3303 *
3304 * When making the ILB scale, we should try to pull this in as well.
3305 */
3306 static atomic_long_t calc_load_tasks_idle;
3307
3308 static void calc_load_account_idle(struct rq *this_rq)
3309 {
3310 long delta;
3311
3312 delta = calc_load_fold_active(this_rq);
3313 if (delta)
3314 atomic_long_add(delta, &calc_load_tasks_idle);
3315 }
3316
3317 static long calc_load_fold_idle(void)
3318 {
3319 long delta = 0;
3320
3321 /*
3322 * Its got a race, we don't care...
3323 */
3324 if (atomic_long_read(&calc_load_tasks_idle))
3325 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3326
3327 return delta;
3328 }
3329
3330 /**
3331 * fixed_power_int - compute: x^n, in O(log n) time
3332 *
3333 * @x: base of the power
3334 * @frac_bits: fractional bits of @x
3335 * @n: power to raise @x to.
3336 *
3337 * By exploiting the relation between the definition of the natural power
3338 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3339 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3340 * (where: n_i \elem {0, 1}, the binary vector representing n),
3341 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3342 * of course trivially computable in O(log_2 n), the length of our binary
3343 * vector.
3344 */
3345 static unsigned long
3346 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3347 {
3348 unsigned long result = 1UL << frac_bits;
3349
3350 if (n) for (;;) {
3351 if (n & 1) {
3352 result *= x;
3353 result += 1UL << (frac_bits - 1);
3354 result >>= frac_bits;
3355 }
3356 n >>= 1;
3357 if (!n)
3358 break;
3359 x *= x;
3360 x += 1UL << (frac_bits - 1);
3361 x >>= frac_bits;
3362 }
3363
3364 return result;
3365 }
3366
3367 /*
3368 * a1 = a0 * e + a * (1 - e)
3369 *
3370 * a2 = a1 * e + a * (1 - e)
3371 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3372 * = a0 * e^2 + a * (1 - e) * (1 + e)
3373 *
3374 * a3 = a2 * e + a * (1 - e)
3375 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3376 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3377 *
3378 * ...
3379 *
3380 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3381 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3382 * = a0 * e^n + a * (1 - e^n)
3383 *
3384 * [1] application of the geometric series:
3385 *
3386 * n 1 - x^(n+1)
3387 * S_n := \Sum x^i = -------------
3388 * i=0 1 - x
3389 */
3390 static unsigned long
3391 calc_load_n(unsigned long load, unsigned long exp,
3392 unsigned long active, unsigned int n)
3393 {
3394
3395 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3396 }
3397
3398 /*
3399 * NO_HZ can leave us missing all per-cpu ticks calling
3400 * calc_load_account_active(), but since an idle CPU folds its delta into
3401 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3402 * in the pending idle delta if our idle period crossed a load cycle boundary.
3403 *
3404 * Once we've updated the global active value, we need to apply the exponential
3405 * weights adjusted to the number of cycles missed.
3406 */
3407 static void calc_global_nohz(unsigned long ticks)
3408 {
3409 long delta, active, n;
3410
3411 if (time_before(jiffies, calc_load_update))
3412 return;
3413
3414 /*
3415 * If we crossed a calc_load_update boundary, make sure to fold
3416 * any pending idle changes, the respective CPUs might have
3417 * missed the tick driven calc_load_account_active() update
3418 * due to NO_HZ.
3419 */
3420 delta = calc_load_fold_idle();
3421 if (delta)
3422 atomic_long_add(delta, &calc_load_tasks);
3423
3424 /*
3425 * If we were idle for multiple load cycles, apply them.
3426 */
3427 if (ticks >= LOAD_FREQ) {
3428 n = ticks / LOAD_FREQ;
3429
3430 active = atomic_long_read(&calc_load_tasks);
3431 active = active > 0 ? active * FIXED_1 : 0;
3432
3433 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3434 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3435 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3436
3437 calc_load_update += n * LOAD_FREQ;
3438 }
3439
3440 /*
3441 * Its possible the remainder of the above division also crosses
3442 * a LOAD_FREQ period, the regular check in calc_global_load()
3443 * which comes after this will take care of that.
3444 *
3445 * Consider us being 11 ticks before a cycle completion, and us
3446 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3447 * age us 4 cycles, and the test in calc_global_load() will
3448 * pick up the final one.
3449 */
3450 }
3451 #else
3452 static void calc_load_account_idle(struct rq *this_rq)
3453 {
3454 }
3455
3456 static inline long calc_load_fold_idle(void)
3457 {
3458 return 0;
3459 }
3460
3461 static void calc_global_nohz(unsigned long ticks)
3462 {
3463 }
3464 #endif
3465
3466 /**
3467 * get_avenrun - get the load average array
3468 * @loads: pointer to dest load array
3469 * @offset: offset to add
3470 * @shift: shift count to shift the result left
3471 *
3472 * These values are estimates at best, so no need for locking.
3473 */
3474 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3475 {
3476 loads[0] = (avenrun[0] + offset) << shift;
3477 loads[1] = (avenrun[1] + offset) << shift;
3478 loads[2] = (avenrun[2] + offset) << shift;
3479 }
3480
3481 /*
3482 * calc_load - update the avenrun load estimates 10 ticks after the
3483 * CPUs have updated calc_load_tasks.
3484 */
3485 void calc_global_load(unsigned long ticks)
3486 {
3487 long active;
3488
3489 calc_global_nohz(ticks);
3490
3491 if (time_before(jiffies, calc_load_update + 10))
3492 return;
3493
3494 active = atomic_long_read(&calc_load_tasks);
3495 active = active > 0 ? active * FIXED_1 : 0;
3496
3497 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3498 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3499 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3500
3501 calc_load_update += LOAD_FREQ;
3502 }
3503
3504 /*
3505 * Called from update_cpu_load() to periodically update this CPU's
3506 * active count.
3507 */
3508 static void calc_load_account_active(struct rq *this_rq)
3509 {
3510 long delta;
3511
3512 if (time_before(jiffies, this_rq->calc_load_update))
3513 return;
3514
3515 delta = calc_load_fold_active(this_rq);
3516 delta += calc_load_fold_idle();
3517 if (delta)
3518 atomic_long_add(delta, &calc_load_tasks);
3519
3520 this_rq->calc_load_update += LOAD_FREQ;
3521 }
3522
3523 /*
3524 * The exact cpuload at various idx values, calculated at every tick would be
3525 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3526 *
3527 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3528 * on nth tick when cpu may be busy, then we have:
3529 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3530 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3531 *
3532 * decay_load_missed() below does efficient calculation of
3533 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3534 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3535 *
3536 * The calculation is approximated on a 128 point scale.
3537 * degrade_zero_ticks is the number of ticks after which load at any
3538 * particular idx is approximated to be zero.
3539 * degrade_factor is a precomputed table, a row for each load idx.
3540 * Each column corresponds to degradation factor for a power of two ticks,
3541 * based on 128 point scale.
3542 * Example:
3543 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3544 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3545 *
3546 * With this power of 2 load factors, we can degrade the load n times
3547 * by looking at 1 bits in n and doing as many mult/shift instead of
3548 * n mult/shifts needed by the exact degradation.
3549 */
3550 #define DEGRADE_SHIFT 7
3551 static const unsigned char
3552 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3553 static const unsigned char
3554 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3555 {0, 0, 0, 0, 0, 0, 0, 0},
3556 {64, 32, 8, 0, 0, 0, 0, 0},
3557 {96, 72, 40, 12, 1, 0, 0},
3558 {112, 98, 75, 43, 15, 1, 0},
3559 {120, 112, 98, 76, 45, 16, 2} };
3560
3561 /*
3562 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3563 * would be when CPU is idle and so we just decay the old load without
3564 * adding any new load.
3565 */
3566 static unsigned long
3567 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3568 {
3569 int j = 0;
3570
3571 if (!missed_updates)
3572 return load;
3573
3574 if (missed_updates >= degrade_zero_ticks[idx])
3575 return 0;
3576
3577 if (idx == 1)
3578 return load >> missed_updates;
3579
3580 while (missed_updates) {
3581 if (missed_updates % 2)
3582 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3583
3584 missed_updates >>= 1;
3585 j++;
3586 }
3587 return load;
3588 }
3589
3590 /*
3591 * Update rq->cpu_load[] statistics. This function is usually called every
3592 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3593 * every tick. We fix it up based on jiffies.
3594 */
3595 static void update_cpu_load(struct rq *this_rq)
3596 {
3597 unsigned long this_load = this_rq->load.weight;
3598 unsigned long curr_jiffies = jiffies;
3599 unsigned long pending_updates;
3600 int i, scale;
3601
3602 this_rq->nr_load_updates++;
3603
3604 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3605 if (curr_jiffies == this_rq->last_load_update_tick)
3606 return;
3607
3608 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3609 this_rq->last_load_update_tick = curr_jiffies;
3610
3611 /* Update our load: */
3612 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3613 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3614 unsigned long old_load, new_load;
3615
3616 /* scale is effectively 1 << i now, and >> i divides by scale */
3617
3618 old_load = this_rq->cpu_load[i];
3619 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3620 new_load = this_load;
3621 /*
3622 * Round up the averaging division if load is increasing. This
3623 * prevents us from getting stuck on 9 if the load is 10, for
3624 * example.
3625 */
3626 if (new_load > old_load)
3627 new_load += scale - 1;
3628
3629 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3630 }
3631
3632 sched_avg_update(this_rq);
3633 }
3634
3635 static void update_cpu_load_active(struct rq *this_rq)
3636 {
3637 update_cpu_load(this_rq);
3638
3639 calc_load_account_active(this_rq);
3640 }
3641
3642 #ifdef CONFIG_SMP
3643
3644 /*
3645 * sched_exec - execve() is a valuable balancing opportunity, because at
3646 * this point the task has the smallest effective memory and cache footprint.
3647 */
3648 void sched_exec(void)
3649 {
3650 struct task_struct *p = current;
3651 unsigned long flags;
3652 int dest_cpu;
3653
3654 raw_spin_lock_irqsave(&p->pi_lock, flags);
3655 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3656 if (dest_cpu == smp_processor_id())
3657 goto unlock;
3658
3659 if (likely(cpu_active(dest_cpu))) {
3660 struct migration_arg arg = { p, dest_cpu };
3661
3662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3663 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3664 return;
3665 }
3666 unlock:
3667 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3668 }
3669
3670 #endif
3671
3672 DEFINE_PER_CPU(struct kernel_stat, kstat);
3673
3674 EXPORT_PER_CPU_SYMBOL(kstat);
3675
3676 /*
3677 * Return any ns on the sched_clock that have not yet been accounted in
3678 * @p in case that task is currently running.
3679 *
3680 * Called with task_rq_lock() held on @rq.
3681 */
3682 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3683 {
3684 u64 ns = 0;
3685
3686 if (task_current(rq, p)) {
3687 update_rq_clock(rq);
3688 ns = rq->clock_task - p->se.exec_start;
3689 if ((s64)ns < 0)
3690 ns = 0;
3691 }
3692
3693 return ns;
3694 }
3695
3696 unsigned long long task_delta_exec(struct task_struct *p)
3697 {
3698 unsigned long flags;
3699 struct rq *rq;
3700 u64 ns = 0;
3701
3702 rq = task_rq_lock(p, &flags);
3703 ns = do_task_delta_exec(p, rq);
3704 task_rq_unlock(rq, p, &flags);
3705
3706 return ns;
3707 }
3708
3709 /*
3710 * Return accounted runtime for the task.
3711 * In case the task is currently running, return the runtime plus current's
3712 * pending runtime that have not been accounted yet.
3713 */
3714 unsigned long long task_sched_runtime(struct task_struct *p)
3715 {
3716 unsigned long flags;
3717 struct rq *rq;
3718 u64 ns = 0;
3719
3720 rq = task_rq_lock(p, &flags);
3721 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3722 task_rq_unlock(rq, p, &flags);
3723
3724 return ns;
3725 }
3726
3727 /*
3728 * Account user cpu time to a process.
3729 * @p: the process that the cpu time gets accounted to
3730 * @cputime: the cpu time spent in user space since the last update
3731 * @cputime_scaled: cputime scaled by cpu frequency
3732 */
3733 void account_user_time(struct task_struct *p, cputime_t cputime,
3734 cputime_t cputime_scaled)
3735 {
3736 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3737 cputime64_t tmp;
3738
3739 /* Add user time to process. */
3740 p->utime = cputime_add(p->utime, cputime);
3741 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3742 account_group_user_time(p, cputime);
3743
3744 /* Add user time to cpustat. */
3745 tmp = cputime_to_cputime64(cputime);
3746 if (TASK_NICE(p) > 0)
3747 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3748 else
3749 cpustat->user = cputime64_add(cpustat->user, tmp);
3750
3751 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3752 /* Account for user time used */
3753 acct_update_integrals(p);
3754 }
3755
3756 /*
3757 * Account guest cpu time to a process.
3758 * @p: the process that the cpu time gets accounted to
3759 * @cputime: the cpu time spent in virtual machine since the last update
3760 * @cputime_scaled: cputime scaled by cpu frequency
3761 */
3762 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3763 cputime_t cputime_scaled)
3764 {
3765 cputime64_t tmp;
3766 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3767
3768 tmp = cputime_to_cputime64(cputime);
3769
3770 /* Add guest time to process. */
3771 p->utime = cputime_add(p->utime, cputime);
3772 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3773 account_group_user_time(p, cputime);
3774 p->gtime = cputime_add(p->gtime, cputime);
3775
3776 /* Add guest time to cpustat. */
3777 if (TASK_NICE(p) > 0) {
3778 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3779 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3780 } else {
3781 cpustat->user = cputime64_add(cpustat->user, tmp);
3782 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3783 }
3784 }
3785
3786 /*
3787 * Account system cpu time to a process and desired cpustat field
3788 * @p: the process that the cpu time gets accounted to
3789 * @cputime: the cpu time spent in kernel space since the last update
3790 * @cputime_scaled: cputime scaled by cpu frequency
3791 * @target_cputime64: pointer to cpustat field that has to be updated
3792 */
3793 static inline
3794 void __account_system_time(struct task_struct *p, cputime_t cputime,
3795 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3796 {
3797 cputime64_t tmp = cputime_to_cputime64(cputime);
3798
3799 /* Add system time to process. */
3800 p->stime = cputime_add(p->stime, cputime);
3801 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3802 account_group_system_time(p, cputime);
3803
3804 /* Add system time to cpustat. */
3805 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3806 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3807
3808 /* Account for system time used */
3809 acct_update_integrals(p);
3810 }
3811
3812 /*
3813 * Account system cpu time to a process.
3814 * @p: the process that the cpu time gets accounted to
3815 * @hardirq_offset: the offset to subtract from hardirq_count()
3816 * @cputime: the cpu time spent in kernel space since the last update
3817 * @cputime_scaled: cputime scaled by cpu frequency
3818 */
3819 void account_system_time(struct task_struct *p, int hardirq_offset,
3820 cputime_t cputime, cputime_t cputime_scaled)
3821 {
3822 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3823 cputime64_t *target_cputime64;
3824
3825 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3826 account_guest_time(p, cputime, cputime_scaled);
3827 return;
3828 }
3829
3830 if (hardirq_count() - hardirq_offset)
3831 target_cputime64 = &cpustat->irq;
3832 else if (in_serving_softirq())
3833 target_cputime64 = &cpustat->softirq;
3834 else
3835 target_cputime64 = &cpustat->system;
3836
3837 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3838 }
3839
3840 /*
3841 * Account for involuntary wait time.
3842 * @cputime: the cpu time spent in involuntary wait
3843 */
3844 void account_steal_time(cputime_t cputime)
3845 {
3846 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3847 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3848
3849 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3850 }
3851
3852 /*
3853 * Account for idle time.
3854 * @cputime: the cpu time spent in idle wait
3855 */
3856 void account_idle_time(cputime_t cputime)
3857 {
3858 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3859 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3860 struct rq *rq = this_rq();
3861
3862 if (atomic_read(&rq->nr_iowait) > 0)
3863 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3864 else
3865 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3866 }
3867
3868 static __always_inline bool steal_account_process_tick(void)
3869 {
3870 #ifdef CONFIG_PARAVIRT
3871 if (static_branch(&paravirt_steal_enabled)) {
3872 u64 steal, st = 0;
3873
3874 steal = paravirt_steal_clock(smp_processor_id());
3875 steal -= this_rq()->prev_steal_time;
3876
3877 st = steal_ticks(steal);
3878 this_rq()->prev_steal_time += st * TICK_NSEC;
3879
3880 account_steal_time(st);
3881 return st;
3882 }
3883 #endif
3884 return false;
3885 }
3886
3887 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3888
3889 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3890 /*
3891 * Account a tick to a process and cpustat
3892 * @p: the process that the cpu time gets accounted to
3893 * @user_tick: is the tick from userspace
3894 * @rq: the pointer to rq
3895 *
3896 * Tick demultiplexing follows the order
3897 * - pending hardirq update
3898 * - pending softirq update
3899 * - user_time
3900 * - idle_time
3901 * - system time
3902 * - check for guest_time
3903 * - else account as system_time
3904 *
3905 * Check for hardirq is done both for system and user time as there is
3906 * no timer going off while we are on hardirq and hence we may never get an
3907 * opportunity to update it solely in system time.
3908 * p->stime and friends are only updated on system time and not on irq
3909 * softirq as those do not count in task exec_runtime any more.
3910 */
3911 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3912 struct rq *rq)
3913 {
3914 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3915 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3916 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3917
3918 if (steal_account_process_tick())
3919 return;
3920
3921 if (irqtime_account_hi_update()) {
3922 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3923 } else if (irqtime_account_si_update()) {
3924 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3925 } else if (this_cpu_ksoftirqd() == p) {
3926 /*
3927 * ksoftirqd time do not get accounted in cpu_softirq_time.
3928 * So, we have to handle it separately here.
3929 * Also, p->stime needs to be updated for ksoftirqd.
3930 */
3931 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3932 &cpustat->softirq);
3933 } else if (user_tick) {
3934 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3935 } else if (p == rq->idle) {
3936 account_idle_time(cputime_one_jiffy);
3937 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3938 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3939 } else {
3940 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3941 &cpustat->system);
3942 }
3943 }
3944
3945 static void irqtime_account_idle_ticks(int ticks)
3946 {
3947 int i;
3948 struct rq *rq = this_rq();
3949
3950 for (i = 0; i < ticks; i++)
3951 irqtime_account_process_tick(current, 0, rq);
3952 }
3953 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3954 static void irqtime_account_idle_ticks(int ticks) {}
3955 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3956 struct rq *rq) {}
3957 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3958
3959 /*
3960 * Account a single tick of cpu time.
3961 * @p: the process that the cpu time gets accounted to
3962 * @user_tick: indicates if the tick is a user or a system tick
3963 */
3964 void account_process_tick(struct task_struct *p, int user_tick)
3965 {
3966 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3967 struct rq *rq = this_rq();
3968
3969 if (sched_clock_irqtime) {
3970 irqtime_account_process_tick(p, user_tick, rq);
3971 return;
3972 }
3973
3974 if (steal_account_process_tick())
3975 return;
3976
3977 if (user_tick)
3978 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3979 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3980 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3981 one_jiffy_scaled);
3982 else
3983 account_idle_time(cputime_one_jiffy);
3984 }
3985
3986 /*
3987 * Account multiple ticks of steal time.
3988 * @p: the process from which the cpu time has been stolen
3989 * @ticks: number of stolen ticks
3990 */
3991 void account_steal_ticks(unsigned long ticks)
3992 {
3993 account_steal_time(jiffies_to_cputime(ticks));
3994 }
3995
3996 /*
3997 * Account multiple ticks of idle time.
3998 * @ticks: number of stolen ticks
3999 */
4000 void account_idle_ticks(unsigned long ticks)
4001 {
4002
4003 if (sched_clock_irqtime) {
4004 irqtime_account_idle_ticks(ticks);
4005 return;
4006 }
4007
4008 account_idle_time(jiffies_to_cputime(ticks));
4009 }
4010
4011 #endif
4012
4013 /*
4014 * Use precise platform statistics if available:
4015 */
4016 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4017 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4018 {
4019 *ut = p->utime;
4020 *st = p->stime;
4021 }
4022
4023 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4024 {
4025 struct task_cputime cputime;
4026
4027 thread_group_cputime(p, &cputime);
4028
4029 *ut = cputime.utime;
4030 *st = cputime.stime;
4031 }
4032 #else
4033
4034 #ifndef nsecs_to_cputime
4035 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4036 #endif
4037
4038 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4039 {
4040 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4041
4042 /*
4043 * Use CFS's precise accounting:
4044 */
4045 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4046
4047 if (total) {
4048 u64 temp = rtime;
4049
4050 temp *= utime;
4051 do_div(temp, total);
4052 utime = (cputime_t)temp;
4053 } else
4054 utime = rtime;
4055
4056 /*
4057 * Compare with previous values, to keep monotonicity:
4058 */
4059 p->prev_utime = max(p->prev_utime, utime);
4060 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4061
4062 *ut = p->prev_utime;
4063 *st = p->prev_stime;
4064 }
4065
4066 /*
4067 * Must be called with siglock held.
4068 */
4069 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4070 {
4071 struct signal_struct *sig = p->signal;
4072 struct task_cputime cputime;
4073 cputime_t rtime, utime, total;
4074
4075 thread_group_cputime(p, &cputime);
4076
4077 total = cputime_add(cputime.utime, cputime.stime);
4078 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4079
4080 if (total) {
4081 u64 temp = rtime;
4082
4083 temp *= cputime.utime;
4084 do_div(temp, total);
4085 utime = (cputime_t)temp;
4086 } else
4087 utime = rtime;
4088
4089 sig->prev_utime = max(sig->prev_utime, utime);
4090 sig->prev_stime = max(sig->prev_stime,
4091 cputime_sub(rtime, sig->prev_utime));
4092
4093 *ut = sig->prev_utime;
4094 *st = sig->prev_stime;
4095 }
4096 #endif
4097
4098 /*
4099 * This function gets called by the timer code, with HZ frequency.
4100 * We call it with interrupts disabled.
4101 */
4102 void scheduler_tick(void)
4103 {
4104 int cpu = smp_processor_id();
4105 struct rq *rq = cpu_rq(cpu);
4106 struct task_struct *curr = rq->curr;
4107
4108 sched_clock_tick();
4109
4110 raw_spin_lock(&rq->lock);
4111 update_rq_clock(rq);
4112 update_cpu_load_active(rq);
4113 curr->sched_class->task_tick(rq, curr, 0);
4114 raw_spin_unlock(&rq->lock);
4115
4116 perf_event_task_tick();
4117
4118 #ifdef CONFIG_SMP
4119 rq->idle_at_tick = idle_cpu(cpu);
4120 trigger_load_balance(rq, cpu);
4121 #endif
4122 }
4123
4124 notrace unsigned long get_parent_ip(unsigned long addr)
4125 {
4126 if (in_lock_functions(addr)) {
4127 addr = CALLER_ADDR2;
4128 if (in_lock_functions(addr))
4129 addr = CALLER_ADDR3;
4130 }
4131 return addr;
4132 }
4133
4134 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4135 defined(CONFIG_PREEMPT_TRACER))
4136
4137 void __kprobes add_preempt_count(int val)
4138 {
4139 #ifdef CONFIG_DEBUG_PREEMPT
4140 /*
4141 * Underflow?
4142 */
4143 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4144 return;
4145 #endif
4146 preempt_count() += val;
4147 #ifdef CONFIG_DEBUG_PREEMPT
4148 /*
4149 * Spinlock count overflowing soon?
4150 */
4151 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4152 PREEMPT_MASK - 10);
4153 #endif
4154 if (preempt_count() == val)
4155 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4156 }
4157 EXPORT_SYMBOL(add_preempt_count);
4158
4159 void __kprobes sub_preempt_count(int val)
4160 {
4161 #ifdef CONFIG_DEBUG_PREEMPT
4162 /*
4163 * Underflow?
4164 */
4165 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4166 return;
4167 /*
4168 * Is the spinlock portion underflowing?
4169 */
4170 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4171 !(preempt_count() & PREEMPT_MASK)))
4172 return;
4173 #endif
4174
4175 if (preempt_count() == val)
4176 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4177 preempt_count() -= val;
4178 }
4179 EXPORT_SYMBOL(sub_preempt_count);
4180
4181 #endif
4182
4183 /*
4184 * Print scheduling while atomic bug:
4185 */
4186 static noinline void __schedule_bug(struct task_struct *prev)
4187 {
4188 struct pt_regs *regs = get_irq_regs();
4189
4190 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4191 prev->comm, prev->pid, preempt_count());
4192
4193 debug_show_held_locks(prev);
4194 print_modules();
4195 if (irqs_disabled())
4196 print_irqtrace_events(prev);
4197
4198 if (regs)
4199 show_regs(regs);
4200 else
4201 dump_stack();
4202 }
4203
4204 /*
4205 * Various schedule()-time debugging checks and statistics:
4206 */
4207 static inline void schedule_debug(struct task_struct *prev)
4208 {
4209 /*
4210 * Test if we are atomic. Since do_exit() needs to call into
4211 * schedule() atomically, we ignore that path for now.
4212 * Otherwise, whine if we are scheduling when we should not be.
4213 */
4214 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4215 __schedule_bug(prev);
4216 rcu_sleep_check();
4217
4218 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4219
4220 schedstat_inc(this_rq(), sched_count);
4221 }
4222
4223 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4224 {
4225 if (prev->on_rq || rq->skip_clock_update < 0)
4226 update_rq_clock(rq);
4227 prev->sched_class->put_prev_task(rq, prev);
4228 }
4229
4230 /*
4231 * Pick up the highest-prio task:
4232 */
4233 static inline struct task_struct *
4234 pick_next_task(struct rq *rq)
4235 {
4236 const struct sched_class *class;
4237 struct task_struct *p;
4238
4239 /*
4240 * Optimization: we know that if all tasks are in
4241 * the fair class we can call that function directly:
4242 */
4243 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4244 p = fair_sched_class.pick_next_task(rq);
4245 if (likely(p))
4246 return p;
4247 }
4248
4249 for_each_class(class) {
4250 p = class->pick_next_task(rq);
4251 if (p)
4252 return p;
4253 }
4254
4255 BUG(); /* the idle class will always have a runnable task */
4256 }
4257
4258 /*
4259 * __schedule() is the main scheduler function.
4260 */
4261 static void __sched __schedule(void)
4262 {
4263 struct task_struct *prev, *next;
4264 unsigned long *switch_count;
4265 struct rq *rq;
4266 int cpu;
4267
4268 need_resched:
4269 preempt_disable();
4270 cpu = smp_processor_id();
4271 rq = cpu_rq(cpu);
4272 rcu_note_context_switch(cpu);
4273 prev = rq->curr;
4274
4275 schedule_debug(prev);
4276
4277 if (sched_feat(HRTICK))
4278 hrtick_clear(rq);
4279
4280 raw_spin_lock_irq(&rq->lock);
4281
4282 switch_count = &prev->nivcsw;
4283 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4284 if (unlikely(signal_pending_state(prev->state, prev))) {
4285 prev->state = TASK_RUNNING;
4286 } else {
4287 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4288 prev->on_rq = 0;
4289
4290 /*
4291 * If a worker went to sleep, notify and ask workqueue
4292 * whether it wants to wake up a task to maintain
4293 * concurrency.
4294 */
4295 if (prev->flags & PF_WQ_WORKER) {
4296 struct task_struct *to_wakeup;
4297
4298 to_wakeup = wq_worker_sleeping(prev, cpu);
4299 if (to_wakeup)
4300 try_to_wake_up_local(to_wakeup);
4301 }
4302 }
4303 switch_count = &prev->nvcsw;
4304 }
4305
4306 pre_schedule(rq, prev);
4307
4308 if (unlikely(!rq->nr_running))
4309 idle_balance(cpu, rq);
4310
4311 put_prev_task(rq, prev);
4312 next = pick_next_task(rq);
4313 clear_tsk_need_resched(prev);
4314 rq->skip_clock_update = 0;
4315
4316 if (likely(prev != next)) {
4317 rq->nr_switches++;
4318 rq->curr = next;
4319 ++*switch_count;
4320
4321 context_switch(rq, prev, next); /* unlocks the rq */
4322 /*
4323 * The context switch have flipped the stack from under us
4324 * and restored the local variables which were saved when
4325 * this task called schedule() in the past. prev == current
4326 * is still correct, but it can be moved to another cpu/rq.
4327 */
4328 cpu = smp_processor_id();
4329 rq = cpu_rq(cpu);
4330 } else
4331 raw_spin_unlock_irq(&rq->lock);
4332
4333 post_schedule(rq);
4334
4335 preempt_enable_no_resched();
4336 if (need_resched())
4337 goto need_resched;
4338 }
4339
4340 static inline void sched_submit_work(struct task_struct *tsk)
4341 {
4342 if (!tsk->state)
4343 return;
4344 /*
4345 * If we are going to sleep and we have plugged IO queued,
4346 * make sure to submit it to avoid deadlocks.
4347 */
4348 if (blk_needs_flush_plug(tsk))
4349 blk_schedule_flush_plug(tsk);
4350 }
4351
4352 asmlinkage void __sched schedule(void)
4353 {
4354 struct task_struct *tsk = current;
4355
4356 sched_submit_work(tsk);
4357 __schedule();
4358 }
4359 EXPORT_SYMBOL(schedule);
4360
4361 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4362
4363 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4364 {
4365 if (lock->owner != owner)
4366 return false;
4367
4368 /*
4369 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4370 * lock->owner still matches owner, if that fails, owner might
4371 * point to free()d memory, if it still matches, the rcu_read_lock()
4372 * ensures the memory stays valid.
4373 */
4374 barrier();
4375
4376 return owner->on_cpu;
4377 }
4378
4379 /*
4380 * Look out! "owner" is an entirely speculative pointer
4381 * access and not reliable.
4382 */
4383 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4384 {
4385 if (!sched_feat(OWNER_SPIN))
4386 return 0;
4387
4388 rcu_read_lock();
4389 while (owner_running(lock, owner)) {
4390 if (need_resched())
4391 break;
4392
4393 arch_mutex_cpu_relax();
4394 }
4395 rcu_read_unlock();
4396
4397 /*
4398 * We break out the loop above on need_resched() and when the
4399 * owner changed, which is a sign for heavy contention. Return
4400 * success only when lock->owner is NULL.
4401 */
4402 return lock->owner == NULL;
4403 }
4404 #endif
4405
4406 #ifdef CONFIG_PREEMPT
4407 /*
4408 * this is the entry point to schedule() from in-kernel preemption
4409 * off of preempt_enable. Kernel preemptions off return from interrupt
4410 * occur there and call schedule directly.
4411 */
4412 asmlinkage void __sched notrace preempt_schedule(void)
4413 {
4414 struct thread_info *ti = current_thread_info();
4415
4416 /*
4417 * If there is a non-zero preempt_count or interrupts are disabled,
4418 * we do not want to preempt the current task. Just return..
4419 */
4420 if (likely(ti->preempt_count || irqs_disabled()))
4421 return;
4422
4423 do {
4424 add_preempt_count_notrace(PREEMPT_ACTIVE);
4425 __schedule();
4426 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4427
4428 /*
4429 * Check again in case we missed a preemption opportunity
4430 * between schedule and now.
4431 */
4432 barrier();
4433 } while (need_resched());
4434 }
4435 EXPORT_SYMBOL(preempt_schedule);
4436
4437 /*
4438 * this is the entry point to schedule() from kernel preemption
4439 * off of irq context.
4440 * Note, that this is called and return with irqs disabled. This will
4441 * protect us against recursive calling from irq.
4442 */
4443 asmlinkage void __sched preempt_schedule_irq(void)
4444 {
4445 struct thread_info *ti = current_thread_info();
4446
4447 /* Catch callers which need to be fixed */
4448 BUG_ON(ti->preempt_count || !irqs_disabled());
4449
4450 do {
4451 add_preempt_count(PREEMPT_ACTIVE);
4452 local_irq_enable();
4453 __schedule();
4454 local_irq_disable();
4455 sub_preempt_count(PREEMPT_ACTIVE);
4456
4457 /*
4458 * Check again in case we missed a preemption opportunity
4459 * between schedule and now.
4460 */
4461 barrier();
4462 } while (need_resched());
4463 }
4464
4465 #endif /* CONFIG_PREEMPT */
4466
4467 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4468 void *key)
4469 {
4470 return try_to_wake_up(curr->private, mode, wake_flags);
4471 }
4472 EXPORT_SYMBOL(default_wake_function);
4473
4474 /*
4475 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4476 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4477 * number) then we wake all the non-exclusive tasks and one exclusive task.
4478 *
4479 * There are circumstances in which we can try to wake a task which has already
4480 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4481 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4482 */
4483 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4484 int nr_exclusive, int wake_flags, void *key)
4485 {
4486 wait_queue_t *curr, *next;
4487
4488 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4489 unsigned flags = curr->flags;
4490
4491 if (curr->func(curr, mode, wake_flags, key) &&
4492 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4493 break;
4494 }
4495 }
4496
4497 /**
4498 * __wake_up - wake up threads blocked on a waitqueue.
4499 * @q: the waitqueue
4500 * @mode: which threads
4501 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4502 * @key: is directly passed to the wakeup function
4503 *
4504 * It may be assumed that this function implies a write memory barrier before
4505 * changing the task state if and only if any tasks are woken up.
4506 */
4507 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4508 int nr_exclusive, void *key)
4509 {
4510 unsigned long flags;
4511
4512 spin_lock_irqsave(&q->lock, flags);
4513 __wake_up_common(q, mode, nr_exclusive, 0, key);
4514 spin_unlock_irqrestore(&q->lock, flags);
4515 }
4516 EXPORT_SYMBOL(__wake_up);
4517
4518 /*
4519 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4520 */
4521 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4522 {
4523 __wake_up_common(q, mode, 1, 0, NULL);
4524 }
4525 EXPORT_SYMBOL_GPL(__wake_up_locked);
4526
4527 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4528 {
4529 __wake_up_common(q, mode, 1, 0, key);
4530 }
4531 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4532
4533 /**
4534 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4535 * @q: the waitqueue
4536 * @mode: which threads
4537 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4538 * @key: opaque value to be passed to wakeup targets
4539 *
4540 * The sync wakeup differs that the waker knows that it will schedule
4541 * away soon, so while the target thread will be woken up, it will not
4542 * be migrated to another CPU - ie. the two threads are 'synchronized'
4543 * with each other. This can prevent needless bouncing between CPUs.
4544 *
4545 * On UP it can prevent extra preemption.
4546 *
4547 * It may be assumed that this function implies a write memory barrier before
4548 * changing the task state if and only if any tasks are woken up.
4549 */
4550 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4551 int nr_exclusive, void *key)
4552 {
4553 unsigned long flags;
4554 int wake_flags = WF_SYNC;
4555
4556 if (unlikely(!q))
4557 return;
4558
4559 if (unlikely(!nr_exclusive))
4560 wake_flags = 0;
4561
4562 spin_lock_irqsave(&q->lock, flags);
4563 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4564 spin_unlock_irqrestore(&q->lock, flags);
4565 }
4566 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4567
4568 /*
4569 * __wake_up_sync - see __wake_up_sync_key()
4570 */
4571 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4572 {
4573 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4574 }
4575 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4576
4577 /**
4578 * complete: - signals a single thread waiting on this completion
4579 * @x: holds the state of this particular completion
4580 *
4581 * This will wake up a single thread waiting on this completion. Threads will be
4582 * awakened in the same order in which they were queued.
4583 *
4584 * See also complete_all(), wait_for_completion() and related routines.
4585 *
4586 * It may be assumed that this function implies a write memory barrier before
4587 * changing the task state if and only if any tasks are woken up.
4588 */
4589 void complete(struct completion *x)
4590 {
4591 unsigned long flags;
4592
4593 spin_lock_irqsave(&x->wait.lock, flags);
4594 x->done++;
4595 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4596 spin_unlock_irqrestore(&x->wait.lock, flags);
4597 }
4598 EXPORT_SYMBOL(complete);
4599
4600 /**
4601 * complete_all: - signals all threads waiting on this completion
4602 * @x: holds the state of this particular completion
4603 *
4604 * This will wake up all threads waiting on this particular completion event.
4605 *
4606 * It may be assumed that this function implies a write memory barrier before
4607 * changing the task state if and only if any tasks are woken up.
4608 */
4609 void complete_all(struct completion *x)
4610 {
4611 unsigned long flags;
4612
4613 spin_lock_irqsave(&x->wait.lock, flags);
4614 x->done += UINT_MAX/2;
4615 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4616 spin_unlock_irqrestore(&x->wait.lock, flags);
4617 }
4618 EXPORT_SYMBOL(complete_all);
4619
4620 static inline long __sched
4621 do_wait_for_common(struct completion *x, long timeout, int state)
4622 {
4623 if (!x->done) {
4624 DECLARE_WAITQUEUE(wait, current);
4625
4626 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4627 do {
4628 if (signal_pending_state(state, current)) {
4629 timeout = -ERESTARTSYS;
4630 break;
4631 }
4632 __set_current_state(state);
4633 spin_unlock_irq(&x->wait.lock);
4634 timeout = schedule_timeout(timeout);
4635 spin_lock_irq(&x->wait.lock);
4636 } while (!x->done && timeout);
4637 __remove_wait_queue(&x->wait, &wait);
4638 if (!x->done)
4639 return timeout;
4640 }
4641 x->done--;
4642 return timeout ?: 1;
4643 }
4644
4645 static long __sched
4646 wait_for_common(struct completion *x, long timeout, int state)
4647 {
4648 might_sleep();
4649
4650 spin_lock_irq(&x->wait.lock);
4651 timeout = do_wait_for_common(x, timeout, state);
4652 spin_unlock_irq(&x->wait.lock);
4653 return timeout;
4654 }
4655
4656 /**
4657 * wait_for_completion: - waits for completion of a task
4658 * @x: holds the state of this particular completion
4659 *
4660 * This waits to be signaled for completion of a specific task. It is NOT
4661 * interruptible and there is no timeout.
4662 *
4663 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4664 * and interrupt capability. Also see complete().
4665 */
4666 void __sched wait_for_completion(struct completion *x)
4667 {
4668 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4669 }
4670 EXPORT_SYMBOL(wait_for_completion);
4671
4672 /**
4673 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4674 * @x: holds the state of this particular completion
4675 * @timeout: timeout value in jiffies
4676 *
4677 * This waits for either a completion of a specific task to be signaled or for a
4678 * specified timeout to expire. The timeout is in jiffies. It is not
4679 * interruptible.
4680 */
4681 unsigned long __sched
4682 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4683 {
4684 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4685 }
4686 EXPORT_SYMBOL(wait_for_completion_timeout);
4687
4688 /**
4689 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4690 * @x: holds the state of this particular completion
4691 *
4692 * This waits for completion of a specific task to be signaled. It is
4693 * interruptible.
4694 */
4695 int __sched wait_for_completion_interruptible(struct completion *x)
4696 {
4697 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4698 if (t == -ERESTARTSYS)
4699 return t;
4700 return 0;
4701 }
4702 EXPORT_SYMBOL(wait_for_completion_interruptible);
4703
4704 /**
4705 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4706 * @x: holds the state of this particular completion
4707 * @timeout: timeout value in jiffies
4708 *
4709 * This waits for either a completion of a specific task to be signaled or for a
4710 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4711 */
4712 long __sched
4713 wait_for_completion_interruptible_timeout(struct completion *x,
4714 unsigned long timeout)
4715 {
4716 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4717 }
4718 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4719
4720 /**
4721 * wait_for_completion_killable: - waits for completion of a task (killable)
4722 * @x: holds the state of this particular completion
4723 *
4724 * This waits to be signaled for completion of a specific task. It can be
4725 * interrupted by a kill signal.
4726 */
4727 int __sched wait_for_completion_killable(struct completion *x)
4728 {
4729 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4730 if (t == -ERESTARTSYS)
4731 return t;
4732 return 0;
4733 }
4734 EXPORT_SYMBOL(wait_for_completion_killable);
4735
4736 /**
4737 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4738 * @x: holds the state of this particular completion
4739 * @timeout: timeout value in jiffies
4740 *
4741 * This waits for either a completion of a specific task to be
4742 * signaled or for a specified timeout to expire. It can be
4743 * interrupted by a kill signal. The timeout is in jiffies.
4744 */
4745 long __sched
4746 wait_for_completion_killable_timeout(struct completion *x,
4747 unsigned long timeout)
4748 {
4749 return wait_for_common(x, timeout, TASK_KILLABLE);
4750 }
4751 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4752
4753 /**
4754 * try_wait_for_completion - try to decrement a completion without blocking
4755 * @x: completion structure
4756 *
4757 * Returns: 0 if a decrement cannot be done without blocking
4758 * 1 if a decrement succeeded.
4759 *
4760 * If a completion is being used as a counting completion,
4761 * attempt to decrement the counter without blocking. This
4762 * enables us to avoid waiting if the resource the completion
4763 * is protecting is not available.
4764 */
4765 bool try_wait_for_completion(struct completion *x)
4766 {
4767 unsigned long flags;
4768 int ret = 1;
4769
4770 spin_lock_irqsave(&x->wait.lock, flags);
4771 if (!x->done)
4772 ret = 0;
4773 else
4774 x->done--;
4775 spin_unlock_irqrestore(&x->wait.lock, flags);
4776 return ret;
4777 }
4778 EXPORT_SYMBOL(try_wait_for_completion);
4779
4780 /**
4781 * completion_done - Test to see if a completion has any waiters
4782 * @x: completion structure
4783 *
4784 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4785 * 1 if there are no waiters.
4786 *
4787 */
4788 bool completion_done(struct completion *x)
4789 {
4790 unsigned long flags;
4791 int ret = 1;
4792
4793 spin_lock_irqsave(&x->wait.lock, flags);
4794 if (!x->done)
4795 ret = 0;
4796 spin_unlock_irqrestore(&x->wait.lock, flags);
4797 return ret;
4798 }
4799 EXPORT_SYMBOL(completion_done);
4800
4801 static long __sched
4802 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4803 {
4804 unsigned long flags;
4805 wait_queue_t wait;
4806
4807 init_waitqueue_entry(&wait, current);
4808
4809 __set_current_state(state);
4810
4811 spin_lock_irqsave(&q->lock, flags);
4812 __add_wait_queue(q, &wait);
4813 spin_unlock(&q->lock);
4814 timeout = schedule_timeout(timeout);
4815 spin_lock_irq(&q->lock);
4816 __remove_wait_queue(q, &wait);
4817 spin_unlock_irqrestore(&q->lock, flags);
4818
4819 return timeout;
4820 }
4821
4822 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4823 {
4824 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4825 }
4826 EXPORT_SYMBOL(interruptible_sleep_on);
4827
4828 long __sched
4829 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4830 {
4831 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4832 }
4833 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4834
4835 void __sched sleep_on(wait_queue_head_t *q)
4836 {
4837 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4838 }
4839 EXPORT_SYMBOL(sleep_on);
4840
4841 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4842 {
4843 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4844 }
4845 EXPORT_SYMBOL(sleep_on_timeout);
4846
4847 #ifdef CONFIG_RT_MUTEXES
4848
4849 /*
4850 * rt_mutex_setprio - set the current priority of a task
4851 * @p: task
4852 * @prio: prio value (kernel-internal form)
4853 *
4854 * This function changes the 'effective' priority of a task. It does
4855 * not touch ->normal_prio like __setscheduler().
4856 *
4857 * Used by the rt_mutex code to implement priority inheritance logic.
4858 */
4859 void rt_mutex_setprio(struct task_struct *p, int prio)
4860 {
4861 int oldprio, on_rq, running;
4862 struct rq *rq;
4863 const struct sched_class *prev_class;
4864
4865 BUG_ON(prio < 0 || prio > MAX_PRIO);
4866
4867 rq = __task_rq_lock(p);
4868
4869 trace_sched_pi_setprio(p, prio);
4870 oldprio = p->prio;
4871 prev_class = p->sched_class;
4872 on_rq = p->on_rq;
4873 running = task_current(rq, p);
4874 if (on_rq)
4875 dequeue_task(rq, p, 0);
4876 if (running)
4877 p->sched_class->put_prev_task(rq, p);
4878
4879 if (rt_prio(prio))
4880 p->sched_class = &rt_sched_class;
4881 else
4882 p->sched_class = &fair_sched_class;
4883
4884 p->prio = prio;
4885
4886 if (running)
4887 p->sched_class->set_curr_task(rq);
4888 if (on_rq)
4889 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4890
4891 check_class_changed(rq, p, prev_class, oldprio);
4892 __task_rq_unlock(rq);
4893 }
4894
4895 #endif
4896
4897 void set_user_nice(struct task_struct *p, long nice)
4898 {
4899 int old_prio, delta, on_rq;
4900 unsigned long flags;
4901 struct rq *rq;
4902
4903 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4904 return;
4905 /*
4906 * We have to be careful, if called from sys_setpriority(),
4907 * the task might be in the middle of scheduling on another CPU.
4908 */
4909 rq = task_rq_lock(p, &flags);
4910 /*
4911 * The RT priorities are set via sched_setscheduler(), but we still
4912 * allow the 'normal' nice value to be set - but as expected
4913 * it wont have any effect on scheduling until the task is
4914 * SCHED_FIFO/SCHED_RR:
4915 */
4916 if (task_has_rt_policy(p)) {
4917 p->static_prio = NICE_TO_PRIO(nice);
4918 goto out_unlock;
4919 }
4920 on_rq = p->on_rq;
4921 if (on_rq)
4922 dequeue_task(rq, p, 0);
4923
4924 p->static_prio = NICE_TO_PRIO(nice);
4925 set_load_weight(p);
4926 old_prio = p->prio;
4927 p->prio = effective_prio(p);
4928 delta = p->prio - old_prio;
4929
4930 if (on_rq) {
4931 enqueue_task(rq, p, 0);
4932 /*
4933 * If the task increased its priority or is running and
4934 * lowered its priority, then reschedule its CPU:
4935 */
4936 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4937 resched_task(rq->curr);
4938 }
4939 out_unlock:
4940 task_rq_unlock(rq, p, &flags);
4941 }
4942 EXPORT_SYMBOL(set_user_nice);
4943
4944 /*
4945 * can_nice - check if a task can reduce its nice value
4946 * @p: task
4947 * @nice: nice value
4948 */
4949 int can_nice(const struct task_struct *p, const int nice)
4950 {
4951 /* convert nice value [19,-20] to rlimit style value [1,40] */
4952 int nice_rlim = 20 - nice;
4953
4954 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4955 capable(CAP_SYS_NICE));
4956 }
4957
4958 #ifdef __ARCH_WANT_SYS_NICE
4959
4960 /*
4961 * sys_nice - change the priority of the current process.
4962 * @increment: priority increment
4963 *
4964 * sys_setpriority is a more generic, but much slower function that
4965 * does similar things.
4966 */
4967 SYSCALL_DEFINE1(nice, int, increment)
4968 {
4969 long nice, retval;
4970
4971 /*
4972 * Setpriority might change our priority at the same moment.
4973 * We don't have to worry. Conceptually one call occurs first
4974 * and we have a single winner.
4975 */
4976 if (increment < -40)
4977 increment = -40;
4978 if (increment > 40)
4979 increment = 40;
4980
4981 nice = TASK_NICE(current) + increment;
4982 if (nice < -20)
4983 nice = -20;
4984 if (nice > 19)
4985 nice = 19;
4986
4987 if (increment < 0 && !can_nice(current, nice))
4988 return -EPERM;
4989
4990 retval = security_task_setnice(current, nice);
4991 if (retval)
4992 return retval;
4993
4994 set_user_nice(current, nice);
4995 return 0;
4996 }
4997
4998 #endif
4999
5000 /**
5001 * task_prio - return the priority value of a given task.
5002 * @p: the task in question.
5003 *
5004 * This is the priority value as seen by users in /proc.
5005 * RT tasks are offset by -200. Normal tasks are centered
5006 * around 0, value goes from -16 to +15.
5007 */
5008 int task_prio(const struct task_struct *p)
5009 {
5010 return p->prio - MAX_RT_PRIO;
5011 }
5012
5013 /**
5014 * task_nice - return the nice value of a given task.
5015 * @p: the task in question.
5016 */
5017 int task_nice(const struct task_struct *p)
5018 {
5019 return TASK_NICE(p);
5020 }
5021 EXPORT_SYMBOL(task_nice);
5022
5023 /**
5024 * idle_cpu - is a given cpu idle currently?
5025 * @cpu: the processor in question.
5026 */
5027 int idle_cpu(int cpu)
5028 {
5029 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5030 }
5031
5032 /**
5033 * idle_task - return the idle task for a given cpu.
5034 * @cpu: the processor in question.
5035 */
5036 struct task_struct *idle_task(int cpu)
5037 {
5038 return cpu_rq(cpu)->idle;
5039 }
5040
5041 /**
5042 * find_process_by_pid - find a process with a matching PID value.
5043 * @pid: the pid in question.
5044 */
5045 static struct task_struct *find_process_by_pid(pid_t pid)
5046 {
5047 return pid ? find_task_by_vpid(pid) : current;
5048 }
5049
5050 /* Actually do priority change: must hold rq lock. */
5051 static void
5052 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5053 {
5054 p->policy = policy;
5055 p->rt_priority = prio;
5056 p->normal_prio = normal_prio(p);
5057 /* we are holding p->pi_lock already */
5058 p->prio = rt_mutex_getprio(p);
5059 if (rt_prio(p->prio))
5060 p->sched_class = &rt_sched_class;
5061 else
5062 p->sched_class = &fair_sched_class;
5063 set_load_weight(p);
5064 }
5065
5066 /*
5067 * check the target process has a UID that matches the current process's
5068 */
5069 static bool check_same_owner(struct task_struct *p)
5070 {
5071 const struct cred *cred = current_cred(), *pcred;
5072 bool match;
5073
5074 rcu_read_lock();
5075 pcred = __task_cred(p);
5076 if (cred->user->user_ns == pcred->user->user_ns)
5077 match = (cred->euid == pcred->euid ||
5078 cred->euid == pcred->uid);
5079 else
5080 match = false;
5081 rcu_read_unlock();
5082 return match;
5083 }
5084
5085 static int __sched_setscheduler(struct task_struct *p, int policy,
5086 const struct sched_param *param, bool user)
5087 {
5088 int retval, oldprio, oldpolicy = -1, on_rq, running;
5089 unsigned long flags;
5090 const struct sched_class *prev_class;
5091 struct rq *rq;
5092 int reset_on_fork;
5093
5094 /* may grab non-irq protected spin_locks */
5095 BUG_ON(in_interrupt());
5096 recheck:
5097 /* double check policy once rq lock held */
5098 if (policy < 0) {
5099 reset_on_fork = p->sched_reset_on_fork;
5100 policy = oldpolicy = p->policy;
5101 } else {
5102 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5103 policy &= ~SCHED_RESET_ON_FORK;
5104
5105 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5106 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5107 policy != SCHED_IDLE)
5108 return -EINVAL;
5109 }
5110
5111 /*
5112 * Valid priorities for SCHED_FIFO and SCHED_RR are
5113 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5114 * SCHED_BATCH and SCHED_IDLE is 0.
5115 */
5116 if (param->sched_priority < 0 ||
5117 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5118 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5119 return -EINVAL;
5120 if (rt_policy(policy) != (param->sched_priority != 0))
5121 return -EINVAL;
5122
5123 /*
5124 * Allow unprivileged RT tasks to decrease priority:
5125 */
5126 if (user && !capable(CAP_SYS_NICE)) {
5127 if (rt_policy(policy)) {
5128 unsigned long rlim_rtprio =
5129 task_rlimit(p, RLIMIT_RTPRIO);
5130
5131 /* can't set/change the rt policy */
5132 if (policy != p->policy && !rlim_rtprio)
5133 return -EPERM;
5134
5135 /* can't increase priority */
5136 if (param->sched_priority > p->rt_priority &&
5137 param->sched_priority > rlim_rtprio)
5138 return -EPERM;
5139 }
5140
5141 /*
5142 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5143 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5144 */
5145 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5146 if (!can_nice(p, TASK_NICE(p)))
5147 return -EPERM;
5148 }
5149
5150 /* can't change other user's priorities */
5151 if (!check_same_owner(p))
5152 return -EPERM;
5153
5154 /* Normal users shall not reset the sched_reset_on_fork flag */
5155 if (p->sched_reset_on_fork && !reset_on_fork)
5156 return -EPERM;
5157 }
5158
5159 if (user) {
5160 retval = security_task_setscheduler(p);
5161 if (retval)
5162 return retval;
5163 }
5164
5165 /*
5166 * make sure no PI-waiters arrive (or leave) while we are
5167 * changing the priority of the task:
5168 *
5169 * To be able to change p->policy safely, the appropriate
5170 * runqueue lock must be held.
5171 */
5172 rq = task_rq_lock(p, &flags);
5173
5174 /*
5175 * Changing the policy of the stop threads its a very bad idea
5176 */
5177 if (p == rq->stop) {
5178 task_rq_unlock(rq, p, &flags);
5179 return -EINVAL;
5180 }
5181
5182 /*
5183 * If not changing anything there's no need to proceed further:
5184 */
5185 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5186 param->sched_priority == p->rt_priority))) {
5187
5188 __task_rq_unlock(rq);
5189 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5190 return 0;
5191 }
5192
5193 #ifdef CONFIG_RT_GROUP_SCHED
5194 if (user) {
5195 /*
5196 * Do not allow realtime tasks into groups that have no runtime
5197 * assigned.
5198 */
5199 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5200 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5201 !task_group_is_autogroup(task_group(p))) {
5202 task_rq_unlock(rq, p, &flags);
5203 return -EPERM;
5204 }
5205 }
5206 #endif
5207
5208 /* recheck policy now with rq lock held */
5209 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5210 policy = oldpolicy = -1;
5211 task_rq_unlock(rq, p, &flags);
5212 goto recheck;
5213 }
5214 on_rq = p->on_rq;
5215 running = task_current(rq, p);
5216 if (on_rq)
5217 deactivate_task(rq, p, 0);
5218 if (running)
5219 p->sched_class->put_prev_task(rq, p);
5220
5221 p->sched_reset_on_fork = reset_on_fork;
5222
5223 oldprio = p->prio;
5224 prev_class = p->sched_class;
5225 __setscheduler(rq, p, policy, param->sched_priority);
5226
5227 if (running)
5228 p->sched_class->set_curr_task(rq);
5229 if (on_rq)
5230 activate_task(rq, p, 0);
5231
5232 check_class_changed(rq, p, prev_class, oldprio);
5233 task_rq_unlock(rq, p, &flags);
5234
5235 rt_mutex_adjust_pi(p);
5236
5237 return 0;
5238 }
5239
5240 /**
5241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5242 * @p: the task in question.
5243 * @policy: new policy.
5244 * @param: structure containing the new RT priority.
5245 *
5246 * NOTE that the task may be already dead.
5247 */
5248 int sched_setscheduler(struct task_struct *p, int policy,
5249 const struct sched_param *param)
5250 {
5251 return __sched_setscheduler(p, policy, param, true);
5252 }
5253 EXPORT_SYMBOL_GPL(sched_setscheduler);
5254
5255 /**
5256 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5257 * @p: the task in question.
5258 * @policy: new policy.
5259 * @param: structure containing the new RT priority.
5260 *
5261 * Just like sched_setscheduler, only don't bother checking if the
5262 * current context has permission. For example, this is needed in
5263 * stop_machine(): we create temporary high priority worker threads,
5264 * but our caller might not have that capability.
5265 */
5266 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5267 const struct sched_param *param)
5268 {
5269 return __sched_setscheduler(p, policy, param, false);
5270 }
5271
5272 static int
5273 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5274 {
5275 struct sched_param lparam;
5276 struct task_struct *p;
5277 int retval;
5278
5279 if (!param || pid < 0)
5280 return -EINVAL;
5281 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5282 return -EFAULT;
5283
5284 rcu_read_lock();
5285 retval = -ESRCH;
5286 p = find_process_by_pid(pid);
5287 if (p != NULL)
5288 retval = sched_setscheduler(p, policy, &lparam);
5289 rcu_read_unlock();
5290
5291 return retval;
5292 }
5293
5294 /**
5295 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5296 * @pid: the pid in question.
5297 * @policy: new policy.
5298 * @param: structure containing the new RT priority.
5299 */
5300 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5301 struct sched_param __user *, param)
5302 {
5303 /* negative values for policy are not valid */
5304 if (policy < 0)
5305 return -EINVAL;
5306
5307 return do_sched_setscheduler(pid, policy, param);
5308 }
5309
5310 /**
5311 * sys_sched_setparam - set/change the RT priority of a thread
5312 * @pid: the pid in question.
5313 * @param: structure containing the new RT priority.
5314 */
5315 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5316 {
5317 return do_sched_setscheduler(pid, -1, param);
5318 }
5319
5320 /**
5321 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5322 * @pid: the pid in question.
5323 */
5324 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5325 {
5326 struct task_struct *p;
5327 int retval;
5328
5329 if (pid < 0)
5330 return -EINVAL;
5331
5332 retval = -ESRCH;
5333 rcu_read_lock();
5334 p = find_process_by_pid(pid);
5335 if (p) {
5336 retval = security_task_getscheduler(p);
5337 if (!retval)
5338 retval = p->policy
5339 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5340 }
5341 rcu_read_unlock();
5342 return retval;
5343 }
5344
5345 /**
5346 * sys_sched_getparam - get the RT priority of a thread
5347 * @pid: the pid in question.
5348 * @param: structure containing the RT priority.
5349 */
5350 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5351 {
5352 struct sched_param lp;
5353 struct task_struct *p;
5354 int retval;
5355
5356 if (!param || pid < 0)
5357 return -EINVAL;
5358
5359 rcu_read_lock();
5360 p = find_process_by_pid(pid);
5361 retval = -ESRCH;
5362 if (!p)
5363 goto out_unlock;
5364
5365 retval = security_task_getscheduler(p);
5366 if (retval)
5367 goto out_unlock;
5368
5369 lp.sched_priority = p->rt_priority;
5370 rcu_read_unlock();
5371
5372 /*
5373 * This one might sleep, we cannot do it with a spinlock held ...
5374 */
5375 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5376
5377 return retval;
5378
5379 out_unlock:
5380 rcu_read_unlock();
5381 return retval;
5382 }
5383
5384 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5385 {
5386 cpumask_var_t cpus_allowed, new_mask;
5387 struct task_struct *p;
5388 int retval;
5389
5390 get_online_cpus();
5391 rcu_read_lock();
5392
5393 p = find_process_by_pid(pid);
5394 if (!p) {
5395 rcu_read_unlock();
5396 put_online_cpus();
5397 return -ESRCH;
5398 }
5399
5400 /* Prevent p going away */
5401 get_task_struct(p);
5402 rcu_read_unlock();
5403
5404 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5405 retval = -ENOMEM;
5406 goto out_put_task;
5407 }
5408 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5409 retval = -ENOMEM;
5410 goto out_free_cpus_allowed;
5411 }
5412 retval = -EPERM;
5413 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5414 goto out_unlock;
5415
5416 retval = security_task_setscheduler(p);
5417 if (retval)
5418 goto out_unlock;
5419
5420 cpuset_cpus_allowed(p, cpus_allowed);
5421 cpumask_and(new_mask, in_mask, cpus_allowed);
5422 again:
5423 retval = set_cpus_allowed_ptr(p, new_mask);
5424
5425 if (!retval) {
5426 cpuset_cpus_allowed(p, cpus_allowed);
5427 if (!cpumask_subset(new_mask, cpus_allowed)) {
5428 /*
5429 * We must have raced with a concurrent cpuset
5430 * update. Just reset the cpus_allowed to the
5431 * cpuset's cpus_allowed
5432 */
5433 cpumask_copy(new_mask, cpus_allowed);
5434 goto again;
5435 }
5436 }
5437 out_unlock:
5438 free_cpumask_var(new_mask);
5439 out_free_cpus_allowed:
5440 free_cpumask_var(cpus_allowed);
5441 out_put_task:
5442 put_task_struct(p);
5443 put_online_cpus();
5444 return retval;
5445 }
5446
5447 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5448 struct cpumask *new_mask)
5449 {
5450 if (len < cpumask_size())
5451 cpumask_clear(new_mask);
5452 else if (len > cpumask_size())
5453 len = cpumask_size();
5454
5455 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5456 }
5457
5458 /**
5459 * sys_sched_setaffinity - set the cpu affinity of a process
5460 * @pid: pid of the process
5461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5462 * @user_mask_ptr: user-space pointer to the new cpu mask
5463 */
5464 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5465 unsigned long __user *, user_mask_ptr)
5466 {
5467 cpumask_var_t new_mask;
5468 int retval;
5469
5470 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5471 return -ENOMEM;
5472
5473 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5474 if (retval == 0)
5475 retval = sched_setaffinity(pid, new_mask);
5476 free_cpumask_var(new_mask);
5477 return retval;
5478 }
5479
5480 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5481 {
5482 struct task_struct *p;
5483 unsigned long flags;
5484 int retval;
5485
5486 get_online_cpus();
5487 rcu_read_lock();
5488
5489 retval = -ESRCH;
5490 p = find_process_by_pid(pid);
5491 if (!p)
5492 goto out_unlock;
5493
5494 retval = security_task_getscheduler(p);
5495 if (retval)
5496 goto out_unlock;
5497
5498 raw_spin_lock_irqsave(&p->pi_lock, flags);
5499 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5501
5502 out_unlock:
5503 rcu_read_unlock();
5504 put_online_cpus();
5505
5506 return retval;
5507 }
5508
5509 /**
5510 * sys_sched_getaffinity - get the cpu affinity of a process
5511 * @pid: pid of the process
5512 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5513 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5514 */
5515 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5516 unsigned long __user *, user_mask_ptr)
5517 {
5518 int ret;
5519 cpumask_var_t mask;
5520
5521 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5522 return -EINVAL;
5523 if (len & (sizeof(unsigned long)-1))
5524 return -EINVAL;
5525
5526 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5527 return -ENOMEM;
5528
5529 ret = sched_getaffinity(pid, mask);
5530 if (ret == 0) {
5531 size_t retlen = min_t(size_t, len, cpumask_size());
5532
5533 if (copy_to_user(user_mask_ptr, mask, retlen))
5534 ret = -EFAULT;
5535 else
5536 ret = retlen;
5537 }
5538 free_cpumask_var(mask);
5539
5540 return ret;
5541 }
5542
5543 /**
5544 * sys_sched_yield - yield the current processor to other threads.
5545 *
5546 * This function yields the current CPU to other tasks. If there are no
5547 * other threads running on this CPU then this function will return.
5548 */
5549 SYSCALL_DEFINE0(sched_yield)
5550 {
5551 struct rq *rq = this_rq_lock();
5552
5553 schedstat_inc(rq, yld_count);
5554 current->sched_class->yield_task(rq);
5555
5556 /*
5557 * Since we are going to call schedule() anyway, there's
5558 * no need to preempt or enable interrupts:
5559 */
5560 __release(rq->lock);
5561 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5562 do_raw_spin_unlock(&rq->lock);
5563 preempt_enable_no_resched();
5564
5565 schedule();
5566
5567 return 0;
5568 }
5569
5570 static inline int should_resched(void)
5571 {
5572 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5573 }
5574
5575 static void __cond_resched(void)
5576 {
5577 add_preempt_count(PREEMPT_ACTIVE);
5578 __schedule();
5579 sub_preempt_count(PREEMPT_ACTIVE);
5580 }
5581
5582 int __sched _cond_resched(void)
5583 {
5584 if (should_resched()) {
5585 __cond_resched();
5586 return 1;
5587 }
5588 return 0;
5589 }
5590 EXPORT_SYMBOL(_cond_resched);
5591
5592 /*
5593 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5594 * call schedule, and on return reacquire the lock.
5595 *
5596 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5597 * operations here to prevent schedule() from being called twice (once via
5598 * spin_unlock(), once by hand).
5599 */
5600 int __cond_resched_lock(spinlock_t *lock)
5601 {
5602 int resched = should_resched();
5603 int ret = 0;
5604
5605 lockdep_assert_held(lock);
5606
5607 if (spin_needbreak(lock) || resched) {
5608 spin_unlock(lock);
5609 if (resched)
5610 __cond_resched();
5611 else
5612 cpu_relax();
5613 ret = 1;
5614 spin_lock(lock);
5615 }
5616 return ret;
5617 }
5618 EXPORT_SYMBOL(__cond_resched_lock);
5619
5620 int __sched __cond_resched_softirq(void)
5621 {
5622 BUG_ON(!in_softirq());
5623
5624 if (should_resched()) {
5625 local_bh_enable();
5626 __cond_resched();
5627 local_bh_disable();
5628 return 1;
5629 }
5630 return 0;
5631 }
5632 EXPORT_SYMBOL(__cond_resched_softirq);
5633
5634 /**
5635 * yield - yield the current processor to other threads.
5636 *
5637 * This is a shortcut for kernel-space yielding - it marks the
5638 * thread runnable and calls sys_sched_yield().
5639 */
5640 void __sched yield(void)
5641 {
5642 set_current_state(TASK_RUNNING);
5643 sys_sched_yield();
5644 }
5645 EXPORT_SYMBOL(yield);
5646
5647 /**
5648 * yield_to - yield the current processor to another thread in
5649 * your thread group, or accelerate that thread toward the
5650 * processor it's on.
5651 * @p: target task
5652 * @preempt: whether task preemption is allowed or not
5653 *
5654 * It's the caller's job to ensure that the target task struct
5655 * can't go away on us before we can do any checks.
5656 *
5657 * Returns true if we indeed boosted the target task.
5658 */
5659 bool __sched yield_to(struct task_struct *p, bool preempt)
5660 {
5661 struct task_struct *curr = current;
5662 struct rq *rq, *p_rq;
5663 unsigned long flags;
5664 bool yielded = 0;
5665
5666 local_irq_save(flags);
5667 rq = this_rq();
5668
5669 again:
5670 p_rq = task_rq(p);
5671 double_rq_lock(rq, p_rq);
5672 while (task_rq(p) != p_rq) {
5673 double_rq_unlock(rq, p_rq);
5674 goto again;
5675 }
5676
5677 if (!curr->sched_class->yield_to_task)
5678 goto out;
5679
5680 if (curr->sched_class != p->sched_class)
5681 goto out;
5682
5683 if (task_running(p_rq, p) || p->state)
5684 goto out;
5685
5686 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5687 if (yielded) {
5688 schedstat_inc(rq, yld_count);
5689 /*
5690 * Make p's CPU reschedule; pick_next_entity takes care of
5691 * fairness.
5692 */
5693 if (preempt && rq != p_rq)
5694 resched_task(p_rq->curr);
5695 }
5696
5697 out:
5698 double_rq_unlock(rq, p_rq);
5699 local_irq_restore(flags);
5700
5701 if (yielded)
5702 schedule();
5703
5704 return yielded;
5705 }
5706 EXPORT_SYMBOL_GPL(yield_to);
5707
5708 /*
5709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5710 * that process accounting knows that this is a task in IO wait state.
5711 */
5712 void __sched io_schedule(void)
5713 {
5714 struct rq *rq = raw_rq();
5715
5716 delayacct_blkio_start();
5717 atomic_inc(&rq->nr_iowait);
5718 blk_flush_plug(current);
5719 current->in_iowait = 1;
5720 schedule();
5721 current->in_iowait = 0;
5722 atomic_dec(&rq->nr_iowait);
5723 delayacct_blkio_end();
5724 }
5725 EXPORT_SYMBOL(io_schedule);
5726
5727 long __sched io_schedule_timeout(long timeout)
5728 {
5729 struct rq *rq = raw_rq();
5730 long ret;
5731
5732 delayacct_blkio_start();
5733 atomic_inc(&rq->nr_iowait);
5734 blk_flush_plug(current);
5735 current->in_iowait = 1;
5736 ret = schedule_timeout(timeout);
5737 current->in_iowait = 0;
5738 atomic_dec(&rq->nr_iowait);
5739 delayacct_blkio_end();
5740 return ret;
5741 }
5742
5743 /**
5744 * sys_sched_get_priority_max - return maximum RT priority.
5745 * @policy: scheduling class.
5746 *
5747 * this syscall returns the maximum rt_priority that can be used
5748 * by a given scheduling class.
5749 */
5750 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5751 {
5752 int ret = -EINVAL;
5753
5754 switch (policy) {
5755 case SCHED_FIFO:
5756 case SCHED_RR:
5757 ret = MAX_USER_RT_PRIO-1;
5758 break;
5759 case SCHED_NORMAL:
5760 case SCHED_BATCH:
5761 case SCHED_IDLE:
5762 ret = 0;
5763 break;
5764 }
5765 return ret;
5766 }
5767
5768 /**
5769 * sys_sched_get_priority_min - return minimum RT priority.
5770 * @policy: scheduling class.
5771 *
5772 * this syscall returns the minimum rt_priority that can be used
5773 * by a given scheduling class.
5774 */
5775 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5776 {
5777 int ret = -EINVAL;
5778
5779 switch (policy) {
5780 case SCHED_FIFO:
5781 case SCHED_RR:
5782 ret = 1;
5783 break;
5784 case SCHED_NORMAL:
5785 case SCHED_BATCH:
5786 case SCHED_IDLE:
5787 ret = 0;
5788 }
5789 return ret;
5790 }
5791
5792 /**
5793 * sys_sched_rr_get_interval - return the default timeslice of a process.
5794 * @pid: pid of the process.
5795 * @interval: userspace pointer to the timeslice value.
5796 *
5797 * this syscall writes the default timeslice value of a given process
5798 * into the user-space timespec buffer. A value of '0' means infinity.
5799 */
5800 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5801 struct timespec __user *, interval)
5802 {
5803 struct task_struct *p;
5804 unsigned int time_slice;
5805 unsigned long flags;
5806 struct rq *rq;
5807 int retval;
5808 struct timespec t;
5809
5810 if (pid < 0)
5811 return -EINVAL;
5812
5813 retval = -ESRCH;
5814 rcu_read_lock();
5815 p = find_process_by_pid(pid);
5816 if (!p)
5817 goto out_unlock;
5818
5819 retval = security_task_getscheduler(p);
5820 if (retval)
5821 goto out_unlock;
5822
5823 rq = task_rq_lock(p, &flags);
5824 time_slice = p->sched_class->get_rr_interval(rq, p);
5825 task_rq_unlock(rq, p, &flags);
5826
5827 rcu_read_unlock();
5828 jiffies_to_timespec(time_slice, &t);
5829 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5830 return retval;
5831
5832 out_unlock:
5833 rcu_read_unlock();
5834 return retval;
5835 }
5836
5837 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5838
5839 void sched_show_task(struct task_struct *p)
5840 {
5841 unsigned long free = 0;
5842 unsigned state;
5843
5844 state = p->state ? __ffs(p->state) + 1 : 0;
5845 printk(KERN_INFO "%-15.15s %c", p->comm,
5846 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5847 #if BITS_PER_LONG == 32
5848 if (state == TASK_RUNNING)
5849 printk(KERN_CONT " running ");
5850 else
5851 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5852 #else
5853 if (state == TASK_RUNNING)
5854 printk(KERN_CONT " running task ");
5855 else
5856 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5857 #endif
5858 #ifdef CONFIG_DEBUG_STACK_USAGE
5859 free = stack_not_used(p);
5860 #endif
5861 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5862 task_pid_nr(p), task_pid_nr(p->real_parent),
5863 (unsigned long)task_thread_info(p)->flags);
5864
5865 show_stack(p, NULL);
5866 }
5867
5868 void show_state_filter(unsigned long state_filter)
5869 {
5870 struct task_struct *g, *p;
5871
5872 #if BITS_PER_LONG == 32
5873 printk(KERN_INFO
5874 " task PC stack pid father\n");
5875 #else
5876 printk(KERN_INFO
5877 " task PC stack pid father\n");
5878 #endif
5879 read_lock(&tasklist_lock);
5880 do_each_thread(g, p) {
5881 /*
5882 * reset the NMI-timeout, listing all files on a slow
5883 * console might take a lot of time:
5884 */
5885 touch_nmi_watchdog();
5886 if (!state_filter || (p->state & state_filter))
5887 sched_show_task(p);
5888 } while_each_thread(g, p);
5889
5890 touch_all_softlockup_watchdogs();
5891
5892 #ifdef CONFIG_SCHED_DEBUG
5893 sysrq_sched_debug_show();
5894 #endif
5895 read_unlock(&tasklist_lock);
5896 /*
5897 * Only show locks if all tasks are dumped:
5898 */
5899 if (!state_filter)
5900 debug_show_all_locks();
5901 }
5902
5903 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5904 {
5905 idle->sched_class = &idle_sched_class;
5906 }
5907
5908 /**
5909 * init_idle - set up an idle thread for a given CPU
5910 * @idle: task in question
5911 * @cpu: cpu the idle task belongs to
5912 *
5913 * NOTE: this function does not set the idle thread's NEED_RESCHED
5914 * flag, to make booting more robust.
5915 */
5916 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5917 {
5918 struct rq *rq = cpu_rq(cpu);
5919 unsigned long flags;
5920
5921 raw_spin_lock_irqsave(&rq->lock, flags);
5922
5923 __sched_fork(idle);
5924 idle->state = TASK_RUNNING;
5925 idle->se.exec_start = sched_clock();
5926
5927 do_set_cpus_allowed(idle, cpumask_of(cpu));
5928 /*
5929 * We're having a chicken and egg problem, even though we are
5930 * holding rq->lock, the cpu isn't yet set to this cpu so the
5931 * lockdep check in task_group() will fail.
5932 *
5933 * Similar case to sched_fork(). / Alternatively we could
5934 * use task_rq_lock() here and obtain the other rq->lock.
5935 *
5936 * Silence PROVE_RCU
5937 */
5938 rcu_read_lock();
5939 __set_task_cpu(idle, cpu);
5940 rcu_read_unlock();
5941
5942 rq->curr = rq->idle = idle;
5943 #if defined(CONFIG_SMP)
5944 idle->on_cpu = 1;
5945 #endif
5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
5947
5948 /* Set the preempt count _outside_ the spinlocks! */
5949 task_thread_info(idle)->preempt_count = 0;
5950
5951 /*
5952 * The idle tasks have their own, simple scheduling class:
5953 */
5954 idle->sched_class = &idle_sched_class;
5955 ftrace_graph_init_idle_task(idle, cpu);
5956 }
5957
5958 /*
5959 * Increase the granularity value when there are more CPUs,
5960 * because with more CPUs the 'effective latency' as visible
5961 * to users decreases. But the relationship is not linear,
5962 * so pick a second-best guess by going with the log2 of the
5963 * number of CPUs.
5964 *
5965 * This idea comes from the SD scheduler of Con Kolivas:
5966 */
5967 static int get_update_sysctl_factor(void)
5968 {
5969 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5970 unsigned int factor;
5971
5972 switch (sysctl_sched_tunable_scaling) {
5973 case SCHED_TUNABLESCALING_NONE:
5974 factor = 1;
5975 break;
5976 case SCHED_TUNABLESCALING_LINEAR:
5977 factor = cpus;
5978 break;
5979 case SCHED_TUNABLESCALING_LOG:
5980 default:
5981 factor = 1 + ilog2(cpus);
5982 break;
5983 }
5984
5985 return factor;
5986 }
5987
5988 static void update_sysctl(void)
5989 {
5990 unsigned int factor = get_update_sysctl_factor();
5991
5992 #define SET_SYSCTL(name) \
5993 (sysctl_##name = (factor) * normalized_sysctl_##name)
5994 SET_SYSCTL(sched_min_granularity);
5995 SET_SYSCTL(sched_latency);
5996 SET_SYSCTL(sched_wakeup_granularity);
5997 #undef SET_SYSCTL
5998 }
5999
6000 static inline void sched_init_granularity(void)
6001 {
6002 update_sysctl();
6003 }
6004
6005 #ifdef CONFIG_SMP
6006 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6007 {
6008 if (p->sched_class && p->sched_class->set_cpus_allowed)
6009 p->sched_class->set_cpus_allowed(p, new_mask);
6010 else {
6011 cpumask_copy(&p->cpus_allowed, new_mask);
6012 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6013 }
6014 }
6015
6016 /*
6017 * This is how migration works:
6018 *
6019 * 1) we invoke migration_cpu_stop() on the target CPU using
6020 * stop_one_cpu().
6021 * 2) stopper starts to run (implicitly forcing the migrated thread
6022 * off the CPU)
6023 * 3) it checks whether the migrated task is still in the wrong runqueue.
6024 * 4) if it's in the wrong runqueue then the migration thread removes
6025 * it and puts it into the right queue.
6026 * 5) stopper completes and stop_one_cpu() returns and the migration
6027 * is done.
6028 */
6029
6030 /*
6031 * Change a given task's CPU affinity. Migrate the thread to a
6032 * proper CPU and schedule it away if the CPU it's executing on
6033 * is removed from the allowed bitmask.
6034 *
6035 * NOTE: the caller must have a valid reference to the task, the
6036 * task must not exit() & deallocate itself prematurely. The
6037 * call is not atomic; no spinlocks may be held.
6038 */
6039 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6040 {
6041 unsigned long flags;
6042 struct rq *rq;
6043 unsigned int dest_cpu;
6044 int ret = 0;
6045
6046 rq = task_rq_lock(p, &flags);
6047
6048 if (cpumask_equal(&p->cpus_allowed, new_mask))
6049 goto out;
6050
6051 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6052 ret = -EINVAL;
6053 goto out;
6054 }
6055
6056 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6057 ret = -EINVAL;
6058 goto out;
6059 }
6060
6061 do_set_cpus_allowed(p, new_mask);
6062
6063 /* Can the task run on the task's current CPU? If so, we're done */
6064 if (cpumask_test_cpu(task_cpu(p), new_mask))
6065 goto out;
6066
6067 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6068 if (p->on_rq) {
6069 struct migration_arg arg = { p, dest_cpu };
6070 /* Need help from migration thread: drop lock and wait. */
6071 task_rq_unlock(rq, p, &flags);
6072 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6073 tlb_migrate_finish(p->mm);
6074 return 0;
6075 }
6076 out:
6077 task_rq_unlock(rq, p, &flags);
6078
6079 return ret;
6080 }
6081 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6082
6083 /*
6084 * Move (not current) task off this cpu, onto dest cpu. We're doing
6085 * this because either it can't run here any more (set_cpus_allowed()
6086 * away from this CPU, or CPU going down), or because we're
6087 * attempting to rebalance this task on exec (sched_exec).
6088 *
6089 * So we race with normal scheduler movements, but that's OK, as long
6090 * as the task is no longer on this CPU.
6091 *
6092 * Returns non-zero if task was successfully migrated.
6093 */
6094 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6095 {
6096 struct rq *rq_dest, *rq_src;
6097 int ret = 0;
6098
6099 if (unlikely(!cpu_active(dest_cpu)))
6100 return ret;
6101
6102 rq_src = cpu_rq(src_cpu);
6103 rq_dest = cpu_rq(dest_cpu);
6104
6105 raw_spin_lock(&p->pi_lock);
6106 double_rq_lock(rq_src, rq_dest);
6107 /* Already moved. */
6108 if (task_cpu(p) != src_cpu)
6109 goto done;
6110 /* Affinity changed (again). */
6111 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6112 goto fail;
6113
6114 /*
6115 * If we're not on a rq, the next wake-up will ensure we're
6116 * placed properly.
6117 */
6118 if (p->on_rq) {
6119 deactivate_task(rq_src, p, 0);
6120 set_task_cpu(p, dest_cpu);
6121 activate_task(rq_dest, p, 0);
6122 check_preempt_curr(rq_dest, p, 0);
6123 }
6124 done:
6125 ret = 1;
6126 fail:
6127 double_rq_unlock(rq_src, rq_dest);
6128 raw_spin_unlock(&p->pi_lock);
6129 return ret;
6130 }
6131
6132 /*
6133 * migration_cpu_stop - this will be executed by a highprio stopper thread
6134 * and performs thread migration by bumping thread off CPU then
6135 * 'pushing' onto another runqueue.
6136 */
6137 static int migration_cpu_stop(void *data)
6138 {
6139 struct migration_arg *arg = data;
6140
6141 /*
6142 * The original target cpu might have gone down and we might
6143 * be on another cpu but it doesn't matter.
6144 */
6145 local_irq_disable();
6146 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6147 local_irq_enable();
6148 return 0;
6149 }
6150
6151 #ifdef CONFIG_HOTPLUG_CPU
6152
6153 /*
6154 * Ensures that the idle task is using init_mm right before its cpu goes
6155 * offline.
6156 */
6157 void idle_task_exit(void)
6158 {
6159 struct mm_struct *mm = current->active_mm;
6160
6161 BUG_ON(cpu_online(smp_processor_id()));
6162
6163 if (mm != &init_mm)
6164 switch_mm(mm, &init_mm, current);
6165 mmdrop(mm);
6166 }
6167
6168 /*
6169 * While a dead CPU has no uninterruptible tasks queued at this point,
6170 * it might still have a nonzero ->nr_uninterruptible counter, because
6171 * for performance reasons the counter is not stricly tracking tasks to
6172 * their home CPUs. So we just add the counter to another CPU's counter,
6173 * to keep the global sum constant after CPU-down:
6174 */
6175 static void migrate_nr_uninterruptible(struct rq *rq_src)
6176 {
6177 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6178
6179 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6180 rq_src->nr_uninterruptible = 0;
6181 }
6182
6183 /*
6184 * remove the tasks which were accounted by rq from calc_load_tasks.
6185 */
6186 static void calc_global_load_remove(struct rq *rq)
6187 {
6188 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6189 rq->calc_load_active = 0;
6190 }
6191
6192 /*
6193 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6194 * try_to_wake_up()->select_task_rq().
6195 *
6196 * Called with rq->lock held even though we'er in stop_machine() and
6197 * there's no concurrency possible, we hold the required locks anyway
6198 * because of lock validation efforts.
6199 */
6200 static void migrate_tasks(unsigned int dead_cpu)
6201 {
6202 struct rq *rq = cpu_rq(dead_cpu);
6203 struct task_struct *next, *stop = rq->stop;
6204 int dest_cpu;
6205
6206 /*
6207 * Fudge the rq selection such that the below task selection loop
6208 * doesn't get stuck on the currently eligible stop task.
6209 *
6210 * We're currently inside stop_machine() and the rq is either stuck
6211 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6212 * either way we should never end up calling schedule() until we're
6213 * done here.
6214 */
6215 rq->stop = NULL;
6216
6217 for ( ; ; ) {
6218 /*
6219 * There's this thread running, bail when that's the only
6220 * remaining thread.
6221 */
6222 if (rq->nr_running == 1)
6223 break;
6224
6225 next = pick_next_task(rq);
6226 BUG_ON(!next);
6227 next->sched_class->put_prev_task(rq, next);
6228
6229 /* Find suitable destination for @next, with force if needed. */
6230 dest_cpu = select_fallback_rq(dead_cpu, next);
6231 raw_spin_unlock(&rq->lock);
6232
6233 __migrate_task(next, dead_cpu, dest_cpu);
6234
6235 raw_spin_lock(&rq->lock);
6236 }
6237
6238 rq->stop = stop;
6239 }
6240
6241 #endif /* CONFIG_HOTPLUG_CPU */
6242
6243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6244
6245 static struct ctl_table sd_ctl_dir[] = {
6246 {
6247 .procname = "sched_domain",
6248 .mode = 0555,
6249 },
6250 {}
6251 };
6252
6253 static struct ctl_table sd_ctl_root[] = {
6254 {
6255 .procname = "kernel",
6256 .mode = 0555,
6257 .child = sd_ctl_dir,
6258 },
6259 {}
6260 };
6261
6262 static struct ctl_table *sd_alloc_ctl_entry(int n)
6263 {
6264 struct ctl_table *entry =
6265 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6266
6267 return entry;
6268 }
6269
6270 static void sd_free_ctl_entry(struct ctl_table **tablep)
6271 {
6272 struct ctl_table *entry;
6273
6274 /*
6275 * In the intermediate directories, both the child directory and
6276 * procname are dynamically allocated and could fail but the mode
6277 * will always be set. In the lowest directory the names are
6278 * static strings and all have proc handlers.
6279 */
6280 for (entry = *tablep; entry->mode; entry++) {
6281 if (entry->child)
6282 sd_free_ctl_entry(&entry->child);
6283 if (entry->proc_handler == NULL)
6284 kfree(entry->procname);
6285 }
6286
6287 kfree(*tablep);
6288 *tablep = NULL;
6289 }
6290
6291 static void
6292 set_table_entry(struct ctl_table *entry,
6293 const char *procname, void *data, int maxlen,
6294 mode_t mode, proc_handler *proc_handler)
6295 {
6296 entry->procname = procname;
6297 entry->data = data;
6298 entry->maxlen = maxlen;
6299 entry->mode = mode;
6300 entry->proc_handler = proc_handler;
6301 }
6302
6303 static struct ctl_table *
6304 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6305 {
6306 struct ctl_table *table = sd_alloc_ctl_entry(13);
6307
6308 if (table == NULL)
6309 return NULL;
6310
6311 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6312 sizeof(long), 0644, proc_doulongvec_minmax);
6313 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6314 sizeof(long), 0644, proc_doulongvec_minmax);
6315 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6316 sizeof(int), 0644, proc_dointvec_minmax);
6317 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6318 sizeof(int), 0644, proc_dointvec_minmax);
6319 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6320 sizeof(int), 0644, proc_dointvec_minmax);
6321 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6322 sizeof(int), 0644, proc_dointvec_minmax);
6323 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6324 sizeof(int), 0644, proc_dointvec_minmax);
6325 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6326 sizeof(int), 0644, proc_dointvec_minmax);
6327 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6328 sizeof(int), 0644, proc_dointvec_minmax);
6329 set_table_entry(&table[9], "cache_nice_tries",
6330 &sd->cache_nice_tries,
6331 sizeof(int), 0644, proc_dointvec_minmax);
6332 set_table_entry(&table[10], "flags", &sd->flags,
6333 sizeof(int), 0644, proc_dointvec_minmax);
6334 set_table_entry(&table[11], "name", sd->name,
6335 CORENAME_MAX_SIZE, 0444, proc_dostring);
6336 /* &table[12] is terminator */
6337
6338 return table;
6339 }
6340
6341 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6342 {
6343 struct ctl_table *entry, *table;
6344 struct sched_domain *sd;
6345 int domain_num = 0, i;
6346 char buf[32];
6347
6348 for_each_domain(cpu, sd)
6349 domain_num++;
6350 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6351 if (table == NULL)
6352 return NULL;
6353
6354 i = 0;
6355 for_each_domain(cpu, sd) {
6356 snprintf(buf, 32, "domain%d", i);
6357 entry->procname = kstrdup(buf, GFP_KERNEL);
6358 entry->mode = 0555;
6359 entry->child = sd_alloc_ctl_domain_table(sd);
6360 entry++;
6361 i++;
6362 }
6363 return table;
6364 }
6365
6366 static struct ctl_table_header *sd_sysctl_header;
6367 static void register_sched_domain_sysctl(void)
6368 {
6369 int i, cpu_num = num_possible_cpus();
6370 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6371 char buf[32];
6372
6373 WARN_ON(sd_ctl_dir[0].child);
6374 sd_ctl_dir[0].child = entry;
6375
6376 if (entry == NULL)
6377 return;
6378
6379 for_each_possible_cpu(i) {
6380 snprintf(buf, 32, "cpu%d", i);
6381 entry->procname = kstrdup(buf, GFP_KERNEL);
6382 entry->mode = 0555;
6383 entry->child = sd_alloc_ctl_cpu_table(i);
6384 entry++;
6385 }
6386
6387 WARN_ON(sd_sysctl_header);
6388 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6389 }
6390
6391 /* may be called multiple times per register */
6392 static void unregister_sched_domain_sysctl(void)
6393 {
6394 if (sd_sysctl_header)
6395 unregister_sysctl_table(sd_sysctl_header);
6396 sd_sysctl_header = NULL;
6397 if (sd_ctl_dir[0].child)
6398 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6399 }
6400 #else
6401 static void register_sched_domain_sysctl(void)
6402 {
6403 }
6404 static void unregister_sched_domain_sysctl(void)
6405 {
6406 }
6407 #endif
6408
6409 static void set_rq_online(struct rq *rq)
6410 {
6411 if (!rq->online) {
6412 const struct sched_class *class;
6413
6414 cpumask_set_cpu(rq->cpu, rq->rd->online);
6415 rq->online = 1;
6416
6417 for_each_class(class) {
6418 if (class->rq_online)
6419 class->rq_online(rq);
6420 }
6421 }
6422 }
6423
6424 static void set_rq_offline(struct rq *rq)
6425 {
6426 if (rq->online) {
6427 const struct sched_class *class;
6428
6429 for_each_class(class) {
6430 if (class->rq_offline)
6431 class->rq_offline(rq);
6432 }
6433
6434 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6435 rq->online = 0;
6436 }
6437 }
6438
6439 /*
6440 * migration_call - callback that gets triggered when a CPU is added.
6441 * Here we can start up the necessary migration thread for the new CPU.
6442 */
6443 static int __cpuinit
6444 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6445 {
6446 int cpu = (long)hcpu;
6447 unsigned long flags;
6448 struct rq *rq = cpu_rq(cpu);
6449
6450 switch (action & ~CPU_TASKS_FROZEN) {
6451
6452 case CPU_UP_PREPARE:
6453 rq->calc_load_update = calc_load_update;
6454 break;
6455
6456 case CPU_ONLINE:
6457 /* Update our root-domain */
6458 raw_spin_lock_irqsave(&rq->lock, flags);
6459 if (rq->rd) {
6460 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6461
6462 set_rq_online(rq);
6463 }
6464 raw_spin_unlock_irqrestore(&rq->lock, flags);
6465 break;
6466
6467 #ifdef CONFIG_HOTPLUG_CPU
6468 case CPU_DYING:
6469 sched_ttwu_pending();
6470 /* Update our root-domain */
6471 raw_spin_lock_irqsave(&rq->lock, flags);
6472 if (rq->rd) {
6473 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6474 set_rq_offline(rq);
6475 }
6476 migrate_tasks(cpu);
6477 BUG_ON(rq->nr_running != 1); /* the migration thread */
6478 raw_spin_unlock_irqrestore(&rq->lock, flags);
6479
6480 migrate_nr_uninterruptible(rq);
6481 calc_global_load_remove(rq);
6482 break;
6483 #endif
6484 }
6485
6486 update_max_interval();
6487
6488 return NOTIFY_OK;
6489 }
6490
6491 /*
6492 * Register at high priority so that task migration (migrate_all_tasks)
6493 * happens before everything else. This has to be lower priority than
6494 * the notifier in the perf_event subsystem, though.
6495 */
6496 static struct notifier_block __cpuinitdata migration_notifier = {
6497 .notifier_call = migration_call,
6498 .priority = CPU_PRI_MIGRATION,
6499 };
6500
6501 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6502 unsigned long action, void *hcpu)
6503 {
6504 switch (action & ~CPU_TASKS_FROZEN) {
6505 case CPU_ONLINE:
6506 case CPU_DOWN_FAILED:
6507 set_cpu_active((long)hcpu, true);
6508 return NOTIFY_OK;
6509 default:
6510 return NOTIFY_DONE;
6511 }
6512 }
6513
6514 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6515 unsigned long action, void *hcpu)
6516 {
6517 switch (action & ~CPU_TASKS_FROZEN) {
6518 case CPU_DOWN_PREPARE:
6519 set_cpu_active((long)hcpu, false);
6520 return NOTIFY_OK;
6521 default:
6522 return NOTIFY_DONE;
6523 }
6524 }
6525
6526 static int __init migration_init(void)
6527 {
6528 void *cpu = (void *)(long)smp_processor_id();
6529 int err;
6530
6531 /* Initialize migration for the boot CPU */
6532 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6533 BUG_ON(err == NOTIFY_BAD);
6534 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6535 register_cpu_notifier(&migration_notifier);
6536
6537 /* Register cpu active notifiers */
6538 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6539 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6540
6541 return 0;
6542 }
6543 early_initcall(migration_init);
6544 #endif
6545
6546 #ifdef CONFIG_SMP
6547
6548 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6549
6550 #ifdef CONFIG_SCHED_DEBUG
6551
6552 static __read_mostly int sched_domain_debug_enabled;
6553
6554 static int __init sched_domain_debug_setup(char *str)
6555 {
6556 sched_domain_debug_enabled = 1;
6557
6558 return 0;
6559 }
6560 early_param("sched_debug", sched_domain_debug_setup);
6561
6562 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6563 struct cpumask *groupmask)
6564 {
6565 struct sched_group *group = sd->groups;
6566 char str[256];
6567
6568 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6569 cpumask_clear(groupmask);
6570
6571 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6572
6573 if (!(sd->flags & SD_LOAD_BALANCE)) {
6574 printk("does not load-balance\n");
6575 if (sd->parent)
6576 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6577 " has parent");
6578 return -1;
6579 }
6580
6581 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6582
6583 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6584 printk(KERN_ERR "ERROR: domain->span does not contain "
6585 "CPU%d\n", cpu);
6586 }
6587 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6588 printk(KERN_ERR "ERROR: domain->groups does not contain"
6589 " CPU%d\n", cpu);
6590 }
6591
6592 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6593 do {
6594 if (!group) {
6595 printk("\n");
6596 printk(KERN_ERR "ERROR: group is NULL\n");
6597 break;
6598 }
6599
6600 if (!group->sgp->power) {
6601 printk(KERN_CONT "\n");
6602 printk(KERN_ERR "ERROR: domain->cpu_power not "
6603 "set\n");
6604 break;
6605 }
6606
6607 if (!cpumask_weight(sched_group_cpus(group))) {
6608 printk(KERN_CONT "\n");
6609 printk(KERN_ERR "ERROR: empty group\n");
6610 break;
6611 }
6612
6613 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6614 printk(KERN_CONT "\n");
6615 printk(KERN_ERR "ERROR: repeated CPUs\n");
6616 break;
6617 }
6618
6619 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6620
6621 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6622
6623 printk(KERN_CONT " %s", str);
6624 if (group->sgp->power != SCHED_POWER_SCALE) {
6625 printk(KERN_CONT " (cpu_power = %d)",
6626 group->sgp->power);
6627 }
6628
6629 group = group->next;
6630 } while (group != sd->groups);
6631 printk(KERN_CONT "\n");
6632
6633 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6634 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6635
6636 if (sd->parent &&
6637 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6638 printk(KERN_ERR "ERROR: parent span is not a superset "
6639 "of domain->span\n");
6640 return 0;
6641 }
6642
6643 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6644 {
6645 int level = 0;
6646
6647 if (!sched_domain_debug_enabled)
6648 return;
6649
6650 if (!sd) {
6651 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6652 return;
6653 }
6654
6655 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6656
6657 for (;;) {
6658 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6659 break;
6660 level++;
6661 sd = sd->parent;
6662 if (!sd)
6663 break;
6664 }
6665 }
6666 #else /* !CONFIG_SCHED_DEBUG */
6667 # define sched_domain_debug(sd, cpu) do { } while (0)
6668 #endif /* CONFIG_SCHED_DEBUG */
6669
6670 static int sd_degenerate(struct sched_domain *sd)
6671 {
6672 if (cpumask_weight(sched_domain_span(sd)) == 1)
6673 return 1;
6674
6675 /* Following flags need at least 2 groups */
6676 if (sd->flags & (SD_LOAD_BALANCE |
6677 SD_BALANCE_NEWIDLE |
6678 SD_BALANCE_FORK |
6679 SD_BALANCE_EXEC |
6680 SD_SHARE_CPUPOWER |
6681 SD_SHARE_PKG_RESOURCES)) {
6682 if (sd->groups != sd->groups->next)
6683 return 0;
6684 }
6685
6686 /* Following flags don't use groups */
6687 if (sd->flags & (SD_WAKE_AFFINE))
6688 return 0;
6689
6690 return 1;
6691 }
6692
6693 static int
6694 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6695 {
6696 unsigned long cflags = sd->flags, pflags = parent->flags;
6697
6698 if (sd_degenerate(parent))
6699 return 1;
6700
6701 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6702 return 0;
6703
6704 /* Flags needing groups don't count if only 1 group in parent */
6705 if (parent->groups == parent->groups->next) {
6706 pflags &= ~(SD_LOAD_BALANCE |
6707 SD_BALANCE_NEWIDLE |
6708 SD_BALANCE_FORK |
6709 SD_BALANCE_EXEC |
6710 SD_SHARE_CPUPOWER |
6711 SD_SHARE_PKG_RESOURCES);
6712 if (nr_node_ids == 1)
6713 pflags &= ~SD_SERIALIZE;
6714 }
6715 if (~cflags & pflags)
6716 return 0;
6717
6718 return 1;
6719 }
6720
6721 static void free_rootdomain(struct rcu_head *rcu)
6722 {
6723 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6724
6725 cpupri_cleanup(&rd->cpupri);
6726 free_cpumask_var(rd->rto_mask);
6727 free_cpumask_var(rd->online);
6728 free_cpumask_var(rd->span);
6729 kfree(rd);
6730 }
6731
6732 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6733 {
6734 struct root_domain *old_rd = NULL;
6735 unsigned long flags;
6736
6737 raw_spin_lock_irqsave(&rq->lock, flags);
6738
6739 if (rq->rd) {
6740 old_rd = rq->rd;
6741
6742 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6743 set_rq_offline(rq);
6744
6745 cpumask_clear_cpu(rq->cpu, old_rd->span);
6746
6747 /*
6748 * If we dont want to free the old_rt yet then
6749 * set old_rd to NULL to skip the freeing later
6750 * in this function:
6751 */
6752 if (!atomic_dec_and_test(&old_rd->refcount))
6753 old_rd = NULL;
6754 }
6755
6756 atomic_inc(&rd->refcount);
6757 rq->rd = rd;
6758
6759 cpumask_set_cpu(rq->cpu, rd->span);
6760 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6761 set_rq_online(rq);
6762
6763 raw_spin_unlock_irqrestore(&rq->lock, flags);
6764
6765 if (old_rd)
6766 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6767 }
6768
6769 static int init_rootdomain(struct root_domain *rd)
6770 {
6771 memset(rd, 0, sizeof(*rd));
6772
6773 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6774 goto out;
6775 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6776 goto free_span;
6777 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6778 goto free_online;
6779
6780 if (cpupri_init(&rd->cpupri) != 0)
6781 goto free_rto_mask;
6782 return 0;
6783
6784 free_rto_mask:
6785 free_cpumask_var(rd->rto_mask);
6786 free_online:
6787 free_cpumask_var(rd->online);
6788 free_span:
6789 free_cpumask_var(rd->span);
6790 out:
6791 return -ENOMEM;
6792 }
6793
6794 static void init_defrootdomain(void)
6795 {
6796 init_rootdomain(&def_root_domain);
6797
6798 atomic_set(&def_root_domain.refcount, 1);
6799 }
6800
6801 static struct root_domain *alloc_rootdomain(void)
6802 {
6803 struct root_domain *rd;
6804
6805 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6806 if (!rd)
6807 return NULL;
6808
6809 if (init_rootdomain(rd) != 0) {
6810 kfree(rd);
6811 return NULL;
6812 }
6813
6814 return rd;
6815 }
6816
6817 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6818 {
6819 struct sched_group *tmp, *first;
6820
6821 if (!sg)
6822 return;
6823
6824 first = sg;
6825 do {
6826 tmp = sg->next;
6827
6828 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6829 kfree(sg->sgp);
6830
6831 kfree(sg);
6832 sg = tmp;
6833 } while (sg != first);
6834 }
6835
6836 static void free_sched_domain(struct rcu_head *rcu)
6837 {
6838 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6839
6840 /*
6841 * If its an overlapping domain it has private groups, iterate and
6842 * nuke them all.
6843 */
6844 if (sd->flags & SD_OVERLAP) {
6845 free_sched_groups(sd->groups, 1);
6846 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6847 kfree(sd->groups->sgp);
6848 kfree(sd->groups);
6849 }
6850 kfree(sd);
6851 }
6852
6853 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6854 {
6855 call_rcu(&sd->rcu, free_sched_domain);
6856 }
6857
6858 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6859 {
6860 for (; sd; sd = sd->parent)
6861 destroy_sched_domain(sd, cpu);
6862 }
6863
6864 /*
6865 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6866 * hold the hotplug lock.
6867 */
6868 static void
6869 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6870 {
6871 struct rq *rq = cpu_rq(cpu);
6872 struct sched_domain *tmp;
6873
6874 /* Remove the sched domains which do not contribute to scheduling. */
6875 for (tmp = sd; tmp; ) {
6876 struct sched_domain *parent = tmp->parent;
6877 if (!parent)
6878 break;
6879
6880 if (sd_parent_degenerate(tmp, parent)) {
6881 tmp->parent = parent->parent;
6882 if (parent->parent)
6883 parent->parent->child = tmp;
6884 destroy_sched_domain(parent, cpu);
6885 } else
6886 tmp = tmp->parent;
6887 }
6888
6889 if (sd && sd_degenerate(sd)) {
6890 tmp = sd;
6891 sd = sd->parent;
6892 destroy_sched_domain(tmp, cpu);
6893 if (sd)
6894 sd->child = NULL;
6895 }
6896
6897 sched_domain_debug(sd, cpu);
6898
6899 rq_attach_root(rq, rd);
6900 tmp = rq->sd;
6901 rcu_assign_pointer(rq->sd, sd);
6902 destroy_sched_domains(tmp, cpu);
6903 }
6904
6905 /* cpus with isolated domains */
6906 static cpumask_var_t cpu_isolated_map;
6907
6908 /* Setup the mask of cpus configured for isolated domains */
6909 static int __init isolated_cpu_setup(char *str)
6910 {
6911 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6912 cpulist_parse(str, cpu_isolated_map);
6913 return 1;
6914 }
6915
6916 __setup("isolcpus=", isolated_cpu_setup);
6917
6918 #define SD_NODES_PER_DOMAIN 16
6919
6920 #ifdef CONFIG_NUMA
6921
6922 /**
6923 * find_next_best_node - find the next node to include in a sched_domain
6924 * @node: node whose sched_domain we're building
6925 * @used_nodes: nodes already in the sched_domain
6926 *
6927 * Find the next node to include in a given scheduling domain. Simply
6928 * finds the closest node not already in the @used_nodes map.
6929 *
6930 * Should use nodemask_t.
6931 */
6932 static int find_next_best_node(int node, nodemask_t *used_nodes)
6933 {
6934 int i, n, val, min_val, best_node = -1;
6935
6936 min_val = INT_MAX;
6937
6938 for (i = 0; i < nr_node_ids; i++) {
6939 /* Start at @node */
6940 n = (node + i) % nr_node_ids;
6941
6942 if (!nr_cpus_node(n))
6943 continue;
6944
6945 /* Skip already used nodes */
6946 if (node_isset(n, *used_nodes))
6947 continue;
6948
6949 /* Simple min distance search */
6950 val = node_distance(node, n);
6951
6952 if (val < min_val) {
6953 min_val = val;
6954 best_node = n;
6955 }
6956 }
6957
6958 if (best_node != -1)
6959 node_set(best_node, *used_nodes);
6960 return best_node;
6961 }
6962
6963 /**
6964 * sched_domain_node_span - get a cpumask for a node's sched_domain
6965 * @node: node whose cpumask we're constructing
6966 * @span: resulting cpumask
6967 *
6968 * Given a node, construct a good cpumask for its sched_domain to span. It
6969 * should be one that prevents unnecessary balancing, but also spreads tasks
6970 * out optimally.
6971 */
6972 static void sched_domain_node_span(int node, struct cpumask *span)
6973 {
6974 nodemask_t used_nodes;
6975 int i;
6976
6977 cpumask_clear(span);
6978 nodes_clear(used_nodes);
6979
6980 cpumask_or(span, span, cpumask_of_node(node));
6981 node_set(node, used_nodes);
6982
6983 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6984 int next_node = find_next_best_node(node, &used_nodes);
6985 if (next_node < 0)
6986 break;
6987 cpumask_or(span, span, cpumask_of_node(next_node));
6988 }
6989 }
6990
6991 static const struct cpumask *cpu_node_mask(int cpu)
6992 {
6993 lockdep_assert_held(&sched_domains_mutex);
6994
6995 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6996
6997 return sched_domains_tmpmask;
6998 }
6999
7000 static const struct cpumask *cpu_allnodes_mask(int cpu)
7001 {
7002 return cpu_possible_mask;
7003 }
7004 #endif /* CONFIG_NUMA */
7005
7006 static const struct cpumask *cpu_cpu_mask(int cpu)
7007 {
7008 return cpumask_of_node(cpu_to_node(cpu));
7009 }
7010
7011 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7012
7013 struct sd_data {
7014 struct sched_domain **__percpu sd;
7015 struct sched_group **__percpu sg;
7016 struct sched_group_power **__percpu sgp;
7017 };
7018
7019 struct s_data {
7020 struct sched_domain ** __percpu sd;
7021 struct root_domain *rd;
7022 };
7023
7024 enum s_alloc {
7025 sa_rootdomain,
7026 sa_sd,
7027 sa_sd_storage,
7028 sa_none,
7029 };
7030
7031 struct sched_domain_topology_level;
7032
7033 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7034 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7035
7036 #define SDTL_OVERLAP 0x01
7037
7038 struct sched_domain_topology_level {
7039 sched_domain_init_f init;
7040 sched_domain_mask_f mask;
7041 int flags;
7042 struct sd_data data;
7043 };
7044
7045 static int
7046 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7047 {
7048 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7049 const struct cpumask *span = sched_domain_span(sd);
7050 struct cpumask *covered = sched_domains_tmpmask;
7051 struct sd_data *sdd = sd->private;
7052 struct sched_domain *child;
7053 int i;
7054
7055 cpumask_clear(covered);
7056
7057 for_each_cpu(i, span) {
7058 struct cpumask *sg_span;
7059
7060 if (cpumask_test_cpu(i, covered))
7061 continue;
7062
7063 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7064 GFP_KERNEL, cpu_to_node(i));
7065
7066 if (!sg)
7067 goto fail;
7068
7069 sg_span = sched_group_cpus(sg);
7070
7071 child = *per_cpu_ptr(sdd->sd, i);
7072 if (child->child) {
7073 child = child->child;
7074 cpumask_copy(sg_span, sched_domain_span(child));
7075 } else
7076 cpumask_set_cpu(i, sg_span);
7077
7078 cpumask_or(covered, covered, sg_span);
7079
7080 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7081 atomic_inc(&sg->sgp->ref);
7082
7083 if (cpumask_test_cpu(cpu, sg_span))
7084 groups = sg;
7085
7086 if (!first)
7087 first = sg;
7088 if (last)
7089 last->next = sg;
7090 last = sg;
7091 last->next = first;
7092 }
7093 sd->groups = groups;
7094
7095 return 0;
7096
7097 fail:
7098 free_sched_groups(first, 0);
7099
7100 return -ENOMEM;
7101 }
7102
7103 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7104 {
7105 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7106 struct sched_domain *child = sd->child;
7107
7108 if (child)
7109 cpu = cpumask_first(sched_domain_span(child));
7110
7111 if (sg) {
7112 *sg = *per_cpu_ptr(sdd->sg, cpu);
7113 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7114 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7115 }
7116
7117 return cpu;
7118 }
7119
7120 /*
7121 * build_sched_groups will build a circular linked list of the groups
7122 * covered by the given span, and will set each group's ->cpumask correctly,
7123 * and ->cpu_power to 0.
7124 *
7125 * Assumes the sched_domain tree is fully constructed
7126 */
7127 static int
7128 build_sched_groups(struct sched_domain *sd, int cpu)
7129 {
7130 struct sched_group *first = NULL, *last = NULL;
7131 struct sd_data *sdd = sd->private;
7132 const struct cpumask *span = sched_domain_span(sd);
7133 struct cpumask *covered;
7134 int i;
7135
7136 get_group(cpu, sdd, &sd->groups);
7137 atomic_inc(&sd->groups->ref);
7138
7139 if (cpu != cpumask_first(sched_domain_span(sd)))
7140 return 0;
7141
7142 lockdep_assert_held(&sched_domains_mutex);
7143 covered = sched_domains_tmpmask;
7144
7145 cpumask_clear(covered);
7146
7147 for_each_cpu(i, span) {
7148 struct sched_group *sg;
7149 int group = get_group(i, sdd, &sg);
7150 int j;
7151
7152 if (cpumask_test_cpu(i, covered))
7153 continue;
7154
7155 cpumask_clear(sched_group_cpus(sg));
7156 sg->sgp->power = 0;
7157
7158 for_each_cpu(j, span) {
7159 if (get_group(j, sdd, NULL) != group)
7160 continue;
7161
7162 cpumask_set_cpu(j, covered);
7163 cpumask_set_cpu(j, sched_group_cpus(sg));
7164 }
7165
7166 if (!first)
7167 first = sg;
7168 if (last)
7169 last->next = sg;
7170 last = sg;
7171 }
7172 last->next = first;
7173
7174 return 0;
7175 }
7176
7177 /*
7178 * Initialize sched groups cpu_power.
7179 *
7180 * cpu_power indicates the capacity of sched group, which is used while
7181 * distributing the load between different sched groups in a sched domain.
7182 * Typically cpu_power for all the groups in a sched domain will be same unless
7183 * there are asymmetries in the topology. If there are asymmetries, group
7184 * having more cpu_power will pickup more load compared to the group having
7185 * less cpu_power.
7186 */
7187 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7188 {
7189 struct sched_group *sg = sd->groups;
7190
7191 WARN_ON(!sd || !sg);
7192
7193 do {
7194 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7195 sg = sg->next;
7196 } while (sg != sd->groups);
7197
7198 if (cpu != group_first_cpu(sg))
7199 return;
7200
7201 update_group_power(sd, cpu);
7202 }
7203
7204 /*
7205 * Initializers for schedule domains
7206 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7207 */
7208
7209 #ifdef CONFIG_SCHED_DEBUG
7210 # define SD_INIT_NAME(sd, type) sd->name = #type
7211 #else
7212 # define SD_INIT_NAME(sd, type) do { } while (0)
7213 #endif
7214
7215 #define SD_INIT_FUNC(type) \
7216 static noinline struct sched_domain * \
7217 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7218 { \
7219 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7220 *sd = SD_##type##_INIT; \
7221 SD_INIT_NAME(sd, type); \
7222 sd->private = &tl->data; \
7223 return sd; \
7224 }
7225
7226 SD_INIT_FUNC(CPU)
7227 #ifdef CONFIG_NUMA
7228 SD_INIT_FUNC(ALLNODES)
7229 SD_INIT_FUNC(NODE)
7230 #endif
7231 #ifdef CONFIG_SCHED_SMT
7232 SD_INIT_FUNC(SIBLING)
7233 #endif
7234 #ifdef CONFIG_SCHED_MC
7235 SD_INIT_FUNC(MC)
7236 #endif
7237 #ifdef CONFIG_SCHED_BOOK
7238 SD_INIT_FUNC(BOOK)
7239 #endif
7240
7241 static int default_relax_domain_level = -1;
7242 int sched_domain_level_max;
7243
7244 static int __init setup_relax_domain_level(char *str)
7245 {
7246 unsigned long val;
7247
7248 val = simple_strtoul(str, NULL, 0);
7249 if (val < sched_domain_level_max)
7250 default_relax_domain_level = val;
7251
7252 return 1;
7253 }
7254 __setup("relax_domain_level=", setup_relax_domain_level);
7255
7256 static void set_domain_attribute(struct sched_domain *sd,
7257 struct sched_domain_attr *attr)
7258 {
7259 int request;
7260
7261 if (!attr || attr->relax_domain_level < 0) {
7262 if (default_relax_domain_level < 0)
7263 return;
7264 else
7265 request = default_relax_domain_level;
7266 } else
7267 request = attr->relax_domain_level;
7268 if (request < sd->level) {
7269 /* turn off idle balance on this domain */
7270 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7271 } else {
7272 /* turn on idle balance on this domain */
7273 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7274 }
7275 }
7276
7277 static void __sdt_free(const struct cpumask *cpu_map);
7278 static int __sdt_alloc(const struct cpumask *cpu_map);
7279
7280 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7281 const struct cpumask *cpu_map)
7282 {
7283 switch (what) {
7284 case sa_rootdomain:
7285 if (!atomic_read(&d->rd->refcount))
7286 free_rootdomain(&d->rd->rcu); /* fall through */
7287 case sa_sd:
7288 free_percpu(d->sd); /* fall through */
7289 case sa_sd_storage:
7290 __sdt_free(cpu_map); /* fall through */
7291 case sa_none:
7292 break;
7293 }
7294 }
7295
7296 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7297 const struct cpumask *cpu_map)
7298 {
7299 memset(d, 0, sizeof(*d));
7300
7301 if (__sdt_alloc(cpu_map))
7302 return sa_sd_storage;
7303 d->sd = alloc_percpu(struct sched_domain *);
7304 if (!d->sd)
7305 return sa_sd_storage;
7306 d->rd = alloc_rootdomain();
7307 if (!d->rd)
7308 return sa_sd;
7309 return sa_rootdomain;
7310 }
7311
7312 /*
7313 * NULL the sd_data elements we've used to build the sched_domain and
7314 * sched_group structure so that the subsequent __free_domain_allocs()
7315 * will not free the data we're using.
7316 */
7317 static void claim_allocations(int cpu, struct sched_domain *sd)
7318 {
7319 struct sd_data *sdd = sd->private;
7320
7321 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7322 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7323
7324 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7325 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7326
7327 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7328 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7329 }
7330
7331 #ifdef CONFIG_SCHED_SMT
7332 static const struct cpumask *cpu_smt_mask(int cpu)
7333 {
7334 return topology_thread_cpumask(cpu);
7335 }
7336 #endif
7337
7338 /*
7339 * Topology list, bottom-up.
7340 */
7341 static struct sched_domain_topology_level default_topology[] = {
7342 #ifdef CONFIG_SCHED_SMT
7343 { sd_init_SIBLING, cpu_smt_mask, },
7344 #endif
7345 #ifdef CONFIG_SCHED_MC
7346 { sd_init_MC, cpu_coregroup_mask, },
7347 #endif
7348 #ifdef CONFIG_SCHED_BOOK
7349 { sd_init_BOOK, cpu_book_mask, },
7350 #endif
7351 { sd_init_CPU, cpu_cpu_mask, },
7352 #ifdef CONFIG_NUMA
7353 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7354 { sd_init_ALLNODES, cpu_allnodes_mask, },
7355 #endif
7356 { NULL, },
7357 };
7358
7359 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7360
7361 static int __sdt_alloc(const struct cpumask *cpu_map)
7362 {
7363 struct sched_domain_topology_level *tl;
7364 int j;
7365
7366 for (tl = sched_domain_topology; tl->init; tl++) {
7367 struct sd_data *sdd = &tl->data;
7368
7369 sdd->sd = alloc_percpu(struct sched_domain *);
7370 if (!sdd->sd)
7371 return -ENOMEM;
7372
7373 sdd->sg = alloc_percpu(struct sched_group *);
7374 if (!sdd->sg)
7375 return -ENOMEM;
7376
7377 sdd->sgp = alloc_percpu(struct sched_group_power *);
7378 if (!sdd->sgp)
7379 return -ENOMEM;
7380
7381 for_each_cpu(j, cpu_map) {
7382 struct sched_domain *sd;
7383 struct sched_group *sg;
7384 struct sched_group_power *sgp;
7385
7386 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7387 GFP_KERNEL, cpu_to_node(j));
7388 if (!sd)
7389 return -ENOMEM;
7390
7391 *per_cpu_ptr(sdd->sd, j) = sd;
7392
7393 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7394 GFP_KERNEL, cpu_to_node(j));
7395 if (!sg)
7396 return -ENOMEM;
7397
7398 *per_cpu_ptr(sdd->sg, j) = sg;
7399
7400 sgp = kzalloc_node(sizeof(struct sched_group_power),
7401 GFP_KERNEL, cpu_to_node(j));
7402 if (!sgp)
7403 return -ENOMEM;
7404
7405 *per_cpu_ptr(sdd->sgp, j) = sgp;
7406 }
7407 }
7408
7409 return 0;
7410 }
7411
7412 static void __sdt_free(const struct cpumask *cpu_map)
7413 {
7414 struct sched_domain_topology_level *tl;
7415 int j;
7416
7417 for (tl = sched_domain_topology; tl->init; tl++) {
7418 struct sd_data *sdd = &tl->data;
7419
7420 for_each_cpu(j, cpu_map) {
7421 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7422 if (sd && (sd->flags & SD_OVERLAP))
7423 free_sched_groups(sd->groups, 0);
7424 kfree(*per_cpu_ptr(sdd->sd, j));
7425 kfree(*per_cpu_ptr(sdd->sg, j));
7426 kfree(*per_cpu_ptr(sdd->sgp, j));
7427 }
7428 free_percpu(sdd->sd);
7429 free_percpu(sdd->sg);
7430 free_percpu(sdd->sgp);
7431 }
7432 }
7433
7434 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7435 struct s_data *d, const struct cpumask *cpu_map,
7436 struct sched_domain_attr *attr, struct sched_domain *child,
7437 int cpu)
7438 {
7439 struct sched_domain *sd = tl->init(tl, cpu);
7440 if (!sd)
7441 return child;
7442
7443 set_domain_attribute(sd, attr);
7444 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7445 if (child) {
7446 sd->level = child->level + 1;
7447 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7448 child->parent = sd;
7449 }
7450 sd->child = child;
7451
7452 return sd;
7453 }
7454
7455 /*
7456 * Build sched domains for a given set of cpus and attach the sched domains
7457 * to the individual cpus
7458 */
7459 static int build_sched_domains(const struct cpumask *cpu_map,
7460 struct sched_domain_attr *attr)
7461 {
7462 enum s_alloc alloc_state = sa_none;
7463 struct sched_domain *sd;
7464 struct s_data d;
7465 int i, ret = -ENOMEM;
7466
7467 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7468 if (alloc_state != sa_rootdomain)
7469 goto error;
7470
7471 /* Set up domains for cpus specified by the cpu_map. */
7472 for_each_cpu(i, cpu_map) {
7473 struct sched_domain_topology_level *tl;
7474
7475 sd = NULL;
7476 for (tl = sched_domain_topology; tl->init; tl++) {
7477 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7478 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7479 sd->flags |= SD_OVERLAP;
7480 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7481 break;
7482 }
7483
7484 while (sd->child)
7485 sd = sd->child;
7486
7487 *per_cpu_ptr(d.sd, i) = sd;
7488 }
7489
7490 /* Build the groups for the domains */
7491 for_each_cpu(i, cpu_map) {
7492 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7493 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7494 if (sd->flags & SD_OVERLAP) {
7495 if (build_overlap_sched_groups(sd, i))
7496 goto error;
7497 } else {
7498 if (build_sched_groups(sd, i))
7499 goto error;
7500 }
7501 }
7502 }
7503
7504 /* Calculate CPU power for physical packages and nodes */
7505 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7506 if (!cpumask_test_cpu(i, cpu_map))
7507 continue;
7508
7509 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7510 claim_allocations(i, sd);
7511 init_sched_groups_power(i, sd);
7512 }
7513 }
7514
7515 /* Attach the domains */
7516 rcu_read_lock();
7517 for_each_cpu(i, cpu_map) {
7518 sd = *per_cpu_ptr(d.sd, i);
7519 cpu_attach_domain(sd, d.rd, i);
7520 }
7521 rcu_read_unlock();
7522
7523 ret = 0;
7524 error:
7525 __free_domain_allocs(&d, alloc_state, cpu_map);
7526 return ret;
7527 }
7528
7529 static cpumask_var_t *doms_cur; /* current sched domains */
7530 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7531 static struct sched_domain_attr *dattr_cur;
7532 /* attribues of custom domains in 'doms_cur' */
7533
7534 /*
7535 * Special case: If a kmalloc of a doms_cur partition (array of
7536 * cpumask) fails, then fallback to a single sched domain,
7537 * as determined by the single cpumask fallback_doms.
7538 */
7539 static cpumask_var_t fallback_doms;
7540
7541 /*
7542 * arch_update_cpu_topology lets virtualized architectures update the
7543 * cpu core maps. It is supposed to return 1 if the topology changed
7544 * or 0 if it stayed the same.
7545 */
7546 int __attribute__((weak)) arch_update_cpu_topology(void)
7547 {
7548 return 0;
7549 }
7550
7551 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7552 {
7553 int i;
7554 cpumask_var_t *doms;
7555
7556 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7557 if (!doms)
7558 return NULL;
7559 for (i = 0; i < ndoms; i++) {
7560 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7561 free_sched_domains(doms, i);
7562 return NULL;
7563 }
7564 }
7565 return doms;
7566 }
7567
7568 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7569 {
7570 unsigned int i;
7571 for (i = 0; i < ndoms; i++)
7572 free_cpumask_var(doms[i]);
7573 kfree(doms);
7574 }
7575
7576 /*
7577 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7578 * For now this just excludes isolated cpus, but could be used to
7579 * exclude other special cases in the future.
7580 */
7581 static int init_sched_domains(const struct cpumask *cpu_map)
7582 {
7583 int err;
7584
7585 arch_update_cpu_topology();
7586 ndoms_cur = 1;
7587 doms_cur = alloc_sched_domains(ndoms_cur);
7588 if (!doms_cur)
7589 doms_cur = &fallback_doms;
7590 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7591 dattr_cur = NULL;
7592 err = build_sched_domains(doms_cur[0], NULL);
7593 register_sched_domain_sysctl();
7594
7595 return err;
7596 }
7597
7598 /*
7599 * Detach sched domains from a group of cpus specified in cpu_map
7600 * These cpus will now be attached to the NULL domain
7601 */
7602 static void detach_destroy_domains(const struct cpumask *cpu_map)
7603 {
7604 int i;
7605
7606 rcu_read_lock();
7607 for_each_cpu(i, cpu_map)
7608 cpu_attach_domain(NULL, &def_root_domain, i);
7609 rcu_read_unlock();
7610 }
7611
7612 /* handle null as "default" */
7613 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7614 struct sched_domain_attr *new, int idx_new)
7615 {
7616 struct sched_domain_attr tmp;
7617
7618 /* fast path */
7619 if (!new && !cur)
7620 return 1;
7621
7622 tmp = SD_ATTR_INIT;
7623 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7624 new ? (new + idx_new) : &tmp,
7625 sizeof(struct sched_domain_attr));
7626 }
7627
7628 /*
7629 * Partition sched domains as specified by the 'ndoms_new'
7630 * cpumasks in the array doms_new[] of cpumasks. This compares
7631 * doms_new[] to the current sched domain partitioning, doms_cur[].
7632 * It destroys each deleted domain and builds each new domain.
7633 *
7634 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7635 * The masks don't intersect (don't overlap.) We should setup one
7636 * sched domain for each mask. CPUs not in any of the cpumasks will
7637 * not be load balanced. If the same cpumask appears both in the
7638 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7639 * it as it is.
7640 *
7641 * The passed in 'doms_new' should be allocated using
7642 * alloc_sched_domains. This routine takes ownership of it and will
7643 * free_sched_domains it when done with it. If the caller failed the
7644 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7645 * and partition_sched_domains() will fallback to the single partition
7646 * 'fallback_doms', it also forces the domains to be rebuilt.
7647 *
7648 * If doms_new == NULL it will be replaced with cpu_online_mask.
7649 * ndoms_new == 0 is a special case for destroying existing domains,
7650 * and it will not create the default domain.
7651 *
7652 * Call with hotplug lock held
7653 */
7654 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7655 struct sched_domain_attr *dattr_new)
7656 {
7657 int i, j, n;
7658 int new_topology;
7659
7660 mutex_lock(&sched_domains_mutex);
7661
7662 /* always unregister in case we don't destroy any domains */
7663 unregister_sched_domain_sysctl();
7664
7665 /* Let architecture update cpu core mappings. */
7666 new_topology = arch_update_cpu_topology();
7667
7668 n = doms_new ? ndoms_new : 0;
7669
7670 /* Destroy deleted domains */
7671 for (i = 0; i < ndoms_cur; i++) {
7672 for (j = 0; j < n && !new_topology; j++) {
7673 if (cpumask_equal(doms_cur[i], doms_new[j])
7674 && dattrs_equal(dattr_cur, i, dattr_new, j))
7675 goto match1;
7676 }
7677 /* no match - a current sched domain not in new doms_new[] */
7678 detach_destroy_domains(doms_cur[i]);
7679 match1:
7680 ;
7681 }
7682
7683 if (doms_new == NULL) {
7684 ndoms_cur = 0;
7685 doms_new = &fallback_doms;
7686 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7687 WARN_ON_ONCE(dattr_new);
7688 }
7689
7690 /* Build new domains */
7691 for (i = 0; i < ndoms_new; i++) {
7692 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7693 if (cpumask_equal(doms_new[i], doms_cur[j])
7694 && dattrs_equal(dattr_new, i, dattr_cur, j))
7695 goto match2;
7696 }
7697 /* no match - add a new doms_new */
7698 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7699 match2:
7700 ;
7701 }
7702
7703 /* Remember the new sched domains */
7704 if (doms_cur != &fallback_doms)
7705 free_sched_domains(doms_cur, ndoms_cur);
7706 kfree(dattr_cur); /* kfree(NULL) is safe */
7707 doms_cur = doms_new;
7708 dattr_cur = dattr_new;
7709 ndoms_cur = ndoms_new;
7710
7711 register_sched_domain_sysctl();
7712
7713 mutex_unlock(&sched_domains_mutex);
7714 }
7715
7716 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7717 static void reinit_sched_domains(void)
7718 {
7719 get_online_cpus();
7720
7721 /* Destroy domains first to force the rebuild */
7722 partition_sched_domains(0, NULL, NULL);
7723
7724 rebuild_sched_domains();
7725 put_online_cpus();
7726 }
7727
7728 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7729 {
7730 unsigned int level = 0;
7731
7732 if (sscanf(buf, "%u", &level) != 1)
7733 return -EINVAL;
7734
7735 /*
7736 * level is always be positive so don't check for
7737 * level < POWERSAVINGS_BALANCE_NONE which is 0
7738 * What happens on 0 or 1 byte write,
7739 * need to check for count as well?
7740 */
7741
7742 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7743 return -EINVAL;
7744
7745 if (smt)
7746 sched_smt_power_savings = level;
7747 else
7748 sched_mc_power_savings = level;
7749
7750 reinit_sched_domains();
7751
7752 return count;
7753 }
7754
7755 #ifdef CONFIG_SCHED_MC
7756 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7757 struct sysdev_class_attribute *attr,
7758 char *page)
7759 {
7760 return sprintf(page, "%u\n", sched_mc_power_savings);
7761 }
7762 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7763 struct sysdev_class_attribute *attr,
7764 const char *buf, size_t count)
7765 {
7766 return sched_power_savings_store(buf, count, 0);
7767 }
7768 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7769 sched_mc_power_savings_show,
7770 sched_mc_power_savings_store);
7771 #endif
7772
7773 #ifdef CONFIG_SCHED_SMT
7774 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7775 struct sysdev_class_attribute *attr,
7776 char *page)
7777 {
7778 return sprintf(page, "%u\n", sched_smt_power_savings);
7779 }
7780 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7781 struct sysdev_class_attribute *attr,
7782 const char *buf, size_t count)
7783 {
7784 return sched_power_savings_store(buf, count, 1);
7785 }
7786 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7787 sched_smt_power_savings_show,
7788 sched_smt_power_savings_store);
7789 #endif
7790
7791 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7792 {
7793 int err = 0;
7794
7795 #ifdef CONFIG_SCHED_SMT
7796 if (smt_capable())
7797 err = sysfs_create_file(&cls->kset.kobj,
7798 &attr_sched_smt_power_savings.attr);
7799 #endif
7800 #ifdef CONFIG_SCHED_MC
7801 if (!err && mc_capable())
7802 err = sysfs_create_file(&cls->kset.kobj,
7803 &attr_sched_mc_power_savings.attr);
7804 #endif
7805 return err;
7806 }
7807 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7808
7809 /*
7810 * Update cpusets according to cpu_active mask. If cpusets are
7811 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7812 * around partition_sched_domains().
7813 */
7814 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7815 void *hcpu)
7816 {
7817 switch (action & ~CPU_TASKS_FROZEN) {
7818 case CPU_ONLINE:
7819 case CPU_DOWN_FAILED:
7820 cpuset_update_active_cpus();
7821 return NOTIFY_OK;
7822 default:
7823 return NOTIFY_DONE;
7824 }
7825 }
7826
7827 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7828 void *hcpu)
7829 {
7830 switch (action & ~CPU_TASKS_FROZEN) {
7831 case CPU_DOWN_PREPARE:
7832 cpuset_update_active_cpus();
7833 return NOTIFY_OK;
7834 default:
7835 return NOTIFY_DONE;
7836 }
7837 }
7838
7839 static int update_runtime(struct notifier_block *nfb,
7840 unsigned long action, void *hcpu)
7841 {
7842 int cpu = (int)(long)hcpu;
7843
7844 switch (action) {
7845 case CPU_DOWN_PREPARE:
7846 case CPU_DOWN_PREPARE_FROZEN:
7847 disable_runtime(cpu_rq(cpu));
7848 return NOTIFY_OK;
7849
7850 case CPU_DOWN_FAILED:
7851 case CPU_DOWN_FAILED_FROZEN:
7852 case CPU_ONLINE:
7853 case CPU_ONLINE_FROZEN:
7854 enable_runtime(cpu_rq(cpu));
7855 return NOTIFY_OK;
7856
7857 default:
7858 return NOTIFY_DONE;
7859 }
7860 }
7861
7862 void __init sched_init_smp(void)
7863 {
7864 cpumask_var_t non_isolated_cpus;
7865
7866 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7867 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7868
7869 get_online_cpus();
7870 mutex_lock(&sched_domains_mutex);
7871 init_sched_domains(cpu_active_mask);
7872 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7873 if (cpumask_empty(non_isolated_cpus))
7874 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7875 mutex_unlock(&sched_domains_mutex);
7876 put_online_cpus();
7877
7878 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7879 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7880
7881 /* RT runtime code needs to handle some hotplug events */
7882 hotcpu_notifier(update_runtime, 0);
7883
7884 init_hrtick();
7885
7886 /* Move init over to a non-isolated CPU */
7887 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7888 BUG();
7889 sched_init_granularity();
7890 free_cpumask_var(non_isolated_cpus);
7891
7892 init_sched_rt_class();
7893 }
7894 #else
7895 void __init sched_init_smp(void)
7896 {
7897 sched_init_granularity();
7898 }
7899 #endif /* CONFIG_SMP */
7900
7901 const_debug unsigned int sysctl_timer_migration = 1;
7902
7903 int in_sched_functions(unsigned long addr)
7904 {
7905 return in_lock_functions(addr) ||
7906 (addr >= (unsigned long)__sched_text_start
7907 && addr < (unsigned long)__sched_text_end);
7908 }
7909
7910 static void init_cfs_rq(struct cfs_rq *cfs_rq)
7911 {
7912 cfs_rq->tasks_timeline = RB_ROOT;
7913 INIT_LIST_HEAD(&cfs_rq->tasks);
7914 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7915 #ifndef CONFIG_64BIT
7916 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7917 #endif
7918 }
7919
7920 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7921 {
7922 struct rt_prio_array *array;
7923 int i;
7924
7925 array = &rt_rq->active;
7926 for (i = 0; i < MAX_RT_PRIO; i++) {
7927 INIT_LIST_HEAD(array->queue + i);
7928 __clear_bit(i, array->bitmap);
7929 }
7930 /* delimiter for bitsearch: */
7931 __set_bit(MAX_RT_PRIO, array->bitmap);
7932
7933 #if defined CONFIG_SMP
7934 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7935 rt_rq->highest_prio.next = MAX_RT_PRIO;
7936 rt_rq->rt_nr_migratory = 0;
7937 rt_rq->overloaded = 0;
7938 plist_head_init(&rt_rq->pushable_tasks);
7939 #endif
7940
7941 rt_rq->rt_time = 0;
7942 rt_rq->rt_throttled = 0;
7943 rt_rq->rt_runtime = 0;
7944 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7945 }
7946
7947 #ifdef CONFIG_FAIR_GROUP_SCHED
7948 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7949 struct sched_entity *se, int cpu,
7950 struct sched_entity *parent)
7951 {
7952 struct rq *rq = cpu_rq(cpu);
7953
7954 cfs_rq->tg = tg;
7955 cfs_rq->rq = rq;
7956 #ifdef CONFIG_SMP
7957 /* allow initial update_cfs_load() to truncate */
7958 cfs_rq->load_stamp = 1;
7959 #endif
7960
7961 tg->cfs_rq[cpu] = cfs_rq;
7962 tg->se[cpu] = se;
7963
7964 /* se could be NULL for root_task_group */
7965 if (!se)
7966 return;
7967
7968 if (!parent)
7969 se->cfs_rq = &rq->cfs;
7970 else
7971 se->cfs_rq = parent->my_q;
7972
7973 se->my_q = cfs_rq;
7974 update_load_set(&se->load, 0);
7975 se->parent = parent;
7976 }
7977 #endif
7978
7979 #ifdef CONFIG_RT_GROUP_SCHED
7980 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7981 struct sched_rt_entity *rt_se, int cpu,
7982 struct sched_rt_entity *parent)
7983 {
7984 struct rq *rq = cpu_rq(cpu);
7985
7986 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7987 rt_rq->rt_nr_boosted = 0;
7988 rt_rq->rq = rq;
7989 rt_rq->tg = tg;
7990
7991 tg->rt_rq[cpu] = rt_rq;
7992 tg->rt_se[cpu] = rt_se;
7993
7994 if (!rt_se)
7995 return;
7996
7997 if (!parent)
7998 rt_se->rt_rq = &rq->rt;
7999 else
8000 rt_se->rt_rq = parent->my_q;
8001
8002 rt_se->my_q = rt_rq;
8003 rt_se->parent = parent;
8004 INIT_LIST_HEAD(&rt_se->run_list);
8005 }
8006 #endif
8007
8008 void __init sched_init(void)
8009 {
8010 int i, j;
8011 unsigned long alloc_size = 0, ptr;
8012
8013 #ifdef CONFIG_FAIR_GROUP_SCHED
8014 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8015 #endif
8016 #ifdef CONFIG_RT_GROUP_SCHED
8017 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8018 #endif
8019 #ifdef CONFIG_CPUMASK_OFFSTACK
8020 alloc_size += num_possible_cpus() * cpumask_size();
8021 #endif
8022 if (alloc_size) {
8023 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8024
8025 #ifdef CONFIG_FAIR_GROUP_SCHED
8026 root_task_group.se = (struct sched_entity **)ptr;
8027 ptr += nr_cpu_ids * sizeof(void **);
8028
8029 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8030 ptr += nr_cpu_ids * sizeof(void **);
8031
8032 #endif /* CONFIG_FAIR_GROUP_SCHED */
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8035 ptr += nr_cpu_ids * sizeof(void **);
8036
8037 root_task_group.rt_rq = (struct rt_rq **)ptr;
8038 ptr += nr_cpu_ids * sizeof(void **);
8039
8040 #endif /* CONFIG_RT_GROUP_SCHED */
8041 #ifdef CONFIG_CPUMASK_OFFSTACK
8042 for_each_possible_cpu(i) {
8043 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8044 ptr += cpumask_size();
8045 }
8046 #endif /* CONFIG_CPUMASK_OFFSTACK */
8047 }
8048
8049 #ifdef CONFIG_SMP
8050 init_defrootdomain();
8051 #endif
8052
8053 init_rt_bandwidth(&def_rt_bandwidth,
8054 global_rt_period(), global_rt_runtime());
8055
8056 #ifdef CONFIG_RT_GROUP_SCHED
8057 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8058 global_rt_period(), global_rt_runtime());
8059 #endif /* CONFIG_RT_GROUP_SCHED */
8060
8061 #ifdef CONFIG_CGROUP_SCHED
8062 list_add(&root_task_group.list, &task_groups);
8063 INIT_LIST_HEAD(&root_task_group.children);
8064 autogroup_init(&init_task);
8065 #endif /* CONFIG_CGROUP_SCHED */
8066
8067 for_each_possible_cpu(i) {
8068 struct rq *rq;
8069
8070 rq = cpu_rq(i);
8071 raw_spin_lock_init(&rq->lock);
8072 rq->nr_running = 0;
8073 rq->calc_load_active = 0;
8074 rq->calc_load_update = jiffies + LOAD_FREQ;
8075 init_cfs_rq(&rq->cfs);
8076 init_rt_rq(&rq->rt, rq);
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 root_task_group.shares = root_task_group_load;
8079 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8080 /*
8081 * How much cpu bandwidth does root_task_group get?
8082 *
8083 * In case of task-groups formed thr' the cgroup filesystem, it
8084 * gets 100% of the cpu resources in the system. This overall
8085 * system cpu resource is divided among the tasks of
8086 * root_task_group and its child task-groups in a fair manner,
8087 * based on each entity's (task or task-group's) weight
8088 * (se->load.weight).
8089 *
8090 * In other words, if root_task_group has 10 tasks of weight
8091 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8092 * then A0's share of the cpu resource is:
8093 *
8094 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8095 *
8096 * We achieve this by letting root_task_group's tasks sit
8097 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8098 */
8099 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8100 #endif /* CONFIG_FAIR_GROUP_SCHED */
8101
8102 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8103 #ifdef CONFIG_RT_GROUP_SCHED
8104 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8105 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8106 #endif
8107
8108 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8109 rq->cpu_load[j] = 0;
8110
8111 rq->last_load_update_tick = jiffies;
8112
8113 #ifdef CONFIG_SMP
8114 rq->sd = NULL;
8115 rq->rd = NULL;
8116 rq->cpu_power = SCHED_POWER_SCALE;
8117 rq->post_schedule = 0;
8118 rq->active_balance = 0;
8119 rq->next_balance = jiffies;
8120 rq->push_cpu = 0;
8121 rq->cpu = i;
8122 rq->online = 0;
8123 rq->idle_stamp = 0;
8124 rq->avg_idle = 2*sysctl_sched_migration_cost;
8125 rq_attach_root(rq, &def_root_domain);
8126 #ifdef CONFIG_NO_HZ
8127 rq->nohz_balance_kick = 0;
8128 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8129 #endif
8130 #endif
8131 init_rq_hrtick(rq);
8132 atomic_set(&rq->nr_iowait, 0);
8133 }
8134
8135 set_load_weight(&init_task);
8136
8137 #ifdef CONFIG_PREEMPT_NOTIFIERS
8138 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8139 #endif
8140
8141 #ifdef CONFIG_SMP
8142 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8143 #endif
8144
8145 #ifdef CONFIG_RT_MUTEXES
8146 plist_head_init(&init_task.pi_waiters);
8147 #endif
8148
8149 /*
8150 * The boot idle thread does lazy MMU switching as well:
8151 */
8152 atomic_inc(&init_mm.mm_count);
8153 enter_lazy_tlb(&init_mm, current);
8154
8155 /*
8156 * Make us the idle thread. Technically, schedule() should not be
8157 * called from this thread, however somewhere below it might be,
8158 * but because we are the idle thread, we just pick up running again
8159 * when this runqueue becomes "idle".
8160 */
8161 init_idle(current, smp_processor_id());
8162
8163 calc_load_update = jiffies + LOAD_FREQ;
8164
8165 /*
8166 * During early bootup we pretend to be a normal task:
8167 */
8168 current->sched_class = &fair_sched_class;
8169
8170 #ifdef CONFIG_SMP
8171 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8172 #ifdef CONFIG_NO_HZ
8173 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8174 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8175 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8176 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8177 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8178 #endif
8179 /* May be allocated at isolcpus cmdline parse time */
8180 if (cpu_isolated_map == NULL)
8181 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8182 #endif /* SMP */
8183
8184 scheduler_running = 1;
8185 }
8186
8187 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8188 static inline int preempt_count_equals(int preempt_offset)
8189 {
8190 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8191
8192 return (nested == preempt_offset);
8193 }
8194
8195 void __might_sleep(const char *file, int line, int preempt_offset)
8196 {
8197 static unsigned long prev_jiffy; /* ratelimiting */
8198
8199 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8200 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8201 system_state != SYSTEM_RUNNING || oops_in_progress)
8202 return;
8203 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8204 return;
8205 prev_jiffy = jiffies;
8206
8207 printk(KERN_ERR
8208 "BUG: sleeping function called from invalid context at %s:%d\n",
8209 file, line);
8210 printk(KERN_ERR
8211 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8212 in_atomic(), irqs_disabled(),
8213 current->pid, current->comm);
8214
8215 debug_show_held_locks(current);
8216 if (irqs_disabled())
8217 print_irqtrace_events(current);
8218 dump_stack();
8219 }
8220 EXPORT_SYMBOL(__might_sleep);
8221 #endif
8222
8223 #ifdef CONFIG_MAGIC_SYSRQ
8224 static void normalize_task(struct rq *rq, struct task_struct *p)
8225 {
8226 const struct sched_class *prev_class = p->sched_class;
8227 int old_prio = p->prio;
8228 int on_rq;
8229
8230 on_rq = p->on_rq;
8231 if (on_rq)
8232 deactivate_task(rq, p, 0);
8233 __setscheduler(rq, p, SCHED_NORMAL, 0);
8234 if (on_rq) {
8235 activate_task(rq, p, 0);
8236 resched_task(rq->curr);
8237 }
8238
8239 check_class_changed(rq, p, prev_class, old_prio);
8240 }
8241
8242 void normalize_rt_tasks(void)
8243 {
8244 struct task_struct *g, *p;
8245 unsigned long flags;
8246 struct rq *rq;
8247
8248 read_lock_irqsave(&tasklist_lock, flags);
8249 do_each_thread(g, p) {
8250 /*
8251 * Only normalize user tasks:
8252 */
8253 if (!p->mm)
8254 continue;
8255
8256 p->se.exec_start = 0;
8257 #ifdef CONFIG_SCHEDSTATS
8258 p->se.statistics.wait_start = 0;
8259 p->se.statistics.sleep_start = 0;
8260 p->se.statistics.block_start = 0;
8261 #endif
8262
8263 if (!rt_task(p)) {
8264 /*
8265 * Renice negative nice level userspace
8266 * tasks back to 0:
8267 */
8268 if (TASK_NICE(p) < 0 && p->mm)
8269 set_user_nice(p, 0);
8270 continue;
8271 }
8272
8273 raw_spin_lock(&p->pi_lock);
8274 rq = __task_rq_lock(p);
8275
8276 normalize_task(rq, p);
8277
8278 __task_rq_unlock(rq);
8279 raw_spin_unlock(&p->pi_lock);
8280 } while_each_thread(g, p);
8281
8282 read_unlock_irqrestore(&tasklist_lock, flags);
8283 }
8284
8285 #endif /* CONFIG_MAGIC_SYSRQ */
8286
8287 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8288 /*
8289 * These functions are only useful for the IA64 MCA handling, or kdb.
8290 *
8291 * They can only be called when the whole system has been
8292 * stopped - every CPU needs to be quiescent, and no scheduling
8293 * activity can take place. Using them for anything else would
8294 * be a serious bug, and as a result, they aren't even visible
8295 * under any other configuration.
8296 */
8297
8298 /**
8299 * curr_task - return the current task for a given cpu.
8300 * @cpu: the processor in question.
8301 *
8302 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8303 */
8304 struct task_struct *curr_task(int cpu)
8305 {
8306 return cpu_curr(cpu);
8307 }
8308
8309 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8310
8311 #ifdef CONFIG_IA64
8312 /**
8313 * set_curr_task - set the current task for a given cpu.
8314 * @cpu: the processor in question.
8315 * @p: the task pointer to set.
8316 *
8317 * Description: This function must only be used when non-maskable interrupts
8318 * are serviced on a separate stack. It allows the architecture to switch the
8319 * notion of the current task on a cpu in a non-blocking manner. This function
8320 * must be called with all CPU's synchronized, and interrupts disabled, the
8321 * and caller must save the original value of the current task (see
8322 * curr_task() above) and restore that value before reenabling interrupts and
8323 * re-starting the system.
8324 *
8325 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8326 */
8327 void set_curr_task(int cpu, struct task_struct *p)
8328 {
8329 cpu_curr(cpu) = p;
8330 }
8331
8332 #endif
8333
8334 #ifdef CONFIG_FAIR_GROUP_SCHED
8335 static void free_fair_sched_group(struct task_group *tg)
8336 {
8337 int i;
8338
8339 for_each_possible_cpu(i) {
8340 if (tg->cfs_rq)
8341 kfree(tg->cfs_rq[i]);
8342 if (tg->se)
8343 kfree(tg->se[i]);
8344 }
8345
8346 kfree(tg->cfs_rq);
8347 kfree(tg->se);
8348 }
8349
8350 static
8351 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8352 {
8353 struct cfs_rq *cfs_rq;
8354 struct sched_entity *se;
8355 int i;
8356
8357 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8358 if (!tg->cfs_rq)
8359 goto err;
8360 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8361 if (!tg->se)
8362 goto err;
8363
8364 tg->shares = NICE_0_LOAD;
8365
8366 for_each_possible_cpu(i) {
8367 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8368 GFP_KERNEL, cpu_to_node(i));
8369 if (!cfs_rq)
8370 goto err;
8371
8372 se = kzalloc_node(sizeof(struct sched_entity),
8373 GFP_KERNEL, cpu_to_node(i));
8374 if (!se)
8375 goto err_free_rq;
8376
8377 init_cfs_rq(cfs_rq);
8378 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8379 }
8380
8381 return 1;
8382
8383 err_free_rq:
8384 kfree(cfs_rq);
8385 err:
8386 return 0;
8387 }
8388
8389 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8390 {
8391 struct rq *rq = cpu_rq(cpu);
8392 unsigned long flags;
8393
8394 /*
8395 * Only empty task groups can be destroyed; so we can speculatively
8396 * check on_list without danger of it being re-added.
8397 */
8398 if (!tg->cfs_rq[cpu]->on_list)
8399 return;
8400
8401 raw_spin_lock_irqsave(&rq->lock, flags);
8402 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8403 raw_spin_unlock_irqrestore(&rq->lock, flags);
8404 }
8405 #else /* !CONFIG_FAIR_GROUP_SCHED */
8406 static inline void free_fair_sched_group(struct task_group *tg)
8407 {
8408 }
8409
8410 static inline
8411 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8412 {
8413 return 1;
8414 }
8415
8416 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8417 {
8418 }
8419 #endif /* CONFIG_FAIR_GROUP_SCHED */
8420
8421 #ifdef CONFIG_RT_GROUP_SCHED
8422 static void free_rt_sched_group(struct task_group *tg)
8423 {
8424 int i;
8425
8426 if (tg->rt_se)
8427 destroy_rt_bandwidth(&tg->rt_bandwidth);
8428
8429 for_each_possible_cpu(i) {
8430 if (tg->rt_rq)
8431 kfree(tg->rt_rq[i]);
8432 if (tg->rt_se)
8433 kfree(tg->rt_se[i]);
8434 }
8435
8436 kfree(tg->rt_rq);
8437 kfree(tg->rt_se);
8438 }
8439
8440 static
8441 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8442 {
8443 struct rt_rq *rt_rq;
8444 struct sched_rt_entity *rt_se;
8445 int i;
8446
8447 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8448 if (!tg->rt_rq)
8449 goto err;
8450 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8451 if (!tg->rt_se)
8452 goto err;
8453
8454 init_rt_bandwidth(&tg->rt_bandwidth,
8455 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8456
8457 for_each_possible_cpu(i) {
8458 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8459 GFP_KERNEL, cpu_to_node(i));
8460 if (!rt_rq)
8461 goto err;
8462
8463 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8464 GFP_KERNEL, cpu_to_node(i));
8465 if (!rt_se)
8466 goto err_free_rq;
8467
8468 init_rt_rq(rt_rq, cpu_rq(i));
8469 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8470 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8471 }
8472
8473 return 1;
8474
8475 err_free_rq:
8476 kfree(rt_rq);
8477 err:
8478 return 0;
8479 }
8480 #else /* !CONFIG_RT_GROUP_SCHED */
8481 static inline void free_rt_sched_group(struct task_group *tg)
8482 {
8483 }
8484
8485 static inline
8486 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8487 {
8488 return 1;
8489 }
8490 #endif /* CONFIG_RT_GROUP_SCHED */
8491
8492 #ifdef CONFIG_CGROUP_SCHED
8493 static void free_sched_group(struct task_group *tg)
8494 {
8495 free_fair_sched_group(tg);
8496 free_rt_sched_group(tg);
8497 autogroup_free(tg);
8498 kfree(tg);
8499 }
8500
8501 /* allocate runqueue etc for a new task group */
8502 struct task_group *sched_create_group(struct task_group *parent)
8503 {
8504 struct task_group *tg;
8505 unsigned long flags;
8506
8507 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8508 if (!tg)
8509 return ERR_PTR(-ENOMEM);
8510
8511 if (!alloc_fair_sched_group(tg, parent))
8512 goto err;
8513
8514 if (!alloc_rt_sched_group(tg, parent))
8515 goto err;
8516
8517 spin_lock_irqsave(&task_group_lock, flags);
8518 list_add_rcu(&tg->list, &task_groups);
8519
8520 WARN_ON(!parent); /* root should already exist */
8521
8522 tg->parent = parent;
8523 INIT_LIST_HEAD(&tg->children);
8524 list_add_rcu(&tg->siblings, &parent->children);
8525 spin_unlock_irqrestore(&task_group_lock, flags);
8526
8527 return tg;
8528
8529 err:
8530 free_sched_group(tg);
8531 return ERR_PTR(-ENOMEM);
8532 }
8533
8534 /* rcu callback to free various structures associated with a task group */
8535 static void free_sched_group_rcu(struct rcu_head *rhp)
8536 {
8537 /* now it should be safe to free those cfs_rqs */
8538 free_sched_group(container_of(rhp, struct task_group, rcu));
8539 }
8540
8541 /* Destroy runqueue etc associated with a task group */
8542 void sched_destroy_group(struct task_group *tg)
8543 {
8544 unsigned long flags;
8545 int i;
8546
8547 /* end participation in shares distribution */
8548 for_each_possible_cpu(i)
8549 unregister_fair_sched_group(tg, i);
8550
8551 spin_lock_irqsave(&task_group_lock, flags);
8552 list_del_rcu(&tg->list);
8553 list_del_rcu(&tg->siblings);
8554 spin_unlock_irqrestore(&task_group_lock, flags);
8555
8556 /* wait for possible concurrent references to cfs_rqs complete */
8557 call_rcu(&tg->rcu, free_sched_group_rcu);
8558 }
8559
8560 /* change task's runqueue when it moves between groups.
8561 * The caller of this function should have put the task in its new group
8562 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8563 * reflect its new group.
8564 */
8565 void sched_move_task(struct task_struct *tsk)
8566 {
8567 int on_rq, running;
8568 unsigned long flags;
8569 struct rq *rq;
8570
8571 rq = task_rq_lock(tsk, &flags);
8572
8573 running = task_current(rq, tsk);
8574 on_rq = tsk->on_rq;
8575
8576 if (on_rq)
8577 dequeue_task(rq, tsk, 0);
8578 if (unlikely(running))
8579 tsk->sched_class->put_prev_task(rq, tsk);
8580
8581 #ifdef CONFIG_FAIR_GROUP_SCHED
8582 if (tsk->sched_class->task_move_group)
8583 tsk->sched_class->task_move_group(tsk, on_rq);
8584 else
8585 #endif
8586 set_task_rq(tsk, task_cpu(tsk));
8587
8588 if (unlikely(running))
8589 tsk->sched_class->set_curr_task(rq);
8590 if (on_rq)
8591 enqueue_task(rq, tsk, 0);
8592
8593 task_rq_unlock(rq, tsk, &flags);
8594 }
8595 #endif /* CONFIG_CGROUP_SCHED */
8596
8597 #ifdef CONFIG_FAIR_GROUP_SCHED
8598 static DEFINE_MUTEX(shares_mutex);
8599
8600 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8601 {
8602 int i;
8603 unsigned long flags;
8604
8605 /*
8606 * We can't change the weight of the root cgroup.
8607 */
8608 if (!tg->se[0])
8609 return -EINVAL;
8610
8611 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8612
8613 mutex_lock(&shares_mutex);
8614 if (tg->shares == shares)
8615 goto done;
8616
8617 tg->shares = shares;
8618 for_each_possible_cpu(i) {
8619 struct rq *rq = cpu_rq(i);
8620 struct sched_entity *se;
8621
8622 se = tg->se[i];
8623 /* Propagate contribution to hierarchy */
8624 raw_spin_lock_irqsave(&rq->lock, flags);
8625 for_each_sched_entity(se)
8626 update_cfs_shares(group_cfs_rq(se));
8627 raw_spin_unlock_irqrestore(&rq->lock, flags);
8628 }
8629
8630 done:
8631 mutex_unlock(&shares_mutex);
8632 return 0;
8633 }
8634
8635 unsigned long sched_group_shares(struct task_group *tg)
8636 {
8637 return tg->shares;
8638 }
8639 #endif
8640
8641 #ifdef CONFIG_RT_GROUP_SCHED
8642 /*
8643 * Ensure that the real time constraints are schedulable.
8644 */
8645 static DEFINE_MUTEX(rt_constraints_mutex);
8646
8647 static unsigned long to_ratio(u64 period, u64 runtime)
8648 {
8649 if (runtime == RUNTIME_INF)
8650 return 1ULL << 20;
8651
8652 return div64_u64(runtime << 20, period);
8653 }
8654
8655 /* Must be called with tasklist_lock held */
8656 static inline int tg_has_rt_tasks(struct task_group *tg)
8657 {
8658 struct task_struct *g, *p;
8659
8660 do_each_thread(g, p) {
8661 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8662 return 1;
8663 } while_each_thread(g, p);
8664
8665 return 0;
8666 }
8667
8668 struct rt_schedulable_data {
8669 struct task_group *tg;
8670 u64 rt_period;
8671 u64 rt_runtime;
8672 };
8673
8674 static int tg_schedulable(struct task_group *tg, void *data)
8675 {
8676 struct rt_schedulable_data *d = data;
8677 struct task_group *child;
8678 unsigned long total, sum = 0;
8679 u64 period, runtime;
8680
8681 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8682 runtime = tg->rt_bandwidth.rt_runtime;
8683
8684 if (tg == d->tg) {
8685 period = d->rt_period;
8686 runtime = d->rt_runtime;
8687 }
8688
8689 /*
8690 * Cannot have more runtime than the period.
8691 */
8692 if (runtime > period && runtime != RUNTIME_INF)
8693 return -EINVAL;
8694
8695 /*
8696 * Ensure we don't starve existing RT tasks.
8697 */
8698 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8699 return -EBUSY;
8700
8701 total = to_ratio(period, runtime);
8702
8703 /*
8704 * Nobody can have more than the global setting allows.
8705 */
8706 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8707 return -EINVAL;
8708
8709 /*
8710 * The sum of our children's runtime should not exceed our own.
8711 */
8712 list_for_each_entry_rcu(child, &tg->children, siblings) {
8713 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8714 runtime = child->rt_bandwidth.rt_runtime;
8715
8716 if (child == d->tg) {
8717 period = d->rt_period;
8718 runtime = d->rt_runtime;
8719 }
8720
8721 sum += to_ratio(period, runtime);
8722 }
8723
8724 if (sum > total)
8725 return -EINVAL;
8726
8727 return 0;
8728 }
8729
8730 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8731 {
8732 struct rt_schedulable_data data = {
8733 .tg = tg,
8734 .rt_period = period,
8735 .rt_runtime = runtime,
8736 };
8737
8738 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8739 }
8740
8741 static int tg_set_bandwidth(struct task_group *tg,
8742 u64 rt_period, u64 rt_runtime)
8743 {
8744 int i, err = 0;
8745
8746 mutex_lock(&rt_constraints_mutex);
8747 read_lock(&tasklist_lock);
8748 err = __rt_schedulable(tg, rt_period, rt_runtime);
8749 if (err)
8750 goto unlock;
8751
8752 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8753 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8754 tg->rt_bandwidth.rt_runtime = rt_runtime;
8755
8756 for_each_possible_cpu(i) {
8757 struct rt_rq *rt_rq = tg->rt_rq[i];
8758
8759 raw_spin_lock(&rt_rq->rt_runtime_lock);
8760 rt_rq->rt_runtime = rt_runtime;
8761 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8762 }
8763 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8764 unlock:
8765 read_unlock(&tasklist_lock);
8766 mutex_unlock(&rt_constraints_mutex);
8767
8768 return err;
8769 }
8770
8771 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8772 {
8773 u64 rt_runtime, rt_period;
8774
8775 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8776 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8777 if (rt_runtime_us < 0)
8778 rt_runtime = RUNTIME_INF;
8779
8780 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8781 }
8782
8783 long sched_group_rt_runtime(struct task_group *tg)
8784 {
8785 u64 rt_runtime_us;
8786
8787 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8788 return -1;
8789
8790 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8791 do_div(rt_runtime_us, NSEC_PER_USEC);
8792 return rt_runtime_us;
8793 }
8794
8795 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8796 {
8797 u64 rt_runtime, rt_period;
8798
8799 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8800 rt_runtime = tg->rt_bandwidth.rt_runtime;
8801
8802 if (rt_period == 0)
8803 return -EINVAL;
8804
8805 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8806 }
8807
8808 long sched_group_rt_period(struct task_group *tg)
8809 {
8810 u64 rt_period_us;
8811
8812 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8813 do_div(rt_period_us, NSEC_PER_USEC);
8814 return rt_period_us;
8815 }
8816
8817 static int sched_rt_global_constraints(void)
8818 {
8819 u64 runtime, period;
8820 int ret = 0;
8821
8822 if (sysctl_sched_rt_period <= 0)
8823 return -EINVAL;
8824
8825 runtime = global_rt_runtime();
8826 period = global_rt_period();
8827
8828 /*
8829 * Sanity check on the sysctl variables.
8830 */
8831 if (runtime > period && runtime != RUNTIME_INF)
8832 return -EINVAL;
8833
8834 mutex_lock(&rt_constraints_mutex);
8835 read_lock(&tasklist_lock);
8836 ret = __rt_schedulable(NULL, 0, 0);
8837 read_unlock(&tasklist_lock);
8838 mutex_unlock(&rt_constraints_mutex);
8839
8840 return ret;
8841 }
8842
8843 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8844 {
8845 /* Don't accept realtime tasks when there is no way for them to run */
8846 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8847 return 0;
8848
8849 return 1;
8850 }
8851
8852 #else /* !CONFIG_RT_GROUP_SCHED */
8853 static int sched_rt_global_constraints(void)
8854 {
8855 unsigned long flags;
8856 int i;
8857
8858 if (sysctl_sched_rt_period <= 0)
8859 return -EINVAL;
8860
8861 /*
8862 * There's always some RT tasks in the root group
8863 * -- migration, kstopmachine etc..
8864 */
8865 if (sysctl_sched_rt_runtime == 0)
8866 return -EBUSY;
8867
8868 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8869 for_each_possible_cpu(i) {
8870 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8871
8872 raw_spin_lock(&rt_rq->rt_runtime_lock);
8873 rt_rq->rt_runtime = global_rt_runtime();
8874 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8875 }
8876 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8877
8878 return 0;
8879 }
8880 #endif /* CONFIG_RT_GROUP_SCHED */
8881
8882 int sched_rt_handler(struct ctl_table *table, int write,
8883 void __user *buffer, size_t *lenp,
8884 loff_t *ppos)
8885 {
8886 int ret;
8887 int old_period, old_runtime;
8888 static DEFINE_MUTEX(mutex);
8889
8890 mutex_lock(&mutex);
8891 old_period = sysctl_sched_rt_period;
8892 old_runtime = sysctl_sched_rt_runtime;
8893
8894 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8895
8896 if (!ret && write) {
8897 ret = sched_rt_global_constraints();
8898 if (ret) {
8899 sysctl_sched_rt_period = old_period;
8900 sysctl_sched_rt_runtime = old_runtime;
8901 } else {
8902 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8903 def_rt_bandwidth.rt_period =
8904 ns_to_ktime(global_rt_period());
8905 }
8906 }
8907 mutex_unlock(&mutex);
8908
8909 return ret;
8910 }
8911
8912 #ifdef CONFIG_CGROUP_SCHED
8913
8914 /* return corresponding task_group object of a cgroup */
8915 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8916 {
8917 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8918 struct task_group, css);
8919 }
8920
8921 static struct cgroup_subsys_state *
8922 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8923 {
8924 struct task_group *tg, *parent;
8925
8926 if (!cgrp->parent) {
8927 /* This is early initialization for the top cgroup */
8928 return &root_task_group.css;
8929 }
8930
8931 parent = cgroup_tg(cgrp->parent);
8932 tg = sched_create_group(parent);
8933 if (IS_ERR(tg))
8934 return ERR_PTR(-ENOMEM);
8935
8936 return &tg->css;
8937 }
8938
8939 static void
8940 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8941 {
8942 struct task_group *tg = cgroup_tg(cgrp);
8943
8944 sched_destroy_group(tg);
8945 }
8946
8947 static int
8948 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8949 {
8950 #ifdef CONFIG_RT_GROUP_SCHED
8951 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8952 return -EINVAL;
8953 #else
8954 /* We don't support RT-tasks being in separate groups */
8955 if (tsk->sched_class != &fair_sched_class)
8956 return -EINVAL;
8957 #endif
8958 return 0;
8959 }
8960
8961 static void
8962 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8963 {
8964 sched_move_task(tsk);
8965 }
8966
8967 static void
8968 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8969 struct cgroup *old_cgrp, struct task_struct *task)
8970 {
8971 /*
8972 * cgroup_exit() is called in the copy_process() failure path.
8973 * Ignore this case since the task hasn't ran yet, this avoids
8974 * trying to poke a half freed task state from generic code.
8975 */
8976 if (!(task->flags & PF_EXITING))
8977 return;
8978
8979 sched_move_task(task);
8980 }
8981
8982 #ifdef CONFIG_FAIR_GROUP_SCHED
8983 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8984 u64 shareval)
8985 {
8986 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8987 }
8988
8989 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8990 {
8991 struct task_group *tg = cgroup_tg(cgrp);
8992
8993 return (u64) scale_load_down(tg->shares);
8994 }
8995 #endif /* CONFIG_FAIR_GROUP_SCHED */
8996
8997 #ifdef CONFIG_RT_GROUP_SCHED
8998 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8999 s64 val)
9000 {
9001 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9002 }
9003
9004 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9005 {
9006 return sched_group_rt_runtime(cgroup_tg(cgrp));
9007 }
9008
9009 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9010 u64 rt_period_us)
9011 {
9012 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9013 }
9014
9015 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9016 {
9017 return sched_group_rt_period(cgroup_tg(cgrp));
9018 }
9019 #endif /* CONFIG_RT_GROUP_SCHED */
9020
9021 static struct cftype cpu_files[] = {
9022 #ifdef CONFIG_FAIR_GROUP_SCHED
9023 {
9024 .name = "shares",
9025 .read_u64 = cpu_shares_read_u64,
9026 .write_u64 = cpu_shares_write_u64,
9027 },
9028 #endif
9029 #ifdef CONFIG_RT_GROUP_SCHED
9030 {
9031 .name = "rt_runtime_us",
9032 .read_s64 = cpu_rt_runtime_read,
9033 .write_s64 = cpu_rt_runtime_write,
9034 },
9035 {
9036 .name = "rt_period_us",
9037 .read_u64 = cpu_rt_period_read_uint,
9038 .write_u64 = cpu_rt_period_write_uint,
9039 },
9040 #endif
9041 };
9042
9043 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9044 {
9045 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9046 }
9047
9048 struct cgroup_subsys cpu_cgroup_subsys = {
9049 .name = "cpu",
9050 .create = cpu_cgroup_create,
9051 .destroy = cpu_cgroup_destroy,
9052 .can_attach_task = cpu_cgroup_can_attach_task,
9053 .attach_task = cpu_cgroup_attach_task,
9054 .exit = cpu_cgroup_exit,
9055 .populate = cpu_cgroup_populate,
9056 .subsys_id = cpu_cgroup_subsys_id,
9057 .early_init = 1,
9058 };
9059
9060 #endif /* CONFIG_CGROUP_SCHED */
9061
9062 #ifdef CONFIG_CGROUP_CPUACCT
9063
9064 /*
9065 * CPU accounting code for task groups.
9066 *
9067 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9068 * (balbir@in.ibm.com).
9069 */
9070
9071 /* track cpu usage of a group of tasks and its child groups */
9072 struct cpuacct {
9073 struct cgroup_subsys_state css;
9074 /* cpuusage holds pointer to a u64-type object on every cpu */
9075 u64 __percpu *cpuusage;
9076 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9077 struct cpuacct *parent;
9078 };
9079
9080 struct cgroup_subsys cpuacct_subsys;
9081
9082 /* return cpu accounting group corresponding to this container */
9083 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9084 {
9085 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9086 struct cpuacct, css);
9087 }
9088
9089 /* return cpu accounting group to which this task belongs */
9090 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9091 {
9092 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9093 struct cpuacct, css);
9094 }
9095
9096 /* create a new cpu accounting group */
9097 static struct cgroup_subsys_state *cpuacct_create(
9098 struct cgroup_subsys *ss, struct cgroup *cgrp)
9099 {
9100 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9101 int i;
9102
9103 if (!ca)
9104 goto out;
9105
9106 ca->cpuusage = alloc_percpu(u64);
9107 if (!ca->cpuusage)
9108 goto out_free_ca;
9109
9110 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9111 if (percpu_counter_init(&ca->cpustat[i], 0))
9112 goto out_free_counters;
9113
9114 if (cgrp->parent)
9115 ca->parent = cgroup_ca(cgrp->parent);
9116
9117 return &ca->css;
9118
9119 out_free_counters:
9120 while (--i >= 0)
9121 percpu_counter_destroy(&ca->cpustat[i]);
9122 free_percpu(ca->cpuusage);
9123 out_free_ca:
9124 kfree(ca);
9125 out:
9126 return ERR_PTR(-ENOMEM);
9127 }
9128
9129 /* destroy an existing cpu accounting group */
9130 static void
9131 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9132 {
9133 struct cpuacct *ca = cgroup_ca(cgrp);
9134 int i;
9135
9136 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9137 percpu_counter_destroy(&ca->cpustat[i]);
9138 free_percpu(ca->cpuusage);
9139 kfree(ca);
9140 }
9141
9142 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9143 {
9144 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9145 u64 data;
9146
9147 #ifndef CONFIG_64BIT
9148 /*
9149 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9150 */
9151 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9152 data = *cpuusage;
9153 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9154 #else
9155 data = *cpuusage;
9156 #endif
9157
9158 return data;
9159 }
9160
9161 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9162 {
9163 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9164
9165 #ifndef CONFIG_64BIT
9166 /*
9167 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9168 */
9169 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9170 *cpuusage = val;
9171 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9172 #else
9173 *cpuusage = val;
9174 #endif
9175 }
9176
9177 /* return total cpu usage (in nanoseconds) of a group */
9178 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9179 {
9180 struct cpuacct *ca = cgroup_ca(cgrp);
9181 u64 totalcpuusage = 0;
9182 int i;
9183
9184 for_each_present_cpu(i)
9185 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9186
9187 return totalcpuusage;
9188 }
9189
9190 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9191 u64 reset)
9192 {
9193 struct cpuacct *ca = cgroup_ca(cgrp);
9194 int err = 0;
9195 int i;
9196
9197 if (reset) {
9198 err = -EINVAL;
9199 goto out;
9200 }
9201
9202 for_each_present_cpu(i)
9203 cpuacct_cpuusage_write(ca, i, 0);
9204
9205 out:
9206 return err;
9207 }
9208
9209 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9210 struct seq_file *m)
9211 {
9212 struct cpuacct *ca = cgroup_ca(cgroup);
9213 u64 percpu;
9214 int i;
9215
9216 for_each_present_cpu(i) {
9217 percpu = cpuacct_cpuusage_read(ca, i);
9218 seq_printf(m, "%llu ", (unsigned long long) percpu);
9219 }
9220 seq_printf(m, "\n");
9221 return 0;
9222 }
9223
9224 static const char *cpuacct_stat_desc[] = {
9225 [CPUACCT_STAT_USER] = "user",
9226 [CPUACCT_STAT_SYSTEM] = "system",
9227 };
9228
9229 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9230 struct cgroup_map_cb *cb)
9231 {
9232 struct cpuacct *ca = cgroup_ca(cgrp);
9233 int i;
9234
9235 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9236 s64 val = percpu_counter_read(&ca->cpustat[i]);
9237 val = cputime64_to_clock_t(val);
9238 cb->fill(cb, cpuacct_stat_desc[i], val);
9239 }
9240 return 0;
9241 }
9242
9243 static struct cftype files[] = {
9244 {
9245 .name = "usage",
9246 .read_u64 = cpuusage_read,
9247 .write_u64 = cpuusage_write,
9248 },
9249 {
9250 .name = "usage_percpu",
9251 .read_seq_string = cpuacct_percpu_seq_read,
9252 },
9253 {
9254 .name = "stat",
9255 .read_map = cpuacct_stats_show,
9256 },
9257 };
9258
9259 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9260 {
9261 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9262 }
9263
9264 /*
9265 * charge this task's execution time to its accounting group.
9266 *
9267 * called with rq->lock held.
9268 */
9269 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9270 {
9271 struct cpuacct *ca;
9272 int cpu;
9273
9274 if (unlikely(!cpuacct_subsys.active))
9275 return;
9276
9277 cpu = task_cpu(tsk);
9278
9279 rcu_read_lock();
9280
9281 ca = task_ca(tsk);
9282
9283 for (; ca; ca = ca->parent) {
9284 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9285 *cpuusage += cputime;
9286 }
9287
9288 rcu_read_unlock();
9289 }
9290
9291 /*
9292 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9293 * in cputime_t units. As a result, cpuacct_update_stats calls
9294 * percpu_counter_add with values large enough to always overflow the
9295 * per cpu batch limit causing bad SMP scalability.
9296 *
9297 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9298 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9299 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9300 */
9301 #ifdef CONFIG_SMP
9302 #define CPUACCT_BATCH \
9303 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9304 #else
9305 #define CPUACCT_BATCH 0
9306 #endif
9307
9308 /*
9309 * Charge the system/user time to the task's accounting group.
9310 */
9311 static void cpuacct_update_stats(struct task_struct *tsk,
9312 enum cpuacct_stat_index idx, cputime_t val)
9313 {
9314 struct cpuacct *ca;
9315 int batch = CPUACCT_BATCH;
9316
9317 if (unlikely(!cpuacct_subsys.active))
9318 return;
9319
9320 rcu_read_lock();
9321 ca = task_ca(tsk);
9322
9323 do {
9324 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9325 ca = ca->parent;
9326 } while (ca);
9327 rcu_read_unlock();
9328 }
9329
9330 struct cgroup_subsys cpuacct_subsys = {
9331 .name = "cpuacct",
9332 .create = cpuacct_create,
9333 .destroy = cpuacct_destroy,
9334 .populate = cpuacct_populate,
9335 .subsys_id = cpuacct_subsys_id,
9336 };
9337 #endif /* CONFIG_CGROUP_CPUACCT */
9338
This page took 0.395288 seconds and 6 git commands to generate.