Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/nmi.h>
34 #include <linux/init.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h>
37 #include <linux/smp_lock.h>
38 #include <asm/mmu_context.h>
39 #include <linux/interrupt.h>
40 #include <linux/capability.h>
41 #include <linux/completion.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/debug_locks.h>
44 #include <linux/perf_event.h>
45 #include <linux/security.h>
46 #include <linux/notifier.h>
47 #include <linux/profile.h>
48 #include <linux/freezer.h>
49 #include <linux/vmalloc.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/smp.h>
54 #include <linux/threads.h>
55 #include <linux/timer.h>
56 #include <linux/rcupdate.h>
57 #include <linux/cpu.h>
58 #include <linux/cpuset.h>
59 #include <linux/percpu.h>
60 #include <linux/kthread.h>
61 #include <linux/proc_fs.h>
62 #include <linux/seq_file.h>
63 #include <linux/sysctl.h>
64 #include <linux/syscalls.h>
65 #include <linux/times.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/kprobes.h>
68 #include <linux/delayacct.h>
69 #include <linux/unistd.h>
70 #include <linux/pagemap.h>
71 #include <linux/hrtimer.h>
72 #include <linux/tick.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_GROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
251
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
283 {
284 user->tg->uid = user->uid;
285 }
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315
316 #ifdef CONFIG_SMP
317 static int root_task_group_empty(void)
318 {
319 return list_empty(&root_task_group.children);
320 }
321 #endif
322
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
357 #elif defined(CONFIG_CGROUP_SCHED)
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
360 #else
361 tg = &init_task_group;
362 #endif
363 return tg;
364 }
365
366 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 {
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
372 #endif
373
374 #ifdef CONFIG_RT_GROUP_SCHED
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
377 #endif
378 }
379
380 #else
381
382 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 static inline struct task_group *task_group(struct task_struct *p)
384 {
385 return NULL;
386 }
387
388 #endif /* CONFIG_GROUP_SCHED */
389
390 /* CFS-related fields in a runqueue */
391 struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
395 u64 exec_clock;
396 u64 min_vruntime;
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
408 struct sched_entity *curr, *next, *last;
409
410 unsigned int nr_spread_over;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426 #ifdef CONFIG_SMP
427 /*
428 * the part of load.weight contributed by tasks
429 */
430 unsigned long task_weight;
431
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
439
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
449 #endif
450 #endif
451 };
452
453 /* Real-Time classes' related field in a runqueue: */
454 struct rt_rq {
455 struct rt_prio_array active;
456 unsigned long rt_nr_running;
457 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 struct {
459 int curr; /* highest queued rt task prio */
460 #ifdef CONFIG_SMP
461 int next; /* next highest */
462 #endif
463 } highest_prio;
464 #endif
465 #ifdef CONFIG_SMP
466 unsigned long rt_nr_migratory;
467 unsigned long rt_nr_total;
468 int overloaded;
469 struct plist_head pushable_tasks;
470 #endif
471 int rt_throttled;
472 u64 rt_time;
473 u64 rt_runtime;
474 /* Nests inside the rq lock: */
475 raw_spinlock_t rt_runtime_lock;
476
477 #ifdef CONFIG_RT_GROUP_SCHED
478 unsigned long rt_nr_boosted;
479
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484 #endif
485 };
486
487 #ifdef CONFIG_SMP
488
489 /*
490 * We add the notion of a root-domain which will be used to define per-domain
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
496 */
497 struct root_domain {
498 atomic_t refcount;
499 cpumask_var_t span;
500 cpumask_var_t online;
501
502 /*
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
506 cpumask_var_t rto_mask;
507 atomic_t rto_count;
508 #ifdef CONFIG_SMP
509 struct cpupri cpupri;
510 #endif
511 };
512
513 /*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
517 static struct root_domain def_root_domain;
518
519 #endif
520
521 /*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
528 struct rq {
529 /* runqueue lock: */
530 raw_spinlock_t lock;
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 #ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541 #endif
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
548 struct rt_rq rt;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
569
570 u64 clock;
571
572 atomic_t nr_iowait;
573
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
577
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
586
587 unsigned long avg_load_per_task;
588
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
591
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
597
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
609
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
618
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
623
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
627
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
631 };
632
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637 {
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 }
640
641 static inline int cpu_of(struct rq *rq)
642 {
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
648 }
649
650 /*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666 inline void update_rq_clock(struct rq *rq)
667 {
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669 }
670
671 /*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
679
680 /**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826 unsigned int sysctl_sched_shares_thresh = 4;
827
828 /*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836 /*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840 unsigned int sysctl_sched_rt_period = 1000000;
841
842 static __read_mostly int scheduler_running;
843
844 /*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848 int sysctl_sched_rt_runtime = 950000;
849
850 static inline u64 global_rt_period(void)
851 {
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 }
854
855 static inline u64 global_rt_runtime(void)
856 {
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 }
862
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
869
870 static inline int task_current(struct rq *rq, struct task_struct *p)
871 {
872 return rq->curr == p;
873 }
874
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
877 {
878 return task_current(rq, p);
879 }
880
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 }
884
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 {
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898 raw_spin_unlock_irq(&rq->lock);
899 }
900
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
909 }
910
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 raw_spin_unlock_irq(&rq->lock);
923 #else
924 raw_spin_unlock(&rq->lock);
925 #endif
926 }
927
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 {
930 #ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
942 }
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945 /*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
951 {
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
968 {
969 struct rq *rq;
970
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 raw_spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979 }
980
981 void task_rq_unlock_wait(struct task_struct *p)
982 {
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 raw_spin_unlock_wait(&rq->lock);
987 }
988
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
991 {
992 raw_spin_unlock(&rq->lock);
993 }
994
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
997 {
998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000
1001 /*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1006 {
1007 struct rq *rq;
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 raw_spin_lock(&rq->lock);
1012
1013 return rq;
1014 }
1015
1016 #ifdef CONFIG_SCHED_HRTICK
1017 /*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028 /*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033 static inline int hrtick_enabled(struct rq *rq)
1034 {
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 }
1041
1042 static void hrtick_clear(struct rq *rq)
1043 {
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046 }
1047
1048 /*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 {
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 raw_spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 raw_spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 /*
1068 * called from hardirq (IPI) context
1069 */
1070 static void __hrtick_start(void *arg)
1071 {
1072 struct rq *rq = arg;
1073
1074 raw_spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 raw_spin_unlock(&rq->lock);
1078 }
1079
1080 /*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085 static void hrtick_start(struct rq *rq, u64 delay)
1086 {
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090 hrtimer_set_expires(timer, time);
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1097 }
1098 }
1099
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 {
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117 }
1118
1119 static __init void init_hrtick(void)
1120 {
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122 }
1123 #else
1124 /*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129 static void hrtick_start(struct rq *rq, u64 delay)
1130 {
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1133 }
1134
1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139
1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1144
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1149
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1152 }
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161
1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif /* CONFIG_SCHED_HRTICK */
1166
1167 /*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174 #ifdef CONFIG_SMP
1175
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179
1180 static void resched_task(struct task_struct *p)
1181 {
1182 int cpu;
1183
1184 assert_raw_spin_locked(&task_rq(p)->lock);
1185
1186 if (test_tsk_need_resched(p))
1187 return;
1188
1189 set_tsk_need_resched(p);
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199 }
1200
1201 static void resched_cpu(int cpu)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_need_resched(rq->idle);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253
1254 static u64 sched_avg_period(void)
1255 {
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 }
1258
1259 static void sched_avg_update(struct rq *rq)
1260 {
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267 }
1268
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 {
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273 }
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_raw_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 {
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1497 {
1498 return cpu_rq(cpu)->load.weight;
1499 }
1500
1501 /*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508 static unsigned long source_load(int cpu, int type)
1509 {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517 }
1518
1519 /*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523 static unsigned long target_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532 }
1533
1534 static struct sched_group *group_of(int cpu)
1535 {
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542 }
1543
1544 static unsigned long power_of(int cpu)
1545 {
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552 }
1553
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1557 {
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1565
1566 return rq->avg_load_per_task;
1567 }
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571 static __read_mostly unsigned long *update_shares_data;
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 raw_spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1635
1636 rq_weight += weight;
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
1645 sum_weight += weight;
1646 shares += tg->cfs_rq[i]->shares;
1647 }
1648
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
1657
1658 for_each_cpu(i, sched_domain_span(sd))
1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660
1661 local_irq_restore(flags);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
1670 */
1671 static int tg_load_down(struct task_group *tg, void *data)
1672 {
1673 unsigned long load;
1674 long cpu = (long)data;
1675
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
1683
1684 tg->cfs_rq[cpu]->h_load = load;
1685
1686 return 0;
1687 }
1688
1689 static void update_shares(struct sched_domain *sd)
1690 {
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
1703 }
1704 }
1705
1706 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 {
1708 if (root_task_group_empty())
1709 return;
1710
1711 raw_spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 raw_spin_lock(&rq->lock);
1714 }
1715
1716 static void update_h_load(long cpu)
1717 {
1718 if (root_task_group_empty())
1719 return;
1720
1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 }
1723
1724 #else
1725
1726 static inline void update_shares(struct sched_domain *sd)
1727 {
1728 }
1729
1730 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731 {
1732 }
1733
1734 #endif
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1784 }
1785 return ret;
1786 }
1787
1788 #endif /* CONFIG_PREEMPT */
1789
1790 /*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 {
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802 }
1803
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806 {
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814 {
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1818 }
1819 #endif
1820
1821 static void calc_load_account_active(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1824
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826 {
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1837 }
1838
1839 #include "sched_stats.h"
1840 #include "sched_idletask.c"
1841 #include "sched_fair.c"
1842 #include "sched_rt.c"
1843 #ifdef CONFIG_SCHED_DEBUG
1844 # include "sched_debug.c"
1845 #endif
1846
1847 #define sched_class_highest (&rt_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1850
1851 static void inc_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running++;
1854 }
1855
1856 static void dec_nr_running(struct rq *rq)
1857 {
1858 rq->nr_running--;
1859 }
1860
1861 static void set_load_weight(struct task_struct *p)
1862 {
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
1868
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
1877
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 }
1881
1882 static void update_avg(u64 *avg, u64 sample)
1883 {
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886 }
1887
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1889 {
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
1893 sched_info_queued(p);
1894 p->sched_class->enqueue_task(rq, p, wakeup);
1895 p->se.on_rq = 1;
1896 }
1897
1898 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899 {
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
1909 }
1910
1911 sched_info_dequeued(p);
1912 p->sched_class->dequeue_task(rq, p, sleep);
1913 p->se.on_rq = 0;
1914 }
1915
1916 /*
1917 * __normal_prio - return the priority that is based on the static prio
1918 */
1919 static inline int __normal_prio(struct task_struct *p)
1920 {
1921 return p->static_prio;
1922 }
1923
1924 /*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
1931 static inline int normal_prio(struct task_struct *p)
1932 {
1933 int prio;
1934
1935 if (task_has_rt_policy(p))
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940 }
1941
1942 /*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
1949 static int effective_prio(struct task_struct *p)
1950 {
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960 }
1961
1962 /*
1963 * activate_task - move a task to the runqueue.
1964 */
1965 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1966 {
1967 if (task_contributes_to_load(p))
1968 rq->nr_uninterruptible--;
1969
1970 enqueue_task(rq, p, wakeup);
1971 inc_nr_running(rq);
1972 }
1973
1974 /*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
1977 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1978 {
1979 if (task_contributes_to_load(p))
1980 rq->nr_uninterruptible++;
1981
1982 dequeue_task(rq, p, sleep);
1983 dec_nr_running(rq);
1984 }
1985
1986 /**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
1990 inline int task_curr(const struct task_struct *p)
1991 {
1992 return cpu_curr(task_cpu(p)) == p;
1993 }
1994
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998 {
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 }
2006
2007 #ifdef CONFIG_SMP
2008 /*
2009 * Is this task likely cache-hot:
2010 */
2011 static int
2012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013 {
2014 s64 delta;
2015
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2026
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035 }
2036
2037 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2038 {
2039 #ifdef CONFIG_SCHED_DEBUG
2040 /*
2041 * We should never call set_task_cpu() on a blocked task,
2042 * ttwu() will sort out the placement.
2043 */
2044 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2045 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2046 #endif
2047
2048 trace_sched_migrate_task(p, new_cpu);
2049
2050 if (task_cpu(p) == new_cpu)
2051 return;
2052
2053 p->se.nr_migrations++;
2054 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2055
2056 __set_task_cpu(p, new_cpu);
2057 }
2058
2059 struct migration_req {
2060 struct list_head list;
2061
2062 struct task_struct *task;
2063 int dest_cpu;
2064
2065 struct completion done;
2066 };
2067
2068 /*
2069 * The task's runqueue lock must be held.
2070 * Returns true if you have to wait for migration thread.
2071 */
2072 static int
2073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2074 {
2075 struct rq *rq = task_rq(p);
2076
2077 /*
2078 * If the task is not on a runqueue (and not running), then
2079 * the next wake-up will properly place the task.
2080 */
2081 if (!p->se.on_rq && !task_running(rq, p))
2082 return 0;
2083
2084 init_completion(&req->done);
2085 req->task = p;
2086 req->dest_cpu = dest_cpu;
2087 list_add(&req->list, &rq->migration_queue);
2088
2089 return 1;
2090 }
2091
2092 /*
2093 * wait_task_context_switch - wait for a thread to complete at least one
2094 * context switch.
2095 *
2096 * @p must not be current.
2097 */
2098 void wait_task_context_switch(struct task_struct *p)
2099 {
2100 unsigned long nvcsw, nivcsw, flags;
2101 int running;
2102 struct rq *rq;
2103
2104 nvcsw = p->nvcsw;
2105 nivcsw = p->nivcsw;
2106 for (;;) {
2107 /*
2108 * The runqueue is assigned before the actual context
2109 * switch. We need to take the runqueue lock.
2110 *
2111 * We could check initially without the lock but it is
2112 * very likely that we need to take the lock in every
2113 * iteration.
2114 */
2115 rq = task_rq_lock(p, &flags);
2116 running = task_running(rq, p);
2117 task_rq_unlock(rq, &flags);
2118
2119 if (likely(!running))
2120 break;
2121 /*
2122 * The switch count is incremented before the actual
2123 * context switch. We thus wait for two switches to be
2124 * sure at least one completed.
2125 */
2126 if ((p->nvcsw - nvcsw) > 1)
2127 break;
2128 if ((p->nivcsw - nivcsw) > 1)
2129 break;
2130
2131 cpu_relax();
2132 }
2133 }
2134
2135 /*
2136 * wait_task_inactive - wait for a thread to unschedule.
2137 *
2138 * If @match_state is nonzero, it's the @p->state value just checked and
2139 * not expected to change. If it changes, i.e. @p might have woken up,
2140 * then return zero. When we succeed in waiting for @p to be off its CPU,
2141 * we return a positive number (its total switch count). If a second call
2142 * a short while later returns the same number, the caller can be sure that
2143 * @p has remained unscheduled the whole time.
2144 *
2145 * The caller must ensure that the task *will* unschedule sometime soon,
2146 * else this function might spin for a *long* time. This function can't
2147 * be called with interrupts off, or it may introduce deadlock with
2148 * smp_call_function() if an IPI is sent by the same process we are
2149 * waiting to become inactive.
2150 */
2151 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2152 {
2153 unsigned long flags;
2154 int running, on_rq;
2155 unsigned long ncsw;
2156 struct rq *rq;
2157
2158 for (;;) {
2159 /*
2160 * We do the initial early heuristics without holding
2161 * any task-queue locks at all. We'll only try to get
2162 * the runqueue lock when things look like they will
2163 * work out!
2164 */
2165 rq = task_rq(p);
2166
2167 /*
2168 * If the task is actively running on another CPU
2169 * still, just relax and busy-wait without holding
2170 * any locks.
2171 *
2172 * NOTE! Since we don't hold any locks, it's not
2173 * even sure that "rq" stays as the right runqueue!
2174 * But we don't care, since "task_running()" will
2175 * return false if the runqueue has changed and p
2176 * is actually now running somewhere else!
2177 */
2178 while (task_running(rq, p)) {
2179 if (match_state && unlikely(p->state != match_state))
2180 return 0;
2181 cpu_relax();
2182 }
2183
2184 /*
2185 * Ok, time to look more closely! We need the rq
2186 * lock now, to be *sure*. If we're wrong, we'll
2187 * just go back and repeat.
2188 */
2189 rq = task_rq_lock(p, &flags);
2190 trace_sched_wait_task(rq, p);
2191 running = task_running(rq, p);
2192 on_rq = p->se.on_rq;
2193 ncsw = 0;
2194 if (!match_state || p->state == match_state)
2195 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2196 task_rq_unlock(rq, &flags);
2197
2198 /*
2199 * If it changed from the expected state, bail out now.
2200 */
2201 if (unlikely(!ncsw))
2202 break;
2203
2204 /*
2205 * Was it really running after all now that we
2206 * checked with the proper locks actually held?
2207 *
2208 * Oops. Go back and try again..
2209 */
2210 if (unlikely(running)) {
2211 cpu_relax();
2212 continue;
2213 }
2214
2215 /*
2216 * It's not enough that it's not actively running,
2217 * it must be off the runqueue _entirely_, and not
2218 * preempted!
2219 *
2220 * So if it was still runnable (but just not actively
2221 * running right now), it's preempted, and we should
2222 * yield - it could be a while.
2223 */
2224 if (unlikely(on_rq)) {
2225 schedule_timeout_uninterruptible(1);
2226 continue;
2227 }
2228
2229 /*
2230 * Ahh, all good. It wasn't running, and it wasn't
2231 * runnable, which means that it will never become
2232 * running in the future either. We're all done!
2233 */
2234 break;
2235 }
2236
2237 return ncsw;
2238 }
2239
2240 /***
2241 * kick_process - kick a running thread to enter/exit the kernel
2242 * @p: the to-be-kicked thread
2243 *
2244 * Cause a process which is running on another CPU to enter
2245 * kernel-mode, without any delay. (to get signals handled.)
2246 *
2247 * NOTE: this function doesnt have to take the runqueue lock,
2248 * because all it wants to ensure is that the remote task enters
2249 * the kernel. If the IPI races and the task has been migrated
2250 * to another CPU then no harm is done and the purpose has been
2251 * achieved as well.
2252 */
2253 void kick_process(struct task_struct *p)
2254 {
2255 int cpu;
2256
2257 preempt_disable();
2258 cpu = task_cpu(p);
2259 if ((cpu != smp_processor_id()) && task_curr(p))
2260 smp_send_reschedule(cpu);
2261 preempt_enable();
2262 }
2263 EXPORT_SYMBOL_GPL(kick_process);
2264 #endif /* CONFIG_SMP */
2265
2266 /**
2267 * task_oncpu_function_call - call a function on the cpu on which a task runs
2268 * @p: the task to evaluate
2269 * @func: the function to be called
2270 * @info: the function call argument
2271 *
2272 * Calls the function @func when the task is currently running. This might
2273 * be on the current CPU, which just calls the function directly
2274 */
2275 void task_oncpu_function_call(struct task_struct *p,
2276 void (*func) (void *info), void *info)
2277 {
2278 int cpu;
2279
2280 preempt_disable();
2281 cpu = task_cpu(p);
2282 if (task_curr(p))
2283 smp_call_function_single(cpu, func, info, 1);
2284 preempt_enable();
2285 }
2286
2287 #ifdef CONFIG_SMP
2288 static int select_fallback_rq(int cpu, struct task_struct *p)
2289 {
2290 int dest_cpu;
2291 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2292
2293 /* Look for allowed, online CPU in same node. */
2294 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2295 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2296 return dest_cpu;
2297
2298 /* Any allowed, online CPU? */
2299 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2300 if (dest_cpu < nr_cpu_ids)
2301 return dest_cpu;
2302
2303 /* No more Mr. Nice Guy. */
2304 if (dest_cpu >= nr_cpu_ids) {
2305 rcu_read_lock();
2306 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2307 rcu_read_unlock();
2308 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2309
2310 /*
2311 * Don't tell them about moving exiting tasks or
2312 * kernel threads (both mm NULL), since they never
2313 * leave kernel.
2314 */
2315 if (p->mm && printk_ratelimit()) {
2316 printk(KERN_INFO "process %d (%s) no "
2317 "longer affine to cpu%d\n",
2318 task_pid_nr(p), p->comm, cpu);
2319 }
2320 }
2321
2322 return dest_cpu;
2323 }
2324
2325 /*
2326 * Called from:
2327 *
2328 * - fork, @p is stable because it isn't on the tasklist yet
2329 *
2330 * - exec, @p is unstable, retry loop
2331 *
2332 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2333 * we should be good.
2334 */
2335 static inline
2336 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2337 {
2338 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2339
2340 /*
2341 * In order not to call set_task_cpu() on a blocking task we need
2342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2343 * cpu.
2344 *
2345 * Since this is common to all placement strategies, this lives here.
2346 *
2347 * [ this allows ->select_task() to simply return task_cpu(p) and
2348 * not worry about this generic constraint ]
2349 */
2350 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2351 !cpu_active(cpu)))
2352 cpu = select_fallback_rq(task_cpu(p), p);
2353
2354 return cpu;
2355 }
2356 #endif
2357
2358 /***
2359 * try_to_wake_up - wake up a thread
2360 * @p: the to-be-woken-up thread
2361 * @state: the mask of task states that can be woken
2362 * @sync: do a synchronous wakeup?
2363 *
2364 * Put it on the run-queue if it's not already there. The "current"
2365 * thread is always on the run-queue (except when the actual
2366 * re-schedule is in progress), and as such you're allowed to do
2367 * the simpler "current->state = TASK_RUNNING" to mark yourself
2368 * runnable without the overhead of this.
2369 *
2370 * returns failure only if the task is already active.
2371 */
2372 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 int wake_flags)
2374 {
2375 int cpu, orig_cpu, this_cpu, success = 0;
2376 unsigned long flags;
2377 struct rq *rq, *orig_rq;
2378
2379 if (!sched_feat(SYNC_WAKEUPS))
2380 wake_flags &= ~WF_SYNC;
2381
2382 this_cpu = get_cpu();
2383
2384 smp_wmb();
2385 rq = orig_rq = task_rq_lock(p, &flags);
2386 update_rq_clock(rq);
2387 if (!(p->state & state))
2388 goto out;
2389
2390 if (p->se.on_rq)
2391 goto out_running;
2392
2393 cpu = task_cpu(p);
2394 orig_cpu = cpu;
2395
2396 #ifdef CONFIG_SMP
2397 if (unlikely(task_running(rq, p)))
2398 goto out_activate;
2399
2400 /*
2401 * In order to handle concurrent wakeups and release the rq->lock
2402 * we put the task in TASK_WAKING state.
2403 *
2404 * First fix up the nr_uninterruptible count:
2405 */
2406 if (task_contributes_to_load(p))
2407 rq->nr_uninterruptible--;
2408 p->state = TASK_WAKING;
2409
2410 if (p->sched_class->task_waking)
2411 p->sched_class->task_waking(rq, p);
2412
2413 __task_rq_unlock(rq);
2414
2415 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2416 if (cpu != orig_cpu)
2417 set_task_cpu(p, cpu);
2418
2419 rq = __task_rq_lock(p);
2420 update_rq_clock(rq);
2421
2422 WARN_ON(p->state != TASK_WAKING);
2423 cpu = task_cpu(p);
2424
2425 #ifdef CONFIG_SCHEDSTATS
2426 schedstat_inc(rq, ttwu_count);
2427 if (cpu == this_cpu)
2428 schedstat_inc(rq, ttwu_local);
2429 else {
2430 struct sched_domain *sd;
2431 for_each_domain(this_cpu, sd) {
2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2433 schedstat_inc(sd, ttwu_wake_remote);
2434 break;
2435 }
2436 }
2437 }
2438 #endif /* CONFIG_SCHEDSTATS */
2439
2440 out_activate:
2441 #endif /* CONFIG_SMP */
2442 schedstat_inc(p, se.nr_wakeups);
2443 if (wake_flags & WF_SYNC)
2444 schedstat_inc(p, se.nr_wakeups_sync);
2445 if (orig_cpu != cpu)
2446 schedstat_inc(p, se.nr_wakeups_migrate);
2447 if (cpu == this_cpu)
2448 schedstat_inc(p, se.nr_wakeups_local);
2449 else
2450 schedstat_inc(p, se.nr_wakeups_remote);
2451 activate_task(rq, p, 1);
2452 success = 1;
2453
2454 /*
2455 * Only attribute actual wakeups done by this task.
2456 */
2457 if (!in_interrupt()) {
2458 struct sched_entity *se = &current->se;
2459 u64 sample = se->sum_exec_runtime;
2460
2461 if (se->last_wakeup)
2462 sample -= se->last_wakeup;
2463 else
2464 sample -= se->start_runtime;
2465 update_avg(&se->avg_wakeup, sample);
2466
2467 se->last_wakeup = se->sum_exec_runtime;
2468 }
2469
2470 out_running:
2471 trace_sched_wakeup(rq, p, success);
2472 check_preempt_curr(rq, p, wake_flags);
2473
2474 p->state = TASK_RUNNING;
2475 #ifdef CONFIG_SMP
2476 if (p->sched_class->task_woken)
2477 p->sched_class->task_woken(rq, p);
2478
2479 if (unlikely(rq->idle_stamp)) {
2480 u64 delta = rq->clock - rq->idle_stamp;
2481 u64 max = 2*sysctl_sched_migration_cost;
2482
2483 if (delta > max)
2484 rq->avg_idle = max;
2485 else
2486 update_avg(&rq->avg_idle, delta);
2487 rq->idle_stamp = 0;
2488 }
2489 #endif
2490 out:
2491 task_rq_unlock(rq, &flags);
2492 put_cpu();
2493
2494 return success;
2495 }
2496
2497 /**
2498 * wake_up_process - Wake up a specific process
2499 * @p: The process to be woken up.
2500 *
2501 * Attempt to wake up the nominated process and move it to the set of runnable
2502 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * running.
2504 *
2505 * It may be assumed that this function implies a write memory barrier before
2506 * changing the task state if and only if any tasks are woken up.
2507 */
2508 int wake_up_process(struct task_struct *p)
2509 {
2510 return try_to_wake_up(p, TASK_ALL, 0);
2511 }
2512 EXPORT_SYMBOL(wake_up_process);
2513
2514 int wake_up_state(struct task_struct *p, unsigned int state)
2515 {
2516 return try_to_wake_up(p, state, 0);
2517 }
2518
2519 /*
2520 * Perform scheduler related setup for a newly forked process p.
2521 * p is forked by current.
2522 *
2523 * __sched_fork() is basic setup used by init_idle() too:
2524 */
2525 static void __sched_fork(struct task_struct *p)
2526 {
2527 p->se.exec_start = 0;
2528 p->se.sum_exec_runtime = 0;
2529 p->se.prev_sum_exec_runtime = 0;
2530 p->se.nr_migrations = 0;
2531 p->se.last_wakeup = 0;
2532 p->se.avg_overlap = 0;
2533 p->se.start_runtime = 0;
2534 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2535
2536 #ifdef CONFIG_SCHEDSTATS
2537 p->se.wait_start = 0;
2538 p->se.wait_max = 0;
2539 p->se.wait_count = 0;
2540 p->se.wait_sum = 0;
2541
2542 p->se.sleep_start = 0;
2543 p->se.sleep_max = 0;
2544 p->se.sum_sleep_runtime = 0;
2545
2546 p->se.block_start = 0;
2547 p->se.block_max = 0;
2548 p->se.exec_max = 0;
2549 p->se.slice_max = 0;
2550
2551 p->se.nr_migrations_cold = 0;
2552 p->se.nr_failed_migrations_affine = 0;
2553 p->se.nr_failed_migrations_running = 0;
2554 p->se.nr_failed_migrations_hot = 0;
2555 p->se.nr_forced_migrations = 0;
2556
2557 p->se.nr_wakeups = 0;
2558 p->se.nr_wakeups_sync = 0;
2559 p->se.nr_wakeups_migrate = 0;
2560 p->se.nr_wakeups_local = 0;
2561 p->se.nr_wakeups_remote = 0;
2562 p->se.nr_wakeups_affine = 0;
2563 p->se.nr_wakeups_affine_attempts = 0;
2564 p->se.nr_wakeups_passive = 0;
2565 p->se.nr_wakeups_idle = 0;
2566
2567 #endif
2568
2569 INIT_LIST_HEAD(&p->rt.run_list);
2570 p->se.on_rq = 0;
2571 INIT_LIST_HEAD(&p->se.group_node);
2572
2573 #ifdef CONFIG_PREEMPT_NOTIFIERS
2574 INIT_HLIST_HEAD(&p->preempt_notifiers);
2575 #endif
2576 }
2577
2578 /*
2579 * fork()/clone()-time setup:
2580 */
2581 void sched_fork(struct task_struct *p, int clone_flags)
2582 {
2583 int cpu = get_cpu();
2584
2585 __sched_fork(p);
2586 /*
2587 * We mark the process as waking here. This guarantees that
2588 * nobody will actually run it, and a signal or other external
2589 * event cannot wake it up and insert it on the runqueue either.
2590 */
2591 p->state = TASK_WAKING;
2592
2593 /*
2594 * Revert to default priority/policy on fork if requested.
2595 */
2596 if (unlikely(p->sched_reset_on_fork)) {
2597 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2598 p->policy = SCHED_NORMAL;
2599 p->normal_prio = p->static_prio;
2600 }
2601
2602 if (PRIO_TO_NICE(p->static_prio) < 0) {
2603 p->static_prio = NICE_TO_PRIO(0);
2604 p->normal_prio = p->static_prio;
2605 set_load_weight(p);
2606 }
2607
2608 /*
2609 * We don't need the reset flag anymore after the fork. It has
2610 * fulfilled its duty:
2611 */
2612 p->sched_reset_on_fork = 0;
2613 }
2614
2615 /*
2616 * Make sure we do not leak PI boosting priority to the child.
2617 */
2618 p->prio = current->normal_prio;
2619
2620 if (!rt_prio(p->prio))
2621 p->sched_class = &fair_sched_class;
2622
2623 if (p->sched_class->task_fork)
2624 p->sched_class->task_fork(p);
2625
2626 #ifdef CONFIG_SMP
2627 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2628 #endif
2629 set_task_cpu(p, cpu);
2630
2631 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2632 if (likely(sched_info_on()))
2633 memset(&p->sched_info, 0, sizeof(p->sched_info));
2634 #endif
2635 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2636 p->oncpu = 0;
2637 #endif
2638 #ifdef CONFIG_PREEMPT
2639 /* Want to start with kernel preemption disabled. */
2640 task_thread_info(p)->preempt_count = 1;
2641 #endif
2642 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2643
2644 put_cpu();
2645 }
2646
2647 /*
2648 * wake_up_new_task - wake up a newly created task for the first time.
2649 *
2650 * This function will do some initial scheduler statistics housekeeping
2651 * that must be done for every newly created context, then puts the task
2652 * on the runqueue and wakes it.
2653 */
2654 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2655 {
2656 unsigned long flags;
2657 struct rq *rq;
2658
2659 rq = task_rq_lock(p, &flags);
2660 BUG_ON(p->state != TASK_WAKING);
2661 p->state = TASK_RUNNING;
2662 update_rq_clock(rq);
2663 activate_task(rq, p, 0);
2664 trace_sched_wakeup_new(rq, p, 1);
2665 check_preempt_curr(rq, p, WF_FORK);
2666 #ifdef CONFIG_SMP
2667 if (p->sched_class->task_woken)
2668 p->sched_class->task_woken(rq, p);
2669 #endif
2670 task_rq_unlock(rq, &flags);
2671 }
2672
2673 #ifdef CONFIG_PREEMPT_NOTIFIERS
2674
2675 /**
2676 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2677 * @notifier: notifier struct to register
2678 */
2679 void preempt_notifier_register(struct preempt_notifier *notifier)
2680 {
2681 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2682 }
2683 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2684
2685 /**
2686 * preempt_notifier_unregister - no longer interested in preemption notifications
2687 * @notifier: notifier struct to unregister
2688 *
2689 * This is safe to call from within a preemption notifier.
2690 */
2691 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2692 {
2693 hlist_del(&notifier->link);
2694 }
2695 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2696
2697 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698 {
2699 struct preempt_notifier *notifier;
2700 struct hlist_node *node;
2701
2702 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2703 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2704 }
2705
2706 static void
2707 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2708 struct task_struct *next)
2709 {
2710 struct preempt_notifier *notifier;
2711 struct hlist_node *node;
2712
2713 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2714 notifier->ops->sched_out(notifier, next);
2715 }
2716
2717 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2718
2719 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2720 {
2721 }
2722
2723 static void
2724 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next)
2726 {
2727 }
2728
2729 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2730
2731 /**
2732 * prepare_task_switch - prepare to switch tasks
2733 * @rq: the runqueue preparing to switch
2734 * @prev: the current task that is being switched out
2735 * @next: the task we are going to switch to.
2736 *
2737 * This is called with the rq lock held and interrupts off. It must
2738 * be paired with a subsequent finish_task_switch after the context
2739 * switch.
2740 *
2741 * prepare_task_switch sets up locking and calls architecture specific
2742 * hooks.
2743 */
2744 static inline void
2745 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2746 struct task_struct *next)
2747 {
2748 fire_sched_out_preempt_notifiers(prev, next);
2749 prepare_lock_switch(rq, next);
2750 prepare_arch_switch(next);
2751 }
2752
2753 /**
2754 * finish_task_switch - clean up after a task-switch
2755 * @rq: runqueue associated with task-switch
2756 * @prev: the thread we just switched away from.
2757 *
2758 * finish_task_switch must be called after the context switch, paired
2759 * with a prepare_task_switch call before the context switch.
2760 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2761 * and do any other architecture-specific cleanup actions.
2762 *
2763 * Note that we may have delayed dropping an mm in context_switch(). If
2764 * so, we finish that here outside of the runqueue lock. (Doing it
2765 * with the lock held can cause deadlocks; see schedule() for
2766 * details.)
2767 */
2768 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2769 __releases(rq->lock)
2770 {
2771 struct mm_struct *mm = rq->prev_mm;
2772 long prev_state;
2773
2774 rq->prev_mm = NULL;
2775
2776 /*
2777 * A task struct has one reference for the use as "current".
2778 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2779 * schedule one last time. The schedule call will never return, and
2780 * the scheduled task must drop that reference.
2781 * The test for TASK_DEAD must occur while the runqueue locks are
2782 * still held, otherwise prev could be scheduled on another cpu, die
2783 * there before we look at prev->state, and then the reference would
2784 * be dropped twice.
2785 * Manfred Spraul <manfred@colorfullife.com>
2786 */
2787 prev_state = prev->state;
2788 finish_arch_switch(prev);
2789 perf_event_task_sched_in(current, cpu_of(rq));
2790 finish_lock_switch(rq, prev);
2791
2792 fire_sched_in_preempt_notifiers(current);
2793 if (mm)
2794 mmdrop(mm);
2795 if (unlikely(prev_state == TASK_DEAD)) {
2796 /*
2797 * Remove function-return probe instances associated with this
2798 * task and put them back on the free list.
2799 */
2800 kprobe_flush_task(prev);
2801 put_task_struct(prev);
2802 }
2803 }
2804
2805 #ifdef CONFIG_SMP
2806
2807 /* assumes rq->lock is held */
2808 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2809 {
2810 if (prev->sched_class->pre_schedule)
2811 prev->sched_class->pre_schedule(rq, prev);
2812 }
2813
2814 /* rq->lock is NOT held, but preemption is disabled */
2815 static inline void post_schedule(struct rq *rq)
2816 {
2817 if (rq->post_schedule) {
2818 unsigned long flags;
2819
2820 raw_spin_lock_irqsave(&rq->lock, flags);
2821 if (rq->curr->sched_class->post_schedule)
2822 rq->curr->sched_class->post_schedule(rq);
2823 raw_spin_unlock_irqrestore(&rq->lock, flags);
2824
2825 rq->post_schedule = 0;
2826 }
2827 }
2828
2829 #else
2830
2831 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2832 {
2833 }
2834
2835 static inline void post_schedule(struct rq *rq)
2836 {
2837 }
2838
2839 #endif
2840
2841 /**
2842 * schedule_tail - first thing a freshly forked thread must call.
2843 * @prev: the thread we just switched away from.
2844 */
2845 asmlinkage void schedule_tail(struct task_struct *prev)
2846 __releases(rq->lock)
2847 {
2848 struct rq *rq = this_rq();
2849
2850 finish_task_switch(rq, prev);
2851
2852 /*
2853 * FIXME: do we need to worry about rq being invalidated by the
2854 * task_switch?
2855 */
2856 post_schedule(rq);
2857
2858 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2859 /* In this case, finish_task_switch does not reenable preemption */
2860 preempt_enable();
2861 #endif
2862 if (current->set_child_tid)
2863 put_user(task_pid_vnr(current), current->set_child_tid);
2864 }
2865
2866 /*
2867 * context_switch - switch to the new MM and the new
2868 * thread's register state.
2869 */
2870 static inline void
2871 context_switch(struct rq *rq, struct task_struct *prev,
2872 struct task_struct *next)
2873 {
2874 struct mm_struct *mm, *oldmm;
2875
2876 prepare_task_switch(rq, prev, next);
2877 trace_sched_switch(rq, prev, next);
2878 mm = next->mm;
2879 oldmm = prev->active_mm;
2880 /*
2881 * For paravirt, this is coupled with an exit in switch_to to
2882 * combine the page table reload and the switch backend into
2883 * one hypercall.
2884 */
2885 arch_start_context_switch(prev);
2886
2887 if (likely(!mm)) {
2888 next->active_mm = oldmm;
2889 atomic_inc(&oldmm->mm_count);
2890 enter_lazy_tlb(oldmm, next);
2891 } else
2892 switch_mm(oldmm, mm, next);
2893
2894 if (likely(!prev->mm)) {
2895 prev->active_mm = NULL;
2896 rq->prev_mm = oldmm;
2897 }
2898 /*
2899 * Since the runqueue lock will be released by the next
2900 * task (which is an invalid locking op but in the case
2901 * of the scheduler it's an obvious special-case), so we
2902 * do an early lockdep release here:
2903 */
2904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2905 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2906 #endif
2907
2908 /* Here we just switch the register state and the stack. */
2909 switch_to(prev, next, prev);
2910
2911 barrier();
2912 /*
2913 * this_rq must be evaluated again because prev may have moved
2914 * CPUs since it called schedule(), thus the 'rq' on its stack
2915 * frame will be invalid.
2916 */
2917 finish_task_switch(this_rq(), prev);
2918 }
2919
2920 /*
2921 * nr_running, nr_uninterruptible and nr_context_switches:
2922 *
2923 * externally visible scheduler statistics: current number of runnable
2924 * threads, current number of uninterruptible-sleeping threads, total
2925 * number of context switches performed since bootup.
2926 */
2927 unsigned long nr_running(void)
2928 {
2929 unsigned long i, sum = 0;
2930
2931 for_each_online_cpu(i)
2932 sum += cpu_rq(i)->nr_running;
2933
2934 return sum;
2935 }
2936
2937 unsigned long nr_uninterruptible(void)
2938 {
2939 unsigned long i, sum = 0;
2940
2941 for_each_possible_cpu(i)
2942 sum += cpu_rq(i)->nr_uninterruptible;
2943
2944 /*
2945 * Since we read the counters lockless, it might be slightly
2946 * inaccurate. Do not allow it to go below zero though:
2947 */
2948 if (unlikely((long)sum < 0))
2949 sum = 0;
2950
2951 return sum;
2952 }
2953
2954 unsigned long long nr_context_switches(void)
2955 {
2956 int i;
2957 unsigned long long sum = 0;
2958
2959 for_each_possible_cpu(i)
2960 sum += cpu_rq(i)->nr_switches;
2961
2962 return sum;
2963 }
2964
2965 unsigned long nr_iowait(void)
2966 {
2967 unsigned long i, sum = 0;
2968
2969 for_each_possible_cpu(i)
2970 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2971
2972 return sum;
2973 }
2974
2975 unsigned long nr_iowait_cpu(void)
2976 {
2977 struct rq *this = this_rq();
2978 return atomic_read(&this->nr_iowait);
2979 }
2980
2981 unsigned long this_cpu_load(void)
2982 {
2983 struct rq *this = this_rq();
2984 return this->cpu_load[0];
2985 }
2986
2987
2988 /* Variables and functions for calc_load */
2989 static atomic_long_t calc_load_tasks;
2990 static unsigned long calc_load_update;
2991 unsigned long avenrun[3];
2992 EXPORT_SYMBOL(avenrun);
2993
2994 /**
2995 * get_avenrun - get the load average array
2996 * @loads: pointer to dest load array
2997 * @offset: offset to add
2998 * @shift: shift count to shift the result left
2999 *
3000 * These values are estimates at best, so no need for locking.
3001 */
3002 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3003 {
3004 loads[0] = (avenrun[0] + offset) << shift;
3005 loads[1] = (avenrun[1] + offset) << shift;
3006 loads[2] = (avenrun[2] + offset) << shift;
3007 }
3008
3009 static unsigned long
3010 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3011 {
3012 load *= exp;
3013 load += active * (FIXED_1 - exp);
3014 return load >> FSHIFT;
3015 }
3016
3017 /*
3018 * calc_load - update the avenrun load estimates 10 ticks after the
3019 * CPUs have updated calc_load_tasks.
3020 */
3021 void calc_global_load(void)
3022 {
3023 unsigned long upd = calc_load_update + 10;
3024 long active;
3025
3026 if (time_before(jiffies, upd))
3027 return;
3028
3029 active = atomic_long_read(&calc_load_tasks);
3030 active = active > 0 ? active * FIXED_1 : 0;
3031
3032 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3033 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3034 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3035
3036 calc_load_update += LOAD_FREQ;
3037 }
3038
3039 /*
3040 * Either called from update_cpu_load() or from a cpu going idle
3041 */
3042 static void calc_load_account_active(struct rq *this_rq)
3043 {
3044 long nr_active, delta;
3045
3046 nr_active = this_rq->nr_running;
3047 nr_active += (long) this_rq->nr_uninterruptible;
3048
3049 if (nr_active != this_rq->calc_load_active) {
3050 delta = nr_active - this_rq->calc_load_active;
3051 this_rq->calc_load_active = nr_active;
3052 atomic_long_add(delta, &calc_load_tasks);
3053 }
3054 }
3055
3056 /*
3057 * Update rq->cpu_load[] statistics. This function is usually called every
3058 * scheduler tick (TICK_NSEC).
3059 */
3060 static void update_cpu_load(struct rq *this_rq)
3061 {
3062 unsigned long this_load = this_rq->load.weight;
3063 int i, scale;
3064
3065 this_rq->nr_load_updates++;
3066
3067 /* Update our load: */
3068 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3069 unsigned long old_load, new_load;
3070
3071 /* scale is effectively 1 << i now, and >> i divides by scale */
3072
3073 old_load = this_rq->cpu_load[i];
3074 new_load = this_load;
3075 /*
3076 * Round up the averaging division if load is increasing. This
3077 * prevents us from getting stuck on 9 if the load is 10, for
3078 * example.
3079 */
3080 if (new_load > old_load)
3081 new_load += scale-1;
3082 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3083 }
3084
3085 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3086 this_rq->calc_load_update += LOAD_FREQ;
3087 calc_load_account_active(this_rq);
3088 }
3089 }
3090
3091 #ifdef CONFIG_SMP
3092
3093 /*
3094 * double_rq_lock - safely lock two runqueues
3095 *
3096 * Note this does not disable interrupts like task_rq_lock,
3097 * you need to do so manually before calling.
3098 */
3099 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3100 __acquires(rq1->lock)
3101 __acquires(rq2->lock)
3102 {
3103 BUG_ON(!irqs_disabled());
3104 if (rq1 == rq2) {
3105 raw_spin_lock(&rq1->lock);
3106 __acquire(rq2->lock); /* Fake it out ;) */
3107 } else {
3108 if (rq1 < rq2) {
3109 raw_spin_lock(&rq1->lock);
3110 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3111 } else {
3112 raw_spin_lock(&rq2->lock);
3113 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3114 }
3115 }
3116 update_rq_clock(rq1);
3117 update_rq_clock(rq2);
3118 }
3119
3120 /*
3121 * double_rq_unlock - safely unlock two runqueues
3122 *
3123 * Note this does not restore interrupts like task_rq_unlock,
3124 * you need to do so manually after calling.
3125 */
3126 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3127 __releases(rq1->lock)
3128 __releases(rq2->lock)
3129 {
3130 raw_spin_unlock(&rq1->lock);
3131 if (rq1 != rq2)
3132 raw_spin_unlock(&rq2->lock);
3133 else
3134 __release(rq2->lock);
3135 }
3136
3137 /*
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3140 */
3141 void sched_exec(void)
3142 {
3143 struct task_struct *p = current;
3144 struct migration_req req;
3145 int dest_cpu, this_cpu;
3146 unsigned long flags;
3147 struct rq *rq;
3148
3149 again:
3150 this_cpu = get_cpu();
3151 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3152 if (dest_cpu == this_cpu) {
3153 put_cpu();
3154 return;
3155 }
3156
3157 rq = task_rq_lock(p, &flags);
3158 put_cpu();
3159
3160 /*
3161 * select_task_rq() can race against ->cpus_allowed
3162 */
3163 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3164 || unlikely(!cpu_active(dest_cpu))) {
3165 task_rq_unlock(rq, &flags);
3166 goto again;
3167 }
3168
3169 /* force the process onto the specified CPU */
3170 if (migrate_task(p, dest_cpu, &req)) {
3171 /* Need to wait for migration thread (might exit: take ref). */
3172 struct task_struct *mt = rq->migration_thread;
3173
3174 get_task_struct(mt);
3175 task_rq_unlock(rq, &flags);
3176 wake_up_process(mt);
3177 put_task_struct(mt);
3178 wait_for_completion(&req.done);
3179
3180 return;
3181 }
3182 task_rq_unlock(rq, &flags);
3183 }
3184
3185 /*
3186 * pull_task - move a task from a remote runqueue to the local runqueue.
3187 * Both runqueues must be locked.
3188 */
3189 static void pull_task(struct rq *src_rq, struct task_struct *p,
3190 struct rq *this_rq, int this_cpu)
3191 {
3192 deactivate_task(src_rq, p, 0);
3193 set_task_cpu(p, this_cpu);
3194 activate_task(this_rq, p, 0);
3195 check_preempt_curr(this_rq, p, 0);
3196 }
3197
3198 /*
3199 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3200 */
3201 static
3202 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3203 struct sched_domain *sd, enum cpu_idle_type idle,
3204 int *all_pinned)
3205 {
3206 int tsk_cache_hot = 0;
3207 /*
3208 * We do not migrate tasks that are:
3209 * 1) running (obviously), or
3210 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3211 * 3) are cache-hot on their current CPU.
3212 */
3213 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3214 schedstat_inc(p, se.nr_failed_migrations_affine);
3215 return 0;
3216 }
3217 *all_pinned = 0;
3218
3219 if (task_running(rq, p)) {
3220 schedstat_inc(p, se.nr_failed_migrations_running);
3221 return 0;
3222 }
3223
3224 /*
3225 * Aggressive migration if:
3226 * 1) task is cache cold, or
3227 * 2) too many balance attempts have failed.
3228 */
3229
3230 tsk_cache_hot = task_hot(p, rq->clock, sd);
3231 if (!tsk_cache_hot ||
3232 sd->nr_balance_failed > sd->cache_nice_tries) {
3233 #ifdef CONFIG_SCHEDSTATS
3234 if (tsk_cache_hot) {
3235 schedstat_inc(sd, lb_hot_gained[idle]);
3236 schedstat_inc(p, se.nr_forced_migrations);
3237 }
3238 #endif
3239 return 1;
3240 }
3241
3242 if (tsk_cache_hot) {
3243 schedstat_inc(p, se.nr_failed_migrations_hot);
3244 return 0;
3245 }
3246 return 1;
3247 }
3248
3249 static unsigned long
3250 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3251 unsigned long max_load_move, struct sched_domain *sd,
3252 enum cpu_idle_type idle, int *all_pinned,
3253 int *this_best_prio, struct rq_iterator *iterator)
3254 {
3255 int loops = 0, pulled = 0, pinned = 0;
3256 struct task_struct *p;
3257 long rem_load_move = max_load_move;
3258
3259 if (max_load_move == 0)
3260 goto out;
3261
3262 pinned = 1;
3263
3264 /*
3265 * Start the load-balancing iterator:
3266 */
3267 p = iterator->start(iterator->arg);
3268 next:
3269 if (!p || loops++ > sysctl_sched_nr_migrate)
3270 goto out;
3271
3272 if ((p->se.load.weight >> 1) > rem_load_move ||
3273 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3274 p = iterator->next(iterator->arg);
3275 goto next;
3276 }
3277
3278 pull_task(busiest, p, this_rq, this_cpu);
3279 pulled++;
3280 rem_load_move -= p->se.load.weight;
3281
3282 #ifdef CONFIG_PREEMPT
3283 /*
3284 * NEWIDLE balancing is a source of latency, so preemptible kernels
3285 * will stop after the first task is pulled to minimize the critical
3286 * section.
3287 */
3288 if (idle == CPU_NEWLY_IDLE)
3289 goto out;
3290 #endif
3291
3292 /*
3293 * We only want to steal up to the prescribed amount of weighted load.
3294 */
3295 if (rem_load_move > 0) {
3296 if (p->prio < *this_best_prio)
3297 *this_best_prio = p->prio;
3298 p = iterator->next(iterator->arg);
3299 goto next;
3300 }
3301 out:
3302 /*
3303 * Right now, this is one of only two places pull_task() is called,
3304 * so we can safely collect pull_task() stats here rather than
3305 * inside pull_task().
3306 */
3307 schedstat_add(sd, lb_gained[idle], pulled);
3308
3309 if (all_pinned)
3310 *all_pinned = pinned;
3311
3312 return max_load_move - rem_load_move;
3313 }
3314
3315 /*
3316 * move_tasks tries to move up to max_load_move weighted load from busiest to
3317 * this_rq, as part of a balancing operation within domain "sd".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 unsigned long max_load_move,
3324 struct sched_domain *sd, enum cpu_idle_type idle,
3325 int *all_pinned)
3326 {
3327 const struct sched_class *class = sched_class_highest;
3328 unsigned long total_load_moved = 0;
3329 int this_best_prio = this_rq->curr->prio;
3330
3331 do {
3332 total_load_moved +=
3333 class->load_balance(this_rq, this_cpu, busiest,
3334 max_load_move - total_load_moved,
3335 sd, idle, all_pinned, &this_best_prio);
3336 class = class->next;
3337
3338 #ifdef CONFIG_PREEMPT
3339 /*
3340 * NEWIDLE balancing is a source of latency, so preemptible
3341 * kernels will stop after the first task is pulled to minimize
3342 * the critical section.
3343 */
3344 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3345 break;
3346 #endif
3347 } while (class && max_load_move > total_load_moved);
3348
3349 return total_load_moved > 0;
3350 }
3351
3352 static int
3353 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle,
3355 struct rq_iterator *iterator)
3356 {
3357 struct task_struct *p = iterator->start(iterator->arg);
3358 int pinned = 0;
3359
3360 while (p) {
3361 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3362 pull_task(busiest, p, this_rq, this_cpu);
3363 /*
3364 * Right now, this is only the second place pull_task()
3365 * is called, so we can safely collect pull_task()
3366 * stats here rather than inside pull_task().
3367 */
3368 schedstat_inc(sd, lb_gained[idle]);
3369
3370 return 1;
3371 }
3372 p = iterator->next(iterator->arg);
3373 }
3374
3375 return 0;
3376 }
3377
3378 /*
3379 * move_one_task tries to move exactly one task from busiest to this_rq, as
3380 * part of active balancing operations within "domain".
3381 * Returns 1 if successful and 0 otherwise.
3382 *
3383 * Called with both runqueues locked.
3384 */
3385 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3386 struct sched_domain *sd, enum cpu_idle_type idle)
3387 {
3388 const struct sched_class *class;
3389
3390 for_each_class(class) {
3391 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3392 return 1;
3393 }
3394
3395 return 0;
3396 }
3397 /********** Helpers for find_busiest_group ************************/
3398 /*
3399 * sd_lb_stats - Structure to store the statistics of a sched_domain
3400 * during load balancing.
3401 */
3402 struct sd_lb_stats {
3403 struct sched_group *busiest; /* Busiest group in this sd */
3404 struct sched_group *this; /* Local group in this sd */
3405 unsigned long total_load; /* Total load of all groups in sd */
3406 unsigned long total_pwr; /* Total power of all groups in sd */
3407 unsigned long avg_load; /* Average load across all groups in sd */
3408
3409 /** Statistics of this group */
3410 unsigned long this_load;
3411 unsigned long this_load_per_task;
3412 unsigned long this_nr_running;
3413
3414 /* Statistics of the busiest group */
3415 unsigned long max_load;
3416 unsigned long busiest_load_per_task;
3417 unsigned long busiest_nr_running;
3418
3419 int group_imb; /* Is there imbalance in this sd */
3420 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3421 int power_savings_balance; /* Is powersave balance needed for this sd */
3422 struct sched_group *group_min; /* Least loaded group in sd */
3423 struct sched_group *group_leader; /* Group which relieves group_min */
3424 unsigned long min_load_per_task; /* load_per_task in group_min */
3425 unsigned long leader_nr_running; /* Nr running of group_leader */
3426 unsigned long min_nr_running; /* Nr running of group_min */
3427 #endif
3428 };
3429
3430 /*
3431 * sg_lb_stats - stats of a sched_group required for load_balancing
3432 */
3433 struct sg_lb_stats {
3434 unsigned long avg_load; /*Avg load across the CPUs of the group */
3435 unsigned long group_load; /* Total load over the CPUs of the group */
3436 unsigned long sum_nr_running; /* Nr tasks running in the group */
3437 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3438 unsigned long group_capacity;
3439 int group_imb; /* Is there an imbalance in the group ? */
3440 };
3441
3442 /**
3443 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3444 * @group: The group whose first cpu is to be returned.
3445 */
3446 static inline unsigned int group_first_cpu(struct sched_group *group)
3447 {
3448 return cpumask_first(sched_group_cpus(group));
3449 }
3450
3451 /**
3452 * get_sd_load_idx - Obtain the load index for a given sched domain.
3453 * @sd: The sched_domain whose load_idx is to be obtained.
3454 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3455 */
3456 static inline int get_sd_load_idx(struct sched_domain *sd,
3457 enum cpu_idle_type idle)
3458 {
3459 int load_idx;
3460
3461 switch (idle) {
3462 case CPU_NOT_IDLE:
3463 load_idx = sd->busy_idx;
3464 break;
3465
3466 case CPU_NEWLY_IDLE:
3467 load_idx = sd->newidle_idx;
3468 break;
3469 default:
3470 load_idx = sd->idle_idx;
3471 break;
3472 }
3473
3474 return load_idx;
3475 }
3476
3477
3478 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3479 /**
3480 * init_sd_power_savings_stats - Initialize power savings statistics for
3481 * the given sched_domain, during load balancing.
3482 *
3483 * @sd: Sched domain whose power-savings statistics are to be initialized.
3484 * @sds: Variable containing the statistics for sd.
3485 * @idle: Idle status of the CPU at which we're performing load-balancing.
3486 */
3487 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3488 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3489 {
3490 /*
3491 * Busy processors will not participate in power savings
3492 * balance.
3493 */
3494 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3495 sds->power_savings_balance = 0;
3496 else {
3497 sds->power_savings_balance = 1;
3498 sds->min_nr_running = ULONG_MAX;
3499 sds->leader_nr_running = 0;
3500 }
3501 }
3502
3503 /**
3504 * update_sd_power_savings_stats - Update the power saving stats for a
3505 * sched_domain while performing load balancing.
3506 *
3507 * @group: sched_group belonging to the sched_domain under consideration.
3508 * @sds: Variable containing the statistics of the sched_domain
3509 * @local_group: Does group contain the CPU for which we're performing
3510 * load balancing ?
3511 * @sgs: Variable containing the statistics of the group.
3512 */
3513 static inline void update_sd_power_savings_stats(struct sched_group *group,
3514 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3515 {
3516
3517 if (!sds->power_savings_balance)
3518 return;
3519
3520 /*
3521 * If the local group is idle or completely loaded
3522 * no need to do power savings balance at this domain
3523 */
3524 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3525 !sds->this_nr_running))
3526 sds->power_savings_balance = 0;
3527
3528 /*
3529 * If a group is already running at full capacity or idle,
3530 * don't include that group in power savings calculations
3531 */
3532 if (!sds->power_savings_balance ||
3533 sgs->sum_nr_running >= sgs->group_capacity ||
3534 !sgs->sum_nr_running)
3535 return;
3536
3537 /*
3538 * Calculate the group which has the least non-idle load.
3539 * This is the group from where we need to pick up the load
3540 * for saving power
3541 */
3542 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3543 (sgs->sum_nr_running == sds->min_nr_running &&
3544 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3545 sds->group_min = group;
3546 sds->min_nr_running = sgs->sum_nr_running;
3547 sds->min_load_per_task = sgs->sum_weighted_load /
3548 sgs->sum_nr_running;
3549 }
3550
3551 /*
3552 * Calculate the group which is almost near its
3553 * capacity but still has some space to pick up some load
3554 * from other group and save more power
3555 */
3556 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3557 return;
3558
3559 if (sgs->sum_nr_running > sds->leader_nr_running ||
3560 (sgs->sum_nr_running == sds->leader_nr_running &&
3561 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3562 sds->group_leader = group;
3563 sds->leader_nr_running = sgs->sum_nr_running;
3564 }
3565 }
3566
3567 /**
3568 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3569 * @sds: Variable containing the statistics of the sched_domain
3570 * under consideration.
3571 * @this_cpu: Cpu at which we're currently performing load-balancing.
3572 * @imbalance: Variable to store the imbalance.
3573 *
3574 * Description:
3575 * Check if we have potential to perform some power-savings balance.
3576 * If yes, set the busiest group to be the least loaded group in the
3577 * sched_domain, so that it's CPUs can be put to idle.
3578 *
3579 * Returns 1 if there is potential to perform power-savings balance.
3580 * Else returns 0.
3581 */
3582 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3583 int this_cpu, unsigned long *imbalance)
3584 {
3585 if (!sds->power_savings_balance)
3586 return 0;
3587
3588 if (sds->this != sds->group_leader ||
3589 sds->group_leader == sds->group_min)
3590 return 0;
3591
3592 *imbalance = sds->min_load_per_task;
3593 sds->busiest = sds->group_min;
3594
3595 return 1;
3596
3597 }
3598 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3599 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3600 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3601 {
3602 return;
3603 }
3604
3605 static inline void update_sd_power_savings_stats(struct sched_group *group,
3606 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3607 {
3608 return;
3609 }
3610
3611 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3612 int this_cpu, unsigned long *imbalance)
3613 {
3614 return 0;
3615 }
3616 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3617
3618
3619 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3620 {
3621 return SCHED_LOAD_SCALE;
3622 }
3623
3624 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3625 {
3626 return default_scale_freq_power(sd, cpu);
3627 }
3628
3629 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3630 {
3631 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3632 unsigned long smt_gain = sd->smt_gain;
3633
3634 smt_gain /= weight;
3635
3636 return smt_gain;
3637 }
3638
3639 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3640 {
3641 return default_scale_smt_power(sd, cpu);
3642 }
3643
3644 unsigned long scale_rt_power(int cpu)
3645 {
3646 struct rq *rq = cpu_rq(cpu);
3647 u64 total, available;
3648
3649 sched_avg_update(rq);
3650
3651 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3652 available = total - rq->rt_avg;
3653
3654 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3655 total = SCHED_LOAD_SCALE;
3656
3657 total >>= SCHED_LOAD_SHIFT;
3658
3659 return div_u64(available, total);
3660 }
3661
3662 static void update_cpu_power(struct sched_domain *sd, int cpu)
3663 {
3664 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3665 unsigned long power = SCHED_LOAD_SCALE;
3666 struct sched_group *sdg = sd->groups;
3667
3668 if (sched_feat(ARCH_POWER))
3669 power *= arch_scale_freq_power(sd, cpu);
3670 else
3671 power *= default_scale_freq_power(sd, cpu);
3672
3673 power >>= SCHED_LOAD_SHIFT;
3674
3675 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_smt_power(sd, cpu);
3678 else
3679 power *= default_scale_smt_power(sd, cpu);
3680
3681 power >>= SCHED_LOAD_SHIFT;
3682 }
3683
3684 power *= scale_rt_power(cpu);
3685 power >>= SCHED_LOAD_SHIFT;
3686
3687 if (!power)
3688 power = 1;
3689
3690 sdg->cpu_power = power;
3691 }
3692
3693 static void update_group_power(struct sched_domain *sd, int cpu)
3694 {
3695 struct sched_domain *child = sd->child;
3696 struct sched_group *group, *sdg = sd->groups;
3697 unsigned long power;
3698
3699 if (!child) {
3700 update_cpu_power(sd, cpu);
3701 return;
3702 }
3703
3704 power = 0;
3705
3706 group = child->groups;
3707 do {
3708 power += group->cpu_power;
3709 group = group->next;
3710 } while (group != child->groups);
3711
3712 sdg->cpu_power = power;
3713 }
3714
3715 /**
3716 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3717 * @sd: The sched_domain whose statistics are to be updated.
3718 * @group: sched_group whose statistics are to be updated.
3719 * @this_cpu: Cpu for which load balance is currently performed.
3720 * @idle: Idle status of this_cpu
3721 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3722 * @sd_idle: Idle status of the sched_domain containing group.
3723 * @local_group: Does group contain this_cpu.
3724 * @cpus: Set of cpus considered for load balancing.
3725 * @balance: Should we balance.
3726 * @sgs: variable to hold the statistics for this group.
3727 */
3728 static inline void update_sg_lb_stats(struct sched_domain *sd,
3729 struct sched_group *group, int this_cpu,
3730 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3731 int local_group, const struct cpumask *cpus,
3732 int *balance, struct sg_lb_stats *sgs)
3733 {
3734 unsigned long load, max_cpu_load, min_cpu_load;
3735 int i;
3736 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3737 unsigned long sum_avg_load_per_task;
3738 unsigned long avg_load_per_task;
3739
3740 if (local_group) {
3741 balance_cpu = group_first_cpu(group);
3742 if (balance_cpu == this_cpu)
3743 update_group_power(sd, this_cpu);
3744 }
3745
3746 /* Tally up the load of all CPUs in the group */
3747 sum_avg_load_per_task = avg_load_per_task = 0;
3748 max_cpu_load = 0;
3749 min_cpu_load = ~0UL;
3750
3751 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3752 struct rq *rq = cpu_rq(i);
3753
3754 if (*sd_idle && rq->nr_running)
3755 *sd_idle = 0;
3756
3757 /* Bias balancing toward cpus of our domain */
3758 if (local_group) {
3759 if (idle_cpu(i) && !first_idle_cpu) {
3760 first_idle_cpu = 1;
3761 balance_cpu = i;
3762 }
3763
3764 load = target_load(i, load_idx);
3765 } else {
3766 load = source_load(i, load_idx);
3767 if (load > max_cpu_load)
3768 max_cpu_load = load;
3769 if (min_cpu_load > load)
3770 min_cpu_load = load;
3771 }
3772
3773 sgs->group_load += load;
3774 sgs->sum_nr_running += rq->nr_running;
3775 sgs->sum_weighted_load += weighted_cpuload(i);
3776
3777 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3778 }
3779
3780 /*
3781 * First idle cpu or the first cpu(busiest) in this sched group
3782 * is eligible for doing load balancing at this and above
3783 * domains. In the newly idle case, we will allow all the cpu's
3784 * to do the newly idle load balance.
3785 */
3786 if (idle != CPU_NEWLY_IDLE && local_group &&
3787 balance_cpu != this_cpu && balance) {
3788 *balance = 0;
3789 return;
3790 }
3791
3792 /* Adjust by relative CPU power of the group */
3793 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3794
3795
3796 /*
3797 * Consider the group unbalanced when the imbalance is larger
3798 * than the average weight of two tasks.
3799 *
3800 * APZ: with cgroup the avg task weight can vary wildly and
3801 * might not be a suitable number - should we keep a
3802 * normalized nr_running number somewhere that negates
3803 * the hierarchy?
3804 */
3805 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3806 group->cpu_power;
3807
3808 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3809 sgs->group_imb = 1;
3810
3811 sgs->group_capacity =
3812 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3813 }
3814
3815 /**
3816 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3817 * @sd: sched_domain whose statistics are to be updated.
3818 * @this_cpu: Cpu for which load balance is currently performed.
3819 * @idle: Idle status of this_cpu
3820 * @sd_idle: Idle status of the sched_domain containing group.
3821 * @cpus: Set of cpus considered for load balancing.
3822 * @balance: Should we balance.
3823 * @sds: variable to hold the statistics for this sched_domain.
3824 */
3825 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3826 enum cpu_idle_type idle, int *sd_idle,
3827 const struct cpumask *cpus, int *balance,
3828 struct sd_lb_stats *sds)
3829 {
3830 struct sched_domain *child = sd->child;
3831 struct sched_group *group = sd->groups;
3832 struct sg_lb_stats sgs;
3833 int load_idx, prefer_sibling = 0;
3834
3835 if (child && child->flags & SD_PREFER_SIBLING)
3836 prefer_sibling = 1;
3837
3838 init_sd_power_savings_stats(sd, sds, idle);
3839 load_idx = get_sd_load_idx(sd, idle);
3840
3841 do {
3842 int local_group;
3843
3844 local_group = cpumask_test_cpu(this_cpu,
3845 sched_group_cpus(group));
3846 memset(&sgs, 0, sizeof(sgs));
3847 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3848 local_group, cpus, balance, &sgs);
3849
3850 if (local_group && balance && !(*balance))
3851 return;
3852
3853 sds->total_load += sgs.group_load;
3854 sds->total_pwr += group->cpu_power;
3855
3856 /*
3857 * In case the child domain prefers tasks go to siblings
3858 * first, lower the group capacity to one so that we'll try
3859 * and move all the excess tasks away.
3860 */
3861 if (prefer_sibling)
3862 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3863
3864 if (local_group) {
3865 sds->this_load = sgs.avg_load;
3866 sds->this = group;
3867 sds->this_nr_running = sgs.sum_nr_running;
3868 sds->this_load_per_task = sgs.sum_weighted_load;
3869 } else if (sgs.avg_load > sds->max_load &&
3870 (sgs.sum_nr_running > sgs.group_capacity ||
3871 sgs.group_imb)) {
3872 sds->max_load = sgs.avg_load;
3873 sds->busiest = group;
3874 sds->busiest_nr_running = sgs.sum_nr_running;
3875 sds->busiest_load_per_task = sgs.sum_weighted_load;
3876 sds->group_imb = sgs.group_imb;
3877 }
3878
3879 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3880 group = group->next;
3881 } while (group != sd->groups);
3882 }
3883
3884 /**
3885 * fix_small_imbalance - Calculate the minor imbalance that exists
3886 * amongst the groups of a sched_domain, during
3887 * load balancing.
3888 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3890 * @imbalance: Variable to store the imbalance.
3891 */
3892 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3893 int this_cpu, unsigned long *imbalance)
3894 {
3895 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3896 unsigned int imbn = 2;
3897
3898 if (sds->this_nr_running) {
3899 sds->this_load_per_task /= sds->this_nr_running;
3900 if (sds->busiest_load_per_task >
3901 sds->this_load_per_task)
3902 imbn = 1;
3903 } else
3904 sds->this_load_per_task =
3905 cpu_avg_load_per_task(this_cpu);
3906
3907 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3908 sds->busiest_load_per_task * imbn) {
3909 *imbalance = sds->busiest_load_per_task;
3910 return;
3911 }
3912
3913 /*
3914 * OK, we don't have enough imbalance to justify moving tasks,
3915 * however we may be able to increase total CPU power used by
3916 * moving them.
3917 */
3918
3919 pwr_now += sds->busiest->cpu_power *
3920 min(sds->busiest_load_per_task, sds->max_load);
3921 pwr_now += sds->this->cpu_power *
3922 min(sds->this_load_per_task, sds->this_load);
3923 pwr_now /= SCHED_LOAD_SCALE;
3924
3925 /* Amount of load we'd subtract */
3926 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3927 sds->busiest->cpu_power;
3928 if (sds->max_load > tmp)
3929 pwr_move += sds->busiest->cpu_power *
3930 min(sds->busiest_load_per_task, sds->max_load - tmp);
3931
3932 /* Amount of load we'd add */
3933 if (sds->max_load * sds->busiest->cpu_power <
3934 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3935 tmp = (sds->max_load * sds->busiest->cpu_power) /
3936 sds->this->cpu_power;
3937 else
3938 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3939 sds->this->cpu_power;
3940 pwr_move += sds->this->cpu_power *
3941 min(sds->this_load_per_task, sds->this_load + tmp);
3942 pwr_move /= SCHED_LOAD_SCALE;
3943
3944 /* Move if we gain throughput */
3945 if (pwr_move > pwr_now)
3946 *imbalance = sds->busiest_load_per_task;
3947 }
3948
3949 /**
3950 * calculate_imbalance - Calculate the amount of imbalance present within the
3951 * groups of a given sched_domain during load balance.
3952 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3953 * @this_cpu: Cpu for which currently load balance is being performed.
3954 * @imbalance: The variable to store the imbalance.
3955 */
3956 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3957 unsigned long *imbalance)
3958 {
3959 unsigned long max_pull;
3960 /*
3961 * In the presence of smp nice balancing, certain scenarios can have
3962 * max load less than avg load(as we skip the groups at or below
3963 * its cpu_power, while calculating max_load..)
3964 */
3965 if (sds->max_load < sds->avg_load) {
3966 *imbalance = 0;
3967 return fix_small_imbalance(sds, this_cpu, imbalance);
3968 }
3969
3970 /* Don't want to pull so many tasks that a group would go idle */
3971 max_pull = min(sds->max_load - sds->avg_load,
3972 sds->max_load - sds->busiest_load_per_task);
3973
3974 /* How much load to actually move to equalise the imbalance */
3975 *imbalance = min(max_pull * sds->busiest->cpu_power,
3976 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3977 / SCHED_LOAD_SCALE;
3978
3979 /*
3980 * if *imbalance is less than the average load per runnable task
3981 * there is no gaurantee that any tasks will be moved so we'll have
3982 * a think about bumping its value to force at least one task to be
3983 * moved
3984 */
3985 if (*imbalance < sds->busiest_load_per_task)
3986 return fix_small_imbalance(sds, this_cpu, imbalance);
3987
3988 }
3989 /******* find_busiest_group() helpers end here *********************/
3990
3991 /**
3992 * find_busiest_group - Returns the busiest group within the sched_domain
3993 * if there is an imbalance. If there isn't an imbalance, and
3994 * the user has opted for power-savings, it returns a group whose
3995 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3996 * such a group exists.
3997 *
3998 * Also calculates the amount of weighted load which should be moved
3999 * to restore balance.
4000 *
4001 * @sd: The sched_domain whose busiest group is to be returned.
4002 * @this_cpu: The cpu for which load balancing is currently being performed.
4003 * @imbalance: Variable which stores amount of weighted load which should
4004 * be moved to restore balance/put a group to idle.
4005 * @idle: The idle status of this_cpu.
4006 * @sd_idle: The idleness of sd
4007 * @cpus: The set of CPUs under consideration for load-balancing.
4008 * @balance: Pointer to a variable indicating if this_cpu
4009 * is the appropriate cpu to perform load balancing at this_level.
4010 *
4011 * Returns: - the busiest group if imbalance exists.
4012 * - If no imbalance and user has opted for power-savings balance,
4013 * return the least loaded group whose CPUs can be
4014 * put to idle by rebalancing its tasks onto our group.
4015 */
4016 static struct sched_group *
4017 find_busiest_group(struct sched_domain *sd, int this_cpu,
4018 unsigned long *imbalance, enum cpu_idle_type idle,
4019 int *sd_idle, const struct cpumask *cpus, int *balance)
4020 {
4021 struct sd_lb_stats sds;
4022
4023 memset(&sds, 0, sizeof(sds));
4024
4025 /*
4026 * Compute the various statistics relavent for load balancing at
4027 * this level.
4028 */
4029 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4030 balance, &sds);
4031
4032 /* Cases where imbalance does not exist from POV of this_cpu */
4033 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4034 * at this level.
4035 * 2) There is no busy sibling group to pull from.
4036 * 3) This group is the busiest group.
4037 * 4) This group is more busy than the avg busieness at this
4038 * sched_domain.
4039 * 5) The imbalance is within the specified limit.
4040 * 6) Any rebalance would lead to ping-pong
4041 */
4042 if (balance && !(*balance))
4043 goto ret;
4044
4045 if (!sds.busiest || sds.busiest_nr_running == 0)
4046 goto out_balanced;
4047
4048 if (sds.this_load >= sds.max_load)
4049 goto out_balanced;
4050
4051 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4052
4053 if (sds.this_load >= sds.avg_load)
4054 goto out_balanced;
4055
4056 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4057 goto out_balanced;
4058
4059 sds.busiest_load_per_task /= sds.busiest_nr_running;
4060 if (sds.group_imb)
4061 sds.busiest_load_per_task =
4062 min(sds.busiest_load_per_task, sds.avg_load);
4063
4064 /*
4065 * We're trying to get all the cpus to the average_load, so we don't
4066 * want to push ourselves above the average load, nor do we wish to
4067 * reduce the max loaded cpu below the average load, as either of these
4068 * actions would just result in more rebalancing later, and ping-pong
4069 * tasks around. Thus we look for the minimum possible imbalance.
4070 * Negative imbalances (*we* are more loaded than anyone else) will
4071 * be counted as no imbalance for these purposes -- we can't fix that
4072 * by pulling tasks to us. Be careful of negative numbers as they'll
4073 * appear as very large values with unsigned longs.
4074 */
4075 if (sds.max_load <= sds.busiest_load_per_task)
4076 goto out_balanced;
4077
4078 /* Looks like there is an imbalance. Compute it */
4079 calculate_imbalance(&sds, this_cpu, imbalance);
4080 return sds.busiest;
4081
4082 out_balanced:
4083 /*
4084 * There is no obvious imbalance. But check if we can do some balancing
4085 * to save power.
4086 */
4087 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4088 return sds.busiest;
4089 ret:
4090 *imbalance = 0;
4091 return NULL;
4092 }
4093
4094 /*
4095 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4096 */
4097 static struct rq *
4098 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4099 unsigned long imbalance, const struct cpumask *cpus)
4100 {
4101 struct rq *busiest = NULL, *rq;
4102 unsigned long max_load = 0;
4103 int i;
4104
4105 for_each_cpu(i, sched_group_cpus(group)) {
4106 unsigned long power = power_of(i);
4107 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4108 unsigned long wl;
4109
4110 if (!cpumask_test_cpu(i, cpus))
4111 continue;
4112
4113 rq = cpu_rq(i);
4114 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4115 wl /= power;
4116
4117 if (capacity && rq->nr_running == 1 && wl > imbalance)
4118 continue;
4119
4120 if (wl > max_load) {
4121 max_load = wl;
4122 busiest = rq;
4123 }
4124 }
4125
4126 return busiest;
4127 }
4128
4129 /*
4130 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4131 * so long as it is large enough.
4132 */
4133 #define MAX_PINNED_INTERVAL 512
4134
4135 /* Working cpumask for load_balance and load_balance_newidle. */
4136 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4137
4138 /*
4139 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4140 * tasks if there is an imbalance.
4141 */
4142 static int load_balance(int this_cpu, struct rq *this_rq,
4143 struct sched_domain *sd, enum cpu_idle_type idle,
4144 int *balance)
4145 {
4146 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4147 struct sched_group *group;
4148 unsigned long imbalance;
4149 struct rq *busiest;
4150 unsigned long flags;
4151 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4152
4153 cpumask_copy(cpus, cpu_active_mask);
4154
4155 /*
4156 * When power savings policy is enabled for the parent domain, idle
4157 * sibling can pick up load irrespective of busy siblings. In this case,
4158 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4159 * portraying it as CPU_NOT_IDLE.
4160 */
4161 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4162 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4163 sd_idle = 1;
4164
4165 schedstat_inc(sd, lb_count[idle]);
4166
4167 redo:
4168 update_shares(sd);
4169 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4170 cpus, balance);
4171
4172 if (*balance == 0)
4173 goto out_balanced;
4174
4175 if (!group) {
4176 schedstat_inc(sd, lb_nobusyg[idle]);
4177 goto out_balanced;
4178 }
4179
4180 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4181 if (!busiest) {
4182 schedstat_inc(sd, lb_nobusyq[idle]);
4183 goto out_balanced;
4184 }
4185
4186 BUG_ON(busiest == this_rq);
4187
4188 schedstat_add(sd, lb_imbalance[idle], imbalance);
4189
4190 ld_moved = 0;
4191 if (busiest->nr_running > 1) {
4192 /*
4193 * Attempt to move tasks. If find_busiest_group has found
4194 * an imbalance but busiest->nr_running <= 1, the group is
4195 * still unbalanced. ld_moved simply stays zero, so it is
4196 * correctly treated as an imbalance.
4197 */
4198 local_irq_save(flags);
4199 double_rq_lock(this_rq, busiest);
4200 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4201 imbalance, sd, idle, &all_pinned);
4202 double_rq_unlock(this_rq, busiest);
4203 local_irq_restore(flags);
4204
4205 /*
4206 * some other cpu did the load balance for us.
4207 */
4208 if (ld_moved && this_cpu != smp_processor_id())
4209 resched_cpu(this_cpu);
4210
4211 /* All tasks on this runqueue were pinned by CPU affinity */
4212 if (unlikely(all_pinned)) {
4213 cpumask_clear_cpu(cpu_of(busiest), cpus);
4214 if (!cpumask_empty(cpus))
4215 goto redo;
4216 goto out_balanced;
4217 }
4218 }
4219
4220 if (!ld_moved) {
4221 schedstat_inc(sd, lb_failed[idle]);
4222 sd->nr_balance_failed++;
4223
4224 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4225
4226 raw_spin_lock_irqsave(&busiest->lock, flags);
4227
4228 /* don't kick the migration_thread, if the curr
4229 * task on busiest cpu can't be moved to this_cpu
4230 */
4231 if (!cpumask_test_cpu(this_cpu,
4232 &busiest->curr->cpus_allowed)) {
4233 raw_spin_unlock_irqrestore(&busiest->lock,
4234 flags);
4235 all_pinned = 1;
4236 goto out_one_pinned;
4237 }
4238
4239 if (!busiest->active_balance) {
4240 busiest->active_balance = 1;
4241 busiest->push_cpu = this_cpu;
4242 active_balance = 1;
4243 }
4244 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4245 if (active_balance)
4246 wake_up_process(busiest->migration_thread);
4247
4248 /*
4249 * We've kicked active balancing, reset the failure
4250 * counter.
4251 */
4252 sd->nr_balance_failed = sd->cache_nice_tries+1;
4253 }
4254 } else
4255 sd->nr_balance_failed = 0;
4256
4257 if (likely(!active_balance)) {
4258 /* We were unbalanced, so reset the balancing interval */
4259 sd->balance_interval = sd->min_interval;
4260 } else {
4261 /*
4262 * If we've begun active balancing, start to back off. This
4263 * case may not be covered by the all_pinned logic if there
4264 * is only 1 task on the busy runqueue (because we don't call
4265 * move_tasks).
4266 */
4267 if (sd->balance_interval < sd->max_interval)
4268 sd->balance_interval *= 2;
4269 }
4270
4271 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4273 ld_moved = -1;
4274
4275 goto out;
4276
4277 out_balanced:
4278 schedstat_inc(sd, lb_balanced[idle]);
4279
4280 sd->nr_balance_failed = 0;
4281
4282 out_one_pinned:
4283 /* tune up the balancing interval */
4284 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4285 (sd->balance_interval < sd->max_interval))
4286 sd->balance_interval *= 2;
4287
4288 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4289 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4290 ld_moved = -1;
4291 else
4292 ld_moved = 0;
4293 out:
4294 if (ld_moved)
4295 update_shares(sd);
4296 return ld_moved;
4297 }
4298
4299 /*
4300 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4301 * tasks if there is an imbalance.
4302 *
4303 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4304 * this_rq is locked.
4305 */
4306 static int
4307 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4308 {
4309 struct sched_group *group;
4310 struct rq *busiest = NULL;
4311 unsigned long imbalance;
4312 int ld_moved = 0;
4313 int sd_idle = 0;
4314 int all_pinned = 0;
4315 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4316
4317 cpumask_copy(cpus, cpu_active_mask);
4318
4319 /*
4320 * When power savings policy is enabled for the parent domain, idle
4321 * sibling can pick up load irrespective of busy siblings. In this case,
4322 * let the state of idle sibling percolate up as IDLE, instead of
4323 * portraying it as CPU_NOT_IDLE.
4324 */
4325 if (sd->flags & SD_SHARE_CPUPOWER &&
4326 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4327 sd_idle = 1;
4328
4329 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4330 redo:
4331 update_shares_locked(this_rq, sd);
4332 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4333 &sd_idle, cpus, NULL);
4334 if (!group) {
4335 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4336 goto out_balanced;
4337 }
4338
4339 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4340 if (!busiest) {
4341 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4342 goto out_balanced;
4343 }
4344
4345 BUG_ON(busiest == this_rq);
4346
4347 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4348
4349 ld_moved = 0;
4350 if (busiest->nr_running > 1) {
4351 /* Attempt to move tasks */
4352 double_lock_balance(this_rq, busiest);
4353 /* this_rq->clock is already updated */
4354 update_rq_clock(busiest);
4355 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4356 imbalance, sd, CPU_NEWLY_IDLE,
4357 &all_pinned);
4358 double_unlock_balance(this_rq, busiest);
4359
4360 if (unlikely(all_pinned)) {
4361 cpumask_clear_cpu(cpu_of(busiest), cpus);
4362 if (!cpumask_empty(cpus))
4363 goto redo;
4364 }
4365 }
4366
4367 if (!ld_moved) {
4368 int active_balance = 0;
4369
4370 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4371 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4372 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4373 return -1;
4374
4375 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4376 return -1;
4377
4378 if (sd->nr_balance_failed++ < 2)
4379 return -1;
4380
4381 /*
4382 * The only task running in a non-idle cpu can be moved to this
4383 * cpu in an attempt to completely freeup the other CPU
4384 * package. The same method used to move task in load_balance()
4385 * have been extended for load_balance_newidle() to speedup
4386 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4387 *
4388 * The package power saving logic comes from
4389 * find_busiest_group(). If there are no imbalance, then
4390 * f_b_g() will return NULL. However when sched_mc={1,2} then
4391 * f_b_g() will select a group from which a running task may be
4392 * pulled to this cpu in order to make the other package idle.
4393 * If there is no opportunity to make a package idle and if
4394 * there are no imbalance, then f_b_g() will return NULL and no
4395 * action will be taken in load_balance_newidle().
4396 *
4397 * Under normal task pull operation due to imbalance, there
4398 * will be more than one task in the source run queue and
4399 * move_tasks() will succeed. ld_moved will be true and this
4400 * active balance code will not be triggered.
4401 */
4402
4403 /* Lock busiest in correct order while this_rq is held */
4404 double_lock_balance(this_rq, busiest);
4405
4406 /*
4407 * don't kick the migration_thread, if the curr
4408 * task on busiest cpu can't be moved to this_cpu
4409 */
4410 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4411 double_unlock_balance(this_rq, busiest);
4412 all_pinned = 1;
4413 return ld_moved;
4414 }
4415
4416 if (!busiest->active_balance) {
4417 busiest->active_balance = 1;
4418 busiest->push_cpu = this_cpu;
4419 active_balance = 1;
4420 }
4421
4422 double_unlock_balance(this_rq, busiest);
4423 /*
4424 * Should not call ttwu while holding a rq->lock
4425 */
4426 raw_spin_unlock(&this_rq->lock);
4427 if (active_balance)
4428 wake_up_process(busiest->migration_thread);
4429 raw_spin_lock(&this_rq->lock);
4430
4431 } else
4432 sd->nr_balance_failed = 0;
4433
4434 update_shares_locked(this_rq, sd);
4435 return ld_moved;
4436
4437 out_balanced:
4438 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4439 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4440 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4441 return -1;
4442 sd->nr_balance_failed = 0;
4443
4444 return 0;
4445 }
4446
4447 /*
4448 * idle_balance is called by schedule() if this_cpu is about to become
4449 * idle. Attempts to pull tasks from other CPUs.
4450 */
4451 static void idle_balance(int this_cpu, struct rq *this_rq)
4452 {
4453 struct sched_domain *sd;
4454 int pulled_task = 0;
4455 unsigned long next_balance = jiffies + HZ;
4456
4457 this_rq->idle_stamp = this_rq->clock;
4458
4459 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4460 return;
4461
4462 for_each_domain(this_cpu, sd) {
4463 unsigned long interval;
4464
4465 if (!(sd->flags & SD_LOAD_BALANCE))
4466 continue;
4467
4468 if (sd->flags & SD_BALANCE_NEWIDLE)
4469 /* If we've pulled tasks over stop searching: */
4470 pulled_task = load_balance_newidle(this_cpu, this_rq,
4471 sd);
4472
4473 interval = msecs_to_jiffies(sd->balance_interval);
4474 if (time_after(next_balance, sd->last_balance + interval))
4475 next_balance = sd->last_balance + interval;
4476 if (pulled_task) {
4477 this_rq->idle_stamp = 0;
4478 break;
4479 }
4480 }
4481 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4482 /*
4483 * We are going idle. next_balance may be set based on
4484 * a busy processor. So reset next_balance.
4485 */
4486 this_rq->next_balance = next_balance;
4487 }
4488 }
4489
4490 /*
4491 * active_load_balance is run by migration threads. It pushes running tasks
4492 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4493 * running on each physical CPU where possible, and avoids physical /
4494 * logical imbalances.
4495 *
4496 * Called with busiest_rq locked.
4497 */
4498 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4499 {
4500 int target_cpu = busiest_rq->push_cpu;
4501 struct sched_domain *sd;
4502 struct rq *target_rq;
4503
4504 /* Is there any task to move? */
4505 if (busiest_rq->nr_running <= 1)
4506 return;
4507
4508 target_rq = cpu_rq(target_cpu);
4509
4510 /*
4511 * This condition is "impossible", if it occurs
4512 * we need to fix it. Originally reported by
4513 * Bjorn Helgaas on a 128-cpu setup.
4514 */
4515 BUG_ON(busiest_rq == target_rq);
4516
4517 /* move a task from busiest_rq to target_rq */
4518 double_lock_balance(busiest_rq, target_rq);
4519 update_rq_clock(busiest_rq);
4520 update_rq_clock(target_rq);
4521
4522 /* Search for an sd spanning us and the target CPU. */
4523 for_each_domain(target_cpu, sd) {
4524 if ((sd->flags & SD_LOAD_BALANCE) &&
4525 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4526 break;
4527 }
4528
4529 if (likely(sd)) {
4530 schedstat_inc(sd, alb_count);
4531
4532 if (move_one_task(target_rq, target_cpu, busiest_rq,
4533 sd, CPU_IDLE))
4534 schedstat_inc(sd, alb_pushed);
4535 else
4536 schedstat_inc(sd, alb_failed);
4537 }
4538 double_unlock_balance(busiest_rq, target_rq);
4539 }
4540
4541 #ifdef CONFIG_NO_HZ
4542 static struct {
4543 atomic_t load_balancer;
4544 cpumask_var_t cpu_mask;
4545 cpumask_var_t ilb_grp_nohz_mask;
4546 } nohz ____cacheline_aligned = {
4547 .load_balancer = ATOMIC_INIT(-1),
4548 };
4549
4550 int get_nohz_load_balancer(void)
4551 {
4552 return atomic_read(&nohz.load_balancer);
4553 }
4554
4555 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4556 /**
4557 * lowest_flag_domain - Return lowest sched_domain containing flag.
4558 * @cpu: The cpu whose lowest level of sched domain is to
4559 * be returned.
4560 * @flag: The flag to check for the lowest sched_domain
4561 * for the given cpu.
4562 *
4563 * Returns the lowest sched_domain of a cpu which contains the given flag.
4564 */
4565 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4566 {
4567 struct sched_domain *sd;
4568
4569 for_each_domain(cpu, sd)
4570 if (sd && (sd->flags & flag))
4571 break;
4572
4573 return sd;
4574 }
4575
4576 /**
4577 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4578 * @cpu: The cpu whose domains we're iterating over.
4579 * @sd: variable holding the value of the power_savings_sd
4580 * for cpu.
4581 * @flag: The flag to filter the sched_domains to be iterated.
4582 *
4583 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4584 * set, starting from the lowest sched_domain to the highest.
4585 */
4586 #define for_each_flag_domain(cpu, sd, flag) \
4587 for (sd = lowest_flag_domain(cpu, flag); \
4588 (sd && (sd->flags & flag)); sd = sd->parent)
4589
4590 /**
4591 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4592 * @ilb_group: group to be checked for semi-idleness
4593 *
4594 * Returns: 1 if the group is semi-idle. 0 otherwise.
4595 *
4596 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4597 * and atleast one non-idle CPU. This helper function checks if the given
4598 * sched_group is semi-idle or not.
4599 */
4600 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4601 {
4602 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4603 sched_group_cpus(ilb_group));
4604
4605 /*
4606 * A sched_group is semi-idle when it has atleast one busy cpu
4607 * and atleast one idle cpu.
4608 */
4609 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4610 return 0;
4611
4612 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4613 return 0;
4614
4615 return 1;
4616 }
4617 /**
4618 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4619 * @cpu: The cpu which is nominating a new idle_load_balancer.
4620 *
4621 * Returns: Returns the id of the idle load balancer if it exists,
4622 * Else, returns >= nr_cpu_ids.
4623 *
4624 * This algorithm picks the idle load balancer such that it belongs to a
4625 * semi-idle powersavings sched_domain. The idea is to try and avoid
4626 * completely idle packages/cores just for the purpose of idle load balancing
4627 * when there are other idle cpu's which are better suited for that job.
4628 */
4629 static int find_new_ilb(int cpu)
4630 {
4631 struct sched_domain *sd;
4632 struct sched_group *ilb_group;
4633
4634 /*
4635 * Have idle load balancer selection from semi-idle packages only
4636 * when power-aware load balancing is enabled
4637 */
4638 if (!(sched_smt_power_savings || sched_mc_power_savings))
4639 goto out_done;
4640
4641 /*
4642 * Optimize for the case when we have no idle CPUs or only one
4643 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4644 */
4645 if (cpumask_weight(nohz.cpu_mask) < 2)
4646 goto out_done;
4647
4648 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4649 ilb_group = sd->groups;
4650
4651 do {
4652 if (is_semi_idle_group(ilb_group))
4653 return cpumask_first(nohz.ilb_grp_nohz_mask);
4654
4655 ilb_group = ilb_group->next;
4656
4657 } while (ilb_group != sd->groups);
4658 }
4659
4660 out_done:
4661 return cpumask_first(nohz.cpu_mask);
4662 }
4663 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4664 static inline int find_new_ilb(int call_cpu)
4665 {
4666 return cpumask_first(nohz.cpu_mask);
4667 }
4668 #endif
4669
4670 /*
4671 * This routine will try to nominate the ilb (idle load balancing)
4672 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4673 * load balancing on behalf of all those cpus. If all the cpus in the system
4674 * go into this tickless mode, then there will be no ilb owner (as there is
4675 * no need for one) and all the cpus will sleep till the next wakeup event
4676 * arrives...
4677 *
4678 * For the ilb owner, tick is not stopped. And this tick will be used
4679 * for idle load balancing. ilb owner will still be part of
4680 * nohz.cpu_mask..
4681 *
4682 * While stopping the tick, this cpu will become the ilb owner if there
4683 * is no other owner. And will be the owner till that cpu becomes busy
4684 * or if all cpus in the system stop their ticks at which point
4685 * there is no need for ilb owner.
4686 *
4687 * When the ilb owner becomes busy, it nominates another owner, during the
4688 * next busy scheduler_tick()
4689 */
4690 int select_nohz_load_balancer(int stop_tick)
4691 {
4692 int cpu = smp_processor_id();
4693
4694 if (stop_tick) {
4695 cpu_rq(cpu)->in_nohz_recently = 1;
4696
4697 if (!cpu_active(cpu)) {
4698 if (atomic_read(&nohz.load_balancer) != cpu)
4699 return 0;
4700
4701 /*
4702 * If we are going offline and still the leader,
4703 * give up!
4704 */
4705 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4706 BUG();
4707
4708 return 0;
4709 }
4710
4711 cpumask_set_cpu(cpu, nohz.cpu_mask);
4712
4713 /* time for ilb owner also to sleep */
4714 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 atomic_set(&nohz.load_balancer, -1);
4717 return 0;
4718 }
4719
4720 if (atomic_read(&nohz.load_balancer) == -1) {
4721 /* make me the ilb owner */
4722 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4723 return 1;
4724 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4725 int new_ilb;
4726
4727 if (!(sched_smt_power_savings ||
4728 sched_mc_power_savings))
4729 return 1;
4730 /*
4731 * Check to see if there is a more power-efficient
4732 * ilb.
4733 */
4734 new_ilb = find_new_ilb(cpu);
4735 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4736 atomic_set(&nohz.load_balancer, -1);
4737 resched_cpu(new_ilb);
4738 return 0;
4739 }
4740 return 1;
4741 }
4742 } else {
4743 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4744 return 0;
4745
4746 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4747
4748 if (atomic_read(&nohz.load_balancer) == cpu)
4749 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4750 BUG();
4751 }
4752 return 0;
4753 }
4754 #endif
4755
4756 static DEFINE_SPINLOCK(balancing);
4757
4758 /*
4759 * It checks each scheduling domain to see if it is due to be balanced,
4760 * and initiates a balancing operation if so.
4761 *
4762 * Balancing parameters are set up in arch_init_sched_domains.
4763 */
4764 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4765 {
4766 int balance = 1;
4767 struct rq *rq = cpu_rq(cpu);
4768 unsigned long interval;
4769 struct sched_domain *sd;
4770 /* Earliest time when we have to do rebalance again */
4771 unsigned long next_balance = jiffies + 60*HZ;
4772 int update_next_balance = 0;
4773 int need_serialize;
4774
4775 for_each_domain(cpu, sd) {
4776 if (!(sd->flags & SD_LOAD_BALANCE))
4777 continue;
4778
4779 interval = sd->balance_interval;
4780 if (idle != CPU_IDLE)
4781 interval *= sd->busy_factor;
4782
4783 /* scale ms to jiffies */
4784 interval = msecs_to_jiffies(interval);
4785 if (unlikely(!interval))
4786 interval = 1;
4787 if (interval > HZ*NR_CPUS/10)
4788 interval = HZ*NR_CPUS/10;
4789
4790 need_serialize = sd->flags & SD_SERIALIZE;
4791
4792 if (need_serialize) {
4793 if (!spin_trylock(&balancing))
4794 goto out;
4795 }
4796
4797 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4798 if (load_balance(cpu, rq, sd, idle, &balance)) {
4799 /*
4800 * We've pulled tasks over so either we're no
4801 * longer idle, or one of our SMT siblings is
4802 * not idle.
4803 */
4804 idle = CPU_NOT_IDLE;
4805 }
4806 sd->last_balance = jiffies;
4807 }
4808 if (need_serialize)
4809 spin_unlock(&balancing);
4810 out:
4811 if (time_after(next_balance, sd->last_balance + interval)) {
4812 next_balance = sd->last_balance + interval;
4813 update_next_balance = 1;
4814 }
4815
4816 /*
4817 * Stop the load balance at this level. There is another
4818 * CPU in our sched group which is doing load balancing more
4819 * actively.
4820 */
4821 if (!balance)
4822 break;
4823 }
4824
4825 /*
4826 * next_balance will be updated only when there is a need.
4827 * When the cpu is attached to null domain for ex, it will not be
4828 * updated.
4829 */
4830 if (likely(update_next_balance))
4831 rq->next_balance = next_balance;
4832 }
4833
4834 /*
4835 * run_rebalance_domains is triggered when needed from the scheduler tick.
4836 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4837 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4838 */
4839 static void run_rebalance_domains(struct softirq_action *h)
4840 {
4841 int this_cpu = smp_processor_id();
4842 struct rq *this_rq = cpu_rq(this_cpu);
4843 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4844 CPU_IDLE : CPU_NOT_IDLE;
4845
4846 rebalance_domains(this_cpu, idle);
4847
4848 #ifdef CONFIG_NO_HZ
4849 /*
4850 * If this cpu is the owner for idle load balancing, then do the
4851 * balancing on behalf of the other idle cpus whose ticks are
4852 * stopped.
4853 */
4854 if (this_rq->idle_at_tick &&
4855 atomic_read(&nohz.load_balancer) == this_cpu) {
4856 struct rq *rq;
4857 int balance_cpu;
4858
4859 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4860 if (balance_cpu == this_cpu)
4861 continue;
4862
4863 /*
4864 * If this cpu gets work to do, stop the load balancing
4865 * work being done for other cpus. Next load
4866 * balancing owner will pick it up.
4867 */
4868 if (need_resched())
4869 break;
4870
4871 rebalance_domains(balance_cpu, CPU_IDLE);
4872
4873 rq = cpu_rq(balance_cpu);
4874 if (time_after(this_rq->next_balance, rq->next_balance))
4875 this_rq->next_balance = rq->next_balance;
4876 }
4877 }
4878 #endif
4879 }
4880
4881 static inline int on_null_domain(int cpu)
4882 {
4883 return !rcu_dereference(cpu_rq(cpu)->sd);
4884 }
4885
4886 /*
4887 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4888 *
4889 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4890 * idle load balancing owner or decide to stop the periodic load balancing,
4891 * if the whole system is idle.
4892 */
4893 static inline void trigger_load_balance(struct rq *rq, int cpu)
4894 {
4895 #ifdef CONFIG_NO_HZ
4896 /*
4897 * If we were in the nohz mode recently and busy at the current
4898 * scheduler tick, then check if we need to nominate new idle
4899 * load balancer.
4900 */
4901 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4902 rq->in_nohz_recently = 0;
4903
4904 if (atomic_read(&nohz.load_balancer) == cpu) {
4905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4906 atomic_set(&nohz.load_balancer, -1);
4907 }
4908
4909 if (atomic_read(&nohz.load_balancer) == -1) {
4910 int ilb = find_new_ilb(cpu);
4911
4912 if (ilb < nr_cpu_ids)
4913 resched_cpu(ilb);
4914 }
4915 }
4916
4917 /*
4918 * If this cpu is idle and doing idle load balancing for all the
4919 * cpus with ticks stopped, is it time for that to stop?
4920 */
4921 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4922 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4923 resched_cpu(cpu);
4924 return;
4925 }
4926
4927 /*
4928 * If this cpu is idle and the idle load balancing is done by
4929 * someone else, then no need raise the SCHED_SOFTIRQ
4930 */
4931 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4932 cpumask_test_cpu(cpu, nohz.cpu_mask))
4933 return;
4934 #endif
4935 /* Don't need to rebalance while attached to NULL domain */
4936 if (time_after_eq(jiffies, rq->next_balance) &&
4937 likely(!on_null_domain(cpu)))
4938 raise_softirq(SCHED_SOFTIRQ);
4939 }
4940
4941 #else /* CONFIG_SMP */
4942
4943 /*
4944 * on UP we do not need to balance between CPUs:
4945 */
4946 static inline void idle_balance(int cpu, struct rq *rq)
4947 {
4948 }
4949
4950 #endif
4951
4952 DEFINE_PER_CPU(struct kernel_stat, kstat);
4953
4954 EXPORT_PER_CPU_SYMBOL(kstat);
4955
4956 /*
4957 * Return any ns on the sched_clock that have not yet been accounted in
4958 * @p in case that task is currently running.
4959 *
4960 * Called with task_rq_lock() held on @rq.
4961 */
4962 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4963 {
4964 u64 ns = 0;
4965
4966 if (task_current(rq, p)) {
4967 update_rq_clock(rq);
4968 ns = rq->clock - p->se.exec_start;
4969 if ((s64)ns < 0)
4970 ns = 0;
4971 }
4972
4973 return ns;
4974 }
4975
4976 unsigned long long task_delta_exec(struct task_struct *p)
4977 {
4978 unsigned long flags;
4979 struct rq *rq;
4980 u64 ns = 0;
4981
4982 rq = task_rq_lock(p, &flags);
4983 ns = do_task_delta_exec(p, rq);
4984 task_rq_unlock(rq, &flags);
4985
4986 return ns;
4987 }
4988
4989 /*
4990 * Return accounted runtime for the task.
4991 * In case the task is currently running, return the runtime plus current's
4992 * pending runtime that have not been accounted yet.
4993 */
4994 unsigned long long task_sched_runtime(struct task_struct *p)
4995 {
4996 unsigned long flags;
4997 struct rq *rq;
4998 u64 ns = 0;
4999
5000 rq = task_rq_lock(p, &flags);
5001 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5002 task_rq_unlock(rq, &flags);
5003
5004 return ns;
5005 }
5006
5007 /*
5008 * Return sum_exec_runtime for the thread group.
5009 * In case the task is currently running, return the sum plus current's
5010 * pending runtime that have not been accounted yet.
5011 *
5012 * Note that the thread group might have other running tasks as well,
5013 * so the return value not includes other pending runtime that other
5014 * running tasks might have.
5015 */
5016 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5017 {
5018 struct task_cputime totals;
5019 unsigned long flags;
5020 struct rq *rq;
5021 u64 ns;
5022
5023 rq = task_rq_lock(p, &flags);
5024 thread_group_cputime(p, &totals);
5025 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5026 task_rq_unlock(rq, &flags);
5027
5028 return ns;
5029 }
5030
5031 /*
5032 * Account user cpu time to a process.
5033 * @p: the process that the cpu time gets accounted to
5034 * @cputime: the cpu time spent in user space since the last update
5035 * @cputime_scaled: cputime scaled by cpu frequency
5036 */
5037 void account_user_time(struct task_struct *p, cputime_t cputime,
5038 cputime_t cputime_scaled)
5039 {
5040 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5041 cputime64_t tmp;
5042
5043 /* Add user time to process. */
5044 p->utime = cputime_add(p->utime, cputime);
5045 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5046 account_group_user_time(p, cputime);
5047
5048 /* Add user time to cpustat. */
5049 tmp = cputime_to_cputime64(cputime);
5050 if (TASK_NICE(p) > 0)
5051 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5052 else
5053 cpustat->user = cputime64_add(cpustat->user, tmp);
5054
5055 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5056 /* Account for user time used */
5057 acct_update_integrals(p);
5058 }
5059
5060 /*
5061 * Account guest cpu time to a process.
5062 * @p: the process that the cpu time gets accounted to
5063 * @cputime: the cpu time spent in virtual machine since the last update
5064 * @cputime_scaled: cputime scaled by cpu frequency
5065 */
5066 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5067 cputime_t cputime_scaled)
5068 {
5069 cputime64_t tmp;
5070 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5071
5072 tmp = cputime_to_cputime64(cputime);
5073
5074 /* Add guest time to process. */
5075 p->utime = cputime_add(p->utime, cputime);
5076 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5077 account_group_user_time(p, cputime);
5078 p->gtime = cputime_add(p->gtime, cputime);
5079
5080 /* Add guest time to cpustat. */
5081 if (TASK_NICE(p) > 0) {
5082 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5083 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5084 } else {
5085 cpustat->user = cputime64_add(cpustat->user, tmp);
5086 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5087 }
5088 }
5089
5090 /*
5091 * Account system cpu time to a process.
5092 * @p: the process that the cpu time gets accounted to
5093 * @hardirq_offset: the offset to subtract from hardirq_count()
5094 * @cputime: the cpu time spent in kernel space since the last update
5095 * @cputime_scaled: cputime scaled by cpu frequency
5096 */
5097 void account_system_time(struct task_struct *p, int hardirq_offset,
5098 cputime_t cputime, cputime_t cputime_scaled)
5099 {
5100 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5101 cputime64_t tmp;
5102
5103 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5104 account_guest_time(p, cputime, cputime_scaled);
5105 return;
5106 }
5107
5108 /* Add system time to process. */
5109 p->stime = cputime_add(p->stime, cputime);
5110 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5111 account_group_system_time(p, cputime);
5112
5113 /* Add system time to cpustat. */
5114 tmp = cputime_to_cputime64(cputime);
5115 if (hardirq_count() - hardirq_offset)
5116 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5117 else if (softirq_count())
5118 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5119 else
5120 cpustat->system = cputime64_add(cpustat->system, tmp);
5121
5122 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5123
5124 /* Account for system time used */
5125 acct_update_integrals(p);
5126 }
5127
5128 /*
5129 * Account for involuntary wait time.
5130 * @steal: the cpu time spent in involuntary wait
5131 */
5132 void account_steal_time(cputime_t cputime)
5133 {
5134 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5135 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5136
5137 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5138 }
5139
5140 /*
5141 * Account for idle time.
5142 * @cputime: the cpu time spent in idle wait
5143 */
5144 void account_idle_time(cputime_t cputime)
5145 {
5146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5147 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5148 struct rq *rq = this_rq();
5149
5150 if (atomic_read(&rq->nr_iowait) > 0)
5151 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5152 else
5153 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5154 }
5155
5156 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5157
5158 /*
5159 * Account a single tick of cpu time.
5160 * @p: the process that the cpu time gets accounted to
5161 * @user_tick: indicates if the tick is a user or a system tick
5162 */
5163 void account_process_tick(struct task_struct *p, int user_tick)
5164 {
5165 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5166 struct rq *rq = this_rq();
5167
5168 if (user_tick)
5169 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5170 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5171 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5172 one_jiffy_scaled);
5173 else
5174 account_idle_time(cputime_one_jiffy);
5175 }
5176
5177 /*
5178 * Account multiple ticks of steal time.
5179 * @p: the process from which the cpu time has been stolen
5180 * @ticks: number of stolen ticks
5181 */
5182 void account_steal_ticks(unsigned long ticks)
5183 {
5184 account_steal_time(jiffies_to_cputime(ticks));
5185 }
5186
5187 /*
5188 * Account multiple ticks of idle time.
5189 * @ticks: number of stolen ticks
5190 */
5191 void account_idle_ticks(unsigned long ticks)
5192 {
5193 account_idle_time(jiffies_to_cputime(ticks));
5194 }
5195
5196 #endif
5197
5198 /*
5199 * Use precise platform statistics if available:
5200 */
5201 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5202 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5203 {
5204 *ut = p->utime;
5205 *st = p->stime;
5206 }
5207
5208 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5209 {
5210 struct task_cputime cputime;
5211
5212 thread_group_cputime(p, &cputime);
5213
5214 *ut = cputime.utime;
5215 *st = cputime.stime;
5216 }
5217 #else
5218
5219 #ifndef nsecs_to_cputime
5220 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5221 #endif
5222
5223 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5224 {
5225 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5226
5227 /*
5228 * Use CFS's precise accounting:
5229 */
5230 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5231
5232 if (total) {
5233 u64 temp;
5234
5235 temp = (u64)(rtime * utime);
5236 do_div(temp, total);
5237 utime = (cputime_t)temp;
5238 } else
5239 utime = rtime;
5240
5241 /*
5242 * Compare with previous values, to keep monotonicity:
5243 */
5244 p->prev_utime = max(p->prev_utime, utime);
5245 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5246
5247 *ut = p->prev_utime;
5248 *st = p->prev_stime;
5249 }
5250
5251 /*
5252 * Must be called with siglock held.
5253 */
5254 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5255 {
5256 struct signal_struct *sig = p->signal;
5257 struct task_cputime cputime;
5258 cputime_t rtime, utime, total;
5259
5260 thread_group_cputime(p, &cputime);
5261
5262 total = cputime_add(cputime.utime, cputime.stime);
5263 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5264
5265 if (total) {
5266 u64 temp;
5267
5268 temp = (u64)(rtime * cputime.utime);
5269 do_div(temp, total);
5270 utime = (cputime_t)temp;
5271 } else
5272 utime = rtime;
5273
5274 sig->prev_utime = max(sig->prev_utime, utime);
5275 sig->prev_stime = max(sig->prev_stime,
5276 cputime_sub(rtime, sig->prev_utime));
5277
5278 *ut = sig->prev_utime;
5279 *st = sig->prev_stime;
5280 }
5281 #endif
5282
5283 /*
5284 * This function gets called by the timer code, with HZ frequency.
5285 * We call it with interrupts disabled.
5286 *
5287 * It also gets called by the fork code, when changing the parent's
5288 * timeslices.
5289 */
5290 void scheduler_tick(void)
5291 {
5292 int cpu = smp_processor_id();
5293 struct rq *rq = cpu_rq(cpu);
5294 struct task_struct *curr = rq->curr;
5295
5296 sched_clock_tick();
5297
5298 raw_spin_lock(&rq->lock);
5299 update_rq_clock(rq);
5300 update_cpu_load(rq);
5301 curr->sched_class->task_tick(rq, curr, 0);
5302 raw_spin_unlock(&rq->lock);
5303
5304 perf_event_task_tick(curr, cpu);
5305
5306 #ifdef CONFIG_SMP
5307 rq->idle_at_tick = idle_cpu(cpu);
5308 trigger_load_balance(rq, cpu);
5309 #endif
5310 }
5311
5312 notrace unsigned long get_parent_ip(unsigned long addr)
5313 {
5314 if (in_lock_functions(addr)) {
5315 addr = CALLER_ADDR2;
5316 if (in_lock_functions(addr))
5317 addr = CALLER_ADDR3;
5318 }
5319 return addr;
5320 }
5321
5322 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5323 defined(CONFIG_PREEMPT_TRACER))
5324
5325 void __kprobes add_preempt_count(int val)
5326 {
5327 #ifdef CONFIG_DEBUG_PREEMPT
5328 /*
5329 * Underflow?
5330 */
5331 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5332 return;
5333 #endif
5334 preempt_count() += val;
5335 #ifdef CONFIG_DEBUG_PREEMPT
5336 /*
5337 * Spinlock count overflowing soon?
5338 */
5339 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5340 PREEMPT_MASK - 10);
5341 #endif
5342 if (preempt_count() == val)
5343 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5344 }
5345 EXPORT_SYMBOL(add_preempt_count);
5346
5347 void __kprobes sub_preempt_count(int val)
5348 {
5349 #ifdef CONFIG_DEBUG_PREEMPT
5350 /*
5351 * Underflow?
5352 */
5353 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5354 return;
5355 /*
5356 * Is the spinlock portion underflowing?
5357 */
5358 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5359 !(preempt_count() & PREEMPT_MASK)))
5360 return;
5361 #endif
5362
5363 if (preempt_count() == val)
5364 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5365 preempt_count() -= val;
5366 }
5367 EXPORT_SYMBOL(sub_preempt_count);
5368
5369 #endif
5370
5371 /*
5372 * Print scheduling while atomic bug:
5373 */
5374 static noinline void __schedule_bug(struct task_struct *prev)
5375 {
5376 struct pt_regs *regs = get_irq_regs();
5377
5378 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5379 prev->comm, prev->pid, preempt_count());
5380
5381 debug_show_held_locks(prev);
5382 print_modules();
5383 if (irqs_disabled())
5384 print_irqtrace_events(prev);
5385
5386 if (regs)
5387 show_regs(regs);
5388 else
5389 dump_stack();
5390 }
5391
5392 /*
5393 * Various schedule()-time debugging checks and statistics:
5394 */
5395 static inline void schedule_debug(struct task_struct *prev)
5396 {
5397 /*
5398 * Test if we are atomic. Since do_exit() needs to call into
5399 * schedule() atomically, we ignore that path for now.
5400 * Otherwise, whine if we are scheduling when we should not be.
5401 */
5402 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5403 __schedule_bug(prev);
5404
5405 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5406
5407 schedstat_inc(this_rq(), sched_count);
5408 #ifdef CONFIG_SCHEDSTATS
5409 if (unlikely(prev->lock_depth >= 0)) {
5410 schedstat_inc(this_rq(), bkl_count);
5411 schedstat_inc(prev, sched_info.bkl_count);
5412 }
5413 #endif
5414 }
5415
5416 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5417 {
5418 if (prev->state == TASK_RUNNING) {
5419 u64 runtime = prev->se.sum_exec_runtime;
5420
5421 runtime -= prev->se.prev_sum_exec_runtime;
5422 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5423
5424 /*
5425 * In order to avoid avg_overlap growing stale when we are
5426 * indeed overlapping and hence not getting put to sleep, grow
5427 * the avg_overlap on preemption.
5428 *
5429 * We use the average preemption runtime because that
5430 * correlates to the amount of cache footprint a task can
5431 * build up.
5432 */
5433 update_avg(&prev->se.avg_overlap, runtime);
5434 }
5435 prev->sched_class->put_prev_task(rq, prev);
5436 }
5437
5438 /*
5439 * Pick up the highest-prio task:
5440 */
5441 static inline struct task_struct *
5442 pick_next_task(struct rq *rq)
5443 {
5444 const struct sched_class *class;
5445 struct task_struct *p;
5446
5447 /*
5448 * Optimization: we know that if all tasks are in
5449 * the fair class we can call that function directly:
5450 */
5451 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5452 p = fair_sched_class.pick_next_task(rq);
5453 if (likely(p))
5454 return p;
5455 }
5456
5457 class = sched_class_highest;
5458 for ( ; ; ) {
5459 p = class->pick_next_task(rq);
5460 if (p)
5461 return p;
5462 /*
5463 * Will never be NULL as the idle class always
5464 * returns a non-NULL p:
5465 */
5466 class = class->next;
5467 }
5468 }
5469
5470 /*
5471 * schedule() is the main scheduler function.
5472 */
5473 asmlinkage void __sched schedule(void)
5474 {
5475 struct task_struct *prev, *next;
5476 unsigned long *switch_count;
5477 struct rq *rq;
5478 int cpu;
5479
5480 need_resched:
5481 preempt_disable();
5482 cpu = smp_processor_id();
5483 rq = cpu_rq(cpu);
5484 rcu_sched_qs(cpu);
5485 prev = rq->curr;
5486 switch_count = &prev->nivcsw;
5487
5488 release_kernel_lock(prev);
5489 need_resched_nonpreemptible:
5490
5491 schedule_debug(prev);
5492
5493 if (sched_feat(HRTICK))
5494 hrtick_clear(rq);
5495
5496 raw_spin_lock_irq(&rq->lock);
5497 update_rq_clock(rq);
5498 clear_tsk_need_resched(prev);
5499
5500 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5501 if (unlikely(signal_pending_state(prev->state, prev)))
5502 prev->state = TASK_RUNNING;
5503 else
5504 deactivate_task(rq, prev, 1);
5505 switch_count = &prev->nvcsw;
5506 }
5507
5508 pre_schedule(rq, prev);
5509
5510 if (unlikely(!rq->nr_running))
5511 idle_balance(cpu, rq);
5512
5513 put_prev_task(rq, prev);
5514 next = pick_next_task(rq);
5515
5516 if (likely(prev != next)) {
5517 sched_info_switch(prev, next);
5518 perf_event_task_sched_out(prev, next, cpu);
5519
5520 rq->nr_switches++;
5521 rq->curr = next;
5522 ++*switch_count;
5523
5524 context_switch(rq, prev, next); /* unlocks the rq */
5525 /*
5526 * the context switch might have flipped the stack from under
5527 * us, hence refresh the local variables.
5528 */
5529 cpu = smp_processor_id();
5530 rq = cpu_rq(cpu);
5531 } else
5532 raw_spin_unlock_irq(&rq->lock);
5533
5534 post_schedule(rq);
5535
5536 if (unlikely(reacquire_kernel_lock(current) < 0))
5537 goto need_resched_nonpreemptible;
5538
5539 preempt_enable_no_resched();
5540 if (need_resched())
5541 goto need_resched;
5542 }
5543 EXPORT_SYMBOL(schedule);
5544
5545 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5546 /*
5547 * Look out! "owner" is an entirely speculative pointer
5548 * access and not reliable.
5549 */
5550 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5551 {
5552 unsigned int cpu;
5553 struct rq *rq;
5554
5555 if (!sched_feat(OWNER_SPIN))
5556 return 0;
5557
5558 #ifdef CONFIG_DEBUG_PAGEALLOC
5559 /*
5560 * Need to access the cpu field knowing that
5561 * DEBUG_PAGEALLOC could have unmapped it if
5562 * the mutex owner just released it and exited.
5563 */
5564 if (probe_kernel_address(&owner->cpu, cpu))
5565 goto out;
5566 #else
5567 cpu = owner->cpu;
5568 #endif
5569
5570 /*
5571 * Even if the access succeeded (likely case),
5572 * the cpu field may no longer be valid.
5573 */
5574 if (cpu >= nr_cpumask_bits)
5575 goto out;
5576
5577 /*
5578 * We need to validate that we can do a
5579 * get_cpu() and that we have the percpu area.
5580 */
5581 if (!cpu_online(cpu))
5582 goto out;
5583
5584 rq = cpu_rq(cpu);
5585
5586 for (;;) {
5587 /*
5588 * Owner changed, break to re-assess state.
5589 */
5590 if (lock->owner != owner)
5591 break;
5592
5593 /*
5594 * Is that owner really running on that cpu?
5595 */
5596 if (task_thread_info(rq->curr) != owner || need_resched())
5597 return 0;
5598
5599 cpu_relax();
5600 }
5601 out:
5602 return 1;
5603 }
5604 #endif
5605
5606 #ifdef CONFIG_PREEMPT
5607 /*
5608 * this is the entry point to schedule() from in-kernel preemption
5609 * off of preempt_enable. Kernel preemptions off return from interrupt
5610 * occur there and call schedule directly.
5611 */
5612 asmlinkage void __sched preempt_schedule(void)
5613 {
5614 struct thread_info *ti = current_thread_info();
5615
5616 /*
5617 * If there is a non-zero preempt_count or interrupts are disabled,
5618 * we do not want to preempt the current task. Just return..
5619 */
5620 if (likely(ti->preempt_count || irqs_disabled()))
5621 return;
5622
5623 do {
5624 add_preempt_count(PREEMPT_ACTIVE);
5625 schedule();
5626 sub_preempt_count(PREEMPT_ACTIVE);
5627
5628 /*
5629 * Check again in case we missed a preemption opportunity
5630 * between schedule and now.
5631 */
5632 barrier();
5633 } while (need_resched());
5634 }
5635 EXPORT_SYMBOL(preempt_schedule);
5636
5637 /*
5638 * this is the entry point to schedule() from kernel preemption
5639 * off of irq context.
5640 * Note, that this is called and return with irqs disabled. This will
5641 * protect us against recursive calling from irq.
5642 */
5643 asmlinkage void __sched preempt_schedule_irq(void)
5644 {
5645 struct thread_info *ti = current_thread_info();
5646
5647 /* Catch callers which need to be fixed */
5648 BUG_ON(ti->preempt_count || !irqs_disabled());
5649
5650 do {
5651 add_preempt_count(PREEMPT_ACTIVE);
5652 local_irq_enable();
5653 schedule();
5654 local_irq_disable();
5655 sub_preempt_count(PREEMPT_ACTIVE);
5656
5657 /*
5658 * Check again in case we missed a preemption opportunity
5659 * between schedule and now.
5660 */
5661 barrier();
5662 } while (need_resched());
5663 }
5664
5665 #endif /* CONFIG_PREEMPT */
5666
5667 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5668 void *key)
5669 {
5670 return try_to_wake_up(curr->private, mode, wake_flags);
5671 }
5672 EXPORT_SYMBOL(default_wake_function);
5673
5674 /*
5675 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5676 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5677 * number) then we wake all the non-exclusive tasks and one exclusive task.
5678 *
5679 * There are circumstances in which we can try to wake a task which has already
5680 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5681 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5682 */
5683 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5684 int nr_exclusive, int wake_flags, void *key)
5685 {
5686 wait_queue_t *curr, *next;
5687
5688 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5689 unsigned flags = curr->flags;
5690
5691 if (curr->func(curr, mode, wake_flags, key) &&
5692 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5693 break;
5694 }
5695 }
5696
5697 /**
5698 * __wake_up - wake up threads blocked on a waitqueue.
5699 * @q: the waitqueue
5700 * @mode: which threads
5701 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5702 * @key: is directly passed to the wakeup function
5703 *
5704 * It may be assumed that this function implies a write memory barrier before
5705 * changing the task state if and only if any tasks are woken up.
5706 */
5707 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5708 int nr_exclusive, void *key)
5709 {
5710 unsigned long flags;
5711
5712 spin_lock_irqsave(&q->lock, flags);
5713 __wake_up_common(q, mode, nr_exclusive, 0, key);
5714 spin_unlock_irqrestore(&q->lock, flags);
5715 }
5716 EXPORT_SYMBOL(__wake_up);
5717
5718 /*
5719 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5720 */
5721 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5722 {
5723 __wake_up_common(q, mode, 1, 0, NULL);
5724 }
5725
5726 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5727 {
5728 __wake_up_common(q, mode, 1, 0, key);
5729 }
5730
5731 /**
5732 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5733 * @q: the waitqueue
5734 * @mode: which threads
5735 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5736 * @key: opaque value to be passed to wakeup targets
5737 *
5738 * The sync wakeup differs that the waker knows that it will schedule
5739 * away soon, so while the target thread will be woken up, it will not
5740 * be migrated to another CPU - ie. the two threads are 'synchronized'
5741 * with each other. This can prevent needless bouncing between CPUs.
5742 *
5743 * On UP it can prevent extra preemption.
5744 *
5745 * It may be assumed that this function implies a write memory barrier before
5746 * changing the task state if and only if any tasks are woken up.
5747 */
5748 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5749 int nr_exclusive, void *key)
5750 {
5751 unsigned long flags;
5752 int wake_flags = WF_SYNC;
5753
5754 if (unlikely(!q))
5755 return;
5756
5757 if (unlikely(!nr_exclusive))
5758 wake_flags = 0;
5759
5760 spin_lock_irqsave(&q->lock, flags);
5761 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5762 spin_unlock_irqrestore(&q->lock, flags);
5763 }
5764 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5765
5766 /*
5767 * __wake_up_sync - see __wake_up_sync_key()
5768 */
5769 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5770 {
5771 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5772 }
5773 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5774
5775 /**
5776 * complete: - signals a single thread waiting on this completion
5777 * @x: holds the state of this particular completion
5778 *
5779 * This will wake up a single thread waiting on this completion. Threads will be
5780 * awakened in the same order in which they were queued.
5781 *
5782 * See also complete_all(), wait_for_completion() and related routines.
5783 *
5784 * It may be assumed that this function implies a write memory barrier before
5785 * changing the task state if and only if any tasks are woken up.
5786 */
5787 void complete(struct completion *x)
5788 {
5789 unsigned long flags;
5790
5791 spin_lock_irqsave(&x->wait.lock, flags);
5792 x->done++;
5793 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5794 spin_unlock_irqrestore(&x->wait.lock, flags);
5795 }
5796 EXPORT_SYMBOL(complete);
5797
5798 /**
5799 * complete_all: - signals all threads waiting on this completion
5800 * @x: holds the state of this particular completion
5801 *
5802 * This will wake up all threads waiting on this particular completion event.
5803 *
5804 * It may be assumed that this function implies a write memory barrier before
5805 * changing the task state if and only if any tasks are woken up.
5806 */
5807 void complete_all(struct completion *x)
5808 {
5809 unsigned long flags;
5810
5811 spin_lock_irqsave(&x->wait.lock, flags);
5812 x->done += UINT_MAX/2;
5813 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5814 spin_unlock_irqrestore(&x->wait.lock, flags);
5815 }
5816 EXPORT_SYMBOL(complete_all);
5817
5818 static inline long __sched
5819 do_wait_for_common(struct completion *x, long timeout, int state)
5820 {
5821 if (!x->done) {
5822 DECLARE_WAITQUEUE(wait, current);
5823
5824 wait.flags |= WQ_FLAG_EXCLUSIVE;
5825 __add_wait_queue_tail(&x->wait, &wait);
5826 do {
5827 if (signal_pending_state(state, current)) {
5828 timeout = -ERESTARTSYS;
5829 break;
5830 }
5831 __set_current_state(state);
5832 spin_unlock_irq(&x->wait.lock);
5833 timeout = schedule_timeout(timeout);
5834 spin_lock_irq(&x->wait.lock);
5835 } while (!x->done && timeout);
5836 __remove_wait_queue(&x->wait, &wait);
5837 if (!x->done)
5838 return timeout;
5839 }
5840 x->done--;
5841 return timeout ?: 1;
5842 }
5843
5844 static long __sched
5845 wait_for_common(struct completion *x, long timeout, int state)
5846 {
5847 might_sleep();
5848
5849 spin_lock_irq(&x->wait.lock);
5850 timeout = do_wait_for_common(x, timeout, state);
5851 spin_unlock_irq(&x->wait.lock);
5852 return timeout;
5853 }
5854
5855 /**
5856 * wait_for_completion: - waits for completion of a task
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits to be signaled for completion of a specific task. It is NOT
5860 * interruptible and there is no timeout.
5861 *
5862 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5863 * and interrupt capability. Also see complete().
5864 */
5865 void __sched wait_for_completion(struct completion *x)
5866 {
5867 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5868 }
5869 EXPORT_SYMBOL(wait_for_completion);
5870
5871 /**
5872 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. The timeout is in jiffies. It is not
5878 * interruptible.
5879 */
5880 unsigned long __sched
5881 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5882 {
5883 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5884 }
5885 EXPORT_SYMBOL(wait_for_completion_timeout);
5886
5887 /**
5888 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits for completion of a specific task to be signaled. It is
5892 * interruptible.
5893 */
5894 int __sched wait_for_completion_interruptible(struct completion *x)
5895 {
5896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5897 if (t == -ERESTARTSYS)
5898 return t;
5899 return 0;
5900 }
5901 EXPORT_SYMBOL(wait_for_completion_interruptible);
5902
5903 /**
5904 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5905 * @x: holds the state of this particular completion
5906 * @timeout: timeout value in jiffies
5907 *
5908 * This waits for either a completion of a specific task to be signaled or for a
5909 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5910 */
5911 unsigned long __sched
5912 wait_for_completion_interruptible_timeout(struct completion *x,
5913 unsigned long timeout)
5914 {
5915 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5916 }
5917 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5918
5919 /**
5920 * wait_for_completion_killable: - waits for completion of a task (killable)
5921 * @x: holds the state of this particular completion
5922 *
5923 * This waits to be signaled for completion of a specific task. It can be
5924 * interrupted by a kill signal.
5925 */
5926 int __sched wait_for_completion_killable(struct completion *x)
5927 {
5928 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5929 if (t == -ERESTARTSYS)
5930 return t;
5931 return 0;
5932 }
5933 EXPORT_SYMBOL(wait_for_completion_killable);
5934
5935 /**
5936 * try_wait_for_completion - try to decrement a completion without blocking
5937 * @x: completion structure
5938 *
5939 * Returns: 0 if a decrement cannot be done without blocking
5940 * 1 if a decrement succeeded.
5941 *
5942 * If a completion is being used as a counting completion,
5943 * attempt to decrement the counter without blocking. This
5944 * enables us to avoid waiting if the resource the completion
5945 * is protecting is not available.
5946 */
5947 bool try_wait_for_completion(struct completion *x)
5948 {
5949 unsigned long flags;
5950 int ret = 1;
5951
5952 spin_lock_irqsave(&x->wait.lock, flags);
5953 if (!x->done)
5954 ret = 0;
5955 else
5956 x->done--;
5957 spin_unlock_irqrestore(&x->wait.lock, flags);
5958 return ret;
5959 }
5960 EXPORT_SYMBOL(try_wait_for_completion);
5961
5962 /**
5963 * completion_done - Test to see if a completion has any waiters
5964 * @x: completion structure
5965 *
5966 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5967 * 1 if there are no waiters.
5968 *
5969 */
5970 bool completion_done(struct completion *x)
5971 {
5972 unsigned long flags;
5973 int ret = 1;
5974
5975 spin_lock_irqsave(&x->wait.lock, flags);
5976 if (!x->done)
5977 ret = 0;
5978 spin_unlock_irqrestore(&x->wait.lock, flags);
5979 return ret;
5980 }
5981 EXPORT_SYMBOL(completion_done);
5982
5983 static long __sched
5984 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5985 {
5986 unsigned long flags;
5987 wait_queue_t wait;
5988
5989 init_waitqueue_entry(&wait, current);
5990
5991 __set_current_state(state);
5992
5993 spin_lock_irqsave(&q->lock, flags);
5994 __add_wait_queue(q, &wait);
5995 spin_unlock(&q->lock);
5996 timeout = schedule_timeout(timeout);
5997 spin_lock_irq(&q->lock);
5998 __remove_wait_queue(q, &wait);
5999 spin_unlock_irqrestore(&q->lock, flags);
6000
6001 return timeout;
6002 }
6003
6004 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6005 {
6006 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6007 }
6008 EXPORT_SYMBOL(interruptible_sleep_on);
6009
6010 long __sched
6011 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6012 {
6013 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6014 }
6015 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6016
6017 void __sched sleep_on(wait_queue_head_t *q)
6018 {
6019 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6020 }
6021 EXPORT_SYMBOL(sleep_on);
6022
6023 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6024 {
6025 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6026 }
6027 EXPORT_SYMBOL(sleep_on_timeout);
6028
6029 #ifdef CONFIG_RT_MUTEXES
6030
6031 /*
6032 * rt_mutex_setprio - set the current priority of a task
6033 * @p: task
6034 * @prio: prio value (kernel-internal form)
6035 *
6036 * This function changes the 'effective' priority of a task. It does
6037 * not touch ->normal_prio like __setscheduler().
6038 *
6039 * Used by the rt_mutex code to implement priority inheritance logic.
6040 */
6041 void rt_mutex_setprio(struct task_struct *p, int prio)
6042 {
6043 unsigned long flags;
6044 int oldprio, on_rq, running;
6045 struct rq *rq;
6046 const struct sched_class *prev_class = p->sched_class;
6047
6048 BUG_ON(prio < 0 || prio > MAX_PRIO);
6049
6050 rq = task_rq_lock(p, &flags);
6051 update_rq_clock(rq);
6052
6053 oldprio = p->prio;
6054 on_rq = p->se.on_rq;
6055 running = task_current(rq, p);
6056 if (on_rq)
6057 dequeue_task(rq, p, 0);
6058 if (running)
6059 p->sched_class->put_prev_task(rq, p);
6060
6061 if (rt_prio(prio))
6062 p->sched_class = &rt_sched_class;
6063 else
6064 p->sched_class = &fair_sched_class;
6065
6066 p->prio = prio;
6067
6068 if (running)
6069 p->sched_class->set_curr_task(rq);
6070 if (on_rq) {
6071 enqueue_task(rq, p, 0);
6072
6073 check_class_changed(rq, p, prev_class, oldprio, running);
6074 }
6075 task_rq_unlock(rq, &flags);
6076 }
6077
6078 #endif
6079
6080 void set_user_nice(struct task_struct *p, long nice)
6081 {
6082 int old_prio, delta, on_rq;
6083 unsigned long flags;
6084 struct rq *rq;
6085
6086 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6087 return;
6088 /*
6089 * We have to be careful, if called from sys_setpriority(),
6090 * the task might be in the middle of scheduling on another CPU.
6091 */
6092 rq = task_rq_lock(p, &flags);
6093 update_rq_clock(rq);
6094 /*
6095 * The RT priorities are set via sched_setscheduler(), but we still
6096 * allow the 'normal' nice value to be set - but as expected
6097 * it wont have any effect on scheduling until the task is
6098 * SCHED_FIFO/SCHED_RR:
6099 */
6100 if (task_has_rt_policy(p)) {
6101 p->static_prio = NICE_TO_PRIO(nice);
6102 goto out_unlock;
6103 }
6104 on_rq = p->se.on_rq;
6105 if (on_rq)
6106 dequeue_task(rq, p, 0);
6107
6108 p->static_prio = NICE_TO_PRIO(nice);
6109 set_load_weight(p);
6110 old_prio = p->prio;
6111 p->prio = effective_prio(p);
6112 delta = p->prio - old_prio;
6113
6114 if (on_rq) {
6115 enqueue_task(rq, p, 0);
6116 /*
6117 * If the task increased its priority or is running and
6118 * lowered its priority, then reschedule its CPU:
6119 */
6120 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6121 resched_task(rq->curr);
6122 }
6123 out_unlock:
6124 task_rq_unlock(rq, &flags);
6125 }
6126 EXPORT_SYMBOL(set_user_nice);
6127
6128 /*
6129 * can_nice - check if a task can reduce its nice value
6130 * @p: task
6131 * @nice: nice value
6132 */
6133 int can_nice(const struct task_struct *p, const int nice)
6134 {
6135 /* convert nice value [19,-20] to rlimit style value [1,40] */
6136 int nice_rlim = 20 - nice;
6137
6138 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6139 capable(CAP_SYS_NICE));
6140 }
6141
6142 #ifdef __ARCH_WANT_SYS_NICE
6143
6144 /*
6145 * sys_nice - change the priority of the current process.
6146 * @increment: priority increment
6147 *
6148 * sys_setpriority is a more generic, but much slower function that
6149 * does similar things.
6150 */
6151 SYSCALL_DEFINE1(nice, int, increment)
6152 {
6153 long nice, retval;
6154
6155 /*
6156 * Setpriority might change our priority at the same moment.
6157 * We don't have to worry. Conceptually one call occurs first
6158 * and we have a single winner.
6159 */
6160 if (increment < -40)
6161 increment = -40;
6162 if (increment > 40)
6163 increment = 40;
6164
6165 nice = TASK_NICE(current) + increment;
6166 if (nice < -20)
6167 nice = -20;
6168 if (nice > 19)
6169 nice = 19;
6170
6171 if (increment < 0 && !can_nice(current, nice))
6172 return -EPERM;
6173
6174 retval = security_task_setnice(current, nice);
6175 if (retval)
6176 return retval;
6177
6178 set_user_nice(current, nice);
6179 return 0;
6180 }
6181
6182 #endif
6183
6184 /**
6185 * task_prio - return the priority value of a given task.
6186 * @p: the task in question.
6187 *
6188 * This is the priority value as seen by users in /proc.
6189 * RT tasks are offset by -200. Normal tasks are centered
6190 * around 0, value goes from -16 to +15.
6191 */
6192 int task_prio(const struct task_struct *p)
6193 {
6194 return p->prio - MAX_RT_PRIO;
6195 }
6196
6197 /**
6198 * task_nice - return the nice value of a given task.
6199 * @p: the task in question.
6200 */
6201 int task_nice(const struct task_struct *p)
6202 {
6203 return TASK_NICE(p);
6204 }
6205 EXPORT_SYMBOL(task_nice);
6206
6207 /**
6208 * idle_cpu - is a given cpu idle currently?
6209 * @cpu: the processor in question.
6210 */
6211 int idle_cpu(int cpu)
6212 {
6213 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6214 }
6215
6216 /**
6217 * idle_task - return the idle task for a given cpu.
6218 * @cpu: the processor in question.
6219 */
6220 struct task_struct *idle_task(int cpu)
6221 {
6222 return cpu_rq(cpu)->idle;
6223 }
6224
6225 /**
6226 * find_process_by_pid - find a process with a matching PID value.
6227 * @pid: the pid in question.
6228 */
6229 static struct task_struct *find_process_by_pid(pid_t pid)
6230 {
6231 return pid ? find_task_by_vpid(pid) : current;
6232 }
6233
6234 /* Actually do priority change: must hold rq lock. */
6235 static void
6236 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6237 {
6238 BUG_ON(p->se.on_rq);
6239
6240 p->policy = policy;
6241 p->rt_priority = prio;
6242 p->normal_prio = normal_prio(p);
6243 /* we are holding p->pi_lock already */
6244 p->prio = rt_mutex_getprio(p);
6245 if (rt_prio(p->prio))
6246 p->sched_class = &rt_sched_class;
6247 else
6248 p->sched_class = &fair_sched_class;
6249 set_load_weight(p);
6250 }
6251
6252 /*
6253 * check the target process has a UID that matches the current process's
6254 */
6255 static bool check_same_owner(struct task_struct *p)
6256 {
6257 const struct cred *cred = current_cred(), *pcred;
6258 bool match;
6259
6260 rcu_read_lock();
6261 pcred = __task_cred(p);
6262 match = (cred->euid == pcred->euid ||
6263 cred->euid == pcred->uid);
6264 rcu_read_unlock();
6265 return match;
6266 }
6267
6268 static int __sched_setscheduler(struct task_struct *p, int policy,
6269 struct sched_param *param, bool user)
6270 {
6271 int retval, oldprio, oldpolicy = -1, on_rq, running;
6272 unsigned long flags;
6273 const struct sched_class *prev_class = p->sched_class;
6274 struct rq *rq;
6275 int reset_on_fork;
6276
6277 /* may grab non-irq protected spin_locks */
6278 BUG_ON(in_interrupt());
6279 recheck:
6280 /* double check policy once rq lock held */
6281 if (policy < 0) {
6282 reset_on_fork = p->sched_reset_on_fork;
6283 policy = oldpolicy = p->policy;
6284 } else {
6285 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6286 policy &= ~SCHED_RESET_ON_FORK;
6287
6288 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6289 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6290 policy != SCHED_IDLE)
6291 return -EINVAL;
6292 }
6293
6294 /*
6295 * Valid priorities for SCHED_FIFO and SCHED_RR are
6296 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6297 * SCHED_BATCH and SCHED_IDLE is 0.
6298 */
6299 if (param->sched_priority < 0 ||
6300 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6301 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6302 return -EINVAL;
6303 if (rt_policy(policy) != (param->sched_priority != 0))
6304 return -EINVAL;
6305
6306 /*
6307 * Allow unprivileged RT tasks to decrease priority:
6308 */
6309 if (user && !capable(CAP_SYS_NICE)) {
6310 if (rt_policy(policy)) {
6311 unsigned long rlim_rtprio;
6312
6313 if (!lock_task_sighand(p, &flags))
6314 return -ESRCH;
6315 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6316 unlock_task_sighand(p, &flags);
6317
6318 /* can't set/change the rt policy */
6319 if (policy != p->policy && !rlim_rtprio)
6320 return -EPERM;
6321
6322 /* can't increase priority */
6323 if (param->sched_priority > p->rt_priority &&
6324 param->sched_priority > rlim_rtprio)
6325 return -EPERM;
6326 }
6327 /*
6328 * Like positive nice levels, dont allow tasks to
6329 * move out of SCHED_IDLE either:
6330 */
6331 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6332 return -EPERM;
6333
6334 /* can't change other user's priorities */
6335 if (!check_same_owner(p))
6336 return -EPERM;
6337
6338 /* Normal users shall not reset the sched_reset_on_fork flag */
6339 if (p->sched_reset_on_fork && !reset_on_fork)
6340 return -EPERM;
6341 }
6342
6343 if (user) {
6344 #ifdef CONFIG_RT_GROUP_SCHED
6345 /*
6346 * Do not allow realtime tasks into groups that have no runtime
6347 * assigned.
6348 */
6349 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6350 task_group(p)->rt_bandwidth.rt_runtime == 0)
6351 return -EPERM;
6352 #endif
6353
6354 retval = security_task_setscheduler(p, policy, param);
6355 if (retval)
6356 return retval;
6357 }
6358
6359 /*
6360 * make sure no PI-waiters arrive (or leave) while we are
6361 * changing the priority of the task:
6362 */
6363 raw_spin_lock_irqsave(&p->pi_lock, flags);
6364 /*
6365 * To be able to change p->policy safely, the apropriate
6366 * runqueue lock must be held.
6367 */
6368 rq = __task_rq_lock(p);
6369 /* recheck policy now with rq lock held */
6370 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6371 policy = oldpolicy = -1;
6372 __task_rq_unlock(rq);
6373 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6374 goto recheck;
6375 }
6376 update_rq_clock(rq);
6377 on_rq = p->se.on_rq;
6378 running = task_current(rq, p);
6379 if (on_rq)
6380 deactivate_task(rq, p, 0);
6381 if (running)
6382 p->sched_class->put_prev_task(rq, p);
6383
6384 p->sched_reset_on_fork = reset_on_fork;
6385
6386 oldprio = p->prio;
6387 __setscheduler(rq, p, policy, param->sched_priority);
6388
6389 if (running)
6390 p->sched_class->set_curr_task(rq);
6391 if (on_rq) {
6392 activate_task(rq, p, 0);
6393
6394 check_class_changed(rq, p, prev_class, oldprio, running);
6395 }
6396 __task_rq_unlock(rq);
6397 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6398
6399 rt_mutex_adjust_pi(p);
6400
6401 return 0;
6402 }
6403
6404 /**
6405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6406 * @p: the task in question.
6407 * @policy: new policy.
6408 * @param: structure containing the new RT priority.
6409 *
6410 * NOTE that the task may be already dead.
6411 */
6412 int sched_setscheduler(struct task_struct *p, int policy,
6413 struct sched_param *param)
6414 {
6415 return __sched_setscheduler(p, policy, param, true);
6416 }
6417 EXPORT_SYMBOL_GPL(sched_setscheduler);
6418
6419 /**
6420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6421 * @p: the task in question.
6422 * @policy: new policy.
6423 * @param: structure containing the new RT priority.
6424 *
6425 * Just like sched_setscheduler, only don't bother checking if the
6426 * current context has permission. For example, this is needed in
6427 * stop_machine(): we create temporary high priority worker threads,
6428 * but our caller might not have that capability.
6429 */
6430 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6431 struct sched_param *param)
6432 {
6433 return __sched_setscheduler(p, policy, param, false);
6434 }
6435
6436 static int
6437 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6438 {
6439 struct sched_param lparam;
6440 struct task_struct *p;
6441 int retval;
6442
6443 if (!param || pid < 0)
6444 return -EINVAL;
6445 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6446 return -EFAULT;
6447
6448 rcu_read_lock();
6449 retval = -ESRCH;
6450 p = find_process_by_pid(pid);
6451 if (p != NULL)
6452 retval = sched_setscheduler(p, policy, &lparam);
6453 rcu_read_unlock();
6454
6455 return retval;
6456 }
6457
6458 /**
6459 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6460 * @pid: the pid in question.
6461 * @policy: new policy.
6462 * @param: structure containing the new RT priority.
6463 */
6464 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6465 struct sched_param __user *, param)
6466 {
6467 /* negative values for policy are not valid */
6468 if (policy < 0)
6469 return -EINVAL;
6470
6471 return do_sched_setscheduler(pid, policy, param);
6472 }
6473
6474 /**
6475 * sys_sched_setparam - set/change the RT priority of a thread
6476 * @pid: the pid in question.
6477 * @param: structure containing the new RT priority.
6478 */
6479 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6480 {
6481 return do_sched_setscheduler(pid, -1, param);
6482 }
6483
6484 /**
6485 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6486 * @pid: the pid in question.
6487 */
6488 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6489 {
6490 struct task_struct *p;
6491 int retval;
6492
6493 if (pid < 0)
6494 return -EINVAL;
6495
6496 retval = -ESRCH;
6497 rcu_read_lock();
6498 p = find_process_by_pid(pid);
6499 if (p) {
6500 retval = security_task_getscheduler(p);
6501 if (!retval)
6502 retval = p->policy
6503 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6504 }
6505 rcu_read_unlock();
6506 return retval;
6507 }
6508
6509 /**
6510 * sys_sched_getparam - get the RT priority of a thread
6511 * @pid: the pid in question.
6512 * @param: structure containing the RT priority.
6513 */
6514 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6515 {
6516 struct sched_param lp;
6517 struct task_struct *p;
6518 int retval;
6519
6520 if (!param || pid < 0)
6521 return -EINVAL;
6522
6523 rcu_read_lock();
6524 p = find_process_by_pid(pid);
6525 retval = -ESRCH;
6526 if (!p)
6527 goto out_unlock;
6528
6529 retval = security_task_getscheduler(p);
6530 if (retval)
6531 goto out_unlock;
6532
6533 lp.sched_priority = p->rt_priority;
6534 rcu_read_unlock();
6535
6536 /*
6537 * This one might sleep, we cannot do it with a spinlock held ...
6538 */
6539 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6540
6541 return retval;
6542
6543 out_unlock:
6544 rcu_read_unlock();
6545 return retval;
6546 }
6547
6548 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6549 {
6550 cpumask_var_t cpus_allowed, new_mask;
6551 struct task_struct *p;
6552 int retval;
6553
6554 get_online_cpus();
6555 rcu_read_lock();
6556
6557 p = find_process_by_pid(pid);
6558 if (!p) {
6559 rcu_read_unlock();
6560 put_online_cpus();
6561 return -ESRCH;
6562 }
6563
6564 /* Prevent p going away */
6565 get_task_struct(p);
6566 rcu_read_unlock();
6567
6568 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6569 retval = -ENOMEM;
6570 goto out_put_task;
6571 }
6572 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6573 retval = -ENOMEM;
6574 goto out_free_cpus_allowed;
6575 }
6576 retval = -EPERM;
6577 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6578 goto out_unlock;
6579
6580 retval = security_task_setscheduler(p, 0, NULL);
6581 if (retval)
6582 goto out_unlock;
6583
6584 cpuset_cpus_allowed(p, cpus_allowed);
6585 cpumask_and(new_mask, in_mask, cpus_allowed);
6586 again:
6587 retval = set_cpus_allowed_ptr(p, new_mask);
6588
6589 if (!retval) {
6590 cpuset_cpus_allowed(p, cpus_allowed);
6591 if (!cpumask_subset(new_mask, cpus_allowed)) {
6592 /*
6593 * We must have raced with a concurrent cpuset
6594 * update. Just reset the cpus_allowed to the
6595 * cpuset's cpus_allowed
6596 */
6597 cpumask_copy(new_mask, cpus_allowed);
6598 goto again;
6599 }
6600 }
6601 out_unlock:
6602 free_cpumask_var(new_mask);
6603 out_free_cpus_allowed:
6604 free_cpumask_var(cpus_allowed);
6605 out_put_task:
6606 put_task_struct(p);
6607 put_online_cpus();
6608 return retval;
6609 }
6610
6611 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6612 struct cpumask *new_mask)
6613 {
6614 if (len < cpumask_size())
6615 cpumask_clear(new_mask);
6616 else if (len > cpumask_size())
6617 len = cpumask_size();
6618
6619 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6620 }
6621
6622 /**
6623 * sys_sched_setaffinity - set the cpu affinity of a process
6624 * @pid: pid of the process
6625 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6626 * @user_mask_ptr: user-space pointer to the new cpu mask
6627 */
6628 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6629 unsigned long __user *, user_mask_ptr)
6630 {
6631 cpumask_var_t new_mask;
6632 int retval;
6633
6634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6635 return -ENOMEM;
6636
6637 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6638 if (retval == 0)
6639 retval = sched_setaffinity(pid, new_mask);
6640 free_cpumask_var(new_mask);
6641 return retval;
6642 }
6643
6644 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6645 {
6646 struct task_struct *p;
6647 unsigned long flags;
6648 struct rq *rq;
6649 int retval;
6650
6651 get_online_cpus();
6652 rcu_read_lock();
6653
6654 retval = -ESRCH;
6655 p = find_process_by_pid(pid);
6656 if (!p)
6657 goto out_unlock;
6658
6659 retval = security_task_getscheduler(p);
6660 if (retval)
6661 goto out_unlock;
6662
6663 rq = task_rq_lock(p, &flags);
6664 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6665 task_rq_unlock(rq, &flags);
6666
6667 out_unlock:
6668 rcu_read_unlock();
6669 put_online_cpus();
6670
6671 return retval;
6672 }
6673
6674 /**
6675 * sys_sched_getaffinity - get the cpu affinity of a process
6676 * @pid: pid of the process
6677 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6678 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6679 */
6680 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6681 unsigned long __user *, user_mask_ptr)
6682 {
6683 int ret;
6684 cpumask_var_t mask;
6685
6686 if (len < cpumask_size())
6687 return -EINVAL;
6688
6689 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6690 return -ENOMEM;
6691
6692 ret = sched_getaffinity(pid, mask);
6693 if (ret == 0) {
6694 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6695 ret = -EFAULT;
6696 else
6697 ret = cpumask_size();
6698 }
6699 free_cpumask_var(mask);
6700
6701 return ret;
6702 }
6703
6704 /**
6705 * sys_sched_yield - yield the current processor to other threads.
6706 *
6707 * This function yields the current CPU to other tasks. If there are no
6708 * other threads running on this CPU then this function will return.
6709 */
6710 SYSCALL_DEFINE0(sched_yield)
6711 {
6712 struct rq *rq = this_rq_lock();
6713
6714 schedstat_inc(rq, yld_count);
6715 current->sched_class->yield_task(rq);
6716
6717 /*
6718 * Since we are going to call schedule() anyway, there's
6719 * no need to preempt or enable interrupts:
6720 */
6721 __release(rq->lock);
6722 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6723 do_raw_spin_unlock(&rq->lock);
6724 preempt_enable_no_resched();
6725
6726 schedule();
6727
6728 return 0;
6729 }
6730
6731 static inline int should_resched(void)
6732 {
6733 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6734 }
6735
6736 static void __cond_resched(void)
6737 {
6738 add_preempt_count(PREEMPT_ACTIVE);
6739 schedule();
6740 sub_preempt_count(PREEMPT_ACTIVE);
6741 }
6742
6743 int __sched _cond_resched(void)
6744 {
6745 if (should_resched()) {
6746 __cond_resched();
6747 return 1;
6748 }
6749 return 0;
6750 }
6751 EXPORT_SYMBOL(_cond_resched);
6752
6753 /*
6754 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6755 * call schedule, and on return reacquire the lock.
6756 *
6757 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6758 * operations here to prevent schedule() from being called twice (once via
6759 * spin_unlock(), once by hand).
6760 */
6761 int __cond_resched_lock(spinlock_t *lock)
6762 {
6763 int resched = should_resched();
6764 int ret = 0;
6765
6766 lockdep_assert_held(lock);
6767
6768 if (spin_needbreak(lock) || resched) {
6769 spin_unlock(lock);
6770 if (resched)
6771 __cond_resched();
6772 else
6773 cpu_relax();
6774 ret = 1;
6775 spin_lock(lock);
6776 }
6777 return ret;
6778 }
6779 EXPORT_SYMBOL(__cond_resched_lock);
6780
6781 int __sched __cond_resched_softirq(void)
6782 {
6783 BUG_ON(!in_softirq());
6784
6785 if (should_resched()) {
6786 local_bh_enable();
6787 __cond_resched();
6788 local_bh_disable();
6789 return 1;
6790 }
6791 return 0;
6792 }
6793 EXPORT_SYMBOL(__cond_resched_softirq);
6794
6795 /**
6796 * yield - yield the current processor to other threads.
6797 *
6798 * This is a shortcut for kernel-space yielding - it marks the
6799 * thread runnable and calls sys_sched_yield().
6800 */
6801 void __sched yield(void)
6802 {
6803 set_current_state(TASK_RUNNING);
6804 sys_sched_yield();
6805 }
6806 EXPORT_SYMBOL(yield);
6807
6808 /*
6809 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6810 * that process accounting knows that this is a task in IO wait state.
6811 */
6812 void __sched io_schedule(void)
6813 {
6814 struct rq *rq = raw_rq();
6815
6816 delayacct_blkio_start();
6817 atomic_inc(&rq->nr_iowait);
6818 current->in_iowait = 1;
6819 schedule();
6820 current->in_iowait = 0;
6821 atomic_dec(&rq->nr_iowait);
6822 delayacct_blkio_end();
6823 }
6824 EXPORT_SYMBOL(io_schedule);
6825
6826 long __sched io_schedule_timeout(long timeout)
6827 {
6828 struct rq *rq = raw_rq();
6829 long ret;
6830
6831 delayacct_blkio_start();
6832 atomic_inc(&rq->nr_iowait);
6833 current->in_iowait = 1;
6834 ret = schedule_timeout(timeout);
6835 current->in_iowait = 0;
6836 atomic_dec(&rq->nr_iowait);
6837 delayacct_blkio_end();
6838 return ret;
6839 }
6840
6841 /**
6842 * sys_sched_get_priority_max - return maximum RT priority.
6843 * @policy: scheduling class.
6844 *
6845 * this syscall returns the maximum rt_priority that can be used
6846 * by a given scheduling class.
6847 */
6848 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6849 {
6850 int ret = -EINVAL;
6851
6852 switch (policy) {
6853 case SCHED_FIFO:
6854 case SCHED_RR:
6855 ret = MAX_USER_RT_PRIO-1;
6856 break;
6857 case SCHED_NORMAL:
6858 case SCHED_BATCH:
6859 case SCHED_IDLE:
6860 ret = 0;
6861 break;
6862 }
6863 return ret;
6864 }
6865
6866 /**
6867 * sys_sched_get_priority_min - return minimum RT priority.
6868 * @policy: scheduling class.
6869 *
6870 * this syscall returns the minimum rt_priority that can be used
6871 * by a given scheduling class.
6872 */
6873 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6874 {
6875 int ret = -EINVAL;
6876
6877 switch (policy) {
6878 case SCHED_FIFO:
6879 case SCHED_RR:
6880 ret = 1;
6881 break;
6882 case SCHED_NORMAL:
6883 case SCHED_BATCH:
6884 case SCHED_IDLE:
6885 ret = 0;
6886 }
6887 return ret;
6888 }
6889
6890 /**
6891 * sys_sched_rr_get_interval - return the default timeslice of a process.
6892 * @pid: pid of the process.
6893 * @interval: userspace pointer to the timeslice value.
6894 *
6895 * this syscall writes the default timeslice value of a given process
6896 * into the user-space timespec buffer. A value of '0' means infinity.
6897 */
6898 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6899 struct timespec __user *, interval)
6900 {
6901 struct task_struct *p;
6902 unsigned int time_slice;
6903 unsigned long flags;
6904 struct rq *rq;
6905 int retval;
6906 struct timespec t;
6907
6908 if (pid < 0)
6909 return -EINVAL;
6910
6911 retval = -ESRCH;
6912 rcu_read_lock();
6913 p = find_process_by_pid(pid);
6914 if (!p)
6915 goto out_unlock;
6916
6917 retval = security_task_getscheduler(p);
6918 if (retval)
6919 goto out_unlock;
6920
6921 rq = task_rq_lock(p, &flags);
6922 time_slice = p->sched_class->get_rr_interval(rq, p);
6923 task_rq_unlock(rq, &flags);
6924
6925 rcu_read_unlock();
6926 jiffies_to_timespec(time_slice, &t);
6927 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6928 return retval;
6929
6930 out_unlock:
6931 rcu_read_unlock();
6932 return retval;
6933 }
6934
6935 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6936
6937 void sched_show_task(struct task_struct *p)
6938 {
6939 unsigned long free = 0;
6940 unsigned state;
6941
6942 state = p->state ? __ffs(p->state) + 1 : 0;
6943 pr_info("%-13.13s %c", p->comm,
6944 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6945 #if BITS_PER_LONG == 32
6946 if (state == TASK_RUNNING)
6947 pr_cont(" running ");
6948 else
6949 pr_cont(" %08lx ", thread_saved_pc(p));
6950 #else
6951 if (state == TASK_RUNNING)
6952 pr_cont(" running task ");
6953 else
6954 pr_cont(" %016lx ", thread_saved_pc(p));
6955 #endif
6956 #ifdef CONFIG_DEBUG_STACK_USAGE
6957 free = stack_not_used(p);
6958 #endif
6959 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6960 task_pid_nr(p), task_pid_nr(p->real_parent),
6961 (unsigned long)task_thread_info(p)->flags);
6962
6963 show_stack(p, NULL);
6964 }
6965
6966 void show_state_filter(unsigned long state_filter)
6967 {
6968 struct task_struct *g, *p;
6969
6970 #if BITS_PER_LONG == 32
6971 pr_info(" task PC stack pid father\n");
6972 #else
6973 pr_info(" task PC stack pid father\n");
6974 #endif
6975 read_lock(&tasklist_lock);
6976 do_each_thread(g, p) {
6977 /*
6978 * reset the NMI-timeout, listing all files on a slow
6979 * console might take alot of time:
6980 */
6981 touch_nmi_watchdog();
6982 if (!state_filter || (p->state & state_filter))
6983 sched_show_task(p);
6984 } while_each_thread(g, p);
6985
6986 touch_all_softlockup_watchdogs();
6987
6988 #ifdef CONFIG_SCHED_DEBUG
6989 sysrq_sched_debug_show();
6990 #endif
6991 read_unlock(&tasklist_lock);
6992 /*
6993 * Only show locks if all tasks are dumped:
6994 */
6995 if (!state_filter)
6996 debug_show_all_locks();
6997 }
6998
6999 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7000 {
7001 idle->sched_class = &idle_sched_class;
7002 }
7003
7004 /**
7005 * init_idle - set up an idle thread for a given CPU
7006 * @idle: task in question
7007 * @cpu: cpu the idle task belongs to
7008 *
7009 * NOTE: this function does not set the idle thread's NEED_RESCHED
7010 * flag, to make booting more robust.
7011 */
7012 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7013 {
7014 struct rq *rq = cpu_rq(cpu);
7015 unsigned long flags;
7016
7017 raw_spin_lock_irqsave(&rq->lock, flags);
7018
7019 __sched_fork(idle);
7020 idle->state = TASK_RUNNING;
7021 idle->se.exec_start = sched_clock();
7022
7023 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7024 __set_task_cpu(idle, cpu);
7025
7026 rq->curr = rq->idle = idle;
7027 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7028 idle->oncpu = 1;
7029 #endif
7030 raw_spin_unlock_irqrestore(&rq->lock, flags);
7031
7032 /* Set the preempt count _outside_ the spinlocks! */
7033 #if defined(CONFIG_PREEMPT)
7034 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7035 #else
7036 task_thread_info(idle)->preempt_count = 0;
7037 #endif
7038 /*
7039 * The idle tasks have their own, simple scheduling class:
7040 */
7041 idle->sched_class = &idle_sched_class;
7042 ftrace_graph_init_task(idle);
7043 }
7044
7045 /*
7046 * In a system that switches off the HZ timer nohz_cpu_mask
7047 * indicates which cpus entered this state. This is used
7048 * in the rcu update to wait only for active cpus. For system
7049 * which do not switch off the HZ timer nohz_cpu_mask should
7050 * always be CPU_BITS_NONE.
7051 */
7052 cpumask_var_t nohz_cpu_mask;
7053
7054 /*
7055 * Increase the granularity value when there are more CPUs,
7056 * because with more CPUs the 'effective latency' as visible
7057 * to users decreases. But the relationship is not linear,
7058 * so pick a second-best guess by going with the log2 of the
7059 * number of CPUs.
7060 *
7061 * This idea comes from the SD scheduler of Con Kolivas:
7062 */
7063 static int get_update_sysctl_factor(void)
7064 {
7065 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7066 unsigned int factor;
7067
7068 switch (sysctl_sched_tunable_scaling) {
7069 case SCHED_TUNABLESCALING_NONE:
7070 factor = 1;
7071 break;
7072 case SCHED_TUNABLESCALING_LINEAR:
7073 factor = cpus;
7074 break;
7075 case SCHED_TUNABLESCALING_LOG:
7076 default:
7077 factor = 1 + ilog2(cpus);
7078 break;
7079 }
7080
7081 return factor;
7082 }
7083
7084 static void update_sysctl(void)
7085 {
7086 unsigned int factor = get_update_sysctl_factor();
7087
7088 #define SET_SYSCTL(name) \
7089 (sysctl_##name = (factor) * normalized_sysctl_##name)
7090 SET_SYSCTL(sched_min_granularity);
7091 SET_SYSCTL(sched_latency);
7092 SET_SYSCTL(sched_wakeup_granularity);
7093 SET_SYSCTL(sched_shares_ratelimit);
7094 #undef SET_SYSCTL
7095 }
7096
7097 static inline void sched_init_granularity(void)
7098 {
7099 update_sysctl();
7100 }
7101
7102 #ifdef CONFIG_SMP
7103 /*
7104 * This is how migration works:
7105 *
7106 * 1) we queue a struct migration_req structure in the source CPU's
7107 * runqueue and wake up that CPU's migration thread.
7108 * 2) we down() the locked semaphore => thread blocks.
7109 * 3) migration thread wakes up (implicitly it forces the migrated
7110 * thread off the CPU)
7111 * 4) it gets the migration request and checks whether the migrated
7112 * task is still in the wrong runqueue.
7113 * 5) if it's in the wrong runqueue then the migration thread removes
7114 * it and puts it into the right queue.
7115 * 6) migration thread up()s the semaphore.
7116 * 7) we wake up and the migration is done.
7117 */
7118
7119 /*
7120 * Change a given task's CPU affinity. Migrate the thread to a
7121 * proper CPU and schedule it away if the CPU it's executing on
7122 * is removed from the allowed bitmask.
7123 *
7124 * NOTE: the caller must have a valid reference to the task, the
7125 * task must not exit() & deallocate itself prematurely. The
7126 * call is not atomic; no spinlocks may be held.
7127 */
7128 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7129 {
7130 struct migration_req req;
7131 unsigned long flags;
7132 struct rq *rq;
7133 int ret = 0;
7134
7135 /*
7136 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7137 * the ->cpus_allowed mask from under waking tasks, which would be
7138 * possible when we change rq->lock in ttwu(), so synchronize against
7139 * TASK_WAKING to avoid that.
7140 */
7141 again:
7142 while (p->state == TASK_WAKING)
7143 cpu_relax();
7144
7145 rq = task_rq_lock(p, &flags);
7146
7147 if (p->state == TASK_WAKING) {
7148 task_rq_unlock(rq, &flags);
7149 goto again;
7150 }
7151
7152 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7153 ret = -EINVAL;
7154 goto out;
7155 }
7156
7157 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7158 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7159 ret = -EINVAL;
7160 goto out;
7161 }
7162
7163 if (p->sched_class->set_cpus_allowed)
7164 p->sched_class->set_cpus_allowed(p, new_mask);
7165 else {
7166 cpumask_copy(&p->cpus_allowed, new_mask);
7167 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7168 }
7169
7170 /* Can the task run on the task's current CPU? If so, we're done */
7171 if (cpumask_test_cpu(task_cpu(p), new_mask))
7172 goto out;
7173
7174 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7175 /* Need help from migration thread: drop lock and wait. */
7176 struct task_struct *mt = rq->migration_thread;
7177
7178 get_task_struct(mt);
7179 task_rq_unlock(rq, &flags);
7180 wake_up_process(rq->migration_thread);
7181 put_task_struct(mt);
7182 wait_for_completion(&req.done);
7183 tlb_migrate_finish(p->mm);
7184 return 0;
7185 }
7186 out:
7187 task_rq_unlock(rq, &flags);
7188
7189 return ret;
7190 }
7191 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7192
7193 /*
7194 * Move (not current) task off this cpu, onto dest cpu. We're doing
7195 * this because either it can't run here any more (set_cpus_allowed()
7196 * away from this CPU, or CPU going down), or because we're
7197 * attempting to rebalance this task on exec (sched_exec).
7198 *
7199 * So we race with normal scheduler movements, but that's OK, as long
7200 * as the task is no longer on this CPU.
7201 *
7202 * Returns non-zero if task was successfully migrated.
7203 */
7204 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7205 {
7206 struct rq *rq_dest, *rq_src;
7207 int ret = 0;
7208
7209 if (unlikely(!cpu_active(dest_cpu)))
7210 return ret;
7211
7212 rq_src = cpu_rq(src_cpu);
7213 rq_dest = cpu_rq(dest_cpu);
7214
7215 double_rq_lock(rq_src, rq_dest);
7216 /* Already moved. */
7217 if (task_cpu(p) != src_cpu)
7218 goto done;
7219 /* Affinity changed (again). */
7220 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7221 goto fail;
7222
7223 /*
7224 * If we're not on a rq, the next wake-up will ensure we're
7225 * placed properly.
7226 */
7227 if (p->se.on_rq) {
7228 deactivate_task(rq_src, p, 0);
7229 set_task_cpu(p, dest_cpu);
7230 activate_task(rq_dest, p, 0);
7231 check_preempt_curr(rq_dest, p, 0);
7232 }
7233 done:
7234 ret = 1;
7235 fail:
7236 double_rq_unlock(rq_src, rq_dest);
7237 return ret;
7238 }
7239
7240 #define RCU_MIGRATION_IDLE 0
7241 #define RCU_MIGRATION_NEED_QS 1
7242 #define RCU_MIGRATION_GOT_QS 2
7243 #define RCU_MIGRATION_MUST_SYNC 3
7244
7245 /*
7246 * migration_thread - this is a highprio system thread that performs
7247 * thread migration by bumping thread off CPU then 'pushing' onto
7248 * another runqueue.
7249 */
7250 static int migration_thread(void *data)
7251 {
7252 int badcpu;
7253 int cpu = (long)data;
7254 struct rq *rq;
7255
7256 rq = cpu_rq(cpu);
7257 BUG_ON(rq->migration_thread != current);
7258
7259 set_current_state(TASK_INTERRUPTIBLE);
7260 while (!kthread_should_stop()) {
7261 struct migration_req *req;
7262 struct list_head *head;
7263
7264 raw_spin_lock_irq(&rq->lock);
7265
7266 if (cpu_is_offline(cpu)) {
7267 raw_spin_unlock_irq(&rq->lock);
7268 break;
7269 }
7270
7271 if (rq->active_balance) {
7272 active_load_balance(rq, cpu);
7273 rq->active_balance = 0;
7274 }
7275
7276 head = &rq->migration_queue;
7277
7278 if (list_empty(head)) {
7279 raw_spin_unlock_irq(&rq->lock);
7280 schedule();
7281 set_current_state(TASK_INTERRUPTIBLE);
7282 continue;
7283 }
7284 req = list_entry(head->next, struct migration_req, list);
7285 list_del_init(head->next);
7286
7287 if (req->task != NULL) {
7288 raw_spin_unlock(&rq->lock);
7289 __migrate_task(req->task, cpu, req->dest_cpu);
7290 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7291 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7292 raw_spin_unlock(&rq->lock);
7293 } else {
7294 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7295 raw_spin_unlock(&rq->lock);
7296 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7297 }
7298 local_irq_enable();
7299
7300 complete(&req->done);
7301 }
7302 __set_current_state(TASK_RUNNING);
7303
7304 return 0;
7305 }
7306
7307 #ifdef CONFIG_HOTPLUG_CPU
7308
7309 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7310 {
7311 int ret;
7312
7313 local_irq_disable();
7314 ret = __migrate_task(p, src_cpu, dest_cpu);
7315 local_irq_enable();
7316 return ret;
7317 }
7318
7319 /*
7320 * Figure out where task on dead CPU should go, use force if necessary.
7321 */
7322 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7323 {
7324 int dest_cpu;
7325
7326 again:
7327 dest_cpu = select_fallback_rq(dead_cpu, p);
7328
7329 /* It can have affinity changed while we were choosing. */
7330 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7331 goto again;
7332 }
7333
7334 /*
7335 * While a dead CPU has no uninterruptible tasks queued at this point,
7336 * it might still have a nonzero ->nr_uninterruptible counter, because
7337 * for performance reasons the counter is not stricly tracking tasks to
7338 * their home CPUs. So we just add the counter to another CPU's counter,
7339 * to keep the global sum constant after CPU-down:
7340 */
7341 static void migrate_nr_uninterruptible(struct rq *rq_src)
7342 {
7343 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7344 unsigned long flags;
7345
7346 local_irq_save(flags);
7347 double_rq_lock(rq_src, rq_dest);
7348 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7349 rq_src->nr_uninterruptible = 0;
7350 double_rq_unlock(rq_src, rq_dest);
7351 local_irq_restore(flags);
7352 }
7353
7354 /* Run through task list and migrate tasks from the dead cpu. */
7355 static void migrate_live_tasks(int src_cpu)
7356 {
7357 struct task_struct *p, *t;
7358
7359 read_lock(&tasklist_lock);
7360
7361 do_each_thread(t, p) {
7362 if (p == current)
7363 continue;
7364
7365 if (task_cpu(p) == src_cpu)
7366 move_task_off_dead_cpu(src_cpu, p);
7367 } while_each_thread(t, p);
7368
7369 read_unlock(&tasklist_lock);
7370 }
7371
7372 /*
7373 * Schedules idle task to be the next runnable task on current CPU.
7374 * It does so by boosting its priority to highest possible.
7375 * Used by CPU offline code.
7376 */
7377 void sched_idle_next(void)
7378 {
7379 int this_cpu = smp_processor_id();
7380 struct rq *rq = cpu_rq(this_cpu);
7381 struct task_struct *p = rq->idle;
7382 unsigned long flags;
7383
7384 /* cpu has to be offline */
7385 BUG_ON(cpu_online(this_cpu));
7386
7387 /*
7388 * Strictly not necessary since rest of the CPUs are stopped by now
7389 * and interrupts disabled on the current cpu.
7390 */
7391 raw_spin_lock_irqsave(&rq->lock, flags);
7392
7393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7394
7395 update_rq_clock(rq);
7396 activate_task(rq, p, 0);
7397
7398 raw_spin_unlock_irqrestore(&rq->lock, flags);
7399 }
7400
7401 /*
7402 * Ensures that the idle task is using init_mm right before its cpu goes
7403 * offline.
7404 */
7405 void idle_task_exit(void)
7406 {
7407 struct mm_struct *mm = current->active_mm;
7408
7409 BUG_ON(cpu_online(smp_processor_id()));
7410
7411 if (mm != &init_mm)
7412 switch_mm(mm, &init_mm, current);
7413 mmdrop(mm);
7414 }
7415
7416 /* called under rq->lock with disabled interrupts */
7417 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7418 {
7419 struct rq *rq = cpu_rq(dead_cpu);
7420
7421 /* Must be exiting, otherwise would be on tasklist. */
7422 BUG_ON(!p->exit_state);
7423
7424 /* Cannot have done final schedule yet: would have vanished. */
7425 BUG_ON(p->state == TASK_DEAD);
7426
7427 get_task_struct(p);
7428
7429 /*
7430 * Drop lock around migration; if someone else moves it,
7431 * that's OK. No task can be added to this CPU, so iteration is
7432 * fine.
7433 */
7434 raw_spin_unlock_irq(&rq->lock);
7435 move_task_off_dead_cpu(dead_cpu, p);
7436 raw_spin_lock_irq(&rq->lock);
7437
7438 put_task_struct(p);
7439 }
7440
7441 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7442 static void migrate_dead_tasks(unsigned int dead_cpu)
7443 {
7444 struct rq *rq = cpu_rq(dead_cpu);
7445 struct task_struct *next;
7446
7447 for ( ; ; ) {
7448 if (!rq->nr_running)
7449 break;
7450 update_rq_clock(rq);
7451 next = pick_next_task(rq);
7452 if (!next)
7453 break;
7454 next->sched_class->put_prev_task(rq, next);
7455 migrate_dead(dead_cpu, next);
7456
7457 }
7458 }
7459
7460 /*
7461 * remove the tasks which were accounted by rq from calc_load_tasks.
7462 */
7463 static void calc_global_load_remove(struct rq *rq)
7464 {
7465 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7466 rq->calc_load_active = 0;
7467 }
7468 #endif /* CONFIG_HOTPLUG_CPU */
7469
7470 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7471
7472 static struct ctl_table sd_ctl_dir[] = {
7473 {
7474 .procname = "sched_domain",
7475 .mode = 0555,
7476 },
7477 {}
7478 };
7479
7480 static struct ctl_table sd_ctl_root[] = {
7481 {
7482 .procname = "kernel",
7483 .mode = 0555,
7484 .child = sd_ctl_dir,
7485 },
7486 {}
7487 };
7488
7489 static struct ctl_table *sd_alloc_ctl_entry(int n)
7490 {
7491 struct ctl_table *entry =
7492 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7493
7494 return entry;
7495 }
7496
7497 static void sd_free_ctl_entry(struct ctl_table **tablep)
7498 {
7499 struct ctl_table *entry;
7500
7501 /*
7502 * In the intermediate directories, both the child directory and
7503 * procname are dynamically allocated and could fail but the mode
7504 * will always be set. In the lowest directory the names are
7505 * static strings and all have proc handlers.
7506 */
7507 for (entry = *tablep; entry->mode; entry++) {
7508 if (entry->child)
7509 sd_free_ctl_entry(&entry->child);
7510 if (entry->proc_handler == NULL)
7511 kfree(entry->procname);
7512 }
7513
7514 kfree(*tablep);
7515 *tablep = NULL;
7516 }
7517
7518 static void
7519 set_table_entry(struct ctl_table *entry,
7520 const char *procname, void *data, int maxlen,
7521 mode_t mode, proc_handler *proc_handler)
7522 {
7523 entry->procname = procname;
7524 entry->data = data;
7525 entry->maxlen = maxlen;
7526 entry->mode = mode;
7527 entry->proc_handler = proc_handler;
7528 }
7529
7530 static struct ctl_table *
7531 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7532 {
7533 struct ctl_table *table = sd_alloc_ctl_entry(13);
7534
7535 if (table == NULL)
7536 return NULL;
7537
7538 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7539 sizeof(long), 0644, proc_doulongvec_minmax);
7540 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7541 sizeof(long), 0644, proc_doulongvec_minmax);
7542 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7543 sizeof(int), 0644, proc_dointvec_minmax);
7544 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7545 sizeof(int), 0644, proc_dointvec_minmax);
7546 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7547 sizeof(int), 0644, proc_dointvec_minmax);
7548 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7549 sizeof(int), 0644, proc_dointvec_minmax);
7550 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7551 sizeof(int), 0644, proc_dointvec_minmax);
7552 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7553 sizeof(int), 0644, proc_dointvec_minmax);
7554 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7555 sizeof(int), 0644, proc_dointvec_minmax);
7556 set_table_entry(&table[9], "cache_nice_tries",
7557 &sd->cache_nice_tries,
7558 sizeof(int), 0644, proc_dointvec_minmax);
7559 set_table_entry(&table[10], "flags", &sd->flags,
7560 sizeof(int), 0644, proc_dointvec_minmax);
7561 set_table_entry(&table[11], "name", sd->name,
7562 CORENAME_MAX_SIZE, 0444, proc_dostring);
7563 /* &table[12] is terminator */
7564
7565 return table;
7566 }
7567
7568 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7569 {
7570 struct ctl_table *entry, *table;
7571 struct sched_domain *sd;
7572 int domain_num = 0, i;
7573 char buf[32];
7574
7575 for_each_domain(cpu, sd)
7576 domain_num++;
7577 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7578 if (table == NULL)
7579 return NULL;
7580
7581 i = 0;
7582 for_each_domain(cpu, sd) {
7583 snprintf(buf, 32, "domain%d", i);
7584 entry->procname = kstrdup(buf, GFP_KERNEL);
7585 entry->mode = 0555;
7586 entry->child = sd_alloc_ctl_domain_table(sd);
7587 entry++;
7588 i++;
7589 }
7590 return table;
7591 }
7592
7593 static struct ctl_table_header *sd_sysctl_header;
7594 static void register_sched_domain_sysctl(void)
7595 {
7596 int i, cpu_num = num_possible_cpus();
7597 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7598 char buf[32];
7599
7600 WARN_ON(sd_ctl_dir[0].child);
7601 sd_ctl_dir[0].child = entry;
7602
7603 if (entry == NULL)
7604 return;
7605
7606 for_each_possible_cpu(i) {
7607 snprintf(buf, 32, "cpu%d", i);
7608 entry->procname = kstrdup(buf, GFP_KERNEL);
7609 entry->mode = 0555;
7610 entry->child = sd_alloc_ctl_cpu_table(i);
7611 entry++;
7612 }
7613
7614 WARN_ON(sd_sysctl_header);
7615 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7616 }
7617
7618 /* may be called multiple times per register */
7619 static void unregister_sched_domain_sysctl(void)
7620 {
7621 if (sd_sysctl_header)
7622 unregister_sysctl_table(sd_sysctl_header);
7623 sd_sysctl_header = NULL;
7624 if (sd_ctl_dir[0].child)
7625 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7626 }
7627 #else
7628 static void register_sched_domain_sysctl(void)
7629 {
7630 }
7631 static void unregister_sched_domain_sysctl(void)
7632 {
7633 }
7634 #endif
7635
7636 static void set_rq_online(struct rq *rq)
7637 {
7638 if (!rq->online) {
7639 const struct sched_class *class;
7640
7641 cpumask_set_cpu(rq->cpu, rq->rd->online);
7642 rq->online = 1;
7643
7644 for_each_class(class) {
7645 if (class->rq_online)
7646 class->rq_online(rq);
7647 }
7648 }
7649 }
7650
7651 static void set_rq_offline(struct rq *rq)
7652 {
7653 if (rq->online) {
7654 const struct sched_class *class;
7655
7656 for_each_class(class) {
7657 if (class->rq_offline)
7658 class->rq_offline(rq);
7659 }
7660
7661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7662 rq->online = 0;
7663 }
7664 }
7665
7666 /*
7667 * migration_call - callback that gets triggered when a CPU is added.
7668 * Here we can start up the necessary migration thread for the new CPU.
7669 */
7670 static int __cpuinit
7671 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7672 {
7673 struct task_struct *p;
7674 int cpu = (long)hcpu;
7675 unsigned long flags;
7676 struct rq *rq;
7677
7678 switch (action) {
7679
7680 case CPU_UP_PREPARE:
7681 case CPU_UP_PREPARE_FROZEN:
7682 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7683 if (IS_ERR(p))
7684 return NOTIFY_BAD;
7685 kthread_bind(p, cpu);
7686 /* Must be high prio: stop_machine expects to yield to it. */
7687 rq = task_rq_lock(p, &flags);
7688 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7689 task_rq_unlock(rq, &flags);
7690 get_task_struct(p);
7691 cpu_rq(cpu)->migration_thread = p;
7692 rq->calc_load_update = calc_load_update;
7693 break;
7694
7695 case CPU_ONLINE:
7696 case CPU_ONLINE_FROZEN:
7697 /* Strictly unnecessary, as first user will wake it. */
7698 wake_up_process(cpu_rq(cpu)->migration_thread);
7699
7700 /* Update our root-domain */
7701 rq = cpu_rq(cpu);
7702 raw_spin_lock_irqsave(&rq->lock, flags);
7703 if (rq->rd) {
7704 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7705
7706 set_rq_online(rq);
7707 }
7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
7709 break;
7710
7711 #ifdef CONFIG_HOTPLUG_CPU
7712 case CPU_UP_CANCELED:
7713 case CPU_UP_CANCELED_FROZEN:
7714 if (!cpu_rq(cpu)->migration_thread)
7715 break;
7716 /* Unbind it from offline cpu so it can run. Fall thru. */
7717 kthread_bind(cpu_rq(cpu)->migration_thread,
7718 cpumask_any(cpu_online_mask));
7719 kthread_stop(cpu_rq(cpu)->migration_thread);
7720 put_task_struct(cpu_rq(cpu)->migration_thread);
7721 cpu_rq(cpu)->migration_thread = NULL;
7722 break;
7723
7724 case CPU_DEAD:
7725 case CPU_DEAD_FROZEN:
7726 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7727 migrate_live_tasks(cpu);
7728 rq = cpu_rq(cpu);
7729 kthread_stop(rq->migration_thread);
7730 put_task_struct(rq->migration_thread);
7731 rq->migration_thread = NULL;
7732 /* Idle task back to normal (off runqueue, low prio) */
7733 raw_spin_lock_irq(&rq->lock);
7734 update_rq_clock(rq);
7735 deactivate_task(rq, rq->idle, 0);
7736 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7737 rq->idle->sched_class = &idle_sched_class;
7738 migrate_dead_tasks(cpu);
7739 raw_spin_unlock_irq(&rq->lock);
7740 cpuset_unlock();
7741 migrate_nr_uninterruptible(rq);
7742 BUG_ON(rq->nr_running != 0);
7743 calc_global_load_remove(rq);
7744 /*
7745 * No need to migrate the tasks: it was best-effort if
7746 * they didn't take sched_hotcpu_mutex. Just wake up
7747 * the requestors.
7748 */
7749 raw_spin_lock_irq(&rq->lock);
7750 while (!list_empty(&rq->migration_queue)) {
7751 struct migration_req *req;
7752
7753 req = list_entry(rq->migration_queue.next,
7754 struct migration_req, list);
7755 list_del_init(&req->list);
7756 raw_spin_unlock_irq(&rq->lock);
7757 complete(&req->done);
7758 raw_spin_lock_irq(&rq->lock);
7759 }
7760 raw_spin_unlock_irq(&rq->lock);
7761 break;
7762
7763 case CPU_DYING:
7764 case CPU_DYING_FROZEN:
7765 /* Update our root-domain */
7766 rq = cpu_rq(cpu);
7767 raw_spin_lock_irqsave(&rq->lock, flags);
7768 if (rq->rd) {
7769 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7770 set_rq_offline(rq);
7771 }
7772 raw_spin_unlock_irqrestore(&rq->lock, flags);
7773 break;
7774 #endif
7775 }
7776 return NOTIFY_OK;
7777 }
7778
7779 /*
7780 * Register at high priority so that task migration (migrate_all_tasks)
7781 * happens before everything else. This has to be lower priority than
7782 * the notifier in the perf_event subsystem, though.
7783 */
7784 static struct notifier_block __cpuinitdata migration_notifier = {
7785 .notifier_call = migration_call,
7786 .priority = 10
7787 };
7788
7789 static int __init migration_init(void)
7790 {
7791 void *cpu = (void *)(long)smp_processor_id();
7792 int err;
7793
7794 /* Start one for the boot CPU: */
7795 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7796 BUG_ON(err == NOTIFY_BAD);
7797 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7798 register_cpu_notifier(&migration_notifier);
7799
7800 return 0;
7801 }
7802 early_initcall(migration_init);
7803 #endif
7804
7805 #ifdef CONFIG_SMP
7806
7807 #ifdef CONFIG_SCHED_DEBUG
7808
7809 static __read_mostly int sched_domain_debug_enabled;
7810
7811 static int __init sched_domain_debug_setup(char *str)
7812 {
7813 sched_domain_debug_enabled = 1;
7814
7815 return 0;
7816 }
7817 early_param("sched_debug", sched_domain_debug_setup);
7818
7819 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7820 struct cpumask *groupmask)
7821 {
7822 struct sched_group *group = sd->groups;
7823 char str[256];
7824
7825 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7826 cpumask_clear(groupmask);
7827
7828 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7829
7830 if (!(sd->flags & SD_LOAD_BALANCE)) {
7831 pr_cont("does not load-balance\n");
7832 if (sd->parent)
7833 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
7834 return -1;
7835 }
7836
7837 pr_cont("span %s level %s\n", str, sd->name);
7838
7839 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7840 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
7841 }
7842 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7843 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
7844 }
7845
7846 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7847 do {
7848 if (!group) {
7849 pr_cont("\n");
7850 pr_err("ERROR: group is NULL\n");
7851 break;
7852 }
7853
7854 if (!group->cpu_power) {
7855 pr_cont("\n");
7856 pr_err("ERROR: domain->cpu_power not set\n");
7857 break;
7858 }
7859
7860 if (!cpumask_weight(sched_group_cpus(group))) {
7861 pr_cont("\n");
7862 pr_err("ERROR: empty group\n");
7863 break;
7864 }
7865
7866 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7867 pr_cont("\n");
7868 pr_err("ERROR: repeated CPUs\n");
7869 break;
7870 }
7871
7872 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7873
7874 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7875
7876 pr_cont(" %s", str);
7877 if (group->cpu_power != SCHED_LOAD_SCALE) {
7878 pr_cont(" (cpu_power = %d)", group->cpu_power);
7879 }
7880
7881 group = group->next;
7882 } while (group != sd->groups);
7883 pr_cont("\n");
7884
7885 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7886 pr_err("ERROR: groups don't span domain->span\n");
7887
7888 if (sd->parent &&
7889 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7890 pr_err("ERROR: parent span is not a superset of domain->span\n");
7891 return 0;
7892 }
7893
7894 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7895 {
7896 cpumask_var_t groupmask;
7897 int level = 0;
7898
7899 if (!sched_domain_debug_enabled)
7900 return;
7901
7902 if (!sd) {
7903 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7904 return;
7905 }
7906
7907 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7908
7909 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7910 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7911 return;
7912 }
7913
7914 for (;;) {
7915 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7916 break;
7917 level++;
7918 sd = sd->parent;
7919 if (!sd)
7920 break;
7921 }
7922 free_cpumask_var(groupmask);
7923 }
7924 #else /* !CONFIG_SCHED_DEBUG */
7925 # define sched_domain_debug(sd, cpu) do { } while (0)
7926 #endif /* CONFIG_SCHED_DEBUG */
7927
7928 static int sd_degenerate(struct sched_domain *sd)
7929 {
7930 if (cpumask_weight(sched_domain_span(sd)) == 1)
7931 return 1;
7932
7933 /* Following flags need at least 2 groups */
7934 if (sd->flags & (SD_LOAD_BALANCE |
7935 SD_BALANCE_NEWIDLE |
7936 SD_BALANCE_FORK |
7937 SD_BALANCE_EXEC |
7938 SD_SHARE_CPUPOWER |
7939 SD_SHARE_PKG_RESOURCES)) {
7940 if (sd->groups != sd->groups->next)
7941 return 0;
7942 }
7943
7944 /* Following flags don't use groups */
7945 if (sd->flags & (SD_WAKE_AFFINE))
7946 return 0;
7947
7948 return 1;
7949 }
7950
7951 static int
7952 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7953 {
7954 unsigned long cflags = sd->flags, pflags = parent->flags;
7955
7956 if (sd_degenerate(parent))
7957 return 1;
7958
7959 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7960 return 0;
7961
7962 /* Flags needing groups don't count if only 1 group in parent */
7963 if (parent->groups == parent->groups->next) {
7964 pflags &= ~(SD_LOAD_BALANCE |
7965 SD_BALANCE_NEWIDLE |
7966 SD_BALANCE_FORK |
7967 SD_BALANCE_EXEC |
7968 SD_SHARE_CPUPOWER |
7969 SD_SHARE_PKG_RESOURCES);
7970 if (nr_node_ids == 1)
7971 pflags &= ~SD_SERIALIZE;
7972 }
7973 if (~cflags & pflags)
7974 return 0;
7975
7976 return 1;
7977 }
7978
7979 static void free_rootdomain(struct root_domain *rd)
7980 {
7981 synchronize_sched();
7982
7983 cpupri_cleanup(&rd->cpupri);
7984
7985 free_cpumask_var(rd->rto_mask);
7986 free_cpumask_var(rd->online);
7987 free_cpumask_var(rd->span);
7988 kfree(rd);
7989 }
7990
7991 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7992 {
7993 struct root_domain *old_rd = NULL;
7994 unsigned long flags;
7995
7996 raw_spin_lock_irqsave(&rq->lock, flags);
7997
7998 if (rq->rd) {
7999 old_rd = rq->rd;
8000
8001 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8002 set_rq_offline(rq);
8003
8004 cpumask_clear_cpu(rq->cpu, old_rd->span);
8005
8006 /*
8007 * If we dont want to free the old_rt yet then
8008 * set old_rd to NULL to skip the freeing later
8009 * in this function:
8010 */
8011 if (!atomic_dec_and_test(&old_rd->refcount))
8012 old_rd = NULL;
8013 }
8014
8015 atomic_inc(&rd->refcount);
8016 rq->rd = rd;
8017
8018 cpumask_set_cpu(rq->cpu, rd->span);
8019 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8020 set_rq_online(rq);
8021
8022 raw_spin_unlock_irqrestore(&rq->lock, flags);
8023
8024 if (old_rd)
8025 free_rootdomain(old_rd);
8026 }
8027
8028 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8029 {
8030 gfp_t gfp = GFP_KERNEL;
8031
8032 memset(rd, 0, sizeof(*rd));
8033
8034 if (bootmem)
8035 gfp = GFP_NOWAIT;
8036
8037 if (!alloc_cpumask_var(&rd->span, gfp))
8038 goto out;
8039 if (!alloc_cpumask_var(&rd->online, gfp))
8040 goto free_span;
8041 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8042 goto free_online;
8043
8044 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8045 goto free_rto_mask;
8046 return 0;
8047
8048 free_rto_mask:
8049 free_cpumask_var(rd->rto_mask);
8050 free_online:
8051 free_cpumask_var(rd->online);
8052 free_span:
8053 free_cpumask_var(rd->span);
8054 out:
8055 return -ENOMEM;
8056 }
8057
8058 static void init_defrootdomain(void)
8059 {
8060 init_rootdomain(&def_root_domain, true);
8061
8062 atomic_set(&def_root_domain.refcount, 1);
8063 }
8064
8065 static struct root_domain *alloc_rootdomain(void)
8066 {
8067 struct root_domain *rd;
8068
8069 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8070 if (!rd)
8071 return NULL;
8072
8073 if (init_rootdomain(rd, false) != 0) {
8074 kfree(rd);
8075 return NULL;
8076 }
8077
8078 return rd;
8079 }
8080
8081 /*
8082 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8083 * hold the hotplug lock.
8084 */
8085 static void
8086 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8087 {
8088 struct rq *rq = cpu_rq(cpu);
8089 struct sched_domain *tmp;
8090
8091 /* Remove the sched domains which do not contribute to scheduling. */
8092 for (tmp = sd; tmp; ) {
8093 struct sched_domain *parent = tmp->parent;
8094 if (!parent)
8095 break;
8096
8097 if (sd_parent_degenerate(tmp, parent)) {
8098 tmp->parent = parent->parent;
8099 if (parent->parent)
8100 parent->parent->child = tmp;
8101 } else
8102 tmp = tmp->parent;
8103 }
8104
8105 if (sd && sd_degenerate(sd)) {
8106 sd = sd->parent;
8107 if (sd)
8108 sd->child = NULL;
8109 }
8110
8111 sched_domain_debug(sd, cpu);
8112
8113 rq_attach_root(rq, rd);
8114 rcu_assign_pointer(rq->sd, sd);
8115 }
8116
8117 /* cpus with isolated domains */
8118 static cpumask_var_t cpu_isolated_map;
8119
8120 /* Setup the mask of cpus configured for isolated domains */
8121 static int __init isolated_cpu_setup(char *str)
8122 {
8123 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8124 cpulist_parse(str, cpu_isolated_map);
8125 return 1;
8126 }
8127
8128 __setup("isolcpus=", isolated_cpu_setup);
8129
8130 /*
8131 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8132 * to a function which identifies what group(along with sched group) a CPU
8133 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8134 * (due to the fact that we keep track of groups covered with a struct cpumask).
8135 *
8136 * init_sched_build_groups will build a circular linked list of the groups
8137 * covered by the given span, and will set each group's ->cpumask correctly,
8138 * and ->cpu_power to 0.
8139 */
8140 static void
8141 init_sched_build_groups(const struct cpumask *span,
8142 const struct cpumask *cpu_map,
8143 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8144 struct sched_group **sg,
8145 struct cpumask *tmpmask),
8146 struct cpumask *covered, struct cpumask *tmpmask)
8147 {
8148 struct sched_group *first = NULL, *last = NULL;
8149 int i;
8150
8151 cpumask_clear(covered);
8152
8153 for_each_cpu(i, span) {
8154 struct sched_group *sg;
8155 int group = group_fn(i, cpu_map, &sg, tmpmask);
8156 int j;
8157
8158 if (cpumask_test_cpu(i, covered))
8159 continue;
8160
8161 cpumask_clear(sched_group_cpus(sg));
8162 sg->cpu_power = 0;
8163
8164 for_each_cpu(j, span) {
8165 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8166 continue;
8167
8168 cpumask_set_cpu(j, covered);
8169 cpumask_set_cpu(j, sched_group_cpus(sg));
8170 }
8171 if (!first)
8172 first = sg;
8173 if (last)
8174 last->next = sg;
8175 last = sg;
8176 }
8177 last->next = first;
8178 }
8179
8180 #define SD_NODES_PER_DOMAIN 16
8181
8182 #ifdef CONFIG_NUMA
8183
8184 /**
8185 * find_next_best_node - find the next node to include in a sched_domain
8186 * @node: node whose sched_domain we're building
8187 * @used_nodes: nodes already in the sched_domain
8188 *
8189 * Find the next node to include in a given scheduling domain. Simply
8190 * finds the closest node not already in the @used_nodes map.
8191 *
8192 * Should use nodemask_t.
8193 */
8194 static int find_next_best_node(int node, nodemask_t *used_nodes)
8195 {
8196 int i, n, val, min_val, best_node = 0;
8197
8198 min_val = INT_MAX;
8199
8200 for (i = 0; i < nr_node_ids; i++) {
8201 /* Start at @node */
8202 n = (node + i) % nr_node_ids;
8203
8204 if (!nr_cpus_node(n))
8205 continue;
8206
8207 /* Skip already used nodes */
8208 if (node_isset(n, *used_nodes))
8209 continue;
8210
8211 /* Simple min distance search */
8212 val = node_distance(node, n);
8213
8214 if (val < min_val) {
8215 min_val = val;
8216 best_node = n;
8217 }
8218 }
8219
8220 node_set(best_node, *used_nodes);
8221 return best_node;
8222 }
8223
8224 /**
8225 * sched_domain_node_span - get a cpumask for a node's sched_domain
8226 * @node: node whose cpumask we're constructing
8227 * @span: resulting cpumask
8228 *
8229 * Given a node, construct a good cpumask for its sched_domain to span. It
8230 * should be one that prevents unnecessary balancing, but also spreads tasks
8231 * out optimally.
8232 */
8233 static void sched_domain_node_span(int node, struct cpumask *span)
8234 {
8235 nodemask_t used_nodes;
8236 int i;
8237
8238 cpumask_clear(span);
8239 nodes_clear(used_nodes);
8240
8241 cpumask_or(span, span, cpumask_of_node(node));
8242 node_set(node, used_nodes);
8243
8244 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8245 int next_node = find_next_best_node(node, &used_nodes);
8246
8247 cpumask_or(span, span, cpumask_of_node(next_node));
8248 }
8249 }
8250 #endif /* CONFIG_NUMA */
8251
8252 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8253
8254 /*
8255 * The cpus mask in sched_group and sched_domain hangs off the end.
8256 *
8257 * ( See the the comments in include/linux/sched.h:struct sched_group
8258 * and struct sched_domain. )
8259 */
8260 struct static_sched_group {
8261 struct sched_group sg;
8262 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8263 };
8264
8265 struct static_sched_domain {
8266 struct sched_domain sd;
8267 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8268 };
8269
8270 struct s_data {
8271 #ifdef CONFIG_NUMA
8272 int sd_allnodes;
8273 cpumask_var_t domainspan;
8274 cpumask_var_t covered;
8275 cpumask_var_t notcovered;
8276 #endif
8277 cpumask_var_t nodemask;
8278 cpumask_var_t this_sibling_map;
8279 cpumask_var_t this_core_map;
8280 cpumask_var_t send_covered;
8281 cpumask_var_t tmpmask;
8282 struct sched_group **sched_group_nodes;
8283 struct root_domain *rd;
8284 };
8285
8286 enum s_alloc {
8287 sa_sched_groups = 0,
8288 sa_rootdomain,
8289 sa_tmpmask,
8290 sa_send_covered,
8291 sa_this_core_map,
8292 sa_this_sibling_map,
8293 sa_nodemask,
8294 sa_sched_group_nodes,
8295 #ifdef CONFIG_NUMA
8296 sa_notcovered,
8297 sa_covered,
8298 sa_domainspan,
8299 #endif
8300 sa_none,
8301 };
8302
8303 /*
8304 * SMT sched-domains:
8305 */
8306 #ifdef CONFIG_SCHED_SMT
8307 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8308 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8309
8310 static int
8311 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8312 struct sched_group **sg, struct cpumask *unused)
8313 {
8314 if (sg)
8315 *sg = &per_cpu(sched_groups, cpu).sg;
8316 return cpu;
8317 }
8318 #endif /* CONFIG_SCHED_SMT */
8319
8320 /*
8321 * multi-core sched-domains:
8322 */
8323 #ifdef CONFIG_SCHED_MC
8324 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8325 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8326 #endif /* CONFIG_SCHED_MC */
8327
8328 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8329 static int
8330 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8331 struct sched_group **sg, struct cpumask *mask)
8332 {
8333 int group;
8334
8335 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8336 group = cpumask_first(mask);
8337 if (sg)
8338 *sg = &per_cpu(sched_group_core, group).sg;
8339 return group;
8340 }
8341 #elif defined(CONFIG_SCHED_MC)
8342 static int
8343 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8344 struct sched_group **sg, struct cpumask *unused)
8345 {
8346 if (sg)
8347 *sg = &per_cpu(sched_group_core, cpu).sg;
8348 return cpu;
8349 }
8350 #endif
8351
8352 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8353 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8354
8355 static int
8356 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8357 struct sched_group **sg, struct cpumask *mask)
8358 {
8359 int group;
8360 #ifdef CONFIG_SCHED_MC
8361 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8362 group = cpumask_first(mask);
8363 #elif defined(CONFIG_SCHED_SMT)
8364 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8365 group = cpumask_first(mask);
8366 #else
8367 group = cpu;
8368 #endif
8369 if (sg)
8370 *sg = &per_cpu(sched_group_phys, group).sg;
8371 return group;
8372 }
8373
8374 #ifdef CONFIG_NUMA
8375 /*
8376 * The init_sched_build_groups can't handle what we want to do with node
8377 * groups, so roll our own. Now each node has its own list of groups which
8378 * gets dynamically allocated.
8379 */
8380 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8381 static struct sched_group ***sched_group_nodes_bycpu;
8382
8383 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8384 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8385
8386 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8387 struct sched_group **sg,
8388 struct cpumask *nodemask)
8389 {
8390 int group;
8391
8392 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8393 group = cpumask_first(nodemask);
8394
8395 if (sg)
8396 *sg = &per_cpu(sched_group_allnodes, group).sg;
8397 return group;
8398 }
8399
8400 static void init_numa_sched_groups_power(struct sched_group *group_head)
8401 {
8402 struct sched_group *sg = group_head;
8403 int j;
8404
8405 if (!sg)
8406 return;
8407 do {
8408 for_each_cpu(j, sched_group_cpus(sg)) {
8409 struct sched_domain *sd;
8410
8411 sd = &per_cpu(phys_domains, j).sd;
8412 if (j != group_first_cpu(sd->groups)) {
8413 /*
8414 * Only add "power" once for each
8415 * physical package.
8416 */
8417 continue;
8418 }
8419
8420 sg->cpu_power += sd->groups->cpu_power;
8421 }
8422 sg = sg->next;
8423 } while (sg != group_head);
8424 }
8425
8426 static int build_numa_sched_groups(struct s_data *d,
8427 const struct cpumask *cpu_map, int num)
8428 {
8429 struct sched_domain *sd;
8430 struct sched_group *sg, *prev;
8431 int n, j;
8432
8433 cpumask_clear(d->covered);
8434 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8435 if (cpumask_empty(d->nodemask)) {
8436 d->sched_group_nodes[num] = NULL;
8437 goto out;
8438 }
8439
8440 sched_domain_node_span(num, d->domainspan);
8441 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8442
8443 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8444 GFP_KERNEL, num);
8445 if (!sg) {
8446 pr_warning("Can not alloc domain group for node %d\n", num);
8447 return -ENOMEM;
8448 }
8449 d->sched_group_nodes[num] = sg;
8450
8451 for_each_cpu(j, d->nodemask) {
8452 sd = &per_cpu(node_domains, j).sd;
8453 sd->groups = sg;
8454 }
8455
8456 sg->cpu_power = 0;
8457 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8458 sg->next = sg;
8459 cpumask_or(d->covered, d->covered, d->nodemask);
8460
8461 prev = sg;
8462 for (j = 0; j < nr_node_ids; j++) {
8463 n = (num + j) % nr_node_ids;
8464 cpumask_complement(d->notcovered, d->covered);
8465 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8466 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8467 if (cpumask_empty(d->tmpmask))
8468 break;
8469 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8470 if (cpumask_empty(d->tmpmask))
8471 continue;
8472 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8473 GFP_KERNEL, num);
8474 if (!sg) {
8475 pr_warning("Can not alloc domain group for node %d\n",
8476 j);
8477 return -ENOMEM;
8478 }
8479 sg->cpu_power = 0;
8480 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8481 sg->next = prev->next;
8482 cpumask_or(d->covered, d->covered, d->tmpmask);
8483 prev->next = sg;
8484 prev = sg;
8485 }
8486 out:
8487 return 0;
8488 }
8489 #endif /* CONFIG_NUMA */
8490
8491 #ifdef CONFIG_NUMA
8492 /* Free memory allocated for various sched_group structures */
8493 static void free_sched_groups(const struct cpumask *cpu_map,
8494 struct cpumask *nodemask)
8495 {
8496 int cpu, i;
8497
8498 for_each_cpu(cpu, cpu_map) {
8499 struct sched_group **sched_group_nodes
8500 = sched_group_nodes_bycpu[cpu];
8501
8502 if (!sched_group_nodes)
8503 continue;
8504
8505 for (i = 0; i < nr_node_ids; i++) {
8506 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8507
8508 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8509 if (cpumask_empty(nodemask))
8510 continue;
8511
8512 if (sg == NULL)
8513 continue;
8514 sg = sg->next;
8515 next_sg:
8516 oldsg = sg;
8517 sg = sg->next;
8518 kfree(oldsg);
8519 if (oldsg != sched_group_nodes[i])
8520 goto next_sg;
8521 }
8522 kfree(sched_group_nodes);
8523 sched_group_nodes_bycpu[cpu] = NULL;
8524 }
8525 }
8526 #else /* !CONFIG_NUMA */
8527 static void free_sched_groups(const struct cpumask *cpu_map,
8528 struct cpumask *nodemask)
8529 {
8530 }
8531 #endif /* CONFIG_NUMA */
8532
8533 /*
8534 * Initialize sched groups cpu_power.
8535 *
8536 * cpu_power indicates the capacity of sched group, which is used while
8537 * distributing the load between different sched groups in a sched domain.
8538 * Typically cpu_power for all the groups in a sched domain will be same unless
8539 * there are asymmetries in the topology. If there are asymmetries, group
8540 * having more cpu_power will pickup more load compared to the group having
8541 * less cpu_power.
8542 */
8543 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8544 {
8545 struct sched_domain *child;
8546 struct sched_group *group;
8547 long power;
8548 int weight;
8549
8550 WARN_ON(!sd || !sd->groups);
8551
8552 if (cpu != group_first_cpu(sd->groups))
8553 return;
8554
8555 child = sd->child;
8556
8557 sd->groups->cpu_power = 0;
8558
8559 if (!child) {
8560 power = SCHED_LOAD_SCALE;
8561 weight = cpumask_weight(sched_domain_span(sd));
8562 /*
8563 * SMT siblings share the power of a single core.
8564 * Usually multiple threads get a better yield out of
8565 * that one core than a single thread would have,
8566 * reflect that in sd->smt_gain.
8567 */
8568 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8569 power *= sd->smt_gain;
8570 power /= weight;
8571 power >>= SCHED_LOAD_SHIFT;
8572 }
8573 sd->groups->cpu_power += power;
8574 return;
8575 }
8576
8577 /*
8578 * Add cpu_power of each child group to this groups cpu_power.
8579 */
8580 group = child->groups;
8581 do {
8582 sd->groups->cpu_power += group->cpu_power;
8583 group = group->next;
8584 } while (group != child->groups);
8585 }
8586
8587 /*
8588 * Initializers for schedule domains
8589 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8590 */
8591
8592 #ifdef CONFIG_SCHED_DEBUG
8593 # define SD_INIT_NAME(sd, type) sd->name = #type
8594 #else
8595 # define SD_INIT_NAME(sd, type) do { } while (0)
8596 #endif
8597
8598 #define SD_INIT(sd, type) sd_init_##type(sd)
8599
8600 #define SD_INIT_FUNC(type) \
8601 static noinline void sd_init_##type(struct sched_domain *sd) \
8602 { \
8603 memset(sd, 0, sizeof(*sd)); \
8604 *sd = SD_##type##_INIT; \
8605 sd->level = SD_LV_##type; \
8606 SD_INIT_NAME(sd, type); \
8607 }
8608
8609 SD_INIT_FUNC(CPU)
8610 #ifdef CONFIG_NUMA
8611 SD_INIT_FUNC(ALLNODES)
8612 SD_INIT_FUNC(NODE)
8613 #endif
8614 #ifdef CONFIG_SCHED_SMT
8615 SD_INIT_FUNC(SIBLING)
8616 #endif
8617 #ifdef CONFIG_SCHED_MC
8618 SD_INIT_FUNC(MC)
8619 #endif
8620
8621 static int default_relax_domain_level = -1;
8622
8623 static int __init setup_relax_domain_level(char *str)
8624 {
8625 unsigned long val;
8626
8627 val = simple_strtoul(str, NULL, 0);
8628 if (val < SD_LV_MAX)
8629 default_relax_domain_level = val;
8630
8631 return 1;
8632 }
8633 __setup("relax_domain_level=", setup_relax_domain_level);
8634
8635 static void set_domain_attribute(struct sched_domain *sd,
8636 struct sched_domain_attr *attr)
8637 {
8638 int request;
8639
8640 if (!attr || attr->relax_domain_level < 0) {
8641 if (default_relax_domain_level < 0)
8642 return;
8643 else
8644 request = default_relax_domain_level;
8645 } else
8646 request = attr->relax_domain_level;
8647 if (request < sd->level) {
8648 /* turn off idle balance on this domain */
8649 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8650 } else {
8651 /* turn on idle balance on this domain */
8652 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8653 }
8654 }
8655
8656 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8657 const struct cpumask *cpu_map)
8658 {
8659 switch (what) {
8660 case sa_sched_groups:
8661 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8662 d->sched_group_nodes = NULL;
8663 case sa_rootdomain:
8664 free_rootdomain(d->rd); /* fall through */
8665 case sa_tmpmask:
8666 free_cpumask_var(d->tmpmask); /* fall through */
8667 case sa_send_covered:
8668 free_cpumask_var(d->send_covered); /* fall through */
8669 case sa_this_core_map:
8670 free_cpumask_var(d->this_core_map); /* fall through */
8671 case sa_this_sibling_map:
8672 free_cpumask_var(d->this_sibling_map); /* fall through */
8673 case sa_nodemask:
8674 free_cpumask_var(d->nodemask); /* fall through */
8675 case sa_sched_group_nodes:
8676 #ifdef CONFIG_NUMA
8677 kfree(d->sched_group_nodes); /* fall through */
8678 case sa_notcovered:
8679 free_cpumask_var(d->notcovered); /* fall through */
8680 case sa_covered:
8681 free_cpumask_var(d->covered); /* fall through */
8682 case sa_domainspan:
8683 free_cpumask_var(d->domainspan); /* fall through */
8684 #endif
8685 case sa_none:
8686 break;
8687 }
8688 }
8689
8690 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8691 const struct cpumask *cpu_map)
8692 {
8693 #ifdef CONFIG_NUMA
8694 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8695 return sa_none;
8696 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8697 return sa_domainspan;
8698 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8699 return sa_covered;
8700 /* Allocate the per-node list of sched groups */
8701 d->sched_group_nodes = kcalloc(nr_node_ids,
8702 sizeof(struct sched_group *), GFP_KERNEL);
8703 if (!d->sched_group_nodes) {
8704 pr_warning("Can not alloc sched group node list\n");
8705 return sa_notcovered;
8706 }
8707 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8708 #endif
8709 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8710 return sa_sched_group_nodes;
8711 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8712 return sa_nodemask;
8713 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8714 return sa_this_sibling_map;
8715 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8716 return sa_this_core_map;
8717 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8718 return sa_send_covered;
8719 d->rd = alloc_rootdomain();
8720 if (!d->rd) {
8721 pr_warning("Cannot alloc root domain\n");
8722 return sa_tmpmask;
8723 }
8724 return sa_rootdomain;
8725 }
8726
8727 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8728 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8729 {
8730 struct sched_domain *sd = NULL;
8731 #ifdef CONFIG_NUMA
8732 struct sched_domain *parent;
8733
8734 d->sd_allnodes = 0;
8735 if (cpumask_weight(cpu_map) >
8736 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8737 sd = &per_cpu(allnodes_domains, i).sd;
8738 SD_INIT(sd, ALLNODES);
8739 set_domain_attribute(sd, attr);
8740 cpumask_copy(sched_domain_span(sd), cpu_map);
8741 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8742 d->sd_allnodes = 1;
8743 }
8744 parent = sd;
8745
8746 sd = &per_cpu(node_domains, i).sd;
8747 SD_INIT(sd, NODE);
8748 set_domain_attribute(sd, attr);
8749 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8750 sd->parent = parent;
8751 if (parent)
8752 parent->child = sd;
8753 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8754 #endif
8755 return sd;
8756 }
8757
8758 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8759 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8760 struct sched_domain *parent, int i)
8761 {
8762 struct sched_domain *sd;
8763 sd = &per_cpu(phys_domains, i).sd;
8764 SD_INIT(sd, CPU);
8765 set_domain_attribute(sd, attr);
8766 cpumask_copy(sched_domain_span(sd), d->nodemask);
8767 sd->parent = parent;
8768 if (parent)
8769 parent->child = sd;
8770 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8771 return sd;
8772 }
8773
8774 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8775 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8776 struct sched_domain *parent, int i)
8777 {
8778 struct sched_domain *sd = parent;
8779 #ifdef CONFIG_SCHED_MC
8780 sd = &per_cpu(core_domains, i).sd;
8781 SD_INIT(sd, MC);
8782 set_domain_attribute(sd, attr);
8783 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8784 sd->parent = parent;
8785 parent->child = sd;
8786 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8787 #endif
8788 return sd;
8789 }
8790
8791 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8792 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8793 struct sched_domain *parent, int i)
8794 {
8795 struct sched_domain *sd = parent;
8796 #ifdef CONFIG_SCHED_SMT
8797 sd = &per_cpu(cpu_domains, i).sd;
8798 SD_INIT(sd, SIBLING);
8799 set_domain_attribute(sd, attr);
8800 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8801 sd->parent = parent;
8802 parent->child = sd;
8803 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8804 #endif
8805 return sd;
8806 }
8807
8808 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8809 const struct cpumask *cpu_map, int cpu)
8810 {
8811 switch (l) {
8812 #ifdef CONFIG_SCHED_SMT
8813 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8814 cpumask_and(d->this_sibling_map, cpu_map,
8815 topology_thread_cpumask(cpu));
8816 if (cpu == cpumask_first(d->this_sibling_map))
8817 init_sched_build_groups(d->this_sibling_map, cpu_map,
8818 &cpu_to_cpu_group,
8819 d->send_covered, d->tmpmask);
8820 break;
8821 #endif
8822 #ifdef CONFIG_SCHED_MC
8823 case SD_LV_MC: /* set up multi-core groups */
8824 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8825 if (cpu == cpumask_first(d->this_core_map))
8826 init_sched_build_groups(d->this_core_map, cpu_map,
8827 &cpu_to_core_group,
8828 d->send_covered, d->tmpmask);
8829 break;
8830 #endif
8831 case SD_LV_CPU: /* set up physical groups */
8832 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8833 if (!cpumask_empty(d->nodemask))
8834 init_sched_build_groups(d->nodemask, cpu_map,
8835 &cpu_to_phys_group,
8836 d->send_covered, d->tmpmask);
8837 break;
8838 #ifdef CONFIG_NUMA
8839 case SD_LV_ALLNODES:
8840 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8841 d->send_covered, d->tmpmask);
8842 break;
8843 #endif
8844 default:
8845 break;
8846 }
8847 }
8848
8849 /*
8850 * Build sched domains for a given set of cpus and attach the sched domains
8851 * to the individual cpus
8852 */
8853 static int __build_sched_domains(const struct cpumask *cpu_map,
8854 struct sched_domain_attr *attr)
8855 {
8856 enum s_alloc alloc_state = sa_none;
8857 struct s_data d;
8858 struct sched_domain *sd;
8859 int i;
8860 #ifdef CONFIG_NUMA
8861 d.sd_allnodes = 0;
8862 #endif
8863
8864 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8865 if (alloc_state != sa_rootdomain)
8866 goto error;
8867 alloc_state = sa_sched_groups;
8868
8869 /*
8870 * Set up domains for cpus specified by the cpu_map.
8871 */
8872 for_each_cpu(i, cpu_map) {
8873 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8874 cpu_map);
8875
8876 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8877 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8878 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8879 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8880 }
8881
8882 for_each_cpu(i, cpu_map) {
8883 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8884 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8885 }
8886
8887 /* Set up physical groups */
8888 for (i = 0; i < nr_node_ids; i++)
8889 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8890
8891 #ifdef CONFIG_NUMA
8892 /* Set up node groups */
8893 if (d.sd_allnodes)
8894 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8895
8896 for (i = 0; i < nr_node_ids; i++)
8897 if (build_numa_sched_groups(&d, cpu_map, i))
8898 goto error;
8899 #endif
8900
8901 /* Calculate CPU power for physical packages and nodes */
8902 #ifdef CONFIG_SCHED_SMT
8903 for_each_cpu(i, cpu_map) {
8904 sd = &per_cpu(cpu_domains, i).sd;
8905 init_sched_groups_power(i, sd);
8906 }
8907 #endif
8908 #ifdef CONFIG_SCHED_MC
8909 for_each_cpu(i, cpu_map) {
8910 sd = &per_cpu(core_domains, i).sd;
8911 init_sched_groups_power(i, sd);
8912 }
8913 #endif
8914
8915 for_each_cpu(i, cpu_map) {
8916 sd = &per_cpu(phys_domains, i).sd;
8917 init_sched_groups_power(i, sd);
8918 }
8919
8920 #ifdef CONFIG_NUMA
8921 for (i = 0; i < nr_node_ids; i++)
8922 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8923
8924 if (d.sd_allnodes) {
8925 struct sched_group *sg;
8926
8927 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8928 d.tmpmask);
8929 init_numa_sched_groups_power(sg);
8930 }
8931 #endif
8932
8933 /* Attach the domains */
8934 for_each_cpu(i, cpu_map) {
8935 #ifdef CONFIG_SCHED_SMT
8936 sd = &per_cpu(cpu_domains, i).sd;
8937 #elif defined(CONFIG_SCHED_MC)
8938 sd = &per_cpu(core_domains, i).sd;
8939 #else
8940 sd = &per_cpu(phys_domains, i).sd;
8941 #endif
8942 cpu_attach_domain(sd, d.rd, i);
8943 }
8944
8945 d.sched_group_nodes = NULL; /* don't free this we still need it */
8946 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8947 return 0;
8948
8949 error:
8950 __free_domain_allocs(&d, alloc_state, cpu_map);
8951 return -ENOMEM;
8952 }
8953
8954 static int build_sched_domains(const struct cpumask *cpu_map)
8955 {
8956 return __build_sched_domains(cpu_map, NULL);
8957 }
8958
8959 static cpumask_var_t *doms_cur; /* current sched domains */
8960 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8961 static struct sched_domain_attr *dattr_cur;
8962 /* attribues of custom domains in 'doms_cur' */
8963
8964 /*
8965 * Special case: If a kmalloc of a doms_cur partition (array of
8966 * cpumask) fails, then fallback to a single sched domain,
8967 * as determined by the single cpumask fallback_doms.
8968 */
8969 static cpumask_var_t fallback_doms;
8970
8971 /*
8972 * arch_update_cpu_topology lets virtualized architectures update the
8973 * cpu core maps. It is supposed to return 1 if the topology changed
8974 * or 0 if it stayed the same.
8975 */
8976 int __attribute__((weak)) arch_update_cpu_topology(void)
8977 {
8978 return 0;
8979 }
8980
8981 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8982 {
8983 int i;
8984 cpumask_var_t *doms;
8985
8986 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8987 if (!doms)
8988 return NULL;
8989 for (i = 0; i < ndoms; i++) {
8990 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8991 free_sched_domains(doms, i);
8992 return NULL;
8993 }
8994 }
8995 return doms;
8996 }
8997
8998 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8999 {
9000 unsigned int i;
9001 for (i = 0; i < ndoms; i++)
9002 free_cpumask_var(doms[i]);
9003 kfree(doms);
9004 }
9005
9006 /*
9007 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9008 * For now this just excludes isolated cpus, but could be used to
9009 * exclude other special cases in the future.
9010 */
9011 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9012 {
9013 int err;
9014
9015 arch_update_cpu_topology();
9016 ndoms_cur = 1;
9017 doms_cur = alloc_sched_domains(ndoms_cur);
9018 if (!doms_cur)
9019 doms_cur = &fallback_doms;
9020 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9021 dattr_cur = NULL;
9022 err = build_sched_domains(doms_cur[0]);
9023 register_sched_domain_sysctl();
9024
9025 return err;
9026 }
9027
9028 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9029 struct cpumask *tmpmask)
9030 {
9031 free_sched_groups(cpu_map, tmpmask);
9032 }
9033
9034 /*
9035 * Detach sched domains from a group of cpus specified in cpu_map
9036 * These cpus will now be attached to the NULL domain
9037 */
9038 static void detach_destroy_domains(const struct cpumask *cpu_map)
9039 {
9040 /* Save because hotplug lock held. */
9041 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9042 int i;
9043
9044 for_each_cpu(i, cpu_map)
9045 cpu_attach_domain(NULL, &def_root_domain, i);
9046 synchronize_sched();
9047 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9048 }
9049
9050 /* handle null as "default" */
9051 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9052 struct sched_domain_attr *new, int idx_new)
9053 {
9054 struct sched_domain_attr tmp;
9055
9056 /* fast path */
9057 if (!new && !cur)
9058 return 1;
9059
9060 tmp = SD_ATTR_INIT;
9061 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9062 new ? (new + idx_new) : &tmp,
9063 sizeof(struct sched_domain_attr));
9064 }
9065
9066 /*
9067 * Partition sched domains as specified by the 'ndoms_new'
9068 * cpumasks in the array doms_new[] of cpumasks. This compares
9069 * doms_new[] to the current sched domain partitioning, doms_cur[].
9070 * It destroys each deleted domain and builds each new domain.
9071 *
9072 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9073 * The masks don't intersect (don't overlap.) We should setup one
9074 * sched domain for each mask. CPUs not in any of the cpumasks will
9075 * not be load balanced. If the same cpumask appears both in the
9076 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9077 * it as it is.
9078 *
9079 * The passed in 'doms_new' should be allocated using
9080 * alloc_sched_domains. This routine takes ownership of it and will
9081 * free_sched_domains it when done with it. If the caller failed the
9082 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9083 * and partition_sched_domains() will fallback to the single partition
9084 * 'fallback_doms', it also forces the domains to be rebuilt.
9085 *
9086 * If doms_new == NULL it will be replaced with cpu_online_mask.
9087 * ndoms_new == 0 is a special case for destroying existing domains,
9088 * and it will not create the default domain.
9089 *
9090 * Call with hotplug lock held
9091 */
9092 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9093 struct sched_domain_attr *dattr_new)
9094 {
9095 int i, j, n;
9096 int new_topology;
9097
9098 mutex_lock(&sched_domains_mutex);
9099
9100 /* always unregister in case we don't destroy any domains */
9101 unregister_sched_domain_sysctl();
9102
9103 /* Let architecture update cpu core mappings. */
9104 new_topology = arch_update_cpu_topology();
9105
9106 n = doms_new ? ndoms_new : 0;
9107
9108 /* Destroy deleted domains */
9109 for (i = 0; i < ndoms_cur; i++) {
9110 for (j = 0; j < n && !new_topology; j++) {
9111 if (cpumask_equal(doms_cur[i], doms_new[j])
9112 && dattrs_equal(dattr_cur, i, dattr_new, j))
9113 goto match1;
9114 }
9115 /* no match - a current sched domain not in new doms_new[] */
9116 detach_destroy_domains(doms_cur[i]);
9117 match1:
9118 ;
9119 }
9120
9121 if (doms_new == NULL) {
9122 ndoms_cur = 0;
9123 doms_new = &fallback_doms;
9124 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9125 WARN_ON_ONCE(dattr_new);
9126 }
9127
9128 /* Build new domains */
9129 for (i = 0; i < ndoms_new; i++) {
9130 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9131 if (cpumask_equal(doms_new[i], doms_cur[j])
9132 && dattrs_equal(dattr_new, i, dattr_cur, j))
9133 goto match2;
9134 }
9135 /* no match - add a new doms_new */
9136 __build_sched_domains(doms_new[i],
9137 dattr_new ? dattr_new + i : NULL);
9138 match2:
9139 ;
9140 }
9141
9142 /* Remember the new sched domains */
9143 if (doms_cur != &fallback_doms)
9144 free_sched_domains(doms_cur, ndoms_cur);
9145 kfree(dattr_cur); /* kfree(NULL) is safe */
9146 doms_cur = doms_new;
9147 dattr_cur = dattr_new;
9148 ndoms_cur = ndoms_new;
9149
9150 register_sched_domain_sysctl();
9151
9152 mutex_unlock(&sched_domains_mutex);
9153 }
9154
9155 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9156 static void arch_reinit_sched_domains(void)
9157 {
9158 get_online_cpus();
9159
9160 /* Destroy domains first to force the rebuild */
9161 partition_sched_domains(0, NULL, NULL);
9162
9163 rebuild_sched_domains();
9164 put_online_cpus();
9165 }
9166
9167 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9168 {
9169 unsigned int level = 0;
9170
9171 if (sscanf(buf, "%u", &level) != 1)
9172 return -EINVAL;
9173
9174 /*
9175 * level is always be positive so don't check for
9176 * level < POWERSAVINGS_BALANCE_NONE which is 0
9177 * What happens on 0 or 1 byte write,
9178 * need to check for count as well?
9179 */
9180
9181 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9182 return -EINVAL;
9183
9184 if (smt)
9185 sched_smt_power_savings = level;
9186 else
9187 sched_mc_power_savings = level;
9188
9189 arch_reinit_sched_domains();
9190
9191 return count;
9192 }
9193
9194 #ifdef CONFIG_SCHED_MC
9195 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9196 char *page)
9197 {
9198 return sprintf(page, "%u\n", sched_mc_power_savings);
9199 }
9200 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9201 const char *buf, size_t count)
9202 {
9203 return sched_power_savings_store(buf, count, 0);
9204 }
9205 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9206 sched_mc_power_savings_show,
9207 sched_mc_power_savings_store);
9208 #endif
9209
9210 #ifdef CONFIG_SCHED_SMT
9211 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9212 char *page)
9213 {
9214 return sprintf(page, "%u\n", sched_smt_power_savings);
9215 }
9216 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9217 const char *buf, size_t count)
9218 {
9219 return sched_power_savings_store(buf, count, 1);
9220 }
9221 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9222 sched_smt_power_savings_show,
9223 sched_smt_power_savings_store);
9224 #endif
9225
9226 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9227 {
9228 int err = 0;
9229
9230 #ifdef CONFIG_SCHED_SMT
9231 if (smt_capable())
9232 err = sysfs_create_file(&cls->kset.kobj,
9233 &attr_sched_smt_power_savings.attr);
9234 #endif
9235 #ifdef CONFIG_SCHED_MC
9236 if (!err && mc_capable())
9237 err = sysfs_create_file(&cls->kset.kobj,
9238 &attr_sched_mc_power_savings.attr);
9239 #endif
9240 return err;
9241 }
9242 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9243
9244 #ifndef CONFIG_CPUSETS
9245 /*
9246 * Add online and remove offline CPUs from the scheduler domains.
9247 * When cpusets are enabled they take over this function.
9248 */
9249 static int update_sched_domains(struct notifier_block *nfb,
9250 unsigned long action, void *hcpu)
9251 {
9252 switch (action) {
9253 case CPU_ONLINE:
9254 case CPU_ONLINE_FROZEN:
9255 case CPU_DOWN_PREPARE:
9256 case CPU_DOWN_PREPARE_FROZEN:
9257 case CPU_DOWN_FAILED:
9258 case CPU_DOWN_FAILED_FROZEN:
9259 partition_sched_domains(1, NULL, NULL);
9260 return NOTIFY_OK;
9261
9262 default:
9263 return NOTIFY_DONE;
9264 }
9265 }
9266 #endif
9267
9268 static int update_runtime(struct notifier_block *nfb,
9269 unsigned long action, void *hcpu)
9270 {
9271 int cpu = (int)(long)hcpu;
9272
9273 switch (action) {
9274 case CPU_DOWN_PREPARE:
9275 case CPU_DOWN_PREPARE_FROZEN:
9276 disable_runtime(cpu_rq(cpu));
9277 return NOTIFY_OK;
9278
9279 case CPU_DOWN_FAILED:
9280 case CPU_DOWN_FAILED_FROZEN:
9281 case CPU_ONLINE:
9282 case CPU_ONLINE_FROZEN:
9283 enable_runtime(cpu_rq(cpu));
9284 return NOTIFY_OK;
9285
9286 default:
9287 return NOTIFY_DONE;
9288 }
9289 }
9290
9291 void __init sched_init_smp(void)
9292 {
9293 cpumask_var_t non_isolated_cpus;
9294
9295 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9296 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9297
9298 #if defined(CONFIG_NUMA)
9299 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9300 GFP_KERNEL);
9301 BUG_ON(sched_group_nodes_bycpu == NULL);
9302 #endif
9303 get_online_cpus();
9304 mutex_lock(&sched_domains_mutex);
9305 arch_init_sched_domains(cpu_active_mask);
9306 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9307 if (cpumask_empty(non_isolated_cpus))
9308 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9309 mutex_unlock(&sched_domains_mutex);
9310 put_online_cpus();
9311
9312 #ifndef CONFIG_CPUSETS
9313 /* XXX: Theoretical race here - CPU may be hotplugged now */
9314 hotcpu_notifier(update_sched_domains, 0);
9315 #endif
9316
9317 /* RT runtime code needs to handle some hotplug events */
9318 hotcpu_notifier(update_runtime, 0);
9319
9320 init_hrtick();
9321
9322 /* Move init over to a non-isolated CPU */
9323 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9324 BUG();
9325 sched_init_granularity();
9326 free_cpumask_var(non_isolated_cpus);
9327
9328 init_sched_rt_class();
9329 }
9330 #else
9331 void __init sched_init_smp(void)
9332 {
9333 sched_init_granularity();
9334 }
9335 #endif /* CONFIG_SMP */
9336
9337 const_debug unsigned int sysctl_timer_migration = 1;
9338
9339 int in_sched_functions(unsigned long addr)
9340 {
9341 return in_lock_functions(addr) ||
9342 (addr >= (unsigned long)__sched_text_start
9343 && addr < (unsigned long)__sched_text_end);
9344 }
9345
9346 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9347 {
9348 cfs_rq->tasks_timeline = RB_ROOT;
9349 INIT_LIST_HEAD(&cfs_rq->tasks);
9350 #ifdef CONFIG_FAIR_GROUP_SCHED
9351 cfs_rq->rq = rq;
9352 #endif
9353 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9354 }
9355
9356 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9357 {
9358 struct rt_prio_array *array;
9359 int i;
9360
9361 array = &rt_rq->active;
9362 for (i = 0; i < MAX_RT_PRIO; i++) {
9363 INIT_LIST_HEAD(array->queue + i);
9364 __clear_bit(i, array->bitmap);
9365 }
9366 /* delimiter for bitsearch: */
9367 __set_bit(MAX_RT_PRIO, array->bitmap);
9368
9369 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9370 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9371 #ifdef CONFIG_SMP
9372 rt_rq->highest_prio.next = MAX_RT_PRIO;
9373 #endif
9374 #endif
9375 #ifdef CONFIG_SMP
9376 rt_rq->rt_nr_migratory = 0;
9377 rt_rq->overloaded = 0;
9378 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9379 #endif
9380
9381 rt_rq->rt_time = 0;
9382 rt_rq->rt_throttled = 0;
9383 rt_rq->rt_runtime = 0;
9384 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9385
9386 #ifdef CONFIG_RT_GROUP_SCHED
9387 rt_rq->rt_nr_boosted = 0;
9388 rt_rq->rq = rq;
9389 #endif
9390 }
9391
9392 #ifdef CONFIG_FAIR_GROUP_SCHED
9393 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9394 struct sched_entity *se, int cpu, int add,
9395 struct sched_entity *parent)
9396 {
9397 struct rq *rq = cpu_rq(cpu);
9398 tg->cfs_rq[cpu] = cfs_rq;
9399 init_cfs_rq(cfs_rq, rq);
9400 cfs_rq->tg = tg;
9401 if (add)
9402 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9403
9404 tg->se[cpu] = se;
9405 /* se could be NULL for init_task_group */
9406 if (!se)
9407 return;
9408
9409 if (!parent)
9410 se->cfs_rq = &rq->cfs;
9411 else
9412 se->cfs_rq = parent->my_q;
9413
9414 se->my_q = cfs_rq;
9415 se->load.weight = tg->shares;
9416 se->load.inv_weight = 0;
9417 se->parent = parent;
9418 }
9419 #endif
9420
9421 #ifdef CONFIG_RT_GROUP_SCHED
9422 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9423 struct sched_rt_entity *rt_se, int cpu, int add,
9424 struct sched_rt_entity *parent)
9425 {
9426 struct rq *rq = cpu_rq(cpu);
9427
9428 tg->rt_rq[cpu] = rt_rq;
9429 init_rt_rq(rt_rq, rq);
9430 rt_rq->tg = tg;
9431 rt_rq->rt_se = rt_se;
9432 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9433 if (add)
9434 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9435
9436 tg->rt_se[cpu] = rt_se;
9437 if (!rt_se)
9438 return;
9439
9440 if (!parent)
9441 rt_se->rt_rq = &rq->rt;
9442 else
9443 rt_se->rt_rq = parent->my_q;
9444
9445 rt_se->my_q = rt_rq;
9446 rt_se->parent = parent;
9447 INIT_LIST_HEAD(&rt_se->run_list);
9448 }
9449 #endif
9450
9451 void __init sched_init(void)
9452 {
9453 int i, j;
9454 unsigned long alloc_size = 0, ptr;
9455
9456 #ifdef CONFIG_FAIR_GROUP_SCHED
9457 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9458 #endif
9459 #ifdef CONFIG_RT_GROUP_SCHED
9460 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9461 #endif
9462 #ifdef CONFIG_USER_SCHED
9463 alloc_size *= 2;
9464 #endif
9465 #ifdef CONFIG_CPUMASK_OFFSTACK
9466 alloc_size += num_possible_cpus() * cpumask_size();
9467 #endif
9468 if (alloc_size) {
9469 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9470
9471 #ifdef CONFIG_FAIR_GROUP_SCHED
9472 init_task_group.se = (struct sched_entity **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
9474
9475 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9476 ptr += nr_cpu_ids * sizeof(void **);
9477
9478 #ifdef CONFIG_USER_SCHED
9479 root_task_group.se = (struct sched_entity **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
9484 #endif /* CONFIG_USER_SCHED */
9485 #endif /* CONFIG_FAIR_GROUP_SCHED */
9486 #ifdef CONFIG_RT_GROUP_SCHED
9487 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9488 ptr += nr_cpu_ids * sizeof(void **);
9489
9490 init_task_group.rt_rq = (struct rt_rq **)ptr;
9491 ptr += nr_cpu_ids * sizeof(void **);
9492
9493 #ifdef CONFIG_USER_SCHED
9494 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 root_task_group.rt_rq = (struct rt_rq **)ptr;
9498 ptr += nr_cpu_ids * sizeof(void **);
9499 #endif /* CONFIG_USER_SCHED */
9500 #endif /* CONFIG_RT_GROUP_SCHED */
9501 #ifdef CONFIG_CPUMASK_OFFSTACK
9502 for_each_possible_cpu(i) {
9503 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9504 ptr += cpumask_size();
9505 }
9506 #endif /* CONFIG_CPUMASK_OFFSTACK */
9507 }
9508
9509 #ifdef CONFIG_SMP
9510 init_defrootdomain();
9511 #endif
9512
9513 init_rt_bandwidth(&def_rt_bandwidth,
9514 global_rt_period(), global_rt_runtime());
9515
9516 #ifdef CONFIG_RT_GROUP_SCHED
9517 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9518 global_rt_period(), global_rt_runtime());
9519 #ifdef CONFIG_USER_SCHED
9520 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9521 global_rt_period(), RUNTIME_INF);
9522 #endif /* CONFIG_USER_SCHED */
9523 #endif /* CONFIG_RT_GROUP_SCHED */
9524
9525 #ifdef CONFIG_GROUP_SCHED
9526 list_add(&init_task_group.list, &task_groups);
9527 INIT_LIST_HEAD(&init_task_group.children);
9528
9529 #ifdef CONFIG_USER_SCHED
9530 INIT_LIST_HEAD(&root_task_group.children);
9531 init_task_group.parent = &root_task_group;
9532 list_add(&init_task_group.siblings, &root_task_group.children);
9533 #endif /* CONFIG_USER_SCHED */
9534 #endif /* CONFIG_GROUP_SCHED */
9535
9536 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9537 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9538 __alignof__(unsigned long));
9539 #endif
9540 for_each_possible_cpu(i) {
9541 struct rq *rq;
9542
9543 rq = cpu_rq(i);
9544 raw_spin_lock_init(&rq->lock);
9545 rq->nr_running = 0;
9546 rq->calc_load_active = 0;
9547 rq->calc_load_update = jiffies + LOAD_FREQ;
9548 init_cfs_rq(&rq->cfs, rq);
9549 init_rt_rq(&rq->rt, rq);
9550 #ifdef CONFIG_FAIR_GROUP_SCHED
9551 init_task_group.shares = init_task_group_load;
9552 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9553 #ifdef CONFIG_CGROUP_SCHED
9554 /*
9555 * How much cpu bandwidth does init_task_group get?
9556 *
9557 * In case of task-groups formed thr' the cgroup filesystem, it
9558 * gets 100% of the cpu resources in the system. This overall
9559 * system cpu resource is divided among the tasks of
9560 * init_task_group and its child task-groups in a fair manner,
9561 * based on each entity's (task or task-group's) weight
9562 * (se->load.weight).
9563 *
9564 * In other words, if init_task_group has 10 tasks of weight
9565 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9566 * then A0's share of the cpu resource is:
9567 *
9568 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9569 *
9570 * We achieve this by letting init_task_group's tasks sit
9571 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9572 */
9573 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9574 #elif defined CONFIG_USER_SCHED
9575 root_task_group.shares = NICE_0_LOAD;
9576 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9577 /*
9578 * In case of task-groups formed thr' the user id of tasks,
9579 * init_task_group represents tasks belonging to root user.
9580 * Hence it forms a sibling of all subsequent groups formed.
9581 * In this case, init_task_group gets only a fraction of overall
9582 * system cpu resource, based on the weight assigned to root
9583 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9584 * by letting tasks of init_task_group sit in a separate cfs_rq
9585 * (init_tg_cfs_rq) and having one entity represent this group of
9586 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9587 */
9588 init_tg_cfs_entry(&init_task_group,
9589 &per_cpu(init_tg_cfs_rq, i),
9590 &per_cpu(init_sched_entity, i), i, 1,
9591 root_task_group.se[i]);
9592
9593 #endif
9594 #endif /* CONFIG_FAIR_GROUP_SCHED */
9595
9596 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9597 #ifdef CONFIG_RT_GROUP_SCHED
9598 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9599 #ifdef CONFIG_CGROUP_SCHED
9600 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9601 #elif defined CONFIG_USER_SCHED
9602 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9603 init_tg_rt_entry(&init_task_group,
9604 &per_cpu(init_rt_rq_var, i),
9605 &per_cpu(init_sched_rt_entity, i), i, 1,
9606 root_task_group.rt_se[i]);
9607 #endif
9608 #endif
9609
9610 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9611 rq->cpu_load[j] = 0;
9612 #ifdef CONFIG_SMP
9613 rq->sd = NULL;
9614 rq->rd = NULL;
9615 rq->post_schedule = 0;
9616 rq->active_balance = 0;
9617 rq->next_balance = jiffies;
9618 rq->push_cpu = 0;
9619 rq->cpu = i;
9620 rq->online = 0;
9621 rq->migration_thread = NULL;
9622 rq->idle_stamp = 0;
9623 rq->avg_idle = 2*sysctl_sched_migration_cost;
9624 INIT_LIST_HEAD(&rq->migration_queue);
9625 rq_attach_root(rq, &def_root_domain);
9626 #endif
9627 init_rq_hrtick(rq);
9628 atomic_set(&rq->nr_iowait, 0);
9629 }
9630
9631 set_load_weight(&init_task);
9632
9633 #ifdef CONFIG_PREEMPT_NOTIFIERS
9634 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9635 #endif
9636
9637 #ifdef CONFIG_SMP
9638 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9639 #endif
9640
9641 #ifdef CONFIG_RT_MUTEXES
9642 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9643 #endif
9644
9645 /*
9646 * The boot idle thread does lazy MMU switching as well:
9647 */
9648 atomic_inc(&init_mm.mm_count);
9649 enter_lazy_tlb(&init_mm, current);
9650
9651 /*
9652 * Make us the idle thread. Technically, schedule() should not be
9653 * called from this thread, however somewhere below it might be,
9654 * but because we are the idle thread, we just pick up running again
9655 * when this runqueue becomes "idle".
9656 */
9657 init_idle(current, smp_processor_id());
9658
9659 calc_load_update = jiffies + LOAD_FREQ;
9660
9661 /*
9662 * During early bootup we pretend to be a normal task:
9663 */
9664 current->sched_class = &fair_sched_class;
9665
9666 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9667 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9668 #ifdef CONFIG_SMP
9669 #ifdef CONFIG_NO_HZ
9670 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9671 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9672 #endif
9673 /* May be allocated at isolcpus cmdline parse time */
9674 if (cpu_isolated_map == NULL)
9675 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9676 #endif /* SMP */
9677
9678 perf_event_init();
9679
9680 scheduler_running = 1;
9681 }
9682
9683 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9684 static inline int preempt_count_equals(int preempt_offset)
9685 {
9686 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9687
9688 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9689 }
9690
9691 void __might_sleep(char *file, int line, int preempt_offset)
9692 {
9693 #ifdef in_atomic
9694 static unsigned long prev_jiffy; /* ratelimiting */
9695
9696 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9697 system_state != SYSTEM_RUNNING || oops_in_progress)
9698 return;
9699 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9700 return;
9701 prev_jiffy = jiffies;
9702
9703 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9704 file, line);
9705 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9706 in_atomic(), irqs_disabled(),
9707 current->pid, current->comm);
9708
9709 debug_show_held_locks(current);
9710 if (irqs_disabled())
9711 print_irqtrace_events(current);
9712 dump_stack();
9713 #endif
9714 }
9715 EXPORT_SYMBOL(__might_sleep);
9716 #endif
9717
9718 #ifdef CONFIG_MAGIC_SYSRQ
9719 static void normalize_task(struct rq *rq, struct task_struct *p)
9720 {
9721 int on_rq;
9722
9723 update_rq_clock(rq);
9724 on_rq = p->se.on_rq;
9725 if (on_rq)
9726 deactivate_task(rq, p, 0);
9727 __setscheduler(rq, p, SCHED_NORMAL, 0);
9728 if (on_rq) {
9729 activate_task(rq, p, 0);
9730 resched_task(rq->curr);
9731 }
9732 }
9733
9734 void normalize_rt_tasks(void)
9735 {
9736 struct task_struct *g, *p;
9737 unsigned long flags;
9738 struct rq *rq;
9739
9740 read_lock_irqsave(&tasklist_lock, flags);
9741 do_each_thread(g, p) {
9742 /*
9743 * Only normalize user tasks:
9744 */
9745 if (!p->mm)
9746 continue;
9747
9748 p->se.exec_start = 0;
9749 #ifdef CONFIG_SCHEDSTATS
9750 p->se.wait_start = 0;
9751 p->se.sleep_start = 0;
9752 p->se.block_start = 0;
9753 #endif
9754
9755 if (!rt_task(p)) {
9756 /*
9757 * Renice negative nice level userspace
9758 * tasks back to 0:
9759 */
9760 if (TASK_NICE(p) < 0 && p->mm)
9761 set_user_nice(p, 0);
9762 continue;
9763 }
9764
9765 raw_spin_lock(&p->pi_lock);
9766 rq = __task_rq_lock(p);
9767
9768 normalize_task(rq, p);
9769
9770 __task_rq_unlock(rq);
9771 raw_spin_unlock(&p->pi_lock);
9772 } while_each_thread(g, p);
9773
9774 read_unlock_irqrestore(&tasklist_lock, flags);
9775 }
9776
9777 #endif /* CONFIG_MAGIC_SYSRQ */
9778
9779 #ifdef CONFIG_IA64
9780 /*
9781 * These functions are only useful for the IA64 MCA handling.
9782 *
9783 * They can only be called when the whole system has been
9784 * stopped - every CPU needs to be quiescent, and no scheduling
9785 * activity can take place. Using them for anything else would
9786 * be a serious bug, and as a result, they aren't even visible
9787 * under any other configuration.
9788 */
9789
9790 /**
9791 * curr_task - return the current task for a given cpu.
9792 * @cpu: the processor in question.
9793 *
9794 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9795 */
9796 struct task_struct *curr_task(int cpu)
9797 {
9798 return cpu_curr(cpu);
9799 }
9800
9801 /**
9802 * set_curr_task - set the current task for a given cpu.
9803 * @cpu: the processor in question.
9804 * @p: the task pointer to set.
9805 *
9806 * Description: This function must only be used when non-maskable interrupts
9807 * are serviced on a separate stack. It allows the architecture to switch the
9808 * notion of the current task on a cpu in a non-blocking manner. This function
9809 * must be called with all CPU's synchronized, and interrupts disabled, the
9810 * and caller must save the original value of the current task (see
9811 * curr_task() above) and restore that value before reenabling interrupts and
9812 * re-starting the system.
9813 *
9814 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9815 */
9816 void set_curr_task(int cpu, struct task_struct *p)
9817 {
9818 cpu_curr(cpu) = p;
9819 }
9820
9821 #endif
9822
9823 #ifdef CONFIG_FAIR_GROUP_SCHED
9824 static void free_fair_sched_group(struct task_group *tg)
9825 {
9826 int i;
9827
9828 for_each_possible_cpu(i) {
9829 if (tg->cfs_rq)
9830 kfree(tg->cfs_rq[i]);
9831 if (tg->se)
9832 kfree(tg->se[i]);
9833 }
9834
9835 kfree(tg->cfs_rq);
9836 kfree(tg->se);
9837 }
9838
9839 static
9840 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9841 {
9842 struct cfs_rq *cfs_rq;
9843 struct sched_entity *se;
9844 struct rq *rq;
9845 int i;
9846
9847 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9848 if (!tg->cfs_rq)
9849 goto err;
9850 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9851 if (!tg->se)
9852 goto err;
9853
9854 tg->shares = NICE_0_LOAD;
9855
9856 for_each_possible_cpu(i) {
9857 rq = cpu_rq(i);
9858
9859 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9860 GFP_KERNEL, cpu_to_node(i));
9861 if (!cfs_rq)
9862 goto err;
9863
9864 se = kzalloc_node(sizeof(struct sched_entity),
9865 GFP_KERNEL, cpu_to_node(i));
9866 if (!se)
9867 goto err_free_rq;
9868
9869 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9870 }
9871
9872 return 1;
9873
9874 err_free_rq:
9875 kfree(cfs_rq);
9876 err:
9877 return 0;
9878 }
9879
9880 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9881 {
9882 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9883 &cpu_rq(cpu)->leaf_cfs_rq_list);
9884 }
9885
9886 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9887 {
9888 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9889 }
9890 #else /* !CONFG_FAIR_GROUP_SCHED */
9891 static inline void free_fair_sched_group(struct task_group *tg)
9892 {
9893 }
9894
9895 static inline
9896 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9897 {
9898 return 1;
9899 }
9900
9901 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9902 {
9903 }
9904
9905 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9906 {
9907 }
9908 #endif /* CONFIG_FAIR_GROUP_SCHED */
9909
9910 #ifdef CONFIG_RT_GROUP_SCHED
9911 static void free_rt_sched_group(struct task_group *tg)
9912 {
9913 int i;
9914
9915 destroy_rt_bandwidth(&tg->rt_bandwidth);
9916
9917 for_each_possible_cpu(i) {
9918 if (tg->rt_rq)
9919 kfree(tg->rt_rq[i]);
9920 if (tg->rt_se)
9921 kfree(tg->rt_se[i]);
9922 }
9923
9924 kfree(tg->rt_rq);
9925 kfree(tg->rt_se);
9926 }
9927
9928 static
9929 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9930 {
9931 struct rt_rq *rt_rq;
9932 struct sched_rt_entity *rt_se;
9933 struct rq *rq;
9934 int i;
9935
9936 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9937 if (!tg->rt_rq)
9938 goto err;
9939 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9940 if (!tg->rt_se)
9941 goto err;
9942
9943 init_rt_bandwidth(&tg->rt_bandwidth,
9944 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9945
9946 for_each_possible_cpu(i) {
9947 rq = cpu_rq(i);
9948
9949 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9950 GFP_KERNEL, cpu_to_node(i));
9951 if (!rt_rq)
9952 goto err;
9953
9954 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9955 GFP_KERNEL, cpu_to_node(i));
9956 if (!rt_se)
9957 goto err_free_rq;
9958
9959 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9960 }
9961
9962 return 1;
9963
9964 err_free_rq:
9965 kfree(rt_rq);
9966 err:
9967 return 0;
9968 }
9969
9970 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9971 {
9972 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9973 &cpu_rq(cpu)->leaf_rt_rq_list);
9974 }
9975
9976 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9977 {
9978 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9979 }
9980 #else /* !CONFIG_RT_GROUP_SCHED */
9981 static inline void free_rt_sched_group(struct task_group *tg)
9982 {
9983 }
9984
9985 static inline
9986 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9987 {
9988 return 1;
9989 }
9990
9991 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9992 {
9993 }
9994
9995 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9996 {
9997 }
9998 #endif /* CONFIG_RT_GROUP_SCHED */
9999
10000 #ifdef CONFIG_GROUP_SCHED
10001 static void free_sched_group(struct task_group *tg)
10002 {
10003 free_fair_sched_group(tg);
10004 free_rt_sched_group(tg);
10005 kfree(tg);
10006 }
10007
10008 /* allocate runqueue etc for a new task group */
10009 struct task_group *sched_create_group(struct task_group *parent)
10010 {
10011 struct task_group *tg;
10012 unsigned long flags;
10013 int i;
10014
10015 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10016 if (!tg)
10017 return ERR_PTR(-ENOMEM);
10018
10019 if (!alloc_fair_sched_group(tg, parent))
10020 goto err;
10021
10022 if (!alloc_rt_sched_group(tg, parent))
10023 goto err;
10024
10025 spin_lock_irqsave(&task_group_lock, flags);
10026 for_each_possible_cpu(i) {
10027 register_fair_sched_group(tg, i);
10028 register_rt_sched_group(tg, i);
10029 }
10030 list_add_rcu(&tg->list, &task_groups);
10031
10032 WARN_ON(!parent); /* root should already exist */
10033
10034 tg->parent = parent;
10035 INIT_LIST_HEAD(&tg->children);
10036 list_add_rcu(&tg->siblings, &parent->children);
10037 spin_unlock_irqrestore(&task_group_lock, flags);
10038
10039 return tg;
10040
10041 err:
10042 free_sched_group(tg);
10043 return ERR_PTR(-ENOMEM);
10044 }
10045
10046 /* rcu callback to free various structures associated with a task group */
10047 static void free_sched_group_rcu(struct rcu_head *rhp)
10048 {
10049 /* now it should be safe to free those cfs_rqs */
10050 free_sched_group(container_of(rhp, struct task_group, rcu));
10051 }
10052
10053 /* Destroy runqueue etc associated with a task group */
10054 void sched_destroy_group(struct task_group *tg)
10055 {
10056 unsigned long flags;
10057 int i;
10058
10059 spin_lock_irqsave(&task_group_lock, flags);
10060 for_each_possible_cpu(i) {
10061 unregister_fair_sched_group(tg, i);
10062 unregister_rt_sched_group(tg, i);
10063 }
10064 list_del_rcu(&tg->list);
10065 list_del_rcu(&tg->siblings);
10066 spin_unlock_irqrestore(&task_group_lock, flags);
10067
10068 /* wait for possible concurrent references to cfs_rqs complete */
10069 call_rcu(&tg->rcu, free_sched_group_rcu);
10070 }
10071
10072 /* change task's runqueue when it moves between groups.
10073 * The caller of this function should have put the task in its new group
10074 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10075 * reflect its new group.
10076 */
10077 void sched_move_task(struct task_struct *tsk)
10078 {
10079 int on_rq, running;
10080 unsigned long flags;
10081 struct rq *rq;
10082
10083 rq = task_rq_lock(tsk, &flags);
10084
10085 update_rq_clock(rq);
10086
10087 running = task_current(rq, tsk);
10088 on_rq = tsk->se.on_rq;
10089
10090 if (on_rq)
10091 dequeue_task(rq, tsk, 0);
10092 if (unlikely(running))
10093 tsk->sched_class->put_prev_task(rq, tsk);
10094
10095 set_task_rq(tsk, task_cpu(tsk));
10096
10097 #ifdef CONFIG_FAIR_GROUP_SCHED
10098 if (tsk->sched_class->moved_group)
10099 tsk->sched_class->moved_group(tsk, on_rq);
10100 #endif
10101
10102 if (unlikely(running))
10103 tsk->sched_class->set_curr_task(rq);
10104 if (on_rq)
10105 enqueue_task(rq, tsk, 0);
10106
10107 task_rq_unlock(rq, &flags);
10108 }
10109 #endif /* CONFIG_GROUP_SCHED */
10110
10111 #ifdef CONFIG_FAIR_GROUP_SCHED
10112 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10113 {
10114 struct cfs_rq *cfs_rq = se->cfs_rq;
10115 int on_rq;
10116
10117 on_rq = se->on_rq;
10118 if (on_rq)
10119 dequeue_entity(cfs_rq, se, 0);
10120
10121 se->load.weight = shares;
10122 se->load.inv_weight = 0;
10123
10124 if (on_rq)
10125 enqueue_entity(cfs_rq, se, 0);
10126 }
10127
10128 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10129 {
10130 struct cfs_rq *cfs_rq = se->cfs_rq;
10131 struct rq *rq = cfs_rq->rq;
10132 unsigned long flags;
10133
10134 raw_spin_lock_irqsave(&rq->lock, flags);
10135 __set_se_shares(se, shares);
10136 raw_spin_unlock_irqrestore(&rq->lock, flags);
10137 }
10138
10139 static DEFINE_MUTEX(shares_mutex);
10140
10141 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10142 {
10143 int i;
10144 unsigned long flags;
10145
10146 /*
10147 * We can't change the weight of the root cgroup.
10148 */
10149 if (!tg->se[0])
10150 return -EINVAL;
10151
10152 if (shares < MIN_SHARES)
10153 shares = MIN_SHARES;
10154 else if (shares > MAX_SHARES)
10155 shares = MAX_SHARES;
10156
10157 mutex_lock(&shares_mutex);
10158 if (tg->shares == shares)
10159 goto done;
10160
10161 spin_lock_irqsave(&task_group_lock, flags);
10162 for_each_possible_cpu(i)
10163 unregister_fair_sched_group(tg, i);
10164 list_del_rcu(&tg->siblings);
10165 spin_unlock_irqrestore(&task_group_lock, flags);
10166
10167 /* wait for any ongoing reference to this group to finish */
10168 synchronize_sched();
10169
10170 /*
10171 * Now we are free to modify the group's share on each cpu
10172 * w/o tripping rebalance_share or load_balance_fair.
10173 */
10174 tg->shares = shares;
10175 for_each_possible_cpu(i) {
10176 /*
10177 * force a rebalance
10178 */
10179 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10180 set_se_shares(tg->se[i], shares);
10181 }
10182
10183 /*
10184 * Enable load balance activity on this group, by inserting it back on
10185 * each cpu's rq->leaf_cfs_rq_list.
10186 */
10187 spin_lock_irqsave(&task_group_lock, flags);
10188 for_each_possible_cpu(i)
10189 register_fair_sched_group(tg, i);
10190 list_add_rcu(&tg->siblings, &tg->parent->children);
10191 spin_unlock_irqrestore(&task_group_lock, flags);
10192 done:
10193 mutex_unlock(&shares_mutex);
10194 return 0;
10195 }
10196
10197 unsigned long sched_group_shares(struct task_group *tg)
10198 {
10199 return tg->shares;
10200 }
10201 #endif
10202
10203 #ifdef CONFIG_RT_GROUP_SCHED
10204 /*
10205 * Ensure that the real time constraints are schedulable.
10206 */
10207 static DEFINE_MUTEX(rt_constraints_mutex);
10208
10209 static unsigned long to_ratio(u64 period, u64 runtime)
10210 {
10211 if (runtime == RUNTIME_INF)
10212 return 1ULL << 20;
10213
10214 return div64_u64(runtime << 20, period);
10215 }
10216
10217 /* Must be called with tasklist_lock held */
10218 static inline int tg_has_rt_tasks(struct task_group *tg)
10219 {
10220 struct task_struct *g, *p;
10221
10222 do_each_thread(g, p) {
10223 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10224 return 1;
10225 } while_each_thread(g, p);
10226
10227 return 0;
10228 }
10229
10230 struct rt_schedulable_data {
10231 struct task_group *tg;
10232 u64 rt_period;
10233 u64 rt_runtime;
10234 };
10235
10236 static int tg_schedulable(struct task_group *tg, void *data)
10237 {
10238 struct rt_schedulable_data *d = data;
10239 struct task_group *child;
10240 unsigned long total, sum = 0;
10241 u64 period, runtime;
10242
10243 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10244 runtime = tg->rt_bandwidth.rt_runtime;
10245
10246 if (tg == d->tg) {
10247 period = d->rt_period;
10248 runtime = d->rt_runtime;
10249 }
10250
10251 #ifdef CONFIG_USER_SCHED
10252 if (tg == &root_task_group) {
10253 period = global_rt_period();
10254 runtime = global_rt_runtime();
10255 }
10256 #endif
10257
10258 /*
10259 * Cannot have more runtime than the period.
10260 */
10261 if (runtime > period && runtime != RUNTIME_INF)
10262 return -EINVAL;
10263
10264 /*
10265 * Ensure we don't starve existing RT tasks.
10266 */
10267 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10268 return -EBUSY;
10269
10270 total = to_ratio(period, runtime);
10271
10272 /*
10273 * Nobody can have more than the global setting allows.
10274 */
10275 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10276 return -EINVAL;
10277
10278 /*
10279 * The sum of our children's runtime should not exceed our own.
10280 */
10281 list_for_each_entry_rcu(child, &tg->children, siblings) {
10282 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10283 runtime = child->rt_bandwidth.rt_runtime;
10284
10285 if (child == d->tg) {
10286 period = d->rt_period;
10287 runtime = d->rt_runtime;
10288 }
10289
10290 sum += to_ratio(period, runtime);
10291 }
10292
10293 if (sum > total)
10294 return -EINVAL;
10295
10296 return 0;
10297 }
10298
10299 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10300 {
10301 struct rt_schedulable_data data = {
10302 .tg = tg,
10303 .rt_period = period,
10304 .rt_runtime = runtime,
10305 };
10306
10307 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10308 }
10309
10310 static int tg_set_bandwidth(struct task_group *tg,
10311 u64 rt_period, u64 rt_runtime)
10312 {
10313 int i, err = 0;
10314
10315 mutex_lock(&rt_constraints_mutex);
10316 read_lock(&tasklist_lock);
10317 err = __rt_schedulable(tg, rt_period, rt_runtime);
10318 if (err)
10319 goto unlock;
10320
10321 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10322 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10323 tg->rt_bandwidth.rt_runtime = rt_runtime;
10324
10325 for_each_possible_cpu(i) {
10326 struct rt_rq *rt_rq = tg->rt_rq[i];
10327
10328 raw_spin_lock(&rt_rq->rt_runtime_lock);
10329 rt_rq->rt_runtime = rt_runtime;
10330 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10331 }
10332 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10333 unlock:
10334 read_unlock(&tasklist_lock);
10335 mutex_unlock(&rt_constraints_mutex);
10336
10337 return err;
10338 }
10339
10340 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10341 {
10342 u64 rt_runtime, rt_period;
10343
10344 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10345 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10346 if (rt_runtime_us < 0)
10347 rt_runtime = RUNTIME_INF;
10348
10349 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10350 }
10351
10352 long sched_group_rt_runtime(struct task_group *tg)
10353 {
10354 u64 rt_runtime_us;
10355
10356 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10357 return -1;
10358
10359 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10360 do_div(rt_runtime_us, NSEC_PER_USEC);
10361 return rt_runtime_us;
10362 }
10363
10364 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10365 {
10366 u64 rt_runtime, rt_period;
10367
10368 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10369 rt_runtime = tg->rt_bandwidth.rt_runtime;
10370
10371 if (rt_period == 0)
10372 return -EINVAL;
10373
10374 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10375 }
10376
10377 long sched_group_rt_period(struct task_group *tg)
10378 {
10379 u64 rt_period_us;
10380
10381 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10382 do_div(rt_period_us, NSEC_PER_USEC);
10383 return rt_period_us;
10384 }
10385
10386 static int sched_rt_global_constraints(void)
10387 {
10388 u64 runtime, period;
10389 int ret = 0;
10390
10391 if (sysctl_sched_rt_period <= 0)
10392 return -EINVAL;
10393
10394 runtime = global_rt_runtime();
10395 period = global_rt_period();
10396
10397 /*
10398 * Sanity check on the sysctl variables.
10399 */
10400 if (runtime > period && runtime != RUNTIME_INF)
10401 return -EINVAL;
10402
10403 mutex_lock(&rt_constraints_mutex);
10404 read_lock(&tasklist_lock);
10405 ret = __rt_schedulable(NULL, 0, 0);
10406 read_unlock(&tasklist_lock);
10407 mutex_unlock(&rt_constraints_mutex);
10408
10409 return ret;
10410 }
10411
10412 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10413 {
10414 /* Don't accept realtime tasks when there is no way for them to run */
10415 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10416 return 0;
10417
10418 return 1;
10419 }
10420
10421 #else /* !CONFIG_RT_GROUP_SCHED */
10422 static int sched_rt_global_constraints(void)
10423 {
10424 unsigned long flags;
10425 int i;
10426
10427 if (sysctl_sched_rt_period <= 0)
10428 return -EINVAL;
10429
10430 /*
10431 * There's always some RT tasks in the root group
10432 * -- migration, kstopmachine etc..
10433 */
10434 if (sysctl_sched_rt_runtime == 0)
10435 return -EBUSY;
10436
10437 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10438 for_each_possible_cpu(i) {
10439 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10440
10441 raw_spin_lock(&rt_rq->rt_runtime_lock);
10442 rt_rq->rt_runtime = global_rt_runtime();
10443 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10444 }
10445 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10446
10447 return 0;
10448 }
10449 #endif /* CONFIG_RT_GROUP_SCHED */
10450
10451 int sched_rt_handler(struct ctl_table *table, int write,
10452 void __user *buffer, size_t *lenp,
10453 loff_t *ppos)
10454 {
10455 int ret;
10456 int old_period, old_runtime;
10457 static DEFINE_MUTEX(mutex);
10458
10459 mutex_lock(&mutex);
10460 old_period = sysctl_sched_rt_period;
10461 old_runtime = sysctl_sched_rt_runtime;
10462
10463 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10464
10465 if (!ret && write) {
10466 ret = sched_rt_global_constraints();
10467 if (ret) {
10468 sysctl_sched_rt_period = old_period;
10469 sysctl_sched_rt_runtime = old_runtime;
10470 } else {
10471 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10472 def_rt_bandwidth.rt_period =
10473 ns_to_ktime(global_rt_period());
10474 }
10475 }
10476 mutex_unlock(&mutex);
10477
10478 return ret;
10479 }
10480
10481 #ifdef CONFIG_CGROUP_SCHED
10482
10483 /* return corresponding task_group object of a cgroup */
10484 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10485 {
10486 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10487 struct task_group, css);
10488 }
10489
10490 static struct cgroup_subsys_state *
10491 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10492 {
10493 struct task_group *tg, *parent;
10494
10495 if (!cgrp->parent) {
10496 /* This is early initialization for the top cgroup */
10497 return &init_task_group.css;
10498 }
10499
10500 parent = cgroup_tg(cgrp->parent);
10501 tg = sched_create_group(parent);
10502 if (IS_ERR(tg))
10503 return ERR_PTR(-ENOMEM);
10504
10505 return &tg->css;
10506 }
10507
10508 static void
10509 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10510 {
10511 struct task_group *tg = cgroup_tg(cgrp);
10512
10513 sched_destroy_group(tg);
10514 }
10515
10516 static int
10517 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10518 {
10519 #ifdef CONFIG_RT_GROUP_SCHED
10520 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10521 return -EINVAL;
10522 #else
10523 /* We don't support RT-tasks being in separate groups */
10524 if (tsk->sched_class != &fair_sched_class)
10525 return -EINVAL;
10526 #endif
10527 return 0;
10528 }
10529
10530 static int
10531 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10532 struct task_struct *tsk, bool threadgroup)
10533 {
10534 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10535 if (retval)
10536 return retval;
10537 if (threadgroup) {
10538 struct task_struct *c;
10539 rcu_read_lock();
10540 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10541 retval = cpu_cgroup_can_attach_task(cgrp, c);
10542 if (retval) {
10543 rcu_read_unlock();
10544 return retval;
10545 }
10546 }
10547 rcu_read_unlock();
10548 }
10549 return 0;
10550 }
10551
10552 static void
10553 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10554 struct cgroup *old_cont, struct task_struct *tsk,
10555 bool threadgroup)
10556 {
10557 sched_move_task(tsk);
10558 if (threadgroup) {
10559 struct task_struct *c;
10560 rcu_read_lock();
10561 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10562 sched_move_task(c);
10563 }
10564 rcu_read_unlock();
10565 }
10566 }
10567
10568 #ifdef CONFIG_FAIR_GROUP_SCHED
10569 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10570 u64 shareval)
10571 {
10572 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10573 }
10574
10575 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10576 {
10577 struct task_group *tg = cgroup_tg(cgrp);
10578
10579 return (u64) tg->shares;
10580 }
10581 #endif /* CONFIG_FAIR_GROUP_SCHED */
10582
10583 #ifdef CONFIG_RT_GROUP_SCHED
10584 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10585 s64 val)
10586 {
10587 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10588 }
10589
10590 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10591 {
10592 return sched_group_rt_runtime(cgroup_tg(cgrp));
10593 }
10594
10595 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10596 u64 rt_period_us)
10597 {
10598 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10599 }
10600
10601 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10602 {
10603 return sched_group_rt_period(cgroup_tg(cgrp));
10604 }
10605 #endif /* CONFIG_RT_GROUP_SCHED */
10606
10607 static struct cftype cpu_files[] = {
10608 #ifdef CONFIG_FAIR_GROUP_SCHED
10609 {
10610 .name = "shares",
10611 .read_u64 = cpu_shares_read_u64,
10612 .write_u64 = cpu_shares_write_u64,
10613 },
10614 #endif
10615 #ifdef CONFIG_RT_GROUP_SCHED
10616 {
10617 .name = "rt_runtime_us",
10618 .read_s64 = cpu_rt_runtime_read,
10619 .write_s64 = cpu_rt_runtime_write,
10620 },
10621 {
10622 .name = "rt_period_us",
10623 .read_u64 = cpu_rt_period_read_uint,
10624 .write_u64 = cpu_rt_period_write_uint,
10625 },
10626 #endif
10627 };
10628
10629 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10630 {
10631 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10632 }
10633
10634 struct cgroup_subsys cpu_cgroup_subsys = {
10635 .name = "cpu",
10636 .create = cpu_cgroup_create,
10637 .destroy = cpu_cgroup_destroy,
10638 .can_attach = cpu_cgroup_can_attach,
10639 .attach = cpu_cgroup_attach,
10640 .populate = cpu_cgroup_populate,
10641 .subsys_id = cpu_cgroup_subsys_id,
10642 .early_init = 1,
10643 };
10644
10645 #endif /* CONFIG_CGROUP_SCHED */
10646
10647 #ifdef CONFIG_CGROUP_CPUACCT
10648
10649 /*
10650 * CPU accounting code for task groups.
10651 *
10652 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10653 * (balbir@in.ibm.com).
10654 */
10655
10656 /* track cpu usage of a group of tasks and its child groups */
10657 struct cpuacct {
10658 struct cgroup_subsys_state css;
10659 /* cpuusage holds pointer to a u64-type object on every cpu */
10660 u64 *cpuusage;
10661 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10662 struct cpuacct *parent;
10663 };
10664
10665 struct cgroup_subsys cpuacct_subsys;
10666
10667 /* return cpu accounting group corresponding to this container */
10668 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10669 {
10670 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10671 struct cpuacct, css);
10672 }
10673
10674 /* return cpu accounting group to which this task belongs */
10675 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10676 {
10677 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10678 struct cpuacct, css);
10679 }
10680
10681 /* create a new cpu accounting group */
10682 static struct cgroup_subsys_state *cpuacct_create(
10683 struct cgroup_subsys *ss, struct cgroup *cgrp)
10684 {
10685 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10686 int i;
10687
10688 if (!ca)
10689 goto out;
10690
10691 ca->cpuusage = alloc_percpu(u64);
10692 if (!ca->cpuusage)
10693 goto out_free_ca;
10694
10695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10696 if (percpu_counter_init(&ca->cpustat[i], 0))
10697 goto out_free_counters;
10698
10699 if (cgrp->parent)
10700 ca->parent = cgroup_ca(cgrp->parent);
10701
10702 return &ca->css;
10703
10704 out_free_counters:
10705 while (--i >= 0)
10706 percpu_counter_destroy(&ca->cpustat[i]);
10707 free_percpu(ca->cpuusage);
10708 out_free_ca:
10709 kfree(ca);
10710 out:
10711 return ERR_PTR(-ENOMEM);
10712 }
10713
10714 /* destroy an existing cpu accounting group */
10715 static void
10716 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10717 {
10718 struct cpuacct *ca = cgroup_ca(cgrp);
10719 int i;
10720
10721 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10722 percpu_counter_destroy(&ca->cpustat[i]);
10723 free_percpu(ca->cpuusage);
10724 kfree(ca);
10725 }
10726
10727 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10728 {
10729 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10730 u64 data;
10731
10732 #ifndef CONFIG_64BIT
10733 /*
10734 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10735 */
10736 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10737 data = *cpuusage;
10738 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10739 #else
10740 data = *cpuusage;
10741 #endif
10742
10743 return data;
10744 }
10745
10746 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10747 {
10748 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10749
10750 #ifndef CONFIG_64BIT
10751 /*
10752 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10753 */
10754 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10755 *cpuusage = val;
10756 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10757 #else
10758 *cpuusage = val;
10759 #endif
10760 }
10761
10762 /* return total cpu usage (in nanoseconds) of a group */
10763 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10764 {
10765 struct cpuacct *ca = cgroup_ca(cgrp);
10766 u64 totalcpuusage = 0;
10767 int i;
10768
10769 for_each_present_cpu(i)
10770 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10771
10772 return totalcpuusage;
10773 }
10774
10775 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10776 u64 reset)
10777 {
10778 struct cpuacct *ca = cgroup_ca(cgrp);
10779 int err = 0;
10780 int i;
10781
10782 if (reset) {
10783 err = -EINVAL;
10784 goto out;
10785 }
10786
10787 for_each_present_cpu(i)
10788 cpuacct_cpuusage_write(ca, i, 0);
10789
10790 out:
10791 return err;
10792 }
10793
10794 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10795 struct seq_file *m)
10796 {
10797 struct cpuacct *ca = cgroup_ca(cgroup);
10798 u64 percpu;
10799 int i;
10800
10801 for_each_present_cpu(i) {
10802 percpu = cpuacct_cpuusage_read(ca, i);
10803 seq_printf(m, "%llu ", (unsigned long long) percpu);
10804 }
10805 seq_printf(m, "\n");
10806 return 0;
10807 }
10808
10809 static const char *cpuacct_stat_desc[] = {
10810 [CPUACCT_STAT_USER] = "user",
10811 [CPUACCT_STAT_SYSTEM] = "system",
10812 };
10813
10814 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10815 struct cgroup_map_cb *cb)
10816 {
10817 struct cpuacct *ca = cgroup_ca(cgrp);
10818 int i;
10819
10820 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10821 s64 val = percpu_counter_read(&ca->cpustat[i]);
10822 val = cputime64_to_clock_t(val);
10823 cb->fill(cb, cpuacct_stat_desc[i], val);
10824 }
10825 return 0;
10826 }
10827
10828 static struct cftype files[] = {
10829 {
10830 .name = "usage",
10831 .read_u64 = cpuusage_read,
10832 .write_u64 = cpuusage_write,
10833 },
10834 {
10835 .name = "usage_percpu",
10836 .read_seq_string = cpuacct_percpu_seq_read,
10837 },
10838 {
10839 .name = "stat",
10840 .read_map = cpuacct_stats_show,
10841 },
10842 };
10843
10844 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10845 {
10846 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10847 }
10848
10849 /*
10850 * charge this task's execution time to its accounting group.
10851 *
10852 * called with rq->lock held.
10853 */
10854 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10855 {
10856 struct cpuacct *ca;
10857 int cpu;
10858
10859 if (unlikely(!cpuacct_subsys.active))
10860 return;
10861
10862 cpu = task_cpu(tsk);
10863
10864 rcu_read_lock();
10865
10866 ca = task_ca(tsk);
10867
10868 for (; ca; ca = ca->parent) {
10869 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10870 *cpuusage += cputime;
10871 }
10872
10873 rcu_read_unlock();
10874 }
10875
10876 /*
10877 * Charge the system/user time to the task's accounting group.
10878 */
10879 static void cpuacct_update_stats(struct task_struct *tsk,
10880 enum cpuacct_stat_index idx, cputime_t val)
10881 {
10882 struct cpuacct *ca;
10883
10884 if (unlikely(!cpuacct_subsys.active))
10885 return;
10886
10887 rcu_read_lock();
10888 ca = task_ca(tsk);
10889
10890 do {
10891 percpu_counter_add(&ca->cpustat[idx], val);
10892 ca = ca->parent;
10893 } while (ca);
10894 rcu_read_unlock();
10895 }
10896
10897 struct cgroup_subsys cpuacct_subsys = {
10898 .name = "cpuacct",
10899 .create = cpuacct_create,
10900 .destroy = cpuacct_destroy,
10901 .populate = cpuacct_populate,
10902 .subsys_id = cpuacct_subsys_id,
10903 };
10904 #endif /* CONFIG_CGROUP_CPUACCT */
10905
10906 #ifndef CONFIG_SMP
10907
10908 int rcu_expedited_torture_stats(char *page)
10909 {
10910 return 0;
10911 }
10912 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10913
10914 void synchronize_sched_expedited(void)
10915 {
10916 }
10917 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10918
10919 #else /* #ifndef CONFIG_SMP */
10920
10921 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10922 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10923
10924 #define RCU_EXPEDITED_STATE_POST -2
10925 #define RCU_EXPEDITED_STATE_IDLE -1
10926
10927 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10928
10929 int rcu_expedited_torture_stats(char *page)
10930 {
10931 int cnt = 0;
10932 int cpu;
10933
10934 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10935 for_each_online_cpu(cpu) {
10936 cnt += sprintf(&page[cnt], " %d:%d",
10937 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10938 }
10939 cnt += sprintf(&page[cnt], "\n");
10940 return cnt;
10941 }
10942 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10943
10944 static long synchronize_sched_expedited_count;
10945
10946 /*
10947 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10948 * approach to force grace period to end quickly. This consumes
10949 * significant time on all CPUs, and is thus not recommended for
10950 * any sort of common-case code.
10951 *
10952 * Note that it is illegal to call this function while holding any
10953 * lock that is acquired by a CPU-hotplug notifier. Failing to
10954 * observe this restriction will result in deadlock.
10955 */
10956 void synchronize_sched_expedited(void)
10957 {
10958 int cpu;
10959 unsigned long flags;
10960 bool need_full_sync = 0;
10961 struct rq *rq;
10962 struct migration_req *req;
10963 long snap;
10964 int trycount = 0;
10965
10966 smp_mb(); /* ensure prior mod happens before capturing snap. */
10967 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10968 get_online_cpus();
10969 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10970 put_online_cpus();
10971 if (trycount++ < 10)
10972 udelay(trycount * num_online_cpus());
10973 else {
10974 synchronize_sched();
10975 return;
10976 }
10977 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10978 smp_mb(); /* ensure test happens before caller kfree */
10979 return;
10980 }
10981 get_online_cpus();
10982 }
10983 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10984 for_each_online_cpu(cpu) {
10985 rq = cpu_rq(cpu);
10986 req = &per_cpu(rcu_migration_req, cpu);
10987 init_completion(&req->done);
10988 req->task = NULL;
10989 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10990 raw_spin_lock_irqsave(&rq->lock, flags);
10991 list_add(&req->list, &rq->migration_queue);
10992 raw_spin_unlock_irqrestore(&rq->lock, flags);
10993 wake_up_process(rq->migration_thread);
10994 }
10995 for_each_online_cpu(cpu) {
10996 rcu_expedited_state = cpu;
10997 req = &per_cpu(rcu_migration_req, cpu);
10998 rq = cpu_rq(cpu);
10999 wait_for_completion(&req->done);
11000 raw_spin_lock_irqsave(&rq->lock, flags);
11001 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11002 need_full_sync = 1;
11003 req->dest_cpu = RCU_MIGRATION_IDLE;
11004 raw_spin_unlock_irqrestore(&rq->lock, flags);
11005 }
11006 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11007 synchronize_sched_expedited_count++;
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11012 }
11013 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11014
11015 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.528792 seconds and 6 git commands to generate.