sched: remove precise CPU load
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 struct load_stat {
175 struct load_weight load;
176 u64 load_update_start, load_update_last;
177 unsigned long delta_fair, delta_exec, delta_stat;
178 };
179
180 /* CFS-related fields in a runqueue */
181 struct cfs_rq {
182 struct load_weight load;
183 unsigned long nr_running;
184
185 s64 fair_clock;
186 u64 exec_clock;
187 s64 wait_runtime;
188 u64 sleeper_bonus;
189 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190
191 struct rb_root tasks_timeline;
192 struct rb_node *rb_leftmost;
193 struct rb_node *rb_load_balance_curr;
194 #ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
197 */
198 struct sched_entity *curr;
199 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
204 *
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
207 */
208 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
209 #endif
210 };
211
212 /* Real-Time classes' related field in a runqueue: */
213 struct rt_rq {
214 struct rt_prio_array active;
215 int rt_load_balance_idx;
216 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
217 };
218
219 /*
220 * This is the main, per-CPU runqueue data structure.
221 *
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
225 */
226 struct rq {
227 spinlock_t lock; /* runqueue lock */
228
229 /*
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
232 */
233 unsigned long nr_running;
234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
236 unsigned char idle_at_tick;
237 #ifdef CONFIG_NO_HZ
238 unsigned char in_nohz_recently;
239 #endif
240 struct load_stat ls; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates;
242 u64 nr_switches;
243
244 struct cfs_rq cfs;
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
247 #endif
248 struct rt_rq rt;
249
250 /*
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
255 */
256 unsigned long nr_uninterruptible;
257
258 struct task_struct *curr, *idle;
259 unsigned long next_balance;
260 struct mm_struct *prev_mm;
261
262 u64 clock, prev_clock_raw;
263 s64 clock_max_delta;
264
265 unsigned int clock_warps, clock_overflows;
266 u64 idle_clock;
267 unsigned int clock_deep_idle_events;
268 u64 tick_timestamp;
269
270 atomic_t nr_iowait;
271
272 #ifdef CONFIG_SMP
273 struct sched_domain *sd;
274
275 /* For active balancing */
276 int active_balance;
277 int push_cpu;
278 int cpu; /* cpu of this runqueue */
279
280 struct task_struct *migration_thread;
281 struct list_head migration_queue;
282 #endif
283
284 #ifdef CONFIG_SCHEDSTATS
285 /* latency stats */
286 struct sched_info rq_sched_info;
287
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty;
290 unsigned long yld_act_empty;
291 unsigned long yld_both_empty;
292 unsigned long yld_cnt;
293
294 /* schedule() stats */
295 unsigned long sched_switch;
296 unsigned long sched_cnt;
297 unsigned long sched_goidle;
298
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt;
301 unsigned long ttwu_local;
302 #endif
303 struct lock_class_key rq_lock_key;
304 };
305
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
307 static DEFINE_MUTEX(sched_hotcpu_mutex);
308
309 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
310 {
311 rq->curr->sched_class->check_preempt_curr(rq, p);
312 }
313
314 static inline int cpu_of(struct rq *rq)
315 {
316 #ifdef CONFIG_SMP
317 return rq->cpu;
318 #else
319 return 0;
320 #endif
321 }
322
323 /*
324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
326 */
327 static void __update_rq_clock(struct rq *rq)
328 {
329 u64 prev_raw = rq->prev_clock_raw;
330 u64 now = sched_clock();
331 s64 delta = now - prev_raw;
332 u64 clock = rq->clock;
333
334 #ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
336 #endif
337 /*
338 * Protect against sched_clock() occasionally going backwards:
339 */
340 if (unlikely(delta < 0)) {
341 clock++;
342 rq->clock_warps++;
343 } else {
344 /*
345 * Catch too large forward jumps too:
346 */
347 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
348 if (clock < rq->tick_timestamp + TICK_NSEC)
349 clock = rq->tick_timestamp + TICK_NSEC;
350 else
351 clock++;
352 rq->clock_overflows++;
353 } else {
354 if (unlikely(delta > rq->clock_max_delta))
355 rq->clock_max_delta = delta;
356 clock += delta;
357 }
358 }
359
360 rq->prev_clock_raw = now;
361 rq->clock = clock;
362 }
363
364 static void update_rq_clock(struct rq *rq)
365 {
366 if (likely(smp_processor_id() == cpu_of(rq)))
367 __update_rq_clock(rq);
368 }
369
370 /*
371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
372 * See detach_destroy_domains: synchronize_sched for details.
373 *
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
376 */
377 #define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
379
380 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381 #define this_rq() (&__get_cpu_var(runqueues))
382 #define task_rq(p) cpu_rq(task_cpu(p))
383 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384
385 /*
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
388 */
389 unsigned long long cpu_clock(int cpu)
390 {
391 unsigned long long now;
392 unsigned long flags;
393 struct rq *rq;
394
395 local_irq_save(flags);
396 rq = cpu_rq(cpu);
397 update_rq_clock(rq);
398 now = rq->clock;
399 local_irq_restore(flags);
400
401 return now;
402 }
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 /* Change a task's ->cfs_rq if it moves across CPUs */
406 static inline void set_task_cfs_rq(struct task_struct *p)
407 {
408 p->se.cfs_rq = &task_rq(p)->cfs;
409 }
410 #else
411 static inline void set_task_cfs_rq(struct task_struct *p)
412 {
413 }
414 #endif
415
416 #ifndef prepare_arch_switch
417 # define prepare_arch_switch(next) do { } while (0)
418 #endif
419 #ifndef finish_arch_switch
420 # define finish_arch_switch(prev) do { } while (0)
421 #endif
422
423 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
424 static inline int task_running(struct rq *rq, struct task_struct *p)
425 {
426 return rq->curr == p;
427 }
428
429 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
430 {
431 }
432
433 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
434 {
435 #ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq->lock.owner = current;
438 #endif
439 /*
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
442 * prev into current:
443 */
444 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
445
446 spin_unlock_irq(&rq->lock);
447 }
448
449 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
450 static inline int task_running(struct rq *rq, struct task_struct *p)
451 {
452 #ifdef CONFIG_SMP
453 return p->oncpu;
454 #else
455 return rq->curr == p;
456 #endif
457 }
458
459 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
460 {
461 #ifdef CONFIG_SMP
462 /*
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
465 * here.
466 */
467 next->oncpu = 1;
468 #endif
469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq->lock);
471 #else
472 spin_unlock(&rq->lock);
473 #endif
474 }
475
476 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
477 {
478 #ifdef CONFIG_SMP
479 /*
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
482 * finished.
483 */
484 smp_wmb();
485 prev->oncpu = 0;
486 #endif
487 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
488 local_irq_enable();
489 #endif
490 }
491 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
492
493 /*
494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
496 */
497 static inline struct rq *__task_rq_lock(struct task_struct *p)
498 __acquires(rq->lock)
499 {
500 struct rq *rq;
501
502 repeat_lock_task:
503 rq = task_rq(p);
504 spin_lock(&rq->lock);
505 if (unlikely(rq != task_rq(p))) {
506 spin_unlock(&rq->lock);
507 goto repeat_lock_task;
508 }
509 return rq;
510 }
511
512 /*
513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
516 */
517 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
518 __acquires(rq->lock)
519 {
520 struct rq *rq;
521
522 repeat_lock_task:
523 local_irq_save(*flags);
524 rq = task_rq(p);
525 spin_lock(&rq->lock);
526 if (unlikely(rq != task_rq(p))) {
527 spin_unlock_irqrestore(&rq->lock, *flags);
528 goto repeat_lock_task;
529 }
530 return rq;
531 }
532
533 static inline void __task_rq_unlock(struct rq *rq)
534 __releases(rq->lock)
535 {
536 spin_unlock(&rq->lock);
537 }
538
539 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
540 __releases(rq->lock)
541 {
542 spin_unlock_irqrestore(&rq->lock, *flags);
543 }
544
545 /*
546 * this_rq_lock - lock this runqueue and disable interrupts.
547 */
548 static inline struct rq *this_rq_lock(void)
549 __acquires(rq->lock)
550 {
551 struct rq *rq;
552
553 local_irq_disable();
554 rq = this_rq();
555 spin_lock(&rq->lock);
556
557 return rq;
558 }
559
560 /*
561 * We are going deep-idle (irqs are disabled):
562 */
563 void sched_clock_idle_sleep_event(void)
564 {
565 struct rq *rq = cpu_rq(smp_processor_id());
566
567 spin_lock(&rq->lock);
568 __update_rq_clock(rq);
569 spin_unlock(&rq->lock);
570 rq->clock_deep_idle_events++;
571 }
572 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
573
574 /*
575 * We just idled delta nanoseconds (called with irqs disabled):
576 */
577 void sched_clock_idle_wakeup_event(u64 delta_ns)
578 {
579 struct rq *rq = cpu_rq(smp_processor_id());
580 u64 now = sched_clock();
581
582 rq->idle_clock += delta_ns;
583 /*
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
587 * rq clock:
588 */
589 spin_lock(&rq->lock);
590 rq->prev_clock_raw = now;
591 rq->clock += delta_ns;
592 spin_unlock(&rq->lock);
593 }
594 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
595
596 /*
597 * resched_task - mark a task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603 #ifdef CONFIG_SMP
604
605 #ifndef tsk_is_polling
606 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
607 #endif
608
609 static void resched_task(struct task_struct *p)
610 {
611 int cpu;
612
613 assert_spin_locked(&task_rq(p)->lock);
614
615 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
616 return;
617
618 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
619
620 cpu = task_cpu(p);
621 if (cpu == smp_processor_id())
622 return;
623
624 /* NEED_RESCHED must be visible before we test polling */
625 smp_mb();
626 if (!tsk_is_polling(p))
627 smp_send_reschedule(cpu);
628 }
629
630 static void resched_cpu(int cpu)
631 {
632 struct rq *rq = cpu_rq(cpu);
633 unsigned long flags;
634
635 if (!spin_trylock_irqsave(&rq->lock, flags))
636 return;
637 resched_task(cpu_curr(cpu));
638 spin_unlock_irqrestore(&rq->lock, flags);
639 }
640 #else
641 static inline void resched_task(struct task_struct *p)
642 {
643 assert_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645 }
646 #endif
647
648 static u64 div64_likely32(u64 divident, unsigned long divisor)
649 {
650 #if BITS_PER_LONG == 32
651 if (likely(divident <= 0xffffffffULL))
652 return (u32)divident / divisor;
653 do_div(divident, divisor);
654
655 return divident;
656 #else
657 return divident / divisor;
658 #endif
659 }
660
661 #if BITS_PER_LONG == 32
662 # define WMULT_CONST (~0UL)
663 #else
664 # define WMULT_CONST (1UL << 32)
665 #endif
666
667 #define WMULT_SHIFT 32
668
669 /*
670 * Shift right and round:
671 */
672 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
673
674 static unsigned long
675 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
676 struct load_weight *lw)
677 {
678 u64 tmp;
679
680 if (unlikely(!lw->inv_weight))
681 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
682
683 tmp = (u64)delta_exec * weight;
684 /*
685 * Check whether we'd overflow the 64-bit multiplication:
686 */
687 if (unlikely(tmp > WMULT_CONST))
688 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
689 WMULT_SHIFT/2);
690 else
691 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
692
693 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
694 }
695
696 static inline unsigned long
697 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
698 {
699 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
700 }
701
702 static void update_load_add(struct load_weight *lw, unsigned long inc)
703 {
704 lw->weight += inc;
705 lw->inv_weight = 0;
706 }
707
708 static void update_load_sub(struct load_weight *lw, unsigned long dec)
709 {
710 lw->weight -= dec;
711 lw->inv_weight = 0;
712 }
713
714 /*
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
723 #define WEIGHT_IDLEPRIO 2
724 #define WMULT_IDLEPRIO (1 << 31)
725
726 /*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
737 */
738 static const int prio_to_weight[40] = {
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
747 };
748
749 /*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
756 static const u32 prio_to_wmult[40] = {
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
765 };
766
767 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769 /*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774 struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778 };
779
780 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
784 int *this_best_prio, struct rq_iterator *iterator);
785
786 #include "sched_stats.h"
787 #include "sched_rt.c"
788 #include "sched_fair.c"
789 #include "sched_idletask.c"
790 #ifdef CONFIG_SCHED_DEBUG
791 # include "sched_debug.c"
792 #endif
793
794 #define sched_class_highest (&rt_sched_class)
795
796 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
797 {
798 if (rq->curr != rq->idle && ls->load.weight) {
799 ls->delta_exec += ls->delta_stat;
800 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
801 ls->delta_stat = 0;
802 }
803 }
804
805 /*
806 * Update delta_exec, delta_fair fields for rq.
807 *
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
811 * cpu is not idle).
812 *
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
816 *
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
819 */
820 static void update_curr_load(struct rq *rq)
821 {
822 struct load_stat *ls = &rq->ls;
823 u64 start;
824
825 start = ls->load_update_start;
826 ls->load_update_start = rq->clock;
827 ls->delta_stat += rq->clock - start;
828 /*
829 * Stagger updates to ls->delta_fair. Very frequent updates
830 * can be expensive.
831 */
832 if (ls->delta_stat)
833 __update_curr_load(rq, ls);
834 }
835
836 static inline void inc_load(struct rq *rq, const struct task_struct *p)
837 {
838 update_curr_load(rq);
839 update_load_add(&rq->ls.load, p->se.load.weight);
840 }
841
842 static inline void dec_load(struct rq *rq, const struct task_struct *p)
843 {
844 update_curr_load(rq);
845 update_load_sub(&rq->ls.load, p->se.load.weight);
846 }
847
848 static void inc_nr_running(struct task_struct *p, struct rq *rq)
849 {
850 rq->nr_running++;
851 inc_load(rq, p);
852 }
853
854 static void dec_nr_running(struct task_struct *p, struct rq *rq)
855 {
856 rq->nr_running--;
857 dec_load(rq, p);
858 }
859
860 static void set_load_weight(struct task_struct *p)
861 {
862 p->se.wait_runtime = 0;
863
864 if (task_has_rt_policy(p)) {
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
869
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
878
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 }
882
883 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884 {
885 sched_info_queued(p);
886 p->sched_class->enqueue_task(rq, p, wakeup);
887 p->se.on_rq = 1;
888 }
889
890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891 {
892 p->sched_class->dequeue_task(rq, p, sleep);
893 p->se.on_rq = 0;
894 }
895
896 /*
897 * __normal_prio - return the priority that is based on the static prio
898 */
899 static inline int __normal_prio(struct task_struct *p)
900 {
901 return p->static_prio;
902 }
903
904 /*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
911 static inline int normal_prio(struct task_struct *p)
912 {
913 int prio;
914
915 if (task_has_rt_policy(p))
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920 }
921
922 /*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
929 static int effective_prio(struct task_struct *p)
930 {
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940 }
941
942 /*
943 * activate_task - move a task to the runqueue.
944 */
945 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
946 {
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
949
950 enqueue_task(rq, p, wakeup);
951 inc_nr_running(p, rq);
952 }
953
954 /*
955 * activate_idle_task - move idle task to the _front_ of runqueue.
956 */
957 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
958 {
959 update_rq_clock(rq);
960
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
963
964 enqueue_task(rq, p, 0);
965 inc_nr_running(p, rq);
966 }
967
968 /*
969 * deactivate_task - remove a task from the runqueue.
970 */
971 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
972 {
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
976 dequeue_task(rq, p, sleep);
977 dec_nr_running(p, rq);
978 }
979
980 /**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
984 inline int task_curr(const struct task_struct *p)
985 {
986 return cpu_curr(task_cpu(p)) == p;
987 }
988
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu)
991 {
992 return cpu_rq(cpu)->ls.load.weight;
993 }
994
995 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996 {
997 #ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000 #endif
1001 }
1002
1003 #ifdef CONFIG_SMP
1004
1005 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1006 {
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019 #ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
1026 #endif
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_req {
1032 struct list_head list;
1033
1034 struct task_struct *task;
1035 int dest_cpu;
1036
1037 struct completion done;
1038 };
1039
1040 /*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
1044 static int
1045 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1046 {
1047 struct rq *rq = task_rq(p);
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
1053 if (!p->se.on_rq && !task_running(rq, p)) {
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
1075 void wait_task_inactive(struct task_struct *p)
1076 {
1077 unsigned long flags;
1078 int running, on_rq;
1079 struct rq *rq;
1080
1081 repeat:
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1109 rq = task_rq_lock(p, &flags);
1110 running = task_running(rq, p);
1111 on_rq = p->se.on_rq;
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1121 cpu_relax();
1122 goto repeat;
1123 }
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
1134 if (unlikely(on_rq)) {
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169
1170 /*
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
1177 static inline unsigned long source_load(int cpu, int type)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181
1182 if (type == 0)
1183 return total;
1184
1185 return min(rq->cpu_load[type-1], total);
1186 }
1187
1188 /*
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1191 */
1192 static inline unsigned long target_load(int cpu, int type)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196
1197 if (type == 0)
1198 return total;
1199
1200 return max(rq->cpu_load[type-1], total);
1201 }
1202
1203 /*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206 static inline unsigned long cpu_avg_load_per_task(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210 unsigned long n = rq->nr_running;
1211
1212 return n ? total / n : SCHED_LOAD_SCALE;
1213 }
1214
1215 /*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219 static struct sched_group *
1220 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221 {
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
1236 local_group = cpu_isset(this_cpu, group->cpumask);
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
1262 nextgroup:
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269 }
1270
1271 /*
1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1273 */
1274 static int
1275 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1276 {
1277 cpumask_t tmp;
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
1286 load = weighted_cpuload(i);
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295 }
1296
1297 /*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308 static int sched_balance_self(int cpu, int flag)
1309 {
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
1312
1313 for_each_domain(cpu, tmp) {
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
1319 if (tmp->flags & flag)
1320 sd = tmp;
1321 }
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
1339
1340 new_cpu = find_idlest_cpu(group, t, cpu);
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
1346
1347 /* Now try balancing at a lower domain level of new_cpu */
1348 cpu = new_cpu;
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361 }
1362
1363 #endif /* CONFIG_SMP */
1364
1365 /*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374 static int wake_idle(int cpu, struct task_struct *p)
1375 {
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
1399 } else {
1400 break;
1401 }
1402 }
1403 return cpu;
1404 }
1405 #else
1406 static inline int wake_idle(int cpu, struct task_struct *p)
1407 {
1408 return cpu;
1409 }
1410 #endif
1411
1412 /***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
1426 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1427 {
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
1431 struct rq *rq;
1432 #ifdef CONFIG_SMP
1433 struct sched_domain *sd, *this_sd = NULL;
1434 unsigned long load, this_load;
1435 int new_cpu;
1436 #endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
1443 if (p->se.on_rq)
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449 #ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
1453 new_cpu = cpu;
1454
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1466 }
1467 }
1468
1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1470 goto out_set_cpu;
1471
1472 /*
1473 * Check for affine wakeup and passive balancing possibilities.
1474 */
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1478
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1483
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
1491
1492 /*
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1496 */
1497 if (sync)
1498 tl -= current->se.load.weight;
1499
1500 if ((tl <= load &&
1501 tl + target_load(cpu, idx) <= tl_per_task) ||
1502 100*(tl + p->se.load.weight) <= imbalance*load) {
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526 out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
1536 if (p->se.on_rq)
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543 out_activate:
1544 #endif /* CONFIG_SMP */
1545 update_rq_clock(rq);
1546 activate_task(rq, p, 1);
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1557 success = 1;
1558
1559 out_running:
1560 p->state = TASK_RUNNING;
1561 out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565 }
1566
1567 int fastcall wake_up_process(struct task_struct *p)
1568 {
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571 }
1572 EXPORT_SYMBOL(wake_up_process);
1573
1574 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1575 {
1576 return try_to_wake_up(p, state, 0);
1577 }
1578
1579 /*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585 static void __sched_fork(struct task_struct *p)
1586 {
1587 p->se.wait_start_fair = 0;
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.prev_sum_exec_runtime = 0;
1591 p->se.wait_runtime = 0;
1592 p->se.sleep_start_fair = 0;
1593
1594 #ifdef CONFIG_SCHEDSTATS
1595 p->se.wait_start = 0;
1596 p->se.sum_wait_runtime = 0;
1597 p->se.sum_sleep_runtime = 0;
1598 p->se.sleep_start = 0;
1599 p->se.block_start = 0;
1600 p->se.sleep_max = 0;
1601 p->se.block_max = 0;
1602 p->se.exec_max = 0;
1603 p->se.slice_max = 0;
1604 p->se.wait_max = 0;
1605 p->se.wait_runtime_overruns = 0;
1606 p->se.wait_runtime_underruns = 0;
1607 #endif
1608
1609 INIT_LIST_HEAD(&p->run_list);
1610 p->se.on_rq = 0;
1611
1612 #ifdef CONFIG_PREEMPT_NOTIFIERS
1613 INIT_HLIST_HEAD(&p->preempt_notifiers);
1614 #endif
1615
1616 /*
1617 * We mark the process as running here, but have not actually
1618 * inserted it onto the runqueue yet. This guarantees that
1619 * nobody will actually run it, and a signal or other external
1620 * event cannot wake it up and insert it on the runqueue either.
1621 */
1622 p->state = TASK_RUNNING;
1623 }
1624
1625 /*
1626 * fork()/clone()-time setup:
1627 */
1628 void sched_fork(struct task_struct *p, int clone_flags)
1629 {
1630 int cpu = get_cpu();
1631
1632 __sched_fork(p);
1633
1634 #ifdef CONFIG_SMP
1635 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1636 #endif
1637 __set_task_cpu(p, cpu);
1638
1639 /*
1640 * Make sure we do not leak PI boosting priority to the child:
1641 */
1642 p->prio = current->normal_prio;
1643
1644 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1645 if (likely(sched_info_on()))
1646 memset(&p->sched_info, 0, sizeof(p->sched_info));
1647 #endif
1648 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1649 p->oncpu = 0;
1650 #endif
1651 #ifdef CONFIG_PREEMPT
1652 /* Want to start with kernel preemption disabled. */
1653 task_thread_info(p)->preempt_count = 1;
1654 #endif
1655 put_cpu();
1656 }
1657
1658 /*
1659 * wake_up_new_task - wake up a newly created task for the first time.
1660 *
1661 * This function will do some initial scheduler statistics housekeeping
1662 * that must be done for every newly created context, then puts the task
1663 * on the runqueue and wakes it.
1664 */
1665 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1666 {
1667 unsigned long flags;
1668 struct rq *rq;
1669 int this_cpu;
1670
1671 rq = task_rq_lock(p, &flags);
1672 BUG_ON(p->state != TASK_RUNNING);
1673 this_cpu = smp_processor_id(); /* parent's CPU */
1674 update_rq_clock(rq);
1675
1676 p->prio = effective_prio(p);
1677
1678 if (rt_prio(p->prio))
1679 p->sched_class = &rt_sched_class;
1680 else
1681 p->sched_class = &fair_sched_class;
1682
1683 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1684 !current->se.on_rq) {
1685 activate_task(rq, p, 0);
1686 } else {
1687 /*
1688 * Let the scheduling class do new task startup
1689 * management (if any):
1690 */
1691 p->sched_class->task_new(rq, p);
1692 inc_nr_running(p, rq);
1693 }
1694 check_preempt_curr(rq, p);
1695 task_rq_unlock(rq, &flags);
1696 }
1697
1698 #ifdef CONFIG_PREEMPT_NOTIFIERS
1699
1700 /**
1701 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1702 * @notifier: notifier struct to register
1703 */
1704 void preempt_notifier_register(struct preempt_notifier *notifier)
1705 {
1706 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1707 }
1708 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1709
1710 /**
1711 * preempt_notifier_unregister - no longer interested in preemption notifications
1712 * @notifier: notifier struct to unregister
1713 *
1714 * This is safe to call from within a preemption notifier.
1715 */
1716 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1717 {
1718 hlist_del(&notifier->link);
1719 }
1720 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1721
1722 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1723 {
1724 struct preempt_notifier *notifier;
1725 struct hlist_node *node;
1726
1727 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1728 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1729 }
1730
1731 static void
1732 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733 struct task_struct *next)
1734 {
1735 struct preempt_notifier *notifier;
1736 struct hlist_node *node;
1737
1738 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1739 notifier->ops->sched_out(notifier, next);
1740 }
1741
1742 #else
1743
1744 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1745 {
1746 }
1747
1748 static void
1749 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1750 struct task_struct *next)
1751 {
1752 }
1753
1754 #endif
1755
1756 /**
1757 * prepare_task_switch - prepare to switch tasks
1758 * @rq: the runqueue preparing to switch
1759 * @prev: the current task that is being switched out
1760 * @next: the task we are going to switch to.
1761 *
1762 * This is called with the rq lock held and interrupts off. It must
1763 * be paired with a subsequent finish_task_switch after the context
1764 * switch.
1765 *
1766 * prepare_task_switch sets up locking and calls architecture specific
1767 * hooks.
1768 */
1769 static inline void
1770 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1771 struct task_struct *next)
1772 {
1773 fire_sched_out_preempt_notifiers(prev, next);
1774 prepare_lock_switch(rq, next);
1775 prepare_arch_switch(next);
1776 }
1777
1778 /**
1779 * finish_task_switch - clean up after a task-switch
1780 * @rq: runqueue associated with task-switch
1781 * @prev: the thread we just switched away from.
1782 *
1783 * finish_task_switch must be called after the context switch, paired
1784 * with a prepare_task_switch call before the context switch.
1785 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1786 * and do any other architecture-specific cleanup actions.
1787 *
1788 * Note that we may have delayed dropping an mm in context_switch(). If
1789 * so, we finish that here outside of the runqueue lock. (Doing it
1790 * with the lock held can cause deadlocks; see schedule() for
1791 * details.)
1792 */
1793 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1794 __releases(rq->lock)
1795 {
1796 struct mm_struct *mm = rq->prev_mm;
1797 long prev_state;
1798
1799 rq->prev_mm = NULL;
1800
1801 /*
1802 * A task struct has one reference for the use as "current".
1803 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1804 * schedule one last time. The schedule call will never return, and
1805 * the scheduled task must drop that reference.
1806 * The test for TASK_DEAD must occur while the runqueue locks are
1807 * still held, otherwise prev could be scheduled on another cpu, die
1808 * there before we look at prev->state, and then the reference would
1809 * be dropped twice.
1810 * Manfred Spraul <manfred@colorfullife.com>
1811 */
1812 prev_state = prev->state;
1813 finish_arch_switch(prev);
1814 finish_lock_switch(rq, prev);
1815 fire_sched_in_preempt_notifiers(current);
1816 if (mm)
1817 mmdrop(mm);
1818 if (unlikely(prev_state == TASK_DEAD)) {
1819 /*
1820 * Remove function-return probe instances associated with this
1821 * task and put them back on the free list.
1822 */
1823 kprobe_flush_task(prev);
1824 put_task_struct(prev);
1825 }
1826 }
1827
1828 /**
1829 * schedule_tail - first thing a freshly forked thread must call.
1830 * @prev: the thread we just switched away from.
1831 */
1832 asmlinkage void schedule_tail(struct task_struct *prev)
1833 __releases(rq->lock)
1834 {
1835 struct rq *rq = this_rq();
1836
1837 finish_task_switch(rq, prev);
1838 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1839 /* In this case, finish_task_switch does not reenable preemption */
1840 preempt_enable();
1841 #endif
1842 if (current->set_child_tid)
1843 put_user(current->pid, current->set_child_tid);
1844 }
1845
1846 /*
1847 * context_switch - switch to the new MM and the new
1848 * thread's register state.
1849 */
1850 static inline void
1851 context_switch(struct rq *rq, struct task_struct *prev,
1852 struct task_struct *next)
1853 {
1854 struct mm_struct *mm, *oldmm;
1855
1856 prepare_task_switch(rq, prev, next);
1857 mm = next->mm;
1858 oldmm = prev->active_mm;
1859 /*
1860 * For paravirt, this is coupled with an exit in switch_to to
1861 * combine the page table reload and the switch backend into
1862 * one hypercall.
1863 */
1864 arch_enter_lazy_cpu_mode();
1865
1866 if (unlikely(!mm)) {
1867 next->active_mm = oldmm;
1868 atomic_inc(&oldmm->mm_count);
1869 enter_lazy_tlb(oldmm, next);
1870 } else
1871 switch_mm(oldmm, mm, next);
1872
1873 if (unlikely(!prev->mm)) {
1874 prev->active_mm = NULL;
1875 rq->prev_mm = oldmm;
1876 }
1877 /*
1878 * Since the runqueue lock will be released by the next
1879 * task (which is an invalid locking op but in the case
1880 * of the scheduler it's an obvious special-case), so we
1881 * do an early lockdep release here:
1882 */
1883 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1885 #endif
1886
1887 /* Here we just switch the register state and the stack. */
1888 switch_to(prev, next, prev);
1889
1890 barrier();
1891 /*
1892 * this_rq must be evaluated again because prev may have moved
1893 * CPUs since it called schedule(), thus the 'rq' on its stack
1894 * frame will be invalid.
1895 */
1896 finish_task_switch(this_rq(), prev);
1897 }
1898
1899 /*
1900 * nr_running, nr_uninterruptible and nr_context_switches:
1901 *
1902 * externally visible scheduler statistics: current number of runnable
1903 * threads, current number of uninterruptible-sleeping threads, total
1904 * number of context switches performed since bootup.
1905 */
1906 unsigned long nr_running(void)
1907 {
1908 unsigned long i, sum = 0;
1909
1910 for_each_online_cpu(i)
1911 sum += cpu_rq(i)->nr_running;
1912
1913 return sum;
1914 }
1915
1916 unsigned long nr_uninterruptible(void)
1917 {
1918 unsigned long i, sum = 0;
1919
1920 for_each_possible_cpu(i)
1921 sum += cpu_rq(i)->nr_uninterruptible;
1922
1923 /*
1924 * Since we read the counters lockless, it might be slightly
1925 * inaccurate. Do not allow it to go below zero though:
1926 */
1927 if (unlikely((long)sum < 0))
1928 sum = 0;
1929
1930 return sum;
1931 }
1932
1933 unsigned long long nr_context_switches(void)
1934 {
1935 int i;
1936 unsigned long long sum = 0;
1937
1938 for_each_possible_cpu(i)
1939 sum += cpu_rq(i)->nr_switches;
1940
1941 return sum;
1942 }
1943
1944 unsigned long nr_iowait(void)
1945 {
1946 unsigned long i, sum = 0;
1947
1948 for_each_possible_cpu(i)
1949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1950
1951 return sum;
1952 }
1953
1954 unsigned long nr_active(void)
1955 {
1956 unsigned long i, running = 0, uninterruptible = 0;
1957
1958 for_each_online_cpu(i) {
1959 running += cpu_rq(i)->nr_running;
1960 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1961 }
1962
1963 if (unlikely((long)uninterruptible < 0))
1964 uninterruptible = 0;
1965
1966 return running + uninterruptible;
1967 }
1968
1969 /*
1970 * Update rq->cpu_load[] statistics. This function is usually called every
1971 * scheduler tick (TICK_NSEC).
1972 */
1973 static void update_cpu_load(struct rq *this_rq)
1974 {
1975 unsigned long total_load = this_rq->ls.load.weight;
1976 unsigned long this_load = total_load;
1977 int i, scale;
1978
1979 this_rq->nr_load_updates++;
1980
1981 /* Update our load: */
1982 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1983 unsigned long old_load, new_load;
1984
1985 /* scale is effectively 1 << i now, and >> i divides by scale */
1986
1987 old_load = this_rq->cpu_load[i];
1988 new_load = this_load;
1989 /*
1990 * Round up the averaging division if load is increasing. This
1991 * prevents us from getting stuck on 9 if the load is 10, for
1992 * example.
1993 */
1994 if (new_load > old_load)
1995 new_load += scale-1;
1996 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1997 }
1998 }
1999
2000 #ifdef CONFIG_SMP
2001
2002 /*
2003 * double_rq_lock - safely lock two runqueues
2004 *
2005 * Note this does not disable interrupts like task_rq_lock,
2006 * you need to do so manually before calling.
2007 */
2008 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2009 __acquires(rq1->lock)
2010 __acquires(rq2->lock)
2011 {
2012 BUG_ON(!irqs_disabled());
2013 if (rq1 == rq2) {
2014 spin_lock(&rq1->lock);
2015 __acquire(rq2->lock); /* Fake it out ;) */
2016 } else {
2017 if (rq1 < rq2) {
2018 spin_lock(&rq1->lock);
2019 spin_lock(&rq2->lock);
2020 } else {
2021 spin_lock(&rq2->lock);
2022 spin_lock(&rq1->lock);
2023 }
2024 }
2025 update_rq_clock(rq1);
2026 update_rq_clock(rq2);
2027 }
2028
2029 /*
2030 * double_rq_unlock - safely unlock two runqueues
2031 *
2032 * Note this does not restore interrupts like task_rq_unlock,
2033 * you need to do so manually after calling.
2034 */
2035 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2036 __releases(rq1->lock)
2037 __releases(rq2->lock)
2038 {
2039 spin_unlock(&rq1->lock);
2040 if (rq1 != rq2)
2041 spin_unlock(&rq2->lock);
2042 else
2043 __release(rq2->lock);
2044 }
2045
2046 /*
2047 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2048 */
2049 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2050 __releases(this_rq->lock)
2051 __acquires(busiest->lock)
2052 __acquires(this_rq->lock)
2053 {
2054 if (unlikely(!irqs_disabled())) {
2055 /* printk() doesn't work good under rq->lock */
2056 spin_unlock(&this_rq->lock);
2057 BUG_ON(1);
2058 }
2059 if (unlikely(!spin_trylock(&busiest->lock))) {
2060 if (busiest < this_rq) {
2061 spin_unlock(&this_rq->lock);
2062 spin_lock(&busiest->lock);
2063 spin_lock(&this_rq->lock);
2064 } else
2065 spin_lock(&busiest->lock);
2066 }
2067 }
2068
2069 /*
2070 * If dest_cpu is allowed for this process, migrate the task to it.
2071 * This is accomplished by forcing the cpu_allowed mask to only
2072 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2073 * the cpu_allowed mask is restored.
2074 */
2075 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2076 {
2077 struct migration_req req;
2078 unsigned long flags;
2079 struct rq *rq;
2080
2081 rq = task_rq_lock(p, &flags);
2082 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2083 || unlikely(cpu_is_offline(dest_cpu)))
2084 goto out;
2085
2086 /* force the process onto the specified CPU */
2087 if (migrate_task(p, dest_cpu, &req)) {
2088 /* Need to wait for migration thread (might exit: take ref). */
2089 struct task_struct *mt = rq->migration_thread;
2090
2091 get_task_struct(mt);
2092 task_rq_unlock(rq, &flags);
2093 wake_up_process(mt);
2094 put_task_struct(mt);
2095 wait_for_completion(&req.done);
2096
2097 return;
2098 }
2099 out:
2100 task_rq_unlock(rq, &flags);
2101 }
2102
2103 /*
2104 * sched_exec - execve() is a valuable balancing opportunity, because at
2105 * this point the task has the smallest effective memory and cache footprint.
2106 */
2107 void sched_exec(void)
2108 {
2109 int new_cpu, this_cpu = get_cpu();
2110 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2111 put_cpu();
2112 if (new_cpu != this_cpu)
2113 sched_migrate_task(current, new_cpu);
2114 }
2115
2116 /*
2117 * pull_task - move a task from a remote runqueue to the local runqueue.
2118 * Both runqueues must be locked.
2119 */
2120 static void pull_task(struct rq *src_rq, struct task_struct *p,
2121 struct rq *this_rq, int this_cpu)
2122 {
2123 deactivate_task(src_rq, p, 0);
2124 set_task_cpu(p, this_cpu);
2125 activate_task(this_rq, p, 0);
2126 /*
2127 * Note that idle threads have a prio of MAX_PRIO, for this test
2128 * to be always true for them.
2129 */
2130 check_preempt_curr(this_rq, p);
2131 }
2132
2133 /*
2134 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2135 */
2136 static
2137 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2138 struct sched_domain *sd, enum cpu_idle_type idle,
2139 int *all_pinned)
2140 {
2141 /*
2142 * We do not migrate tasks that are:
2143 * 1) running (obviously), or
2144 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2145 * 3) are cache-hot on their current CPU.
2146 */
2147 if (!cpu_isset(this_cpu, p->cpus_allowed))
2148 return 0;
2149 *all_pinned = 0;
2150
2151 if (task_running(rq, p))
2152 return 0;
2153
2154 return 1;
2155 }
2156
2157 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2158 unsigned long max_nr_move, unsigned long max_load_move,
2159 struct sched_domain *sd, enum cpu_idle_type idle,
2160 int *all_pinned, unsigned long *load_moved,
2161 int *this_best_prio, struct rq_iterator *iterator)
2162 {
2163 int pulled = 0, pinned = 0, skip_for_load;
2164 struct task_struct *p;
2165 long rem_load_move = max_load_move;
2166
2167 if (max_nr_move == 0 || max_load_move == 0)
2168 goto out;
2169
2170 pinned = 1;
2171
2172 /*
2173 * Start the load-balancing iterator:
2174 */
2175 p = iterator->start(iterator->arg);
2176 next:
2177 if (!p)
2178 goto out;
2179 /*
2180 * To help distribute high priority tasks accross CPUs we don't
2181 * skip a task if it will be the highest priority task (i.e. smallest
2182 * prio value) on its new queue regardless of its load weight
2183 */
2184 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2185 SCHED_LOAD_SCALE_FUZZ;
2186 if ((skip_for_load && p->prio >= *this_best_prio) ||
2187 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2188 p = iterator->next(iterator->arg);
2189 goto next;
2190 }
2191
2192 pull_task(busiest, p, this_rq, this_cpu);
2193 pulled++;
2194 rem_load_move -= p->se.load.weight;
2195
2196 /*
2197 * We only want to steal up to the prescribed number of tasks
2198 * and the prescribed amount of weighted load.
2199 */
2200 if (pulled < max_nr_move && rem_load_move > 0) {
2201 if (p->prio < *this_best_prio)
2202 *this_best_prio = p->prio;
2203 p = iterator->next(iterator->arg);
2204 goto next;
2205 }
2206 out:
2207 /*
2208 * Right now, this is the only place pull_task() is called,
2209 * so we can safely collect pull_task() stats here rather than
2210 * inside pull_task().
2211 */
2212 schedstat_add(sd, lb_gained[idle], pulled);
2213
2214 if (all_pinned)
2215 *all_pinned = pinned;
2216 *load_moved = max_load_move - rem_load_move;
2217 return pulled;
2218 }
2219
2220 /*
2221 * move_tasks tries to move up to max_load_move weighted load from busiest to
2222 * this_rq, as part of a balancing operation within domain "sd".
2223 * Returns 1 if successful and 0 otherwise.
2224 *
2225 * Called with both runqueues locked.
2226 */
2227 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2228 unsigned long max_load_move,
2229 struct sched_domain *sd, enum cpu_idle_type idle,
2230 int *all_pinned)
2231 {
2232 struct sched_class *class = sched_class_highest;
2233 unsigned long total_load_moved = 0;
2234 int this_best_prio = this_rq->curr->prio;
2235
2236 do {
2237 total_load_moved +=
2238 class->load_balance(this_rq, this_cpu, busiest,
2239 ULONG_MAX, max_load_move - total_load_moved,
2240 sd, idle, all_pinned, &this_best_prio);
2241 class = class->next;
2242 } while (class && max_load_move > total_load_moved);
2243
2244 return total_load_moved > 0;
2245 }
2246
2247 /*
2248 * move_one_task tries to move exactly one task from busiest to this_rq, as
2249 * part of active balancing operations within "domain".
2250 * Returns 1 if successful and 0 otherwise.
2251 *
2252 * Called with both runqueues locked.
2253 */
2254 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2255 struct sched_domain *sd, enum cpu_idle_type idle)
2256 {
2257 struct sched_class *class;
2258 int this_best_prio = MAX_PRIO;
2259
2260 for (class = sched_class_highest; class; class = class->next)
2261 if (class->load_balance(this_rq, this_cpu, busiest,
2262 1, ULONG_MAX, sd, idle, NULL,
2263 &this_best_prio))
2264 return 1;
2265
2266 return 0;
2267 }
2268
2269 /*
2270 * find_busiest_group finds and returns the busiest CPU group within the
2271 * domain. It calculates and returns the amount of weighted load which
2272 * should be moved to restore balance via the imbalance parameter.
2273 */
2274 static struct sched_group *
2275 find_busiest_group(struct sched_domain *sd, int this_cpu,
2276 unsigned long *imbalance, enum cpu_idle_type idle,
2277 int *sd_idle, cpumask_t *cpus, int *balance)
2278 {
2279 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2280 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2281 unsigned long max_pull;
2282 unsigned long busiest_load_per_task, busiest_nr_running;
2283 unsigned long this_load_per_task, this_nr_running;
2284 int load_idx;
2285 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2286 int power_savings_balance = 1;
2287 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2288 unsigned long min_nr_running = ULONG_MAX;
2289 struct sched_group *group_min = NULL, *group_leader = NULL;
2290 #endif
2291
2292 max_load = this_load = total_load = total_pwr = 0;
2293 busiest_load_per_task = busiest_nr_running = 0;
2294 this_load_per_task = this_nr_running = 0;
2295 if (idle == CPU_NOT_IDLE)
2296 load_idx = sd->busy_idx;
2297 else if (idle == CPU_NEWLY_IDLE)
2298 load_idx = sd->newidle_idx;
2299 else
2300 load_idx = sd->idle_idx;
2301
2302 do {
2303 unsigned long load, group_capacity;
2304 int local_group;
2305 int i;
2306 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2307 unsigned long sum_nr_running, sum_weighted_load;
2308
2309 local_group = cpu_isset(this_cpu, group->cpumask);
2310
2311 if (local_group)
2312 balance_cpu = first_cpu(group->cpumask);
2313
2314 /* Tally up the load of all CPUs in the group */
2315 sum_weighted_load = sum_nr_running = avg_load = 0;
2316
2317 for_each_cpu_mask(i, group->cpumask) {
2318 struct rq *rq;
2319
2320 if (!cpu_isset(i, *cpus))
2321 continue;
2322
2323 rq = cpu_rq(i);
2324
2325 if (*sd_idle && rq->nr_running)
2326 *sd_idle = 0;
2327
2328 /* Bias balancing toward cpus of our domain */
2329 if (local_group) {
2330 if (idle_cpu(i) && !first_idle_cpu) {
2331 first_idle_cpu = 1;
2332 balance_cpu = i;
2333 }
2334
2335 load = target_load(i, load_idx);
2336 } else
2337 load = source_load(i, load_idx);
2338
2339 avg_load += load;
2340 sum_nr_running += rq->nr_running;
2341 sum_weighted_load += weighted_cpuload(i);
2342 }
2343
2344 /*
2345 * First idle cpu or the first cpu(busiest) in this sched group
2346 * is eligible for doing load balancing at this and above
2347 * domains. In the newly idle case, we will allow all the cpu's
2348 * to do the newly idle load balance.
2349 */
2350 if (idle != CPU_NEWLY_IDLE && local_group &&
2351 balance_cpu != this_cpu && balance) {
2352 *balance = 0;
2353 goto ret;
2354 }
2355
2356 total_load += avg_load;
2357 total_pwr += group->__cpu_power;
2358
2359 /* Adjust by relative CPU power of the group */
2360 avg_load = sg_div_cpu_power(group,
2361 avg_load * SCHED_LOAD_SCALE);
2362
2363 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2364
2365 if (local_group) {
2366 this_load = avg_load;
2367 this = group;
2368 this_nr_running = sum_nr_running;
2369 this_load_per_task = sum_weighted_load;
2370 } else if (avg_load > max_load &&
2371 sum_nr_running > group_capacity) {
2372 max_load = avg_load;
2373 busiest = group;
2374 busiest_nr_running = sum_nr_running;
2375 busiest_load_per_task = sum_weighted_load;
2376 }
2377
2378 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2379 /*
2380 * Busy processors will not participate in power savings
2381 * balance.
2382 */
2383 if (idle == CPU_NOT_IDLE ||
2384 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2385 goto group_next;
2386
2387 /*
2388 * If the local group is idle or completely loaded
2389 * no need to do power savings balance at this domain
2390 */
2391 if (local_group && (this_nr_running >= group_capacity ||
2392 !this_nr_running))
2393 power_savings_balance = 0;
2394
2395 /*
2396 * If a group is already running at full capacity or idle,
2397 * don't include that group in power savings calculations
2398 */
2399 if (!power_savings_balance || sum_nr_running >= group_capacity
2400 || !sum_nr_running)
2401 goto group_next;
2402
2403 /*
2404 * Calculate the group which has the least non-idle load.
2405 * This is the group from where we need to pick up the load
2406 * for saving power
2407 */
2408 if ((sum_nr_running < min_nr_running) ||
2409 (sum_nr_running == min_nr_running &&
2410 first_cpu(group->cpumask) <
2411 first_cpu(group_min->cpumask))) {
2412 group_min = group;
2413 min_nr_running = sum_nr_running;
2414 min_load_per_task = sum_weighted_load /
2415 sum_nr_running;
2416 }
2417
2418 /*
2419 * Calculate the group which is almost near its
2420 * capacity but still has some space to pick up some load
2421 * from other group and save more power
2422 */
2423 if (sum_nr_running <= group_capacity - 1) {
2424 if (sum_nr_running > leader_nr_running ||
2425 (sum_nr_running == leader_nr_running &&
2426 first_cpu(group->cpumask) >
2427 first_cpu(group_leader->cpumask))) {
2428 group_leader = group;
2429 leader_nr_running = sum_nr_running;
2430 }
2431 }
2432 group_next:
2433 #endif
2434 group = group->next;
2435 } while (group != sd->groups);
2436
2437 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2438 goto out_balanced;
2439
2440 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2441
2442 if (this_load >= avg_load ||
2443 100*max_load <= sd->imbalance_pct*this_load)
2444 goto out_balanced;
2445
2446 busiest_load_per_task /= busiest_nr_running;
2447 /*
2448 * We're trying to get all the cpus to the average_load, so we don't
2449 * want to push ourselves above the average load, nor do we wish to
2450 * reduce the max loaded cpu below the average load, as either of these
2451 * actions would just result in more rebalancing later, and ping-pong
2452 * tasks around. Thus we look for the minimum possible imbalance.
2453 * Negative imbalances (*we* are more loaded than anyone else) will
2454 * be counted as no imbalance for these purposes -- we can't fix that
2455 * by pulling tasks to us. Be careful of negative numbers as they'll
2456 * appear as very large values with unsigned longs.
2457 */
2458 if (max_load <= busiest_load_per_task)
2459 goto out_balanced;
2460
2461 /*
2462 * In the presence of smp nice balancing, certain scenarios can have
2463 * max load less than avg load(as we skip the groups at or below
2464 * its cpu_power, while calculating max_load..)
2465 */
2466 if (max_load < avg_load) {
2467 *imbalance = 0;
2468 goto small_imbalance;
2469 }
2470
2471 /* Don't want to pull so many tasks that a group would go idle */
2472 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2473
2474 /* How much load to actually move to equalise the imbalance */
2475 *imbalance = min(max_pull * busiest->__cpu_power,
2476 (avg_load - this_load) * this->__cpu_power)
2477 / SCHED_LOAD_SCALE;
2478
2479 /*
2480 * if *imbalance is less than the average load per runnable task
2481 * there is no gaurantee that any tasks will be moved so we'll have
2482 * a think about bumping its value to force at least one task to be
2483 * moved
2484 */
2485 if (*imbalance < busiest_load_per_task) {
2486 unsigned long tmp, pwr_now, pwr_move;
2487 unsigned int imbn;
2488
2489 small_imbalance:
2490 pwr_move = pwr_now = 0;
2491 imbn = 2;
2492 if (this_nr_running) {
2493 this_load_per_task /= this_nr_running;
2494 if (busiest_load_per_task > this_load_per_task)
2495 imbn = 1;
2496 } else
2497 this_load_per_task = SCHED_LOAD_SCALE;
2498
2499 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2500 busiest_load_per_task * imbn) {
2501 *imbalance = busiest_load_per_task;
2502 return busiest;
2503 }
2504
2505 /*
2506 * OK, we don't have enough imbalance to justify moving tasks,
2507 * however we may be able to increase total CPU power used by
2508 * moving them.
2509 */
2510
2511 pwr_now += busiest->__cpu_power *
2512 min(busiest_load_per_task, max_load);
2513 pwr_now += this->__cpu_power *
2514 min(this_load_per_task, this_load);
2515 pwr_now /= SCHED_LOAD_SCALE;
2516
2517 /* Amount of load we'd subtract */
2518 tmp = sg_div_cpu_power(busiest,
2519 busiest_load_per_task * SCHED_LOAD_SCALE);
2520 if (max_load > tmp)
2521 pwr_move += busiest->__cpu_power *
2522 min(busiest_load_per_task, max_load - tmp);
2523
2524 /* Amount of load we'd add */
2525 if (max_load * busiest->__cpu_power <
2526 busiest_load_per_task * SCHED_LOAD_SCALE)
2527 tmp = sg_div_cpu_power(this,
2528 max_load * busiest->__cpu_power);
2529 else
2530 tmp = sg_div_cpu_power(this,
2531 busiest_load_per_task * SCHED_LOAD_SCALE);
2532 pwr_move += this->__cpu_power *
2533 min(this_load_per_task, this_load + tmp);
2534 pwr_move /= SCHED_LOAD_SCALE;
2535
2536 /* Move if we gain throughput */
2537 if (pwr_move > pwr_now)
2538 *imbalance = busiest_load_per_task;
2539 }
2540
2541 return busiest;
2542
2543 out_balanced:
2544 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2545 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2546 goto ret;
2547
2548 if (this == group_leader && group_leader != group_min) {
2549 *imbalance = min_load_per_task;
2550 return group_min;
2551 }
2552 #endif
2553 ret:
2554 *imbalance = 0;
2555 return NULL;
2556 }
2557
2558 /*
2559 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2560 */
2561 static struct rq *
2562 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2563 unsigned long imbalance, cpumask_t *cpus)
2564 {
2565 struct rq *busiest = NULL, *rq;
2566 unsigned long max_load = 0;
2567 int i;
2568
2569 for_each_cpu_mask(i, group->cpumask) {
2570 unsigned long wl;
2571
2572 if (!cpu_isset(i, *cpus))
2573 continue;
2574
2575 rq = cpu_rq(i);
2576 wl = weighted_cpuload(i);
2577
2578 if (rq->nr_running == 1 && wl > imbalance)
2579 continue;
2580
2581 if (wl > max_load) {
2582 max_load = wl;
2583 busiest = rq;
2584 }
2585 }
2586
2587 return busiest;
2588 }
2589
2590 /*
2591 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2592 * so long as it is large enough.
2593 */
2594 #define MAX_PINNED_INTERVAL 512
2595
2596 /*
2597 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2598 * tasks if there is an imbalance.
2599 */
2600 static int load_balance(int this_cpu, struct rq *this_rq,
2601 struct sched_domain *sd, enum cpu_idle_type idle,
2602 int *balance)
2603 {
2604 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2605 struct sched_group *group;
2606 unsigned long imbalance;
2607 struct rq *busiest;
2608 cpumask_t cpus = CPU_MASK_ALL;
2609 unsigned long flags;
2610
2611 /*
2612 * When power savings policy is enabled for the parent domain, idle
2613 * sibling can pick up load irrespective of busy siblings. In this case,
2614 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2615 * portraying it as CPU_NOT_IDLE.
2616 */
2617 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2618 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2619 sd_idle = 1;
2620
2621 schedstat_inc(sd, lb_cnt[idle]);
2622
2623 redo:
2624 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2625 &cpus, balance);
2626
2627 if (*balance == 0)
2628 goto out_balanced;
2629
2630 if (!group) {
2631 schedstat_inc(sd, lb_nobusyg[idle]);
2632 goto out_balanced;
2633 }
2634
2635 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2636 if (!busiest) {
2637 schedstat_inc(sd, lb_nobusyq[idle]);
2638 goto out_balanced;
2639 }
2640
2641 BUG_ON(busiest == this_rq);
2642
2643 schedstat_add(sd, lb_imbalance[idle], imbalance);
2644
2645 ld_moved = 0;
2646 if (busiest->nr_running > 1) {
2647 /*
2648 * Attempt to move tasks. If find_busiest_group has found
2649 * an imbalance but busiest->nr_running <= 1, the group is
2650 * still unbalanced. ld_moved simply stays zero, so it is
2651 * correctly treated as an imbalance.
2652 */
2653 local_irq_save(flags);
2654 double_rq_lock(this_rq, busiest);
2655 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2656 imbalance, sd, idle, &all_pinned);
2657 double_rq_unlock(this_rq, busiest);
2658 local_irq_restore(flags);
2659
2660 /*
2661 * some other cpu did the load balance for us.
2662 */
2663 if (ld_moved && this_cpu != smp_processor_id())
2664 resched_cpu(this_cpu);
2665
2666 /* All tasks on this runqueue were pinned by CPU affinity */
2667 if (unlikely(all_pinned)) {
2668 cpu_clear(cpu_of(busiest), cpus);
2669 if (!cpus_empty(cpus))
2670 goto redo;
2671 goto out_balanced;
2672 }
2673 }
2674
2675 if (!ld_moved) {
2676 schedstat_inc(sd, lb_failed[idle]);
2677 sd->nr_balance_failed++;
2678
2679 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2680
2681 spin_lock_irqsave(&busiest->lock, flags);
2682
2683 /* don't kick the migration_thread, if the curr
2684 * task on busiest cpu can't be moved to this_cpu
2685 */
2686 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2687 spin_unlock_irqrestore(&busiest->lock, flags);
2688 all_pinned = 1;
2689 goto out_one_pinned;
2690 }
2691
2692 if (!busiest->active_balance) {
2693 busiest->active_balance = 1;
2694 busiest->push_cpu = this_cpu;
2695 active_balance = 1;
2696 }
2697 spin_unlock_irqrestore(&busiest->lock, flags);
2698 if (active_balance)
2699 wake_up_process(busiest->migration_thread);
2700
2701 /*
2702 * We've kicked active balancing, reset the failure
2703 * counter.
2704 */
2705 sd->nr_balance_failed = sd->cache_nice_tries+1;
2706 }
2707 } else
2708 sd->nr_balance_failed = 0;
2709
2710 if (likely(!active_balance)) {
2711 /* We were unbalanced, so reset the balancing interval */
2712 sd->balance_interval = sd->min_interval;
2713 } else {
2714 /*
2715 * If we've begun active balancing, start to back off. This
2716 * case may not be covered by the all_pinned logic if there
2717 * is only 1 task on the busy runqueue (because we don't call
2718 * move_tasks).
2719 */
2720 if (sd->balance_interval < sd->max_interval)
2721 sd->balance_interval *= 2;
2722 }
2723
2724 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2725 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2726 return -1;
2727 return ld_moved;
2728
2729 out_balanced:
2730 schedstat_inc(sd, lb_balanced[idle]);
2731
2732 sd->nr_balance_failed = 0;
2733
2734 out_one_pinned:
2735 /* tune up the balancing interval */
2736 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2737 (sd->balance_interval < sd->max_interval))
2738 sd->balance_interval *= 2;
2739
2740 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2742 return -1;
2743 return 0;
2744 }
2745
2746 /*
2747 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2748 * tasks if there is an imbalance.
2749 *
2750 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2751 * this_rq is locked.
2752 */
2753 static int
2754 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2755 {
2756 struct sched_group *group;
2757 struct rq *busiest = NULL;
2758 unsigned long imbalance;
2759 int ld_moved = 0;
2760 int sd_idle = 0;
2761 int all_pinned = 0;
2762 cpumask_t cpus = CPU_MASK_ALL;
2763
2764 /*
2765 * When power savings policy is enabled for the parent domain, idle
2766 * sibling can pick up load irrespective of busy siblings. In this case,
2767 * let the state of idle sibling percolate up as IDLE, instead of
2768 * portraying it as CPU_NOT_IDLE.
2769 */
2770 if (sd->flags & SD_SHARE_CPUPOWER &&
2771 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2772 sd_idle = 1;
2773
2774 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2775 redo:
2776 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2777 &sd_idle, &cpus, NULL);
2778 if (!group) {
2779 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2780 goto out_balanced;
2781 }
2782
2783 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2784 &cpus);
2785 if (!busiest) {
2786 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2787 goto out_balanced;
2788 }
2789
2790 BUG_ON(busiest == this_rq);
2791
2792 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2793
2794 ld_moved = 0;
2795 if (busiest->nr_running > 1) {
2796 /* Attempt to move tasks */
2797 double_lock_balance(this_rq, busiest);
2798 /* this_rq->clock is already updated */
2799 update_rq_clock(busiest);
2800 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2801 imbalance, sd, CPU_NEWLY_IDLE,
2802 &all_pinned);
2803 spin_unlock(&busiest->lock);
2804
2805 if (unlikely(all_pinned)) {
2806 cpu_clear(cpu_of(busiest), cpus);
2807 if (!cpus_empty(cpus))
2808 goto redo;
2809 }
2810 }
2811
2812 if (!ld_moved) {
2813 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return -1;
2817 } else
2818 sd->nr_balance_failed = 0;
2819
2820 return ld_moved;
2821
2822 out_balanced:
2823 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 return -1;
2827 sd->nr_balance_failed = 0;
2828
2829 return 0;
2830 }
2831
2832 /*
2833 * idle_balance is called by schedule() if this_cpu is about to become
2834 * idle. Attempts to pull tasks from other CPUs.
2835 */
2836 static void idle_balance(int this_cpu, struct rq *this_rq)
2837 {
2838 struct sched_domain *sd;
2839 int pulled_task = -1;
2840 unsigned long next_balance = jiffies + HZ;
2841
2842 for_each_domain(this_cpu, sd) {
2843 unsigned long interval;
2844
2845 if (!(sd->flags & SD_LOAD_BALANCE))
2846 continue;
2847
2848 if (sd->flags & SD_BALANCE_NEWIDLE)
2849 /* If we've pulled tasks over stop searching: */
2850 pulled_task = load_balance_newidle(this_cpu,
2851 this_rq, sd);
2852
2853 interval = msecs_to_jiffies(sd->balance_interval);
2854 if (time_after(next_balance, sd->last_balance + interval))
2855 next_balance = sd->last_balance + interval;
2856 if (pulled_task)
2857 break;
2858 }
2859 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2860 /*
2861 * We are going idle. next_balance may be set based on
2862 * a busy processor. So reset next_balance.
2863 */
2864 this_rq->next_balance = next_balance;
2865 }
2866 }
2867
2868 /*
2869 * active_load_balance is run by migration threads. It pushes running tasks
2870 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2871 * running on each physical CPU where possible, and avoids physical /
2872 * logical imbalances.
2873 *
2874 * Called with busiest_rq locked.
2875 */
2876 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2877 {
2878 int target_cpu = busiest_rq->push_cpu;
2879 struct sched_domain *sd;
2880 struct rq *target_rq;
2881
2882 /* Is there any task to move? */
2883 if (busiest_rq->nr_running <= 1)
2884 return;
2885
2886 target_rq = cpu_rq(target_cpu);
2887
2888 /*
2889 * This condition is "impossible", if it occurs
2890 * we need to fix it. Originally reported by
2891 * Bjorn Helgaas on a 128-cpu setup.
2892 */
2893 BUG_ON(busiest_rq == target_rq);
2894
2895 /* move a task from busiest_rq to target_rq */
2896 double_lock_balance(busiest_rq, target_rq);
2897 update_rq_clock(busiest_rq);
2898 update_rq_clock(target_rq);
2899
2900 /* Search for an sd spanning us and the target CPU. */
2901 for_each_domain(target_cpu, sd) {
2902 if ((sd->flags & SD_LOAD_BALANCE) &&
2903 cpu_isset(busiest_cpu, sd->span))
2904 break;
2905 }
2906
2907 if (likely(sd)) {
2908 schedstat_inc(sd, alb_cnt);
2909
2910 if (move_one_task(target_rq, target_cpu, busiest_rq,
2911 sd, CPU_IDLE))
2912 schedstat_inc(sd, alb_pushed);
2913 else
2914 schedstat_inc(sd, alb_failed);
2915 }
2916 spin_unlock(&target_rq->lock);
2917 }
2918
2919 #ifdef CONFIG_NO_HZ
2920 static struct {
2921 atomic_t load_balancer;
2922 cpumask_t cpu_mask;
2923 } nohz ____cacheline_aligned = {
2924 .load_balancer = ATOMIC_INIT(-1),
2925 .cpu_mask = CPU_MASK_NONE,
2926 };
2927
2928 /*
2929 * This routine will try to nominate the ilb (idle load balancing)
2930 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2931 * load balancing on behalf of all those cpus. If all the cpus in the system
2932 * go into this tickless mode, then there will be no ilb owner (as there is
2933 * no need for one) and all the cpus will sleep till the next wakeup event
2934 * arrives...
2935 *
2936 * For the ilb owner, tick is not stopped. And this tick will be used
2937 * for idle load balancing. ilb owner will still be part of
2938 * nohz.cpu_mask..
2939 *
2940 * While stopping the tick, this cpu will become the ilb owner if there
2941 * is no other owner. And will be the owner till that cpu becomes busy
2942 * or if all cpus in the system stop their ticks at which point
2943 * there is no need for ilb owner.
2944 *
2945 * When the ilb owner becomes busy, it nominates another owner, during the
2946 * next busy scheduler_tick()
2947 */
2948 int select_nohz_load_balancer(int stop_tick)
2949 {
2950 int cpu = smp_processor_id();
2951
2952 if (stop_tick) {
2953 cpu_set(cpu, nohz.cpu_mask);
2954 cpu_rq(cpu)->in_nohz_recently = 1;
2955
2956 /*
2957 * If we are going offline and still the leader, give up!
2958 */
2959 if (cpu_is_offline(cpu) &&
2960 atomic_read(&nohz.load_balancer) == cpu) {
2961 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2962 BUG();
2963 return 0;
2964 }
2965
2966 /* time for ilb owner also to sleep */
2967 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2968 if (atomic_read(&nohz.load_balancer) == cpu)
2969 atomic_set(&nohz.load_balancer, -1);
2970 return 0;
2971 }
2972
2973 if (atomic_read(&nohz.load_balancer) == -1) {
2974 /* make me the ilb owner */
2975 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2976 return 1;
2977 } else if (atomic_read(&nohz.load_balancer) == cpu)
2978 return 1;
2979 } else {
2980 if (!cpu_isset(cpu, nohz.cpu_mask))
2981 return 0;
2982
2983 cpu_clear(cpu, nohz.cpu_mask);
2984
2985 if (atomic_read(&nohz.load_balancer) == cpu)
2986 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2987 BUG();
2988 }
2989 return 0;
2990 }
2991 #endif
2992
2993 static DEFINE_SPINLOCK(balancing);
2994
2995 /*
2996 * It checks each scheduling domain to see if it is due to be balanced,
2997 * and initiates a balancing operation if so.
2998 *
2999 * Balancing parameters are set up in arch_init_sched_domains.
3000 */
3001 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3002 {
3003 int balance = 1;
3004 struct rq *rq = cpu_rq(cpu);
3005 unsigned long interval;
3006 struct sched_domain *sd;
3007 /* Earliest time when we have to do rebalance again */
3008 unsigned long next_balance = jiffies + 60*HZ;
3009 int update_next_balance = 0;
3010
3011 for_each_domain(cpu, sd) {
3012 if (!(sd->flags & SD_LOAD_BALANCE))
3013 continue;
3014
3015 interval = sd->balance_interval;
3016 if (idle != CPU_IDLE)
3017 interval *= sd->busy_factor;
3018
3019 /* scale ms to jiffies */
3020 interval = msecs_to_jiffies(interval);
3021 if (unlikely(!interval))
3022 interval = 1;
3023 if (interval > HZ*NR_CPUS/10)
3024 interval = HZ*NR_CPUS/10;
3025
3026
3027 if (sd->flags & SD_SERIALIZE) {
3028 if (!spin_trylock(&balancing))
3029 goto out;
3030 }
3031
3032 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3033 if (load_balance(cpu, rq, sd, idle, &balance)) {
3034 /*
3035 * We've pulled tasks over so either we're no
3036 * longer idle, or one of our SMT siblings is
3037 * not idle.
3038 */
3039 idle = CPU_NOT_IDLE;
3040 }
3041 sd->last_balance = jiffies;
3042 }
3043 if (sd->flags & SD_SERIALIZE)
3044 spin_unlock(&balancing);
3045 out:
3046 if (time_after(next_balance, sd->last_balance + interval)) {
3047 next_balance = sd->last_balance + interval;
3048 update_next_balance = 1;
3049 }
3050
3051 /*
3052 * Stop the load balance at this level. There is another
3053 * CPU in our sched group which is doing load balancing more
3054 * actively.
3055 */
3056 if (!balance)
3057 break;
3058 }
3059
3060 /*
3061 * next_balance will be updated only when there is a need.
3062 * When the cpu is attached to null domain for ex, it will not be
3063 * updated.
3064 */
3065 if (likely(update_next_balance))
3066 rq->next_balance = next_balance;
3067 }
3068
3069 /*
3070 * run_rebalance_domains is triggered when needed from the scheduler tick.
3071 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3072 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3073 */
3074 static void run_rebalance_domains(struct softirq_action *h)
3075 {
3076 int this_cpu = smp_processor_id();
3077 struct rq *this_rq = cpu_rq(this_cpu);
3078 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3079 CPU_IDLE : CPU_NOT_IDLE;
3080
3081 rebalance_domains(this_cpu, idle);
3082
3083 #ifdef CONFIG_NO_HZ
3084 /*
3085 * If this cpu is the owner for idle load balancing, then do the
3086 * balancing on behalf of the other idle cpus whose ticks are
3087 * stopped.
3088 */
3089 if (this_rq->idle_at_tick &&
3090 atomic_read(&nohz.load_balancer) == this_cpu) {
3091 cpumask_t cpus = nohz.cpu_mask;
3092 struct rq *rq;
3093 int balance_cpu;
3094
3095 cpu_clear(this_cpu, cpus);
3096 for_each_cpu_mask(balance_cpu, cpus) {
3097 /*
3098 * If this cpu gets work to do, stop the load balancing
3099 * work being done for other cpus. Next load
3100 * balancing owner will pick it up.
3101 */
3102 if (need_resched())
3103 break;
3104
3105 rebalance_domains(balance_cpu, CPU_IDLE);
3106
3107 rq = cpu_rq(balance_cpu);
3108 if (time_after(this_rq->next_balance, rq->next_balance))
3109 this_rq->next_balance = rq->next_balance;
3110 }
3111 }
3112 #endif
3113 }
3114
3115 /*
3116 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3117 *
3118 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3119 * idle load balancing owner or decide to stop the periodic load balancing,
3120 * if the whole system is idle.
3121 */
3122 static inline void trigger_load_balance(struct rq *rq, int cpu)
3123 {
3124 #ifdef CONFIG_NO_HZ
3125 /*
3126 * If we were in the nohz mode recently and busy at the current
3127 * scheduler tick, then check if we need to nominate new idle
3128 * load balancer.
3129 */
3130 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3131 rq->in_nohz_recently = 0;
3132
3133 if (atomic_read(&nohz.load_balancer) == cpu) {
3134 cpu_clear(cpu, nohz.cpu_mask);
3135 atomic_set(&nohz.load_balancer, -1);
3136 }
3137
3138 if (atomic_read(&nohz.load_balancer) == -1) {
3139 /*
3140 * simple selection for now: Nominate the
3141 * first cpu in the nohz list to be the next
3142 * ilb owner.
3143 *
3144 * TBD: Traverse the sched domains and nominate
3145 * the nearest cpu in the nohz.cpu_mask.
3146 */
3147 int ilb = first_cpu(nohz.cpu_mask);
3148
3149 if (ilb != NR_CPUS)
3150 resched_cpu(ilb);
3151 }
3152 }
3153
3154 /*
3155 * If this cpu is idle and doing idle load balancing for all the
3156 * cpus with ticks stopped, is it time for that to stop?
3157 */
3158 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3159 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3160 resched_cpu(cpu);
3161 return;
3162 }
3163
3164 /*
3165 * If this cpu is idle and the idle load balancing is done by
3166 * someone else, then no need raise the SCHED_SOFTIRQ
3167 */
3168 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3169 cpu_isset(cpu, nohz.cpu_mask))
3170 return;
3171 #endif
3172 if (time_after_eq(jiffies, rq->next_balance))
3173 raise_softirq(SCHED_SOFTIRQ);
3174 }
3175
3176 #else /* CONFIG_SMP */
3177
3178 /*
3179 * on UP we do not need to balance between CPUs:
3180 */
3181 static inline void idle_balance(int cpu, struct rq *rq)
3182 {
3183 }
3184
3185 /* Avoid "used but not defined" warning on UP */
3186 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3187 unsigned long max_nr_move, unsigned long max_load_move,
3188 struct sched_domain *sd, enum cpu_idle_type idle,
3189 int *all_pinned, unsigned long *load_moved,
3190 int *this_best_prio, struct rq_iterator *iterator)
3191 {
3192 *load_moved = 0;
3193
3194 return 0;
3195 }
3196
3197 #endif
3198
3199 DEFINE_PER_CPU(struct kernel_stat, kstat);
3200
3201 EXPORT_PER_CPU_SYMBOL(kstat);
3202
3203 /*
3204 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3205 * that have not yet been banked in case the task is currently running.
3206 */
3207 unsigned long long task_sched_runtime(struct task_struct *p)
3208 {
3209 unsigned long flags;
3210 u64 ns, delta_exec;
3211 struct rq *rq;
3212
3213 rq = task_rq_lock(p, &flags);
3214 ns = p->se.sum_exec_runtime;
3215 if (rq->curr == p) {
3216 update_rq_clock(rq);
3217 delta_exec = rq->clock - p->se.exec_start;
3218 if ((s64)delta_exec > 0)
3219 ns += delta_exec;
3220 }
3221 task_rq_unlock(rq, &flags);
3222
3223 return ns;
3224 }
3225
3226 /*
3227 * Account user cpu time to a process.
3228 * @p: the process that the cpu time gets accounted to
3229 * @hardirq_offset: the offset to subtract from hardirq_count()
3230 * @cputime: the cpu time spent in user space since the last update
3231 */
3232 void account_user_time(struct task_struct *p, cputime_t cputime)
3233 {
3234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3235 cputime64_t tmp;
3236
3237 p->utime = cputime_add(p->utime, cputime);
3238
3239 /* Add user time to cpustat. */
3240 tmp = cputime_to_cputime64(cputime);
3241 if (TASK_NICE(p) > 0)
3242 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3243 else
3244 cpustat->user = cputime64_add(cpustat->user, tmp);
3245 }
3246
3247 /*
3248 * Account system cpu time to a process.
3249 * @p: the process that the cpu time gets accounted to
3250 * @hardirq_offset: the offset to subtract from hardirq_count()
3251 * @cputime: the cpu time spent in kernel space since the last update
3252 */
3253 void account_system_time(struct task_struct *p, int hardirq_offset,
3254 cputime_t cputime)
3255 {
3256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 struct rq *rq = this_rq();
3258 cputime64_t tmp;
3259
3260 p->stime = cputime_add(p->stime, cputime);
3261
3262 /* Add system time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime);
3264 if (hardirq_count() - hardirq_offset)
3265 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3266 else if (softirq_count())
3267 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3268 else if (p != rq->idle)
3269 cpustat->system = cputime64_add(cpustat->system, tmp);
3270 else if (atomic_read(&rq->nr_iowait) > 0)
3271 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3272 else
3273 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3274 /* Account for system time used */
3275 acct_update_integrals(p);
3276 }
3277
3278 /*
3279 * Account for involuntary wait time.
3280 * @p: the process from which the cpu time has been stolen
3281 * @steal: the cpu time spent in involuntary wait
3282 */
3283 void account_steal_time(struct task_struct *p, cputime_t steal)
3284 {
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286 cputime64_t tmp = cputime_to_cputime64(steal);
3287 struct rq *rq = this_rq();
3288
3289 if (p == rq->idle) {
3290 p->stime = cputime_add(p->stime, steal);
3291 if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3295 } else
3296 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3297 }
3298
3299 /*
3300 * This function gets called by the timer code, with HZ frequency.
3301 * We call it with interrupts disabled.
3302 *
3303 * It also gets called by the fork code, when changing the parent's
3304 * timeslices.
3305 */
3306 void scheduler_tick(void)
3307 {
3308 int cpu = smp_processor_id();
3309 struct rq *rq = cpu_rq(cpu);
3310 struct task_struct *curr = rq->curr;
3311 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3312
3313 spin_lock(&rq->lock);
3314 __update_rq_clock(rq);
3315 /*
3316 * Let rq->clock advance by at least TICK_NSEC:
3317 */
3318 if (unlikely(rq->clock < next_tick))
3319 rq->clock = next_tick;
3320 rq->tick_timestamp = rq->clock;
3321 update_cpu_load(rq);
3322 if (curr != rq->idle) /* FIXME: needed? */
3323 curr->sched_class->task_tick(rq, curr);
3324 spin_unlock(&rq->lock);
3325
3326 #ifdef CONFIG_SMP
3327 rq->idle_at_tick = idle_cpu(cpu);
3328 trigger_load_balance(rq, cpu);
3329 #endif
3330 }
3331
3332 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3333
3334 void fastcall add_preempt_count(int val)
3335 {
3336 /*
3337 * Underflow?
3338 */
3339 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3340 return;
3341 preempt_count() += val;
3342 /*
3343 * Spinlock count overflowing soon?
3344 */
3345 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3346 PREEMPT_MASK - 10);
3347 }
3348 EXPORT_SYMBOL(add_preempt_count);
3349
3350 void fastcall sub_preempt_count(int val)
3351 {
3352 /*
3353 * Underflow?
3354 */
3355 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3356 return;
3357 /*
3358 * Is the spinlock portion underflowing?
3359 */
3360 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3361 !(preempt_count() & PREEMPT_MASK)))
3362 return;
3363
3364 preempt_count() -= val;
3365 }
3366 EXPORT_SYMBOL(sub_preempt_count);
3367
3368 #endif
3369
3370 /*
3371 * Print scheduling while atomic bug:
3372 */
3373 static noinline void __schedule_bug(struct task_struct *prev)
3374 {
3375 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3376 prev->comm, preempt_count(), prev->pid);
3377 debug_show_held_locks(prev);
3378 if (irqs_disabled())
3379 print_irqtrace_events(prev);
3380 dump_stack();
3381 }
3382
3383 /*
3384 * Various schedule()-time debugging checks and statistics:
3385 */
3386 static inline void schedule_debug(struct task_struct *prev)
3387 {
3388 /*
3389 * Test if we are atomic. Since do_exit() needs to call into
3390 * schedule() atomically, we ignore that path for now.
3391 * Otherwise, whine if we are scheduling when we should not be.
3392 */
3393 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3394 __schedule_bug(prev);
3395
3396 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3397
3398 schedstat_inc(this_rq(), sched_cnt);
3399 }
3400
3401 /*
3402 * Pick up the highest-prio task:
3403 */
3404 static inline struct task_struct *
3405 pick_next_task(struct rq *rq, struct task_struct *prev)
3406 {
3407 struct sched_class *class;
3408 struct task_struct *p;
3409
3410 /*
3411 * Optimization: we know that if all tasks are in
3412 * the fair class we can call that function directly:
3413 */
3414 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3415 p = fair_sched_class.pick_next_task(rq);
3416 if (likely(p))
3417 return p;
3418 }
3419
3420 class = sched_class_highest;
3421 for ( ; ; ) {
3422 p = class->pick_next_task(rq);
3423 if (p)
3424 return p;
3425 /*
3426 * Will never be NULL as the idle class always
3427 * returns a non-NULL p:
3428 */
3429 class = class->next;
3430 }
3431 }
3432
3433 /*
3434 * schedule() is the main scheduler function.
3435 */
3436 asmlinkage void __sched schedule(void)
3437 {
3438 struct task_struct *prev, *next;
3439 long *switch_count;
3440 struct rq *rq;
3441 int cpu;
3442
3443 need_resched:
3444 preempt_disable();
3445 cpu = smp_processor_id();
3446 rq = cpu_rq(cpu);
3447 rcu_qsctr_inc(cpu);
3448 prev = rq->curr;
3449 switch_count = &prev->nivcsw;
3450
3451 release_kernel_lock(prev);
3452 need_resched_nonpreemptible:
3453
3454 schedule_debug(prev);
3455
3456 spin_lock_irq(&rq->lock);
3457 clear_tsk_need_resched(prev);
3458 __update_rq_clock(rq);
3459
3460 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3461 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3462 unlikely(signal_pending(prev)))) {
3463 prev->state = TASK_RUNNING;
3464 } else {
3465 deactivate_task(rq, prev, 1);
3466 }
3467 switch_count = &prev->nvcsw;
3468 }
3469
3470 if (unlikely(!rq->nr_running))
3471 idle_balance(cpu, rq);
3472
3473 prev->sched_class->put_prev_task(rq, prev);
3474 next = pick_next_task(rq, prev);
3475
3476 sched_info_switch(prev, next);
3477
3478 if (likely(prev != next)) {
3479 rq->nr_switches++;
3480 rq->curr = next;
3481 ++*switch_count;
3482
3483 context_switch(rq, prev, next); /* unlocks the rq */
3484 } else
3485 spin_unlock_irq(&rq->lock);
3486
3487 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3488 cpu = smp_processor_id();
3489 rq = cpu_rq(cpu);
3490 goto need_resched_nonpreemptible;
3491 }
3492 preempt_enable_no_resched();
3493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3494 goto need_resched;
3495 }
3496 EXPORT_SYMBOL(schedule);
3497
3498 #ifdef CONFIG_PREEMPT
3499 /*
3500 * this is the entry point to schedule() from in-kernel preemption
3501 * off of preempt_enable. Kernel preemptions off return from interrupt
3502 * occur there and call schedule directly.
3503 */
3504 asmlinkage void __sched preempt_schedule(void)
3505 {
3506 struct thread_info *ti = current_thread_info();
3507 #ifdef CONFIG_PREEMPT_BKL
3508 struct task_struct *task = current;
3509 int saved_lock_depth;
3510 #endif
3511 /*
3512 * If there is a non-zero preempt_count or interrupts are disabled,
3513 * we do not want to preempt the current task. Just return..
3514 */
3515 if (likely(ti->preempt_count || irqs_disabled()))
3516 return;
3517
3518 need_resched:
3519 add_preempt_count(PREEMPT_ACTIVE);
3520 /*
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3524 */
3525 #ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth = task->lock_depth;
3527 task->lock_depth = -1;
3528 #endif
3529 schedule();
3530 #ifdef CONFIG_PREEMPT_BKL
3531 task->lock_depth = saved_lock_depth;
3532 #endif
3533 sub_preempt_count(PREEMPT_ACTIVE);
3534
3535 /* we could miss a preemption opportunity between schedule and now */
3536 barrier();
3537 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3538 goto need_resched;
3539 }
3540 EXPORT_SYMBOL(preempt_schedule);
3541
3542 /*
3543 * this is the entry point to schedule() from kernel preemption
3544 * off of irq context.
3545 * Note, that this is called and return with irqs disabled. This will
3546 * protect us against recursive calling from irq.
3547 */
3548 asmlinkage void __sched preempt_schedule_irq(void)
3549 {
3550 struct thread_info *ti = current_thread_info();
3551 #ifdef CONFIG_PREEMPT_BKL
3552 struct task_struct *task = current;
3553 int saved_lock_depth;
3554 #endif
3555 /* Catch callers which need to be fixed */
3556 BUG_ON(ti->preempt_count || !irqs_disabled());
3557
3558 need_resched:
3559 add_preempt_count(PREEMPT_ACTIVE);
3560 /*
3561 * We keep the big kernel semaphore locked, but we
3562 * clear ->lock_depth so that schedule() doesnt
3563 * auto-release the semaphore:
3564 */
3565 #ifdef CONFIG_PREEMPT_BKL
3566 saved_lock_depth = task->lock_depth;
3567 task->lock_depth = -1;
3568 #endif
3569 local_irq_enable();
3570 schedule();
3571 local_irq_disable();
3572 #ifdef CONFIG_PREEMPT_BKL
3573 task->lock_depth = saved_lock_depth;
3574 #endif
3575 sub_preempt_count(PREEMPT_ACTIVE);
3576
3577 /* we could miss a preemption opportunity between schedule and now */
3578 barrier();
3579 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3580 goto need_resched;
3581 }
3582
3583 #endif /* CONFIG_PREEMPT */
3584
3585 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3586 void *key)
3587 {
3588 return try_to_wake_up(curr->private, mode, sync);
3589 }
3590 EXPORT_SYMBOL(default_wake_function);
3591
3592 /*
3593 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3594 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3595 * number) then we wake all the non-exclusive tasks and one exclusive task.
3596 *
3597 * There are circumstances in which we can try to wake a task which has already
3598 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3599 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3600 */
3601 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3602 int nr_exclusive, int sync, void *key)
3603 {
3604 wait_queue_t *curr, *next;
3605
3606 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3607 unsigned flags = curr->flags;
3608
3609 if (curr->func(curr, mode, sync, key) &&
3610 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3611 break;
3612 }
3613 }
3614
3615 /**
3616 * __wake_up - wake up threads blocked on a waitqueue.
3617 * @q: the waitqueue
3618 * @mode: which threads
3619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3620 * @key: is directly passed to the wakeup function
3621 */
3622 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3623 int nr_exclusive, void *key)
3624 {
3625 unsigned long flags;
3626
3627 spin_lock_irqsave(&q->lock, flags);
3628 __wake_up_common(q, mode, nr_exclusive, 0, key);
3629 spin_unlock_irqrestore(&q->lock, flags);
3630 }
3631 EXPORT_SYMBOL(__wake_up);
3632
3633 /*
3634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3635 */
3636 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3637 {
3638 __wake_up_common(q, mode, 1, 0, NULL);
3639 }
3640
3641 /**
3642 * __wake_up_sync - wake up threads blocked on a waitqueue.
3643 * @q: the waitqueue
3644 * @mode: which threads
3645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3646 *
3647 * The sync wakeup differs that the waker knows that it will schedule
3648 * away soon, so while the target thread will be woken up, it will not
3649 * be migrated to another CPU - ie. the two threads are 'synchronized'
3650 * with each other. This can prevent needless bouncing between CPUs.
3651 *
3652 * On UP it can prevent extra preemption.
3653 */
3654 void fastcall
3655 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3656 {
3657 unsigned long flags;
3658 int sync = 1;
3659
3660 if (unlikely(!q))
3661 return;
3662
3663 if (unlikely(!nr_exclusive))
3664 sync = 0;
3665
3666 spin_lock_irqsave(&q->lock, flags);
3667 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3668 spin_unlock_irqrestore(&q->lock, flags);
3669 }
3670 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3671
3672 void fastcall complete(struct completion *x)
3673 {
3674 unsigned long flags;
3675
3676 spin_lock_irqsave(&x->wait.lock, flags);
3677 x->done++;
3678 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3679 1, 0, NULL);
3680 spin_unlock_irqrestore(&x->wait.lock, flags);
3681 }
3682 EXPORT_SYMBOL(complete);
3683
3684 void fastcall complete_all(struct completion *x)
3685 {
3686 unsigned long flags;
3687
3688 spin_lock_irqsave(&x->wait.lock, flags);
3689 x->done += UINT_MAX/2;
3690 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3691 0, 0, NULL);
3692 spin_unlock_irqrestore(&x->wait.lock, flags);
3693 }
3694 EXPORT_SYMBOL(complete_all);
3695
3696 void fastcall __sched wait_for_completion(struct completion *x)
3697 {
3698 might_sleep();
3699
3700 spin_lock_irq(&x->wait.lock);
3701 if (!x->done) {
3702 DECLARE_WAITQUEUE(wait, current);
3703
3704 wait.flags |= WQ_FLAG_EXCLUSIVE;
3705 __add_wait_queue_tail(&x->wait, &wait);
3706 do {
3707 __set_current_state(TASK_UNINTERRUPTIBLE);
3708 spin_unlock_irq(&x->wait.lock);
3709 schedule();
3710 spin_lock_irq(&x->wait.lock);
3711 } while (!x->done);
3712 __remove_wait_queue(&x->wait, &wait);
3713 }
3714 x->done--;
3715 spin_unlock_irq(&x->wait.lock);
3716 }
3717 EXPORT_SYMBOL(wait_for_completion);
3718
3719 unsigned long fastcall __sched
3720 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3721 {
3722 might_sleep();
3723
3724 spin_lock_irq(&x->wait.lock);
3725 if (!x->done) {
3726 DECLARE_WAITQUEUE(wait, current);
3727
3728 wait.flags |= WQ_FLAG_EXCLUSIVE;
3729 __add_wait_queue_tail(&x->wait, &wait);
3730 do {
3731 __set_current_state(TASK_UNINTERRUPTIBLE);
3732 spin_unlock_irq(&x->wait.lock);
3733 timeout = schedule_timeout(timeout);
3734 spin_lock_irq(&x->wait.lock);
3735 if (!timeout) {
3736 __remove_wait_queue(&x->wait, &wait);
3737 goto out;
3738 }
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743 out:
3744 spin_unlock_irq(&x->wait.lock);
3745 return timeout;
3746 }
3747 EXPORT_SYMBOL(wait_for_completion_timeout);
3748
3749 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3750 {
3751 int ret = 0;
3752
3753 might_sleep();
3754
3755 spin_lock_irq(&x->wait.lock);
3756 if (!x->done) {
3757 DECLARE_WAITQUEUE(wait, current);
3758
3759 wait.flags |= WQ_FLAG_EXCLUSIVE;
3760 __add_wait_queue_tail(&x->wait, &wait);
3761 do {
3762 if (signal_pending(current)) {
3763 ret = -ERESTARTSYS;
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 __set_current_state(TASK_INTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 schedule();
3770 spin_lock_irq(&x->wait.lock);
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3773 }
3774 x->done--;
3775 out:
3776 spin_unlock_irq(&x->wait.lock);
3777
3778 return ret;
3779 }
3780 EXPORT_SYMBOL(wait_for_completion_interruptible);
3781
3782 unsigned long fastcall __sched
3783 wait_for_completion_interruptible_timeout(struct completion *x,
3784 unsigned long timeout)
3785 {
3786 might_sleep();
3787
3788 spin_lock_irq(&x->wait.lock);
3789 if (!x->done) {
3790 DECLARE_WAITQUEUE(wait, current);
3791
3792 wait.flags |= WQ_FLAG_EXCLUSIVE;
3793 __add_wait_queue_tail(&x->wait, &wait);
3794 do {
3795 if (signal_pending(current)) {
3796 timeout = -ERESTARTSYS;
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3799 }
3800 __set_current_state(TASK_INTERRUPTIBLE);
3801 spin_unlock_irq(&x->wait.lock);
3802 timeout = schedule_timeout(timeout);
3803 spin_lock_irq(&x->wait.lock);
3804 if (!timeout) {
3805 __remove_wait_queue(&x->wait, &wait);
3806 goto out;
3807 }
3808 } while (!x->done);
3809 __remove_wait_queue(&x->wait, &wait);
3810 }
3811 x->done--;
3812 out:
3813 spin_unlock_irq(&x->wait.lock);
3814 return timeout;
3815 }
3816 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3817
3818 static inline void
3819 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3820 {
3821 spin_lock_irqsave(&q->lock, *flags);
3822 __add_wait_queue(q, wait);
3823 spin_unlock(&q->lock);
3824 }
3825
3826 static inline void
3827 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3828 {
3829 spin_lock_irq(&q->lock);
3830 __remove_wait_queue(q, wait);
3831 spin_unlock_irqrestore(&q->lock, *flags);
3832 }
3833
3834 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3835 {
3836 unsigned long flags;
3837 wait_queue_t wait;
3838
3839 init_waitqueue_entry(&wait, current);
3840
3841 current->state = TASK_INTERRUPTIBLE;
3842
3843 sleep_on_head(q, &wait, &flags);
3844 schedule();
3845 sleep_on_tail(q, &wait, &flags);
3846 }
3847 EXPORT_SYMBOL(interruptible_sleep_on);
3848
3849 long __sched
3850 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3851 {
3852 unsigned long flags;
3853 wait_queue_t wait;
3854
3855 init_waitqueue_entry(&wait, current);
3856
3857 current->state = TASK_INTERRUPTIBLE;
3858
3859 sleep_on_head(q, &wait, &flags);
3860 timeout = schedule_timeout(timeout);
3861 sleep_on_tail(q, &wait, &flags);
3862
3863 return timeout;
3864 }
3865 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3866
3867 void __sched sleep_on(wait_queue_head_t *q)
3868 {
3869 unsigned long flags;
3870 wait_queue_t wait;
3871
3872 init_waitqueue_entry(&wait, current);
3873
3874 current->state = TASK_UNINTERRUPTIBLE;
3875
3876 sleep_on_head(q, &wait, &flags);
3877 schedule();
3878 sleep_on_tail(q, &wait, &flags);
3879 }
3880 EXPORT_SYMBOL(sleep_on);
3881
3882 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3883 {
3884 unsigned long flags;
3885 wait_queue_t wait;
3886
3887 init_waitqueue_entry(&wait, current);
3888
3889 current->state = TASK_UNINTERRUPTIBLE;
3890
3891 sleep_on_head(q, &wait, &flags);
3892 timeout = schedule_timeout(timeout);
3893 sleep_on_tail(q, &wait, &flags);
3894
3895 return timeout;
3896 }
3897 EXPORT_SYMBOL(sleep_on_timeout);
3898
3899 #ifdef CONFIG_RT_MUTEXES
3900
3901 /*
3902 * rt_mutex_setprio - set the current priority of a task
3903 * @p: task
3904 * @prio: prio value (kernel-internal form)
3905 *
3906 * This function changes the 'effective' priority of a task. It does
3907 * not touch ->normal_prio like __setscheduler().
3908 *
3909 * Used by the rt_mutex code to implement priority inheritance logic.
3910 */
3911 void rt_mutex_setprio(struct task_struct *p, int prio)
3912 {
3913 unsigned long flags;
3914 int oldprio, on_rq;
3915 struct rq *rq;
3916
3917 BUG_ON(prio < 0 || prio > MAX_PRIO);
3918
3919 rq = task_rq_lock(p, &flags);
3920 update_rq_clock(rq);
3921
3922 oldprio = p->prio;
3923 on_rq = p->se.on_rq;
3924 if (on_rq)
3925 dequeue_task(rq, p, 0);
3926
3927 if (rt_prio(prio))
3928 p->sched_class = &rt_sched_class;
3929 else
3930 p->sched_class = &fair_sched_class;
3931
3932 p->prio = prio;
3933
3934 if (on_rq) {
3935 enqueue_task(rq, p, 0);
3936 /*
3937 * Reschedule if we are currently running on this runqueue and
3938 * our priority decreased, or if we are not currently running on
3939 * this runqueue and our priority is higher than the current's
3940 */
3941 if (task_running(rq, p)) {
3942 if (p->prio > oldprio)
3943 resched_task(rq->curr);
3944 } else {
3945 check_preempt_curr(rq, p);
3946 }
3947 }
3948 task_rq_unlock(rq, &flags);
3949 }
3950
3951 #endif
3952
3953 void set_user_nice(struct task_struct *p, long nice)
3954 {
3955 int old_prio, delta, on_rq;
3956 unsigned long flags;
3957 struct rq *rq;
3958
3959 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3960 return;
3961 /*
3962 * We have to be careful, if called from sys_setpriority(),
3963 * the task might be in the middle of scheduling on another CPU.
3964 */
3965 rq = task_rq_lock(p, &flags);
3966 update_rq_clock(rq);
3967 /*
3968 * The RT priorities are set via sched_setscheduler(), but we still
3969 * allow the 'normal' nice value to be set - but as expected
3970 * it wont have any effect on scheduling until the task is
3971 * SCHED_FIFO/SCHED_RR:
3972 */
3973 if (task_has_rt_policy(p)) {
3974 p->static_prio = NICE_TO_PRIO(nice);
3975 goto out_unlock;
3976 }
3977 on_rq = p->se.on_rq;
3978 if (on_rq) {
3979 dequeue_task(rq, p, 0);
3980 dec_load(rq, p);
3981 }
3982
3983 p->static_prio = NICE_TO_PRIO(nice);
3984 set_load_weight(p);
3985 old_prio = p->prio;
3986 p->prio = effective_prio(p);
3987 delta = p->prio - old_prio;
3988
3989 if (on_rq) {
3990 enqueue_task(rq, p, 0);
3991 inc_load(rq, p);
3992 /*
3993 * If the task increased its priority or is running and
3994 * lowered its priority, then reschedule its CPU:
3995 */
3996 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3997 resched_task(rq->curr);
3998 }
3999 out_unlock:
4000 task_rq_unlock(rq, &flags);
4001 }
4002 EXPORT_SYMBOL(set_user_nice);
4003
4004 /*
4005 * can_nice - check if a task can reduce its nice value
4006 * @p: task
4007 * @nice: nice value
4008 */
4009 int can_nice(const struct task_struct *p, const int nice)
4010 {
4011 /* convert nice value [19,-20] to rlimit style value [1,40] */
4012 int nice_rlim = 20 - nice;
4013
4014 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4015 capable(CAP_SYS_NICE));
4016 }
4017
4018 #ifdef __ARCH_WANT_SYS_NICE
4019
4020 /*
4021 * sys_nice - change the priority of the current process.
4022 * @increment: priority increment
4023 *
4024 * sys_setpriority is a more generic, but much slower function that
4025 * does similar things.
4026 */
4027 asmlinkage long sys_nice(int increment)
4028 {
4029 long nice, retval;
4030
4031 /*
4032 * Setpriority might change our priority at the same moment.
4033 * We don't have to worry. Conceptually one call occurs first
4034 * and we have a single winner.
4035 */
4036 if (increment < -40)
4037 increment = -40;
4038 if (increment > 40)
4039 increment = 40;
4040
4041 nice = PRIO_TO_NICE(current->static_prio) + increment;
4042 if (nice < -20)
4043 nice = -20;
4044 if (nice > 19)
4045 nice = 19;
4046
4047 if (increment < 0 && !can_nice(current, nice))
4048 return -EPERM;
4049
4050 retval = security_task_setnice(current, nice);
4051 if (retval)
4052 return retval;
4053
4054 set_user_nice(current, nice);
4055 return 0;
4056 }
4057
4058 #endif
4059
4060 /**
4061 * task_prio - return the priority value of a given task.
4062 * @p: the task in question.
4063 *
4064 * This is the priority value as seen by users in /proc.
4065 * RT tasks are offset by -200. Normal tasks are centered
4066 * around 0, value goes from -16 to +15.
4067 */
4068 int task_prio(const struct task_struct *p)
4069 {
4070 return p->prio - MAX_RT_PRIO;
4071 }
4072
4073 /**
4074 * task_nice - return the nice value of a given task.
4075 * @p: the task in question.
4076 */
4077 int task_nice(const struct task_struct *p)
4078 {
4079 return TASK_NICE(p);
4080 }
4081 EXPORT_SYMBOL_GPL(task_nice);
4082
4083 /**
4084 * idle_cpu - is a given cpu idle currently?
4085 * @cpu: the processor in question.
4086 */
4087 int idle_cpu(int cpu)
4088 {
4089 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4090 }
4091
4092 /**
4093 * idle_task - return the idle task for a given cpu.
4094 * @cpu: the processor in question.
4095 */
4096 struct task_struct *idle_task(int cpu)
4097 {
4098 return cpu_rq(cpu)->idle;
4099 }
4100
4101 /**
4102 * find_process_by_pid - find a process with a matching PID value.
4103 * @pid: the pid in question.
4104 */
4105 static inline struct task_struct *find_process_by_pid(pid_t pid)
4106 {
4107 return pid ? find_task_by_pid(pid) : current;
4108 }
4109
4110 /* Actually do priority change: must hold rq lock. */
4111 static void
4112 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4113 {
4114 BUG_ON(p->se.on_rq);
4115
4116 p->policy = policy;
4117 switch (p->policy) {
4118 case SCHED_NORMAL:
4119 case SCHED_BATCH:
4120 case SCHED_IDLE:
4121 p->sched_class = &fair_sched_class;
4122 break;
4123 case SCHED_FIFO:
4124 case SCHED_RR:
4125 p->sched_class = &rt_sched_class;
4126 break;
4127 }
4128
4129 p->rt_priority = prio;
4130 p->normal_prio = normal_prio(p);
4131 /* we are holding p->pi_lock already */
4132 p->prio = rt_mutex_getprio(p);
4133 set_load_weight(p);
4134 }
4135
4136 /**
4137 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4138 * @p: the task in question.
4139 * @policy: new policy.
4140 * @param: structure containing the new RT priority.
4141 *
4142 * NOTE that the task may be already dead.
4143 */
4144 int sched_setscheduler(struct task_struct *p, int policy,
4145 struct sched_param *param)
4146 {
4147 int retval, oldprio, oldpolicy = -1, on_rq;
4148 unsigned long flags;
4149 struct rq *rq;
4150
4151 /* may grab non-irq protected spin_locks */
4152 BUG_ON(in_interrupt());
4153 recheck:
4154 /* double check policy once rq lock held */
4155 if (policy < 0)
4156 policy = oldpolicy = p->policy;
4157 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4158 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4159 policy != SCHED_IDLE)
4160 return -EINVAL;
4161 /*
4162 * Valid priorities for SCHED_FIFO and SCHED_RR are
4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4164 * SCHED_BATCH and SCHED_IDLE is 0.
4165 */
4166 if (param->sched_priority < 0 ||
4167 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4168 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4169 return -EINVAL;
4170 if (rt_policy(policy) != (param->sched_priority != 0))
4171 return -EINVAL;
4172
4173 /*
4174 * Allow unprivileged RT tasks to decrease priority:
4175 */
4176 if (!capable(CAP_SYS_NICE)) {
4177 if (rt_policy(policy)) {
4178 unsigned long rlim_rtprio;
4179
4180 if (!lock_task_sighand(p, &flags))
4181 return -ESRCH;
4182 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4183 unlock_task_sighand(p, &flags);
4184
4185 /* can't set/change the rt policy */
4186 if (policy != p->policy && !rlim_rtprio)
4187 return -EPERM;
4188
4189 /* can't increase priority */
4190 if (param->sched_priority > p->rt_priority &&
4191 param->sched_priority > rlim_rtprio)
4192 return -EPERM;
4193 }
4194 /*
4195 * Like positive nice levels, dont allow tasks to
4196 * move out of SCHED_IDLE either:
4197 */
4198 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4199 return -EPERM;
4200
4201 /* can't change other user's priorities */
4202 if ((current->euid != p->euid) &&
4203 (current->euid != p->uid))
4204 return -EPERM;
4205 }
4206
4207 retval = security_task_setscheduler(p, policy, param);
4208 if (retval)
4209 return retval;
4210 /*
4211 * make sure no PI-waiters arrive (or leave) while we are
4212 * changing the priority of the task:
4213 */
4214 spin_lock_irqsave(&p->pi_lock, flags);
4215 /*
4216 * To be able to change p->policy safely, the apropriate
4217 * runqueue lock must be held.
4218 */
4219 rq = __task_rq_lock(p);
4220 /* recheck policy now with rq lock held */
4221 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4222 policy = oldpolicy = -1;
4223 __task_rq_unlock(rq);
4224 spin_unlock_irqrestore(&p->pi_lock, flags);
4225 goto recheck;
4226 }
4227 update_rq_clock(rq);
4228 on_rq = p->se.on_rq;
4229 if (on_rq)
4230 deactivate_task(rq, p, 0);
4231 oldprio = p->prio;
4232 __setscheduler(rq, p, policy, param->sched_priority);
4233 if (on_rq) {
4234 activate_task(rq, p, 0);
4235 /*
4236 * Reschedule if we are currently running on this runqueue and
4237 * our priority decreased, or if we are not currently running on
4238 * this runqueue and our priority is higher than the current's
4239 */
4240 if (task_running(rq, p)) {
4241 if (p->prio > oldprio)
4242 resched_task(rq->curr);
4243 } else {
4244 check_preempt_curr(rq, p);
4245 }
4246 }
4247 __task_rq_unlock(rq);
4248 spin_unlock_irqrestore(&p->pi_lock, flags);
4249
4250 rt_mutex_adjust_pi(p);
4251
4252 return 0;
4253 }
4254 EXPORT_SYMBOL_GPL(sched_setscheduler);
4255
4256 static int
4257 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4258 {
4259 struct sched_param lparam;
4260 struct task_struct *p;
4261 int retval;
4262
4263 if (!param || pid < 0)
4264 return -EINVAL;
4265 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4266 return -EFAULT;
4267
4268 rcu_read_lock();
4269 retval = -ESRCH;
4270 p = find_process_by_pid(pid);
4271 if (p != NULL)
4272 retval = sched_setscheduler(p, policy, &lparam);
4273 rcu_read_unlock();
4274
4275 return retval;
4276 }
4277
4278 /**
4279 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4280 * @pid: the pid in question.
4281 * @policy: new policy.
4282 * @param: structure containing the new RT priority.
4283 */
4284 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4285 struct sched_param __user *param)
4286 {
4287 /* negative values for policy are not valid */
4288 if (policy < 0)
4289 return -EINVAL;
4290
4291 return do_sched_setscheduler(pid, policy, param);
4292 }
4293
4294 /**
4295 * sys_sched_setparam - set/change the RT priority of a thread
4296 * @pid: the pid in question.
4297 * @param: structure containing the new RT priority.
4298 */
4299 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4300 {
4301 return do_sched_setscheduler(pid, -1, param);
4302 }
4303
4304 /**
4305 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4306 * @pid: the pid in question.
4307 */
4308 asmlinkage long sys_sched_getscheduler(pid_t pid)
4309 {
4310 struct task_struct *p;
4311 int retval = -EINVAL;
4312
4313 if (pid < 0)
4314 goto out_nounlock;
4315
4316 retval = -ESRCH;
4317 read_lock(&tasklist_lock);
4318 p = find_process_by_pid(pid);
4319 if (p) {
4320 retval = security_task_getscheduler(p);
4321 if (!retval)
4322 retval = p->policy;
4323 }
4324 read_unlock(&tasklist_lock);
4325
4326 out_nounlock:
4327 return retval;
4328 }
4329
4330 /**
4331 * sys_sched_getscheduler - get the RT priority of a thread
4332 * @pid: the pid in question.
4333 * @param: structure containing the RT priority.
4334 */
4335 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4336 {
4337 struct sched_param lp;
4338 struct task_struct *p;
4339 int retval = -EINVAL;
4340
4341 if (!param || pid < 0)
4342 goto out_nounlock;
4343
4344 read_lock(&tasklist_lock);
4345 p = find_process_by_pid(pid);
4346 retval = -ESRCH;
4347 if (!p)
4348 goto out_unlock;
4349
4350 retval = security_task_getscheduler(p);
4351 if (retval)
4352 goto out_unlock;
4353
4354 lp.sched_priority = p->rt_priority;
4355 read_unlock(&tasklist_lock);
4356
4357 /*
4358 * This one might sleep, we cannot do it with a spinlock held ...
4359 */
4360 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4361
4362 out_nounlock:
4363 return retval;
4364
4365 out_unlock:
4366 read_unlock(&tasklist_lock);
4367 return retval;
4368 }
4369
4370 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4371 {
4372 cpumask_t cpus_allowed;
4373 struct task_struct *p;
4374 int retval;
4375
4376 mutex_lock(&sched_hotcpu_mutex);
4377 read_lock(&tasklist_lock);
4378
4379 p = find_process_by_pid(pid);
4380 if (!p) {
4381 read_unlock(&tasklist_lock);
4382 mutex_unlock(&sched_hotcpu_mutex);
4383 return -ESRCH;
4384 }
4385
4386 /*
4387 * It is not safe to call set_cpus_allowed with the
4388 * tasklist_lock held. We will bump the task_struct's
4389 * usage count and then drop tasklist_lock.
4390 */
4391 get_task_struct(p);
4392 read_unlock(&tasklist_lock);
4393
4394 retval = -EPERM;
4395 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4396 !capable(CAP_SYS_NICE))
4397 goto out_unlock;
4398
4399 retval = security_task_setscheduler(p, 0, NULL);
4400 if (retval)
4401 goto out_unlock;
4402
4403 cpus_allowed = cpuset_cpus_allowed(p);
4404 cpus_and(new_mask, new_mask, cpus_allowed);
4405 retval = set_cpus_allowed(p, new_mask);
4406
4407 out_unlock:
4408 put_task_struct(p);
4409 mutex_unlock(&sched_hotcpu_mutex);
4410 return retval;
4411 }
4412
4413 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4414 cpumask_t *new_mask)
4415 {
4416 if (len < sizeof(cpumask_t)) {
4417 memset(new_mask, 0, sizeof(cpumask_t));
4418 } else if (len > sizeof(cpumask_t)) {
4419 len = sizeof(cpumask_t);
4420 }
4421 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4422 }
4423
4424 /**
4425 * sys_sched_setaffinity - set the cpu affinity of a process
4426 * @pid: pid of the process
4427 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4428 * @user_mask_ptr: user-space pointer to the new cpu mask
4429 */
4430 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4431 unsigned long __user *user_mask_ptr)
4432 {
4433 cpumask_t new_mask;
4434 int retval;
4435
4436 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4437 if (retval)
4438 return retval;
4439
4440 return sched_setaffinity(pid, new_mask);
4441 }
4442
4443 /*
4444 * Represents all cpu's present in the system
4445 * In systems capable of hotplug, this map could dynamically grow
4446 * as new cpu's are detected in the system via any platform specific
4447 * method, such as ACPI for e.g.
4448 */
4449
4450 cpumask_t cpu_present_map __read_mostly;
4451 EXPORT_SYMBOL(cpu_present_map);
4452
4453 #ifndef CONFIG_SMP
4454 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4455 EXPORT_SYMBOL(cpu_online_map);
4456
4457 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4458 EXPORT_SYMBOL(cpu_possible_map);
4459 #endif
4460
4461 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4462 {
4463 struct task_struct *p;
4464 int retval;
4465
4466 mutex_lock(&sched_hotcpu_mutex);
4467 read_lock(&tasklist_lock);
4468
4469 retval = -ESRCH;
4470 p = find_process_by_pid(pid);
4471 if (!p)
4472 goto out_unlock;
4473
4474 retval = security_task_getscheduler(p);
4475 if (retval)
4476 goto out_unlock;
4477
4478 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4479
4480 out_unlock:
4481 read_unlock(&tasklist_lock);
4482 mutex_unlock(&sched_hotcpu_mutex);
4483
4484 return retval;
4485 }
4486
4487 /**
4488 * sys_sched_getaffinity - get the cpu affinity of a process
4489 * @pid: pid of the process
4490 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4491 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4492 */
4493 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4494 unsigned long __user *user_mask_ptr)
4495 {
4496 int ret;
4497 cpumask_t mask;
4498
4499 if (len < sizeof(cpumask_t))
4500 return -EINVAL;
4501
4502 ret = sched_getaffinity(pid, &mask);
4503 if (ret < 0)
4504 return ret;
4505
4506 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4507 return -EFAULT;
4508
4509 return sizeof(cpumask_t);
4510 }
4511
4512 /**
4513 * sys_sched_yield - yield the current processor to other threads.
4514 *
4515 * This function yields the current CPU to other tasks. If there are no
4516 * other threads running on this CPU then this function will return.
4517 */
4518 asmlinkage long sys_sched_yield(void)
4519 {
4520 struct rq *rq = this_rq_lock();
4521
4522 schedstat_inc(rq, yld_cnt);
4523 current->sched_class->yield_task(rq, current);
4524
4525 /*
4526 * Since we are going to call schedule() anyway, there's
4527 * no need to preempt or enable interrupts:
4528 */
4529 __release(rq->lock);
4530 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4531 _raw_spin_unlock(&rq->lock);
4532 preempt_enable_no_resched();
4533
4534 schedule();
4535
4536 return 0;
4537 }
4538
4539 static void __cond_resched(void)
4540 {
4541 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4542 __might_sleep(__FILE__, __LINE__);
4543 #endif
4544 /*
4545 * The BKS might be reacquired before we have dropped
4546 * PREEMPT_ACTIVE, which could trigger a second
4547 * cond_resched() call.
4548 */
4549 do {
4550 add_preempt_count(PREEMPT_ACTIVE);
4551 schedule();
4552 sub_preempt_count(PREEMPT_ACTIVE);
4553 } while (need_resched());
4554 }
4555
4556 int __sched cond_resched(void)
4557 {
4558 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4559 system_state == SYSTEM_RUNNING) {
4560 __cond_resched();
4561 return 1;
4562 }
4563 return 0;
4564 }
4565 EXPORT_SYMBOL(cond_resched);
4566
4567 /*
4568 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4569 * call schedule, and on return reacquire the lock.
4570 *
4571 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4572 * operations here to prevent schedule() from being called twice (once via
4573 * spin_unlock(), once by hand).
4574 */
4575 int cond_resched_lock(spinlock_t *lock)
4576 {
4577 int ret = 0;
4578
4579 if (need_lockbreak(lock)) {
4580 spin_unlock(lock);
4581 cpu_relax();
4582 ret = 1;
4583 spin_lock(lock);
4584 }
4585 if (need_resched() && system_state == SYSTEM_RUNNING) {
4586 spin_release(&lock->dep_map, 1, _THIS_IP_);
4587 _raw_spin_unlock(lock);
4588 preempt_enable_no_resched();
4589 __cond_resched();
4590 ret = 1;
4591 spin_lock(lock);
4592 }
4593 return ret;
4594 }
4595 EXPORT_SYMBOL(cond_resched_lock);
4596
4597 int __sched cond_resched_softirq(void)
4598 {
4599 BUG_ON(!in_softirq());
4600
4601 if (need_resched() && system_state == SYSTEM_RUNNING) {
4602 local_bh_enable();
4603 __cond_resched();
4604 local_bh_disable();
4605 return 1;
4606 }
4607 return 0;
4608 }
4609 EXPORT_SYMBOL(cond_resched_softirq);
4610
4611 /**
4612 * yield - yield the current processor to other threads.
4613 *
4614 * This is a shortcut for kernel-space yielding - it marks the
4615 * thread runnable and calls sys_sched_yield().
4616 */
4617 void __sched yield(void)
4618 {
4619 set_current_state(TASK_RUNNING);
4620 sys_sched_yield();
4621 }
4622 EXPORT_SYMBOL(yield);
4623
4624 /*
4625 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4626 * that process accounting knows that this is a task in IO wait state.
4627 *
4628 * But don't do that if it is a deliberate, throttling IO wait (this task
4629 * has set its backing_dev_info: the queue against which it should throttle)
4630 */
4631 void __sched io_schedule(void)
4632 {
4633 struct rq *rq = &__raw_get_cpu_var(runqueues);
4634
4635 delayacct_blkio_start();
4636 atomic_inc(&rq->nr_iowait);
4637 schedule();
4638 atomic_dec(&rq->nr_iowait);
4639 delayacct_blkio_end();
4640 }
4641 EXPORT_SYMBOL(io_schedule);
4642
4643 long __sched io_schedule_timeout(long timeout)
4644 {
4645 struct rq *rq = &__raw_get_cpu_var(runqueues);
4646 long ret;
4647
4648 delayacct_blkio_start();
4649 atomic_inc(&rq->nr_iowait);
4650 ret = schedule_timeout(timeout);
4651 atomic_dec(&rq->nr_iowait);
4652 delayacct_blkio_end();
4653 return ret;
4654 }
4655
4656 /**
4657 * sys_sched_get_priority_max - return maximum RT priority.
4658 * @policy: scheduling class.
4659 *
4660 * this syscall returns the maximum rt_priority that can be used
4661 * by a given scheduling class.
4662 */
4663 asmlinkage long sys_sched_get_priority_max(int policy)
4664 {
4665 int ret = -EINVAL;
4666
4667 switch (policy) {
4668 case SCHED_FIFO:
4669 case SCHED_RR:
4670 ret = MAX_USER_RT_PRIO-1;
4671 break;
4672 case SCHED_NORMAL:
4673 case SCHED_BATCH:
4674 case SCHED_IDLE:
4675 ret = 0;
4676 break;
4677 }
4678 return ret;
4679 }
4680
4681 /**
4682 * sys_sched_get_priority_min - return minimum RT priority.
4683 * @policy: scheduling class.
4684 *
4685 * this syscall returns the minimum rt_priority that can be used
4686 * by a given scheduling class.
4687 */
4688 asmlinkage long sys_sched_get_priority_min(int policy)
4689 {
4690 int ret = -EINVAL;
4691
4692 switch (policy) {
4693 case SCHED_FIFO:
4694 case SCHED_RR:
4695 ret = 1;
4696 break;
4697 case SCHED_NORMAL:
4698 case SCHED_BATCH:
4699 case SCHED_IDLE:
4700 ret = 0;
4701 }
4702 return ret;
4703 }
4704
4705 /**
4706 * sys_sched_rr_get_interval - return the default timeslice of a process.
4707 * @pid: pid of the process.
4708 * @interval: userspace pointer to the timeslice value.
4709 *
4710 * this syscall writes the default timeslice value of a given process
4711 * into the user-space timespec buffer. A value of '0' means infinity.
4712 */
4713 asmlinkage
4714 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4715 {
4716 struct task_struct *p;
4717 int retval = -EINVAL;
4718 struct timespec t;
4719
4720 if (pid < 0)
4721 goto out_nounlock;
4722
4723 retval = -ESRCH;
4724 read_lock(&tasklist_lock);
4725 p = find_process_by_pid(pid);
4726 if (!p)
4727 goto out_unlock;
4728
4729 retval = security_task_getscheduler(p);
4730 if (retval)
4731 goto out_unlock;
4732
4733 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4734 0 : static_prio_timeslice(p->static_prio), &t);
4735 read_unlock(&tasklist_lock);
4736 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4737 out_nounlock:
4738 return retval;
4739 out_unlock:
4740 read_unlock(&tasklist_lock);
4741 return retval;
4742 }
4743
4744 static const char stat_nam[] = "RSDTtZX";
4745
4746 static void show_task(struct task_struct *p)
4747 {
4748 unsigned long free = 0;
4749 unsigned state;
4750
4751 state = p->state ? __ffs(p->state) + 1 : 0;
4752 printk("%-13.13s %c", p->comm,
4753 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4754 #if BITS_PER_LONG == 32
4755 if (state == TASK_RUNNING)
4756 printk(" running ");
4757 else
4758 printk(" %08lx ", thread_saved_pc(p));
4759 #else
4760 if (state == TASK_RUNNING)
4761 printk(" running task ");
4762 else
4763 printk(" %016lx ", thread_saved_pc(p));
4764 #endif
4765 #ifdef CONFIG_DEBUG_STACK_USAGE
4766 {
4767 unsigned long *n = end_of_stack(p);
4768 while (!*n)
4769 n++;
4770 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4771 }
4772 #endif
4773 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4774
4775 if (state != TASK_RUNNING)
4776 show_stack(p, NULL);
4777 }
4778
4779 void show_state_filter(unsigned long state_filter)
4780 {
4781 struct task_struct *g, *p;
4782
4783 #if BITS_PER_LONG == 32
4784 printk(KERN_INFO
4785 " task PC stack pid father\n");
4786 #else
4787 printk(KERN_INFO
4788 " task PC stack pid father\n");
4789 #endif
4790 read_lock(&tasklist_lock);
4791 do_each_thread(g, p) {
4792 /*
4793 * reset the NMI-timeout, listing all files on a slow
4794 * console might take alot of time:
4795 */
4796 touch_nmi_watchdog();
4797 if (!state_filter || (p->state & state_filter))
4798 show_task(p);
4799 } while_each_thread(g, p);
4800
4801 touch_all_softlockup_watchdogs();
4802
4803 #ifdef CONFIG_SCHED_DEBUG
4804 sysrq_sched_debug_show();
4805 #endif
4806 read_unlock(&tasklist_lock);
4807 /*
4808 * Only show locks if all tasks are dumped:
4809 */
4810 if (state_filter == -1)
4811 debug_show_all_locks();
4812 }
4813
4814 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4815 {
4816 idle->sched_class = &idle_sched_class;
4817 }
4818
4819 /**
4820 * init_idle - set up an idle thread for a given CPU
4821 * @idle: task in question
4822 * @cpu: cpu the idle task belongs to
4823 *
4824 * NOTE: this function does not set the idle thread's NEED_RESCHED
4825 * flag, to make booting more robust.
4826 */
4827 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4828 {
4829 struct rq *rq = cpu_rq(cpu);
4830 unsigned long flags;
4831
4832 __sched_fork(idle);
4833 idle->se.exec_start = sched_clock();
4834
4835 idle->prio = idle->normal_prio = MAX_PRIO;
4836 idle->cpus_allowed = cpumask_of_cpu(cpu);
4837 __set_task_cpu(idle, cpu);
4838
4839 spin_lock_irqsave(&rq->lock, flags);
4840 rq->curr = rq->idle = idle;
4841 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4842 idle->oncpu = 1;
4843 #endif
4844 spin_unlock_irqrestore(&rq->lock, flags);
4845
4846 /* Set the preempt count _outside_ the spinlocks! */
4847 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4848 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4849 #else
4850 task_thread_info(idle)->preempt_count = 0;
4851 #endif
4852 /*
4853 * The idle tasks have their own, simple scheduling class:
4854 */
4855 idle->sched_class = &idle_sched_class;
4856 }
4857
4858 /*
4859 * In a system that switches off the HZ timer nohz_cpu_mask
4860 * indicates which cpus entered this state. This is used
4861 * in the rcu update to wait only for active cpus. For system
4862 * which do not switch off the HZ timer nohz_cpu_mask should
4863 * always be CPU_MASK_NONE.
4864 */
4865 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4866
4867 #ifdef CONFIG_SMP
4868 /*
4869 * This is how migration works:
4870 *
4871 * 1) we queue a struct migration_req structure in the source CPU's
4872 * runqueue and wake up that CPU's migration thread.
4873 * 2) we down() the locked semaphore => thread blocks.
4874 * 3) migration thread wakes up (implicitly it forces the migrated
4875 * thread off the CPU)
4876 * 4) it gets the migration request and checks whether the migrated
4877 * task is still in the wrong runqueue.
4878 * 5) if it's in the wrong runqueue then the migration thread removes
4879 * it and puts it into the right queue.
4880 * 6) migration thread up()s the semaphore.
4881 * 7) we wake up and the migration is done.
4882 */
4883
4884 /*
4885 * Change a given task's CPU affinity. Migrate the thread to a
4886 * proper CPU and schedule it away if the CPU it's executing on
4887 * is removed from the allowed bitmask.
4888 *
4889 * NOTE: the caller must have a valid reference to the task, the
4890 * task must not exit() & deallocate itself prematurely. The
4891 * call is not atomic; no spinlocks may be held.
4892 */
4893 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4894 {
4895 struct migration_req req;
4896 unsigned long flags;
4897 struct rq *rq;
4898 int ret = 0;
4899
4900 rq = task_rq_lock(p, &flags);
4901 if (!cpus_intersects(new_mask, cpu_online_map)) {
4902 ret = -EINVAL;
4903 goto out;
4904 }
4905
4906 p->cpus_allowed = new_mask;
4907 /* Can the task run on the task's current CPU? If so, we're done */
4908 if (cpu_isset(task_cpu(p), new_mask))
4909 goto out;
4910
4911 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4912 /* Need help from migration thread: drop lock and wait. */
4913 task_rq_unlock(rq, &flags);
4914 wake_up_process(rq->migration_thread);
4915 wait_for_completion(&req.done);
4916 tlb_migrate_finish(p->mm);
4917 return 0;
4918 }
4919 out:
4920 task_rq_unlock(rq, &flags);
4921
4922 return ret;
4923 }
4924 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4925
4926 /*
4927 * Move (not current) task off this cpu, onto dest cpu. We're doing
4928 * this because either it can't run here any more (set_cpus_allowed()
4929 * away from this CPU, or CPU going down), or because we're
4930 * attempting to rebalance this task on exec (sched_exec).
4931 *
4932 * So we race with normal scheduler movements, but that's OK, as long
4933 * as the task is no longer on this CPU.
4934 *
4935 * Returns non-zero if task was successfully migrated.
4936 */
4937 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4938 {
4939 struct rq *rq_dest, *rq_src;
4940 int ret = 0, on_rq;
4941
4942 if (unlikely(cpu_is_offline(dest_cpu)))
4943 return ret;
4944
4945 rq_src = cpu_rq(src_cpu);
4946 rq_dest = cpu_rq(dest_cpu);
4947
4948 double_rq_lock(rq_src, rq_dest);
4949 /* Already moved. */
4950 if (task_cpu(p) != src_cpu)
4951 goto out;
4952 /* Affinity changed (again). */
4953 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4954 goto out;
4955
4956 on_rq = p->se.on_rq;
4957 if (on_rq)
4958 deactivate_task(rq_src, p, 0);
4959
4960 set_task_cpu(p, dest_cpu);
4961 if (on_rq) {
4962 activate_task(rq_dest, p, 0);
4963 check_preempt_curr(rq_dest, p);
4964 }
4965 ret = 1;
4966 out:
4967 double_rq_unlock(rq_src, rq_dest);
4968 return ret;
4969 }
4970
4971 /*
4972 * migration_thread - this is a highprio system thread that performs
4973 * thread migration by bumping thread off CPU then 'pushing' onto
4974 * another runqueue.
4975 */
4976 static int migration_thread(void *data)
4977 {
4978 int cpu = (long)data;
4979 struct rq *rq;
4980
4981 rq = cpu_rq(cpu);
4982 BUG_ON(rq->migration_thread != current);
4983
4984 set_current_state(TASK_INTERRUPTIBLE);
4985 while (!kthread_should_stop()) {
4986 struct migration_req *req;
4987 struct list_head *head;
4988
4989 spin_lock_irq(&rq->lock);
4990
4991 if (cpu_is_offline(cpu)) {
4992 spin_unlock_irq(&rq->lock);
4993 goto wait_to_die;
4994 }
4995
4996 if (rq->active_balance) {
4997 active_load_balance(rq, cpu);
4998 rq->active_balance = 0;
4999 }
5000
5001 head = &rq->migration_queue;
5002
5003 if (list_empty(head)) {
5004 spin_unlock_irq(&rq->lock);
5005 schedule();
5006 set_current_state(TASK_INTERRUPTIBLE);
5007 continue;
5008 }
5009 req = list_entry(head->next, struct migration_req, list);
5010 list_del_init(head->next);
5011
5012 spin_unlock(&rq->lock);
5013 __migrate_task(req->task, cpu, req->dest_cpu);
5014 local_irq_enable();
5015
5016 complete(&req->done);
5017 }
5018 __set_current_state(TASK_RUNNING);
5019 return 0;
5020
5021 wait_to_die:
5022 /* Wait for kthread_stop */
5023 set_current_state(TASK_INTERRUPTIBLE);
5024 while (!kthread_should_stop()) {
5025 schedule();
5026 set_current_state(TASK_INTERRUPTIBLE);
5027 }
5028 __set_current_state(TASK_RUNNING);
5029 return 0;
5030 }
5031
5032 #ifdef CONFIG_HOTPLUG_CPU
5033 /*
5034 * Figure out where task on dead CPU should go, use force if neccessary.
5035 * NOTE: interrupts should be disabled by the caller
5036 */
5037 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5038 {
5039 unsigned long flags;
5040 cpumask_t mask;
5041 struct rq *rq;
5042 int dest_cpu;
5043
5044 restart:
5045 /* On same node? */
5046 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5047 cpus_and(mask, mask, p->cpus_allowed);
5048 dest_cpu = any_online_cpu(mask);
5049
5050 /* On any allowed CPU? */
5051 if (dest_cpu == NR_CPUS)
5052 dest_cpu = any_online_cpu(p->cpus_allowed);
5053
5054 /* No more Mr. Nice Guy. */
5055 if (dest_cpu == NR_CPUS) {
5056 rq = task_rq_lock(p, &flags);
5057 cpus_setall(p->cpus_allowed);
5058 dest_cpu = any_online_cpu(p->cpus_allowed);
5059 task_rq_unlock(rq, &flags);
5060
5061 /*
5062 * Don't tell them about moving exiting tasks or
5063 * kernel threads (both mm NULL), since they never
5064 * leave kernel.
5065 */
5066 if (p->mm && printk_ratelimit())
5067 printk(KERN_INFO "process %d (%s) no "
5068 "longer affine to cpu%d\n",
5069 p->pid, p->comm, dead_cpu);
5070 }
5071 if (!__migrate_task(p, dead_cpu, dest_cpu))
5072 goto restart;
5073 }
5074
5075 /*
5076 * While a dead CPU has no uninterruptible tasks queued at this point,
5077 * it might still have a nonzero ->nr_uninterruptible counter, because
5078 * for performance reasons the counter is not stricly tracking tasks to
5079 * their home CPUs. So we just add the counter to another CPU's counter,
5080 * to keep the global sum constant after CPU-down:
5081 */
5082 static void migrate_nr_uninterruptible(struct rq *rq_src)
5083 {
5084 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5085 unsigned long flags;
5086
5087 local_irq_save(flags);
5088 double_rq_lock(rq_src, rq_dest);
5089 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5090 rq_src->nr_uninterruptible = 0;
5091 double_rq_unlock(rq_src, rq_dest);
5092 local_irq_restore(flags);
5093 }
5094
5095 /* Run through task list and migrate tasks from the dead cpu. */
5096 static void migrate_live_tasks(int src_cpu)
5097 {
5098 struct task_struct *p, *t;
5099
5100 write_lock_irq(&tasklist_lock);
5101
5102 do_each_thread(t, p) {
5103 if (p == current)
5104 continue;
5105
5106 if (task_cpu(p) == src_cpu)
5107 move_task_off_dead_cpu(src_cpu, p);
5108 } while_each_thread(t, p);
5109
5110 write_unlock_irq(&tasklist_lock);
5111 }
5112
5113 /*
5114 * Schedules idle task to be the next runnable task on current CPU.
5115 * It does so by boosting its priority to highest possible and adding it to
5116 * the _front_ of the runqueue. Used by CPU offline code.
5117 */
5118 void sched_idle_next(void)
5119 {
5120 int this_cpu = smp_processor_id();
5121 struct rq *rq = cpu_rq(this_cpu);
5122 struct task_struct *p = rq->idle;
5123 unsigned long flags;
5124
5125 /* cpu has to be offline */
5126 BUG_ON(cpu_online(this_cpu));
5127
5128 /*
5129 * Strictly not necessary since rest of the CPUs are stopped by now
5130 * and interrupts disabled on the current cpu.
5131 */
5132 spin_lock_irqsave(&rq->lock, flags);
5133
5134 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5135
5136 /* Add idle task to the _front_ of its priority queue: */
5137 activate_idle_task(p, rq);
5138
5139 spin_unlock_irqrestore(&rq->lock, flags);
5140 }
5141
5142 /*
5143 * Ensures that the idle task is using init_mm right before its cpu goes
5144 * offline.
5145 */
5146 void idle_task_exit(void)
5147 {
5148 struct mm_struct *mm = current->active_mm;
5149
5150 BUG_ON(cpu_online(smp_processor_id()));
5151
5152 if (mm != &init_mm)
5153 switch_mm(mm, &init_mm, current);
5154 mmdrop(mm);
5155 }
5156
5157 /* called under rq->lock with disabled interrupts */
5158 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5159 {
5160 struct rq *rq = cpu_rq(dead_cpu);
5161
5162 /* Must be exiting, otherwise would be on tasklist. */
5163 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5164
5165 /* Cannot have done final schedule yet: would have vanished. */
5166 BUG_ON(p->state == TASK_DEAD);
5167
5168 get_task_struct(p);
5169
5170 /*
5171 * Drop lock around migration; if someone else moves it,
5172 * that's OK. No task can be added to this CPU, so iteration is
5173 * fine.
5174 * NOTE: interrupts should be left disabled --dev@
5175 */
5176 spin_unlock(&rq->lock);
5177 move_task_off_dead_cpu(dead_cpu, p);
5178 spin_lock(&rq->lock);
5179
5180 put_task_struct(p);
5181 }
5182
5183 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5184 static void migrate_dead_tasks(unsigned int dead_cpu)
5185 {
5186 struct rq *rq = cpu_rq(dead_cpu);
5187 struct task_struct *next;
5188
5189 for ( ; ; ) {
5190 if (!rq->nr_running)
5191 break;
5192 update_rq_clock(rq);
5193 next = pick_next_task(rq, rq->curr);
5194 if (!next)
5195 break;
5196 migrate_dead(dead_cpu, next);
5197
5198 }
5199 }
5200 #endif /* CONFIG_HOTPLUG_CPU */
5201
5202 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5203
5204 static struct ctl_table sd_ctl_dir[] = {
5205 {
5206 .procname = "sched_domain",
5207 .mode = 0555,
5208 },
5209 {0,},
5210 };
5211
5212 static struct ctl_table sd_ctl_root[] = {
5213 {
5214 .ctl_name = CTL_KERN,
5215 .procname = "kernel",
5216 .mode = 0555,
5217 .child = sd_ctl_dir,
5218 },
5219 {0,},
5220 };
5221
5222 static struct ctl_table *sd_alloc_ctl_entry(int n)
5223 {
5224 struct ctl_table *entry =
5225 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5226
5227 BUG_ON(!entry);
5228 memset(entry, 0, n * sizeof(struct ctl_table));
5229
5230 return entry;
5231 }
5232
5233 static void
5234 set_table_entry(struct ctl_table *entry,
5235 const char *procname, void *data, int maxlen,
5236 mode_t mode, proc_handler *proc_handler)
5237 {
5238 entry->procname = procname;
5239 entry->data = data;
5240 entry->maxlen = maxlen;
5241 entry->mode = mode;
5242 entry->proc_handler = proc_handler;
5243 }
5244
5245 static struct ctl_table *
5246 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5247 {
5248 struct ctl_table *table = sd_alloc_ctl_entry(14);
5249
5250 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5251 sizeof(long), 0644, proc_doulongvec_minmax);
5252 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5253 sizeof(long), 0644, proc_doulongvec_minmax);
5254 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5255 sizeof(int), 0644, proc_dointvec_minmax);
5256 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5258 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5259 sizeof(int), 0644, proc_dointvec_minmax);
5260 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5261 sizeof(int), 0644, proc_dointvec_minmax);
5262 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax);
5264 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[10], "cache_nice_tries",
5269 &sd->cache_nice_tries,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[12], "flags", &sd->flags,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273
5274 return table;
5275 }
5276
5277 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5278 {
5279 struct ctl_table *entry, *table;
5280 struct sched_domain *sd;
5281 int domain_num = 0, i;
5282 char buf[32];
5283
5284 for_each_domain(cpu, sd)
5285 domain_num++;
5286 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5287
5288 i = 0;
5289 for_each_domain(cpu, sd) {
5290 snprintf(buf, 32, "domain%d", i);
5291 entry->procname = kstrdup(buf, GFP_KERNEL);
5292 entry->mode = 0555;
5293 entry->child = sd_alloc_ctl_domain_table(sd);
5294 entry++;
5295 i++;
5296 }
5297 return table;
5298 }
5299
5300 static struct ctl_table_header *sd_sysctl_header;
5301 static void init_sched_domain_sysctl(void)
5302 {
5303 int i, cpu_num = num_online_cpus();
5304 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5305 char buf[32];
5306
5307 sd_ctl_dir[0].child = entry;
5308
5309 for (i = 0; i < cpu_num; i++, entry++) {
5310 snprintf(buf, 32, "cpu%d", i);
5311 entry->procname = kstrdup(buf, GFP_KERNEL);
5312 entry->mode = 0555;
5313 entry->child = sd_alloc_ctl_cpu_table(i);
5314 }
5315 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5316 }
5317 #else
5318 static void init_sched_domain_sysctl(void)
5319 {
5320 }
5321 #endif
5322
5323 /*
5324 * migration_call - callback that gets triggered when a CPU is added.
5325 * Here we can start up the necessary migration thread for the new CPU.
5326 */
5327 static int __cpuinit
5328 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5329 {
5330 struct task_struct *p;
5331 int cpu = (long)hcpu;
5332 unsigned long flags;
5333 struct rq *rq;
5334
5335 switch (action) {
5336 case CPU_LOCK_ACQUIRE:
5337 mutex_lock(&sched_hotcpu_mutex);
5338 break;
5339
5340 case CPU_UP_PREPARE:
5341 case CPU_UP_PREPARE_FROZEN:
5342 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5343 if (IS_ERR(p))
5344 return NOTIFY_BAD;
5345 kthread_bind(p, cpu);
5346 /* Must be high prio: stop_machine expects to yield to it. */
5347 rq = task_rq_lock(p, &flags);
5348 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5349 task_rq_unlock(rq, &flags);
5350 cpu_rq(cpu)->migration_thread = p;
5351 break;
5352
5353 case CPU_ONLINE:
5354 case CPU_ONLINE_FROZEN:
5355 /* Strictly unneccessary, as first user will wake it. */
5356 wake_up_process(cpu_rq(cpu)->migration_thread);
5357 break;
5358
5359 #ifdef CONFIG_HOTPLUG_CPU
5360 case CPU_UP_CANCELED:
5361 case CPU_UP_CANCELED_FROZEN:
5362 if (!cpu_rq(cpu)->migration_thread)
5363 break;
5364 /* Unbind it from offline cpu so it can run. Fall thru. */
5365 kthread_bind(cpu_rq(cpu)->migration_thread,
5366 any_online_cpu(cpu_online_map));
5367 kthread_stop(cpu_rq(cpu)->migration_thread);
5368 cpu_rq(cpu)->migration_thread = NULL;
5369 break;
5370
5371 case CPU_DEAD:
5372 case CPU_DEAD_FROZEN:
5373 migrate_live_tasks(cpu);
5374 rq = cpu_rq(cpu);
5375 kthread_stop(rq->migration_thread);
5376 rq->migration_thread = NULL;
5377 /* Idle task back to normal (off runqueue, low prio) */
5378 rq = task_rq_lock(rq->idle, &flags);
5379 update_rq_clock(rq);
5380 deactivate_task(rq, rq->idle, 0);
5381 rq->idle->static_prio = MAX_PRIO;
5382 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5383 rq->idle->sched_class = &idle_sched_class;
5384 migrate_dead_tasks(cpu);
5385 task_rq_unlock(rq, &flags);
5386 migrate_nr_uninterruptible(rq);
5387 BUG_ON(rq->nr_running != 0);
5388
5389 /* No need to migrate the tasks: it was best-effort if
5390 * they didn't take sched_hotcpu_mutex. Just wake up
5391 * the requestors. */
5392 spin_lock_irq(&rq->lock);
5393 while (!list_empty(&rq->migration_queue)) {
5394 struct migration_req *req;
5395
5396 req = list_entry(rq->migration_queue.next,
5397 struct migration_req, list);
5398 list_del_init(&req->list);
5399 complete(&req->done);
5400 }
5401 spin_unlock_irq(&rq->lock);
5402 break;
5403 #endif
5404 case CPU_LOCK_RELEASE:
5405 mutex_unlock(&sched_hotcpu_mutex);
5406 break;
5407 }
5408 return NOTIFY_OK;
5409 }
5410
5411 /* Register at highest priority so that task migration (migrate_all_tasks)
5412 * happens before everything else.
5413 */
5414 static struct notifier_block __cpuinitdata migration_notifier = {
5415 .notifier_call = migration_call,
5416 .priority = 10
5417 };
5418
5419 int __init migration_init(void)
5420 {
5421 void *cpu = (void *)(long)smp_processor_id();
5422 int err;
5423
5424 /* Start one for the boot CPU: */
5425 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5426 BUG_ON(err == NOTIFY_BAD);
5427 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5428 register_cpu_notifier(&migration_notifier);
5429
5430 return 0;
5431 }
5432 #endif
5433
5434 #ifdef CONFIG_SMP
5435
5436 /* Number of possible processor ids */
5437 int nr_cpu_ids __read_mostly = NR_CPUS;
5438 EXPORT_SYMBOL(nr_cpu_ids);
5439
5440 #undef SCHED_DOMAIN_DEBUG
5441 #ifdef SCHED_DOMAIN_DEBUG
5442 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5443 {
5444 int level = 0;
5445
5446 if (!sd) {
5447 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5448 return;
5449 }
5450
5451 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5452
5453 do {
5454 int i;
5455 char str[NR_CPUS];
5456 struct sched_group *group = sd->groups;
5457 cpumask_t groupmask;
5458
5459 cpumask_scnprintf(str, NR_CPUS, sd->span);
5460 cpus_clear(groupmask);
5461
5462 printk(KERN_DEBUG);
5463 for (i = 0; i < level + 1; i++)
5464 printk(" ");
5465 printk("domain %d: ", level);
5466
5467 if (!(sd->flags & SD_LOAD_BALANCE)) {
5468 printk("does not load-balance\n");
5469 if (sd->parent)
5470 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5471 " has parent");
5472 break;
5473 }
5474
5475 printk("span %s\n", str);
5476
5477 if (!cpu_isset(cpu, sd->span))
5478 printk(KERN_ERR "ERROR: domain->span does not contain "
5479 "CPU%d\n", cpu);
5480 if (!cpu_isset(cpu, group->cpumask))
5481 printk(KERN_ERR "ERROR: domain->groups does not contain"
5482 " CPU%d\n", cpu);
5483
5484 printk(KERN_DEBUG);
5485 for (i = 0; i < level + 2; i++)
5486 printk(" ");
5487 printk("groups:");
5488 do {
5489 if (!group) {
5490 printk("\n");
5491 printk(KERN_ERR "ERROR: group is NULL\n");
5492 break;
5493 }
5494
5495 if (!group->__cpu_power) {
5496 printk("\n");
5497 printk(KERN_ERR "ERROR: domain->cpu_power not "
5498 "set\n");
5499 }
5500
5501 if (!cpus_weight(group->cpumask)) {
5502 printk("\n");
5503 printk(KERN_ERR "ERROR: empty group\n");
5504 }
5505
5506 if (cpus_intersects(groupmask, group->cpumask)) {
5507 printk("\n");
5508 printk(KERN_ERR "ERROR: repeated CPUs\n");
5509 }
5510
5511 cpus_or(groupmask, groupmask, group->cpumask);
5512
5513 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5514 printk(" %s", str);
5515
5516 group = group->next;
5517 } while (group != sd->groups);
5518 printk("\n");
5519
5520 if (!cpus_equal(sd->span, groupmask))
5521 printk(KERN_ERR "ERROR: groups don't span "
5522 "domain->span\n");
5523
5524 level++;
5525 sd = sd->parent;
5526 if (!sd)
5527 continue;
5528
5529 if (!cpus_subset(groupmask, sd->span))
5530 printk(KERN_ERR "ERROR: parent span is not a superset "
5531 "of domain->span\n");
5532
5533 } while (sd);
5534 }
5535 #else
5536 # define sched_domain_debug(sd, cpu) do { } while (0)
5537 #endif
5538
5539 static int sd_degenerate(struct sched_domain *sd)
5540 {
5541 if (cpus_weight(sd->span) == 1)
5542 return 1;
5543
5544 /* Following flags need at least 2 groups */
5545 if (sd->flags & (SD_LOAD_BALANCE |
5546 SD_BALANCE_NEWIDLE |
5547 SD_BALANCE_FORK |
5548 SD_BALANCE_EXEC |
5549 SD_SHARE_CPUPOWER |
5550 SD_SHARE_PKG_RESOURCES)) {
5551 if (sd->groups != sd->groups->next)
5552 return 0;
5553 }
5554
5555 /* Following flags don't use groups */
5556 if (sd->flags & (SD_WAKE_IDLE |
5557 SD_WAKE_AFFINE |
5558 SD_WAKE_BALANCE))
5559 return 0;
5560
5561 return 1;
5562 }
5563
5564 static int
5565 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5566 {
5567 unsigned long cflags = sd->flags, pflags = parent->flags;
5568
5569 if (sd_degenerate(parent))
5570 return 1;
5571
5572 if (!cpus_equal(sd->span, parent->span))
5573 return 0;
5574
5575 /* Does parent contain flags not in child? */
5576 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5577 if (cflags & SD_WAKE_AFFINE)
5578 pflags &= ~SD_WAKE_BALANCE;
5579 /* Flags needing groups don't count if only 1 group in parent */
5580 if (parent->groups == parent->groups->next) {
5581 pflags &= ~(SD_LOAD_BALANCE |
5582 SD_BALANCE_NEWIDLE |
5583 SD_BALANCE_FORK |
5584 SD_BALANCE_EXEC |
5585 SD_SHARE_CPUPOWER |
5586 SD_SHARE_PKG_RESOURCES);
5587 }
5588 if (~cflags & pflags)
5589 return 0;
5590
5591 return 1;
5592 }
5593
5594 /*
5595 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5596 * hold the hotplug lock.
5597 */
5598 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5599 {
5600 struct rq *rq = cpu_rq(cpu);
5601 struct sched_domain *tmp;
5602
5603 /* Remove the sched domains which do not contribute to scheduling. */
5604 for (tmp = sd; tmp; tmp = tmp->parent) {
5605 struct sched_domain *parent = tmp->parent;
5606 if (!parent)
5607 break;
5608 if (sd_parent_degenerate(tmp, parent)) {
5609 tmp->parent = parent->parent;
5610 if (parent->parent)
5611 parent->parent->child = tmp;
5612 }
5613 }
5614
5615 if (sd && sd_degenerate(sd)) {
5616 sd = sd->parent;
5617 if (sd)
5618 sd->child = NULL;
5619 }
5620
5621 sched_domain_debug(sd, cpu);
5622
5623 rcu_assign_pointer(rq->sd, sd);
5624 }
5625
5626 /* cpus with isolated domains */
5627 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5628
5629 /* Setup the mask of cpus configured for isolated domains */
5630 static int __init isolated_cpu_setup(char *str)
5631 {
5632 int ints[NR_CPUS], i;
5633
5634 str = get_options(str, ARRAY_SIZE(ints), ints);
5635 cpus_clear(cpu_isolated_map);
5636 for (i = 1; i <= ints[0]; i++)
5637 if (ints[i] < NR_CPUS)
5638 cpu_set(ints[i], cpu_isolated_map);
5639 return 1;
5640 }
5641
5642 __setup ("isolcpus=", isolated_cpu_setup);
5643
5644 /*
5645 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5646 * to a function which identifies what group(along with sched group) a CPU
5647 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5648 * (due to the fact that we keep track of groups covered with a cpumask_t).
5649 *
5650 * init_sched_build_groups will build a circular linked list of the groups
5651 * covered by the given span, and will set each group's ->cpumask correctly,
5652 * and ->cpu_power to 0.
5653 */
5654 static void
5655 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5656 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5657 struct sched_group **sg))
5658 {
5659 struct sched_group *first = NULL, *last = NULL;
5660 cpumask_t covered = CPU_MASK_NONE;
5661 int i;
5662
5663 for_each_cpu_mask(i, span) {
5664 struct sched_group *sg;
5665 int group = group_fn(i, cpu_map, &sg);
5666 int j;
5667
5668 if (cpu_isset(i, covered))
5669 continue;
5670
5671 sg->cpumask = CPU_MASK_NONE;
5672 sg->__cpu_power = 0;
5673
5674 for_each_cpu_mask(j, span) {
5675 if (group_fn(j, cpu_map, NULL) != group)
5676 continue;
5677
5678 cpu_set(j, covered);
5679 cpu_set(j, sg->cpumask);
5680 }
5681 if (!first)
5682 first = sg;
5683 if (last)
5684 last->next = sg;
5685 last = sg;
5686 }
5687 last->next = first;
5688 }
5689
5690 #define SD_NODES_PER_DOMAIN 16
5691
5692 #ifdef CONFIG_NUMA
5693
5694 /**
5695 * find_next_best_node - find the next node to include in a sched_domain
5696 * @node: node whose sched_domain we're building
5697 * @used_nodes: nodes already in the sched_domain
5698 *
5699 * Find the next node to include in a given scheduling domain. Simply
5700 * finds the closest node not already in the @used_nodes map.
5701 *
5702 * Should use nodemask_t.
5703 */
5704 static int find_next_best_node(int node, unsigned long *used_nodes)
5705 {
5706 int i, n, val, min_val, best_node = 0;
5707
5708 min_val = INT_MAX;
5709
5710 for (i = 0; i < MAX_NUMNODES; i++) {
5711 /* Start at @node */
5712 n = (node + i) % MAX_NUMNODES;
5713
5714 if (!nr_cpus_node(n))
5715 continue;
5716
5717 /* Skip already used nodes */
5718 if (test_bit(n, used_nodes))
5719 continue;
5720
5721 /* Simple min distance search */
5722 val = node_distance(node, n);
5723
5724 if (val < min_val) {
5725 min_val = val;
5726 best_node = n;
5727 }
5728 }
5729
5730 set_bit(best_node, used_nodes);
5731 return best_node;
5732 }
5733
5734 /**
5735 * sched_domain_node_span - get a cpumask for a node's sched_domain
5736 * @node: node whose cpumask we're constructing
5737 * @size: number of nodes to include in this span
5738 *
5739 * Given a node, construct a good cpumask for its sched_domain to span. It
5740 * should be one that prevents unnecessary balancing, but also spreads tasks
5741 * out optimally.
5742 */
5743 static cpumask_t sched_domain_node_span(int node)
5744 {
5745 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5746 cpumask_t span, nodemask;
5747 int i;
5748
5749 cpus_clear(span);
5750 bitmap_zero(used_nodes, MAX_NUMNODES);
5751
5752 nodemask = node_to_cpumask(node);
5753 cpus_or(span, span, nodemask);
5754 set_bit(node, used_nodes);
5755
5756 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5757 int next_node = find_next_best_node(node, used_nodes);
5758
5759 nodemask = node_to_cpumask(next_node);
5760 cpus_or(span, span, nodemask);
5761 }
5762
5763 return span;
5764 }
5765 #endif
5766
5767 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5768
5769 /*
5770 * SMT sched-domains:
5771 */
5772 #ifdef CONFIG_SCHED_SMT
5773 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5774 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5775
5776 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5777 struct sched_group **sg)
5778 {
5779 if (sg)
5780 *sg = &per_cpu(sched_group_cpus, cpu);
5781 return cpu;
5782 }
5783 #endif
5784
5785 /*
5786 * multi-core sched-domains:
5787 */
5788 #ifdef CONFIG_SCHED_MC
5789 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5790 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5791 #endif
5792
5793 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5794 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5795 struct sched_group **sg)
5796 {
5797 int group;
5798 cpumask_t mask = cpu_sibling_map[cpu];
5799 cpus_and(mask, mask, *cpu_map);
5800 group = first_cpu(mask);
5801 if (sg)
5802 *sg = &per_cpu(sched_group_core, group);
5803 return group;
5804 }
5805 #elif defined(CONFIG_SCHED_MC)
5806 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5807 struct sched_group **sg)
5808 {
5809 if (sg)
5810 *sg = &per_cpu(sched_group_core, cpu);
5811 return cpu;
5812 }
5813 #endif
5814
5815 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5816 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5817
5818 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5819 struct sched_group **sg)
5820 {
5821 int group;
5822 #ifdef CONFIG_SCHED_MC
5823 cpumask_t mask = cpu_coregroup_map(cpu);
5824 cpus_and(mask, mask, *cpu_map);
5825 group = first_cpu(mask);
5826 #elif defined(CONFIG_SCHED_SMT)
5827 cpumask_t mask = cpu_sibling_map[cpu];
5828 cpus_and(mask, mask, *cpu_map);
5829 group = first_cpu(mask);
5830 #else
5831 group = cpu;
5832 #endif
5833 if (sg)
5834 *sg = &per_cpu(sched_group_phys, group);
5835 return group;
5836 }
5837
5838 #ifdef CONFIG_NUMA
5839 /*
5840 * The init_sched_build_groups can't handle what we want to do with node
5841 * groups, so roll our own. Now each node has its own list of groups which
5842 * gets dynamically allocated.
5843 */
5844 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5845 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5846
5847 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5848 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5849
5850 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5851 struct sched_group **sg)
5852 {
5853 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5854 int group;
5855
5856 cpus_and(nodemask, nodemask, *cpu_map);
5857 group = first_cpu(nodemask);
5858
5859 if (sg)
5860 *sg = &per_cpu(sched_group_allnodes, group);
5861 return group;
5862 }
5863
5864 static void init_numa_sched_groups_power(struct sched_group *group_head)
5865 {
5866 struct sched_group *sg = group_head;
5867 int j;
5868
5869 if (!sg)
5870 return;
5871 next_sg:
5872 for_each_cpu_mask(j, sg->cpumask) {
5873 struct sched_domain *sd;
5874
5875 sd = &per_cpu(phys_domains, j);
5876 if (j != first_cpu(sd->groups->cpumask)) {
5877 /*
5878 * Only add "power" once for each
5879 * physical package.
5880 */
5881 continue;
5882 }
5883
5884 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5885 }
5886 sg = sg->next;
5887 if (sg != group_head)
5888 goto next_sg;
5889 }
5890 #endif
5891
5892 #ifdef CONFIG_NUMA
5893 /* Free memory allocated for various sched_group structures */
5894 static void free_sched_groups(const cpumask_t *cpu_map)
5895 {
5896 int cpu, i;
5897
5898 for_each_cpu_mask(cpu, *cpu_map) {
5899 struct sched_group **sched_group_nodes
5900 = sched_group_nodes_bycpu[cpu];
5901
5902 if (!sched_group_nodes)
5903 continue;
5904
5905 for (i = 0; i < MAX_NUMNODES; i++) {
5906 cpumask_t nodemask = node_to_cpumask(i);
5907 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5908
5909 cpus_and(nodemask, nodemask, *cpu_map);
5910 if (cpus_empty(nodemask))
5911 continue;
5912
5913 if (sg == NULL)
5914 continue;
5915 sg = sg->next;
5916 next_sg:
5917 oldsg = sg;
5918 sg = sg->next;
5919 kfree(oldsg);
5920 if (oldsg != sched_group_nodes[i])
5921 goto next_sg;
5922 }
5923 kfree(sched_group_nodes);
5924 sched_group_nodes_bycpu[cpu] = NULL;
5925 }
5926 }
5927 #else
5928 static void free_sched_groups(const cpumask_t *cpu_map)
5929 {
5930 }
5931 #endif
5932
5933 /*
5934 * Initialize sched groups cpu_power.
5935 *
5936 * cpu_power indicates the capacity of sched group, which is used while
5937 * distributing the load between different sched groups in a sched domain.
5938 * Typically cpu_power for all the groups in a sched domain will be same unless
5939 * there are asymmetries in the topology. If there are asymmetries, group
5940 * having more cpu_power will pickup more load compared to the group having
5941 * less cpu_power.
5942 *
5943 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5944 * the maximum number of tasks a group can handle in the presence of other idle
5945 * or lightly loaded groups in the same sched domain.
5946 */
5947 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5948 {
5949 struct sched_domain *child;
5950 struct sched_group *group;
5951
5952 WARN_ON(!sd || !sd->groups);
5953
5954 if (cpu != first_cpu(sd->groups->cpumask))
5955 return;
5956
5957 child = sd->child;
5958
5959 sd->groups->__cpu_power = 0;
5960
5961 /*
5962 * For perf policy, if the groups in child domain share resources
5963 * (for example cores sharing some portions of the cache hierarchy
5964 * or SMT), then set this domain groups cpu_power such that each group
5965 * can handle only one task, when there are other idle groups in the
5966 * same sched domain.
5967 */
5968 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5969 (child->flags &
5970 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5971 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5972 return;
5973 }
5974
5975 /*
5976 * add cpu_power of each child group to this groups cpu_power
5977 */
5978 group = child->groups;
5979 do {
5980 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5981 group = group->next;
5982 } while (group != child->groups);
5983 }
5984
5985 /*
5986 * Build sched domains for a given set of cpus and attach the sched domains
5987 * to the individual cpus
5988 */
5989 static int build_sched_domains(const cpumask_t *cpu_map)
5990 {
5991 int i;
5992 #ifdef CONFIG_NUMA
5993 struct sched_group **sched_group_nodes = NULL;
5994 int sd_allnodes = 0;
5995
5996 /*
5997 * Allocate the per-node list of sched groups
5998 */
5999 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6000 GFP_KERNEL);
6001 if (!sched_group_nodes) {
6002 printk(KERN_WARNING "Can not alloc sched group node list\n");
6003 return -ENOMEM;
6004 }
6005 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6006 #endif
6007
6008 /*
6009 * Set up domains for cpus specified by the cpu_map.
6010 */
6011 for_each_cpu_mask(i, *cpu_map) {
6012 struct sched_domain *sd = NULL, *p;
6013 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6014
6015 cpus_and(nodemask, nodemask, *cpu_map);
6016
6017 #ifdef CONFIG_NUMA
6018 if (cpus_weight(*cpu_map) >
6019 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6020 sd = &per_cpu(allnodes_domains, i);
6021 *sd = SD_ALLNODES_INIT;
6022 sd->span = *cpu_map;
6023 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6024 p = sd;
6025 sd_allnodes = 1;
6026 } else
6027 p = NULL;
6028
6029 sd = &per_cpu(node_domains, i);
6030 *sd = SD_NODE_INIT;
6031 sd->span = sched_domain_node_span(cpu_to_node(i));
6032 sd->parent = p;
6033 if (p)
6034 p->child = sd;
6035 cpus_and(sd->span, sd->span, *cpu_map);
6036 #endif
6037
6038 p = sd;
6039 sd = &per_cpu(phys_domains, i);
6040 *sd = SD_CPU_INIT;
6041 sd->span = nodemask;
6042 sd->parent = p;
6043 if (p)
6044 p->child = sd;
6045 cpu_to_phys_group(i, cpu_map, &sd->groups);
6046
6047 #ifdef CONFIG_SCHED_MC
6048 p = sd;
6049 sd = &per_cpu(core_domains, i);
6050 *sd = SD_MC_INIT;
6051 sd->span = cpu_coregroup_map(i);
6052 cpus_and(sd->span, sd->span, *cpu_map);
6053 sd->parent = p;
6054 p->child = sd;
6055 cpu_to_core_group(i, cpu_map, &sd->groups);
6056 #endif
6057
6058 #ifdef CONFIG_SCHED_SMT
6059 p = sd;
6060 sd = &per_cpu(cpu_domains, i);
6061 *sd = SD_SIBLING_INIT;
6062 sd->span = cpu_sibling_map[i];
6063 cpus_and(sd->span, sd->span, *cpu_map);
6064 sd->parent = p;
6065 p->child = sd;
6066 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6067 #endif
6068 }
6069
6070 #ifdef CONFIG_SCHED_SMT
6071 /* Set up CPU (sibling) groups */
6072 for_each_cpu_mask(i, *cpu_map) {
6073 cpumask_t this_sibling_map = cpu_sibling_map[i];
6074 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6075 if (i != first_cpu(this_sibling_map))
6076 continue;
6077
6078 init_sched_build_groups(this_sibling_map, cpu_map,
6079 &cpu_to_cpu_group);
6080 }
6081 #endif
6082
6083 #ifdef CONFIG_SCHED_MC
6084 /* Set up multi-core groups */
6085 for_each_cpu_mask(i, *cpu_map) {
6086 cpumask_t this_core_map = cpu_coregroup_map(i);
6087 cpus_and(this_core_map, this_core_map, *cpu_map);
6088 if (i != first_cpu(this_core_map))
6089 continue;
6090 init_sched_build_groups(this_core_map, cpu_map,
6091 &cpu_to_core_group);
6092 }
6093 #endif
6094
6095 /* Set up physical groups */
6096 for (i = 0; i < MAX_NUMNODES; i++) {
6097 cpumask_t nodemask = node_to_cpumask(i);
6098
6099 cpus_and(nodemask, nodemask, *cpu_map);
6100 if (cpus_empty(nodemask))
6101 continue;
6102
6103 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6104 }
6105
6106 #ifdef CONFIG_NUMA
6107 /* Set up node groups */
6108 if (sd_allnodes)
6109 init_sched_build_groups(*cpu_map, cpu_map,
6110 &cpu_to_allnodes_group);
6111
6112 for (i = 0; i < MAX_NUMNODES; i++) {
6113 /* Set up node groups */
6114 struct sched_group *sg, *prev;
6115 cpumask_t nodemask = node_to_cpumask(i);
6116 cpumask_t domainspan;
6117 cpumask_t covered = CPU_MASK_NONE;
6118 int j;
6119
6120 cpus_and(nodemask, nodemask, *cpu_map);
6121 if (cpus_empty(nodemask)) {
6122 sched_group_nodes[i] = NULL;
6123 continue;
6124 }
6125
6126 domainspan = sched_domain_node_span(i);
6127 cpus_and(domainspan, domainspan, *cpu_map);
6128
6129 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6130 if (!sg) {
6131 printk(KERN_WARNING "Can not alloc domain group for "
6132 "node %d\n", i);
6133 goto error;
6134 }
6135 sched_group_nodes[i] = sg;
6136 for_each_cpu_mask(j, nodemask) {
6137 struct sched_domain *sd;
6138
6139 sd = &per_cpu(node_domains, j);
6140 sd->groups = sg;
6141 }
6142 sg->__cpu_power = 0;
6143 sg->cpumask = nodemask;
6144 sg->next = sg;
6145 cpus_or(covered, covered, nodemask);
6146 prev = sg;
6147
6148 for (j = 0; j < MAX_NUMNODES; j++) {
6149 cpumask_t tmp, notcovered;
6150 int n = (i + j) % MAX_NUMNODES;
6151
6152 cpus_complement(notcovered, covered);
6153 cpus_and(tmp, notcovered, *cpu_map);
6154 cpus_and(tmp, tmp, domainspan);
6155 if (cpus_empty(tmp))
6156 break;
6157
6158 nodemask = node_to_cpumask(n);
6159 cpus_and(tmp, tmp, nodemask);
6160 if (cpus_empty(tmp))
6161 continue;
6162
6163 sg = kmalloc_node(sizeof(struct sched_group),
6164 GFP_KERNEL, i);
6165 if (!sg) {
6166 printk(KERN_WARNING
6167 "Can not alloc domain group for node %d\n", j);
6168 goto error;
6169 }
6170 sg->__cpu_power = 0;
6171 sg->cpumask = tmp;
6172 sg->next = prev->next;
6173 cpus_or(covered, covered, tmp);
6174 prev->next = sg;
6175 prev = sg;
6176 }
6177 }
6178 #endif
6179
6180 /* Calculate CPU power for physical packages and nodes */
6181 #ifdef CONFIG_SCHED_SMT
6182 for_each_cpu_mask(i, *cpu_map) {
6183 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6184
6185 init_sched_groups_power(i, sd);
6186 }
6187 #endif
6188 #ifdef CONFIG_SCHED_MC
6189 for_each_cpu_mask(i, *cpu_map) {
6190 struct sched_domain *sd = &per_cpu(core_domains, i);
6191
6192 init_sched_groups_power(i, sd);
6193 }
6194 #endif
6195
6196 for_each_cpu_mask(i, *cpu_map) {
6197 struct sched_domain *sd = &per_cpu(phys_domains, i);
6198
6199 init_sched_groups_power(i, sd);
6200 }
6201
6202 #ifdef CONFIG_NUMA
6203 for (i = 0; i < MAX_NUMNODES; i++)
6204 init_numa_sched_groups_power(sched_group_nodes[i]);
6205
6206 if (sd_allnodes) {
6207 struct sched_group *sg;
6208
6209 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6210 init_numa_sched_groups_power(sg);
6211 }
6212 #endif
6213
6214 /* Attach the domains */
6215 for_each_cpu_mask(i, *cpu_map) {
6216 struct sched_domain *sd;
6217 #ifdef CONFIG_SCHED_SMT
6218 sd = &per_cpu(cpu_domains, i);
6219 #elif defined(CONFIG_SCHED_MC)
6220 sd = &per_cpu(core_domains, i);
6221 #else
6222 sd = &per_cpu(phys_domains, i);
6223 #endif
6224 cpu_attach_domain(sd, i);
6225 }
6226
6227 return 0;
6228
6229 #ifdef CONFIG_NUMA
6230 error:
6231 free_sched_groups(cpu_map);
6232 return -ENOMEM;
6233 #endif
6234 }
6235 /*
6236 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6237 */
6238 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6239 {
6240 cpumask_t cpu_default_map;
6241 int err;
6242
6243 /*
6244 * Setup mask for cpus without special case scheduling requirements.
6245 * For now this just excludes isolated cpus, but could be used to
6246 * exclude other special cases in the future.
6247 */
6248 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6249
6250 err = build_sched_domains(&cpu_default_map);
6251
6252 return err;
6253 }
6254
6255 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6256 {
6257 free_sched_groups(cpu_map);
6258 }
6259
6260 /*
6261 * Detach sched domains from a group of cpus specified in cpu_map
6262 * These cpus will now be attached to the NULL domain
6263 */
6264 static void detach_destroy_domains(const cpumask_t *cpu_map)
6265 {
6266 int i;
6267
6268 for_each_cpu_mask(i, *cpu_map)
6269 cpu_attach_domain(NULL, i);
6270 synchronize_sched();
6271 arch_destroy_sched_domains(cpu_map);
6272 }
6273
6274 /*
6275 * Partition sched domains as specified by the cpumasks below.
6276 * This attaches all cpus from the cpumasks to the NULL domain,
6277 * waits for a RCU quiescent period, recalculates sched
6278 * domain information and then attaches them back to the
6279 * correct sched domains
6280 * Call with hotplug lock held
6281 */
6282 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6283 {
6284 cpumask_t change_map;
6285 int err = 0;
6286
6287 cpus_and(*partition1, *partition1, cpu_online_map);
6288 cpus_and(*partition2, *partition2, cpu_online_map);
6289 cpus_or(change_map, *partition1, *partition2);
6290
6291 /* Detach sched domains from all of the affected cpus */
6292 detach_destroy_domains(&change_map);
6293 if (!cpus_empty(*partition1))
6294 err = build_sched_domains(partition1);
6295 if (!err && !cpus_empty(*partition2))
6296 err = build_sched_domains(partition2);
6297
6298 return err;
6299 }
6300
6301 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6302 static int arch_reinit_sched_domains(void)
6303 {
6304 int err;
6305
6306 mutex_lock(&sched_hotcpu_mutex);
6307 detach_destroy_domains(&cpu_online_map);
6308 err = arch_init_sched_domains(&cpu_online_map);
6309 mutex_unlock(&sched_hotcpu_mutex);
6310
6311 return err;
6312 }
6313
6314 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6315 {
6316 int ret;
6317
6318 if (buf[0] != '0' && buf[0] != '1')
6319 return -EINVAL;
6320
6321 if (smt)
6322 sched_smt_power_savings = (buf[0] == '1');
6323 else
6324 sched_mc_power_savings = (buf[0] == '1');
6325
6326 ret = arch_reinit_sched_domains();
6327
6328 return ret ? ret : count;
6329 }
6330
6331 #ifdef CONFIG_SCHED_MC
6332 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6333 {
6334 return sprintf(page, "%u\n", sched_mc_power_savings);
6335 }
6336 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6337 const char *buf, size_t count)
6338 {
6339 return sched_power_savings_store(buf, count, 0);
6340 }
6341 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6342 sched_mc_power_savings_store);
6343 #endif
6344
6345 #ifdef CONFIG_SCHED_SMT
6346 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6347 {
6348 return sprintf(page, "%u\n", sched_smt_power_savings);
6349 }
6350 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6351 const char *buf, size_t count)
6352 {
6353 return sched_power_savings_store(buf, count, 1);
6354 }
6355 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6356 sched_smt_power_savings_store);
6357 #endif
6358
6359 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6360 {
6361 int err = 0;
6362
6363 #ifdef CONFIG_SCHED_SMT
6364 if (smt_capable())
6365 err = sysfs_create_file(&cls->kset.kobj,
6366 &attr_sched_smt_power_savings.attr);
6367 #endif
6368 #ifdef CONFIG_SCHED_MC
6369 if (!err && mc_capable())
6370 err = sysfs_create_file(&cls->kset.kobj,
6371 &attr_sched_mc_power_savings.attr);
6372 #endif
6373 return err;
6374 }
6375 #endif
6376
6377 /*
6378 * Force a reinitialization of the sched domains hierarchy. The domains
6379 * and groups cannot be updated in place without racing with the balancing
6380 * code, so we temporarily attach all running cpus to the NULL domain
6381 * which will prevent rebalancing while the sched domains are recalculated.
6382 */
6383 static int update_sched_domains(struct notifier_block *nfb,
6384 unsigned long action, void *hcpu)
6385 {
6386 switch (action) {
6387 case CPU_UP_PREPARE:
6388 case CPU_UP_PREPARE_FROZEN:
6389 case CPU_DOWN_PREPARE:
6390 case CPU_DOWN_PREPARE_FROZEN:
6391 detach_destroy_domains(&cpu_online_map);
6392 return NOTIFY_OK;
6393
6394 case CPU_UP_CANCELED:
6395 case CPU_UP_CANCELED_FROZEN:
6396 case CPU_DOWN_FAILED:
6397 case CPU_DOWN_FAILED_FROZEN:
6398 case CPU_ONLINE:
6399 case CPU_ONLINE_FROZEN:
6400 case CPU_DEAD:
6401 case CPU_DEAD_FROZEN:
6402 /*
6403 * Fall through and re-initialise the domains.
6404 */
6405 break;
6406 default:
6407 return NOTIFY_DONE;
6408 }
6409
6410 /* The hotplug lock is already held by cpu_up/cpu_down */
6411 arch_init_sched_domains(&cpu_online_map);
6412
6413 return NOTIFY_OK;
6414 }
6415
6416 void __init sched_init_smp(void)
6417 {
6418 cpumask_t non_isolated_cpus;
6419
6420 mutex_lock(&sched_hotcpu_mutex);
6421 arch_init_sched_domains(&cpu_online_map);
6422 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6423 if (cpus_empty(non_isolated_cpus))
6424 cpu_set(smp_processor_id(), non_isolated_cpus);
6425 mutex_unlock(&sched_hotcpu_mutex);
6426 /* XXX: Theoretical race here - CPU may be hotplugged now */
6427 hotcpu_notifier(update_sched_domains, 0);
6428
6429 init_sched_domain_sysctl();
6430
6431 /* Move init over to a non-isolated CPU */
6432 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6433 BUG();
6434 }
6435 #else
6436 void __init sched_init_smp(void)
6437 {
6438 }
6439 #endif /* CONFIG_SMP */
6440
6441 int in_sched_functions(unsigned long addr)
6442 {
6443 /* Linker adds these: start and end of __sched functions */
6444 extern char __sched_text_start[], __sched_text_end[];
6445
6446 return in_lock_functions(addr) ||
6447 (addr >= (unsigned long)__sched_text_start
6448 && addr < (unsigned long)__sched_text_end);
6449 }
6450
6451 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6452 {
6453 cfs_rq->tasks_timeline = RB_ROOT;
6454 cfs_rq->fair_clock = 1;
6455 #ifdef CONFIG_FAIR_GROUP_SCHED
6456 cfs_rq->rq = rq;
6457 #endif
6458 }
6459
6460 void __init sched_init(void)
6461 {
6462 int highest_cpu = 0;
6463 int i, j;
6464
6465 /*
6466 * Link up the scheduling class hierarchy:
6467 */
6468 rt_sched_class.next = &fair_sched_class;
6469 fair_sched_class.next = &idle_sched_class;
6470 idle_sched_class.next = NULL;
6471
6472 for_each_possible_cpu(i) {
6473 struct rt_prio_array *array;
6474 struct rq *rq;
6475
6476 rq = cpu_rq(i);
6477 spin_lock_init(&rq->lock);
6478 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6479 rq->nr_running = 0;
6480 rq->clock = 1;
6481 init_cfs_rq(&rq->cfs, rq);
6482 #ifdef CONFIG_FAIR_GROUP_SCHED
6483 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6484 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6485 #endif
6486
6487 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6488 rq->cpu_load[j] = 0;
6489 #ifdef CONFIG_SMP
6490 rq->sd = NULL;
6491 rq->active_balance = 0;
6492 rq->next_balance = jiffies;
6493 rq->push_cpu = 0;
6494 rq->cpu = i;
6495 rq->migration_thread = NULL;
6496 INIT_LIST_HEAD(&rq->migration_queue);
6497 #endif
6498 atomic_set(&rq->nr_iowait, 0);
6499
6500 array = &rq->rt.active;
6501 for (j = 0; j < MAX_RT_PRIO; j++) {
6502 INIT_LIST_HEAD(array->queue + j);
6503 __clear_bit(j, array->bitmap);
6504 }
6505 highest_cpu = i;
6506 /* delimiter for bitsearch: */
6507 __set_bit(MAX_RT_PRIO, array->bitmap);
6508 }
6509
6510 set_load_weight(&init_task);
6511
6512 #ifdef CONFIG_PREEMPT_NOTIFIERS
6513 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6514 #endif
6515
6516 #ifdef CONFIG_SMP
6517 nr_cpu_ids = highest_cpu + 1;
6518 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6519 #endif
6520
6521 #ifdef CONFIG_RT_MUTEXES
6522 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6523 #endif
6524
6525 /*
6526 * The boot idle thread does lazy MMU switching as well:
6527 */
6528 atomic_inc(&init_mm.mm_count);
6529 enter_lazy_tlb(&init_mm, current);
6530
6531 /*
6532 * Make us the idle thread. Technically, schedule() should not be
6533 * called from this thread, however somewhere below it might be,
6534 * but because we are the idle thread, we just pick up running again
6535 * when this runqueue becomes "idle".
6536 */
6537 init_idle(current, smp_processor_id());
6538 /*
6539 * During early bootup we pretend to be a normal task:
6540 */
6541 current->sched_class = &fair_sched_class;
6542 }
6543
6544 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6545 void __might_sleep(char *file, int line)
6546 {
6547 #ifdef in_atomic
6548 static unsigned long prev_jiffy; /* ratelimiting */
6549
6550 if ((in_atomic() || irqs_disabled()) &&
6551 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6552 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6553 return;
6554 prev_jiffy = jiffies;
6555 printk(KERN_ERR "BUG: sleeping function called from invalid"
6556 " context at %s:%d\n", file, line);
6557 printk("in_atomic():%d, irqs_disabled():%d\n",
6558 in_atomic(), irqs_disabled());
6559 debug_show_held_locks(current);
6560 if (irqs_disabled())
6561 print_irqtrace_events(current);
6562 dump_stack();
6563 }
6564 #endif
6565 }
6566 EXPORT_SYMBOL(__might_sleep);
6567 #endif
6568
6569 #ifdef CONFIG_MAGIC_SYSRQ
6570 void normalize_rt_tasks(void)
6571 {
6572 struct task_struct *g, *p;
6573 unsigned long flags;
6574 struct rq *rq;
6575 int on_rq;
6576
6577 read_lock_irq(&tasklist_lock);
6578 do_each_thread(g, p) {
6579 p->se.fair_key = 0;
6580 p->se.wait_runtime = 0;
6581 p->se.exec_start = 0;
6582 p->se.wait_start_fair = 0;
6583 p->se.sleep_start_fair = 0;
6584 #ifdef CONFIG_SCHEDSTATS
6585 p->se.wait_start = 0;
6586 p->se.sleep_start = 0;
6587 p->se.block_start = 0;
6588 #endif
6589 task_rq(p)->cfs.fair_clock = 0;
6590 task_rq(p)->clock = 0;
6591
6592 if (!rt_task(p)) {
6593 /*
6594 * Renice negative nice level userspace
6595 * tasks back to 0:
6596 */
6597 if (TASK_NICE(p) < 0 && p->mm)
6598 set_user_nice(p, 0);
6599 continue;
6600 }
6601
6602 spin_lock_irqsave(&p->pi_lock, flags);
6603 rq = __task_rq_lock(p);
6604 #ifdef CONFIG_SMP
6605 /*
6606 * Do not touch the migration thread:
6607 */
6608 if (p == rq->migration_thread)
6609 goto out_unlock;
6610 #endif
6611
6612 update_rq_clock(rq);
6613 on_rq = p->se.on_rq;
6614 if (on_rq)
6615 deactivate_task(rq, p, 0);
6616 __setscheduler(rq, p, SCHED_NORMAL, 0);
6617 if (on_rq) {
6618 activate_task(rq, p, 0);
6619 resched_task(rq->curr);
6620 }
6621 #ifdef CONFIG_SMP
6622 out_unlock:
6623 #endif
6624 __task_rq_unlock(rq);
6625 spin_unlock_irqrestore(&p->pi_lock, flags);
6626 } while_each_thread(g, p);
6627
6628 read_unlock_irq(&tasklist_lock);
6629 }
6630
6631 #endif /* CONFIG_MAGIC_SYSRQ */
6632
6633 #ifdef CONFIG_IA64
6634 /*
6635 * These functions are only useful for the IA64 MCA handling.
6636 *
6637 * They can only be called when the whole system has been
6638 * stopped - every CPU needs to be quiescent, and no scheduling
6639 * activity can take place. Using them for anything else would
6640 * be a serious bug, and as a result, they aren't even visible
6641 * under any other configuration.
6642 */
6643
6644 /**
6645 * curr_task - return the current task for a given cpu.
6646 * @cpu: the processor in question.
6647 *
6648 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6649 */
6650 struct task_struct *curr_task(int cpu)
6651 {
6652 return cpu_curr(cpu);
6653 }
6654
6655 /**
6656 * set_curr_task - set the current task for a given cpu.
6657 * @cpu: the processor in question.
6658 * @p: the task pointer to set.
6659 *
6660 * Description: This function must only be used when non-maskable interrupts
6661 * are serviced on a separate stack. It allows the architecture to switch the
6662 * notion of the current task on a cpu in a non-blocking manner. This function
6663 * must be called with all CPU's synchronized, and interrupts disabled, the
6664 * and caller must save the original value of the current task (see
6665 * curr_task() above) and restore that value before reenabling interrupts and
6666 * re-starting the system.
6667 *
6668 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6669 */
6670 void set_curr_task(int cpu, struct task_struct *p)
6671 {
6672 cpu_curr(cpu) = p;
6673 }
6674
6675 #endif
This page took 0.154904 seconds and 6 git commands to generate.