Merge branch 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 raw_spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 raw_spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921 #else
922 raw_spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 raw_spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 raw_spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_raw_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 raw_spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1778 ret = 1;
1779 } else
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784 }
1785
1786 #endif /* CONFIG_PREEMPT */
1787
1788 /*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 {
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800 }
1801
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804 {
1805 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 static void inc_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running++;
1852 }
1853
1854 static void dec_nr_running(struct rq *rq)
1855 {
1856 rq->nr_running--;
1857 }
1858
1859 static void set_load_weight(struct task_struct *p)
1860 {
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
1866
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
1875
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 }
1879
1880 static void update_avg(u64 *avg, u64 sample)
1881 {
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884 }
1885
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887 {
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897 {
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1912 }
1913
1914 /*
1915 * __normal_prio - return the priority that is based on the static prio
1916 */
1917 static inline int __normal_prio(struct task_struct *p)
1918 {
1919 return p->static_prio;
1920 }
1921
1922 /*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
1929 static inline int normal_prio(struct task_struct *p)
1930 {
1931 int prio;
1932
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938 }
1939
1940 /*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
1947 static int effective_prio(struct task_struct *p)
1948 {
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958 }
1959
1960 /*
1961 * activate_task - move a task to the runqueue.
1962 */
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964 {
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970 }
1971
1972 /*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976 {
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982 }
1983
1984 /**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
1988 inline int task_curr(const struct task_struct *p)
1989 {
1990 return cpu_curr(task_cpu(p)) == p;
1991 }
1992
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996 {
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 }
2004
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Is this task likely cache-hot:
2008 */
2009 static int
2010 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011 {
2012 s64 delta;
2013
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
2023 return 1;
2024
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033 }
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 #ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 #endif
2045
2046 trace_sched_migrate_task(p, new_cpu);
2047
2048 if (task_cpu(p) != new_cpu) {
2049 p->se.nr_migrations++;
2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2051 }
2052
2053 __set_task_cpu(p, new_cpu);
2054 }
2055
2056 struct migration_req {
2057 struct list_head list;
2058
2059 struct task_struct *task;
2060 int dest_cpu;
2061
2062 struct completion done;
2063 };
2064
2065 /*
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2068 */
2069 static int
2070 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2071 {
2072 struct rq *rq = task_rq(p);
2073
2074 /*
2075 * If the task is not on a runqueue (and not running), then
2076 * the next wake-up will properly place the task.
2077 */
2078 if (!p->se.on_rq && !task_running(rq, p))
2079 return 0;
2080
2081 init_completion(&req->done);
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
2085
2086 return 1;
2087 }
2088
2089 /*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095 void wait_task_context_switch(struct task_struct *p)
2096 {
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130 }
2131
2132 /*
2133 * wait_task_inactive - wait for a thread to unschedule.
2134 *
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2141 *
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2147 */
2148 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2149 {
2150 unsigned long flags;
2151 int running, on_rq;
2152 unsigned long ncsw;
2153 struct rq *rq;
2154
2155 for (;;) {
2156 /*
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2161 */
2162 rq = task_rq(p);
2163
2164 /*
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2168 *
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2174 */
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
2178 cpu_relax();
2179 }
2180
2181 /*
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2185 */
2186 rq = task_rq_lock(p, &flags);
2187 trace_sched_wait_task(rq, p);
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
2190 ncsw = 0;
2191 if (!match_state || p->state == match_state)
2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2193 task_rq_unlock(rq, &flags);
2194
2195 /*
2196 * If it changed from the expected state, bail out now.
2197 */
2198 if (unlikely(!ncsw))
2199 break;
2200
2201 /*
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2204 *
2205 * Oops. Go back and try again..
2206 */
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2210 }
2211
2212 /*
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2216 *
2217 * So if it was still runnable (but just not actively
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2220 */
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2224 }
2225
2226 /*
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2230 */
2231 break;
2232 }
2233
2234 return ncsw;
2235 }
2236
2237 /***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2240 *
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2243 *
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2249 */
2250 void kick_process(struct task_struct *p)
2251 {
2252 int cpu;
2253
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2259 }
2260 EXPORT_SYMBOL_GPL(kick_process);
2261 #endif /* CONFIG_SMP */
2262
2263 /**
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2268 *
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2271 */
2272 void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2274 {
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2282 }
2283
2284 #ifdef CONFIG_SMP
2285 static int select_fallback_rq(int cpu, struct task_struct *p)
2286 {
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320 }
2321
2322 /*
2323 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2324 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2325 * by:
2326 *
2327 * exec: is unstable, retry loop
2328 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2329 */
2330 static inline
2331 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332 {
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2346 !cpu_online(cpu)))
2347 cpu = select_fallback_rq(task_cpu(p), p);
2348
2349 return cpu;
2350 }
2351 #endif
2352
2353 /***
2354 * try_to_wake_up - wake up a thread
2355 * @p: the to-be-woken-up thread
2356 * @state: the mask of task states that can be woken
2357 * @sync: do a synchronous wakeup?
2358 *
2359 * Put it on the run-queue if it's not already there. The "current"
2360 * thread is always on the run-queue (except when the actual
2361 * re-schedule is in progress), and as such you're allowed to do
2362 * the simpler "current->state = TASK_RUNNING" to mark yourself
2363 * runnable without the overhead of this.
2364 *
2365 * returns failure only if the task is already active.
2366 */
2367 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2368 int wake_flags)
2369 {
2370 int cpu, orig_cpu, this_cpu, success = 0;
2371 unsigned long flags;
2372 struct rq *rq, *orig_rq;
2373
2374 if (!sched_feat(SYNC_WAKEUPS))
2375 wake_flags &= ~WF_SYNC;
2376
2377 this_cpu = get_cpu();
2378
2379 smp_wmb();
2380 rq = orig_rq = task_rq_lock(p, &flags);
2381 update_rq_clock(rq);
2382 if (!(p->state & state))
2383 goto out;
2384
2385 if (p->se.on_rq)
2386 goto out_running;
2387
2388 cpu = task_cpu(p);
2389 orig_cpu = cpu;
2390
2391 #ifdef CONFIG_SMP
2392 if (unlikely(task_running(rq, p)))
2393 goto out_activate;
2394
2395 /*
2396 * In order to handle concurrent wakeups and release the rq->lock
2397 * we put the task in TASK_WAKING state.
2398 *
2399 * First fix up the nr_uninterruptible count:
2400 */
2401 if (task_contributes_to_load(p))
2402 rq->nr_uninterruptible--;
2403 p->state = TASK_WAKING;
2404
2405 if (p->sched_class->task_waking)
2406 p->sched_class->task_waking(rq, p);
2407
2408 __task_rq_unlock(rq);
2409
2410 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2411 if (cpu != orig_cpu)
2412 set_task_cpu(p, cpu);
2413
2414 rq = __task_rq_lock(p);
2415 update_rq_clock(rq);
2416
2417 WARN_ON(p->state != TASK_WAKING);
2418 cpu = task_cpu(p);
2419
2420 #ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433 #endif /* CONFIG_SCHEDSTATS */
2434
2435 out_activate:
2436 #endif /* CONFIG_SMP */
2437 schedstat_inc(p, se.nr_wakeups);
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.nr_wakeups_sync);
2440 if (orig_cpu != cpu)
2441 schedstat_inc(p, se.nr_wakeups_migrate);
2442 if (cpu == this_cpu)
2443 schedstat_inc(p, se.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.nr_wakeups_remote);
2446 activate_task(rq, p, 1);
2447 success = 1;
2448
2449 /*
2450 * Only attribute actual wakeups done by this task.
2451 */
2452 if (!in_interrupt()) {
2453 struct sched_entity *se = &current->se;
2454 u64 sample = se->sum_exec_runtime;
2455
2456 if (se->last_wakeup)
2457 sample -= se->last_wakeup;
2458 else
2459 sample -= se->start_runtime;
2460 update_avg(&se->avg_wakeup, sample);
2461
2462 se->last_wakeup = se->sum_exec_runtime;
2463 }
2464
2465 out_running:
2466 trace_sched_wakeup(rq, p, success);
2467 check_preempt_curr(rq, p, wake_flags);
2468
2469 p->state = TASK_RUNNING;
2470 #ifdef CONFIG_SMP
2471 if (p->sched_class->task_woken)
2472 p->sched_class->task_woken(rq, p);
2473
2474 if (unlikely(rq->idle_stamp)) {
2475 u64 delta = rq->clock - rq->idle_stamp;
2476 u64 max = 2*sysctl_sched_migration_cost;
2477
2478 if (delta > max)
2479 rq->avg_idle = max;
2480 else
2481 update_avg(&rq->avg_idle, delta);
2482 rq->idle_stamp = 0;
2483 }
2484 #endif
2485 out:
2486 task_rq_unlock(rq, &flags);
2487 put_cpu();
2488
2489 return success;
2490 }
2491
2492 /**
2493 * wake_up_process - Wake up a specific process
2494 * @p: The process to be woken up.
2495 *
2496 * Attempt to wake up the nominated process and move it to the set of runnable
2497 * processes. Returns 1 if the process was woken up, 0 if it was already
2498 * running.
2499 *
2500 * It may be assumed that this function implies a write memory barrier before
2501 * changing the task state if and only if any tasks are woken up.
2502 */
2503 int wake_up_process(struct task_struct *p)
2504 {
2505 return try_to_wake_up(p, TASK_ALL, 0);
2506 }
2507 EXPORT_SYMBOL(wake_up_process);
2508
2509 int wake_up_state(struct task_struct *p, unsigned int state)
2510 {
2511 return try_to_wake_up(p, state, 0);
2512 }
2513
2514 /*
2515 * Perform scheduler related setup for a newly forked process p.
2516 * p is forked by current.
2517 *
2518 * __sched_fork() is basic setup used by init_idle() too:
2519 */
2520 static void __sched_fork(struct task_struct *p)
2521 {
2522 p->se.exec_start = 0;
2523 p->se.sum_exec_runtime = 0;
2524 p->se.prev_sum_exec_runtime = 0;
2525 p->se.nr_migrations = 0;
2526 p->se.last_wakeup = 0;
2527 p->se.avg_overlap = 0;
2528 p->se.start_runtime = 0;
2529 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2530
2531 #ifdef CONFIG_SCHEDSTATS
2532 p->se.wait_start = 0;
2533 p->se.wait_max = 0;
2534 p->se.wait_count = 0;
2535 p->se.wait_sum = 0;
2536
2537 p->se.sleep_start = 0;
2538 p->se.sleep_max = 0;
2539 p->se.sum_sleep_runtime = 0;
2540
2541 p->se.block_start = 0;
2542 p->se.block_max = 0;
2543 p->se.exec_max = 0;
2544 p->se.slice_max = 0;
2545
2546 p->se.nr_migrations_cold = 0;
2547 p->se.nr_failed_migrations_affine = 0;
2548 p->se.nr_failed_migrations_running = 0;
2549 p->se.nr_failed_migrations_hot = 0;
2550 p->se.nr_forced_migrations = 0;
2551
2552 p->se.nr_wakeups = 0;
2553 p->se.nr_wakeups_sync = 0;
2554 p->se.nr_wakeups_migrate = 0;
2555 p->se.nr_wakeups_local = 0;
2556 p->se.nr_wakeups_remote = 0;
2557 p->se.nr_wakeups_affine = 0;
2558 p->se.nr_wakeups_affine_attempts = 0;
2559 p->se.nr_wakeups_passive = 0;
2560 p->se.nr_wakeups_idle = 0;
2561
2562 #endif
2563
2564 INIT_LIST_HEAD(&p->rt.run_list);
2565 p->se.on_rq = 0;
2566 INIT_LIST_HEAD(&p->se.group_node);
2567
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2569 INIT_HLIST_HEAD(&p->preempt_notifiers);
2570 #endif
2571 }
2572
2573 /*
2574 * fork()/clone()-time setup:
2575 */
2576 void sched_fork(struct task_struct *p, int clone_flags)
2577 {
2578 int cpu = get_cpu();
2579
2580 __sched_fork(p);
2581 /*
2582 * We mark the process as waking here. This guarantees that
2583 * nobody will actually run it, and a signal or other external
2584 * event cannot wake it up and insert it on the runqueue either.
2585 */
2586 p->state = TASK_WAKING;
2587
2588 /*
2589 * Revert to default priority/policy on fork if requested.
2590 */
2591 if (unlikely(p->sched_reset_on_fork)) {
2592 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2593 p->policy = SCHED_NORMAL;
2594 p->normal_prio = p->static_prio;
2595 }
2596
2597 if (PRIO_TO_NICE(p->static_prio) < 0) {
2598 p->static_prio = NICE_TO_PRIO(0);
2599 p->normal_prio = p->static_prio;
2600 set_load_weight(p);
2601 }
2602
2603 /*
2604 * We don't need the reset flag anymore after the fork. It has
2605 * fulfilled its duty:
2606 */
2607 p->sched_reset_on_fork = 0;
2608 }
2609
2610 /*
2611 * Make sure we do not leak PI boosting priority to the child.
2612 */
2613 p->prio = current->normal_prio;
2614
2615 if (!rt_prio(p->prio))
2616 p->sched_class = &fair_sched_class;
2617
2618 if (p->sched_class->task_fork)
2619 p->sched_class->task_fork(p);
2620
2621 set_task_cpu(p, cpu);
2622
2623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2624 if (likely(sched_info_on()))
2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
2626 #endif
2627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2628 p->oncpu = 0;
2629 #endif
2630 #ifdef CONFIG_PREEMPT
2631 /* Want to start with kernel preemption disabled. */
2632 task_thread_info(p)->preempt_count = 1;
2633 #endif
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2635
2636 put_cpu();
2637 }
2638
2639 /*
2640 * wake_up_new_task - wake up a newly created task for the first time.
2641 *
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2645 */
2646 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2647 {
2648 unsigned long flags;
2649 struct rq *rq;
2650 int cpu = get_cpu();
2651
2652 #ifdef CONFIG_SMP
2653 /*
2654 * Fork balancing, do it here and not earlier because:
2655 * - cpus_allowed can change in the fork path
2656 * - any previously selected cpu might disappear through hotplug
2657 *
2658 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2659 * ->cpus_allowed is stable, we have preemption disabled, meaning
2660 * cpu_online_mask is stable.
2661 */
2662 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2663 set_task_cpu(p, cpu);
2664 #endif
2665
2666 rq = task_rq_lock(p, &flags);
2667 BUG_ON(p->state != TASK_WAKING);
2668 p->state = TASK_RUNNING;
2669 update_rq_clock(rq);
2670 activate_task(rq, p, 0);
2671 trace_sched_wakeup_new(rq, p, 1);
2672 check_preempt_curr(rq, p, WF_FORK);
2673 #ifdef CONFIG_SMP
2674 if (p->sched_class->task_woken)
2675 p->sched_class->task_woken(rq, p);
2676 #endif
2677 task_rq_unlock(rq, &flags);
2678 put_cpu();
2679 }
2680
2681 #ifdef CONFIG_PREEMPT_NOTIFIERS
2682
2683 /**
2684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2685 * @notifier: notifier struct to register
2686 */
2687 void preempt_notifier_register(struct preempt_notifier *notifier)
2688 {
2689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2690 }
2691 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2692
2693 /**
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
2695 * @notifier: notifier struct to unregister
2696 *
2697 * This is safe to call from within a preemption notifier.
2698 */
2699 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2700 {
2701 hlist_del(&notifier->link);
2702 }
2703 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2704
2705 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2706 {
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2712 }
2713
2714 static void
2715 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2716 struct task_struct *next)
2717 {
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2720
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_out(notifier, next);
2723 }
2724
2725 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2726
2727 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2728 {
2729 }
2730
2731 static void
2732 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2734 {
2735 }
2736
2737 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2738
2739 /**
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
2742 * @prev: the current task that is being switched out
2743 * @next: the task we are going to switch to.
2744 *
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2747 * switch.
2748 *
2749 * prepare_task_switch sets up locking and calls architecture specific
2750 * hooks.
2751 */
2752 static inline void
2753 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2754 struct task_struct *next)
2755 {
2756 fire_sched_out_preempt_notifiers(prev, next);
2757 prepare_lock_switch(rq, next);
2758 prepare_arch_switch(next);
2759 }
2760
2761 /**
2762 * finish_task_switch - clean up after a task-switch
2763 * @rq: runqueue associated with task-switch
2764 * @prev: the thread we just switched away from.
2765 *
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
2770 *
2771 * Note that we may have delayed dropping an mm in context_switch(). If
2772 * so, we finish that here outside of the runqueue lock. (Doing it
2773 * with the lock held can cause deadlocks; see schedule() for
2774 * details.)
2775 */
2776 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2777 __releases(rq->lock)
2778 {
2779 struct mm_struct *mm = rq->prev_mm;
2780 long prev_state;
2781
2782 rq->prev_mm = NULL;
2783
2784 /*
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */
2795 prev_state = prev->state;
2796 finish_arch_switch(prev);
2797 perf_event_task_sched_in(current, cpu_of(rq));
2798 finish_lock_switch(rq, prev);
2799
2800 fire_sched_in_preempt_notifiers(current);
2801 if (mm)
2802 mmdrop(mm);
2803 if (unlikely(prev_state == TASK_DEAD)) {
2804 /*
2805 * Remove function-return probe instances associated with this
2806 * task and put them back on the free list.
2807 */
2808 kprobe_flush_task(prev);
2809 put_task_struct(prev);
2810 }
2811 }
2812
2813 #ifdef CONFIG_SMP
2814
2815 /* assumes rq->lock is held */
2816 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2817 {
2818 if (prev->sched_class->pre_schedule)
2819 prev->sched_class->pre_schedule(rq, prev);
2820 }
2821
2822 /* rq->lock is NOT held, but preemption is disabled */
2823 static inline void post_schedule(struct rq *rq)
2824 {
2825 if (rq->post_schedule) {
2826 unsigned long flags;
2827
2828 raw_spin_lock_irqsave(&rq->lock, flags);
2829 if (rq->curr->sched_class->post_schedule)
2830 rq->curr->sched_class->post_schedule(rq);
2831 raw_spin_unlock_irqrestore(&rq->lock, flags);
2832
2833 rq->post_schedule = 0;
2834 }
2835 }
2836
2837 #else
2838
2839 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2840 {
2841 }
2842
2843 static inline void post_schedule(struct rq *rq)
2844 {
2845 }
2846
2847 #endif
2848
2849 /**
2850 * schedule_tail - first thing a freshly forked thread must call.
2851 * @prev: the thread we just switched away from.
2852 */
2853 asmlinkage void schedule_tail(struct task_struct *prev)
2854 __releases(rq->lock)
2855 {
2856 struct rq *rq = this_rq();
2857
2858 finish_task_switch(rq, prev);
2859
2860 /*
2861 * FIXME: do we need to worry about rq being invalidated by the
2862 * task_switch?
2863 */
2864 post_schedule(rq);
2865
2866 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2867 /* In this case, finish_task_switch does not reenable preemption */
2868 preempt_enable();
2869 #endif
2870 if (current->set_child_tid)
2871 put_user(task_pid_vnr(current), current->set_child_tid);
2872 }
2873
2874 /*
2875 * context_switch - switch to the new MM and the new
2876 * thread's register state.
2877 */
2878 static inline void
2879 context_switch(struct rq *rq, struct task_struct *prev,
2880 struct task_struct *next)
2881 {
2882 struct mm_struct *mm, *oldmm;
2883
2884 prepare_task_switch(rq, prev, next);
2885 trace_sched_switch(rq, prev, next);
2886 mm = next->mm;
2887 oldmm = prev->active_mm;
2888 /*
2889 * For paravirt, this is coupled with an exit in switch_to to
2890 * combine the page table reload and the switch backend into
2891 * one hypercall.
2892 */
2893 arch_start_context_switch(prev);
2894
2895 if (likely(!mm)) {
2896 next->active_mm = oldmm;
2897 atomic_inc(&oldmm->mm_count);
2898 enter_lazy_tlb(oldmm, next);
2899 } else
2900 switch_mm(oldmm, mm, next);
2901
2902 if (likely(!prev->mm)) {
2903 prev->active_mm = NULL;
2904 rq->prev_mm = oldmm;
2905 }
2906 /*
2907 * Since the runqueue lock will be released by the next
2908 * task (which is an invalid locking op but in the case
2909 * of the scheduler it's an obvious special-case), so we
2910 * do an early lockdep release here:
2911 */
2912 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2914 #endif
2915
2916 /* Here we just switch the register state and the stack. */
2917 switch_to(prev, next, prev);
2918
2919 barrier();
2920 /*
2921 * this_rq must be evaluated again because prev may have moved
2922 * CPUs since it called schedule(), thus the 'rq' on its stack
2923 * frame will be invalid.
2924 */
2925 finish_task_switch(this_rq(), prev);
2926 }
2927
2928 /*
2929 * nr_running, nr_uninterruptible and nr_context_switches:
2930 *
2931 * externally visible scheduler statistics: current number of runnable
2932 * threads, current number of uninterruptible-sleeping threads, total
2933 * number of context switches performed since bootup.
2934 */
2935 unsigned long nr_running(void)
2936 {
2937 unsigned long i, sum = 0;
2938
2939 for_each_online_cpu(i)
2940 sum += cpu_rq(i)->nr_running;
2941
2942 return sum;
2943 }
2944
2945 unsigned long nr_uninterruptible(void)
2946 {
2947 unsigned long i, sum = 0;
2948
2949 for_each_possible_cpu(i)
2950 sum += cpu_rq(i)->nr_uninterruptible;
2951
2952 /*
2953 * Since we read the counters lockless, it might be slightly
2954 * inaccurate. Do not allow it to go below zero though:
2955 */
2956 if (unlikely((long)sum < 0))
2957 sum = 0;
2958
2959 return sum;
2960 }
2961
2962 unsigned long long nr_context_switches(void)
2963 {
2964 int i;
2965 unsigned long long sum = 0;
2966
2967 for_each_possible_cpu(i)
2968 sum += cpu_rq(i)->nr_switches;
2969
2970 return sum;
2971 }
2972
2973 unsigned long nr_iowait(void)
2974 {
2975 unsigned long i, sum = 0;
2976
2977 for_each_possible_cpu(i)
2978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2979
2980 return sum;
2981 }
2982
2983 unsigned long nr_iowait_cpu(void)
2984 {
2985 struct rq *this = this_rq();
2986 return atomic_read(&this->nr_iowait);
2987 }
2988
2989 unsigned long this_cpu_load(void)
2990 {
2991 struct rq *this = this_rq();
2992 return this->cpu_load[0];
2993 }
2994
2995
2996 /* Variables and functions for calc_load */
2997 static atomic_long_t calc_load_tasks;
2998 static unsigned long calc_load_update;
2999 unsigned long avenrun[3];
3000 EXPORT_SYMBOL(avenrun);
3001
3002 /**
3003 * get_avenrun - get the load average array
3004 * @loads: pointer to dest load array
3005 * @offset: offset to add
3006 * @shift: shift count to shift the result left
3007 *
3008 * These values are estimates at best, so no need for locking.
3009 */
3010 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3011 {
3012 loads[0] = (avenrun[0] + offset) << shift;
3013 loads[1] = (avenrun[1] + offset) << shift;
3014 loads[2] = (avenrun[2] + offset) << shift;
3015 }
3016
3017 static unsigned long
3018 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3019 {
3020 load *= exp;
3021 load += active * (FIXED_1 - exp);
3022 return load >> FSHIFT;
3023 }
3024
3025 /*
3026 * calc_load - update the avenrun load estimates 10 ticks after the
3027 * CPUs have updated calc_load_tasks.
3028 */
3029 void calc_global_load(void)
3030 {
3031 unsigned long upd = calc_load_update + 10;
3032 long active;
3033
3034 if (time_before(jiffies, upd))
3035 return;
3036
3037 active = atomic_long_read(&calc_load_tasks);
3038 active = active > 0 ? active * FIXED_1 : 0;
3039
3040 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3041 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3042 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3043
3044 calc_load_update += LOAD_FREQ;
3045 }
3046
3047 /*
3048 * Either called from update_cpu_load() or from a cpu going idle
3049 */
3050 static void calc_load_account_active(struct rq *this_rq)
3051 {
3052 long nr_active, delta;
3053
3054 nr_active = this_rq->nr_running;
3055 nr_active += (long) this_rq->nr_uninterruptible;
3056
3057 if (nr_active != this_rq->calc_load_active) {
3058 delta = nr_active - this_rq->calc_load_active;
3059 this_rq->calc_load_active = nr_active;
3060 atomic_long_add(delta, &calc_load_tasks);
3061 }
3062 }
3063
3064 /*
3065 * Update rq->cpu_load[] statistics. This function is usually called every
3066 * scheduler tick (TICK_NSEC).
3067 */
3068 static void update_cpu_load(struct rq *this_rq)
3069 {
3070 unsigned long this_load = this_rq->load.weight;
3071 int i, scale;
3072
3073 this_rq->nr_load_updates++;
3074
3075 /* Update our load: */
3076 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3077 unsigned long old_load, new_load;
3078
3079 /* scale is effectively 1 << i now, and >> i divides by scale */
3080
3081 old_load = this_rq->cpu_load[i];
3082 new_load = this_load;
3083 /*
3084 * Round up the averaging division if load is increasing. This
3085 * prevents us from getting stuck on 9 if the load is 10, for
3086 * example.
3087 */
3088 if (new_load > old_load)
3089 new_load += scale-1;
3090 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3091 }
3092
3093 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3094 this_rq->calc_load_update += LOAD_FREQ;
3095 calc_load_account_active(this_rq);
3096 }
3097 }
3098
3099 #ifdef CONFIG_SMP
3100
3101 /*
3102 * double_rq_lock - safely lock two runqueues
3103 *
3104 * Note this does not disable interrupts like task_rq_lock,
3105 * you need to do so manually before calling.
3106 */
3107 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3108 __acquires(rq1->lock)
3109 __acquires(rq2->lock)
3110 {
3111 BUG_ON(!irqs_disabled());
3112 if (rq1 == rq2) {
3113 raw_spin_lock(&rq1->lock);
3114 __acquire(rq2->lock); /* Fake it out ;) */
3115 } else {
3116 if (rq1 < rq2) {
3117 raw_spin_lock(&rq1->lock);
3118 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3119 } else {
3120 raw_spin_lock(&rq2->lock);
3121 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3122 }
3123 }
3124 update_rq_clock(rq1);
3125 update_rq_clock(rq2);
3126 }
3127
3128 /*
3129 * double_rq_unlock - safely unlock two runqueues
3130 *
3131 * Note this does not restore interrupts like task_rq_unlock,
3132 * you need to do so manually after calling.
3133 */
3134 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3135 __releases(rq1->lock)
3136 __releases(rq2->lock)
3137 {
3138 raw_spin_unlock(&rq1->lock);
3139 if (rq1 != rq2)
3140 raw_spin_unlock(&rq2->lock);
3141 else
3142 __release(rq2->lock);
3143 }
3144
3145 /*
3146 * sched_exec - execve() is a valuable balancing opportunity, because at
3147 * this point the task has the smallest effective memory and cache footprint.
3148 */
3149 void sched_exec(void)
3150 {
3151 struct task_struct *p = current;
3152 struct migration_req req;
3153 int dest_cpu, this_cpu;
3154 unsigned long flags;
3155 struct rq *rq;
3156
3157 again:
3158 this_cpu = get_cpu();
3159 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3160 if (dest_cpu == this_cpu) {
3161 put_cpu();
3162 return;
3163 }
3164
3165 rq = task_rq_lock(p, &flags);
3166 put_cpu();
3167
3168 /*
3169 * select_task_rq() can race against ->cpus_allowed
3170 */
3171 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3172 || unlikely(!cpu_active(dest_cpu))) {
3173 task_rq_unlock(rq, &flags);
3174 goto again;
3175 }
3176
3177 /* force the process onto the specified CPU */
3178 if (migrate_task(p, dest_cpu, &req)) {
3179 /* Need to wait for migration thread (might exit: take ref). */
3180 struct task_struct *mt = rq->migration_thread;
3181
3182 get_task_struct(mt);
3183 task_rq_unlock(rq, &flags);
3184 wake_up_process(mt);
3185 put_task_struct(mt);
3186 wait_for_completion(&req.done);
3187
3188 return;
3189 }
3190 task_rq_unlock(rq, &flags);
3191 }
3192
3193 /*
3194 * pull_task - move a task from a remote runqueue to the local runqueue.
3195 * Both runqueues must be locked.
3196 */
3197 static void pull_task(struct rq *src_rq, struct task_struct *p,
3198 struct rq *this_rq, int this_cpu)
3199 {
3200 deactivate_task(src_rq, p, 0);
3201 set_task_cpu(p, this_cpu);
3202 activate_task(this_rq, p, 0);
3203 check_preempt_curr(this_rq, p, 0);
3204 }
3205
3206 /*
3207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3208 */
3209 static
3210 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3211 struct sched_domain *sd, enum cpu_idle_type idle,
3212 int *all_pinned)
3213 {
3214 int tsk_cache_hot = 0;
3215 /*
3216 * We do not migrate tasks that are:
3217 * 1) running (obviously), or
3218 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3219 * 3) are cache-hot on their current CPU.
3220 */
3221 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3222 schedstat_inc(p, se.nr_failed_migrations_affine);
3223 return 0;
3224 }
3225 *all_pinned = 0;
3226
3227 if (task_running(rq, p)) {
3228 schedstat_inc(p, se.nr_failed_migrations_running);
3229 return 0;
3230 }
3231
3232 /*
3233 * Aggressive migration if:
3234 * 1) task is cache cold, or
3235 * 2) too many balance attempts have failed.
3236 */
3237
3238 tsk_cache_hot = task_hot(p, rq->clock, sd);
3239 if (!tsk_cache_hot ||
3240 sd->nr_balance_failed > sd->cache_nice_tries) {
3241 #ifdef CONFIG_SCHEDSTATS
3242 if (tsk_cache_hot) {
3243 schedstat_inc(sd, lb_hot_gained[idle]);
3244 schedstat_inc(p, se.nr_forced_migrations);
3245 }
3246 #endif
3247 return 1;
3248 }
3249
3250 if (tsk_cache_hot) {
3251 schedstat_inc(p, se.nr_failed_migrations_hot);
3252 return 0;
3253 }
3254 return 1;
3255 }
3256
3257 static unsigned long
3258 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move, struct sched_domain *sd,
3260 enum cpu_idle_type idle, int *all_pinned,
3261 int *this_best_prio, struct rq_iterator *iterator)
3262 {
3263 int loops = 0, pulled = 0, pinned = 0;
3264 struct task_struct *p;
3265 long rem_load_move = max_load_move;
3266
3267 if (max_load_move == 0)
3268 goto out;
3269
3270 pinned = 1;
3271
3272 /*
3273 * Start the load-balancing iterator:
3274 */
3275 p = iterator->start(iterator->arg);
3276 next:
3277 if (!p || loops++ > sysctl_sched_nr_migrate)
3278 goto out;
3279
3280 if ((p->se.load.weight >> 1) > rem_load_move ||
3281 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3282 p = iterator->next(iterator->arg);
3283 goto next;
3284 }
3285
3286 pull_task(busiest, p, this_rq, this_cpu);
3287 pulled++;
3288 rem_load_move -= p->se.load.weight;
3289
3290 #ifdef CONFIG_PREEMPT
3291 /*
3292 * NEWIDLE balancing is a source of latency, so preemptible kernels
3293 * will stop after the first task is pulled to minimize the critical
3294 * section.
3295 */
3296 if (idle == CPU_NEWLY_IDLE)
3297 goto out;
3298 #endif
3299
3300 /*
3301 * We only want to steal up to the prescribed amount of weighted load.
3302 */
3303 if (rem_load_move > 0) {
3304 if (p->prio < *this_best_prio)
3305 *this_best_prio = p->prio;
3306 p = iterator->next(iterator->arg);
3307 goto next;
3308 }
3309 out:
3310 /*
3311 * Right now, this is one of only two places pull_task() is called,
3312 * so we can safely collect pull_task() stats here rather than
3313 * inside pull_task().
3314 */
3315 schedstat_add(sd, lb_gained[idle], pulled);
3316
3317 if (all_pinned)
3318 *all_pinned = pinned;
3319
3320 return max_load_move - rem_load_move;
3321 }
3322
3323 /*
3324 * move_tasks tries to move up to max_load_move weighted load from busiest to
3325 * this_rq, as part of a balancing operation within domain "sd".
3326 * Returns 1 if successful and 0 otherwise.
3327 *
3328 * Called with both runqueues locked.
3329 */
3330 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3331 unsigned long max_load_move,
3332 struct sched_domain *sd, enum cpu_idle_type idle,
3333 int *all_pinned)
3334 {
3335 const struct sched_class *class = sched_class_highest;
3336 unsigned long total_load_moved = 0;
3337 int this_best_prio = this_rq->curr->prio;
3338
3339 do {
3340 total_load_moved +=
3341 class->load_balance(this_rq, this_cpu, busiest,
3342 max_load_move - total_load_moved,
3343 sd, idle, all_pinned, &this_best_prio);
3344 class = class->next;
3345
3346 #ifdef CONFIG_PREEMPT
3347 /*
3348 * NEWIDLE balancing is a source of latency, so preemptible
3349 * kernels will stop after the first task is pulled to minimize
3350 * the critical section.
3351 */
3352 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3353 break;
3354 #endif
3355 } while (class && max_load_move > total_load_moved);
3356
3357 return total_load_moved > 0;
3358 }
3359
3360 static int
3361 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle,
3363 struct rq_iterator *iterator)
3364 {
3365 struct task_struct *p = iterator->start(iterator->arg);
3366 int pinned = 0;
3367
3368 while (p) {
3369 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3370 pull_task(busiest, p, this_rq, this_cpu);
3371 /*
3372 * Right now, this is only the second place pull_task()
3373 * is called, so we can safely collect pull_task()
3374 * stats here rather than inside pull_task().
3375 */
3376 schedstat_inc(sd, lb_gained[idle]);
3377
3378 return 1;
3379 }
3380 p = iterator->next(iterator->arg);
3381 }
3382
3383 return 0;
3384 }
3385
3386 /*
3387 * move_one_task tries to move exactly one task from busiest to this_rq, as
3388 * part of active balancing operations within "domain".
3389 * Returns 1 if successful and 0 otherwise.
3390 *
3391 * Called with both runqueues locked.
3392 */
3393 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle)
3395 {
3396 const struct sched_class *class;
3397
3398 for_each_class(class) {
3399 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3400 return 1;
3401 }
3402
3403 return 0;
3404 }
3405 /********** Helpers for find_busiest_group ************************/
3406 /*
3407 * sd_lb_stats - Structure to store the statistics of a sched_domain
3408 * during load balancing.
3409 */
3410 struct sd_lb_stats {
3411 struct sched_group *busiest; /* Busiest group in this sd */
3412 struct sched_group *this; /* Local group in this sd */
3413 unsigned long total_load; /* Total load of all groups in sd */
3414 unsigned long total_pwr; /* Total power of all groups in sd */
3415 unsigned long avg_load; /* Average load across all groups in sd */
3416
3417 /** Statistics of this group */
3418 unsigned long this_load;
3419 unsigned long this_load_per_task;
3420 unsigned long this_nr_running;
3421
3422 /* Statistics of the busiest group */
3423 unsigned long max_load;
3424 unsigned long busiest_load_per_task;
3425 unsigned long busiest_nr_running;
3426
3427 int group_imb; /* Is there imbalance in this sd */
3428 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3429 int power_savings_balance; /* Is powersave balance needed for this sd */
3430 struct sched_group *group_min; /* Least loaded group in sd */
3431 struct sched_group *group_leader; /* Group which relieves group_min */
3432 unsigned long min_load_per_task; /* load_per_task in group_min */
3433 unsigned long leader_nr_running; /* Nr running of group_leader */
3434 unsigned long min_nr_running; /* Nr running of group_min */
3435 #endif
3436 };
3437
3438 /*
3439 * sg_lb_stats - stats of a sched_group required for load_balancing
3440 */
3441 struct sg_lb_stats {
3442 unsigned long avg_load; /*Avg load across the CPUs of the group */
3443 unsigned long group_load; /* Total load over the CPUs of the group */
3444 unsigned long sum_nr_running; /* Nr tasks running in the group */
3445 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3446 unsigned long group_capacity;
3447 int group_imb; /* Is there an imbalance in the group ? */
3448 };
3449
3450 /**
3451 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3452 * @group: The group whose first cpu is to be returned.
3453 */
3454 static inline unsigned int group_first_cpu(struct sched_group *group)
3455 {
3456 return cpumask_first(sched_group_cpus(group));
3457 }
3458
3459 /**
3460 * get_sd_load_idx - Obtain the load index for a given sched domain.
3461 * @sd: The sched_domain whose load_idx is to be obtained.
3462 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3463 */
3464 static inline int get_sd_load_idx(struct sched_domain *sd,
3465 enum cpu_idle_type idle)
3466 {
3467 int load_idx;
3468
3469 switch (idle) {
3470 case CPU_NOT_IDLE:
3471 load_idx = sd->busy_idx;
3472 break;
3473
3474 case CPU_NEWLY_IDLE:
3475 load_idx = sd->newidle_idx;
3476 break;
3477 default:
3478 load_idx = sd->idle_idx;
3479 break;
3480 }
3481
3482 return load_idx;
3483 }
3484
3485
3486 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3487 /**
3488 * init_sd_power_savings_stats - Initialize power savings statistics for
3489 * the given sched_domain, during load balancing.
3490 *
3491 * @sd: Sched domain whose power-savings statistics are to be initialized.
3492 * @sds: Variable containing the statistics for sd.
3493 * @idle: Idle status of the CPU at which we're performing load-balancing.
3494 */
3495 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3496 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3497 {
3498 /*
3499 * Busy processors will not participate in power savings
3500 * balance.
3501 */
3502 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3503 sds->power_savings_balance = 0;
3504 else {
3505 sds->power_savings_balance = 1;
3506 sds->min_nr_running = ULONG_MAX;
3507 sds->leader_nr_running = 0;
3508 }
3509 }
3510
3511 /**
3512 * update_sd_power_savings_stats - Update the power saving stats for a
3513 * sched_domain while performing load balancing.
3514 *
3515 * @group: sched_group belonging to the sched_domain under consideration.
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * @local_group: Does group contain the CPU for which we're performing
3518 * load balancing ?
3519 * @sgs: Variable containing the statistics of the group.
3520 */
3521 static inline void update_sd_power_savings_stats(struct sched_group *group,
3522 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3523 {
3524
3525 if (!sds->power_savings_balance)
3526 return;
3527
3528 /*
3529 * If the local group is idle or completely loaded
3530 * no need to do power savings balance at this domain
3531 */
3532 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3533 !sds->this_nr_running))
3534 sds->power_savings_balance = 0;
3535
3536 /*
3537 * If a group is already running at full capacity or idle,
3538 * don't include that group in power savings calculations
3539 */
3540 if (!sds->power_savings_balance ||
3541 sgs->sum_nr_running >= sgs->group_capacity ||
3542 !sgs->sum_nr_running)
3543 return;
3544
3545 /*
3546 * Calculate the group which has the least non-idle load.
3547 * This is the group from where we need to pick up the load
3548 * for saving power
3549 */
3550 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3551 (sgs->sum_nr_running == sds->min_nr_running &&
3552 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3553 sds->group_min = group;
3554 sds->min_nr_running = sgs->sum_nr_running;
3555 sds->min_load_per_task = sgs->sum_weighted_load /
3556 sgs->sum_nr_running;
3557 }
3558
3559 /*
3560 * Calculate the group which is almost near its
3561 * capacity but still has some space to pick up some load
3562 * from other group and save more power
3563 */
3564 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3565 return;
3566
3567 if (sgs->sum_nr_running > sds->leader_nr_running ||
3568 (sgs->sum_nr_running == sds->leader_nr_running &&
3569 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3570 sds->group_leader = group;
3571 sds->leader_nr_running = sgs->sum_nr_running;
3572 }
3573 }
3574
3575 /**
3576 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3577 * @sds: Variable containing the statistics of the sched_domain
3578 * under consideration.
3579 * @this_cpu: Cpu at which we're currently performing load-balancing.
3580 * @imbalance: Variable to store the imbalance.
3581 *
3582 * Description:
3583 * Check if we have potential to perform some power-savings balance.
3584 * If yes, set the busiest group to be the least loaded group in the
3585 * sched_domain, so that it's CPUs can be put to idle.
3586 *
3587 * Returns 1 if there is potential to perform power-savings balance.
3588 * Else returns 0.
3589 */
3590 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3591 int this_cpu, unsigned long *imbalance)
3592 {
3593 if (!sds->power_savings_balance)
3594 return 0;
3595
3596 if (sds->this != sds->group_leader ||
3597 sds->group_leader == sds->group_min)
3598 return 0;
3599
3600 *imbalance = sds->min_load_per_task;
3601 sds->busiest = sds->group_min;
3602
3603 return 1;
3604
3605 }
3606 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3607 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3608 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3609 {
3610 return;
3611 }
3612
3613 static inline void update_sd_power_savings_stats(struct sched_group *group,
3614 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3615 {
3616 return;
3617 }
3618
3619 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3620 int this_cpu, unsigned long *imbalance)
3621 {
3622 return 0;
3623 }
3624 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3625
3626
3627 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3628 {
3629 return SCHED_LOAD_SCALE;
3630 }
3631
3632 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3633 {
3634 return default_scale_freq_power(sd, cpu);
3635 }
3636
3637 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3638 {
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long smt_gain = sd->smt_gain;
3641
3642 smt_gain /= weight;
3643
3644 return smt_gain;
3645 }
3646
3647 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3648 {
3649 return default_scale_smt_power(sd, cpu);
3650 }
3651
3652 unsigned long scale_rt_power(int cpu)
3653 {
3654 struct rq *rq = cpu_rq(cpu);
3655 u64 total, available;
3656
3657 sched_avg_update(rq);
3658
3659 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3660 available = total - rq->rt_avg;
3661
3662 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3663 total = SCHED_LOAD_SCALE;
3664
3665 total >>= SCHED_LOAD_SHIFT;
3666
3667 return div_u64(available, total);
3668 }
3669
3670 static void update_cpu_power(struct sched_domain *sd, int cpu)
3671 {
3672 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3673 unsigned long power = SCHED_LOAD_SCALE;
3674 struct sched_group *sdg = sd->groups;
3675
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_freq_power(sd, cpu);
3678 else
3679 power *= default_scale_freq_power(sd, cpu);
3680
3681 power >>= SCHED_LOAD_SHIFT;
3682
3683 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3684 if (sched_feat(ARCH_POWER))
3685 power *= arch_scale_smt_power(sd, cpu);
3686 else
3687 power *= default_scale_smt_power(sd, cpu);
3688
3689 power >>= SCHED_LOAD_SHIFT;
3690 }
3691
3692 power *= scale_rt_power(cpu);
3693 power >>= SCHED_LOAD_SHIFT;
3694
3695 if (!power)
3696 power = 1;
3697
3698 sdg->cpu_power = power;
3699 }
3700
3701 static void update_group_power(struct sched_domain *sd, int cpu)
3702 {
3703 struct sched_domain *child = sd->child;
3704 struct sched_group *group, *sdg = sd->groups;
3705 unsigned long power;
3706
3707 if (!child) {
3708 update_cpu_power(sd, cpu);
3709 return;
3710 }
3711
3712 power = 0;
3713
3714 group = child->groups;
3715 do {
3716 power += group->cpu_power;
3717 group = group->next;
3718 } while (group != child->groups);
3719
3720 sdg->cpu_power = power;
3721 }
3722
3723 /**
3724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3725 * @sd: The sched_domain whose statistics are to be updated.
3726 * @group: sched_group whose statistics are to be updated.
3727 * @this_cpu: Cpu for which load balance is currently performed.
3728 * @idle: Idle status of this_cpu
3729 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3730 * @sd_idle: Idle status of the sched_domain containing group.
3731 * @local_group: Does group contain this_cpu.
3732 * @cpus: Set of cpus considered for load balancing.
3733 * @balance: Should we balance.
3734 * @sgs: variable to hold the statistics for this group.
3735 */
3736 static inline void update_sg_lb_stats(struct sched_domain *sd,
3737 struct sched_group *group, int this_cpu,
3738 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3739 int local_group, const struct cpumask *cpus,
3740 int *balance, struct sg_lb_stats *sgs)
3741 {
3742 unsigned long load, max_cpu_load, min_cpu_load;
3743 int i;
3744 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3745 unsigned long sum_avg_load_per_task;
3746 unsigned long avg_load_per_task;
3747
3748 if (local_group) {
3749 balance_cpu = group_first_cpu(group);
3750 if (balance_cpu == this_cpu)
3751 update_group_power(sd, this_cpu);
3752 }
3753
3754 /* Tally up the load of all CPUs in the group */
3755 sum_avg_load_per_task = avg_load_per_task = 0;
3756 max_cpu_load = 0;
3757 min_cpu_load = ~0UL;
3758
3759 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3760 struct rq *rq = cpu_rq(i);
3761
3762 if (*sd_idle && rq->nr_running)
3763 *sd_idle = 0;
3764
3765 /* Bias balancing toward cpus of our domain */
3766 if (local_group) {
3767 if (idle_cpu(i) && !first_idle_cpu) {
3768 first_idle_cpu = 1;
3769 balance_cpu = i;
3770 }
3771
3772 load = target_load(i, load_idx);
3773 } else {
3774 load = source_load(i, load_idx);
3775 if (load > max_cpu_load)
3776 max_cpu_load = load;
3777 if (min_cpu_load > load)
3778 min_cpu_load = load;
3779 }
3780
3781 sgs->group_load += load;
3782 sgs->sum_nr_running += rq->nr_running;
3783 sgs->sum_weighted_load += weighted_cpuload(i);
3784
3785 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3786 }
3787
3788 /*
3789 * First idle cpu or the first cpu(busiest) in this sched group
3790 * is eligible for doing load balancing at this and above
3791 * domains. In the newly idle case, we will allow all the cpu's
3792 * to do the newly idle load balance.
3793 */
3794 if (idle != CPU_NEWLY_IDLE && local_group &&
3795 balance_cpu != this_cpu && balance) {
3796 *balance = 0;
3797 return;
3798 }
3799
3800 /* Adjust by relative CPU power of the group */
3801 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3802
3803
3804 /*
3805 * Consider the group unbalanced when the imbalance is larger
3806 * than the average weight of two tasks.
3807 *
3808 * APZ: with cgroup the avg task weight can vary wildly and
3809 * might not be a suitable number - should we keep a
3810 * normalized nr_running number somewhere that negates
3811 * the hierarchy?
3812 */
3813 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3814 group->cpu_power;
3815
3816 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3817 sgs->group_imb = 1;
3818
3819 sgs->group_capacity =
3820 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3821 }
3822
3823 /**
3824 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3825 * @sd: sched_domain whose statistics are to be updated.
3826 * @this_cpu: Cpu for which load balance is currently performed.
3827 * @idle: Idle status of this_cpu
3828 * @sd_idle: Idle status of the sched_domain containing group.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sds: variable to hold the statistics for this sched_domain.
3832 */
3833 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3834 enum cpu_idle_type idle, int *sd_idle,
3835 const struct cpumask *cpus, int *balance,
3836 struct sd_lb_stats *sds)
3837 {
3838 struct sched_domain *child = sd->child;
3839 struct sched_group *group = sd->groups;
3840 struct sg_lb_stats sgs;
3841 int load_idx, prefer_sibling = 0;
3842
3843 if (child && child->flags & SD_PREFER_SIBLING)
3844 prefer_sibling = 1;
3845
3846 init_sd_power_savings_stats(sd, sds, idle);
3847 load_idx = get_sd_load_idx(sd, idle);
3848
3849 do {
3850 int local_group;
3851
3852 local_group = cpumask_test_cpu(this_cpu,
3853 sched_group_cpus(group));
3854 memset(&sgs, 0, sizeof(sgs));
3855 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3856 local_group, cpus, balance, &sgs);
3857
3858 if (local_group && balance && !(*balance))
3859 return;
3860
3861 sds->total_load += sgs.group_load;
3862 sds->total_pwr += group->cpu_power;
3863
3864 /*
3865 * In case the child domain prefers tasks go to siblings
3866 * first, lower the group capacity to one so that we'll try
3867 * and move all the excess tasks away.
3868 */
3869 if (prefer_sibling)
3870 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3871
3872 if (local_group) {
3873 sds->this_load = sgs.avg_load;
3874 sds->this = group;
3875 sds->this_nr_running = sgs.sum_nr_running;
3876 sds->this_load_per_task = sgs.sum_weighted_load;
3877 } else if (sgs.avg_load > sds->max_load &&
3878 (sgs.sum_nr_running > sgs.group_capacity ||
3879 sgs.group_imb)) {
3880 sds->max_load = sgs.avg_load;
3881 sds->busiest = group;
3882 sds->busiest_nr_running = sgs.sum_nr_running;
3883 sds->busiest_load_per_task = sgs.sum_weighted_load;
3884 sds->group_imb = sgs.group_imb;
3885 }
3886
3887 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3888 group = group->next;
3889 } while (group != sd->groups);
3890 }
3891
3892 /**
3893 * fix_small_imbalance - Calculate the minor imbalance that exists
3894 * amongst the groups of a sched_domain, during
3895 * load balancing.
3896 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3897 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3898 * @imbalance: Variable to store the imbalance.
3899 */
3900 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3901 int this_cpu, unsigned long *imbalance)
3902 {
3903 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3904 unsigned int imbn = 2;
3905
3906 if (sds->this_nr_running) {
3907 sds->this_load_per_task /= sds->this_nr_running;
3908 if (sds->busiest_load_per_task >
3909 sds->this_load_per_task)
3910 imbn = 1;
3911 } else
3912 sds->this_load_per_task =
3913 cpu_avg_load_per_task(this_cpu);
3914
3915 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3916 sds->busiest_load_per_task * imbn) {
3917 *imbalance = sds->busiest_load_per_task;
3918 return;
3919 }
3920
3921 /*
3922 * OK, we don't have enough imbalance to justify moving tasks,
3923 * however we may be able to increase total CPU power used by
3924 * moving them.
3925 */
3926
3927 pwr_now += sds->busiest->cpu_power *
3928 min(sds->busiest_load_per_task, sds->max_load);
3929 pwr_now += sds->this->cpu_power *
3930 min(sds->this_load_per_task, sds->this_load);
3931 pwr_now /= SCHED_LOAD_SCALE;
3932
3933 /* Amount of load we'd subtract */
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->busiest->cpu_power;
3936 if (sds->max_load > tmp)
3937 pwr_move += sds->busiest->cpu_power *
3938 min(sds->busiest_load_per_task, sds->max_load - tmp);
3939
3940 /* Amount of load we'd add */
3941 if (sds->max_load * sds->busiest->cpu_power <
3942 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3943 tmp = (sds->max_load * sds->busiest->cpu_power) /
3944 sds->this->cpu_power;
3945 else
3946 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3947 sds->this->cpu_power;
3948 pwr_move += sds->this->cpu_power *
3949 min(sds->this_load_per_task, sds->this_load + tmp);
3950 pwr_move /= SCHED_LOAD_SCALE;
3951
3952 /* Move if we gain throughput */
3953 if (pwr_move > pwr_now)
3954 *imbalance = sds->busiest_load_per_task;
3955 }
3956
3957 /**
3958 * calculate_imbalance - Calculate the amount of imbalance present within the
3959 * groups of a given sched_domain during load balance.
3960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3961 * @this_cpu: Cpu for which currently load balance is being performed.
3962 * @imbalance: The variable to store the imbalance.
3963 */
3964 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3965 unsigned long *imbalance)
3966 {
3967 unsigned long max_pull;
3968 /*
3969 * In the presence of smp nice balancing, certain scenarios can have
3970 * max load less than avg load(as we skip the groups at or below
3971 * its cpu_power, while calculating max_load..)
3972 */
3973 if (sds->max_load < sds->avg_load) {
3974 *imbalance = 0;
3975 return fix_small_imbalance(sds, this_cpu, imbalance);
3976 }
3977
3978 /* Don't want to pull so many tasks that a group would go idle */
3979 max_pull = min(sds->max_load - sds->avg_load,
3980 sds->max_load - sds->busiest_load_per_task);
3981
3982 /* How much load to actually move to equalise the imbalance */
3983 *imbalance = min(max_pull * sds->busiest->cpu_power,
3984 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3985 / SCHED_LOAD_SCALE;
3986
3987 /*
3988 * if *imbalance is less than the average load per runnable task
3989 * there is no gaurantee that any tasks will be moved so we'll have
3990 * a think about bumping its value to force at least one task to be
3991 * moved
3992 */
3993 if (*imbalance < sds->busiest_load_per_task)
3994 return fix_small_imbalance(sds, this_cpu, imbalance);
3995
3996 }
3997 /******* find_busiest_group() helpers end here *********************/
3998
3999 /**
4000 * find_busiest_group - Returns the busiest group within the sched_domain
4001 * if there is an imbalance. If there isn't an imbalance, and
4002 * the user has opted for power-savings, it returns a group whose
4003 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4004 * such a group exists.
4005 *
4006 * Also calculates the amount of weighted load which should be moved
4007 * to restore balance.
4008 *
4009 * @sd: The sched_domain whose busiest group is to be returned.
4010 * @this_cpu: The cpu for which load balancing is currently being performed.
4011 * @imbalance: Variable which stores amount of weighted load which should
4012 * be moved to restore balance/put a group to idle.
4013 * @idle: The idle status of this_cpu.
4014 * @sd_idle: The idleness of sd
4015 * @cpus: The set of CPUs under consideration for load-balancing.
4016 * @balance: Pointer to a variable indicating if this_cpu
4017 * is the appropriate cpu to perform load balancing at this_level.
4018 *
4019 * Returns: - the busiest group if imbalance exists.
4020 * - If no imbalance and user has opted for power-savings balance,
4021 * return the least loaded group whose CPUs can be
4022 * put to idle by rebalancing its tasks onto our group.
4023 */
4024 static struct sched_group *
4025 find_busiest_group(struct sched_domain *sd, int this_cpu,
4026 unsigned long *imbalance, enum cpu_idle_type idle,
4027 int *sd_idle, const struct cpumask *cpus, int *balance)
4028 {
4029 struct sd_lb_stats sds;
4030
4031 memset(&sds, 0, sizeof(sds));
4032
4033 /*
4034 * Compute the various statistics relavent for load balancing at
4035 * this level.
4036 */
4037 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4038 balance, &sds);
4039
4040 /* Cases where imbalance does not exist from POV of this_cpu */
4041 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4042 * at this level.
4043 * 2) There is no busy sibling group to pull from.
4044 * 3) This group is the busiest group.
4045 * 4) This group is more busy than the avg busieness at this
4046 * sched_domain.
4047 * 5) The imbalance is within the specified limit.
4048 * 6) Any rebalance would lead to ping-pong
4049 */
4050 if (balance && !(*balance))
4051 goto ret;
4052
4053 if (!sds.busiest || sds.busiest_nr_running == 0)
4054 goto out_balanced;
4055
4056 if (sds.this_load >= sds.max_load)
4057 goto out_balanced;
4058
4059 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4060
4061 if (sds.this_load >= sds.avg_load)
4062 goto out_balanced;
4063
4064 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4065 goto out_balanced;
4066
4067 sds.busiest_load_per_task /= sds.busiest_nr_running;
4068 if (sds.group_imb)
4069 sds.busiest_load_per_task =
4070 min(sds.busiest_load_per_task, sds.avg_load);
4071
4072 /*
4073 * We're trying to get all the cpus to the average_load, so we don't
4074 * want to push ourselves above the average load, nor do we wish to
4075 * reduce the max loaded cpu below the average load, as either of these
4076 * actions would just result in more rebalancing later, and ping-pong
4077 * tasks around. Thus we look for the minimum possible imbalance.
4078 * Negative imbalances (*we* are more loaded than anyone else) will
4079 * be counted as no imbalance for these purposes -- we can't fix that
4080 * by pulling tasks to us. Be careful of negative numbers as they'll
4081 * appear as very large values with unsigned longs.
4082 */
4083 if (sds.max_load <= sds.busiest_load_per_task)
4084 goto out_balanced;
4085
4086 /* Looks like there is an imbalance. Compute it */
4087 calculate_imbalance(&sds, this_cpu, imbalance);
4088 return sds.busiest;
4089
4090 out_balanced:
4091 /*
4092 * There is no obvious imbalance. But check if we can do some balancing
4093 * to save power.
4094 */
4095 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4096 return sds.busiest;
4097 ret:
4098 *imbalance = 0;
4099 return NULL;
4100 }
4101
4102 /*
4103 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4104 */
4105 static struct rq *
4106 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4107 unsigned long imbalance, const struct cpumask *cpus)
4108 {
4109 struct rq *busiest = NULL, *rq;
4110 unsigned long max_load = 0;
4111 int i;
4112
4113 for_each_cpu(i, sched_group_cpus(group)) {
4114 unsigned long power = power_of(i);
4115 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4116 unsigned long wl;
4117
4118 if (!cpumask_test_cpu(i, cpus))
4119 continue;
4120
4121 rq = cpu_rq(i);
4122 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4123 wl /= power;
4124
4125 if (capacity && rq->nr_running == 1 && wl > imbalance)
4126 continue;
4127
4128 if (wl > max_load) {
4129 max_load = wl;
4130 busiest = rq;
4131 }
4132 }
4133
4134 return busiest;
4135 }
4136
4137 /*
4138 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4139 * so long as it is large enough.
4140 */
4141 #define MAX_PINNED_INTERVAL 512
4142
4143 /* Working cpumask for load_balance and load_balance_newidle. */
4144 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4145
4146 /*
4147 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4148 * tasks if there is an imbalance.
4149 */
4150 static int load_balance(int this_cpu, struct rq *this_rq,
4151 struct sched_domain *sd, enum cpu_idle_type idle,
4152 int *balance)
4153 {
4154 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4155 struct sched_group *group;
4156 unsigned long imbalance;
4157 struct rq *busiest;
4158 unsigned long flags;
4159 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4160
4161 cpumask_copy(cpus, cpu_active_mask);
4162
4163 /*
4164 * When power savings policy is enabled for the parent domain, idle
4165 * sibling can pick up load irrespective of busy siblings. In this case,
4166 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4167 * portraying it as CPU_NOT_IDLE.
4168 */
4169 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4170 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 sd_idle = 1;
4172
4173 schedstat_inc(sd, lb_count[idle]);
4174
4175 redo:
4176 update_shares(sd);
4177 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4178 cpus, balance);
4179
4180 if (*balance == 0)
4181 goto out_balanced;
4182
4183 if (!group) {
4184 schedstat_inc(sd, lb_nobusyg[idle]);
4185 goto out_balanced;
4186 }
4187
4188 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4189 if (!busiest) {
4190 schedstat_inc(sd, lb_nobusyq[idle]);
4191 goto out_balanced;
4192 }
4193
4194 BUG_ON(busiest == this_rq);
4195
4196 schedstat_add(sd, lb_imbalance[idle], imbalance);
4197
4198 ld_moved = 0;
4199 if (busiest->nr_running > 1) {
4200 /*
4201 * Attempt to move tasks. If find_busiest_group has found
4202 * an imbalance but busiest->nr_running <= 1, the group is
4203 * still unbalanced. ld_moved simply stays zero, so it is
4204 * correctly treated as an imbalance.
4205 */
4206 local_irq_save(flags);
4207 double_rq_lock(this_rq, busiest);
4208 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4209 imbalance, sd, idle, &all_pinned);
4210 double_rq_unlock(this_rq, busiest);
4211 local_irq_restore(flags);
4212
4213 /*
4214 * some other cpu did the load balance for us.
4215 */
4216 if (ld_moved && this_cpu != smp_processor_id())
4217 resched_cpu(this_cpu);
4218
4219 /* All tasks on this runqueue were pinned by CPU affinity */
4220 if (unlikely(all_pinned)) {
4221 cpumask_clear_cpu(cpu_of(busiest), cpus);
4222 if (!cpumask_empty(cpus))
4223 goto redo;
4224 goto out_balanced;
4225 }
4226 }
4227
4228 if (!ld_moved) {
4229 schedstat_inc(sd, lb_failed[idle]);
4230 sd->nr_balance_failed++;
4231
4232 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4233
4234 raw_spin_lock_irqsave(&busiest->lock, flags);
4235
4236 /* don't kick the migration_thread, if the curr
4237 * task on busiest cpu can't be moved to this_cpu
4238 */
4239 if (!cpumask_test_cpu(this_cpu,
4240 &busiest->curr->cpus_allowed)) {
4241 raw_spin_unlock_irqrestore(&busiest->lock,
4242 flags);
4243 all_pinned = 1;
4244 goto out_one_pinned;
4245 }
4246
4247 if (!busiest->active_balance) {
4248 busiest->active_balance = 1;
4249 busiest->push_cpu = this_cpu;
4250 active_balance = 1;
4251 }
4252 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4253 if (active_balance)
4254 wake_up_process(busiest->migration_thread);
4255
4256 /*
4257 * We've kicked active balancing, reset the failure
4258 * counter.
4259 */
4260 sd->nr_balance_failed = sd->cache_nice_tries+1;
4261 }
4262 } else
4263 sd->nr_balance_failed = 0;
4264
4265 if (likely(!active_balance)) {
4266 /* We were unbalanced, so reset the balancing interval */
4267 sd->balance_interval = sd->min_interval;
4268 } else {
4269 /*
4270 * If we've begun active balancing, start to back off. This
4271 * case may not be covered by the all_pinned logic if there
4272 * is only 1 task on the busy runqueue (because we don't call
4273 * move_tasks).
4274 */
4275 if (sd->balance_interval < sd->max_interval)
4276 sd->balance_interval *= 2;
4277 }
4278
4279 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4280 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4281 ld_moved = -1;
4282
4283 goto out;
4284
4285 out_balanced:
4286 schedstat_inc(sd, lb_balanced[idle]);
4287
4288 sd->nr_balance_failed = 0;
4289
4290 out_one_pinned:
4291 /* tune up the balancing interval */
4292 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4293 (sd->balance_interval < sd->max_interval))
4294 sd->balance_interval *= 2;
4295
4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4298 ld_moved = -1;
4299 else
4300 ld_moved = 0;
4301 out:
4302 if (ld_moved)
4303 update_shares(sd);
4304 return ld_moved;
4305 }
4306
4307 /*
4308 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4309 * tasks if there is an imbalance.
4310 *
4311 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4312 * this_rq is locked.
4313 */
4314 static int
4315 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4316 {
4317 struct sched_group *group;
4318 struct rq *busiest = NULL;
4319 unsigned long imbalance;
4320 int ld_moved = 0;
4321 int sd_idle = 0;
4322 int all_pinned = 0;
4323 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4324
4325 cpumask_copy(cpus, cpu_active_mask);
4326
4327 /*
4328 * When power savings policy is enabled for the parent domain, idle
4329 * sibling can pick up load irrespective of busy siblings. In this case,
4330 * let the state of idle sibling percolate up as IDLE, instead of
4331 * portraying it as CPU_NOT_IDLE.
4332 */
4333 if (sd->flags & SD_SHARE_CPUPOWER &&
4334 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4335 sd_idle = 1;
4336
4337 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4338 redo:
4339 update_shares_locked(this_rq, sd);
4340 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4341 &sd_idle, cpus, NULL);
4342 if (!group) {
4343 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4344 goto out_balanced;
4345 }
4346
4347 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4348 if (!busiest) {
4349 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4350 goto out_balanced;
4351 }
4352
4353 BUG_ON(busiest == this_rq);
4354
4355 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4356
4357 ld_moved = 0;
4358 if (busiest->nr_running > 1) {
4359 /* Attempt to move tasks */
4360 double_lock_balance(this_rq, busiest);
4361 /* this_rq->clock is already updated */
4362 update_rq_clock(busiest);
4363 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4364 imbalance, sd, CPU_NEWLY_IDLE,
4365 &all_pinned);
4366 double_unlock_balance(this_rq, busiest);
4367
4368 if (unlikely(all_pinned)) {
4369 cpumask_clear_cpu(cpu_of(busiest), cpus);
4370 if (!cpumask_empty(cpus))
4371 goto redo;
4372 }
4373 }
4374
4375 if (!ld_moved) {
4376 int active_balance = 0;
4377
4378 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4379 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4381 return -1;
4382
4383 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4384 return -1;
4385
4386 if (sd->nr_balance_failed++ < 2)
4387 return -1;
4388
4389 /*
4390 * The only task running in a non-idle cpu can be moved to this
4391 * cpu in an attempt to completely freeup the other CPU
4392 * package. The same method used to move task in load_balance()
4393 * have been extended for load_balance_newidle() to speedup
4394 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4395 *
4396 * The package power saving logic comes from
4397 * find_busiest_group(). If there are no imbalance, then
4398 * f_b_g() will return NULL. However when sched_mc={1,2} then
4399 * f_b_g() will select a group from which a running task may be
4400 * pulled to this cpu in order to make the other package idle.
4401 * If there is no opportunity to make a package idle and if
4402 * there are no imbalance, then f_b_g() will return NULL and no
4403 * action will be taken in load_balance_newidle().
4404 *
4405 * Under normal task pull operation due to imbalance, there
4406 * will be more than one task in the source run queue and
4407 * move_tasks() will succeed. ld_moved will be true and this
4408 * active balance code will not be triggered.
4409 */
4410
4411 /* Lock busiest in correct order while this_rq is held */
4412 double_lock_balance(this_rq, busiest);
4413
4414 /*
4415 * don't kick the migration_thread, if the curr
4416 * task on busiest cpu can't be moved to this_cpu
4417 */
4418 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4419 double_unlock_balance(this_rq, busiest);
4420 all_pinned = 1;
4421 return ld_moved;
4422 }
4423
4424 if (!busiest->active_balance) {
4425 busiest->active_balance = 1;
4426 busiest->push_cpu = this_cpu;
4427 active_balance = 1;
4428 }
4429
4430 double_unlock_balance(this_rq, busiest);
4431 /*
4432 * Should not call ttwu while holding a rq->lock
4433 */
4434 raw_spin_unlock(&this_rq->lock);
4435 if (active_balance)
4436 wake_up_process(busiest->migration_thread);
4437 raw_spin_lock(&this_rq->lock);
4438
4439 } else
4440 sd->nr_balance_failed = 0;
4441
4442 update_shares_locked(this_rq, sd);
4443 return ld_moved;
4444
4445 out_balanced:
4446 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4447 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4448 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4449 return -1;
4450 sd->nr_balance_failed = 0;
4451
4452 return 0;
4453 }
4454
4455 /*
4456 * idle_balance is called by schedule() if this_cpu is about to become
4457 * idle. Attempts to pull tasks from other CPUs.
4458 */
4459 static void idle_balance(int this_cpu, struct rq *this_rq)
4460 {
4461 struct sched_domain *sd;
4462 int pulled_task = 0;
4463 unsigned long next_balance = jiffies + HZ;
4464
4465 this_rq->idle_stamp = this_rq->clock;
4466
4467 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4468 return;
4469
4470 for_each_domain(this_cpu, sd) {
4471 unsigned long interval;
4472
4473 if (!(sd->flags & SD_LOAD_BALANCE))
4474 continue;
4475
4476 if (sd->flags & SD_BALANCE_NEWIDLE)
4477 /* If we've pulled tasks over stop searching: */
4478 pulled_task = load_balance_newidle(this_cpu, this_rq,
4479 sd);
4480
4481 interval = msecs_to_jiffies(sd->balance_interval);
4482 if (time_after(next_balance, sd->last_balance + interval))
4483 next_balance = sd->last_balance + interval;
4484 if (pulled_task) {
4485 this_rq->idle_stamp = 0;
4486 break;
4487 }
4488 }
4489 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4490 /*
4491 * We are going idle. next_balance may be set based on
4492 * a busy processor. So reset next_balance.
4493 */
4494 this_rq->next_balance = next_balance;
4495 }
4496 }
4497
4498 /*
4499 * active_load_balance is run by migration threads. It pushes running tasks
4500 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4501 * running on each physical CPU where possible, and avoids physical /
4502 * logical imbalances.
4503 *
4504 * Called with busiest_rq locked.
4505 */
4506 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4507 {
4508 int target_cpu = busiest_rq->push_cpu;
4509 struct sched_domain *sd;
4510 struct rq *target_rq;
4511
4512 /* Is there any task to move? */
4513 if (busiest_rq->nr_running <= 1)
4514 return;
4515
4516 target_rq = cpu_rq(target_cpu);
4517
4518 /*
4519 * This condition is "impossible", if it occurs
4520 * we need to fix it. Originally reported by
4521 * Bjorn Helgaas on a 128-cpu setup.
4522 */
4523 BUG_ON(busiest_rq == target_rq);
4524
4525 /* move a task from busiest_rq to target_rq */
4526 double_lock_balance(busiest_rq, target_rq);
4527 update_rq_clock(busiest_rq);
4528 update_rq_clock(target_rq);
4529
4530 /* Search for an sd spanning us and the target CPU. */
4531 for_each_domain(target_cpu, sd) {
4532 if ((sd->flags & SD_LOAD_BALANCE) &&
4533 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4534 break;
4535 }
4536
4537 if (likely(sd)) {
4538 schedstat_inc(sd, alb_count);
4539
4540 if (move_one_task(target_rq, target_cpu, busiest_rq,
4541 sd, CPU_IDLE))
4542 schedstat_inc(sd, alb_pushed);
4543 else
4544 schedstat_inc(sd, alb_failed);
4545 }
4546 double_unlock_balance(busiest_rq, target_rq);
4547 }
4548
4549 #ifdef CONFIG_NO_HZ
4550 static struct {
4551 atomic_t load_balancer;
4552 cpumask_var_t cpu_mask;
4553 cpumask_var_t ilb_grp_nohz_mask;
4554 } nohz ____cacheline_aligned = {
4555 .load_balancer = ATOMIC_INIT(-1),
4556 };
4557
4558 int get_nohz_load_balancer(void)
4559 {
4560 return atomic_read(&nohz.load_balancer);
4561 }
4562
4563 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4564 /**
4565 * lowest_flag_domain - Return lowest sched_domain containing flag.
4566 * @cpu: The cpu whose lowest level of sched domain is to
4567 * be returned.
4568 * @flag: The flag to check for the lowest sched_domain
4569 * for the given cpu.
4570 *
4571 * Returns the lowest sched_domain of a cpu which contains the given flag.
4572 */
4573 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4574 {
4575 struct sched_domain *sd;
4576
4577 for_each_domain(cpu, sd)
4578 if (sd && (sd->flags & flag))
4579 break;
4580
4581 return sd;
4582 }
4583
4584 /**
4585 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4586 * @cpu: The cpu whose domains we're iterating over.
4587 * @sd: variable holding the value of the power_savings_sd
4588 * for cpu.
4589 * @flag: The flag to filter the sched_domains to be iterated.
4590 *
4591 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4592 * set, starting from the lowest sched_domain to the highest.
4593 */
4594 #define for_each_flag_domain(cpu, sd, flag) \
4595 for (sd = lowest_flag_domain(cpu, flag); \
4596 (sd && (sd->flags & flag)); sd = sd->parent)
4597
4598 /**
4599 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4600 * @ilb_group: group to be checked for semi-idleness
4601 *
4602 * Returns: 1 if the group is semi-idle. 0 otherwise.
4603 *
4604 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4605 * and atleast one non-idle CPU. This helper function checks if the given
4606 * sched_group is semi-idle or not.
4607 */
4608 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4609 {
4610 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4611 sched_group_cpus(ilb_group));
4612
4613 /*
4614 * A sched_group is semi-idle when it has atleast one busy cpu
4615 * and atleast one idle cpu.
4616 */
4617 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4618 return 0;
4619
4620 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4621 return 0;
4622
4623 return 1;
4624 }
4625 /**
4626 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4627 * @cpu: The cpu which is nominating a new idle_load_balancer.
4628 *
4629 * Returns: Returns the id of the idle load balancer if it exists,
4630 * Else, returns >= nr_cpu_ids.
4631 *
4632 * This algorithm picks the idle load balancer such that it belongs to a
4633 * semi-idle powersavings sched_domain. The idea is to try and avoid
4634 * completely idle packages/cores just for the purpose of idle load balancing
4635 * when there are other idle cpu's which are better suited for that job.
4636 */
4637 static int find_new_ilb(int cpu)
4638 {
4639 struct sched_domain *sd;
4640 struct sched_group *ilb_group;
4641
4642 /*
4643 * Have idle load balancer selection from semi-idle packages only
4644 * when power-aware load balancing is enabled
4645 */
4646 if (!(sched_smt_power_savings || sched_mc_power_savings))
4647 goto out_done;
4648
4649 /*
4650 * Optimize for the case when we have no idle CPUs or only one
4651 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4652 */
4653 if (cpumask_weight(nohz.cpu_mask) < 2)
4654 goto out_done;
4655
4656 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4657 ilb_group = sd->groups;
4658
4659 do {
4660 if (is_semi_idle_group(ilb_group))
4661 return cpumask_first(nohz.ilb_grp_nohz_mask);
4662
4663 ilb_group = ilb_group->next;
4664
4665 } while (ilb_group != sd->groups);
4666 }
4667
4668 out_done:
4669 return cpumask_first(nohz.cpu_mask);
4670 }
4671 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4672 static inline int find_new_ilb(int call_cpu)
4673 {
4674 return cpumask_first(nohz.cpu_mask);
4675 }
4676 #endif
4677
4678 /*
4679 * This routine will try to nominate the ilb (idle load balancing)
4680 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4681 * load balancing on behalf of all those cpus. If all the cpus in the system
4682 * go into this tickless mode, then there will be no ilb owner (as there is
4683 * no need for one) and all the cpus will sleep till the next wakeup event
4684 * arrives...
4685 *
4686 * For the ilb owner, tick is not stopped. And this tick will be used
4687 * for idle load balancing. ilb owner will still be part of
4688 * nohz.cpu_mask..
4689 *
4690 * While stopping the tick, this cpu will become the ilb owner if there
4691 * is no other owner. And will be the owner till that cpu becomes busy
4692 * or if all cpus in the system stop their ticks at which point
4693 * there is no need for ilb owner.
4694 *
4695 * When the ilb owner becomes busy, it nominates another owner, during the
4696 * next busy scheduler_tick()
4697 */
4698 int select_nohz_load_balancer(int stop_tick)
4699 {
4700 int cpu = smp_processor_id();
4701
4702 if (stop_tick) {
4703 cpu_rq(cpu)->in_nohz_recently = 1;
4704
4705 if (!cpu_active(cpu)) {
4706 if (atomic_read(&nohz.load_balancer) != cpu)
4707 return 0;
4708
4709 /*
4710 * If we are going offline and still the leader,
4711 * give up!
4712 */
4713 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4714 BUG();
4715
4716 return 0;
4717 }
4718
4719 cpumask_set_cpu(cpu, nohz.cpu_mask);
4720
4721 /* time for ilb owner also to sleep */
4722 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4723 if (atomic_read(&nohz.load_balancer) == cpu)
4724 atomic_set(&nohz.load_balancer, -1);
4725 return 0;
4726 }
4727
4728 if (atomic_read(&nohz.load_balancer) == -1) {
4729 /* make me the ilb owner */
4730 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4731 return 1;
4732 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4733 int new_ilb;
4734
4735 if (!(sched_smt_power_savings ||
4736 sched_mc_power_savings))
4737 return 1;
4738 /*
4739 * Check to see if there is a more power-efficient
4740 * ilb.
4741 */
4742 new_ilb = find_new_ilb(cpu);
4743 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4744 atomic_set(&nohz.load_balancer, -1);
4745 resched_cpu(new_ilb);
4746 return 0;
4747 }
4748 return 1;
4749 }
4750 } else {
4751 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4752 return 0;
4753
4754 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4755
4756 if (atomic_read(&nohz.load_balancer) == cpu)
4757 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4758 BUG();
4759 }
4760 return 0;
4761 }
4762 #endif
4763
4764 static DEFINE_SPINLOCK(balancing);
4765
4766 /*
4767 * It checks each scheduling domain to see if it is due to be balanced,
4768 * and initiates a balancing operation if so.
4769 *
4770 * Balancing parameters are set up in arch_init_sched_domains.
4771 */
4772 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4773 {
4774 int balance = 1;
4775 struct rq *rq = cpu_rq(cpu);
4776 unsigned long interval;
4777 struct sched_domain *sd;
4778 /* Earliest time when we have to do rebalance again */
4779 unsigned long next_balance = jiffies + 60*HZ;
4780 int update_next_balance = 0;
4781 int need_serialize;
4782
4783 for_each_domain(cpu, sd) {
4784 if (!(sd->flags & SD_LOAD_BALANCE))
4785 continue;
4786
4787 interval = sd->balance_interval;
4788 if (idle != CPU_IDLE)
4789 interval *= sd->busy_factor;
4790
4791 /* scale ms to jiffies */
4792 interval = msecs_to_jiffies(interval);
4793 if (unlikely(!interval))
4794 interval = 1;
4795 if (interval > HZ*NR_CPUS/10)
4796 interval = HZ*NR_CPUS/10;
4797
4798 need_serialize = sd->flags & SD_SERIALIZE;
4799
4800 if (need_serialize) {
4801 if (!spin_trylock(&balancing))
4802 goto out;
4803 }
4804
4805 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4806 if (load_balance(cpu, rq, sd, idle, &balance)) {
4807 /*
4808 * We've pulled tasks over so either we're no
4809 * longer idle, or one of our SMT siblings is
4810 * not idle.
4811 */
4812 idle = CPU_NOT_IDLE;
4813 }
4814 sd->last_balance = jiffies;
4815 }
4816 if (need_serialize)
4817 spin_unlock(&balancing);
4818 out:
4819 if (time_after(next_balance, sd->last_balance + interval)) {
4820 next_balance = sd->last_balance + interval;
4821 update_next_balance = 1;
4822 }
4823
4824 /*
4825 * Stop the load balance at this level. There is another
4826 * CPU in our sched group which is doing load balancing more
4827 * actively.
4828 */
4829 if (!balance)
4830 break;
4831 }
4832
4833 /*
4834 * next_balance will be updated only when there is a need.
4835 * When the cpu is attached to null domain for ex, it will not be
4836 * updated.
4837 */
4838 if (likely(update_next_balance))
4839 rq->next_balance = next_balance;
4840 }
4841
4842 /*
4843 * run_rebalance_domains is triggered when needed from the scheduler tick.
4844 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4846 */
4847 static void run_rebalance_domains(struct softirq_action *h)
4848 {
4849 int this_cpu = smp_processor_id();
4850 struct rq *this_rq = cpu_rq(this_cpu);
4851 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4852 CPU_IDLE : CPU_NOT_IDLE;
4853
4854 rebalance_domains(this_cpu, idle);
4855
4856 #ifdef CONFIG_NO_HZ
4857 /*
4858 * If this cpu is the owner for idle load balancing, then do the
4859 * balancing on behalf of the other idle cpus whose ticks are
4860 * stopped.
4861 */
4862 if (this_rq->idle_at_tick &&
4863 atomic_read(&nohz.load_balancer) == this_cpu) {
4864 struct rq *rq;
4865 int balance_cpu;
4866
4867 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4868 if (balance_cpu == this_cpu)
4869 continue;
4870
4871 /*
4872 * If this cpu gets work to do, stop the load balancing
4873 * work being done for other cpus. Next load
4874 * balancing owner will pick it up.
4875 */
4876 if (need_resched())
4877 break;
4878
4879 rebalance_domains(balance_cpu, CPU_IDLE);
4880
4881 rq = cpu_rq(balance_cpu);
4882 if (time_after(this_rq->next_balance, rq->next_balance))
4883 this_rq->next_balance = rq->next_balance;
4884 }
4885 }
4886 #endif
4887 }
4888
4889 static inline int on_null_domain(int cpu)
4890 {
4891 return !rcu_dereference(cpu_rq(cpu)->sd);
4892 }
4893
4894 /*
4895 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4896 *
4897 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4898 * idle load balancing owner or decide to stop the periodic load balancing,
4899 * if the whole system is idle.
4900 */
4901 static inline void trigger_load_balance(struct rq *rq, int cpu)
4902 {
4903 #ifdef CONFIG_NO_HZ
4904 /*
4905 * If we were in the nohz mode recently and busy at the current
4906 * scheduler tick, then check if we need to nominate new idle
4907 * load balancer.
4908 */
4909 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4910 rq->in_nohz_recently = 0;
4911
4912 if (atomic_read(&nohz.load_balancer) == cpu) {
4913 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4914 atomic_set(&nohz.load_balancer, -1);
4915 }
4916
4917 if (atomic_read(&nohz.load_balancer) == -1) {
4918 int ilb = find_new_ilb(cpu);
4919
4920 if (ilb < nr_cpu_ids)
4921 resched_cpu(ilb);
4922 }
4923 }
4924
4925 /*
4926 * If this cpu is idle and doing idle load balancing for all the
4927 * cpus with ticks stopped, is it time for that to stop?
4928 */
4929 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4930 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4931 resched_cpu(cpu);
4932 return;
4933 }
4934
4935 /*
4936 * If this cpu is idle and the idle load balancing is done by
4937 * someone else, then no need raise the SCHED_SOFTIRQ
4938 */
4939 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4940 cpumask_test_cpu(cpu, nohz.cpu_mask))
4941 return;
4942 #endif
4943 /* Don't need to rebalance while attached to NULL domain */
4944 if (time_after_eq(jiffies, rq->next_balance) &&
4945 likely(!on_null_domain(cpu)))
4946 raise_softirq(SCHED_SOFTIRQ);
4947 }
4948
4949 #else /* CONFIG_SMP */
4950
4951 /*
4952 * on UP we do not need to balance between CPUs:
4953 */
4954 static inline void idle_balance(int cpu, struct rq *rq)
4955 {
4956 }
4957
4958 #endif
4959
4960 DEFINE_PER_CPU(struct kernel_stat, kstat);
4961
4962 EXPORT_PER_CPU_SYMBOL(kstat);
4963
4964 /*
4965 * Return any ns on the sched_clock that have not yet been accounted in
4966 * @p in case that task is currently running.
4967 *
4968 * Called with task_rq_lock() held on @rq.
4969 */
4970 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4971 {
4972 u64 ns = 0;
4973
4974 if (task_current(rq, p)) {
4975 update_rq_clock(rq);
4976 ns = rq->clock - p->se.exec_start;
4977 if ((s64)ns < 0)
4978 ns = 0;
4979 }
4980
4981 return ns;
4982 }
4983
4984 unsigned long long task_delta_exec(struct task_struct *p)
4985 {
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns = 0;
4989
4990 rq = task_rq_lock(p, &flags);
4991 ns = do_task_delta_exec(p, rq);
4992 task_rq_unlock(rq, &flags);
4993
4994 return ns;
4995 }
4996
4997 /*
4998 * Return accounted runtime for the task.
4999 * In case the task is currently running, return the runtime plus current's
5000 * pending runtime that have not been accounted yet.
5001 */
5002 unsigned long long task_sched_runtime(struct task_struct *p)
5003 {
5004 unsigned long flags;
5005 struct rq *rq;
5006 u64 ns = 0;
5007
5008 rq = task_rq_lock(p, &flags);
5009 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5010 task_rq_unlock(rq, &flags);
5011
5012 return ns;
5013 }
5014
5015 /*
5016 * Return sum_exec_runtime for the thread group.
5017 * In case the task is currently running, return the sum plus current's
5018 * pending runtime that have not been accounted yet.
5019 *
5020 * Note that the thread group might have other running tasks as well,
5021 * so the return value not includes other pending runtime that other
5022 * running tasks might have.
5023 */
5024 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5025 {
5026 struct task_cputime totals;
5027 unsigned long flags;
5028 struct rq *rq;
5029 u64 ns;
5030
5031 rq = task_rq_lock(p, &flags);
5032 thread_group_cputime(p, &totals);
5033 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5034 task_rq_unlock(rq, &flags);
5035
5036 return ns;
5037 }
5038
5039 /*
5040 * Account user cpu time to a process.
5041 * @p: the process that the cpu time gets accounted to
5042 * @cputime: the cpu time spent in user space since the last update
5043 * @cputime_scaled: cputime scaled by cpu frequency
5044 */
5045 void account_user_time(struct task_struct *p, cputime_t cputime,
5046 cputime_t cputime_scaled)
5047 {
5048 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5049 cputime64_t tmp;
5050
5051 /* Add user time to process. */
5052 p->utime = cputime_add(p->utime, cputime);
5053 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5054 account_group_user_time(p, cputime);
5055
5056 /* Add user time to cpustat. */
5057 tmp = cputime_to_cputime64(cputime);
5058 if (TASK_NICE(p) > 0)
5059 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5060 else
5061 cpustat->user = cputime64_add(cpustat->user, tmp);
5062
5063 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5064 /* Account for user time used */
5065 acct_update_integrals(p);
5066 }
5067
5068 /*
5069 * Account guest cpu time to a process.
5070 * @p: the process that the cpu time gets accounted to
5071 * @cputime: the cpu time spent in virtual machine since the last update
5072 * @cputime_scaled: cputime scaled by cpu frequency
5073 */
5074 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5075 cputime_t cputime_scaled)
5076 {
5077 cputime64_t tmp;
5078 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5079
5080 tmp = cputime_to_cputime64(cputime);
5081
5082 /* Add guest time to process. */
5083 p->utime = cputime_add(p->utime, cputime);
5084 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5085 account_group_user_time(p, cputime);
5086 p->gtime = cputime_add(p->gtime, cputime);
5087
5088 /* Add guest time to cpustat. */
5089 if (TASK_NICE(p) > 0) {
5090 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5091 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5092 } else {
5093 cpustat->user = cputime64_add(cpustat->user, tmp);
5094 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5095 }
5096 }
5097
5098 /*
5099 * Account system cpu time to a process.
5100 * @p: the process that the cpu time gets accounted to
5101 * @hardirq_offset: the offset to subtract from hardirq_count()
5102 * @cputime: the cpu time spent in kernel space since the last update
5103 * @cputime_scaled: cputime scaled by cpu frequency
5104 */
5105 void account_system_time(struct task_struct *p, int hardirq_offset,
5106 cputime_t cputime, cputime_t cputime_scaled)
5107 {
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5109 cputime64_t tmp;
5110
5111 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5112 account_guest_time(p, cputime, cputime_scaled);
5113 return;
5114 }
5115
5116 /* Add system time to process. */
5117 p->stime = cputime_add(p->stime, cputime);
5118 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5119 account_group_system_time(p, cputime);
5120
5121 /* Add system time to cpustat. */
5122 tmp = cputime_to_cputime64(cputime);
5123 if (hardirq_count() - hardirq_offset)
5124 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5125 else if (softirq_count())
5126 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5127 else
5128 cpustat->system = cputime64_add(cpustat->system, tmp);
5129
5130 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5131
5132 /* Account for system time used */
5133 acct_update_integrals(p);
5134 }
5135
5136 /*
5137 * Account for involuntary wait time.
5138 * @steal: the cpu time spent in involuntary wait
5139 */
5140 void account_steal_time(cputime_t cputime)
5141 {
5142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5143 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5144
5145 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5146 }
5147
5148 /*
5149 * Account for idle time.
5150 * @cputime: the cpu time spent in idle wait
5151 */
5152 void account_idle_time(cputime_t cputime)
5153 {
5154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5155 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5156 struct rq *rq = this_rq();
5157
5158 if (atomic_read(&rq->nr_iowait) > 0)
5159 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5160 else
5161 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5162 }
5163
5164 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5165
5166 /*
5167 * Account a single tick of cpu time.
5168 * @p: the process that the cpu time gets accounted to
5169 * @user_tick: indicates if the tick is a user or a system tick
5170 */
5171 void account_process_tick(struct task_struct *p, int user_tick)
5172 {
5173 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5174 struct rq *rq = this_rq();
5175
5176 if (user_tick)
5177 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5178 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5179 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5180 one_jiffy_scaled);
5181 else
5182 account_idle_time(cputime_one_jiffy);
5183 }
5184
5185 /*
5186 * Account multiple ticks of steal time.
5187 * @p: the process from which the cpu time has been stolen
5188 * @ticks: number of stolen ticks
5189 */
5190 void account_steal_ticks(unsigned long ticks)
5191 {
5192 account_steal_time(jiffies_to_cputime(ticks));
5193 }
5194
5195 /*
5196 * Account multiple ticks of idle time.
5197 * @ticks: number of stolen ticks
5198 */
5199 void account_idle_ticks(unsigned long ticks)
5200 {
5201 account_idle_time(jiffies_to_cputime(ticks));
5202 }
5203
5204 #endif
5205
5206 /*
5207 * Use precise platform statistics if available:
5208 */
5209 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5210 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5211 {
5212 *ut = p->utime;
5213 *st = p->stime;
5214 }
5215
5216 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5217 {
5218 struct task_cputime cputime;
5219
5220 thread_group_cputime(p, &cputime);
5221
5222 *ut = cputime.utime;
5223 *st = cputime.stime;
5224 }
5225 #else
5226
5227 #ifndef nsecs_to_cputime
5228 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5229 #endif
5230
5231 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5232 {
5233 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5234
5235 /*
5236 * Use CFS's precise accounting:
5237 */
5238 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5239
5240 if (total) {
5241 u64 temp;
5242
5243 temp = (u64)(rtime * utime);
5244 do_div(temp, total);
5245 utime = (cputime_t)temp;
5246 } else
5247 utime = rtime;
5248
5249 /*
5250 * Compare with previous values, to keep monotonicity:
5251 */
5252 p->prev_utime = max(p->prev_utime, utime);
5253 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5254
5255 *ut = p->prev_utime;
5256 *st = p->prev_stime;
5257 }
5258
5259 /*
5260 * Must be called with siglock held.
5261 */
5262 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5263 {
5264 struct signal_struct *sig = p->signal;
5265 struct task_cputime cputime;
5266 cputime_t rtime, utime, total;
5267
5268 thread_group_cputime(p, &cputime);
5269
5270 total = cputime_add(cputime.utime, cputime.stime);
5271 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5272
5273 if (total) {
5274 u64 temp;
5275
5276 temp = (u64)(rtime * cputime.utime);
5277 do_div(temp, total);
5278 utime = (cputime_t)temp;
5279 } else
5280 utime = rtime;
5281
5282 sig->prev_utime = max(sig->prev_utime, utime);
5283 sig->prev_stime = max(sig->prev_stime,
5284 cputime_sub(rtime, sig->prev_utime));
5285
5286 *ut = sig->prev_utime;
5287 *st = sig->prev_stime;
5288 }
5289 #endif
5290
5291 /*
5292 * This function gets called by the timer code, with HZ frequency.
5293 * We call it with interrupts disabled.
5294 *
5295 * It also gets called by the fork code, when changing the parent's
5296 * timeslices.
5297 */
5298 void scheduler_tick(void)
5299 {
5300 int cpu = smp_processor_id();
5301 struct rq *rq = cpu_rq(cpu);
5302 struct task_struct *curr = rq->curr;
5303
5304 sched_clock_tick();
5305
5306 raw_spin_lock(&rq->lock);
5307 update_rq_clock(rq);
5308 update_cpu_load(rq);
5309 curr->sched_class->task_tick(rq, curr, 0);
5310 raw_spin_unlock(&rq->lock);
5311
5312 perf_event_task_tick(curr, cpu);
5313
5314 #ifdef CONFIG_SMP
5315 rq->idle_at_tick = idle_cpu(cpu);
5316 trigger_load_balance(rq, cpu);
5317 #endif
5318 }
5319
5320 notrace unsigned long get_parent_ip(unsigned long addr)
5321 {
5322 if (in_lock_functions(addr)) {
5323 addr = CALLER_ADDR2;
5324 if (in_lock_functions(addr))
5325 addr = CALLER_ADDR3;
5326 }
5327 return addr;
5328 }
5329
5330 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5331 defined(CONFIG_PREEMPT_TRACER))
5332
5333 void __kprobes add_preempt_count(int val)
5334 {
5335 #ifdef CONFIG_DEBUG_PREEMPT
5336 /*
5337 * Underflow?
5338 */
5339 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5340 return;
5341 #endif
5342 preempt_count() += val;
5343 #ifdef CONFIG_DEBUG_PREEMPT
5344 /*
5345 * Spinlock count overflowing soon?
5346 */
5347 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5348 PREEMPT_MASK - 10);
5349 #endif
5350 if (preempt_count() == val)
5351 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5352 }
5353 EXPORT_SYMBOL(add_preempt_count);
5354
5355 void __kprobes sub_preempt_count(int val)
5356 {
5357 #ifdef CONFIG_DEBUG_PREEMPT
5358 /*
5359 * Underflow?
5360 */
5361 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5362 return;
5363 /*
5364 * Is the spinlock portion underflowing?
5365 */
5366 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5367 !(preempt_count() & PREEMPT_MASK)))
5368 return;
5369 #endif
5370
5371 if (preempt_count() == val)
5372 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5373 preempt_count() -= val;
5374 }
5375 EXPORT_SYMBOL(sub_preempt_count);
5376
5377 #endif
5378
5379 /*
5380 * Print scheduling while atomic bug:
5381 */
5382 static noinline void __schedule_bug(struct task_struct *prev)
5383 {
5384 struct pt_regs *regs = get_irq_regs();
5385
5386 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5387 prev->comm, prev->pid, preempt_count());
5388
5389 debug_show_held_locks(prev);
5390 print_modules();
5391 if (irqs_disabled())
5392 print_irqtrace_events(prev);
5393
5394 if (regs)
5395 show_regs(regs);
5396 else
5397 dump_stack();
5398 }
5399
5400 /*
5401 * Various schedule()-time debugging checks and statistics:
5402 */
5403 static inline void schedule_debug(struct task_struct *prev)
5404 {
5405 /*
5406 * Test if we are atomic. Since do_exit() needs to call into
5407 * schedule() atomically, we ignore that path for now.
5408 * Otherwise, whine if we are scheduling when we should not be.
5409 */
5410 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5411 __schedule_bug(prev);
5412
5413 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5414
5415 schedstat_inc(this_rq(), sched_count);
5416 #ifdef CONFIG_SCHEDSTATS
5417 if (unlikely(prev->lock_depth >= 0)) {
5418 schedstat_inc(this_rq(), bkl_count);
5419 schedstat_inc(prev, sched_info.bkl_count);
5420 }
5421 #endif
5422 }
5423
5424 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5425 {
5426 if (prev->state == TASK_RUNNING) {
5427 u64 runtime = prev->se.sum_exec_runtime;
5428
5429 runtime -= prev->se.prev_sum_exec_runtime;
5430 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5431
5432 /*
5433 * In order to avoid avg_overlap growing stale when we are
5434 * indeed overlapping and hence not getting put to sleep, grow
5435 * the avg_overlap on preemption.
5436 *
5437 * We use the average preemption runtime because that
5438 * correlates to the amount of cache footprint a task can
5439 * build up.
5440 */
5441 update_avg(&prev->se.avg_overlap, runtime);
5442 }
5443 prev->sched_class->put_prev_task(rq, prev);
5444 }
5445
5446 /*
5447 * Pick up the highest-prio task:
5448 */
5449 static inline struct task_struct *
5450 pick_next_task(struct rq *rq)
5451 {
5452 const struct sched_class *class;
5453 struct task_struct *p;
5454
5455 /*
5456 * Optimization: we know that if all tasks are in
5457 * the fair class we can call that function directly:
5458 */
5459 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5460 p = fair_sched_class.pick_next_task(rq);
5461 if (likely(p))
5462 return p;
5463 }
5464
5465 class = sched_class_highest;
5466 for ( ; ; ) {
5467 p = class->pick_next_task(rq);
5468 if (p)
5469 return p;
5470 /*
5471 * Will never be NULL as the idle class always
5472 * returns a non-NULL p:
5473 */
5474 class = class->next;
5475 }
5476 }
5477
5478 /*
5479 * schedule() is the main scheduler function.
5480 */
5481 asmlinkage void __sched schedule(void)
5482 {
5483 struct task_struct *prev, *next;
5484 unsigned long *switch_count;
5485 struct rq *rq;
5486 int cpu;
5487
5488 need_resched:
5489 preempt_disable();
5490 cpu = smp_processor_id();
5491 rq = cpu_rq(cpu);
5492 rcu_sched_qs(cpu);
5493 prev = rq->curr;
5494 switch_count = &prev->nivcsw;
5495
5496 release_kernel_lock(prev);
5497 need_resched_nonpreemptible:
5498
5499 schedule_debug(prev);
5500
5501 if (sched_feat(HRTICK))
5502 hrtick_clear(rq);
5503
5504 raw_spin_lock_irq(&rq->lock);
5505 update_rq_clock(rq);
5506 clear_tsk_need_resched(prev);
5507
5508 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5509 if (unlikely(signal_pending_state(prev->state, prev)))
5510 prev->state = TASK_RUNNING;
5511 else
5512 deactivate_task(rq, prev, 1);
5513 switch_count = &prev->nvcsw;
5514 }
5515
5516 pre_schedule(rq, prev);
5517
5518 if (unlikely(!rq->nr_running))
5519 idle_balance(cpu, rq);
5520
5521 put_prev_task(rq, prev);
5522 next = pick_next_task(rq);
5523
5524 if (likely(prev != next)) {
5525 sched_info_switch(prev, next);
5526 perf_event_task_sched_out(prev, next, cpu);
5527
5528 rq->nr_switches++;
5529 rq->curr = next;
5530 ++*switch_count;
5531
5532 context_switch(rq, prev, next); /* unlocks the rq */
5533 /*
5534 * the context switch might have flipped the stack from under
5535 * us, hence refresh the local variables.
5536 */
5537 cpu = smp_processor_id();
5538 rq = cpu_rq(cpu);
5539 } else
5540 raw_spin_unlock_irq(&rq->lock);
5541
5542 post_schedule(rq);
5543
5544 if (unlikely(reacquire_kernel_lock(current) < 0)) {
5545 prev = rq->curr;
5546 switch_count = &prev->nivcsw;
5547 goto need_resched_nonpreemptible;
5548 }
5549
5550 preempt_enable_no_resched();
5551 if (need_resched())
5552 goto need_resched;
5553 }
5554 EXPORT_SYMBOL(schedule);
5555
5556 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5557 /*
5558 * Look out! "owner" is an entirely speculative pointer
5559 * access and not reliable.
5560 */
5561 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5562 {
5563 unsigned int cpu;
5564 struct rq *rq;
5565
5566 if (!sched_feat(OWNER_SPIN))
5567 return 0;
5568
5569 #ifdef CONFIG_DEBUG_PAGEALLOC
5570 /*
5571 * Need to access the cpu field knowing that
5572 * DEBUG_PAGEALLOC could have unmapped it if
5573 * the mutex owner just released it and exited.
5574 */
5575 if (probe_kernel_address(&owner->cpu, cpu))
5576 goto out;
5577 #else
5578 cpu = owner->cpu;
5579 #endif
5580
5581 /*
5582 * Even if the access succeeded (likely case),
5583 * the cpu field may no longer be valid.
5584 */
5585 if (cpu >= nr_cpumask_bits)
5586 goto out;
5587
5588 /*
5589 * We need to validate that we can do a
5590 * get_cpu() and that we have the percpu area.
5591 */
5592 if (!cpu_online(cpu))
5593 goto out;
5594
5595 rq = cpu_rq(cpu);
5596
5597 for (;;) {
5598 /*
5599 * Owner changed, break to re-assess state.
5600 */
5601 if (lock->owner != owner)
5602 break;
5603
5604 /*
5605 * Is that owner really running on that cpu?
5606 */
5607 if (task_thread_info(rq->curr) != owner || need_resched())
5608 return 0;
5609
5610 cpu_relax();
5611 }
5612 out:
5613 return 1;
5614 }
5615 #endif
5616
5617 #ifdef CONFIG_PREEMPT
5618 /*
5619 * this is the entry point to schedule() from in-kernel preemption
5620 * off of preempt_enable. Kernel preemptions off return from interrupt
5621 * occur there and call schedule directly.
5622 */
5623 asmlinkage void __sched preempt_schedule(void)
5624 {
5625 struct thread_info *ti = current_thread_info();
5626
5627 /*
5628 * If there is a non-zero preempt_count or interrupts are disabled,
5629 * we do not want to preempt the current task. Just return..
5630 */
5631 if (likely(ti->preempt_count || irqs_disabled()))
5632 return;
5633
5634 do {
5635 add_preempt_count(PREEMPT_ACTIVE);
5636 schedule();
5637 sub_preempt_count(PREEMPT_ACTIVE);
5638
5639 /*
5640 * Check again in case we missed a preemption opportunity
5641 * between schedule and now.
5642 */
5643 barrier();
5644 } while (need_resched());
5645 }
5646 EXPORT_SYMBOL(preempt_schedule);
5647
5648 /*
5649 * this is the entry point to schedule() from kernel preemption
5650 * off of irq context.
5651 * Note, that this is called and return with irqs disabled. This will
5652 * protect us against recursive calling from irq.
5653 */
5654 asmlinkage void __sched preempt_schedule_irq(void)
5655 {
5656 struct thread_info *ti = current_thread_info();
5657
5658 /* Catch callers which need to be fixed */
5659 BUG_ON(ti->preempt_count || !irqs_disabled());
5660
5661 do {
5662 add_preempt_count(PREEMPT_ACTIVE);
5663 local_irq_enable();
5664 schedule();
5665 local_irq_disable();
5666 sub_preempt_count(PREEMPT_ACTIVE);
5667
5668 /*
5669 * Check again in case we missed a preemption opportunity
5670 * between schedule and now.
5671 */
5672 barrier();
5673 } while (need_resched());
5674 }
5675
5676 #endif /* CONFIG_PREEMPT */
5677
5678 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5679 void *key)
5680 {
5681 return try_to_wake_up(curr->private, mode, wake_flags);
5682 }
5683 EXPORT_SYMBOL(default_wake_function);
5684
5685 /*
5686 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5687 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5688 * number) then we wake all the non-exclusive tasks and one exclusive task.
5689 *
5690 * There are circumstances in which we can try to wake a task which has already
5691 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5692 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5693 */
5694 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5695 int nr_exclusive, int wake_flags, void *key)
5696 {
5697 wait_queue_t *curr, *next;
5698
5699 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5700 unsigned flags = curr->flags;
5701
5702 if (curr->func(curr, mode, wake_flags, key) &&
5703 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5704 break;
5705 }
5706 }
5707
5708 /**
5709 * __wake_up - wake up threads blocked on a waitqueue.
5710 * @q: the waitqueue
5711 * @mode: which threads
5712 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5713 * @key: is directly passed to the wakeup function
5714 *
5715 * It may be assumed that this function implies a write memory barrier before
5716 * changing the task state if and only if any tasks are woken up.
5717 */
5718 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5719 int nr_exclusive, void *key)
5720 {
5721 unsigned long flags;
5722
5723 spin_lock_irqsave(&q->lock, flags);
5724 __wake_up_common(q, mode, nr_exclusive, 0, key);
5725 spin_unlock_irqrestore(&q->lock, flags);
5726 }
5727 EXPORT_SYMBOL(__wake_up);
5728
5729 /*
5730 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5731 */
5732 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5733 {
5734 __wake_up_common(q, mode, 1, 0, NULL);
5735 }
5736
5737 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5738 {
5739 __wake_up_common(q, mode, 1, 0, key);
5740 }
5741
5742 /**
5743 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5744 * @q: the waitqueue
5745 * @mode: which threads
5746 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5747 * @key: opaque value to be passed to wakeup targets
5748 *
5749 * The sync wakeup differs that the waker knows that it will schedule
5750 * away soon, so while the target thread will be woken up, it will not
5751 * be migrated to another CPU - ie. the two threads are 'synchronized'
5752 * with each other. This can prevent needless bouncing between CPUs.
5753 *
5754 * On UP it can prevent extra preemption.
5755 *
5756 * It may be assumed that this function implies a write memory barrier before
5757 * changing the task state if and only if any tasks are woken up.
5758 */
5759 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5760 int nr_exclusive, void *key)
5761 {
5762 unsigned long flags;
5763 int wake_flags = WF_SYNC;
5764
5765 if (unlikely(!q))
5766 return;
5767
5768 if (unlikely(!nr_exclusive))
5769 wake_flags = 0;
5770
5771 spin_lock_irqsave(&q->lock, flags);
5772 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5773 spin_unlock_irqrestore(&q->lock, flags);
5774 }
5775 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5776
5777 /*
5778 * __wake_up_sync - see __wake_up_sync_key()
5779 */
5780 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5781 {
5782 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5783 }
5784 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5785
5786 /**
5787 * complete: - signals a single thread waiting on this completion
5788 * @x: holds the state of this particular completion
5789 *
5790 * This will wake up a single thread waiting on this completion. Threads will be
5791 * awakened in the same order in which they were queued.
5792 *
5793 * See also complete_all(), wait_for_completion() and related routines.
5794 *
5795 * It may be assumed that this function implies a write memory barrier before
5796 * changing the task state if and only if any tasks are woken up.
5797 */
5798 void complete(struct completion *x)
5799 {
5800 unsigned long flags;
5801
5802 spin_lock_irqsave(&x->wait.lock, flags);
5803 x->done++;
5804 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5805 spin_unlock_irqrestore(&x->wait.lock, flags);
5806 }
5807 EXPORT_SYMBOL(complete);
5808
5809 /**
5810 * complete_all: - signals all threads waiting on this completion
5811 * @x: holds the state of this particular completion
5812 *
5813 * This will wake up all threads waiting on this particular completion event.
5814 *
5815 * It may be assumed that this function implies a write memory barrier before
5816 * changing the task state if and only if any tasks are woken up.
5817 */
5818 void complete_all(struct completion *x)
5819 {
5820 unsigned long flags;
5821
5822 spin_lock_irqsave(&x->wait.lock, flags);
5823 x->done += UINT_MAX/2;
5824 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5825 spin_unlock_irqrestore(&x->wait.lock, flags);
5826 }
5827 EXPORT_SYMBOL(complete_all);
5828
5829 static inline long __sched
5830 do_wait_for_common(struct completion *x, long timeout, int state)
5831 {
5832 if (!x->done) {
5833 DECLARE_WAITQUEUE(wait, current);
5834
5835 wait.flags |= WQ_FLAG_EXCLUSIVE;
5836 __add_wait_queue_tail(&x->wait, &wait);
5837 do {
5838 if (signal_pending_state(state, current)) {
5839 timeout = -ERESTARTSYS;
5840 break;
5841 }
5842 __set_current_state(state);
5843 spin_unlock_irq(&x->wait.lock);
5844 timeout = schedule_timeout(timeout);
5845 spin_lock_irq(&x->wait.lock);
5846 } while (!x->done && timeout);
5847 __remove_wait_queue(&x->wait, &wait);
5848 if (!x->done)
5849 return timeout;
5850 }
5851 x->done--;
5852 return timeout ?: 1;
5853 }
5854
5855 static long __sched
5856 wait_for_common(struct completion *x, long timeout, int state)
5857 {
5858 might_sleep();
5859
5860 spin_lock_irq(&x->wait.lock);
5861 timeout = do_wait_for_common(x, timeout, state);
5862 spin_unlock_irq(&x->wait.lock);
5863 return timeout;
5864 }
5865
5866 /**
5867 * wait_for_completion: - waits for completion of a task
5868 * @x: holds the state of this particular completion
5869 *
5870 * This waits to be signaled for completion of a specific task. It is NOT
5871 * interruptible and there is no timeout.
5872 *
5873 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5874 * and interrupt capability. Also see complete().
5875 */
5876 void __sched wait_for_completion(struct completion *x)
5877 {
5878 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5879 }
5880 EXPORT_SYMBOL(wait_for_completion);
5881
5882 /**
5883 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5884 * @x: holds the state of this particular completion
5885 * @timeout: timeout value in jiffies
5886 *
5887 * This waits for either a completion of a specific task to be signaled or for a
5888 * specified timeout to expire. The timeout is in jiffies. It is not
5889 * interruptible.
5890 */
5891 unsigned long __sched
5892 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5893 {
5894 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5895 }
5896 EXPORT_SYMBOL(wait_for_completion_timeout);
5897
5898 /**
5899 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5900 * @x: holds the state of this particular completion
5901 *
5902 * This waits for completion of a specific task to be signaled. It is
5903 * interruptible.
5904 */
5905 int __sched wait_for_completion_interruptible(struct completion *x)
5906 {
5907 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5908 if (t == -ERESTARTSYS)
5909 return t;
5910 return 0;
5911 }
5912 EXPORT_SYMBOL(wait_for_completion_interruptible);
5913
5914 /**
5915 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5916 * @x: holds the state of this particular completion
5917 * @timeout: timeout value in jiffies
5918 *
5919 * This waits for either a completion of a specific task to be signaled or for a
5920 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5921 */
5922 unsigned long __sched
5923 wait_for_completion_interruptible_timeout(struct completion *x,
5924 unsigned long timeout)
5925 {
5926 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5927 }
5928 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5929
5930 /**
5931 * wait_for_completion_killable: - waits for completion of a task (killable)
5932 * @x: holds the state of this particular completion
5933 *
5934 * This waits to be signaled for completion of a specific task. It can be
5935 * interrupted by a kill signal.
5936 */
5937 int __sched wait_for_completion_killable(struct completion *x)
5938 {
5939 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5940 if (t == -ERESTARTSYS)
5941 return t;
5942 return 0;
5943 }
5944 EXPORT_SYMBOL(wait_for_completion_killable);
5945
5946 /**
5947 * try_wait_for_completion - try to decrement a completion without blocking
5948 * @x: completion structure
5949 *
5950 * Returns: 0 if a decrement cannot be done without blocking
5951 * 1 if a decrement succeeded.
5952 *
5953 * If a completion is being used as a counting completion,
5954 * attempt to decrement the counter without blocking. This
5955 * enables us to avoid waiting if the resource the completion
5956 * is protecting is not available.
5957 */
5958 bool try_wait_for_completion(struct completion *x)
5959 {
5960 unsigned long flags;
5961 int ret = 1;
5962
5963 spin_lock_irqsave(&x->wait.lock, flags);
5964 if (!x->done)
5965 ret = 0;
5966 else
5967 x->done--;
5968 spin_unlock_irqrestore(&x->wait.lock, flags);
5969 return ret;
5970 }
5971 EXPORT_SYMBOL(try_wait_for_completion);
5972
5973 /**
5974 * completion_done - Test to see if a completion has any waiters
5975 * @x: completion structure
5976 *
5977 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5978 * 1 if there are no waiters.
5979 *
5980 */
5981 bool completion_done(struct completion *x)
5982 {
5983 unsigned long flags;
5984 int ret = 1;
5985
5986 spin_lock_irqsave(&x->wait.lock, flags);
5987 if (!x->done)
5988 ret = 0;
5989 spin_unlock_irqrestore(&x->wait.lock, flags);
5990 return ret;
5991 }
5992 EXPORT_SYMBOL(completion_done);
5993
5994 static long __sched
5995 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5996 {
5997 unsigned long flags;
5998 wait_queue_t wait;
5999
6000 init_waitqueue_entry(&wait, current);
6001
6002 __set_current_state(state);
6003
6004 spin_lock_irqsave(&q->lock, flags);
6005 __add_wait_queue(q, &wait);
6006 spin_unlock(&q->lock);
6007 timeout = schedule_timeout(timeout);
6008 spin_lock_irq(&q->lock);
6009 __remove_wait_queue(q, &wait);
6010 spin_unlock_irqrestore(&q->lock, flags);
6011
6012 return timeout;
6013 }
6014
6015 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6016 {
6017 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6018 }
6019 EXPORT_SYMBOL(interruptible_sleep_on);
6020
6021 long __sched
6022 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6023 {
6024 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6025 }
6026 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6027
6028 void __sched sleep_on(wait_queue_head_t *q)
6029 {
6030 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6031 }
6032 EXPORT_SYMBOL(sleep_on);
6033
6034 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6035 {
6036 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6037 }
6038 EXPORT_SYMBOL(sleep_on_timeout);
6039
6040 #ifdef CONFIG_RT_MUTEXES
6041
6042 /*
6043 * rt_mutex_setprio - set the current priority of a task
6044 * @p: task
6045 * @prio: prio value (kernel-internal form)
6046 *
6047 * This function changes the 'effective' priority of a task. It does
6048 * not touch ->normal_prio like __setscheduler().
6049 *
6050 * Used by the rt_mutex code to implement priority inheritance logic.
6051 */
6052 void rt_mutex_setprio(struct task_struct *p, int prio)
6053 {
6054 unsigned long flags;
6055 int oldprio, on_rq, running;
6056 struct rq *rq;
6057 const struct sched_class *prev_class = p->sched_class;
6058
6059 BUG_ON(prio < 0 || prio > MAX_PRIO);
6060
6061 rq = task_rq_lock(p, &flags);
6062 update_rq_clock(rq);
6063
6064 oldprio = p->prio;
6065 on_rq = p->se.on_rq;
6066 running = task_current(rq, p);
6067 if (on_rq)
6068 dequeue_task(rq, p, 0);
6069 if (running)
6070 p->sched_class->put_prev_task(rq, p);
6071
6072 if (rt_prio(prio))
6073 p->sched_class = &rt_sched_class;
6074 else
6075 p->sched_class = &fair_sched_class;
6076
6077 p->prio = prio;
6078
6079 if (running)
6080 p->sched_class->set_curr_task(rq);
6081 if (on_rq) {
6082 enqueue_task(rq, p, 0);
6083
6084 check_class_changed(rq, p, prev_class, oldprio, running);
6085 }
6086 task_rq_unlock(rq, &flags);
6087 }
6088
6089 #endif
6090
6091 void set_user_nice(struct task_struct *p, long nice)
6092 {
6093 int old_prio, delta, on_rq;
6094 unsigned long flags;
6095 struct rq *rq;
6096
6097 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6098 return;
6099 /*
6100 * We have to be careful, if called from sys_setpriority(),
6101 * the task might be in the middle of scheduling on another CPU.
6102 */
6103 rq = task_rq_lock(p, &flags);
6104 update_rq_clock(rq);
6105 /*
6106 * The RT priorities are set via sched_setscheduler(), but we still
6107 * allow the 'normal' nice value to be set - but as expected
6108 * it wont have any effect on scheduling until the task is
6109 * SCHED_FIFO/SCHED_RR:
6110 */
6111 if (task_has_rt_policy(p)) {
6112 p->static_prio = NICE_TO_PRIO(nice);
6113 goto out_unlock;
6114 }
6115 on_rq = p->se.on_rq;
6116 if (on_rq)
6117 dequeue_task(rq, p, 0);
6118
6119 p->static_prio = NICE_TO_PRIO(nice);
6120 set_load_weight(p);
6121 old_prio = p->prio;
6122 p->prio = effective_prio(p);
6123 delta = p->prio - old_prio;
6124
6125 if (on_rq) {
6126 enqueue_task(rq, p, 0);
6127 /*
6128 * If the task increased its priority or is running and
6129 * lowered its priority, then reschedule its CPU:
6130 */
6131 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6132 resched_task(rq->curr);
6133 }
6134 out_unlock:
6135 task_rq_unlock(rq, &flags);
6136 }
6137 EXPORT_SYMBOL(set_user_nice);
6138
6139 /*
6140 * can_nice - check if a task can reduce its nice value
6141 * @p: task
6142 * @nice: nice value
6143 */
6144 int can_nice(const struct task_struct *p, const int nice)
6145 {
6146 /* convert nice value [19,-20] to rlimit style value [1,40] */
6147 int nice_rlim = 20 - nice;
6148
6149 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6150 capable(CAP_SYS_NICE));
6151 }
6152
6153 #ifdef __ARCH_WANT_SYS_NICE
6154
6155 /*
6156 * sys_nice - change the priority of the current process.
6157 * @increment: priority increment
6158 *
6159 * sys_setpriority is a more generic, but much slower function that
6160 * does similar things.
6161 */
6162 SYSCALL_DEFINE1(nice, int, increment)
6163 {
6164 long nice, retval;
6165
6166 /*
6167 * Setpriority might change our priority at the same moment.
6168 * We don't have to worry. Conceptually one call occurs first
6169 * and we have a single winner.
6170 */
6171 if (increment < -40)
6172 increment = -40;
6173 if (increment > 40)
6174 increment = 40;
6175
6176 nice = TASK_NICE(current) + increment;
6177 if (nice < -20)
6178 nice = -20;
6179 if (nice > 19)
6180 nice = 19;
6181
6182 if (increment < 0 && !can_nice(current, nice))
6183 return -EPERM;
6184
6185 retval = security_task_setnice(current, nice);
6186 if (retval)
6187 return retval;
6188
6189 set_user_nice(current, nice);
6190 return 0;
6191 }
6192
6193 #endif
6194
6195 /**
6196 * task_prio - return the priority value of a given task.
6197 * @p: the task in question.
6198 *
6199 * This is the priority value as seen by users in /proc.
6200 * RT tasks are offset by -200. Normal tasks are centered
6201 * around 0, value goes from -16 to +15.
6202 */
6203 int task_prio(const struct task_struct *p)
6204 {
6205 return p->prio - MAX_RT_PRIO;
6206 }
6207
6208 /**
6209 * task_nice - return the nice value of a given task.
6210 * @p: the task in question.
6211 */
6212 int task_nice(const struct task_struct *p)
6213 {
6214 return TASK_NICE(p);
6215 }
6216 EXPORT_SYMBOL(task_nice);
6217
6218 /**
6219 * idle_cpu - is a given cpu idle currently?
6220 * @cpu: the processor in question.
6221 */
6222 int idle_cpu(int cpu)
6223 {
6224 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6225 }
6226
6227 /**
6228 * idle_task - return the idle task for a given cpu.
6229 * @cpu: the processor in question.
6230 */
6231 struct task_struct *idle_task(int cpu)
6232 {
6233 return cpu_rq(cpu)->idle;
6234 }
6235
6236 /**
6237 * find_process_by_pid - find a process with a matching PID value.
6238 * @pid: the pid in question.
6239 */
6240 static struct task_struct *find_process_by_pid(pid_t pid)
6241 {
6242 return pid ? find_task_by_vpid(pid) : current;
6243 }
6244
6245 /* Actually do priority change: must hold rq lock. */
6246 static void
6247 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6248 {
6249 BUG_ON(p->se.on_rq);
6250
6251 p->policy = policy;
6252 p->rt_priority = prio;
6253 p->normal_prio = normal_prio(p);
6254 /* we are holding p->pi_lock already */
6255 p->prio = rt_mutex_getprio(p);
6256 if (rt_prio(p->prio))
6257 p->sched_class = &rt_sched_class;
6258 else
6259 p->sched_class = &fair_sched_class;
6260 set_load_weight(p);
6261 }
6262
6263 /*
6264 * check the target process has a UID that matches the current process's
6265 */
6266 static bool check_same_owner(struct task_struct *p)
6267 {
6268 const struct cred *cred = current_cred(), *pcred;
6269 bool match;
6270
6271 rcu_read_lock();
6272 pcred = __task_cred(p);
6273 match = (cred->euid == pcred->euid ||
6274 cred->euid == pcred->uid);
6275 rcu_read_unlock();
6276 return match;
6277 }
6278
6279 static int __sched_setscheduler(struct task_struct *p, int policy,
6280 struct sched_param *param, bool user)
6281 {
6282 int retval, oldprio, oldpolicy = -1, on_rq, running;
6283 unsigned long flags;
6284 const struct sched_class *prev_class = p->sched_class;
6285 struct rq *rq;
6286 int reset_on_fork;
6287
6288 /* may grab non-irq protected spin_locks */
6289 BUG_ON(in_interrupt());
6290 recheck:
6291 /* double check policy once rq lock held */
6292 if (policy < 0) {
6293 reset_on_fork = p->sched_reset_on_fork;
6294 policy = oldpolicy = p->policy;
6295 } else {
6296 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6297 policy &= ~SCHED_RESET_ON_FORK;
6298
6299 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6300 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6301 policy != SCHED_IDLE)
6302 return -EINVAL;
6303 }
6304
6305 /*
6306 * Valid priorities for SCHED_FIFO and SCHED_RR are
6307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6308 * SCHED_BATCH and SCHED_IDLE is 0.
6309 */
6310 if (param->sched_priority < 0 ||
6311 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6312 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6313 return -EINVAL;
6314 if (rt_policy(policy) != (param->sched_priority != 0))
6315 return -EINVAL;
6316
6317 /*
6318 * Allow unprivileged RT tasks to decrease priority:
6319 */
6320 if (user && !capable(CAP_SYS_NICE)) {
6321 if (rt_policy(policy)) {
6322 unsigned long rlim_rtprio;
6323
6324 if (!lock_task_sighand(p, &flags))
6325 return -ESRCH;
6326 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6327 unlock_task_sighand(p, &flags);
6328
6329 /* can't set/change the rt policy */
6330 if (policy != p->policy && !rlim_rtprio)
6331 return -EPERM;
6332
6333 /* can't increase priority */
6334 if (param->sched_priority > p->rt_priority &&
6335 param->sched_priority > rlim_rtprio)
6336 return -EPERM;
6337 }
6338 /*
6339 * Like positive nice levels, dont allow tasks to
6340 * move out of SCHED_IDLE either:
6341 */
6342 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6343 return -EPERM;
6344
6345 /* can't change other user's priorities */
6346 if (!check_same_owner(p))
6347 return -EPERM;
6348
6349 /* Normal users shall not reset the sched_reset_on_fork flag */
6350 if (p->sched_reset_on_fork && !reset_on_fork)
6351 return -EPERM;
6352 }
6353
6354 if (user) {
6355 #ifdef CONFIG_RT_GROUP_SCHED
6356 /*
6357 * Do not allow realtime tasks into groups that have no runtime
6358 * assigned.
6359 */
6360 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6361 task_group(p)->rt_bandwidth.rt_runtime == 0)
6362 return -EPERM;
6363 #endif
6364
6365 retval = security_task_setscheduler(p, policy, param);
6366 if (retval)
6367 return retval;
6368 }
6369
6370 /*
6371 * make sure no PI-waiters arrive (or leave) while we are
6372 * changing the priority of the task:
6373 */
6374 raw_spin_lock_irqsave(&p->pi_lock, flags);
6375 /*
6376 * To be able to change p->policy safely, the apropriate
6377 * runqueue lock must be held.
6378 */
6379 rq = __task_rq_lock(p);
6380 /* recheck policy now with rq lock held */
6381 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6382 policy = oldpolicy = -1;
6383 __task_rq_unlock(rq);
6384 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6385 goto recheck;
6386 }
6387 update_rq_clock(rq);
6388 on_rq = p->se.on_rq;
6389 running = task_current(rq, p);
6390 if (on_rq)
6391 deactivate_task(rq, p, 0);
6392 if (running)
6393 p->sched_class->put_prev_task(rq, p);
6394
6395 p->sched_reset_on_fork = reset_on_fork;
6396
6397 oldprio = p->prio;
6398 __setscheduler(rq, p, policy, param->sched_priority);
6399
6400 if (running)
6401 p->sched_class->set_curr_task(rq);
6402 if (on_rq) {
6403 activate_task(rq, p, 0);
6404
6405 check_class_changed(rq, p, prev_class, oldprio, running);
6406 }
6407 __task_rq_unlock(rq);
6408 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6409
6410 rt_mutex_adjust_pi(p);
6411
6412 return 0;
6413 }
6414
6415 /**
6416 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6417 * @p: the task in question.
6418 * @policy: new policy.
6419 * @param: structure containing the new RT priority.
6420 *
6421 * NOTE that the task may be already dead.
6422 */
6423 int sched_setscheduler(struct task_struct *p, int policy,
6424 struct sched_param *param)
6425 {
6426 return __sched_setscheduler(p, policy, param, true);
6427 }
6428 EXPORT_SYMBOL_GPL(sched_setscheduler);
6429
6430 /**
6431 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6432 * @p: the task in question.
6433 * @policy: new policy.
6434 * @param: structure containing the new RT priority.
6435 *
6436 * Just like sched_setscheduler, only don't bother checking if the
6437 * current context has permission. For example, this is needed in
6438 * stop_machine(): we create temporary high priority worker threads,
6439 * but our caller might not have that capability.
6440 */
6441 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6442 struct sched_param *param)
6443 {
6444 return __sched_setscheduler(p, policy, param, false);
6445 }
6446
6447 static int
6448 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6449 {
6450 struct sched_param lparam;
6451 struct task_struct *p;
6452 int retval;
6453
6454 if (!param || pid < 0)
6455 return -EINVAL;
6456 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6457 return -EFAULT;
6458
6459 rcu_read_lock();
6460 retval = -ESRCH;
6461 p = find_process_by_pid(pid);
6462 if (p != NULL)
6463 retval = sched_setscheduler(p, policy, &lparam);
6464 rcu_read_unlock();
6465
6466 return retval;
6467 }
6468
6469 /**
6470 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6471 * @pid: the pid in question.
6472 * @policy: new policy.
6473 * @param: structure containing the new RT priority.
6474 */
6475 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6476 struct sched_param __user *, param)
6477 {
6478 /* negative values for policy are not valid */
6479 if (policy < 0)
6480 return -EINVAL;
6481
6482 return do_sched_setscheduler(pid, policy, param);
6483 }
6484
6485 /**
6486 * sys_sched_setparam - set/change the RT priority of a thread
6487 * @pid: the pid in question.
6488 * @param: structure containing the new RT priority.
6489 */
6490 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6491 {
6492 return do_sched_setscheduler(pid, -1, param);
6493 }
6494
6495 /**
6496 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6497 * @pid: the pid in question.
6498 */
6499 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6500 {
6501 struct task_struct *p;
6502 int retval;
6503
6504 if (pid < 0)
6505 return -EINVAL;
6506
6507 retval = -ESRCH;
6508 rcu_read_lock();
6509 p = find_process_by_pid(pid);
6510 if (p) {
6511 retval = security_task_getscheduler(p);
6512 if (!retval)
6513 retval = p->policy
6514 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6515 }
6516 rcu_read_unlock();
6517 return retval;
6518 }
6519
6520 /**
6521 * sys_sched_getparam - get the RT priority of a thread
6522 * @pid: the pid in question.
6523 * @param: structure containing the RT priority.
6524 */
6525 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6526 {
6527 struct sched_param lp;
6528 struct task_struct *p;
6529 int retval;
6530
6531 if (!param || pid < 0)
6532 return -EINVAL;
6533
6534 rcu_read_lock();
6535 p = find_process_by_pid(pid);
6536 retval = -ESRCH;
6537 if (!p)
6538 goto out_unlock;
6539
6540 retval = security_task_getscheduler(p);
6541 if (retval)
6542 goto out_unlock;
6543
6544 lp.sched_priority = p->rt_priority;
6545 rcu_read_unlock();
6546
6547 /*
6548 * This one might sleep, we cannot do it with a spinlock held ...
6549 */
6550 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6551
6552 return retval;
6553
6554 out_unlock:
6555 rcu_read_unlock();
6556 return retval;
6557 }
6558
6559 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6560 {
6561 cpumask_var_t cpus_allowed, new_mask;
6562 struct task_struct *p;
6563 int retval;
6564
6565 get_online_cpus();
6566 rcu_read_lock();
6567
6568 p = find_process_by_pid(pid);
6569 if (!p) {
6570 rcu_read_unlock();
6571 put_online_cpus();
6572 return -ESRCH;
6573 }
6574
6575 /* Prevent p going away */
6576 get_task_struct(p);
6577 rcu_read_unlock();
6578
6579 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6580 retval = -ENOMEM;
6581 goto out_put_task;
6582 }
6583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6584 retval = -ENOMEM;
6585 goto out_free_cpus_allowed;
6586 }
6587 retval = -EPERM;
6588 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6589 goto out_unlock;
6590
6591 retval = security_task_setscheduler(p, 0, NULL);
6592 if (retval)
6593 goto out_unlock;
6594
6595 cpuset_cpus_allowed(p, cpus_allowed);
6596 cpumask_and(new_mask, in_mask, cpus_allowed);
6597 again:
6598 retval = set_cpus_allowed_ptr(p, new_mask);
6599
6600 if (!retval) {
6601 cpuset_cpus_allowed(p, cpus_allowed);
6602 if (!cpumask_subset(new_mask, cpus_allowed)) {
6603 /*
6604 * We must have raced with a concurrent cpuset
6605 * update. Just reset the cpus_allowed to the
6606 * cpuset's cpus_allowed
6607 */
6608 cpumask_copy(new_mask, cpus_allowed);
6609 goto again;
6610 }
6611 }
6612 out_unlock:
6613 free_cpumask_var(new_mask);
6614 out_free_cpus_allowed:
6615 free_cpumask_var(cpus_allowed);
6616 out_put_task:
6617 put_task_struct(p);
6618 put_online_cpus();
6619 return retval;
6620 }
6621
6622 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6623 struct cpumask *new_mask)
6624 {
6625 if (len < cpumask_size())
6626 cpumask_clear(new_mask);
6627 else if (len > cpumask_size())
6628 len = cpumask_size();
6629
6630 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6631 }
6632
6633 /**
6634 * sys_sched_setaffinity - set the cpu affinity of a process
6635 * @pid: pid of the process
6636 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6637 * @user_mask_ptr: user-space pointer to the new cpu mask
6638 */
6639 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6640 unsigned long __user *, user_mask_ptr)
6641 {
6642 cpumask_var_t new_mask;
6643 int retval;
6644
6645 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6646 return -ENOMEM;
6647
6648 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6649 if (retval == 0)
6650 retval = sched_setaffinity(pid, new_mask);
6651 free_cpumask_var(new_mask);
6652 return retval;
6653 }
6654
6655 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6656 {
6657 struct task_struct *p;
6658 unsigned long flags;
6659 struct rq *rq;
6660 int retval;
6661
6662 get_online_cpus();
6663 rcu_read_lock();
6664
6665 retval = -ESRCH;
6666 p = find_process_by_pid(pid);
6667 if (!p)
6668 goto out_unlock;
6669
6670 retval = security_task_getscheduler(p);
6671 if (retval)
6672 goto out_unlock;
6673
6674 rq = task_rq_lock(p, &flags);
6675 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6676 task_rq_unlock(rq, &flags);
6677
6678 out_unlock:
6679 rcu_read_unlock();
6680 put_online_cpus();
6681
6682 return retval;
6683 }
6684
6685 /**
6686 * sys_sched_getaffinity - get the cpu affinity of a process
6687 * @pid: pid of the process
6688 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6689 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6690 */
6691 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6692 unsigned long __user *, user_mask_ptr)
6693 {
6694 int ret;
6695 cpumask_var_t mask;
6696
6697 if (len < cpumask_size())
6698 return -EINVAL;
6699
6700 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6701 return -ENOMEM;
6702
6703 ret = sched_getaffinity(pid, mask);
6704 if (ret == 0) {
6705 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6706 ret = -EFAULT;
6707 else
6708 ret = cpumask_size();
6709 }
6710 free_cpumask_var(mask);
6711
6712 return ret;
6713 }
6714
6715 /**
6716 * sys_sched_yield - yield the current processor to other threads.
6717 *
6718 * This function yields the current CPU to other tasks. If there are no
6719 * other threads running on this CPU then this function will return.
6720 */
6721 SYSCALL_DEFINE0(sched_yield)
6722 {
6723 struct rq *rq = this_rq_lock();
6724
6725 schedstat_inc(rq, yld_count);
6726 current->sched_class->yield_task(rq);
6727
6728 /*
6729 * Since we are going to call schedule() anyway, there's
6730 * no need to preempt or enable interrupts:
6731 */
6732 __release(rq->lock);
6733 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6734 do_raw_spin_unlock(&rq->lock);
6735 preempt_enable_no_resched();
6736
6737 schedule();
6738
6739 return 0;
6740 }
6741
6742 static inline int should_resched(void)
6743 {
6744 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6745 }
6746
6747 static void __cond_resched(void)
6748 {
6749 add_preempt_count(PREEMPT_ACTIVE);
6750 schedule();
6751 sub_preempt_count(PREEMPT_ACTIVE);
6752 }
6753
6754 int __sched _cond_resched(void)
6755 {
6756 if (should_resched()) {
6757 __cond_resched();
6758 return 1;
6759 }
6760 return 0;
6761 }
6762 EXPORT_SYMBOL(_cond_resched);
6763
6764 /*
6765 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6766 * call schedule, and on return reacquire the lock.
6767 *
6768 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6769 * operations here to prevent schedule() from being called twice (once via
6770 * spin_unlock(), once by hand).
6771 */
6772 int __cond_resched_lock(spinlock_t *lock)
6773 {
6774 int resched = should_resched();
6775 int ret = 0;
6776
6777 lockdep_assert_held(lock);
6778
6779 if (spin_needbreak(lock) || resched) {
6780 spin_unlock(lock);
6781 if (resched)
6782 __cond_resched();
6783 else
6784 cpu_relax();
6785 ret = 1;
6786 spin_lock(lock);
6787 }
6788 return ret;
6789 }
6790 EXPORT_SYMBOL(__cond_resched_lock);
6791
6792 int __sched __cond_resched_softirq(void)
6793 {
6794 BUG_ON(!in_softirq());
6795
6796 if (should_resched()) {
6797 local_bh_enable();
6798 __cond_resched();
6799 local_bh_disable();
6800 return 1;
6801 }
6802 return 0;
6803 }
6804 EXPORT_SYMBOL(__cond_resched_softirq);
6805
6806 /**
6807 * yield - yield the current processor to other threads.
6808 *
6809 * This is a shortcut for kernel-space yielding - it marks the
6810 * thread runnable and calls sys_sched_yield().
6811 */
6812 void __sched yield(void)
6813 {
6814 set_current_state(TASK_RUNNING);
6815 sys_sched_yield();
6816 }
6817 EXPORT_SYMBOL(yield);
6818
6819 /*
6820 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6821 * that process accounting knows that this is a task in IO wait state.
6822 */
6823 void __sched io_schedule(void)
6824 {
6825 struct rq *rq = raw_rq();
6826
6827 delayacct_blkio_start();
6828 atomic_inc(&rq->nr_iowait);
6829 current->in_iowait = 1;
6830 schedule();
6831 current->in_iowait = 0;
6832 atomic_dec(&rq->nr_iowait);
6833 delayacct_blkio_end();
6834 }
6835 EXPORT_SYMBOL(io_schedule);
6836
6837 long __sched io_schedule_timeout(long timeout)
6838 {
6839 struct rq *rq = raw_rq();
6840 long ret;
6841
6842 delayacct_blkio_start();
6843 atomic_inc(&rq->nr_iowait);
6844 current->in_iowait = 1;
6845 ret = schedule_timeout(timeout);
6846 current->in_iowait = 0;
6847 atomic_dec(&rq->nr_iowait);
6848 delayacct_blkio_end();
6849 return ret;
6850 }
6851
6852 /**
6853 * sys_sched_get_priority_max - return maximum RT priority.
6854 * @policy: scheduling class.
6855 *
6856 * this syscall returns the maximum rt_priority that can be used
6857 * by a given scheduling class.
6858 */
6859 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6860 {
6861 int ret = -EINVAL;
6862
6863 switch (policy) {
6864 case SCHED_FIFO:
6865 case SCHED_RR:
6866 ret = MAX_USER_RT_PRIO-1;
6867 break;
6868 case SCHED_NORMAL:
6869 case SCHED_BATCH:
6870 case SCHED_IDLE:
6871 ret = 0;
6872 break;
6873 }
6874 return ret;
6875 }
6876
6877 /**
6878 * sys_sched_get_priority_min - return minimum RT priority.
6879 * @policy: scheduling class.
6880 *
6881 * this syscall returns the minimum rt_priority that can be used
6882 * by a given scheduling class.
6883 */
6884 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6885 {
6886 int ret = -EINVAL;
6887
6888 switch (policy) {
6889 case SCHED_FIFO:
6890 case SCHED_RR:
6891 ret = 1;
6892 break;
6893 case SCHED_NORMAL:
6894 case SCHED_BATCH:
6895 case SCHED_IDLE:
6896 ret = 0;
6897 }
6898 return ret;
6899 }
6900
6901 /**
6902 * sys_sched_rr_get_interval - return the default timeslice of a process.
6903 * @pid: pid of the process.
6904 * @interval: userspace pointer to the timeslice value.
6905 *
6906 * this syscall writes the default timeslice value of a given process
6907 * into the user-space timespec buffer. A value of '0' means infinity.
6908 */
6909 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6910 struct timespec __user *, interval)
6911 {
6912 struct task_struct *p;
6913 unsigned int time_slice;
6914 unsigned long flags;
6915 struct rq *rq;
6916 int retval;
6917 struct timespec t;
6918
6919 if (pid < 0)
6920 return -EINVAL;
6921
6922 retval = -ESRCH;
6923 rcu_read_lock();
6924 p = find_process_by_pid(pid);
6925 if (!p)
6926 goto out_unlock;
6927
6928 retval = security_task_getscheduler(p);
6929 if (retval)
6930 goto out_unlock;
6931
6932 rq = task_rq_lock(p, &flags);
6933 time_slice = p->sched_class->get_rr_interval(rq, p);
6934 task_rq_unlock(rq, &flags);
6935
6936 rcu_read_unlock();
6937 jiffies_to_timespec(time_slice, &t);
6938 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6939 return retval;
6940
6941 out_unlock:
6942 rcu_read_unlock();
6943 return retval;
6944 }
6945
6946 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6947
6948 void sched_show_task(struct task_struct *p)
6949 {
6950 unsigned long free = 0;
6951 unsigned state;
6952
6953 state = p->state ? __ffs(p->state) + 1 : 0;
6954 printk(KERN_INFO "%-13.13s %c", p->comm,
6955 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6956 #if BITS_PER_LONG == 32
6957 if (state == TASK_RUNNING)
6958 printk(KERN_CONT " running ");
6959 else
6960 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6961 #else
6962 if (state == TASK_RUNNING)
6963 printk(KERN_CONT " running task ");
6964 else
6965 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6966 #endif
6967 #ifdef CONFIG_DEBUG_STACK_USAGE
6968 free = stack_not_used(p);
6969 #endif
6970 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6971 task_pid_nr(p), task_pid_nr(p->real_parent),
6972 (unsigned long)task_thread_info(p)->flags);
6973
6974 show_stack(p, NULL);
6975 }
6976
6977 void show_state_filter(unsigned long state_filter)
6978 {
6979 struct task_struct *g, *p;
6980
6981 #if BITS_PER_LONG == 32
6982 printk(KERN_INFO
6983 " task PC stack pid father\n");
6984 #else
6985 printk(KERN_INFO
6986 " task PC stack pid father\n");
6987 #endif
6988 read_lock(&tasklist_lock);
6989 do_each_thread(g, p) {
6990 /*
6991 * reset the NMI-timeout, listing all files on a slow
6992 * console might take alot of time:
6993 */
6994 touch_nmi_watchdog();
6995 if (!state_filter || (p->state & state_filter))
6996 sched_show_task(p);
6997 } while_each_thread(g, p);
6998
6999 touch_all_softlockup_watchdogs();
7000
7001 #ifdef CONFIG_SCHED_DEBUG
7002 sysrq_sched_debug_show();
7003 #endif
7004 read_unlock(&tasklist_lock);
7005 /*
7006 * Only show locks if all tasks are dumped:
7007 */
7008 if (!state_filter)
7009 debug_show_all_locks();
7010 }
7011
7012 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7013 {
7014 idle->sched_class = &idle_sched_class;
7015 }
7016
7017 /**
7018 * init_idle - set up an idle thread for a given CPU
7019 * @idle: task in question
7020 * @cpu: cpu the idle task belongs to
7021 *
7022 * NOTE: this function does not set the idle thread's NEED_RESCHED
7023 * flag, to make booting more robust.
7024 */
7025 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7026 {
7027 struct rq *rq = cpu_rq(cpu);
7028 unsigned long flags;
7029
7030 raw_spin_lock_irqsave(&rq->lock, flags);
7031
7032 __sched_fork(idle);
7033 idle->state = TASK_RUNNING;
7034 idle->se.exec_start = sched_clock();
7035
7036 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7037 __set_task_cpu(idle, cpu);
7038
7039 rq->curr = rq->idle = idle;
7040 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7041 idle->oncpu = 1;
7042 #endif
7043 raw_spin_unlock_irqrestore(&rq->lock, flags);
7044
7045 /* Set the preempt count _outside_ the spinlocks! */
7046 #if defined(CONFIG_PREEMPT)
7047 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7048 #else
7049 task_thread_info(idle)->preempt_count = 0;
7050 #endif
7051 /*
7052 * The idle tasks have their own, simple scheduling class:
7053 */
7054 idle->sched_class = &idle_sched_class;
7055 ftrace_graph_init_task(idle);
7056 }
7057
7058 /*
7059 * In a system that switches off the HZ timer nohz_cpu_mask
7060 * indicates which cpus entered this state. This is used
7061 * in the rcu update to wait only for active cpus. For system
7062 * which do not switch off the HZ timer nohz_cpu_mask should
7063 * always be CPU_BITS_NONE.
7064 */
7065 cpumask_var_t nohz_cpu_mask;
7066
7067 /*
7068 * Increase the granularity value when there are more CPUs,
7069 * because with more CPUs the 'effective latency' as visible
7070 * to users decreases. But the relationship is not linear,
7071 * so pick a second-best guess by going with the log2 of the
7072 * number of CPUs.
7073 *
7074 * This idea comes from the SD scheduler of Con Kolivas:
7075 */
7076 static int get_update_sysctl_factor(void)
7077 {
7078 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7079 unsigned int factor;
7080
7081 switch (sysctl_sched_tunable_scaling) {
7082 case SCHED_TUNABLESCALING_NONE:
7083 factor = 1;
7084 break;
7085 case SCHED_TUNABLESCALING_LINEAR:
7086 factor = cpus;
7087 break;
7088 case SCHED_TUNABLESCALING_LOG:
7089 default:
7090 factor = 1 + ilog2(cpus);
7091 break;
7092 }
7093
7094 return factor;
7095 }
7096
7097 static void update_sysctl(void)
7098 {
7099 unsigned int factor = get_update_sysctl_factor();
7100
7101 #define SET_SYSCTL(name) \
7102 (sysctl_##name = (factor) * normalized_sysctl_##name)
7103 SET_SYSCTL(sched_min_granularity);
7104 SET_SYSCTL(sched_latency);
7105 SET_SYSCTL(sched_wakeup_granularity);
7106 SET_SYSCTL(sched_shares_ratelimit);
7107 #undef SET_SYSCTL
7108 }
7109
7110 static inline void sched_init_granularity(void)
7111 {
7112 update_sysctl();
7113 }
7114
7115 #ifdef CONFIG_SMP
7116 /*
7117 * This is how migration works:
7118 *
7119 * 1) we queue a struct migration_req structure in the source CPU's
7120 * runqueue and wake up that CPU's migration thread.
7121 * 2) we down() the locked semaphore => thread blocks.
7122 * 3) migration thread wakes up (implicitly it forces the migrated
7123 * thread off the CPU)
7124 * 4) it gets the migration request and checks whether the migrated
7125 * task is still in the wrong runqueue.
7126 * 5) if it's in the wrong runqueue then the migration thread removes
7127 * it and puts it into the right queue.
7128 * 6) migration thread up()s the semaphore.
7129 * 7) we wake up and the migration is done.
7130 */
7131
7132 /*
7133 * Change a given task's CPU affinity. Migrate the thread to a
7134 * proper CPU and schedule it away if the CPU it's executing on
7135 * is removed from the allowed bitmask.
7136 *
7137 * NOTE: the caller must have a valid reference to the task, the
7138 * task must not exit() & deallocate itself prematurely. The
7139 * call is not atomic; no spinlocks may be held.
7140 */
7141 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7142 {
7143 struct migration_req req;
7144 unsigned long flags;
7145 struct rq *rq;
7146 int ret = 0;
7147
7148 /*
7149 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7150 * the ->cpus_allowed mask from under waking tasks, which would be
7151 * possible when we change rq->lock in ttwu(), so synchronize against
7152 * TASK_WAKING to avoid that.
7153 *
7154 * Make an exception for freshly cloned tasks, since cpuset namespaces
7155 * might move the task about, we have to validate the target in
7156 * wake_up_new_task() anyway since the cpu might have gone away.
7157 */
7158 again:
7159 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
7160 cpu_relax();
7161
7162 rq = task_rq_lock(p, &flags);
7163
7164 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
7165 task_rq_unlock(rq, &flags);
7166 goto again;
7167 }
7168
7169 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7170 ret = -EINVAL;
7171 goto out;
7172 }
7173
7174 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7175 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7176 ret = -EINVAL;
7177 goto out;
7178 }
7179
7180 if (p->sched_class->set_cpus_allowed)
7181 p->sched_class->set_cpus_allowed(p, new_mask);
7182 else {
7183 cpumask_copy(&p->cpus_allowed, new_mask);
7184 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7185 }
7186
7187 /* Can the task run on the task's current CPU? If so, we're done */
7188 if (cpumask_test_cpu(task_cpu(p), new_mask))
7189 goto out;
7190
7191 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7192 /* Need help from migration thread: drop lock and wait. */
7193 struct task_struct *mt = rq->migration_thread;
7194
7195 get_task_struct(mt);
7196 task_rq_unlock(rq, &flags);
7197 wake_up_process(rq->migration_thread);
7198 put_task_struct(mt);
7199 wait_for_completion(&req.done);
7200 tlb_migrate_finish(p->mm);
7201 return 0;
7202 }
7203 out:
7204 task_rq_unlock(rq, &flags);
7205
7206 return ret;
7207 }
7208 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7209
7210 /*
7211 * Move (not current) task off this cpu, onto dest cpu. We're doing
7212 * this because either it can't run here any more (set_cpus_allowed()
7213 * away from this CPU, or CPU going down), or because we're
7214 * attempting to rebalance this task on exec (sched_exec).
7215 *
7216 * So we race with normal scheduler movements, but that's OK, as long
7217 * as the task is no longer on this CPU.
7218 *
7219 * Returns non-zero if task was successfully migrated.
7220 */
7221 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7222 {
7223 struct rq *rq_dest, *rq_src;
7224 int ret = 0;
7225
7226 if (unlikely(!cpu_active(dest_cpu)))
7227 return ret;
7228
7229 rq_src = cpu_rq(src_cpu);
7230 rq_dest = cpu_rq(dest_cpu);
7231
7232 double_rq_lock(rq_src, rq_dest);
7233 /* Already moved. */
7234 if (task_cpu(p) != src_cpu)
7235 goto done;
7236 /* Affinity changed (again). */
7237 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7238 goto fail;
7239
7240 /*
7241 * If we're not on a rq, the next wake-up will ensure we're
7242 * placed properly.
7243 */
7244 if (p->se.on_rq) {
7245 deactivate_task(rq_src, p, 0);
7246 set_task_cpu(p, dest_cpu);
7247 activate_task(rq_dest, p, 0);
7248 check_preempt_curr(rq_dest, p, 0);
7249 }
7250 done:
7251 ret = 1;
7252 fail:
7253 double_rq_unlock(rq_src, rq_dest);
7254 return ret;
7255 }
7256
7257 #define RCU_MIGRATION_IDLE 0
7258 #define RCU_MIGRATION_NEED_QS 1
7259 #define RCU_MIGRATION_GOT_QS 2
7260 #define RCU_MIGRATION_MUST_SYNC 3
7261
7262 /*
7263 * migration_thread - this is a highprio system thread that performs
7264 * thread migration by bumping thread off CPU then 'pushing' onto
7265 * another runqueue.
7266 */
7267 static int migration_thread(void *data)
7268 {
7269 int badcpu;
7270 int cpu = (long)data;
7271 struct rq *rq;
7272
7273 rq = cpu_rq(cpu);
7274 BUG_ON(rq->migration_thread != current);
7275
7276 set_current_state(TASK_INTERRUPTIBLE);
7277 while (!kthread_should_stop()) {
7278 struct migration_req *req;
7279 struct list_head *head;
7280
7281 raw_spin_lock_irq(&rq->lock);
7282
7283 if (cpu_is_offline(cpu)) {
7284 raw_spin_unlock_irq(&rq->lock);
7285 break;
7286 }
7287
7288 if (rq->active_balance) {
7289 active_load_balance(rq, cpu);
7290 rq->active_balance = 0;
7291 }
7292
7293 head = &rq->migration_queue;
7294
7295 if (list_empty(head)) {
7296 raw_spin_unlock_irq(&rq->lock);
7297 schedule();
7298 set_current_state(TASK_INTERRUPTIBLE);
7299 continue;
7300 }
7301 req = list_entry(head->next, struct migration_req, list);
7302 list_del_init(head->next);
7303
7304 if (req->task != NULL) {
7305 raw_spin_unlock(&rq->lock);
7306 __migrate_task(req->task, cpu, req->dest_cpu);
7307 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7308 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7309 raw_spin_unlock(&rq->lock);
7310 } else {
7311 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7312 raw_spin_unlock(&rq->lock);
7313 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7314 }
7315 local_irq_enable();
7316
7317 complete(&req->done);
7318 }
7319 __set_current_state(TASK_RUNNING);
7320
7321 return 0;
7322 }
7323
7324 #ifdef CONFIG_HOTPLUG_CPU
7325
7326 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7327 {
7328 int ret;
7329
7330 local_irq_disable();
7331 ret = __migrate_task(p, src_cpu, dest_cpu);
7332 local_irq_enable();
7333 return ret;
7334 }
7335
7336 /*
7337 * Figure out where task on dead CPU should go, use force if necessary.
7338 */
7339 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7340 {
7341 int dest_cpu;
7342
7343 again:
7344 dest_cpu = select_fallback_rq(dead_cpu, p);
7345
7346 /* It can have affinity changed while we were choosing. */
7347 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7348 goto again;
7349 }
7350
7351 /*
7352 * While a dead CPU has no uninterruptible tasks queued at this point,
7353 * it might still have a nonzero ->nr_uninterruptible counter, because
7354 * for performance reasons the counter is not stricly tracking tasks to
7355 * their home CPUs. So we just add the counter to another CPU's counter,
7356 * to keep the global sum constant after CPU-down:
7357 */
7358 static void migrate_nr_uninterruptible(struct rq *rq_src)
7359 {
7360 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7361 unsigned long flags;
7362
7363 local_irq_save(flags);
7364 double_rq_lock(rq_src, rq_dest);
7365 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7366 rq_src->nr_uninterruptible = 0;
7367 double_rq_unlock(rq_src, rq_dest);
7368 local_irq_restore(flags);
7369 }
7370
7371 /* Run through task list and migrate tasks from the dead cpu. */
7372 static void migrate_live_tasks(int src_cpu)
7373 {
7374 struct task_struct *p, *t;
7375
7376 read_lock(&tasklist_lock);
7377
7378 do_each_thread(t, p) {
7379 if (p == current)
7380 continue;
7381
7382 if (task_cpu(p) == src_cpu)
7383 move_task_off_dead_cpu(src_cpu, p);
7384 } while_each_thread(t, p);
7385
7386 read_unlock(&tasklist_lock);
7387 }
7388
7389 /*
7390 * Schedules idle task to be the next runnable task on current CPU.
7391 * It does so by boosting its priority to highest possible.
7392 * Used by CPU offline code.
7393 */
7394 void sched_idle_next(void)
7395 {
7396 int this_cpu = smp_processor_id();
7397 struct rq *rq = cpu_rq(this_cpu);
7398 struct task_struct *p = rq->idle;
7399 unsigned long flags;
7400
7401 /* cpu has to be offline */
7402 BUG_ON(cpu_online(this_cpu));
7403
7404 /*
7405 * Strictly not necessary since rest of the CPUs are stopped by now
7406 * and interrupts disabled on the current cpu.
7407 */
7408 raw_spin_lock_irqsave(&rq->lock, flags);
7409
7410 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7411
7412 update_rq_clock(rq);
7413 activate_task(rq, p, 0);
7414
7415 raw_spin_unlock_irqrestore(&rq->lock, flags);
7416 }
7417
7418 /*
7419 * Ensures that the idle task is using init_mm right before its cpu goes
7420 * offline.
7421 */
7422 void idle_task_exit(void)
7423 {
7424 struct mm_struct *mm = current->active_mm;
7425
7426 BUG_ON(cpu_online(smp_processor_id()));
7427
7428 if (mm != &init_mm)
7429 switch_mm(mm, &init_mm, current);
7430 mmdrop(mm);
7431 }
7432
7433 /* called under rq->lock with disabled interrupts */
7434 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7435 {
7436 struct rq *rq = cpu_rq(dead_cpu);
7437
7438 /* Must be exiting, otherwise would be on tasklist. */
7439 BUG_ON(!p->exit_state);
7440
7441 /* Cannot have done final schedule yet: would have vanished. */
7442 BUG_ON(p->state == TASK_DEAD);
7443
7444 get_task_struct(p);
7445
7446 /*
7447 * Drop lock around migration; if someone else moves it,
7448 * that's OK. No task can be added to this CPU, so iteration is
7449 * fine.
7450 */
7451 raw_spin_unlock_irq(&rq->lock);
7452 move_task_off_dead_cpu(dead_cpu, p);
7453 raw_spin_lock_irq(&rq->lock);
7454
7455 put_task_struct(p);
7456 }
7457
7458 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7459 static void migrate_dead_tasks(unsigned int dead_cpu)
7460 {
7461 struct rq *rq = cpu_rq(dead_cpu);
7462 struct task_struct *next;
7463
7464 for ( ; ; ) {
7465 if (!rq->nr_running)
7466 break;
7467 update_rq_clock(rq);
7468 next = pick_next_task(rq);
7469 if (!next)
7470 break;
7471 next->sched_class->put_prev_task(rq, next);
7472 migrate_dead(dead_cpu, next);
7473
7474 }
7475 }
7476
7477 /*
7478 * remove the tasks which were accounted by rq from calc_load_tasks.
7479 */
7480 static void calc_global_load_remove(struct rq *rq)
7481 {
7482 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7483 rq->calc_load_active = 0;
7484 }
7485 #endif /* CONFIG_HOTPLUG_CPU */
7486
7487 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7488
7489 static struct ctl_table sd_ctl_dir[] = {
7490 {
7491 .procname = "sched_domain",
7492 .mode = 0555,
7493 },
7494 {}
7495 };
7496
7497 static struct ctl_table sd_ctl_root[] = {
7498 {
7499 .procname = "kernel",
7500 .mode = 0555,
7501 .child = sd_ctl_dir,
7502 },
7503 {}
7504 };
7505
7506 static struct ctl_table *sd_alloc_ctl_entry(int n)
7507 {
7508 struct ctl_table *entry =
7509 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7510
7511 return entry;
7512 }
7513
7514 static void sd_free_ctl_entry(struct ctl_table **tablep)
7515 {
7516 struct ctl_table *entry;
7517
7518 /*
7519 * In the intermediate directories, both the child directory and
7520 * procname are dynamically allocated and could fail but the mode
7521 * will always be set. In the lowest directory the names are
7522 * static strings and all have proc handlers.
7523 */
7524 for (entry = *tablep; entry->mode; entry++) {
7525 if (entry->child)
7526 sd_free_ctl_entry(&entry->child);
7527 if (entry->proc_handler == NULL)
7528 kfree(entry->procname);
7529 }
7530
7531 kfree(*tablep);
7532 *tablep = NULL;
7533 }
7534
7535 static void
7536 set_table_entry(struct ctl_table *entry,
7537 const char *procname, void *data, int maxlen,
7538 mode_t mode, proc_handler *proc_handler)
7539 {
7540 entry->procname = procname;
7541 entry->data = data;
7542 entry->maxlen = maxlen;
7543 entry->mode = mode;
7544 entry->proc_handler = proc_handler;
7545 }
7546
7547 static struct ctl_table *
7548 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7549 {
7550 struct ctl_table *table = sd_alloc_ctl_entry(13);
7551
7552 if (table == NULL)
7553 return NULL;
7554
7555 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7556 sizeof(long), 0644, proc_doulongvec_minmax);
7557 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7558 sizeof(long), 0644, proc_doulongvec_minmax);
7559 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7560 sizeof(int), 0644, proc_dointvec_minmax);
7561 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7562 sizeof(int), 0644, proc_dointvec_minmax);
7563 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7564 sizeof(int), 0644, proc_dointvec_minmax);
7565 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7566 sizeof(int), 0644, proc_dointvec_minmax);
7567 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7568 sizeof(int), 0644, proc_dointvec_minmax);
7569 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7570 sizeof(int), 0644, proc_dointvec_minmax);
7571 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7572 sizeof(int), 0644, proc_dointvec_minmax);
7573 set_table_entry(&table[9], "cache_nice_tries",
7574 &sd->cache_nice_tries,
7575 sizeof(int), 0644, proc_dointvec_minmax);
7576 set_table_entry(&table[10], "flags", &sd->flags,
7577 sizeof(int), 0644, proc_dointvec_minmax);
7578 set_table_entry(&table[11], "name", sd->name,
7579 CORENAME_MAX_SIZE, 0444, proc_dostring);
7580 /* &table[12] is terminator */
7581
7582 return table;
7583 }
7584
7585 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7586 {
7587 struct ctl_table *entry, *table;
7588 struct sched_domain *sd;
7589 int domain_num = 0, i;
7590 char buf[32];
7591
7592 for_each_domain(cpu, sd)
7593 domain_num++;
7594 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7595 if (table == NULL)
7596 return NULL;
7597
7598 i = 0;
7599 for_each_domain(cpu, sd) {
7600 snprintf(buf, 32, "domain%d", i);
7601 entry->procname = kstrdup(buf, GFP_KERNEL);
7602 entry->mode = 0555;
7603 entry->child = sd_alloc_ctl_domain_table(sd);
7604 entry++;
7605 i++;
7606 }
7607 return table;
7608 }
7609
7610 static struct ctl_table_header *sd_sysctl_header;
7611 static void register_sched_domain_sysctl(void)
7612 {
7613 int i, cpu_num = num_possible_cpus();
7614 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7615 char buf[32];
7616
7617 WARN_ON(sd_ctl_dir[0].child);
7618 sd_ctl_dir[0].child = entry;
7619
7620 if (entry == NULL)
7621 return;
7622
7623 for_each_possible_cpu(i) {
7624 snprintf(buf, 32, "cpu%d", i);
7625 entry->procname = kstrdup(buf, GFP_KERNEL);
7626 entry->mode = 0555;
7627 entry->child = sd_alloc_ctl_cpu_table(i);
7628 entry++;
7629 }
7630
7631 WARN_ON(sd_sysctl_header);
7632 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7633 }
7634
7635 /* may be called multiple times per register */
7636 static void unregister_sched_domain_sysctl(void)
7637 {
7638 if (sd_sysctl_header)
7639 unregister_sysctl_table(sd_sysctl_header);
7640 sd_sysctl_header = NULL;
7641 if (sd_ctl_dir[0].child)
7642 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7643 }
7644 #else
7645 static void register_sched_domain_sysctl(void)
7646 {
7647 }
7648 static void unregister_sched_domain_sysctl(void)
7649 {
7650 }
7651 #endif
7652
7653 static void set_rq_online(struct rq *rq)
7654 {
7655 if (!rq->online) {
7656 const struct sched_class *class;
7657
7658 cpumask_set_cpu(rq->cpu, rq->rd->online);
7659 rq->online = 1;
7660
7661 for_each_class(class) {
7662 if (class->rq_online)
7663 class->rq_online(rq);
7664 }
7665 }
7666 }
7667
7668 static void set_rq_offline(struct rq *rq)
7669 {
7670 if (rq->online) {
7671 const struct sched_class *class;
7672
7673 for_each_class(class) {
7674 if (class->rq_offline)
7675 class->rq_offline(rq);
7676 }
7677
7678 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7679 rq->online = 0;
7680 }
7681 }
7682
7683 /*
7684 * migration_call - callback that gets triggered when a CPU is added.
7685 * Here we can start up the necessary migration thread for the new CPU.
7686 */
7687 static int __cpuinit
7688 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7689 {
7690 struct task_struct *p;
7691 int cpu = (long)hcpu;
7692 unsigned long flags;
7693 struct rq *rq;
7694
7695 switch (action) {
7696
7697 case CPU_UP_PREPARE:
7698 case CPU_UP_PREPARE_FROZEN:
7699 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7700 if (IS_ERR(p))
7701 return NOTIFY_BAD;
7702 kthread_bind(p, cpu);
7703 /* Must be high prio: stop_machine expects to yield to it. */
7704 rq = task_rq_lock(p, &flags);
7705 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7706 task_rq_unlock(rq, &flags);
7707 get_task_struct(p);
7708 cpu_rq(cpu)->migration_thread = p;
7709 rq->calc_load_update = calc_load_update;
7710 break;
7711
7712 case CPU_ONLINE:
7713 case CPU_ONLINE_FROZEN:
7714 /* Strictly unnecessary, as first user will wake it. */
7715 wake_up_process(cpu_rq(cpu)->migration_thread);
7716
7717 /* Update our root-domain */
7718 rq = cpu_rq(cpu);
7719 raw_spin_lock_irqsave(&rq->lock, flags);
7720 if (rq->rd) {
7721 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7722
7723 set_rq_online(rq);
7724 }
7725 raw_spin_unlock_irqrestore(&rq->lock, flags);
7726 break;
7727
7728 #ifdef CONFIG_HOTPLUG_CPU
7729 case CPU_UP_CANCELED:
7730 case CPU_UP_CANCELED_FROZEN:
7731 if (!cpu_rq(cpu)->migration_thread)
7732 break;
7733 /* Unbind it from offline cpu so it can run. Fall thru. */
7734 kthread_bind(cpu_rq(cpu)->migration_thread,
7735 cpumask_any(cpu_online_mask));
7736 kthread_stop(cpu_rq(cpu)->migration_thread);
7737 put_task_struct(cpu_rq(cpu)->migration_thread);
7738 cpu_rq(cpu)->migration_thread = NULL;
7739 break;
7740
7741 case CPU_DEAD:
7742 case CPU_DEAD_FROZEN:
7743 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7744 migrate_live_tasks(cpu);
7745 rq = cpu_rq(cpu);
7746 kthread_stop(rq->migration_thread);
7747 put_task_struct(rq->migration_thread);
7748 rq->migration_thread = NULL;
7749 /* Idle task back to normal (off runqueue, low prio) */
7750 raw_spin_lock_irq(&rq->lock);
7751 update_rq_clock(rq);
7752 deactivate_task(rq, rq->idle, 0);
7753 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7754 rq->idle->sched_class = &idle_sched_class;
7755 migrate_dead_tasks(cpu);
7756 raw_spin_unlock_irq(&rq->lock);
7757 cpuset_unlock();
7758 migrate_nr_uninterruptible(rq);
7759 BUG_ON(rq->nr_running != 0);
7760 calc_global_load_remove(rq);
7761 /*
7762 * No need to migrate the tasks: it was best-effort if
7763 * they didn't take sched_hotcpu_mutex. Just wake up
7764 * the requestors.
7765 */
7766 raw_spin_lock_irq(&rq->lock);
7767 while (!list_empty(&rq->migration_queue)) {
7768 struct migration_req *req;
7769
7770 req = list_entry(rq->migration_queue.next,
7771 struct migration_req, list);
7772 list_del_init(&req->list);
7773 raw_spin_unlock_irq(&rq->lock);
7774 complete(&req->done);
7775 raw_spin_lock_irq(&rq->lock);
7776 }
7777 raw_spin_unlock_irq(&rq->lock);
7778 break;
7779
7780 case CPU_DYING:
7781 case CPU_DYING_FROZEN:
7782 /* Update our root-domain */
7783 rq = cpu_rq(cpu);
7784 raw_spin_lock_irqsave(&rq->lock, flags);
7785 if (rq->rd) {
7786 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7787 set_rq_offline(rq);
7788 }
7789 raw_spin_unlock_irqrestore(&rq->lock, flags);
7790 break;
7791 #endif
7792 }
7793 return NOTIFY_OK;
7794 }
7795
7796 /*
7797 * Register at high priority so that task migration (migrate_all_tasks)
7798 * happens before everything else. This has to be lower priority than
7799 * the notifier in the perf_event subsystem, though.
7800 */
7801 static struct notifier_block __cpuinitdata migration_notifier = {
7802 .notifier_call = migration_call,
7803 .priority = 10
7804 };
7805
7806 static int __init migration_init(void)
7807 {
7808 void *cpu = (void *)(long)smp_processor_id();
7809 int err;
7810
7811 /* Start one for the boot CPU: */
7812 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7813 BUG_ON(err == NOTIFY_BAD);
7814 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7815 register_cpu_notifier(&migration_notifier);
7816
7817 return 0;
7818 }
7819 early_initcall(migration_init);
7820 #endif
7821
7822 #ifdef CONFIG_SMP
7823
7824 #ifdef CONFIG_SCHED_DEBUG
7825
7826 static __read_mostly int sched_domain_debug_enabled;
7827
7828 static int __init sched_domain_debug_setup(char *str)
7829 {
7830 sched_domain_debug_enabled = 1;
7831
7832 return 0;
7833 }
7834 early_param("sched_debug", sched_domain_debug_setup);
7835
7836 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7837 struct cpumask *groupmask)
7838 {
7839 struct sched_group *group = sd->groups;
7840 char str[256];
7841
7842 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7843 cpumask_clear(groupmask);
7844
7845 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7846
7847 if (!(sd->flags & SD_LOAD_BALANCE)) {
7848 printk("does not load-balance\n");
7849 if (sd->parent)
7850 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7851 " has parent");
7852 return -1;
7853 }
7854
7855 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7856
7857 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7858 printk(KERN_ERR "ERROR: domain->span does not contain "
7859 "CPU%d\n", cpu);
7860 }
7861 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7862 printk(KERN_ERR "ERROR: domain->groups does not contain"
7863 " CPU%d\n", cpu);
7864 }
7865
7866 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7867 do {
7868 if (!group) {
7869 printk("\n");
7870 printk(KERN_ERR "ERROR: group is NULL\n");
7871 break;
7872 }
7873
7874 if (!group->cpu_power) {
7875 printk(KERN_CONT "\n");
7876 printk(KERN_ERR "ERROR: domain->cpu_power not "
7877 "set\n");
7878 break;
7879 }
7880
7881 if (!cpumask_weight(sched_group_cpus(group))) {
7882 printk(KERN_CONT "\n");
7883 printk(KERN_ERR "ERROR: empty group\n");
7884 break;
7885 }
7886
7887 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7888 printk(KERN_CONT "\n");
7889 printk(KERN_ERR "ERROR: repeated CPUs\n");
7890 break;
7891 }
7892
7893 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7894
7895 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7896
7897 printk(KERN_CONT " %s", str);
7898 if (group->cpu_power != SCHED_LOAD_SCALE) {
7899 printk(KERN_CONT " (cpu_power = %d)",
7900 group->cpu_power);
7901 }
7902
7903 group = group->next;
7904 } while (group != sd->groups);
7905 printk(KERN_CONT "\n");
7906
7907 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7908 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7909
7910 if (sd->parent &&
7911 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7912 printk(KERN_ERR "ERROR: parent span is not a superset "
7913 "of domain->span\n");
7914 return 0;
7915 }
7916
7917 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7918 {
7919 cpumask_var_t groupmask;
7920 int level = 0;
7921
7922 if (!sched_domain_debug_enabled)
7923 return;
7924
7925 if (!sd) {
7926 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7927 return;
7928 }
7929
7930 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7931
7932 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7933 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7934 return;
7935 }
7936
7937 for (;;) {
7938 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7939 break;
7940 level++;
7941 sd = sd->parent;
7942 if (!sd)
7943 break;
7944 }
7945 free_cpumask_var(groupmask);
7946 }
7947 #else /* !CONFIG_SCHED_DEBUG */
7948 # define sched_domain_debug(sd, cpu) do { } while (0)
7949 #endif /* CONFIG_SCHED_DEBUG */
7950
7951 static int sd_degenerate(struct sched_domain *sd)
7952 {
7953 if (cpumask_weight(sched_domain_span(sd)) == 1)
7954 return 1;
7955
7956 /* Following flags need at least 2 groups */
7957 if (sd->flags & (SD_LOAD_BALANCE |
7958 SD_BALANCE_NEWIDLE |
7959 SD_BALANCE_FORK |
7960 SD_BALANCE_EXEC |
7961 SD_SHARE_CPUPOWER |
7962 SD_SHARE_PKG_RESOURCES)) {
7963 if (sd->groups != sd->groups->next)
7964 return 0;
7965 }
7966
7967 /* Following flags don't use groups */
7968 if (sd->flags & (SD_WAKE_AFFINE))
7969 return 0;
7970
7971 return 1;
7972 }
7973
7974 static int
7975 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7976 {
7977 unsigned long cflags = sd->flags, pflags = parent->flags;
7978
7979 if (sd_degenerate(parent))
7980 return 1;
7981
7982 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7983 return 0;
7984
7985 /* Flags needing groups don't count if only 1 group in parent */
7986 if (parent->groups == parent->groups->next) {
7987 pflags &= ~(SD_LOAD_BALANCE |
7988 SD_BALANCE_NEWIDLE |
7989 SD_BALANCE_FORK |
7990 SD_BALANCE_EXEC |
7991 SD_SHARE_CPUPOWER |
7992 SD_SHARE_PKG_RESOURCES);
7993 if (nr_node_ids == 1)
7994 pflags &= ~SD_SERIALIZE;
7995 }
7996 if (~cflags & pflags)
7997 return 0;
7998
7999 return 1;
8000 }
8001
8002 static void free_rootdomain(struct root_domain *rd)
8003 {
8004 synchronize_sched();
8005
8006 cpupri_cleanup(&rd->cpupri);
8007
8008 free_cpumask_var(rd->rto_mask);
8009 free_cpumask_var(rd->online);
8010 free_cpumask_var(rd->span);
8011 kfree(rd);
8012 }
8013
8014 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8015 {
8016 struct root_domain *old_rd = NULL;
8017 unsigned long flags;
8018
8019 raw_spin_lock_irqsave(&rq->lock, flags);
8020
8021 if (rq->rd) {
8022 old_rd = rq->rd;
8023
8024 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8025 set_rq_offline(rq);
8026
8027 cpumask_clear_cpu(rq->cpu, old_rd->span);
8028
8029 /*
8030 * If we dont want to free the old_rt yet then
8031 * set old_rd to NULL to skip the freeing later
8032 * in this function:
8033 */
8034 if (!atomic_dec_and_test(&old_rd->refcount))
8035 old_rd = NULL;
8036 }
8037
8038 atomic_inc(&rd->refcount);
8039 rq->rd = rd;
8040
8041 cpumask_set_cpu(rq->cpu, rd->span);
8042 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8043 set_rq_online(rq);
8044
8045 raw_spin_unlock_irqrestore(&rq->lock, flags);
8046
8047 if (old_rd)
8048 free_rootdomain(old_rd);
8049 }
8050
8051 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8052 {
8053 gfp_t gfp = GFP_KERNEL;
8054
8055 memset(rd, 0, sizeof(*rd));
8056
8057 if (bootmem)
8058 gfp = GFP_NOWAIT;
8059
8060 if (!alloc_cpumask_var(&rd->span, gfp))
8061 goto out;
8062 if (!alloc_cpumask_var(&rd->online, gfp))
8063 goto free_span;
8064 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8065 goto free_online;
8066
8067 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8068 goto free_rto_mask;
8069 return 0;
8070
8071 free_rto_mask:
8072 free_cpumask_var(rd->rto_mask);
8073 free_online:
8074 free_cpumask_var(rd->online);
8075 free_span:
8076 free_cpumask_var(rd->span);
8077 out:
8078 return -ENOMEM;
8079 }
8080
8081 static void init_defrootdomain(void)
8082 {
8083 init_rootdomain(&def_root_domain, true);
8084
8085 atomic_set(&def_root_domain.refcount, 1);
8086 }
8087
8088 static struct root_domain *alloc_rootdomain(void)
8089 {
8090 struct root_domain *rd;
8091
8092 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8093 if (!rd)
8094 return NULL;
8095
8096 if (init_rootdomain(rd, false) != 0) {
8097 kfree(rd);
8098 return NULL;
8099 }
8100
8101 return rd;
8102 }
8103
8104 /*
8105 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8106 * hold the hotplug lock.
8107 */
8108 static void
8109 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8110 {
8111 struct rq *rq = cpu_rq(cpu);
8112 struct sched_domain *tmp;
8113
8114 /* Remove the sched domains which do not contribute to scheduling. */
8115 for (tmp = sd; tmp; ) {
8116 struct sched_domain *parent = tmp->parent;
8117 if (!parent)
8118 break;
8119
8120 if (sd_parent_degenerate(tmp, parent)) {
8121 tmp->parent = parent->parent;
8122 if (parent->parent)
8123 parent->parent->child = tmp;
8124 } else
8125 tmp = tmp->parent;
8126 }
8127
8128 if (sd && sd_degenerate(sd)) {
8129 sd = sd->parent;
8130 if (sd)
8131 sd->child = NULL;
8132 }
8133
8134 sched_domain_debug(sd, cpu);
8135
8136 rq_attach_root(rq, rd);
8137 rcu_assign_pointer(rq->sd, sd);
8138 }
8139
8140 /* cpus with isolated domains */
8141 static cpumask_var_t cpu_isolated_map;
8142
8143 /* Setup the mask of cpus configured for isolated domains */
8144 static int __init isolated_cpu_setup(char *str)
8145 {
8146 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8147 cpulist_parse(str, cpu_isolated_map);
8148 return 1;
8149 }
8150
8151 __setup("isolcpus=", isolated_cpu_setup);
8152
8153 /*
8154 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8155 * to a function which identifies what group(along with sched group) a CPU
8156 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8157 * (due to the fact that we keep track of groups covered with a struct cpumask).
8158 *
8159 * init_sched_build_groups will build a circular linked list of the groups
8160 * covered by the given span, and will set each group's ->cpumask correctly,
8161 * and ->cpu_power to 0.
8162 */
8163 static void
8164 init_sched_build_groups(const struct cpumask *span,
8165 const struct cpumask *cpu_map,
8166 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8167 struct sched_group **sg,
8168 struct cpumask *tmpmask),
8169 struct cpumask *covered, struct cpumask *tmpmask)
8170 {
8171 struct sched_group *first = NULL, *last = NULL;
8172 int i;
8173
8174 cpumask_clear(covered);
8175
8176 for_each_cpu(i, span) {
8177 struct sched_group *sg;
8178 int group = group_fn(i, cpu_map, &sg, tmpmask);
8179 int j;
8180
8181 if (cpumask_test_cpu(i, covered))
8182 continue;
8183
8184 cpumask_clear(sched_group_cpus(sg));
8185 sg->cpu_power = 0;
8186
8187 for_each_cpu(j, span) {
8188 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8189 continue;
8190
8191 cpumask_set_cpu(j, covered);
8192 cpumask_set_cpu(j, sched_group_cpus(sg));
8193 }
8194 if (!first)
8195 first = sg;
8196 if (last)
8197 last->next = sg;
8198 last = sg;
8199 }
8200 last->next = first;
8201 }
8202
8203 #define SD_NODES_PER_DOMAIN 16
8204
8205 #ifdef CONFIG_NUMA
8206
8207 /**
8208 * find_next_best_node - find the next node to include in a sched_domain
8209 * @node: node whose sched_domain we're building
8210 * @used_nodes: nodes already in the sched_domain
8211 *
8212 * Find the next node to include in a given scheduling domain. Simply
8213 * finds the closest node not already in the @used_nodes map.
8214 *
8215 * Should use nodemask_t.
8216 */
8217 static int find_next_best_node(int node, nodemask_t *used_nodes)
8218 {
8219 int i, n, val, min_val, best_node = 0;
8220
8221 min_val = INT_MAX;
8222
8223 for (i = 0; i < nr_node_ids; i++) {
8224 /* Start at @node */
8225 n = (node + i) % nr_node_ids;
8226
8227 if (!nr_cpus_node(n))
8228 continue;
8229
8230 /* Skip already used nodes */
8231 if (node_isset(n, *used_nodes))
8232 continue;
8233
8234 /* Simple min distance search */
8235 val = node_distance(node, n);
8236
8237 if (val < min_val) {
8238 min_val = val;
8239 best_node = n;
8240 }
8241 }
8242
8243 node_set(best_node, *used_nodes);
8244 return best_node;
8245 }
8246
8247 /**
8248 * sched_domain_node_span - get a cpumask for a node's sched_domain
8249 * @node: node whose cpumask we're constructing
8250 * @span: resulting cpumask
8251 *
8252 * Given a node, construct a good cpumask for its sched_domain to span. It
8253 * should be one that prevents unnecessary balancing, but also spreads tasks
8254 * out optimally.
8255 */
8256 static void sched_domain_node_span(int node, struct cpumask *span)
8257 {
8258 nodemask_t used_nodes;
8259 int i;
8260
8261 cpumask_clear(span);
8262 nodes_clear(used_nodes);
8263
8264 cpumask_or(span, span, cpumask_of_node(node));
8265 node_set(node, used_nodes);
8266
8267 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8268 int next_node = find_next_best_node(node, &used_nodes);
8269
8270 cpumask_or(span, span, cpumask_of_node(next_node));
8271 }
8272 }
8273 #endif /* CONFIG_NUMA */
8274
8275 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8276
8277 /*
8278 * The cpus mask in sched_group and sched_domain hangs off the end.
8279 *
8280 * ( See the the comments in include/linux/sched.h:struct sched_group
8281 * and struct sched_domain. )
8282 */
8283 struct static_sched_group {
8284 struct sched_group sg;
8285 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8286 };
8287
8288 struct static_sched_domain {
8289 struct sched_domain sd;
8290 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8291 };
8292
8293 struct s_data {
8294 #ifdef CONFIG_NUMA
8295 int sd_allnodes;
8296 cpumask_var_t domainspan;
8297 cpumask_var_t covered;
8298 cpumask_var_t notcovered;
8299 #endif
8300 cpumask_var_t nodemask;
8301 cpumask_var_t this_sibling_map;
8302 cpumask_var_t this_core_map;
8303 cpumask_var_t send_covered;
8304 cpumask_var_t tmpmask;
8305 struct sched_group **sched_group_nodes;
8306 struct root_domain *rd;
8307 };
8308
8309 enum s_alloc {
8310 sa_sched_groups = 0,
8311 sa_rootdomain,
8312 sa_tmpmask,
8313 sa_send_covered,
8314 sa_this_core_map,
8315 sa_this_sibling_map,
8316 sa_nodemask,
8317 sa_sched_group_nodes,
8318 #ifdef CONFIG_NUMA
8319 sa_notcovered,
8320 sa_covered,
8321 sa_domainspan,
8322 #endif
8323 sa_none,
8324 };
8325
8326 /*
8327 * SMT sched-domains:
8328 */
8329 #ifdef CONFIG_SCHED_SMT
8330 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8331 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8332
8333 static int
8334 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8335 struct sched_group **sg, struct cpumask *unused)
8336 {
8337 if (sg)
8338 *sg = &per_cpu(sched_groups, cpu).sg;
8339 return cpu;
8340 }
8341 #endif /* CONFIG_SCHED_SMT */
8342
8343 /*
8344 * multi-core sched-domains:
8345 */
8346 #ifdef CONFIG_SCHED_MC
8347 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8348 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8349 #endif /* CONFIG_SCHED_MC */
8350
8351 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8352 static int
8353 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8354 struct sched_group **sg, struct cpumask *mask)
8355 {
8356 int group;
8357
8358 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8359 group = cpumask_first(mask);
8360 if (sg)
8361 *sg = &per_cpu(sched_group_core, group).sg;
8362 return group;
8363 }
8364 #elif defined(CONFIG_SCHED_MC)
8365 static int
8366 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8367 struct sched_group **sg, struct cpumask *unused)
8368 {
8369 if (sg)
8370 *sg = &per_cpu(sched_group_core, cpu).sg;
8371 return cpu;
8372 }
8373 #endif
8374
8375 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8376 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8377
8378 static int
8379 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8380 struct sched_group **sg, struct cpumask *mask)
8381 {
8382 int group;
8383 #ifdef CONFIG_SCHED_MC
8384 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8385 group = cpumask_first(mask);
8386 #elif defined(CONFIG_SCHED_SMT)
8387 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8388 group = cpumask_first(mask);
8389 #else
8390 group = cpu;
8391 #endif
8392 if (sg)
8393 *sg = &per_cpu(sched_group_phys, group).sg;
8394 return group;
8395 }
8396
8397 #ifdef CONFIG_NUMA
8398 /*
8399 * The init_sched_build_groups can't handle what we want to do with node
8400 * groups, so roll our own. Now each node has its own list of groups which
8401 * gets dynamically allocated.
8402 */
8403 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8404 static struct sched_group ***sched_group_nodes_bycpu;
8405
8406 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8407 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8408
8409 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8410 struct sched_group **sg,
8411 struct cpumask *nodemask)
8412 {
8413 int group;
8414
8415 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8416 group = cpumask_first(nodemask);
8417
8418 if (sg)
8419 *sg = &per_cpu(sched_group_allnodes, group).sg;
8420 return group;
8421 }
8422
8423 static void init_numa_sched_groups_power(struct sched_group *group_head)
8424 {
8425 struct sched_group *sg = group_head;
8426 int j;
8427
8428 if (!sg)
8429 return;
8430 do {
8431 for_each_cpu(j, sched_group_cpus(sg)) {
8432 struct sched_domain *sd;
8433
8434 sd = &per_cpu(phys_domains, j).sd;
8435 if (j != group_first_cpu(sd->groups)) {
8436 /*
8437 * Only add "power" once for each
8438 * physical package.
8439 */
8440 continue;
8441 }
8442
8443 sg->cpu_power += sd->groups->cpu_power;
8444 }
8445 sg = sg->next;
8446 } while (sg != group_head);
8447 }
8448
8449 static int build_numa_sched_groups(struct s_data *d,
8450 const struct cpumask *cpu_map, int num)
8451 {
8452 struct sched_domain *sd;
8453 struct sched_group *sg, *prev;
8454 int n, j;
8455
8456 cpumask_clear(d->covered);
8457 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8458 if (cpumask_empty(d->nodemask)) {
8459 d->sched_group_nodes[num] = NULL;
8460 goto out;
8461 }
8462
8463 sched_domain_node_span(num, d->domainspan);
8464 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8465
8466 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8467 GFP_KERNEL, num);
8468 if (!sg) {
8469 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8470 num);
8471 return -ENOMEM;
8472 }
8473 d->sched_group_nodes[num] = sg;
8474
8475 for_each_cpu(j, d->nodemask) {
8476 sd = &per_cpu(node_domains, j).sd;
8477 sd->groups = sg;
8478 }
8479
8480 sg->cpu_power = 0;
8481 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8482 sg->next = sg;
8483 cpumask_or(d->covered, d->covered, d->nodemask);
8484
8485 prev = sg;
8486 for (j = 0; j < nr_node_ids; j++) {
8487 n = (num + j) % nr_node_ids;
8488 cpumask_complement(d->notcovered, d->covered);
8489 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8490 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8491 if (cpumask_empty(d->tmpmask))
8492 break;
8493 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8494 if (cpumask_empty(d->tmpmask))
8495 continue;
8496 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8497 GFP_KERNEL, num);
8498 if (!sg) {
8499 printk(KERN_WARNING
8500 "Can not alloc domain group for node %d\n", j);
8501 return -ENOMEM;
8502 }
8503 sg->cpu_power = 0;
8504 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8505 sg->next = prev->next;
8506 cpumask_or(d->covered, d->covered, d->tmpmask);
8507 prev->next = sg;
8508 prev = sg;
8509 }
8510 out:
8511 return 0;
8512 }
8513 #endif /* CONFIG_NUMA */
8514
8515 #ifdef CONFIG_NUMA
8516 /* Free memory allocated for various sched_group structures */
8517 static void free_sched_groups(const struct cpumask *cpu_map,
8518 struct cpumask *nodemask)
8519 {
8520 int cpu, i;
8521
8522 for_each_cpu(cpu, cpu_map) {
8523 struct sched_group **sched_group_nodes
8524 = sched_group_nodes_bycpu[cpu];
8525
8526 if (!sched_group_nodes)
8527 continue;
8528
8529 for (i = 0; i < nr_node_ids; i++) {
8530 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8531
8532 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8533 if (cpumask_empty(nodemask))
8534 continue;
8535
8536 if (sg == NULL)
8537 continue;
8538 sg = sg->next;
8539 next_sg:
8540 oldsg = sg;
8541 sg = sg->next;
8542 kfree(oldsg);
8543 if (oldsg != sched_group_nodes[i])
8544 goto next_sg;
8545 }
8546 kfree(sched_group_nodes);
8547 sched_group_nodes_bycpu[cpu] = NULL;
8548 }
8549 }
8550 #else /* !CONFIG_NUMA */
8551 static void free_sched_groups(const struct cpumask *cpu_map,
8552 struct cpumask *nodemask)
8553 {
8554 }
8555 #endif /* CONFIG_NUMA */
8556
8557 /*
8558 * Initialize sched groups cpu_power.
8559 *
8560 * cpu_power indicates the capacity of sched group, which is used while
8561 * distributing the load between different sched groups in a sched domain.
8562 * Typically cpu_power for all the groups in a sched domain will be same unless
8563 * there are asymmetries in the topology. If there are asymmetries, group
8564 * having more cpu_power will pickup more load compared to the group having
8565 * less cpu_power.
8566 */
8567 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8568 {
8569 struct sched_domain *child;
8570 struct sched_group *group;
8571 long power;
8572 int weight;
8573
8574 WARN_ON(!sd || !sd->groups);
8575
8576 if (cpu != group_first_cpu(sd->groups))
8577 return;
8578
8579 child = sd->child;
8580
8581 sd->groups->cpu_power = 0;
8582
8583 if (!child) {
8584 power = SCHED_LOAD_SCALE;
8585 weight = cpumask_weight(sched_domain_span(sd));
8586 /*
8587 * SMT siblings share the power of a single core.
8588 * Usually multiple threads get a better yield out of
8589 * that one core than a single thread would have,
8590 * reflect that in sd->smt_gain.
8591 */
8592 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8593 power *= sd->smt_gain;
8594 power /= weight;
8595 power >>= SCHED_LOAD_SHIFT;
8596 }
8597 sd->groups->cpu_power += power;
8598 return;
8599 }
8600
8601 /*
8602 * Add cpu_power of each child group to this groups cpu_power.
8603 */
8604 group = child->groups;
8605 do {
8606 sd->groups->cpu_power += group->cpu_power;
8607 group = group->next;
8608 } while (group != child->groups);
8609 }
8610
8611 /*
8612 * Initializers for schedule domains
8613 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8614 */
8615
8616 #ifdef CONFIG_SCHED_DEBUG
8617 # define SD_INIT_NAME(sd, type) sd->name = #type
8618 #else
8619 # define SD_INIT_NAME(sd, type) do { } while (0)
8620 #endif
8621
8622 #define SD_INIT(sd, type) sd_init_##type(sd)
8623
8624 #define SD_INIT_FUNC(type) \
8625 static noinline void sd_init_##type(struct sched_domain *sd) \
8626 { \
8627 memset(sd, 0, sizeof(*sd)); \
8628 *sd = SD_##type##_INIT; \
8629 sd->level = SD_LV_##type; \
8630 SD_INIT_NAME(sd, type); \
8631 }
8632
8633 SD_INIT_FUNC(CPU)
8634 #ifdef CONFIG_NUMA
8635 SD_INIT_FUNC(ALLNODES)
8636 SD_INIT_FUNC(NODE)
8637 #endif
8638 #ifdef CONFIG_SCHED_SMT
8639 SD_INIT_FUNC(SIBLING)
8640 #endif
8641 #ifdef CONFIG_SCHED_MC
8642 SD_INIT_FUNC(MC)
8643 #endif
8644
8645 static int default_relax_domain_level = -1;
8646
8647 static int __init setup_relax_domain_level(char *str)
8648 {
8649 unsigned long val;
8650
8651 val = simple_strtoul(str, NULL, 0);
8652 if (val < SD_LV_MAX)
8653 default_relax_domain_level = val;
8654
8655 return 1;
8656 }
8657 __setup("relax_domain_level=", setup_relax_domain_level);
8658
8659 static void set_domain_attribute(struct sched_domain *sd,
8660 struct sched_domain_attr *attr)
8661 {
8662 int request;
8663
8664 if (!attr || attr->relax_domain_level < 0) {
8665 if (default_relax_domain_level < 0)
8666 return;
8667 else
8668 request = default_relax_domain_level;
8669 } else
8670 request = attr->relax_domain_level;
8671 if (request < sd->level) {
8672 /* turn off idle balance on this domain */
8673 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8674 } else {
8675 /* turn on idle balance on this domain */
8676 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8677 }
8678 }
8679
8680 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8681 const struct cpumask *cpu_map)
8682 {
8683 switch (what) {
8684 case sa_sched_groups:
8685 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8686 d->sched_group_nodes = NULL;
8687 case sa_rootdomain:
8688 free_rootdomain(d->rd); /* fall through */
8689 case sa_tmpmask:
8690 free_cpumask_var(d->tmpmask); /* fall through */
8691 case sa_send_covered:
8692 free_cpumask_var(d->send_covered); /* fall through */
8693 case sa_this_core_map:
8694 free_cpumask_var(d->this_core_map); /* fall through */
8695 case sa_this_sibling_map:
8696 free_cpumask_var(d->this_sibling_map); /* fall through */
8697 case sa_nodemask:
8698 free_cpumask_var(d->nodemask); /* fall through */
8699 case sa_sched_group_nodes:
8700 #ifdef CONFIG_NUMA
8701 kfree(d->sched_group_nodes); /* fall through */
8702 case sa_notcovered:
8703 free_cpumask_var(d->notcovered); /* fall through */
8704 case sa_covered:
8705 free_cpumask_var(d->covered); /* fall through */
8706 case sa_domainspan:
8707 free_cpumask_var(d->domainspan); /* fall through */
8708 #endif
8709 case sa_none:
8710 break;
8711 }
8712 }
8713
8714 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8715 const struct cpumask *cpu_map)
8716 {
8717 #ifdef CONFIG_NUMA
8718 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8719 return sa_none;
8720 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8721 return sa_domainspan;
8722 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8723 return sa_covered;
8724 /* Allocate the per-node list of sched groups */
8725 d->sched_group_nodes = kcalloc(nr_node_ids,
8726 sizeof(struct sched_group *), GFP_KERNEL);
8727 if (!d->sched_group_nodes) {
8728 printk(KERN_WARNING "Can not alloc sched group node list\n");
8729 return sa_notcovered;
8730 }
8731 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8732 #endif
8733 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8734 return sa_sched_group_nodes;
8735 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8736 return sa_nodemask;
8737 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8738 return sa_this_sibling_map;
8739 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8740 return sa_this_core_map;
8741 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8742 return sa_send_covered;
8743 d->rd = alloc_rootdomain();
8744 if (!d->rd) {
8745 printk(KERN_WARNING "Cannot alloc root domain\n");
8746 return sa_tmpmask;
8747 }
8748 return sa_rootdomain;
8749 }
8750
8751 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8752 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8753 {
8754 struct sched_domain *sd = NULL;
8755 #ifdef CONFIG_NUMA
8756 struct sched_domain *parent;
8757
8758 d->sd_allnodes = 0;
8759 if (cpumask_weight(cpu_map) >
8760 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8761 sd = &per_cpu(allnodes_domains, i).sd;
8762 SD_INIT(sd, ALLNODES);
8763 set_domain_attribute(sd, attr);
8764 cpumask_copy(sched_domain_span(sd), cpu_map);
8765 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8766 d->sd_allnodes = 1;
8767 }
8768 parent = sd;
8769
8770 sd = &per_cpu(node_domains, i).sd;
8771 SD_INIT(sd, NODE);
8772 set_domain_attribute(sd, attr);
8773 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8774 sd->parent = parent;
8775 if (parent)
8776 parent->child = sd;
8777 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8778 #endif
8779 return sd;
8780 }
8781
8782 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8783 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8784 struct sched_domain *parent, int i)
8785 {
8786 struct sched_domain *sd;
8787 sd = &per_cpu(phys_domains, i).sd;
8788 SD_INIT(sd, CPU);
8789 set_domain_attribute(sd, attr);
8790 cpumask_copy(sched_domain_span(sd), d->nodemask);
8791 sd->parent = parent;
8792 if (parent)
8793 parent->child = sd;
8794 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8795 return sd;
8796 }
8797
8798 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8799 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8800 struct sched_domain *parent, int i)
8801 {
8802 struct sched_domain *sd = parent;
8803 #ifdef CONFIG_SCHED_MC
8804 sd = &per_cpu(core_domains, i).sd;
8805 SD_INIT(sd, MC);
8806 set_domain_attribute(sd, attr);
8807 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8808 sd->parent = parent;
8809 parent->child = sd;
8810 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8811 #endif
8812 return sd;
8813 }
8814
8815 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8816 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8817 struct sched_domain *parent, int i)
8818 {
8819 struct sched_domain *sd = parent;
8820 #ifdef CONFIG_SCHED_SMT
8821 sd = &per_cpu(cpu_domains, i).sd;
8822 SD_INIT(sd, SIBLING);
8823 set_domain_attribute(sd, attr);
8824 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8825 sd->parent = parent;
8826 parent->child = sd;
8827 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8828 #endif
8829 return sd;
8830 }
8831
8832 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8833 const struct cpumask *cpu_map, int cpu)
8834 {
8835 switch (l) {
8836 #ifdef CONFIG_SCHED_SMT
8837 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8838 cpumask_and(d->this_sibling_map, cpu_map,
8839 topology_thread_cpumask(cpu));
8840 if (cpu == cpumask_first(d->this_sibling_map))
8841 init_sched_build_groups(d->this_sibling_map, cpu_map,
8842 &cpu_to_cpu_group,
8843 d->send_covered, d->tmpmask);
8844 break;
8845 #endif
8846 #ifdef CONFIG_SCHED_MC
8847 case SD_LV_MC: /* set up multi-core groups */
8848 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8849 if (cpu == cpumask_first(d->this_core_map))
8850 init_sched_build_groups(d->this_core_map, cpu_map,
8851 &cpu_to_core_group,
8852 d->send_covered, d->tmpmask);
8853 break;
8854 #endif
8855 case SD_LV_CPU: /* set up physical groups */
8856 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8857 if (!cpumask_empty(d->nodemask))
8858 init_sched_build_groups(d->nodemask, cpu_map,
8859 &cpu_to_phys_group,
8860 d->send_covered, d->tmpmask);
8861 break;
8862 #ifdef CONFIG_NUMA
8863 case SD_LV_ALLNODES:
8864 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8865 d->send_covered, d->tmpmask);
8866 break;
8867 #endif
8868 default:
8869 break;
8870 }
8871 }
8872
8873 /*
8874 * Build sched domains for a given set of cpus and attach the sched domains
8875 * to the individual cpus
8876 */
8877 static int __build_sched_domains(const struct cpumask *cpu_map,
8878 struct sched_domain_attr *attr)
8879 {
8880 enum s_alloc alloc_state = sa_none;
8881 struct s_data d;
8882 struct sched_domain *sd;
8883 int i;
8884 #ifdef CONFIG_NUMA
8885 d.sd_allnodes = 0;
8886 #endif
8887
8888 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8889 if (alloc_state != sa_rootdomain)
8890 goto error;
8891 alloc_state = sa_sched_groups;
8892
8893 /*
8894 * Set up domains for cpus specified by the cpu_map.
8895 */
8896 for_each_cpu(i, cpu_map) {
8897 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8898 cpu_map);
8899
8900 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8901 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8902 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8903 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8904 }
8905
8906 for_each_cpu(i, cpu_map) {
8907 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8908 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8909 }
8910
8911 /* Set up physical groups */
8912 for (i = 0; i < nr_node_ids; i++)
8913 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8914
8915 #ifdef CONFIG_NUMA
8916 /* Set up node groups */
8917 if (d.sd_allnodes)
8918 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8919
8920 for (i = 0; i < nr_node_ids; i++)
8921 if (build_numa_sched_groups(&d, cpu_map, i))
8922 goto error;
8923 #endif
8924
8925 /* Calculate CPU power for physical packages and nodes */
8926 #ifdef CONFIG_SCHED_SMT
8927 for_each_cpu(i, cpu_map) {
8928 sd = &per_cpu(cpu_domains, i).sd;
8929 init_sched_groups_power(i, sd);
8930 }
8931 #endif
8932 #ifdef CONFIG_SCHED_MC
8933 for_each_cpu(i, cpu_map) {
8934 sd = &per_cpu(core_domains, i).sd;
8935 init_sched_groups_power(i, sd);
8936 }
8937 #endif
8938
8939 for_each_cpu(i, cpu_map) {
8940 sd = &per_cpu(phys_domains, i).sd;
8941 init_sched_groups_power(i, sd);
8942 }
8943
8944 #ifdef CONFIG_NUMA
8945 for (i = 0; i < nr_node_ids; i++)
8946 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8947
8948 if (d.sd_allnodes) {
8949 struct sched_group *sg;
8950
8951 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8952 d.tmpmask);
8953 init_numa_sched_groups_power(sg);
8954 }
8955 #endif
8956
8957 /* Attach the domains */
8958 for_each_cpu(i, cpu_map) {
8959 #ifdef CONFIG_SCHED_SMT
8960 sd = &per_cpu(cpu_domains, i).sd;
8961 #elif defined(CONFIG_SCHED_MC)
8962 sd = &per_cpu(core_domains, i).sd;
8963 #else
8964 sd = &per_cpu(phys_domains, i).sd;
8965 #endif
8966 cpu_attach_domain(sd, d.rd, i);
8967 }
8968
8969 d.sched_group_nodes = NULL; /* don't free this we still need it */
8970 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8971 return 0;
8972
8973 error:
8974 __free_domain_allocs(&d, alloc_state, cpu_map);
8975 return -ENOMEM;
8976 }
8977
8978 static int build_sched_domains(const struct cpumask *cpu_map)
8979 {
8980 return __build_sched_domains(cpu_map, NULL);
8981 }
8982
8983 static cpumask_var_t *doms_cur; /* current sched domains */
8984 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8985 static struct sched_domain_attr *dattr_cur;
8986 /* attribues of custom domains in 'doms_cur' */
8987
8988 /*
8989 * Special case: If a kmalloc of a doms_cur partition (array of
8990 * cpumask) fails, then fallback to a single sched domain,
8991 * as determined by the single cpumask fallback_doms.
8992 */
8993 static cpumask_var_t fallback_doms;
8994
8995 /*
8996 * arch_update_cpu_topology lets virtualized architectures update the
8997 * cpu core maps. It is supposed to return 1 if the topology changed
8998 * or 0 if it stayed the same.
8999 */
9000 int __attribute__((weak)) arch_update_cpu_topology(void)
9001 {
9002 return 0;
9003 }
9004
9005 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9006 {
9007 int i;
9008 cpumask_var_t *doms;
9009
9010 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9011 if (!doms)
9012 return NULL;
9013 for (i = 0; i < ndoms; i++) {
9014 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9015 free_sched_domains(doms, i);
9016 return NULL;
9017 }
9018 }
9019 return doms;
9020 }
9021
9022 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9023 {
9024 unsigned int i;
9025 for (i = 0; i < ndoms; i++)
9026 free_cpumask_var(doms[i]);
9027 kfree(doms);
9028 }
9029
9030 /*
9031 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9032 * For now this just excludes isolated cpus, but could be used to
9033 * exclude other special cases in the future.
9034 */
9035 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9036 {
9037 int err;
9038
9039 arch_update_cpu_topology();
9040 ndoms_cur = 1;
9041 doms_cur = alloc_sched_domains(ndoms_cur);
9042 if (!doms_cur)
9043 doms_cur = &fallback_doms;
9044 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9045 dattr_cur = NULL;
9046 err = build_sched_domains(doms_cur[0]);
9047 register_sched_domain_sysctl();
9048
9049 return err;
9050 }
9051
9052 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9053 struct cpumask *tmpmask)
9054 {
9055 free_sched_groups(cpu_map, tmpmask);
9056 }
9057
9058 /*
9059 * Detach sched domains from a group of cpus specified in cpu_map
9060 * These cpus will now be attached to the NULL domain
9061 */
9062 static void detach_destroy_domains(const struct cpumask *cpu_map)
9063 {
9064 /* Save because hotplug lock held. */
9065 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9066 int i;
9067
9068 for_each_cpu(i, cpu_map)
9069 cpu_attach_domain(NULL, &def_root_domain, i);
9070 synchronize_sched();
9071 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9072 }
9073
9074 /* handle null as "default" */
9075 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9076 struct sched_domain_attr *new, int idx_new)
9077 {
9078 struct sched_domain_attr tmp;
9079
9080 /* fast path */
9081 if (!new && !cur)
9082 return 1;
9083
9084 tmp = SD_ATTR_INIT;
9085 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9086 new ? (new + idx_new) : &tmp,
9087 sizeof(struct sched_domain_attr));
9088 }
9089
9090 /*
9091 * Partition sched domains as specified by the 'ndoms_new'
9092 * cpumasks in the array doms_new[] of cpumasks. This compares
9093 * doms_new[] to the current sched domain partitioning, doms_cur[].
9094 * It destroys each deleted domain and builds each new domain.
9095 *
9096 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9097 * The masks don't intersect (don't overlap.) We should setup one
9098 * sched domain for each mask. CPUs not in any of the cpumasks will
9099 * not be load balanced. If the same cpumask appears both in the
9100 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9101 * it as it is.
9102 *
9103 * The passed in 'doms_new' should be allocated using
9104 * alloc_sched_domains. This routine takes ownership of it and will
9105 * free_sched_domains it when done with it. If the caller failed the
9106 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9107 * and partition_sched_domains() will fallback to the single partition
9108 * 'fallback_doms', it also forces the domains to be rebuilt.
9109 *
9110 * If doms_new == NULL it will be replaced with cpu_online_mask.
9111 * ndoms_new == 0 is a special case for destroying existing domains,
9112 * and it will not create the default domain.
9113 *
9114 * Call with hotplug lock held
9115 */
9116 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9117 struct sched_domain_attr *dattr_new)
9118 {
9119 int i, j, n;
9120 int new_topology;
9121
9122 mutex_lock(&sched_domains_mutex);
9123
9124 /* always unregister in case we don't destroy any domains */
9125 unregister_sched_domain_sysctl();
9126
9127 /* Let architecture update cpu core mappings. */
9128 new_topology = arch_update_cpu_topology();
9129
9130 n = doms_new ? ndoms_new : 0;
9131
9132 /* Destroy deleted domains */
9133 for (i = 0; i < ndoms_cur; i++) {
9134 for (j = 0; j < n && !new_topology; j++) {
9135 if (cpumask_equal(doms_cur[i], doms_new[j])
9136 && dattrs_equal(dattr_cur, i, dattr_new, j))
9137 goto match1;
9138 }
9139 /* no match - a current sched domain not in new doms_new[] */
9140 detach_destroy_domains(doms_cur[i]);
9141 match1:
9142 ;
9143 }
9144
9145 if (doms_new == NULL) {
9146 ndoms_cur = 0;
9147 doms_new = &fallback_doms;
9148 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9149 WARN_ON_ONCE(dattr_new);
9150 }
9151
9152 /* Build new domains */
9153 for (i = 0; i < ndoms_new; i++) {
9154 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9155 if (cpumask_equal(doms_new[i], doms_cur[j])
9156 && dattrs_equal(dattr_new, i, dattr_cur, j))
9157 goto match2;
9158 }
9159 /* no match - add a new doms_new */
9160 __build_sched_domains(doms_new[i],
9161 dattr_new ? dattr_new + i : NULL);
9162 match2:
9163 ;
9164 }
9165
9166 /* Remember the new sched domains */
9167 if (doms_cur != &fallback_doms)
9168 free_sched_domains(doms_cur, ndoms_cur);
9169 kfree(dattr_cur); /* kfree(NULL) is safe */
9170 doms_cur = doms_new;
9171 dattr_cur = dattr_new;
9172 ndoms_cur = ndoms_new;
9173
9174 register_sched_domain_sysctl();
9175
9176 mutex_unlock(&sched_domains_mutex);
9177 }
9178
9179 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9180 static void arch_reinit_sched_domains(void)
9181 {
9182 get_online_cpus();
9183
9184 /* Destroy domains first to force the rebuild */
9185 partition_sched_domains(0, NULL, NULL);
9186
9187 rebuild_sched_domains();
9188 put_online_cpus();
9189 }
9190
9191 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9192 {
9193 unsigned int level = 0;
9194
9195 if (sscanf(buf, "%u", &level) != 1)
9196 return -EINVAL;
9197
9198 /*
9199 * level is always be positive so don't check for
9200 * level < POWERSAVINGS_BALANCE_NONE which is 0
9201 * What happens on 0 or 1 byte write,
9202 * need to check for count as well?
9203 */
9204
9205 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9206 return -EINVAL;
9207
9208 if (smt)
9209 sched_smt_power_savings = level;
9210 else
9211 sched_mc_power_savings = level;
9212
9213 arch_reinit_sched_domains();
9214
9215 return count;
9216 }
9217
9218 #ifdef CONFIG_SCHED_MC
9219 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9220 char *page)
9221 {
9222 return sprintf(page, "%u\n", sched_mc_power_savings);
9223 }
9224 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9225 const char *buf, size_t count)
9226 {
9227 return sched_power_savings_store(buf, count, 0);
9228 }
9229 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9230 sched_mc_power_savings_show,
9231 sched_mc_power_savings_store);
9232 #endif
9233
9234 #ifdef CONFIG_SCHED_SMT
9235 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9236 char *page)
9237 {
9238 return sprintf(page, "%u\n", sched_smt_power_savings);
9239 }
9240 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9241 const char *buf, size_t count)
9242 {
9243 return sched_power_savings_store(buf, count, 1);
9244 }
9245 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9246 sched_smt_power_savings_show,
9247 sched_smt_power_savings_store);
9248 #endif
9249
9250 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9251 {
9252 int err = 0;
9253
9254 #ifdef CONFIG_SCHED_SMT
9255 if (smt_capable())
9256 err = sysfs_create_file(&cls->kset.kobj,
9257 &attr_sched_smt_power_savings.attr);
9258 #endif
9259 #ifdef CONFIG_SCHED_MC
9260 if (!err && mc_capable())
9261 err = sysfs_create_file(&cls->kset.kobj,
9262 &attr_sched_mc_power_savings.attr);
9263 #endif
9264 return err;
9265 }
9266 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9267
9268 #ifndef CONFIG_CPUSETS
9269 /*
9270 * Add online and remove offline CPUs from the scheduler domains.
9271 * When cpusets are enabled they take over this function.
9272 */
9273 static int update_sched_domains(struct notifier_block *nfb,
9274 unsigned long action, void *hcpu)
9275 {
9276 switch (action) {
9277 case CPU_ONLINE:
9278 case CPU_ONLINE_FROZEN:
9279 case CPU_DOWN_PREPARE:
9280 case CPU_DOWN_PREPARE_FROZEN:
9281 case CPU_DOWN_FAILED:
9282 case CPU_DOWN_FAILED_FROZEN:
9283 partition_sched_domains(1, NULL, NULL);
9284 return NOTIFY_OK;
9285
9286 default:
9287 return NOTIFY_DONE;
9288 }
9289 }
9290 #endif
9291
9292 static int update_runtime(struct notifier_block *nfb,
9293 unsigned long action, void *hcpu)
9294 {
9295 int cpu = (int)(long)hcpu;
9296
9297 switch (action) {
9298 case CPU_DOWN_PREPARE:
9299 case CPU_DOWN_PREPARE_FROZEN:
9300 disable_runtime(cpu_rq(cpu));
9301 return NOTIFY_OK;
9302
9303 case CPU_DOWN_FAILED:
9304 case CPU_DOWN_FAILED_FROZEN:
9305 case CPU_ONLINE:
9306 case CPU_ONLINE_FROZEN:
9307 enable_runtime(cpu_rq(cpu));
9308 return NOTIFY_OK;
9309
9310 default:
9311 return NOTIFY_DONE;
9312 }
9313 }
9314
9315 void __init sched_init_smp(void)
9316 {
9317 cpumask_var_t non_isolated_cpus;
9318
9319 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9320 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9321
9322 #if defined(CONFIG_NUMA)
9323 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9324 GFP_KERNEL);
9325 BUG_ON(sched_group_nodes_bycpu == NULL);
9326 #endif
9327 get_online_cpus();
9328 mutex_lock(&sched_domains_mutex);
9329 arch_init_sched_domains(cpu_active_mask);
9330 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9331 if (cpumask_empty(non_isolated_cpus))
9332 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9333 mutex_unlock(&sched_domains_mutex);
9334 put_online_cpus();
9335
9336 #ifndef CONFIG_CPUSETS
9337 /* XXX: Theoretical race here - CPU may be hotplugged now */
9338 hotcpu_notifier(update_sched_domains, 0);
9339 #endif
9340
9341 /* RT runtime code needs to handle some hotplug events */
9342 hotcpu_notifier(update_runtime, 0);
9343
9344 init_hrtick();
9345
9346 /* Move init over to a non-isolated CPU */
9347 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9348 BUG();
9349 sched_init_granularity();
9350 free_cpumask_var(non_isolated_cpus);
9351
9352 init_sched_rt_class();
9353 }
9354 #else
9355 void __init sched_init_smp(void)
9356 {
9357 sched_init_granularity();
9358 }
9359 #endif /* CONFIG_SMP */
9360
9361 const_debug unsigned int sysctl_timer_migration = 1;
9362
9363 int in_sched_functions(unsigned long addr)
9364 {
9365 return in_lock_functions(addr) ||
9366 (addr >= (unsigned long)__sched_text_start
9367 && addr < (unsigned long)__sched_text_end);
9368 }
9369
9370 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9371 {
9372 cfs_rq->tasks_timeline = RB_ROOT;
9373 INIT_LIST_HEAD(&cfs_rq->tasks);
9374 #ifdef CONFIG_FAIR_GROUP_SCHED
9375 cfs_rq->rq = rq;
9376 #endif
9377 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9378 }
9379
9380 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9381 {
9382 struct rt_prio_array *array;
9383 int i;
9384
9385 array = &rt_rq->active;
9386 for (i = 0; i < MAX_RT_PRIO; i++) {
9387 INIT_LIST_HEAD(array->queue + i);
9388 __clear_bit(i, array->bitmap);
9389 }
9390 /* delimiter for bitsearch: */
9391 __set_bit(MAX_RT_PRIO, array->bitmap);
9392
9393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9394 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9395 #ifdef CONFIG_SMP
9396 rt_rq->highest_prio.next = MAX_RT_PRIO;
9397 #endif
9398 #endif
9399 #ifdef CONFIG_SMP
9400 rt_rq->rt_nr_migratory = 0;
9401 rt_rq->overloaded = 0;
9402 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9403 #endif
9404
9405 rt_rq->rt_time = 0;
9406 rt_rq->rt_throttled = 0;
9407 rt_rq->rt_runtime = 0;
9408 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9409
9410 #ifdef CONFIG_RT_GROUP_SCHED
9411 rt_rq->rt_nr_boosted = 0;
9412 rt_rq->rq = rq;
9413 #endif
9414 }
9415
9416 #ifdef CONFIG_FAIR_GROUP_SCHED
9417 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9418 struct sched_entity *se, int cpu, int add,
9419 struct sched_entity *parent)
9420 {
9421 struct rq *rq = cpu_rq(cpu);
9422 tg->cfs_rq[cpu] = cfs_rq;
9423 init_cfs_rq(cfs_rq, rq);
9424 cfs_rq->tg = tg;
9425 if (add)
9426 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9427
9428 tg->se[cpu] = se;
9429 /* se could be NULL for init_task_group */
9430 if (!se)
9431 return;
9432
9433 if (!parent)
9434 se->cfs_rq = &rq->cfs;
9435 else
9436 se->cfs_rq = parent->my_q;
9437
9438 se->my_q = cfs_rq;
9439 se->load.weight = tg->shares;
9440 se->load.inv_weight = 0;
9441 se->parent = parent;
9442 }
9443 #endif
9444
9445 #ifdef CONFIG_RT_GROUP_SCHED
9446 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9447 struct sched_rt_entity *rt_se, int cpu, int add,
9448 struct sched_rt_entity *parent)
9449 {
9450 struct rq *rq = cpu_rq(cpu);
9451
9452 tg->rt_rq[cpu] = rt_rq;
9453 init_rt_rq(rt_rq, rq);
9454 rt_rq->tg = tg;
9455 rt_rq->rt_se = rt_se;
9456 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9457 if (add)
9458 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9459
9460 tg->rt_se[cpu] = rt_se;
9461 if (!rt_se)
9462 return;
9463
9464 if (!parent)
9465 rt_se->rt_rq = &rq->rt;
9466 else
9467 rt_se->rt_rq = parent->my_q;
9468
9469 rt_se->my_q = rt_rq;
9470 rt_se->parent = parent;
9471 INIT_LIST_HEAD(&rt_se->run_list);
9472 }
9473 #endif
9474
9475 void __init sched_init(void)
9476 {
9477 int i, j;
9478 unsigned long alloc_size = 0, ptr;
9479
9480 #ifdef CONFIG_FAIR_GROUP_SCHED
9481 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9482 #endif
9483 #ifdef CONFIG_RT_GROUP_SCHED
9484 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9485 #endif
9486 #ifdef CONFIG_USER_SCHED
9487 alloc_size *= 2;
9488 #endif
9489 #ifdef CONFIG_CPUMASK_OFFSTACK
9490 alloc_size += num_possible_cpus() * cpumask_size();
9491 #endif
9492 if (alloc_size) {
9493 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9494
9495 #ifdef CONFIG_FAIR_GROUP_SCHED
9496 init_task_group.se = (struct sched_entity **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
9501
9502 #ifdef CONFIG_USER_SCHED
9503 root_task_group.se = (struct sched_entity **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
9505
9506 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9507 ptr += nr_cpu_ids * sizeof(void **);
9508 #endif /* CONFIG_USER_SCHED */
9509 #endif /* CONFIG_FAIR_GROUP_SCHED */
9510 #ifdef CONFIG_RT_GROUP_SCHED
9511 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9512 ptr += nr_cpu_ids * sizeof(void **);
9513
9514 init_task_group.rt_rq = (struct rt_rq **)ptr;
9515 ptr += nr_cpu_ids * sizeof(void **);
9516
9517 #ifdef CONFIG_USER_SCHED
9518 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9519 ptr += nr_cpu_ids * sizeof(void **);
9520
9521 root_task_group.rt_rq = (struct rt_rq **)ptr;
9522 ptr += nr_cpu_ids * sizeof(void **);
9523 #endif /* CONFIG_USER_SCHED */
9524 #endif /* CONFIG_RT_GROUP_SCHED */
9525 #ifdef CONFIG_CPUMASK_OFFSTACK
9526 for_each_possible_cpu(i) {
9527 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9528 ptr += cpumask_size();
9529 }
9530 #endif /* CONFIG_CPUMASK_OFFSTACK */
9531 }
9532
9533 #ifdef CONFIG_SMP
9534 init_defrootdomain();
9535 #endif
9536
9537 init_rt_bandwidth(&def_rt_bandwidth,
9538 global_rt_period(), global_rt_runtime());
9539
9540 #ifdef CONFIG_RT_GROUP_SCHED
9541 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9542 global_rt_period(), global_rt_runtime());
9543 #ifdef CONFIG_USER_SCHED
9544 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9545 global_rt_period(), RUNTIME_INF);
9546 #endif /* CONFIG_USER_SCHED */
9547 #endif /* CONFIG_RT_GROUP_SCHED */
9548
9549 #ifdef CONFIG_GROUP_SCHED
9550 list_add(&init_task_group.list, &task_groups);
9551 INIT_LIST_HEAD(&init_task_group.children);
9552
9553 #ifdef CONFIG_USER_SCHED
9554 INIT_LIST_HEAD(&root_task_group.children);
9555 init_task_group.parent = &root_task_group;
9556 list_add(&init_task_group.siblings, &root_task_group.children);
9557 #endif /* CONFIG_USER_SCHED */
9558 #endif /* CONFIG_GROUP_SCHED */
9559
9560 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9561 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9562 __alignof__(unsigned long));
9563 #endif
9564 for_each_possible_cpu(i) {
9565 struct rq *rq;
9566
9567 rq = cpu_rq(i);
9568 raw_spin_lock_init(&rq->lock);
9569 rq->nr_running = 0;
9570 rq->calc_load_active = 0;
9571 rq->calc_load_update = jiffies + LOAD_FREQ;
9572 init_cfs_rq(&rq->cfs, rq);
9573 init_rt_rq(&rq->rt, rq);
9574 #ifdef CONFIG_FAIR_GROUP_SCHED
9575 init_task_group.shares = init_task_group_load;
9576 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9577 #ifdef CONFIG_CGROUP_SCHED
9578 /*
9579 * How much cpu bandwidth does init_task_group get?
9580 *
9581 * In case of task-groups formed thr' the cgroup filesystem, it
9582 * gets 100% of the cpu resources in the system. This overall
9583 * system cpu resource is divided among the tasks of
9584 * init_task_group and its child task-groups in a fair manner,
9585 * based on each entity's (task or task-group's) weight
9586 * (se->load.weight).
9587 *
9588 * In other words, if init_task_group has 10 tasks of weight
9589 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9590 * then A0's share of the cpu resource is:
9591 *
9592 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9593 *
9594 * We achieve this by letting init_task_group's tasks sit
9595 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9596 */
9597 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9598 #elif defined CONFIG_USER_SCHED
9599 root_task_group.shares = NICE_0_LOAD;
9600 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9601 /*
9602 * In case of task-groups formed thr' the user id of tasks,
9603 * init_task_group represents tasks belonging to root user.
9604 * Hence it forms a sibling of all subsequent groups formed.
9605 * In this case, init_task_group gets only a fraction of overall
9606 * system cpu resource, based on the weight assigned to root
9607 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9608 * by letting tasks of init_task_group sit in a separate cfs_rq
9609 * (init_tg_cfs_rq) and having one entity represent this group of
9610 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9611 */
9612 init_tg_cfs_entry(&init_task_group,
9613 &per_cpu(init_tg_cfs_rq, i),
9614 &per_cpu(init_sched_entity, i), i, 1,
9615 root_task_group.se[i]);
9616
9617 #endif
9618 #endif /* CONFIG_FAIR_GROUP_SCHED */
9619
9620 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9621 #ifdef CONFIG_RT_GROUP_SCHED
9622 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9623 #ifdef CONFIG_CGROUP_SCHED
9624 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9625 #elif defined CONFIG_USER_SCHED
9626 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9627 init_tg_rt_entry(&init_task_group,
9628 &per_cpu(init_rt_rq_var, i),
9629 &per_cpu(init_sched_rt_entity, i), i, 1,
9630 root_task_group.rt_se[i]);
9631 #endif
9632 #endif
9633
9634 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9635 rq->cpu_load[j] = 0;
9636 #ifdef CONFIG_SMP
9637 rq->sd = NULL;
9638 rq->rd = NULL;
9639 rq->post_schedule = 0;
9640 rq->active_balance = 0;
9641 rq->next_balance = jiffies;
9642 rq->push_cpu = 0;
9643 rq->cpu = i;
9644 rq->online = 0;
9645 rq->migration_thread = NULL;
9646 rq->idle_stamp = 0;
9647 rq->avg_idle = 2*sysctl_sched_migration_cost;
9648 INIT_LIST_HEAD(&rq->migration_queue);
9649 rq_attach_root(rq, &def_root_domain);
9650 #endif
9651 init_rq_hrtick(rq);
9652 atomic_set(&rq->nr_iowait, 0);
9653 }
9654
9655 set_load_weight(&init_task);
9656
9657 #ifdef CONFIG_PREEMPT_NOTIFIERS
9658 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9659 #endif
9660
9661 #ifdef CONFIG_SMP
9662 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9663 #endif
9664
9665 #ifdef CONFIG_RT_MUTEXES
9666 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9667 #endif
9668
9669 /*
9670 * The boot idle thread does lazy MMU switching as well:
9671 */
9672 atomic_inc(&init_mm.mm_count);
9673 enter_lazy_tlb(&init_mm, current);
9674
9675 /*
9676 * Make us the idle thread. Technically, schedule() should not be
9677 * called from this thread, however somewhere below it might be,
9678 * but because we are the idle thread, we just pick up running again
9679 * when this runqueue becomes "idle".
9680 */
9681 init_idle(current, smp_processor_id());
9682
9683 calc_load_update = jiffies + LOAD_FREQ;
9684
9685 /*
9686 * During early bootup we pretend to be a normal task:
9687 */
9688 current->sched_class = &fair_sched_class;
9689
9690 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9691 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9692 #ifdef CONFIG_SMP
9693 #ifdef CONFIG_NO_HZ
9694 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9695 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9696 #endif
9697 /* May be allocated at isolcpus cmdline parse time */
9698 if (cpu_isolated_map == NULL)
9699 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9700 #endif /* SMP */
9701
9702 perf_event_init();
9703
9704 scheduler_running = 1;
9705 }
9706
9707 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9708 static inline int preempt_count_equals(int preempt_offset)
9709 {
9710 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9711
9712 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9713 }
9714
9715 void __might_sleep(char *file, int line, int preempt_offset)
9716 {
9717 #ifdef in_atomic
9718 static unsigned long prev_jiffy; /* ratelimiting */
9719
9720 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9721 system_state != SYSTEM_RUNNING || oops_in_progress)
9722 return;
9723 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9724 return;
9725 prev_jiffy = jiffies;
9726
9727 printk(KERN_ERR
9728 "BUG: sleeping function called from invalid context at %s:%d\n",
9729 file, line);
9730 printk(KERN_ERR
9731 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9732 in_atomic(), irqs_disabled(),
9733 current->pid, current->comm);
9734
9735 debug_show_held_locks(current);
9736 if (irqs_disabled())
9737 print_irqtrace_events(current);
9738 dump_stack();
9739 #endif
9740 }
9741 EXPORT_SYMBOL(__might_sleep);
9742 #endif
9743
9744 #ifdef CONFIG_MAGIC_SYSRQ
9745 static void normalize_task(struct rq *rq, struct task_struct *p)
9746 {
9747 int on_rq;
9748
9749 update_rq_clock(rq);
9750 on_rq = p->se.on_rq;
9751 if (on_rq)
9752 deactivate_task(rq, p, 0);
9753 __setscheduler(rq, p, SCHED_NORMAL, 0);
9754 if (on_rq) {
9755 activate_task(rq, p, 0);
9756 resched_task(rq->curr);
9757 }
9758 }
9759
9760 void normalize_rt_tasks(void)
9761 {
9762 struct task_struct *g, *p;
9763 unsigned long flags;
9764 struct rq *rq;
9765
9766 read_lock_irqsave(&tasklist_lock, flags);
9767 do_each_thread(g, p) {
9768 /*
9769 * Only normalize user tasks:
9770 */
9771 if (!p->mm)
9772 continue;
9773
9774 p->se.exec_start = 0;
9775 #ifdef CONFIG_SCHEDSTATS
9776 p->se.wait_start = 0;
9777 p->se.sleep_start = 0;
9778 p->se.block_start = 0;
9779 #endif
9780
9781 if (!rt_task(p)) {
9782 /*
9783 * Renice negative nice level userspace
9784 * tasks back to 0:
9785 */
9786 if (TASK_NICE(p) < 0 && p->mm)
9787 set_user_nice(p, 0);
9788 continue;
9789 }
9790
9791 raw_spin_lock(&p->pi_lock);
9792 rq = __task_rq_lock(p);
9793
9794 normalize_task(rq, p);
9795
9796 __task_rq_unlock(rq);
9797 raw_spin_unlock(&p->pi_lock);
9798 } while_each_thread(g, p);
9799
9800 read_unlock_irqrestore(&tasklist_lock, flags);
9801 }
9802
9803 #endif /* CONFIG_MAGIC_SYSRQ */
9804
9805 #ifdef CONFIG_IA64
9806 /*
9807 * These functions are only useful for the IA64 MCA handling.
9808 *
9809 * They can only be called when the whole system has been
9810 * stopped - every CPU needs to be quiescent, and no scheduling
9811 * activity can take place. Using them for anything else would
9812 * be a serious bug, and as a result, they aren't even visible
9813 * under any other configuration.
9814 */
9815
9816 /**
9817 * curr_task - return the current task for a given cpu.
9818 * @cpu: the processor in question.
9819 *
9820 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9821 */
9822 struct task_struct *curr_task(int cpu)
9823 {
9824 return cpu_curr(cpu);
9825 }
9826
9827 /**
9828 * set_curr_task - set the current task for a given cpu.
9829 * @cpu: the processor in question.
9830 * @p: the task pointer to set.
9831 *
9832 * Description: This function must only be used when non-maskable interrupts
9833 * are serviced on a separate stack. It allows the architecture to switch the
9834 * notion of the current task on a cpu in a non-blocking manner. This function
9835 * must be called with all CPU's synchronized, and interrupts disabled, the
9836 * and caller must save the original value of the current task (see
9837 * curr_task() above) and restore that value before reenabling interrupts and
9838 * re-starting the system.
9839 *
9840 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9841 */
9842 void set_curr_task(int cpu, struct task_struct *p)
9843 {
9844 cpu_curr(cpu) = p;
9845 }
9846
9847 #endif
9848
9849 #ifdef CONFIG_FAIR_GROUP_SCHED
9850 static void free_fair_sched_group(struct task_group *tg)
9851 {
9852 int i;
9853
9854 for_each_possible_cpu(i) {
9855 if (tg->cfs_rq)
9856 kfree(tg->cfs_rq[i]);
9857 if (tg->se)
9858 kfree(tg->se[i]);
9859 }
9860
9861 kfree(tg->cfs_rq);
9862 kfree(tg->se);
9863 }
9864
9865 static
9866 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9867 {
9868 struct cfs_rq *cfs_rq;
9869 struct sched_entity *se;
9870 struct rq *rq;
9871 int i;
9872
9873 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9874 if (!tg->cfs_rq)
9875 goto err;
9876 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9877 if (!tg->se)
9878 goto err;
9879
9880 tg->shares = NICE_0_LOAD;
9881
9882 for_each_possible_cpu(i) {
9883 rq = cpu_rq(i);
9884
9885 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9886 GFP_KERNEL, cpu_to_node(i));
9887 if (!cfs_rq)
9888 goto err;
9889
9890 se = kzalloc_node(sizeof(struct sched_entity),
9891 GFP_KERNEL, cpu_to_node(i));
9892 if (!se)
9893 goto err_free_rq;
9894
9895 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9896 }
9897
9898 return 1;
9899
9900 err_free_rq:
9901 kfree(cfs_rq);
9902 err:
9903 return 0;
9904 }
9905
9906 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9907 {
9908 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9909 &cpu_rq(cpu)->leaf_cfs_rq_list);
9910 }
9911
9912 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9913 {
9914 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9915 }
9916 #else /* !CONFG_FAIR_GROUP_SCHED */
9917 static inline void free_fair_sched_group(struct task_group *tg)
9918 {
9919 }
9920
9921 static inline
9922 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9923 {
9924 return 1;
9925 }
9926
9927 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9928 {
9929 }
9930
9931 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9932 {
9933 }
9934 #endif /* CONFIG_FAIR_GROUP_SCHED */
9935
9936 #ifdef CONFIG_RT_GROUP_SCHED
9937 static void free_rt_sched_group(struct task_group *tg)
9938 {
9939 int i;
9940
9941 destroy_rt_bandwidth(&tg->rt_bandwidth);
9942
9943 for_each_possible_cpu(i) {
9944 if (tg->rt_rq)
9945 kfree(tg->rt_rq[i]);
9946 if (tg->rt_se)
9947 kfree(tg->rt_se[i]);
9948 }
9949
9950 kfree(tg->rt_rq);
9951 kfree(tg->rt_se);
9952 }
9953
9954 static
9955 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9956 {
9957 struct rt_rq *rt_rq;
9958 struct sched_rt_entity *rt_se;
9959 struct rq *rq;
9960 int i;
9961
9962 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9963 if (!tg->rt_rq)
9964 goto err;
9965 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9966 if (!tg->rt_se)
9967 goto err;
9968
9969 init_rt_bandwidth(&tg->rt_bandwidth,
9970 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9971
9972 for_each_possible_cpu(i) {
9973 rq = cpu_rq(i);
9974
9975 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9976 GFP_KERNEL, cpu_to_node(i));
9977 if (!rt_rq)
9978 goto err;
9979
9980 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9981 GFP_KERNEL, cpu_to_node(i));
9982 if (!rt_se)
9983 goto err_free_rq;
9984
9985 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9986 }
9987
9988 return 1;
9989
9990 err_free_rq:
9991 kfree(rt_rq);
9992 err:
9993 return 0;
9994 }
9995
9996 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9997 {
9998 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9999 &cpu_rq(cpu)->leaf_rt_rq_list);
10000 }
10001
10002 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10003 {
10004 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10005 }
10006 #else /* !CONFIG_RT_GROUP_SCHED */
10007 static inline void free_rt_sched_group(struct task_group *tg)
10008 {
10009 }
10010
10011 static inline
10012 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10013 {
10014 return 1;
10015 }
10016
10017 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10018 {
10019 }
10020
10021 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10022 {
10023 }
10024 #endif /* CONFIG_RT_GROUP_SCHED */
10025
10026 #ifdef CONFIG_GROUP_SCHED
10027 static void free_sched_group(struct task_group *tg)
10028 {
10029 free_fair_sched_group(tg);
10030 free_rt_sched_group(tg);
10031 kfree(tg);
10032 }
10033
10034 /* allocate runqueue etc for a new task group */
10035 struct task_group *sched_create_group(struct task_group *parent)
10036 {
10037 struct task_group *tg;
10038 unsigned long flags;
10039 int i;
10040
10041 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10042 if (!tg)
10043 return ERR_PTR(-ENOMEM);
10044
10045 if (!alloc_fair_sched_group(tg, parent))
10046 goto err;
10047
10048 if (!alloc_rt_sched_group(tg, parent))
10049 goto err;
10050
10051 spin_lock_irqsave(&task_group_lock, flags);
10052 for_each_possible_cpu(i) {
10053 register_fair_sched_group(tg, i);
10054 register_rt_sched_group(tg, i);
10055 }
10056 list_add_rcu(&tg->list, &task_groups);
10057
10058 WARN_ON(!parent); /* root should already exist */
10059
10060 tg->parent = parent;
10061 INIT_LIST_HEAD(&tg->children);
10062 list_add_rcu(&tg->siblings, &parent->children);
10063 spin_unlock_irqrestore(&task_group_lock, flags);
10064
10065 return tg;
10066
10067 err:
10068 free_sched_group(tg);
10069 return ERR_PTR(-ENOMEM);
10070 }
10071
10072 /* rcu callback to free various structures associated with a task group */
10073 static void free_sched_group_rcu(struct rcu_head *rhp)
10074 {
10075 /* now it should be safe to free those cfs_rqs */
10076 free_sched_group(container_of(rhp, struct task_group, rcu));
10077 }
10078
10079 /* Destroy runqueue etc associated with a task group */
10080 void sched_destroy_group(struct task_group *tg)
10081 {
10082 unsigned long flags;
10083 int i;
10084
10085 spin_lock_irqsave(&task_group_lock, flags);
10086 for_each_possible_cpu(i) {
10087 unregister_fair_sched_group(tg, i);
10088 unregister_rt_sched_group(tg, i);
10089 }
10090 list_del_rcu(&tg->list);
10091 list_del_rcu(&tg->siblings);
10092 spin_unlock_irqrestore(&task_group_lock, flags);
10093
10094 /* wait for possible concurrent references to cfs_rqs complete */
10095 call_rcu(&tg->rcu, free_sched_group_rcu);
10096 }
10097
10098 /* change task's runqueue when it moves between groups.
10099 * The caller of this function should have put the task in its new group
10100 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10101 * reflect its new group.
10102 */
10103 void sched_move_task(struct task_struct *tsk)
10104 {
10105 int on_rq, running;
10106 unsigned long flags;
10107 struct rq *rq;
10108
10109 rq = task_rq_lock(tsk, &flags);
10110
10111 update_rq_clock(rq);
10112
10113 running = task_current(rq, tsk);
10114 on_rq = tsk->se.on_rq;
10115
10116 if (on_rq)
10117 dequeue_task(rq, tsk, 0);
10118 if (unlikely(running))
10119 tsk->sched_class->put_prev_task(rq, tsk);
10120
10121 set_task_rq(tsk, task_cpu(tsk));
10122
10123 #ifdef CONFIG_FAIR_GROUP_SCHED
10124 if (tsk->sched_class->moved_group)
10125 tsk->sched_class->moved_group(tsk, on_rq);
10126 #endif
10127
10128 if (unlikely(running))
10129 tsk->sched_class->set_curr_task(rq);
10130 if (on_rq)
10131 enqueue_task(rq, tsk, 0);
10132
10133 task_rq_unlock(rq, &flags);
10134 }
10135 #endif /* CONFIG_GROUP_SCHED */
10136
10137 #ifdef CONFIG_FAIR_GROUP_SCHED
10138 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10139 {
10140 struct cfs_rq *cfs_rq = se->cfs_rq;
10141 int on_rq;
10142
10143 on_rq = se->on_rq;
10144 if (on_rq)
10145 dequeue_entity(cfs_rq, se, 0);
10146
10147 se->load.weight = shares;
10148 se->load.inv_weight = 0;
10149
10150 if (on_rq)
10151 enqueue_entity(cfs_rq, se, 0);
10152 }
10153
10154 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10155 {
10156 struct cfs_rq *cfs_rq = se->cfs_rq;
10157 struct rq *rq = cfs_rq->rq;
10158 unsigned long flags;
10159
10160 raw_spin_lock_irqsave(&rq->lock, flags);
10161 __set_se_shares(se, shares);
10162 raw_spin_unlock_irqrestore(&rq->lock, flags);
10163 }
10164
10165 static DEFINE_MUTEX(shares_mutex);
10166
10167 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10168 {
10169 int i;
10170 unsigned long flags;
10171
10172 /*
10173 * We can't change the weight of the root cgroup.
10174 */
10175 if (!tg->se[0])
10176 return -EINVAL;
10177
10178 if (shares < MIN_SHARES)
10179 shares = MIN_SHARES;
10180 else if (shares > MAX_SHARES)
10181 shares = MAX_SHARES;
10182
10183 mutex_lock(&shares_mutex);
10184 if (tg->shares == shares)
10185 goto done;
10186
10187 spin_lock_irqsave(&task_group_lock, flags);
10188 for_each_possible_cpu(i)
10189 unregister_fair_sched_group(tg, i);
10190 list_del_rcu(&tg->siblings);
10191 spin_unlock_irqrestore(&task_group_lock, flags);
10192
10193 /* wait for any ongoing reference to this group to finish */
10194 synchronize_sched();
10195
10196 /*
10197 * Now we are free to modify the group's share on each cpu
10198 * w/o tripping rebalance_share or load_balance_fair.
10199 */
10200 tg->shares = shares;
10201 for_each_possible_cpu(i) {
10202 /*
10203 * force a rebalance
10204 */
10205 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10206 set_se_shares(tg->se[i], shares);
10207 }
10208
10209 /*
10210 * Enable load balance activity on this group, by inserting it back on
10211 * each cpu's rq->leaf_cfs_rq_list.
10212 */
10213 spin_lock_irqsave(&task_group_lock, flags);
10214 for_each_possible_cpu(i)
10215 register_fair_sched_group(tg, i);
10216 list_add_rcu(&tg->siblings, &tg->parent->children);
10217 spin_unlock_irqrestore(&task_group_lock, flags);
10218 done:
10219 mutex_unlock(&shares_mutex);
10220 return 0;
10221 }
10222
10223 unsigned long sched_group_shares(struct task_group *tg)
10224 {
10225 return tg->shares;
10226 }
10227 #endif
10228
10229 #ifdef CONFIG_RT_GROUP_SCHED
10230 /*
10231 * Ensure that the real time constraints are schedulable.
10232 */
10233 static DEFINE_MUTEX(rt_constraints_mutex);
10234
10235 static unsigned long to_ratio(u64 period, u64 runtime)
10236 {
10237 if (runtime == RUNTIME_INF)
10238 return 1ULL << 20;
10239
10240 return div64_u64(runtime << 20, period);
10241 }
10242
10243 /* Must be called with tasklist_lock held */
10244 static inline int tg_has_rt_tasks(struct task_group *tg)
10245 {
10246 struct task_struct *g, *p;
10247
10248 do_each_thread(g, p) {
10249 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10250 return 1;
10251 } while_each_thread(g, p);
10252
10253 return 0;
10254 }
10255
10256 struct rt_schedulable_data {
10257 struct task_group *tg;
10258 u64 rt_period;
10259 u64 rt_runtime;
10260 };
10261
10262 static int tg_schedulable(struct task_group *tg, void *data)
10263 {
10264 struct rt_schedulable_data *d = data;
10265 struct task_group *child;
10266 unsigned long total, sum = 0;
10267 u64 period, runtime;
10268
10269 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10270 runtime = tg->rt_bandwidth.rt_runtime;
10271
10272 if (tg == d->tg) {
10273 period = d->rt_period;
10274 runtime = d->rt_runtime;
10275 }
10276
10277 #ifdef CONFIG_USER_SCHED
10278 if (tg == &root_task_group) {
10279 period = global_rt_period();
10280 runtime = global_rt_runtime();
10281 }
10282 #endif
10283
10284 /*
10285 * Cannot have more runtime than the period.
10286 */
10287 if (runtime > period && runtime != RUNTIME_INF)
10288 return -EINVAL;
10289
10290 /*
10291 * Ensure we don't starve existing RT tasks.
10292 */
10293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10294 return -EBUSY;
10295
10296 total = to_ratio(period, runtime);
10297
10298 /*
10299 * Nobody can have more than the global setting allows.
10300 */
10301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10302 return -EINVAL;
10303
10304 /*
10305 * The sum of our children's runtime should not exceed our own.
10306 */
10307 list_for_each_entry_rcu(child, &tg->children, siblings) {
10308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10309 runtime = child->rt_bandwidth.rt_runtime;
10310
10311 if (child == d->tg) {
10312 period = d->rt_period;
10313 runtime = d->rt_runtime;
10314 }
10315
10316 sum += to_ratio(period, runtime);
10317 }
10318
10319 if (sum > total)
10320 return -EINVAL;
10321
10322 return 0;
10323 }
10324
10325 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10326 {
10327 struct rt_schedulable_data data = {
10328 .tg = tg,
10329 .rt_period = period,
10330 .rt_runtime = runtime,
10331 };
10332
10333 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10334 }
10335
10336 static int tg_set_bandwidth(struct task_group *tg,
10337 u64 rt_period, u64 rt_runtime)
10338 {
10339 int i, err = 0;
10340
10341 mutex_lock(&rt_constraints_mutex);
10342 read_lock(&tasklist_lock);
10343 err = __rt_schedulable(tg, rt_period, rt_runtime);
10344 if (err)
10345 goto unlock;
10346
10347 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10348 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10349 tg->rt_bandwidth.rt_runtime = rt_runtime;
10350
10351 for_each_possible_cpu(i) {
10352 struct rt_rq *rt_rq = tg->rt_rq[i];
10353
10354 raw_spin_lock(&rt_rq->rt_runtime_lock);
10355 rt_rq->rt_runtime = rt_runtime;
10356 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10357 }
10358 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10359 unlock:
10360 read_unlock(&tasklist_lock);
10361 mutex_unlock(&rt_constraints_mutex);
10362
10363 return err;
10364 }
10365
10366 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10367 {
10368 u64 rt_runtime, rt_period;
10369
10370 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10371 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10372 if (rt_runtime_us < 0)
10373 rt_runtime = RUNTIME_INF;
10374
10375 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10376 }
10377
10378 long sched_group_rt_runtime(struct task_group *tg)
10379 {
10380 u64 rt_runtime_us;
10381
10382 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10383 return -1;
10384
10385 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10386 do_div(rt_runtime_us, NSEC_PER_USEC);
10387 return rt_runtime_us;
10388 }
10389
10390 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10391 {
10392 u64 rt_runtime, rt_period;
10393
10394 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10395 rt_runtime = tg->rt_bandwidth.rt_runtime;
10396
10397 if (rt_period == 0)
10398 return -EINVAL;
10399
10400 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10401 }
10402
10403 long sched_group_rt_period(struct task_group *tg)
10404 {
10405 u64 rt_period_us;
10406
10407 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10408 do_div(rt_period_us, NSEC_PER_USEC);
10409 return rt_period_us;
10410 }
10411
10412 static int sched_rt_global_constraints(void)
10413 {
10414 u64 runtime, period;
10415 int ret = 0;
10416
10417 if (sysctl_sched_rt_period <= 0)
10418 return -EINVAL;
10419
10420 runtime = global_rt_runtime();
10421 period = global_rt_period();
10422
10423 /*
10424 * Sanity check on the sysctl variables.
10425 */
10426 if (runtime > period && runtime != RUNTIME_INF)
10427 return -EINVAL;
10428
10429 mutex_lock(&rt_constraints_mutex);
10430 read_lock(&tasklist_lock);
10431 ret = __rt_schedulable(NULL, 0, 0);
10432 read_unlock(&tasklist_lock);
10433 mutex_unlock(&rt_constraints_mutex);
10434
10435 return ret;
10436 }
10437
10438 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10439 {
10440 /* Don't accept realtime tasks when there is no way for them to run */
10441 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10442 return 0;
10443
10444 return 1;
10445 }
10446
10447 #else /* !CONFIG_RT_GROUP_SCHED */
10448 static int sched_rt_global_constraints(void)
10449 {
10450 unsigned long flags;
10451 int i;
10452
10453 if (sysctl_sched_rt_period <= 0)
10454 return -EINVAL;
10455
10456 /*
10457 * There's always some RT tasks in the root group
10458 * -- migration, kstopmachine etc..
10459 */
10460 if (sysctl_sched_rt_runtime == 0)
10461 return -EBUSY;
10462
10463 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10464 for_each_possible_cpu(i) {
10465 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10466
10467 raw_spin_lock(&rt_rq->rt_runtime_lock);
10468 rt_rq->rt_runtime = global_rt_runtime();
10469 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10470 }
10471 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10472
10473 return 0;
10474 }
10475 #endif /* CONFIG_RT_GROUP_SCHED */
10476
10477 int sched_rt_handler(struct ctl_table *table, int write,
10478 void __user *buffer, size_t *lenp,
10479 loff_t *ppos)
10480 {
10481 int ret;
10482 int old_period, old_runtime;
10483 static DEFINE_MUTEX(mutex);
10484
10485 mutex_lock(&mutex);
10486 old_period = sysctl_sched_rt_period;
10487 old_runtime = sysctl_sched_rt_runtime;
10488
10489 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10490
10491 if (!ret && write) {
10492 ret = sched_rt_global_constraints();
10493 if (ret) {
10494 sysctl_sched_rt_period = old_period;
10495 sysctl_sched_rt_runtime = old_runtime;
10496 } else {
10497 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10498 def_rt_bandwidth.rt_period =
10499 ns_to_ktime(global_rt_period());
10500 }
10501 }
10502 mutex_unlock(&mutex);
10503
10504 return ret;
10505 }
10506
10507 #ifdef CONFIG_CGROUP_SCHED
10508
10509 /* return corresponding task_group object of a cgroup */
10510 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10511 {
10512 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10513 struct task_group, css);
10514 }
10515
10516 static struct cgroup_subsys_state *
10517 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10518 {
10519 struct task_group *tg, *parent;
10520
10521 if (!cgrp->parent) {
10522 /* This is early initialization for the top cgroup */
10523 return &init_task_group.css;
10524 }
10525
10526 parent = cgroup_tg(cgrp->parent);
10527 tg = sched_create_group(parent);
10528 if (IS_ERR(tg))
10529 return ERR_PTR(-ENOMEM);
10530
10531 return &tg->css;
10532 }
10533
10534 static void
10535 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10536 {
10537 struct task_group *tg = cgroup_tg(cgrp);
10538
10539 sched_destroy_group(tg);
10540 }
10541
10542 static int
10543 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10544 {
10545 #ifdef CONFIG_RT_GROUP_SCHED
10546 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10547 return -EINVAL;
10548 #else
10549 /* We don't support RT-tasks being in separate groups */
10550 if (tsk->sched_class != &fair_sched_class)
10551 return -EINVAL;
10552 #endif
10553 return 0;
10554 }
10555
10556 static int
10557 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10558 struct task_struct *tsk, bool threadgroup)
10559 {
10560 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10561 if (retval)
10562 return retval;
10563 if (threadgroup) {
10564 struct task_struct *c;
10565 rcu_read_lock();
10566 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10567 retval = cpu_cgroup_can_attach_task(cgrp, c);
10568 if (retval) {
10569 rcu_read_unlock();
10570 return retval;
10571 }
10572 }
10573 rcu_read_unlock();
10574 }
10575 return 0;
10576 }
10577
10578 static void
10579 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10580 struct cgroup *old_cont, struct task_struct *tsk,
10581 bool threadgroup)
10582 {
10583 sched_move_task(tsk);
10584 if (threadgroup) {
10585 struct task_struct *c;
10586 rcu_read_lock();
10587 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10588 sched_move_task(c);
10589 }
10590 rcu_read_unlock();
10591 }
10592 }
10593
10594 #ifdef CONFIG_FAIR_GROUP_SCHED
10595 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10596 u64 shareval)
10597 {
10598 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10599 }
10600
10601 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10602 {
10603 struct task_group *tg = cgroup_tg(cgrp);
10604
10605 return (u64) tg->shares;
10606 }
10607 #endif /* CONFIG_FAIR_GROUP_SCHED */
10608
10609 #ifdef CONFIG_RT_GROUP_SCHED
10610 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10611 s64 val)
10612 {
10613 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10614 }
10615
10616 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10617 {
10618 return sched_group_rt_runtime(cgroup_tg(cgrp));
10619 }
10620
10621 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10622 u64 rt_period_us)
10623 {
10624 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10625 }
10626
10627 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10628 {
10629 return sched_group_rt_period(cgroup_tg(cgrp));
10630 }
10631 #endif /* CONFIG_RT_GROUP_SCHED */
10632
10633 static struct cftype cpu_files[] = {
10634 #ifdef CONFIG_FAIR_GROUP_SCHED
10635 {
10636 .name = "shares",
10637 .read_u64 = cpu_shares_read_u64,
10638 .write_u64 = cpu_shares_write_u64,
10639 },
10640 #endif
10641 #ifdef CONFIG_RT_GROUP_SCHED
10642 {
10643 .name = "rt_runtime_us",
10644 .read_s64 = cpu_rt_runtime_read,
10645 .write_s64 = cpu_rt_runtime_write,
10646 },
10647 {
10648 .name = "rt_period_us",
10649 .read_u64 = cpu_rt_period_read_uint,
10650 .write_u64 = cpu_rt_period_write_uint,
10651 },
10652 #endif
10653 };
10654
10655 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10656 {
10657 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10658 }
10659
10660 struct cgroup_subsys cpu_cgroup_subsys = {
10661 .name = "cpu",
10662 .create = cpu_cgroup_create,
10663 .destroy = cpu_cgroup_destroy,
10664 .can_attach = cpu_cgroup_can_attach,
10665 .attach = cpu_cgroup_attach,
10666 .populate = cpu_cgroup_populate,
10667 .subsys_id = cpu_cgroup_subsys_id,
10668 .early_init = 1,
10669 };
10670
10671 #endif /* CONFIG_CGROUP_SCHED */
10672
10673 #ifdef CONFIG_CGROUP_CPUACCT
10674
10675 /*
10676 * CPU accounting code for task groups.
10677 *
10678 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10679 * (balbir@in.ibm.com).
10680 */
10681
10682 /* track cpu usage of a group of tasks and its child groups */
10683 struct cpuacct {
10684 struct cgroup_subsys_state css;
10685 /* cpuusage holds pointer to a u64-type object on every cpu */
10686 u64 *cpuusage;
10687 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10688 struct cpuacct *parent;
10689 };
10690
10691 struct cgroup_subsys cpuacct_subsys;
10692
10693 /* return cpu accounting group corresponding to this container */
10694 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10695 {
10696 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10697 struct cpuacct, css);
10698 }
10699
10700 /* return cpu accounting group to which this task belongs */
10701 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10702 {
10703 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10704 struct cpuacct, css);
10705 }
10706
10707 /* create a new cpu accounting group */
10708 static struct cgroup_subsys_state *cpuacct_create(
10709 struct cgroup_subsys *ss, struct cgroup *cgrp)
10710 {
10711 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10712 int i;
10713
10714 if (!ca)
10715 goto out;
10716
10717 ca->cpuusage = alloc_percpu(u64);
10718 if (!ca->cpuusage)
10719 goto out_free_ca;
10720
10721 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10722 if (percpu_counter_init(&ca->cpustat[i], 0))
10723 goto out_free_counters;
10724
10725 if (cgrp->parent)
10726 ca->parent = cgroup_ca(cgrp->parent);
10727
10728 return &ca->css;
10729
10730 out_free_counters:
10731 while (--i >= 0)
10732 percpu_counter_destroy(&ca->cpustat[i]);
10733 free_percpu(ca->cpuusage);
10734 out_free_ca:
10735 kfree(ca);
10736 out:
10737 return ERR_PTR(-ENOMEM);
10738 }
10739
10740 /* destroy an existing cpu accounting group */
10741 static void
10742 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10743 {
10744 struct cpuacct *ca = cgroup_ca(cgrp);
10745 int i;
10746
10747 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10748 percpu_counter_destroy(&ca->cpustat[i]);
10749 free_percpu(ca->cpuusage);
10750 kfree(ca);
10751 }
10752
10753 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10754 {
10755 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10756 u64 data;
10757
10758 #ifndef CONFIG_64BIT
10759 /*
10760 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10761 */
10762 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10763 data = *cpuusage;
10764 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10765 #else
10766 data = *cpuusage;
10767 #endif
10768
10769 return data;
10770 }
10771
10772 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10773 {
10774 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10775
10776 #ifndef CONFIG_64BIT
10777 /*
10778 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10779 */
10780 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10781 *cpuusage = val;
10782 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10783 #else
10784 *cpuusage = val;
10785 #endif
10786 }
10787
10788 /* return total cpu usage (in nanoseconds) of a group */
10789 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10790 {
10791 struct cpuacct *ca = cgroup_ca(cgrp);
10792 u64 totalcpuusage = 0;
10793 int i;
10794
10795 for_each_present_cpu(i)
10796 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10797
10798 return totalcpuusage;
10799 }
10800
10801 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10802 u64 reset)
10803 {
10804 struct cpuacct *ca = cgroup_ca(cgrp);
10805 int err = 0;
10806 int i;
10807
10808 if (reset) {
10809 err = -EINVAL;
10810 goto out;
10811 }
10812
10813 for_each_present_cpu(i)
10814 cpuacct_cpuusage_write(ca, i, 0);
10815
10816 out:
10817 return err;
10818 }
10819
10820 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10821 struct seq_file *m)
10822 {
10823 struct cpuacct *ca = cgroup_ca(cgroup);
10824 u64 percpu;
10825 int i;
10826
10827 for_each_present_cpu(i) {
10828 percpu = cpuacct_cpuusage_read(ca, i);
10829 seq_printf(m, "%llu ", (unsigned long long) percpu);
10830 }
10831 seq_printf(m, "\n");
10832 return 0;
10833 }
10834
10835 static const char *cpuacct_stat_desc[] = {
10836 [CPUACCT_STAT_USER] = "user",
10837 [CPUACCT_STAT_SYSTEM] = "system",
10838 };
10839
10840 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10841 struct cgroup_map_cb *cb)
10842 {
10843 struct cpuacct *ca = cgroup_ca(cgrp);
10844 int i;
10845
10846 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10847 s64 val = percpu_counter_read(&ca->cpustat[i]);
10848 val = cputime64_to_clock_t(val);
10849 cb->fill(cb, cpuacct_stat_desc[i], val);
10850 }
10851 return 0;
10852 }
10853
10854 static struct cftype files[] = {
10855 {
10856 .name = "usage",
10857 .read_u64 = cpuusage_read,
10858 .write_u64 = cpuusage_write,
10859 },
10860 {
10861 .name = "usage_percpu",
10862 .read_seq_string = cpuacct_percpu_seq_read,
10863 },
10864 {
10865 .name = "stat",
10866 .read_map = cpuacct_stats_show,
10867 },
10868 };
10869
10870 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10871 {
10872 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10873 }
10874
10875 /*
10876 * charge this task's execution time to its accounting group.
10877 *
10878 * called with rq->lock held.
10879 */
10880 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10881 {
10882 struct cpuacct *ca;
10883 int cpu;
10884
10885 if (unlikely(!cpuacct_subsys.active))
10886 return;
10887
10888 cpu = task_cpu(tsk);
10889
10890 rcu_read_lock();
10891
10892 ca = task_ca(tsk);
10893
10894 for (; ca; ca = ca->parent) {
10895 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10896 *cpuusage += cputime;
10897 }
10898
10899 rcu_read_unlock();
10900 }
10901
10902 /*
10903 * Charge the system/user time to the task's accounting group.
10904 */
10905 static void cpuacct_update_stats(struct task_struct *tsk,
10906 enum cpuacct_stat_index idx, cputime_t val)
10907 {
10908 struct cpuacct *ca;
10909
10910 if (unlikely(!cpuacct_subsys.active))
10911 return;
10912
10913 rcu_read_lock();
10914 ca = task_ca(tsk);
10915
10916 do {
10917 percpu_counter_add(&ca->cpustat[idx], val);
10918 ca = ca->parent;
10919 } while (ca);
10920 rcu_read_unlock();
10921 }
10922
10923 struct cgroup_subsys cpuacct_subsys = {
10924 .name = "cpuacct",
10925 .create = cpuacct_create,
10926 .destroy = cpuacct_destroy,
10927 .populate = cpuacct_populate,
10928 .subsys_id = cpuacct_subsys_id,
10929 };
10930 #endif /* CONFIG_CGROUP_CPUACCT */
10931
10932 #ifndef CONFIG_SMP
10933
10934 int rcu_expedited_torture_stats(char *page)
10935 {
10936 return 0;
10937 }
10938 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10939
10940 void synchronize_sched_expedited(void)
10941 {
10942 }
10943 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10944
10945 #else /* #ifndef CONFIG_SMP */
10946
10947 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10948 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10949
10950 #define RCU_EXPEDITED_STATE_POST -2
10951 #define RCU_EXPEDITED_STATE_IDLE -1
10952
10953 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10954
10955 int rcu_expedited_torture_stats(char *page)
10956 {
10957 int cnt = 0;
10958 int cpu;
10959
10960 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10961 for_each_online_cpu(cpu) {
10962 cnt += sprintf(&page[cnt], " %d:%d",
10963 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10964 }
10965 cnt += sprintf(&page[cnt], "\n");
10966 return cnt;
10967 }
10968 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10969
10970 static long synchronize_sched_expedited_count;
10971
10972 /*
10973 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10974 * approach to force grace period to end quickly. This consumes
10975 * significant time on all CPUs, and is thus not recommended for
10976 * any sort of common-case code.
10977 *
10978 * Note that it is illegal to call this function while holding any
10979 * lock that is acquired by a CPU-hotplug notifier. Failing to
10980 * observe this restriction will result in deadlock.
10981 */
10982 void synchronize_sched_expedited(void)
10983 {
10984 int cpu;
10985 unsigned long flags;
10986 bool need_full_sync = 0;
10987 struct rq *rq;
10988 struct migration_req *req;
10989 long snap;
10990 int trycount = 0;
10991
10992 smp_mb(); /* ensure prior mod happens before capturing snap. */
10993 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10994 get_online_cpus();
10995 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10996 put_online_cpus();
10997 if (trycount++ < 10)
10998 udelay(trycount * num_online_cpus());
10999 else {
11000 synchronize_sched();
11001 return;
11002 }
11003 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11004 smp_mb(); /* ensure test happens before caller kfree */
11005 return;
11006 }
11007 get_online_cpus();
11008 }
11009 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11010 for_each_online_cpu(cpu) {
11011 rq = cpu_rq(cpu);
11012 req = &per_cpu(rcu_migration_req, cpu);
11013 init_completion(&req->done);
11014 req->task = NULL;
11015 req->dest_cpu = RCU_MIGRATION_NEED_QS;
11016 raw_spin_lock_irqsave(&rq->lock, flags);
11017 list_add(&req->list, &rq->migration_queue);
11018 raw_spin_unlock_irqrestore(&rq->lock, flags);
11019 wake_up_process(rq->migration_thread);
11020 }
11021 for_each_online_cpu(cpu) {
11022 rcu_expedited_state = cpu;
11023 req = &per_cpu(rcu_migration_req, cpu);
11024 rq = cpu_rq(cpu);
11025 wait_for_completion(&req->done);
11026 raw_spin_lock_irqsave(&rq->lock, flags);
11027 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11028 need_full_sync = 1;
11029 req->dest_cpu = RCU_MIGRATION_IDLE;
11030 raw_spin_unlock_irqrestore(&rq->lock, flags);
11031 }
11032 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11033 synchronize_sched_expedited_count++;
11034 mutex_unlock(&rcu_sched_expedited_mutex);
11035 put_online_cpus();
11036 if (need_full_sync)
11037 synchronize_sched();
11038 }
11039 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11040
11041 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.523509 seconds and 6 git commands to generate.