Merge branch 'sched/urgent' into sched/core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 unsigned long rt_nr_total;
497 int overloaded;
498 struct plist_head pushable_tasks;
499 #endif
500 int rt_throttled;
501 u64 rt_time;
502 u64 rt_runtime;
503 /* Nests inside the rq lock: */
504 spinlock_t rt_runtime_lock;
505
506 #ifdef CONFIG_RT_GROUP_SCHED
507 unsigned long rt_nr_boosted;
508
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513 #endif
514 };
515
516 #ifdef CONFIG_SMP
517
518 /*
519 * We add the notion of a root-domain which will be used to define per-domain
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
525 */
526 struct root_domain {
527 atomic_t refcount;
528 cpumask_var_t span;
529 cpumask_var_t online;
530
531 /*
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
535 cpumask_var_t rto_mask;
536 atomic_t rto_count;
537 #ifdef CONFIG_SMP
538 struct cpupri cpupri;
539 #endif
540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547 #endif
548 };
549
550 /*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
554 static struct root_domain def_root_domain;
555
556 #endif
557
558 /*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
565 struct rq {
566 /* runqueue lock: */
567 spinlock_t lock;
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576 #ifdef CONFIG_NO_HZ
577 unsigned long last_tick_seen;
578 unsigned char in_nohz_recently;
579 #endif
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
582 unsigned long nr_load_updates;
583 u64 nr_switches;
584 u64 nr_migrations_in;
585
586 struct cfs_rq cfs;
587 struct rt_rq rt;
588
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
592 #endif
593 #ifdef CONFIG_RT_GROUP_SCHED
594 struct list_head leaf_rt_rq_list;
595 #endif
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
605 struct task_struct *curr, *idle;
606 unsigned long next_balance;
607 struct mm_struct *prev_mm;
608
609 u64 clock;
610
611 atomic_t nr_iowait;
612
613 #ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
616
617 unsigned char idle_at_tick;
618 /* For active balancing */
619 int active_balance;
620 int push_cpu;
621 /* cpu of this runqueue: */
622 int cpu;
623 int online;
624
625 unsigned long avg_load_per_task;
626
627 struct task_struct *migration_thread;
628 struct list_head migration_queue;
629 #endif
630
631 /* calc_load related fields */
632 unsigned long calc_load_update;
633 long calc_load_active;
634
635 #ifdef CONFIG_SCHED_HRTICK
636 #ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639 #endif
640 struct hrtimer hrtick_timer;
641 #endif
642
643 #ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648
649 /* sys_sched_yield() stats */
650 unsigned int yld_count;
651
652 /* schedule() stats */
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
656
657 /* try_to_wake_up() stats */
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
660
661 /* BKL stats */
662 unsigned int bkl_count;
663 #endif
664 };
665
666 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
667
668 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
669 {
670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 }
672
673 static inline int cpu_of(struct rq *rq)
674 {
675 #ifdef CONFIG_SMP
676 return rq->cpu;
677 #else
678 return 0;
679 #endif
680 }
681
682 /*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684 * See detach_destroy_domains: synchronize_sched for details.
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
689 #define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691
692 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693 #define this_rq() (&__get_cpu_var(runqueues))
694 #define task_rq(p) cpu_rq(task_cpu(p))
695 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 #define raw_rq() (&__raw_get_cpu_var(runqueues))
697
698 inline void update_rq_clock(struct rq *rq)
699 {
700 rq->clock = sched_clock_cpu(cpu_of(rq));
701 }
702
703 /*
704 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
705 */
706 #ifdef CONFIG_SCHED_DEBUG
707 # define const_debug __read_mostly
708 #else
709 # define const_debug static const
710 #endif
711
712 /**
713 * runqueue_is_locked
714 *
715 * Returns true if the current cpu runqueue is locked.
716 * This interface allows printk to be called with the runqueue lock
717 * held and know whether or not it is OK to wake up the klogd.
718 */
719 int runqueue_is_locked(void)
720 {
721 int cpu = get_cpu();
722 struct rq *rq = cpu_rq(cpu);
723 int ret;
724
725 ret = spin_is_locked(&rq->lock);
726 put_cpu();
727 return ret;
728 }
729
730 /*
731 * Debugging: various feature bits
732 */
733
734 #define SCHED_FEAT(name, enabled) \
735 __SCHED_FEAT_##name ,
736
737 enum {
738 #include "sched_features.h"
739 };
740
741 #undef SCHED_FEAT
742
743 #define SCHED_FEAT(name, enabled) \
744 (1UL << __SCHED_FEAT_##name) * enabled |
745
746 const_debug unsigned int sysctl_sched_features =
747 #include "sched_features.h"
748 0;
749
750 #undef SCHED_FEAT
751
752 #ifdef CONFIG_SCHED_DEBUG
753 #define SCHED_FEAT(name, enabled) \
754 #name ,
755
756 static __read_mostly char *sched_feat_names[] = {
757 #include "sched_features.h"
758 NULL
759 };
760
761 #undef SCHED_FEAT
762
763 static int sched_feat_show(struct seq_file *m, void *v)
764 {
765 int i;
766
767 for (i = 0; sched_feat_names[i]; i++) {
768 if (!(sysctl_sched_features & (1UL << i)))
769 seq_puts(m, "NO_");
770 seq_printf(m, "%s ", sched_feat_names[i]);
771 }
772 seq_puts(m, "\n");
773
774 return 0;
775 }
776
777 static ssize_t
778 sched_feat_write(struct file *filp, const char __user *ubuf,
779 size_t cnt, loff_t *ppos)
780 {
781 char buf[64];
782 char *cmp = buf;
783 int neg = 0;
784 int i;
785
786 if (cnt > 63)
787 cnt = 63;
788
789 if (copy_from_user(&buf, ubuf, cnt))
790 return -EFAULT;
791
792 buf[cnt] = 0;
793
794 if (strncmp(buf, "NO_", 3) == 0) {
795 neg = 1;
796 cmp += 3;
797 }
798
799 for (i = 0; sched_feat_names[i]; i++) {
800 int len = strlen(sched_feat_names[i]);
801
802 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
803 if (neg)
804 sysctl_sched_features &= ~(1UL << i);
805 else
806 sysctl_sched_features |= (1UL << i);
807 break;
808 }
809 }
810
811 if (!sched_feat_names[i])
812 return -EINVAL;
813
814 filp->f_pos += cnt;
815
816 return cnt;
817 }
818
819 static int sched_feat_open(struct inode *inode, struct file *filp)
820 {
821 return single_open(filp, sched_feat_show, NULL);
822 }
823
824 static struct file_operations sched_feat_fops = {
825 .open = sched_feat_open,
826 .write = sched_feat_write,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = single_release,
830 };
831
832 static __init int sched_init_debug(void)
833 {
834 debugfs_create_file("sched_features", 0644, NULL, NULL,
835 &sched_feat_fops);
836
837 return 0;
838 }
839 late_initcall(sched_init_debug);
840
841 #endif
842
843 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844
845 /*
846 * Number of tasks to iterate in a single balance run.
847 * Limited because this is done with IRQs disabled.
848 */
849 const_debug unsigned int sysctl_sched_nr_migrate = 32;
850
851 /*
852 * ratelimit for updating the group shares.
853 * default: 0.25ms
854 */
855 unsigned int sysctl_sched_shares_ratelimit = 250000;
856
857 /*
858 * Inject some fuzzyness into changing the per-cpu group shares
859 * this avoids remote rq-locks at the expense of fairness.
860 * default: 4
861 */
862 unsigned int sysctl_sched_shares_thresh = 4;
863
864 /*
865 * period over which we measure -rt task cpu usage in us.
866 * default: 1s
867 */
868 unsigned int sysctl_sched_rt_period = 1000000;
869
870 static __read_mostly int scheduler_running;
871
872 /*
873 * part of the period that we allow rt tasks to run in us.
874 * default: 0.95s
875 */
876 int sysctl_sched_rt_runtime = 950000;
877
878 static inline u64 global_rt_period(void)
879 {
880 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881 }
882
883 static inline u64 global_rt_runtime(void)
884 {
885 if (sysctl_sched_rt_runtime < 0)
886 return RUNTIME_INF;
887
888 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889 }
890
891 #ifndef prepare_arch_switch
892 # define prepare_arch_switch(next) do { } while (0)
893 #endif
894 #ifndef finish_arch_switch
895 # define finish_arch_switch(prev) do { } while (0)
896 #endif
897
898 static inline int task_current(struct rq *rq, struct task_struct *p)
899 {
900 return rq->curr == p;
901 }
902
903 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
904 static inline int task_running(struct rq *rq, struct task_struct *p)
905 {
906 return task_current(rq, p);
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 }
912
913 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914 {
915 #ifdef CONFIG_DEBUG_SPINLOCK
916 /* this is a valid case when another task releases the spinlock */
917 rq->lock.owner = current;
918 #endif
919 /*
920 * If we are tracking spinlock dependencies then we have to
921 * fix up the runqueue lock - which gets 'carried over' from
922 * prev into current:
923 */
924 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
925
926 spin_unlock_irq(&rq->lock);
927 }
928
929 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
930 static inline int task_running(struct rq *rq, struct task_struct *p)
931 {
932 #ifdef CONFIG_SMP
933 return p->oncpu;
934 #else
935 return task_current(rq, p);
936 #endif
937 }
938
939 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 {
941 #ifdef CONFIG_SMP
942 /*
943 * We can optimise this out completely for !SMP, because the
944 * SMP rebalancing from interrupt is the only thing that cares
945 * here.
946 */
947 next->oncpu = 1;
948 #endif
949 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 spin_unlock_irq(&rq->lock);
951 #else
952 spin_unlock(&rq->lock);
953 #endif
954 }
955
956 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 {
958 #ifdef CONFIG_SMP
959 /*
960 * After ->oncpu is cleared, the task can be moved to a different CPU.
961 * We must ensure this doesn't happen until the switch is completely
962 * finished.
963 */
964 smp_wmb();
965 prev->oncpu = 0;
966 #endif
967 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 local_irq_enable();
969 #endif
970 }
971 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972
973 /*
974 * __task_rq_lock - lock the runqueue a given task resides on.
975 * Must be called interrupts disabled.
976 */
977 static inline struct rq *__task_rq_lock(struct task_struct *p)
978 __acquires(rq->lock)
979 {
980 for (;;) {
981 struct rq *rq = task_rq(p);
982 spin_lock(&rq->lock);
983 if (likely(rq == task_rq(p)))
984 return rq;
985 spin_unlock(&rq->lock);
986 }
987 }
988
989 /*
990 * task_rq_lock - lock the runqueue a given task resides on and disable
991 * interrupts. Note the ordering: we can safely lookup the task_rq without
992 * explicitly disabling preemption.
993 */
994 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
995 __acquires(rq->lock)
996 {
997 struct rq *rq;
998
999 for (;;) {
1000 local_irq_save(*flags);
1001 rq = task_rq(p);
1002 spin_lock(&rq->lock);
1003 if (likely(rq == task_rq(p)))
1004 return rq;
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006 }
1007 }
1008
1009 void task_rq_unlock_wait(struct task_struct *p)
1010 {
1011 struct rq *rq = task_rq(p);
1012
1013 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1014 spin_unlock_wait(&rq->lock);
1015 }
1016
1017 static void __task_rq_unlock(struct rq *rq)
1018 __releases(rq->lock)
1019 {
1020 spin_unlock(&rq->lock);
1021 }
1022
1023 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1024 __releases(rq->lock)
1025 {
1026 spin_unlock_irqrestore(&rq->lock, *flags);
1027 }
1028
1029 /*
1030 * this_rq_lock - lock this runqueue and disable interrupts.
1031 */
1032 static struct rq *this_rq_lock(void)
1033 __acquires(rq->lock)
1034 {
1035 struct rq *rq;
1036
1037 local_irq_disable();
1038 rq = this_rq();
1039 spin_lock(&rq->lock);
1040
1041 return rq;
1042 }
1043
1044 #ifdef CONFIG_SCHED_HRTICK
1045 /*
1046 * Use HR-timers to deliver accurate preemption points.
1047 *
1048 * Its all a bit involved since we cannot program an hrt while holding the
1049 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * reschedule event.
1051 *
1052 * When we get rescheduled we reprogram the hrtick_timer outside of the
1053 * rq->lock.
1054 */
1055
1056 /*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061 static inline int hrtick_enabled(struct rq *rq)
1062 {
1063 if (!sched_feat(HRTICK))
1064 return 0;
1065 if (!cpu_active(cpu_of(rq)))
1066 return 0;
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 }
1069
1070 static void hrtick_clear(struct rq *rq)
1071 {
1072 if (hrtimer_active(&rq->hrtick_timer))
1073 hrtimer_cancel(&rq->hrtick_timer);
1074 }
1075
1076 /*
1077 * High-resolution timer tick.
1078 * Runs from hardirq context with interrupts disabled.
1079 */
1080 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1081 {
1082 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1083
1084 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085
1086 spin_lock(&rq->lock);
1087 update_rq_clock(rq);
1088 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1089 spin_unlock(&rq->lock);
1090
1091 return HRTIMER_NORESTART;
1092 }
1093
1094 #ifdef CONFIG_SMP
1095 /*
1096 * called from hardirq (IPI) context
1097 */
1098 static void __hrtick_start(void *arg)
1099 {
1100 struct rq *rq = arg;
1101
1102 spin_lock(&rq->lock);
1103 hrtimer_restart(&rq->hrtick_timer);
1104 rq->hrtick_csd_pending = 0;
1105 spin_unlock(&rq->lock);
1106 }
1107
1108 /*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113 static void hrtick_start(struct rq *rq, u64 delay)
1114 {
1115 struct hrtimer *timer = &rq->hrtick_timer;
1116 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1117
1118 hrtimer_set_expires(timer, time);
1119
1120 if (rq == this_rq()) {
1121 hrtimer_restart(timer);
1122 } else if (!rq->hrtick_csd_pending) {
1123 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1124 rq->hrtick_csd_pending = 1;
1125 }
1126 }
1127
1128 static int
1129 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1130 {
1131 int cpu = (int)(long)hcpu;
1132
1133 switch (action) {
1134 case CPU_UP_CANCELED:
1135 case CPU_UP_CANCELED_FROZEN:
1136 case CPU_DOWN_PREPARE:
1137 case CPU_DOWN_PREPARE_FROZEN:
1138 case CPU_DEAD:
1139 case CPU_DEAD_FROZEN:
1140 hrtick_clear(cpu_rq(cpu));
1141 return NOTIFY_OK;
1142 }
1143
1144 return NOTIFY_DONE;
1145 }
1146
1147 static __init void init_hrtick(void)
1148 {
1149 hotcpu_notifier(hotplug_hrtick, 0);
1150 }
1151 #else
1152 /*
1153 * Called to set the hrtick timer state.
1154 *
1155 * called with rq->lock held and irqs disabled
1156 */
1157 static void hrtick_start(struct rq *rq, u64 delay)
1158 {
1159 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1160 HRTIMER_MODE_REL_PINNED, 0);
1161 }
1162
1163 static inline void init_hrtick(void)
1164 {
1165 }
1166 #endif /* CONFIG_SMP */
1167
1168 static void init_rq_hrtick(struct rq *rq)
1169 {
1170 #ifdef CONFIG_SMP
1171 rq->hrtick_csd_pending = 0;
1172
1173 rq->hrtick_csd.flags = 0;
1174 rq->hrtick_csd.func = __hrtick_start;
1175 rq->hrtick_csd.info = rq;
1176 #endif
1177
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
1180 }
1181 #else /* CONFIG_SCHED_HRTICK */
1182 static inline void hrtick_clear(struct rq *rq)
1183 {
1184 }
1185
1186 static inline void init_rq_hrtick(struct rq *rq)
1187 {
1188 }
1189
1190 static inline void init_hrtick(void)
1191 {
1192 }
1193 #endif /* CONFIG_SCHED_HRTICK */
1194
1195 /*
1196 * resched_task - mark a task 'to be rescheduled now'.
1197 *
1198 * On UP this means the setting of the need_resched flag, on SMP it
1199 * might also involve a cross-CPU call to trigger the scheduler on
1200 * the target CPU.
1201 */
1202 #ifdef CONFIG_SMP
1203
1204 #ifndef tsk_is_polling
1205 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206 #endif
1207
1208 static void resched_task(struct task_struct *p)
1209 {
1210 int cpu;
1211
1212 assert_spin_locked(&task_rq(p)->lock);
1213
1214 if (test_tsk_need_resched(p))
1215 return;
1216
1217 set_tsk_need_resched(p);
1218
1219 cpu = task_cpu(p);
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(p))
1226 smp_send_reschedule(cpu);
1227 }
1228
1229 static void resched_cpu(int cpu)
1230 {
1231 struct rq *rq = cpu_rq(cpu);
1232 unsigned long flags;
1233
1234 if (!spin_trylock_irqsave(&rq->lock, flags))
1235 return;
1236 resched_task(cpu_curr(cpu));
1237 spin_unlock_irqrestore(&rq->lock, flags);
1238 }
1239
1240 #ifdef CONFIG_NO_HZ
1241 /*
1242 * When add_timer_on() enqueues a timer into the timer wheel of an
1243 * idle CPU then this timer might expire before the next timer event
1244 * which is scheduled to wake up that CPU. In case of a completely
1245 * idle system the next event might even be infinite time into the
1246 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1247 * leaves the inner idle loop so the newly added timer is taken into
1248 * account when the CPU goes back to idle and evaluates the timer
1249 * wheel for the next timer event.
1250 */
1251 void wake_up_idle_cpu(int cpu)
1252 {
1253 struct rq *rq = cpu_rq(cpu);
1254
1255 if (cpu == smp_processor_id())
1256 return;
1257
1258 /*
1259 * This is safe, as this function is called with the timer
1260 * wheel base lock of (cpu) held. When the CPU is on the way
1261 * to idle and has not yet set rq->curr to idle then it will
1262 * be serialized on the timer wheel base lock and take the new
1263 * timer into account automatically.
1264 */
1265 if (rq->curr != rq->idle)
1266 return;
1267
1268 /*
1269 * We can set TIF_RESCHED on the idle task of the other CPU
1270 * lockless. The worst case is that the other CPU runs the
1271 * idle task through an additional NOOP schedule()
1272 */
1273 set_tsk_need_resched(rq->idle);
1274
1275 /* NEED_RESCHED must be visible before we test polling */
1276 smp_mb();
1277 if (!tsk_is_polling(rq->idle))
1278 smp_send_reschedule(cpu);
1279 }
1280 #endif /* CONFIG_NO_HZ */
1281
1282 #else /* !CONFIG_SMP */
1283 static void resched_task(struct task_struct *p)
1284 {
1285 assert_spin_locked(&task_rq(p)->lock);
1286 set_tsk_need_resched(p);
1287 }
1288 #endif /* CONFIG_SMP */
1289
1290 #if BITS_PER_LONG == 32
1291 # define WMULT_CONST (~0UL)
1292 #else
1293 # define WMULT_CONST (1UL << 32)
1294 #endif
1295
1296 #define WMULT_SHIFT 32
1297
1298 /*
1299 * Shift right and round:
1300 */
1301 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302
1303 /*
1304 * delta *= weight / lw
1305 */
1306 static unsigned long
1307 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309 {
1310 u64 tmp;
1311
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
1324 if (unlikely(tmp > WMULT_CONST))
1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1326 WMULT_SHIFT/2);
1327 else
1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329
1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 }
1332
1333 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 {
1335 lw->weight += inc;
1336 lw->inv_weight = 0;
1337 }
1338
1339 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 {
1341 lw->weight -= dec;
1342 lw->inv_weight = 0;
1343 }
1344
1345 /*
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1350 * scaled version of the new time slice allocation that they receive on time
1351 * slice expiry etc.
1352 */
1353
1354 #define WEIGHT_IDLEPRIO 3
1355 #define WMULT_IDLEPRIO 1431655765
1356
1357 /*
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1362 *
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
1368 */
1369 static const int prio_to_weight[40] = {
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
1378 };
1379
1380 /*
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 *
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1386 */
1387 static const u32 prio_to_wmult[40] = {
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 };
1397
1398 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399
1400 /*
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1404 */
1405 struct rq_iterator {
1406 void *arg;
1407 struct task_struct *(*start)(void *);
1408 struct task_struct *(*next)(void *);
1409 };
1410
1411 #ifdef CONFIG_SMP
1412 static unsigned long
1413 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 unsigned long max_load_move, struct sched_domain *sd,
1415 enum cpu_idle_type idle, int *all_pinned,
1416 int *this_best_prio, struct rq_iterator *iterator);
1417
1418 static int
1419 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle,
1421 struct rq_iterator *iterator);
1422 #endif
1423
1424 /* Time spent by the tasks of the cpu accounting group executing in ... */
1425 enum cpuacct_stat_index {
1426 CPUACCT_STAT_USER, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428
1429 CPUACCT_STAT_NSTATS,
1430 };
1431
1432 #ifdef CONFIG_CGROUP_CPUACCT
1433 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1434 static void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val);
1436 #else
1437 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1438 static inline void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val) {}
1440 #endif
1441
1442 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_add(&rq->load, load);
1445 }
1446
1447 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448 {
1449 update_load_sub(&rq->load, load);
1450 }
1451
1452 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1453 typedef int (*tg_visitor)(struct task_group *, void *);
1454
1455 /*
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1458 */
1459 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1460 {
1461 struct task_group *parent, *child;
1462 int ret;
1463
1464 rcu_read_lock();
1465 parent = &root_task_group;
1466 down:
1467 ret = (*down)(parent, data);
1468 if (ret)
1469 goto out_unlock;
1470 list_for_each_entry_rcu(child, &parent->children, siblings) {
1471 parent = child;
1472 goto down;
1473
1474 up:
1475 continue;
1476 }
1477 ret = (*up)(parent, data);
1478 if (ret)
1479 goto out_unlock;
1480
1481 child = parent;
1482 parent = parent->parent;
1483 if (parent)
1484 goto up;
1485 out_unlock:
1486 rcu_read_unlock();
1487
1488 return ret;
1489 }
1490
1491 static int tg_nop(struct task_group *tg, void *data)
1492 {
1493 return 0;
1494 }
1495 #endif
1496
1497 #ifdef CONFIG_SMP
1498 static unsigned long source_load(int cpu, int type);
1499 static unsigned long target_load(int cpu, int type);
1500 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1501
1502 static unsigned long cpu_avg_load_per_task(int cpu)
1503 {
1504 struct rq *rq = cpu_rq(cpu);
1505 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1506
1507 if (nr_running)
1508 rq->avg_load_per_task = rq->load.weight / nr_running;
1509 else
1510 rq->avg_load_per_task = 0;
1511
1512 return rq->avg_load_per_task;
1513 }
1514
1515 #ifdef CONFIG_FAIR_GROUP_SCHED
1516
1517 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518
1519 /*
1520 * Calculate and set the cpu's group shares.
1521 */
1522 static void
1523 update_group_shares_cpu(struct task_group *tg, int cpu,
1524 unsigned long sd_shares, unsigned long sd_rq_weight)
1525 {
1526 unsigned long shares;
1527 unsigned long rq_weight;
1528
1529 if (!tg->se[cpu])
1530 return;
1531
1532 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533
1534 /*
1535 * \Sum shares * rq_weight
1536 * shares = -----------------------
1537 * \Sum rq_weight
1538 *
1539 */
1540 shares = (sd_shares * rq_weight) / sd_rq_weight;
1541 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1542
1543 if (abs(shares - tg->se[cpu]->load.weight) >
1544 sysctl_sched_shares_thresh) {
1545 struct rq *rq = cpu_rq(cpu);
1546 unsigned long flags;
1547
1548 spin_lock_irqsave(&rq->lock, flags);
1549 tg->cfs_rq[cpu]->shares = shares;
1550
1551 __set_se_shares(tg->se[cpu], shares);
1552 spin_unlock_irqrestore(&rq->lock, flags);
1553 }
1554 }
1555
1556 /*
1557 * Re-compute the task group their per cpu shares over the given domain.
1558 * This needs to be done in a bottom-up fashion because the rq weight of a
1559 * parent group depends on the shares of its child groups.
1560 */
1561 static int tg_shares_up(struct task_group *tg, void *data)
1562 {
1563 unsigned long weight, rq_weight = 0;
1564 unsigned long shares = 0;
1565 struct sched_domain *sd = data;
1566 int i;
1567
1568 for_each_cpu(i, sched_domain_span(sd)) {
1569 /*
1570 * If there are currently no tasks on the cpu pretend there
1571 * is one of average load so that when a new task gets to
1572 * run here it will not get delayed by group starvation.
1573 */
1574 weight = tg->cfs_rq[i]->load.weight;
1575 if (!weight)
1576 weight = NICE_0_LOAD;
1577
1578 tg->cfs_rq[i]->rq_weight = weight;
1579 rq_weight += weight;
1580 shares += tg->cfs_rq[i]->shares;
1581 }
1582
1583 if ((!shares && rq_weight) || shares > tg->shares)
1584 shares = tg->shares;
1585
1586 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1587 shares = tg->shares;
1588
1589 for_each_cpu(i, sched_domain_span(sd))
1590 update_group_shares_cpu(tg, i, shares, rq_weight);
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * Compute the cpu's hierarchical load factor for each task group.
1597 * This needs to be done in a top-down fashion because the load of a child
1598 * group is a fraction of its parents load.
1599 */
1600 static int tg_load_down(struct task_group *tg, void *data)
1601 {
1602 unsigned long load;
1603 long cpu = (long)data;
1604
1605 if (!tg->parent) {
1606 load = cpu_rq(cpu)->load.weight;
1607 } else {
1608 load = tg->parent->cfs_rq[cpu]->h_load;
1609 load *= tg->cfs_rq[cpu]->shares;
1610 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 }
1612
1613 tg->cfs_rq[cpu]->h_load = load;
1614
1615 return 0;
1616 }
1617
1618 static void update_shares(struct sched_domain *sd)
1619 {
1620 u64 now = cpu_clock(raw_smp_processor_id());
1621 s64 elapsed = now - sd->last_update;
1622
1623 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1624 sd->last_update = now;
1625 walk_tg_tree(tg_nop, tg_shares_up, sd);
1626 }
1627 }
1628
1629 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1630 {
1631 spin_unlock(&rq->lock);
1632 update_shares(sd);
1633 spin_lock(&rq->lock);
1634 }
1635
1636 static void update_h_load(long cpu)
1637 {
1638 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 }
1640
1641 #else
1642
1643 static inline void update_shares(struct sched_domain *sd)
1644 {
1645 }
1646
1647 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1648 {
1649 }
1650
1651 #endif
1652
1653 #ifdef CONFIG_PREEMPT
1654
1655 /*
1656 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1657 * way at the expense of forcing extra atomic operations in all
1658 * invocations. This assures that the double_lock is acquired using the
1659 * same underlying policy as the spinlock_t on this architecture, which
1660 * reduces latency compared to the unfair variant below. However, it
1661 * also adds more overhead and therefore may reduce throughput.
1662 */
1663 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1664 __releases(this_rq->lock)
1665 __acquires(busiest->lock)
1666 __acquires(this_rq->lock)
1667 {
1668 spin_unlock(&this_rq->lock);
1669 double_rq_lock(this_rq, busiest);
1670
1671 return 1;
1672 }
1673
1674 #else
1675 /*
1676 * Unfair double_lock_balance: Optimizes throughput at the expense of
1677 * latency by eliminating extra atomic operations when the locks are
1678 * already in proper order on entry. This favors lower cpu-ids and will
1679 * grant the double lock to lower cpus over higher ids under contention,
1680 * regardless of entry order into the function.
1681 */
1682 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1683 __releases(this_rq->lock)
1684 __acquires(busiest->lock)
1685 __acquires(this_rq->lock)
1686 {
1687 int ret = 0;
1688
1689 if (unlikely(!spin_trylock(&busiest->lock))) {
1690 if (busiest < this_rq) {
1691 spin_unlock(&this_rq->lock);
1692 spin_lock(&busiest->lock);
1693 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1694 ret = 1;
1695 } else
1696 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1697 }
1698 return ret;
1699 }
1700
1701 #endif /* CONFIG_PREEMPT */
1702
1703 /*
1704 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1705 */
1706 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 {
1708 if (unlikely(!irqs_disabled())) {
1709 /* printk() doesn't work good under rq->lock */
1710 spin_unlock(&this_rq->lock);
1711 BUG_ON(1);
1712 }
1713
1714 return _double_lock_balance(this_rq, busiest);
1715 }
1716
1717 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1718 __releases(busiest->lock)
1719 {
1720 spin_unlock(&busiest->lock);
1721 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1722 }
1723 #endif
1724
1725 #ifdef CONFIG_FAIR_GROUP_SCHED
1726 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1727 {
1728 #ifdef CONFIG_SMP
1729 cfs_rq->shares = shares;
1730 #endif
1731 }
1732 #endif
1733
1734 static void calc_load_account_active(struct rq *this_rq);
1735
1736 #include "sched_stats.h"
1737 #include "sched_idletask.c"
1738 #include "sched_fair.c"
1739 #include "sched_rt.c"
1740 #ifdef CONFIG_SCHED_DEBUG
1741 # include "sched_debug.c"
1742 #endif
1743
1744 #define sched_class_highest (&rt_sched_class)
1745 #define for_each_class(class) \
1746 for (class = sched_class_highest; class; class = class->next)
1747
1748 static void inc_nr_running(struct rq *rq)
1749 {
1750 rq->nr_running++;
1751 }
1752
1753 static void dec_nr_running(struct rq *rq)
1754 {
1755 rq->nr_running--;
1756 }
1757
1758 static void set_load_weight(struct task_struct *p)
1759 {
1760 if (task_has_rt_policy(p)) {
1761 p->se.load.weight = prio_to_weight[0] * 2;
1762 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1763 return;
1764 }
1765
1766 /*
1767 * SCHED_IDLE tasks get minimal weight:
1768 */
1769 if (p->policy == SCHED_IDLE) {
1770 p->se.load.weight = WEIGHT_IDLEPRIO;
1771 p->se.load.inv_weight = WMULT_IDLEPRIO;
1772 return;
1773 }
1774
1775 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1776 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1777 }
1778
1779 static void update_avg(u64 *avg, u64 sample)
1780 {
1781 s64 diff = sample - *avg;
1782 *avg += diff >> 3;
1783 }
1784
1785 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1786 {
1787 if (wakeup)
1788 p->se.start_runtime = p->se.sum_exec_runtime;
1789
1790 sched_info_queued(p);
1791 p->sched_class->enqueue_task(rq, p, wakeup);
1792 p->se.on_rq = 1;
1793 }
1794
1795 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1796 {
1797 if (sleep) {
1798 if (p->se.last_wakeup) {
1799 update_avg(&p->se.avg_overlap,
1800 p->se.sum_exec_runtime - p->se.last_wakeup);
1801 p->se.last_wakeup = 0;
1802 } else {
1803 update_avg(&p->se.avg_wakeup,
1804 sysctl_sched_wakeup_granularity);
1805 }
1806 }
1807
1808 sched_info_dequeued(p);
1809 p->sched_class->dequeue_task(rq, p, sleep);
1810 p->se.on_rq = 0;
1811 }
1812
1813 /*
1814 * __normal_prio - return the priority that is based on the static prio
1815 */
1816 static inline int __normal_prio(struct task_struct *p)
1817 {
1818 return p->static_prio;
1819 }
1820
1821 /*
1822 * Calculate the expected normal priority: i.e. priority
1823 * without taking RT-inheritance into account. Might be
1824 * boosted by interactivity modifiers. Changes upon fork,
1825 * setprio syscalls, and whenever the interactivity
1826 * estimator recalculates.
1827 */
1828 static inline int normal_prio(struct task_struct *p)
1829 {
1830 int prio;
1831
1832 if (task_has_rt_policy(p))
1833 prio = MAX_RT_PRIO-1 - p->rt_priority;
1834 else
1835 prio = __normal_prio(p);
1836 return prio;
1837 }
1838
1839 /*
1840 * Calculate the current priority, i.e. the priority
1841 * taken into account by the scheduler. This value might
1842 * be boosted by RT tasks, or might be boosted by
1843 * interactivity modifiers. Will be RT if the task got
1844 * RT-boosted. If not then it returns p->normal_prio.
1845 */
1846 static int effective_prio(struct task_struct *p)
1847 {
1848 p->normal_prio = normal_prio(p);
1849 /*
1850 * If we are RT tasks or we were boosted to RT priority,
1851 * keep the priority unchanged. Otherwise, update priority
1852 * to the normal priority:
1853 */
1854 if (!rt_prio(p->prio))
1855 return p->normal_prio;
1856 return p->prio;
1857 }
1858
1859 /*
1860 * activate_task - move a task to the runqueue.
1861 */
1862 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1863 {
1864 if (task_contributes_to_load(p))
1865 rq->nr_uninterruptible--;
1866
1867 enqueue_task(rq, p, wakeup);
1868 inc_nr_running(rq);
1869 }
1870
1871 /*
1872 * deactivate_task - remove a task from the runqueue.
1873 */
1874 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1875 {
1876 if (task_contributes_to_load(p))
1877 rq->nr_uninterruptible++;
1878
1879 dequeue_task(rq, p, sleep);
1880 dec_nr_running(rq);
1881 }
1882
1883 /**
1884 * task_curr - is this task currently executing on a CPU?
1885 * @p: the task in question.
1886 */
1887 inline int task_curr(const struct task_struct *p)
1888 {
1889 return cpu_curr(task_cpu(p)) == p;
1890 }
1891
1892 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893 {
1894 set_task_rq(p, cpu);
1895 #ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903 #endif
1904 }
1905
1906 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1907 const struct sched_class *prev_class,
1908 int oldprio, int running)
1909 {
1910 if (prev_class != p->sched_class) {
1911 if (prev_class->switched_from)
1912 prev_class->switched_from(rq, p, running);
1913 p->sched_class->switched_to(rq, p, running);
1914 } else
1915 p->sched_class->prio_changed(rq, p, oldprio, running);
1916 }
1917
1918 #ifdef CONFIG_SMP
1919
1920 /* Used instead of source_load when we know the type == 0 */
1921 static unsigned long weighted_cpuload(const int cpu)
1922 {
1923 return cpu_rq(cpu)->load.weight;
1924 }
1925
1926 /*
1927 * Is this task likely cache-hot:
1928 */
1929 static int
1930 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1931 {
1932 s64 delta;
1933
1934 /*
1935 * Buddy candidates are cache hot:
1936 */
1937 if (sched_feat(CACHE_HOT_BUDDY) &&
1938 (&p->se == cfs_rq_of(&p->se)->next ||
1939 &p->se == cfs_rq_of(&p->se)->last))
1940 return 1;
1941
1942 if (p->sched_class != &fair_sched_class)
1943 return 0;
1944
1945 if (sysctl_sched_migration_cost == -1)
1946 return 1;
1947 if (sysctl_sched_migration_cost == 0)
1948 return 0;
1949
1950 delta = now - p->se.exec_start;
1951
1952 return delta < (s64)sysctl_sched_migration_cost;
1953 }
1954
1955
1956 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1957 {
1958 int old_cpu = task_cpu(p);
1959 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1960 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1961 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1962 u64 clock_offset;
1963
1964 clock_offset = old_rq->clock - new_rq->clock;
1965
1966 trace_sched_migrate_task(p, new_cpu);
1967
1968 #ifdef CONFIG_SCHEDSTATS
1969 if (p->se.wait_start)
1970 p->se.wait_start -= clock_offset;
1971 if (p->se.sleep_start)
1972 p->se.sleep_start -= clock_offset;
1973 if (p->se.block_start)
1974 p->se.block_start -= clock_offset;
1975 #endif
1976 if (old_cpu != new_cpu) {
1977 p->se.nr_migrations++;
1978 new_rq->nr_migrations_in++;
1979 #ifdef CONFIG_SCHEDSTATS
1980 if (task_hot(p, old_rq->clock, NULL))
1981 schedstat_inc(p, se.nr_forced2_migrations);
1982 #endif
1983 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1984 1, 1, NULL, 0);
1985 }
1986 p->se.vruntime -= old_cfsrq->min_vruntime -
1987 new_cfsrq->min_vruntime;
1988
1989 __set_task_cpu(p, new_cpu);
1990 }
1991
1992 struct migration_req {
1993 struct list_head list;
1994
1995 struct task_struct *task;
1996 int dest_cpu;
1997
1998 struct completion done;
1999 };
2000
2001 /*
2002 * The task's runqueue lock must be held.
2003 * Returns true if you have to wait for migration thread.
2004 */
2005 static int
2006 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2007 {
2008 struct rq *rq = task_rq(p);
2009
2010 /*
2011 * If the task is not on a runqueue (and not running), then
2012 * it is sufficient to simply update the task's cpu field.
2013 */
2014 if (!p->se.on_rq && !task_running(rq, p)) {
2015 set_task_cpu(p, dest_cpu);
2016 return 0;
2017 }
2018
2019 init_completion(&req->done);
2020 req->task = p;
2021 req->dest_cpu = dest_cpu;
2022 list_add(&req->list, &rq->migration_queue);
2023
2024 return 1;
2025 }
2026
2027 /*
2028 * wait_task_context_switch - wait for a thread to complete at least one
2029 * context switch.
2030 *
2031 * @p must not be current.
2032 */
2033 void wait_task_context_switch(struct task_struct *p)
2034 {
2035 unsigned long nvcsw, nivcsw, flags;
2036 int running;
2037 struct rq *rq;
2038
2039 nvcsw = p->nvcsw;
2040 nivcsw = p->nivcsw;
2041 for (;;) {
2042 /*
2043 * The runqueue is assigned before the actual context
2044 * switch. We need to take the runqueue lock.
2045 *
2046 * We could check initially without the lock but it is
2047 * very likely that we need to take the lock in every
2048 * iteration.
2049 */
2050 rq = task_rq_lock(p, &flags);
2051 running = task_running(rq, p);
2052 task_rq_unlock(rq, &flags);
2053
2054 if (likely(!running))
2055 break;
2056 /*
2057 * The switch count is incremented before the actual
2058 * context switch. We thus wait for two switches to be
2059 * sure at least one completed.
2060 */
2061 if ((p->nvcsw - nvcsw) > 1)
2062 break;
2063 if ((p->nivcsw - nivcsw) > 1)
2064 break;
2065
2066 cpu_relax();
2067 }
2068 }
2069
2070 /*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
2086 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2087 {
2088 unsigned long flags;
2089 int running, on_rq;
2090 unsigned long ncsw;
2091 struct rq *rq;
2092
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
2101
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
2116 cpu_relax();
2117 }
2118
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
2125 trace_sched_wait_task(rq, p);
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
2128 ncsw = 0;
2129 if (!match_state || p->state == match_state)
2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131 task_rq_unlock(rq, &flags);
2132
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
2149
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
2155 * So if it was still runnable (but just not actively
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
2163
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
2171
2172 return ncsw;
2173 }
2174
2175 /***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
2188 void kick_process(struct task_struct *p)
2189 {
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197 }
2198 EXPORT_SYMBOL_GPL(kick_process);
2199
2200 /*
2201 * Return a low guess at the load of a migration-source cpu weighted
2202 * according to the scheduling class and "nice" value.
2203 *
2204 * We want to under-estimate the load of migration sources, to
2205 * balance conservatively.
2206 */
2207 static unsigned long source_load(int cpu, int type)
2208 {
2209 struct rq *rq = cpu_rq(cpu);
2210 unsigned long total = weighted_cpuload(cpu);
2211
2212 if (type == 0 || !sched_feat(LB_BIAS))
2213 return total;
2214
2215 return min(rq->cpu_load[type-1], total);
2216 }
2217
2218 /*
2219 * Return a high guess at the load of a migration-target cpu weighted
2220 * according to the scheduling class and "nice" value.
2221 */
2222 static unsigned long target_load(int cpu, int type)
2223 {
2224 struct rq *rq = cpu_rq(cpu);
2225 unsigned long total = weighted_cpuload(cpu);
2226
2227 if (type == 0 || !sched_feat(LB_BIAS))
2228 return total;
2229
2230 return max(rq->cpu_load[type-1], total);
2231 }
2232
2233 /*
2234 * find_idlest_group finds and returns the least busy CPU group within the
2235 * domain.
2236 */
2237 static struct sched_group *
2238 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2239 {
2240 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2241 unsigned long min_load = ULONG_MAX, this_load = 0;
2242 int load_idx = sd->forkexec_idx;
2243 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2244
2245 do {
2246 unsigned long load, avg_load;
2247 int local_group;
2248 int i;
2249
2250 /* Skip over this group if it has no CPUs allowed */
2251 if (!cpumask_intersects(sched_group_cpus(group),
2252 &p->cpus_allowed))
2253 continue;
2254
2255 local_group = cpumask_test_cpu(this_cpu,
2256 sched_group_cpus(group));
2257
2258 /* Tally up the load of all CPUs in the group */
2259 avg_load = 0;
2260
2261 for_each_cpu(i, sched_group_cpus(group)) {
2262 /* Bias balancing toward cpus of our domain */
2263 if (local_group)
2264 load = source_load(i, load_idx);
2265 else
2266 load = target_load(i, load_idx);
2267
2268 avg_load += load;
2269 }
2270
2271 /* Adjust by relative CPU power of the group */
2272 avg_load = sg_div_cpu_power(group,
2273 avg_load * SCHED_LOAD_SCALE);
2274
2275 if (local_group) {
2276 this_load = avg_load;
2277 this = group;
2278 } else if (avg_load < min_load) {
2279 min_load = avg_load;
2280 idlest = group;
2281 }
2282 } while (group = group->next, group != sd->groups);
2283
2284 if (!idlest || 100*this_load < imbalance*min_load)
2285 return NULL;
2286 return idlest;
2287 }
2288
2289 /*
2290 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2291 */
2292 static int
2293 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2294 {
2295 unsigned long load, min_load = ULONG_MAX;
2296 int idlest = -1;
2297 int i;
2298
2299 /* Traverse only the allowed CPUs */
2300 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2301 load = weighted_cpuload(i);
2302
2303 if (load < min_load || (load == min_load && i == this_cpu)) {
2304 min_load = load;
2305 idlest = i;
2306 }
2307 }
2308
2309 return idlest;
2310 }
2311
2312 /*
2313 * sched_balance_self: balance the current task (running on cpu) in domains
2314 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2315 * SD_BALANCE_EXEC.
2316 *
2317 * Balance, ie. select the least loaded group.
2318 *
2319 * Returns the target CPU number, or the same CPU if no balancing is needed.
2320 *
2321 * preempt must be disabled.
2322 */
2323 static int sched_balance_self(int cpu, int flag)
2324 {
2325 struct task_struct *t = current;
2326 struct sched_domain *tmp, *sd = NULL;
2327
2328 for_each_domain(cpu, tmp) {
2329 /*
2330 * If power savings logic is enabled for a domain, stop there.
2331 */
2332 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2333 break;
2334 if (tmp->flags & flag)
2335 sd = tmp;
2336 }
2337
2338 if (sd)
2339 update_shares(sd);
2340
2341 while (sd) {
2342 struct sched_group *group;
2343 int new_cpu, weight;
2344
2345 if (!(sd->flags & flag)) {
2346 sd = sd->child;
2347 continue;
2348 }
2349
2350 group = find_idlest_group(sd, t, cpu);
2351 if (!group) {
2352 sd = sd->child;
2353 continue;
2354 }
2355
2356 new_cpu = find_idlest_cpu(group, t, cpu);
2357 if (new_cpu == -1 || new_cpu == cpu) {
2358 /* Now try balancing at a lower domain level of cpu */
2359 sd = sd->child;
2360 continue;
2361 }
2362
2363 /* Now try balancing at a lower domain level of new_cpu */
2364 cpu = new_cpu;
2365 weight = cpumask_weight(sched_domain_span(sd));
2366 sd = NULL;
2367 for_each_domain(cpu, tmp) {
2368 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2369 break;
2370 if (tmp->flags & flag)
2371 sd = tmp;
2372 }
2373 /* while loop will break here if sd == NULL */
2374 }
2375
2376 return cpu;
2377 }
2378
2379 #endif /* CONFIG_SMP */
2380
2381 /**
2382 * task_oncpu_function_call - call a function on the cpu on which a task runs
2383 * @p: the task to evaluate
2384 * @func: the function to be called
2385 * @info: the function call argument
2386 *
2387 * Calls the function @func when the task is currently running. This might
2388 * be on the current CPU, which just calls the function directly
2389 */
2390 void task_oncpu_function_call(struct task_struct *p,
2391 void (*func) (void *info), void *info)
2392 {
2393 int cpu;
2394
2395 preempt_disable();
2396 cpu = task_cpu(p);
2397 if (task_curr(p))
2398 smp_call_function_single(cpu, func, info, 1);
2399 preempt_enable();
2400 }
2401
2402 /***
2403 * try_to_wake_up - wake up a thread
2404 * @p: the to-be-woken-up thread
2405 * @state: the mask of task states that can be woken
2406 * @sync: do a synchronous wakeup?
2407 *
2408 * Put it on the run-queue if it's not already there. The "current"
2409 * thread is always on the run-queue (except when the actual
2410 * re-schedule is in progress), and as such you're allowed to do
2411 * the simpler "current->state = TASK_RUNNING" to mark yourself
2412 * runnable without the overhead of this.
2413 *
2414 * returns failure only if the task is already active.
2415 */
2416 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2417 {
2418 int cpu, orig_cpu, this_cpu, success = 0;
2419 unsigned long flags;
2420 long old_state;
2421 struct rq *rq;
2422
2423 if (!sched_feat(SYNC_WAKEUPS))
2424 sync = 0;
2425
2426 #ifdef CONFIG_SMP
2427 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2428 struct sched_domain *sd;
2429
2430 this_cpu = raw_smp_processor_id();
2431 cpu = task_cpu(p);
2432
2433 for_each_domain(this_cpu, sd) {
2434 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2435 update_shares(sd);
2436 break;
2437 }
2438 }
2439 }
2440 #endif
2441
2442 smp_wmb();
2443 rq = task_rq_lock(p, &flags);
2444 update_rq_clock(rq);
2445 old_state = p->state;
2446 if (!(old_state & state))
2447 goto out;
2448
2449 if (p->se.on_rq)
2450 goto out_running;
2451
2452 cpu = task_cpu(p);
2453 orig_cpu = cpu;
2454 this_cpu = smp_processor_id();
2455
2456 #ifdef CONFIG_SMP
2457 if (unlikely(task_running(rq, p)))
2458 goto out_activate;
2459
2460 cpu = p->sched_class->select_task_rq(p, sync);
2461 if (cpu != orig_cpu) {
2462 set_task_cpu(p, cpu);
2463 task_rq_unlock(rq, &flags);
2464 /* might preempt at this point */
2465 rq = task_rq_lock(p, &flags);
2466 old_state = p->state;
2467 if (!(old_state & state))
2468 goto out;
2469 if (p->se.on_rq)
2470 goto out_running;
2471
2472 this_cpu = smp_processor_id();
2473 cpu = task_cpu(p);
2474 }
2475
2476 #ifdef CONFIG_SCHEDSTATS
2477 schedstat_inc(rq, ttwu_count);
2478 if (cpu == this_cpu)
2479 schedstat_inc(rq, ttwu_local);
2480 else {
2481 struct sched_domain *sd;
2482 for_each_domain(this_cpu, sd) {
2483 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2484 schedstat_inc(sd, ttwu_wake_remote);
2485 break;
2486 }
2487 }
2488 }
2489 #endif /* CONFIG_SCHEDSTATS */
2490
2491 out_activate:
2492 #endif /* CONFIG_SMP */
2493 schedstat_inc(p, se.nr_wakeups);
2494 if (sync)
2495 schedstat_inc(p, se.nr_wakeups_sync);
2496 if (orig_cpu != cpu)
2497 schedstat_inc(p, se.nr_wakeups_migrate);
2498 if (cpu == this_cpu)
2499 schedstat_inc(p, se.nr_wakeups_local);
2500 else
2501 schedstat_inc(p, se.nr_wakeups_remote);
2502 activate_task(rq, p, 1);
2503 success = 1;
2504
2505 /*
2506 * Only attribute actual wakeups done by this task.
2507 */
2508 if (!in_interrupt()) {
2509 struct sched_entity *se = &current->se;
2510 u64 sample = se->sum_exec_runtime;
2511
2512 if (se->last_wakeup)
2513 sample -= se->last_wakeup;
2514 else
2515 sample -= se->start_runtime;
2516 update_avg(&se->avg_wakeup, sample);
2517
2518 se->last_wakeup = se->sum_exec_runtime;
2519 }
2520
2521 out_running:
2522 trace_sched_wakeup(rq, p, success);
2523 check_preempt_curr(rq, p, sync);
2524
2525 p->state = TASK_RUNNING;
2526 #ifdef CONFIG_SMP
2527 if (p->sched_class->task_wake_up)
2528 p->sched_class->task_wake_up(rq, p);
2529 #endif
2530 out:
2531 task_rq_unlock(rq, &flags);
2532
2533 return success;
2534 }
2535
2536 /**
2537 * wake_up_process - Wake up a specific process
2538 * @p: The process to be woken up.
2539 *
2540 * Attempt to wake up the nominated process and move it to the set of runnable
2541 * processes. Returns 1 if the process was woken up, 0 if it was already
2542 * running.
2543 *
2544 * It may be assumed that this function implies a write memory barrier before
2545 * changing the task state if and only if any tasks are woken up.
2546 */
2547 int wake_up_process(struct task_struct *p)
2548 {
2549 return try_to_wake_up(p, TASK_ALL, 0);
2550 }
2551 EXPORT_SYMBOL(wake_up_process);
2552
2553 int wake_up_state(struct task_struct *p, unsigned int state)
2554 {
2555 return try_to_wake_up(p, state, 0);
2556 }
2557
2558 /*
2559 * Perform scheduler related setup for a newly forked process p.
2560 * p is forked by current.
2561 *
2562 * __sched_fork() is basic setup used by init_idle() too:
2563 */
2564 static void __sched_fork(struct task_struct *p)
2565 {
2566 p->se.exec_start = 0;
2567 p->se.sum_exec_runtime = 0;
2568 p->se.prev_sum_exec_runtime = 0;
2569 p->se.nr_migrations = 0;
2570 p->se.last_wakeup = 0;
2571 p->se.avg_overlap = 0;
2572 p->se.start_runtime = 0;
2573 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2574
2575 #ifdef CONFIG_SCHEDSTATS
2576 p->se.wait_start = 0;
2577 p->se.wait_max = 0;
2578 p->se.wait_count = 0;
2579 p->se.wait_sum = 0;
2580
2581 p->se.sleep_start = 0;
2582 p->se.sleep_max = 0;
2583 p->se.sum_sleep_runtime = 0;
2584
2585 p->se.block_start = 0;
2586 p->se.block_max = 0;
2587 p->se.exec_max = 0;
2588 p->se.slice_max = 0;
2589
2590 p->se.nr_migrations_cold = 0;
2591 p->se.nr_failed_migrations_affine = 0;
2592 p->se.nr_failed_migrations_running = 0;
2593 p->se.nr_failed_migrations_hot = 0;
2594 p->se.nr_forced_migrations = 0;
2595 p->se.nr_forced2_migrations = 0;
2596
2597 p->se.nr_wakeups = 0;
2598 p->se.nr_wakeups_sync = 0;
2599 p->se.nr_wakeups_migrate = 0;
2600 p->se.nr_wakeups_local = 0;
2601 p->se.nr_wakeups_remote = 0;
2602 p->se.nr_wakeups_affine = 0;
2603 p->se.nr_wakeups_affine_attempts = 0;
2604 p->se.nr_wakeups_passive = 0;
2605 p->se.nr_wakeups_idle = 0;
2606
2607 #endif
2608
2609 INIT_LIST_HEAD(&p->rt.run_list);
2610 p->se.on_rq = 0;
2611 INIT_LIST_HEAD(&p->se.group_node);
2612
2613 #ifdef CONFIG_PREEMPT_NOTIFIERS
2614 INIT_HLIST_HEAD(&p->preempt_notifiers);
2615 #endif
2616
2617 /*
2618 * We mark the process as running here, but have not actually
2619 * inserted it onto the runqueue yet. This guarantees that
2620 * nobody will actually run it, and a signal or other external
2621 * event cannot wake it up and insert it on the runqueue either.
2622 */
2623 p->state = TASK_RUNNING;
2624 }
2625
2626 /*
2627 * fork()/clone()-time setup:
2628 */
2629 void sched_fork(struct task_struct *p, int clone_flags)
2630 {
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
2634
2635 #ifdef CONFIG_SMP
2636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2637 #endif
2638 set_task_cpu(p, cpu);
2639
2640 /*
2641 * Make sure we do not leak PI boosting priority to the child.
2642 */
2643 p->prio = current->normal_prio;
2644
2645 /*
2646 * Revert to default priority/policy on fork if requested.
2647 */
2648 if (unlikely(p->sched_reset_on_fork)) {
2649 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2650 p->policy = SCHED_NORMAL;
2651
2652 if (p->normal_prio < DEFAULT_PRIO)
2653 p->prio = DEFAULT_PRIO;
2654
2655 if (PRIO_TO_NICE(p->static_prio) < 0) {
2656 p->static_prio = NICE_TO_PRIO(0);
2657 set_load_weight(p);
2658 }
2659
2660 /*
2661 * We don't need the reset flag anymore after the fork. It has
2662 * fulfilled its duty:
2663 */
2664 p->sched_reset_on_fork = 0;
2665 }
2666
2667 if (!rt_prio(p->prio))
2668 p->sched_class = &fair_sched_class;
2669
2670 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2671 if (likely(sched_info_on()))
2672 memset(&p->sched_info, 0, sizeof(p->sched_info));
2673 #endif
2674 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2675 p->oncpu = 0;
2676 #endif
2677 #ifdef CONFIG_PREEMPT
2678 /* Want to start with kernel preemption disabled. */
2679 task_thread_info(p)->preempt_count = 1;
2680 #endif
2681 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2682
2683 put_cpu();
2684 }
2685
2686 /*
2687 * wake_up_new_task - wake up a newly created task for the first time.
2688 *
2689 * This function will do some initial scheduler statistics housekeeping
2690 * that must be done for every newly created context, then puts the task
2691 * on the runqueue and wakes it.
2692 */
2693 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2694 {
2695 unsigned long flags;
2696 struct rq *rq;
2697
2698 rq = task_rq_lock(p, &flags);
2699 BUG_ON(p->state != TASK_RUNNING);
2700 update_rq_clock(rq);
2701
2702 p->prio = effective_prio(p);
2703
2704 if (!p->sched_class->task_new || !current->se.on_rq) {
2705 activate_task(rq, p, 0);
2706 } else {
2707 /*
2708 * Let the scheduling class do new task startup
2709 * management (if any):
2710 */
2711 p->sched_class->task_new(rq, p);
2712 inc_nr_running(rq);
2713 }
2714 trace_sched_wakeup_new(rq, p, 1);
2715 check_preempt_curr(rq, p, 0);
2716 #ifdef CONFIG_SMP
2717 if (p->sched_class->task_wake_up)
2718 p->sched_class->task_wake_up(rq, p);
2719 #endif
2720 task_rq_unlock(rq, &flags);
2721 }
2722
2723 #ifdef CONFIG_PREEMPT_NOTIFIERS
2724
2725 /**
2726 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2727 * @notifier: notifier struct to register
2728 */
2729 void preempt_notifier_register(struct preempt_notifier *notifier)
2730 {
2731 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2732 }
2733 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2734
2735 /**
2736 * preempt_notifier_unregister - no longer interested in preemption notifications
2737 * @notifier: notifier struct to unregister
2738 *
2739 * This is safe to call from within a preemption notifier.
2740 */
2741 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2742 {
2743 hlist_del(&notifier->link);
2744 }
2745 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2746
2747 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2748 {
2749 struct preempt_notifier *notifier;
2750 struct hlist_node *node;
2751
2752 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2753 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2754 }
2755
2756 static void
2757 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2758 struct task_struct *next)
2759 {
2760 struct preempt_notifier *notifier;
2761 struct hlist_node *node;
2762
2763 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2764 notifier->ops->sched_out(notifier, next);
2765 }
2766
2767 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2768
2769 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2770 {
2771 }
2772
2773 static void
2774 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2775 struct task_struct *next)
2776 {
2777 }
2778
2779 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2780
2781 /**
2782 * prepare_task_switch - prepare to switch tasks
2783 * @rq: the runqueue preparing to switch
2784 * @prev: the current task that is being switched out
2785 * @next: the task we are going to switch to.
2786 *
2787 * This is called with the rq lock held and interrupts off. It must
2788 * be paired with a subsequent finish_task_switch after the context
2789 * switch.
2790 *
2791 * prepare_task_switch sets up locking and calls architecture specific
2792 * hooks.
2793 */
2794 static inline void
2795 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2796 struct task_struct *next)
2797 {
2798 fire_sched_out_preempt_notifiers(prev, next);
2799 prepare_lock_switch(rq, next);
2800 prepare_arch_switch(next);
2801 }
2802
2803 /**
2804 * finish_task_switch - clean up after a task-switch
2805 * @rq: runqueue associated with task-switch
2806 * @prev: the thread we just switched away from.
2807 *
2808 * finish_task_switch must be called after the context switch, paired
2809 * with a prepare_task_switch call before the context switch.
2810 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2811 * and do any other architecture-specific cleanup actions.
2812 *
2813 * Note that we may have delayed dropping an mm in context_switch(). If
2814 * so, we finish that here outside of the runqueue lock. (Doing it
2815 * with the lock held can cause deadlocks; see schedule() for
2816 * details.)
2817 */
2818 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2819 __releases(rq->lock)
2820 {
2821 struct mm_struct *mm = rq->prev_mm;
2822 long prev_state;
2823 #ifdef CONFIG_SMP
2824 int post_schedule = 0;
2825
2826 if (current->sched_class->needs_post_schedule)
2827 post_schedule = current->sched_class->needs_post_schedule(rq);
2828 #endif
2829
2830 rq->prev_mm = NULL;
2831
2832 /*
2833 * A task struct has one reference for the use as "current".
2834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2835 * schedule one last time. The schedule call will never return, and
2836 * the scheduled task must drop that reference.
2837 * The test for TASK_DEAD must occur while the runqueue locks are
2838 * still held, otherwise prev could be scheduled on another cpu, die
2839 * there before we look at prev->state, and then the reference would
2840 * be dropped twice.
2841 * Manfred Spraul <manfred@colorfullife.com>
2842 */
2843 prev_state = prev->state;
2844 finish_arch_switch(prev);
2845 perf_counter_task_sched_in(current, cpu_of(rq));
2846 finish_lock_switch(rq, prev);
2847 #ifdef CONFIG_SMP
2848 if (post_schedule)
2849 current->sched_class->post_schedule(rq);
2850 #endif
2851
2852 fire_sched_in_preempt_notifiers(current);
2853 if (mm)
2854 mmdrop(mm);
2855 if (unlikely(prev_state == TASK_DEAD)) {
2856 /*
2857 * Remove function-return probe instances associated with this
2858 * task and put them back on the free list.
2859 */
2860 kprobe_flush_task(prev);
2861 put_task_struct(prev);
2862 }
2863 }
2864
2865 /**
2866 * schedule_tail - first thing a freshly forked thread must call.
2867 * @prev: the thread we just switched away from.
2868 */
2869 asmlinkage void schedule_tail(struct task_struct *prev)
2870 __releases(rq->lock)
2871 {
2872 struct rq *rq = this_rq();
2873
2874 finish_task_switch(rq, prev);
2875 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2876 /* In this case, finish_task_switch does not reenable preemption */
2877 preempt_enable();
2878 #endif
2879 if (current->set_child_tid)
2880 put_user(task_pid_vnr(current), current->set_child_tid);
2881 }
2882
2883 /*
2884 * context_switch - switch to the new MM and the new
2885 * thread's register state.
2886 */
2887 static inline void
2888 context_switch(struct rq *rq, struct task_struct *prev,
2889 struct task_struct *next)
2890 {
2891 struct mm_struct *mm, *oldmm;
2892
2893 prepare_task_switch(rq, prev, next);
2894 trace_sched_switch(rq, prev, next);
2895 mm = next->mm;
2896 oldmm = prev->active_mm;
2897 /*
2898 * For paravirt, this is coupled with an exit in switch_to to
2899 * combine the page table reload and the switch backend into
2900 * one hypercall.
2901 */
2902 arch_start_context_switch(prev);
2903
2904 if (unlikely(!mm)) {
2905 next->active_mm = oldmm;
2906 atomic_inc(&oldmm->mm_count);
2907 enter_lazy_tlb(oldmm, next);
2908 } else
2909 switch_mm(oldmm, mm, next);
2910
2911 if (unlikely(!prev->mm)) {
2912 prev->active_mm = NULL;
2913 rq->prev_mm = oldmm;
2914 }
2915 /*
2916 * Since the runqueue lock will be released by the next
2917 * task (which is an invalid locking op but in the case
2918 * of the scheduler it's an obvious special-case), so we
2919 * do an early lockdep release here:
2920 */
2921 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2922 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2923 #endif
2924
2925 /* Here we just switch the register state and the stack. */
2926 switch_to(prev, next, prev);
2927
2928 barrier();
2929 /*
2930 * this_rq must be evaluated again because prev may have moved
2931 * CPUs since it called schedule(), thus the 'rq' on its stack
2932 * frame will be invalid.
2933 */
2934 finish_task_switch(this_rq(), prev);
2935 }
2936
2937 /*
2938 * nr_running, nr_uninterruptible and nr_context_switches:
2939 *
2940 * externally visible scheduler statistics: current number of runnable
2941 * threads, current number of uninterruptible-sleeping threads, total
2942 * number of context switches performed since bootup.
2943 */
2944 unsigned long nr_running(void)
2945 {
2946 unsigned long i, sum = 0;
2947
2948 for_each_online_cpu(i)
2949 sum += cpu_rq(i)->nr_running;
2950
2951 return sum;
2952 }
2953
2954 unsigned long nr_uninterruptible(void)
2955 {
2956 unsigned long i, sum = 0;
2957
2958 for_each_possible_cpu(i)
2959 sum += cpu_rq(i)->nr_uninterruptible;
2960
2961 /*
2962 * Since we read the counters lockless, it might be slightly
2963 * inaccurate. Do not allow it to go below zero though:
2964 */
2965 if (unlikely((long)sum < 0))
2966 sum = 0;
2967
2968 return sum;
2969 }
2970
2971 unsigned long long nr_context_switches(void)
2972 {
2973 int i;
2974 unsigned long long sum = 0;
2975
2976 for_each_possible_cpu(i)
2977 sum += cpu_rq(i)->nr_switches;
2978
2979 return sum;
2980 }
2981
2982 unsigned long nr_iowait(void)
2983 {
2984 unsigned long i, sum = 0;
2985
2986 for_each_possible_cpu(i)
2987 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2988
2989 return sum;
2990 }
2991
2992 /* Variables and functions for calc_load */
2993 static atomic_long_t calc_load_tasks;
2994 static unsigned long calc_load_update;
2995 unsigned long avenrun[3];
2996 EXPORT_SYMBOL(avenrun);
2997
2998 /**
2999 * get_avenrun - get the load average array
3000 * @loads: pointer to dest load array
3001 * @offset: offset to add
3002 * @shift: shift count to shift the result left
3003 *
3004 * These values are estimates at best, so no need for locking.
3005 */
3006 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3007 {
3008 loads[0] = (avenrun[0] + offset) << shift;
3009 loads[1] = (avenrun[1] + offset) << shift;
3010 loads[2] = (avenrun[2] + offset) << shift;
3011 }
3012
3013 static unsigned long
3014 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3015 {
3016 load *= exp;
3017 load += active * (FIXED_1 - exp);
3018 return load >> FSHIFT;
3019 }
3020
3021 /*
3022 * calc_load - update the avenrun load estimates 10 ticks after the
3023 * CPUs have updated calc_load_tasks.
3024 */
3025 void calc_global_load(void)
3026 {
3027 unsigned long upd = calc_load_update + 10;
3028 long active;
3029
3030 if (time_before(jiffies, upd))
3031 return;
3032
3033 active = atomic_long_read(&calc_load_tasks);
3034 active = active > 0 ? active * FIXED_1 : 0;
3035
3036 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3037 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3038 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3039
3040 calc_load_update += LOAD_FREQ;
3041 }
3042
3043 /*
3044 * Either called from update_cpu_load() or from a cpu going idle
3045 */
3046 static void calc_load_account_active(struct rq *this_rq)
3047 {
3048 long nr_active, delta;
3049
3050 nr_active = this_rq->nr_running;
3051 nr_active += (long) this_rq->nr_uninterruptible;
3052
3053 if (nr_active != this_rq->calc_load_active) {
3054 delta = nr_active - this_rq->calc_load_active;
3055 this_rq->calc_load_active = nr_active;
3056 atomic_long_add(delta, &calc_load_tasks);
3057 }
3058 }
3059
3060 /*
3061 * Externally visible per-cpu scheduler statistics:
3062 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3063 */
3064 u64 cpu_nr_migrations(int cpu)
3065 {
3066 return cpu_rq(cpu)->nr_migrations_in;
3067 }
3068
3069 /*
3070 * Update rq->cpu_load[] statistics. This function is usually called every
3071 * scheduler tick (TICK_NSEC).
3072 */
3073 static void update_cpu_load(struct rq *this_rq)
3074 {
3075 unsigned long this_load = this_rq->load.weight;
3076 int i, scale;
3077
3078 this_rq->nr_load_updates++;
3079
3080 /* Update our load: */
3081 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3082 unsigned long old_load, new_load;
3083
3084 /* scale is effectively 1 << i now, and >> i divides by scale */
3085
3086 old_load = this_rq->cpu_load[i];
3087 new_load = this_load;
3088 /*
3089 * Round up the averaging division if load is increasing. This
3090 * prevents us from getting stuck on 9 if the load is 10, for
3091 * example.
3092 */
3093 if (new_load > old_load)
3094 new_load += scale-1;
3095 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3096 }
3097
3098 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3099 this_rq->calc_load_update += LOAD_FREQ;
3100 calc_load_account_active(this_rq);
3101 }
3102 }
3103
3104 #ifdef CONFIG_SMP
3105
3106 /*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
3112 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3113 __acquires(rq1->lock)
3114 __acquires(rq2->lock)
3115 {
3116 BUG_ON(!irqs_disabled());
3117 if (rq1 == rq2) {
3118 spin_lock(&rq1->lock);
3119 __acquire(rq2->lock); /* Fake it out ;) */
3120 } else {
3121 if (rq1 < rq2) {
3122 spin_lock(&rq1->lock);
3123 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3124 } else {
3125 spin_lock(&rq2->lock);
3126 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3127 }
3128 }
3129 update_rq_clock(rq1);
3130 update_rq_clock(rq2);
3131 }
3132
3133 /*
3134 * double_rq_unlock - safely unlock two runqueues
3135 *
3136 * Note this does not restore interrupts like task_rq_unlock,
3137 * you need to do so manually after calling.
3138 */
3139 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3140 __releases(rq1->lock)
3141 __releases(rq2->lock)
3142 {
3143 spin_unlock(&rq1->lock);
3144 if (rq1 != rq2)
3145 spin_unlock(&rq2->lock);
3146 else
3147 __release(rq2->lock);
3148 }
3149
3150 /*
3151 * If dest_cpu is allowed for this process, migrate the task to it.
3152 * This is accomplished by forcing the cpu_allowed mask to only
3153 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3154 * the cpu_allowed mask is restored.
3155 */
3156 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3157 {
3158 struct migration_req req;
3159 unsigned long flags;
3160 struct rq *rq;
3161
3162 rq = task_rq_lock(p, &flags);
3163 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3164 || unlikely(!cpu_active(dest_cpu)))
3165 goto out;
3166
3167 /* force the process onto the specified CPU */
3168 if (migrate_task(p, dest_cpu, &req)) {
3169 /* Need to wait for migration thread (might exit: take ref). */
3170 struct task_struct *mt = rq->migration_thread;
3171
3172 get_task_struct(mt);
3173 task_rq_unlock(rq, &flags);
3174 wake_up_process(mt);
3175 put_task_struct(mt);
3176 wait_for_completion(&req.done);
3177
3178 return;
3179 }
3180 out:
3181 task_rq_unlock(rq, &flags);
3182 }
3183
3184 /*
3185 * sched_exec - execve() is a valuable balancing opportunity, because at
3186 * this point the task has the smallest effective memory and cache footprint.
3187 */
3188 void sched_exec(void)
3189 {
3190 int new_cpu, this_cpu = get_cpu();
3191 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3192 put_cpu();
3193 if (new_cpu != this_cpu)
3194 sched_migrate_task(current, new_cpu);
3195 }
3196
3197 /*
3198 * pull_task - move a task from a remote runqueue to the local runqueue.
3199 * Both runqueues must be locked.
3200 */
3201 static void pull_task(struct rq *src_rq, struct task_struct *p,
3202 struct rq *this_rq, int this_cpu)
3203 {
3204 deactivate_task(src_rq, p, 0);
3205 set_task_cpu(p, this_cpu);
3206 activate_task(this_rq, p, 0);
3207 /*
3208 * Note that idle threads have a prio of MAX_PRIO, for this test
3209 * to be always true for them.
3210 */
3211 check_preempt_curr(this_rq, p, 0);
3212 }
3213
3214 /*
3215 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3216 */
3217 static
3218 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3219 struct sched_domain *sd, enum cpu_idle_type idle,
3220 int *all_pinned)
3221 {
3222 int tsk_cache_hot = 0;
3223 /*
3224 * We do not migrate tasks that are:
3225 * 1) running (obviously), or
3226 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3227 * 3) are cache-hot on their current CPU.
3228 */
3229 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3230 schedstat_inc(p, se.nr_failed_migrations_affine);
3231 return 0;
3232 }
3233 *all_pinned = 0;
3234
3235 if (task_running(rq, p)) {
3236 schedstat_inc(p, se.nr_failed_migrations_running);
3237 return 0;
3238 }
3239
3240 /*
3241 * Aggressive migration if:
3242 * 1) task is cache cold, or
3243 * 2) too many balance attempts have failed.
3244 */
3245
3246 tsk_cache_hot = task_hot(p, rq->clock, sd);
3247 if (!tsk_cache_hot ||
3248 sd->nr_balance_failed > sd->cache_nice_tries) {
3249 #ifdef CONFIG_SCHEDSTATS
3250 if (tsk_cache_hot) {
3251 schedstat_inc(sd, lb_hot_gained[idle]);
3252 schedstat_inc(p, se.nr_forced_migrations);
3253 }
3254 #endif
3255 return 1;
3256 }
3257
3258 if (tsk_cache_hot) {
3259 schedstat_inc(p, se.nr_failed_migrations_hot);
3260 return 0;
3261 }
3262 return 1;
3263 }
3264
3265 static unsigned long
3266 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3267 unsigned long max_load_move, struct sched_domain *sd,
3268 enum cpu_idle_type idle, int *all_pinned,
3269 int *this_best_prio, struct rq_iterator *iterator)
3270 {
3271 int loops = 0, pulled = 0, pinned = 0;
3272 struct task_struct *p;
3273 long rem_load_move = max_load_move;
3274
3275 if (max_load_move == 0)
3276 goto out;
3277
3278 pinned = 1;
3279
3280 /*
3281 * Start the load-balancing iterator:
3282 */
3283 p = iterator->start(iterator->arg);
3284 next:
3285 if (!p || loops++ > sysctl_sched_nr_migrate)
3286 goto out;
3287
3288 if ((p->se.load.weight >> 1) > rem_load_move ||
3289 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3290 p = iterator->next(iterator->arg);
3291 goto next;
3292 }
3293
3294 pull_task(busiest, p, this_rq, this_cpu);
3295 pulled++;
3296 rem_load_move -= p->se.load.weight;
3297
3298 #ifdef CONFIG_PREEMPT
3299 /*
3300 * NEWIDLE balancing is a source of latency, so preemptible kernels
3301 * will stop after the first task is pulled to minimize the critical
3302 * section.
3303 */
3304 if (idle == CPU_NEWLY_IDLE)
3305 goto out;
3306 #endif
3307
3308 /*
3309 * We only want to steal up to the prescribed amount of weighted load.
3310 */
3311 if (rem_load_move > 0) {
3312 if (p->prio < *this_best_prio)
3313 *this_best_prio = p->prio;
3314 p = iterator->next(iterator->arg);
3315 goto next;
3316 }
3317 out:
3318 /*
3319 * Right now, this is one of only two places pull_task() is called,
3320 * so we can safely collect pull_task() stats here rather than
3321 * inside pull_task().
3322 */
3323 schedstat_add(sd, lb_gained[idle], pulled);
3324
3325 if (all_pinned)
3326 *all_pinned = pinned;
3327
3328 return max_load_move - rem_load_move;
3329 }
3330
3331 /*
3332 * move_tasks tries to move up to max_load_move weighted load from busiest to
3333 * this_rq, as part of a balancing operation within domain "sd".
3334 * Returns 1 if successful and 0 otherwise.
3335 *
3336 * Called with both runqueues locked.
3337 */
3338 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3339 unsigned long max_load_move,
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 int *all_pinned)
3342 {
3343 const struct sched_class *class = sched_class_highest;
3344 unsigned long total_load_moved = 0;
3345 int this_best_prio = this_rq->curr->prio;
3346
3347 do {
3348 total_load_moved +=
3349 class->load_balance(this_rq, this_cpu, busiest,
3350 max_load_move - total_load_moved,
3351 sd, idle, all_pinned, &this_best_prio);
3352 class = class->next;
3353
3354 #ifdef CONFIG_PREEMPT
3355 /*
3356 * NEWIDLE balancing is a source of latency, so preemptible
3357 * kernels will stop after the first task is pulled to minimize
3358 * the critical section.
3359 */
3360 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3361 break;
3362 #endif
3363 } while (class && max_load_move > total_load_moved);
3364
3365 return total_load_moved > 0;
3366 }
3367
3368 static int
3369 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 struct sched_domain *sd, enum cpu_idle_type idle,
3371 struct rq_iterator *iterator)
3372 {
3373 struct task_struct *p = iterator->start(iterator->arg);
3374 int pinned = 0;
3375
3376 while (p) {
3377 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3378 pull_task(busiest, p, this_rq, this_cpu);
3379 /*
3380 * Right now, this is only the second place pull_task()
3381 * is called, so we can safely collect pull_task()
3382 * stats here rather than inside pull_task().
3383 */
3384 schedstat_inc(sd, lb_gained[idle]);
3385
3386 return 1;
3387 }
3388 p = iterator->next(iterator->arg);
3389 }
3390
3391 return 0;
3392 }
3393
3394 /*
3395 * move_one_task tries to move exactly one task from busiest to this_rq, as
3396 * part of active balancing operations within "domain".
3397 * Returns 1 if successful and 0 otherwise.
3398 *
3399 * Called with both runqueues locked.
3400 */
3401 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3402 struct sched_domain *sd, enum cpu_idle_type idle)
3403 {
3404 const struct sched_class *class;
3405
3406 for (class = sched_class_highest; class; class = class->next)
3407 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3408 return 1;
3409
3410 return 0;
3411 }
3412 /********** Helpers for find_busiest_group ************************/
3413 /*
3414 * sd_lb_stats - Structure to store the statistics of a sched_domain
3415 * during load balancing.
3416 */
3417 struct sd_lb_stats {
3418 struct sched_group *busiest; /* Busiest group in this sd */
3419 struct sched_group *this; /* Local group in this sd */
3420 unsigned long total_load; /* Total load of all groups in sd */
3421 unsigned long total_pwr; /* Total power of all groups in sd */
3422 unsigned long avg_load; /* Average load across all groups in sd */
3423
3424 /** Statistics of this group */
3425 unsigned long this_load;
3426 unsigned long this_load_per_task;
3427 unsigned long this_nr_running;
3428
3429 /* Statistics of the busiest group */
3430 unsigned long max_load;
3431 unsigned long busiest_load_per_task;
3432 unsigned long busiest_nr_running;
3433
3434 int group_imb; /* Is there imbalance in this sd */
3435 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3436 int power_savings_balance; /* Is powersave balance needed for this sd */
3437 struct sched_group *group_min; /* Least loaded group in sd */
3438 struct sched_group *group_leader; /* Group which relieves group_min */
3439 unsigned long min_load_per_task; /* load_per_task in group_min */
3440 unsigned long leader_nr_running; /* Nr running of group_leader */
3441 unsigned long min_nr_running; /* Nr running of group_min */
3442 #endif
3443 };
3444
3445 /*
3446 * sg_lb_stats - stats of a sched_group required for load_balancing
3447 */
3448 struct sg_lb_stats {
3449 unsigned long avg_load; /*Avg load across the CPUs of the group */
3450 unsigned long group_load; /* Total load over the CPUs of the group */
3451 unsigned long sum_nr_running; /* Nr tasks running in the group */
3452 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3453 unsigned long group_capacity;
3454 int group_imb; /* Is there an imbalance in the group ? */
3455 };
3456
3457 /**
3458 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3459 * @group: The group whose first cpu is to be returned.
3460 */
3461 static inline unsigned int group_first_cpu(struct sched_group *group)
3462 {
3463 return cpumask_first(sched_group_cpus(group));
3464 }
3465
3466 /**
3467 * get_sd_load_idx - Obtain the load index for a given sched domain.
3468 * @sd: The sched_domain whose load_idx is to be obtained.
3469 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3470 */
3471 static inline int get_sd_load_idx(struct sched_domain *sd,
3472 enum cpu_idle_type idle)
3473 {
3474 int load_idx;
3475
3476 switch (idle) {
3477 case CPU_NOT_IDLE:
3478 load_idx = sd->busy_idx;
3479 break;
3480
3481 case CPU_NEWLY_IDLE:
3482 load_idx = sd->newidle_idx;
3483 break;
3484 default:
3485 load_idx = sd->idle_idx;
3486 break;
3487 }
3488
3489 return load_idx;
3490 }
3491
3492
3493 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3494 /**
3495 * init_sd_power_savings_stats - Initialize power savings statistics for
3496 * the given sched_domain, during load balancing.
3497 *
3498 * @sd: Sched domain whose power-savings statistics are to be initialized.
3499 * @sds: Variable containing the statistics for sd.
3500 * @idle: Idle status of the CPU at which we're performing load-balancing.
3501 */
3502 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3503 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3504 {
3505 /*
3506 * Busy processors will not participate in power savings
3507 * balance.
3508 */
3509 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3510 sds->power_savings_balance = 0;
3511 else {
3512 sds->power_savings_balance = 1;
3513 sds->min_nr_running = ULONG_MAX;
3514 sds->leader_nr_running = 0;
3515 }
3516 }
3517
3518 /**
3519 * update_sd_power_savings_stats - Update the power saving stats for a
3520 * sched_domain while performing load balancing.
3521 *
3522 * @group: sched_group belonging to the sched_domain under consideration.
3523 * @sds: Variable containing the statistics of the sched_domain
3524 * @local_group: Does group contain the CPU for which we're performing
3525 * load balancing ?
3526 * @sgs: Variable containing the statistics of the group.
3527 */
3528 static inline void update_sd_power_savings_stats(struct sched_group *group,
3529 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3530 {
3531
3532 if (!sds->power_savings_balance)
3533 return;
3534
3535 /*
3536 * If the local group is idle or completely loaded
3537 * no need to do power savings balance at this domain
3538 */
3539 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3540 !sds->this_nr_running))
3541 sds->power_savings_balance = 0;
3542
3543 /*
3544 * If a group is already running at full capacity or idle,
3545 * don't include that group in power savings calculations
3546 */
3547 if (!sds->power_savings_balance ||
3548 sgs->sum_nr_running >= sgs->group_capacity ||
3549 !sgs->sum_nr_running)
3550 return;
3551
3552 /*
3553 * Calculate the group which has the least non-idle load.
3554 * This is the group from where we need to pick up the load
3555 * for saving power
3556 */
3557 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3558 (sgs->sum_nr_running == sds->min_nr_running &&
3559 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3560 sds->group_min = group;
3561 sds->min_nr_running = sgs->sum_nr_running;
3562 sds->min_load_per_task = sgs->sum_weighted_load /
3563 sgs->sum_nr_running;
3564 }
3565
3566 /*
3567 * Calculate the group which is almost near its
3568 * capacity but still has some space to pick up some load
3569 * from other group and save more power
3570 */
3571 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3572 return;
3573
3574 if (sgs->sum_nr_running > sds->leader_nr_running ||
3575 (sgs->sum_nr_running == sds->leader_nr_running &&
3576 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3577 sds->group_leader = group;
3578 sds->leader_nr_running = sgs->sum_nr_running;
3579 }
3580 }
3581
3582 /**
3583 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3584 * @sds: Variable containing the statistics of the sched_domain
3585 * under consideration.
3586 * @this_cpu: Cpu at which we're currently performing load-balancing.
3587 * @imbalance: Variable to store the imbalance.
3588 *
3589 * Description:
3590 * Check if we have potential to perform some power-savings balance.
3591 * If yes, set the busiest group to be the least loaded group in the
3592 * sched_domain, so that it's CPUs can be put to idle.
3593 *
3594 * Returns 1 if there is potential to perform power-savings balance.
3595 * Else returns 0.
3596 */
3597 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3598 int this_cpu, unsigned long *imbalance)
3599 {
3600 if (!sds->power_savings_balance)
3601 return 0;
3602
3603 if (sds->this != sds->group_leader ||
3604 sds->group_leader == sds->group_min)
3605 return 0;
3606
3607 *imbalance = sds->min_load_per_task;
3608 sds->busiest = sds->group_min;
3609
3610 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3611 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3612 group_first_cpu(sds->group_leader);
3613 }
3614
3615 return 1;
3616
3617 }
3618 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3619 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3620 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3621 {
3622 return;
3623 }
3624
3625 static inline void update_sd_power_savings_stats(struct sched_group *group,
3626 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3627 {
3628 return;
3629 }
3630
3631 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3632 int this_cpu, unsigned long *imbalance)
3633 {
3634 return 0;
3635 }
3636 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3637
3638
3639 /**
3640 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3641 * @group: sched_group whose statistics are to be updated.
3642 * @this_cpu: Cpu for which load balance is currently performed.
3643 * @idle: Idle status of this_cpu
3644 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3645 * @sd_idle: Idle status of the sched_domain containing group.
3646 * @local_group: Does group contain this_cpu.
3647 * @cpus: Set of cpus considered for load balancing.
3648 * @balance: Should we balance.
3649 * @sgs: variable to hold the statistics for this group.
3650 */
3651 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3652 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3653 int local_group, const struct cpumask *cpus,
3654 int *balance, struct sg_lb_stats *sgs)
3655 {
3656 unsigned long load, max_cpu_load, min_cpu_load;
3657 int i;
3658 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3659 unsigned long sum_avg_load_per_task;
3660 unsigned long avg_load_per_task;
3661
3662 if (local_group)
3663 balance_cpu = group_first_cpu(group);
3664
3665 /* Tally up the load of all CPUs in the group */
3666 sum_avg_load_per_task = avg_load_per_task = 0;
3667 max_cpu_load = 0;
3668 min_cpu_load = ~0UL;
3669
3670 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3671 struct rq *rq = cpu_rq(i);
3672
3673 if (*sd_idle && rq->nr_running)
3674 *sd_idle = 0;
3675
3676 /* Bias balancing toward cpus of our domain */
3677 if (local_group) {
3678 if (idle_cpu(i) && !first_idle_cpu) {
3679 first_idle_cpu = 1;
3680 balance_cpu = i;
3681 }
3682
3683 load = target_load(i, load_idx);
3684 } else {
3685 load = source_load(i, load_idx);
3686 if (load > max_cpu_load)
3687 max_cpu_load = load;
3688 if (min_cpu_load > load)
3689 min_cpu_load = load;
3690 }
3691
3692 sgs->group_load += load;
3693 sgs->sum_nr_running += rq->nr_running;
3694 sgs->sum_weighted_load += weighted_cpuload(i);
3695
3696 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3697 }
3698
3699 /*
3700 * First idle cpu or the first cpu(busiest) in this sched group
3701 * is eligible for doing load balancing at this and above
3702 * domains. In the newly idle case, we will allow all the cpu's
3703 * to do the newly idle load balance.
3704 */
3705 if (idle != CPU_NEWLY_IDLE && local_group &&
3706 balance_cpu != this_cpu && balance) {
3707 *balance = 0;
3708 return;
3709 }
3710
3711 /* Adjust by relative CPU power of the group */
3712 sgs->avg_load = sg_div_cpu_power(group,
3713 sgs->group_load * SCHED_LOAD_SCALE);
3714
3715
3716 /*
3717 * Consider the group unbalanced when the imbalance is larger
3718 * than the average weight of two tasks.
3719 *
3720 * APZ: with cgroup the avg task weight can vary wildly and
3721 * might not be a suitable number - should we keep a
3722 * normalized nr_running number somewhere that negates
3723 * the hierarchy?
3724 */
3725 avg_load_per_task = sg_div_cpu_power(group,
3726 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3727
3728 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3729 sgs->group_imb = 1;
3730
3731 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3732
3733 }
3734
3735 /**
3736 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3737 * @sd: sched_domain whose statistics are to be updated.
3738 * @this_cpu: Cpu for which load balance is currently performed.
3739 * @idle: Idle status of this_cpu
3740 * @sd_idle: Idle status of the sched_domain containing group.
3741 * @cpus: Set of cpus considered for load balancing.
3742 * @balance: Should we balance.
3743 * @sds: variable to hold the statistics for this sched_domain.
3744 */
3745 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3746 enum cpu_idle_type idle, int *sd_idle,
3747 const struct cpumask *cpus, int *balance,
3748 struct sd_lb_stats *sds)
3749 {
3750 struct sched_group *group = sd->groups;
3751 struct sg_lb_stats sgs;
3752 int load_idx;
3753
3754 init_sd_power_savings_stats(sd, sds, idle);
3755 load_idx = get_sd_load_idx(sd, idle);
3756
3757 do {
3758 int local_group;
3759
3760 local_group = cpumask_test_cpu(this_cpu,
3761 sched_group_cpus(group));
3762 memset(&sgs, 0, sizeof(sgs));
3763 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3764 local_group, cpus, balance, &sgs);
3765
3766 if (local_group && balance && !(*balance))
3767 return;
3768
3769 sds->total_load += sgs.group_load;
3770 sds->total_pwr += group->__cpu_power;
3771
3772 if (local_group) {
3773 sds->this_load = sgs.avg_load;
3774 sds->this = group;
3775 sds->this_nr_running = sgs.sum_nr_running;
3776 sds->this_load_per_task = sgs.sum_weighted_load;
3777 } else if (sgs.avg_load > sds->max_load &&
3778 (sgs.sum_nr_running > sgs.group_capacity ||
3779 sgs.group_imb)) {
3780 sds->max_load = sgs.avg_load;
3781 sds->busiest = group;
3782 sds->busiest_nr_running = sgs.sum_nr_running;
3783 sds->busiest_load_per_task = sgs.sum_weighted_load;
3784 sds->group_imb = sgs.group_imb;
3785 }
3786
3787 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3788 group = group->next;
3789 } while (group != sd->groups);
3790
3791 }
3792
3793 /**
3794 * fix_small_imbalance - Calculate the minor imbalance that exists
3795 * amongst the groups of a sched_domain, during
3796 * load balancing.
3797 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3798 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3799 * @imbalance: Variable to store the imbalance.
3800 */
3801 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3802 int this_cpu, unsigned long *imbalance)
3803 {
3804 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3805 unsigned int imbn = 2;
3806
3807 if (sds->this_nr_running) {
3808 sds->this_load_per_task /= sds->this_nr_running;
3809 if (sds->busiest_load_per_task >
3810 sds->this_load_per_task)
3811 imbn = 1;
3812 } else
3813 sds->this_load_per_task =
3814 cpu_avg_load_per_task(this_cpu);
3815
3816 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3817 sds->busiest_load_per_task * imbn) {
3818 *imbalance = sds->busiest_load_per_task;
3819 return;
3820 }
3821
3822 /*
3823 * OK, we don't have enough imbalance to justify moving tasks,
3824 * however we may be able to increase total CPU power used by
3825 * moving them.
3826 */
3827
3828 pwr_now += sds->busiest->__cpu_power *
3829 min(sds->busiest_load_per_task, sds->max_load);
3830 pwr_now += sds->this->__cpu_power *
3831 min(sds->this_load_per_task, sds->this_load);
3832 pwr_now /= SCHED_LOAD_SCALE;
3833
3834 /* Amount of load we'd subtract */
3835 tmp = sg_div_cpu_power(sds->busiest,
3836 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3837 if (sds->max_load > tmp)
3838 pwr_move += sds->busiest->__cpu_power *
3839 min(sds->busiest_load_per_task, sds->max_load - tmp);
3840
3841 /* Amount of load we'd add */
3842 if (sds->max_load * sds->busiest->__cpu_power <
3843 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3844 tmp = sg_div_cpu_power(sds->this,
3845 sds->max_load * sds->busiest->__cpu_power);
3846 else
3847 tmp = sg_div_cpu_power(sds->this,
3848 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3849 pwr_move += sds->this->__cpu_power *
3850 min(sds->this_load_per_task, sds->this_load + tmp);
3851 pwr_move /= SCHED_LOAD_SCALE;
3852
3853 /* Move if we gain throughput */
3854 if (pwr_move > pwr_now)
3855 *imbalance = sds->busiest_load_per_task;
3856 }
3857
3858 /**
3859 * calculate_imbalance - Calculate the amount of imbalance present within the
3860 * groups of a given sched_domain during load balance.
3861 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3862 * @this_cpu: Cpu for which currently load balance is being performed.
3863 * @imbalance: The variable to store the imbalance.
3864 */
3865 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3866 unsigned long *imbalance)
3867 {
3868 unsigned long max_pull;
3869 /*
3870 * In the presence of smp nice balancing, certain scenarios can have
3871 * max load less than avg load(as we skip the groups at or below
3872 * its cpu_power, while calculating max_load..)
3873 */
3874 if (sds->max_load < sds->avg_load) {
3875 *imbalance = 0;
3876 return fix_small_imbalance(sds, this_cpu, imbalance);
3877 }
3878
3879 /* Don't want to pull so many tasks that a group would go idle */
3880 max_pull = min(sds->max_load - sds->avg_load,
3881 sds->max_load - sds->busiest_load_per_task);
3882
3883 /* How much load to actually move to equalise the imbalance */
3884 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3885 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3886 / SCHED_LOAD_SCALE;
3887
3888 /*
3889 * if *imbalance is less than the average load per runnable task
3890 * there is no gaurantee that any tasks will be moved so we'll have
3891 * a think about bumping its value to force at least one task to be
3892 * moved
3893 */
3894 if (*imbalance < sds->busiest_load_per_task)
3895 return fix_small_imbalance(sds, this_cpu, imbalance);
3896
3897 }
3898 /******* find_busiest_group() helpers end here *********************/
3899
3900 /**
3901 * find_busiest_group - Returns the busiest group within the sched_domain
3902 * if there is an imbalance. If there isn't an imbalance, and
3903 * the user has opted for power-savings, it returns a group whose
3904 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3905 * such a group exists.
3906 *
3907 * Also calculates the amount of weighted load which should be moved
3908 * to restore balance.
3909 *
3910 * @sd: The sched_domain whose busiest group is to be returned.
3911 * @this_cpu: The cpu for which load balancing is currently being performed.
3912 * @imbalance: Variable which stores amount of weighted load which should
3913 * be moved to restore balance/put a group to idle.
3914 * @idle: The idle status of this_cpu.
3915 * @sd_idle: The idleness of sd
3916 * @cpus: The set of CPUs under consideration for load-balancing.
3917 * @balance: Pointer to a variable indicating if this_cpu
3918 * is the appropriate cpu to perform load balancing at this_level.
3919 *
3920 * Returns: - the busiest group if imbalance exists.
3921 * - If no imbalance and user has opted for power-savings balance,
3922 * return the least loaded group whose CPUs can be
3923 * put to idle by rebalancing its tasks onto our group.
3924 */
3925 static struct sched_group *
3926 find_busiest_group(struct sched_domain *sd, int this_cpu,
3927 unsigned long *imbalance, enum cpu_idle_type idle,
3928 int *sd_idle, const struct cpumask *cpus, int *balance)
3929 {
3930 struct sd_lb_stats sds;
3931
3932 memset(&sds, 0, sizeof(sds));
3933
3934 /*
3935 * Compute the various statistics relavent for load balancing at
3936 * this level.
3937 */
3938 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3939 balance, &sds);
3940
3941 /* Cases where imbalance does not exist from POV of this_cpu */
3942 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3943 * at this level.
3944 * 2) There is no busy sibling group to pull from.
3945 * 3) This group is the busiest group.
3946 * 4) This group is more busy than the avg busieness at this
3947 * sched_domain.
3948 * 5) The imbalance is within the specified limit.
3949 * 6) Any rebalance would lead to ping-pong
3950 */
3951 if (balance && !(*balance))
3952 goto ret;
3953
3954 if (!sds.busiest || sds.busiest_nr_running == 0)
3955 goto out_balanced;
3956
3957 if (sds.this_load >= sds.max_load)
3958 goto out_balanced;
3959
3960 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3961
3962 if (sds.this_load >= sds.avg_load)
3963 goto out_balanced;
3964
3965 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3966 goto out_balanced;
3967
3968 sds.busiest_load_per_task /= sds.busiest_nr_running;
3969 if (sds.group_imb)
3970 sds.busiest_load_per_task =
3971 min(sds.busiest_load_per_task, sds.avg_load);
3972
3973 /*
3974 * We're trying to get all the cpus to the average_load, so we don't
3975 * want to push ourselves above the average load, nor do we wish to
3976 * reduce the max loaded cpu below the average load, as either of these
3977 * actions would just result in more rebalancing later, and ping-pong
3978 * tasks around. Thus we look for the minimum possible imbalance.
3979 * Negative imbalances (*we* are more loaded than anyone else) will
3980 * be counted as no imbalance for these purposes -- we can't fix that
3981 * by pulling tasks to us. Be careful of negative numbers as they'll
3982 * appear as very large values with unsigned longs.
3983 */
3984 if (sds.max_load <= sds.busiest_load_per_task)
3985 goto out_balanced;
3986
3987 /* Looks like there is an imbalance. Compute it */
3988 calculate_imbalance(&sds, this_cpu, imbalance);
3989 return sds.busiest;
3990
3991 out_balanced:
3992 /*
3993 * There is no obvious imbalance. But check if we can do some balancing
3994 * to save power.
3995 */
3996 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3997 return sds.busiest;
3998 ret:
3999 *imbalance = 0;
4000 return NULL;
4001 }
4002
4003 /*
4004 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4005 */
4006 static struct rq *
4007 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4008 unsigned long imbalance, const struct cpumask *cpus)
4009 {
4010 struct rq *busiest = NULL, *rq;
4011 unsigned long max_load = 0;
4012 int i;
4013
4014 for_each_cpu(i, sched_group_cpus(group)) {
4015 unsigned long wl;
4016
4017 if (!cpumask_test_cpu(i, cpus))
4018 continue;
4019
4020 rq = cpu_rq(i);
4021 wl = weighted_cpuload(i);
4022
4023 if (rq->nr_running == 1 && wl > imbalance)
4024 continue;
4025
4026 if (wl > max_load) {
4027 max_load = wl;
4028 busiest = rq;
4029 }
4030 }
4031
4032 return busiest;
4033 }
4034
4035 /*
4036 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4037 * so long as it is large enough.
4038 */
4039 #define MAX_PINNED_INTERVAL 512
4040
4041 /* Working cpumask for load_balance and load_balance_newidle. */
4042 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4043
4044 /*
4045 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4046 * tasks if there is an imbalance.
4047 */
4048 static int load_balance(int this_cpu, struct rq *this_rq,
4049 struct sched_domain *sd, enum cpu_idle_type idle,
4050 int *balance)
4051 {
4052 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4053 struct sched_group *group;
4054 unsigned long imbalance;
4055 struct rq *busiest;
4056 unsigned long flags;
4057 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4058
4059 cpumask_setall(cpus);
4060
4061 /*
4062 * When power savings policy is enabled for the parent domain, idle
4063 * sibling can pick up load irrespective of busy siblings. In this case,
4064 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4065 * portraying it as CPU_NOT_IDLE.
4066 */
4067 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4068 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4069 sd_idle = 1;
4070
4071 schedstat_inc(sd, lb_count[idle]);
4072
4073 redo:
4074 update_shares(sd);
4075 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4076 cpus, balance);
4077
4078 if (*balance == 0)
4079 goto out_balanced;
4080
4081 if (!group) {
4082 schedstat_inc(sd, lb_nobusyg[idle]);
4083 goto out_balanced;
4084 }
4085
4086 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4087 if (!busiest) {
4088 schedstat_inc(sd, lb_nobusyq[idle]);
4089 goto out_balanced;
4090 }
4091
4092 BUG_ON(busiest == this_rq);
4093
4094 schedstat_add(sd, lb_imbalance[idle], imbalance);
4095
4096 ld_moved = 0;
4097 if (busiest->nr_running > 1) {
4098 /*
4099 * Attempt to move tasks. If find_busiest_group has found
4100 * an imbalance but busiest->nr_running <= 1, the group is
4101 * still unbalanced. ld_moved simply stays zero, so it is
4102 * correctly treated as an imbalance.
4103 */
4104 local_irq_save(flags);
4105 double_rq_lock(this_rq, busiest);
4106 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4107 imbalance, sd, idle, &all_pinned);
4108 double_rq_unlock(this_rq, busiest);
4109 local_irq_restore(flags);
4110
4111 /*
4112 * some other cpu did the load balance for us.
4113 */
4114 if (ld_moved && this_cpu != smp_processor_id())
4115 resched_cpu(this_cpu);
4116
4117 /* All tasks on this runqueue were pinned by CPU affinity */
4118 if (unlikely(all_pinned)) {
4119 cpumask_clear_cpu(cpu_of(busiest), cpus);
4120 if (!cpumask_empty(cpus))
4121 goto redo;
4122 goto out_balanced;
4123 }
4124 }
4125
4126 if (!ld_moved) {
4127 schedstat_inc(sd, lb_failed[idle]);
4128 sd->nr_balance_failed++;
4129
4130 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4131
4132 spin_lock_irqsave(&busiest->lock, flags);
4133
4134 /* don't kick the migration_thread, if the curr
4135 * task on busiest cpu can't be moved to this_cpu
4136 */
4137 if (!cpumask_test_cpu(this_cpu,
4138 &busiest->curr->cpus_allowed)) {
4139 spin_unlock_irqrestore(&busiest->lock, flags);
4140 all_pinned = 1;
4141 goto out_one_pinned;
4142 }
4143
4144 if (!busiest->active_balance) {
4145 busiest->active_balance = 1;
4146 busiest->push_cpu = this_cpu;
4147 active_balance = 1;
4148 }
4149 spin_unlock_irqrestore(&busiest->lock, flags);
4150 if (active_balance)
4151 wake_up_process(busiest->migration_thread);
4152
4153 /*
4154 * We've kicked active balancing, reset the failure
4155 * counter.
4156 */
4157 sd->nr_balance_failed = sd->cache_nice_tries+1;
4158 }
4159 } else
4160 sd->nr_balance_failed = 0;
4161
4162 if (likely(!active_balance)) {
4163 /* We were unbalanced, so reset the balancing interval */
4164 sd->balance_interval = sd->min_interval;
4165 } else {
4166 /*
4167 * If we've begun active balancing, start to back off. This
4168 * case may not be covered by the all_pinned logic if there
4169 * is only 1 task on the busy runqueue (because we don't call
4170 * move_tasks).
4171 */
4172 if (sd->balance_interval < sd->max_interval)
4173 sd->balance_interval *= 2;
4174 }
4175
4176 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4177 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4178 ld_moved = -1;
4179
4180 goto out;
4181
4182 out_balanced:
4183 schedstat_inc(sd, lb_balanced[idle]);
4184
4185 sd->nr_balance_failed = 0;
4186
4187 out_one_pinned:
4188 /* tune up the balancing interval */
4189 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4190 (sd->balance_interval < sd->max_interval))
4191 sd->balance_interval *= 2;
4192
4193 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4194 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4195 ld_moved = -1;
4196 else
4197 ld_moved = 0;
4198 out:
4199 if (ld_moved)
4200 update_shares(sd);
4201 return ld_moved;
4202 }
4203
4204 /*
4205 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4206 * tasks if there is an imbalance.
4207 *
4208 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4209 * this_rq is locked.
4210 */
4211 static int
4212 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4213 {
4214 struct sched_group *group;
4215 struct rq *busiest = NULL;
4216 unsigned long imbalance;
4217 int ld_moved = 0;
4218 int sd_idle = 0;
4219 int all_pinned = 0;
4220 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4221
4222 cpumask_setall(cpus);
4223
4224 /*
4225 * When power savings policy is enabled for the parent domain, idle
4226 * sibling can pick up load irrespective of busy siblings. In this case,
4227 * let the state of idle sibling percolate up as IDLE, instead of
4228 * portraying it as CPU_NOT_IDLE.
4229 */
4230 if (sd->flags & SD_SHARE_CPUPOWER &&
4231 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4232 sd_idle = 1;
4233
4234 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4235 redo:
4236 update_shares_locked(this_rq, sd);
4237 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4238 &sd_idle, cpus, NULL);
4239 if (!group) {
4240 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4241 goto out_balanced;
4242 }
4243
4244 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4245 if (!busiest) {
4246 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4247 goto out_balanced;
4248 }
4249
4250 BUG_ON(busiest == this_rq);
4251
4252 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4253
4254 ld_moved = 0;
4255 if (busiest->nr_running > 1) {
4256 /* Attempt to move tasks */
4257 double_lock_balance(this_rq, busiest);
4258 /* this_rq->clock is already updated */
4259 update_rq_clock(busiest);
4260 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4261 imbalance, sd, CPU_NEWLY_IDLE,
4262 &all_pinned);
4263 double_unlock_balance(this_rq, busiest);
4264
4265 if (unlikely(all_pinned)) {
4266 cpumask_clear_cpu(cpu_of(busiest), cpus);
4267 if (!cpumask_empty(cpus))
4268 goto redo;
4269 }
4270 }
4271
4272 if (!ld_moved) {
4273 int active_balance = 0;
4274
4275 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4276 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4277 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4278 return -1;
4279
4280 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4281 return -1;
4282
4283 if (sd->nr_balance_failed++ < 2)
4284 return -1;
4285
4286 /*
4287 * The only task running in a non-idle cpu can be moved to this
4288 * cpu in an attempt to completely freeup the other CPU
4289 * package. The same method used to move task in load_balance()
4290 * have been extended for load_balance_newidle() to speedup
4291 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4292 *
4293 * The package power saving logic comes from
4294 * find_busiest_group(). If there are no imbalance, then
4295 * f_b_g() will return NULL. However when sched_mc={1,2} then
4296 * f_b_g() will select a group from which a running task may be
4297 * pulled to this cpu in order to make the other package idle.
4298 * If there is no opportunity to make a package idle and if
4299 * there are no imbalance, then f_b_g() will return NULL and no
4300 * action will be taken in load_balance_newidle().
4301 *
4302 * Under normal task pull operation due to imbalance, there
4303 * will be more than one task in the source run queue and
4304 * move_tasks() will succeed. ld_moved will be true and this
4305 * active balance code will not be triggered.
4306 */
4307
4308 /* Lock busiest in correct order while this_rq is held */
4309 double_lock_balance(this_rq, busiest);
4310
4311 /*
4312 * don't kick the migration_thread, if the curr
4313 * task on busiest cpu can't be moved to this_cpu
4314 */
4315 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4316 double_unlock_balance(this_rq, busiest);
4317 all_pinned = 1;
4318 return ld_moved;
4319 }
4320
4321 if (!busiest->active_balance) {
4322 busiest->active_balance = 1;
4323 busiest->push_cpu = this_cpu;
4324 active_balance = 1;
4325 }
4326
4327 double_unlock_balance(this_rq, busiest);
4328 /*
4329 * Should not call ttwu while holding a rq->lock
4330 */
4331 spin_unlock(&this_rq->lock);
4332 if (active_balance)
4333 wake_up_process(busiest->migration_thread);
4334 spin_lock(&this_rq->lock);
4335
4336 } else
4337 sd->nr_balance_failed = 0;
4338
4339 update_shares_locked(this_rq, sd);
4340 return ld_moved;
4341
4342 out_balanced:
4343 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4344 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4345 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4346 return -1;
4347 sd->nr_balance_failed = 0;
4348
4349 return 0;
4350 }
4351
4352 /*
4353 * idle_balance is called by schedule() if this_cpu is about to become
4354 * idle. Attempts to pull tasks from other CPUs.
4355 */
4356 static void idle_balance(int this_cpu, struct rq *this_rq)
4357 {
4358 struct sched_domain *sd;
4359 int pulled_task = 0;
4360 unsigned long next_balance = jiffies + HZ;
4361
4362 for_each_domain(this_cpu, sd) {
4363 unsigned long interval;
4364
4365 if (!(sd->flags & SD_LOAD_BALANCE))
4366 continue;
4367
4368 if (sd->flags & SD_BALANCE_NEWIDLE)
4369 /* If we've pulled tasks over stop searching: */
4370 pulled_task = load_balance_newidle(this_cpu, this_rq,
4371 sd);
4372
4373 interval = msecs_to_jiffies(sd->balance_interval);
4374 if (time_after(next_balance, sd->last_balance + interval))
4375 next_balance = sd->last_balance + interval;
4376 if (pulled_task)
4377 break;
4378 }
4379 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4380 /*
4381 * We are going idle. next_balance may be set based on
4382 * a busy processor. So reset next_balance.
4383 */
4384 this_rq->next_balance = next_balance;
4385 }
4386 }
4387
4388 /*
4389 * active_load_balance is run by migration threads. It pushes running tasks
4390 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4391 * running on each physical CPU where possible, and avoids physical /
4392 * logical imbalances.
4393 *
4394 * Called with busiest_rq locked.
4395 */
4396 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4397 {
4398 int target_cpu = busiest_rq->push_cpu;
4399 struct sched_domain *sd;
4400 struct rq *target_rq;
4401
4402 /* Is there any task to move? */
4403 if (busiest_rq->nr_running <= 1)
4404 return;
4405
4406 target_rq = cpu_rq(target_cpu);
4407
4408 /*
4409 * This condition is "impossible", if it occurs
4410 * we need to fix it. Originally reported by
4411 * Bjorn Helgaas on a 128-cpu setup.
4412 */
4413 BUG_ON(busiest_rq == target_rq);
4414
4415 /* move a task from busiest_rq to target_rq */
4416 double_lock_balance(busiest_rq, target_rq);
4417 update_rq_clock(busiest_rq);
4418 update_rq_clock(target_rq);
4419
4420 /* Search for an sd spanning us and the target CPU. */
4421 for_each_domain(target_cpu, sd) {
4422 if ((sd->flags & SD_LOAD_BALANCE) &&
4423 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4424 break;
4425 }
4426
4427 if (likely(sd)) {
4428 schedstat_inc(sd, alb_count);
4429
4430 if (move_one_task(target_rq, target_cpu, busiest_rq,
4431 sd, CPU_IDLE))
4432 schedstat_inc(sd, alb_pushed);
4433 else
4434 schedstat_inc(sd, alb_failed);
4435 }
4436 double_unlock_balance(busiest_rq, target_rq);
4437 }
4438
4439 #ifdef CONFIG_NO_HZ
4440 static struct {
4441 atomic_t load_balancer;
4442 cpumask_var_t cpu_mask;
4443 cpumask_var_t ilb_grp_nohz_mask;
4444 } nohz ____cacheline_aligned = {
4445 .load_balancer = ATOMIC_INIT(-1),
4446 };
4447
4448 int get_nohz_load_balancer(void)
4449 {
4450 return atomic_read(&nohz.load_balancer);
4451 }
4452
4453 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4454 /**
4455 * lowest_flag_domain - Return lowest sched_domain containing flag.
4456 * @cpu: The cpu whose lowest level of sched domain is to
4457 * be returned.
4458 * @flag: The flag to check for the lowest sched_domain
4459 * for the given cpu.
4460 *
4461 * Returns the lowest sched_domain of a cpu which contains the given flag.
4462 */
4463 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4464 {
4465 struct sched_domain *sd;
4466
4467 for_each_domain(cpu, sd)
4468 if (sd && (sd->flags & flag))
4469 break;
4470
4471 return sd;
4472 }
4473
4474 /**
4475 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4476 * @cpu: The cpu whose domains we're iterating over.
4477 * @sd: variable holding the value of the power_savings_sd
4478 * for cpu.
4479 * @flag: The flag to filter the sched_domains to be iterated.
4480 *
4481 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4482 * set, starting from the lowest sched_domain to the highest.
4483 */
4484 #define for_each_flag_domain(cpu, sd, flag) \
4485 for (sd = lowest_flag_domain(cpu, flag); \
4486 (sd && (sd->flags & flag)); sd = sd->parent)
4487
4488 /**
4489 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4490 * @ilb_group: group to be checked for semi-idleness
4491 *
4492 * Returns: 1 if the group is semi-idle. 0 otherwise.
4493 *
4494 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4495 * and atleast one non-idle CPU. This helper function checks if the given
4496 * sched_group is semi-idle or not.
4497 */
4498 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4499 {
4500 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4501 sched_group_cpus(ilb_group));
4502
4503 /*
4504 * A sched_group is semi-idle when it has atleast one busy cpu
4505 * and atleast one idle cpu.
4506 */
4507 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4508 return 0;
4509
4510 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4511 return 0;
4512
4513 return 1;
4514 }
4515 /**
4516 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4517 * @cpu: The cpu which is nominating a new idle_load_balancer.
4518 *
4519 * Returns: Returns the id of the idle load balancer if it exists,
4520 * Else, returns >= nr_cpu_ids.
4521 *
4522 * This algorithm picks the idle load balancer such that it belongs to a
4523 * semi-idle powersavings sched_domain. The idea is to try and avoid
4524 * completely idle packages/cores just for the purpose of idle load balancing
4525 * when there are other idle cpu's which are better suited for that job.
4526 */
4527 static int find_new_ilb(int cpu)
4528 {
4529 struct sched_domain *sd;
4530 struct sched_group *ilb_group;
4531
4532 /*
4533 * Have idle load balancer selection from semi-idle packages only
4534 * when power-aware load balancing is enabled
4535 */
4536 if (!(sched_smt_power_savings || sched_mc_power_savings))
4537 goto out_done;
4538
4539 /*
4540 * Optimize for the case when we have no idle CPUs or only one
4541 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4542 */
4543 if (cpumask_weight(nohz.cpu_mask) < 2)
4544 goto out_done;
4545
4546 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4547 ilb_group = sd->groups;
4548
4549 do {
4550 if (is_semi_idle_group(ilb_group))
4551 return cpumask_first(nohz.ilb_grp_nohz_mask);
4552
4553 ilb_group = ilb_group->next;
4554
4555 } while (ilb_group != sd->groups);
4556 }
4557
4558 out_done:
4559 return cpumask_first(nohz.cpu_mask);
4560 }
4561 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4562 static inline int find_new_ilb(int call_cpu)
4563 {
4564 return cpumask_first(nohz.cpu_mask);
4565 }
4566 #endif
4567
4568 /*
4569 * This routine will try to nominate the ilb (idle load balancing)
4570 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4571 * load balancing on behalf of all those cpus. If all the cpus in the system
4572 * go into this tickless mode, then there will be no ilb owner (as there is
4573 * no need for one) and all the cpus will sleep till the next wakeup event
4574 * arrives...
4575 *
4576 * For the ilb owner, tick is not stopped. And this tick will be used
4577 * for idle load balancing. ilb owner will still be part of
4578 * nohz.cpu_mask..
4579 *
4580 * While stopping the tick, this cpu will become the ilb owner if there
4581 * is no other owner. And will be the owner till that cpu becomes busy
4582 * or if all cpus in the system stop their ticks at which point
4583 * there is no need for ilb owner.
4584 *
4585 * When the ilb owner becomes busy, it nominates another owner, during the
4586 * next busy scheduler_tick()
4587 */
4588 int select_nohz_load_balancer(int stop_tick)
4589 {
4590 int cpu = smp_processor_id();
4591
4592 if (stop_tick) {
4593 cpu_rq(cpu)->in_nohz_recently = 1;
4594
4595 if (!cpu_active(cpu)) {
4596 if (atomic_read(&nohz.load_balancer) != cpu)
4597 return 0;
4598
4599 /*
4600 * If we are going offline and still the leader,
4601 * give up!
4602 */
4603 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4604 BUG();
4605
4606 return 0;
4607 }
4608
4609 cpumask_set_cpu(cpu, nohz.cpu_mask);
4610
4611 /* time for ilb owner also to sleep */
4612 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4613 if (atomic_read(&nohz.load_balancer) == cpu)
4614 atomic_set(&nohz.load_balancer, -1);
4615 return 0;
4616 }
4617
4618 if (atomic_read(&nohz.load_balancer) == -1) {
4619 /* make me the ilb owner */
4620 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4621 return 1;
4622 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4623 int new_ilb;
4624
4625 if (!(sched_smt_power_savings ||
4626 sched_mc_power_savings))
4627 return 1;
4628 /*
4629 * Check to see if there is a more power-efficient
4630 * ilb.
4631 */
4632 new_ilb = find_new_ilb(cpu);
4633 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4634 atomic_set(&nohz.load_balancer, -1);
4635 resched_cpu(new_ilb);
4636 return 0;
4637 }
4638 return 1;
4639 }
4640 } else {
4641 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4642 return 0;
4643
4644 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4645
4646 if (atomic_read(&nohz.load_balancer) == cpu)
4647 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4648 BUG();
4649 }
4650 return 0;
4651 }
4652 #endif
4653
4654 static DEFINE_SPINLOCK(balancing);
4655
4656 /*
4657 * It checks each scheduling domain to see if it is due to be balanced,
4658 * and initiates a balancing operation if so.
4659 *
4660 * Balancing parameters are set up in arch_init_sched_domains.
4661 */
4662 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4663 {
4664 int balance = 1;
4665 struct rq *rq = cpu_rq(cpu);
4666 unsigned long interval;
4667 struct sched_domain *sd;
4668 /* Earliest time when we have to do rebalance again */
4669 unsigned long next_balance = jiffies + 60*HZ;
4670 int update_next_balance = 0;
4671 int need_serialize;
4672
4673 for_each_domain(cpu, sd) {
4674 if (!(sd->flags & SD_LOAD_BALANCE))
4675 continue;
4676
4677 interval = sd->balance_interval;
4678 if (idle != CPU_IDLE)
4679 interval *= sd->busy_factor;
4680
4681 /* scale ms to jiffies */
4682 interval = msecs_to_jiffies(interval);
4683 if (unlikely(!interval))
4684 interval = 1;
4685 if (interval > HZ*NR_CPUS/10)
4686 interval = HZ*NR_CPUS/10;
4687
4688 need_serialize = sd->flags & SD_SERIALIZE;
4689
4690 if (need_serialize) {
4691 if (!spin_trylock(&balancing))
4692 goto out;
4693 }
4694
4695 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4696 if (load_balance(cpu, rq, sd, idle, &balance)) {
4697 /*
4698 * We've pulled tasks over so either we're no
4699 * longer idle, or one of our SMT siblings is
4700 * not idle.
4701 */
4702 idle = CPU_NOT_IDLE;
4703 }
4704 sd->last_balance = jiffies;
4705 }
4706 if (need_serialize)
4707 spin_unlock(&balancing);
4708 out:
4709 if (time_after(next_balance, sd->last_balance + interval)) {
4710 next_balance = sd->last_balance + interval;
4711 update_next_balance = 1;
4712 }
4713
4714 /*
4715 * Stop the load balance at this level. There is another
4716 * CPU in our sched group which is doing load balancing more
4717 * actively.
4718 */
4719 if (!balance)
4720 break;
4721 }
4722
4723 /*
4724 * next_balance will be updated only when there is a need.
4725 * When the cpu is attached to null domain for ex, it will not be
4726 * updated.
4727 */
4728 if (likely(update_next_balance))
4729 rq->next_balance = next_balance;
4730 }
4731
4732 /*
4733 * run_rebalance_domains is triggered when needed from the scheduler tick.
4734 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4735 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4736 */
4737 static void run_rebalance_domains(struct softirq_action *h)
4738 {
4739 int this_cpu = smp_processor_id();
4740 struct rq *this_rq = cpu_rq(this_cpu);
4741 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4742 CPU_IDLE : CPU_NOT_IDLE;
4743
4744 rebalance_domains(this_cpu, idle);
4745
4746 #ifdef CONFIG_NO_HZ
4747 /*
4748 * If this cpu is the owner for idle load balancing, then do the
4749 * balancing on behalf of the other idle cpus whose ticks are
4750 * stopped.
4751 */
4752 if (this_rq->idle_at_tick &&
4753 atomic_read(&nohz.load_balancer) == this_cpu) {
4754 struct rq *rq;
4755 int balance_cpu;
4756
4757 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4758 if (balance_cpu == this_cpu)
4759 continue;
4760
4761 /*
4762 * If this cpu gets work to do, stop the load balancing
4763 * work being done for other cpus. Next load
4764 * balancing owner will pick it up.
4765 */
4766 if (need_resched())
4767 break;
4768
4769 rebalance_domains(balance_cpu, CPU_IDLE);
4770
4771 rq = cpu_rq(balance_cpu);
4772 if (time_after(this_rq->next_balance, rq->next_balance))
4773 this_rq->next_balance = rq->next_balance;
4774 }
4775 }
4776 #endif
4777 }
4778
4779 static inline int on_null_domain(int cpu)
4780 {
4781 return !rcu_dereference(cpu_rq(cpu)->sd);
4782 }
4783
4784 /*
4785 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4786 *
4787 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4788 * idle load balancing owner or decide to stop the periodic load balancing,
4789 * if the whole system is idle.
4790 */
4791 static inline void trigger_load_balance(struct rq *rq, int cpu)
4792 {
4793 #ifdef CONFIG_NO_HZ
4794 /*
4795 * If we were in the nohz mode recently and busy at the current
4796 * scheduler tick, then check if we need to nominate new idle
4797 * load balancer.
4798 */
4799 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4800 rq->in_nohz_recently = 0;
4801
4802 if (atomic_read(&nohz.load_balancer) == cpu) {
4803 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4804 atomic_set(&nohz.load_balancer, -1);
4805 }
4806
4807 if (atomic_read(&nohz.load_balancer) == -1) {
4808 int ilb = find_new_ilb(cpu);
4809
4810 if (ilb < nr_cpu_ids)
4811 resched_cpu(ilb);
4812 }
4813 }
4814
4815 /*
4816 * If this cpu is idle and doing idle load balancing for all the
4817 * cpus with ticks stopped, is it time for that to stop?
4818 */
4819 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4820 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4821 resched_cpu(cpu);
4822 return;
4823 }
4824
4825 /*
4826 * If this cpu is idle and the idle load balancing is done by
4827 * someone else, then no need raise the SCHED_SOFTIRQ
4828 */
4829 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4830 cpumask_test_cpu(cpu, nohz.cpu_mask))
4831 return;
4832 #endif
4833 /* Don't need to rebalance while attached to NULL domain */
4834 if (time_after_eq(jiffies, rq->next_balance) &&
4835 likely(!on_null_domain(cpu)))
4836 raise_softirq(SCHED_SOFTIRQ);
4837 }
4838
4839 #else /* CONFIG_SMP */
4840
4841 /*
4842 * on UP we do not need to balance between CPUs:
4843 */
4844 static inline void idle_balance(int cpu, struct rq *rq)
4845 {
4846 }
4847
4848 #endif
4849
4850 DEFINE_PER_CPU(struct kernel_stat, kstat);
4851
4852 EXPORT_PER_CPU_SYMBOL(kstat);
4853
4854 /*
4855 * Return any ns on the sched_clock that have not yet been accounted in
4856 * @p in case that task is currently running.
4857 *
4858 * Called with task_rq_lock() held on @rq.
4859 */
4860 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4861 {
4862 u64 ns = 0;
4863
4864 if (task_current(rq, p)) {
4865 update_rq_clock(rq);
4866 ns = rq->clock - p->se.exec_start;
4867 if ((s64)ns < 0)
4868 ns = 0;
4869 }
4870
4871 return ns;
4872 }
4873
4874 unsigned long long task_delta_exec(struct task_struct *p)
4875 {
4876 unsigned long flags;
4877 struct rq *rq;
4878 u64 ns = 0;
4879
4880 rq = task_rq_lock(p, &flags);
4881 ns = do_task_delta_exec(p, rq);
4882 task_rq_unlock(rq, &flags);
4883
4884 return ns;
4885 }
4886
4887 /*
4888 * Return accounted runtime for the task.
4889 * In case the task is currently running, return the runtime plus current's
4890 * pending runtime that have not been accounted yet.
4891 */
4892 unsigned long long task_sched_runtime(struct task_struct *p)
4893 {
4894 unsigned long flags;
4895 struct rq *rq;
4896 u64 ns = 0;
4897
4898 rq = task_rq_lock(p, &flags);
4899 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4900 task_rq_unlock(rq, &flags);
4901
4902 return ns;
4903 }
4904
4905 /*
4906 * Return sum_exec_runtime for the thread group.
4907 * In case the task is currently running, return the sum plus current's
4908 * pending runtime that have not been accounted yet.
4909 *
4910 * Note that the thread group might have other running tasks as well,
4911 * so the return value not includes other pending runtime that other
4912 * running tasks might have.
4913 */
4914 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4915 {
4916 struct task_cputime totals;
4917 unsigned long flags;
4918 struct rq *rq;
4919 u64 ns;
4920
4921 rq = task_rq_lock(p, &flags);
4922 thread_group_cputime(p, &totals);
4923 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4924 task_rq_unlock(rq, &flags);
4925
4926 return ns;
4927 }
4928
4929 /*
4930 * Account user cpu time to a process.
4931 * @p: the process that the cpu time gets accounted to
4932 * @cputime: the cpu time spent in user space since the last update
4933 * @cputime_scaled: cputime scaled by cpu frequency
4934 */
4935 void account_user_time(struct task_struct *p, cputime_t cputime,
4936 cputime_t cputime_scaled)
4937 {
4938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4939 cputime64_t tmp;
4940
4941 /* Add user time to process. */
4942 p->utime = cputime_add(p->utime, cputime);
4943 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4944 account_group_user_time(p, cputime);
4945
4946 /* Add user time to cpustat. */
4947 tmp = cputime_to_cputime64(cputime);
4948 if (TASK_NICE(p) > 0)
4949 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4950 else
4951 cpustat->user = cputime64_add(cpustat->user, tmp);
4952
4953 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4954 /* Account for user time used */
4955 acct_update_integrals(p);
4956 }
4957
4958 /*
4959 * Account guest cpu time to a process.
4960 * @p: the process that the cpu time gets accounted to
4961 * @cputime: the cpu time spent in virtual machine since the last update
4962 * @cputime_scaled: cputime scaled by cpu frequency
4963 */
4964 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4965 cputime_t cputime_scaled)
4966 {
4967 cputime64_t tmp;
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969
4970 tmp = cputime_to_cputime64(cputime);
4971
4972 /* Add guest time to process. */
4973 p->utime = cputime_add(p->utime, cputime);
4974 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4975 account_group_user_time(p, cputime);
4976 p->gtime = cputime_add(p->gtime, cputime);
4977
4978 /* Add guest time to cpustat. */
4979 cpustat->user = cputime64_add(cpustat->user, tmp);
4980 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4981 }
4982
4983 /*
4984 * Account system cpu time to a process.
4985 * @p: the process that the cpu time gets accounted to
4986 * @hardirq_offset: the offset to subtract from hardirq_count()
4987 * @cputime: the cpu time spent in kernel space since the last update
4988 * @cputime_scaled: cputime scaled by cpu frequency
4989 */
4990 void account_system_time(struct task_struct *p, int hardirq_offset,
4991 cputime_t cputime, cputime_t cputime_scaled)
4992 {
4993 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4994 cputime64_t tmp;
4995
4996 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4997 account_guest_time(p, cputime, cputime_scaled);
4998 return;
4999 }
5000
5001 /* Add system time to process. */
5002 p->stime = cputime_add(p->stime, cputime);
5003 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5004 account_group_system_time(p, cputime);
5005
5006 /* Add system time to cpustat. */
5007 tmp = cputime_to_cputime64(cputime);
5008 if (hardirq_count() - hardirq_offset)
5009 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5010 else if (softirq_count())
5011 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5012 else
5013 cpustat->system = cputime64_add(cpustat->system, tmp);
5014
5015 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5016
5017 /* Account for system time used */
5018 acct_update_integrals(p);
5019 }
5020
5021 /*
5022 * Account for involuntary wait time.
5023 * @steal: the cpu time spent in involuntary wait
5024 */
5025 void account_steal_time(cputime_t cputime)
5026 {
5027 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5028 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5029
5030 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5031 }
5032
5033 /*
5034 * Account for idle time.
5035 * @cputime: the cpu time spent in idle wait
5036 */
5037 void account_idle_time(cputime_t cputime)
5038 {
5039 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5040 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5041 struct rq *rq = this_rq();
5042
5043 if (atomic_read(&rq->nr_iowait) > 0)
5044 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5045 else
5046 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5047 }
5048
5049 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5050
5051 /*
5052 * Account a single tick of cpu time.
5053 * @p: the process that the cpu time gets accounted to
5054 * @user_tick: indicates if the tick is a user or a system tick
5055 */
5056 void account_process_tick(struct task_struct *p, int user_tick)
5057 {
5058 cputime_t one_jiffy = jiffies_to_cputime(1);
5059 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5060 struct rq *rq = this_rq();
5061
5062 if (user_tick)
5063 account_user_time(p, one_jiffy, one_jiffy_scaled);
5064 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5065 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5066 one_jiffy_scaled);
5067 else
5068 account_idle_time(one_jiffy);
5069 }
5070
5071 /*
5072 * Account multiple ticks of steal time.
5073 * @p: the process from which the cpu time has been stolen
5074 * @ticks: number of stolen ticks
5075 */
5076 void account_steal_ticks(unsigned long ticks)
5077 {
5078 account_steal_time(jiffies_to_cputime(ticks));
5079 }
5080
5081 /*
5082 * Account multiple ticks of idle time.
5083 * @ticks: number of stolen ticks
5084 */
5085 void account_idle_ticks(unsigned long ticks)
5086 {
5087 account_idle_time(jiffies_to_cputime(ticks));
5088 }
5089
5090 #endif
5091
5092 /*
5093 * Use precise platform statistics if available:
5094 */
5095 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5096 cputime_t task_utime(struct task_struct *p)
5097 {
5098 return p->utime;
5099 }
5100
5101 cputime_t task_stime(struct task_struct *p)
5102 {
5103 return p->stime;
5104 }
5105 #else
5106 cputime_t task_utime(struct task_struct *p)
5107 {
5108 clock_t utime = cputime_to_clock_t(p->utime),
5109 total = utime + cputime_to_clock_t(p->stime);
5110 u64 temp;
5111
5112 /*
5113 * Use CFS's precise accounting:
5114 */
5115 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5116
5117 if (total) {
5118 temp *= utime;
5119 do_div(temp, total);
5120 }
5121 utime = (clock_t)temp;
5122
5123 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5124 return p->prev_utime;
5125 }
5126
5127 cputime_t task_stime(struct task_struct *p)
5128 {
5129 clock_t stime;
5130
5131 /*
5132 * Use CFS's precise accounting. (we subtract utime from
5133 * the total, to make sure the total observed by userspace
5134 * grows monotonically - apps rely on that):
5135 */
5136 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5137 cputime_to_clock_t(task_utime(p));
5138
5139 if (stime >= 0)
5140 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5141
5142 return p->prev_stime;
5143 }
5144 #endif
5145
5146 inline cputime_t task_gtime(struct task_struct *p)
5147 {
5148 return p->gtime;
5149 }
5150
5151 /*
5152 * This function gets called by the timer code, with HZ frequency.
5153 * We call it with interrupts disabled.
5154 *
5155 * It also gets called by the fork code, when changing the parent's
5156 * timeslices.
5157 */
5158 void scheduler_tick(void)
5159 {
5160 int cpu = smp_processor_id();
5161 struct rq *rq = cpu_rq(cpu);
5162 struct task_struct *curr = rq->curr;
5163
5164 sched_clock_tick();
5165
5166 spin_lock(&rq->lock);
5167 update_rq_clock(rq);
5168 update_cpu_load(rq);
5169 curr->sched_class->task_tick(rq, curr, 0);
5170 spin_unlock(&rq->lock);
5171
5172 perf_counter_task_tick(curr, cpu);
5173
5174 #ifdef CONFIG_SMP
5175 rq->idle_at_tick = idle_cpu(cpu);
5176 trigger_load_balance(rq, cpu);
5177 #endif
5178 }
5179
5180 notrace unsigned long get_parent_ip(unsigned long addr)
5181 {
5182 if (in_lock_functions(addr)) {
5183 addr = CALLER_ADDR2;
5184 if (in_lock_functions(addr))
5185 addr = CALLER_ADDR3;
5186 }
5187 return addr;
5188 }
5189
5190 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5191 defined(CONFIG_PREEMPT_TRACER))
5192
5193 void __kprobes add_preempt_count(int val)
5194 {
5195 #ifdef CONFIG_DEBUG_PREEMPT
5196 /*
5197 * Underflow?
5198 */
5199 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5200 return;
5201 #endif
5202 preempt_count() += val;
5203 #ifdef CONFIG_DEBUG_PREEMPT
5204 /*
5205 * Spinlock count overflowing soon?
5206 */
5207 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5208 PREEMPT_MASK - 10);
5209 #endif
5210 if (preempt_count() == val)
5211 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5212 }
5213 EXPORT_SYMBOL(add_preempt_count);
5214
5215 void __kprobes sub_preempt_count(int val)
5216 {
5217 #ifdef CONFIG_DEBUG_PREEMPT
5218 /*
5219 * Underflow?
5220 */
5221 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5222 return;
5223 /*
5224 * Is the spinlock portion underflowing?
5225 */
5226 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5227 !(preempt_count() & PREEMPT_MASK)))
5228 return;
5229 #endif
5230
5231 if (preempt_count() == val)
5232 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5233 preempt_count() -= val;
5234 }
5235 EXPORT_SYMBOL(sub_preempt_count);
5236
5237 #endif
5238
5239 /*
5240 * Print scheduling while atomic bug:
5241 */
5242 static noinline void __schedule_bug(struct task_struct *prev)
5243 {
5244 struct pt_regs *regs = get_irq_regs();
5245
5246 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5247 prev->comm, prev->pid, preempt_count());
5248
5249 debug_show_held_locks(prev);
5250 print_modules();
5251 if (irqs_disabled())
5252 print_irqtrace_events(prev);
5253
5254 if (regs)
5255 show_regs(regs);
5256 else
5257 dump_stack();
5258 }
5259
5260 /*
5261 * Various schedule()-time debugging checks and statistics:
5262 */
5263 static inline void schedule_debug(struct task_struct *prev)
5264 {
5265 /*
5266 * Test if we are atomic. Since do_exit() needs to call into
5267 * schedule() atomically, we ignore that path for now.
5268 * Otherwise, whine if we are scheduling when we should not be.
5269 */
5270 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5271 __schedule_bug(prev);
5272
5273 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5274
5275 schedstat_inc(this_rq(), sched_count);
5276 #ifdef CONFIG_SCHEDSTATS
5277 if (unlikely(prev->lock_depth >= 0)) {
5278 schedstat_inc(this_rq(), bkl_count);
5279 schedstat_inc(prev, sched_info.bkl_count);
5280 }
5281 #endif
5282 }
5283
5284 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5285 {
5286 if (prev->state == TASK_RUNNING) {
5287 u64 runtime = prev->se.sum_exec_runtime;
5288
5289 runtime -= prev->se.prev_sum_exec_runtime;
5290 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5291
5292 /*
5293 * In order to avoid avg_overlap growing stale when we are
5294 * indeed overlapping and hence not getting put to sleep, grow
5295 * the avg_overlap on preemption.
5296 *
5297 * We use the average preemption runtime because that
5298 * correlates to the amount of cache footprint a task can
5299 * build up.
5300 */
5301 update_avg(&prev->se.avg_overlap, runtime);
5302 }
5303 prev->sched_class->put_prev_task(rq, prev);
5304 }
5305
5306 /*
5307 * Pick up the highest-prio task:
5308 */
5309 static inline struct task_struct *
5310 pick_next_task(struct rq *rq)
5311 {
5312 const struct sched_class *class;
5313 struct task_struct *p;
5314
5315 /*
5316 * Optimization: we know that if all tasks are in
5317 * the fair class we can call that function directly:
5318 */
5319 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5320 p = fair_sched_class.pick_next_task(rq);
5321 if (likely(p))
5322 return p;
5323 }
5324
5325 class = sched_class_highest;
5326 for ( ; ; ) {
5327 p = class->pick_next_task(rq);
5328 if (p)
5329 return p;
5330 /*
5331 * Will never be NULL as the idle class always
5332 * returns a non-NULL p:
5333 */
5334 class = class->next;
5335 }
5336 }
5337
5338 /*
5339 * schedule() is the main scheduler function.
5340 */
5341 asmlinkage void __sched schedule(void)
5342 {
5343 struct task_struct *prev, *next;
5344 unsigned long *switch_count;
5345 struct rq *rq;
5346 int cpu;
5347
5348 need_resched:
5349 preempt_disable();
5350 cpu = smp_processor_id();
5351 rq = cpu_rq(cpu);
5352 rcu_qsctr_inc(cpu);
5353 prev = rq->curr;
5354 switch_count = &prev->nivcsw;
5355
5356 release_kernel_lock(prev);
5357 need_resched_nonpreemptible:
5358
5359 schedule_debug(prev);
5360
5361 if (sched_feat(HRTICK))
5362 hrtick_clear(rq);
5363
5364 spin_lock_irq(&rq->lock);
5365 update_rq_clock(rq);
5366 clear_tsk_need_resched(prev);
5367
5368 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5369 if (unlikely(signal_pending_state(prev->state, prev)))
5370 prev->state = TASK_RUNNING;
5371 else
5372 deactivate_task(rq, prev, 1);
5373 switch_count = &prev->nvcsw;
5374 }
5375
5376 #ifdef CONFIG_SMP
5377 if (prev->sched_class->pre_schedule)
5378 prev->sched_class->pre_schedule(rq, prev);
5379 #endif
5380
5381 if (unlikely(!rq->nr_running))
5382 idle_balance(cpu, rq);
5383
5384 put_prev_task(rq, prev);
5385 next = pick_next_task(rq);
5386
5387 if (likely(prev != next)) {
5388 sched_info_switch(prev, next);
5389 perf_counter_task_sched_out(prev, next, cpu);
5390
5391 rq->nr_switches++;
5392 rq->curr = next;
5393 ++*switch_count;
5394
5395 context_switch(rq, prev, next); /* unlocks the rq */
5396 /*
5397 * the context switch might have flipped the stack from under
5398 * us, hence refresh the local variables.
5399 */
5400 cpu = smp_processor_id();
5401 rq = cpu_rq(cpu);
5402 } else
5403 spin_unlock_irq(&rq->lock);
5404
5405 if (unlikely(reacquire_kernel_lock(current) < 0))
5406 goto need_resched_nonpreemptible;
5407
5408 preempt_enable_no_resched();
5409 if (need_resched())
5410 goto need_resched;
5411 }
5412 EXPORT_SYMBOL(schedule);
5413
5414 #ifdef CONFIG_SMP
5415 /*
5416 * Look out! "owner" is an entirely speculative pointer
5417 * access and not reliable.
5418 */
5419 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5420 {
5421 unsigned int cpu;
5422 struct rq *rq;
5423
5424 if (!sched_feat(OWNER_SPIN))
5425 return 0;
5426
5427 #ifdef CONFIG_DEBUG_PAGEALLOC
5428 /*
5429 * Need to access the cpu field knowing that
5430 * DEBUG_PAGEALLOC could have unmapped it if
5431 * the mutex owner just released it and exited.
5432 */
5433 if (probe_kernel_address(&owner->cpu, cpu))
5434 goto out;
5435 #else
5436 cpu = owner->cpu;
5437 #endif
5438
5439 /*
5440 * Even if the access succeeded (likely case),
5441 * the cpu field may no longer be valid.
5442 */
5443 if (cpu >= nr_cpumask_bits)
5444 goto out;
5445
5446 /*
5447 * We need to validate that we can do a
5448 * get_cpu() and that we have the percpu area.
5449 */
5450 if (!cpu_online(cpu))
5451 goto out;
5452
5453 rq = cpu_rq(cpu);
5454
5455 for (;;) {
5456 /*
5457 * Owner changed, break to re-assess state.
5458 */
5459 if (lock->owner != owner)
5460 break;
5461
5462 /*
5463 * Is that owner really running on that cpu?
5464 */
5465 if (task_thread_info(rq->curr) != owner || need_resched())
5466 return 0;
5467
5468 cpu_relax();
5469 }
5470 out:
5471 return 1;
5472 }
5473 #endif
5474
5475 #ifdef CONFIG_PREEMPT
5476 /*
5477 * this is the entry point to schedule() from in-kernel preemption
5478 * off of preempt_enable. Kernel preemptions off return from interrupt
5479 * occur there and call schedule directly.
5480 */
5481 asmlinkage void __sched preempt_schedule(void)
5482 {
5483 struct thread_info *ti = current_thread_info();
5484
5485 /*
5486 * If there is a non-zero preempt_count or interrupts are disabled,
5487 * we do not want to preempt the current task. Just return..
5488 */
5489 if (likely(ti->preempt_count || irqs_disabled()))
5490 return;
5491
5492 do {
5493 add_preempt_count(PREEMPT_ACTIVE);
5494 schedule();
5495 sub_preempt_count(PREEMPT_ACTIVE);
5496
5497 /*
5498 * Check again in case we missed a preemption opportunity
5499 * between schedule and now.
5500 */
5501 barrier();
5502 } while (need_resched());
5503 }
5504 EXPORT_SYMBOL(preempt_schedule);
5505
5506 /*
5507 * this is the entry point to schedule() from kernel preemption
5508 * off of irq context.
5509 * Note, that this is called and return with irqs disabled. This will
5510 * protect us against recursive calling from irq.
5511 */
5512 asmlinkage void __sched preempt_schedule_irq(void)
5513 {
5514 struct thread_info *ti = current_thread_info();
5515
5516 /* Catch callers which need to be fixed */
5517 BUG_ON(ti->preempt_count || !irqs_disabled());
5518
5519 do {
5520 add_preempt_count(PREEMPT_ACTIVE);
5521 local_irq_enable();
5522 schedule();
5523 local_irq_disable();
5524 sub_preempt_count(PREEMPT_ACTIVE);
5525
5526 /*
5527 * Check again in case we missed a preemption opportunity
5528 * between schedule and now.
5529 */
5530 barrier();
5531 } while (need_resched());
5532 }
5533
5534 #endif /* CONFIG_PREEMPT */
5535
5536 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5537 void *key)
5538 {
5539 return try_to_wake_up(curr->private, mode, sync);
5540 }
5541 EXPORT_SYMBOL(default_wake_function);
5542
5543 /*
5544 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5545 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5546 * number) then we wake all the non-exclusive tasks and one exclusive task.
5547 *
5548 * There are circumstances in which we can try to wake a task which has already
5549 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5550 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5551 */
5552 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5553 int nr_exclusive, int sync, void *key)
5554 {
5555 wait_queue_t *curr, *next;
5556
5557 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5558 unsigned flags = curr->flags;
5559
5560 if (curr->func(curr, mode, sync, key) &&
5561 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5562 break;
5563 }
5564 }
5565
5566 /**
5567 * __wake_up - wake up threads blocked on a waitqueue.
5568 * @q: the waitqueue
5569 * @mode: which threads
5570 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5571 * @key: is directly passed to the wakeup function
5572 *
5573 * It may be assumed that this function implies a write memory barrier before
5574 * changing the task state if and only if any tasks are woken up.
5575 */
5576 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5577 int nr_exclusive, void *key)
5578 {
5579 unsigned long flags;
5580
5581 spin_lock_irqsave(&q->lock, flags);
5582 __wake_up_common(q, mode, nr_exclusive, 0, key);
5583 spin_unlock_irqrestore(&q->lock, flags);
5584 }
5585 EXPORT_SYMBOL(__wake_up);
5586
5587 /*
5588 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5589 */
5590 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5591 {
5592 __wake_up_common(q, mode, 1, 0, NULL);
5593 }
5594
5595 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5596 {
5597 __wake_up_common(q, mode, 1, 0, key);
5598 }
5599
5600 /**
5601 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5602 * @q: the waitqueue
5603 * @mode: which threads
5604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5605 * @key: opaque value to be passed to wakeup targets
5606 *
5607 * The sync wakeup differs that the waker knows that it will schedule
5608 * away soon, so while the target thread will be woken up, it will not
5609 * be migrated to another CPU - ie. the two threads are 'synchronized'
5610 * with each other. This can prevent needless bouncing between CPUs.
5611 *
5612 * On UP it can prevent extra preemption.
5613 *
5614 * It may be assumed that this function implies a write memory barrier before
5615 * changing the task state if and only if any tasks are woken up.
5616 */
5617 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5618 int nr_exclusive, void *key)
5619 {
5620 unsigned long flags;
5621 int sync = 1;
5622
5623 if (unlikely(!q))
5624 return;
5625
5626 if (unlikely(!nr_exclusive))
5627 sync = 0;
5628
5629 spin_lock_irqsave(&q->lock, flags);
5630 __wake_up_common(q, mode, nr_exclusive, sync, key);
5631 spin_unlock_irqrestore(&q->lock, flags);
5632 }
5633 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5634
5635 /*
5636 * __wake_up_sync - see __wake_up_sync_key()
5637 */
5638 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5639 {
5640 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5641 }
5642 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5643
5644 /**
5645 * complete: - signals a single thread waiting on this completion
5646 * @x: holds the state of this particular completion
5647 *
5648 * This will wake up a single thread waiting on this completion. Threads will be
5649 * awakened in the same order in which they were queued.
5650 *
5651 * See also complete_all(), wait_for_completion() and related routines.
5652 *
5653 * It may be assumed that this function implies a write memory barrier before
5654 * changing the task state if and only if any tasks are woken up.
5655 */
5656 void complete(struct completion *x)
5657 {
5658 unsigned long flags;
5659
5660 spin_lock_irqsave(&x->wait.lock, flags);
5661 x->done++;
5662 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5663 spin_unlock_irqrestore(&x->wait.lock, flags);
5664 }
5665 EXPORT_SYMBOL(complete);
5666
5667 /**
5668 * complete_all: - signals all threads waiting on this completion
5669 * @x: holds the state of this particular completion
5670 *
5671 * This will wake up all threads waiting on this particular completion event.
5672 *
5673 * It may be assumed that this function implies a write memory barrier before
5674 * changing the task state if and only if any tasks are woken up.
5675 */
5676 void complete_all(struct completion *x)
5677 {
5678 unsigned long flags;
5679
5680 spin_lock_irqsave(&x->wait.lock, flags);
5681 x->done += UINT_MAX/2;
5682 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5683 spin_unlock_irqrestore(&x->wait.lock, flags);
5684 }
5685 EXPORT_SYMBOL(complete_all);
5686
5687 static inline long __sched
5688 do_wait_for_common(struct completion *x, long timeout, int state)
5689 {
5690 if (!x->done) {
5691 DECLARE_WAITQUEUE(wait, current);
5692
5693 wait.flags |= WQ_FLAG_EXCLUSIVE;
5694 __add_wait_queue_tail(&x->wait, &wait);
5695 do {
5696 if (signal_pending_state(state, current)) {
5697 timeout = -ERESTARTSYS;
5698 break;
5699 }
5700 __set_current_state(state);
5701 spin_unlock_irq(&x->wait.lock);
5702 timeout = schedule_timeout(timeout);
5703 spin_lock_irq(&x->wait.lock);
5704 } while (!x->done && timeout);
5705 __remove_wait_queue(&x->wait, &wait);
5706 if (!x->done)
5707 return timeout;
5708 }
5709 x->done--;
5710 return timeout ?: 1;
5711 }
5712
5713 static long __sched
5714 wait_for_common(struct completion *x, long timeout, int state)
5715 {
5716 might_sleep();
5717
5718 spin_lock_irq(&x->wait.lock);
5719 timeout = do_wait_for_common(x, timeout, state);
5720 spin_unlock_irq(&x->wait.lock);
5721 return timeout;
5722 }
5723
5724 /**
5725 * wait_for_completion: - waits for completion of a task
5726 * @x: holds the state of this particular completion
5727 *
5728 * This waits to be signaled for completion of a specific task. It is NOT
5729 * interruptible and there is no timeout.
5730 *
5731 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5732 * and interrupt capability. Also see complete().
5733 */
5734 void __sched wait_for_completion(struct completion *x)
5735 {
5736 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5737 }
5738 EXPORT_SYMBOL(wait_for_completion);
5739
5740 /**
5741 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5742 * @x: holds the state of this particular completion
5743 * @timeout: timeout value in jiffies
5744 *
5745 * This waits for either a completion of a specific task to be signaled or for a
5746 * specified timeout to expire. The timeout is in jiffies. It is not
5747 * interruptible.
5748 */
5749 unsigned long __sched
5750 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5751 {
5752 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5753 }
5754 EXPORT_SYMBOL(wait_for_completion_timeout);
5755
5756 /**
5757 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5758 * @x: holds the state of this particular completion
5759 *
5760 * This waits for completion of a specific task to be signaled. It is
5761 * interruptible.
5762 */
5763 int __sched wait_for_completion_interruptible(struct completion *x)
5764 {
5765 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5766 if (t == -ERESTARTSYS)
5767 return t;
5768 return 0;
5769 }
5770 EXPORT_SYMBOL(wait_for_completion_interruptible);
5771
5772 /**
5773 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5774 * @x: holds the state of this particular completion
5775 * @timeout: timeout value in jiffies
5776 *
5777 * This waits for either a completion of a specific task to be signaled or for a
5778 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5779 */
5780 unsigned long __sched
5781 wait_for_completion_interruptible_timeout(struct completion *x,
5782 unsigned long timeout)
5783 {
5784 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5785 }
5786 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5787
5788 /**
5789 * wait_for_completion_killable: - waits for completion of a task (killable)
5790 * @x: holds the state of this particular completion
5791 *
5792 * This waits to be signaled for completion of a specific task. It can be
5793 * interrupted by a kill signal.
5794 */
5795 int __sched wait_for_completion_killable(struct completion *x)
5796 {
5797 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5798 if (t == -ERESTARTSYS)
5799 return t;
5800 return 0;
5801 }
5802 EXPORT_SYMBOL(wait_for_completion_killable);
5803
5804 /**
5805 * try_wait_for_completion - try to decrement a completion without blocking
5806 * @x: completion structure
5807 *
5808 * Returns: 0 if a decrement cannot be done without blocking
5809 * 1 if a decrement succeeded.
5810 *
5811 * If a completion is being used as a counting completion,
5812 * attempt to decrement the counter without blocking. This
5813 * enables us to avoid waiting if the resource the completion
5814 * is protecting is not available.
5815 */
5816 bool try_wait_for_completion(struct completion *x)
5817 {
5818 int ret = 1;
5819
5820 spin_lock_irq(&x->wait.lock);
5821 if (!x->done)
5822 ret = 0;
5823 else
5824 x->done--;
5825 spin_unlock_irq(&x->wait.lock);
5826 return ret;
5827 }
5828 EXPORT_SYMBOL(try_wait_for_completion);
5829
5830 /**
5831 * completion_done - Test to see if a completion has any waiters
5832 * @x: completion structure
5833 *
5834 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5835 * 1 if there are no waiters.
5836 *
5837 */
5838 bool completion_done(struct completion *x)
5839 {
5840 int ret = 1;
5841
5842 spin_lock_irq(&x->wait.lock);
5843 if (!x->done)
5844 ret = 0;
5845 spin_unlock_irq(&x->wait.lock);
5846 return ret;
5847 }
5848 EXPORT_SYMBOL(completion_done);
5849
5850 static long __sched
5851 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5852 {
5853 unsigned long flags;
5854 wait_queue_t wait;
5855
5856 init_waitqueue_entry(&wait, current);
5857
5858 __set_current_state(state);
5859
5860 spin_lock_irqsave(&q->lock, flags);
5861 __add_wait_queue(q, &wait);
5862 spin_unlock(&q->lock);
5863 timeout = schedule_timeout(timeout);
5864 spin_lock_irq(&q->lock);
5865 __remove_wait_queue(q, &wait);
5866 spin_unlock_irqrestore(&q->lock, flags);
5867
5868 return timeout;
5869 }
5870
5871 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5872 {
5873 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5874 }
5875 EXPORT_SYMBOL(interruptible_sleep_on);
5876
5877 long __sched
5878 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5879 {
5880 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5881 }
5882 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5883
5884 void __sched sleep_on(wait_queue_head_t *q)
5885 {
5886 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5887 }
5888 EXPORT_SYMBOL(sleep_on);
5889
5890 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5891 {
5892 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5893 }
5894 EXPORT_SYMBOL(sleep_on_timeout);
5895
5896 #ifdef CONFIG_RT_MUTEXES
5897
5898 /*
5899 * rt_mutex_setprio - set the current priority of a task
5900 * @p: task
5901 * @prio: prio value (kernel-internal form)
5902 *
5903 * This function changes the 'effective' priority of a task. It does
5904 * not touch ->normal_prio like __setscheduler().
5905 *
5906 * Used by the rt_mutex code to implement priority inheritance logic.
5907 */
5908 void rt_mutex_setprio(struct task_struct *p, int prio)
5909 {
5910 unsigned long flags;
5911 int oldprio, on_rq, running;
5912 struct rq *rq;
5913 const struct sched_class *prev_class = p->sched_class;
5914
5915 BUG_ON(prio < 0 || prio > MAX_PRIO);
5916
5917 rq = task_rq_lock(p, &flags);
5918 update_rq_clock(rq);
5919
5920 oldprio = p->prio;
5921 on_rq = p->se.on_rq;
5922 running = task_current(rq, p);
5923 if (on_rq)
5924 dequeue_task(rq, p, 0);
5925 if (running)
5926 p->sched_class->put_prev_task(rq, p);
5927
5928 if (rt_prio(prio))
5929 p->sched_class = &rt_sched_class;
5930 else
5931 p->sched_class = &fair_sched_class;
5932
5933 p->prio = prio;
5934
5935 if (running)
5936 p->sched_class->set_curr_task(rq);
5937 if (on_rq) {
5938 enqueue_task(rq, p, 0);
5939
5940 check_class_changed(rq, p, prev_class, oldprio, running);
5941 }
5942 task_rq_unlock(rq, &flags);
5943 }
5944
5945 #endif
5946
5947 void set_user_nice(struct task_struct *p, long nice)
5948 {
5949 int old_prio, delta, on_rq;
5950 unsigned long flags;
5951 struct rq *rq;
5952
5953 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5954 return;
5955 /*
5956 * We have to be careful, if called from sys_setpriority(),
5957 * the task might be in the middle of scheduling on another CPU.
5958 */
5959 rq = task_rq_lock(p, &flags);
5960 update_rq_clock(rq);
5961 /*
5962 * The RT priorities are set via sched_setscheduler(), but we still
5963 * allow the 'normal' nice value to be set - but as expected
5964 * it wont have any effect on scheduling until the task is
5965 * SCHED_FIFO/SCHED_RR:
5966 */
5967 if (task_has_rt_policy(p)) {
5968 p->static_prio = NICE_TO_PRIO(nice);
5969 goto out_unlock;
5970 }
5971 on_rq = p->se.on_rq;
5972 if (on_rq)
5973 dequeue_task(rq, p, 0);
5974
5975 p->static_prio = NICE_TO_PRIO(nice);
5976 set_load_weight(p);
5977 old_prio = p->prio;
5978 p->prio = effective_prio(p);
5979 delta = p->prio - old_prio;
5980
5981 if (on_rq) {
5982 enqueue_task(rq, p, 0);
5983 /*
5984 * If the task increased its priority or is running and
5985 * lowered its priority, then reschedule its CPU:
5986 */
5987 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5988 resched_task(rq->curr);
5989 }
5990 out_unlock:
5991 task_rq_unlock(rq, &flags);
5992 }
5993 EXPORT_SYMBOL(set_user_nice);
5994
5995 /*
5996 * can_nice - check if a task can reduce its nice value
5997 * @p: task
5998 * @nice: nice value
5999 */
6000 int can_nice(const struct task_struct *p, const int nice)
6001 {
6002 /* convert nice value [19,-20] to rlimit style value [1,40] */
6003 int nice_rlim = 20 - nice;
6004
6005 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6006 capable(CAP_SYS_NICE));
6007 }
6008
6009 #ifdef __ARCH_WANT_SYS_NICE
6010
6011 /*
6012 * sys_nice - change the priority of the current process.
6013 * @increment: priority increment
6014 *
6015 * sys_setpriority is a more generic, but much slower function that
6016 * does similar things.
6017 */
6018 SYSCALL_DEFINE1(nice, int, increment)
6019 {
6020 long nice, retval;
6021
6022 /*
6023 * Setpriority might change our priority at the same moment.
6024 * We don't have to worry. Conceptually one call occurs first
6025 * and we have a single winner.
6026 */
6027 if (increment < -40)
6028 increment = -40;
6029 if (increment > 40)
6030 increment = 40;
6031
6032 nice = TASK_NICE(current) + increment;
6033 if (nice < -20)
6034 nice = -20;
6035 if (nice > 19)
6036 nice = 19;
6037
6038 if (increment < 0 && !can_nice(current, nice))
6039 return -EPERM;
6040
6041 retval = security_task_setnice(current, nice);
6042 if (retval)
6043 return retval;
6044
6045 set_user_nice(current, nice);
6046 return 0;
6047 }
6048
6049 #endif
6050
6051 /**
6052 * task_prio - return the priority value of a given task.
6053 * @p: the task in question.
6054 *
6055 * This is the priority value as seen by users in /proc.
6056 * RT tasks are offset by -200. Normal tasks are centered
6057 * around 0, value goes from -16 to +15.
6058 */
6059 int task_prio(const struct task_struct *p)
6060 {
6061 return p->prio - MAX_RT_PRIO;
6062 }
6063
6064 /**
6065 * task_nice - return the nice value of a given task.
6066 * @p: the task in question.
6067 */
6068 int task_nice(const struct task_struct *p)
6069 {
6070 return TASK_NICE(p);
6071 }
6072 EXPORT_SYMBOL(task_nice);
6073
6074 /**
6075 * idle_cpu - is a given cpu idle currently?
6076 * @cpu: the processor in question.
6077 */
6078 int idle_cpu(int cpu)
6079 {
6080 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6081 }
6082
6083 /**
6084 * idle_task - return the idle task for a given cpu.
6085 * @cpu: the processor in question.
6086 */
6087 struct task_struct *idle_task(int cpu)
6088 {
6089 return cpu_rq(cpu)->idle;
6090 }
6091
6092 /**
6093 * find_process_by_pid - find a process with a matching PID value.
6094 * @pid: the pid in question.
6095 */
6096 static struct task_struct *find_process_by_pid(pid_t pid)
6097 {
6098 return pid ? find_task_by_vpid(pid) : current;
6099 }
6100
6101 /* Actually do priority change: must hold rq lock. */
6102 static void
6103 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6104 {
6105 BUG_ON(p->se.on_rq);
6106
6107 p->policy = policy;
6108 switch (p->policy) {
6109 case SCHED_NORMAL:
6110 case SCHED_BATCH:
6111 case SCHED_IDLE:
6112 p->sched_class = &fair_sched_class;
6113 break;
6114 case SCHED_FIFO:
6115 case SCHED_RR:
6116 p->sched_class = &rt_sched_class;
6117 break;
6118 }
6119
6120 p->rt_priority = prio;
6121 p->normal_prio = normal_prio(p);
6122 /* we are holding p->pi_lock already */
6123 p->prio = rt_mutex_getprio(p);
6124 set_load_weight(p);
6125 }
6126
6127 /*
6128 * check the target process has a UID that matches the current process's
6129 */
6130 static bool check_same_owner(struct task_struct *p)
6131 {
6132 const struct cred *cred = current_cred(), *pcred;
6133 bool match;
6134
6135 rcu_read_lock();
6136 pcred = __task_cred(p);
6137 match = (cred->euid == pcred->euid ||
6138 cred->euid == pcred->uid);
6139 rcu_read_unlock();
6140 return match;
6141 }
6142
6143 static int __sched_setscheduler(struct task_struct *p, int policy,
6144 struct sched_param *param, bool user)
6145 {
6146 int retval, oldprio, oldpolicy = -1, on_rq, running;
6147 unsigned long flags;
6148 const struct sched_class *prev_class = p->sched_class;
6149 struct rq *rq;
6150 int reset_on_fork;
6151
6152 /* may grab non-irq protected spin_locks */
6153 BUG_ON(in_interrupt());
6154 recheck:
6155 /* double check policy once rq lock held */
6156 if (policy < 0) {
6157 reset_on_fork = p->sched_reset_on_fork;
6158 policy = oldpolicy = p->policy;
6159 } else {
6160 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6161 policy &= ~SCHED_RESET_ON_FORK;
6162
6163 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6164 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6165 policy != SCHED_IDLE)
6166 return -EINVAL;
6167 }
6168
6169 /*
6170 * Valid priorities for SCHED_FIFO and SCHED_RR are
6171 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6172 * SCHED_BATCH and SCHED_IDLE is 0.
6173 */
6174 if (param->sched_priority < 0 ||
6175 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6176 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6177 return -EINVAL;
6178 if (rt_policy(policy) != (param->sched_priority != 0))
6179 return -EINVAL;
6180
6181 /*
6182 * Allow unprivileged RT tasks to decrease priority:
6183 */
6184 if (user && !capable(CAP_SYS_NICE)) {
6185 if (rt_policy(policy)) {
6186 unsigned long rlim_rtprio;
6187
6188 if (!lock_task_sighand(p, &flags))
6189 return -ESRCH;
6190 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6191 unlock_task_sighand(p, &flags);
6192
6193 /* can't set/change the rt policy */
6194 if (policy != p->policy && !rlim_rtprio)
6195 return -EPERM;
6196
6197 /* can't increase priority */
6198 if (param->sched_priority > p->rt_priority &&
6199 param->sched_priority > rlim_rtprio)
6200 return -EPERM;
6201 }
6202 /*
6203 * Like positive nice levels, dont allow tasks to
6204 * move out of SCHED_IDLE either:
6205 */
6206 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6207 return -EPERM;
6208
6209 /* can't change other user's priorities */
6210 if (!check_same_owner(p))
6211 return -EPERM;
6212
6213 /* Normal users shall not reset the sched_reset_on_fork flag */
6214 if (p->sched_reset_on_fork && !reset_on_fork)
6215 return -EPERM;
6216 }
6217
6218 if (user) {
6219 #ifdef CONFIG_RT_GROUP_SCHED
6220 /*
6221 * Do not allow realtime tasks into groups that have no runtime
6222 * assigned.
6223 */
6224 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6225 task_group(p)->rt_bandwidth.rt_runtime == 0)
6226 return -EPERM;
6227 #endif
6228
6229 retval = security_task_setscheduler(p, policy, param);
6230 if (retval)
6231 return retval;
6232 }
6233
6234 /*
6235 * make sure no PI-waiters arrive (or leave) while we are
6236 * changing the priority of the task:
6237 */
6238 spin_lock_irqsave(&p->pi_lock, flags);
6239 /*
6240 * To be able to change p->policy safely, the apropriate
6241 * runqueue lock must be held.
6242 */
6243 rq = __task_rq_lock(p);
6244 /* recheck policy now with rq lock held */
6245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6246 policy = oldpolicy = -1;
6247 __task_rq_unlock(rq);
6248 spin_unlock_irqrestore(&p->pi_lock, flags);
6249 goto recheck;
6250 }
6251 update_rq_clock(rq);
6252 on_rq = p->se.on_rq;
6253 running = task_current(rq, p);
6254 if (on_rq)
6255 deactivate_task(rq, p, 0);
6256 if (running)
6257 p->sched_class->put_prev_task(rq, p);
6258
6259 p->sched_reset_on_fork = reset_on_fork;
6260
6261 oldprio = p->prio;
6262 __setscheduler(rq, p, policy, param->sched_priority);
6263
6264 if (running)
6265 p->sched_class->set_curr_task(rq);
6266 if (on_rq) {
6267 activate_task(rq, p, 0);
6268
6269 check_class_changed(rq, p, prev_class, oldprio, running);
6270 }
6271 __task_rq_unlock(rq);
6272 spin_unlock_irqrestore(&p->pi_lock, flags);
6273
6274 rt_mutex_adjust_pi(p);
6275
6276 return 0;
6277 }
6278
6279 /**
6280 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6281 * @p: the task in question.
6282 * @policy: new policy.
6283 * @param: structure containing the new RT priority.
6284 *
6285 * NOTE that the task may be already dead.
6286 */
6287 int sched_setscheduler(struct task_struct *p, int policy,
6288 struct sched_param *param)
6289 {
6290 return __sched_setscheduler(p, policy, param, true);
6291 }
6292 EXPORT_SYMBOL_GPL(sched_setscheduler);
6293
6294 /**
6295 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6296 * @p: the task in question.
6297 * @policy: new policy.
6298 * @param: structure containing the new RT priority.
6299 *
6300 * Just like sched_setscheduler, only don't bother checking if the
6301 * current context has permission. For example, this is needed in
6302 * stop_machine(): we create temporary high priority worker threads,
6303 * but our caller might not have that capability.
6304 */
6305 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6306 struct sched_param *param)
6307 {
6308 return __sched_setscheduler(p, policy, param, false);
6309 }
6310
6311 static int
6312 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6313 {
6314 struct sched_param lparam;
6315 struct task_struct *p;
6316 int retval;
6317
6318 if (!param || pid < 0)
6319 return -EINVAL;
6320 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6321 return -EFAULT;
6322
6323 rcu_read_lock();
6324 retval = -ESRCH;
6325 p = find_process_by_pid(pid);
6326 if (p != NULL)
6327 retval = sched_setscheduler(p, policy, &lparam);
6328 rcu_read_unlock();
6329
6330 return retval;
6331 }
6332
6333 /**
6334 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6335 * @pid: the pid in question.
6336 * @policy: new policy.
6337 * @param: structure containing the new RT priority.
6338 */
6339 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6340 struct sched_param __user *, param)
6341 {
6342 /* negative values for policy are not valid */
6343 if (policy < 0)
6344 return -EINVAL;
6345
6346 return do_sched_setscheduler(pid, policy, param);
6347 }
6348
6349 /**
6350 * sys_sched_setparam - set/change the RT priority of a thread
6351 * @pid: the pid in question.
6352 * @param: structure containing the new RT priority.
6353 */
6354 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6355 {
6356 return do_sched_setscheduler(pid, -1, param);
6357 }
6358
6359 /**
6360 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6361 * @pid: the pid in question.
6362 */
6363 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6364 {
6365 struct task_struct *p;
6366 int retval;
6367
6368 if (pid < 0)
6369 return -EINVAL;
6370
6371 retval = -ESRCH;
6372 read_lock(&tasklist_lock);
6373 p = find_process_by_pid(pid);
6374 if (p) {
6375 retval = security_task_getscheduler(p);
6376 if (!retval)
6377 retval = p->policy
6378 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6379 }
6380 read_unlock(&tasklist_lock);
6381 return retval;
6382 }
6383
6384 /**
6385 * sys_sched_getparam - get the RT priority of a thread
6386 * @pid: the pid in question.
6387 * @param: structure containing the RT priority.
6388 */
6389 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6390 {
6391 struct sched_param lp;
6392 struct task_struct *p;
6393 int retval;
6394
6395 if (!param || pid < 0)
6396 return -EINVAL;
6397
6398 read_lock(&tasklist_lock);
6399 p = find_process_by_pid(pid);
6400 retval = -ESRCH;
6401 if (!p)
6402 goto out_unlock;
6403
6404 retval = security_task_getscheduler(p);
6405 if (retval)
6406 goto out_unlock;
6407
6408 lp.sched_priority = p->rt_priority;
6409 read_unlock(&tasklist_lock);
6410
6411 /*
6412 * This one might sleep, we cannot do it with a spinlock held ...
6413 */
6414 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6415
6416 return retval;
6417
6418 out_unlock:
6419 read_unlock(&tasklist_lock);
6420 return retval;
6421 }
6422
6423 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6424 {
6425 cpumask_var_t cpus_allowed, new_mask;
6426 struct task_struct *p;
6427 int retval;
6428
6429 get_online_cpus();
6430 read_lock(&tasklist_lock);
6431
6432 p = find_process_by_pid(pid);
6433 if (!p) {
6434 read_unlock(&tasklist_lock);
6435 put_online_cpus();
6436 return -ESRCH;
6437 }
6438
6439 /*
6440 * It is not safe to call set_cpus_allowed with the
6441 * tasklist_lock held. We will bump the task_struct's
6442 * usage count and then drop tasklist_lock.
6443 */
6444 get_task_struct(p);
6445 read_unlock(&tasklist_lock);
6446
6447 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6448 retval = -ENOMEM;
6449 goto out_put_task;
6450 }
6451 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6452 retval = -ENOMEM;
6453 goto out_free_cpus_allowed;
6454 }
6455 retval = -EPERM;
6456 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6457 goto out_unlock;
6458
6459 retval = security_task_setscheduler(p, 0, NULL);
6460 if (retval)
6461 goto out_unlock;
6462
6463 cpuset_cpus_allowed(p, cpus_allowed);
6464 cpumask_and(new_mask, in_mask, cpus_allowed);
6465 again:
6466 retval = set_cpus_allowed_ptr(p, new_mask);
6467
6468 if (!retval) {
6469 cpuset_cpus_allowed(p, cpus_allowed);
6470 if (!cpumask_subset(new_mask, cpus_allowed)) {
6471 /*
6472 * We must have raced with a concurrent cpuset
6473 * update. Just reset the cpus_allowed to the
6474 * cpuset's cpus_allowed
6475 */
6476 cpumask_copy(new_mask, cpus_allowed);
6477 goto again;
6478 }
6479 }
6480 out_unlock:
6481 free_cpumask_var(new_mask);
6482 out_free_cpus_allowed:
6483 free_cpumask_var(cpus_allowed);
6484 out_put_task:
6485 put_task_struct(p);
6486 put_online_cpus();
6487 return retval;
6488 }
6489
6490 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6491 struct cpumask *new_mask)
6492 {
6493 if (len < cpumask_size())
6494 cpumask_clear(new_mask);
6495 else if (len > cpumask_size())
6496 len = cpumask_size();
6497
6498 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6499 }
6500
6501 /**
6502 * sys_sched_setaffinity - set the cpu affinity of a process
6503 * @pid: pid of the process
6504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6505 * @user_mask_ptr: user-space pointer to the new cpu mask
6506 */
6507 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6508 unsigned long __user *, user_mask_ptr)
6509 {
6510 cpumask_var_t new_mask;
6511 int retval;
6512
6513 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6514 return -ENOMEM;
6515
6516 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6517 if (retval == 0)
6518 retval = sched_setaffinity(pid, new_mask);
6519 free_cpumask_var(new_mask);
6520 return retval;
6521 }
6522
6523 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6524 {
6525 struct task_struct *p;
6526 int retval;
6527
6528 get_online_cpus();
6529 read_lock(&tasklist_lock);
6530
6531 retval = -ESRCH;
6532 p = find_process_by_pid(pid);
6533 if (!p)
6534 goto out_unlock;
6535
6536 retval = security_task_getscheduler(p);
6537 if (retval)
6538 goto out_unlock;
6539
6540 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6541
6542 out_unlock:
6543 read_unlock(&tasklist_lock);
6544 put_online_cpus();
6545
6546 return retval;
6547 }
6548
6549 /**
6550 * sys_sched_getaffinity - get the cpu affinity of a process
6551 * @pid: pid of the process
6552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6553 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6554 */
6555 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6556 unsigned long __user *, user_mask_ptr)
6557 {
6558 int ret;
6559 cpumask_var_t mask;
6560
6561 if (len < cpumask_size())
6562 return -EINVAL;
6563
6564 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6565 return -ENOMEM;
6566
6567 ret = sched_getaffinity(pid, mask);
6568 if (ret == 0) {
6569 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6570 ret = -EFAULT;
6571 else
6572 ret = cpumask_size();
6573 }
6574 free_cpumask_var(mask);
6575
6576 return ret;
6577 }
6578
6579 /**
6580 * sys_sched_yield - yield the current processor to other threads.
6581 *
6582 * This function yields the current CPU to other tasks. If there are no
6583 * other threads running on this CPU then this function will return.
6584 */
6585 SYSCALL_DEFINE0(sched_yield)
6586 {
6587 struct rq *rq = this_rq_lock();
6588
6589 schedstat_inc(rq, yld_count);
6590 current->sched_class->yield_task(rq);
6591
6592 /*
6593 * Since we are going to call schedule() anyway, there's
6594 * no need to preempt or enable interrupts:
6595 */
6596 __release(rq->lock);
6597 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6598 _raw_spin_unlock(&rq->lock);
6599 preempt_enable_no_resched();
6600
6601 schedule();
6602
6603 return 0;
6604 }
6605
6606 static inline int should_resched(void)
6607 {
6608 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6609 }
6610
6611 static void __cond_resched(void)
6612 {
6613 add_preempt_count(PREEMPT_ACTIVE);
6614 schedule();
6615 sub_preempt_count(PREEMPT_ACTIVE);
6616 }
6617
6618 int __sched _cond_resched(void)
6619 {
6620 if (should_resched()) {
6621 __cond_resched();
6622 return 1;
6623 }
6624 return 0;
6625 }
6626 EXPORT_SYMBOL(_cond_resched);
6627
6628 /*
6629 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6630 * call schedule, and on return reacquire the lock.
6631 *
6632 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6633 * operations here to prevent schedule() from being called twice (once via
6634 * spin_unlock(), once by hand).
6635 */
6636 int __cond_resched_lock(spinlock_t *lock)
6637 {
6638 int resched = should_resched();
6639 int ret = 0;
6640
6641 if (spin_needbreak(lock) || resched) {
6642 spin_unlock(lock);
6643 if (resched)
6644 __cond_resched();
6645 else
6646 cpu_relax();
6647 ret = 1;
6648 spin_lock(lock);
6649 }
6650 return ret;
6651 }
6652 EXPORT_SYMBOL(__cond_resched_lock);
6653
6654 int __sched __cond_resched_softirq(void)
6655 {
6656 BUG_ON(!in_softirq());
6657
6658 if (should_resched()) {
6659 local_bh_enable();
6660 __cond_resched();
6661 local_bh_disable();
6662 return 1;
6663 }
6664 return 0;
6665 }
6666 EXPORT_SYMBOL(__cond_resched_softirq);
6667
6668 /**
6669 * yield - yield the current processor to other threads.
6670 *
6671 * This is a shortcut for kernel-space yielding - it marks the
6672 * thread runnable and calls sys_sched_yield().
6673 */
6674 void __sched yield(void)
6675 {
6676 set_current_state(TASK_RUNNING);
6677 sys_sched_yield();
6678 }
6679 EXPORT_SYMBOL(yield);
6680
6681 /*
6682 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6683 * that process accounting knows that this is a task in IO wait state.
6684 *
6685 * But don't do that if it is a deliberate, throttling IO wait (this task
6686 * has set its backing_dev_info: the queue against which it should throttle)
6687 */
6688 void __sched io_schedule(void)
6689 {
6690 struct rq *rq = raw_rq();
6691
6692 delayacct_blkio_start();
6693 atomic_inc(&rq->nr_iowait);
6694 schedule();
6695 atomic_dec(&rq->nr_iowait);
6696 delayacct_blkio_end();
6697 }
6698 EXPORT_SYMBOL(io_schedule);
6699
6700 long __sched io_schedule_timeout(long timeout)
6701 {
6702 struct rq *rq = raw_rq();
6703 long ret;
6704
6705 delayacct_blkio_start();
6706 atomic_inc(&rq->nr_iowait);
6707 ret = schedule_timeout(timeout);
6708 atomic_dec(&rq->nr_iowait);
6709 delayacct_blkio_end();
6710 return ret;
6711 }
6712
6713 /**
6714 * sys_sched_get_priority_max - return maximum RT priority.
6715 * @policy: scheduling class.
6716 *
6717 * this syscall returns the maximum rt_priority that can be used
6718 * by a given scheduling class.
6719 */
6720 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6721 {
6722 int ret = -EINVAL;
6723
6724 switch (policy) {
6725 case SCHED_FIFO:
6726 case SCHED_RR:
6727 ret = MAX_USER_RT_PRIO-1;
6728 break;
6729 case SCHED_NORMAL:
6730 case SCHED_BATCH:
6731 case SCHED_IDLE:
6732 ret = 0;
6733 break;
6734 }
6735 return ret;
6736 }
6737
6738 /**
6739 * sys_sched_get_priority_min - return minimum RT priority.
6740 * @policy: scheduling class.
6741 *
6742 * this syscall returns the minimum rt_priority that can be used
6743 * by a given scheduling class.
6744 */
6745 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6746 {
6747 int ret = -EINVAL;
6748
6749 switch (policy) {
6750 case SCHED_FIFO:
6751 case SCHED_RR:
6752 ret = 1;
6753 break;
6754 case SCHED_NORMAL:
6755 case SCHED_BATCH:
6756 case SCHED_IDLE:
6757 ret = 0;
6758 }
6759 return ret;
6760 }
6761
6762 /**
6763 * sys_sched_rr_get_interval - return the default timeslice of a process.
6764 * @pid: pid of the process.
6765 * @interval: userspace pointer to the timeslice value.
6766 *
6767 * this syscall writes the default timeslice value of a given process
6768 * into the user-space timespec buffer. A value of '0' means infinity.
6769 */
6770 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6771 struct timespec __user *, interval)
6772 {
6773 struct task_struct *p;
6774 unsigned int time_slice;
6775 int retval;
6776 struct timespec t;
6777
6778 if (pid < 0)
6779 return -EINVAL;
6780
6781 retval = -ESRCH;
6782 read_lock(&tasklist_lock);
6783 p = find_process_by_pid(pid);
6784 if (!p)
6785 goto out_unlock;
6786
6787 retval = security_task_getscheduler(p);
6788 if (retval)
6789 goto out_unlock;
6790
6791 /*
6792 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6793 * tasks that are on an otherwise idle runqueue:
6794 */
6795 time_slice = 0;
6796 if (p->policy == SCHED_RR) {
6797 time_slice = DEF_TIMESLICE;
6798 } else if (p->policy != SCHED_FIFO) {
6799 struct sched_entity *se = &p->se;
6800 unsigned long flags;
6801 struct rq *rq;
6802
6803 rq = task_rq_lock(p, &flags);
6804 if (rq->cfs.load.weight)
6805 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6806 task_rq_unlock(rq, &flags);
6807 }
6808 read_unlock(&tasklist_lock);
6809 jiffies_to_timespec(time_slice, &t);
6810 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6811 return retval;
6812
6813 out_unlock:
6814 read_unlock(&tasklist_lock);
6815 return retval;
6816 }
6817
6818 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6819
6820 void sched_show_task(struct task_struct *p)
6821 {
6822 unsigned long free = 0;
6823 unsigned state;
6824
6825 state = p->state ? __ffs(p->state) + 1 : 0;
6826 printk(KERN_INFO "%-13.13s %c", p->comm,
6827 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6828 #if BITS_PER_LONG == 32
6829 if (state == TASK_RUNNING)
6830 printk(KERN_CONT " running ");
6831 else
6832 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6833 #else
6834 if (state == TASK_RUNNING)
6835 printk(KERN_CONT " running task ");
6836 else
6837 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6838 #endif
6839 #ifdef CONFIG_DEBUG_STACK_USAGE
6840 free = stack_not_used(p);
6841 #endif
6842 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6843 task_pid_nr(p), task_pid_nr(p->real_parent),
6844 (unsigned long)task_thread_info(p)->flags);
6845
6846 show_stack(p, NULL);
6847 }
6848
6849 void show_state_filter(unsigned long state_filter)
6850 {
6851 struct task_struct *g, *p;
6852
6853 #if BITS_PER_LONG == 32
6854 printk(KERN_INFO
6855 " task PC stack pid father\n");
6856 #else
6857 printk(KERN_INFO
6858 " task PC stack pid father\n");
6859 #endif
6860 read_lock(&tasklist_lock);
6861 do_each_thread(g, p) {
6862 /*
6863 * reset the NMI-timeout, listing all files on a slow
6864 * console might take alot of time:
6865 */
6866 touch_nmi_watchdog();
6867 if (!state_filter || (p->state & state_filter))
6868 sched_show_task(p);
6869 } while_each_thread(g, p);
6870
6871 touch_all_softlockup_watchdogs();
6872
6873 #ifdef CONFIG_SCHED_DEBUG
6874 sysrq_sched_debug_show();
6875 #endif
6876 read_unlock(&tasklist_lock);
6877 /*
6878 * Only show locks if all tasks are dumped:
6879 */
6880 if (state_filter == -1)
6881 debug_show_all_locks();
6882 }
6883
6884 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6885 {
6886 idle->sched_class = &idle_sched_class;
6887 }
6888
6889 /**
6890 * init_idle - set up an idle thread for a given CPU
6891 * @idle: task in question
6892 * @cpu: cpu the idle task belongs to
6893 *
6894 * NOTE: this function does not set the idle thread's NEED_RESCHED
6895 * flag, to make booting more robust.
6896 */
6897 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6898 {
6899 struct rq *rq = cpu_rq(cpu);
6900 unsigned long flags;
6901
6902 spin_lock_irqsave(&rq->lock, flags);
6903
6904 __sched_fork(idle);
6905 idle->se.exec_start = sched_clock();
6906
6907 idle->prio = idle->normal_prio = MAX_PRIO;
6908 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6909 __set_task_cpu(idle, cpu);
6910
6911 rq->curr = rq->idle = idle;
6912 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6913 idle->oncpu = 1;
6914 #endif
6915 spin_unlock_irqrestore(&rq->lock, flags);
6916
6917 /* Set the preempt count _outside_ the spinlocks! */
6918 #if defined(CONFIG_PREEMPT)
6919 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6920 #else
6921 task_thread_info(idle)->preempt_count = 0;
6922 #endif
6923 /*
6924 * The idle tasks have their own, simple scheduling class:
6925 */
6926 idle->sched_class = &idle_sched_class;
6927 ftrace_graph_init_task(idle);
6928 }
6929
6930 /*
6931 * In a system that switches off the HZ timer nohz_cpu_mask
6932 * indicates which cpus entered this state. This is used
6933 * in the rcu update to wait only for active cpus. For system
6934 * which do not switch off the HZ timer nohz_cpu_mask should
6935 * always be CPU_BITS_NONE.
6936 */
6937 cpumask_var_t nohz_cpu_mask;
6938
6939 /*
6940 * Increase the granularity value when there are more CPUs,
6941 * because with more CPUs the 'effective latency' as visible
6942 * to users decreases. But the relationship is not linear,
6943 * so pick a second-best guess by going with the log2 of the
6944 * number of CPUs.
6945 *
6946 * This idea comes from the SD scheduler of Con Kolivas:
6947 */
6948 static inline void sched_init_granularity(void)
6949 {
6950 unsigned int factor = 1 + ilog2(num_online_cpus());
6951 const unsigned long limit = 200000000;
6952
6953 sysctl_sched_min_granularity *= factor;
6954 if (sysctl_sched_min_granularity > limit)
6955 sysctl_sched_min_granularity = limit;
6956
6957 sysctl_sched_latency *= factor;
6958 if (sysctl_sched_latency > limit)
6959 sysctl_sched_latency = limit;
6960
6961 sysctl_sched_wakeup_granularity *= factor;
6962
6963 sysctl_sched_shares_ratelimit *= factor;
6964 }
6965
6966 #ifdef CONFIG_SMP
6967 /*
6968 * This is how migration works:
6969 *
6970 * 1) we queue a struct migration_req structure in the source CPU's
6971 * runqueue and wake up that CPU's migration thread.
6972 * 2) we down() the locked semaphore => thread blocks.
6973 * 3) migration thread wakes up (implicitly it forces the migrated
6974 * thread off the CPU)
6975 * 4) it gets the migration request and checks whether the migrated
6976 * task is still in the wrong runqueue.
6977 * 5) if it's in the wrong runqueue then the migration thread removes
6978 * it and puts it into the right queue.
6979 * 6) migration thread up()s the semaphore.
6980 * 7) we wake up and the migration is done.
6981 */
6982
6983 /*
6984 * Change a given task's CPU affinity. Migrate the thread to a
6985 * proper CPU and schedule it away if the CPU it's executing on
6986 * is removed from the allowed bitmask.
6987 *
6988 * NOTE: the caller must have a valid reference to the task, the
6989 * task must not exit() & deallocate itself prematurely. The
6990 * call is not atomic; no spinlocks may be held.
6991 */
6992 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6993 {
6994 struct migration_req req;
6995 unsigned long flags;
6996 struct rq *rq;
6997 int ret = 0;
6998
6999 rq = task_rq_lock(p, &flags);
7000 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7001 ret = -EINVAL;
7002 goto out;
7003 }
7004
7005 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7006 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7007 ret = -EINVAL;
7008 goto out;
7009 }
7010
7011 if (p->sched_class->set_cpus_allowed)
7012 p->sched_class->set_cpus_allowed(p, new_mask);
7013 else {
7014 cpumask_copy(&p->cpus_allowed, new_mask);
7015 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7016 }
7017
7018 /* Can the task run on the task's current CPU? If so, we're done */
7019 if (cpumask_test_cpu(task_cpu(p), new_mask))
7020 goto out;
7021
7022 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7023 /* Need help from migration thread: drop lock and wait. */
7024 task_rq_unlock(rq, &flags);
7025 wake_up_process(rq->migration_thread);
7026 wait_for_completion(&req.done);
7027 tlb_migrate_finish(p->mm);
7028 return 0;
7029 }
7030 out:
7031 task_rq_unlock(rq, &flags);
7032
7033 return ret;
7034 }
7035 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7036
7037 /*
7038 * Move (not current) task off this cpu, onto dest cpu. We're doing
7039 * this because either it can't run here any more (set_cpus_allowed()
7040 * away from this CPU, or CPU going down), or because we're
7041 * attempting to rebalance this task on exec (sched_exec).
7042 *
7043 * So we race with normal scheduler movements, but that's OK, as long
7044 * as the task is no longer on this CPU.
7045 *
7046 * Returns non-zero if task was successfully migrated.
7047 */
7048 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7049 {
7050 struct rq *rq_dest, *rq_src;
7051 int ret = 0, on_rq;
7052
7053 if (unlikely(!cpu_active(dest_cpu)))
7054 return ret;
7055
7056 rq_src = cpu_rq(src_cpu);
7057 rq_dest = cpu_rq(dest_cpu);
7058
7059 double_rq_lock(rq_src, rq_dest);
7060 /* Already moved. */
7061 if (task_cpu(p) != src_cpu)
7062 goto done;
7063 /* Affinity changed (again). */
7064 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7065 goto fail;
7066
7067 on_rq = p->se.on_rq;
7068 if (on_rq)
7069 deactivate_task(rq_src, p, 0);
7070
7071 set_task_cpu(p, dest_cpu);
7072 if (on_rq) {
7073 activate_task(rq_dest, p, 0);
7074 check_preempt_curr(rq_dest, p, 0);
7075 }
7076 done:
7077 ret = 1;
7078 fail:
7079 double_rq_unlock(rq_src, rq_dest);
7080 return ret;
7081 }
7082
7083 /*
7084 * migration_thread - this is a highprio system thread that performs
7085 * thread migration by bumping thread off CPU then 'pushing' onto
7086 * another runqueue.
7087 */
7088 static int migration_thread(void *data)
7089 {
7090 int cpu = (long)data;
7091 struct rq *rq;
7092
7093 rq = cpu_rq(cpu);
7094 BUG_ON(rq->migration_thread != current);
7095
7096 set_current_state(TASK_INTERRUPTIBLE);
7097 while (!kthread_should_stop()) {
7098 struct migration_req *req;
7099 struct list_head *head;
7100
7101 spin_lock_irq(&rq->lock);
7102
7103 if (cpu_is_offline(cpu)) {
7104 spin_unlock_irq(&rq->lock);
7105 break;
7106 }
7107
7108 if (rq->active_balance) {
7109 active_load_balance(rq, cpu);
7110 rq->active_balance = 0;
7111 }
7112
7113 head = &rq->migration_queue;
7114
7115 if (list_empty(head)) {
7116 spin_unlock_irq(&rq->lock);
7117 schedule();
7118 set_current_state(TASK_INTERRUPTIBLE);
7119 continue;
7120 }
7121 req = list_entry(head->next, struct migration_req, list);
7122 list_del_init(head->next);
7123
7124 spin_unlock(&rq->lock);
7125 __migrate_task(req->task, cpu, req->dest_cpu);
7126 local_irq_enable();
7127
7128 complete(&req->done);
7129 }
7130 __set_current_state(TASK_RUNNING);
7131
7132 return 0;
7133 }
7134
7135 #ifdef CONFIG_HOTPLUG_CPU
7136
7137 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7138 {
7139 int ret;
7140
7141 local_irq_disable();
7142 ret = __migrate_task(p, src_cpu, dest_cpu);
7143 local_irq_enable();
7144 return ret;
7145 }
7146
7147 /*
7148 * Figure out where task on dead CPU should go, use force if necessary.
7149 */
7150 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7151 {
7152 int dest_cpu;
7153 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7154
7155 again:
7156 /* Look for allowed, online CPU in same node. */
7157 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7158 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7159 goto move;
7160
7161 /* Any allowed, online CPU? */
7162 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7163 if (dest_cpu < nr_cpu_ids)
7164 goto move;
7165
7166 /* No more Mr. Nice Guy. */
7167 if (dest_cpu >= nr_cpu_ids) {
7168 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7169 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7170
7171 /*
7172 * Don't tell them about moving exiting tasks or
7173 * kernel threads (both mm NULL), since they never
7174 * leave kernel.
7175 */
7176 if (p->mm && printk_ratelimit()) {
7177 printk(KERN_INFO "process %d (%s) no "
7178 "longer affine to cpu%d\n",
7179 task_pid_nr(p), p->comm, dead_cpu);
7180 }
7181 }
7182
7183 move:
7184 /* It can have affinity changed while we were choosing. */
7185 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7186 goto again;
7187 }
7188
7189 /*
7190 * While a dead CPU has no uninterruptible tasks queued at this point,
7191 * it might still have a nonzero ->nr_uninterruptible counter, because
7192 * for performance reasons the counter is not stricly tracking tasks to
7193 * their home CPUs. So we just add the counter to another CPU's counter,
7194 * to keep the global sum constant after CPU-down:
7195 */
7196 static void migrate_nr_uninterruptible(struct rq *rq_src)
7197 {
7198 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7199 unsigned long flags;
7200
7201 local_irq_save(flags);
7202 double_rq_lock(rq_src, rq_dest);
7203 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7204 rq_src->nr_uninterruptible = 0;
7205 double_rq_unlock(rq_src, rq_dest);
7206 local_irq_restore(flags);
7207 }
7208
7209 /* Run through task list and migrate tasks from the dead cpu. */
7210 static void migrate_live_tasks(int src_cpu)
7211 {
7212 struct task_struct *p, *t;
7213
7214 read_lock(&tasklist_lock);
7215
7216 do_each_thread(t, p) {
7217 if (p == current)
7218 continue;
7219
7220 if (task_cpu(p) == src_cpu)
7221 move_task_off_dead_cpu(src_cpu, p);
7222 } while_each_thread(t, p);
7223
7224 read_unlock(&tasklist_lock);
7225 }
7226
7227 /*
7228 * Schedules idle task to be the next runnable task on current CPU.
7229 * It does so by boosting its priority to highest possible.
7230 * Used by CPU offline code.
7231 */
7232 void sched_idle_next(void)
7233 {
7234 int this_cpu = smp_processor_id();
7235 struct rq *rq = cpu_rq(this_cpu);
7236 struct task_struct *p = rq->idle;
7237 unsigned long flags;
7238
7239 /* cpu has to be offline */
7240 BUG_ON(cpu_online(this_cpu));
7241
7242 /*
7243 * Strictly not necessary since rest of the CPUs are stopped by now
7244 * and interrupts disabled on the current cpu.
7245 */
7246 spin_lock_irqsave(&rq->lock, flags);
7247
7248 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7249
7250 update_rq_clock(rq);
7251 activate_task(rq, p, 0);
7252
7253 spin_unlock_irqrestore(&rq->lock, flags);
7254 }
7255
7256 /*
7257 * Ensures that the idle task is using init_mm right before its cpu goes
7258 * offline.
7259 */
7260 void idle_task_exit(void)
7261 {
7262 struct mm_struct *mm = current->active_mm;
7263
7264 BUG_ON(cpu_online(smp_processor_id()));
7265
7266 if (mm != &init_mm)
7267 switch_mm(mm, &init_mm, current);
7268 mmdrop(mm);
7269 }
7270
7271 /* called under rq->lock with disabled interrupts */
7272 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7273 {
7274 struct rq *rq = cpu_rq(dead_cpu);
7275
7276 /* Must be exiting, otherwise would be on tasklist. */
7277 BUG_ON(!p->exit_state);
7278
7279 /* Cannot have done final schedule yet: would have vanished. */
7280 BUG_ON(p->state == TASK_DEAD);
7281
7282 get_task_struct(p);
7283
7284 /*
7285 * Drop lock around migration; if someone else moves it,
7286 * that's OK. No task can be added to this CPU, so iteration is
7287 * fine.
7288 */
7289 spin_unlock_irq(&rq->lock);
7290 move_task_off_dead_cpu(dead_cpu, p);
7291 spin_lock_irq(&rq->lock);
7292
7293 put_task_struct(p);
7294 }
7295
7296 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7297 static void migrate_dead_tasks(unsigned int dead_cpu)
7298 {
7299 struct rq *rq = cpu_rq(dead_cpu);
7300 struct task_struct *next;
7301
7302 for ( ; ; ) {
7303 if (!rq->nr_running)
7304 break;
7305 update_rq_clock(rq);
7306 next = pick_next_task(rq);
7307 if (!next)
7308 break;
7309 next->sched_class->put_prev_task(rq, next);
7310 migrate_dead(dead_cpu, next);
7311
7312 }
7313 }
7314
7315 /*
7316 * remove the tasks which were accounted by rq from calc_load_tasks.
7317 */
7318 static void calc_global_load_remove(struct rq *rq)
7319 {
7320 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7321 rq->calc_load_active = 0;
7322 }
7323 #endif /* CONFIG_HOTPLUG_CPU */
7324
7325 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7326
7327 static struct ctl_table sd_ctl_dir[] = {
7328 {
7329 .procname = "sched_domain",
7330 .mode = 0555,
7331 },
7332 {0, },
7333 };
7334
7335 static struct ctl_table sd_ctl_root[] = {
7336 {
7337 .ctl_name = CTL_KERN,
7338 .procname = "kernel",
7339 .mode = 0555,
7340 .child = sd_ctl_dir,
7341 },
7342 {0, },
7343 };
7344
7345 static struct ctl_table *sd_alloc_ctl_entry(int n)
7346 {
7347 struct ctl_table *entry =
7348 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7349
7350 return entry;
7351 }
7352
7353 static void sd_free_ctl_entry(struct ctl_table **tablep)
7354 {
7355 struct ctl_table *entry;
7356
7357 /*
7358 * In the intermediate directories, both the child directory and
7359 * procname are dynamically allocated and could fail but the mode
7360 * will always be set. In the lowest directory the names are
7361 * static strings and all have proc handlers.
7362 */
7363 for (entry = *tablep; entry->mode; entry++) {
7364 if (entry->child)
7365 sd_free_ctl_entry(&entry->child);
7366 if (entry->proc_handler == NULL)
7367 kfree(entry->procname);
7368 }
7369
7370 kfree(*tablep);
7371 *tablep = NULL;
7372 }
7373
7374 static void
7375 set_table_entry(struct ctl_table *entry,
7376 const char *procname, void *data, int maxlen,
7377 mode_t mode, proc_handler *proc_handler)
7378 {
7379 entry->procname = procname;
7380 entry->data = data;
7381 entry->maxlen = maxlen;
7382 entry->mode = mode;
7383 entry->proc_handler = proc_handler;
7384 }
7385
7386 static struct ctl_table *
7387 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7388 {
7389 struct ctl_table *table = sd_alloc_ctl_entry(13);
7390
7391 if (table == NULL)
7392 return NULL;
7393
7394 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7395 sizeof(long), 0644, proc_doulongvec_minmax);
7396 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7397 sizeof(long), 0644, proc_doulongvec_minmax);
7398 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7399 sizeof(int), 0644, proc_dointvec_minmax);
7400 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7401 sizeof(int), 0644, proc_dointvec_minmax);
7402 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7403 sizeof(int), 0644, proc_dointvec_minmax);
7404 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7405 sizeof(int), 0644, proc_dointvec_minmax);
7406 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7407 sizeof(int), 0644, proc_dointvec_minmax);
7408 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7409 sizeof(int), 0644, proc_dointvec_minmax);
7410 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7411 sizeof(int), 0644, proc_dointvec_minmax);
7412 set_table_entry(&table[9], "cache_nice_tries",
7413 &sd->cache_nice_tries,
7414 sizeof(int), 0644, proc_dointvec_minmax);
7415 set_table_entry(&table[10], "flags", &sd->flags,
7416 sizeof(int), 0644, proc_dointvec_minmax);
7417 set_table_entry(&table[11], "name", sd->name,
7418 CORENAME_MAX_SIZE, 0444, proc_dostring);
7419 /* &table[12] is terminator */
7420
7421 return table;
7422 }
7423
7424 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7425 {
7426 struct ctl_table *entry, *table;
7427 struct sched_domain *sd;
7428 int domain_num = 0, i;
7429 char buf[32];
7430
7431 for_each_domain(cpu, sd)
7432 domain_num++;
7433 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7434 if (table == NULL)
7435 return NULL;
7436
7437 i = 0;
7438 for_each_domain(cpu, sd) {
7439 snprintf(buf, 32, "domain%d", i);
7440 entry->procname = kstrdup(buf, GFP_KERNEL);
7441 entry->mode = 0555;
7442 entry->child = sd_alloc_ctl_domain_table(sd);
7443 entry++;
7444 i++;
7445 }
7446 return table;
7447 }
7448
7449 static struct ctl_table_header *sd_sysctl_header;
7450 static void register_sched_domain_sysctl(void)
7451 {
7452 int i, cpu_num = num_online_cpus();
7453 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7454 char buf[32];
7455
7456 WARN_ON(sd_ctl_dir[0].child);
7457 sd_ctl_dir[0].child = entry;
7458
7459 if (entry == NULL)
7460 return;
7461
7462 for_each_online_cpu(i) {
7463 snprintf(buf, 32, "cpu%d", i);
7464 entry->procname = kstrdup(buf, GFP_KERNEL);
7465 entry->mode = 0555;
7466 entry->child = sd_alloc_ctl_cpu_table(i);
7467 entry++;
7468 }
7469
7470 WARN_ON(sd_sysctl_header);
7471 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7472 }
7473
7474 /* may be called multiple times per register */
7475 static void unregister_sched_domain_sysctl(void)
7476 {
7477 if (sd_sysctl_header)
7478 unregister_sysctl_table(sd_sysctl_header);
7479 sd_sysctl_header = NULL;
7480 if (sd_ctl_dir[0].child)
7481 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7482 }
7483 #else
7484 static void register_sched_domain_sysctl(void)
7485 {
7486 }
7487 static void unregister_sched_domain_sysctl(void)
7488 {
7489 }
7490 #endif
7491
7492 static void set_rq_online(struct rq *rq)
7493 {
7494 if (!rq->online) {
7495 const struct sched_class *class;
7496
7497 cpumask_set_cpu(rq->cpu, rq->rd->online);
7498 rq->online = 1;
7499
7500 for_each_class(class) {
7501 if (class->rq_online)
7502 class->rq_online(rq);
7503 }
7504 }
7505 }
7506
7507 static void set_rq_offline(struct rq *rq)
7508 {
7509 if (rq->online) {
7510 const struct sched_class *class;
7511
7512 for_each_class(class) {
7513 if (class->rq_offline)
7514 class->rq_offline(rq);
7515 }
7516
7517 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7518 rq->online = 0;
7519 }
7520 }
7521
7522 /*
7523 * migration_call - callback that gets triggered when a CPU is added.
7524 * Here we can start up the necessary migration thread for the new CPU.
7525 */
7526 static int __cpuinit
7527 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7528 {
7529 struct task_struct *p;
7530 int cpu = (long)hcpu;
7531 unsigned long flags;
7532 struct rq *rq;
7533
7534 switch (action) {
7535
7536 case CPU_UP_PREPARE:
7537 case CPU_UP_PREPARE_FROZEN:
7538 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7539 if (IS_ERR(p))
7540 return NOTIFY_BAD;
7541 kthread_bind(p, cpu);
7542 /* Must be high prio: stop_machine expects to yield to it. */
7543 rq = task_rq_lock(p, &flags);
7544 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7545 task_rq_unlock(rq, &flags);
7546 get_task_struct(p);
7547 cpu_rq(cpu)->migration_thread = p;
7548 rq->calc_load_update = calc_load_update;
7549 break;
7550
7551 case CPU_ONLINE:
7552 case CPU_ONLINE_FROZEN:
7553 /* Strictly unnecessary, as first user will wake it. */
7554 wake_up_process(cpu_rq(cpu)->migration_thread);
7555
7556 /* Update our root-domain */
7557 rq = cpu_rq(cpu);
7558 spin_lock_irqsave(&rq->lock, flags);
7559 if (rq->rd) {
7560 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7561
7562 set_rq_online(rq);
7563 }
7564 spin_unlock_irqrestore(&rq->lock, flags);
7565 break;
7566
7567 #ifdef CONFIG_HOTPLUG_CPU
7568 case CPU_UP_CANCELED:
7569 case CPU_UP_CANCELED_FROZEN:
7570 if (!cpu_rq(cpu)->migration_thread)
7571 break;
7572 /* Unbind it from offline cpu so it can run. Fall thru. */
7573 kthread_bind(cpu_rq(cpu)->migration_thread,
7574 cpumask_any(cpu_online_mask));
7575 kthread_stop(cpu_rq(cpu)->migration_thread);
7576 put_task_struct(cpu_rq(cpu)->migration_thread);
7577 cpu_rq(cpu)->migration_thread = NULL;
7578 break;
7579
7580 case CPU_DEAD:
7581 case CPU_DEAD_FROZEN:
7582 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7583 migrate_live_tasks(cpu);
7584 rq = cpu_rq(cpu);
7585 kthread_stop(rq->migration_thread);
7586 put_task_struct(rq->migration_thread);
7587 rq->migration_thread = NULL;
7588 /* Idle task back to normal (off runqueue, low prio) */
7589 spin_lock_irq(&rq->lock);
7590 update_rq_clock(rq);
7591 deactivate_task(rq, rq->idle, 0);
7592 rq->idle->static_prio = MAX_PRIO;
7593 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7594 rq->idle->sched_class = &idle_sched_class;
7595 migrate_dead_tasks(cpu);
7596 spin_unlock_irq(&rq->lock);
7597 cpuset_unlock();
7598 migrate_nr_uninterruptible(rq);
7599 BUG_ON(rq->nr_running != 0);
7600 calc_global_load_remove(rq);
7601 /*
7602 * No need to migrate the tasks: it was best-effort if
7603 * they didn't take sched_hotcpu_mutex. Just wake up
7604 * the requestors.
7605 */
7606 spin_lock_irq(&rq->lock);
7607 while (!list_empty(&rq->migration_queue)) {
7608 struct migration_req *req;
7609
7610 req = list_entry(rq->migration_queue.next,
7611 struct migration_req, list);
7612 list_del_init(&req->list);
7613 spin_unlock_irq(&rq->lock);
7614 complete(&req->done);
7615 spin_lock_irq(&rq->lock);
7616 }
7617 spin_unlock_irq(&rq->lock);
7618 break;
7619
7620 case CPU_DYING:
7621 case CPU_DYING_FROZEN:
7622 /* Update our root-domain */
7623 rq = cpu_rq(cpu);
7624 spin_lock_irqsave(&rq->lock, flags);
7625 if (rq->rd) {
7626 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7627 set_rq_offline(rq);
7628 }
7629 spin_unlock_irqrestore(&rq->lock, flags);
7630 break;
7631 #endif
7632 }
7633 return NOTIFY_OK;
7634 }
7635
7636 /*
7637 * Register at high priority so that task migration (migrate_all_tasks)
7638 * happens before everything else. This has to be lower priority than
7639 * the notifier in the perf_counter subsystem, though.
7640 */
7641 static struct notifier_block __cpuinitdata migration_notifier = {
7642 .notifier_call = migration_call,
7643 .priority = 10
7644 };
7645
7646 static int __init migration_init(void)
7647 {
7648 void *cpu = (void *)(long)smp_processor_id();
7649 int err;
7650
7651 /* Start one for the boot CPU: */
7652 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7653 BUG_ON(err == NOTIFY_BAD);
7654 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7655 register_cpu_notifier(&migration_notifier);
7656
7657 return 0;
7658 }
7659 early_initcall(migration_init);
7660 #endif
7661
7662 #ifdef CONFIG_SMP
7663
7664 #ifdef CONFIG_SCHED_DEBUG
7665
7666 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7667 struct cpumask *groupmask)
7668 {
7669 struct sched_group *group = sd->groups;
7670 char str[256];
7671
7672 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7673 cpumask_clear(groupmask);
7674
7675 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7676
7677 if (!(sd->flags & SD_LOAD_BALANCE)) {
7678 printk("does not load-balance\n");
7679 if (sd->parent)
7680 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7681 " has parent");
7682 return -1;
7683 }
7684
7685 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7686
7687 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7688 printk(KERN_ERR "ERROR: domain->span does not contain "
7689 "CPU%d\n", cpu);
7690 }
7691 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7692 printk(KERN_ERR "ERROR: domain->groups does not contain"
7693 " CPU%d\n", cpu);
7694 }
7695
7696 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7697 do {
7698 if (!group) {
7699 printk("\n");
7700 printk(KERN_ERR "ERROR: group is NULL\n");
7701 break;
7702 }
7703
7704 if (!group->__cpu_power) {
7705 printk(KERN_CONT "\n");
7706 printk(KERN_ERR "ERROR: domain->cpu_power not "
7707 "set\n");
7708 break;
7709 }
7710
7711 if (!cpumask_weight(sched_group_cpus(group))) {
7712 printk(KERN_CONT "\n");
7713 printk(KERN_ERR "ERROR: empty group\n");
7714 break;
7715 }
7716
7717 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7718 printk(KERN_CONT "\n");
7719 printk(KERN_ERR "ERROR: repeated CPUs\n");
7720 break;
7721 }
7722
7723 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7724
7725 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7726
7727 printk(KERN_CONT " %s", str);
7728 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7729 printk(KERN_CONT " (__cpu_power = %d)",
7730 group->__cpu_power);
7731 }
7732
7733 group = group->next;
7734 } while (group != sd->groups);
7735 printk(KERN_CONT "\n");
7736
7737 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7738 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7739
7740 if (sd->parent &&
7741 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7742 printk(KERN_ERR "ERROR: parent span is not a superset "
7743 "of domain->span\n");
7744 return 0;
7745 }
7746
7747 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7748 {
7749 cpumask_var_t groupmask;
7750 int level = 0;
7751
7752 if (!sd) {
7753 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7754 return;
7755 }
7756
7757 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7758
7759 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7760 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7761 return;
7762 }
7763
7764 for (;;) {
7765 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7766 break;
7767 level++;
7768 sd = sd->parent;
7769 if (!sd)
7770 break;
7771 }
7772 free_cpumask_var(groupmask);
7773 }
7774 #else /* !CONFIG_SCHED_DEBUG */
7775 # define sched_domain_debug(sd, cpu) do { } while (0)
7776 #endif /* CONFIG_SCHED_DEBUG */
7777
7778 static int sd_degenerate(struct sched_domain *sd)
7779 {
7780 if (cpumask_weight(sched_domain_span(sd)) == 1)
7781 return 1;
7782
7783 /* Following flags need at least 2 groups */
7784 if (sd->flags & (SD_LOAD_BALANCE |
7785 SD_BALANCE_NEWIDLE |
7786 SD_BALANCE_FORK |
7787 SD_BALANCE_EXEC |
7788 SD_SHARE_CPUPOWER |
7789 SD_SHARE_PKG_RESOURCES)) {
7790 if (sd->groups != sd->groups->next)
7791 return 0;
7792 }
7793
7794 /* Following flags don't use groups */
7795 if (sd->flags & (SD_WAKE_IDLE |
7796 SD_WAKE_AFFINE |
7797 SD_WAKE_BALANCE))
7798 return 0;
7799
7800 return 1;
7801 }
7802
7803 static int
7804 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7805 {
7806 unsigned long cflags = sd->flags, pflags = parent->flags;
7807
7808 if (sd_degenerate(parent))
7809 return 1;
7810
7811 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7812 return 0;
7813
7814 /* Does parent contain flags not in child? */
7815 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7816 if (cflags & SD_WAKE_AFFINE)
7817 pflags &= ~SD_WAKE_BALANCE;
7818 /* Flags needing groups don't count if only 1 group in parent */
7819 if (parent->groups == parent->groups->next) {
7820 pflags &= ~(SD_LOAD_BALANCE |
7821 SD_BALANCE_NEWIDLE |
7822 SD_BALANCE_FORK |
7823 SD_BALANCE_EXEC |
7824 SD_SHARE_CPUPOWER |
7825 SD_SHARE_PKG_RESOURCES);
7826 if (nr_node_ids == 1)
7827 pflags &= ~SD_SERIALIZE;
7828 }
7829 if (~cflags & pflags)
7830 return 0;
7831
7832 return 1;
7833 }
7834
7835 static void free_rootdomain(struct root_domain *rd)
7836 {
7837 cpupri_cleanup(&rd->cpupri);
7838
7839 free_cpumask_var(rd->rto_mask);
7840 free_cpumask_var(rd->online);
7841 free_cpumask_var(rd->span);
7842 kfree(rd);
7843 }
7844
7845 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7846 {
7847 struct root_domain *old_rd = NULL;
7848 unsigned long flags;
7849
7850 spin_lock_irqsave(&rq->lock, flags);
7851
7852 if (rq->rd) {
7853 old_rd = rq->rd;
7854
7855 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7856 set_rq_offline(rq);
7857
7858 cpumask_clear_cpu(rq->cpu, old_rd->span);
7859
7860 /*
7861 * If we dont want to free the old_rt yet then
7862 * set old_rd to NULL to skip the freeing later
7863 * in this function:
7864 */
7865 if (!atomic_dec_and_test(&old_rd->refcount))
7866 old_rd = NULL;
7867 }
7868
7869 atomic_inc(&rd->refcount);
7870 rq->rd = rd;
7871
7872 cpumask_set_cpu(rq->cpu, rd->span);
7873 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7874 set_rq_online(rq);
7875
7876 spin_unlock_irqrestore(&rq->lock, flags);
7877
7878 if (old_rd)
7879 free_rootdomain(old_rd);
7880 }
7881
7882 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7883 {
7884 gfp_t gfp = GFP_KERNEL;
7885
7886 memset(rd, 0, sizeof(*rd));
7887
7888 if (bootmem)
7889 gfp = GFP_NOWAIT;
7890
7891 if (!alloc_cpumask_var(&rd->span, gfp))
7892 goto out;
7893 if (!alloc_cpumask_var(&rd->online, gfp))
7894 goto free_span;
7895 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7896 goto free_online;
7897
7898 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7899 goto free_rto_mask;
7900 return 0;
7901
7902 free_rto_mask:
7903 free_cpumask_var(rd->rto_mask);
7904 free_online:
7905 free_cpumask_var(rd->online);
7906 free_span:
7907 free_cpumask_var(rd->span);
7908 out:
7909 return -ENOMEM;
7910 }
7911
7912 static void init_defrootdomain(void)
7913 {
7914 init_rootdomain(&def_root_domain, true);
7915
7916 atomic_set(&def_root_domain.refcount, 1);
7917 }
7918
7919 static struct root_domain *alloc_rootdomain(void)
7920 {
7921 struct root_domain *rd;
7922
7923 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7924 if (!rd)
7925 return NULL;
7926
7927 if (init_rootdomain(rd, false) != 0) {
7928 kfree(rd);
7929 return NULL;
7930 }
7931
7932 return rd;
7933 }
7934
7935 /*
7936 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7937 * hold the hotplug lock.
7938 */
7939 static void
7940 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7941 {
7942 struct rq *rq = cpu_rq(cpu);
7943 struct sched_domain *tmp;
7944
7945 /* Remove the sched domains which do not contribute to scheduling. */
7946 for (tmp = sd; tmp; ) {
7947 struct sched_domain *parent = tmp->parent;
7948 if (!parent)
7949 break;
7950
7951 if (sd_parent_degenerate(tmp, parent)) {
7952 tmp->parent = parent->parent;
7953 if (parent->parent)
7954 parent->parent->child = tmp;
7955 } else
7956 tmp = tmp->parent;
7957 }
7958
7959 if (sd && sd_degenerate(sd)) {
7960 sd = sd->parent;
7961 if (sd)
7962 sd->child = NULL;
7963 }
7964
7965 sched_domain_debug(sd, cpu);
7966
7967 rq_attach_root(rq, rd);
7968 rcu_assign_pointer(rq->sd, sd);
7969 }
7970
7971 /* cpus with isolated domains */
7972 static cpumask_var_t cpu_isolated_map;
7973
7974 /* Setup the mask of cpus configured for isolated domains */
7975 static int __init isolated_cpu_setup(char *str)
7976 {
7977 cpulist_parse(str, cpu_isolated_map);
7978 return 1;
7979 }
7980
7981 __setup("isolcpus=", isolated_cpu_setup);
7982
7983 /*
7984 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7985 * to a function which identifies what group(along with sched group) a CPU
7986 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7987 * (due to the fact that we keep track of groups covered with a struct cpumask).
7988 *
7989 * init_sched_build_groups will build a circular linked list of the groups
7990 * covered by the given span, and will set each group's ->cpumask correctly,
7991 * and ->cpu_power to 0.
7992 */
7993 static void
7994 init_sched_build_groups(const struct cpumask *span,
7995 const struct cpumask *cpu_map,
7996 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7997 struct sched_group **sg,
7998 struct cpumask *tmpmask),
7999 struct cpumask *covered, struct cpumask *tmpmask)
8000 {
8001 struct sched_group *first = NULL, *last = NULL;
8002 int i;
8003
8004 cpumask_clear(covered);
8005
8006 for_each_cpu(i, span) {
8007 struct sched_group *sg;
8008 int group = group_fn(i, cpu_map, &sg, tmpmask);
8009 int j;
8010
8011 if (cpumask_test_cpu(i, covered))
8012 continue;
8013
8014 cpumask_clear(sched_group_cpus(sg));
8015 sg->__cpu_power = 0;
8016
8017 for_each_cpu(j, span) {
8018 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8019 continue;
8020
8021 cpumask_set_cpu(j, covered);
8022 cpumask_set_cpu(j, sched_group_cpus(sg));
8023 }
8024 if (!first)
8025 first = sg;
8026 if (last)
8027 last->next = sg;
8028 last = sg;
8029 }
8030 last->next = first;
8031 }
8032
8033 #define SD_NODES_PER_DOMAIN 16
8034
8035 #ifdef CONFIG_NUMA
8036
8037 /**
8038 * find_next_best_node - find the next node to include in a sched_domain
8039 * @node: node whose sched_domain we're building
8040 * @used_nodes: nodes already in the sched_domain
8041 *
8042 * Find the next node to include in a given scheduling domain. Simply
8043 * finds the closest node not already in the @used_nodes map.
8044 *
8045 * Should use nodemask_t.
8046 */
8047 static int find_next_best_node(int node, nodemask_t *used_nodes)
8048 {
8049 int i, n, val, min_val, best_node = 0;
8050
8051 min_val = INT_MAX;
8052
8053 for (i = 0; i < nr_node_ids; i++) {
8054 /* Start at @node */
8055 n = (node + i) % nr_node_ids;
8056
8057 if (!nr_cpus_node(n))
8058 continue;
8059
8060 /* Skip already used nodes */
8061 if (node_isset(n, *used_nodes))
8062 continue;
8063
8064 /* Simple min distance search */
8065 val = node_distance(node, n);
8066
8067 if (val < min_val) {
8068 min_val = val;
8069 best_node = n;
8070 }
8071 }
8072
8073 node_set(best_node, *used_nodes);
8074 return best_node;
8075 }
8076
8077 /**
8078 * sched_domain_node_span - get a cpumask for a node's sched_domain
8079 * @node: node whose cpumask we're constructing
8080 * @span: resulting cpumask
8081 *
8082 * Given a node, construct a good cpumask for its sched_domain to span. It
8083 * should be one that prevents unnecessary balancing, but also spreads tasks
8084 * out optimally.
8085 */
8086 static void sched_domain_node_span(int node, struct cpumask *span)
8087 {
8088 nodemask_t used_nodes;
8089 int i;
8090
8091 cpumask_clear(span);
8092 nodes_clear(used_nodes);
8093
8094 cpumask_or(span, span, cpumask_of_node(node));
8095 node_set(node, used_nodes);
8096
8097 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8098 int next_node = find_next_best_node(node, &used_nodes);
8099
8100 cpumask_or(span, span, cpumask_of_node(next_node));
8101 }
8102 }
8103 #endif /* CONFIG_NUMA */
8104
8105 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8106
8107 /*
8108 * The cpus mask in sched_group and sched_domain hangs off the end.
8109 *
8110 * ( See the the comments in include/linux/sched.h:struct sched_group
8111 * and struct sched_domain. )
8112 */
8113 struct static_sched_group {
8114 struct sched_group sg;
8115 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8116 };
8117
8118 struct static_sched_domain {
8119 struct sched_domain sd;
8120 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8121 };
8122
8123 /*
8124 * SMT sched-domains:
8125 */
8126 #ifdef CONFIG_SCHED_SMT
8127 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8128 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8129
8130 static int
8131 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8132 struct sched_group **sg, struct cpumask *unused)
8133 {
8134 if (sg)
8135 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8136 return cpu;
8137 }
8138 #endif /* CONFIG_SCHED_SMT */
8139
8140 /*
8141 * multi-core sched-domains:
8142 */
8143 #ifdef CONFIG_SCHED_MC
8144 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8145 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8146 #endif /* CONFIG_SCHED_MC */
8147
8148 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8149 static int
8150 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8151 struct sched_group **sg, struct cpumask *mask)
8152 {
8153 int group;
8154
8155 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8156 group = cpumask_first(mask);
8157 if (sg)
8158 *sg = &per_cpu(sched_group_core, group).sg;
8159 return group;
8160 }
8161 #elif defined(CONFIG_SCHED_MC)
8162 static int
8163 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8164 struct sched_group **sg, struct cpumask *unused)
8165 {
8166 if (sg)
8167 *sg = &per_cpu(sched_group_core, cpu).sg;
8168 return cpu;
8169 }
8170 #endif
8171
8172 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8173 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8174
8175 static int
8176 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8177 struct sched_group **sg, struct cpumask *mask)
8178 {
8179 int group;
8180 #ifdef CONFIG_SCHED_MC
8181 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8182 group = cpumask_first(mask);
8183 #elif defined(CONFIG_SCHED_SMT)
8184 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8185 group = cpumask_first(mask);
8186 #else
8187 group = cpu;
8188 #endif
8189 if (sg)
8190 *sg = &per_cpu(sched_group_phys, group).sg;
8191 return group;
8192 }
8193
8194 #ifdef CONFIG_NUMA
8195 /*
8196 * The init_sched_build_groups can't handle what we want to do with node
8197 * groups, so roll our own. Now each node has its own list of groups which
8198 * gets dynamically allocated.
8199 */
8200 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8201 static struct sched_group ***sched_group_nodes_bycpu;
8202
8203 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8204 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8205
8206 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8207 struct sched_group **sg,
8208 struct cpumask *nodemask)
8209 {
8210 int group;
8211
8212 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8213 group = cpumask_first(nodemask);
8214
8215 if (sg)
8216 *sg = &per_cpu(sched_group_allnodes, group).sg;
8217 return group;
8218 }
8219
8220 static void init_numa_sched_groups_power(struct sched_group *group_head)
8221 {
8222 struct sched_group *sg = group_head;
8223 int j;
8224
8225 if (!sg)
8226 return;
8227 do {
8228 for_each_cpu(j, sched_group_cpus(sg)) {
8229 struct sched_domain *sd;
8230
8231 sd = &per_cpu(phys_domains, j).sd;
8232 if (j != group_first_cpu(sd->groups)) {
8233 /*
8234 * Only add "power" once for each
8235 * physical package.
8236 */
8237 continue;
8238 }
8239
8240 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8241 }
8242 sg = sg->next;
8243 } while (sg != group_head);
8244 }
8245 #endif /* CONFIG_NUMA */
8246
8247 #ifdef CONFIG_NUMA
8248 /* Free memory allocated for various sched_group structures */
8249 static void free_sched_groups(const struct cpumask *cpu_map,
8250 struct cpumask *nodemask)
8251 {
8252 int cpu, i;
8253
8254 for_each_cpu(cpu, cpu_map) {
8255 struct sched_group **sched_group_nodes
8256 = sched_group_nodes_bycpu[cpu];
8257
8258 if (!sched_group_nodes)
8259 continue;
8260
8261 for (i = 0; i < nr_node_ids; i++) {
8262 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8263
8264 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8265 if (cpumask_empty(nodemask))
8266 continue;
8267
8268 if (sg == NULL)
8269 continue;
8270 sg = sg->next;
8271 next_sg:
8272 oldsg = sg;
8273 sg = sg->next;
8274 kfree(oldsg);
8275 if (oldsg != sched_group_nodes[i])
8276 goto next_sg;
8277 }
8278 kfree(sched_group_nodes);
8279 sched_group_nodes_bycpu[cpu] = NULL;
8280 }
8281 }
8282 #else /* !CONFIG_NUMA */
8283 static void free_sched_groups(const struct cpumask *cpu_map,
8284 struct cpumask *nodemask)
8285 {
8286 }
8287 #endif /* CONFIG_NUMA */
8288
8289 /*
8290 * Initialize sched groups cpu_power.
8291 *
8292 * cpu_power indicates the capacity of sched group, which is used while
8293 * distributing the load between different sched groups in a sched domain.
8294 * Typically cpu_power for all the groups in a sched domain will be same unless
8295 * there are asymmetries in the topology. If there are asymmetries, group
8296 * having more cpu_power will pickup more load compared to the group having
8297 * less cpu_power.
8298 *
8299 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8300 * the maximum number of tasks a group can handle in the presence of other idle
8301 * or lightly loaded groups in the same sched domain.
8302 */
8303 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8304 {
8305 struct sched_domain *child;
8306 struct sched_group *group;
8307
8308 WARN_ON(!sd || !sd->groups);
8309
8310 if (cpu != group_first_cpu(sd->groups))
8311 return;
8312
8313 child = sd->child;
8314
8315 sd->groups->__cpu_power = 0;
8316
8317 /*
8318 * For perf policy, if the groups in child domain share resources
8319 * (for example cores sharing some portions of the cache hierarchy
8320 * or SMT), then set this domain groups cpu_power such that each group
8321 * can handle only one task, when there are other idle groups in the
8322 * same sched domain.
8323 */
8324 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8325 (child->flags &
8326 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8327 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8328 return;
8329 }
8330
8331 /*
8332 * add cpu_power of each child group to this groups cpu_power
8333 */
8334 group = child->groups;
8335 do {
8336 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8337 group = group->next;
8338 } while (group != child->groups);
8339 }
8340
8341 /*
8342 * Initializers for schedule domains
8343 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8344 */
8345
8346 #ifdef CONFIG_SCHED_DEBUG
8347 # define SD_INIT_NAME(sd, type) sd->name = #type
8348 #else
8349 # define SD_INIT_NAME(sd, type) do { } while (0)
8350 #endif
8351
8352 #define SD_INIT(sd, type) sd_init_##type(sd)
8353
8354 #define SD_INIT_FUNC(type) \
8355 static noinline void sd_init_##type(struct sched_domain *sd) \
8356 { \
8357 memset(sd, 0, sizeof(*sd)); \
8358 *sd = SD_##type##_INIT; \
8359 sd->level = SD_LV_##type; \
8360 SD_INIT_NAME(sd, type); \
8361 }
8362
8363 SD_INIT_FUNC(CPU)
8364 #ifdef CONFIG_NUMA
8365 SD_INIT_FUNC(ALLNODES)
8366 SD_INIT_FUNC(NODE)
8367 #endif
8368 #ifdef CONFIG_SCHED_SMT
8369 SD_INIT_FUNC(SIBLING)
8370 #endif
8371 #ifdef CONFIG_SCHED_MC
8372 SD_INIT_FUNC(MC)
8373 #endif
8374
8375 static int default_relax_domain_level = -1;
8376
8377 static int __init setup_relax_domain_level(char *str)
8378 {
8379 unsigned long val;
8380
8381 val = simple_strtoul(str, NULL, 0);
8382 if (val < SD_LV_MAX)
8383 default_relax_domain_level = val;
8384
8385 return 1;
8386 }
8387 __setup("relax_domain_level=", setup_relax_domain_level);
8388
8389 static void set_domain_attribute(struct sched_domain *sd,
8390 struct sched_domain_attr *attr)
8391 {
8392 int request;
8393
8394 if (!attr || attr->relax_domain_level < 0) {
8395 if (default_relax_domain_level < 0)
8396 return;
8397 else
8398 request = default_relax_domain_level;
8399 } else
8400 request = attr->relax_domain_level;
8401 if (request < sd->level) {
8402 /* turn off idle balance on this domain */
8403 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8404 } else {
8405 /* turn on idle balance on this domain */
8406 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8407 }
8408 }
8409
8410 /*
8411 * Build sched domains for a given set of cpus and attach the sched domains
8412 * to the individual cpus
8413 */
8414 static int __build_sched_domains(const struct cpumask *cpu_map,
8415 struct sched_domain_attr *attr)
8416 {
8417 int i, err = -ENOMEM;
8418 struct root_domain *rd;
8419 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8420 tmpmask;
8421 #ifdef CONFIG_NUMA
8422 cpumask_var_t domainspan, covered, notcovered;
8423 struct sched_group **sched_group_nodes = NULL;
8424 int sd_allnodes = 0;
8425
8426 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8427 goto out;
8428 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8429 goto free_domainspan;
8430 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8431 goto free_covered;
8432 #endif
8433
8434 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8435 goto free_notcovered;
8436 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8437 goto free_nodemask;
8438 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8439 goto free_this_sibling_map;
8440 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8441 goto free_this_core_map;
8442 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8443 goto free_send_covered;
8444
8445 #ifdef CONFIG_NUMA
8446 /*
8447 * Allocate the per-node list of sched groups
8448 */
8449 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8450 GFP_KERNEL);
8451 if (!sched_group_nodes) {
8452 printk(KERN_WARNING "Can not alloc sched group node list\n");
8453 goto free_tmpmask;
8454 }
8455 #endif
8456
8457 rd = alloc_rootdomain();
8458 if (!rd) {
8459 printk(KERN_WARNING "Cannot alloc root domain\n");
8460 goto free_sched_groups;
8461 }
8462
8463 #ifdef CONFIG_NUMA
8464 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8465 #endif
8466
8467 /*
8468 * Set up domains for cpus specified by the cpu_map.
8469 */
8470 for_each_cpu(i, cpu_map) {
8471 struct sched_domain *sd = NULL, *p;
8472
8473 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8474
8475 #ifdef CONFIG_NUMA
8476 if (cpumask_weight(cpu_map) >
8477 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8478 sd = &per_cpu(allnodes_domains, i).sd;
8479 SD_INIT(sd, ALLNODES);
8480 set_domain_attribute(sd, attr);
8481 cpumask_copy(sched_domain_span(sd), cpu_map);
8482 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8483 p = sd;
8484 sd_allnodes = 1;
8485 } else
8486 p = NULL;
8487
8488 sd = &per_cpu(node_domains, i).sd;
8489 SD_INIT(sd, NODE);
8490 set_domain_attribute(sd, attr);
8491 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8492 sd->parent = p;
8493 if (p)
8494 p->child = sd;
8495 cpumask_and(sched_domain_span(sd),
8496 sched_domain_span(sd), cpu_map);
8497 #endif
8498
8499 p = sd;
8500 sd = &per_cpu(phys_domains, i).sd;
8501 SD_INIT(sd, CPU);
8502 set_domain_attribute(sd, attr);
8503 cpumask_copy(sched_domain_span(sd), nodemask);
8504 sd->parent = p;
8505 if (p)
8506 p->child = sd;
8507 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8508
8509 #ifdef CONFIG_SCHED_MC
8510 p = sd;
8511 sd = &per_cpu(core_domains, i).sd;
8512 SD_INIT(sd, MC);
8513 set_domain_attribute(sd, attr);
8514 cpumask_and(sched_domain_span(sd), cpu_map,
8515 cpu_coregroup_mask(i));
8516 sd->parent = p;
8517 p->child = sd;
8518 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8519 #endif
8520
8521 #ifdef CONFIG_SCHED_SMT
8522 p = sd;
8523 sd = &per_cpu(cpu_domains, i).sd;
8524 SD_INIT(sd, SIBLING);
8525 set_domain_attribute(sd, attr);
8526 cpumask_and(sched_domain_span(sd),
8527 topology_thread_cpumask(i), cpu_map);
8528 sd->parent = p;
8529 p->child = sd;
8530 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8531 #endif
8532 }
8533
8534 #ifdef CONFIG_SCHED_SMT
8535 /* Set up CPU (sibling) groups */
8536 for_each_cpu(i, cpu_map) {
8537 cpumask_and(this_sibling_map,
8538 topology_thread_cpumask(i), cpu_map);
8539 if (i != cpumask_first(this_sibling_map))
8540 continue;
8541
8542 init_sched_build_groups(this_sibling_map, cpu_map,
8543 &cpu_to_cpu_group,
8544 send_covered, tmpmask);
8545 }
8546 #endif
8547
8548 #ifdef CONFIG_SCHED_MC
8549 /* Set up multi-core groups */
8550 for_each_cpu(i, cpu_map) {
8551 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8552 if (i != cpumask_first(this_core_map))
8553 continue;
8554
8555 init_sched_build_groups(this_core_map, cpu_map,
8556 &cpu_to_core_group,
8557 send_covered, tmpmask);
8558 }
8559 #endif
8560
8561 /* Set up physical groups */
8562 for (i = 0; i < nr_node_ids; i++) {
8563 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8564 if (cpumask_empty(nodemask))
8565 continue;
8566
8567 init_sched_build_groups(nodemask, cpu_map,
8568 &cpu_to_phys_group,
8569 send_covered, tmpmask);
8570 }
8571
8572 #ifdef CONFIG_NUMA
8573 /* Set up node groups */
8574 if (sd_allnodes) {
8575 init_sched_build_groups(cpu_map, cpu_map,
8576 &cpu_to_allnodes_group,
8577 send_covered, tmpmask);
8578 }
8579
8580 for (i = 0; i < nr_node_ids; i++) {
8581 /* Set up node groups */
8582 struct sched_group *sg, *prev;
8583 int j;
8584
8585 cpumask_clear(covered);
8586 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8587 if (cpumask_empty(nodemask)) {
8588 sched_group_nodes[i] = NULL;
8589 continue;
8590 }
8591
8592 sched_domain_node_span(i, domainspan);
8593 cpumask_and(domainspan, domainspan, cpu_map);
8594
8595 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8596 GFP_KERNEL, i);
8597 if (!sg) {
8598 printk(KERN_WARNING "Can not alloc domain group for "
8599 "node %d\n", i);
8600 goto error;
8601 }
8602 sched_group_nodes[i] = sg;
8603 for_each_cpu(j, nodemask) {
8604 struct sched_domain *sd;
8605
8606 sd = &per_cpu(node_domains, j).sd;
8607 sd->groups = sg;
8608 }
8609 sg->__cpu_power = 0;
8610 cpumask_copy(sched_group_cpus(sg), nodemask);
8611 sg->next = sg;
8612 cpumask_or(covered, covered, nodemask);
8613 prev = sg;
8614
8615 for (j = 0; j < nr_node_ids; j++) {
8616 int n = (i + j) % nr_node_ids;
8617
8618 cpumask_complement(notcovered, covered);
8619 cpumask_and(tmpmask, notcovered, cpu_map);
8620 cpumask_and(tmpmask, tmpmask, domainspan);
8621 if (cpumask_empty(tmpmask))
8622 break;
8623
8624 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8625 if (cpumask_empty(tmpmask))
8626 continue;
8627
8628 sg = kmalloc_node(sizeof(struct sched_group) +
8629 cpumask_size(),
8630 GFP_KERNEL, i);
8631 if (!sg) {
8632 printk(KERN_WARNING
8633 "Can not alloc domain group for node %d\n", j);
8634 goto error;
8635 }
8636 sg->__cpu_power = 0;
8637 cpumask_copy(sched_group_cpus(sg), tmpmask);
8638 sg->next = prev->next;
8639 cpumask_or(covered, covered, tmpmask);
8640 prev->next = sg;
8641 prev = sg;
8642 }
8643 }
8644 #endif
8645
8646 /* Calculate CPU power for physical packages and nodes */
8647 #ifdef CONFIG_SCHED_SMT
8648 for_each_cpu(i, cpu_map) {
8649 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8650
8651 init_sched_groups_power(i, sd);
8652 }
8653 #endif
8654 #ifdef CONFIG_SCHED_MC
8655 for_each_cpu(i, cpu_map) {
8656 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8657
8658 init_sched_groups_power(i, sd);
8659 }
8660 #endif
8661
8662 for_each_cpu(i, cpu_map) {
8663 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8664
8665 init_sched_groups_power(i, sd);
8666 }
8667
8668 #ifdef CONFIG_NUMA
8669 for (i = 0; i < nr_node_ids; i++)
8670 init_numa_sched_groups_power(sched_group_nodes[i]);
8671
8672 if (sd_allnodes) {
8673 struct sched_group *sg;
8674
8675 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8676 tmpmask);
8677 init_numa_sched_groups_power(sg);
8678 }
8679 #endif
8680
8681 /* Attach the domains */
8682 for_each_cpu(i, cpu_map) {
8683 struct sched_domain *sd;
8684 #ifdef CONFIG_SCHED_SMT
8685 sd = &per_cpu(cpu_domains, i).sd;
8686 #elif defined(CONFIG_SCHED_MC)
8687 sd = &per_cpu(core_domains, i).sd;
8688 #else
8689 sd = &per_cpu(phys_domains, i).sd;
8690 #endif
8691 cpu_attach_domain(sd, rd, i);
8692 }
8693
8694 err = 0;
8695
8696 free_tmpmask:
8697 free_cpumask_var(tmpmask);
8698 free_send_covered:
8699 free_cpumask_var(send_covered);
8700 free_this_core_map:
8701 free_cpumask_var(this_core_map);
8702 free_this_sibling_map:
8703 free_cpumask_var(this_sibling_map);
8704 free_nodemask:
8705 free_cpumask_var(nodemask);
8706 free_notcovered:
8707 #ifdef CONFIG_NUMA
8708 free_cpumask_var(notcovered);
8709 free_covered:
8710 free_cpumask_var(covered);
8711 free_domainspan:
8712 free_cpumask_var(domainspan);
8713 out:
8714 #endif
8715 return err;
8716
8717 free_sched_groups:
8718 #ifdef CONFIG_NUMA
8719 kfree(sched_group_nodes);
8720 #endif
8721 goto free_tmpmask;
8722
8723 #ifdef CONFIG_NUMA
8724 error:
8725 free_sched_groups(cpu_map, tmpmask);
8726 free_rootdomain(rd);
8727 goto free_tmpmask;
8728 #endif
8729 }
8730
8731 static int build_sched_domains(const struct cpumask *cpu_map)
8732 {
8733 return __build_sched_domains(cpu_map, NULL);
8734 }
8735
8736 static struct cpumask *doms_cur; /* current sched domains */
8737 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8738 static struct sched_domain_attr *dattr_cur;
8739 /* attribues of custom domains in 'doms_cur' */
8740
8741 /*
8742 * Special case: If a kmalloc of a doms_cur partition (array of
8743 * cpumask) fails, then fallback to a single sched domain,
8744 * as determined by the single cpumask fallback_doms.
8745 */
8746 static cpumask_var_t fallback_doms;
8747
8748 /*
8749 * arch_update_cpu_topology lets virtualized architectures update the
8750 * cpu core maps. It is supposed to return 1 if the topology changed
8751 * or 0 if it stayed the same.
8752 */
8753 int __attribute__((weak)) arch_update_cpu_topology(void)
8754 {
8755 return 0;
8756 }
8757
8758 /*
8759 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8760 * For now this just excludes isolated cpus, but could be used to
8761 * exclude other special cases in the future.
8762 */
8763 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8764 {
8765 int err;
8766
8767 arch_update_cpu_topology();
8768 ndoms_cur = 1;
8769 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8770 if (!doms_cur)
8771 doms_cur = fallback_doms;
8772 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8773 dattr_cur = NULL;
8774 err = build_sched_domains(doms_cur);
8775 register_sched_domain_sysctl();
8776
8777 return err;
8778 }
8779
8780 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8781 struct cpumask *tmpmask)
8782 {
8783 free_sched_groups(cpu_map, tmpmask);
8784 }
8785
8786 /*
8787 * Detach sched domains from a group of cpus specified in cpu_map
8788 * These cpus will now be attached to the NULL domain
8789 */
8790 static void detach_destroy_domains(const struct cpumask *cpu_map)
8791 {
8792 /* Save because hotplug lock held. */
8793 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8794 int i;
8795
8796 for_each_cpu(i, cpu_map)
8797 cpu_attach_domain(NULL, &def_root_domain, i);
8798 synchronize_sched();
8799 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8800 }
8801
8802 /* handle null as "default" */
8803 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8804 struct sched_domain_attr *new, int idx_new)
8805 {
8806 struct sched_domain_attr tmp;
8807
8808 /* fast path */
8809 if (!new && !cur)
8810 return 1;
8811
8812 tmp = SD_ATTR_INIT;
8813 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8814 new ? (new + idx_new) : &tmp,
8815 sizeof(struct sched_domain_attr));
8816 }
8817
8818 /*
8819 * Partition sched domains as specified by the 'ndoms_new'
8820 * cpumasks in the array doms_new[] of cpumasks. This compares
8821 * doms_new[] to the current sched domain partitioning, doms_cur[].
8822 * It destroys each deleted domain and builds each new domain.
8823 *
8824 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8825 * The masks don't intersect (don't overlap.) We should setup one
8826 * sched domain for each mask. CPUs not in any of the cpumasks will
8827 * not be load balanced. If the same cpumask appears both in the
8828 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8829 * it as it is.
8830 *
8831 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8832 * ownership of it and will kfree it when done with it. If the caller
8833 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8834 * ndoms_new == 1, and partition_sched_domains() will fallback to
8835 * the single partition 'fallback_doms', it also forces the domains
8836 * to be rebuilt.
8837 *
8838 * If doms_new == NULL it will be replaced with cpu_online_mask.
8839 * ndoms_new == 0 is a special case for destroying existing domains,
8840 * and it will not create the default domain.
8841 *
8842 * Call with hotplug lock held
8843 */
8844 /* FIXME: Change to struct cpumask *doms_new[] */
8845 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8846 struct sched_domain_attr *dattr_new)
8847 {
8848 int i, j, n;
8849 int new_topology;
8850
8851 mutex_lock(&sched_domains_mutex);
8852
8853 /* always unregister in case we don't destroy any domains */
8854 unregister_sched_domain_sysctl();
8855
8856 /* Let architecture update cpu core mappings. */
8857 new_topology = arch_update_cpu_topology();
8858
8859 n = doms_new ? ndoms_new : 0;
8860
8861 /* Destroy deleted domains */
8862 for (i = 0; i < ndoms_cur; i++) {
8863 for (j = 0; j < n && !new_topology; j++) {
8864 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8865 && dattrs_equal(dattr_cur, i, dattr_new, j))
8866 goto match1;
8867 }
8868 /* no match - a current sched domain not in new doms_new[] */
8869 detach_destroy_domains(doms_cur + i);
8870 match1:
8871 ;
8872 }
8873
8874 if (doms_new == NULL) {
8875 ndoms_cur = 0;
8876 doms_new = fallback_doms;
8877 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8878 WARN_ON_ONCE(dattr_new);
8879 }
8880
8881 /* Build new domains */
8882 for (i = 0; i < ndoms_new; i++) {
8883 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8884 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8885 && dattrs_equal(dattr_new, i, dattr_cur, j))
8886 goto match2;
8887 }
8888 /* no match - add a new doms_new */
8889 __build_sched_domains(doms_new + i,
8890 dattr_new ? dattr_new + i : NULL);
8891 match2:
8892 ;
8893 }
8894
8895 /* Remember the new sched domains */
8896 if (doms_cur != fallback_doms)
8897 kfree(doms_cur);
8898 kfree(dattr_cur); /* kfree(NULL) is safe */
8899 doms_cur = doms_new;
8900 dattr_cur = dattr_new;
8901 ndoms_cur = ndoms_new;
8902
8903 register_sched_domain_sysctl();
8904
8905 mutex_unlock(&sched_domains_mutex);
8906 }
8907
8908 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8909 static void arch_reinit_sched_domains(void)
8910 {
8911 get_online_cpus();
8912
8913 /* Destroy domains first to force the rebuild */
8914 partition_sched_domains(0, NULL, NULL);
8915
8916 rebuild_sched_domains();
8917 put_online_cpus();
8918 }
8919
8920 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8921 {
8922 unsigned int level = 0;
8923
8924 if (sscanf(buf, "%u", &level) != 1)
8925 return -EINVAL;
8926
8927 /*
8928 * level is always be positive so don't check for
8929 * level < POWERSAVINGS_BALANCE_NONE which is 0
8930 * What happens on 0 or 1 byte write,
8931 * need to check for count as well?
8932 */
8933
8934 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8935 return -EINVAL;
8936
8937 if (smt)
8938 sched_smt_power_savings = level;
8939 else
8940 sched_mc_power_savings = level;
8941
8942 arch_reinit_sched_domains();
8943
8944 return count;
8945 }
8946
8947 #ifdef CONFIG_SCHED_MC
8948 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8949 char *page)
8950 {
8951 return sprintf(page, "%u\n", sched_mc_power_savings);
8952 }
8953 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8954 const char *buf, size_t count)
8955 {
8956 return sched_power_savings_store(buf, count, 0);
8957 }
8958 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8959 sched_mc_power_savings_show,
8960 sched_mc_power_savings_store);
8961 #endif
8962
8963 #ifdef CONFIG_SCHED_SMT
8964 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8965 char *page)
8966 {
8967 return sprintf(page, "%u\n", sched_smt_power_savings);
8968 }
8969 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8970 const char *buf, size_t count)
8971 {
8972 return sched_power_savings_store(buf, count, 1);
8973 }
8974 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8975 sched_smt_power_savings_show,
8976 sched_smt_power_savings_store);
8977 #endif
8978
8979 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8980 {
8981 int err = 0;
8982
8983 #ifdef CONFIG_SCHED_SMT
8984 if (smt_capable())
8985 err = sysfs_create_file(&cls->kset.kobj,
8986 &attr_sched_smt_power_savings.attr);
8987 #endif
8988 #ifdef CONFIG_SCHED_MC
8989 if (!err && mc_capable())
8990 err = sysfs_create_file(&cls->kset.kobj,
8991 &attr_sched_mc_power_savings.attr);
8992 #endif
8993 return err;
8994 }
8995 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8996
8997 #ifndef CONFIG_CPUSETS
8998 /*
8999 * Add online and remove offline CPUs from the scheduler domains.
9000 * When cpusets are enabled they take over this function.
9001 */
9002 static int update_sched_domains(struct notifier_block *nfb,
9003 unsigned long action, void *hcpu)
9004 {
9005 switch (action) {
9006 case CPU_ONLINE:
9007 case CPU_ONLINE_FROZEN:
9008 case CPU_DEAD:
9009 case CPU_DEAD_FROZEN:
9010 partition_sched_domains(1, NULL, NULL);
9011 return NOTIFY_OK;
9012
9013 default:
9014 return NOTIFY_DONE;
9015 }
9016 }
9017 #endif
9018
9019 static int update_runtime(struct notifier_block *nfb,
9020 unsigned long action, void *hcpu)
9021 {
9022 int cpu = (int)(long)hcpu;
9023
9024 switch (action) {
9025 case CPU_DOWN_PREPARE:
9026 case CPU_DOWN_PREPARE_FROZEN:
9027 disable_runtime(cpu_rq(cpu));
9028 return NOTIFY_OK;
9029
9030 case CPU_DOWN_FAILED:
9031 case CPU_DOWN_FAILED_FROZEN:
9032 case CPU_ONLINE:
9033 case CPU_ONLINE_FROZEN:
9034 enable_runtime(cpu_rq(cpu));
9035 return NOTIFY_OK;
9036
9037 default:
9038 return NOTIFY_DONE;
9039 }
9040 }
9041
9042 void __init sched_init_smp(void)
9043 {
9044 cpumask_var_t non_isolated_cpus;
9045
9046 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9047
9048 #if defined(CONFIG_NUMA)
9049 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9050 GFP_KERNEL);
9051 BUG_ON(sched_group_nodes_bycpu == NULL);
9052 #endif
9053 get_online_cpus();
9054 mutex_lock(&sched_domains_mutex);
9055 arch_init_sched_domains(cpu_online_mask);
9056 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9057 if (cpumask_empty(non_isolated_cpus))
9058 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9059 mutex_unlock(&sched_domains_mutex);
9060 put_online_cpus();
9061
9062 #ifndef CONFIG_CPUSETS
9063 /* XXX: Theoretical race here - CPU may be hotplugged now */
9064 hotcpu_notifier(update_sched_domains, 0);
9065 #endif
9066
9067 /* RT runtime code needs to handle some hotplug events */
9068 hotcpu_notifier(update_runtime, 0);
9069
9070 init_hrtick();
9071
9072 /* Move init over to a non-isolated CPU */
9073 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9074 BUG();
9075 sched_init_granularity();
9076 free_cpumask_var(non_isolated_cpus);
9077
9078 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9079 init_sched_rt_class();
9080 }
9081 #else
9082 void __init sched_init_smp(void)
9083 {
9084 sched_init_granularity();
9085 }
9086 #endif /* CONFIG_SMP */
9087
9088 const_debug unsigned int sysctl_timer_migration = 1;
9089
9090 int in_sched_functions(unsigned long addr)
9091 {
9092 return in_lock_functions(addr) ||
9093 (addr >= (unsigned long)__sched_text_start
9094 && addr < (unsigned long)__sched_text_end);
9095 }
9096
9097 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9098 {
9099 cfs_rq->tasks_timeline = RB_ROOT;
9100 INIT_LIST_HEAD(&cfs_rq->tasks);
9101 #ifdef CONFIG_FAIR_GROUP_SCHED
9102 cfs_rq->rq = rq;
9103 #endif
9104 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9105 }
9106
9107 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9108 {
9109 struct rt_prio_array *array;
9110 int i;
9111
9112 array = &rt_rq->active;
9113 for (i = 0; i < MAX_RT_PRIO; i++) {
9114 INIT_LIST_HEAD(array->queue + i);
9115 __clear_bit(i, array->bitmap);
9116 }
9117 /* delimiter for bitsearch: */
9118 __set_bit(MAX_RT_PRIO, array->bitmap);
9119
9120 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9121 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9122 #ifdef CONFIG_SMP
9123 rt_rq->highest_prio.next = MAX_RT_PRIO;
9124 #endif
9125 #endif
9126 #ifdef CONFIG_SMP
9127 rt_rq->rt_nr_migratory = 0;
9128 rt_rq->overloaded = 0;
9129 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9130 #endif
9131
9132 rt_rq->rt_time = 0;
9133 rt_rq->rt_throttled = 0;
9134 rt_rq->rt_runtime = 0;
9135 spin_lock_init(&rt_rq->rt_runtime_lock);
9136
9137 #ifdef CONFIG_RT_GROUP_SCHED
9138 rt_rq->rt_nr_boosted = 0;
9139 rt_rq->rq = rq;
9140 #endif
9141 }
9142
9143 #ifdef CONFIG_FAIR_GROUP_SCHED
9144 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9145 struct sched_entity *se, int cpu, int add,
9146 struct sched_entity *parent)
9147 {
9148 struct rq *rq = cpu_rq(cpu);
9149 tg->cfs_rq[cpu] = cfs_rq;
9150 init_cfs_rq(cfs_rq, rq);
9151 cfs_rq->tg = tg;
9152 if (add)
9153 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9154
9155 tg->se[cpu] = se;
9156 /* se could be NULL for init_task_group */
9157 if (!se)
9158 return;
9159
9160 if (!parent)
9161 se->cfs_rq = &rq->cfs;
9162 else
9163 se->cfs_rq = parent->my_q;
9164
9165 se->my_q = cfs_rq;
9166 se->load.weight = tg->shares;
9167 se->load.inv_weight = 0;
9168 se->parent = parent;
9169 }
9170 #endif
9171
9172 #ifdef CONFIG_RT_GROUP_SCHED
9173 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9174 struct sched_rt_entity *rt_se, int cpu, int add,
9175 struct sched_rt_entity *parent)
9176 {
9177 struct rq *rq = cpu_rq(cpu);
9178
9179 tg->rt_rq[cpu] = rt_rq;
9180 init_rt_rq(rt_rq, rq);
9181 rt_rq->tg = tg;
9182 rt_rq->rt_se = rt_se;
9183 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9184 if (add)
9185 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9186
9187 tg->rt_se[cpu] = rt_se;
9188 if (!rt_se)
9189 return;
9190
9191 if (!parent)
9192 rt_se->rt_rq = &rq->rt;
9193 else
9194 rt_se->rt_rq = parent->my_q;
9195
9196 rt_se->my_q = rt_rq;
9197 rt_se->parent = parent;
9198 INIT_LIST_HEAD(&rt_se->run_list);
9199 }
9200 #endif
9201
9202 void __init sched_init(void)
9203 {
9204 int i, j;
9205 unsigned long alloc_size = 0, ptr;
9206
9207 #ifdef CONFIG_FAIR_GROUP_SCHED
9208 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9209 #endif
9210 #ifdef CONFIG_RT_GROUP_SCHED
9211 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9212 #endif
9213 #ifdef CONFIG_USER_SCHED
9214 alloc_size *= 2;
9215 #endif
9216 #ifdef CONFIG_CPUMASK_OFFSTACK
9217 alloc_size += num_possible_cpus() * cpumask_size();
9218 #endif
9219 /*
9220 * As sched_init() is called before page_alloc is setup,
9221 * we use alloc_bootmem().
9222 */
9223 if (alloc_size) {
9224 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9225
9226 #ifdef CONFIG_FAIR_GROUP_SCHED
9227 init_task_group.se = (struct sched_entity **)ptr;
9228 ptr += nr_cpu_ids * sizeof(void **);
9229
9230 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9231 ptr += nr_cpu_ids * sizeof(void **);
9232
9233 #ifdef CONFIG_USER_SCHED
9234 root_task_group.se = (struct sched_entity **)ptr;
9235 ptr += nr_cpu_ids * sizeof(void **);
9236
9237 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9238 ptr += nr_cpu_ids * sizeof(void **);
9239 #endif /* CONFIG_USER_SCHED */
9240 #endif /* CONFIG_FAIR_GROUP_SCHED */
9241 #ifdef CONFIG_RT_GROUP_SCHED
9242 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9243 ptr += nr_cpu_ids * sizeof(void **);
9244
9245 init_task_group.rt_rq = (struct rt_rq **)ptr;
9246 ptr += nr_cpu_ids * sizeof(void **);
9247
9248 #ifdef CONFIG_USER_SCHED
9249 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9250 ptr += nr_cpu_ids * sizeof(void **);
9251
9252 root_task_group.rt_rq = (struct rt_rq **)ptr;
9253 ptr += nr_cpu_ids * sizeof(void **);
9254 #endif /* CONFIG_USER_SCHED */
9255 #endif /* CONFIG_RT_GROUP_SCHED */
9256 #ifdef CONFIG_CPUMASK_OFFSTACK
9257 for_each_possible_cpu(i) {
9258 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9259 ptr += cpumask_size();
9260 }
9261 #endif /* CONFIG_CPUMASK_OFFSTACK */
9262 }
9263
9264 #ifdef CONFIG_SMP
9265 init_defrootdomain();
9266 #endif
9267
9268 init_rt_bandwidth(&def_rt_bandwidth,
9269 global_rt_period(), global_rt_runtime());
9270
9271 #ifdef CONFIG_RT_GROUP_SCHED
9272 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9273 global_rt_period(), global_rt_runtime());
9274 #ifdef CONFIG_USER_SCHED
9275 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9276 global_rt_period(), RUNTIME_INF);
9277 #endif /* CONFIG_USER_SCHED */
9278 #endif /* CONFIG_RT_GROUP_SCHED */
9279
9280 #ifdef CONFIG_GROUP_SCHED
9281 list_add(&init_task_group.list, &task_groups);
9282 INIT_LIST_HEAD(&init_task_group.children);
9283
9284 #ifdef CONFIG_USER_SCHED
9285 INIT_LIST_HEAD(&root_task_group.children);
9286 init_task_group.parent = &root_task_group;
9287 list_add(&init_task_group.siblings, &root_task_group.children);
9288 #endif /* CONFIG_USER_SCHED */
9289 #endif /* CONFIG_GROUP_SCHED */
9290
9291 for_each_possible_cpu(i) {
9292 struct rq *rq;
9293
9294 rq = cpu_rq(i);
9295 spin_lock_init(&rq->lock);
9296 rq->nr_running = 0;
9297 rq->calc_load_active = 0;
9298 rq->calc_load_update = jiffies + LOAD_FREQ;
9299 init_cfs_rq(&rq->cfs, rq);
9300 init_rt_rq(&rq->rt, rq);
9301 #ifdef CONFIG_FAIR_GROUP_SCHED
9302 init_task_group.shares = init_task_group_load;
9303 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9304 #ifdef CONFIG_CGROUP_SCHED
9305 /*
9306 * How much cpu bandwidth does init_task_group get?
9307 *
9308 * In case of task-groups formed thr' the cgroup filesystem, it
9309 * gets 100% of the cpu resources in the system. This overall
9310 * system cpu resource is divided among the tasks of
9311 * init_task_group and its child task-groups in a fair manner,
9312 * based on each entity's (task or task-group's) weight
9313 * (se->load.weight).
9314 *
9315 * In other words, if init_task_group has 10 tasks of weight
9316 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9317 * then A0's share of the cpu resource is:
9318 *
9319 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9320 *
9321 * We achieve this by letting init_task_group's tasks sit
9322 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9323 */
9324 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9325 #elif defined CONFIG_USER_SCHED
9326 root_task_group.shares = NICE_0_LOAD;
9327 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9328 /*
9329 * In case of task-groups formed thr' the user id of tasks,
9330 * init_task_group represents tasks belonging to root user.
9331 * Hence it forms a sibling of all subsequent groups formed.
9332 * In this case, init_task_group gets only a fraction of overall
9333 * system cpu resource, based on the weight assigned to root
9334 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9335 * by letting tasks of init_task_group sit in a separate cfs_rq
9336 * (init_cfs_rq) and having one entity represent this group of
9337 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9338 */
9339 init_tg_cfs_entry(&init_task_group,
9340 &per_cpu(init_cfs_rq, i),
9341 &per_cpu(init_sched_entity, i), i, 1,
9342 root_task_group.se[i]);
9343
9344 #endif
9345 #endif /* CONFIG_FAIR_GROUP_SCHED */
9346
9347 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9348 #ifdef CONFIG_RT_GROUP_SCHED
9349 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9350 #ifdef CONFIG_CGROUP_SCHED
9351 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9352 #elif defined CONFIG_USER_SCHED
9353 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9354 init_tg_rt_entry(&init_task_group,
9355 &per_cpu(init_rt_rq, i),
9356 &per_cpu(init_sched_rt_entity, i), i, 1,
9357 root_task_group.rt_se[i]);
9358 #endif
9359 #endif
9360
9361 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9362 rq->cpu_load[j] = 0;
9363 #ifdef CONFIG_SMP
9364 rq->sd = NULL;
9365 rq->rd = NULL;
9366 rq->active_balance = 0;
9367 rq->next_balance = jiffies;
9368 rq->push_cpu = 0;
9369 rq->cpu = i;
9370 rq->online = 0;
9371 rq->migration_thread = NULL;
9372 INIT_LIST_HEAD(&rq->migration_queue);
9373 rq_attach_root(rq, &def_root_domain);
9374 #endif
9375 init_rq_hrtick(rq);
9376 atomic_set(&rq->nr_iowait, 0);
9377 }
9378
9379 set_load_weight(&init_task);
9380
9381 #ifdef CONFIG_PREEMPT_NOTIFIERS
9382 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9383 #endif
9384
9385 #ifdef CONFIG_SMP
9386 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9387 #endif
9388
9389 #ifdef CONFIG_RT_MUTEXES
9390 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9391 #endif
9392
9393 /*
9394 * The boot idle thread does lazy MMU switching as well:
9395 */
9396 atomic_inc(&init_mm.mm_count);
9397 enter_lazy_tlb(&init_mm, current);
9398
9399 /*
9400 * Make us the idle thread. Technically, schedule() should not be
9401 * called from this thread, however somewhere below it might be,
9402 * but because we are the idle thread, we just pick up running again
9403 * when this runqueue becomes "idle".
9404 */
9405 init_idle(current, smp_processor_id());
9406
9407 calc_load_update = jiffies + LOAD_FREQ;
9408
9409 /*
9410 * During early bootup we pretend to be a normal task:
9411 */
9412 current->sched_class = &fair_sched_class;
9413
9414 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9415 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9416 #ifdef CONFIG_SMP
9417 #ifdef CONFIG_NO_HZ
9418 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9419 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9420 #endif
9421 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9422 #endif /* SMP */
9423
9424 perf_counter_init();
9425
9426 scheduler_running = 1;
9427 }
9428
9429 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9430 static inline int preempt_count_equals(int preempt_offset)
9431 {
9432 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9433
9434 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9435 }
9436
9437 void __might_sleep(char *file, int line, int preempt_offset)
9438 {
9439 #ifdef in_atomic
9440 static unsigned long prev_jiffy; /* ratelimiting */
9441
9442 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9443 system_state != SYSTEM_RUNNING || oops_in_progress)
9444 return;
9445 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9446 return;
9447 prev_jiffy = jiffies;
9448
9449 printk(KERN_ERR
9450 "BUG: sleeping function called from invalid context at %s:%d\n",
9451 file, line);
9452 printk(KERN_ERR
9453 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9454 in_atomic(), irqs_disabled(),
9455 current->pid, current->comm);
9456
9457 debug_show_held_locks(current);
9458 if (irqs_disabled())
9459 print_irqtrace_events(current);
9460 dump_stack();
9461 #endif
9462 }
9463 EXPORT_SYMBOL(__might_sleep);
9464 #endif
9465
9466 #ifdef CONFIG_MAGIC_SYSRQ
9467 static void normalize_task(struct rq *rq, struct task_struct *p)
9468 {
9469 int on_rq;
9470
9471 update_rq_clock(rq);
9472 on_rq = p->se.on_rq;
9473 if (on_rq)
9474 deactivate_task(rq, p, 0);
9475 __setscheduler(rq, p, SCHED_NORMAL, 0);
9476 if (on_rq) {
9477 activate_task(rq, p, 0);
9478 resched_task(rq->curr);
9479 }
9480 }
9481
9482 void normalize_rt_tasks(void)
9483 {
9484 struct task_struct *g, *p;
9485 unsigned long flags;
9486 struct rq *rq;
9487
9488 read_lock_irqsave(&tasklist_lock, flags);
9489 do_each_thread(g, p) {
9490 /*
9491 * Only normalize user tasks:
9492 */
9493 if (!p->mm)
9494 continue;
9495
9496 p->se.exec_start = 0;
9497 #ifdef CONFIG_SCHEDSTATS
9498 p->se.wait_start = 0;
9499 p->se.sleep_start = 0;
9500 p->se.block_start = 0;
9501 #endif
9502
9503 if (!rt_task(p)) {
9504 /*
9505 * Renice negative nice level userspace
9506 * tasks back to 0:
9507 */
9508 if (TASK_NICE(p) < 0 && p->mm)
9509 set_user_nice(p, 0);
9510 continue;
9511 }
9512
9513 spin_lock(&p->pi_lock);
9514 rq = __task_rq_lock(p);
9515
9516 normalize_task(rq, p);
9517
9518 __task_rq_unlock(rq);
9519 spin_unlock(&p->pi_lock);
9520 } while_each_thread(g, p);
9521
9522 read_unlock_irqrestore(&tasklist_lock, flags);
9523 }
9524
9525 #endif /* CONFIG_MAGIC_SYSRQ */
9526
9527 #ifdef CONFIG_IA64
9528 /*
9529 * These functions are only useful for the IA64 MCA handling.
9530 *
9531 * They can only be called when the whole system has been
9532 * stopped - every CPU needs to be quiescent, and no scheduling
9533 * activity can take place. Using them for anything else would
9534 * be a serious bug, and as a result, they aren't even visible
9535 * under any other configuration.
9536 */
9537
9538 /**
9539 * curr_task - return the current task for a given cpu.
9540 * @cpu: the processor in question.
9541 *
9542 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9543 */
9544 struct task_struct *curr_task(int cpu)
9545 {
9546 return cpu_curr(cpu);
9547 }
9548
9549 /**
9550 * set_curr_task - set the current task for a given cpu.
9551 * @cpu: the processor in question.
9552 * @p: the task pointer to set.
9553 *
9554 * Description: This function must only be used when non-maskable interrupts
9555 * are serviced on a separate stack. It allows the architecture to switch the
9556 * notion of the current task on a cpu in a non-blocking manner. This function
9557 * must be called with all CPU's synchronized, and interrupts disabled, the
9558 * and caller must save the original value of the current task (see
9559 * curr_task() above) and restore that value before reenabling interrupts and
9560 * re-starting the system.
9561 *
9562 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9563 */
9564 void set_curr_task(int cpu, struct task_struct *p)
9565 {
9566 cpu_curr(cpu) = p;
9567 }
9568
9569 #endif
9570
9571 #ifdef CONFIG_FAIR_GROUP_SCHED
9572 static void free_fair_sched_group(struct task_group *tg)
9573 {
9574 int i;
9575
9576 for_each_possible_cpu(i) {
9577 if (tg->cfs_rq)
9578 kfree(tg->cfs_rq[i]);
9579 if (tg->se)
9580 kfree(tg->se[i]);
9581 }
9582
9583 kfree(tg->cfs_rq);
9584 kfree(tg->se);
9585 }
9586
9587 static
9588 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9589 {
9590 struct cfs_rq *cfs_rq;
9591 struct sched_entity *se;
9592 struct rq *rq;
9593 int i;
9594
9595 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9596 if (!tg->cfs_rq)
9597 goto err;
9598 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9599 if (!tg->se)
9600 goto err;
9601
9602 tg->shares = NICE_0_LOAD;
9603
9604 for_each_possible_cpu(i) {
9605 rq = cpu_rq(i);
9606
9607 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9608 GFP_KERNEL, cpu_to_node(i));
9609 if (!cfs_rq)
9610 goto err;
9611
9612 se = kzalloc_node(sizeof(struct sched_entity),
9613 GFP_KERNEL, cpu_to_node(i));
9614 if (!se)
9615 goto err;
9616
9617 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9618 }
9619
9620 return 1;
9621
9622 err:
9623 return 0;
9624 }
9625
9626 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9627 {
9628 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9629 &cpu_rq(cpu)->leaf_cfs_rq_list);
9630 }
9631
9632 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9633 {
9634 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9635 }
9636 #else /* !CONFG_FAIR_GROUP_SCHED */
9637 static inline void free_fair_sched_group(struct task_group *tg)
9638 {
9639 }
9640
9641 static inline
9642 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9643 {
9644 return 1;
9645 }
9646
9647 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9648 {
9649 }
9650
9651 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9652 {
9653 }
9654 #endif /* CONFIG_FAIR_GROUP_SCHED */
9655
9656 #ifdef CONFIG_RT_GROUP_SCHED
9657 static void free_rt_sched_group(struct task_group *tg)
9658 {
9659 int i;
9660
9661 destroy_rt_bandwidth(&tg->rt_bandwidth);
9662
9663 for_each_possible_cpu(i) {
9664 if (tg->rt_rq)
9665 kfree(tg->rt_rq[i]);
9666 if (tg->rt_se)
9667 kfree(tg->rt_se[i]);
9668 }
9669
9670 kfree(tg->rt_rq);
9671 kfree(tg->rt_se);
9672 }
9673
9674 static
9675 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9676 {
9677 struct rt_rq *rt_rq;
9678 struct sched_rt_entity *rt_se;
9679 struct rq *rq;
9680 int i;
9681
9682 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9683 if (!tg->rt_rq)
9684 goto err;
9685 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9686 if (!tg->rt_se)
9687 goto err;
9688
9689 init_rt_bandwidth(&tg->rt_bandwidth,
9690 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9691
9692 for_each_possible_cpu(i) {
9693 rq = cpu_rq(i);
9694
9695 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9696 GFP_KERNEL, cpu_to_node(i));
9697 if (!rt_rq)
9698 goto err;
9699
9700 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9701 GFP_KERNEL, cpu_to_node(i));
9702 if (!rt_se)
9703 goto err;
9704
9705 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9706 }
9707
9708 return 1;
9709
9710 err:
9711 return 0;
9712 }
9713
9714 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9715 {
9716 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9717 &cpu_rq(cpu)->leaf_rt_rq_list);
9718 }
9719
9720 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9721 {
9722 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9723 }
9724 #else /* !CONFIG_RT_GROUP_SCHED */
9725 static inline void free_rt_sched_group(struct task_group *tg)
9726 {
9727 }
9728
9729 static inline
9730 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9731 {
9732 return 1;
9733 }
9734
9735 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9736 {
9737 }
9738
9739 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9740 {
9741 }
9742 #endif /* CONFIG_RT_GROUP_SCHED */
9743
9744 #ifdef CONFIG_GROUP_SCHED
9745 static void free_sched_group(struct task_group *tg)
9746 {
9747 free_fair_sched_group(tg);
9748 free_rt_sched_group(tg);
9749 kfree(tg);
9750 }
9751
9752 /* allocate runqueue etc for a new task group */
9753 struct task_group *sched_create_group(struct task_group *parent)
9754 {
9755 struct task_group *tg;
9756 unsigned long flags;
9757 int i;
9758
9759 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9760 if (!tg)
9761 return ERR_PTR(-ENOMEM);
9762
9763 if (!alloc_fair_sched_group(tg, parent))
9764 goto err;
9765
9766 if (!alloc_rt_sched_group(tg, parent))
9767 goto err;
9768
9769 spin_lock_irqsave(&task_group_lock, flags);
9770 for_each_possible_cpu(i) {
9771 register_fair_sched_group(tg, i);
9772 register_rt_sched_group(tg, i);
9773 }
9774 list_add_rcu(&tg->list, &task_groups);
9775
9776 WARN_ON(!parent); /* root should already exist */
9777
9778 tg->parent = parent;
9779 INIT_LIST_HEAD(&tg->children);
9780 list_add_rcu(&tg->siblings, &parent->children);
9781 spin_unlock_irqrestore(&task_group_lock, flags);
9782
9783 return tg;
9784
9785 err:
9786 free_sched_group(tg);
9787 return ERR_PTR(-ENOMEM);
9788 }
9789
9790 /* rcu callback to free various structures associated with a task group */
9791 static void free_sched_group_rcu(struct rcu_head *rhp)
9792 {
9793 /* now it should be safe to free those cfs_rqs */
9794 free_sched_group(container_of(rhp, struct task_group, rcu));
9795 }
9796
9797 /* Destroy runqueue etc associated with a task group */
9798 void sched_destroy_group(struct task_group *tg)
9799 {
9800 unsigned long flags;
9801 int i;
9802
9803 spin_lock_irqsave(&task_group_lock, flags);
9804 for_each_possible_cpu(i) {
9805 unregister_fair_sched_group(tg, i);
9806 unregister_rt_sched_group(tg, i);
9807 }
9808 list_del_rcu(&tg->list);
9809 list_del_rcu(&tg->siblings);
9810 spin_unlock_irqrestore(&task_group_lock, flags);
9811
9812 /* wait for possible concurrent references to cfs_rqs complete */
9813 call_rcu(&tg->rcu, free_sched_group_rcu);
9814 }
9815
9816 /* change task's runqueue when it moves between groups.
9817 * The caller of this function should have put the task in its new group
9818 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9819 * reflect its new group.
9820 */
9821 void sched_move_task(struct task_struct *tsk)
9822 {
9823 int on_rq, running;
9824 unsigned long flags;
9825 struct rq *rq;
9826
9827 rq = task_rq_lock(tsk, &flags);
9828
9829 update_rq_clock(rq);
9830
9831 running = task_current(rq, tsk);
9832 on_rq = tsk->se.on_rq;
9833
9834 if (on_rq)
9835 dequeue_task(rq, tsk, 0);
9836 if (unlikely(running))
9837 tsk->sched_class->put_prev_task(rq, tsk);
9838
9839 set_task_rq(tsk, task_cpu(tsk));
9840
9841 #ifdef CONFIG_FAIR_GROUP_SCHED
9842 if (tsk->sched_class->moved_group)
9843 tsk->sched_class->moved_group(tsk);
9844 #endif
9845
9846 if (unlikely(running))
9847 tsk->sched_class->set_curr_task(rq);
9848 if (on_rq)
9849 enqueue_task(rq, tsk, 0);
9850
9851 task_rq_unlock(rq, &flags);
9852 }
9853 #endif /* CONFIG_GROUP_SCHED */
9854
9855 #ifdef CONFIG_FAIR_GROUP_SCHED
9856 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9857 {
9858 struct cfs_rq *cfs_rq = se->cfs_rq;
9859 int on_rq;
9860
9861 on_rq = se->on_rq;
9862 if (on_rq)
9863 dequeue_entity(cfs_rq, se, 0);
9864
9865 se->load.weight = shares;
9866 se->load.inv_weight = 0;
9867
9868 if (on_rq)
9869 enqueue_entity(cfs_rq, se, 0);
9870 }
9871
9872 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9873 {
9874 struct cfs_rq *cfs_rq = se->cfs_rq;
9875 struct rq *rq = cfs_rq->rq;
9876 unsigned long flags;
9877
9878 spin_lock_irqsave(&rq->lock, flags);
9879 __set_se_shares(se, shares);
9880 spin_unlock_irqrestore(&rq->lock, flags);
9881 }
9882
9883 static DEFINE_MUTEX(shares_mutex);
9884
9885 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9886 {
9887 int i;
9888 unsigned long flags;
9889
9890 /*
9891 * We can't change the weight of the root cgroup.
9892 */
9893 if (!tg->se[0])
9894 return -EINVAL;
9895
9896 if (shares < MIN_SHARES)
9897 shares = MIN_SHARES;
9898 else if (shares > MAX_SHARES)
9899 shares = MAX_SHARES;
9900
9901 mutex_lock(&shares_mutex);
9902 if (tg->shares == shares)
9903 goto done;
9904
9905 spin_lock_irqsave(&task_group_lock, flags);
9906 for_each_possible_cpu(i)
9907 unregister_fair_sched_group(tg, i);
9908 list_del_rcu(&tg->siblings);
9909 spin_unlock_irqrestore(&task_group_lock, flags);
9910
9911 /* wait for any ongoing reference to this group to finish */
9912 synchronize_sched();
9913
9914 /*
9915 * Now we are free to modify the group's share on each cpu
9916 * w/o tripping rebalance_share or load_balance_fair.
9917 */
9918 tg->shares = shares;
9919 for_each_possible_cpu(i) {
9920 /*
9921 * force a rebalance
9922 */
9923 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9924 set_se_shares(tg->se[i], shares);
9925 }
9926
9927 /*
9928 * Enable load balance activity on this group, by inserting it back on
9929 * each cpu's rq->leaf_cfs_rq_list.
9930 */
9931 spin_lock_irqsave(&task_group_lock, flags);
9932 for_each_possible_cpu(i)
9933 register_fair_sched_group(tg, i);
9934 list_add_rcu(&tg->siblings, &tg->parent->children);
9935 spin_unlock_irqrestore(&task_group_lock, flags);
9936 done:
9937 mutex_unlock(&shares_mutex);
9938 return 0;
9939 }
9940
9941 unsigned long sched_group_shares(struct task_group *tg)
9942 {
9943 return tg->shares;
9944 }
9945 #endif
9946
9947 #ifdef CONFIG_RT_GROUP_SCHED
9948 /*
9949 * Ensure that the real time constraints are schedulable.
9950 */
9951 static DEFINE_MUTEX(rt_constraints_mutex);
9952
9953 static unsigned long to_ratio(u64 period, u64 runtime)
9954 {
9955 if (runtime == RUNTIME_INF)
9956 return 1ULL << 20;
9957
9958 return div64_u64(runtime << 20, period);
9959 }
9960
9961 /* Must be called with tasklist_lock held */
9962 static inline int tg_has_rt_tasks(struct task_group *tg)
9963 {
9964 struct task_struct *g, *p;
9965
9966 do_each_thread(g, p) {
9967 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9968 return 1;
9969 } while_each_thread(g, p);
9970
9971 return 0;
9972 }
9973
9974 struct rt_schedulable_data {
9975 struct task_group *tg;
9976 u64 rt_period;
9977 u64 rt_runtime;
9978 };
9979
9980 static int tg_schedulable(struct task_group *tg, void *data)
9981 {
9982 struct rt_schedulable_data *d = data;
9983 struct task_group *child;
9984 unsigned long total, sum = 0;
9985 u64 period, runtime;
9986
9987 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9988 runtime = tg->rt_bandwidth.rt_runtime;
9989
9990 if (tg == d->tg) {
9991 period = d->rt_period;
9992 runtime = d->rt_runtime;
9993 }
9994
9995 #ifdef CONFIG_USER_SCHED
9996 if (tg == &root_task_group) {
9997 period = global_rt_period();
9998 runtime = global_rt_runtime();
9999 }
10000 #endif
10001
10002 /*
10003 * Cannot have more runtime than the period.
10004 */
10005 if (runtime > period && runtime != RUNTIME_INF)
10006 return -EINVAL;
10007
10008 /*
10009 * Ensure we don't starve existing RT tasks.
10010 */
10011 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10012 return -EBUSY;
10013
10014 total = to_ratio(period, runtime);
10015
10016 /*
10017 * Nobody can have more than the global setting allows.
10018 */
10019 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10020 return -EINVAL;
10021
10022 /*
10023 * The sum of our children's runtime should not exceed our own.
10024 */
10025 list_for_each_entry_rcu(child, &tg->children, siblings) {
10026 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10027 runtime = child->rt_bandwidth.rt_runtime;
10028
10029 if (child == d->tg) {
10030 period = d->rt_period;
10031 runtime = d->rt_runtime;
10032 }
10033
10034 sum += to_ratio(period, runtime);
10035 }
10036
10037 if (sum > total)
10038 return -EINVAL;
10039
10040 return 0;
10041 }
10042
10043 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10044 {
10045 struct rt_schedulable_data data = {
10046 .tg = tg,
10047 .rt_period = period,
10048 .rt_runtime = runtime,
10049 };
10050
10051 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10052 }
10053
10054 static int tg_set_bandwidth(struct task_group *tg,
10055 u64 rt_period, u64 rt_runtime)
10056 {
10057 int i, err = 0;
10058
10059 mutex_lock(&rt_constraints_mutex);
10060 read_lock(&tasklist_lock);
10061 err = __rt_schedulable(tg, rt_period, rt_runtime);
10062 if (err)
10063 goto unlock;
10064
10065 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10066 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10067 tg->rt_bandwidth.rt_runtime = rt_runtime;
10068
10069 for_each_possible_cpu(i) {
10070 struct rt_rq *rt_rq = tg->rt_rq[i];
10071
10072 spin_lock(&rt_rq->rt_runtime_lock);
10073 rt_rq->rt_runtime = rt_runtime;
10074 spin_unlock(&rt_rq->rt_runtime_lock);
10075 }
10076 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10077 unlock:
10078 read_unlock(&tasklist_lock);
10079 mutex_unlock(&rt_constraints_mutex);
10080
10081 return err;
10082 }
10083
10084 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10085 {
10086 u64 rt_runtime, rt_period;
10087
10088 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10089 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10090 if (rt_runtime_us < 0)
10091 rt_runtime = RUNTIME_INF;
10092
10093 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10094 }
10095
10096 long sched_group_rt_runtime(struct task_group *tg)
10097 {
10098 u64 rt_runtime_us;
10099
10100 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10101 return -1;
10102
10103 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10104 do_div(rt_runtime_us, NSEC_PER_USEC);
10105 return rt_runtime_us;
10106 }
10107
10108 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10109 {
10110 u64 rt_runtime, rt_period;
10111
10112 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10113 rt_runtime = tg->rt_bandwidth.rt_runtime;
10114
10115 if (rt_period == 0)
10116 return -EINVAL;
10117
10118 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10119 }
10120
10121 long sched_group_rt_period(struct task_group *tg)
10122 {
10123 u64 rt_period_us;
10124
10125 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10126 do_div(rt_period_us, NSEC_PER_USEC);
10127 return rt_period_us;
10128 }
10129
10130 static int sched_rt_global_constraints(void)
10131 {
10132 u64 runtime, period;
10133 int ret = 0;
10134
10135 if (sysctl_sched_rt_period <= 0)
10136 return -EINVAL;
10137
10138 runtime = global_rt_runtime();
10139 period = global_rt_period();
10140
10141 /*
10142 * Sanity check on the sysctl variables.
10143 */
10144 if (runtime > period && runtime != RUNTIME_INF)
10145 return -EINVAL;
10146
10147 mutex_lock(&rt_constraints_mutex);
10148 read_lock(&tasklist_lock);
10149 ret = __rt_schedulable(NULL, 0, 0);
10150 read_unlock(&tasklist_lock);
10151 mutex_unlock(&rt_constraints_mutex);
10152
10153 return ret;
10154 }
10155
10156 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10157 {
10158 /* Don't accept realtime tasks when there is no way for them to run */
10159 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10160 return 0;
10161
10162 return 1;
10163 }
10164
10165 #else /* !CONFIG_RT_GROUP_SCHED */
10166 static int sched_rt_global_constraints(void)
10167 {
10168 unsigned long flags;
10169 int i;
10170
10171 if (sysctl_sched_rt_period <= 0)
10172 return -EINVAL;
10173
10174 /*
10175 * There's always some RT tasks in the root group
10176 * -- migration, kstopmachine etc..
10177 */
10178 if (sysctl_sched_rt_runtime == 0)
10179 return -EBUSY;
10180
10181 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10182 for_each_possible_cpu(i) {
10183 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10184
10185 spin_lock(&rt_rq->rt_runtime_lock);
10186 rt_rq->rt_runtime = global_rt_runtime();
10187 spin_unlock(&rt_rq->rt_runtime_lock);
10188 }
10189 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10190
10191 return 0;
10192 }
10193 #endif /* CONFIG_RT_GROUP_SCHED */
10194
10195 int sched_rt_handler(struct ctl_table *table, int write,
10196 struct file *filp, void __user *buffer, size_t *lenp,
10197 loff_t *ppos)
10198 {
10199 int ret;
10200 int old_period, old_runtime;
10201 static DEFINE_MUTEX(mutex);
10202
10203 mutex_lock(&mutex);
10204 old_period = sysctl_sched_rt_period;
10205 old_runtime = sysctl_sched_rt_runtime;
10206
10207 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10208
10209 if (!ret && write) {
10210 ret = sched_rt_global_constraints();
10211 if (ret) {
10212 sysctl_sched_rt_period = old_period;
10213 sysctl_sched_rt_runtime = old_runtime;
10214 } else {
10215 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10216 def_rt_bandwidth.rt_period =
10217 ns_to_ktime(global_rt_period());
10218 }
10219 }
10220 mutex_unlock(&mutex);
10221
10222 return ret;
10223 }
10224
10225 #ifdef CONFIG_CGROUP_SCHED
10226
10227 /* return corresponding task_group object of a cgroup */
10228 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10229 {
10230 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10231 struct task_group, css);
10232 }
10233
10234 static struct cgroup_subsys_state *
10235 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10236 {
10237 struct task_group *tg, *parent;
10238
10239 if (!cgrp->parent) {
10240 /* This is early initialization for the top cgroup */
10241 return &init_task_group.css;
10242 }
10243
10244 parent = cgroup_tg(cgrp->parent);
10245 tg = sched_create_group(parent);
10246 if (IS_ERR(tg))
10247 return ERR_PTR(-ENOMEM);
10248
10249 return &tg->css;
10250 }
10251
10252 static void
10253 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10254 {
10255 struct task_group *tg = cgroup_tg(cgrp);
10256
10257 sched_destroy_group(tg);
10258 }
10259
10260 static int
10261 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10262 struct task_struct *tsk)
10263 {
10264 #ifdef CONFIG_RT_GROUP_SCHED
10265 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10266 return -EINVAL;
10267 #else
10268 /* We don't support RT-tasks being in separate groups */
10269 if (tsk->sched_class != &fair_sched_class)
10270 return -EINVAL;
10271 #endif
10272
10273 return 0;
10274 }
10275
10276 static void
10277 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10278 struct cgroup *old_cont, struct task_struct *tsk)
10279 {
10280 sched_move_task(tsk);
10281 }
10282
10283 #ifdef CONFIG_FAIR_GROUP_SCHED
10284 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10285 u64 shareval)
10286 {
10287 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10288 }
10289
10290 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10291 {
10292 struct task_group *tg = cgroup_tg(cgrp);
10293
10294 return (u64) tg->shares;
10295 }
10296 #endif /* CONFIG_FAIR_GROUP_SCHED */
10297
10298 #ifdef CONFIG_RT_GROUP_SCHED
10299 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10300 s64 val)
10301 {
10302 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10303 }
10304
10305 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10306 {
10307 return sched_group_rt_runtime(cgroup_tg(cgrp));
10308 }
10309
10310 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10311 u64 rt_period_us)
10312 {
10313 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10314 }
10315
10316 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10317 {
10318 return sched_group_rt_period(cgroup_tg(cgrp));
10319 }
10320 #endif /* CONFIG_RT_GROUP_SCHED */
10321
10322 static struct cftype cpu_files[] = {
10323 #ifdef CONFIG_FAIR_GROUP_SCHED
10324 {
10325 .name = "shares",
10326 .read_u64 = cpu_shares_read_u64,
10327 .write_u64 = cpu_shares_write_u64,
10328 },
10329 #endif
10330 #ifdef CONFIG_RT_GROUP_SCHED
10331 {
10332 .name = "rt_runtime_us",
10333 .read_s64 = cpu_rt_runtime_read,
10334 .write_s64 = cpu_rt_runtime_write,
10335 },
10336 {
10337 .name = "rt_period_us",
10338 .read_u64 = cpu_rt_period_read_uint,
10339 .write_u64 = cpu_rt_period_write_uint,
10340 },
10341 #endif
10342 };
10343
10344 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10345 {
10346 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10347 }
10348
10349 struct cgroup_subsys cpu_cgroup_subsys = {
10350 .name = "cpu",
10351 .create = cpu_cgroup_create,
10352 .destroy = cpu_cgroup_destroy,
10353 .can_attach = cpu_cgroup_can_attach,
10354 .attach = cpu_cgroup_attach,
10355 .populate = cpu_cgroup_populate,
10356 .subsys_id = cpu_cgroup_subsys_id,
10357 .early_init = 1,
10358 };
10359
10360 #endif /* CONFIG_CGROUP_SCHED */
10361
10362 #ifdef CONFIG_CGROUP_CPUACCT
10363
10364 /*
10365 * CPU accounting code for task groups.
10366 *
10367 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10368 * (balbir@in.ibm.com).
10369 */
10370
10371 /* track cpu usage of a group of tasks and its child groups */
10372 struct cpuacct {
10373 struct cgroup_subsys_state css;
10374 /* cpuusage holds pointer to a u64-type object on every cpu */
10375 u64 *cpuusage;
10376 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10377 struct cpuacct *parent;
10378 };
10379
10380 struct cgroup_subsys cpuacct_subsys;
10381
10382 /* return cpu accounting group corresponding to this container */
10383 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10384 {
10385 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10386 struct cpuacct, css);
10387 }
10388
10389 /* return cpu accounting group to which this task belongs */
10390 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10391 {
10392 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10393 struct cpuacct, css);
10394 }
10395
10396 /* create a new cpu accounting group */
10397 static struct cgroup_subsys_state *cpuacct_create(
10398 struct cgroup_subsys *ss, struct cgroup *cgrp)
10399 {
10400 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10401 int i;
10402
10403 if (!ca)
10404 goto out;
10405
10406 ca->cpuusage = alloc_percpu(u64);
10407 if (!ca->cpuusage)
10408 goto out_free_ca;
10409
10410 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10411 if (percpu_counter_init(&ca->cpustat[i], 0))
10412 goto out_free_counters;
10413
10414 if (cgrp->parent)
10415 ca->parent = cgroup_ca(cgrp->parent);
10416
10417 return &ca->css;
10418
10419 out_free_counters:
10420 while (--i >= 0)
10421 percpu_counter_destroy(&ca->cpustat[i]);
10422 free_percpu(ca->cpuusage);
10423 out_free_ca:
10424 kfree(ca);
10425 out:
10426 return ERR_PTR(-ENOMEM);
10427 }
10428
10429 /* destroy an existing cpu accounting group */
10430 static void
10431 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10432 {
10433 struct cpuacct *ca = cgroup_ca(cgrp);
10434 int i;
10435
10436 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10437 percpu_counter_destroy(&ca->cpustat[i]);
10438 free_percpu(ca->cpuusage);
10439 kfree(ca);
10440 }
10441
10442 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10443 {
10444 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10445 u64 data;
10446
10447 #ifndef CONFIG_64BIT
10448 /*
10449 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10450 */
10451 spin_lock_irq(&cpu_rq(cpu)->lock);
10452 data = *cpuusage;
10453 spin_unlock_irq(&cpu_rq(cpu)->lock);
10454 #else
10455 data = *cpuusage;
10456 #endif
10457
10458 return data;
10459 }
10460
10461 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10462 {
10463 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10464
10465 #ifndef CONFIG_64BIT
10466 /*
10467 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10468 */
10469 spin_lock_irq(&cpu_rq(cpu)->lock);
10470 *cpuusage = val;
10471 spin_unlock_irq(&cpu_rq(cpu)->lock);
10472 #else
10473 *cpuusage = val;
10474 #endif
10475 }
10476
10477 /* return total cpu usage (in nanoseconds) of a group */
10478 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10479 {
10480 struct cpuacct *ca = cgroup_ca(cgrp);
10481 u64 totalcpuusage = 0;
10482 int i;
10483
10484 for_each_present_cpu(i)
10485 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10486
10487 return totalcpuusage;
10488 }
10489
10490 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10491 u64 reset)
10492 {
10493 struct cpuacct *ca = cgroup_ca(cgrp);
10494 int err = 0;
10495 int i;
10496
10497 if (reset) {
10498 err = -EINVAL;
10499 goto out;
10500 }
10501
10502 for_each_present_cpu(i)
10503 cpuacct_cpuusage_write(ca, i, 0);
10504
10505 out:
10506 return err;
10507 }
10508
10509 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10510 struct seq_file *m)
10511 {
10512 struct cpuacct *ca = cgroup_ca(cgroup);
10513 u64 percpu;
10514 int i;
10515
10516 for_each_present_cpu(i) {
10517 percpu = cpuacct_cpuusage_read(ca, i);
10518 seq_printf(m, "%llu ", (unsigned long long) percpu);
10519 }
10520 seq_printf(m, "\n");
10521 return 0;
10522 }
10523
10524 static const char *cpuacct_stat_desc[] = {
10525 [CPUACCT_STAT_USER] = "user",
10526 [CPUACCT_STAT_SYSTEM] = "system",
10527 };
10528
10529 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10530 struct cgroup_map_cb *cb)
10531 {
10532 struct cpuacct *ca = cgroup_ca(cgrp);
10533 int i;
10534
10535 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10536 s64 val = percpu_counter_read(&ca->cpustat[i]);
10537 val = cputime64_to_clock_t(val);
10538 cb->fill(cb, cpuacct_stat_desc[i], val);
10539 }
10540 return 0;
10541 }
10542
10543 static struct cftype files[] = {
10544 {
10545 .name = "usage",
10546 .read_u64 = cpuusage_read,
10547 .write_u64 = cpuusage_write,
10548 },
10549 {
10550 .name = "usage_percpu",
10551 .read_seq_string = cpuacct_percpu_seq_read,
10552 },
10553 {
10554 .name = "stat",
10555 .read_map = cpuacct_stats_show,
10556 },
10557 };
10558
10559 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10560 {
10561 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10562 }
10563
10564 /*
10565 * charge this task's execution time to its accounting group.
10566 *
10567 * called with rq->lock held.
10568 */
10569 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10570 {
10571 struct cpuacct *ca;
10572 int cpu;
10573
10574 if (unlikely(!cpuacct_subsys.active))
10575 return;
10576
10577 cpu = task_cpu(tsk);
10578
10579 rcu_read_lock();
10580
10581 ca = task_ca(tsk);
10582
10583 for (; ca; ca = ca->parent) {
10584 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10585 *cpuusage += cputime;
10586 }
10587
10588 rcu_read_unlock();
10589 }
10590
10591 /*
10592 * Charge the system/user time to the task's accounting group.
10593 */
10594 static void cpuacct_update_stats(struct task_struct *tsk,
10595 enum cpuacct_stat_index idx, cputime_t val)
10596 {
10597 struct cpuacct *ca;
10598
10599 if (unlikely(!cpuacct_subsys.active))
10600 return;
10601
10602 rcu_read_lock();
10603 ca = task_ca(tsk);
10604
10605 do {
10606 percpu_counter_add(&ca->cpustat[idx], val);
10607 ca = ca->parent;
10608 } while (ca);
10609 rcu_read_unlock();
10610 }
10611
10612 struct cgroup_subsys cpuacct_subsys = {
10613 .name = "cpuacct",
10614 .create = cpuacct_create,
10615 .destroy = cpuacct_destroy,
10616 .populate = cpuacct_populate,
10617 .subsys_id = cpuacct_subsys_id,
10618 };
10619 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.39692 seconds and 6 git commands to generate.