Merge branch 'bkl-removal' of git://git.lwn.net/linux-2.6
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 }
213
214 static inline int rt_bandwidth_enabled(void)
215 {
216 return sysctl_sched_rt_runtime >= 0;
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 ktime_t now;
222
223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240 }
241
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244 {
245 hrtimer_cancel(&rt_b->rt_period_timer);
246 }
247 #endif
248
249 /*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253 static DEFINE_MUTEX(sched_domains_mutex);
254
255 #ifdef CONFIG_GROUP_SCHED
256
257 #include <linux/cgroup.h>
258
259 struct cfs_rq;
260
261 static LIST_HEAD(task_groups);
262
263 /* task group related information */
264 struct task_group {
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css;
267 #endif
268
269 #ifdef CONFIG_USER_SCHED
270 uid_t uid;
271 #endif
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
285 struct rt_bandwidth rt_bandwidth;
286 #endif
287
288 struct rcu_head rcu;
289 struct list_head list;
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
294 };
295
296 #ifdef CONFIG_USER_SCHED
297
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct *user)
300 {
301 user->tg->uid = user->uid;
302 }
303
304 /*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309 struct task_group root_task_group;
310
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
317
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
325
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
328 */
329 static DEFINE_SPINLOCK(task_group_lock);
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
337
338 /*
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
346 #define MIN_SHARES 2
347 #define MAX_SHARES (1UL << 18)
348
349 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350 #endif
351
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
354 */
355 struct task_group init_task_group;
356
357 /* return group to which a task belongs */
358 static inline struct task_group *task_group(struct task_struct *p)
359 {
360 struct task_group *tg;
361
362 #ifdef CONFIG_USER_SCHED
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
369 #else
370 tg = &init_task_group;
371 #endif
372 return tg;
373 }
374
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
377 {
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
381 #endif
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
386 #endif
387 }
388
389 #else
390
391 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 static inline struct task_group *task_group(struct task_struct *p)
393 {
394 return NULL;
395 }
396
397 #endif /* CONFIG_GROUP_SCHED */
398
399 /* CFS-related fields in a runqueue */
400 struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
404 u64 exec_clock;
405 u64 min_vruntime;
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
417 struct sched_entity *curr, *next, *last;
418
419 unsigned int nr_spread_over;
420
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
434
435 #ifdef CONFIG_SMP
436 /*
437 * the part of load.weight contributed by tasks
438 */
439 unsigned long task_weight;
440
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
448
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
458 #endif
459 #endif
460 };
461
462 /* Real-Time classes' related field in a runqueue: */
463 struct rt_rq {
464 struct rt_prio_array active;
465 unsigned long rt_nr_running;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio; /* highest queued rt task prio */
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 int overloaded;
472 #endif
473 int rt_throttled;
474 u64 rt_time;
475 u64 rt_runtime;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock;
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted;
481
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486 #endif
487 };
488
489 #ifdef CONFIG_SMP
490
491 /*
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
498 */
499 struct root_domain {
500 atomic_t refcount;
501 cpumask_var_t span;
502 cpumask_var_t online;
503
504 /*
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
508 cpumask_var_t rto_mask;
509 atomic_t rto_count;
510 #ifdef CONFIG_SMP
511 struct cpupri cpupri;
512 #endif
513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520 #endif
521 };
522
523 /*
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
526 */
527 static struct root_domain def_root_domain;
528
529 #endif
530
531 /*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538 struct rq {
539 /* runqueue lock: */
540 spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned long nr_running;
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
549 unsigned char idle_at_tick;
550 #ifdef CONFIG_NO_HZ
551 unsigned long last_tick_seen;
552 unsigned char in_nohz_recently;
553 #endif
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load;
556 unsigned long nr_load_updates;
557 u64 nr_switches;
558
559 struct cfs_rq cfs;
560 struct rt_rq rt;
561
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list;
565 #endif
566 #ifdef CONFIG_RT_GROUP_SCHED
567 struct list_head leaf_rt_rq_list;
568 #endif
569
570 /*
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
575 */
576 unsigned long nr_uninterruptible;
577
578 struct task_struct *curr, *idle;
579 unsigned long next_balance;
580 struct mm_struct *prev_mm;
581
582 u64 clock;
583
584 atomic_t nr_iowait;
585
586 #ifdef CONFIG_SMP
587 struct root_domain *rd;
588 struct sched_domain *sd;
589
590 /* For active balancing */
591 int active_balance;
592 int push_cpu;
593 /* cpu of this runqueue: */
594 int cpu;
595 int online;
596
597 unsigned long avg_load_per_task;
598
599 struct task_struct *migration_thread;
600 struct list_head migration_queue;
601 #endif
602
603 #ifdef CONFIG_SCHED_HRTICK
604 #ifdef CONFIG_SMP
605 int hrtick_csd_pending;
606 struct call_single_data hrtick_csd;
607 #endif
608 struct hrtimer hrtick_timer;
609 #endif
610
611 #ifdef CONFIG_SCHEDSTATS
612 /* latency stats */
613 struct sched_info rq_sched_info;
614 unsigned long long rq_cpu_time;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616
617 /* sys_sched_yield() stats */
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
622
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
635 };
636
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
638
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
640 {
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
642 }
643
644 static inline int cpu_of(struct rq *rq)
645 {
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
651 }
652
653 /*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
662
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
668 static inline void update_rq_clock(struct rq *rq)
669 {
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671 }
672
673 /*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
678 #else
679 # define const_debug static const
680 #endif
681
682 /**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689 int runqueue_is_locked(void)
690 {
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698 }
699
700 /*
701 * Debugging: various feature bits
702 */
703
704 #define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
707 enum {
708 #include "sched_features.h"
709 };
710
711 #undef SCHED_FEAT
712
713 #define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
716 const_debug unsigned int sysctl_sched_features =
717 #include "sched_features.h"
718 0;
719
720 #undef SCHED_FEAT
721
722 #ifdef CONFIG_SCHED_DEBUG
723 #define SCHED_FEAT(name, enabled) \
724 #name ,
725
726 static __read_mostly char *sched_feat_names[] = {
727 #include "sched_features.h"
728 NULL
729 };
730
731 #undef SCHED_FEAT
732
733 static int sched_feat_show(struct seq_file *m, void *v)
734 {
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
741 }
742 seq_puts(m, "\n");
743
744 return 0;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static int sched_feat_open(struct inode *inode, struct file *filp)
790 {
791 return single_open(filp, sched_feat_show, NULL);
792 }
793
794 static struct file_operations sched_feat_fops = {
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
800 };
801
802 static __init int sched_init_debug(void)
803 {
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808 }
809 late_initcall(sched_init_debug);
810
811 #endif
812
813 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
814
815 /*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819 const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
821 /*
822 * ratelimit for updating the group shares.
823 * default: 0.25ms
824 */
825 unsigned int sysctl_sched_shares_ratelimit = 250000;
826
827 /*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832 unsigned int sysctl_sched_shares_thresh = 4;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130 }
1131
1132 static inline void init_hrtick(void)
1133 {
1134 }
1135 #endif /* CONFIG_SMP */
1136
1137 static void init_rq_hrtick(struct rq *rq)
1138 {
1139 #ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
1141
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145 #endif
1146
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1184 return;
1185
1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct *p)
1253 {
1254 assert_spin_locked(&task_rq(p)->lock);
1255 set_tsk_need_resched(p);
1256 }
1257 #endif /* CONFIG_SMP */
1258
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1261 #else
1262 # define WMULT_CONST (1UL << 32)
1263 #endif
1264
1265 #define WMULT_SHIFT 32
1266
1267 /*
1268 * Shift right and round:
1269 */
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1271
1272 /*
1273 * delta *= weight / lw
1274 */
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278 {
1279 u64 tmp;
1280
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
1293 if (unlikely(tmp > WMULT_CONST))
1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1295 WMULT_SHIFT/2);
1296 else
1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298
1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 }
1301
1302 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 {
1304 lw->weight += inc;
1305 lw->inv_weight = 0;
1306 }
1307
1308 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 {
1310 lw->weight -= dec;
1311 lw->inv_weight = 0;
1312 }
1313
1314 /*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1325
1326 /*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1337 */
1338 static const int prio_to_weight[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1347 };
1348
1349 /*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
1356 static const u32 prio_to_wmult[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1365 };
1366
1367 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369 /*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374 struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378 };
1379
1380 #ifdef CONFIG_SMP
1381 static unsigned long
1382 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387 static int
1388 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
1391 #endif
1392
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 #else
1396 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397 #endif
1398
1399 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400 {
1401 update_load_add(&rq->load, load);
1402 }
1403
1404 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_sub(&rq->load, load);
1407 }
1408
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor)(struct task_group *, void *);
1411
1412 /*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
1416 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 {
1418 struct task_group *parent, *child;
1419 int ret;
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423 down:
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431 up:
1432 continue;
1433 }
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
1442 out_unlock:
1443 rcu_read_unlock();
1444
1445 return ret;
1446 }
1447
1448 static int tg_nop(struct task_group *tg, void *data)
1449 {
1450 return 0;
1451 }
1452 #endif
1453
1454 #ifdef CONFIG_SMP
1455 static unsigned long source_load(int cpu, int type);
1456 static unsigned long target_load(int cpu, int type);
1457 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459 static unsigned long cpu_avg_load_per_task(int cpu)
1460 {
1461 struct rq *rq = cpu_rq(cpu);
1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1463
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
1466 else
1467 rq->avg_load_per_task = 0;
1468
1469 return rq->avg_load_per_task;
1470 }
1471
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1473
1474 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476 /*
1477 * Calculate and set the cpu's group shares.
1478 */
1479 static void
1480 update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
1482 {
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
1486 if (!tg->se[cpu])
1487 return;
1488
1489 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490
1491 /*
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1494 * \Sum rq_weight
1495 *
1496 */
1497 shares = (sd_shares * rq_weight) / sd_rq_weight;
1498 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1499
1500 if (abs(shares - tg->se[cpu]->load.weight) >
1501 sysctl_sched_shares_thresh) {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(&rq->lock, flags);
1506 tg->cfs_rq[cpu]->shares = shares;
1507
1508 __set_se_shares(tg->se[cpu], shares);
1509 spin_unlock_irqrestore(&rq->lock, flags);
1510 }
1511 }
1512
1513 /*
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
1517 */
1518 static int tg_shares_up(struct task_group *tg, void *data)
1519 {
1520 unsigned long weight, rq_weight = 0;
1521 unsigned long shares = 0;
1522 struct sched_domain *sd = data;
1523 int i;
1524
1525 for_each_cpu(i, sched_domain_span(sd)) {
1526 /*
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1530 */
1531 weight = tg->cfs_rq[i]->load.weight;
1532 if (!weight)
1533 weight = NICE_0_LOAD;
1534
1535 tg->cfs_rq[i]->rq_weight = weight;
1536 rq_weight += weight;
1537 shares += tg->cfs_rq[i]->shares;
1538 }
1539
1540 if ((!shares && rq_weight) || shares > tg->shares)
1541 shares = tg->shares;
1542
1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1544 shares = tg->shares;
1545
1546 for_each_cpu(i, sched_domain_span(sd))
1547 update_group_shares_cpu(tg, i, shares, rq_weight);
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1556 */
1557 static int tg_load_down(struct task_group *tg, void *data)
1558 {
1559 unsigned long load;
1560 long cpu = (long)data;
1561
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->cfs_rq[cpu]->shares;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
1569
1570 tg->cfs_rq[cpu]->h_load = load;
1571
1572 return 0;
1573 }
1574
1575 static void update_shares(struct sched_domain *sd)
1576 {
1577 u64 now = cpu_clock(raw_smp_processor_id());
1578 s64 elapsed = now - sd->last_update;
1579
1580 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1581 sd->last_update = now;
1582 walk_tg_tree(tg_nop, tg_shares_up, sd);
1583 }
1584 }
1585
1586 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1587 {
1588 spin_unlock(&rq->lock);
1589 update_shares(sd);
1590 spin_lock(&rq->lock);
1591 }
1592
1593 static void update_h_load(long cpu)
1594 {
1595 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 }
1597
1598 #else
1599
1600 static inline void update_shares(struct sched_domain *sd)
1601 {
1602 }
1603
1604 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1605 {
1606 }
1607
1608 #endif
1609
1610 /*
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1612 */
1613 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617 {
1618 int ret = 0;
1619
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq->lock);
1623 BUG_ON(1);
1624 }
1625 if (unlikely(!spin_trylock(&busiest->lock))) {
1626 if (busiest < this_rq) {
1627 spin_unlock(&this_rq->lock);
1628 spin_lock(&busiest->lock);
1629 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1630 ret = 1;
1631 } else
1632 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1633 }
1634 return ret;
1635 }
1636
1637 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639 {
1640 spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642 }
1643 #endif
1644
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1647 {
1648 #ifdef CONFIG_SMP
1649 cfs_rq->shares = shares;
1650 #endif
1651 }
1652 #endif
1653
1654 #include "sched_stats.h"
1655 #include "sched_idletask.c"
1656 #include "sched_fair.c"
1657 #include "sched_rt.c"
1658 #ifdef CONFIG_SCHED_DEBUG
1659 # include "sched_debug.c"
1660 #endif
1661
1662 #define sched_class_highest (&rt_sched_class)
1663 #define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
1665
1666 static void inc_nr_running(struct rq *rq)
1667 {
1668 rq->nr_running++;
1669 }
1670
1671 static void dec_nr_running(struct rq *rq)
1672 {
1673 rq->nr_running--;
1674 }
1675
1676 static void set_load_weight(struct task_struct *p)
1677 {
1678 if (task_has_rt_policy(p)) {
1679 p->se.load.weight = prio_to_weight[0] * 2;
1680 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1681 return;
1682 }
1683
1684 /*
1685 * SCHED_IDLE tasks get minimal weight:
1686 */
1687 if (p->policy == SCHED_IDLE) {
1688 p->se.load.weight = WEIGHT_IDLEPRIO;
1689 p->se.load.inv_weight = WMULT_IDLEPRIO;
1690 return;
1691 }
1692
1693 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1694 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 }
1696
1697 static void update_avg(u64 *avg, u64 sample)
1698 {
1699 s64 diff = sample - *avg;
1700 *avg += diff >> 3;
1701 }
1702
1703 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704 {
1705 sched_info_queued(p);
1706 p->sched_class->enqueue_task(rq, p, wakeup);
1707 p->se.on_rq = 1;
1708 }
1709
1710 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711 {
1712 if (sleep && p->se.last_wakeup) {
1713 update_avg(&p->se.avg_overlap,
1714 p->se.sum_exec_runtime - p->se.last_wakeup);
1715 p->se.last_wakeup = 0;
1716 }
1717
1718 sched_info_dequeued(p);
1719 p->sched_class->dequeue_task(rq, p, sleep);
1720 p->se.on_rq = 0;
1721 }
1722
1723 /*
1724 * __normal_prio - return the priority that is based on the static prio
1725 */
1726 static inline int __normal_prio(struct task_struct *p)
1727 {
1728 return p->static_prio;
1729 }
1730
1731 /*
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1737 */
1738 static inline int normal_prio(struct task_struct *p)
1739 {
1740 int prio;
1741
1742 if (task_has_rt_policy(p))
1743 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 else
1745 prio = __normal_prio(p);
1746 return prio;
1747 }
1748
1749 /*
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1755 */
1756 static int effective_prio(struct task_struct *p)
1757 {
1758 p->normal_prio = normal_prio(p);
1759 /*
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1763 */
1764 if (!rt_prio(p->prio))
1765 return p->normal_prio;
1766 return p->prio;
1767 }
1768
1769 /*
1770 * activate_task - move a task to the runqueue.
1771 */
1772 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1773 {
1774 if (task_contributes_to_load(p))
1775 rq->nr_uninterruptible--;
1776
1777 enqueue_task(rq, p, wakeup);
1778 inc_nr_running(rq);
1779 }
1780
1781 /*
1782 * deactivate_task - remove a task from the runqueue.
1783 */
1784 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1785 {
1786 if (task_contributes_to_load(p))
1787 rq->nr_uninterruptible++;
1788
1789 dequeue_task(rq, p, sleep);
1790 dec_nr_running(rq);
1791 }
1792
1793 /**
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1796 */
1797 inline int task_curr(const struct task_struct *p)
1798 {
1799 return cpu_curr(task_cpu(p)) == p;
1800 }
1801
1802 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803 {
1804 set_task_rq(p, cpu);
1805 #ifdef CONFIG_SMP
1806 /*
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1810 */
1811 smp_wmb();
1812 task_thread_info(p)->cpu = cpu;
1813 #endif
1814 }
1815
1816 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1817 const struct sched_class *prev_class,
1818 int oldprio, int running)
1819 {
1820 if (prev_class != p->sched_class) {
1821 if (prev_class->switched_from)
1822 prev_class->switched_from(rq, p, running);
1823 p->sched_class->switched_to(rq, p, running);
1824 } else
1825 p->sched_class->prio_changed(rq, p, oldprio, running);
1826 }
1827
1828 #ifdef CONFIG_SMP
1829
1830 /* Used instead of source_load when we know the type == 0 */
1831 static unsigned long weighted_cpuload(const int cpu)
1832 {
1833 return cpu_rq(cpu)->load.weight;
1834 }
1835
1836 /*
1837 * Is this task likely cache-hot:
1838 */
1839 static int
1840 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1841 {
1842 s64 delta;
1843
1844 /*
1845 * Buddy candidates are cache hot:
1846 */
1847 if (sched_feat(CACHE_HOT_BUDDY) &&
1848 (&p->se == cfs_rq_of(&p->se)->next ||
1849 &p->se == cfs_rq_of(&p->se)->last))
1850 return 1;
1851
1852 if (p->sched_class != &fair_sched_class)
1853 return 0;
1854
1855 if (sysctl_sched_migration_cost == -1)
1856 return 1;
1857 if (sysctl_sched_migration_cost == 0)
1858 return 0;
1859
1860 delta = now - p->se.exec_start;
1861
1862 return delta < (s64)sysctl_sched_migration_cost;
1863 }
1864
1865
1866 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1867 {
1868 int old_cpu = task_cpu(p);
1869 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1870 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1871 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1872 u64 clock_offset;
1873
1874 clock_offset = old_rq->clock - new_rq->clock;
1875
1876 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1877
1878 #ifdef CONFIG_SCHEDSTATS
1879 if (p->se.wait_start)
1880 p->se.wait_start -= clock_offset;
1881 if (p->se.sleep_start)
1882 p->se.sleep_start -= clock_offset;
1883 if (p->se.block_start)
1884 p->se.block_start -= clock_offset;
1885 if (old_cpu != new_cpu) {
1886 schedstat_inc(p, se.nr_migrations);
1887 if (task_hot(p, old_rq->clock, NULL))
1888 schedstat_inc(p, se.nr_forced2_migrations);
1889 }
1890 #endif
1891 p->se.vruntime -= old_cfsrq->min_vruntime -
1892 new_cfsrq->min_vruntime;
1893
1894 __set_task_cpu(p, new_cpu);
1895 }
1896
1897 struct migration_req {
1898 struct list_head list;
1899
1900 struct task_struct *task;
1901 int dest_cpu;
1902
1903 struct completion done;
1904 };
1905
1906 /*
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1909 */
1910 static int
1911 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1912 {
1913 struct rq *rq = task_rq(p);
1914
1915 /*
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1918 */
1919 if (!p->se.on_rq && !task_running(rq, p)) {
1920 set_task_cpu(p, dest_cpu);
1921 return 0;
1922 }
1923
1924 init_completion(&req->done);
1925 req->task = p;
1926 req->dest_cpu = dest_cpu;
1927 list_add(&req->list, &rq->migration_queue);
1928
1929 return 1;
1930 }
1931
1932 /*
1933 * wait_task_inactive - wait for a thread to unschedule.
1934 *
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1941 *
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1947 */
1948 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1949 {
1950 unsigned long flags;
1951 int running, on_rq;
1952 unsigned long ncsw;
1953 struct rq *rq;
1954
1955 for (;;) {
1956 /*
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1960 * work out!
1961 */
1962 rq = task_rq(p);
1963
1964 /*
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1967 * any locks.
1968 *
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1974 */
1975 while (task_running(rq, p)) {
1976 if (match_state && unlikely(p->state != match_state))
1977 return 0;
1978 cpu_relax();
1979 }
1980
1981 /*
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1985 */
1986 rq = task_rq_lock(p, &flags);
1987 trace_sched_wait_task(rq, p);
1988 running = task_running(rq, p);
1989 on_rq = p->se.on_rq;
1990 ncsw = 0;
1991 if (!match_state || p->state == match_state)
1992 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1993 task_rq_unlock(rq, &flags);
1994
1995 /*
1996 * If it changed from the expected state, bail out now.
1997 */
1998 if (unlikely(!ncsw))
1999 break;
2000
2001 /*
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2004 *
2005 * Oops. Go back and try again..
2006 */
2007 if (unlikely(running)) {
2008 cpu_relax();
2009 continue;
2010 }
2011
2012 /*
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2015 * preempted!
2016 *
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2020 */
2021 if (unlikely(on_rq)) {
2022 schedule_timeout_uninterruptible(1);
2023 continue;
2024 }
2025
2026 /*
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2030 */
2031 break;
2032 }
2033
2034 return ncsw;
2035 }
2036
2037 /***
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2040 *
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2043 *
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2048 * achieved as well.
2049 */
2050 void kick_process(struct task_struct *p)
2051 {
2052 int cpu;
2053
2054 preempt_disable();
2055 cpu = task_cpu(p);
2056 if ((cpu != smp_processor_id()) && task_curr(p))
2057 smp_send_reschedule(cpu);
2058 preempt_enable();
2059 }
2060
2061 /*
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
2064 *
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2067 */
2068 static unsigned long source_load(int cpu, int type)
2069 {
2070 struct rq *rq = cpu_rq(cpu);
2071 unsigned long total = weighted_cpuload(cpu);
2072
2073 if (type == 0 || !sched_feat(LB_BIAS))
2074 return total;
2075
2076 return min(rq->cpu_load[type-1], total);
2077 }
2078
2079 /*
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
2082 */
2083 static unsigned long target_load(int cpu, int type)
2084 {
2085 struct rq *rq = cpu_rq(cpu);
2086 unsigned long total = weighted_cpuload(cpu);
2087
2088 if (type == 0 || !sched_feat(LB_BIAS))
2089 return total;
2090
2091 return max(rq->cpu_load[type-1], total);
2092 }
2093
2094 /*
2095 * find_idlest_group finds and returns the least busy CPU group within the
2096 * domain.
2097 */
2098 static struct sched_group *
2099 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2100 {
2101 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2102 unsigned long min_load = ULONG_MAX, this_load = 0;
2103 int load_idx = sd->forkexec_idx;
2104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2105
2106 do {
2107 unsigned long load, avg_load;
2108 int local_group;
2109 int i;
2110
2111 /* Skip over this group if it has no CPUs allowed */
2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
2114 continue;
2115
2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
2118
2119 /* Tally up the load of all CPUs in the group */
2120 avg_load = 0;
2121
2122 for_each_cpu(i, sched_group_cpus(group)) {
2123 /* Bias balancing toward cpus of our domain */
2124 if (local_group)
2125 load = source_load(i, load_idx);
2126 else
2127 load = target_load(i, load_idx);
2128
2129 avg_load += load;
2130 }
2131
2132 /* Adjust by relative CPU power of the group */
2133 avg_load = sg_div_cpu_power(group,
2134 avg_load * SCHED_LOAD_SCALE);
2135
2136 if (local_group) {
2137 this_load = avg_load;
2138 this = group;
2139 } else if (avg_load < min_load) {
2140 min_load = avg_load;
2141 idlest = group;
2142 }
2143 } while (group = group->next, group != sd->groups);
2144
2145 if (!idlest || 100*this_load < imbalance*min_load)
2146 return NULL;
2147 return idlest;
2148 }
2149
2150 /*
2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2152 */
2153 static int
2154 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2155 {
2156 unsigned long load, min_load = ULONG_MAX;
2157 int idlest = -1;
2158 int i;
2159
2160 /* Traverse only the allowed CPUs */
2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2162 load = weighted_cpuload(i);
2163
2164 if (load < min_load || (load == min_load && i == this_cpu)) {
2165 min_load = load;
2166 idlest = i;
2167 }
2168 }
2169
2170 return idlest;
2171 }
2172
2173 /*
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2176 * SD_BALANCE_EXEC.
2177 *
2178 * Balance, ie. select the least loaded group.
2179 *
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2181 *
2182 * preempt must be disabled.
2183 */
2184 static int sched_balance_self(int cpu, int flag)
2185 {
2186 struct task_struct *t = current;
2187 struct sched_domain *tmp, *sd = NULL;
2188
2189 for_each_domain(cpu, tmp) {
2190 /*
2191 * If power savings logic is enabled for a domain, stop there.
2192 */
2193 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2194 break;
2195 if (tmp->flags & flag)
2196 sd = tmp;
2197 }
2198
2199 if (sd)
2200 update_shares(sd);
2201
2202 while (sd) {
2203 struct sched_group *group;
2204 int new_cpu, weight;
2205
2206 if (!(sd->flags & flag)) {
2207 sd = sd->child;
2208 continue;
2209 }
2210
2211 group = find_idlest_group(sd, t, cpu);
2212 if (!group) {
2213 sd = sd->child;
2214 continue;
2215 }
2216
2217 new_cpu = find_idlest_cpu(group, t, cpu);
2218 if (new_cpu == -1 || new_cpu == cpu) {
2219 /* Now try balancing at a lower domain level of cpu */
2220 sd = sd->child;
2221 continue;
2222 }
2223
2224 /* Now try balancing at a lower domain level of new_cpu */
2225 cpu = new_cpu;
2226 weight = cpumask_weight(sched_domain_span(sd));
2227 sd = NULL;
2228 for_each_domain(cpu, tmp) {
2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2230 break;
2231 if (tmp->flags & flag)
2232 sd = tmp;
2233 }
2234 /* while loop will break here if sd == NULL */
2235 }
2236
2237 return cpu;
2238 }
2239
2240 #endif /* CONFIG_SMP */
2241
2242 /***
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2247 *
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2253 *
2254 * returns failure only if the task is already active.
2255 */
2256 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2257 {
2258 int cpu, orig_cpu, this_cpu, success = 0;
2259 unsigned long flags;
2260 long old_state;
2261 struct rq *rq;
2262
2263 if (!sched_feat(SYNC_WAKEUPS))
2264 sync = 0;
2265
2266 #ifdef CONFIG_SMP
2267 if (sched_feat(LB_WAKEUP_UPDATE)) {
2268 struct sched_domain *sd;
2269
2270 this_cpu = raw_smp_processor_id();
2271 cpu = task_cpu(p);
2272
2273 for_each_domain(this_cpu, sd) {
2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2275 update_shares(sd);
2276 break;
2277 }
2278 }
2279 }
2280 #endif
2281
2282 smp_wmb();
2283 rq = task_rq_lock(p, &flags);
2284 update_rq_clock(rq);
2285 old_state = p->state;
2286 if (!(old_state & state))
2287 goto out;
2288
2289 if (p->se.on_rq)
2290 goto out_running;
2291
2292 cpu = task_cpu(p);
2293 orig_cpu = cpu;
2294 this_cpu = smp_processor_id();
2295
2296 #ifdef CONFIG_SMP
2297 if (unlikely(task_running(rq, p)))
2298 goto out_activate;
2299
2300 cpu = p->sched_class->select_task_rq(p, sync);
2301 if (cpu != orig_cpu) {
2302 set_task_cpu(p, cpu);
2303 task_rq_unlock(rq, &flags);
2304 /* might preempt at this point */
2305 rq = task_rq_lock(p, &flags);
2306 old_state = p->state;
2307 if (!(old_state & state))
2308 goto out;
2309 if (p->se.on_rq)
2310 goto out_running;
2311
2312 this_cpu = smp_processor_id();
2313 cpu = task_cpu(p);
2314 }
2315
2316 #ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq, ttwu_count);
2318 if (cpu == this_cpu)
2319 schedstat_inc(rq, ttwu_local);
2320 else {
2321 struct sched_domain *sd;
2322 for_each_domain(this_cpu, sd) {
2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2324 schedstat_inc(sd, ttwu_wake_remote);
2325 break;
2326 }
2327 }
2328 }
2329 #endif /* CONFIG_SCHEDSTATS */
2330
2331 out_activate:
2332 #endif /* CONFIG_SMP */
2333 schedstat_inc(p, se.nr_wakeups);
2334 if (sync)
2335 schedstat_inc(p, se.nr_wakeups_sync);
2336 if (orig_cpu != cpu)
2337 schedstat_inc(p, se.nr_wakeups_migrate);
2338 if (cpu == this_cpu)
2339 schedstat_inc(p, se.nr_wakeups_local);
2340 else
2341 schedstat_inc(p, se.nr_wakeups_remote);
2342 activate_task(rq, p, 1);
2343 success = 1;
2344
2345 out_running:
2346 trace_sched_wakeup(rq, p, success);
2347 check_preempt_curr(rq, p, sync);
2348
2349 p->state = TASK_RUNNING;
2350 #ifdef CONFIG_SMP
2351 if (p->sched_class->task_wake_up)
2352 p->sched_class->task_wake_up(rq, p);
2353 #endif
2354 out:
2355 current->se.last_wakeup = current->se.sum_exec_runtime;
2356
2357 task_rq_unlock(rq, &flags);
2358
2359 return success;
2360 }
2361
2362 int wake_up_process(struct task_struct *p)
2363 {
2364 return try_to_wake_up(p, TASK_ALL, 0);
2365 }
2366 EXPORT_SYMBOL(wake_up_process);
2367
2368 int wake_up_state(struct task_struct *p, unsigned int state)
2369 {
2370 return try_to_wake_up(p, state, 0);
2371 }
2372
2373 /*
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
2376 *
2377 * __sched_fork() is basic setup used by init_idle() too:
2378 */
2379 static void __sched_fork(struct task_struct *p)
2380 {
2381 p->se.exec_start = 0;
2382 p->se.sum_exec_runtime = 0;
2383 p->se.prev_sum_exec_runtime = 0;
2384 p->se.last_wakeup = 0;
2385 p->se.avg_overlap = 0;
2386
2387 #ifdef CONFIG_SCHEDSTATS
2388 p->se.wait_start = 0;
2389 p->se.sum_sleep_runtime = 0;
2390 p->se.sleep_start = 0;
2391 p->se.block_start = 0;
2392 p->se.sleep_max = 0;
2393 p->se.block_max = 0;
2394 p->se.exec_max = 0;
2395 p->se.slice_max = 0;
2396 p->se.wait_max = 0;
2397 #endif
2398
2399 INIT_LIST_HEAD(&p->rt.run_list);
2400 p->se.on_rq = 0;
2401 INIT_LIST_HEAD(&p->se.group_node);
2402
2403 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p->preempt_notifiers);
2405 #endif
2406
2407 /*
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_RUNNING;
2414 }
2415
2416 /*
2417 * fork()/clone()-time setup:
2418 */
2419 void sched_fork(struct task_struct *p, int clone_flags)
2420 {
2421 int cpu = get_cpu();
2422
2423 __sched_fork(p);
2424
2425 #ifdef CONFIG_SMP
2426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2427 #endif
2428 set_task_cpu(p, cpu);
2429
2430 /*
2431 * Make sure we do not leak PI boosting priority to the child:
2432 */
2433 p->prio = current->normal_prio;
2434 if (!rt_prio(p->prio))
2435 p->sched_class = &fair_sched_class;
2436
2437 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2438 if (likely(sched_info_on()))
2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
2440 #endif
2441 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2442 p->oncpu = 0;
2443 #endif
2444 #ifdef CONFIG_PREEMPT
2445 /* Want to start with kernel preemption disabled. */
2446 task_thread_info(p)->preempt_count = 1;
2447 #endif
2448 put_cpu();
2449 }
2450
2451 /*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
2458 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2459 {
2460 unsigned long flags;
2461 struct rq *rq;
2462
2463 rq = task_rq_lock(p, &flags);
2464 BUG_ON(p->state != TASK_RUNNING);
2465 update_rq_clock(rq);
2466
2467 p->prio = effective_prio(p);
2468
2469 if (!p->sched_class->task_new || !current->se.on_rq) {
2470 activate_task(rq, p, 0);
2471 } else {
2472 /*
2473 * Let the scheduling class do new task startup
2474 * management (if any):
2475 */
2476 p->sched_class->task_new(rq, p);
2477 inc_nr_running(rq);
2478 }
2479 trace_sched_wakeup_new(rq, p, 1);
2480 check_preempt_curr(rq, p, 0);
2481 #ifdef CONFIG_SMP
2482 if (p->sched_class->task_wake_up)
2483 p->sched_class->task_wake_up(rq, p);
2484 #endif
2485 task_rq_unlock(rq, &flags);
2486 }
2487
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490 /**
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
2493 */
2494 void preempt_notifier_register(struct preempt_notifier *notifier)
2495 {
2496 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2497 }
2498 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2499
2500 /**
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
2502 * @notifier: notifier struct to unregister
2503 *
2504 * This is safe to call from within a preemption notifier.
2505 */
2506 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2507 {
2508 hlist_del(&notifier->link);
2509 }
2510 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2511
2512 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 struct preempt_notifier *notifier;
2515 struct hlist_node *node;
2516
2517 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2519 }
2520
2521 static void
2522 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524 {
2525 struct preempt_notifier *notifier;
2526 struct hlist_node *node;
2527
2528 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_out(notifier, next);
2530 }
2531
2532 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2533
2534 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2535 {
2536 }
2537
2538 static void
2539 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541 {
2542 }
2543
2544 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2545
2546 /**
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
2549 * @prev: the current task that is being switched out
2550 * @next: the task we are going to switch to.
2551 *
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2554 * switch.
2555 *
2556 * prepare_task_switch sets up locking and calls architecture specific
2557 * hooks.
2558 */
2559 static inline void
2560 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
2562 {
2563 fire_sched_out_preempt_notifiers(prev, next);
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566 }
2567
2568 /**
2569 * finish_task_switch - clean up after a task-switch
2570 * @rq: runqueue associated with task-switch
2571 * @prev: the thread we just switched away from.
2572 *
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
2577 *
2578 * Note that we may have delayed dropping an mm in context_switch(). If
2579 * so, we finish that here outside of the runqueue lock. (Doing it
2580 * with the lock held can cause deadlocks; see schedule() for
2581 * details.)
2582 */
2583 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2584 __releases(rq->lock)
2585 {
2586 struct mm_struct *mm = rq->prev_mm;
2587 long prev_state;
2588
2589 rq->prev_mm = NULL;
2590
2591 /*
2592 * A task struct has one reference for the use as "current".
2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
2596 * The test for TASK_DEAD must occur while the runqueue locks are
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2599 * be dropped twice.
2600 * Manfred Spraul <manfred@colorfullife.com>
2601 */
2602 prev_state = prev->state;
2603 finish_arch_switch(prev);
2604 finish_lock_switch(rq, prev);
2605 #ifdef CONFIG_SMP
2606 if (current->sched_class->post_schedule)
2607 current->sched_class->post_schedule(rq);
2608 #endif
2609
2610 fire_sched_in_preempt_notifiers(current);
2611 if (mm)
2612 mmdrop(mm);
2613 if (unlikely(prev_state == TASK_DEAD)) {
2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2617 */
2618 kprobe_flush_task(prev);
2619 put_task_struct(prev);
2620 }
2621 }
2622
2623 /**
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2626 */
2627 asmlinkage void schedule_tail(struct task_struct *prev)
2628 __releases(rq->lock)
2629 {
2630 struct rq *rq = this_rq();
2631
2632 finish_task_switch(rq, prev);
2633 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2635 preempt_enable();
2636 #endif
2637 if (current->set_child_tid)
2638 put_user(task_pid_vnr(current), current->set_child_tid);
2639 }
2640
2641 /*
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2644 */
2645 static inline void
2646 context_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
2648 {
2649 struct mm_struct *mm, *oldmm;
2650
2651 prepare_task_switch(rq, prev, next);
2652 trace_sched_switch(rq, prev, next);
2653 mm = next->mm;
2654 oldmm = prev->active_mm;
2655 /*
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2658 * one hypercall.
2659 */
2660 arch_enter_lazy_cpu_mode();
2661
2662 if (unlikely(!mm)) {
2663 next->active_mm = oldmm;
2664 atomic_inc(&oldmm->mm_count);
2665 enter_lazy_tlb(oldmm, next);
2666 } else
2667 switch_mm(oldmm, mm, next);
2668
2669 if (unlikely(!prev->mm)) {
2670 prev->active_mm = NULL;
2671 rq->prev_mm = oldmm;
2672 }
2673 /*
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2678 */
2679 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2681 #endif
2682
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev, next, prev);
2685
2686 barrier();
2687 /*
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2691 */
2692 finish_task_switch(this_rq(), prev);
2693 }
2694
2695 /*
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2697 *
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2701 */
2702 unsigned long nr_running(void)
2703 {
2704 unsigned long i, sum = 0;
2705
2706 for_each_online_cpu(i)
2707 sum += cpu_rq(i)->nr_running;
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_uninterruptible(void)
2713 {
2714 unsigned long i, sum = 0;
2715
2716 for_each_possible_cpu(i)
2717 sum += cpu_rq(i)->nr_uninterruptible;
2718
2719 /*
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2722 */
2723 if (unlikely((long)sum < 0))
2724 sum = 0;
2725
2726 return sum;
2727 }
2728
2729 unsigned long long nr_context_switches(void)
2730 {
2731 int i;
2732 unsigned long long sum = 0;
2733
2734 for_each_possible_cpu(i)
2735 sum += cpu_rq(i)->nr_switches;
2736
2737 return sum;
2738 }
2739
2740 unsigned long nr_iowait(void)
2741 {
2742 unsigned long i, sum = 0;
2743
2744 for_each_possible_cpu(i)
2745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746
2747 return sum;
2748 }
2749
2750 unsigned long nr_active(void)
2751 {
2752 unsigned long i, running = 0, uninterruptible = 0;
2753
2754 for_each_online_cpu(i) {
2755 running += cpu_rq(i)->nr_running;
2756 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2757 }
2758
2759 if (unlikely((long)uninterruptible < 0))
2760 uninterruptible = 0;
2761
2762 return running + uninterruptible;
2763 }
2764
2765 /*
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
2768 */
2769 static void update_cpu_load(struct rq *this_rq)
2770 {
2771 unsigned long this_load = this_rq->load.weight;
2772 int i, scale;
2773
2774 this_rq->nr_load_updates++;
2775
2776 /* Update our load: */
2777 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2778 unsigned long old_load, new_load;
2779
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2781
2782 old_load = this_rq->cpu_load[i];
2783 new_load = this_load;
2784 /*
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2787 * example.
2788 */
2789 if (new_load > old_load)
2790 new_load += scale-1;
2791 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2792 }
2793 }
2794
2795 #ifdef CONFIG_SMP
2796
2797 /*
2798 * double_rq_lock - safely lock two runqueues
2799 *
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2802 */
2803 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2804 __acquires(rq1->lock)
2805 __acquires(rq2->lock)
2806 {
2807 BUG_ON(!irqs_disabled());
2808 if (rq1 == rq2) {
2809 spin_lock(&rq1->lock);
2810 __acquire(rq2->lock); /* Fake it out ;) */
2811 } else {
2812 if (rq1 < rq2) {
2813 spin_lock(&rq1->lock);
2814 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2815 } else {
2816 spin_lock(&rq2->lock);
2817 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2818 }
2819 }
2820 update_rq_clock(rq1);
2821 update_rq_clock(rq2);
2822 }
2823
2824 /*
2825 * double_rq_unlock - safely unlock two runqueues
2826 *
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2829 */
2830 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2831 __releases(rq1->lock)
2832 __releases(rq2->lock)
2833 {
2834 spin_unlock(&rq1->lock);
2835 if (rq1 != rq2)
2836 spin_unlock(&rq2->lock);
2837 else
2838 __release(rq2->lock);
2839 }
2840
2841 /*
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2845 * the cpu_allowed mask is restored.
2846 */
2847 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2848 {
2849 struct migration_req req;
2850 unsigned long flags;
2851 struct rq *rq;
2852
2853 rq = task_rq_lock(p, &flags);
2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2855 || unlikely(!cpu_active(dest_cpu)))
2856 goto out;
2857
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
2862
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
2868
2869 return;
2870 }
2871 out:
2872 task_rq_unlock(rq, &flags);
2873 }
2874
2875 /*
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
2878 */
2879 void sched_exec(void)
2880 {
2881 int new_cpu, this_cpu = get_cpu();
2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2883 put_cpu();
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
2886 }
2887
2888 /*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
2892 static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
2894 {
2895 deactivate_task(src_rq, p, 0);
2896 set_task_cpu(p, this_cpu);
2897 activate_task(this_rq, p, 0);
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
2902 check_preempt_curr(this_rq, p, 0);
2903 }
2904
2905 /*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
2908 static
2909 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2910 struct sched_domain *sd, enum cpu_idle_type idle,
2911 int *all_pinned)
2912 {
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920 schedstat_inc(p, se.nr_failed_migrations_affine);
2921 return 0;
2922 }
2923 *all_pinned = 0;
2924
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
2927 return 0;
2928 }
2929
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
2938 #ifdef CONFIG_SCHEDSTATS
2939 if (task_hot(p, rq->clock, sd)) {
2940 schedstat_inc(sd, lb_hot_gained[idle]);
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
2943 #endif
2944 return 1;
2945 }
2946
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
2949 return 0;
2950 }
2951 return 1;
2952 }
2953
2954 static unsigned long
2955 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
2959 {
2960 int loops = 0, pulled = 0, pinned = 0;
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
2963
2964 if (max_load_move == 0)
2965 goto out;
2966
2967 pinned = 1;
2968
2969 /*
2970 * Start the load-balancing iterator:
2971 */
2972 p = iterator->start(iterator->arg);
2973 next:
2974 if (!p || loops++ > sysctl_sched_nr_migrate)
2975 goto out;
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2979 p = iterator->next(iterator->arg);
2980 goto next;
2981 }
2982
2983 pull_task(busiest, p, this_rq, this_cpu);
2984 pulled++;
2985 rem_load_move -= p->se.load.weight;
2986
2987 /*
2988 * We only want to steal up to the prescribed amount of weighted load.
2989 */
2990 if (rem_load_move > 0) {
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
2993 p = iterator->next(iterator->arg);
2994 goto next;
2995 }
2996 out:
2997 /*
2998 * Right now, this is one of only two places pull_task() is called,
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
3006
3007 return max_load_move - rem_load_move;
3008 }
3009
3010 /*
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
3014 *
3015 * Called with both runqueues locked.
3016 */
3017 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3018 unsigned long max_load_move,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021 {
3022 const struct sched_class *class = sched_class_highest;
3023 unsigned long total_load_moved = 0;
3024 int this_best_prio = this_rq->curr->prio;
3025
3026 do {
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
3029 max_load_move - total_load_moved,
3030 sd, idle, all_pinned, &this_best_prio);
3031 class = class->next;
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
3036 } while (class && max_load_move > total_load_moved);
3037
3038 return total_load_moved > 0;
3039 }
3040
3041 static int
3042 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045 {
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076 {
3077 const struct sched_class *class;
3078
3079 for (class = sched_class_highest; class; class = class->next)
3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3081 return 1;
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * find_busiest_group finds and returns the busiest CPU group within the
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
3090 */
3091 static struct sched_group *
3092 find_busiest_group(struct sched_domain *sd, int this_cpu,
3093 unsigned long *imbalance, enum cpu_idle_type idle,
3094 int *sd_idle, const struct cpumask *cpus, int *balance)
3095 {
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098 unsigned long max_pull;
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
3101 int load_idx, group_imb = 0;
3102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107 #endif
3108
3109 max_load = this_load = total_load = total_pwr = 0;
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
3112
3113 if (idle == CPU_NOT_IDLE)
3114 load_idx = sd->busy_idx;
3115 else if (idle == CPU_NEWLY_IDLE)
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
3119
3120 do {
3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3122 int local_group;
3123 int i;
3124 int __group_imb = 0;
3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126 unsigned long sum_nr_running, sum_weighted_load;
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
3129
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
3132
3133 if (local_group)
3134 balance_cpu = cpumask_first(sched_group_cpus(group));
3135
3136 /* Tally up the load of all CPUs in the group */
3137 sum_weighted_load = sum_nr_running = avg_load = 0;
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
3142
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
3145
3146 if (*sd_idle && rq->nr_running)
3147 *sd_idle = 0;
3148
3149 /* Bias balancing toward cpus of our domain */
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
3156 load = target_load(i, load_idx);
3157 } else {
3158 load = source_load(i, load_idx);
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
3164
3165 avg_load += load;
3166 sum_nr_running += rq->nr_running;
3167 sum_weighted_load += weighted_cpuload(i);
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3170 }
3171
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3177 */
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
3180 *balance = 0;
3181 goto ret;
3182 }
3183
3184 total_load += avg_load;
3185 total_pwr += group->__cpu_power;
3186
3187 /* Adjust by relative CPU power of the group */
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
3190
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 __group_imb = 1;
3206
3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
3215 (sum_nr_running > group_capacity || __group_imb)) {
3216 max_load = avg_load;
3217 busiest = group;
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
3220 group_imb = __group_imb;
3221 }
3222
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
3240 /*
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
3245 || !sum_nr_running)
3246 goto group_next;
3247
3248 /*
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
3255 cpumask_first(sched_group_cpus(group)) >
3256 cpumask_first(sched_group_cpus(group_min)))) {
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
3261 }
3262
3263 /*
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 cpumask_first(sched_group_cpus(group)) <
3272 cpumask_first(sched_group_cpus(group_leader)))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
3276 }
3277 group_next:
3278 #endif
3279 group = group->next;
3280 } while (group != sd->groups);
3281
3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
3291 busiest_load_per_task /= busiest_nr_running;
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3305 */
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
3325 / SCHED_LOAD_SCALE;
3326
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
3333 if (*imbalance < busiest_load_per_task) {
3334 unsigned long tmp, pwr_now, pwr_move;
3335 unsigned int imbn;
3336
3337 small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3346
3347 if (max_load - this_load + busiest_load_per_task >=
3348 busiest_load_per_task * imbn) {
3349 *imbalance = busiest_load_per_task;
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
3368 if (max_load > tmp)
3369 pwr_move += busiest->__cpu_power *
3370 min(busiest_load_per_task, max_load - tmp);
3371
3372 /* Amount of load we'd add */
3373 if (max_load * busiest->__cpu_power <
3374 busiest_load_per_task * SCHED_LOAD_SCALE)
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
3377 else
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
3387 }
3388
3389 return busiest;
3390
3391 out_balanced:
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 goto ret;
3395
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 cpumask_first(sched_group_cpus(group_leader));
3401 }
3402 return group_min;
3403 }
3404 #endif
3405 ret:
3406 *imbalance = 0;
3407 return NULL;
3408 }
3409
3410 /*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
3413 static struct rq *
3414 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415 unsigned long imbalance, const struct cpumask *cpus)
3416 {
3417 struct rq *busiest = NULL, *rq;
3418 unsigned long max_load = 0;
3419 int i;
3420
3421 for_each_cpu(i, sched_group_cpus(group)) {
3422 unsigned long wl;
3423
3424 if (!cpumask_test_cpu(i, cpus))
3425 continue;
3426
3427 rq = cpu_rq(i);
3428 wl = weighted_cpuload(i);
3429
3430 if (rq->nr_running == 1 && wl > imbalance)
3431 continue;
3432
3433 if (wl > max_load) {
3434 max_load = wl;
3435 busiest = rq;
3436 }
3437 }
3438
3439 return busiest;
3440 }
3441
3442 /*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446 #define MAX_PINNED_INTERVAL 512
3447
3448 /*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
3451 */
3452 static int load_balance(int this_cpu, struct rq *this_rq,
3453 struct sched_domain *sd, enum cpu_idle_type idle,
3454 int *balance, struct cpumask *cpus)
3455 {
3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3457 struct sched_group *group;
3458 unsigned long imbalance;
3459 struct rq *busiest;
3460 unsigned long flags;
3461
3462 cpumask_setall(cpus);
3463
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3468 * portraying it as CPU_NOT_IDLE.
3469 */
3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3472 sd_idle = 1;
3473
3474 schedstat_inc(sd, lb_count[idle]);
3475
3476 redo:
3477 update_shares(sd);
3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479 cpus, balance);
3480
3481 if (*balance == 0)
3482 goto out_balanced;
3483
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
3495 BUG_ON(busiest == this_rq);
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
3499 ld_moved = 0;
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
3504 * still unbalanced. ld_moved simply stays zero, so it is
3505 * correctly treated as an imbalance.
3506 */
3507 local_irq_save(flags);
3508 double_rq_lock(this_rq, busiest);
3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510 imbalance, sd, idle, &all_pinned);
3511 double_rq_unlock(this_rq, busiest);
3512 local_irq_restore(flags);
3513
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
3517 if (ld_moved && this_cpu != smp_processor_id())
3518 resched_cpu(this_cpu);
3519
3520 /* All tasks on this runqueue were pinned by CPU affinity */
3521 if (unlikely(all_pinned)) {
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
3524 goto redo;
3525 goto out_balanced;
3526 }
3527 }
3528
3529 if (!ld_moved) {
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3534
3535 spin_lock_irqsave(&busiest->lock, flags);
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
3542 spin_unlock_irqrestore(&busiest->lock, flags);
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
3550 active_balance = 1;
3551 }
3552 spin_unlock_irqrestore(&busiest->lock, flags);
3553 if (active_balance)
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
3561 }
3562 } else
3563 sd->nr_balance_failed = 0;
3564
3565 if (likely(!active_balance)) {
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
3577 }
3578
3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 ld_moved = -1;
3582
3583 goto out;
3584
3585 out_balanced:
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
3588 sd->nr_balance_failed = 0;
3589
3590 out_one_pinned:
3591 /* tune up the balancing interval */
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
3594 sd->balance_interval *= 2;
3595
3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601 out:
3602 if (ld_moved)
3603 update_shares(sd);
3604 return ld_moved;
3605 }
3606
3607 /*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3612 * this_rq is locked.
3613 */
3614 static int
3615 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 struct cpumask *cpus)
3617 {
3618 struct sched_group *group;
3619 struct rq *busiest = NULL;
3620 unsigned long imbalance;
3621 int ld_moved = 0;
3622 int sd_idle = 0;
3623 int all_pinned = 0;
3624
3625 cpumask_setall(cpus);
3626
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
3631 * portraying it as CPU_NOT_IDLE.
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3635 sd_idle = 1;
3636
3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638 redo:
3639 update_shares_locked(this_rq, sd);
3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641 &sd_idle, cpus, NULL);
3642 if (!group) {
3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3648 if (!busiest) {
3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650 goto out_balanced;
3651 }
3652
3653 BUG_ON(busiest == this_rq);
3654
3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656
3657 ld_moved = 0;
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
3666 double_unlock_balance(this_rq, busiest);
3667
3668 if (unlikely(all_pinned)) {
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
3671 goto redo;
3672 }
3673 }
3674
3675 if (!ld_moved) {
3676 int active_balance = 0;
3677
3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3681 return -1;
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
3718 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 /*
3732 * Should not call ttwu while holding a rq->lock
3733 */
3734 spin_unlock(&this_rq->lock);
3735 if (active_balance)
3736 wake_up_process(busiest->migration_thread);
3737 spin_lock(&this_rq->lock);
3738
3739 } else
3740 sd->nr_balance_failed = 0;
3741
3742 update_shares_locked(this_rq, sd);
3743 return ld_moved;
3744
3745 out_balanced:
3746 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3747 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3748 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3749 return -1;
3750 sd->nr_balance_failed = 0;
3751
3752 return 0;
3753 }
3754
3755 /*
3756 * idle_balance is called by schedule() if this_cpu is about to become
3757 * idle. Attempts to pull tasks from other CPUs.
3758 */
3759 static void idle_balance(int this_cpu, struct rq *this_rq)
3760 {
3761 struct sched_domain *sd;
3762 int pulled_task = 0;
3763 unsigned long next_balance = jiffies + HZ;
3764 cpumask_var_t tmpmask;
3765
3766 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3767 return;
3768
3769 for_each_domain(this_cpu, sd) {
3770 unsigned long interval;
3771
3772 if (!(sd->flags & SD_LOAD_BALANCE))
3773 continue;
3774
3775 if (sd->flags & SD_BALANCE_NEWIDLE)
3776 /* If we've pulled tasks over stop searching: */
3777 pulled_task = load_balance_newidle(this_cpu, this_rq,
3778 sd, tmpmask);
3779
3780 interval = msecs_to_jiffies(sd->balance_interval);
3781 if (time_after(next_balance, sd->last_balance + interval))
3782 next_balance = sd->last_balance + interval;
3783 if (pulled_task)
3784 break;
3785 }
3786 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3787 /*
3788 * We are going idle. next_balance may be set based on
3789 * a busy processor. So reset next_balance.
3790 */
3791 this_rq->next_balance = next_balance;
3792 }
3793 free_cpumask_var(tmpmask);
3794 }
3795
3796 /*
3797 * active_load_balance is run by migration threads. It pushes running tasks
3798 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3799 * running on each physical CPU where possible, and avoids physical /
3800 * logical imbalances.
3801 *
3802 * Called with busiest_rq locked.
3803 */
3804 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3805 {
3806 int target_cpu = busiest_rq->push_cpu;
3807 struct sched_domain *sd;
3808 struct rq *target_rq;
3809
3810 /* Is there any task to move? */
3811 if (busiest_rq->nr_running <= 1)
3812 return;
3813
3814 target_rq = cpu_rq(target_cpu);
3815
3816 /*
3817 * This condition is "impossible", if it occurs
3818 * we need to fix it. Originally reported by
3819 * Bjorn Helgaas on a 128-cpu setup.
3820 */
3821 BUG_ON(busiest_rq == target_rq);
3822
3823 /* move a task from busiest_rq to target_rq */
3824 double_lock_balance(busiest_rq, target_rq);
3825 update_rq_clock(busiest_rq);
3826 update_rq_clock(target_rq);
3827
3828 /* Search for an sd spanning us and the target CPU. */
3829 for_each_domain(target_cpu, sd) {
3830 if ((sd->flags & SD_LOAD_BALANCE) &&
3831 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3832 break;
3833 }
3834
3835 if (likely(sd)) {
3836 schedstat_inc(sd, alb_count);
3837
3838 if (move_one_task(target_rq, target_cpu, busiest_rq,
3839 sd, CPU_IDLE))
3840 schedstat_inc(sd, alb_pushed);
3841 else
3842 schedstat_inc(sd, alb_failed);
3843 }
3844 double_unlock_balance(busiest_rq, target_rq);
3845 }
3846
3847 #ifdef CONFIG_NO_HZ
3848 static struct {
3849 atomic_t load_balancer;
3850 cpumask_var_t cpu_mask;
3851 } nohz ____cacheline_aligned = {
3852 .load_balancer = ATOMIC_INIT(-1),
3853 };
3854
3855 /*
3856 * This routine will try to nominate the ilb (idle load balancing)
3857 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3858 * load balancing on behalf of all those cpus. If all the cpus in the system
3859 * go into this tickless mode, then there will be no ilb owner (as there is
3860 * no need for one) and all the cpus will sleep till the next wakeup event
3861 * arrives...
3862 *
3863 * For the ilb owner, tick is not stopped. And this tick will be used
3864 * for idle load balancing. ilb owner will still be part of
3865 * nohz.cpu_mask..
3866 *
3867 * While stopping the tick, this cpu will become the ilb owner if there
3868 * is no other owner. And will be the owner till that cpu becomes busy
3869 * or if all cpus in the system stop their ticks at which point
3870 * there is no need for ilb owner.
3871 *
3872 * When the ilb owner becomes busy, it nominates another owner, during the
3873 * next busy scheduler_tick()
3874 */
3875 int select_nohz_load_balancer(int stop_tick)
3876 {
3877 int cpu = smp_processor_id();
3878
3879 if (stop_tick) {
3880 cpumask_set_cpu(cpu, nohz.cpu_mask);
3881 cpu_rq(cpu)->in_nohz_recently = 1;
3882
3883 /*
3884 * If we are going offline and still the leader, give up!
3885 */
3886 if (!cpu_active(cpu) &&
3887 atomic_read(&nohz.load_balancer) == cpu) {
3888 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3889 BUG();
3890 return 0;
3891 }
3892
3893 /* time for ilb owner also to sleep */
3894 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3895 if (atomic_read(&nohz.load_balancer) == cpu)
3896 atomic_set(&nohz.load_balancer, -1);
3897 return 0;
3898 }
3899
3900 if (atomic_read(&nohz.load_balancer) == -1) {
3901 /* make me the ilb owner */
3902 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3903 return 1;
3904 } else if (atomic_read(&nohz.load_balancer) == cpu)
3905 return 1;
3906 } else {
3907 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3908 return 0;
3909
3910 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3911
3912 if (atomic_read(&nohz.load_balancer) == cpu)
3913 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3914 BUG();
3915 }
3916 return 0;
3917 }
3918 #endif
3919
3920 static DEFINE_SPINLOCK(balancing);
3921
3922 /*
3923 * It checks each scheduling domain to see if it is due to be balanced,
3924 * and initiates a balancing operation if so.
3925 *
3926 * Balancing parameters are set up in arch_init_sched_domains.
3927 */
3928 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3929 {
3930 int balance = 1;
3931 struct rq *rq = cpu_rq(cpu);
3932 unsigned long interval;
3933 struct sched_domain *sd;
3934 /* Earliest time when we have to do rebalance again */
3935 unsigned long next_balance = jiffies + 60*HZ;
3936 int update_next_balance = 0;
3937 int need_serialize;
3938 cpumask_var_t tmp;
3939
3940 /* Fails alloc? Rebalancing probably not a priority right now. */
3941 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3942 return;
3943
3944 for_each_domain(cpu, sd) {
3945 if (!(sd->flags & SD_LOAD_BALANCE))
3946 continue;
3947
3948 interval = sd->balance_interval;
3949 if (idle != CPU_IDLE)
3950 interval *= sd->busy_factor;
3951
3952 /* scale ms to jiffies */
3953 interval = msecs_to_jiffies(interval);
3954 if (unlikely(!interval))
3955 interval = 1;
3956 if (interval > HZ*NR_CPUS/10)
3957 interval = HZ*NR_CPUS/10;
3958
3959 need_serialize = sd->flags & SD_SERIALIZE;
3960
3961 if (need_serialize) {
3962 if (!spin_trylock(&balancing))
3963 goto out;
3964 }
3965
3966 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3967 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3968 /*
3969 * We've pulled tasks over so either we're no
3970 * longer idle, or one of our SMT siblings is
3971 * not idle.
3972 */
3973 idle = CPU_NOT_IDLE;
3974 }
3975 sd->last_balance = jiffies;
3976 }
3977 if (need_serialize)
3978 spin_unlock(&balancing);
3979 out:
3980 if (time_after(next_balance, sd->last_balance + interval)) {
3981 next_balance = sd->last_balance + interval;
3982 update_next_balance = 1;
3983 }
3984
3985 /*
3986 * Stop the load balance at this level. There is another
3987 * CPU in our sched group which is doing load balancing more
3988 * actively.
3989 */
3990 if (!balance)
3991 break;
3992 }
3993
3994 /*
3995 * next_balance will be updated only when there is a need.
3996 * When the cpu is attached to null domain for ex, it will not be
3997 * updated.
3998 */
3999 if (likely(update_next_balance))
4000 rq->next_balance = next_balance;
4001
4002 free_cpumask_var(tmp);
4003 }
4004
4005 /*
4006 * run_rebalance_domains is triggered when needed from the scheduler tick.
4007 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4008 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4009 */
4010 static void run_rebalance_domains(struct softirq_action *h)
4011 {
4012 int this_cpu = smp_processor_id();
4013 struct rq *this_rq = cpu_rq(this_cpu);
4014 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4015 CPU_IDLE : CPU_NOT_IDLE;
4016
4017 rebalance_domains(this_cpu, idle);
4018
4019 #ifdef CONFIG_NO_HZ
4020 /*
4021 * If this cpu is the owner for idle load balancing, then do the
4022 * balancing on behalf of the other idle cpus whose ticks are
4023 * stopped.
4024 */
4025 if (this_rq->idle_at_tick &&
4026 atomic_read(&nohz.load_balancer) == this_cpu) {
4027 struct rq *rq;
4028 int balance_cpu;
4029
4030 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4031 if (balance_cpu == this_cpu)
4032 continue;
4033
4034 /*
4035 * If this cpu gets work to do, stop the load balancing
4036 * work being done for other cpus. Next load
4037 * balancing owner will pick it up.
4038 */
4039 if (need_resched())
4040 break;
4041
4042 rebalance_domains(balance_cpu, CPU_IDLE);
4043
4044 rq = cpu_rq(balance_cpu);
4045 if (time_after(this_rq->next_balance, rq->next_balance))
4046 this_rq->next_balance = rq->next_balance;
4047 }
4048 }
4049 #endif
4050 }
4051
4052 /*
4053 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4054 *
4055 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4056 * idle load balancing owner or decide to stop the periodic load balancing,
4057 * if the whole system is idle.
4058 */
4059 static inline void trigger_load_balance(struct rq *rq, int cpu)
4060 {
4061 #ifdef CONFIG_NO_HZ
4062 /*
4063 * If we were in the nohz mode recently and busy at the current
4064 * scheduler tick, then check if we need to nominate new idle
4065 * load balancer.
4066 */
4067 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4068 rq->in_nohz_recently = 0;
4069
4070 if (atomic_read(&nohz.load_balancer) == cpu) {
4071 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4072 atomic_set(&nohz.load_balancer, -1);
4073 }
4074
4075 if (atomic_read(&nohz.load_balancer) == -1) {
4076 /*
4077 * simple selection for now: Nominate the
4078 * first cpu in the nohz list to be the next
4079 * ilb owner.
4080 *
4081 * TBD: Traverse the sched domains and nominate
4082 * the nearest cpu in the nohz.cpu_mask.
4083 */
4084 int ilb = cpumask_first(nohz.cpu_mask);
4085
4086 if (ilb < nr_cpu_ids)
4087 resched_cpu(ilb);
4088 }
4089 }
4090
4091 /*
4092 * If this cpu is idle and doing idle load balancing for all the
4093 * cpus with ticks stopped, is it time for that to stop?
4094 */
4095 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4096 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4097 resched_cpu(cpu);
4098 return;
4099 }
4100
4101 /*
4102 * If this cpu is idle and the idle load balancing is done by
4103 * someone else, then no need raise the SCHED_SOFTIRQ
4104 */
4105 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4106 cpumask_test_cpu(cpu, nohz.cpu_mask))
4107 return;
4108 #endif
4109 if (time_after_eq(jiffies, rq->next_balance))
4110 raise_softirq(SCHED_SOFTIRQ);
4111 }
4112
4113 #else /* CONFIG_SMP */
4114
4115 /*
4116 * on UP we do not need to balance between CPUs:
4117 */
4118 static inline void idle_balance(int cpu, struct rq *rq)
4119 {
4120 }
4121
4122 #endif
4123
4124 DEFINE_PER_CPU(struct kernel_stat, kstat);
4125
4126 EXPORT_PER_CPU_SYMBOL(kstat);
4127
4128 /*
4129 * Return any ns on the sched_clock that have not yet been banked in
4130 * @p in case that task is currently running.
4131 */
4132 unsigned long long task_delta_exec(struct task_struct *p)
4133 {
4134 unsigned long flags;
4135 struct rq *rq;
4136 u64 ns = 0;
4137
4138 rq = task_rq_lock(p, &flags);
4139
4140 if (task_current(rq, p)) {
4141 u64 delta_exec;
4142
4143 update_rq_clock(rq);
4144 delta_exec = rq->clock - p->se.exec_start;
4145 if ((s64)delta_exec > 0)
4146 ns = delta_exec;
4147 }
4148
4149 task_rq_unlock(rq, &flags);
4150
4151 return ns;
4152 }
4153
4154 /*
4155 * Account user cpu time to a process.
4156 * @p: the process that the cpu time gets accounted to
4157 * @cputime: the cpu time spent in user space since the last update
4158 * @cputime_scaled: cputime scaled by cpu frequency
4159 */
4160 void account_user_time(struct task_struct *p, cputime_t cputime,
4161 cputime_t cputime_scaled)
4162 {
4163 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4164 cputime64_t tmp;
4165
4166 /* Add user time to process. */
4167 p->utime = cputime_add(p->utime, cputime);
4168 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4169 account_group_user_time(p, cputime);
4170
4171 /* Add user time to cpustat. */
4172 tmp = cputime_to_cputime64(cputime);
4173 if (TASK_NICE(p) > 0)
4174 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4175 else
4176 cpustat->user = cputime64_add(cpustat->user, tmp);
4177 /* Account for user time used */
4178 acct_update_integrals(p);
4179 }
4180
4181 /*
4182 * Account guest cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @cputime: the cpu time spent in virtual machine since the last update
4185 * @cputime_scaled: cputime scaled by cpu frequency
4186 */
4187 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4188 cputime_t cputime_scaled)
4189 {
4190 cputime64_t tmp;
4191 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4192
4193 tmp = cputime_to_cputime64(cputime);
4194
4195 /* Add guest time to process. */
4196 p->utime = cputime_add(p->utime, cputime);
4197 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4198 account_group_user_time(p, cputime);
4199 p->gtime = cputime_add(p->gtime, cputime);
4200
4201 /* Add guest time to cpustat. */
4202 cpustat->user = cputime64_add(cpustat->user, tmp);
4203 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4204 }
4205
4206 /*
4207 * Account system cpu time to a process.
4208 * @p: the process that the cpu time gets accounted to
4209 * @hardirq_offset: the offset to subtract from hardirq_count()
4210 * @cputime: the cpu time spent in kernel space since the last update
4211 * @cputime_scaled: cputime scaled by cpu frequency
4212 */
4213 void account_system_time(struct task_struct *p, int hardirq_offset,
4214 cputime_t cputime, cputime_t cputime_scaled)
4215 {
4216 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4217 cputime64_t tmp;
4218
4219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4220 account_guest_time(p, cputime, cputime_scaled);
4221 return;
4222 }
4223
4224 /* Add system time to process. */
4225 p->stime = cputime_add(p->stime, cputime);
4226 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4227 account_group_system_time(p, cputime);
4228
4229 /* Add system time to cpustat. */
4230 tmp = cputime_to_cputime64(cputime);
4231 if (hardirq_count() - hardirq_offset)
4232 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4233 else if (softirq_count())
4234 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4235 else
4236 cpustat->system = cputime64_add(cpustat->system, tmp);
4237
4238 /* Account for system time used */
4239 acct_update_integrals(p);
4240 }
4241
4242 /*
4243 * Account for involuntary wait time.
4244 * @steal: the cpu time spent in involuntary wait
4245 */
4246 void account_steal_time(cputime_t cputime)
4247 {
4248 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4249 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4250
4251 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4252 }
4253
4254 /*
4255 * Account for idle time.
4256 * @cputime: the cpu time spent in idle wait
4257 */
4258 void account_idle_time(cputime_t cputime)
4259 {
4260 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4261 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4262 struct rq *rq = this_rq();
4263
4264 if (atomic_read(&rq->nr_iowait) > 0)
4265 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4266 else
4267 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4268 }
4269
4270 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4271
4272 /*
4273 * Account a single tick of cpu time.
4274 * @p: the process that the cpu time gets accounted to
4275 * @user_tick: indicates if the tick is a user or a system tick
4276 */
4277 void account_process_tick(struct task_struct *p, int user_tick)
4278 {
4279 cputime_t one_jiffy = jiffies_to_cputime(1);
4280 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4281 struct rq *rq = this_rq();
4282
4283 if (user_tick)
4284 account_user_time(p, one_jiffy, one_jiffy_scaled);
4285 else if (p != rq->idle)
4286 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4287 one_jiffy_scaled);
4288 else
4289 account_idle_time(one_jiffy);
4290 }
4291
4292 /*
4293 * Account multiple ticks of steal time.
4294 * @p: the process from which the cpu time has been stolen
4295 * @ticks: number of stolen ticks
4296 */
4297 void account_steal_ticks(unsigned long ticks)
4298 {
4299 account_steal_time(jiffies_to_cputime(ticks));
4300 }
4301
4302 /*
4303 * Account multiple ticks of idle time.
4304 * @ticks: number of stolen ticks
4305 */
4306 void account_idle_ticks(unsigned long ticks)
4307 {
4308 account_idle_time(jiffies_to_cputime(ticks));
4309 }
4310
4311 #endif
4312
4313 /*
4314 * Use precise platform statistics if available:
4315 */
4316 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4317 cputime_t task_utime(struct task_struct *p)
4318 {
4319 return p->utime;
4320 }
4321
4322 cputime_t task_stime(struct task_struct *p)
4323 {
4324 return p->stime;
4325 }
4326 #else
4327 cputime_t task_utime(struct task_struct *p)
4328 {
4329 clock_t utime = cputime_to_clock_t(p->utime),
4330 total = utime + cputime_to_clock_t(p->stime);
4331 u64 temp;
4332
4333 /*
4334 * Use CFS's precise accounting:
4335 */
4336 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4337
4338 if (total) {
4339 temp *= utime;
4340 do_div(temp, total);
4341 }
4342 utime = (clock_t)temp;
4343
4344 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4345 return p->prev_utime;
4346 }
4347
4348 cputime_t task_stime(struct task_struct *p)
4349 {
4350 clock_t stime;
4351
4352 /*
4353 * Use CFS's precise accounting. (we subtract utime from
4354 * the total, to make sure the total observed by userspace
4355 * grows monotonically - apps rely on that):
4356 */
4357 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4358 cputime_to_clock_t(task_utime(p));
4359
4360 if (stime >= 0)
4361 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4362
4363 return p->prev_stime;
4364 }
4365 #endif
4366
4367 inline cputime_t task_gtime(struct task_struct *p)
4368 {
4369 return p->gtime;
4370 }
4371
4372 /*
4373 * This function gets called by the timer code, with HZ frequency.
4374 * We call it with interrupts disabled.
4375 *
4376 * It also gets called by the fork code, when changing the parent's
4377 * timeslices.
4378 */
4379 void scheduler_tick(void)
4380 {
4381 int cpu = smp_processor_id();
4382 struct rq *rq = cpu_rq(cpu);
4383 struct task_struct *curr = rq->curr;
4384
4385 sched_clock_tick();
4386
4387 spin_lock(&rq->lock);
4388 update_rq_clock(rq);
4389 update_cpu_load(rq);
4390 curr->sched_class->task_tick(rq, curr, 0);
4391 spin_unlock(&rq->lock);
4392
4393 #ifdef CONFIG_SMP
4394 rq->idle_at_tick = idle_cpu(cpu);
4395 trigger_load_balance(rq, cpu);
4396 #endif
4397 }
4398
4399 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4400 defined(CONFIG_PREEMPT_TRACER))
4401
4402 static inline unsigned long get_parent_ip(unsigned long addr)
4403 {
4404 if (in_lock_functions(addr)) {
4405 addr = CALLER_ADDR2;
4406 if (in_lock_functions(addr))
4407 addr = CALLER_ADDR3;
4408 }
4409 return addr;
4410 }
4411
4412 void __kprobes add_preempt_count(int val)
4413 {
4414 #ifdef CONFIG_DEBUG_PREEMPT
4415 /*
4416 * Underflow?
4417 */
4418 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4419 return;
4420 #endif
4421 preempt_count() += val;
4422 #ifdef CONFIG_DEBUG_PREEMPT
4423 /*
4424 * Spinlock count overflowing soon?
4425 */
4426 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4427 PREEMPT_MASK - 10);
4428 #endif
4429 if (preempt_count() == val)
4430 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4431 }
4432 EXPORT_SYMBOL(add_preempt_count);
4433
4434 void __kprobes sub_preempt_count(int val)
4435 {
4436 #ifdef CONFIG_DEBUG_PREEMPT
4437 /*
4438 * Underflow?
4439 */
4440 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4441 return;
4442 /*
4443 * Is the spinlock portion underflowing?
4444 */
4445 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4446 !(preempt_count() & PREEMPT_MASK)))
4447 return;
4448 #endif
4449
4450 if (preempt_count() == val)
4451 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4452 preempt_count() -= val;
4453 }
4454 EXPORT_SYMBOL(sub_preempt_count);
4455
4456 #endif
4457
4458 /*
4459 * Print scheduling while atomic bug:
4460 */
4461 static noinline void __schedule_bug(struct task_struct *prev)
4462 {
4463 struct pt_regs *regs = get_irq_regs();
4464
4465 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4466 prev->comm, prev->pid, preempt_count());
4467
4468 debug_show_held_locks(prev);
4469 print_modules();
4470 if (irqs_disabled())
4471 print_irqtrace_events(prev);
4472
4473 if (regs)
4474 show_regs(regs);
4475 else
4476 dump_stack();
4477 }
4478
4479 /*
4480 * Various schedule()-time debugging checks and statistics:
4481 */
4482 static inline void schedule_debug(struct task_struct *prev)
4483 {
4484 /*
4485 * Test if we are atomic. Since do_exit() needs to call into
4486 * schedule() atomically, we ignore that path for now.
4487 * Otherwise, whine if we are scheduling when we should not be.
4488 */
4489 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4490 __schedule_bug(prev);
4491
4492 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4493
4494 schedstat_inc(this_rq(), sched_count);
4495 #ifdef CONFIG_SCHEDSTATS
4496 if (unlikely(prev->lock_depth >= 0)) {
4497 schedstat_inc(this_rq(), bkl_count);
4498 schedstat_inc(prev, sched_info.bkl_count);
4499 }
4500 #endif
4501 }
4502
4503 /*
4504 * Pick up the highest-prio task:
4505 */
4506 static inline struct task_struct *
4507 pick_next_task(struct rq *rq, struct task_struct *prev)
4508 {
4509 const struct sched_class *class;
4510 struct task_struct *p;
4511
4512 /*
4513 * Optimization: we know that if all tasks are in
4514 * the fair class we can call that function directly:
4515 */
4516 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4517 p = fair_sched_class.pick_next_task(rq);
4518 if (likely(p))
4519 return p;
4520 }
4521
4522 class = sched_class_highest;
4523 for ( ; ; ) {
4524 p = class->pick_next_task(rq);
4525 if (p)
4526 return p;
4527 /*
4528 * Will never be NULL as the idle class always
4529 * returns a non-NULL p:
4530 */
4531 class = class->next;
4532 }
4533 }
4534
4535 /*
4536 * schedule() is the main scheduler function.
4537 */
4538 asmlinkage void __sched schedule(void)
4539 {
4540 struct task_struct *prev, *next;
4541 unsigned long *switch_count;
4542 struct rq *rq;
4543 int cpu;
4544
4545 need_resched:
4546 preempt_disable();
4547 cpu = smp_processor_id();
4548 rq = cpu_rq(cpu);
4549 rcu_qsctr_inc(cpu);
4550 prev = rq->curr;
4551 switch_count = &prev->nivcsw;
4552
4553 release_kernel_lock(prev);
4554 need_resched_nonpreemptible:
4555
4556 schedule_debug(prev);
4557
4558 if (sched_feat(HRTICK))
4559 hrtick_clear(rq);
4560
4561 spin_lock_irq(&rq->lock);
4562 update_rq_clock(rq);
4563 clear_tsk_need_resched(prev);
4564
4565 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4566 if (unlikely(signal_pending_state(prev->state, prev)))
4567 prev->state = TASK_RUNNING;
4568 else
4569 deactivate_task(rq, prev, 1);
4570 switch_count = &prev->nvcsw;
4571 }
4572
4573 #ifdef CONFIG_SMP
4574 if (prev->sched_class->pre_schedule)
4575 prev->sched_class->pre_schedule(rq, prev);
4576 #endif
4577
4578 if (unlikely(!rq->nr_running))
4579 idle_balance(cpu, rq);
4580
4581 prev->sched_class->put_prev_task(rq, prev);
4582 next = pick_next_task(rq, prev);
4583
4584 if (likely(prev != next)) {
4585 sched_info_switch(prev, next);
4586
4587 rq->nr_switches++;
4588 rq->curr = next;
4589 ++*switch_count;
4590
4591 context_switch(rq, prev, next); /* unlocks the rq */
4592 /*
4593 * the context switch might have flipped the stack from under
4594 * us, hence refresh the local variables.
4595 */
4596 cpu = smp_processor_id();
4597 rq = cpu_rq(cpu);
4598 } else
4599 spin_unlock_irq(&rq->lock);
4600
4601 if (unlikely(reacquire_kernel_lock(current) < 0))
4602 goto need_resched_nonpreemptible;
4603
4604 preempt_enable_no_resched();
4605 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4606 goto need_resched;
4607 }
4608 EXPORT_SYMBOL(schedule);
4609
4610 #ifdef CONFIG_PREEMPT
4611 /*
4612 * this is the entry point to schedule() from in-kernel preemption
4613 * off of preempt_enable. Kernel preemptions off return from interrupt
4614 * occur there and call schedule directly.
4615 */
4616 asmlinkage void __sched preempt_schedule(void)
4617 {
4618 struct thread_info *ti = current_thread_info();
4619
4620 /*
4621 * If there is a non-zero preempt_count or interrupts are disabled,
4622 * we do not want to preempt the current task. Just return..
4623 */
4624 if (likely(ti->preempt_count || irqs_disabled()))
4625 return;
4626
4627 do {
4628 add_preempt_count(PREEMPT_ACTIVE);
4629 schedule();
4630 sub_preempt_count(PREEMPT_ACTIVE);
4631
4632 /*
4633 * Check again in case we missed a preemption opportunity
4634 * between schedule and now.
4635 */
4636 barrier();
4637 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4638 }
4639 EXPORT_SYMBOL(preempt_schedule);
4640
4641 /*
4642 * this is the entry point to schedule() from kernel preemption
4643 * off of irq context.
4644 * Note, that this is called and return with irqs disabled. This will
4645 * protect us against recursive calling from irq.
4646 */
4647 asmlinkage void __sched preempt_schedule_irq(void)
4648 {
4649 struct thread_info *ti = current_thread_info();
4650
4651 /* Catch callers which need to be fixed */
4652 BUG_ON(ti->preempt_count || !irqs_disabled());
4653
4654 do {
4655 add_preempt_count(PREEMPT_ACTIVE);
4656 local_irq_enable();
4657 schedule();
4658 local_irq_disable();
4659 sub_preempt_count(PREEMPT_ACTIVE);
4660
4661 /*
4662 * Check again in case we missed a preemption opportunity
4663 * between schedule and now.
4664 */
4665 barrier();
4666 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4667 }
4668
4669 #endif /* CONFIG_PREEMPT */
4670
4671 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4672 void *key)
4673 {
4674 return try_to_wake_up(curr->private, mode, sync);
4675 }
4676 EXPORT_SYMBOL(default_wake_function);
4677
4678 /*
4679 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4680 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4681 * number) then we wake all the non-exclusive tasks and one exclusive task.
4682 *
4683 * There are circumstances in which we can try to wake a task which has already
4684 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4685 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4686 */
4687 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4688 int nr_exclusive, int sync, void *key)
4689 {
4690 wait_queue_t *curr, *next;
4691
4692 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4693 unsigned flags = curr->flags;
4694
4695 if (curr->func(curr, mode, sync, key) &&
4696 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4697 break;
4698 }
4699 }
4700
4701 /**
4702 * __wake_up - wake up threads blocked on a waitqueue.
4703 * @q: the waitqueue
4704 * @mode: which threads
4705 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4706 * @key: is directly passed to the wakeup function
4707 */
4708 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4709 int nr_exclusive, void *key)
4710 {
4711 unsigned long flags;
4712
4713 spin_lock_irqsave(&q->lock, flags);
4714 __wake_up_common(q, mode, nr_exclusive, 0, key);
4715 spin_unlock_irqrestore(&q->lock, flags);
4716 }
4717 EXPORT_SYMBOL(__wake_up);
4718
4719 /*
4720 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4721 */
4722 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4723 {
4724 __wake_up_common(q, mode, 1, 0, NULL);
4725 }
4726
4727 /**
4728 * __wake_up_sync - wake up threads blocked on a waitqueue.
4729 * @q: the waitqueue
4730 * @mode: which threads
4731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4732 *
4733 * The sync wakeup differs that the waker knows that it will schedule
4734 * away soon, so while the target thread will be woken up, it will not
4735 * be migrated to another CPU - ie. the two threads are 'synchronized'
4736 * with each other. This can prevent needless bouncing between CPUs.
4737 *
4738 * On UP it can prevent extra preemption.
4739 */
4740 void
4741 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4742 {
4743 unsigned long flags;
4744 int sync = 1;
4745
4746 if (unlikely(!q))
4747 return;
4748
4749 if (unlikely(!nr_exclusive))
4750 sync = 0;
4751
4752 spin_lock_irqsave(&q->lock, flags);
4753 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4754 spin_unlock_irqrestore(&q->lock, flags);
4755 }
4756 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4757
4758 /**
4759 * complete: - signals a single thread waiting on this completion
4760 * @x: holds the state of this particular completion
4761 *
4762 * This will wake up a single thread waiting on this completion. Threads will be
4763 * awakened in the same order in which they were queued.
4764 *
4765 * See also complete_all(), wait_for_completion() and related routines.
4766 */
4767 void complete(struct completion *x)
4768 {
4769 unsigned long flags;
4770
4771 spin_lock_irqsave(&x->wait.lock, flags);
4772 x->done++;
4773 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4774 spin_unlock_irqrestore(&x->wait.lock, flags);
4775 }
4776 EXPORT_SYMBOL(complete);
4777
4778 /**
4779 * complete_all: - signals all threads waiting on this completion
4780 * @x: holds the state of this particular completion
4781 *
4782 * This will wake up all threads waiting on this particular completion event.
4783 */
4784 void complete_all(struct completion *x)
4785 {
4786 unsigned long flags;
4787
4788 spin_lock_irqsave(&x->wait.lock, flags);
4789 x->done += UINT_MAX/2;
4790 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4791 spin_unlock_irqrestore(&x->wait.lock, flags);
4792 }
4793 EXPORT_SYMBOL(complete_all);
4794
4795 static inline long __sched
4796 do_wait_for_common(struct completion *x, long timeout, int state)
4797 {
4798 if (!x->done) {
4799 DECLARE_WAITQUEUE(wait, current);
4800
4801 wait.flags |= WQ_FLAG_EXCLUSIVE;
4802 __add_wait_queue_tail(&x->wait, &wait);
4803 do {
4804 if (signal_pending_state(state, current)) {
4805 timeout = -ERESTARTSYS;
4806 break;
4807 }
4808 __set_current_state(state);
4809 spin_unlock_irq(&x->wait.lock);
4810 timeout = schedule_timeout(timeout);
4811 spin_lock_irq(&x->wait.lock);
4812 } while (!x->done && timeout);
4813 __remove_wait_queue(&x->wait, &wait);
4814 if (!x->done)
4815 return timeout;
4816 }
4817 x->done--;
4818 return timeout ?: 1;
4819 }
4820
4821 static long __sched
4822 wait_for_common(struct completion *x, long timeout, int state)
4823 {
4824 might_sleep();
4825
4826 spin_lock_irq(&x->wait.lock);
4827 timeout = do_wait_for_common(x, timeout, state);
4828 spin_unlock_irq(&x->wait.lock);
4829 return timeout;
4830 }
4831
4832 /**
4833 * wait_for_completion: - waits for completion of a task
4834 * @x: holds the state of this particular completion
4835 *
4836 * This waits to be signaled for completion of a specific task. It is NOT
4837 * interruptible and there is no timeout.
4838 *
4839 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4840 * and interrupt capability. Also see complete().
4841 */
4842 void __sched wait_for_completion(struct completion *x)
4843 {
4844 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4845 }
4846 EXPORT_SYMBOL(wait_for_completion);
4847
4848 /**
4849 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4852 *
4853 * This waits for either a completion of a specific task to be signaled or for a
4854 * specified timeout to expire. The timeout is in jiffies. It is not
4855 * interruptible.
4856 */
4857 unsigned long __sched
4858 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4859 {
4860 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4861 }
4862 EXPORT_SYMBOL(wait_for_completion_timeout);
4863
4864 /**
4865 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4866 * @x: holds the state of this particular completion
4867 *
4868 * This waits for completion of a specific task to be signaled. It is
4869 * interruptible.
4870 */
4871 int __sched wait_for_completion_interruptible(struct completion *x)
4872 {
4873 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4874 if (t == -ERESTARTSYS)
4875 return t;
4876 return 0;
4877 }
4878 EXPORT_SYMBOL(wait_for_completion_interruptible);
4879
4880 /**
4881 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4882 * @x: holds the state of this particular completion
4883 * @timeout: timeout value in jiffies
4884 *
4885 * This waits for either a completion of a specific task to be signaled or for a
4886 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4887 */
4888 unsigned long __sched
4889 wait_for_completion_interruptible_timeout(struct completion *x,
4890 unsigned long timeout)
4891 {
4892 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4893 }
4894 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4895
4896 /**
4897 * wait_for_completion_killable: - waits for completion of a task (killable)
4898 * @x: holds the state of this particular completion
4899 *
4900 * This waits to be signaled for completion of a specific task. It can be
4901 * interrupted by a kill signal.
4902 */
4903 int __sched wait_for_completion_killable(struct completion *x)
4904 {
4905 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4906 if (t == -ERESTARTSYS)
4907 return t;
4908 return 0;
4909 }
4910 EXPORT_SYMBOL(wait_for_completion_killable);
4911
4912 /**
4913 * try_wait_for_completion - try to decrement a completion without blocking
4914 * @x: completion structure
4915 *
4916 * Returns: 0 if a decrement cannot be done without blocking
4917 * 1 if a decrement succeeded.
4918 *
4919 * If a completion is being used as a counting completion,
4920 * attempt to decrement the counter without blocking. This
4921 * enables us to avoid waiting if the resource the completion
4922 * is protecting is not available.
4923 */
4924 bool try_wait_for_completion(struct completion *x)
4925 {
4926 int ret = 1;
4927
4928 spin_lock_irq(&x->wait.lock);
4929 if (!x->done)
4930 ret = 0;
4931 else
4932 x->done--;
4933 spin_unlock_irq(&x->wait.lock);
4934 return ret;
4935 }
4936 EXPORT_SYMBOL(try_wait_for_completion);
4937
4938 /**
4939 * completion_done - Test to see if a completion has any waiters
4940 * @x: completion structure
4941 *
4942 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4943 * 1 if there are no waiters.
4944 *
4945 */
4946 bool completion_done(struct completion *x)
4947 {
4948 int ret = 1;
4949
4950 spin_lock_irq(&x->wait.lock);
4951 if (!x->done)
4952 ret = 0;
4953 spin_unlock_irq(&x->wait.lock);
4954 return ret;
4955 }
4956 EXPORT_SYMBOL(completion_done);
4957
4958 static long __sched
4959 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4960 {
4961 unsigned long flags;
4962 wait_queue_t wait;
4963
4964 init_waitqueue_entry(&wait, current);
4965
4966 __set_current_state(state);
4967
4968 spin_lock_irqsave(&q->lock, flags);
4969 __add_wait_queue(q, &wait);
4970 spin_unlock(&q->lock);
4971 timeout = schedule_timeout(timeout);
4972 spin_lock_irq(&q->lock);
4973 __remove_wait_queue(q, &wait);
4974 spin_unlock_irqrestore(&q->lock, flags);
4975
4976 return timeout;
4977 }
4978
4979 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4980 {
4981 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4982 }
4983 EXPORT_SYMBOL(interruptible_sleep_on);
4984
4985 long __sched
4986 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4987 {
4988 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4989 }
4990 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4991
4992 void __sched sleep_on(wait_queue_head_t *q)
4993 {
4994 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4995 }
4996 EXPORT_SYMBOL(sleep_on);
4997
4998 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4999 {
5000 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5001 }
5002 EXPORT_SYMBOL(sleep_on_timeout);
5003
5004 #ifdef CONFIG_RT_MUTEXES
5005
5006 /*
5007 * rt_mutex_setprio - set the current priority of a task
5008 * @p: task
5009 * @prio: prio value (kernel-internal form)
5010 *
5011 * This function changes the 'effective' priority of a task. It does
5012 * not touch ->normal_prio like __setscheduler().
5013 *
5014 * Used by the rt_mutex code to implement priority inheritance logic.
5015 */
5016 void rt_mutex_setprio(struct task_struct *p, int prio)
5017 {
5018 unsigned long flags;
5019 int oldprio, on_rq, running;
5020 struct rq *rq;
5021 const struct sched_class *prev_class = p->sched_class;
5022
5023 BUG_ON(prio < 0 || prio > MAX_PRIO);
5024
5025 rq = task_rq_lock(p, &flags);
5026 update_rq_clock(rq);
5027
5028 oldprio = p->prio;
5029 on_rq = p->se.on_rq;
5030 running = task_current(rq, p);
5031 if (on_rq)
5032 dequeue_task(rq, p, 0);
5033 if (running)
5034 p->sched_class->put_prev_task(rq, p);
5035
5036 if (rt_prio(prio))
5037 p->sched_class = &rt_sched_class;
5038 else
5039 p->sched_class = &fair_sched_class;
5040
5041 p->prio = prio;
5042
5043 if (running)
5044 p->sched_class->set_curr_task(rq);
5045 if (on_rq) {
5046 enqueue_task(rq, p, 0);
5047
5048 check_class_changed(rq, p, prev_class, oldprio, running);
5049 }
5050 task_rq_unlock(rq, &flags);
5051 }
5052
5053 #endif
5054
5055 void set_user_nice(struct task_struct *p, long nice)
5056 {
5057 int old_prio, delta, on_rq;
5058 unsigned long flags;
5059 struct rq *rq;
5060
5061 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5062 return;
5063 /*
5064 * We have to be careful, if called from sys_setpriority(),
5065 * the task might be in the middle of scheduling on another CPU.
5066 */
5067 rq = task_rq_lock(p, &flags);
5068 update_rq_clock(rq);
5069 /*
5070 * The RT priorities are set via sched_setscheduler(), but we still
5071 * allow the 'normal' nice value to be set - but as expected
5072 * it wont have any effect on scheduling until the task is
5073 * SCHED_FIFO/SCHED_RR:
5074 */
5075 if (task_has_rt_policy(p)) {
5076 p->static_prio = NICE_TO_PRIO(nice);
5077 goto out_unlock;
5078 }
5079 on_rq = p->se.on_rq;
5080 if (on_rq)
5081 dequeue_task(rq, p, 0);
5082
5083 p->static_prio = NICE_TO_PRIO(nice);
5084 set_load_weight(p);
5085 old_prio = p->prio;
5086 p->prio = effective_prio(p);
5087 delta = p->prio - old_prio;
5088
5089 if (on_rq) {
5090 enqueue_task(rq, p, 0);
5091 /*
5092 * If the task increased its priority or is running and
5093 * lowered its priority, then reschedule its CPU:
5094 */
5095 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5096 resched_task(rq->curr);
5097 }
5098 out_unlock:
5099 task_rq_unlock(rq, &flags);
5100 }
5101 EXPORT_SYMBOL(set_user_nice);
5102
5103 /*
5104 * can_nice - check if a task can reduce its nice value
5105 * @p: task
5106 * @nice: nice value
5107 */
5108 int can_nice(const struct task_struct *p, const int nice)
5109 {
5110 /* convert nice value [19,-20] to rlimit style value [1,40] */
5111 int nice_rlim = 20 - nice;
5112
5113 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5114 capable(CAP_SYS_NICE));
5115 }
5116
5117 #ifdef __ARCH_WANT_SYS_NICE
5118
5119 /*
5120 * sys_nice - change the priority of the current process.
5121 * @increment: priority increment
5122 *
5123 * sys_setpriority is a more generic, but much slower function that
5124 * does similar things.
5125 */
5126 asmlinkage long sys_nice(int increment)
5127 {
5128 long nice, retval;
5129
5130 /*
5131 * Setpriority might change our priority at the same moment.
5132 * We don't have to worry. Conceptually one call occurs first
5133 * and we have a single winner.
5134 */
5135 if (increment < -40)
5136 increment = -40;
5137 if (increment > 40)
5138 increment = 40;
5139
5140 nice = PRIO_TO_NICE(current->static_prio) + increment;
5141 if (nice < -20)
5142 nice = -20;
5143 if (nice > 19)
5144 nice = 19;
5145
5146 if (increment < 0 && !can_nice(current, nice))
5147 return -EPERM;
5148
5149 retval = security_task_setnice(current, nice);
5150 if (retval)
5151 return retval;
5152
5153 set_user_nice(current, nice);
5154 return 0;
5155 }
5156
5157 #endif
5158
5159 /**
5160 * task_prio - return the priority value of a given task.
5161 * @p: the task in question.
5162 *
5163 * This is the priority value as seen by users in /proc.
5164 * RT tasks are offset by -200. Normal tasks are centered
5165 * around 0, value goes from -16 to +15.
5166 */
5167 int task_prio(const struct task_struct *p)
5168 {
5169 return p->prio - MAX_RT_PRIO;
5170 }
5171
5172 /**
5173 * task_nice - return the nice value of a given task.
5174 * @p: the task in question.
5175 */
5176 int task_nice(const struct task_struct *p)
5177 {
5178 return TASK_NICE(p);
5179 }
5180 EXPORT_SYMBOL(task_nice);
5181
5182 /**
5183 * idle_cpu - is a given cpu idle currently?
5184 * @cpu: the processor in question.
5185 */
5186 int idle_cpu(int cpu)
5187 {
5188 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5189 }
5190
5191 /**
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5194 */
5195 struct task_struct *idle_task(int cpu)
5196 {
5197 return cpu_rq(cpu)->idle;
5198 }
5199
5200 /**
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5203 */
5204 static struct task_struct *find_process_by_pid(pid_t pid)
5205 {
5206 return pid ? find_task_by_vpid(pid) : current;
5207 }
5208
5209 /* Actually do priority change: must hold rq lock. */
5210 static void
5211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5212 {
5213 BUG_ON(p->se.on_rq);
5214
5215 p->policy = policy;
5216 switch (p->policy) {
5217 case SCHED_NORMAL:
5218 case SCHED_BATCH:
5219 case SCHED_IDLE:
5220 p->sched_class = &fair_sched_class;
5221 break;
5222 case SCHED_FIFO:
5223 case SCHED_RR:
5224 p->sched_class = &rt_sched_class;
5225 break;
5226 }
5227
5228 p->rt_priority = prio;
5229 p->normal_prio = normal_prio(p);
5230 /* we are holding p->pi_lock already */
5231 p->prio = rt_mutex_getprio(p);
5232 set_load_weight(p);
5233 }
5234
5235 /*
5236 * check the target process has a UID that matches the current process's
5237 */
5238 static bool check_same_owner(struct task_struct *p)
5239 {
5240 const struct cred *cred = current_cred(), *pcred;
5241 bool match;
5242
5243 rcu_read_lock();
5244 pcred = __task_cred(p);
5245 match = (cred->euid == pcred->euid ||
5246 cred->euid == pcred->uid);
5247 rcu_read_unlock();
5248 return match;
5249 }
5250
5251 static int __sched_setscheduler(struct task_struct *p, int policy,
5252 struct sched_param *param, bool user)
5253 {
5254 int retval, oldprio, oldpolicy = -1, on_rq, running;
5255 unsigned long flags;
5256 const struct sched_class *prev_class = p->sched_class;
5257 struct rq *rq;
5258
5259 /* may grab non-irq protected spin_locks */
5260 BUG_ON(in_interrupt());
5261 recheck:
5262 /* double check policy once rq lock held */
5263 if (policy < 0)
5264 policy = oldpolicy = p->policy;
5265 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5266 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5267 policy != SCHED_IDLE)
5268 return -EINVAL;
5269 /*
5270 * Valid priorities for SCHED_FIFO and SCHED_RR are
5271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5272 * SCHED_BATCH and SCHED_IDLE is 0.
5273 */
5274 if (param->sched_priority < 0 ||
5275 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5276 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5277 return -EINVAL;
5278 if (rt_policy(policy) != (param->sched_priority != 0))
5279 return -EINVAL;
5280
5281 /*
5282 * Allow unprivileged RT tasks to decrease priority:
5283 */
5284 if (user && !capable(CAP_SYS_NICE)) {
5285 if (rt_policy(policy)) {
5286 unsigned long rlim_rtprio;
5287
5288 if (!lock_task_sighand(p, &flags))
5289 return -ESRCH;
5290 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5291 unlock_task_sighand(p, &flags);
5292
5293 /* can't set/change the rt policy */
5294 if (policy != p->policy && !rlim_rtprio)
5295 return -EPERM;
5296
5297 /* can't increase priority */
5298 if (param->sched_priority > p->rt_priority &&
5299 param->sched_priority > rlim_rtprio)
5300 return -EPERM;
5301 }
5302 /*
5303 * Like positive nice levels, dont allow tasks to
5304 * move out of SCHED_IDLE either:
5305 */
5306 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5307 return -EPERM;
5308
5309 /* can't change other user's priorities */
5310 if (!check_same_owner(p))
5311 return -EPERM;
5312 }
5313
5314 if (user) {
5315 #ifdef CONFIG_RT_GROUP_SCHED
5316 /*
5317 * Do not allow realtime tasks into groups that have no runtime
5318 * assigned.
5319 */
5320 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5321 task_group(p)->rt_bandwidth.rt_runtime == 0)
5322 return -EPERM;
5323 #endif
5324
5325 retval = security_task_setscheduler(p, policy, param);
5326 if (retval)
5327 return retval;
5328 }
5329
5330 /*
5331 * make sure no PI-waiters arrive (or leave) while we are
5332 * changing the priority of the task:
5333 */
5334 spin_lock_irqsave(&p->pi_lock, flags);
5335 /*
5336 * To be able to change p->policy safely, the apropriate
5337 * runqueue lock must be held.
5338 */
5339 rq = __task_rq_lock(p);
5340 /* recheck policy now with rq lock held */
5341 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5342 policy = oldpolicy = -1;
5343 __task_rq_unlock(rq);
5344 spin_unlock_irqrestore(&p->pi_lock, flags);
5345 goto recheck;
5346 }
5347 update_rq_clock(rq);
5348 on_rq = p->se.on_rq;
5349 running = task_current(rq, p);
5350 if (on_rq)
5351 deactivate_task(rq, p, 0);
5352 if (running)
5353 p->sched_class->put_prev_task(rq, p);
5354
5355 oldprio = p->prio;
5356 __setscheduler(rq, p, policy, param->sched_priority);
5357
5358 if (running)
5359 p->sched_class->set_curr_task(rq);
5360 if (on_rq) {
5361 activate_task(rq, p, 0);
5362
5363 check_class_changed(rq, p, prev_class, oldprio, running);
5364 }
5365 __task_rq_unlock(rq);
5366 spin_unlock_irqrestore(&p->pi_lock, flags);
5367
5368 rt_mutex_adjust_pi(p);
5369
5370 return 0;
5371 }
5372
5373 /**
5374 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5375 * @p: the task in question.
5376 * @policy: new policy.
5377 * @param: structure containing the new RT priority.
5378 *
5379 * NOTE that the task may be already dead.
5380 */
5381 int sched_setscheduler(struct task_struct *p, int policy,
5382 struct sched_param *param)
5383 {
5384 return __sched_setscheduler(p, policy, param, true);
5385 }
5386 EXPORT_SYMBOL_GPL(sched_setscheduler);
5387
5388 /**
5389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5390 * @p: the task in question.
5391 * @policy: new policy.
5392 * @param: structure containing the new RT priority.
5393 *
5394 * Just like sched_setscheduler, only don't bother checking if the
5395 * current context has permission. For example, this is needed in
5396 * stop_machine(): we create temporary high priority worker threads,
5397 * but our caller might not have that capability.
5398 */
5399 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5400 struct sched_param *param)
5401 {
5402 return __sched_setscheduler(p, policy, param, false);
5403 }
5404
5405 static int
5406 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5407 {
5408 struct sched_param lparam;
5409 struct task_struct *p;
5410 int retval;
5411
5412 if (!param || pid < 0)
5413 return -EINVAL;
5414 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5415 return -EFAULT;
5416
5417 rcu_read_lock();
5418 retval = -ESRCH;
5419 p = find_process_by_pid(pid);
5420 if (p != NULL)
5421 retval = sched_setscheduler(p, policy, &lparam);
5422 rcu_read_unlock();
5423
5424 return retval;
5425 }
5426
5427 /**
5428 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5429 * @pid: the pid in question.
5430 * @policy: new policy.
5431 * @param: structure containing the new RT priority.
5432 */
5433 asmlinkage long
5434 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5435 {
5436 /* negative values for policy are not valid */
5437 if (policy < 0)
5438 return -EINVAL;
5439
5440 return do_sched_setscheduler(pid, policy, param);
5441 }
5442
5443 /**
5444 * sys_sched_setparam - set/change the RT priority of a thread
5445 * @pid: the pid in question.
5446 * @param: structure containing the new RT priority.
5447 */
5448 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5449 {
5450 return do_sched_setscheduler(pid, -1, param);
5451 }
5452
5453 /**
5454 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5455 * @pid: the pid in question.
5456 */
5457 asmlinkage long sys_sched_getscheduler(pid_t pid)
5458 {
5459 struct task_struct *p;
5460 int retval;
5461
5462 if (pid < 0)
5463 return -EINVAL;
5464
5465 retval = -ESRCH;
5466 read_lock(&tasklist_lock);
5467 p = find_process_by_pid(pid);
5468 if (p) {
5469 retval = security_task_getscheduler(p);
5470 if (!retval)
5471 retval = p->policy;
5472 }
5473 read_unlock(&tasklist_lock);
5474 return retval;
5475 }
5476
5477 /**
5478 * sys_sched_getscheduler - get the RT priority of a thread
5479 * @pid: the pid in question.
5480 * @param: structure containing the RT priority.
5481 */
5482 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5483 {
5484 struct sched_param lp;
5485 struct task_struct *p;
5486 int retval;
5487
5488 if (!param || pid < 0)
5489 return -EINVAL;
5490
5491 read_lock(&tasklist_lock);
5492 p = find_process_by_pid(pid);
5493 retval = -ESRCH;
5494 if (!p)
5495 goto out_unlock;
5496
5497 retval = security_task_getscheduler(p);
5498 if (retval)
5499 goto out_unlock;
5500
5501 lp.sched_priority = p->rt_priority;
5502 read_unlock(&tasklist_lock);
5503
5504 /*
5505 * This one might sleep, we cannot do it with a spinlock held ...
5506 */
5507 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5508
5509 return retval;
5510
5511 out_unlock:
5512 read_unlock(&tasklist_lock);
5513 return retval;
5514 }
5515
5516 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5517 {
5518 cpumask_var_t cpus_allowed, new_mask;
5519 struct task_struct *p;
5520 int retval;
5521
5522 get_online_cpus();
5523 read_lock(&tasklist_lock);
5524
5525 p = find_process_by_pid(pid);
5526 if (!p) {
5527 read_unlock(&tasklist_lock);
5528 put_online_cpus();
5529 return -ESRCH;
5530 }
5531
5532 /*
5533 * It is not safe to call set_cpus_allowed with the
5534 * tasklist_lock held. We will bump the task_struct's
5535 * usage count and then drop tasklist_lock.
5536 */
5537 get_task_struct(p);
5538 read_unlock(&tasklist_lock);
5539
5540 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5541 retval = -ENOMEM;
5542 goto out_put_task;
5543 }
5544 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5545 retval = -ENOMEM;
5546 goto out_free_cpus_allowed;
5547 }
5548 retval = -EPERM;
5549 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5550 goto out_unlock;
5551
5552 retval = security_task_setscheduler(p, 0, NULL);
5553 if (retval)
5554 goto out_unlock;
5555
5556 cpuset_cpus_allowed(p, cpus_allowed);
5557 cpumask_and(new_mask, in_mask, cpus_allowed);
5558 again:
5559 retval = set_cpus_allowed_ptr(p, new_mask);
5560
5561 if (!retval) {
5562 cpuset_cpus_allowed(p, cpus_allowed);
5563 if (!cpumask_subset(new_mask, cpus_allowed)) {
5564 /*
5565 * We must have raced with a concurrent cpuset
5566 * update. Just reset the cpus_allowed to the
5567 * cpuset's cpus_allowed
5568 */
5569 cpumask_copy(new_mask, cpus_allowed);
5570 goto again;
5571 }
5572 }
5573 out_unlock:
5574 free_cpumask_var(new_mask);
5575 out_free_cpus_allowed:
5576 free_cpumask_var(cpus_allowed);
5577 out_put_task:
5578 put_task_struct(p);
5579 put_online_cpus();
5580 return retval;
5581 }
5582
5583 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5584 struct cpumask *new_mask)
5585 {
5586 if (len < cpumask_size())
5587 cpumask_clear(new_mask);
5588 else if (len > cpumask_size())
5589 len = cpumask_size();
5590
5591 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5592 }
5593
5594 /**
5595 * sys_sched_setaffinity - set the cpu affinity of a process
5596 * @pid: pid of the process
5597 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5598 * @user_mask_ptr: user-space pointer to the new cpu mask
5599 */
5600 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5601 unsigned long __user *user_mask_ptr)
5602 {
5603 cpumask_var_t new_mask;
5604 int retval;
5605
5606 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5607 return -ENOMEM;
5608
5609 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5610 if (retval == 0)
5611 retval = sched_setaffinity(pid, new_mask);
5612 free_cpumask_var(new_mask);
5613 return retval;
5614 }
5615
5616 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5617 {
5618 struct task_struct *p;
5619 int retval;
5620
5621 get_online_cpus();
5622 read_lock(&tasklist_lock);
5623
5624 retval = -ESRCH;
5625 p = find_process_by_pid(pid);
5626 if (!p)
5627 goto out_unlock;
5628
5629 retval = security_task_getscheduler(p);
5630 if (retval)
5631 goto out_unlock;
5632
5633 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5634
5635 out_unlock:
5636 read_unlock(&tasklist_lock);
5637 put_online_cpus();
5638
5639 return retval;
5640 }
5641
5642 /**
5643 * sys_sched_getaffinity - get the cpu affinity of a process
5644 * @pid: pid of the process
5645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5647 */
5648 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5649 unsigned long __user *user_mask_ptr)
5650 {
5651 int ret;
5652 cpumask_var_t mask;
5653
5654 if (len < cpumask_size())
5655 return -EINVAL;
5656
5657 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5658 return -ENOMEM;
5659
5660 ret = sched_getaffinity(pid, mask);
5661 if (ret == 0) {
5662 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5663 ret = -EFAULT;
5664 else
5665 ret = cpumask_size();
5666 }
5667 free_cpumask_var(mask);
5668
5669 return ret;
5670 }
5671
5672 /**
5673 * sys_sched_yield - yield the current processor to other threads.
5674 *
5675 * This function yields the current CPU to other tasks. If there are no
5676 * other threads running on this CPU then this function will return.
5677 */
5678 asmlinkage long sys_sched_yield(void)
5679 {
5680 struct rq *rq = this_rq_lock();
5681
5682 schedstat_inc(rq, yld_count);
5683 current->sched_class->yield_task(rq);
5684
5685 /*
5686 * Since we are going to call schedule() anyway, there's
5687 * no need to preempt or enable interrupts:
5688 */
5689 __release(rq->lock);
5690 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5691 _raw_spin_unlock(&rq->lock);
5692 preempt_enable_no_resched();
5693
5694 schedule();
5695
5696 return 0;
5697 }
5698
5699 static void __cond_resched(void)
5700 {
5701 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5702 __might_sleep(__FILE__, __LINE__);
5703 #endif
5704 /*
5705 * The BKS might be reacquired before we have dropped
5706 * PREEMPT_ACTIVE, which could trigger a second
5707 * cond_resched() call.
5708 */
5709 do {
5710 add_preempt_count(PREEMPT_ACTIVE);
5711 schedule();
5712 sub_preempt_count(PREEMPT_ACTIVE);
5713 } while (need_resched());
5714 }
5715
5716 int __sched _cond_resched(void)
5717 {
5718 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5719 system_state == SYSTEM_RUNNING) {
5720 __cond_resched();
5721 return 1;
5722 }
5723 return 0;
5724 }
5725 EXPORT_SYMBOL(_cond_resched);
5726
5727 /*
5728 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5729 * call schedule, and on return reacquire the lock.
5730 *
5731 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5732 * operations here to prevent schedule() from being called twice (once via
5733 * spin_unlock(), once by hand).
5734 */
5735 int cond_resched_lock(spinlock_t *lock)
5736 {
5737 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5738 int ret = 0;
5739
5740 if (spin_needbreak(lock) || resched) {
5741 spin_unlock(lock);
5742 if (resched && need_resched())
5743 __cond_resched();
5744 else
5745 cpu_relax();
5746 ret = 1;
5747 spin_lock(lock);
5748 }
5749 return ret;
5750 }
5751 EXPORT_SYMBOL(cond_resched_lock);
5752
5753 int __sched cond_resched_softirq(void)
5754 {
5755 BUG_ON(!in_softirq());
5756
5757 if (need_resched() && system_state == SYSTEM_RUNNING) {
5758 local_bh_enable();
5759 __cond_resched();
5760 local_bh_disable();
5761 return 1;
5762 }
5763 return 0;
5764 }
5765 EXPORT_SYMBOL(cond_resched_softirq);
5766
5767 /**
5768 * yield - yield the current processor to other threads.
5769 *
5770 * This is a shortcut for kernel-space yielding - it marks the
5771 * thread runnable and calls sys_sched_yield().
5772 */
5773 void __sched yield(void)
5774 {
5775 set_current_state(TASK_RUNNING);
5776 sys_sched_yield();
5777 }
5778 EXPORT_SYMBOL(yield);
5779
5780 /*
5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5782 * that process accounting knows that this is a task in IO wait state.
5783 *
5784 * But don't do that if it is a deliberate, throttling IO wait (this task
5785 * has set its backing_dev_info: the queue against which it should throttle)
5786 */
5787 void __sched io_schedule(void)
5788 {
5789 struct rq *rq = &__raw_get_cpu_var(runqueues);
5790
5791 delayacct_blkio_start();
5792 atomic_inc(&rq->nr_iowait);
5793 schedule();
5794 atomic_dec(&rq->nr_iowait);
5795 delayacct_blkio_end();
5796 }
5797 EXPORT_SYMBOL(io_schedule);
5798
5799 long __sched io_schedule_timeout(long timeout)
5800 {
5801 struct rq *rq = &__raw_get_cpu_var(runqueues);
5802 long ret;
5803
5804 delayacct_blkio_start();
5805 atomic_inc(&rq->nr_iowait);
5806 ret = schedule_timeout(timeout);
5807 atomic_dec(&rq->nr_iowait);
5808 delayacct_blkio_end();
5809 return ret;
5810 }
5811
5812 /**
5813 * sys_sched_get_priority_max - return maximum RT priority.
5814 * @policy: scheduling class.
5815 *
5816 * this syscall returns the maximum rt_priority that can be used
5817 * by a given scheduling class.
5818 */
5819 asmlinkage long sys_sched_get_priority_max(int policy)
5820 {
5821 int ret = -EINVAL;
5822
5823 switch (policy) {
5824 case SCHED_FIFO:
5825 case SCHED_RR:
5826 ret = MAX_USER_RT_PRIO-1;
5827 break;
5828 case SCHED_NORMAL:
5829 case SCHED_BATCH:
5830 case SCHED_IDLE:
5831 ret = 0;
5832 break;
5833 }
5834 return ret;
5835 }
5836
5837 /**
5838 * sys_sched_get_priority_min - return minimum RT priority.
5839 * @policy: scheduling class.
5840 *
5841 * this syscall returns the minimum rt_priority that can be used
5842 * by a given scheduling class.
5843 */
5844 asmlinkage long sys_sched_get_priority_min(int policy)
5845 {
5846 int ret = -EINVAL;
5847
5848 switch (policy) {
5849 case SCHED_FIFO:
5850 case SCHED_RR:
5851 ret = 1;
5852 break;
5853 case SCHED_NORMAL:
5854 case SCHED_BATCH:
5855 case SCHED_IDLE:
5856 ret = 0;
5857 }
5858 return ret;
5859 }
5860
5861 /**
5862 * sys_sched_rr_get_interval - return the default timeslice of a process.
5863 * @pid: pid of the process.
5864 * @interval: userspace pointer to the timeslice value.
5865 *
5866 * this syscall writes the default timeslice value of a given process
5867 * into the user-space timespec buffer. A value of '0' means infinity.
5868 */
5869 asmlinkage
5870 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5871 {
5872 struct task_struct *p;
5873 unsigned int time_slice;
5874 int retval;
5875 struct timespec t;
5876
5877 if (pid < 0)
5878 return -EINVAL;
5879
5880 retval = -ESRCH;
5881 read_lock(&tasklist_lock);
5882 p = find_process_by_pid(pid);
5883 if (!p)
5884 goto out_unlock;
5885
5886 retval = security_task_getscheduler(p);
5887 if (retval)
5888 goto out_unlock;
5889
5890 /*
5891 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5892 * tasks that are on an otherwise idle runqueue:
5893 */
5894 time_slice = 0;
5895 if (p->policy == SCHED_RR) {
5896 time_slice = DEF_TIMESLICE;
5897 } else if (p->policy != SCHED_FIFO) {
5898 struct sched_entity *se = &p->se;
5899 unsigned long flags;
5900 struct rq *rq;
5901
5902 rq = task_rq_lock(p, &flags);
5903 if (rq->cfs.load.weight)
5904 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5905 task_rq_unlock(rq, &flags);
5906 }
5907 read_unlock(&tasklist_lock);
5908 jiffies_to_timespec(time_slice, &t);
5909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5910 return retval;
5911
5912 out_unlock:
5913 read_unlock(&tasklist_lock);
5914 return retval;
5915 }
5916
5917 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5918
5919 void sched_show_task(struct task_struct *p)
5920 {
5921 unsigned long free = 0;
5922 unsigned state;
5923
5924 state = p->state ? __ffs(p->state) + 1 : 0;
5925 printk(KERN_INFO "%-13.13s %c", p->comm,
5926 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5927 #if BITS_PER_LONG == 32
5928 if (state == TASK_RUNNING)
5929 printk(KERN_CONT " running ");
5930 else
5931 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5932 #else
5933 if (state == TASK_RUNNING)
5934 printk(KERN_CONT " running task ");
5935 else
5936 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5937 #endif
5938 #ifdef CONFIG_DEBUG_STACK_USAGE
5939 {
5940 unsigned long *n = end_of_stack(p);
5941 while (!*n)
5942 n++;
5943 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5944 }
5945 #endif
5946 printk(KERN_CONT "%5lu %5d %6d\n", free,
5947 task_pid_nr(p), task_pid_nr(p->real_parent));
5948
5949 show_stack(p, NULL);
5950 }
5951
5952 void show_state_filter(unsigned long state_filter)
5953 {
5954 struct task_struct *g, *p;
5955
5956 #if BITS_PER_LONG == 32
5957 printk(KERN_INFO
5958 " task PC stack pid father\n");
5959 #else
5960 printk(KERN_INFO
5961 " task PC stack pid father\n");
5962 #endif
5963 read_lock(&tasklist_lock);
5964 do_each_thread(g, p) {
5965 /*
5966 * reset the NMI-timeout, listing all files on a slow
5967 * console might take alot of time:
5968 */
5969 touch_nmi_watchdog();
5970 if (!state_filter || (p->state & state_filter))
5971 sched_show_task(p);
5972 } while_each_thread(g, p);
5973
5974 touch_all_softlockup_watchdogs();
5975
5976 #ifdef CONFIG_SCHED_DEBUG
5977 sysrq_sched_debug_show();
5978 #endif
5979 read_unlock(&tasklist_lock);
5980 /*
5981 * Only show locks if all tasks are dumped:
5982 */
5983 if (state_filter == -1)
5984 debug_show_all_locks();
5985 }
5986
5987 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5988 {
5989 idle->sched_class = &idle_sched_class;
5990 }
5991
5992 /**
5993 * init_idle - set up an idle thread for a given CPU
5994 * @idle: task in question
5995 * @cpu: cpu the idle task belongs to
5996 *
5997 * NOTE: this function does not set the idle thread's NEED_RESCHED
5998 * flag, to make booting more robust.
5999 */
6000 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6001 {
6002 struct rq *rq = cpu_rq(cpu);
6003 unsigned long flags;
6004
6005 spin_lock_irqsave(&rq->lock, flags);
6006
6007 __sched_fork(idle);
6008 idle->se.exec_start = sched_clock();
6009
6010 idle->prio = idle->normal_prio = MAX_PRIO;
6011 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6012 __set_task_cpu(idle, cpu);
6013
6014 rq->curr = rq->idle = idle;
6015 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6016 idle->oncpu = 1;
6017 #endif
6018 spin_unlock_irqrestore(&rq->lock, flags);
6019
6020 /* Set the preempt count _outside_ the spinlocks! */
6021 #if defined(CONFIG_PREEMPT)
6022 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6023 #else
6024 task_thread_info(idle)->preempt_count = 0;
6025 #endif
6026 /*
6027 * The idle tasks have their own, simple scheduling class:
6028 */
6029 idle->sched_class = &idle_sched_class;
6030 ftrace_graph_init_task(idle);
6031 }
6032
6033 /*
6034 * In a system that switches off the HZ timer nohz_cpu_mask
6035 * indicates which cpus entered this state. This is used
6036 * in the rcu update to wait only for active cpus. For system
6037 * which do not switch off the HZ timer nohz_cpu_mask should
6038 * always be CPU_BITS_NONE.
6039 */
6040 cpumask_var_t nohz_cpu_mask;
6041
6042 /*
6043 * Increase the granularity value when there are more CPUs,
6044 * because with more CPUs the 'effective latency' as visible
6045 * to users decreases. But the relationship is not linear,
6046 * so pick a second-best guess by going with the log2 of the
6047 * number of CPUs.
6048 *
6049 * This idea comes from the SD scheduler of Con Kolivas:
6050 */
6051 static inline void sched_init_granularity(void)
6052 {
6053 unsigned int factor = 1 + ilog2(num_online_cpus());
6054 const unsigned long limit = 200000000;
6055
6056 sysctl_sched_min_granularity *= factor;
6057 if (sysctl_sched_min_granularity > limit)
6058 sysctl_sched_min_granularity = limit;
6059
6060 sysctl_sched_latency *= factor;
6061 if (sysctl_sched_latency > limit)
6062 sysctl_sched_latency = limit;
6063
6064 sysctl_sched_wakeup_granularity *= factor;
6065
6066 sysctl_sched_shares_ratelimit *= factor;
6067 }
6068
6069 #ifdef CONFIG_SMP
6070 /*
6071 * This is how migration works:
6072 *
6073 * 1) we queue a struct migration_req structure in the source CPU's
6074 * runqueue and wake up that CPU's migration thread.
6075 * 2) we down() the locked semaphore => thread blocks.
6076 * 3) migration thread wakes up (implicitly it forces the migrated
6077 * thread off the CPU)
6078 * 4) it gets the migration request and checks whether the migrated
6079 * task is still in the wrong runqueue.
6080 * 5) if it's in the wrong runqueue then the migration thread removes
6081 * it and puts it into the right queue.
6082 * 6) migration thread up()s the semaphore.
6083 * 7) we wake up and the migration is done.
6084 */
6085
6086 /*
6087 * Change a given task's CPU affinity. Migrate the thread to a
6088 * proper CPU and schedule it away if the CPU it's executing on
6089 * is removed from the allowed bitmask.
6090 *
6091 * NOTE: the caller must have a valid reference to the task, the
6092 * task must not exit() & deallocate itself prematurely. The
6093 * call is not atomic; no spinlocks may be held.
6094 */
6095 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6096 {
6097 struct migration_req req;
6098 unsigned long flags;
6099 struct rq *rq;
6100 int ret = 0;
6101
6102 rq = task_rq_lock(p, &flags);
6103 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6104 ret = -EINVAL;
6105 goto out;
6106 }
6107
6108 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6109 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6110 ret = -EINVAL;
6111 goto out;
6112 }
6113
6114 if (p->sched_class->set_cpus_allowed)
6115 p->sched_class->set_cpus_allowed(p, new_mask);
6116 else {
6117 cpumask_copy(&p->cpus_allowed, new_mask);
6118 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6119 }
6120
6121 /* Can the task run on the task's current CPU? If so, we're done */
6122 if (cpumask_test_cpu(task_cpu(p), new_mask))
6123 goto out;
6124
6125 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6126 /* Need help from migration thread: drop lock and wait. */
6127 task_rq_unlock(rq, &flags);
6128 wake_up_process(rq->migration_thread);
6129 wait_for_completion(&req.done);
6130 tlb_migrate_finish(p->mm);
6131 return 0;
6132 }
6133 out:
6134 task_rq_unlock(rq, &flags);
6135
6136 return ret;
6137 }
6138 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6139
6140 /*
6141 * Move (not current) task off this cpu, onto dest cpu. We're doing
6142 * this because either it can't run here any more (set_cpus_allowed()
6143 * away from this CPU, or CPU going down), or because we're
6144 * attempting to rebalance this task on exec (sched_exec).
6145 *
6146 * So we race with normal scheduler movements, but that's OK, as long
6147 * as the task is no longer on this CPU.
6148 *
6149 * Returns non-zero if task was successfully migrated.
6150 */
6151 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6152 {
6153 struct rq *rq_dest, *rq_src;
6154 int ret = 0, on_rq;
6155
6156 if (unlikely(!cpu_active(dest_cpu)))
6157 return ret;
6158
6159 rq_src = cpu_rq(src_cpu);
6160 rq_dest = cpu_rq(dest_cpu);
6161
6162 double_rq_lock(rq_src, rq_dest);
6163 /* Already moved. */
6164 if (task_cpu(p) != src_cpu)
6165 goto done;
6166 /* Affinity changed (again). */
6167 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6168 goto fail;
6169
6170 on_rq = p->se.on_rq;
6171 if (on_rq)
6172 deactivate_task(rq_src, p, 0);
6173
6174 set_task_cpu(p, dest_cpu);
6175 if (on_rq) {
6176 activate_task(rq_dest, p, 0);
6177 check_preempt_curr(rq_dest, p, 0);
6178 }
6179 done:
6180 ret = 1;
6181 fail:
6182 double_rq_unlock(rq_src, rq_dest);
6183 return ret;
6184 }
6185
6186 /*
6187 * migration_thread - this is a highprio system thread that performs
6188 * thread migration by bumping thread off CPU then 'pushing' onto
6189 * another runqueue.
6190 */
6191 static int migration_thread(void *data)
6192 {
6193 int cpu = (long)data;
6194 struct rq *rq;
6195
6196 rq = cpu_rq(cpu);
6197 BUG_ON(rq->migration_thread != current);
6198
6199 set_current_state(TASK_INTERRUPTIBLE);
6200 while (!kthread_should_stop()) {
6201 struct migration_req *req;
6202 struct list_head *head;
6203
6204 spin_lock_irq(&rq->lock);
6205
6206 if (cpu_is_offline(cpu)) {
6207 spin_unlock_irq(&rq->lock);
6208 goto wait_to_die;
6209 }
6210
6211 if (rq->active_balance) {
6212 active_load_balance(rq, cpu);
6213 rq->active_balance = 0;
6214 }
6215
6216 head = &rq->migration_queue;
6217
6218 if (list_empty(head)) {
6219 spin_unlock_irq(&rq->lock);
6220 schedule();
6221 set_current_state(TASK_INTERRUPTIBLE);
6222 continue;
6223 }
6224 req = list_entry(head->next, struct migration_req, list);
6225 list_del_init(head->next);
6226
6227 spin_unlock(&rq->lock);
6228 __migrate_task(req->task, cpu, req->dest_cpu);
6229 local_irq_enable();
6230
6231 complete(&req->done);
6232 }
6233 __set_current_state(TASK_RUNNING);
6234 return 0;
6235
6236 wait_to_die:
6237 /* Wait for kthread_stop */
6238 set_current_state(TASK_INTERRUPTIBLE);
6239 while (!kthread_should_stop()) {
6240 schedule();
6241 set_current_state(TASK_INTERRUPTIBLE);
6242 }
6243 __set_current_state(TASK_RUNNING);
6244 return 0;
6245 }
6246
6247 #ifdef CONFIG_HOTPLUG_CPU
6248
6249 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6250 {
6251 int ret;
6252
6253 local_irq_disable();
6254 ret = __migrate_task(p, src_cpu, dest_cpu);
6255 local_irq_enable();
6256 return ret;
6257 }
6258
6259 /*
6260 * Figure out where task on dead CPU should go, use force if necessary.
6261 */
6262 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6263 {
6264 int dest_cpu;
6265 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6266
6267 again:
6268 /* Look for allowed, online CPU in same node. */
6269 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6270 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6271 goto move;
6272
6273 /* Any allowed, online CPU? */
6274 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6275 if (dest_cpu < nr_cpu_ids)
6276 goto move;
6277
6278 /* No more Mr. Nice Guy. */
6279 if (dest_cpu >= nr_cpu_ids) {
6280 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6281 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6282
6283 /*
6284 * Don't tell them about moving exiting tasks or
6285 * kernel threads (both mm NULL), since they never
6286 * leave kernel.
6287 */
6288 if (p->mm && printk_ratelimit()) {
6289 printk(KERN_INFO "process %d (%s) no "
6290 "longer affine to cpu%d\n",
6291 task_pid_nr(p), p->comm, dead_cpu);
6292 }
6293 }
6294
6295 move:
6296 /* It can have affinity changed while we were choosing. */
6297 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6298 goto again;
6299 }
6300
6301 /*
6302 * While a dead CPU has no uninterruptible tasks queued at this point,
6303 * it might still have a nonzero ->nr_uninterruptible counter, because
6304 * for performance reasons the counter is not stricly tracking tasks to
6305 * their home CPUs. So we just add the counter to another CPU's counter,
6306 * to keep the global sum constant after CPU-down:
6307 */
6308 static void migrate_nr_uninterruptible(struct rq *rq_src)
6309 {
6310 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6311 unsigned long flags;
6312
6313 local_irq_save(flags);
6314 double_rq_lock(rq_src, rq_dest);
6315 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6316 rq_src->nr_uninterruptible = 0;
6317 double_rq_unlock(rq_src, rq_dest);
6318 local_irq_restore(flags);
6319 }
6320
6321 /* Run through task list and migrate tasks from the dead cpu. */
6322 static void migrate_live_tasks(int src_cpu)
6323 {
6324 struct task_struct *p, *t;
6325
6326 read_lock(&tasklist_lock);
6327
6328 do_each_thread(t, p) {
6329 if (p == current)
6330 continue;
6331
6332 if (task_cpu(p) == src_cpu)
6333 move_task_off_dead_cpu(src_cpu, p);
6334 } while_each_thread(t, p);
6335
6336 read_unlock(&tasklist_lock);
6337 }
6338
6339 /*
6340 * Schedules idle task to be the next runnable task on current CPU.
6341 * It does so by boosting its priority to highest possible.
6342 * Used by CPU offline code.
6343 */
6344 void sched_idle_next(void)
6345 {
6346 int this_cpu = smp_processor_id();
6347 struct rq *rq = cpu_rq(this_cpu);
6348 struct task_struct *p = rq->idle;
6349 unsigned long flags;
6350
6351 /* cpu has to be offline */
6352 BUG_ON(cpu_online(this_cpu));
6353
6354 /*
6355 * Strictly not necessary since rest of the CPUs are stopped by now
6356 * and interrupts disabled on the current cpu.
6357 */
6358 spin_lock_irqsave(&rq->lock, flags);
6359
6360 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6361
6362 update_rq_clock(rq);
6363 activate_task(rq, p, 0);
6364
6365 spin_unlock_irqrestore(&rq->lock, flags);
6366 }
6367
6368 /*
6369 * Ensures that the idle task is using init_mm right before its cpu goes
6370 * offline.
6371 */
6372 void idle_task_exit(void)
6373 {
6374 struct mm_struct *mm = current->active_mm;
6375
6376 BUG_ON(cpu_online(smp_processor_id()));
6377
6378 if (mm != &init_mm)
6379 switch_mm(mm, &init_mm, current);
6380 mmdrop(mm);
6381 }
6382
6383 /* called under rq->lock with disabled interrupts */
6384 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6385 {
6386 struct rq *rq = cpu_rq(dead_cpu);
6387
6388 /* Must be exiting, otherwise would be on tasklist. */
6389 BUG_ON(!p->exit_state);
6390
6391 /* Cannot have done final schedule yet: would have vanished. */
6392 BUG_ON(p->state == TASK_DEAD);
6393
6394 get_task_struct(p);
6395
6396 /*
6397 * Drop lock around migration; if someone else moves it,
6398 * that's OK. No task can be added to this CPU, so iteration is
6399 * fine.
6400 */
6401 spin_unlock_irq(&rq->lock);
6402 move_task_off_dead_cpu(dead_cpu, p);
6403 spin_lock_irq(&rq->lock);
6404
6405 put_task_struct(p);
6406 }
6407
6408 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6409 static void migrate_dead_tasks(unsigned int dead_cpu)
6410 {
6411 struct rq *rq = cpu_rq(dead_cpu);
6412 struct task_struct *next;
6413
6414 for ( ; ; ) {
6415 if (!rq->nr_running)
6416 break;
6417 update_rq_clock(rq);
6418 next = pick_next_task(rq, rq->curr);
6419 if (!next)
6420 break;
6421 next->sched_class->put_prev_task(rq, next);
6422 migrate_dead(dead_cpu, next);
6423
6424 }
6425 }
6426 #endif /* CONFIG_HOTPLUG_CPU */
6427
6428 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6429
6430 static struct ctl_table sd_ctl_dir[] = {
6431 {
6432 .procname = "sched_domain",
6433 .mode = 0555,
6434 },
6435 {0, },
6436 };
6437
6438 static struct ctl_table sd_ctl_root[] = {
6439 {
6440 .ctl_name = CTL_KERN,
6441 .procname = "kernel",
6442 .mode = 0555,
6443 .child = sd_ctl_dir,
6444 },
6445 {0, },
6446 };
6447
6448 static struct ctl_table *sd_alloc_ctl_entry(int n)
6449 {
6450 struct ctl_table *entry =
6451 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6452
6453 return entry;
6454 }
6455
6456 static void sd_free_ctl_entry(struct ctl_table **tablep)
6457 {
6458 struct ctl_table *entry;
6459
6460 /*
6461 * In the intermediate directories, both the child directory and
6462 * procname are dynamically allocated and could fail but the mode
6463 * will always be set. In the lowest directory the names are
6464 * static strings and all have proc handlers.
6465 */
6466 for (entry = *tablep; entry->mode; entry++) {
6467 if (entry->child)
6468 sd_free_ctl_entry(&entry->child);
6469 if (entry->proc_handler == NULL)
6470 kfree(entry->procname);
6471 }
6472
6473 kfree(*tablep);
6474 *tablep = NULL;
6475 }
6476
6477 static void
6478 set_table_entry(struct ctl_table *entry,
6479 const char *procname, void *data, int maxlen,
6480 mode_t mode, proc_handler *proc_handler)
6481 {
6482 entry->procname = procname;
6483 entry->data = data;
6484 entry->maxlen = maxlen;
6485 entry->mode = mode;
6486 entry->proc_handler = proc_handler;
6487 }
6488
6489 static struct ctl_table *
6490 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6491 {
6492 struct ctl_table *table = sd_alloc_ctl_entry(13);
6493
6494 if (table == NULL)
6495 return NULL;
6496
6497 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6498 sizeof(long), 0644, proc_doulongvec_minmax);
6499 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6500 sizeof(long), 0644, proc_doulongvec_minmax);
6501 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6502 sizeof(int), 0644, proc_dointvec_minmax);
6503 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6504 sizeof(int), 0644, proc_dointvec_minmax);
6505 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6506 sizeof(int), 0644, proc_dointvec_minmax);
6507 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6508 sizeof(int), 0644, proc_dointvec_minmax);
6509 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6510 sizeof(int), 0644, proc_dointvec_minmax);
6511 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6514 sizeof(int), 0644, proc_dointvec_minmax);
6515 set_table_entry(&table[9], "cache_nice_tries",
6516 &sd->cache_nice_tries,
6517 sizeof(int), 0644, proc_dointvec_minmax);
6518 set_table_entry(&table[10], "flags", &sd->flags,
6519 sizeof(int), 0644, proc_dointvec_minmax);
6520 set_table_entry(&table[11], "name", sd->name,
6521 CORENAME_MAX_SIZE, 0444, proc_dostring);
6522 /* &table[12] is terminator */
6523
6524 return table;
6525 }
6526
6527 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6528 {
6529 struct ctl_table *entry, *table;
6530 struct sched_domain *sd;
6531 int domain_num = 0, i;
6532 char buf[32];
6533
6534 for_each_domain(cpu, sd)
6535 domain_num++;
6536 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6537 if (table == NULL)
6538 return NULL;
6539
6540 i = 0;
6541 for_each_domain(cpu, sd) {
6542 snprintf(buf, 32, "domain%d", i);
6543 entry->procname = kstrdup(buf, GFP_KERNEL);
6544 entry->mode = 0555;
6545 entry->child = sd_alloc_ctl_domain_table(sd);
6546 entry++;
6547 i++;
6548 }
6549 return table;
6550 }
6551
6552 static struct ctl_table_header *sd_sysctl_header;
6553 static void register_sched_domain_sysctl(void)
6554 {
6555 int i, cpu_num = num_online_cpus();
6556 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6557 char buf[32];
6558
6559 WARN_ON(sd_ctl_dir[0].child);
6560 sd_ctl_dir[0].child = entry;
6561
6562 if (entry == NULL)
6563 return;
6564
6565 for_each_online_cpu(i) {
6566 snprintf(buf, 32, "cpu%d", i);
6567 entry->procname = kstrdup(buf, GFP_KERNEL);
6568 entry->mode = 0555;
6569 entry->child = sd_alloc_ctl_cpu_table(i);
6570 entry++;
6571 }
6572
6573 WARN_ON(sd_sysctl_header);
6574 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6575 }
6576
6577 /* may be called multiple times per register */
6578 static void unregister_sched_domain_sysctl(void)
6579 {
6580 if (sd_sysctl_header)
6581 unregister_sysctl_table(sd_sysctl_header);
6582 sd_sysctl_header = NULL;
6583 if (sd_ctl_dir[0].child)
6584 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6585 }
6586 #else
6587 static void register_sched_domain_sysctl(void)
6588 {
6589 }
6590 static void unregister_sched_domain_sysctl(void)
6591 {
6592 }
6593 #endif
6594
6595 static void set_rq_online(struct rq *rq)
6596 {
6597 if (!rq->online) {
6598 const struct sched_class *class;
6599
6600 cpumask_set_cpu(rq->cpu, rq->rd->online);
6601 rq->online = 1;
6602
6603 for_each_class(class) {
6604 if (class->rq_online)
6605 class->rq_online(rq);
6606 }
6607 }
6608 }
6609
6610 static void set_rq_offline(struct rq *rq)
6611 {
6612 if (rq->online) {
6613 const struct sched_class *class;
6614
6615 for_each_class(class) {
6616 if (class->rq_offline)
6617 class->rq_offline(rq);
6618 }
6619
6620 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6621 rq->online = 0;
6622 }
6623 }
6624
6625 /*
6626 * migration_call - callback that gets triggered when a CPU is added.
6627 * Here we can start up the necessary migration thread for the new CPU.
6628 */
6629 static int __cpuinit
6630 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6631 {
6632 struct task_struct *p;
6633 int cpu = (long)hcpu;
6634 unsigned long flags;
6635 struct rq *rq;
6636
6637 switch (action) {
6638
6639 case CPU_UP_PREPARE:
6640 case CPU_UP_PREPARE_FROZEN:
6641 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6642 if (IS_ERR(p))
6643 return NOTIFY_BAD;
6644 kthread_bind(p, cpu);
6645 /* Must be high prio: stop_machine expects to yield to it. */
6646 rq = task_rq_lock(p, &flags);
6647 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6648 task_rq_unlock(rq, &flags);
6649 cpu_rq(cpu)->migration_thread = p;
6650 break;
6651
6652 case CPU_ONLINE:
6653 case CPU_ONLINE_FROZEN:
6654 /* Strictly unnecessary, as first user will wake it. */
6655 wake_up_process(cpu_rq(cpu)->migration_thread);
6656
6657 /* Update our root-domain */
6658 rq = cpu_rq(cpu);
6659 spin_lock_irqsave(&rq->lock, flags);
6660 if (rq->rd) {
6661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6662
6663 set_rq_online(rq);
6664 }
6665 spin_unlock_irqrestore(&rq->lock, flags);
6666 break;
6667
6668 #ifdef CONFIG_HOTPLUG_CPU
6669 case CPU_UP_CANCELED:
6670 case CPU_UP_CANCELED_FROZEN:
6671 if (!cpu_rq(cpu)->migration_thread)
6672 break;
6673 /* Unbind it from offline cpu so it can run. Fall thru. */
6674 kthread_bind(cpu_rq(cpu)->migration_thread,
6675 cpumask_any(cpu_online_mask));
6676 kthread_stop(cpu_rq(cpu)->migration_thread);
6677 cpu_rq(cpu)->migration_thread = NULL;
6678 break;
6679
6680 case CPU_DEAD:
6681 case CPU_DEAD_FROZEN:
6682 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6683 migrate_live_tasks(cpu);
6684 rq = cpu_rq(cpu);
6685 kthread_stop(rq->migration_thread);
6686 rq->migration_thread = NULL;
6687 /* Idle task back to normal (off runqueue, low prio) */
6688 spin_lock_irq(&rq->lock);
6689 update_rq_clock(rq);
6690 deactivate_task(rq, rq->idle, 0);
6691 rq->idle->static_prio = MAX_PRIO;
6692 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6693 rq->idle->sched_class = &idle_sched_class;
6694 migrate_dead_tasks(cpu);
6695 spin_unlock_irq(&rq->lock);
6696 cpuset_unlock();
6697 migrate_nr_uninterruptible(rq);
6698 BUG_ON(rq->nr_running != 0);
6699
6700 /*
6701 * No need to migrate the tasks: it was best-effort if
6702 * they didn't take sched_hotcpu_mutex. Just wake up
6703 * the requestors.
6704 */
6705 spin_lock_irq(&rq->lock);
6706 while (!list_empty(&rq->migration_queue)) {
6707 struct migration_req *req;
6708
6709 req = list_entry(rq->migration_queue.next,
6710 struct migration_req, list);
6711 list_del_init(&req->list);
6712 spin_unlock_irq(&rq->lock);
6713 complete(&req->done);
6714 spin_lock_irq(&rq->lock);
6715 }
6716 spin_unlock_irq(&rq->lock);
6717 break;
6718
6719 case CPU_DYING:
6720 case CPU_DYING_FROZEN:
6721 /* Update our root-domain */
6722 rq = cpu_rq(cpu);
6723 spin_lock_irqsave(&rq->lock, flags);
6724 if (rq->rd) {
6725 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6726 set_rq_offline(rq);
6727 }
6728 spin_unlock_irqrestore(&rq->lock, flags);
6729 break;
6730 #endif
6731 }
6732 return NOTIFY_OK;
6733 }
6734
6735 /* Register at highest priority so that task migration (migrate_all_tasks)
6736 * happens before everything else.
6737 */
6738 static struct notifier_block __cpuinitdata migration_notifier = {
6739 .notifier_call = migration_call,
6740 .priority = 10
6741 };
6742
6743 static int __init migration_init(void)
6744 {
6745 void *cpu = (void *)(long)smp_processor_id();
6746 int err;
6747
6748 /* Start one for the boot CPU: */
6749 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6750 BUG_ON(err == NOTIFY_BAD);
6751 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6752 register_cpu_notifier(&migration_notifier);
6753
6754 return err;
6755 }
6756 early_initcall(migration_init);
6757 #endif
6758
6759 #ifdef CONFIG_SMP
6760
6761 #ifdef CONFIG_SCHED_DEBUG
6762
6763 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6764 struct cpumask *groupmask)
6765 {
6766 struct sched_group *group = sd->groups;
6767 char str[256];
6768
6769 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6770 cpumask_clear(groupmask);
6771
6772 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6773
6774 if (!(sd->flags & SD_LOAD_BALANCE)) {
6775 printk("does not load-balance\n");
6776 if (sd->parent)
6777 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6778 " has parent");
6779 return -1;
6780 }
6781
6782 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6783
6784 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6785 printk(KERN_ERR "ERROR: domain->span does not contain "
6786 "CPU%d\n", cpu);
6787 }
6788 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6789 printk(KERN_ERR "ERROR: domain->groups does not contain"
6790 " CPU%d\n", cpu);
6791 }
6792
6793 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6794 do {
6795 if (!group) {
6796 printk("\n");
6797 printk(KERN_ERR "ERROR: group is NULL\n");
6798 break;
6799 }
6800
6801 if (!group->__cpu_power) {
6802 printk(KERN_CONT "\n");
6803 printk(KERN_ERR "ERROR: domain->cpu_power not "
6804 "set\n");
6805 break;
6806 }
6807
6808 if (!cpumask_weight(sched_group_cpus(group))) {
6809 printk(KERN_CONT "\n");
6810 printk(KERN_ERR "ERROR: empty group\n");
6811 break;
6812 }
6813
6814 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6815 printk(KERN_CONT "\n");
6816 printk(KERN_ERR "ERROR: repeated CPUs\n");
6817 break;
6818 }
6819
6820 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6821
6822 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6823 printk(KERN_CONT " %s", str);
6824
6825 group = group->next;
6826 } while (group != sd->groups);
6827 printk(KERN_CONT "\n");
6828
6829 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6830 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6831
6832 if (sd->parent &&
6833 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6834 printk(KERN_ERR "ERROR: parent span is not a superset "
6835 "of domain->span\n");
6836 return 0;
6837 }
6838
6839 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6840 {
6841 cpumask_var_t groupmask;
6842 int level = 0;
6843
6844 if (!sd) {
6845 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6846 return;
6847 }
6848
6849 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6850
6851 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6852 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6853 return;
6854 }
6855
6856 for (;;) {
6857 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6858 break;
6859 level++;
6860 sd = sd->parent;
6861 if (!sd)
6862 break;
6863 }
6864 free_cpumask_var(groupmask);
6865 }
6866 #else /* !CONFIG_SCHED_DEBUG */
6867 # define sched_domain_debug(sd, cpu) do { } while (0)
6868 #endif /* CONFIG_SCHED_DEBUG */
6869
6870 static int sd_degenerate(struct sched_domain *sd)
6871 {
6872 if (cpumask_weight(sched_domain_span(sd)) == 1)
6873 return 1;
6874
6875 /* Following flags need at least 2 groups */
6876 if (sd->flags & (SD_LOAD_BALANCE |
6877 SD_BALANCE_NEWIDLE |
6878 SD_BALANCE_FORK |
6879 SD_BALANCE_EXEC |
6880 SD_SHARE_CPUPOWER |
6881 SD_SHARE_PKG_RESOURCES)) {
6882 if (sd->groups != sd->groups->next)
6883 return 0;
6884 }
6885
6886 /* Following flags don't use groups */
6887 if (sd->flags & (SD_WAKE_IDLE |
6888 SD_WAKE_AFFINE |
6889 SD_WAKE_BALANCE))
6890 return 0;
6891
6892 return 1;
6893 }
6894
6895 static int
6896 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6897 {
6898 unsigned long cflags = sd->flags, pflags = parent->flags;
6899
6900 if (sd_degenerate(parent))
6901 return 1;
6902
6903 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6904 return 0;
6905
6906 /* Does parent contain flags not in child? */
6907 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6908 if (cflags & SD_WAKE_AFFINE)
6909 pflags &= ~SD_WAKE_BALANCE;
6910 /* Flags needing groups don't count if only 1 group in parent */
6911 if (parent->groups == parent->groups->next) {
6912 pflags &= ~(SD_LOAD_BALANCE |
6913 SD_BALANCE_NEWIDLE |
6914 SD_BALANCE_FORK |
6915 SD_BALANCE_EXEC |
6916 SD_SHARE_CPUPOWER |
6917 SD_SHARE_PKG_RESOURCES);
6918 if (nr_node_ids == 1)
6919 pflags &= ~SD_SERIALIZE;
6920 }
6921 if (~cflags & pflags)
6922 return 0;
6923
6924 return 1;
6925 }
6926
6927 static void free_rootdomain(struct root_domain *rd)
6928 {
6929 cpupri_cleanup(&rd->cpupri);
6930
6931 free_cpumask_var(rd->rto_mask);
6932 free_cpumask_var(rd->online);
6933 free_cpumask_var(rd->span);
6934 kfree(rd);
6935 }
6936
6937 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6938 {
6939 unsigned long flags;
6940
6941 spin_lock_irqsave(&rq->lock, flags);
6942
6943 if (rq->rd) {
6944 struct root_domain *old_rd = rq->rd;
6945
6946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6947 set_rq_offline(rq);
6948
6949 cpumask_clear_cpu(rq->cpu, old_rd->span);
6950
6951 if (atomic_dec_and_test(&old_rd->refcount))
6952 free_rootdomain(old_rd);
6953 }
6954
6955 atomic_inc(&rd->refcount);
6956 rq->rd = rd;
6957
6958 cpumask_set_cpu(rq->cpu, rd->span);
6959 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6960 set_rq_online(rq);
6961
6962 spin_unlock_irqrestore(&rq->lock, flags);
6963 }
6964
6965 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6966 {
6967 memset(rd, 0, sizeof(*rd));
6968
6969 if (bootmem) {
6970 alloc_bootmem_cpumask_var(&def_root_domain.span);
6971 alloc_bootmem_cpumask_var(&def_root_domain.online);
6972 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6973 cpupri_init(&rd->cpupri, true);
6974 return 0;
6975 }
6976
6977 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6978 goto out;
6979 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6980 goto free_span;
6981 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6982 goto free_online;
6983
6984 if (cpupri_init(&rd->cpupri, false) != 0)
6985 goto free_rto_mask;
6986 return 0;
6987
6988 free_rto_mask:
6989 free_cpumask_var(rd->rto_mask);
6990 free_online:
6991 free_cpumask_var(rd->online);
6992 free_span:
6993 free_cpumask_var(rd->span);
6994 out:
6995 return -ENOMEM;
6996 }
6997
6998 static void init_defrootdomain(void)
6999 {
7000 init_rootdomain(&def_root_domain, true);
7001
7002 atomic_set(&def_root_domain.refcount, 1);
7003 }
7004
7005 static struct root_domain *alloc_rootdomain(void)
7006 {
7007 struct root_domain *rd;
7008
7009 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7010 if (!rd)
7011 return NULL;
7012
7013 if (init_rootdomain(rd, false) != 0) {
7014 kfree(rd);
7015 return NULL;
7016 }
7017
7018 return rd;
7019 }
7020
7021 /*
7022 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7023 * hold the hotplug lock.
7024 */
7025 static void
7026 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7027 {
7028 struct rq *rq = cpu_rq(cpu);
7029 struct sched_domain *tmp;
7030
7031 /* Remove the sched domains which do not contribute to scheduling. */
7032 for (tmp = sd; tmp; ) {
7033 struct sched_domain *parent = tmp->parent;
7034 if (!parent)
7035 break;
7036
7037 if (sd_parent_degenerate(tmp, parent)) {
7038 tmp->parent = parent->parent;
7039 if (parent->parent)
7040 parent->parent->child = tmp;
7041 } else
7042 tmp = tmp->parent;
7043 }
7044
7045 if (sd && sd_degenerate(sd)) {
7046 sd = sd->parent;
7047 if (sd)
7048 sd->child = NULL;
7049 }
7050
7051 sched_domain_debug(sd, cpu);
7052
7053 rq_attach_root(rq, rd);
7054 rcu_assign_pointer(rq->sd, sd);
7055 }
7056
7057 /* cpus with isolated domains */
7058 static cpumask_var_t cpu_isolated_map;
7059
7060 /* Setup the mask of cpus configured for isolated domains */
7061 static int __init isolated_cpu_setup(char *str)
7062 {
7063 cpulist_parse(str, cpu_isolated_map);
7064 return 1;
7065 }
7066
7067 __setup("isolcpus=", isolated_cpu_setup);
7068
7069 /*
7070 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7071 * to a function which identifies what group(along with sched group) a CPU
7072 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7073 * (due to the fact that we keep track of groups covered with a struct cpumask).
7074 *
7075 * init_sched_build_groups will build a circular linked list of the groups
7076 * covered by the given span, and will set each group's ->cpumask correctly,
7077 * and ->cpu_power to 0.
7078 */
7079 static void
7080 init_sched_build_groups(const struct cpumask *span,
7081 const struct cpumask *cpu_map,
7082 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7083 struct sched_group **sg,
7084 struct cpumask *tmpmask),
7085 struct cpumask *covered, struct cpumask *tmpmask)
7086 {
7087 struct sched_group *first = NULL, *last = NULL;
7088 int i;
7089
7090 cpumask_clear(covered);
7091
7092 for_each_cpu(i, span) {
7093 struct sched_group *sg;
7094 int group = group_fn(i, cpu_map, &sg, tmpmask);
7095 int j;
7096
7097 if (cpumask_test_cpu(i, covered))
7098 continue;
7099
7100 cpumask_clear(sched_group_cpus(sg));
7101 sg->__cpu_power = 0;
7102
7103 for_each_cpu(j, span) {
7104 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7105 continue;
7106
7107 cpumask_set_cpu(j, covered);
7108 cpumask_set_cpu(j, sched_group_cpus(sg));
7109 }
7110 if (!first)
7111 first = sg;
7112 if (last)
7113 last->next = sg;
7114 last = sg;
7115 }
7116 last->next = first;
7117 }
7118
7119 #define SD_NODES_PER_DOMAIN 16
7120
7121 #ifdef CONFIG_NUMA
7122
7123 /**
7124 * find_next_best_node - find the next node to include in a sched_domain
7125 * @node: node whose sched_domain we're building
7126 * @used_nodes: nodes already in the sched_domain
7127 *
7128 * Find the next node to include in a given scheduling domain. Simply
7129 * finds the closest node not already in the @used_nodes map.
7130 *
7131 * Should use nodemask_t.
7132 */
7133 static int find_next_best_node(int node, nodemask_t *used_nodes)
7134 {
7135 int i, n, val, min_val, best_node = 0;
7136
7137 min_val = INT_MAX;
7138
7139 for (i = 0; i < nr_node_ids; i++) {
7140 /* Start at @node */
7141 n = (node + i) % nr_node_ids;
7142
7143 if (!nr_cpus_node(n))
7144 continue;
7145
7146 /* Skip already used nodes */
7147 if (node_isset(n, *used_nodes))
7148 continue;
7149
7150 /* Simple min distance search */
7151 val = node_distance(node, n);
7152
7153 if (val < min_val) {
7154 min_val = val;
7155 best_node = n;
7156 }
7157 }
7158
7159 node_set(best_node, *used_nodes);
7160 return best_node;
7161 }
7162
7163 /**
7164 * sched_domain_node_span - get a cpumask for a node's sched_domain
7165 * @node: node whose cpumask we're constructing
7166 * @span: resulting cpumask
7167 *
7168 * Given a node, construct a good cpumask for its sched_domain to span. It
7169 * should be one that prevents unnecessary balancing, but also spreads tasks
7170 * out optimally.
7171 */
7172 static void sched_domain_node_span(int node, struct cpumask *span)
7173 {
7174 nodemask_t used_nodes;
7175 int i;
7176
7177 cpumask_clear(span);
7178 nodes_clear(used_nodes);
7179
7180 cpumask_or(span, span, cpumask_of_node(node));
7181 node_set(node, used_nodes);
7182
7183 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7184 int next_node = find_next_best_node(node, &used_nodes);
7185
7186 cpumask_or(span, span, cpumask_of_node(next_node));
7187 }
7188 }
7189 #endif /* CONFIG_NUMA */
7190
7191 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7192
7193 /*
7194 * The cpus mask in sched_group and sched_domain hangs off the end.
7195 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7196 * for nr_cpu_ids < CONFIG_NR_CPUS.
7197 */
7198 struct static_sched_group {
7199 struct sched_group sg;
7200 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7201 };
7202
7203 struct static_sched_domain {
7204 struct sched_domain sd;
7205 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7206 };
7207
7208 /*
7209 * SMT sched-domains:
7210 */
7211 #ifdef CONFIG_SCHED_SMT
7212 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7213 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7214
7215 static int
7216 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7217 struct sched_group **sg, struct cpumask *unused)
7218 {
7219 if (sg)
7220 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7221 return cpu;
7222 }
7223 #endif /* CONFIG_SCHED_SMT */
7224
7225 /*
7226 * multi-core sched-domains:
7227 */
7228 #ifdef CONFIG_SCHED_MC
7229 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7230 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7231 #endif /* CONFIG_SCHED_MC */
7232
7233 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7234 static int
7235 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7236 struct sched_group **sg, struct cpumask *mask)
7237 {
7238 int group;
7239
7240 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7241 group = cpumask_first(mask);
7242 if (sg)
7243 *sg = &per_cpu(sched_group_core, group).sg;
7244 return group;
7245 }
7246 #elif defined(CONFIG_SCHED_MC)
7247 static int
7248 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7249 struct sched_group **sg, struct cpumask *unused)
7250 {
7251 if (sg)
7252 *sg = &per_cpu(sched_group_core, cpu).sg;
7253 return cpu;
7254 }
7255 #endif
7256
7257 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7258 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7259
7260 static int
7261 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7262 struct sched_group **sg, struct cpumask *mask)
7263 {
7264 int group;
7265 #ifdef CONFIG_SCHED_MC
7266 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7267 group = cpumask_first(mask);
7268 #elif defined(CONFIG_SCHED_SMT)
7269 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7270 group = cpumask_first(mask);
7271 #else
7272 group = cpu;
7273 #endif
7274 if (sg)
7275 *sg = &per_cpu(sched_group_phys, group).sg;
7276 return group;
7277 }
7278
7279 #ifdef CONFIG_NUMA
7280 /*
7281 * The init_sched_build_groups can't handle what we want to do with node
7282 * groups, so roll our own. Now each node has its own list of groups which
7283 * gets dynamically allocated.
7284 */
7285 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7286 static struct sched_group ***sched_group_nodes_bycpu;
7287
7288 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7289 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7290
7291 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7292 struct sched_group **sg,
7293 struct cpumask *nodemask)
7294 {
7295 int group;
7296
7297 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7298 group = cpumask_first(nodemask);
7299
7300 if (sg)
7301 *sg = &per_cpu(sched_group_allnodes, group).sg;
7302 return group;
7303 }
7304
7305 static void init_numa_sched_groups_power(struct sched_group *group_head)
7306 {
7307 struct sched_group *sg = group_head;
7308 int j;
7309
7310 if (!sg)
7311 return;
7312 do {
7313 for_each_cpu(j, sched_group_cpus(sg)) {
7314 struct sched_domain *sd;
7315
7316 sd = &per_cpu(phys_domains, j).sd;
7317 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7318 /*
7319 * Only add "power" once for each
7320 * physical package.
7321 */
7322 continue;
7323 }
7324
7325 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7326 }
7327 sg = sg->next;
7328 } while (sg != group_head);
7329 }
7330 #endif /* CONFIG_NUMA */
7331
7332 #ifdef CONFIG_NUMA
7333 /* Free memory allocated for various sched_group structures */
7334 static void free_sched_groups(const struct cpumask *cpu_map,
7335 struct cpumask *nodemask)
7336 {
7337 int cpu, i;
7338
7339 for_each_cpu(cpu, cpu_map) {
7340 struct sched_group **sched_group_nodes
7341 = sched_group_nodes_bycpu[cpu];
7342
7343 if (!sched_group_nodes)
7344 continue;
7345
7346 for (i = 0; i < nr_node_ids; i++) {
7347 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7348
7349 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7350 if (cpumask_empty(nodemask))
7351 continue;
7352
7353 if (sg == NULL)
7354 continue;
7355 sg = sg->next;
7356 next_sg:
7357 oldsg = sg;
7358 sg = sg->next;
7359 kfree(oldsg);
7360 if (oldsg != sched_group_nodes[i])
7361 goto next_sg;
7362 }
7363 kfree(sched_group_nodes);
7364 sched_group_nodes_bycpu[cpu] = NULL;
7365 }
7366 }
7367 #else /* !CONFIG_NUMA */
7368 static void free_sched_groups(const struct cpumask *cpu_map,
7369 struct cpumask *nodemask)
7370 {
7371 }
7372 #endif /* CONFIG_NUMA */
7373
7374 /*
7375 * Initialize sched groups cpu_power.
7376 *
7377 * cpu_power indicates the capacity of sched group, which is used while
7378 * distributing the load between different sched groups in a sched domain.
7379 * Typically cpu_power for all the groups in a sched domain will be same unless
7380 * there are asymmetries in the topology. If there are asymmetries, group
7381 * having more cpu_power will pickup more load compared to the group having
7382 * less cpu_power.
7383 *
7384 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7385 * the maximum number of tasks a group can handle in the presence of other idle
7386 * or lightly loaded groups in the same sched domain.
7387 */
7388 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7389 {
7390 struct sched_domain *child;
7391 struct sched_group *group;
7392
7393 WARN_ON(!sd || !sd->groups);
7394
7395 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7396 return;
7397
7398 child = sd->child;
7399
7400 sd->groups->__cpu_power = 0;
7401
7402 /*
7403 * For perf policy, if the groups in child domain share resources
7404 * (for example cores sharing some portions of the cache hierarchy
7405 * or SMT), then set this domain groups cpu_power such that each group
7406 * can handle only one task, when there are other idle groups in the
7407 * same sched domain.
7408 */
7409 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7410 (child->flags &
7411 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7412 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7413 return;
7414 }
7415
7416 /*
7417 * add cpu_power of each child group to this groups cpu_power
7418 */
7419 group = child->groups;
7420 do {
7421 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7422 group = group->next;
7423 } while (group != child->groups);
7424 }
7425
7426 /*
7427 * Initializers for schedule domains
7428 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7429 */
7430
7431 #ifdef CONFIG_SCHED_DEBUG
7432 # define SD_INIT_NAME(sd, type) sd->name = #type
7433 #else
7434 # define SD_INIT_NAME(sd, type) do { } while (0)
7435 #endif
7436
7437 #define SD_INIT(sd, type) sd_init_##type(sd)
7438
7439 #define SD_INIT_FUNC(type) \
7440 static noinline void sd_init_##type(struct sched_domain *sd) \
7441 { \
7442 memset(sd, 0, sizeof(*sd)); \
7443 *sd = SD_##type##_INIT; \
7444 sd->level = SD_LV_##type; \
7445 SD_INIT_NAME(sd, type); \
7446 }
7447
7448 SD_INIT_FUNC(CPU)
7449 #ifdef CONFIG_NUMA
7450 SD_INIT_FUNC(ALLNODES)
7451 SD_INIT_FUNC(NODE)
7452 #endif
7453 #ifdef CONFIG_SCHED_SMT
7454 SD_INIT_FUNC(SIBLING)
7455 #endif
7456 #ifdef CONFIG_SCHED_MC
7457 SD_INIT_FUNC(MC)
7458 #endif
7459
7460 static int default_relax_domain_level = -1;
7461
7462 static int __init setup_relax_domain_level(char *str)
7463 {
7464 unsigned long val;
7465
7466 val = simple_strtoul(str, NULL, 0);
7467 if (val < SD_LV_MAX)
7468 default_relax_domain_level = val;
7469
7470 return 1;
7471 }
7472 __setup("relax_domain_level=", setup_relax_domain_level);
7473
7474 static void set_domain_attribute(struct sched_domain *sd,
7475 struct sched_domain_attr *attr)
7476 {
7477 int request;
7478
7479 if (!attr || attr->relax_domain_level < 0) {
7480 if (default_relax_domain_level < 0)
7481 return;
7482 else
7483 request = default_relax_domain_level;
7484 } else
7485 request = attr->relax_domain_level;
7486 if (request < sd->level) {
7487 /* turn off idle balance on this domain */
7488 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7489 } else {
7490 /* turn on idle balance on this domain */
7491 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7492 }
7493 }
7494
7495 /*
7496 * Build sched domains for a given set of cpus and attach the sched domains
7497 * to the individual cpus
7498 */
7499 static int __build_sched_domains(const struct cpumask *cpu_map,
7500 struct sched_domain_attr *attr)
7501 {
7502 int i, err = -ENOMEM;
7503 struct root_domain *rd;
7504 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7505 tmpmask;
7506 #ifdef CONFIG_NUMA
7507 cpumask_var_t domainspan, covered, notcovered;
7508 struct sched_group **sched_group_nodes = NULL;
7509 int sd_allnodes = 0;
7510
7511 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7512 goto out;
7513 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7514 goto free_domainspan;
7515 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7516 goto free_covered;
7517 #endif
7518
7519 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7520 goto free_notcovered;
7521 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7522 goto free_nodemask;
7523 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7524 goto free_this_sibling_map;
7525 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7526 goto free_this_core_map;
7527 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7528 goto free_send_covered;
7529
7530 #ifdef CONFIG_NUMA
7531 /*
7532 * Allocate the per-node list of sched groups
7533 */
7534 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7535 GFP_KERNEL);
7536 if (!sched_group_nodes) {
7537 printk(KERN_WARNING "Can not alloc sched group node list\n");
7538 goto free_tmpmask;
7539 }
7540 #endif
7541
7542 rd = alloc_rootdomain();
7543 if (!rd) {
7544 printk(KERN_WARNING "Cannot alloc root domain\n");
7545 goto free_sched_groups;
7546 }
7547
7548 #ifdef CONFIG_NUMA
7549 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7550 #endif
7551
7552 /*
7553 * Set up domains for cpus specified by the cpu_map.
7554 */
7555 for_each_cpu(i, cpu_map) {
7556 struct sched_domain *sd = NULL, *p;
7557
7558 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7559
7560 #ifdef CONFIG_NUMA
7561 if (cpumask_weight(cpu_map) >
7562 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7563 sd = &per_cpu(allnodes_domains, i);
7564 SD_INIT(sd, ALLNODES);
7565 set_domain_attribute(sd, attr);
7566 cpumask_copy(sched_domain_span(sd), cpu_map);
7567 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7568 p = sd;
7569 sd_allnodes = 1;
7570 } else
7571 p = NULL;
7572
7573 sd = &per_cpu(node_domains, i);
7574 SD_INIT(sd, NODE);
7575 set_domain_attribute(sd, attr);
7576 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7577 sd->parent = p;
7578 if (p)
7579 p->child = sd;
7580 cpumask_and(sched_domain_span(sd),
7581 sched_domain_span(sd), cpu_map);
7582 #endif
7583
7584 p = sd;
7585 sd = &per_cpu(phys_domains, i).sd;
7586 SD_INIT(sd, CPU);
7587 set_domain_attribute(sd, attr);
7588 cpumask_copy(sched_domain_span(sd), nodemask);
7589 sd->parent = p;
7590 if (p)
7591 p->child = sd;
7592 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7593
7594 #ifdef CONFIG_SCHED_MC
7595 p = sd;
7596 sd = &per_cpu(core_domains, i).sd;
7597 SD_INIT(sd, MC);
7598 set_domain_attribute(sd, attr);
7599 cpumask_and(sched_domain_span(sd), cpu_map,
7600 cpu_coregroup_mask(i));
7601 sd->parent = p;
7602 p->child = sd;
7603 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7604 #endif
7605
7606 #ifdef CONFIG_SCHED_SMT
7607 p = sd;
7608 sd = &per_cpu(cpu_domains, i).sd;
7609 SD_INIT(sd, SIBLING);
7610 set_domain_attribute(sd, attr);
7611 cpumask_and(sched_domain_span(sd),
7612 &per_cpu(cpu_sibling_map, i), cpu_map);
7613 sd->parent = p;
7614 p->child = sd;
7615 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7616 #endif
7617 }
7618
7619 #ifdef CONFIG_SCHED_SMT
7620 /* Set up CPU (sibling) groups */
7621 for_each_cpu(i, cpu_map) {
7622 cpumask_and(this_sibling_map,
7623 &per_cpu(cpu_sibling_map, i), cpu_map);
7624 if (i != cpumask_first(this_sibling_map))
7625 continue;
7626
7627 init_sched_build_groups(this_sibling_map, cpu_map,
7628 &cpu_to_cpu_group,
7629 send_covered, tmpmask);
7630 }
7631 #endif
7632
7633 #ifdef CONFIG_SCHED_MC
7634 /* Set up multi-core groups */
7635 for_each_cpu(i, cpu_map) {
7636 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7637 if (i != cpumask_first(this_core_map))
7638 continue;
7639
7640 init_sched_build_groups(this_core_map, cpu_map,
7641 &cpu_to_core_group,
7642 send_covered, tmpmask);
7643 }
7644 #endif
7645
7646 /* Set up physical groups */
7647 for (i = 0; i < nr_node_ids; i++) {
7648 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7649 if (cpumask_empty(nodemask))
7650 continue;
7651
7652 init_sched_build_groups(nodemask, cpu_map,
7653 &cpu_to_phys_group,
7654 send_covered, tmpmask);
7655 }
7656
7657 #ifdef CONFIG_NUMA
7658 /* Set up node groups */
7659 if (sd_allnodes) {
7660 init_sched_build_groups(cpu_map, cpu_map,
7661 &cpu_to_allnodes_group,
7662 send_covered, tmpmask);
7663 }
7664
7665 for (i = 0; i < nr_node_ids; i++) {
7666 /* Set up node groups */
7667 struct sched_group *sg, *prev;
7668 int j;
7669
7670 cpumask_clear(covered);
7671 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7672 if (cpumask_empty(nodemask)) {
7673 sched_group_nodes[i] = NULL;
7674 continue;
7675 }
7676
7677 sched_domain_node_span(i, domainspan);
7678 cpumask_and(domainspan, domainspan, cpu_map);
7679
7680 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7681 GFP_KERNEL, i);
7682 if (!sg) {
7683 printk(KERN_WARNING "Can not alloc domain group for "
7684 "node %d\n", i);
7685 goto error;
7686 }
7687 sched_group_nodes[i] = sg;
7688 for_each_cpu(j, nodemask) {
7689 struct sched_domain *sd;
7690
7691 sd = &per_cpu(node_domains, j);
7692 sd->groups = sg;
7693 }
7694 sg->__cpu_power = 0;
7695 cpumask_copy(sched_group_cpus(sg), nodemask);
7696 sg->next = sg;
7697 cpumask_or(covered, covered, nodemask);
7698 prev = sg;
7699
7700 for (j = 0; j < nr_node_ids; j++) {
7701 int n = (i + j) % nr_node_ids;
7702
7703 cpumask_complement(notcovered, covered);
7704 cpumask_and(tmpmask, notcovered, cpu_map);
7705 cpumask_and(tmpmask, tmpmask, domainspan);
7706 if (cpumask_empty(tmpmask))
7707 break;
7708
7709 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7710 if (cpumask_empty(tmpmask))
7711 continue;
7712
7713 sg = kmalloc_node(sizeof(struct sched_group) +
7714 cpumask_size(),
7715 GFP_KERNEL, i);
7716 if (!sg) {
7717 printk(KERN_WARNING
7718 "Can not alloc domain group for node %d\n", j);
7719 goto error;
7720 }
7721 sg->__cpu_power = 0;
7722 cpumask_copy(sched_group_cpus(sg), tmpmask);
7723 sg->next = prev->next;
7724 cpumask_or(covered, covered, tmpmask);
7725 prev->next = sg;
7726 prev = sg;
7727 }
7728 }
7729 #endif
7730
7731 /* Calculate CPU power for physical packages and nodes */
7732 #ifdef CONFIG_SCHED_SMT
7733 for_each_cpu(i, cpu_map) {
7734 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7735
7736 init_sched_groups_power(i, sd);
7737 }
7738 #endif
7739 #ifdef CONFIG_SCHED_MC
7740 for_each_cpu(i, cpu_map) {
7741 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7742
7743 init_sched_groups_power(i, sd);
7744 }
7745 #endif
7746
7747 for_each_cpu(i, cpu_map) {
7748 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7749
7750 init_sched_groups_power(i, sd);
7751 }
7752
7753 #ifdef CONFIG_NUMA
7754 for (i = 0; i < nr_node_ids; i++)
7755 init_numa_sched_groups_power(sched_group_nodes[i]);
7756
7757 if (sd_allnodes) {
7758 struct sched_group *sg;
7759
7760 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7761 tmpmask);
7762 init_numa_sched_groups_power(sg);
7763 }
7764 #endif
7765
7766 /* Attach the domains */
7767 for_each_cpu(i, cpu_map) {
7768 struct sched_domain *sd;
7769 #ifdef CONFIG_SCHED_SMT
7770 sd = &per_cpu(cpu_domains, i).sd;
7771 #elif defined(CONFIG_SCHED_MC)
7772 sd = &per_cpu(core_domains, i).sd;
7773 #else
7774 sd = &per_cpu(phys_domains, i).sd;
7775 #endif
7776 cpu_attach_domain(sd, rd, i);
7777 }
7778
7779 err = 0;
7780
7781 free_tmpmask:
7782 free_cpumask_var(tmpmask);
7783 free_send_covered:
7784 free_cpumask_var(send_covered);
7785 free_this_core_map:
7786 free_cpumask_var(this_core_map);
7787 free_this_sibling_map:
7788 free_cpumask_var(this_sibling_map);
7789 free_nodemask:
7790 free_cpumask_var(nodemask);
7791 free_notcovered:
7792 #ifdef CONFIG_NUMA
7793 free_cpumask_var(notcovered);
7794 free_covered:
7795 free_cpumask_var(covered);
7796 free_domainspan:
7797 free_cpumask_var(domainspan);
7798 out:
7799 #endif
7800 return err;
7801
7802 free_sched_groups:
7803 #ifdef CONFIG_NUMA
7804 kfree(sched_group_nodes);
7805 #endif
7806 goto free_tmpmask;
7807
7808 #ifdef CONFIG_NUMA
7809 error:
7810 free_sched_groups(cpu_map, tmpmask);
7811 free_rootdomain(rd);
7812 goto free_tmpmask;
7813 #endif
7814 }
7815
7816 static int build_sched_domains(const struct cpumask *cpu_map)
7817 {
7818 return __build_sched_domains(cpu_map, NULL);
7819 }
7820
7821 static struct cpumask *doms_cur; /* current sched domains */
7822 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7823 static struct sched_domain_attr *dattr_cur;
7824 /* attribues of custom domains in 'doms_cur' */
7825
7826 /*
7827 * Special case: If a kmalloc of a doms_cur partition (array of
7828 * cpumask) fails, then fallback to a single sched domain,
7829 * as determined by the single cpumask fallback_doms.
7830 */
7831 static cpumask_var_t fallback_doms;
7832
7833 /*
7834 * arch_update_cpu_topology lets virtualized architectures update the
7835 * cpu core maps. It is supposed to return 1 if the topology changed
7836 * or 0 if it stayed the same.
7837 */
7838 int __attribute__((weak)) arch_update_cpu_topology(void)
7839 {
7840 return 0;
7841 }
7842
7843 /*
7844 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7845 * For now this just excludes isolated cpus, but could be used to
7846 * exclude other special cases in the future.
7847 */
7848 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7849 {
7850 int err;
7851
7852 arch_update_cpu_topology();
7853 ndoms_cur = 1;
7854 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7855 if (!doms_cur)
7856 doms_cur = fallback_doms;
7857 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7858 dattr_cur = NULL;
7859 err = build_sched_domains(doms_cur);
7860 register_sched_domain_sysctl();
7861
7862 return err;
7863 }
7864
7865 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7866 struct cpumask *tmpmask)
7867 {
7868 free_sched_groups(cpu_map, tmpmask);
7869 }
7870
7871 /*
7872 * Detach sched domains from a group of cpus specified in cpu_map
7873 * These cpus will now be attached to the NULL domain
7874 */
7875 static void detach_destroy_domains(const struct cpumask *cpu_map)
7876 {
7877 /* Save because hotplug lock held. */
7878 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7879 int i;
7880
7881 for_each_cpu(i, cpu_map)
7882 cpu_attach_domain(NULL, &def_root_domain, i);
7883 synchronize_sched();
7884 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7885 }
7886
7887 /* handle null as "default" */
7888 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7889 struct sched_domain_attr *new, int idx_new)
7890 {
7891 struct sched_domain_attr tmp;
7892
7893 /* fast path */
7894 if (!new && !cur)
7895 return 1;
7896
7897 tmp = SD_ATTR_INIT;
7898 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7899 new ? (new + idx_new) : &tmp,
7900 sizeof(struct sched_domain_attr));
7901 }
7902
7903 /*
7904 * Partition sched domains as specified by the 'ndoms_new'
7905 * cpumasks in the array doms_new[] of cpumasks. This compares
7906 * doms_new[] to the current sched domain partitioning, doms_cur[].
7907 * It destroys each deleted domain and builds each new domain.
7908 *
7909 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7910 * The masks don't intersect (don't overlap.) We should setup one
7911 * sched domain for each mask. CPUs not in any of the cpumasks will
7912 * not be load balanced. If the same cpumask appears both in the
7913 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7914 * it as it is.
7915 *
7916 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7917 * ownership of it and will kfree it when done with it. If the caller
7918 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7919 * ndoms_new == 1, and partition_sched_domains() will fallback to
7920 * the single partition 'fallback_doms', it also forces the domains
7921 * to be rebuilt.
7922 *
7923 * If doms_new == NULL it will be replaced with cpu_online_mask.
7924 * ndoms_new == 0 is a special case for destroying existing domains,
7925 * and it will not create the default domain.
7926 *
7927 * Call with hotplug lock held
7928 */
7929 /* FIXME: Change to struct cpumask *doms_new[] */
7930 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7931 struct sched_domain_attr *dattr_new)
7932 {
7933 int i, j, n;
7934 int new_topology;
7935
7936 mutex_lock(&sched_domains_mutex);
7937
7938 /* always unregister in case we don't destroy any domains */
7939 unregister_sched_domain_sysctl();
7940
7941 /* Let architecture update cpu core mappings. */
7942 new_topology = arch_update_cpu_topology();
7943
7944 n = doms_new ? ndoms_new : 0;
7945
7946 /* Destroy deleted domains */
7947 for (i = 0; i < ndoms_cur; i++) {
7948 for (j = 0; j < n && !new_topology; j++) {
7949 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7950 && dattrs_equal(dattr_cur, i, dattr_new, j))
7951 goto match1;
7952 }
7953 /* no match - a current sched domain not in new doms_new[] */
7954 detach_destroy_domains(doms_cur + i);
7955 match1:
7956 ;
7957 }
7958
7959 if (doms_new == NULL) {
7960 ndoms_cur = 0;
7961 doms_new = fallback_doms;
7962 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7963 WARN_ON_ONCE(dattr_new);
7964 }
7965
7966 /* Build new domains */
7967 for (i = 0; i < ndoms_new; i++) {
7968 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7969 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7970 && dattrs_equal(dattr_new, i, dattr_cur, j))
7971 goto match2;
7972 }
7973 /* no match - add a new doms_new */
7974 __build_sched_domains(doms_new + i,
7975 dattr_new ? dattr_new + i : NULL);
7976 match2:
7977 ;
7978 }
7979
7980 /* Remember the new sched domains */
7981 if (doms_cur != fallback_doms)
7982 kfree(doms_cur);
7983 kfree(dattr_cur); /* kfree(NULL) is safe */
7984 doms_cur = doms_new;
7985 dattr_cur = dattr_new;
7986 ndoms_cur = ndoms_new;
7987
7988 register_sched_domain_sysctl();
7989
7990 mutex_unlock(&sched_domains_mutex);
7991 }
7992
7993 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7994 static void arch_reinit_sched_domains(void)
7995 {
7996 get_online_cpus();
7997
7998 /* Destroy domains first to force the rebuild */
7999 partition_sched_domains(0, NULL, NULL);
8000
8001 rebuild_sched_domains();
8002 put_online_cpus();
8003 }
8004
8005 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8006 {
8007 unsigned int level = 0;
8008
8009 if (sscanf(buf, "%u", &level) != 1)
8010 return -EINVAL;
8011
8012 /*
8013 * level is always be positive so don't check for
8014 * level < POWERSAVINGS_BALANCE_NONE which is 0
8015 * What happens on 0 or 1 byte write,
8016 * need to check for count as well?
8017 */
8018
8019 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8020 return -EINVAL;
8021
8022 if (smt)
8023 sched_smt_power_savings = level;
8024 else
8025 sched_mc_power_savings = level;
8026
8027 arch_reinit_sched_domains();
8028
8029 return count;
8030 }
8031
8032 #ifdef CONFIG_SCHED_MC
8033 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8034 char *page)
8035 {
8036 return sprintf(page, "%u\n", sched_mc_power_savings);
8037 }
8038 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8039 const char *buf, size_t count)
8040 {
8041 return sched_power_savings_store(buf, count, 0);
8042 }
8043 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8044 sched_mc_power_savings_show,
8045 sched_mc_power_savings_store);
8046 #endif
8047
8048 #ifdef CONFIG_SCHED_SMT
8049 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8050 char *page)
8051 {
8052 return sprintf(page, "%u\n", sched_smt_power_savings);
8053 }
8054 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8055 const char *buf, size_t count)
8056 {
8057 return sched_power_savings_store(buf, count, 1);
8058 }
8059 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8060 sched_smt_power_savings_show,
8061 sched_smt_power_savings_store);
8062 #endif
8063
8064 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8065 {
8066 int err = 0;
8067
8068 #ifdef CONFIG_SCHED_SMT
8069 if (smt_capable())
8070 err = sysfs_create_file(&cls->kset.kobj,
8071 &attr_sched_smt_power_savings.attr);
8072 #endif
8073 #ifdef CONFIG_SCHED_MC
8074 if (!err && mc_capable())
8075 err = sysfs_create_file(&cls->kset.kobj,
8076 &attr_sched_mc_power_savings.attr);
8077 #endif
8078 return err;
8079 }
8080 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8081
8082 #ifndef CONFIG_CPUSETS
8083 /*
8084 * Add online and remove offline CPUs from the scheduler domains.
8085 * When cpusets are enabled they take over this function.
8086 */
8087 static int update_sched_domains(struct notifier_block *nfb,
8088 unsigned long action, void *hcpu)
8089 {
8090 switch (action) {
8091 case CPU_ONLINE:
8092 case CPU_ONLINE_FROZEN:
8093 case CPU_DEAD:
8094 case CPU_DEAD_FROZEN:
8095 partition_sched_domains(1, NULL, NULL);
8096 return NOTIFY_OK;
8097
8098 default:
8099 return NOTIFY_DONE;
8100 }
8101 }
8102 #endif
8103
8104 static int update_runtime(struct notifier_block *nfb,
8105 unsigned long action, void *hcpu)
8106 {
8107 int cpu = (int)(long)hcpu;
8108
8109 switch (action) {
8110 case CPU_DOWN_PREPARE:
8111 case CPU_DOWN_PREPARE_FROZEN:
8112 disable_runtime(cpu_rq(cpu));
8113 return NOTIFY_OK;
8114
8115 case CPU_DOWN_FAILED:
8116 case CPU_DOWN_FAILED_FROZEN:
8117 case CPU_ONLINE:
8118 case CPU_ONLINE_FROZEN:
8119 enable_runtime(cpu_rq(cpu));
8120 return NOTIFY_OK;
8121
8122 default:
8123 return NOTIFY_DONE;
8124 }
8125 }
8126
8127 void __init sched_init_smp(void)
8128 {
8129 cpumask_var_t non_isolated_cpus;
8130
8131 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8132
8133 #if defined(CONFIG_NUMA)
8134 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8135 GFP_KERNEL);
8136 BUG_ON(sched_group_nodes_bycpu == NULL);
8137 #endif
8138 get_online_cpus();
8139 mutex_lock(&sched_domains_mutex);
8140 arch_init_sched_domains(cpu_online_mask);
8141 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8142 if (cpumask_empty(non_isolated_cpus))
8143 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8144 mutex_unlock(&sched_domains_mutex);
8145 put_online_cpus();
8146
8147 #ifndef CONFIG_CPUSETS
8148 /* XXX: Theoretical race here - CPU may be hotplugged now */
8149 hotcpu_notifier(update_sched_domains, 0);
8150 #endif
8151
8152 /* RT runtime code needs to handle some hotplug events */
8153 hotcpu_notifier(update_runtime, 0);
8154
8155 init_hrtick();
8156
8157 /* Move init over to a non-isolated CPU */
8158 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8159 BUG();
8160 sched_init_granularity();
8161 free_cpumask_var(non_isolated_cpus);
8162
8163 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8164 init_sched_rt_class();
8165 }
8166 #else
8167 void __init sched_init_smp(void)
8168 {
8169 sched_init_granularity();
8170 }
8171 #endif /* CONFIG_SMP */
8172
8173 int in_sched_functions(unsigned long addr)
8174 {
8175 return in_lock_functions(addr) ||
8176 (addr >= (unsigned long)__sched_text_start
8177 && addr < (unsigned long)__sched_text_end);
8178 }
8179
8180 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8181 {
8182 cfs_rq->tasks_timeline = RB_ROOT;
8183 INIT_LIST_HEAD(&cfs_rq->tasks);
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8185 cfs_rq->rq = rq;
8186 #endif
8187 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8188 }
8189
8190 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8191 {
8192 struct rt_prio_array *array;
8193 int i;
8194
8195 array = &rt_rq->active;
8196 for (i = 0; i < MAX_RT_PRIO; i++) {
8197 INIT_LIST_HEAD(array->queue + i);
8198 __clear_bit(i, array->bitmap);
8199 }
8200 /* delimiter for bitsearch: */
8201 __set_bit(MAX_RT_PRIO, array->bitmap);
8202
8203 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8204 rt_rq->highest_prio = MAX_RT_PRIO;
8205 #endif
8206 #ifdef CONFIG_SMP
8207 rt_rq->rt_nr_migratory = 0;
8208 rt_rq->overloaded = 0;
8209 #endif
8210
8211 rt_rq->rt_time = 0;
8212 rt_rq->rt_throttled = 0;
8213 rt_rq->rt_runtime = 0;
8214 spin_lock_init(&rt_rq->rt_runtime_lock);
8215
8216 #ifdef CONFIG_RT_GROUP_SCHED
8217 rt_rq->rt_nr_boosted = 0;
8218 rt_rq->rq = rq;
8219 #endif
8220 }
8221
8222 #ifdef CONFIG_FAIR_GROUP_SCHED
8223 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8224 struct sched_entity *se, int cpu, int add,
8225 struct sched_entity *parent)
8226 {
8227 struct rq *rq = cpu_rq(cpu);
8228 tg->cfs_rq[cpu] = cfs_rq;
8229 init_cfs_rq(cfs_rq, rq);
8230 cfs_rq->tg = tg;
8231 if (add)
8232 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8233
8234 tg->se[cpu] = se;
8235 /* se could be NULL for init_task_group */
8236 if (!se)
8237 return;
8238
8239 if (!parent)
8240 se->cfs_rq = &rq->cfs;
8241 else
8242 se->cfs_rq = parent->my_q;
8243
8244 se->my_q = cfs_rq;
8245 se->load.weight = tg->shares;
8246 se->load.inv_weight = 0;
8247 se->parent = parent;
8248 }
8249 #endif
8250
8251 #ifdef CONFIG_RT_GROUP_SCHED
8252 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8253 struct sched_rt_entity *rt_se, int cpu, int add,
8254 struct sched_rt_entity *parent)
8255 {
8256 struct rq *rq = cpu_rq(cpu);
8257
8258 tg->rt_rq[cpu] = rt_rq;
8259 init_rt_rq(rt_rq, rq);
8260 rt_rq->tg = tg;
8261 rt_rq->rt_se = rt_se;
8262 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8263 if (add)
8264 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8265
8266 tg->rt_se[cpu] = rt_se;
8267 if (!rt_se)
8268 return;
8269
8270 if (!parent)
8271 rt_se->rt_rq = &rq->rt;
8272 else
8273 rt_se->rt_rq = parent->my_q;
8274
8275 rt_se->my_q = rt_rq;
8276 rt_se->parent = parent;
8277 INIT_LIST_HEAD(&rt_se->run_list);
8278 }
8279 #endif
8280
8281 void __init sched_init(void)
8282 {
8283 int i, j;
8284 unsigned long alloc_size = 0, ptr;
8285
8286 #ifdef CONFIG_FAIR_GROUP_SCHED
8287 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8288 #endif
8289 #ifdef CONFIG_RT_GROUP_SCHED
8290 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8291 #endif
8292 #ifdef CONFIG_USER_SCHED
8293 alloc_size *= 2;
8294 #endif
8295 /*
8296 * As sched_init() is called before page_alloc is setup,
8297 * we use alloc_bootmem().
8298 */
8299 if (alloc_size) {
8300 ptr = (unsigned long)alloc_bootmem(alloc_size);
8301
8302 #ifdef CONFIG_FAIR_GROUP_SCHED
8303 init_task_group.se = (struct sched_entity **)ptr;
8304 ptr += nr_cpu_ids * sizeof(void **);
8305
8306 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8307 ptr += nr_cpu_ids * sizeof(void **);
8308
8309 #ifdef CONFIG_USER_SCHED
8310 root_task_group.se = (struct sched_entity **)ptr;
8311 ptr += nr_cpu_ids * sizeof(void **);
8312
8313 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8314 ptr += nr_cpu_ids * sizeof(void **);
8315 #endif /* CONFIG_USER_SCHED */
8316 #endif /* CONFIG_FAIR_GROUP_SCHED */
8317 #ifdef CONFIG_RT_GROUP_SCHED
8318 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
8320
8321 init_task_group.rt_rq = (struct rt_rq **)ptr;
8322 ptr += nr_cpu_ids * sizeof(void **);
8323
8324 #ifdef CONFIG_USER_SCHED
8325 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8326 ptr += nr_cpu_ids * sizeof(void **);
8327
8328 root_task_group.rt_rq = (struct rt_rq **)ptr;
8329 ptr += nr_cpu_ids * sizeof(void **);
8330 #endif /* CONFIG_USER_SCHED */
8331 #endif /* CONFIG_RT_GROUP_SCHED */
8332 }
8333
8334 #ifdef CONFIG_SMP
8335 init_defrootdomain();
8336 #endif
8337
8338 init_rt_bandwidth(&def_rt_bandwidth,
8339 global_rt_period(), global_rt_runtime());
8340
8341 #ifdef CONFIG_RT_GROUP_SCHED
8342 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8343 global_rt_period(), global_rt_runtime());
8344 #ifdef CONFIG_USER_SCHED
8345 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8346 global_rt_period(), RUNTIME_INF);
8347 #endif /* CONFIG_USER_SCHED */
8348 #endif /* CONFIG_RT_GROUP_SCHED */
8349
8350 #ifdef CONFIG_GROUP_SCHED
8351 list_add(&init_task_group.list, &task_groups);
8352 INIT_LIST_HEAD(&init_task_group.children);
8353
8354 #ifdef CONFIG_USER_SCHED
8355 INIT_LIST_HEAD(&root_task_group.children);
8356 init_task_group.parent = &root_task_group;
8357 list_add(&init_task_group.siblings, &root_task_group.children);
8358 #endif /* CONFIG_USER_SCHED */
8359 #endif /* CONFIG_GROUP_SCHED */
8360
8361 for_each_possible_cpu(i) {
8362 struct rq *rq;
8363
8364 rq = cpu_rq(i);
8365 spin_lock_init(&rq->lock);
8366 rq->nr_running = 0;
8367 init_cfs_rq(&rq->cfs, rq);
8368 init_rt_rq(&rq->rt, rq);
8369 #ifdef CONFIG_FAIR_GROUP_SCHED
8370 init_task_group.shares = init_task_group_load;
8371 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8372 #ifdef CONFIG_CGROUP_SCHED
8373 /*
8374 * How much cpu bandwidth does init_task_group get?
8375 *
8376 * In case of task-groups formed thr' the cgroup filesystem, it
8377 * gets 100% of the cpu resources in the system. This overall
8378 * system cpu resource is divided among the tasks of
8379 * init_task_group and its child task-groups in a fair manner,
8380 * based on each entity's (task or task-group's) weight
8381 * (se->load.weight).
8382 *
8383 * In other words, if init_task_group has 10 tasks of weight
8384 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8385 * then A0's share of the cpu resource is:
8386 *
8387 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8388 *
8389 * We achieve this by letting init_task_group's tasks sit
8390 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8391 */
8392 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8393 #elif defined CONFIG_USER_SCHED
8394 root_task_group.shares = NICE_0_LOAD;
8395 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8396 /*
8397 * In case of task-groups formed thr' the user id of tasks,
8398 * init_task_group represents tasks belonging to root user.
8399 * Hence it forms a sibling of all subsequent groups formed.
8400 * In this case, init_task_group gets only a fraction of overall
8401 * system cpu resource, based on the weight assigned to root
8402 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8403 * by letting tasks of init_task_group sit in a separate cfs_rq
8404 * (init_cfs_rq) and having one entity represent this group of
8405 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8406 */
8407 init_tg_cfs_entry(&init_task_group,
8408 &per_cpu(init_cfs_rq, i),
8409 &per_cpu(init_sched_entity, i), i, 1,
8410 root_task_group.se[i]);
8411
8412 #endif
8413 #endif /* CONFIG_FAIR_GROUP_SCHED */
8414
8415 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8416 #ifdef CONFIG_RT_GROUP_SCHED
8417 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8418 #ifdef CONFIG_CGROUP_SCHED
8419 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8420 #elif defined CONFIG_USER_SCHED
8421 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8422 init_tg_rt_entry(&init_task_group,
8423 &per_cpu(init_rt_rq, i),
8424 &per_cpu(init_sched_rt_entity, i), i, 1,
8425 root_task_group.rt_se[i]);
8426 #endif
8427 #endif
8428
8429 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8430 rq->cpu_load[j] = 0;
8431 #ifdef CONFIG_SMP
8432 rq->sd = NULL;
8433 rq->rd = NULL;
8434 rq->active_balance = 0;
8435 rq->next_balance = jiffies;
8436 rq->push_cpu = 0;
8437 rq->cpu = i;
8438 rq->online = 0;
8439 rq->migration_thread = NULL;
8440 INIT_LIST_HEAD(&rq->migration_queue);
8441 rq_attach_root(rq, &def_root_domain);
8442 #endif
8443 init_rq_hrtick(rq);
8444 atomic_set(&rq->nr_iowait, 0);
8445 }
8446
8447 set_load_weight(&init_task);
8448
8449 #ifdef CONFIG_PREEMPT_NOTIFIERS
8450 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8451 #endif
8452
8453 #ifdef CONFIG_SMP
8454 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8455 #endif
8456
8457 #ifdef CONFIG_RT_MUTEXES
8458 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8459 #endif
8460
8461 /*
8462 * The boot idle thread does lazy MMU switching as well:
8463 */
8464 atomic_inc(&init_mm.mm_count);
8465 enter_lazy_tlb(&init_mm, current);
8466
8467 /*
8468 * Make us the idle thread. Technically, schedule() should not be
8469 * called from this thread, however somewhere below it might be,
8470 * but because we are the idle thread, we just pick up running again
8471 * when this runqueue becomes "idle".
8472 */
8473 init_idle(current, smp_processor_id());
8474 /*
8475 * During early bootup we pretend to be a normal task:
8476 */
8477 current->sched_class = &fair_sched_class;
8478
8479 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8480 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8481 #ifdef CONFIG_SMP
8482 #ifdef CONFIG_NO_HZ
8483 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8484 #endif
8485 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8486 #endif /* SMP */
8487
8488 scheduler_running = 1;
8489 }
8490
8491 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8492 void __might_sleep(char *file, int line)
8493 {
8494 #ifdef in_atomic
8495 static unsigned long prev_jiffy; /* ratelimiting */
8496
8497 if ((!in_atomic() && !irqs_disabled()) ||
8498 system_state != SYSTEM_RUNNING || oops_in_progress)
8499 return;
8500 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8501 return;
8502 prev_jiffy = jiffies;
8503
8504 printk(KERN_ERR
8505 "BUG: sleeping function called from invalid context at %s:%d\n",
8506 file, line);
8507 printk(KERN_ERR
8508 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8509 in_atomic(), irqs_disabled(),
8510 current->pid, current->comm);
8511
8512 debug_show_held_locks(current);
8513 if (irqs_disabled())
8514 print_irqtrace_events(current);
8515 dump_stack();
8516 #endif
8517 }
8518 EXPORT_SYMBOL(__might_sleep);
8519 #endif
8520
8521 #ifdef CONFIG_MAGIC_SYSRQ
8522 static void normalize_task(struct rq *rq, struct task_struct *p)
8523 {
8524 int on_rq;
8525
8526 update_rq_clock(rq);
8527 on_rq = p->se.on_rq;
8528 if (on_rq)
8529 deactivate_task(rq, p, 0);
8530 __setscheduler(rq, p, SCHED_NORMAL, 0);
8531 if (on_rq) {
8532 activate_task(rq, p, 0);
8533 resched_task(rq->curr);
8534 }
8535 }
8536
8537 void normalize_rt_tasks(void)
8538 {
8539 struct task_struct *g, *p;
8540 unsigned long flags;
8541 struct rq *rq;
8542
8543 read_lock_irqsave(&tasklist_lock, flags);
8544 do_each_thread(g, p) {
8545 /*
8546 * Only normalize user tasks:
8547 */
8548 if (!p->mm)
8549 continue;
8550
8551 p->se.exec_start = 0;
8552 #ifdef CONFIG_SCHEDSTATS
8553 p->se.wait_start = 0;
8554 p->se.sleep_start = 0;
8555 p->se.block_start = 0;
8556 #endif
8557
8558 if (!rt_task(p)) {
8559 /*
8560 * Renice negative nice level userspace
8561 * tasks back to 0:
8562 */
8563 if (TASK_NICE(p) < 0 && p->mm)
8564 set_user_nice(p, 0);
8565 continue;
8566 }
8567
8568 spin_lock(&p->pi_lock);
8569 rq = __task_rq_lock(p);
8570
8571 normalize_task(rq, p);
8572
8573 __task_rq_unlock(rq);
8574 spin_unlock(&p->pi_lock);
8575 } while_each_thread(g, p);
8576
8577 read_unlock_irqrestore(&tasklist_lock, flags);
8578 }
8579
8580 #endif /* CONFIG_MAGIC_SYSRQ */
8581
8582 #ifdef CONFIG_IA64
8583 /*
8584 * These functions are only useful for the IA64 MCA handling.
8585 *
8586 * They can only be called when the whole system has been
8587 * stopped - every CPU needs to be quiescent, and no scheduling
8588 * activity can take place. Using them for anything else would
8589 * be a serious bug, and as a result, they aren't even visible
8590 * under any other configuration.
8591 */
8592
8593 /**
8594 * curr_task - return the current task for a given cpu.
8595 * @cpu: the processor in question.
8596 *
8597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8598 */
8599 struct task_struct *curr_task(int cpu)
8600 {
8601 return cpu_curr(cpu);
8602 }
8603
8604 /**
8605 * set_curr_task - set the current task for a given cpu.
8606 * @cpu: the processor in question.
8607 * @p: the task pointer to set.
8608 *
8609 * Description: This function must only be used when non-maskable interrupts
8610 * are serviced on a separate stack. It allows the architecture to switch the
8611 * notion of the current task on a cpu in a non-blocking manner. This function
8612 * must be called with all CPU's synchronized, and interrupts disabled, the
8613 * and caller must save the original value of the current task (see
8614 * curr_task() above) and restore that value before reenabling interrupts and
8615 * re-starting the system.
8616 *
8617 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8618 */
8619 void set_curr_task(int cpu, struct task_struct *p)
8620 {
8621 cpu_curr(cpu) = p;
8622 }
8623
8624 #endif
8625
8626 #ifdef CONFIG_FAIR_GROUP_SCHED
8627 static void free_fair_sched_group(struct task_group *tg)
8628 {
8629 int i;
8630
8631 for_each_possible_cpu(i) {
8632 if (tg->cfs_rq)
8633 kfree(tg->cfs_rq[i]);
8634 if (tg->se)
8635 kfree(tg->se[i]);
8636 }
8637
8638 kfree(tg->cfs_rq);
8639 kfree(tg->se);
8640 }
8641
8642 static
8643 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8644 {
8645 struct cfs_rq *cfs_rq;
8646 struct sched_entity *se;
8647 struct rq *rq;
8648 int i;
8649
8650 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8651 if (!tg->cfs_rq)
8652 goto err;
8653 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8654 if (!tg->se)
8655 goto err;
8656
8657 tg->shares = NICE_0_LOAD;
8658
8659 for_each_possible_cpu(i) {
8660 rq = cpu_rq(i);
8661
8662 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8663 GFP_KERNEL, cpu_to_node(i));
8664 if (!cfs_rq)
8665 goto err;
8666
8667 se = kzalloc_node(sizeof(struct sched_entity),
8668 GFP_KERNEL, cpu_to_node(i));
8669 if (!se)
8670 goto err;
8671
8672 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8673 }
8674
8675 return 1;
8676
8677 err:
8678 return 0;
8679 }
8680
8681 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8682 {
8683 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8684 &cpu_rq(cpu)->leaf_cfs_rq_list);
8685 }
8686
8687 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8688 {
8689 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8690 }
8691 #else /* !CONFG_FAIR_GROUP_SCHED */
8692 static inline void free_fair_sched_group(struct task_group *tg)
8693 {
8694 }
8695
8696 static inline
8697 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8698 {
8699 return 1;
8700 }
8701
8702 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8703 {
8704 }
8705
8706 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8707 {
8708 }
8709 #endif /* CONFIG_FAIR_GROUP_SCHED */
8710
8711 #ifdef CONFIG_RT_GROUP_SCHED
8712 static void free_rt_sched_group(struct task_group *tg)
8713 {
8714 int i;
8715
8716 destroy_rt_bandwidth(&tg->rt_bandwidth);
8717
8718 for_each_possible_cpu(i) {
8719 if (tg->rt_rq)
8720 kfree(tg->rt_rq[i]);
8721 if (tg->rt_se)
8722 kfree(tg->rt_se[i]);
8723 }
8724
8725 kfree(tg->rt_rq);
8726 kfree(tg->rt_se);
8727 }
8728
8729 static
8730 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8731 {
8732 struct rt_rq *rt_rq;
8733 struct sched_rt_entity *rt_se;
8734 struct rq *rq;
8735 int i;
8736
8737 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8738 if (!tg->rt_rq)
8739 goto err;
8740 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8741 if (!tg->rt_se)
8742 goto err;
8743
8744 init_rt_bandwidth(&tg->rt_bandwidth,
8745 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8746
8747 for_each_possible_cpu(i) {
8748 rq = cpu_rq(i);
8749
8750 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8751 GFP_KERNEL, cpu_to_node(i));
8752 if (!rt_rq)
8753 goto err;
8754
8755 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8756 GFP_KERNEL, cpu_to_node(i));
8757 if (!rt_se)
8758 goto err;
8759
8760 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8761 }
8762
8763 return 1;
8764
8765 err:
8766 return 0;
8767 }
8768
8769 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8770 {
8771 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8772 &cpu_rq(cpu)->leaf_rt_rq_list);
8773 }
8774
8775 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8776 {
8777 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8778 }
8779 #else /* !CONFIG_RT_GROUP_SCHED */
8780 static inline void free_rt_sched_group(struct task_group *tg)
8781 {
8782 }
8783
8784 static inline
8785 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8786 {
8787 return 1;
8788 }
8789
8790 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8791 {
8792 }
8793
8794 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8795 {
8796 }
8797 #endif /* CONFIG_RT_GROUP_SCHED */
8798
8799 #ifdef CONFIG_GROUP_SCHED
8800 static void free_sched_group(struct task_group *tg)
8801 {
8802 free_fair_sched_group(tg);
8803 free_rt_sched_group(tg);
8804 kfree(tg);
8805 }
8806
8807 /* allocate runqueue etc for a new task group */
8808 struct task_group *sched_create_group(struct task_group *parent)
8809 {
8810 struct task_group *tg;
8811 unsigned long flags;
8812 int i;
8813
8814 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8815 if (!tg)
8816 return ERR_PTR(-ENOMEM);
8817
8818 if (!alloc_fair_sched_group(tg, parent))
8819 goto err;
8820
8821 if (!alloc_rt_sched_group(tg, parent))
8822 goto err;
8823
8824 spin_lock_irqsave(&task_group_lock, flags);
8825 for_each_possible_cpu(i) {
8826 register_fair_sched_group(tg, i);
8827 register_rt_sched_group(tg, i);
8828 }
8829 list_add_rcu(&tg->list, &task_groups);
8830
8831 WARN_ON(!parent); /* root should already exist */
8832
8833 tg->parent = parent;
8834 INIT_LIST_HEAD(&tg->children);
8835 list_add_rcu(&tg->siblings, &parent->children);
8836 spin_unlock_irqrestore(&task_group_lock, flags);
8837
8838 return tg;
8839
8840 err:
8841 free_sched_group(tg);
8842 return ERR_PTR(-ENOMEM);
8843 }
8844
8845 /* rcu callback to free various structures associated with a task group */
8846 static void free_sched_group_rcu(struct rcu_head *rhp)
8847 {
8848 /* now it should be safe to free those cfs_rqs */
8849 free_sched_group(container_of(rhp, struct task_group, rcu));
8850 }
8851
8852 /* Destroy runqueue etc associated with a task group */
8853 void sched_destroy_group(struct task_group *tg)
8854 {
8855 unsigned long flags;
8856 int i;
8857
8858 spin_lock_irqsave(&task_group_lock, flags);
8859 for_each_possible_cpu(i) {
8860 unregister_fair_sched_group(tg, i);
8861 unregister_rt_sched_group(tg, i);
8862 }
8863 list_del_rcu(&tg->list);
8864 list_del_rcu(&tg->siblings);
8865 spin_unlock_irqrestore(&task_group_lock, flags);
8866
8867 /* wait for possible concurrent references to cfs_rqs complete */
8868 call_rcu(&tg->rcu, free_sched_group_rcu);
8869 }
8870
8871 /* change task's runqueue when it moves between groups.
8872 * The caller of this function should have put the task in its new group
8873 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8874 * reflect its new group.
8875 */
8876 void sched_move_task(struct task_struct *tsk)
8877 {
8878 int on_rq, running;
8879 unsigned long flags;
8880 struct rq *rq;
8881
8882 rq = task_rq_lock(tsk, &flags);
8883
8884 update_rq_clock(rq);
8885
8886 running = task_current(rq, tsk);
8887 on_rq = tsk->se.on_rq;
8888
8889 if (on_rq)
8890 dequeue_task(rq, tsk, 0);
8891 if (unlikely(running))
8892 tsk->sched_class->put_prev_task(rq, tsk);
8893
8894 set_task_rq(tsk, task_cpu(tsk));
8895
8896 #ifdef CONFIG_FAIR_GROUP_SCHED
8897 if (tsk->sched_class->moved_group)
8898 tsk->sched_class->moved_group(tsk);
8899 #endif
8900
8901 if (unlikely(running))
8902 tsk->sched_class->set_curr_task(rq);
8903 if (on_rq)
8904 enqueue_task(rq, tsk, 0);
8905
8906 task_rq_unlock(rq, &flags);
8907 }
8908 #endif /* CONFIG_GROUP_SCHED */
8909
8910 #ifdef CONFIG_FAIR_GROUP_SCHED
8911 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8912 {
8913 struct cfs_rq *cfs_rq = se->cfs_rq;
8914 int on_rq;
8915
8916 on_rq = se->on_rq;
8917 if (on_rq)
8918 dequeue_entity(cfs_rq, se, 0);
8919
8920 se->load.weight = shares;
8921 se->load.inv_weight = 0;
8922
8923 if (on_rq)
8924 enqueue_entity(cfs_rq, se, 0);
8925 }
8926
8927 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8928 {
8929 struct cfs_rq *cfs_rq = se->cfs_rq;
8930 struct rq *rq = cfs_rq->rq;
8931 unsigned long flags;
8932
8933 spin_lock_irqsave(&rq->lock, flags);
8934 __set_se_shares(se, shares);
8935 spin_unlock_irqrestore(&rq->lock, flags);
8936 }
8937
8938 static DEFINE_MUTEX(shares_mutex);
8939
8940 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8941 {
8942 int i;
8943 unsigned long flags;
8944
8945 /*
8946 * We can't change the weight of the root cgroup.
8947 */
8948 if (!tg->se[0])
8949 return -EINVAL;
8950
8951 if (shares < MIN_SHARES)
8952 shares = MIN_SHARES;
8953 else if (shares > MAX_SHARES)
8954 shares = MAX_SHARES;
8955
8956 mutex_lock(&shares_mutex);
8957 if (tg->shares == shares)
8958 goto done;
8959
8960 spin_lock_irqsave(&task_group_lock, flags);
8961 for_each_possible_cpu(i)
8962 unregister_fair_sched_group(tg, i);
8963 list_del_rcu(&tg->siblings);
8964 spin_unlock_irqrestore(&task_group_lock, flags);
8965
8966 /* wait for any ongoing reference to this group to finish */
8967 synchronize_sched();
8968
8969 /*
8970 * Now we are free to modify the group's share on each cpu
8971 * w/o tripping rebalance_share or load_balance_fair.
8972 */
8973 tg->shares = shares;
8974 for_each_possible_cpu(i) {
8975 /*
8976 * force a rebalance
8977 */
8978 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8979 set_se_shares(tg->se[i], shares);
8980 }
8981
8982 /*
8983 * Enable load balance activity on this group, by inserting it back on
8984 * each cpu's rq->leaf_cfs_rq_list.
8985 */
8986 spin_lock_irqsave(&task_group_lock, flags);
8987 for_each_possible_cpu(i)
8988 register_fair_sched_group(tg, i);
8989 list_add_rcu(&tg->siblings, &tg->parent->children);
8990 spin_unlock_irqrestore(&task_group_lock, flags);
8991 done:
8992 mutex_unlock(&shares_mutex);
8993 return 0;
8994 }
8995
8996 unsigned long sched_group_shares(struct task_group *tg)
8997 {
8998 return tg->shares;
8999 }
9000 #endif
9001
9002 #ifdef CONFIG_RT_GROUP_SCHED
9003 /*
9004 * Ensure that the real time constraints are schedulable.
9005 */
9006 static DEFINE_MUTEX(rt_constraints_mutex);
9007
9008 static unsigned long to_ratio(u64 period, u64 runtime)
9009 {
9010 if (runtime == RUNTIME_INF)
9011 return 1ULL << 20;
9012
9013 return div64_u64(runtime << 20, period);
9014 }
9015
9016 /* Must be called with tasklist_lock held */
9017 static inline int tg_has_rt_tasks(struct task_group *tg)
9018 {
9019 struct task_struct *g, *p;
9020
9021 do_each_thread(g, p) {
9022 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9023 return 1;
9024 } while_each_thread(g, p);
9025
9026 return 0;
9027 }
9028
9029 struct rt_schedulable_data {
9030 struct task_group *tg;
9031 u64 rt_period;
9032 u64 rt_runtime;
9033 };
9034
9035 static int tg_schedulable(struct task_group *tg, void *data)
9036 {
9037 struct rt_schedulable_data *d = data;
9038 struct task_group *child;
9039 unsigned long total, sum = 0;
9040 u64 period, runtime;
9041
9042 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9043 runtime = tg->rt_bandwidth.rt_runtime;
9044
9045 if (tg == d->tg) {
9046 period = d->rt_period;
9047 runtime = d->rt_runtime;
9048 }
9049
9050 /*
9051 * Cannot have more runtime than the period.
9052 */
9053 if (runtime > period && runtime != RUNTIME_INF)
9054 return -EINVAL;
9055
9056 /*
9057 * Ensure we don't starve existing RT tasks.
9058 */
9059 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9060 return -EBUSY;
9061
9062 total = to_ratio(period, runtime);
9063
9064 /*
9065 * Nobody can have more than the global setting allows.
9066 */
9067 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9068 return -EINVAL;
9069
9070 /*
9071 * The sum of our children's runtime should not exceed our own.
9072 */
9073 list_for_each_entry_rcu(child, &tg->children, siblings) {
9074 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9075 runtime = child->rt_bandwidth.rt_runtime;
9076
9077 if (child == d->tg) {
9078 period = d->rt_period;
9079 runtime = d->rt_runtime;
9080 }
9081
9082 sum += to_ratio(period, runtime);
9083 }
9084
9085 if (sum > total)
9086 return -EINVAL;
9087
9088 return 0;
9089 }
9090
9091 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9092 {
9093 struct rt_schedulable_data data = {
9094 .tg = tg,
9095 .rt_period = period,
9096 .rt_runtime = runtime,
9097 };
9098
9099 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9100 }
9101
9102 static int tg_set_bandwidth(struct task_group *tg,
9103 u64 rt_period, u64 rt_runtime)
9104 {
9105 int i, err = 0;
9106
9107 mutex_lock(&rt_constraints_mutex);
9108 read_lock(&tasklist_lock);
9109 err = __rt_schedulable(tg, rt_period, rt_runtime);
9110 if (err)
9111 goto unlock;
9112
9113 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9114 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9115 tg->rt_bandwidth.rt_runtime = rt_runtime;
9116
9117 for_each_possible_cpu(i) {
9118 struct rt_rq *rt_rq = tg->rt_rq[i];
9119
9120 spin_lock(&rt_rq->rt_runtime_lock);
9121 rt_rq->rt_runtime = rt_runtime;
9122 spin_unlock(&rt_rq->rt_runtime_lock);
9123 }
9124 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9125 unlock:
9126 read_unlock(&tasklist_lock);
9127 mutex_unlock(&rt_constraints_mutex);
9128
9129 return err;
9130 }
9131
9132 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9133 {
9134 u64 rt_runtime, rt_period;
9135
9136 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9137 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9138 if (rt_runtime_us < 0)
9139 rt_runtime = RUNTIME_INF;
9140
9141 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9142 }
9143
9144 long sched_group_rt_runtime(struct task_group *tg)
9145 {
9146 u64 rt_runtime_us;
9147
9148 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9149 return -1;
9150
9151 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9152 do_div(rt_runtime_us, NSEC_PER_USEC);
9153 return rt_runtime_us;
9154 }
9155
9156 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9157 {
9158 u64 rt_runtime, rt_period;
9159
9160 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9161 rt_runtime = tg->rt_bandwidth.rt_runtime;
9162
9163 if (rt_period == 0)
9164 return -EINVAL;
9165
9166 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9167 }
9168
9169 long sched_group_rt_period(struct task_group *tg)
9170 {
9171 u64 rt_period_us;
9172
9173 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9174 do_div(rt_period_us, NSEC_PER_USEC);
9175 return rt_period_us;
9176 }
9177
9178 static int sched_rt_global_constraints(void)
9179 {
9180 u64 runtime, period;
9181 int ret = 0;
9182
9183 if (sysctl_sched_rt_period <= 0)
9184 return -EINVAL;
9185
9186 runtime = global_rt_runtime();
9187 period = global_rt_period();
9188
9189 /*
9190 * Sanity check on the sysctl variables.
9191 */
9192 if (runtime > period && runtime != RUNTIME_INF)
9193 return -EINVAL;
9194
9195 mutex_lock(&rt_constraints_mutex);
9196 read_lock(&tasklist_lock);
9197 ret = __rt_schedulable(NULL, 0, 0);
9198 read_unlock(&tasklist_lock);
9199 mutex_unlock(&rt_constraints_mutex);
9200
9201 return ret;
9202 }
9203 #else /* !CONFIG_RT_GROUP_SCHED */
9204 static int sched_rt_global_constraints(void)
9205 {
9206 unsigned long flags;
9207 int i;
9208
9209 if (sysctl_sched_rt_period <= 0)
9210 return -EINVAL;
9211
9212 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9213 for_each_possible_cpu(i) {
9214 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9215
9216 spin_lock(&rt_rq->rt_runtime_lock);
9217 rt_rq->rt_runtime = global_rt_runtime();
9218 spin_unlock(&rt_rq->rt_runtime_lock);
9219 }
9220 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9221
9222 return 0;
9223 }
9224 #endif /* CONFIG_RT_GROUP_SCHED */
9225
9226 int sched_rt_handler(struct ctl_table *table, int write,
9227 struct file *filp, void __user *buffer, size_t *lenp,
9228 loff_t *ppos)
9229 {
9230 int ret;
9231 int old_period, old_runtime;
9232 static DEFINE_MUTEX(mutex);
9233
9234 mutex_lock(&mutex);
9235 old_period = sysctl_sched_rt_period;
9236 old_runtime = sysctl_sched_rt_runtime;
9237
9238 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9239
9240 if (!ret && write) {
9241 ret = sched_rt_global_constraints();
9242 if (ret) {
9243 sysctl_sched_rt_period = old_period;
9244 sysctl_sched_rt_runtime = old_runtime;
9245 } else {
9246 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9247 def_rt_bandwidth.rt_period =
9248 ns_to_ktime(global_rt_period());
9249 }
9250 }
9251 mutex_unlock(&mutex);
9252
9253 return ret;
9254 }
9255
9256 #ifdef CONFIG_CGROUP_SCHED
9257
9258 /* return corresponding task_group object of a cgroup */
9259 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9260 {
9261 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9262 struct task_group, css);
9263 }
9264
9265 static struct cgroup_subsys_state *
9266 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9267 {
9268 struct task_group *tg, *parent;
9269
9270 if (!cgrp->parent) {
9271 /* This is early initialization for the top cgroup */
9272 return &init_task_group.css;
9273 }
9274
9275 parent = cgroup_tg(cgrp->parent);
9276 tg = sched_create_group(parent);
9277 if (IS_ERR(tg))
9278 return ERR_PTR(-ENOMEM);
9279
9280 return &tg->css;
9281 }
9282
9283 static void
9284 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9285 {
9286 struct task_group *tg = cgroup_tg(cgrp);
9287
9288 sched_destroy_group(tg);
9289 }
9290
9291 static int
9292 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9293 struct task_struct *tsk)
9294 {
9295 #ifdef CONFIG_RT_GROUP_SCHED
9296 /* Don't accept realtime tasks when there is no way for them to run */
9297 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9298 return -EINVAL;
9299 #else
9300 /* We don't support RT-tasks being in separate groups */
9301 if (tsk->sched_class != &fair_sched_class)
9302 return -EINVAL;
9303 #endif
9304
9305 return 0;
9306 }
9307
9308 static void
9309 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9310 struct cgroup *old_cont, struct task_struct *tsk)
9311 {
9312 sched_move_task(tsk);
9313 }
9314
9315 #ifdef CONFIG_FAIR_GROUP_SCHED
9316 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9317 u64 shareval)
9318 {
9319 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9320 }
9321
9322 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9323 {
9324 struct task_group *tg = cgroup_tg(cgrp);
9325
9326 return (u64) tg->shares;
9327 }
9328 #endif /* CONFIG_FAIR_GROUP_SCHED */
9329
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9332 s64 val)
9333 {
9334 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9335 }
9336
9337 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9338 {
9339 return sched_group_rt_runtime(cgroup_tg(cgrp));
9340 }
9341
9342 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9343 u64 rt_period_us)
9344 {
9345 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9346 }
9347
9348 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9349 {
9350 return sched_group_rt_period(cgroup_tg(cgrp));
9351 }
9352 #endif /* CONFIG_RT_GROUP_SCHED */
9353
9354 static struct cftype cpu_files[] = {
9355 #ifdef CONFIG_FAIR_GROUP_SCHED
9356 {
9357 .name = "shares",
9358 .read_u64 = cpu_shares_read_u64,
9359 .write_u64 = cpu_shares_write_u64,
9360 },
9361 #endif
9362 #ifdef CONFIG_RT_GROUP_SCHED
9363 {
9364 .name = "rt_runtime_us",
9365 .read_s64 = cpu_rt_runtime_read,
9366 .write_s64 = cpu_rt_runtime_write,
9367 },
9368 {
9369 .name = "rt_period_us",
9370 .read_u64 = cpu_rt_period_read_uint,
9371 .write_u64 = cpu_rt_period_write_uint,
9372 },
9373 #endif
9374 };
9375
9376 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9377 {
9378 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9379 }
9380
9381 struct cgroup_subsys cpu_cgroup_subsys = {
9382 .name = "cpu",
9383 .create = cpu_cgroup_create,
9384 .destroy = cpu_cgroup_destroy,
9385 .can_attach = cpu_cgroup_can_attach,
9386 .attach = cpu_cgroup_attach,
9387 .populate = cpu_cgroup_populate,
9388 .subsys_id = cpu_cgroup_subsys_id,
9389 .early_init = 1,
9390 };
9391
9392 #endif /* CONFIG_CGROUP_SCHED */
9393
9394 #ifdef CONFIG_CGROUP_CPUACCT
9395
9396 /*
9397 * CPU accounting code for task groups.
9398 *
9399 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9400 * (balbir@in.ibm.com).
9401 */
9402
9403 /* track cpu usage of a group of tasks and its child groups */
9404 struct cpuacct {
9405 struct cgroup_subsys_state css;
9406 /* cpuusage holds pointer to a u64-type object on every cpu */
9407 u64 *cpuusage;
9408 struct cpuacct *parent;
9409 };
9410
9411 struct cgroup_subsys cpuacct_subsys;
9412
9413 /* return cpu accounting group corresponding to this container */
9414 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9415 {
9416 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9417 struct cpuacct, css);
9418 }
9419
9420 /* return cpu accounting group to which this task belongs */
9421 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9422 {
9423 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9424 struct cpuacct, css);
9425 }
9426
9427 /* create a new cpu accounting group */
9428 static struct cgroup_subsys_state *cpuacct_create(
9429 struct cgroup_subsys *ss, struct cgroup *cgrp)
9430 {
9431 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9432
9433 if (!ca)
9434 return ERR_PTR(-ENOMEM);
9435
9436 ca->cpuusage = alloc_percpu(u64);
9437 if (!ca->cpuusage) {
9438 kfree(ca);
9439 return ERR_PTR(-ENOMEM);
9440 }
9441
9442 if (cgrp->parent)
9443 ca->parent = cgroup_ca(cgrp->parent);
9444
9445 return &ca->css;
9446 }
9447
9448 /* destroy an existing cpu accounting group */
9449 static void
9450 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9451 {
9452 struct cpuacct *ca = cgroup_ca(cgrp);
9453
9454 free_percpu(ca->cpuusage);
9455 kfree(ca);
9456 }
9457
9458 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9459 {
9460 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9461 u64 data;
9462
9463 #ifndef CONFIG_64BIT
9464 /*
9465 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9466 */
9467 spin_lock_irq(&cpu_rq(cpu)->lock);
9468 data = *cpuusage;
9469 spin_unlock_irq(&cpu_rq(cpu)->lock);
9470 #else
9471 data = *cpuusage;
9472 #endif
9473
9474 return data;
9475 }
9476
9477 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9478 {
9479 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9480
9481 #ifndef CONFIG_64BIT
9482 /*
9483 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9484 */
9485 spin_lock_irq(&cpu_rq(cpu)->lock);
9486 *cpuusage = val;
9487 spin_unlock_irq(&cpu_rq(cpu)->lock);
9488 #else
9489 *cpuusage = val;
9490 #endif
9491 }
9492
9493 /* return total cpu usage (in nanoseconds) of a group */
9494 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9495 {
9496 struct cpuacct *ca = cgroup_ca(cgrp);
9497 u64 totalcpuusage = 0;
9498 int i;
9499
9500 for_each_present_cpu(i)
9501 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9502
9503 return totalcpuusage;
9504 }
9505
9506 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9507 u64 reset)
9508 {
9509 struct cpuacct *ca = cgroup_ca(cgrp);
9510 int err = 0;
9511 int i;
9512
9513 if (reset) {
9514 err = -EINVAL;
9515 goto out;
9516 }
9517
9518 for_each_present_cpu(i)
9519 cpuacct_cpuusage_write(ca, i, 0);
9520
9521 out:
9522 return err;
9523 }
9524
9525 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9526 struct seq_file *m)
9527 {
9528 struct cpuacct *ca = cgroup_ca(cgroup);
9529 u64 percpu;
9530 int i;
9531
9532 for_each_present_cpu(i) {
9533 percpu = cpuacct_cpuusage_read(ca, i);
9534 seq_printf(m, "%llu ", (unsigned long long) percpu);
9535 }
9536 seq_printf(m, "\n");
9537 return 0;
9538 }
9539
9540 static struct cftype files[] = {
9541 {
9542 .name = "usage",
9543 .read_u64 = cpuusage_read,
9544 .write_u64 = cpuusage_write,
9545 },
9546 {
9547 .name = "usage_percpu",
9548 .read_seq_string = cpuacct_percpu_seq_read,
9549 },
9550
9551 };
9552
9553 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9554 {
9555 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9556 }
9557
9558 /*
9559 * charge this task's execution time to its accounting group.
9560 *
9561 * called with rq->lock held.
9562 */
9563 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9564 {
9565 struct cpuacct *ca;
9566 int cpu;
9567
9568 if (!cpuacct_subsys.active)
9569 return;
9570
9571 cpu = task_cpu(tsk);
9572 ca = task_ca(tsk);
9573
9574 for (; ca; ca = ca->parent) {
9575 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9576 *cpuusage += cputime;
9577 }
9578 }
9579
9580 struct cgroup_subsys cpuacct_subsys = {
9581 .name = "cpuacct",
9582 .create = cpuacct_create,
9583 .destroy = cpuacct_destroy,
9584 .populate = cpuacct_populate,
9585 .subsys_id = cpuacct_subsys_id,
9586 };
9587 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.266552 seconds and 6 git commands to generate.