Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
99
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
103 /*
104 * These are the 'tuning knobs' of the scheduler:
105 *
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
108 */
109 #define DEF_TIMESLICE (100 * HZ / 1000)
110
111 /*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114 #define RUNTIME_INF ((u64)~0ULL)
115
116 #ifdef CONFIG_SMP
117 /*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 {
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 }
125
126 /*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 {
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 }
135 #endif
136
137 static inline int rt_policy(int policy)
138 {
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142 }
143
144 static inline int task_has_rt_policy(struct task_struct *p)
145 {
146 return rt_policy(p->policy);
147 }
148
149 /*
150 * This is the priority-queue data structure of the RT scheduling class:
151 */
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155 };
156
157 struct rt_bandwidth {
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
163 };
164
165 static struct rt_bandwidth def_rt_bandwidth;
166
167 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170 {
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188 }
189
190 static
191 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192 {
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202 }
203
204 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205 {
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226 }
227
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230 {
231 hrtimer_cancel(&rt_b->rt_period_timer);
232 }
233 #endif
234
235 /*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239 static DEFINE_MUTEX(sched_domains_mutex);
240
241 #ifdef CONFIG_GROUP_SCHED
242
243 #include <linux/cgroup.h>
244
245 struct cfs_rq;
246
247 static LIST_HEAD(task_groups);
248
249 /* task group related information */
250 struct task_group {
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css;
253 #endif
254
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
261 #endif
262
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
267 struct rt_bandwidth rt_bandwidth;
268 #endif
269
270 struct rcu_head rcu;
271 struct list_head list;
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
276 };
277
278 #ifdef CONFIG_USER_SCHED
279
280 /*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285 struct task_group root_task_group;
286
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 #endif
293
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
297 #endif
298 #else
299 #define root_task_group init_task_group
300 #endif
301
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
304 */
305 static DEFINE_SPINLOCK(task_group_lock);
306
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310 #else
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312 #endif
313
314 /*
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
318 */
319 #define MIN_SHARES 2
320 #define MAX_SHARES (ULONG_MAX - 1)
321
322 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
323 #endif
324
325 /* Default task group.
326 * Every task in system belong to this group at bootup.
327 */
328 struct task_group init_task_group;
329
330 /* return group to which a task belongs */
331 static inline struct task_group *task_group(struct task_struct *p)
332 {
333 struct task_group *tg;
334
335 #ifdef CONFIG_USER_SCHED
336 tg = p->user->tg;
337 #elif defined(CONFIG_CGROUP_SCHED)
338 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
339 struct task_group, css);
340 #else
341 tg = &init_task_group;
342 #endif
343 return tg;
344 }
345
346 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
347 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
348 {
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
351 p->se.parent = task_group(p)->se[cpu];
352 #endif
353
354 #ifdef CONFIG_RT_GROUP_SCHED
355 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
356 p->rt.parent = task_group(p)->rt_se[cpu];
357 #endif
358 }
359
360 #else
361
362 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
363
364 #endif /* CONFIG_GROUP_SCHED */
365
366 /* CFS-related fields in a runqueue */
367 struct cfs_rq {
368 struct load_weight load;
369 unsigned long nr_running;
370
371 u64 exec_clock;
372 u64 min_vruntime;
373
374 struct rb_root tasks_timeline;
375 struct rb_node *rb_leftmost;
376
377 struct list_head tasks;
378 struct list_head *balance_iterator;
379
380 /*
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
383 */
384 struct sched_entity *curr, *next;
385
386 unsigned long nr_spread_over;
387
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
399 struct list_head leaf_cfs_rq_list;
400 struct task_group *tg; /* group that "owns" this runqueue */
401
402 #ifdef CONFIG_SMP
403 unsigned long task_weight;
404 unsigned long shares;
405 /*
406 * We need space to build a sched_domain wide view of the full task
407 * group tree, in order to avoid depending on dynamic memory allocation
408 * during the load balancing we place this in the per cpu task group
409 * hierarchy. This limits the load balancing to one instance per cpu,
410 * but more should not be needed anyway.
411 */
412 struct aggregate_struct {
413 /*
414 * load = weight(cpus) * f(tg)
415 *
416 * Where f(tg) is the recursive weight fraction assigned to
417 * this group.
418 */
419 unsigned long load;
420
421 /*
422 * part of the group weight distributed to this span.
423 */
424 unsigned long shares;
425
426 /*
427 * The sum of all runqueue weights within this span.
428 */
429 unsigned long rq_weight;
430
431 /*
432 * Weight contributed by tasks; this is the part we can
433 * influence by moving tasks around.
434 */
435 unsigned long task_weight;
436 } aggregate;
437 #endif
438 #endif
439 };
440
441 /* Real-Time classes' related field in a runqueue: */
442 struct rt_rq {
443 struct rt_prio_array active;
444 unsigned long rt_nr_running;
445 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
446 int highest_prio; /* highest queued rt task prio */
447 #endif
448 #ifdef CONFIG_SMP
449 unsigned long rt_nr_migratory;
450 int overloaded;
451 #endif
452 int rt_throttled;
453 u64 rt_time;
454 u64 rt_runtime;
455 /* Nests inside the rq lock: */
456 spinlock_t rt_runtime_lock;
457
458 #ifdef CONFIG_RT_GROUP_SCHED
459 unsigned long rt_nr_boosted;
460
461 struct rq *rq;
462 struct list_head leaf_rt_rq_list;
463 struct task_group *tg;
464 struct sched_rt_entity *rt_se;
465 #endif
466 };
467
468 #ifdef CONFIG_SMP
469
470 /*
471 * We add the notion of a root-domain which will be used to define per-domain
472 * variables. Each exclusive cpuset essentially defines an island domain by
473 * fully partitioning the member cpus from any other cpuset. Whenever a new
474 * exclusive cpuset is created, we also create and attach a new root-domain
475 * object.
476 *
477 */
478 struct root_domain {
479 atomic_t refcount;
480 cpumask_t span;
481 cpumask_t online;
482
483 /*
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
486 */
487 cpumask_t rto_mask;
488 atomic_t rto_count;
489 };
490
491 /*
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
494 */
495 static struct root_domain def_root_domain;
496
497 #endif
498
499 /*
500 * This is the main, per-CPU runqueue data structure.
501 *
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
505 */
506 struct rq {
507 /* runqueue lock: */
508 spinlock_t lock;
509
510 /*
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
513 */
514 unsigned long nr_running;
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
517 unsigned char idle_at_tick;
518 #ifdef CONFIG_NO_HZ
519 unsigned long last_tick_seen;
520 unsigned char in_nohz_recently;
521 #endif
522 /* capture load from *all* tasks on this cpu: */
523 struct load_weight load;
524 unsigned long nr_load_updates;
525 u64 nr_switches;
526
527 struct cfs_rq cfs;
528 struct rt_rq rt;
529
530 #ifdef CONFIG_FAIR_GROUP_SCHED
531 /* list of leaf cfs_rq on this cpu: */
532 struct list_head leaf_cfs_rq_list;
533 #endif
534 #ifdef CONFIG_RT_GROUP_SCHED
535 struct list_head leaf_rt_rq_list;
536 #endif
537
538 /*
539 * This is part of a global counter where only the total sum
540 * over all CPUs matters. A task can increase this counter on
541 * one CPU and if it got migrated afterwards it may decrease
542 * it on another CPU. Always updated under the runqueue lock:
543 */
544 unsigned long nr_uninterruptible;
545
546 struct task_struct *curr, *idle;
547 unsigned long next_balance;
548 struct mm_struct *prev_mm;
549
550 u64 clock;
551
552 atomic_t nr_iowait;
553
554 #ifdef CONFIG_SMP
555 struct root_domain *rd;
556 struct sched_domain *sd;
557
558 /* For active balancing */
559 int active_balance;
560 int push_cpu;
561 /* cpu of this runqueue: */
562 int cpu;
563
564 struct task_struct *migration_thread;
565 struct list_head migration_queue;
566 #endif
567
568 #ifdef CONFIG_SCHED_HRTICK
569 unsigned long hrtick_flags;
570 ktime_t hrtick_expire;
571 struct hrtimer hrtick_timer;
572 #endif
573
574 #ifdef CONFIG_SCHEDSTATS
575 /* latency stats */
576 struct sched_info rq_sched_info;
577
578 /* sys_sched_yield() stats */
579 unsigned int yld_exp_empty;
580 unsigned int yld_act_empty;
581 unsigned int yld_both_empty;
582 unsigned int yld_count;
583
584 /* schedule() stats */
585 unsigned int sched_switch;
586 unsigned int sched_count;
587 unsigned int sched_goidle;
588
589 /* try_to_wake_up() stats */
590 unsigned int ttwu_count;
591 unsigned int ttwu_local;
592
593 /* BKL stats */
594 unsigned int bkl_count;
595 #endif
596 struct lock_class_key rq_lock_key;
597 };
598
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
600
601 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
602 {
603 rq->curr->sched_class->check_preempt_curr(rq, p);
604 }
605
606 static inline int cpu_of(struct rq *rq)
607 {
608 #ifdef CONFIG_SMP
609 return rq->cpu;
610 #else
611 return 0;
612 #endif
613 }
614
615 /*
616 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
617 * See detach_destroy_domains: synchronize_sched for details.
618 *
619 * The domain tree of any CPU may only be accessed from within
620 * preempt-disabled sections.
621 */
622 #define for_each_domain(cpu, __sd) \
623 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
624
625 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
626 #define this_rq() (&__get_cpu_var(runqueues))
627 #define task_rq(p) cpu_rq(task_cpu(p))
628 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
629
630 static inline void update_rq_clock(struct rq *rq)
631 {
632 rq->clock = sched_clock_cpu(cpu_of(rq));
633 }
634
635 /*
636 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
637 */
638 #ifdef CONFIG_SCHED_DEBUG
639 # define const_debug __read_mostly
640 #else
641 # define const_debug static const
642 #endif
643
644 /*
645 * Debugging: various feature bits
646 */
647
648 #define SCHED_FEAT(name, enabled) \
649 __SCHED_FEAT_##name ,
650
651 enum {
652 #include "sched_features.h"
653 };
654
655 #undef SCHED_FEAT
656
657 #define SCHED_FEAT(name, enabled) \
658 (1UL << __SCHED_FEAT_##name) * enabled |
659
660 const_debug unsigned int sysctl_sched_features =
661 #include "sched_features.h"
662 0;
663
664 #undef SCHED_FEAT
665
666 #ifdef CONFIG_SCHED_DEBUG
667 #define SCHED_FEAT(name, enabled) \
668 #name ,
669
670 static __read_mostly char *sched_feat_names[] = {
671 #include "sched_features.h"
672 NULL
673 };
674
675 #undef SCHED_FEAT
676
677 static int sched_feat_open(struct inode *inode, struct file *filp)
678 {
679 filp->private_data = inode->i_private;
680 return 0;
681 }
682
683 static ssize_t
684 sched_feat_read(struct file *filp, char __user *ubuf,
685 size_t cnt, loff_t *ppos)
686 {
687 char *buf;
688 int r = 0;
689 int len = 0;
690 int i;
691
692 for (i = 0; sched_feat_names[i]; i++) {
693 len += strlen(sched_feat_names[i]);
694 len += 4;
695 }
696
697 buf = kmalloc(len + 2, GFP_KERNEL);
698 if (!buf)
699 return -ENOMEM;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (sysctl_sched_features & (1UL << i))
703 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
704 else
705 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
706 }
707
708 r += sprintf(buf + r, "\n");
709 WARN_ON(r >= len + 2);
710
711 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
712
713 kfree(buf);
714
715 return r;
716 }
717
718 static ssize_t
719 sched_feat_write(struct file *filp, const char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721 {
722 char buf[64];
723 char *cmp = buf;
724 int neg = 0;
725 int i;
726
727 if (cnt > 63)
728 cnt = 63;
729
730 if (copy_from_user(&buf, ubuf, cnt))
731 return -EFAULT;
732
733 buf[cnt] = 0;
734
735 if (strncmp(buf, "NO_", 3) == 0) {
736 neg = 1;
737 cmp += 3;
738 }
739
740 for (i = 0; sched_feat_names[i]; i++) {
741 int len = strlen(sched_feat_names[i]);
742
743 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
755 filp->f_pos += cnt;
756
757 return cnt;
758 }
759
760 static struct file_operations sched_feat_fops = {
761 .open = sched_feat_open,
762 .read = sched_feat_read,
763 .write = sched_feat_write,
764 };
765
766 static __init int sched_init_debug(void)
767 {
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772 }
773 late_initcall(sched_init_debug);
774
775 #endif
776
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
778
779 /*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
785 /*
786 * period over which we measure -rt task cpu usage in us.
787 * default: 1s
788 */
789 unsigned int sysctl_sched_rt_period = 1000000;
790
791 static __read_mostly int scheduler_running;
792
793 /*
794 * part of the period that we allow rt tasks to run in us.
795 * default: 0.95s
796 */
797 int sysctl_sched_rt_runtime = 950000;
798
799 static inline u64 global_rt_period(void)
800 {
801 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
802 }
803
804 static inline u64 global_rt_runtime(void)
805 {
806 if (sysctl_sched_rt_period < 0)
807 return RUNTIME_INF;
808
809 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
810 }
811
812 unsigned long long time_sync_thresh = 100000;
813
814 static DEFINE_PER_CPU(unsigned long long, time_offset);
815 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
816
817 /*
818 * Global lock which we take every now and then to synchronize
819 * the CPUs time. This method is not warp-safe, but it's good
820 * enough to synchronize slowly diverging time sources and thus
821 * it's good enough for tracing:
822 */
823 static DEFINE_SPINLOCK(time_sync_lock);
824 static unsigned long long prev_global_time;
825
826 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
827 {
828 /*
829 * We want this inlined, to not get tracer function calls
830 * in this critical section:
831 */
832 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
833 __raw_spin_lock(&time_sync_lock.raw_lock);
834
835 if (time < prev_global_time) {
836 per_cpu(time_offset, cpu) += prev_global_time - time;
837 time = prev_global_time;
838 } else {
839 prev_global_time = time;
840 }
841
842 __raw_spin_unlock(&time_sync_lock.raw_lock);
843 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
844
845 return time;
846 }
847
848 static unsigned long long __cpu_clock(int cpu)
849 {
850 unsigned long long now;
851
852 /*
853 * Only call sched_clock() if the scheduler has already been
854 * initialized (some code might call cpu_clock() very early):
855 */
856 if (unlikely(!scheduler_running))
857 return 0;
858
859 now = sched_clock_cpu(cpu);
860
861 return now;
862 }
863
864 /*
865 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
866 * clock constructed from sched_clock():
867 */
868 unsigned long long cpu_clock(int cpu)
869 {
870 unsigned long long prev_cpu_time, time, delta_time;
871 unsigned long flags;
872
873 local_irq_save(flags);
874 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
875 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
876 delta_time = time-prev_cpu_time;
877
878 if (unlikely(delta_time > time_sync_thresh)) {
879 time = __sync_cpu_clock(time, cpu);
880 per_cpu(prev_cpu_time, cpu) = time;
881 }
882 local_irq_restore(flags);
883
884 return time;
885 }
886 EXPORT_SYMBOL_GPL(cpu_clock);
887
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
890 #endif
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
893 #endif
894
895 static inline int task_current(struct rq *rq, struct task_struct *p)
896 {
897 return rq->curr == p;
898 }
899
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
902 {
903 return task_current(rq, p);
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 }
909
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 {
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915 #endif
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
923 spin_unlock_irq(&rq->lock);
924 }
925
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
928 {
929 #ifdef CONFIG_SMP
930 return p->oncpu;
931 #else
932 return task_current(rq, p);
933 #endif
934 }
935
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 {
938 #ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945 #endif
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948 #else
949 spin_unlock(&rq->lock);
950 #endif
951 }
952
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 {
955 #ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963 #endif
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
966 #endif
967 }
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
969
970 /*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
975 __acquires(rq->lock)
976 {
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
982 spin_unlock(&rq->lock);
983 }
984 }
985
986 /*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
990 */
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
992 __acquires(rq->lock)
993 {
994 struct rq *rq;
995
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1003 }
1004 }
1005
1006 static void __task_rq_unlock(struct rq *rq)
1007 __releases(rq->lock)
1008 {
1009 spin_unlock(&rq->lock);
1010 }
1011
1012 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1013 __releases(rq->lock)
1014 {
1015 spin_unlock_irqrestore(&rq->lock, *flags);
1016 }
1017
1018 /*
1019 * this_rq_lock - lock this runqueue and disable interrupts.
1020 */
1021 static struct rq *this_rq_lock(void)
1022 __acquires(rq->lock)
1023 {
1024 struct rq *rq;
1025
1026 local_irq_disable();
1027 rq = this_rq();
1028 spin_lock(&rq->lock);
1029
1030 return rq;
1031 }
1032
1033 static void __resched_task(struct task_struct *p, int tif_bit);
1034
1035 static inline void resched_task(struct task_struct *p)
1036 {
1037 __resched_task(p, TIF_NEED_RESCHED);
1038 }
1039
1040 #ifdef CONFIG_SCHED_HRTICK
1041 /*
1042 * Use HR-timers to deliver accurate preemption points.
1043 *
1044 * Its all a bit involved since we cannot program an hrt while holding the
1045 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1046 * reschedule event.
1047 *
1048 * When we get rescheduled we reprogram the hrtick_timer outside of the
1049 * rq->lock.
1050 */
1051 static inline void resched_hrt(struct task_struct *p)
1052 {
1053 __resched_task(p, TIF_HRTICK_RESCHED);
1054 }
1055
1056 static inline void resched_rq(struct rq *rq)
1057 {
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&rq->lock, flags);
1061 resched_task(rq->curr);
1062 spin_unlock_irqrestore(&rq->lock, flags);
1063 }
1064
1065 enum {
1066 HRTICK_SET, /* re-programm hrtick_timer */
1067 HRTICK_RESET, /* not a new slice */
1068 HRTICK_BLOCK, /* stop hrtick operations */
1069 };
1070
1071 /*
1072 * Use hrtick when:
1073 * - enabled by features
1074 * - hrtimer is actually high res
1075 */
1076 static inline int hrtick_enabled(struct rq *rq)
1077 {
1078 if (!sched_feat(HRTICK))
1079 return 0;
1080 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1081 return 0;
1082 return hrtimer_is_hres_active(&rq->hrtick_timer);
1083 }
1084
1085 /*
1086 * Called to set the hrtick timer state.
1087 *
1088 * called with rq->lock held and irqs disabled
1089 */
1090 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1091 {
1092 assert_spin_locked(&rq->lock);
1093
1094 /*
1095 * preempt at: now + delay
1096 */
1097 rq->hrtick_expire =
1098 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1099 /*
1100 * indicate we need to program the timer
1101 */
1102 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1103 if (reset)
1104 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1105
1106 /*
1107 * New slices are called from the schedule path and don't need a
1108 * forced reschedule.
1109 */
1110 if (reset)
1111 resched_hrt(rq->curr);
1112 }
1113
1114 static void hrtick_clear(struct rq *rq)
1115 {
1116 if (hrtimer_active(&rq->hrtick_timer))
1117 hrtimer_cancel(&rq->hrtick_timer);
1118 }
1119
1120 /*
1121 * Update the timer from the possible pending state.
1122 */
1123 static void hrtick_set(struct rq *rq)
1124 {
1125 ktime_t time;
1126 int set, reset;
1127 unsigned long flags;
1128
1129 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1130
1131 spin_lock_irqsave(&rq->lock, flags);
1132 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1133 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1134 time = rq->hrtick_expire;
1135 clear_thread_flag(TIF_HRTICK_RESCHED);
1136 spin_unlock_irqrestore(&rq->lock, flags);
1137
1138 if (set) {
1139 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1140 if (reset && !hrtimer_active(&rq->hrtick_timer))
1141 resched_rq(rq);
1142 } else
1143 hrtick_clear(rq);
1144 }
1145
1146 /*
1147 * High-resolution timer tick.
1148 * Runs from hardirq context with interrupts disabled.
1149 */
1150 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1151 {
1152 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1153
1154 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1155
1156 spin_lock(&rq->lock);
1157 update_rq_clock(rq);
1158 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1159 spin_unlock(&rq->lock);
1160
1161 return HRTIMER_NORESTART;
1162 }
1163
1164 static void hotplug_hrtick_disable(int cpu)
1165 {
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1168
1169 spin_lock_irqsave(&rq->lock, flags);
1170 rq->hrtick_flags = 0;
1171 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1172 spin_unlock_irqrestore(&rq->lock, flags);
1173
1174 hrtick_clear(rq);
1175 }
1176
1177 static void hotplug_hrtick_enable(int cpu)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 spin_lock_irqsave(&rq->lock, flags);
1183 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1184 spin_unlock_irqrestore(&rq->lock, flags);
1185 }
1186
1187 static int
1188 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1189 {
1190 int cpu = (int)(long)hcpu;
1191
1192 switch (action) {
1193 case CPU_UP_CANCELED:
1194 case CPU_UP_CANCELED_FROZEN:
1195 case CPU_DOWN_PREPARE:
1196 case CPU_DOWN_PREPARE_FROZEN:
1197 case CPU_DEAD:
1198 case CPU_DEAD_FROZEN:
1199 hotplug_hrtick_disable(cpu);
1200 return NOTIFY_OK;
1201
1202 case CPU_UP_PREPARE:
1203 case CPU_UP_PREPARE_FROZEN:
1204 case CPU_DOWN_FAILED:
1205 case CPU_DOWN_FAILED_FROZEN:
1206 case CPU_ONLINE:
1207 case CPU_ONLINE_FROZEN:
1208 hotplug_hrtick_enable(cpu);
1209 return NOTIFY_OK;
1210 }
1211
1212 return NOTIFY_DONE;
1213 }
1214
1215 static void init_hrtick(void)
1216 {
1217 hotcpu_notifier(hotplug_hrtick, 0);
1218 }
1219
1220 static void init_rq_hrtick(struct rq *rq)
1221 {
1222 rq->hrtick_flags = 0;
1223 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1224 rq->hrtick_timer.function = hrtick;
1225 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1226 }
1227
1228 void hrtick_resched(void)
1229 {
1230 struct rq *rq;
1231 unsigned long flags;
1232
1233 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1234 return;
1235
1236 local_irq_save(flags);
1237 rq = cpu_rq(smp_processor_id());
1238 hrtick_set(rq);
1239 local_irq_restore(flags);
1240 }
1241 #else
1242 static inline void hrtick_clear(struct rq *rq)
1243 {
1244 }
1245
1246 static inline void hrtick_set(struct rq *rq)
1247 {
1248 }
1249
1250 static inline void init_rq_hrtick(struct rq *rq)
1251 {
1252 }
1253
1254 void hrtick_resched(void)
1255 {
1256 }
1257
1258 static inline void init_hrtick(void)
1259 {
1260 }
1261 #endif
1262
1263 /*
1264 * resched_task - mark a task 'to be rescheduled now'.
1265 *
1266 * On UP this means the setting of the need_resched flag, on SMP it
1267 * might also involve a cross-CPU call to trigger the scheduler on
1268 * the target CPU.
1269 */
1270 #ifdef CONFIG_SMP
1271
1272 #ifndef tsk_is_polling
1273 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1274 #endif
1275
1276 static void __resched_task(struct task_struct *p, int tif_bit)
1277 {
1278 int cpu;
1279
1280 assert_spin_locked(&task_rq(p)->lock);
1281
1282 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1283 return;
1284
1285 set_tsk_thread_flag(p, tif_bit);
1286
1287 cpu = task_cpu(p);
1288 if (cpu == smp_processor_id())
1289 return;
1290
1291 /* NEED_RESCHED must be visible before we test polling */
1292 smp_mb();
1293 if (!tsk_is_polling(p))
1294 smp_send_reschedule(cpu);
1295 }
1296
1297 static void resched_cpu(int cpu)
1298 {
1299 struct rq *rq = cpu_rq(cpu);
1300 unsigned long flags;
1301
1302 if (!spin_trylock_irqsave(&rq->lock, flags))
1303 return;
1304 resched_task(cpu_curr(cpu));
1305 spin_unlock_irqrestore(&rq->lock, flags);
1306 }
1307
1308 #ifdef CONFIG_NO_HZ
1309 /*
1310 * When add_timer_on() enqueues a timer into the timer wheel of an
1311 * idle CPU then this timer might expire before the next timer event
1312 * which is scheduled to wake up that CPU. In case of a completely
1313 * idle system the next event might even be infinite time into the
1314 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1315 * leaves the inner idle loop so the newly added timer is taken into
1316 * account when the CPU goes back to idle and evaluates the timer
1317 * wheel for the next timer event.
1318 */
1319 void wake_up_idle_cpu(int cpu)
1320 {
1321 struct rq *rq = cpu_rq(cpu);
1322
1323 if (cpu == smp_processor_id())
1324 return;
1325
1326 /*
1327 * This is safe, as this function is called with the timer
1328 * wheel base lock of (cpu) held. When the CPU is on the way
1329 * to idle and has not yet set rq->curr to idle then it will
1330 * be serialized on the timer wheel base lock and take the new
1331 * timer into account automatically.
1332 */
1333 if (rq->curr != rq->idle)
1334 return;
1335
1336 /*
1337 * We can set TIF_RESCHED on the idle task of the other CPU
1338 * lockless. The worst case is that the other CPU runs the
1339 * idle task through an additional NOOP schedule()
1340 */
1341 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1342
1343 /* NEED_RESCHED must be visible before we test polling */
1344 smp_mb();
1345 if (!tsk_is_polling(rq->idle))
1346 smp_send_reschedule(cpu);
1347 }
1348 #endif
1349
1350 #else
1351 static void __resched_task(struct task_struct *p, int tif_bit)
1352 {
1353 assert_spin_locked(&task_rq(p)->lock);
1354 set_tsk_thread_flag(p, tif_bit);
1355 }
1356 #endif
1357
1358 #if BITS_PER_LONG == 32
1359 # define WMULT_CONST (~0UL)
1360 #else
1361 # define WMULT_CONST (1UL << 32)
1362 #endif
1363
1364 #define WMULT_SHIFT 32
1365
1366 /*
1367 * Shift right and round:
1368 */
1369 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1370
1371 /*
1372 * delta *= weight / lw
1373 */
1374 static unsigned long
1375 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1376 struct load_weight *lw)
1377 {
1378 u64 tmp;
1379
1380 if (!lw->inv_weight)
1381 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1382
1383 tmp = (u64)delta_exec * weight;
1384 /*
1385 * Check whether we'd overflow the 64-bit multiplication:
1386 */
1387 if (unlikely(tmp > WMULT_CONST))
1388 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1389 WMULT_SHIFT/2);
1390 else
1391 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1392
1393 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1394 }
1395
1396 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1397 {
1398 lw->weight += inc;
1399 lw->inv_weight = 0;
1400 }
1401
1402 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1403 {
1404 lw->weight -= dec;
1405 lw->inv_weight = 0;
1406 }
1407
1408 /*
1409 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1410 * of tasks with abnormal "nice" values across CPUs the contribution that
1411 * each task makes to its run queue's load is weighted according to its
1412 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1413 * scaled version of the new time slice allocation that they receive on time
1414 * slice expiry etc.
1415 */
1416
1417 #define WEIGHT_IDLEPRIO 2
1418 #define WMULT_IDLEPRIO (1 << 31)
1419
1420 /*
1421 * Nice levels are multiplicative, with a gentle 10% change for every
1422 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1423 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1424 * that remained on nice 0.
1425 *
1426 * The "10% effect" is relative and cumulative: from _any_ nice level,
1427 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1428 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1429 * If a task goes up by ~10% and another task goes down by ~10% then
1430 * the relative distance between them is ~25%.)
1431 */
1432 static const int prio_to_weight[40] = {
1433 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1434 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1435 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1436 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1437 /* 0 */ 1024, 820, 655, 526, 423,
1438 /* 5 */ 335, 272, 215, 172, 137,
1439 /* 10 */ 110, 87, 70, 56, 45,
1440 /* 15 */ 36, 29, 23, 18, 15,
1441 };
1442
1443 /*
1444 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1445 *
1446 * In cases where the weight does not change often, we can use the
1447 * precalculated inverse to speed up arithmetics by turning divisions
1448 * into multiplications:
1449 */
1450 static const u32 prio_to_wmult[40] = {
1451 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1452 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1453 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1454 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1455 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1456 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1457 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1458 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1459 };
1460
1461 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1462
1463 /*
1464 * runqueue iterator, to support SMP load-balancing between different
1465 * scheduling classes, without having to expose their internal data
1466 * structures to the load-balancing proper:
1467 */
1468 struct rq_iterator {
1469 void *arg;
1470 struct task_struct *(*start)(void *);
1471 struct task_struct *(*next)(void *);
1472 };
1473
1474 #ifdef CONFIG_SMP
1475 static unsigned long
1476 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1477 unsigned long max_load_move, struct sched_domain *sd,
1478 enum cpu_idle_type idle, int *all_pinned,
1479 int *this_best_prio, struct rq_iterator *iterator);
1480
1481 static int
1482 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1483 struct sched_domain *sd, enum cpu_idle_type idle,
1484 struct rq_iterator *iterator);
1485 #endif
1486
1487 #ifdef CONFIG_CGROUP_CPUACCT
1488 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1489 #else
1490 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1491 #endif
1492
1493 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1494 {
1495 update_load_add(&rq->load, load);
1496 }
1497
1498 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1499 {
1500 update_load_sub(&rq->load, load);
1501 }
1502
1503 #ifdef CONFIG_SMP
1504 static unsigned long source_load(int cpu, int type);
1505 static unsigned long target_load(int cpu, int type);
1506 static unsigned long cpu_avg_load_per_task(int cpu);
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508
1509 #ifdef CONFIG_FAIR_GROUP_SCHED
1510
1511 /*
1512 * Group load balancing.
1513 *
1514 * We calculate a few balance domain wide aggregate numbers; load and weight.
1515 * Given the pictures below, and assuming each item has equal weight:
1516 *
1517 * root 1 - thread
1518 * / | \ A - group
1519 * A 1 B
1520 * /|\ / \
1521 * C 2 D 3 4
1522 * | |
1523 * 5 6
1524 *
1525 * load:
1526 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1527 * which equals 1/9-th of the total load.
1528 *
1529 * shares:
1530 * The weight of this group on the selected cpus.
1531 *
1532 * rq_weight:
1533 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1534 * B would get 2.
1535 *
1536 * task_weight:
1537 * Part of the rq_weight contributed by tasks; all groups except B would
1538 * get 1, B gets 2.
1539 */
1540
1541 static inline struct aggregate_struct *
1542 aggregate(struct task_group *tg, struct sched_domain *sd)
1543 {
1544 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1545 }
1546
1547 typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1548
1549 /*
1550 * Iterate the full tree, calling @down when first entering a node and @up when
1551 * leaving it for the final time.
1552 */
1553 static
1554 void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1555 struct sched_domain *sd)
1556 {
1557 struct task_group *parent, *child;
1558
1559 rcu_read_lock();
1560 parent = &root_task_group;
1561 down:
1562 (*down)(parent, sd);
1563 list_for_each_entry_rcu(child, &parent->children, siblings) {
1564 parent = child;
1565 goto down;
1566
1567 up:
1568 continue;
1569 }
1570 (*up)(parent, sd);
1571
1572 child = parent;
1573 parent = parent->parent;
1574 if (parent)
1575 goto up;
1576 rcu_read_unlock();
1577 }
1578
1579 /*
1580 * Calculate the aggregate runqueue weight.
1581 */
1582 static
1583 void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1584 {
1585 unsigned long rq_weight = 0;
1586 unsigned long task_weight = 0;
1587 int i;
1588
1589 for_each_cpu_mask(i, sd->span) {
1590 rq_weight += tg->cfs_rq[i]->load.weight;
1591 task_weight += tg->cfs_rq[i]->task_weight;
1592 }
1593
1594 aggregate(tg, sd)->rq_weight = rq_weight;
1595 aggregate(tg, sd)->task_weight = task_weight;
1596 }
1597
1598 /*
1599 * Compute the weight of this group on the given cpus.
1600 */
1601 static
1602 void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1603 {
1604 unsigned long shares = 0;
1605 int i;
1606
1607 for_each_cpu_mask(i, sd->span)
1608 shares += tg->cfs_rq[i]->shares;
1609
1610 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
1612
1613 aggregate(tg, sd)->shares = shares;
1614 }
1615
1616 /*
1617 * Compute the load fraction assigned to this group, relies on the aggregate
1618 * weight and this group's parent's load, i.e. top-down.
1619 */
1620 static
1621 void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1622 {
1623 unsigned long load;
1624
1625 if (!tg->parent) {
1626 int i;
1627
1628 load = 0;
1629 for_each_cpu_mask(i, sd->span)
1630 load += cpu_rq(i)->load.weight;
1631
1632 } else {
1633 load = aggregate(tg->parent, sd)->load;
1634
1635 /*
1636 * shares is our weight in the parent's rq so
1637 * shares/parent->rq_weight gives our fraction of the load
1638 */
1639 load *= aggregate(tg, sd)->shares;
1640 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1641 }
1642
1643 aggregate(tg, sd)->load = load;
1644 }
1645
1646 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1647
1648 /*
1649 * Calculate and set the cpu's group shares.
1650 */
1651 static void
1652 __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1653 int tcpu)
1654 {
1655 int boost = 0;
1656 unsigned long shares;
1657 unsigned long rq_weight;
1658
1659 if (!tg->se[tcpu])
1660 return;
1661
1662 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1663
1664 /*
1665 * If there are currently no tasks on the cpu pretend there is one of
1666 * average load so that when a new task gets to run here it will not
1667 * get delayed by group starvation.
1668 */
1669 if (!rq_weight) {
1670 boost = 1;
1671 rq_weight = NICE_0_LOAD;
1672 }
1673
1674 /*
1675 * \Sum shares * rq_weight
1676 * shares = -----------------------
1677 * \Sum rq_weight
1678 *
1679 */
1680 shares = aggregate(tg, sd)->shares * rq_weight;
1681 shares /= aggregate(tg, sd)->rq_weight + 1;
1682
1683 /*
1684 * record the actual number of shares, not the boosted amount.
1685 */
1686 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1687
1688 if (shares < MIN_SHARES)
1689 shares = MIN_SHARES;
1690 else if (shares > MAX_SHARES)
1691 shares = MAX_SHARES;
1692
1693 __set_se_shares(tg->se[tcpu], shares);
1694 }
1695
1696 /*
1697 * Re-adjust the weights on the cpu the task came from and on the cpu the
1698 * task went to.
1699 */
1700 static void
1701 __move_group_shares(struct task_group *tg, struct sched_domain *sd,
1702 int scpu, int dcpu)
1703 {
1704 unsigned long shares;
1705
1706 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1707
1708 __update_group_shares_cpu(tg, sd, scpu);
1709 __update_group_shares_cpu(tg, sd, dcpu);
1710
1711 /*
1712 * ensure we never loose shares due to rounding errors in the
1713 * above redistribution.
1714 */
1715 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1716 if (shares)
1717 tg->cfs_rq[dcpu]->shares += shares;
1718 }
1719
1720 /*
1721 * Because changing a group's shares changes the weight of the super-group
1722 * we need to walk up the tree and change all shares until we hit the root.
1723 */
1724 static void
1725 move_group_shares(struct task_group *tg, struct sched_domain *sd,
1726 int scpu, int dcpu)
1727 {
1728 while (tg) {
1729 __move_group_shares(tg, sd, scpu, dcpu);
1730 tg = tg->parent;
1731 }
1732 }
1733
1734 static
1735 void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1736 {
1737 unsigned long shares = aggregate(tg, sd)->shares;
1738 int i;
1739
1740 for_each_cpu_mask(i, sd->span) {
1741 struct rq *rq = cpu_rq(i);
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&rq->lock, flags);
1745 __update_group_shares_cpu(tg, sd, i);
1746 spin_unlock_irqrestore(&rq->lock, flags);
1747 }
1748
1749 aggregate_group_shares(tg, sd);
1750
1751 /*
1752 * ensure we never loose shares due to rounding errors in the
1753 * above redistribution.
1754 */
1755 shares -= aggregate(tg, sd)->shares;
1756 if (shares) {
1757 tg->cfs_rq[sd->first_cpu]->shares += shares;
1758 aggregate(tg, sd)->shares += shares;
1759 }
1760 }
1761
1762 /*
1763 * Calculate the accumulative weight and recursive load of each task group
1764 * while walking down the tree.
1765 */
1766 static
1767 void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1768 {
1769 aggregate_group_weight(tg, sd);
1770 aggregate_group_shares(tg, sd);
1771 aggregate_group_load(tg, sd);
1772 }
1773
1774 /*
1775 * Rebalance the cpu shares while walking back up the tree.
1776 */
1777 static
1778 void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1779 {
1780 aggregate_group_set_shares(tg, sd);
1781 }
1782
1783 static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1784
1785 static void __init init_aggregate(void)
1786 {
1787 int i;
1788
1789 for_each_possible_cpu(i)
1790 spin_lock_init(&per_cpu(aggregate_lock, i));
1791 }
1792
1793 static int get_aggregate(struct sched_domain *sd)
1794 {
1795 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1796 return 0;
1797
1798 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1799 return 1;
1800 }
1801
1802 static void put_aggregate(struct sched_domain *sd)
1803 {
1804 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1805 }
1806
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808 {
1809 cfs_rq->shares = shares;
1810 }
1811
1812 #else
1813
1814 static inline void init_aggregate(void)
1815 {
1816 }
1817
1818 static inline int get_aggregate(struct sched_domain *sd)
1819 {
1820 return 0;
1821 }
1822
1823 static inline void put_aggregate(struct sched_domain *sd)
1824 {
1825 }
1826 #endif
1827
1828 #else /* CONFIG_SMP */
1829
1830 #ifdef CONFIG_FAIR_GROUP_SCHED
1831 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1832 {
1833 }
1834 #endif
1835
1836 #endif /* CONFIG_SMP */
1837
1838 #include "sched_stats.h"
1839 #include "sched_idletask.c"
1840 #include "sched_fair.c"
1841 #include "sched_rt.c"
1842 #ifdef CONFIG_SCHED_DEBUG
1843 # include "sched_debug.c"
1844 #endif
1845
1846 #define sched_class_highest (&rt_sched_class)
1847
1848 static void inc_nr_running(struct rq *rq)
1849 {
1850 rq->nr_running++;
1851 }
1852
1853 static void dec_nr_running(struct rq *rq)
1854 {
1855 rq->nr_running--;
1856 }
1857
1858 static void set_load_weight(struct task_struct *p)
1859 {
1860 if (task_has_rt_policy(p)) {
1861 p->se.load.weight = prio_to_weight[0] * 2;
1862 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1863 return;
1864 }
1865
1866 /*
1867 * SCHED_IDLE tasks get minimal weight:
1868 */
1869 if (p->policy == SCHED_IDLE) {
1870 p->se.load.weight = WEIGHT_IDLEPRIO;
1871 p->se.load.inv_weight = WMULT_IDLEPRIO;
1872 return;
1873 }
1874
1875 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1876 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1877 }
1878
1879 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1880 {
1881 sched_info_queued(p);
1882 p->sched_class->enqueue_task(rq, p, wakeup);
1883 p->se.on_rq = 1;
1884 }
1885
1886 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1887 {
1888 p->sched_class->dequeue_task(rq, p, sleep);
1889 p->se.on_rq = 0;
1890 }
1891
1892 /*
1893 * __normal_prio - return the priority that is based on the static prio
1894 */
1895 static inline int __normal_prio(struct task_struct *p)
1896 {
1897 return p->static_prio;
1898 }
1899
1900 /*
1901 * Calculate the expected normal priority: i.e. priority
1902 * without taking RT-inheritance into account. Might be
1903 * boosted by interactivity modifiers. Changes upon fork,
1904 * setprio syscalls, and whenever the interactivity
1905 * estimator recalculates.
1906 */
1907 static inline int normal_prio(struct task_struct *p)
1908 {
1909 int prio;
1910
1911 if (task_has_rt_policy(p))
1912 prio = MAX_RT_PRIO-1 - p->rt_priority;
1913 else
1914 prio = __normal_prio(p);
1915 return prio;
1916 }
1917
1918 /*
1919 * Calculate the current priority, i.e. the priority
1920 * taken into account by the scheduler. This value might
1921 * be boosted by RT tasks, or might be boosted by
1922 * interactivity modifiers. Will be RT if the task got
1923 * RT-boosted. If not then it returns p->normal_prio.
1924 */
1925 static int effective_prio(struct task_struct *p)
1926 {
1927 p->normal_prio = normal_prio(p);
1928 /*
1929 * If we are RT tasks or we were boosted to RT priority,
1930 * keep the priority unchanged. Otherwise, update priority
1931 * to the normal priority:
1932 */
1933 if (!rt_prio(p->prio))
1934 return p->normal_prio;
1935 return p->prio;
1936 }
1937
1938 /*
1939 * activate_task - move a task to the runqueue.
1940 */
1941 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1942 {
1943 if (task_contributes_to_load(p))
1944 rq->nr_uninterruptible--;
1945
1946 enqueue_task(rq, p, wakeup);
1947 inc_nr_running(rq);
1948 }
1949
1950 /*
1951 * deactivate_task - remove a task from the runqueue.
1952 */
1953 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1954 {
1955 if (task_contributes_to_load(p))
1956 rq->nr_uninterruptible++;
1957
1958 dequeue_task(rq, p, sleep);
1959 dec_nr_running(rq);
1960 }
1961
1962 /**
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1965 */
1966 inline int task_curr(const struct task_struct *p)
1967 {
1968 return cpu_curr(task_cpu(p)) == p;
1969 }
1970
1971 /* Used instead of source_load when we know the type == 0 */
1972 unsigned long weighted_cpuload(const int cpu)
1973 {
1974 return cpu_rq(cpu)->load.weight;
1975 }
1976
1977 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1978 {
1979 set_task_rq(p, cpu);
1980 #ifdef CONFIG_SMP
1981 /*
1982 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1983 * successfuly executed on another CPU. We must ensure that updates of
1984 * per-task data have been completed by this moment.
1985 */
1986 smp_wmb();
1987 task_thread_info(p)->cpu = cpu;
1988 #endif
1989 }
1990
1991 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994 {
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 }
2002
2003 #ifdef CONFIG_SMP
2004
2005 /*
2006 * Is this task likely cache-hot:
2007 */
2008 static int
2009 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010 {
2011 s64 delta;
2012
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
2016 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2017 return 1;
2018
2019 if (p->sched_class != &fair_sched_class)
2020 return 0;
2021
2022 if (sysctl_sched_migration_cost == -1)
2023 return 1;
2024 if (sysctl_sched_migration_cost == 0)
2025 return 0;
2026
2027 delta = now - p->se.exec_start;
2028
2029 return delta < (s64)sysctl_sched_migration_cost;
2030 }
2031
2032
2033 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2034 {
2035 int old_cpu = task_cpu(p);
2036 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2037 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2038 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2039 u64 clock_offset;
2040
2041 clock_offset = old_rq->clock - new_rq->clock;
2042
2043 #ifdef CONFIG_SCHEDSTATS
2044 if (p->se.wait_start)
2045 p->se.wait_start -= clock_offset;
2046 if (p->se.sleep_start)
2047 p->se.sleep_start -= clock_offset;
2048 if (p->se.block_start)
2049 p->se.block_start -= clock_offset;
2050 if (old_cpu != new_cpu) {
2051 schedstat_inc(p, se.nr_migrations);
2052 if (task_hot(p, old_rq->clock, NULL))
2053 schedstat_inc(p, se.nr_forced2_migrations);
2054 }
2055 #endif
2056 p->se.vruntime -= old_cfsrq->min_vruntime -
2057 new_cfsrq->min_vruntime;
2058
2059 __set_task_cpu(p, new_cpu);
2060 }
2061
2062 struct migration_req {
2063 struct list_head list;
2064
2065 struct task_struct *task;
2066 int dest_cpu;
2067
2068 struct completion done;
2069 };
2070
2071 /*
2072 * The task's runqueue lock must be held.
2073 * Returns true if you have to wait for migration thread.
2074 */
2075 static int
2076 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2077 {
2078 struct rq *rq = task_rq(p);
2079
2080 /*
2081 * If the task is not on a runqueue (and not running), then
2082 * it is sufficient to simply update the task's cpu field.
2083 */
2084 if (!p->se.on_rq && !task_running(rq, p)) {
2085 set_task_cpu(p, dest_cpu);
2086 return 0;
2087 }
2088
2089 init_completion(&req->done);
2090 req->task = p;
2091 req->dest_cpu = dest_cpu;
2092 list_add(&req->list, &rq->migration_queue);
2093
2094 return 1;
2095 }
2096
2097 /*
2098 * wait_task_inactive - wait for a thread to unschedule.
2099 *
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2105 */
2106 void wait_task_inactive(struct task_struct *p)
2107 {
2108 unsigned long flags;
2109 int running, on_rq;
2110 struct rq *rq;
2111
2112 for (;;) {
2113 /*
2114 * We do the initial early heuristics without holding
2115 * any task-queue locks at all. We'll only try to get
2116 * the runqueue lock when things look like they will
2117 * work out!
2118 */
2119 rq = task_rq(p);
2120
2121 /*
2122 * If the task is actively running on another CPU
2123 * still, just relax and busy-wait without holding
2124 * any locks.
2125 *
2126 * NOTE! Since we don't hold any locks, it's not
2127 * even sure that "rq" stays as the right runqueue!
2128 * But we don't care, since "task_running()" will
2129 * return false if the runqueue has changed and p
2130 * is actually now running somewhere else!
2131 */
2132 while (task_running(rq, p))
2133 cpu_relax();
2134
2135 /*
2136 * Ok, time to look more closely! We need the rq
2137 * lock now, to be *sure*. If we're wrong, we'll
2138 * just go back and repeat.
2139 */
2140 rq = task_rq_lock(p, &flags);
2141 running = task_running(rq, p);
2142 on_rq = p->se.on_rq;
2143 task_rq_unlock(rq, &flags);
2144
2145 /*
2146 * Was it really running after all now that we
2147 * checked with the proper locks actually held?
2148 *
2149 * Oops. Go back and try again..
2150 */
2151 if (unlikely(running)) {
2152 cpu_relax();
2153 continue;
2154 }
2155
2156 /*
2157 * It's not enough that it's not actively running,
2158 * it must be off the runqueue _entirely_, and not
2159 * preempted!
2160 *
2161 * So if it wa still runnable (but just not actively
2162 * running right now), it's preempted, and we should
2163 * yield - it could be a while.
2164 */
2165 if (unlikely(on_rq)) {
2166 schedule_timeout_uninterruptible(1);
2167 continue;
2168 }
2169
2170 /*
2171 * Ahh, all good. It wasn't running, and it wasn't
2172 * runnable, which means that it will never become
2173 * running in the future either. We're all done!
2174 */
2175 break;
2176 }
2177 }
2178
2179 /***
2180 * kick_process - kick a running thread to enter/exit the kernel
2181 * @p: the to-be-kicked thread
2182 *
2183 * Cause a process which is running on another CPU to enter
2184 * kernel-mode, without any delay. (to get signals handled.)
2185 *
2186 * NOTE: this function doesnt have to take the runqueue lock,
2187 * because all it wants to ensure is that the remote task enters
2188 * the kernel. If the IPI races and the task has been migrated
2189 * to another CPU then no harm is done and the purpose has been
2190 * achieved as well.
2191 */
2192 void kick_process(struct task_struct *p)
2193 {
2194 int cpu;
2195
2196 preempt_disable();
2197 cpu = task_cpu(p);
2198 if ((cpu != smp_processor_id()) && task_curr(p))
2199 smp_send_reschedule(cpu);
2200 preempt_enable();
2201 }
2202
2203 /*
2204 * Return a low guess at the load of a migration-source cpu weighted
2205 * according to the scheduling class and "nice" value.
2206 *
2207 * We want to under-estimate the load of migration sources, to
2208 * balance conservatively.
2209 */
2210 static unsigned long source_load(int cpu, int type)
2211 {
2212 struct rq *rq = cpu_rq(cpu);
2213 unsigned long total = weighted_cpuload(cpu);
2214
2215 if (type == 0)
2216 return total;
2217
2218 return min(rq->cpu_load[type-1], total);
2219 }
2220
2221 /*
2222 * Return a high guess at the load of a migration-target cpu weighted
2223 * according to the scheduling class and "nice" value.
2224 */
2225 static unsigned long target_load(int cpu, int type)
2226 {
2227 struct rq *rq = cpu_rq(cpu);
2228 unsigned long total = weighted_cpuload(cpu);
2229
2230 if (type == 0)
2231 return total;
2232
2233 return max(rq->cpu_load[type-1], total);
2234 }
2235
2236 /*
2237 * Return the average load per task on the cpu's run queue
2238 */
2239 static unsigned long cpu_avg_load_per_task(int cpu)
2240 {
2241 struct rq *rq = cpu_rq(cpu);
2242 unsigned long total = weighted_cpuload(cpu);
2243 unsigned long n = rq->nr_running;
2244
2245 return n ? total / n : SCHED_LOAD_SCALE;
2246 }
2247
2248 /*
2249 * find_idlest_group finds and returns the least busy CPU group within the
2250 * domain.
2251 */
2252 static struct sched_group *
2253 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2254 {
2255 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2256 unsigned long min_load = ULONG_MAX, this_load = 0;
2257 int load_idx = sd->forkexec_idx;
2258 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2259
2260 do {
2261 unsigned long load, avg_load;
2262 int local_group;
2263 int i;
2264
2265 /* Skip over this group if it has no CPUs allowed */
2266 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2267 continue;
2268
2269 local_group = cpu_isset(this_cpu, group->cpumask);
2270
2271 /* Tally up the load of all CPUs in the group */
2272 avg_load = 0;
2273
2274 for_each_cpu_mask(i, group->cpumask) {
2275 /* Bias balancing toward cpus of our domain */
2276 if (local_group)
2277 load = source_load(i, load_idx);
2278 else
2279 load = target_load(i, load_idx);
2280
2281 avg_load += load;
2282 }
2283
2284 /* Adjust by relative CPU power of the group */
2285 avg_load = sg_div_cpu_power(group,
2286 avg_load * SCHED_LOAD_SCALE);
2287
2288 if (local_group) {
2289 this_load = avg_load;
2290 this = group;
2291 } else if (avg_load < min_load) {
2292 min_load = avg_load;
2293 idlest = group;
2294 }
2295 } while (group = group->next, group != sd->groups);
2296
2297 if (!idlest || 100*this_load < imbalance*min_load)
2298 return NULL;
2299 return idlest;
2300 }
2301
2302 /*
2303 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2304 */
2305 static int
2306 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2307 cpumask_t *tmp)
2308 {
2309 unsigned long load, min_load = ULONG_MAX;
2310 int idlest = -1;
2311 int i;
2312
2313 /* Traverse only the allowed CPUs */
2314 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2315
2316 for_each_cpu_mask(i, *tmp) {
2317 load = weighted_cpuload(i);
2318
2319 if (load < min_load || (load == min_load && i == this_cpu)) {
2320 min_load = load;
2321 idlest = i;
2322 }
2323 }
2324
2325 return idlest;
2326 }
2327
2328 /*
2329 * sched_balance_self: balance the current task (running on cpu) in domains
2330 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2331 * SD_BALANCE_EXEC.
2332 *
2333 * Balance, ie. select the least loaded group.
2334 *
2335 * Returns the target CPU number, or the same CPU if no balancing is needed.
2336 *
2337 * preempt must be disabled.
2338 */
2339 static int sched_balance_self(int cpu, int flag)
2340 {
2341 struct task_struct *t = current;
2342 struct sched_domain *tmp, *sd = NULL;
2343
2344 for_each_domain(cpu, tmp) {
2345 /*
2346 * If power savings logic is enabled for a domain, stop there.
2347 */
2348 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2349 break;
2350 if (tmp->flags & flag)
2351 sd = tmp;
2352 }
2353
2354 while (sd) {
2355 cpumask_t span, tmpmask;
2356 struct sched_group *group;
2357 int new_cpu, weight;
2358
2359 if (!(sd->flags & flag)) {
2360 sd = sd->child;
2361 continue;
2362 }
2363
2364 span = sd->span;
2365 group = find_idlest_group(sd, t, cpu);
2366 if (!group) {
2367 sd = sd->child;
2368 continue;
2369 }
2370
2371 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2372 if (new_cpu == -1 || new_cpu == cpu) {
2373 /* Now try balancing at a lower domain level of cpu */
2374 sd = sd->child;
2375 continue;
2376 }
2377
2378 /* Now try balancing at a lower domain level of new_cpu */
2379 cpu = new_cpu;
2380 sd = NULL;
2381 weight = cpus_weight(span);
2382 for_each_domain(cpu, tmp) {
2383 if (weight <= cpus_weight(tmp->span))
2384 break;
2385 if (tmp->flags & flag)
2386 sd = tmp;
2387 }
2388 /* while loop will break here if sd == NULL */
2389 }
2390
2391 return cpu;
2392 }
2393
2394 #endif /* CONFIG_SMP */
2395
2396 /***
2397 * try_to_wake_up - wake up a thread
2398 * @p: the to-be-woken-up thread
2399 * @state: the mask of task states that can be woken
2400 * @sync: do a synchronous wakeup?
2401 *
2402 * Put it on the run-queue if it's not already there. The "current"
2403 * thread is always on the run-queue (except when the actual
2404 * re-schedule is in progress), and as such you're allowed to do
2405 * the simpler "current->state = TASK_RUNNING" to mark yourself
2406 * runnable without the overhead of this.
2407 *
2408 * returns failure only if the task is already active.
2409 */
2410 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2411 {
2412 int cpu, orig_cpu, this_cpu, success = 0;
2413 unsigned long flags;
2414 long old_state;
2415 struct rq *rq;
2416
2417 if (!sched_feat(SYNC_WAKEUPS))
2418 sync = 0;
2419
2420 smp_wmb();
2421 rq = task_rq_lock(p, &flags);
2422 old_state = p->state;
2423 if (!(old_state & state))
2424 goto out;
2425
2426 if (p->se.on_rq)
2427 goto out_running;
2428
2429 cpu = task_cpu(p);
2430 orig_cpu = cpu;
2431 this_cpu = smp_processor_id();
2432
2433 #ifdef CONFIG_SMP
2434 if (unlikely(task_running(rq, p)))
2435 goto out_activate;
2436
2437 cpu = p->sched_class->select_task_rq(p, sync);
2438 if (cpu != orig_cpu) {
2439 set_task_cpu(p, cpu);
2440 task_rq_unlock(rq, &flags);
2441 /* might preempt at this point */
2442 rq = task_rq_lock(p, &flags);
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
2446 if (p->se.on_rq)
2447 goto out_running;
2448
2449 this_cpu = smp_processor_id();
2450 cpu = task_cpu(p);
2451 }
2452
2453 #ifdef CONFIG_SCHEDSTATS
2454 schedstat_inc(rq, ttwu_count);
2455 if (cpu == this_cpu)
2456 schedstat_inc(rq, ttwu_local);
2457 else {
2458 struct sched_domain *sd;
2459 for_each_domain(this_cpu, sd) {
2460 if (cpu_isset(cpu, sd->span)) {
2461 schedstat_inc(sd, ttwu_wake_remote);
2462 break;
2463 }
2464 }
2465 }
2466 #endif
2467
2468 out_activate:
2469 #endif /* CONFIG_SMP */
2470 schedstat_inc(p, se.nr_wakeups);
2471 if (sync)
2472 schedstat_inc(p, se.nr_wakeups_sync);
2473 if (orig_cpu != cpu)
2474 schedstat_inc(p, se.nr_wakeups_migrate);
2475 if (cpu == this_cpu)
2476 schedstat_inc(p, se.nr_wakeups_local);
2477 else
2478 schedstat_inc(p, se.nr_wakeups_remote);
2479 update_rq_clock(rq);
2480 activate_task(rq, p, 1);
2481 success = 1;
2482
2483 out_running:
2484 check_preempt_curr(rq, p);
2485
2486 p->state = TASK_RUNNING;
2487 #ifdef CONFIG_SMP
2488 if (p->sched_class->task_wake_up)
2489 p->sched_class->task_wake_up(rq, p);
2490 #endif
2491 out:
2492 task_rq_unlock(rq, &flags);
2493
2494 return success;
2495 }
2496
2497 int wake_up_process(struct task_struct *p)
2498 {
2499 return try_to_wake_up(p, TASK_ALL, 0);
2500 }
2501 EXPORT_SYMBOL(wake_up_process);
2502
2503 int wake_up_state(struct task_struct *p, unsigned int state)
2504 {
2505 return try_to_wake_up(p, state, 0);
2506 }
2507
2508 /*
2509 * Perform scheduler related setup for a newly forked process p.
2510 * p is forked by current.
2511 *
2512 * __sched_fork() is basic setup used by init_idle() too:
2513 */
2514 static void __sched_fork(struct task_struct *p)
2515 {
2516 p->se.exec_start = 0;
2517 p->se.sum_exec_runtime = 0;
2518 p->se.prev_sum_exec_runtime = 0;
2519 p->se.last_wakeup = 0;
2520 p->se.avg_overlap = 0;
2521
2522 #ifdef CONFIG_SCHEDSTATS
2523 p->se.wait_start = 0;
2524 p->se.sum_sleep_runtime = 0;
2525 p->se.sleep_start = 0;
2526 p->se.block_start = 0;
2527 p->se.sleep_max = 0;
2528 p->se.block_max = 0;
2529 p->se.exec_max = 0;
2530 p->se.slice_max = 0;
2531 p->se.wait_max = 0;
2532 #endif
2533
2534 INIT_LIST_HEAD(&p->rt.run_list);
2535 p->se.on_rq = 0;
2536 INIT_LIST_HEAD(&p->se.group_node);
2537
2538 #ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p->preempt_notifiers);
2540 #endif
2541
2542 /*
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2547 */
2548 p->state = TASK_RUNNING;
2549 }
2550
2551 /*
2552 * fork()/clone()-time setup:
2553 */
2554 void sched_fork(struct task_struct *p, int clone_flags)
2555 {
2556 int cpu = get_cpu();
2557
2558 __sched_fork(p);
2559
2560 #ifdef CONFIG_SMP
2561 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2562 #endif
2563 set_task_cpu(p, cpu);
2564
2565 /*
2566 * Make sure we do not leak PI boosting priority to the child:
2567 */
2568 p->prio = current->normal_prio;
2569 if (!rt_prio(p->prio))
2570 p->sched_class = &fair_sched_class;
2571
2572 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2573 if (likely(sched_info_on()))
2574 memset(&p->sched_info, 0, sizeof(p->sched_info));
2575 #endif
2576 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2577 p->oncpu = 0;
2578 #endif
2579 #ifdef CONFIG_PREEMPT
2580 /* Want to start with kernel preemption disabled. */
2581 task_thread_info(p)->preempt_count = 1;
2582 #endif
2583 put_cpu();
2584 }
2585
2586 /*
2587 * wake_up_new_task - wake up a newly created task for the first time.
2588 *
2589 * This function will do some initial scheduler statistics housekeeping
2590 * that must be done for every newly created context, then puts the task
2591 * on the runqueue and wakes it.
2592 */
2593 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2594 {
2595 unsigned long flags;
2596 struct rq *rq;
2597
2598 rq = task_rq_lock(p, &flags);
2599 BUG_ON(p->state != TASK_RUNNING);
2600 update_rq_clock(rq);
2601
2602 p->prio = effective_prio(p);
2603
2604 if (!p->sched_class->task_new || !current->se.on_rq) {
2605 activate_task(rq, p, 0);
2606 } else {
2607 /*
2608 * Let the scheduling class do new task startup
2609 * management (if any):
2610 */
2611 p->sched_class->task_new(rq, p);
2612 inc_nr_running(rq);
2613 }
2614 check_preempt_curr(rq, p);
2615 #ifdef CONFIG_SMP
2616 if (p->sched_class->task_wake_up)
2617 p->sched_class->task_wake_up(rq, p);
2618 #endif
2619 task_rq_unlock(rq, &flags);
2620 }
2621
2622 #ifdef CONFIG_PREEMPT_NOTIFIERS
2623
2624 /**
2625 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2626 * @notifier: notifier struct to register
2627 */
2628 void preempt_notifier_register(struct preempt_notifier *notifier)
2629 {
2630 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2631 }
2632 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2633
2634 /**
2635 * preempt_notifier_unregister - no longer interested in preemption notifications
2636 * @notifier: notifier struct to unregister
2637 *
2638 * This is safe to call from within a preemption notifier.
2639 */
2640 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2641 {
2642 hlist_del(&notifier->link);
2643 }
2644 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2645
2646 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2647 {
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2653 }
2654
2655 static void
2656 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658 {
2659 struct preempt_notifier *notifier;
2660 struct hlist_node *node;
2661
2662 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2663 notifier->ops->sched_out(notifier, next);
2664 }
2665
2666 #else
2667
2668 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2669 {
2670 }
2671
2672 static void
2673 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675 {
2676 }
2677
2678 #endif
2679
2680 /**
2681 * prepare_task_switch - prepare to switch tasks
2682 * @rq: the runqueue preparing to switch
2683 * @prev: the current task that is being switched out
2684 * @next: the task we are going to switch to.
2685 *
2686 * This is called with the rq lock held and interrupts off. It must
2687 * be paired with a subsequent finish_task_switch after the context
2688 * switch.
2689 *
2690 * prepare_task_switch sets up locking and calls architecture specific
2691 * hooks.
2692 */
2693 static inline void
2694 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2695 struct task_struct *next)
2696 {
2697 fire_sched_out_preempt_notifiers(prev, next);
2698 prepare_lock_switch(rq, next);
2699 prepare_arch_switch(next);
2700 }
2701
2702 /**
2703 * finish_task_switch - clean up after a task-switch
2704 * @rq: runqueue associated with task-switch
2705 * @prev: the thread we just switched away from.
2706 *
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
2711 *
2712 * Note that we may have delayed dropping an mm in context_switch(). If
2713 * so, we finish that here outside of the runqueue lock. (Doing it
2714 * with the lock held can cause deadlocks; see schedule() for
2715 * details.)
2716 */
2717 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2718 __releases(rq->lock)
2719 {
2720 struct mm_struct *mm = rq->prev_mm;
2721 long prev_state;
2722
2723 rq->prev_mm = NULL;
2724
2725 /*
2726 * A task struct has one reference for the use as "current".
2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
2730 * The test for TASK_DEAD must occur while the runqueue locks are
2731 * still held, otherwise prev could be scheduled on another cpu, die
2732 * there before we look at prev->state, and then the reference would
2733 * be dropped twice.
2734 * Manfred Spraul <manfred@colorfullife.com>
2735 */
2736 prev_state = prev->state;
2737 finish_arch_switch(prev);
2738 finish_lock_switch(rq, prev);
2739 #ifdef CONFIG_SMP
2740 if (current->sched_class->post_schedule)
2741 current->sched_class->post_schedule(rq);
2742 #endif
2743
2744 fire_sched_in_preempt_notifiers(current);
2745 if (mm)
2746 mmdrop(mm);
2747 if (unlikely(prev_state == TASK_DEAD)) {
2748 /*
2749 * Remove function-return probe instances associated with this
2750 * task and put them back on the free list.
2751 */
2752 kprobe_flush_task(prev);
2753 put_task_struct(prev);
2754 }
2755 }
2756
2757 /**
2758 * schedule_tail - first thing a freshly forked thread must call.
2759 * @prev: the thread we just switched away from.
2760 */
2761 asmlinkage void schedule_tail(struct task_struct *prev)
2762 __releases(rq->lock)
2763 {
2764 struct rq *rq = this_rq();
2765
2766 finish_task_switch(rq, prev);
2767 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2768 /* In this case, finish_task_switch does not reenable preemption */
2769 preempt_enable();
2770 #endif
2771 if (current->set_child_tid)
2772 put_user(task_pid_vnr(current), current->set_child_tid);
2773 }
2774
2775 /*
2776 * context_switch - switch to the new MM and the new
2777 * thread's register state.
2778 */
2779 static inline void
2780 context_switch(struct rq *rq, struct task_struct *prev,
2781 struct task_struct *next)
2782 {
2783 struct mm_struct *mm, *oldmm;
2784
2785 prepare_task_switch(rq, prev, next);
2786 mm = next->mm;
2787 oldmm = prev->active_mm;
2788 /*
2789 * For paravirt, this is coupled with an exit in switch_to to
2790 * combine the page table reload and the switch backend into
2791 * one hypercall.
2792 */
2793 arch_enter_lazy_cpu_mode();
2794
2795 if (unlikely(!mm)) {
2796 next->active_mm = oldmm;
2797 atomic_inc(&oldmm->mm_count);
2798 enter_lazy_tlb(oldmm, next);
2799 } else
2800 switch_mm(oldmm, mm, next);
2801
2802 if (unlikely(!prev->mm)) {
2803 prev->active_mm = NULL;
2804 rq->prev_mm = oldmm;
2805 }
2806 /*
2807 * Since the runqueue lock will be released by the next
2808 * task (which is an invalid locking op but in the case
2809 * of the scheduler it's an obvious special-case), so we
2810 * do an early lockdep release here:
2811 */
2812 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2813 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2814 #endif
2815
2816 /* Here we just switch the register state and the stack. */
2817 switch_to(prev, next, prev);
2818
2819 barrier();
2820 /*
2821 * this_rq must be evaluated again because prev may have moved
2822 * CPUs since it called schedule(), thus the 'rq' on its stack
2823 * frame will be invalid.
2824 */
2825 finish_task_switch(this_rq(), prev);
2826 }
2827
2828 /*
2829 * nr_running, nr_uninterruptible and nr_context_switches:
2830 *
2831 * externally visible scheduler statistics: current number of runnable
2832 * threads, current number of uninterruptible-sleeping threads, total
2833 * number of context switches performed since bootup.
2834 */
2835 unsigned long nr_running(void)
2836 {
2837 unsigned long i, sum = 0;
2838
2839 for_each_online_cpu(i)
2840 sum += cpu_rq(i)->nr_running;
2841
2842 return sum;
2843 }
2844
2845 unsigned long nr_uninterruptible(void)
2846 {
2847 unsigned long i, sum = 0;
2848
2849 for_each_possible_cpu(i)
2850 sum += cpu_rq(i)->nr_uninterruptible;
2851
2852 /*
2853 * Since we read the counters lockless, it might be slightly
2854 * inaccurate. Do not allow it to go below zero though:
2855 */
2856 if (unlikely((long)sum < 0))
2857 sum = 0;
2858
2859 return sum;
2860 }
2861
2862 unsigned long long nr_context_switches(void)
2863 {
2864 int i;
2865 unsigned long long sum = 0;
2866
2867 for_each_possible_cpu(i)
2868 sum += cpu_rq(i)->nr_switches;
2869
2870 return sum;
2871 }
2872
2873 unsigned long nr_iowait(void)
2874 {
2875 unsigned long i, sum = 0;
2876
2877 for_each_possible_cpu(i)
2878 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2879
2880 return sum;
2881 }
2882
2883 unsigned long nr_active(void)
2884 {
2885 unsigned long i, running = 0, uninterruptible = 0;
2886
2887 for_each_online_cpu(i) {
2888 running += cpu_rq(i)->nr_running;
2889 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2890 }
2891
2892 if (unlikely((long)uninterruptible < 0))
2893 uninterruptible = 0;
2894
2895 return running + uninterruptible;
2896 }
2897
2898 /*
2899 * Update rq->cpu_load[] statistics. This function is usually called every
2900 * scheduler tick (TICK_NSEC).
2901 */
2902 static void update_cpu_load(struct rq *this_rq)
2903 {
2904 unsigned long this_load = this_rq->load.weight;
2905 int i, scale;
2906
2907 this_rq->nr_load_updates++;
2908
2909 /* Update our load: */
2910 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2911 unsigned long old_load, new_load;
2912
2913 /* scale is effectively 1 << i now, and >> i divides by scale */
2914
2915 old_load = this_rq->cpu_load[i];
2916 new_load = this_load;
2917 /*
2918 * Round up the averaging division if load is increasing. This
2919 * prevents us from getting stuck on 9 if the load is 10, for
2920 * example.
2921 */
2922 if (new_load > old_load)
2923 new_load += scale-1;
2924 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2925 }
2926 }
2927
2928 #ifdef CONFIG_SMP
2929
2930 /*
2931 * double_rq_lock - safely lock two runqueues
2932 *
2933 * Note this does not disable interrupts like task_rq_lock,
2934 * you need to do so manually before calling.
2935 */
2936 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2937 __acquires(rq1->lock)
2938 __acquires(rq2->lock)
2939 {
2940 BUG_ON(!irqs_disabled());
2941 if (rq1 == rq2) {
2942 spin_lock(&rq1->lock);
2943 __acquire(rq2->lock); /* Fake it out ;) */
2944 } else {
2945 if (rq1 < rq2) {
2946 spin_lock(&rq1->lock);
2947 spin_lock(&rq2->lock);
2948 } else {
2949 spin_lock(&rq2->lock);
2950 spin_lock(&rq1->lock);
2951 }
2952 }
2953 update_rq_clock(rq1);
2954 update_rq_clock(rq2);
2955 }
2956
2957 /*
2958 * double_rq_unlock - safely unlock two runqueues
2959 *
2960 * Note this does not restore interrupts like task_rq_unlock,
2961 * you need to do so manually after calling.
2962 */
2963 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2964 __releases(rq1->lock)
2965 __releases(rq2->lock)
2966 {
2967 spin_unlock(&rq1->lock);
2968 if (rq1 != rq2)
2969 spin_unlock(&rq2->lock);
2970 else
2971 __release(rq2->lock);
2972 }
2973
2974 /*
2975 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2976 */
2977 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2978 __releases(this_rq->lock)
2979 __acquires(busiest->lock)
2980 __acquires(this_rq->lock)
2981 {
2982 int ret = 0;
2983
2984 if (unlikely(!irqs_disabled())) {
2985 /* printk() doesn't work good under rq->lock */
2986 spin_unlock(&this_rq->lock);
2987 BUG_ON(1);
2988 }
2989 if (unlikely(!spin_trylock(&busiest->lock))) {
2990 if (busiest < this_rq) {
2991 spin_unlock(&this_rq->lock);
2992 spin_lock(&busiest->lock);
2993 spin_lock(&this_rq->lock);
2994 ret = 1;
2995 } else
2996 spin_lock(&busiest->lock);
2997 }
2998 return ret;
2999 }
3000
3001 /*
3002 * If dest_cpu is allowed for this process, migrate the task to it.
3003 * This is accomplished by forcing the cpu_allowed mask to only
3004 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3005 * the cpu_allowed mask is restored.
3006 */
3007 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3008 {
3009 struct migration_req req;
3010 unsigned long flags;
3011 struct rq *rq;
3012
3013 rq = task_rq_lock(p, &flags);
3014 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3015 || unlikely(cpu_is_offline(dest_cpu)))
3016 goto out;
3017
3018 /* force the process onto the specified CPU */
3019 if (migrate_task(p, dest_cpu, &req)) {
3020 /* Need to wait for migration thread (might exit: take ref). */
3021 struct task_struct *mt = rq->migration_thread;
3022
3023 get_task_struct(mt);
3024 task_rq_unlock(rq, &flags);
3025 wake_up_process(mt);
3026 put_task_struct(mt);
3027 wait_for_completion(&req.done);
3028
3029 return;
3030 }
3031 out:
3032 task_rq_unlock(rq, &flags);
3033 }
3034
3035 /*
3036 * sched_exec - execve() is a valuable balancing opportunity, because at
3037 * this point the task has the smallest effective memory and cache footprint.
3038 */
3039 void sched_exec(void)
3040 {
3041 int new_cpu, this_cpu = get_cpu();
3042 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3043 put_cpu();
3044 if (new_cpu != this_cpu)
3045 sched_migrate_task(current, new_cpu);
3046 }
3047
3048 /*
3049 * pull_task - move a task from a remote runqueue to the local runqueue.
3050 * Both runqueues must be locked.
3051 */
3052 static void pull_task(struct rq *src_rq, struct task_struct *p,
3053 struct rq *this_rq, int this_cpu)
3054 {
3055 deactivate_task(src_rq, p, 0);
3056 set_task_cpu(p, this_cpu);
3057 activate_task(this_rq, p, 0);
3058 /*
3059 * Note that idle threads have a prio of MAX_PRIO, for this test
3060 * to be always true for them.
3061 */
3062 check_preempt_curr(this_rq, p);
3063 }
3064
3065 /*
3066 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3067 */
3068 static
3069 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3070 struct sched_domain *sd, enum cpu_idle_type idle,
3071 int *all_pinned)
3072 {
3073 /*
3074 * We do not migrate tasks that are:
3075 * 1) running (obviously), or
3076 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3077 * 3) are cache-hot on their current CPU.
3078 */
3079 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3080 schedstat_inc(p, se.nr_failed_migrations_affine);
3081 return 0;
3082 }
3083 *all_pinned = 0;
3084
3085 if (task_running(rq, p)) {
3086 schedstat_inc(p, se.nr_failed_migrations_running);
3087 return 0;
3088 }
3089
3090 /*
3091 * Aggressive migration if:
3092 * 1) task is cache cold, or
3093 * 2) too many balance attempts have failed.
3094 */
3095
3096 if (!task_hot(p, rq->clock, sd) ||
3097 sd->nr_balance_failed > sd->cache_nice_tries) {
3098 #ifdef CONFIG_SCHEDSTATS
3099 if (task_hot(p, rq->clock, sd)) {
3100 schedstat_inc(sd, lb_hot_gained[idle]);
3101 schedstat_inc(p, se.nr_forced_migrations);
3102 }
3103 #endif
3104 return 1;
3105 }
3106
3107 if (task_hot(p, rq->clock, sd)) {
3108 schedstat_inc(p, se.nr_failed_migrations_hot);
3109 return 0;
3110 }
3111 return 1;
3112 }
3113
3114 static unsigned long
3115 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3116 unsigned long max_load_move, struct sched_domain *sd,
3117 enum cpu_idle_type idle, int *all_pinned,
3118 int *this_best_prio, struct rq_iterator *iterator)
3119 {
3120 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
3121 struct task_struct *p;
3122 long rem_load_move = max_load_move;
3123
3124 if (max_load_move == 0)
3125 goto out;
3126
3127 pinned = 1;
3128
3129 /*
3130 * Start the load-balancing iterator:
3131 */
3132 p = iterator->start(iterator->arg);
3133 next:
3134 if (!p || loops++ > sysctl_sched_nr_migrate)
3135 goto out;
3136 /*
3137 * To help distribute high priority tasks across CPUs we don't
3138 * skip a task if it will be the highest priority task (i.e. smallest
3139 * prio value) on its new queue regardless of its load weight
3140 */
3141 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3142 SCHED_LOAD_SCALE_FUZZ;
3143 if ((skip_for_load && p->prio >= *this_best_prio) ||
3144 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3145 p = iterator->next(iterator->arg);
3146 goto next;
3147 }
3148
3149 pull_task(busiest, p, this_rq, this_cpu);
3150 pulled++;
3151 rem_load_move -= p->se.load.weight;
3152
3153 /*
3154 * We only want to steal up to the prescribed amount of weighted load.
3155 */
3156 if (rem_load_move > 0) {
3157 if (p->prio < *this_best_prio)
3158 *this_best_prio = p->prio;
3159 p = iterator->next(iterator->arg);
3160 goto next;
3161 }
3162 out:
3163 /*
3164 * Right now, this is one of only two places pull_task() is called,
3165 * so we can safely collect pull_task() stats here rather than
3166 * inside pull_task().
3167 */
3168 schedstat_add(sd, lb_gained[idle], pulled);
3169
3170 if (all_pinned)
3171 *all_pinned = pinned;
3172
3173 return max_load_move - rem_load_move;
3174 }
3175
3176 /*
3177 * move_tasks tries to move up to max_load_move weighted load from busiest to
3178 * this_rq, as part of a balancing operation within domain "sd".
3179 * Returns 1 if successful and 0 otherwise.
3180 *
3181 * Called with both runqueues locked.
3182 */
3183 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3184 unsigned long max_load_move,
3185 struct sched_domain *sd, enum cpu_idle_type idle,
3186 int *all_pinned)
3187 {
3188 const struct sched_class *class = sched_class_highest;
3189 unsigned long total_load_moved = 0;
3190 int this_best_prio = this_rq->curr->prio;
3191
3192 do {
3193 total_load_moved +=
3194 class->load_balance(this_rq, this_cpu, busiest,
3195 max_load_move - total_load_moved,
3196 sd, idle, all_pinned, &this_best_prio);
3197 class = class->next;
3198 } while (class && max_load_move > total_load_moved);
3199
3200 return total_load_moved > 0;
3201 }
3202
3203 static int
3204 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3205 struct sched_domain *sd, enum cpu_idle_type idle,
3206 struct rq_iterator *iterator)
3207 {
3208 struct task_struct *p = iterator->start(iterator->arg);
3209 int pinned = 0;
3210
3211 while (p) {
3212 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3213 pull_task(busiest, p, this_rq, this_cpu);
3214 /*
3215 * Right now, this is only the second place pull_task()
3216 * is called, so we can safely collect pull_task()
3217 * stats here rather than inside pull_task().
3218 */
3219 schedstat_inc(sd, lb_gained[idle]);
3220
3221 return 1;
3222 }
3223 p = iterator->next(iterator->arg);
3224 }
3225
3226 return 0;
3227 }
3228
3229 /*
3230 * move_one_task tries to move exactly one task from busiest to this_rq, as
3231 * part of active balancing operations within "domain".
3232 * Returns 1 if successful and 0 otherwise.
3233 *
3234 * Called with both runqueues locked.
3235 */
3236 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3237 struct sched_domain *sd, enum cpu_idle_type idle)
3238 {
3239 const struct sched_class *class;
3240
3241 for (class = sched_class_highest; class; class = class->next)
3242 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3243 return 1;
3244
3245 return 0;
3246 }
3247
3248 /*
3249 * find_busiest_group finds and returns the busiest CPU group within the
3250 * domain. It calculates and returns the amount of weighted load which
3251 * should be moved to restore balance via the imbalance parameter.
3252 */
3253 static struct sched_group *
3254 find_busiest_group(struct sched_domain *sd, int this_cpu,
3255 unsigned long *imbalance, enum cpu_idle_type idle,
3256 int *sd_idle, const cpumask_t *cpus, int *balance)
3257 {
3258 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3259 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3260 unsigned long max_pull;
3261 unsigned long busiest_load_per_task, busiest_nr_running;
3262 unsigned long this_load_per_task, this_nr_running;
3263 int load_idx, group_imb = 0;
3264 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3265 int power_savings_balance = 1;
3266 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3267 unsigned long min_nr_running = ULONG_MAX;
3268 struct sched_group *group_min = NULL, *group_leader = NULL;
3269 #endif
3270
3271 max_load = this_load = total_load = total_pwr = 0;
3272 busiest_load_per_task = busiest_nr_running = 0;
3273 this_load_per_task = this_nr_running = 0;
3274 if (idle == CPU_NOT_IDLE)
3275 load_idx = sd->busy_idx;
3276 else if (idle == CPU_NEWLY_IDLE)
3277 load_idx = sd->newidle_idx;
3278 else
3279 load_idx = sd->idle_idx;
3280
3281 do {
3282 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3283 int local_group;
3284 int i;
3285 int __group_imb = 0;
3286 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3287 unsigned long sum_nr_running, sum_weighted_load;
3288
3289 local_group = cpu_isset(this_cpu, group->cpumask);
3290
3291 if (local_group)
3292 balance_cpu = first_cpu(group->cpumask);
3293
3294 /* Tally up the load of all CPUs in the group */
3295 sum_weighted_load = sum_nr_running = avg_load = 0;
3296 max_cpu_load = 0;
3297 min_cpu_load = ~0UL;
3298
3299 for_each_cpu_mask(i, group->cpumask) {
3300 struct rq *rq;
3301
3302 if (!cpu_isset(i, *cpus))
3303 continue;
3304
3305 rq = cpu_rq(i);
3306
3307 if (*sd_idle && rq->nr_running)
3308 *sd_idle = 0;
3309
3310 /* Bias balancing toward cpus of our domain */
3311 if (local_group) {
3312 if (idle_cpu(i) && !first_idle_cpu) {
3313 first_idle_cpu = 1;
3314 balance_cpu = i;
3315 }
3316
3317 load = target_load(i, load_idx);
3318 } else {
3319 load = source_load(i, load_idx);
3320 if (load > max_cpu_load)
3321 max_cpu_load = load;
3322 if (min_cpu_load > load)
3323 min_cpu_load = load;
3324 }
3325
3326 avg_load += load;
3327 sum_nr_running += rq->nr_running;
3328 sum_weighted_load += weighted_cpuload(i);
3329 }
3330
3331 /*
3332 * First idle cpu or the first cpu(busiest) in this sched group
3333 * is eligible for doing load balancing at this and above
3334 * domains. In the newly idle case, we will allow all the cpu's
3335 * to do the newly idle load balance.
3336 */
3337 if (idle != CPU_NEWLY_IDLE && local_group &&
3338 balance_cpu != this_cpu && balance) {
3339 *balance = 0;
3340 goto ret;
3341 }
3342
3343 total_load += avg_load;
3344 total_pwr += group->__cpu_power;
3345
3346 /* Adjust by relative CPU power of the group */
3347 avg_load = sg_div_cpu_power(group,
3348 avg_load * SCHED_LOAD_SCALE);
3349
3350 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3351 __group_imb = 1;
3352
3353 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3354
3355 if (local_group) {
3356 this_load = avg_load;
3357 this = group;
3358 this_nr_running = sum_nr_running;
3359 this_load_per_task = sum_weighted_load;
3360 } else if (avg_load > max_load &&
3361 (sum_nr_running > group_capacity || __group_imb)) {
3362 max_load = avg_load;
3363 busiest = group;
3364 busiest_nr_running = sum_nr_running;
3365 busiest_load_per_task = sum_weighted_load;
3366 group_imb = __group_imb;
3367 }
3368
3369 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3370 /*
3371 * Busy processors will not participate in power savings
3372 * balance.
3373 */
3374 if (idle == CPU_NOT_IDLE ||
3375 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3376 goto group_next;
3377
3378 /*
3379 * If the local group is idle or completely loaded
3380 * no need to do power savings balance at this domain
3381 */
3382 if (local_group && (this_nr_running >= group_capacity ||
3383 !this_nr_running))
3384 power_savings_balance = 0;
3385
3386 /*
3387 * If a group is already running at full capacity or idle,
3388 * don't include that group in power savings calculations
3389 */
3390 if (!power_savings_balance || sum_nr_running >= group_capacity
3391 || !sum_nr_running)
3392 goto group_next;
3393
3394 /*
3395 * Calculate the group which has the least non-idle load.
3396 * This is the group from where we need to pick up the load
3397 * for saving power
3398 */
3399 if ((sum_nr_running < min_nr_running) ||
3400 (sum_nr_running == min_nr_running &&
3401 first_cpu(group->cpumask) <
3402 first_cpu(group_min->cpumask))) {
3403 group_min = group;
3404 min_nr_running = sum_nr_running;
3405 min_load_per_task = sum_weighted_load /
3406 sum_nr_running;
3407 }
3408
3409 /*
3410 * Calculate the group which is almost near its
3411 * capacity but still has some space to pick up some load
3412 * from other group and save more power
3413 */
3414 if (sum_nr_running <= group_capacity - 1) {
3415 if (sum_nr_running > leader_nr_running ||
3416 (sum_nr_running == leader_nr_running &&
3417 first_cpu(group->cpumask) >
3418 first_cpu(group_leader->cpumask))) {
3419 group_leader = group;
3420 leader_nr_running = sum_nr_running;
3421 }
3422 }
3423 group_next:
3424 #endif
3425 group = group->next;
3426 } while (group != sd->groups);
3427
3428 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3429 goto out_balanced;
3430
3431 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3432
3433 if (this_load >= avg_load ||
3434 100*max_load <= sd->imbalance_pct*this_load)
3435 goto out_balanced;
3436
3437 busiest_load_per_task /= busiest_nr_running;
3438 if (group_imb)
3439 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3440
3441 /*
3442 * We're trying to get all the cpus to the average_load, so we don't
3443 * want to push ourselves above the average load, nor do we wish to
3444 * reduce the max loaded cpu below the average load, as either of these
3445 * actions would just result in more rebalancing later, and ping-pong
3446 * tasks around. Thus we look for the minimum possible imbalance.
3447 * Negative imbalances (*we* are more loaded than anyone else) will
3448 * be counted as no imbalance for these purposes -- we can't fix that
3449 * by pulling tasks to us. Be careful of negative numbers as they'll
3450 * appear as very large values with unsigned longs.
3451 */
3452 if (max_load <= busiest_load_per_task)
3453 goto out_balanced;
3454
3455 /*
3456 * In the presence of smp nice balancing, certain scenarios can have
3457 * max load less than avg load(as we skip the groups at or below
3458 * its cpu_power, while calculating max_load..)
3459 */
3460 if (max_load < avg_load) {
3461 *imbalance = 0;
3462 goto small_imbalance;
3463 }
3464
3465 /* Don't want to pull so many tasks that a group would go idle */
3466 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3467
3468 /* How much load to actually move to equalise the imbalance */
3469 *imbalance = min(max_pull * busiest->__cpu_power,
3470 (avg_load - this_load) * this->__cpu_power)
3471 / SCHED_LOAD_SCALE;
3472
3473 /*
3474 * if *imbalance is less than the average load per runnable task
3475 * there is no gaurantee that any tasks will be moved so we'll have
3476 * a think about bumping its value to force at least one task to be
3477 * moved
3478 */
3479 if (*imbalance < busiest_load_per_task) {
3480 unsigned long tmp, pwr_now, pwr_move;
3481 unsigned int imbn;
3482
3483 small_imbalance:
3484 pwr_move = pwr_now = 0;
3485 imbn = 2;
3486 if (this_nr_running) {
3487 this_load_per_task /= this_nr_running;
3488 if (busiest_load_per_task > this_load_per_task)
3489 imbn = 1;
3490 } else
3491 this_load_per_task = SCHED_LOAD_SCALE;
3492
3493 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3494 busiest_load_per_task * imbn) {
3495 *imbalance = busiest_load_per_task;
3496 return busiest;
3497 }
3498
3499 /*
3500 * OK, we don't have enough imbalance to justify moving tasks,
3501 * however we may be able to increase total CPU power used by
3502 * moving them.
3503 */
3504
3505 pwr_now += busiest->__cpu_power *
3506 min(busiest_load_per_task, max_load);
3507 pwr_now += this->__cpu_power *
3508 min(this_load_per_task, this_load);
3509 pwr_now /= SCHED_LOAD_SCALE;
3510
3511 /* Amount of load we'd subtract */
3512 tmp = sg_div_cpu_power(busiest,
3513 busiest_load_per_task * SCHED_LOAD_SCALE);
3514 if (max_load > tmp)
3515 pwr_move += busiest->__cpu_power *
3516 min(busiest_load_per_task, max_load - tmp);
3517
3518 /* Amount of load we'd add */
3519 if (max_load * busiest->__cpu_power <
3520 busiest_load_per_task * SCHED_LOAD_SCALE)
3521 tmp = sg_div_cpu_power(this,
3522 max_load * busiest->__cpu_power);
3523 else
3524 tmp = sg_div_cpu_power(this,
3525 busiest_load_per_task * SCHED_LOAD_SCALE);
3526 pwr_move += this->__cpu_power *
3527 min(this_load_per_task, this_load + tmp);
3528 pwr_move /= SCHED_LOAD_SCALE;
3529
3530 /* Move if we gain throughput */
3531 if (pwr_move > pwr_now)
3532 *imbalance = busiest_load_per_task;
3533 }
3534
3535 return busiest;
3536
3537 out_balanced:
3538 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3539 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3540 goto ret;
3541
3542 if (this == group_leader && group_leader != group_min) {
3543 *imbalance = min_load_per_task;
3544 return group_min;
3545 }
3546 #endif
3547 ret:
3548 *imbalance = 0;
3549 return NULL;
3550 }
3551
3552 /*
3553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3554 */
3555 static struct rq *
3556 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3557 unsigned long imbalance, const cpumask_t *cpus)
3558 {
3559 struct rq *busiest = NULL, *rq;
3560 unsigned long max_load = 0;
3561 int i;
3562
3563 for_each_cpu_mask(i, group->cpumask) {
3564 unsigned long wl;
3565
3566 if (!cpu_isset(i, *cpus))
3567 continue;
3568
3569 rq = cpu_rq(i);
3570 wl = weighted_cpuload(i);
3571
3572 if (rq->nr_running == 1 && wl > imbalance)
3573 continue;
3574
3575 if (wl > max_load) {
3576 max_load = wl;
3577 busiest = rq;
3578 }
3579 }
3580
3581 return busiest;
3582 }
3583
3584 /*
3585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3586 * so long as it is large enough.
3587 */
3588 #define MAX_PINNED_INTERVAL 512
3589
3590 /*
3591 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3592 * tasks if there is an imbalance.
3593 */
3594 static int load_balance(int this_cpu, struct rq *this_rq,
3595 struct sched_domain *sd, enum cpu_idle_type idle,
3596 int *balance, cpumask_t *cpus)
3597 {
3598 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3599 struct sched_group *group;
3600 unsigned long imbalance;
3601 struct rq *busiest;
3602 unsigned long flags;
3603 int unlock_aggregate;
3604
3605 cpus_setall(*cpus);
3606
3607 unlock_aggregate = get_aggregate(sd);
3608
3609 /*
3610 * When power savings policy is enabled for the parent domain, idle
3611 * sibling can pick up load irrespective of busy siblings. In this case,
3612 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3613 * portraying it as CPU_NOT_IDLE.
3614 */
3615 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3616 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3617 sd_idle = 1;
3618
3619 schedstat_inc(sd, lb_count[idle]);
3620
3621 redo:
3622 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3623 cpus, balance);
3624
3625 if (*balance == 0)
3626 goto out_balanced;
3627
3628 if (!group) {
3629 schedstat_inc(sd, lb_nobusyg[idle]);
3630 goto out_balanced;
3631 }
3632
3633 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3634 if (!busiest) {
3635 schedstat_inc(sd, lb_nobusyq[idle]);
3636 goto out_balanced;
3637 }
3638
3639 BUG_ON(busiest == this_rq);
3640
3641 schedstat_add(sd, lb_imbalance[idle], imbalance);
3642
3643 ld_moved = 0;
3644 if (busiest->nr_running > 1) {
3645 /*
3646 * Attempt to move tasks. If find_busiest_group has found
3647 * an imbalance but busiest->nr_running <= 1, the group is
3648 * still unbalanced. ld_moved simply stays zero, so it is
3649 * correctly treated as an imbalance.
3650 */
3651 local_irq_save(flags);
3652 double_rq_lock(this_rq, busiest);
3653 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3654 imbalance, sd, idle, &all_pinned);
3655 double_rq_unlock(this_rq, busiest);
3656 local_irq_restore(flags);
3657
3658 /*
3659 * some other cpu did the load balance for us.
3660 */
3661 if (ld_moved && this_cpu != smp_processor_id())
3662 resched_cpu(this_cpu);
3663
3664 /* All tasks on this runqueue were pinned by CPU affinity */
3665 if (unlikely(all_pinned)) {
3666 cpu_clear(cpu_of(busiest), *cpus);
3667 if (!cpus_empty(*cpus))
3668 goto redo;
3669 goto out_balanced;
3670 }
3671 }
3672
3673 if (!ld_moved) {
3674 schedstat_inc(sd, lb_failed[idle]);
3675 sd->nr_balance_failed++;
3676
3677 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3678
3679 spin_lock_irqsave(&busiest->lock, flags);
3680
3681 /* don't kick the migration_thread, if the curr
3682 * task on busiest cpu can't be moved to this_cpu
3683 */
3684 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3685 spin_unlock_irqrestore(&busiest->lock, flags);
3686 all_pinned = 1;
3687 goto out_one_pinned;
3688 }
3689
3690 if (!busiest->active_balance) {
3691 busiest->active_balance = 1;
3692 busiest->push_cpu = this_cpu;
3693 active_balance = 1;
3694 }
3695 spin_unlock_irqrestore(&busiest->lock, flags);
3696 if (active_balance)
3697 wake_up_process(busiest->migration_thread);
3698
3699 /*
3700 * We've kicked active balancing, reset the failure
3701 * counter.
3702 */
3703 sd->nr_balance_failed = sd->cache_nice_tries+1;
3704 }
3705 } else
3706 sd->nr_balance_failed = 0;
3707
3708 if (likely(!active_balance)) {
3709 /* We were unbalanced, so reset the balancing interval */
3710 sd->balance_interval = sd->min_interval;
3711 } else {
3712 /*
3713 * If we've begun active balancing, start to back off. This
3714 * case may not be covered by the all_pinned logic if there
3715 * is only 1 task on the busy runqueue (because we don't call
3716 * move_tasks).
3717 */
3718 if (sd->balance_interval < sd->max_interval)
3719 sd->balance_interval *= 2;
3720 }
3721
3722 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3723 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3724 ld_moved = -1;
3725
3726 goto out;
3727
3728 out_balanced:
3729 schedstat_inc(sd, lb_balanced[idle]);
3730
3731 sd->nr_balance_failed = 0;
3732
3733 out_one_pinned:
3734 /* tune up the balancing interval */
3735 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3736 (sd->balance_interval < sd->max_interval))
3737 sd->balance_interval *= 2;
3738
3739 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3741 ld_moved = -1;
3742 else
3743 ld_moved = 0;
3744 out:
3745 if (unlock_aggregate)
3746 put_aggregate(sd);
3747 return ld_moved;
3748 }
3749
3750 /*
3751 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3752 * tasks if there is an imbalance.
3753 *
3754 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3755 * this_rq is locked.
3756 */
3757 static int
3758 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3759 cpumask_t *cpus)
3760 {
3761 struct sched_group *group;
3762 struct rq *busiest = NULL;
3763 unsigned long imbalance;
3764 int ld_moved = 0;
3765 int sd_idle = 0;
3766 int all_pinned = 0;
3767
3768 cpus_setall(*cpus);
3769
3770 /*
3771 * When power savings policy is enabled for the parent domain, idle
3772 * sibling can pick up load irrespective of busy siblings. In this case,
3773 * let the state of idle sibling percolate up as IDLE, instead of
3774 * portraying it as CPU_NOT_IDLE.
3775 */
3776 if (sd->flags & SD_SHARE_CPUPOWER &&
3777 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3778 sd_idle = 1;
3779
3780 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3781 redo:
3782 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3783 &sd_idle, cpus, NULL);
3784 if (!group) {
3785 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3786 goto out_balanced;
3787 }
3788
3789 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3790 if (!busiest) {
3791 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3792 goto out_balanced;
3793 }
3794
3795 BUG_ON(busiest == this_rq);
3796
3797 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3798
3799 ld_moved = 0;
3800 if (busiest->nr_running > 1) {
3801 /* Attempt to move tasks */
3802 double_lock_balance(this_rq, busiest);
3803 /* this_rq->clock is already updated */
3804 update_rq_clock(busiest);
3805 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3806 imbalance, sd, CPU_NEWLY_IDLE,
3807 &all_pinned);
3808 spin_unlock(&busiest->lock);
3809
3810 if (unlikely(all_pinned)) {
3811 cpu_clear(cpu_of(busiest), *cpus);
3812 if (!cpus_empty(*cpus))
3813 goto redo;
3814 }
3815 }
3816
3817 if (!ld_moved) {
3818 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3819 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3820 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3821 return -1;
3822 } else
3823 sd->nr_balance_failed = 0;
3824
3825 return ld_moved;
3826
3827 out_balanced:
3828 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3831 return -1;
3832 sd->nr_balance_failed = 0;
3833
3834 return 0;
3835 }
3836
3837 /*
3838 * idle_balance is called by schedule() if this_cpu is about to become
3839 * idle. Attempts to pull tasks from other CPUs.
3840 */
3841 static void idle_balance(int this_cpu, struct rq *this_rq)
3842 {
3843 struct sched_domain *sd;
3844 int pulled_task = -1;
3845 unsigned long next_balance = jiffies + HZ;
3846 cpumask_t tmpmask;
3847
3848 for_each_domain(this_cpu, sd) {
3849 unsigned long interval;
3850
3851 if (!(sd->flags & SD_LOAD_BALANCE))
3852 continue;
3853
3854 if (sd->flags & SD_BALANCE_NEWIDLE)
3855 /* If we've pulled tasks over stop searching: */
3856 pulled_task = load_balance_newidle(this_cpu, this_rq,
3857 sd, &tmpmask);
3858
3859 interval = msecs_to_jiffies(sd->balance_interval);
3860 if (time_after(next_balance, sd->last_balance + interval))
3861 next_balance = sd->last_balance + interval;
3862 if (pulled_task)
3863 break;
3864 }
3865 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3866 /*
3867 * We are going idle. next_balance may be set based on
3868 * a busy processor. So reset next_balance.
3869 */
3870 this_rq->next_balance = next_balance;
3871 }
3872 }
3873
3874 /*
3875 * active_load_balance is run by migration threads. It pushes running tasks
3876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3877 * running on each physical CPU where possible, and avoids physical /
3878 * logical imbalances.
3879 *
3880 * Called with busiest_rq locked.
3881 */
3882 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3883 {
3884 int target_cpu = busiest_rq->push_cpu;
3885 struct sched_domain *sd;
3886 struct rq *target_rq;
3887
3888 /* Is there any task to move? */
3889 if (busiest_rq->nr_running <= 1)
3890 return;
3891
3892 target_rq = cpu_rq(target_cpu);
3893
3894 /*
3895 * This condition is "impossible", if it occurs
3896 * we need to fix it. Originally reported by
3897 * Bjorn Helgaas on a 128-cpu setup.
3898 */
3899 BUG_ON(busiest_rq == target_rq);
3900
3901 /* move a task from busiest_rq to target_rq */
3902 double_lock_balance(busiest_rq, target_rq);
3903 update_rq_clock(busiest_rq);
3904 update_rq_clock(target_rq);
3905
3906 /* Search for an sd spanning us and the target CPU. */
3907 for_each_domain(target_cpu, sd) {
3908 if ((sd->flags & SD_LOAD_BALANCE) &&
3909 cpu_isset(busiest_cpu, sd->span))
3910 break;
3911 }
3912
3913 if (likely(sd)) {
3914 schedstat_inc(sd, alb_count);
3915
3916 if (move_one_task(target_rq, target_cpu, busiest_rq,
3917 sd, CPU_IDLE))
3918 schedstat_inc(sd, alb_pushed);
3919 else
3920 schedstat_inc(sd, alb_failed);
3921 }
3922 spin_unlock(&target_rq->lock);
3923 }
3924
3925 #ifdef CONFIG_NO_HZ
3926 static struct {
3927 atomic_t load_balancer;
3928 cpumask_t cpu_mask;
3929 } nohz ____cacheline_aligned = {
3930 .load_balancer = ATOMIC_INIT(-1),
3931 .cpu_mask = CPU_MASK_NONE,
3932 };
3933
3934 /*
3935 * This routine will try to nominate the ilb (idle load balancing)
3936 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3937 * load balancing on behalf of all those cpus. If all the cpus in the system
3938 * go into this tickless mode, then there will be no ilb owner (as there is
3939 * no need for one) and all the cpus will sleep till the next wakeup event
3940 * arrives...
3941 *
3942 * For the ilb owner, tick is not stopped. And this tick will be used
3943 * for idle load balancing. ilb owner will still be part of
3944 * nohz.cpu_mask..
3945 *
3946 * While stopping the tick, this cpu will become the ilb owner if there
3947 * is no other owner. And will be the owner till that cpu becomes busy
3948 * or if all cpus in the system stop their ticks at which point
3949 * there is no need for ilb owner.
3950 *
3951 * When the ilb owner becomes busy, it nominates another owner, during the
3952 * next busy scheduler_tick()
3953 */
3954 int select_nohz_load_balancer(int stop_tick)
3955 {
3956 int cpu = smp_processor_id();
3957
3958 if (stop_tick) {
3959 cpu_set(cpu, nohz.cpu_mask);
3960 cpu_rq(cpu)->in_nohz_recently = 1;
3961
3962 /*
3963 * If we are going offline and still the leader, give up!
3964 */
3965 if (cpu_is_offline(cpu) &&
3966 atomic_read(&nohz.load_balancer) == cpu) {
3967 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3968 BUG();
3969 return 0;
3970 }
3971
3972 /* time for ilb owner also to sleep */
3973 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3974 if (atomic_read(&nohz.load_balancer) == cpu)
3975 atomic_set(&nohz.load_balancer, -1);
3976 return 0;
3977 }
3978
3979 if (atomic_read(&nohz.load_balancer) == -1) {
3980 /* make me the ilb owner */
3981 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3982 return 1;
3983 } else if (atomic_read(&nohz.load_balancer) == cpu)
3984 return 1;
3985 } else {
3986 if (!cpu_isset(cpu, nohz.cpu_mask))
3987 return 0;
3988
3989 cpu_clear(cpu, nohz.cpu_mask);
3990
3991 if (atomic_read(&nohz.load_balancer) == cpu)
3992 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3993 BUG();
3994 }
3995 return 0;
3996 }
3997 #endif
3998
3999 static DEFINE_SPINLOCK(balancing);
4000
4001 /*
4002 * It checks each scheduling domain to see if it is due to be balanced,
4003 * and initiates a balancing operation if so.
4004 *
4005 * Balancing parameters are set up in arch_init_sched_domains.
4006 */
4007 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4008 {
4009 int balance = 1;
4010 struct rq *rq = cpu_rq(cpu);
4011 unsigned long interval;
4012 struct sched_domain *sd;
4013 /* Earliest time when we have to do rebalance again */
4014 unsigned long next_balance = jiffies + 60*HZ;
4015 int update_next_balance = 0;
4016 cpumask_t tmp;
4017
4018 for_each_domain(cpu, sd) {
4019 if (!(sd->flags & SD_LOAD_BALANCE))
4020 continue;
4021
4022 interval = sd->balance_interval;
4023 if (idle != CPU_IDLE)
4024 interval *= sd->busy_factor;
4025
4026 /* scale ms to jiffies */
4027 interval = msecs_to_jiffies(interval);
4028 if (unlikely(!interval))
4029 interval = 1;
4030 if (interval > HZ*NR_CPUS/10)
4031 interval = HZ*NR_CPUS/10;
4032
4033
4034 if (sd->flags & SD_SERIALIZE) {
4035 if (!spin_trylock(&balancing))
4036 goto out;
4037 }
4038
4039 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4040 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4041 /*
4042 * We've pulled tasks over so either we're no
4043 * longer idle, or one of our SMT siblings is
4044 * not idle.
4045 */
4046 idle = CPU_NOT_IDLE;
4047 }
4048 sd->last_balance = jiffies;
4049 }
4050 if (sd->flags & SD_SERIALIZE)
4051 spin_unlock(&balancing);
4052 out:
4053 if (time_after(next_balance, sd->last_balance + interval)) {
4054 next_balance = sd->last_balance + interval;
4055 update_next_balance = 1;
4056 }
4057
4058 /*
4059 * Stop the load balance at this level. There is another
4060 * CPU in our sched group which is doing load balancing more
4061 * actively.
4062 */
4063 if (!balance)
4064 break;
4065 }
4066
4067 /*
4068 * next_balance will be updated only when there is a need.
4069 * When the cpu is attached to null domain for ex, it will not be
4070 * updated.
4071 */
4072 if (likely(update_next_balance))
4073 rq->next_balance = next_balance;
4074 }
4075
4076 /*
4077 * run_rebalance_domains is triggered when needed from the scheduler tick.
4078 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4079 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4080 */
4081 static void run_rebalance_domains(struct softirq_action *h)
4082 {
4083 int this_cpu = smp_processor_id();
4084 struct rq *this_rq = cpu_rq(this_cpu);
4085 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4086 CPU_IDLE : CPU_NOT_IDLE;
4087
4088 rebalance_domains(this_cpu, idle);
4089
4090 #ifdef CONFIG_NO_HZ
4091 /*
4092 * If this cpu is the owner for idle load balancing, then do the
4093 * balancing on behalf of the other idle cpus whose ticks are
4094 * stopped.
4095 */
4096 if (this_rq->idle_at_tick &&
4097 atomic_read(&nohz.load_balancer) == this_cpu) {
4098 cpumask_t cpus = nohz.cpu_mask;
4099 struct rq *rq;
4100 int balance_cpu;
4101
4102 cpu_clear(this_cpu, cpus);
4103 for_each_cpu_mask(balance_cpu, cpus) {
4104 /*
4105 * If this cpu gets work to do, stop the load balancing
4106 * work being done for other cpus. Next load
4107 * balancing owner will pick it up.
4108 */
4109 if (need_resched())
4110 break;
4111
4112 rebalance_domains(balance_cpu, CPU_IDLE);
4113
4114 rq = cpu_rq(balance_cpu);
4115 if (time_after(this_rq->next_balance, rq->next_balance))
4116 this_rq->next_balance = rq->next_balance;
4117 }
4118 }
4119 #endif
4120 }
4121
4122 /*
4123 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4124 *
4125 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4126 * idle load balancing owner or decide to stop the periodic load balancing,
4127 * if the whole system is idle.
4128 */
4129 static inline void trigger_load_balance(struct rq *rq, int cpu)
4130 {
4131 #ifdef CONFIG_NO_HZ
4132 /*
4133 * If we were in the nohz mode recently and busy at the current
4134 * scheduler tick, then check if we need to nominate new idle
4135 * load balancer.
4136 */
4137 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4138 rq->in_nohz_recently = 0;
4139
4140 if (atomic_read(&nohz.load_balancer) == cpu) {
4141 cpu_clear(cpu, nohz.cpu_mask);
4142 atomic_set(&nohz.load_balancer, -1);
4143 }
4144
4145 if (atomic_read(&nohz.load_balancer) == -1) {
4146 /*
4147 * simple selection for now: Nominate the
4148 * first cpu in the nohz list to be the next
4149 * ilb owner.
4150 *
4151 * TBD: Traverse the sched domains and nominate
4152 * the nearest cpu in the nohz.cpu_mask.
4153 */
4154 int ilb = first_cpu(nohz.cpu_mask);
4155
4156 if (ilb < nr_cpu_ids)
4157 resched_cpu(ilb);
4158 }
4159 }
4160
4161 /*
4162 * If this cpu is idle and doing idle load balancing for all the
4163 * cpus with ticks stopped, is it time for that to stop?
4164 */
4165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4166 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4167 resched_cpu(cpu);
4168 return;
4169 }
4170
4171 /*
4172 * If this cpu is idle and the idle load balancing is done by
4173 * someone else, then no need raise the SCHED_SOFTIRQ
4174 */
4175 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4176 cpu_isset(cpu, nohz.cpu_mask))
4177 return;
4178 #endif
4179 if (time_after_eq(jiffies, rq->next_balance))
4180 raise_softirq(SCHED_SOFTIRQ);
4181 }
4182
4183 #else /* CONFIG_SMP */
4184
4185 /*
4186 * on UP we do not need to balance between CPUs:
4187 */
4188 static inline void idle_balance(int cpu, struct rq *rq)
4189 {
4190 }
4191
4192 #endif
4193
4194 DEFINE_PER_CPU(struct kernel_stat, kstat);
4195
4196 EXPORT_PER_CPU_SYMBOL(kstat);
4197
4198 /*
4199 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4200 * that have not yet been banked in case the task is currently running.
4201 */
4202 unsigned long long task_sched_runtime(struct task_struct *p)
4203 {
4204 unsigned long flags;
4205 u64 ns, delta_exec;
4206 struct rq *rq;
4207
4208 rq = task_rq_lock(p, &flags);
4209 ns = p->se.sum_exec_runtime;
4210 if (task_current(rq, p)) {
4211 update_rq_clock(rq);
4212 delta_exec = rq->clock - p->se.exec_start;
4213 if ((s64)delta_exec > 0)
4214 ns += delta_exec;
4215 }
4216 task_rq_unlock(rq, &flags);
4217
4218 return ns;
4219 }
4220
4221 /*
4222 * Account user cpu time to a process.
4223 * @p: the process that the cpu time gets accounted to
4224 * @cputime: the cpu time spent in user space since the last update
4225 */
4226 void account_user_time(struct task_struct *p, cputime_t cputime)
4227 {
4228 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4229 cputime64_t tmp;
4230
4231 p->utime = cputime_add(p->utime, cputime);
4232
4233 /* Add user time to cpustat. */
4234 tmp = cputime_to_cputime64(cputime);
4235 if (TASK_NICE(p) > 0)
4236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4237 else
4238 cpustat->user = cputime64_add(cpustat->user, tmp);
4239 }
4240
4241 /*
4242 * Account guest cpu time to a process.
4243 * @p: the process that the cpu time gets accounted to
4244 * @cputime: the cpu time spent in virtual machine since the last update
4245 */
4246 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4247 {
4248 cputime64_t tmp;
4249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4250
4251 tmp = cputime_to_cputime64(cputime);
4252
4253 p->utime = cputime_add(p->utime, cputime);
4254 p->gtime = cputime_add(p->gtime, cputime);
4255
4256 cpustat->user = cputime64_add(cpustat->user, tmp);
4257 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4258 }
4259
4260 /*
4261 * Account scaled user cpu time to a process.
4262 * @p: the process that the cpu time gets accounted to
4263 * @cputime: the cpu time spent in user space since the last update
4264 */
4265 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4266 {
4267 p->utimescaled = cputime_add(p->utimescaled, cputime);
4268 }
4269
4270 /*
4271 * Account system cpu time to a process.
4272 * @p: the process that the cpu time gets accounted to
4273 * @hardirq_offset: the offset to subtract from hardirq_count()
4274 * @cputime: the cpu time spent in kernel space since the last update
4275 */
4276 void account_system_time(struct task_struct *p, int hardirq_offset,
4277 cputime_t cputime)
4278 {
4279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4280 struct rq *rq = this_rq();
4281 cputime64_t tmp;
4282
4283 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4284 account_guest_time(p, cputime);
4285 return;
4286 }
4287
4288 p->stime = cputime_add(p->stime, cputime);
4289
4290 /* Add system time to cpustat. */
4291 tmp = cputime_to_cputime64(cputime);
4292 if (hardirq_count() - hardirq_offset)
4293 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4294 else if (softirq_count())
4295 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4296 else if (p != rq->idle)
4297 cpustat->system = cputime64_add(cpustat->system, tmp);
4298 else if (atomic_read(&rq->nr_iowait) > 0)
4299 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4300 else
4301 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4302 /* Account for system time used */
4303 acct_update_integrals(p);
4304 }
4305
4306 /*
4307 * Account scaled system cpu time to a process.
4308 * @p: the process that the cpu time gets accounted to
4309 * @hardirq_offset: the offset to subtract from hardirq_count()
4310 * @cputime: the cpu time spent in kernel space since the last update
4311 */
4312 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4313 {
4314 p->stimescaled = cputime_add(p->stimescaled, cputime);
4315 }
4316
4317 /*
4318 * Account for involuntary wait time.
4319 * @p: the process from which the cpu time has been stolen
4320 * @steal: the cpu time spent in involuntary wait
4321 */
4322 void account_steal_time(struct task_struct *p, cputime_t steal)
4323 {
4324 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4325 cputime64_t tmp = cputime_to_cputime64(steal);
4326 struct rq *rq = this_rq();
4327
4328 if (p == rq->idle) {
4329 p->stime = cputime_add(p->stime, steal);
4330 if (atomic_read(&rq->nr_iowait) > 0)
4331 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4332 else
4333 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4334 } else
4335 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4336 }
4337
4338 /*
4339 * This function gets called by the timer code, with HZ frequency.
4340 * We call it with interrupts disabled.
4341 *
4342 * It also gets called by the fork code, when changing the parent's
4343 * timeslices.
4344 */
4345 void scheduler_tick(void)
4346 {
4347 int cpu = smp_processor_id();
4348 struct rq *rq = cpu_rq(cpu);
4349 struct task_struct *curr = rq->curr;
4350
4351 sched_clock_tick();
4352
4353 spin_lock(&rq->lock);
4354 update_rq_clock(rq);
4355 update_cpu_load(rq);
4356 curr->sched_class->task_tick(rq, curr, 0);
4357 spin_unlock(&rq->lock);
4358
4359 #ifdef CONFIG_SMP
4360 rq->idle_at_tick = idle_cpu(cpu);
4361 trigger_load_balance(rq, cpu);
4362 #endif
4363 }
4364
4365 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4366
4367 void __kprobes add_preempt_count(int val)
4368 {
4369 /*
4370 * Underflow?
4371 */
4372 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4373 return;
4374 preempt_count() += val;
4375 /*
4376 * Spinlock count overflowing soon?
4377 */
4378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4379 PREEMPT_MASK - 10);
4380 }
4381 EXPORT_SYMBOL(add_preempt_count);
4382
4383 void __kprobes sub_preempt_count(int val)
4384 {
4385 /*
4386 * Underflow?
4387 */
4388 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4389 return;
4390 /*
4391 * Is the spinlock portion underflowing?
4392 */
4393 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4394 !(preempt_count() & PREEMPT_MASK)))
4395 return;
4396
4397 preempt_count() -= val;
4398 }
4399 EXPORT_SYMBOL(sub_preempt_count);
4400
4401 #endif
4402
4403 /*
4404 * Print scheduling while atomic bug:
4405 */
4406 static noinline void __schedule_bug(struct task_struct *prev)
4407 {
4408 struct pt_regs *regs = get_irq_regs();
4409
4410 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4411 prev->comm, prev->pid, preempt_count());
4412
4413 debug_show_held_locks(prev);
4414 if (irqs_disabled())
4415 print_irqtrace_events(prev);
4416
4417 if (regs)
4418 show_regs(regs);
4419 else
4420 dump_stack();
4421 }
4422
4423 /*
4424 * Various schedule()-time debugging checks and statistics:
4425 */
4426 static inline void schedule_debug(struct task_struct *prev)
4427 {
4428 /*
4429 * Test if we are atomic. Since do_exit() needs to call into
4430 * schedule() atomically, we ignore that path for now.
4431 * Otherwise, whine if we are scheduling when we should not be.
4432 */
4433 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4434 __schedule_bug(prev);
4435
4436 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4437
4438 schedstat_inc(this_rq(), sched_count);
4439 #ifdef CONFIG_SCHEDSTATS
4440 if (unlikely(prev->lock_depth >= 0)) {
4441 schedstat_inc(this_rq(), bkl_count);
4442 schedstat_inc(prev, sched_info.bkl_count);
4443 }
4444 #endif
4445 }
4446
4447 /*
4448 * Pick up the highest-prio task:
4449 */
4450 static inline struct task_struct *
4451 pick_next_task(struct rq *rq, struct task_struct *prev)
4452 {
4453 const struct sched_class *class;
4454 struct task_struct *p;
4455
4456 /*
4457 * Optimization: we know that if all tasks are in
4458 * the fair class we can call that function directly:
4459 */
4460 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4461 p = fair_sched_class.pick_next_task(rq);
4462 if (likely(p))
4463 return p;
4464 }
4465
4466 class = sched_class_highest;
4467 for ( ; ; ) {
4468 p = class->pick_next_task(rq);
4469 if (p)
4470 return p;
4471 /*
4472 * Will never be NULL as the idle class always
4473 * returns a non-NULL p:
4474 */
4475 class = class->next;
4476 }
4477 }
4478
4479 /*
4480 * schedule() is the main scheduler function.
4481 */
4482 asmlinkage void __sched schedule(void)
4483 {
4484 struct task_struct *prev, *next;
4485 unsigned long *switch_count;
4486 struct rq *rq;
4487 int cpu;
4488
4489 need_resched:
4490 preempt_disable();
4491 cpu = smp_processor_id();
4492 rq = cpu_rq(cpu);
4493 rcu_qsctr_inc(cpu);
4494 prev = rq->curr;
4495 switch_count = &prev->nivcsw;
4496
4497 release_kernel_lock(prev);
4498 need_resched_nonpreemptible:
4499
4500 schedule_debug(prev);
4501
4502 hrtick_clear(rq);
4503
4504 /*
4505 * Do the rq-clock update outside the rq lock:
4506 */
4507 local_irq_disable();
4508 update_rq_clock(rq);
4509 spin_lock(&rq->lock);
4510 clear_tsk_need_resched(prev);
4511
4512 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4513 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4514 signal_pending(prev))) {
4515 prev->state = TASK_RUNNING;
4516 } else {
4517 deactivate_task(rq, prev, 1);
4518 }
4519 switch_count = &prev->nvcsw;
4520 }
4521
4522 #ifdef CONFIG_SMP
4523 if (prev->sched_class->pre_schedule)
4524 prev->sched_class->pre_schedule(rq, prev);
4525 #endif
4526
4527 if (unlikely(!rq->nr_running))
4528 idle_balance(cpu, rq);
4529
4530 prev->sched_class->put_prev_task(rq, prev);
4531 next = pick_next_task(rq, prev);
4532
4533 if (likely(prev != next)) {
4534 sched_info_switch(prev, next);
4535
4536 rq->nr_switches++;
4537 rq->curr = next;
4538 ++*switch_count;
4539
4540 context_switch(rq, prev, next); /* unlocks the rq */
4541 /*
4542 * the context switch might have flipped the stack from under
4543 * us, hence refresh the local variables.
4544 */
4545 cpu = smp_processor_id();
4546 rq = cpu_rq(cpu);
4547 } else
4548 spin_unlock_irq(&rq->lock);
4549
4550 hrtick_set(rq);
4551
4552 if (unlikely(reacquire_kernel_lock(current) < 0))
4553 goto need_resched_nonpreemptible;
4554
4555 preempt_enable_no_resched();
4556 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4557 goto need_resched;
4558 }
4559 EXPORT_SYMBOL(schedule);
4560
4561 #ifdef CONFIG_PREEMPT
4562 /*
4563 * this is the entry point to schedule() from in-kernel preemption
4564 * off of preempt_enable. Kernel preemptions off return from interrupt
4565 * occur there and call schedule directly.
4566 */
4567 asmlinkage void __sched preempt_schedule(void)
4568 {
4569 struct thread_info *ti = current_thread_info();
4570 struct task_struct *task = current;
4571 int saved_lock_depth;
4572
4573 /*
4574 * If there is a non-zero preempt_count or interrupts are disabled,
4575 * we do not want to preempt the current task. Just return..
4576 */
4577 if (likely(ti->preempt_count || irqs_disabled()))
4578 return;
4579
4580 do {
4581 add_preempt_count(PREEMPT_ACTIVE);
4582
4583 /*
4584 * We keep the big kernel semaphore locked, but we
4585 * clear ->lock_depth so that schedule() doesnt
4586 * auto-release the semaphore:
4587 */
4588 saved_lock_depth = task->lock_depth;
4589 task->lock_depth = -1;
4590 schedule();
4591 task->lock_depth = saved_lock_depth;
4592 sub_preempt_count(PREEMPT_ACTIVE);
4593
4594 /*
4595 * Check again in case we missed a preemption opportunity
4596 * between schedule and now.
4597 */
4598 barrier();
4599 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4600 }
4601 EXPORT_SYMBOL(preempt_schedule);
4602
4603 /*
4604 * this is the entry point to schedule() from kernel preemption
4605 * off of irq context.
4606 * Note, that this is called and return with irqs disabled. This will
4607 * protect us against recursive calling from irq.
4608 */
4609 asmlinkage void __sched preempt_schedule_irq(void)
4610 {
4611 struct thread_info *ti = current_thread_info();
4612 struct task_struct *task = current;
4613 int saved_lock_depth;
4614
4615 /* Catch callers which need to be fixed */
4616 BUG_ON(ti->preempt_count || !irqs_disabled());
4617
4618 do {
4619 add_preempt_count(PREEMPT_ACTIVE);
4620
4621 /*
4622 * We keep the big kernel semaphore locked, but we
4623 * clear ->lock_depth so that schedule() doesnt
4624 * auto-release the semaphore:
4625 */
4626 saved_lock_depth = task->lock_depth;
4627 task->lock_depth = -1;
4628 local_irq_enable();
4629 schedule();
4630 local_irq_disable();
4631 task->lock_depth = saved_lock_depth;
4632 sub_preempt_count(PREEMPT_ACTIVE);
4633
4634 /*
4635 * Check again in case we missed a preemption opportunity
4636 * between schedule and now.
4637 */
4638 barrier();
4639 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4640 }
4641
4642 #endif /* CONFIG_PREEMPT */
4643
4644 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4645 void *key)
4646 {
4647 return try_to_wake_up(curr->private, mode, sync);
4648 }
4649 EXPORT_SYMBOL(default_wake_function);
4650
4651 /*
4652 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4653 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4654 * number) then we wake all the non-exclusive tasks and one exclusive task.
4655 *
4656 * There are circumstances in which we can try to wake a task which has already
4657 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4658 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4659 */
4660 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4661 int nr_exclusive, int sync, void *key)
4662 {
4663 wait_queue_t *curr, *next;
4664
4665 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4666 unsigned flags = curr->flags;
4667
4668 if (curr->func(curr, mode, sync, key) &&
4669 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4670 break;
4671 }
4672 }
4673
4674 /**
4675 * __wake_up - wake up threads blocked on a waitqueue.
4676 * @q: the waitqueue
4677 * @mode: which threads
4678 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4679 * @key: is directly passed to the wakeup function
4680 */
4681 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4682 int nr_exclusive, void *key)
4683 {
4684 unsigned long flags;
4685
4686 spin_lock_irqsave(&q->lock, flags);
4687 __wake_up_common(q, mode, nr_exclusive, 0, key);
4688 spin_unlock_irqrestore(&q->lock, flags);
4689 }
4690 EXPORT_SYMBOL(__wake_up);
4691
4692 /*
4693 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4694 */
4695 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4696 {
4697 __wake_up_common(q, mode, 1, 0, NULL);
4698 }
4699
4700 /**
4701 * __wake_up_sync - wake up threads blocked on a waitqueue.
4702 * @q: the waitqueue
4703 * @mode: which threads
4704 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4705 *
4706 * The sync wakeup differs that the waker knows that it will schedule
4707 * away soon, so while the target thread will be woken up, it will not
4708 * be migrated to another CPU - ie. the two threads are 'synchronized'
4709 * with each other. This can prevent needless bouncing between CPUs.
4710 *
4711 * On UP it can prevent extra preemption.
4712 */
4713 void
4714 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4715 {
4716 unsigned long flags;
4717 int sync = 1;
4718
4719 if (unlikely(!q))
4720 return;
4721
4722 if (unlikely(!nr_exclusive))
4723 sync = 0;
4724
4725 spin_lock_irqsave(&q->lock, flags);
4726 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4727 spin_unlock_irqrestore(&q->lock, flags);
4728 }
4729 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4730
4731 void complete(struct completion *x)
4732 {
4733 unsigned long flags;
4734
4735 spin_lock_irqsave(&x->wait.lock, flags);
4736 x->done++;
4737 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4738 spin_unlock_irqrestore(&x->wait.lock, flags);
4739 }
4740 EXPORT_SYMBOL(complete);
4741
4742 void complete_all(struct completion *x)
4743 {
4744 unsigned long flags;
4745
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4750 }
4751 EXPORT_SYMBOL(complete_all);
4752
4753 static inline long __sched
4754 do_wait_for_common(struct completion *x, long timeout, int state)
4755 {
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4758
4759 wait.flags |= WQ_FLAG_EXCLUSIVE;
4760 __add_wait_queue_tail(&x->wait, &wait);
4761 do {
4762 if ((state == TASK_INTERRUPTIBLE &&
4763 signal_pending(current)) ||
4764 (state == TASK_KILLABLE &&
4765 fatal_signal_pending(current))) {
4766 __remove_wait_queue(&x->wait, &wait);
4767 return -ERESTARTSYS;
4768 }
4769 __set_current_state(state);
4770 spin_unlock_irq(&x->wait.lock);
4771 timeout = schedule_timeout(timeout);
4772 spin_lock_irq(&x->wait.lock);
4773 if (!timeout) {
4774 __remove_wait_queue(&x->wait, &wait);
4775 return timeout;
4776 }
4777 } while (!x->done);
4778 __remove_wait_queue(&x->wait, &wait);
4779 }
4780 x->done--;
4781 return timeout;
4782 }
4783
4784 static long __sched
4785 wait_for_common(struct completion *x, long timeout, int state)
4786 {
4787 might_sleep();
4788
4789 spin_lock_irq(&x->wait.lock);
4790 timeout = do_wait_for_common(x, timeout, state);
4791 spin_unlock_irq(&x->wait.lock);
4792 return timeout;
4793 }
4794
4795 void __sched wait_for_completion(struct completion *x)
4796 {
4797 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4798 }
4799 EXPORT_SYMBOL(wait_for_completion);
4800
4801 unsigned long __sched
4802 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4803 {
4804 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4805 }
4806 EXPORT_SYMBOL(wait_for_completion_timeout);
4807
4808 int __sched wait_for_completion_interruptible(struct completion *x)
4809 {
4810 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4811 if (t == -ERESTARTSYS)
4812 return t;
4813 return 0;
4814 }
4815 EXPORT_SYMBOL(wait_for_completion_interruptible);
4816
4817 unsigned long __sched
4818 wait_for_completion_interruptible_timeout(struct completion *x,
4819 unsigned long timeout)
4820 {
4821 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4822 }
4823 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4824
4825 int __sched wait_for_completion_killable(struct completion *x)
4826 {
4827 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4828 if (t == -ERESTARTSYS)
4829 return t;
4830 return 0;
4831 }
4832 EXPORT_SYMBOL(wait_for_completion_killable);
4833
4834 static long __sched
4835 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4836 {
4837 unsigned long flags;
4838 wait_queue_t wait;
4839
4840 init_waitqueue_entry(&wait, current);
4841
4842 __set_current_state(state);
4843
4844 spin_lock_irqsave(&q->lock, flags);
4845 __add_wait_queue(q, &wait);
4846 spin_unlock(&q->lock);
4847 timeout = schedule_timeout(timeout);
4848 spin_lock_irq(&q->lock);
4849 __remove_wait_queue(q, &wait);
4850 spin_unlock_irqrestore(&q->lock, flags);
4851
4852 return timeout;
4853 }
4854
4855 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4856 {
4857 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4858 }
4859 EXPORT_SYMBOL(interruptible_sleep_on);
4860
4861 long __sched
4862 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4863 {
4864 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4865 }
4866 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4867
4868 void __sched sleep_on(wait_queue_head_t *q)
4869 {
4870 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4871 }
4872 EXPORT_SYMBOL(sleep_on);
4873
4874 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4875 {
4876 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4877 }
4878 EXPORT_SYMBOL(sleep_on_timeout);
4879
4880 #ifdef CONFIG_RT_MUTEXES
4881
4882 /*
4883 * rt_mutex_setprio - set the current priority of a task
4884 * @p: task
4885 * @prio: prio value (kernel-internal form)
4886 *
4887 * This function changes the 'effective' priority of a task. It does
4888 * not touch ->normal_prio like __setscheduler().
4889 *
4890 * Used by the rt_mutex code to implement priority inheritance logic.
4891 */
4892 void rt_mutex_setprio(struct task_struct *p, int prio)
4893 {
4894 unsigned long flags;
4895 int oldprio, on_rq, running;
4896 struct rq *rq;
4897 const struct sched_class *prev_class = p->sched_class;
4898
4899 BUG_ON(prio < 0 || prio > MAX_PRIO);
4900
4901 rq = task_rq_lock(p, &flags);
4902 update_rq_clock(rq);
4903
4904 oldprio = p->prio;
4905 on_rq = p->se.on_rq;
4906 running = task_current(rq, p);
4907 if (on_rq)
4908 dequeue_task(rq, p, 0);
4909 if (running)
4910 p->sched_class->put_prev_task(rq, p);
4911
4912 if (rt_prio(prio))
4913 p->sched_class = &rt_sched_class;
4914 else
4915 p->sched_class = &fair_sched_class;
4916
4917 p->prio = prio;
4918
4919 if (running)
4920 p->sched_class->set_curr_task(rq);
4921 if (on_rq) {
4922 enqueue_task(rq, p, 0);
4923
4924 check_class_changed(rq, p, prev_class, oldprio, running);
4925 }
4926 task_rq_unlock(rq, &flags);
4927 }
4928
4929 #endif
4930
4931 void set_user_nice(struct task_struct *p, long nice)
4932 {
4933 int old_prio, delta, on_rq;
4934 unsigned long flags;
4935 struct rq *rq;
4936
4937 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4938 return;
4939 /*
4940 * We have to be careful, if called from sys_setpriority(),
4941 * the task might be in the middle of scheduling on another CPU.
4942 */
4943 rq = task_rq_lock(p, &flags);
4944 update_rq_clock(rq);
4945 /*
4946 * The RT priorities are set via sched_setscheduler(), but we still
4947 * allow the 'normal' nice value to be set - but as expected
4948 * it wont have any effect on scheduling until the task is
4949 * SCHED_FIFO/SCHED_RR:
4950 */
4951 if (task_has_rt_policy(p)) {
4952 p->static_prio = NICE_TO_PRIO(nice);
4953 goto out_unlock;
4954 }
4955 on_rq = p->se.on_rq;
4956 if (on_rq)
4957 dequeue_task(rq, p, 0);
4958
4959 p->static_prio = NICE_TO_PRIO(nice);
4960 set_load_weight(p);
4961 old_prio = p->prio;
4962 p->prio = effective_prio(p);
4963 delta = p->prio - old_prio;
4964
4965 if (on_rq) {
4966 enqueue_task(rq, p, 0);
4967 /*
4968 * If the task increased its priority or is running and
4969 * lowered its priority, then reschedule its CPU:
4970 */
4971 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4972 resched_task(rq->curr);
4973 }
4974 out_unlock:
4975 task_rq_unlock(rq, &flags);
4976 }
4977 EXPORT_SYMBOL(set_user_nice);
4978
4979 /*
4980 * can_nice - check if a task can reduce its nice value
4981 * @p: task
4982 * @nice: nice value
4983 */
4984 int can_nice(const struct task_struct *p, const int nice)
4985 {
4986 /* convert nice value [19,-20] to rlimit style value [1,40] */
4987 int nice_rlim = 20 - nice;
4988
4989 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4990 capable(CAP_SYS_NICE));
4991 }
4992
4993 #ifdef __ARCH_WANT_SYS_NICE
4994
4995 /*
4996 * sys_nice - change the priority of the current process.
4997 * @increment: priority increment
4998 *
4999 * sys_setpriority is a more generic, but much slower function that
5000 * does similar things.
5001 */
5002 asmlinkage long sys_nice(int increment)
5003 {
5004 long nice, retval;
5005
5006 /*
5007 * Setpriority might change our priority at the same moment.
5008 * We don't have to worry. Conceptually one call occurs first
5009 * and we have a single winner.
5010 */
5011 if (increment < -40)
5012 increment = -40;
5013 if (increment > 40)
5014 increment = 40;
5015
5016 nice = PRIO_TO_NICE(current->static_prio) + increment;
5017 if (nice < -20)
5018 nice = -20;
5019 if (nice > 19)
5020 nice = 19;
5021
5022 if (increment < 0 && !can_nice(current, nice))
5023 return -EPERM;
5024
5025 retval = security_task_setnice(current, nice);
5026 if (retval)
5027 return retval;
5028
5029 set_user_nice(current, nice);
5030 return 0;
5031 }
5032
5033 #endif
5034
5035 /**
5036 * task_prio - return the priority value of a given task.
5037 * @p: the task in question.
5038 *
5039 * This is the priority value as seen by users in /proc.
5040 * RT tasks are offset by -200. Normal tasks are centered
5041 * around 0, value goes from -16 to +15.
5042 */
5043 int task_prio(const struct task_struct *p)
5044 {
5045 return p->prio - MAX_RT_PRIO;
5046 }
5047
5048 /**
5049 * task_nice - return the nice value of a given task.
5050 * @p: the task in question.
5051 */
5052 int task_nice(const struct task_struct *p)
5053 {
5054 return TASK_NICE(p);
5055 }
5056 EXPORT_SYMBOL(task_nice);
5057
5058 /**
5059 * idle_cpu - is a given cpu idle currently?
5060 * @cpu: the processor in question.
5061 */
5062 int idle_cpu(int cpu)
5063 {
5064 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5065 }
5066
5067 /**
5068 * idle_task - return the idle task for a given cpu.
5069 * @cpu: the processor in question.
5070 */
5071 struct task_struct *idle_task(int cpu)
5072 {
5073 return cpu_rq(cpu)->idle;
5074 }
5075
5076 /**
5077 * find_process_by_pid - find a process with a matching PID value.
5078 * @pid: the pid in question.
5079 */
5080 static struct task_struct *find_process_by_pid(pid_t pid)
5081 {
5082 return pid ? find_task_by_vpid(pid) : current;
5083 }
5084
5085 /* Actually do priority change: must hold rq lock. */
5086 static void
5087 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5088 {
5089 BUG_ON(p->se.on_rq);
5090
5091 p->policy = policy;
5092 switch (p->policy) {
5093 case SCHED_NORMAL:
5094 case SCHED_BATCH:
5095 case SCHED_IDLE:
5096 p->sched_class = &fair_sched_class;
5097 break;
5098 case SCHED_FIFO:
5099 case SCHED_RR:
5100 p->sched_class = &rt_sched_class;
5101 break;
5102 }
5103
5104 p->rt_priority = prio;
5105 p->normal_prio = normal_prio(p);
5106 /* we are holding p->pi_lock already */
5107 p->prio = rt_mutex_getprio(p);
5108 set_load_weight(p);
5109 }
5110
5111 /**
5112 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5113 * @p: the task in question.
5114 * @policy: new policy.
5115 * @param: structure containing the new RT priority.
5116 *
5117 * NOTE that the task may be already dead.
5118 */
5119 int sched_setscheduler(struct task_struct *p, int policy,
5120 struct sched_param *param)
5121 {
5122 int retval, oldprio, oldpolicy = -1, on_rq, running;
5123 unsigned long flags;
5124 const struct sched_class *prev_class = p->sched_class;
5125 struct rq *rq;
5126
5127 /* may grab non-irq protected spin_locks */
5128 BUG_ON(in_interrupt());
5129 recheck:
5130 /* double check policy once rq lock held */
5131 if (policy < 0)
5132 policy = oldpolicy = p->policy;
5133 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5134 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5135 policy != SCHED_IDLE)
5136 return -EINVAL;
5137 /*
5138 * Valid priorities for SCHED_FIFO and SCHED_RR are
5139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5140 * SCHED_BATCH and SCHED_IDLE is 0.
5141 */
5142 if (param->sched_priority < 0 ||
5143 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5144 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5145 return -EINVAL;
5146 if (rt_policy(policy) != (param->sched_priority != 0))
5147 return -EINVAL;
5148
5149 /*
5150 * Allow unprivileged RT tasks to decrease priority:
5151 */
5152 if (!capable(CAP_SYS_NICE)) {
5153 if (rt_policy(policy)) {
5154 unsigned long rlim_rtprio;
5155
5156 if (!lock_task_sighand(p, &flags))
5157 return -ESRCH;
5158 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5159 unlock_task_sighand(p, &flags);
5160
5161 /* can't set/change the rt policy */
5162 if (policy != p->policy && !rlim_rtprio)
5163 return -EPERM;
5164
5165 /* can't increase priority */
5166 if (param->sched_priority > p->rt_priority &&
5167 param->sched_priority > rlim_rtprio)
5168 return -EPERM;
5169 }
5170 /*
5171 * Like positive nice levels, dont allow tasks to
5172 * move out of SCHED_IDLE either:
5173 */
5174 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5175 return -EPERM;
5176
5177 /* can't change other user's priorities */
5178 if ((current->euid != p->euid) &&
5179 (current->euid != p->uid))
5180 return -EPERM;
5181 }
5182
5183 #ifdef CONFIG_RT_GROUP_SCHED
5184 /*
5185 * Do not allow realtime tasks into groups that have no runtime
5186 * assigned.
5187 */
5188 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5189 return -EPERM;
5190 #endif
5191
5192 retval = security_task_setscheduler(p, policy, param);
5193 if (retval)
5194 return retval;
5195 /*
5196 * make sure no PI-waiters arrive (or leave) while we are
5197 * changing the priority of the task:
5198 */
5199 spin_lock_irqsave(&p->pi_lock, flags);
5200 /*
5201 * To be able to change p->policy safely, the apropriate
5202 * runqueue lock must be held.
5203 */
5204 rq = __task_rq_lock(p);
5205 /* recheck policy now with rq lock held */
5206 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5207 policy = oldpolicy = -1;
5208 __task_rq_unlock(rq);
5209 spin_unlock_irqrestore(&p->pi_lock, flags);
5210 goto recheck;
5211 }
5212 update_rq_clock(rq);
5213 on_rq = p->se.on_rq;
5214 running = task_current(rq, p);
5215 if (on_rq)
5216 deactivate_task(rq, p, 0);
5217 if (running)
5218 p->sched_class->put_prev_task(rq, p);
5219
5220 oldprio = p->prio;
5221 __setscheduler(rq, p, policy, param->sched_priority);
5222
5223 if (running)
5224 p->sched_class->set_curr_task(rq);
5225 if (on_rq) {
5226 activate_task(rq, p, 0);
5227
5228 check_class_changed(rq, p, prev_class, oldprio, running);
5229 }
5230 __task_rq_unlock(rq);
5231 spin_unlock_irqrestore(&p->pi_lock, flags);
5232
5233 rt_mutex_adjust_pi(p);
5234
5235 return 0;
5236 }
5237 EXPORT_SYMBOL_GPL(sched_setscheduler);
5238
5239 static int
5240 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5241 {
5242 struct sched_param lparam;
5243 struct task_struct *p;
5244 int retval;
5245
5246 if (!param || pid < 0)
5247 return -EINVAL;
5248 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5249 return -EFAULT;
5250
5251 rcu_read_lock();
5252 retval = -ESRCH;
5253 p = find_process_by_pid(pid);
5254 if (p != NULL)
5255 retval = sched_setscheduler(p, policy, &lparam);
5256 rcu_read_unlock();
5257
5258 return retval;
5259 }
5260
5261 /**
5262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5263 * @pid: the pid in question.
5264 * @policy: new policy.
5265 * @param: structure containing the new RT priority.
5266 */
5267 asmlinkage long
5268 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5269 {
5270 /* negative values for policy are not valid */
5271 if (policy < 0)
5272 return -EINVAL;
5273
5274 return do_sched_setscheduler(pid, policy, param);
5275 }
5276
5277 /**
5278 * sys_sched_setparam - set/change the RT priority of a thread
5279 * @pid: the pid in question.
5280 * @param: structure containing the new RT priority.
5281 */
5282 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5283 {
5284 return do_sched_setscheduler(pid, -1, param);
5285 }
5286
5287 /**
5288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5289 * @pid: the pid in question.
5290 */
5291 asmlinkage long sys_sched_getscheduler(pid_t pid)
5292 {
5293 struct task_struct *p;
5294 int retval;
5295
5296 if (pid < 0)
5297 return -EINVAL;
5298
5299 retval = -ESRCH;
5300 read_lock(&tasklist_lock);
5301 p = find_process_by_pid(pid);
5302 if (p) {
5303 retval = security_task_getscheduler(p);
5304 if (!retval)
5305 retval = p->policy;
5306 }
5307 read_unlock(&tasklist_lock);
5308 return retval;
5309 }
5310
5311 /**
5312 * sys_sched_getscheduler - get the RT priority of a thread
5313 * @pid: the pid in question.
5314 * @param: structure containing the RT priority.
5315 */
5316 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5317 {
5318 struct sched_param lp;
5319 struct task_struct *p;
5320 int retval;
5321
5322 if (!param || pid < 0)
5323 return -EINVAL;
5324
5325 read_lock(&tasklist_lock);
5326 p = find_process_by_pid(pid);
5327 retval = -ESRCH;
5328 if (!p)
5329 goto out_unlock;
5330
5331 retval = security_task_getscheduler(p);
5332 if (retval)
5333 goto out_unlock;
5334
5335 lp.sched_priority = p->rt_priority;
5336 read_unlock(&tasklist_lock);
5337
5338 /*
5339 * This one might sleep, we cannot do it with a spinlock held ...
5340 */
5341 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5342
5343 return retval;
5344
5345 out_unlock:
5346 read_unlock(&tasklist_lock);
5347 return retval;
5348 }
5349
5350 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5351 {
5352 cpumask_t cpus_allowed;
5353 cpumask_t new_mask = *in_mask;
5354 struct task_struct *p;
5355 int retval;
5356
5357 get_online_cpus();
5358 read_lock(&tasklist_lock);
5359
5360 p = find_process_by_pid(pid);
5361 if (!p) {
5362 read_unlock(&tasklist_lock);
5363 put_online_cpus();
5364 return -ESRCH;
5365 }
5366
5367 /*
5368 * It is not safe to call set_cpus_allowed with the
5369 * tasklist_lock held. We will bump the task_struct's
5370 * usage count and then drop tasklist_lock.
5371 */
5372 get_task_struct(p);
5373 read_unlock(&tasklist_lock);
5374
5375 retval = -EPERM;
5376 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5377 !capable(CAP_SYS_NICE))
5378 goto out_unlock;
5379
5380 retval = security_task_setscheduler(p, 0, NULL);
5381 if (retval)
5382 goto out_unlock;
5383
5384 cpuset_cpus_allowed(p, &cpus_allowed);
5385 cpus_and(new_mask, new_mask, cpus_allowed);
5386 again:
5387 retval = set_cpus_allowed_ptr(p, &new_mask);
5388
5389 if (!retval) {
5390 cpuset_cpus_allowed(p, &cpus_allowed);
5391 if (!cpus_subset(new_mask, cpus_allowed)) {
5392 /*
5393 * We must have raced with a concurrent cpuset
5394 * update. Just reset the cpus_allowed to the
5395 * cpuset's cpus_allowed
5396 */
5397 new_mask = cpus_allowed;
5398 goto again;
5399 }
5400 }
5401 out_unlock:
5402 put_task_struct(p);
5403 put_online_cpus();
5404 return retval;
5405 }
5406
5407 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5408 cpumask_t *new_mask)
5409 {
5410 if (len < sizeof(cpumask_t)) {
5411 memset(new_mask, 0, sizeof(cpumask_t));
5412 } else if (len > sizeof(cpumask_t)) {
5413 len = sizeof(cpumask_t);
5414 }
5415 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5416 }
5417
5418 /**
5419 * sys_sched_setaffinity - set the cpu affinity of a process
5420 * @pid: pid of the process
5421 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5422 * @user_mask_ptr: user-space pointer to the new cpu mask
5423 */
5424 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5425 unsigned long __user *user_mask_ptr)
5426 {
5427 cpumask_t new_mask;
5428 int retval;
5429
5430 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5431 if (retval)
5432 return retval;
5433
5434 return sched_setaffinity(pid, &new_mask);
5435 }
5436
5437 /*
5438 * Represents all cpu's present in the system
5439 * In systems capable of hotplug, this map could dynamically grow
5440 * as new cpu's are detected in the system via any platform specific
5441 * method, such as ACPI for e.g.
5442 */
5443
5444 cpumask_t cpu_present_map __read_mostly;
5445 EXPORT_SYMBOL(cpu_present_map);
5446
5447 #ifndef CONFIG_SMP
5448 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5449 EXPORT_SYMBOL(cpu_online_map);
5450
5451 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5452 EXPORT_SYMBOL(cpu_possible_map);
5453 #endif
5454
5455 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5456 {
5457 struct task_struct *p;
5458 int retval;
5459
5460 get_online_cpus();
5461 read_lock(&tasklist_lock);
5462
5463 retval = -ESRCH;
5464 p = find_process_by_pid(pid);
5465 if (!p)
5466 goto out_unlock;
5467
5468 retval = security_task_getscheduler(p);
5469 if (retval)
5470 goto out_unlock;
5471
5472 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5473
5474 out_unlock:
5475 read_unlock(&tasklist_lock);
5476 put_online_cpus();
5477
5478 return retval;
5479 }
5480
5481 /**
5482 * sys_sched_getaffinity - get the cpu affinity of a process
5483 * @pid: pid of the process
5484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5486 */
5487 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5488 unsigned long __user *user_mask_ptr)
5489 {
5490 int ret;
5491 cpumask_t mask;
5492
5493 if (len < sizeof(cpumask_t))
5494 return -EINVAL;
5495
5496 ret = sched_getaffinity(pid, &mask);
5497 if (ret < 0)
5498 return ret;
5499
5500 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5501 return -EFAULT;
5502
5503 return sizeof(cpumask_t);
5504 }
5505
5506 /**
5507 * sys_sched_yield - yield the current processor to other threads.
5508 *
5509 * This function yields the current CPU to other tasks. If there are no
5510 * other threads running on this CPU then this function will return.
5511 */
5512 asmlinkage long sys_sched_yield(void)
5513 {
5514 struct rq *rq = this_rq_lock();
5515
5516 schedstat_inc(rq, yld_count);
5517 current->sched_class->yield_task(rq);
5518
5519 /*
5520 * Since we are going to call schedule() anyway, there's
5521 * no need to preempt or enable interrupts:
5522 */
5523 __release(rq->lock);
5524 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5525 _raw_spin_unlock(&rq->lock);
5526 preempt_enable_no_resched();
5527
5528 schedule();
5529
5530 return 0;
5531 }
5532
5533 static void __cond_resched(void)
5534 {
5535 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5536 __might_sleep(__FILE__, __LINE__);
5537 #endif
5538 /*
5539 * The BKS might be reacquired before we have dropped
5540 * PREEMPT_ACTIVE, which could trigger a second
5541 * cond_resched() call.
5542 */
5543 do {
5544 add_preempt_count(PREEMPT_ACTIVE);
5545 schedule();
5546 sub_preempt_count(PREEMPT_ACTIVE);
5547 } while (need_resched());
5548 }
5549
5550 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5551 int __sched _cond_resched(void)
5552 {
5553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5554 system_state == SYSTEM_RUNNING) {
5555 __cond_resched();
5556 return 1;
5557 }
5558 return 0;
5559 }
5560 EXPORT_SYMBOL(_cond_resched);
5561 #endif
5562
5563 /*
5564 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5565 * call schedule, and on return reacquire the lock.
5566 *
5567 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5568 * operations here to prevent schedule() from being called twice (once via
5569 * spin_unlock(), once by hand).
5570 */
5571 int cond_resched_lock(spinlock_t *lock)
5572 {
5573 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5574 int ret = 0;
5575
5576 if (spin_needbreak(lock) || resched) {
5577 spin_unlock(lock);
5578 if (resched && need_resched())
5579 __cond_resched();
5580 else
5581 cpu_relax();
5582 ret = 1;
5583 spin_lock(lock);
5584 }
5585 return ret;
5586 }
5587 EXPORT_SYMBOL(cond_resched_lock);
5588
5589 int __sched cond_resched_softirq(void)
5590 {
5591 BUG_ON(!in_softirq());
5592
5593 if (need_resched() && system_state == SYSTEM_RUNNING) {
5594 local_bh_enable();
5595 __cond_resched();
5596 local_bh_disable();
5597 return 1;
5598 }
5599 return 0;
5600 }
5601 EXPORT_SYMBOL(cond_resched_softirq);
5602
5603 /**
5604 * yield - yield the current processor to other threads.
5605 *
5606 * This is a shortcut for kernel-space yielding - it marks the
5607 * thread runnable and calls sys_sched_yield().
5608 */
5609 void __sched yield(void)
5610 {
5611 set_current_state(TASK_RUNNING);
5612 sys_sched_yield();
5613 }
5614 EXPORT_SYMBOL(yield);
5615
5616 /*
5617 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5618 * that process accounting knows that this is a task in IO wait state.
5619 *
5620 * But don't do that if it is a deliberate, throttling IO wait (this task
5621 * has set its backing_dev_info: the queue against which it should throttle)
5622 */
5623 void __sched io_schedule(void)
5624 {
5625 struct rq *rq = &__raw_get_cpu_var(runqueues);
5626
5627 delayacct_blkio_start();
5628 atomic_inc(&rq->nr_iowait);
5629 schedule();
5630 atomic_dec(&rq->nr_iowait);
5631 delayacct_blkio_end();
5632 }
5633 EXPORT_SYMBOL(io_schedule);
5634
5635 long __sched io_schedule_timeout(long timeout)
5636 {
5637 struct rq *rq = &__raw_get_cpu_var(runqueues);
5638 long ret;
5639
5640 delayacct_blkio_start();
5641 atomic_inc(&rq->nr_iowait);
5642 ret = schedule_timeout(timeout);
5643 atomic_dec(&rq->nr_iowait);
5644 delayacct_blkio_end();
5645 return ret;
5646 }
5647
5648 /**
5649 * sys_sched_get_priority_max - return maximum RT priority.
5650 * @policy: scheduling class.
5651 *
5652 * this syscall returns the maximum rt_priority that can be used
5653 * by a given scheduling class.
5654 */
5655 asmlinkage long sys_sched_get_priority_max(int policy)
5656 {
5657 int ret = -EINVAL;
5658
5659 switch (policy) {
5660 case SCHED_FIFO:
5661 case SCHED_RR:
5662 ret = MAX_USER_RT_PRIO-1;
5663 break;
5664 case SCHED_NORMAL:
5665 case SCHED_BATCH:
5666 case SCHED_IDLE:
5667 ret = 0;
5668 break;
5669 }
5670 return ret;
5671 }
5672
5673 /**
5674 * sys_sched_get_priority_min - return minimum RT priority.
5675 * @policy: scheduling class.
5676 *
5677 * this syscall returns the minimum rt_priority that can be used
5678 * by a given scheduling class.
5679 */
5680 asmlinkage long sys_sched_get_priority_min(int policy)
5681 {
5682 int ret = -EINVAL;
5683
5684 switch (policy) {
5685 case SCHED_FIFO:
5686 case SCHED_RR:
5687 ret = 1;
5688 break;
5689 case SCHED_NORMAL:
5690 case SCHED_BATCH:
5691 case SCHED_IDLE:
5692 ret = 0;
5693 }
5694 return ret;
5695 }
5696
5697 /**
5698 * sys_sched_rr_get_interval - return the default timeslice of a process.
5699 * @pid: pid of the process.
5700 * @interval: userspace pointer to the timeslice value.
5701 *
5702 * this syscall writes the default timeslice value of a given process
5703 * into the user-space timespec buffer. A value of '0' means infinity.
5704 */
5705 asmlinkage
5706 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5707 {
5708 struct task_struct *p;
5709 unsigned int time_slice;
5710 int retval;
5711 struct timespec t;
5712
5713 if (pid < 0)
5714 return -EINVAL;
5715
5716 retval = -ESRCH;
5717 read_lock(&tasklist_lock);
5718 p = find_process_by_pid(pid);
5719 if (!p)
5720 goto out_unlock;
5721
5722 retval = security_task_getscheduler(p);
5723 if (retval)
5724 goto out_unlock;
5725
5726 /*
5727 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5728 * tasks that are on an otherwise idle runqueue:
5729 */
5730 time_slice = 0;
5731 if (p->policy == SCHED_RR) {
5732 time_slice = DEF_TIMESLICE;
5733 } else if (p->policy != SCHED_FIFO) {
5734 struct sched_entity *se = &p->se;
5735 unsigned long flags;
5736 struct rq *rq;
5737
5738 rq = task_rq_lock(p, &flags);
5739 if (rq->cfs.load.weight)
5740 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5741 task_rq_unlock(rq, &flags);
5742 }
5743 read_unlock(&tasklist_lock);
5744 jiffies_to_timespec(time_slice, &t);
5745 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5746 return retval;
5747
5748 out_unlock:
5749 read_unlock(&tasklist_lock);
5750 return retval;
5751 }
5752
5753 static const char stat_nam[] = "RSDTtZX";
5754
5755 void sched_show_task(struct task_struct *p)
5756 {
5757 unsigned long free = 0;
5758 unsigned state;
5759
5760 state = p->state ? __ffs(p->state) + 1 : 0;
5761 printk(KERN_INFO "%-13.13s %c", p->comm,
5762 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5763 #if BITS_PER_LONG == 32
5764 if (state == TASK_RUNNING)
5765 printk(KERN_CONT " running ");
5766 else
5767 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5768 #else
5769 if (state == TASK_RUNNING)
5770 printk(KERN_CONT " running task ");
5771 else
5772 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5773 #endif
5774 #ifdef CONFIG_DEBUG_STACK_USAGE
5775 {
5776 unsigned long *n = end_of_stack(p);
5777 while (!*n)
5778 n++;
5779 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5780 }
5781 #endif
5782 printk(KERN_CONT "%5lu %5d %6d\n", free,
5783 task_pid_nr(p), task_pid_nr(p->real_parent));
5784
5785 show_stack(p, NULL);
5786 }
5787
5788 void show_state_filter(unsigned long state_filter)
5789 {
5790 struct task_struct *g, *p;
5791
5792 #if BITS_PER_LONG == 32
5793 printk(KERN_INFO
5794 " task PC stack pid father\n");
5795 #else
5796 printk(KERN_INFO
5797 " task PC stack pid father\n");
5798 #endif
5799 read_lock(&tasklist_lock);
5800 do_each_thread(g, p) {
5801 /*
5802 * reset the NMI-timeout, listing all files on a slow
5803 * console might take alot of time:
5804 */
5805 touch_nmi_watchdog();
5806 if (!state_filter || (p->state & state_filter))
5807 sched_show_task(p);
5808 } while_each_thread(g, p);
5809
5810 touch_all_softlockup_watchdogs();
5811
5812 #ifdef CONFIG_SCHED_DEBUG
5813 sysrq_sched_debug_show();
5814 #endif
5815 read_unlock(&tasklist_lock);
5816 /*
5817 * Only show locks if all tasks are dumped:
5818 */
5819 if (state_filter == -1)
5820 debug_show_all_locks();
5821 }
5822
5823 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5824 {
5825 idle->sched_class = &idle_sched_class;
5826 }
5827
5828 /**
5829 * init_idle - set up an idle thread for a given CPU
5830 * @idle: task in question
5831 * @cpu: cpu the idle task belongs to
5832 *
5833 * NOTE: this function does not set the idle thread's NEED_RESCHED
5834 * flag, to make booting more robust.
5835 */
5836 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5837 {
5838 struct rq *rq = cpu_rq(cpu);
5839 unsigned long flags;
5840
5841 __sched_fork(idle);
5842 idle->se.exec_start = sched_clock();
5843
5844 idle->prio = idle->normal_prio = MAX_PRIO;
5845 idle->cpus_allowed = cpumask_of_cpu(cpu);
5846 __set_task_cpu(idle, cpu);
5847
5848 spin_lock_irqsave(&rq->lock, flags);
5849 rq->curr = rq->idle = idle;
5850 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5851 idle->oncpu = 1;
5852 #endif
5853 spin_unlock_irqrestore(&rq->lock, flags);
5854
5855 /* Set the preempt count _outside_ the spinlocks! */
5856 task_thread_info(idle)->preempt_count = 0;
5857
5858 /*
5859 * The idle tasks have their own, simple scheduling class:
5860 */
5861 idle->sched_class = &idle_sched_class;
5862 }
5863
5864 /*
5865 * In a system that switches off the HZ timer nohz_cpu_mask
5866 * indicates which cpus entered this state. This is used
5867 * in the rcu update to wait only for active cpus. For system
5868 * which do not switch off the HZ timer nohz_cpu_mask should
5869 * always be CPU_MASK_NONE.
5870 */
5871 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5872
5873 /*
5874 * Increase the granularity value when there are more CPUs,
5875 * because with more CPUs the 'effective latency' as visible
5876 * to users decreases. But the relationship is not linear,
5877 * so pick a second-best guess by going with the log2 of the
5878 * number of CPUs.
5879 *
5880 * This idea comes from the SD scheduler of Con Kolivas:
5881 */
5882 static inline void sched_init_granularity(void)
5883 {
5884 unsigned int factor = 1 + ilog2(num_online_cpus());
5885 const unsigned long limit = 200000000;
5886
5887 sysctl_sched_min_granularity *= factor;
5888 if (sysctl_sched_min_granularity > limit)
5889 sysctl_sched_min_granularity = limit;
5890
5891 sysctl_sched_latency *= factor;
5892 if (sysctl_sched_latency > limit)
5893 sysctl_sched_latency = limit;
5894
5895 sysctl_sched_wakeup_granularity *= factor;
5896 }
5897
5898 #ifdef CONFIG_SMP
5899 /*
5900 * This is how migration works:
5901 *
5902 * 1) we queue a struct migration_req structure in the source CPU's
5903 * runqueue and wake up that CPU's migration thread.
5904 * 2) we down() the locked semaphore => thread blocks.
5905 * 3) migration thread wakes up (implicitly it forces the migrated
5906 * thread off the CPU)
5907 * 4) it gets the migration request and checks whether the migrated
5908 * task is still in the wrong runqueue.
5909 * 5) if it's in the wrong runqueue then the migration thread removes
5910 * it and puts it into the right queue.
5911 * 6) migration thread up()s the semaphore.
5912 * 7) we wake up and the migration is done.
5913 */
5914
5915 /*
5916 * Change a given task's CPU affinity. Migrate the thread to a
5917 * proper CPU and schedule it away if the CPU it's executing on
5918 * is removed from the allowed bitmask.
5919 *
5920 * NOTE: the caller must have a valid reference to the task, the
5921 * task must not exit() & deallocate itself prematurely. The
5922 * call is not atomic; no spinlocks may be held.
5923 */
5924 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5925 {
5926 struct migration_req req;
5927 unsigned long flags;
5928 struct rq *rq;
5929 int ret = 0;
5930
5931 rq = task_rq_lock(p, &flags);
5932 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5933 ret = -EINVAL;
5934 goto out;
5935 }
5936
5937 if (p->sched_class->set_cpus_allowed)
5938 p->sched_class->set_cpus_allowed(p, new_mask);
5939 else {
5940 p->cpus_allowed = *new_mask;
5941 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5942 }
5943
5944 /* Can the task run on the task's current CPU? If so, we're done */
5945 if (cpu_isset(task_cpu(p), *new_mask))
5946 goto out;
5947
5948 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5949 /* Need help from migration thread: drop lock and wait. */
5950 task_rq_unlock(rq, &flags);
5951 wake_up_process(rq->migration_thread);
5952 wait_for_completion(&req.done);
5953 tlb_migrate_finish(p->mm);
5954 return 0;
5955 }
5956 out:
5957 task_rq_unlock(rq, &flags);
5958
5959 return ret;
5960 }
5961 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5962
5963 /*
5964 * Move (not current) task off this cpu, onto dest cpu. We're doing
5965 * this because either it can't run here any more (set_cpus_allowed()
5966 * away from this CPU, or CPU going down), or because we're
5967 * attempting to rebalance this task on exec (sched_exec).
5968 *
5969 * So we race with normal scheduler movements, but that's OK, as long
5970 * as the task is no longer on this CPU.
5971 *
5972 * Returns non-zero if task was successfully migrated.
5973 */
5974 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5975 {
5976 struct rq *rq_dest, *rq_src;
5977 int ret = 0, on_rq;
5978
5979 if (unlikely(cpu_is_offline(dest_cpu)))
5980 return ret;
5981
5982 rq_src = cpu_rq(src_cpu);
5983 rq_dest = cpu_rq(dest_cpu);
5984
5985 double_rq_lock(rq_src, rq_dest);
5986 /* Already moved. */
5987 if (task_cpu(p) != src_cpu)
5988 goto out;
5989 /* Affinity changed (again). */
5990 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5991 goto out;
5992
5993 on_rq = p->se.on_rq;
5994 if (on_rq)
5995 deactivate_task(rq_src, p, 0);
5996
5997 set_task_cpu(p, dest_cpu);
5998 if (on_rq) {
5999 activate_task(rq_dest, p, 0);
6000 check_preempt_curr(rq_dest, p);
6001 }
6002 ret = 1;
6003 out:
6004 double_rq_unlock(rq_src, rq_dest);
6005 return ret;
6006 }
6007
6008 /*
6009 * migration_thread - this is a highprio system thread that performs
6010 * thread migration by bumping thread off CPU then 'pushing' onto
6011 * another runqueue.
6012 */
6013 static int migration_thread(void *data)
6014 {
6015 int cpu = (long)data;
6016 struct rq *rq;
6017
6018 rq = cpu_rq(cpu);
6019 BUG_ON(rq->migration_thread != current);
6020
6021 set_current_state(TASK_INTERRUPTIBLE);
6022 while (!kthread_should_stop()) {
6023 struct migration_req *req;
6024 struct list_head *head;
6025
6026 spin_lock_irq(&rq->lock);
6027
6028 if (cpu_is_offline(cpu)) {
6029 spin_unlock_irq(&rq->lock);
6030 goto wait_to_die;
6031 }
6032
6033 if (rq->active_balance) {
6034 active_load_balance(rq, cpu);
6035 rq->active_balance = 0;
6036 }
6037
6038 head = &rq->migration_queue;
6039
6040 if (list_empty(head)) {
6041 spin_unlock_irq(&rq->lock);
6042 schedule();
6043 set_current_state(TASK_INTERRUPTIBLE);
6044 continue;
6045 }
6046 req = list_entry(head->next, struct migration_req, list);
6047 list_del_init(head->next);
6048
6049 spin_unlock(&rq->lock);
6050 __migrate_task(req->task, cpu, req->dest_cpu);
6051 local_irq_enable();
6052
6053 complete(&req->done);
6054 }
6055 __set_current_state(TASK_RUNNING);
6056 return 0;
6057
6058 wait_to_die:
6059 /* Wait for kthread_stop */
6060 set_current_state(TASK_INTERRUPTIBLE);
6061 while (!kthread_should_stop()) {
6062 schedule();
6063 set_current_state(TASK_INTERRUPTIBLE);
6064 }
6065 __set_current_state(TASK_RUNNING);
6066 return 0;
6067 }
6068
6069 #ifdef CONFIG_HOTPLUG_CPU
6070
6071 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6072 {
6073 int ret;
6074
6075 local_irq_disable();
6076 ret = __migrate_task(p, src_cpu, dest_cpu);
6077 local_irq_enable();
6078 return ret;
6079 }
6080
6081 /*
6082 * Figure out where task on dead CPU should go, use force if necessary.
6083 * NOTE: interrupts should be disabled by the caller
6084 */
6085 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6086 {
6087 unsigned long flags;
6088 cpumask_t mask;
6089 struct rq *rq;
6090 int dest_cpu;
6091
6092 do {
6093 /* On same node? */
6094 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6095 cpus_and(mask, mask, p->cpus_allowed);
6096 dest_cpu = any_online_cpu(mask);
6097
6098 /* On any allowed CPU? */
6099 if (dest_cpu >= nr_cpu_ids)
6100 dest_cpu = any_online_cpu(p->cpus_allowed);
6101
6102 /* No more Mr. Nice Guy. */
6103 if (dest_cpu >= nr_cpu_ids) {
6104 cpumask_t cpus_allowed;
6105
6106 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6107 /*
6108 * Try to stay on the same cpuset, where the
6109 * current cpuset may be a subset of all cpus.
6110 * The cpuset_cpus_allowed_locked() variant of
6111 * cpuset_cpus_allowed() will not block. It must be
6112 * called within calls to cpuset_lock/cpuset_unlock.
6113 */
6114 rq = task_rq_lock(p, &flags);
6115 p->cpus_allowed = cpus_allowed;
6116 dest_cpu = any_online_cpu(p->cpus_allowed);
6117 task_rq_unlock(rq, &flags);
6118
6119 /*
6120 * Don't tell them about moving exiting tasks or
6121 * kernel threads (both mm NULL), since they never
6122 * leave kernel.
6123 */
6124 if (p->mm && printk_ratelimit()) {
6125 printk(KERN_INFO "process %d (%s) no "
6126 "longer affine to cpu%d\n",
6127 task_pid_nr(p), p->comm, dead_cpu);
6128 }
6129 }
6130 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6131 }
6132
6133 /*
6134 * While a dead CPU has no uninterruptible tasks queued at this point,
6135 * it might still have a nonzero ->nr_uninterruptible counter, because
6136 * for performance reasons the counter is not stricly tracking tasks to
6137 * their home CPUs. So we just add the counter to another CPU's counter,
6138 * to keep the global sum constant after CPU-down:
6139 */
6140 static void migrate_nr_uninterruptible(struct rq *rq_src)
6141 {
6142 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6143 unsigned long flags;
6144
6145 local_irq_save(flags);
6146 double_rq_lock(rq_src, rq_dest);
6147 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6148 rq_src->nr_uninterruptible = 0;
6149 double_rq_unlock(rq_src, rq_dest);
6150 local_irq_restore(flags);
6151 }
6152
6153 /* Run through task list and migrate tasks from the dead cpu. */
6154 static void migrate_live_tasks(int src_cpu)
6155 {
6156 struct task_struct *p, *t;
6157
6158 read_lock(&tasklist_lock);
6159
6160 do_each_thread(t, p) {
6161 if (p == current)
6162 continue;
6163
6164 if (task_cpu(p) == src_cpu)
6165 move_task_off_dead_cpu(src_cpu, p);
6166 } while_each_thread(t, p);
6167
6168 read_unlock(&tasklist_lock);
6169 }
6170
6171 /*
6172 * Schedules idle task to be the next runnable task on current CPU.
6173 * It does so by boosting its priority to highest possible.
6174 * Used by CPU offline code.
6175 */
6176 void sched_idle_next(void)
6177 {
6178 int this_cpu = smp_processor_id();
6179 struct rq *rq = cpu_rq(this_cpu);
6180 struct task_struct *p = rq->idle;
6181 unsigned long flags;
6182
6183 /* cpu has to be offline */
6184 BUG_ON(cpu_online(this_cpu));
6185
6186 /*
6187 * Strictly not necessary since rest of the CPUs are stopped by now
6188 * and interrupts disabled on the current cpu.
6189 */
6190 spin_lock_irqsave(&rq->lock, flags);
6191
6192 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6193
6194 update_rq_clock(rq);
6195 activate_task(rq, p, 0);
6196
6197 spin_unlock_irqrestore(&rq->lock, flags);
6198 }
6199
6200 /*
6201 * Ensures that the idle task is using init_mm right before its cpu goes
6202 * offline.
6203 */
6204 void idle_task_exit(void)
6205 {
6206 struct mm_struct *mm = current->active_mm;
6207
6208 BUG_ON(cpu_online(smp_processor_id()));
6209
6210 if (mm != &init_mm)
6211 switch_mm(mm, &init_mm, current);
6212 mmdrop(mm);
6213 }
6214
6215 /* called under rq->lock with disabled interrupts */
6216 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6217 {
6218 struct rq *rq = cpu_rq(dead_cpu);
6219
6220 /* Must be exiting, otherwise would be on tasklist. */
6221 BUG_ON(!p->exit_state);
6222
6223 /* Cannot have done final schedule yet: would have vanished. */
6224 BUG_ON(p->state == TASK_DEAD);
6225
6226 get_task_struct(p);
6227
6228 /*
6229 * Drop lock around migration; if someone else moves it,
6230 * that's OK. No task can be added to this CPU, so iteration is
6231 * fine.
6232 */
6233 spin_unlock_irq(&rq->lock);
6234 move_task_off_dead_cpu(dead_cpu, p);
6235 spin_lock_irq(&rq->lock);
6236
6237 put_task_struct(p);
6238 }
6239
6240 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6241 static void migrate_dead_tasks(unsigned int dead_cpu)
6242 {
6243 struct rq *rq = cpu_rq(dead_cpu);
6244 struct task_struct *next;
6245
6246 for ( ; ; ) {
6247 if (!rq->nr_running)
6248 break;
6249 update_rq_clock(rq);
6250 next = pick_next_task(rq, rq->curr);
6251 if (!next)
6252 break;
6253 migrate_dead(dead_cpu, next);
6254
6255 }
6256 }
6257 #endif /* CONFIG_HOTPLUG_CPU */
6258
6259 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6260
6261 static struct ctl_table sd_ctl_dir[] = {
6262 {
6263 .procname = "sched_domain",
6264 .mode = 0555,
6265 },
6266 {0, },
6267 };
6268
6269 static struct ctl_table sd_ctl_root[] = {
6270 {
6271 .ctl_name = CTL_KERN,
6272 .procname = "kernel",
6273 .mode = 0555,
6274 .child = sd_ctl_dir,
6275 },
6276 {0, },
6277 };
6278
6279 static struct ctl_table *sd_alloc_ctl_entry(int n)
6280 {
6281 struct ctl_table *entry =
6282 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6283
6284 return entry;
6285 }
6286
6287 static void sd_free_ctl_entry(struct ctl_table **tablep)
6288 {
6289 struct ctl_table *entry;
6290
6291 /*
6292 * In the intermediate directories, both the child directory and
6293 * procname are dynamically allocated and could fail but the mode
6294 * will always be set. In the lowest directory the names are
6295 * static strings and all have proc handlers.
6296 */
6297 for (entry = *tablep; entry->mode; entry++) {
6298 if (entry->child)
6299 sd_free_ctl_entry(&entry->child);
6300 if (entry->proc_handler == NULL)
6301 kfree(entry->procname);
6302 }
6303
6304 kfree(*tablep);
6305 *tablep = NULL;
6306 }
6307
6308 static void
6309 set_table_entry(struct ctl_table *entry,
6310 const char *procname, void *data, int maxlen,
6311 mode_t mode, proc_handler *proc_handler)
6312 {
6313 entry->procname = procname;
6314 entry->data = data;
6315 entry->maxlen = maxlen;
6316 entry->mode = mode;
6317 entry->proc_handler = proc_handler;
6318 }
6319
6320 static struct ctl_table *
6321 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6322 {
6323 struct ctl_table *table = sd_alloc_ctl_entry(12);
6324
6325 if (table == NULL)
6326 return NULL;
6327
6328 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6329 sizeof(long), 0644, proc_doulongvec_minmax);
6330 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6331 sizeof(long), 0644, proc_doulongvec_minmax);
6332 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6333 sizeof(int), 0644, proc_dointvec_minmax);
6334 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6335 sizeof(int), 0644, proc_dointvec_minmax);
6336 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6337 sizeof(int), 0644, proc_dointvec_minmax);
6338 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6339 sizeof(int), 0644, proc_dointvec_minmax);
6340 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6341 sizeof(int), 0644, proc_dointvec_minmax);
6342 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6343 sizeof(int), 0644, proc_dointvec_minmax);
6344 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6345 sizeof(int), 0644, proc_dointvec_minmax);
6346 set_table_entry(&table[9], "cache_nice_tries",
6347 &sd->cache_nice_tries,
6348 sizeof(int), 0644, proc_dointvec_minmax);
6349 set_table_entry(&table[10], "flags", &sd->flags,
6350 sizeof(int), 0644, proc_dointvec_minmax);
6351 /* &table[11] is terminator */
6352
6353 return table;
6354 }
6355
6356 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6357 {
6358 struct ctl_table *entry, *table;
6359 struct sched_domain *sd;
6360 int domain_num = 0, i;
6361 char buf[32];
6362
6363 for_each_domain(cpu, sd)
6364 domain_num++;
6365 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6366 if (table == NULL)
6367 return NULL;
6368
6369 i = 0;
6370 for_each_domain(cpu, sd) {
6371 snprintf(buf, 32, "domain%d", i);
6372 entry->procname = kstrdup(buf, GFP_KERNEL);
6373 entry->mode = 0555;
6374 entry->child = sd_alloc_ctl_domain_table(sd);
6375 entry++;
6376 i++;
6377 }
6378 return table;
6379 }
6380
6381 static struct ctl_table_header *sd_sysctl_header;
6382 static void register_sched_domain_sysctl(void)
6383 {
6384 int i, cpu_num = num_online_cpus();
6385 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6386 char buf[32];
6387
6388 WARN_ON(sd_ctl_dir[0].child);
6389 sd_ctl_dir[0].child = entry;
6390
6391 if (entry == NULL)
6392 return;
6393
6394 for_each_online_cpu(i) {
6395 snprintf(buf, 32, "cpu%d", i);
6396 entry->procname = kstrdup(buf, GFP_KERNEL);
6397 entry->mode = 0555;
6398 entry->child = sd_alloc_ctl_cpu_table(i);
6399 entry++;
6400 }
6401
6402 WARN_ON(sd_sysctl_header);
6403 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6404 }
6405
6406 /* may be called multiple times per register */
6407 static void unregister_sched_domain_sysctl(void)
6408 {
6409 if (sd_sysctl_header)
6410 unregister_sysctl_table(sd_sysctl_header);
6411 sd_sysctl_header = NULL;
6412 if (sd_ctl_dir[0].child)
6413 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6414 }
6415 #else
6416 static void register_sched_domain_sysctl(void)
6417 {
6418 }
6419 static void unregister_sched_domain_sysctl(void)
6420 {
6421 }
6422 #endif
6423
6424 /*
6425 * migration_call - callback that gets triggered when a CPU is added.
6426 * Here we can start up the necessary migration thread for the new CPU.
6427 */
6428 static int __cpuinit
6429 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6430 {
6431 struct task_struct *p;
6432 int cpu = (long)hcpu;
6433 unsigned long flags;
6434 struct rq *rq;
6435
6436 switch (action) {
6437
6438 case CPU_UP_PREPARE:
6439 case CPU_UP_PREPARE_FROZEN:
6440 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6441 if (IS_ERR(p))
6442 return NOTIFY_BAD;
6443 kthread_bind(p, cpu);
6444 /* Must be high prio: stop_machine expects to yield to it. */
6445 rq = task_rq_lock(p, &flags);
6446 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6447 task_rq_unlock(rq, &flags);
6448 cpu_rq(cpu)->migration_thread = p;
6449 break;
6450
6451 case CPU_ONLINE:
6452 case CPU_ONLINE_FROZEN:
6453 /* Strictly unnecessary, as first user will wake it. */
6454 wake_up_process(cpu_rq(cpu)->migration_thread);
6455
6456 /* Update our root-domain */
6457 rq = cpu_rq(cpu);
6458 spin_lock_irqsave(&rq->lock, flags);
6459 if (rq->rd) {
6460 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6461 cpu_set(cpu, rq->rd->online);
6462 }
6463 spin_unlock_irqrestore(&rq->lock, flags);
6464 break;
6465
6466 #ifdef CONFIG_HOTPLUG_CPU
6467 case CPU_UP_CANCELED:
6468 case CPU_UP_CANCELED_FROZEN:
6469 if (!cpu_rq(cpu)->migration_thread)
6470 break;
6471 /* Unbind it from offline cpu so it can run. Fall thru. */
6472 kthread_bind(cpu_rq(cpu)->migration_thread,
6473 any_online_cpu(cpu_online_map));
6474 kthread_stop(cpu_rq(cpu)->migration_thread);
6475 cpu_rq(cpu)->migration_thread = NULL;
6476 break;
6477
6478 case CPU_DEAD:
6479 case CPU_DEAD_FROZEN:
6480 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6481 migrate_live_tasks(cpu);
6482 rq = cpu_rq(cpu);
6483 kthread_stop(rq->migration_thread);
6484 rq->migration_thread = NULL;
6485 /* Idle task back to normal (off runqueue, low prio) */
6486 spin_lock_irq(&rq->lock);
6487 update_rq_clock(rq);
6488 deactivate_task(rq, rq->idle, 0);
6489 rq->idle->static_prio = MAX_PRIO;
6490 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6491 rq->idle->sched_class = &idle_sched_class;
6492 migrate_dead_tasks(cpu);
6493 spin_unlock_irq(&rq->lock);
6494 cpuset_unlock();
6495 migrate_nr_uninterruptible(rq);
6496 BUG_ON(rq->nr_running != 0);
6497
6498 /*
6499 * No need to migrate the tasks: it was best-effort if
6500 * they didn't take sched_hotcpu_mutex. Just wake up
6501 * the requestors.
6502 */
6503 spin_lock_irq(&rq->lock);
6504 while (!list_empty(&rq->migration_queue)) {
6505 struct migration_req *req;
6506
6507 req = list_entry(rq->migration_queue.next,
6508 struct migration_req, list);
6509 list_del_init(&req->list);
6510 complete(&req->done);
6511 }
6512 spin_unlock_irq(&rq->lock);
6513 break;
6514
6515 case CPU_DYING:
6516 case CPU_DYING_FROZEN:
6517 /* Update our root-domain */
6518 rq = cpu_rq(cpu);
6519 spin_lock_irqsave(&rq->lock, flags);
6520 if (rq->rd) {
6521 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6522 cpu_clear(cpu, rq->rd->online);
6523 }
6524 spin_unlock_irqrestore(&rq->lock, flags);
6525 break;
6526 #endif
6527 }
6528 return NOTIFY_OK;
6529 }
6530
6531 /* Register at highest priority so that task migration (migrate_all_tasks)
6532 * happens before everything else.
6533 */
6534 static struct notifier_block __cpuinitdata migration_notifier = {
6535 .notifier_call = migration_call,
6536 .priority = 10
6537 };
6538
6539 void __init migration_init(void)
6540 {
6541 void *cpu = (void *)(long)smp_processor_id();
6542 int err;
6543
6544 /* Start one for the boot CPU: */
6545 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6546 BUG_ON(err == NOTIFY_BAD);
6547 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6548 register_cpu_notifier(&migration_notifier);
6549 }
6550 #endif
6551
6552 #ifdef CONFIG_SMP
6553
6554 #ifdef CONFIG_SCHED_DEBUG
6555
6556 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6557 cpumask_t *groupmask)
6558 {
6559 struct sched_group *group = sd->groups;
6560 char str[256];
6561
6562 cpulist_scnprintf(str, sizeof(str), sd->span);
6563 cpus_clear(*groupmask);
6564
6565 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6566
6567 if (!(sd->flags & SD_LOAD_BALANCE)) {
6568 printk("does not load-balance\n");
6569 if (sd->parent)
6570 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6571 " has parent");
6572 return -1;
6573 }
6574
6575 printk(KERN_CONT "span %s\n", str);
6576
6577 if (!cpu_isset(cpu, sd->span)) {
6578 printk(KERN_ERR "ERROR: domain->span does not contain "
6579 "CPU%d\n", cpu);
6580 }
6581 if (!cpu_isset(cpu, group->cpumask)) {
6582 printk(KERN_ERR "ERROR: domain->groups does not contain"
6583 " CPU%d\n", cpu);
6584 }
6585
6586 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6587 do {
6588 if (!group) {
6589 printk("\n");
6590 printk(KERN_ERR "ERROR: group is NULL\n");
6591 break;
6592 }
6593
6594 if (!group->__cpu_power) {
6595 printk(KERN_CONT "\n");
6596 printk(KERN_ERR "ERROR: domain->cpu_power not "
6597 "set\n");
6598 break;
6599 }
6600
6601 if (!cpus_weight(group->cpumask)) {
6602 printk(KERN_CONT "\n");
6603 printk(KERN_ERR "ERROR: empty group\n");
6604 break;
6605 }
6606
6607 if (cpus_intersects(*groupmask, group->cpumask)) {
6608 printk(KERN_CONT "\n");
6609 printk(KERN_ERR "ERROR: repeated CPUs\n");
6610 break;
6611 }
6612
6613 cpus_or(*groupmask, *groupmask, group->cpumask);
6614
6615 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6616 printk(KERN_CONT " %s", str);
6617
6618 group = group->next;
6619 } while (group != sd->groups);
6620 printk(KERN_CONT "\n");
6621
6622 if (!cpus_equal(sd->span, *groupmask))
6623 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6624
6625 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6626 printk(KERN_ERR "ERROR: parent span is not a superset "
6627 "of domain->span\n");
6628 return 0;
6629 }
6630
6631 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6632 {
6633 cpumask_t *groupmask;
6634 int level = 0;
6635
6636 if (!sd) {
6637 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6638 return;
6639 }
6640
6641 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6642
6643 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6644 if (!groupmask) {
6645 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6646 return;
6647 }
6648
6649 for (;;) {
6650 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6651 break;
6652 level++;
6653 sd = sd->parent;
6654 if (!sd)
6655 break;
6656 }
6657 kfree(groupmask);
6658 }
6659 #else
6660 # define sched_domain_debug(sd, cpu) do { } while (0)
6661 #endif
6662
6663 static int sd_degenerate(struct sched_domain *sd)
6664 {
6665 if (cpus_weight(sd->span) == 1)
6666 return 1;
6667
6668 /* Following flags need at least 2 groups */
6669 if (sd->flags & (SD_LOAD_BALANCE |
6670 SD_BALANCE_NEWIDLE |
6671 SD_BALANCE_FORK |
6672 SD_BALANCE_EXEC |
6673 SD_SHARE_CPUPOWER |
6674 SD_SHARE_PKG_RESOURCES)) {
6675 if (sd->groups != sd->groups->next)
6676 return 0;
6677 }
6678
6679 /* Following flags don't use groups */
6680 if (sd->flags & (SD_WAKE_IDLE |
6681 SD_WAKE_AFFINE |
6682 SD_WAKE_BALANCE))
6683 return 0;
6684
6685 return 1;
6686 }
6687
6688 static int
6689 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6690 {
6691 unsigned long cflags = sd->flags, pflags = parent->flags;
6692
6693 if (sd_degenerate(parent))
6694 return 1;
6695
6696 if (!cpus_equal(sd->span, parent->span))
6697 return 0;
6698
6699 /* Does parent contain flags not in child? */
6700 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6701 if (cflags & SD_WAKE_AFFINE)
6702 pflags &= ~SD_WAKE_BALANCE;
6703 /* Flags needing groups don't count if only 1 group in parent */
6704 if (parent->groups == parent->groups->next) {
6705 pflags &= ~(SD_LOAD_BALANCE |
6706 SD_BALANCE_NEWIDLE |
6707 SD_BALANCE_FORK |
6708 SD_BALANCE_EXEC |
6709 SD_SHARE_CPUPOWER |
6710 SD_SHARE_PKG_RESOURCES);
6711 }
6712 if (~cflags & pflags)
6713 return 0;
6714
6715 return 1;
6716 }
6717
6718 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6719 {
6720 unsigned long flags;
6721 const struct sched_class *class;
6722
6723 spin_lock_irqsave(&rq->lock, flags);
6724
6725 if (rq->rd) {
6726 struct root_domain *old_rd = rq->rd;
6727
6728 for (class = sched_class_highest; class; class = class->next) {
6729 if (class->leave_domain)
6730 class->leave_domain(rq);
6731 }
6732
6733 cpu_clear(rq->cpu, old_rd->span);
6734 cpu_clear(rq->cpu, old_rd->online);
6735
6736 if (atomic_dec_and_test(&old_rd->refcount))
6737 kfree(old_rd);
6738 }
6739
6740 atomic_inc(&rd->refcount);
6741 rq->rd = rd;
6742
6743 cpu_set(rq->cpu, rd->span);
6744 if (cpu_isset(rq->cpu, cpu_online_map))
6745 cpu_set(rq->cpu, rd->online);
6746
6747 for (class = sched_class_highest; class; class = class->next) {
6748 if (class->join_domain)
6749 class->join_domain(rq);
6750 }
6751
6752 spin_unlock_irqrestore(&rq->lock, flags);
6753 }
6754
6755 static void init_rootdomain(struct root_domain *rd)
6756 {
6757 memset(rd, 0, sizeof(*rd));
6758
6759 cpus_clear(rd->span);
6760 cpus_clear(rd->online);
6761 }
6762
6763 static void init_defrootdomain(void)
6764 {
6765 init_rootdomain(&def_root_domain);
6766 atomic_set(&def_root_domain.refcount, 1);
6767 }
6768
6769 static struct root_domain *alloc_rootdomain(void)
6770 {
6771 struct root_domain *rd;
6772
6773 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6774 if (!rd)
6775 return NULL;
6776
6777 init_rootdomain(rd);
6778
6779 return rd;
6780 }
6781
6782 /*
6783 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6784 * hold the hotplug lock.
6785 */
6786 static void
6787 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6788 {
6789 struct rq *rq = cpu_rq(cpu);
6790 struct sched_domain *tmp;
6791
6792 /* Remove the sched domains which do not contribute to scheduling. */
6793 for (tmp = sd; tmp; tmp = tmp->parent) {
6794 struct sched_domain *parent = tmp->parent;
6795 if (!parent)
6796 break;
6797 if (sd_parent_degenerate(tmp, parent)) {
6798 tmp->parent = parent->parent;
6799 if (parent->parent)
6800 parent->parent->child = tmp;
6801 }
6802 }
6803
6804 if (sd && sd_degenerate(sd)) {
6805 sd = sd->parent;
6806 if (sd)
6807 sd->child = NULL;
6808 }
6809
6810 sched_domain_debug(sd, cpu);
6811
6812 rq_attach_root(rq, rd);
6813 rcu_assign_pointer(rq->sd, sd);
6814 }
6815
6816 /* cpus with isolated domains */
6817 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6818
6819 /* Setup the mask of cpus configured for isolated domains */
6820 static int __init isolated_cpu_setup(char *str)
6821 {
6822 int ints[NR_CPUS], i;
6823
6824 str = get_options(str, ARRAY_SIZE(ints), ints);
6825 cpus_clear(cpu_isolated_map);
6826 for (i = 1; i <= ints[0]; i++)
6827 if (ints[i] < NR_CPUS)
6828 cpu_set(ints[i], cpu_isolated_map);
6829 return 1;
6830 }
6831
6832 __setup("isolcpus=", isolated_cpu_setup);
6833
6834 /*
6835 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6836 * to a function which identifies what group(along with sched group) a CPU
6837 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6838 * (due to the fact that we keep track of groups covered with a cpumask_t).
6839 *
6840 * init_sched_build_groups will build a circular linked list of the groups
6841 * covered by the given span, and will set each group's ->cpumask correctly,
6842 * and ->cpu_power to 0.
6843 */
6844 static void
6845 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6846 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6847 struct sched_group **sg,
6848 cpumask_t *tmpmask),
6849 cpumask_t *covered, cpumask_t *tmpmask)
6850 {
6851 struct sched_group *first = NULL, *last = NULL;
6852 int i;
6853
6854 cpus_clear(*covered);
6855
6856 for_each_cpu_mask(i, *span) {
6857 struct sched_group *sg;
6858 int group = group_fn(i, cpu_map, &sg, tmpmask);
6859 int j;
6860
6861 if (cpu_isset(i, *covered))
6862 continue;
6863
6864 cpus_clear(sg->cpumask);
6865 sg->__cpu_power = 0;
6866
6867 for_each_cpu_mask(j, *span) {
6868 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6869 continue;
6870
6871 cpu_set(j, *covered);
6872 cpu_set(j, sg->cpumask);
6873 }
6874 if (!first)
6875 first = sg;
6876 if (last)
6877 last->next = sg;
6878 last = sg;
6879 }
6880 last->next = first;
6881 }
6882
6883 #define SD_NODES_PER_DOMAIN 16
6884
6885 #ifdef CONFIG_NUMA
6886
6887 /**
6888 * find_next_best_node - find the next node to include in a sched_domain
6889 * @node: node whose sched_domain we're building
6890 * @used_nodes: nodes already in the sched_domain
6891 *
6892 * Find the next node to include in a given scheduling domain. Simply
6893 * finds the closest node not already in the @used_nodes map.
6894 *
6895 * Should use nodemask_t.
6896 */
6897 static int find_next_best_node(int node, nodemask_t *used_nodes)
6898 {
6899 int i, n, val, min_val, best_node = 0;
6900
6901 min_val = INT_MAX;
6902
6903 for (i = 0; i < MAX_NUMNODES; i++) {
6904 /* Start at @node */
6905 n = (node + i) % MAX_NUMNODES;
6906
6907 if (!nr_cpus_node(n))
6908 continue;
6909
6910 /* Skip already used nodes */
6911 if (node_isset(n, *used_nodes))
6912 continue;
6913
6914 /* Simple min distance search */
6915 val = node_distance(node, n);
6916
6917 if (val < min_val) {
6918 min_val = val;
6919 best_node = n;
6920 }
6921 }
6922
6923 node_set(best_node, *used_nodes);
6924 return best_node;
6925 }
6926
6927 /**
6928 * sched_domain_node_span - get a cpumask for a node's sched_domain
6929 * @node: node whose cpumask we're constructing
6930 * @span: resulting cpumask
6931 *
6932 * Given a node, construct a good cpumask for its sched_domain to span. It
6933 * should be one that prevents unnecessary balancing, but also spreads tasks
6934 * out optimally.
6935 */
6936 static void sched_domain_node_span(int node, cpumask_t *span)
6937 {
6938 nodemask_t used_nodes;
6939 node_to_cpumask_ptr(nodemask, node);
6940 int i;
6941
6942 cpus_clear(*span);
6943 nodes_clear(used_nodes);
6944
6945 cpus_or(*span, *span, *nodemask);
6946 node_set(node, used_nodes);
6947
6948 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6949 int next_node = find_next_best_node(node, &used_nodes);
6950
6951 node_to_cpumask_ptr_next(nodemask, next_node);
6952 cpus_or(*span, *span, *nodemask);
6953 }
6954 }
6955 #endif
6956
6957 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6958
6959 /*
6960 * SMT sched-domains:
6961 */
6962 #ifdef CONFIG_SCHED_SMT
6963 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6964 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6965
6966 static int
6967 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6968 cpumask_t *unused)
6969 {
6970 if (sg)
6971 *sg = &per_cpu(sched_group_cpus, cpu);
6972 return cpu;
6973 }
6974 #endif
6975
6976 /*
6977 * multi-core sched-domains:
6978 */
6979 #ifdef CONFIG_SCHED_MC
6980 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6981 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6982 #endif
6983
6984 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6985 static int
6986 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6987 cpumask_t *mask)
6988 {
6989 int group;
6990
6991 *mask = per_cpu(cpu_sibling_map, cpu);
6992 cpus_and(*mask, *mask, *cpu_map);
6993 group = first_cpu(*mask);
6994 if (sg)
6995 *sg = &per_cpu(sched_group_core, group);
6996 return group;
6997 }
6998 #elif defined(CONFIG_SCHED_MC)
6999 static int
7000 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7001 cpumask_t *unused)
7002 {
7003 if (sg)
7004 *sg = &per_cpu(sched_group_core, cpu);
7005 return cpu;
7006 }
7007 #endif
7008
7009 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7010 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7011
7012 static int
7013 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7014 cpumask_t *mask)
7015 {
7016 int group;
7017 #ifdef CONFIG_SCHED_MC
7018 *mask = cpu_coregroup_map(cpu);
7019 cpus_and(*mask, *mask, *cpu_map);
7020 group = first_cpu(*mask);
7021 #elif defined(CONFIG_SCHED_SMT)
7022 *mask = per_cpu(cpu_sibling_map, cpu);
7023 cpus_and(*mask, *mask, *cpu_map);
7024 group = first_cpu(*mask);
7025 #else
7026 group = cpu;
7027 #endif
7028 if (sg)
7029 *sg = &per_cpu(sched_group_phys, group);
7030 return group;
7031 }
7032
7033 #ifdef CONFIG_NUMA
7034 /*
7035 * The init_sched_build_groups can't handle what we want to do with node
7036 * groups, so roll our own. Now each node has its own list of groups which
7037 * gets dynamically allocated.
7038 */
7039 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7040 static struct sched_group ***sched_group_nodes_bycpu;
7041
7042 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7043 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7044
7045 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7046 struct sched_group **sg, cpumask_t *nodemask)
7047 {
7048 int group;
7049
7050 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7051 cpus_and(*nodemask, *nodemask, *cpu_map);
7052 group = first_cpu(*nodemask);
7053
7054 if (sg)
7055 *sg = &per_cpu(sched_group_allnodes, group);
7056 return group;
7057 }
7058
7059 static void init_numa_sched_groups_power(struct sched_group *group_head)
7060 {
7061 struct sched_group *sg = group_head;
7062 int j;
7063
7064 if (!sg)
7065 return;
7066 do {
7067 for_each_cpu_mask(j, sg->cpumask) {
7068 struct sched_domain *sd;
7069
7070 sd = &per_cpu(phys_domains, j);
7071 if (j != first_cpu(sd->groups->cpumask)) {
7072 /*
7073 * Only add "power" once for each
7074 * physical package.
7075 */
7076 continue;
7077 }
7078
7079 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7080 }
7081 sg = sg->next;
7082 } while (sg != group_head);
7083 }
7084 #endif
7085
7086 #ifdef CONFIG_NUMA
7087 /* Free memory allocated for various sched_group structures */
7088 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7089 {
7090 int cpu, i;
7091
7092 for_each_cpu_mask(cpu, *cpu_map) {
7093 struct sched_group **sched_group_nodes
7094 = sched_group_nodes_bycpu[cpu];
7095
7096 if (!sched_group_nodes)
7097 continue;
7098
7099 for (i = 0; i < MAX_NUMNODES; i++) {
7100 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7101
7102 *nodemask = node_to_cpumask(i);
7103 cpus_and(*nodemask, *nodemask, *cpu_map);
7104 if (cpus_empty(*nodemask))
7105 continue;
7106
7107 if (sg == NULL)
7108 continue;
7109 sg = sg->next;
7110 next_sg:
7111 oldsg = sg;
7112 sg = sg->next;
7113 kfree(oldsg);
7114 if (oldsg != sched_group_nodes[i])
7115 goto next_sg;
7116 }
7117 kfree(sched_group_nodes);
7118 sched_group_nodes_bycpu[cpu] = NULL;
7119 }
7120 }
7121 #else
7122 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7123 {
7124 }
7125 #endif
7126
7127 /*
7128 * Initialize sched groups cpu_power.
7129 *
7130 * cpu_power indicates the capacity of sched group, which is used while
7131 * distributing the load between different sched groups in a sched domain.
7132 * Typically cpu_power for all the groups in a sched domain will be same unless
7133 * there are asymmetries in the topology. If there are asymmetries, group
7134 * having more cpu_power will pickup more load compared to the group having
7135 * less cpu_power.
7136 *
7137 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7138 * the maximum number of tasks a group can handle in the presence of other idle
7139 * or lightly loaded groups in the same sched domain.
7140 */
7141 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7142 {
7143 struct sched_domain *child;
7144 struct sched_group *group;
7145
7146 WARN_ON(!sd || !sd->groups);
7147
7148 if (cpu != first_cpu(sd->groups->cpumask))
7149 return;
7150
7151 child = sd->child;
7152
7153 sd->groups->__cpu_power = 0;
7154
7155 /*
7156 * For perf policy, if the groups in child domain share resources
7157 * (for example cores sharing some portions of the cache hierarchy
7158 * or SMT), then set this domain groups cpu_power such that each group
7159 * can handle only one task, when there are other idle groups in the
7160 * same sched domain.
7161 */
7162 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7163 (child->flags &
7164 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7165 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7166 return;
7167 }
7168
7169 /*
7170 * add cpu_power of each child group to this groups cpu_power
7171 */
7172 group = child->groups;
7173 do {
7174 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7175 group = group->next;
7176 } while (group != child->groups);
7177 }
7178
7179 /*
7180 * Initializers for schedule domains
7181 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7182 */
7183
7184 #define SD_INIT(sd, type) sd_init_##type(sd)
7185 #define SD_INIT_FUNC(type) \
7186 static noinline void sd_init_##type(struct sched_domain *sd) \
7187 { \
7188 memset(sd, 0, sizeof(*sd)); \
7189 *sd = SD_##type##_INIT; \
7190 sd->level = SD_LV_##type; \
7191 }
7192
7193 SD_INIT_FUNC(CPU)
7194 #ifdef CONFIG_NUMA
7195 SD_INIT_FUNC(ALLNODES)
7196 SD_INIT_FUNC(NODE)
7197 #endif
7198 #ifdef CONFIG_SCHED_SMT
7199 SD_INIT_FUNC(SIBLING)
7200 #endif
7201 #ifdef CONFIG_SCHED_MC
7202 SD_INIT_FUNC(MC)
7203 #endif
7204
7205 /*
7206 * To minimize stack usage kmalloc room for cpumasks and share the
7207 * space as the usage in build_sched_domains() dictates. Used only
7208 * if the amount of space is significant.
7209 */
7210 struct allmasks {
7211 cpumask_t tmpmask; /* make this one first */
7212 union {
7213 cpumask_t nodemask;
7214 cpumask_t this_sibling_map;
7215 cpumask_t this_core_map;
7216 };
7217 cpumask_t send_covered;
7218
7219 #ifdef CONFIG_NUMA
7220 cpumask_t domainspan;
7221 cpumask_t covered;
7222 cpumask_t notcovered;
7223 #endif
7224 };
7225
7226 #if NR_CPUS > 128
7227 #define SCHED_CPUMASK_ALLOC 1
7228 #define SCHED_CPUMASK_FREE(v) kfree(v)
7229 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7230 #else
7231 #define SCHED_CPUMASK_ALLOC 0
7232 #define SCHED_CPUMASK_FREE(v)
7233 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7234 #endif
7235
7236 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7237 ((unsigned long)(a) + offsetof(struct allmasks, v))
7238
7239 static int default_relax_domain_level = -1;
7240
7241 static int __init setup_relax_domain_level(char *str)
7242 {
7243 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7244 return 1;
7245 }
7246 __setup("relax_domain_level=", setup_relax_domain_level);
7247
7248 static void set_domain_attribute(struct sched_domain *sd,
7249 struct sched_domain_attr *attr)
7250 {
7251 int request;
7252
7253 if (!attr || attr->relax_domain_level < 0) {
7254 if (default_relax_domain_level < 0)
7255 return;
7256 else
7257 request = default_relax_domain_level;
7258 } else
7259 request = attr->relax_domain_level;
7260 if (request < sd->level) {
7261 /* turn off idle balance on this domain */
7262 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7263 } else {
7264 /* turn on idle balance on this domain */
7265 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7266 }
7267 }
7268
7269 /*
7270 * Build sched domains for a given set of cpus and attach the sched domains
7271 * to the individual cpus
7272 */
7273 static int __build_sched_domains(const cpumask_t *cpu_map,
7274 struct sched_domain_attr *attr)
7275 {
7276 int i;
7277 struct root_domain *rd;
7278 SCHED_CPUMASK_DECLARE(allmasks);
7279 cpumask_t *tmpmask;
7280 #ifdef CONFIG_NUMA
7281 struct sched_group **sched_group_nodes = NULL;
7282 int sd_allnodes = 0;
7283
7284 /*
7285 * Allocate the per-node list of sched groups
7286 */
7287 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7288 GFP_KERNEL);
7289 if (!sched_group_nodes) {
7290 printk(KERN_WARNING "Can not alloc sched group node list\n");
7291 return -ENOMEM;
7292 }
7293 #endif
7294
7295 rd = alloc_rootdomain();
7296 if (!rd) {
7297 printk(KERN_WARNING "Cannot alloc root domain\n");
7298 #ifdef CONFIG_NUMA
7299 kfree(sched_group_nodes);
7300 #endif
7301 return -ENOMEM;
7302 }
7303
7304 #if SCHED_CPUMASK_ALLOC
7305 /* get space for all scratch cpumask variables */
7306 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7307 if (!allmasks) {
7308 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7309 kfree(rd);
7310 #ifdef CONFIG_NUMA
7311 kfree(sched_group_nodes);
7312 #endif
7313 return -ENOMEM;
7314 }
7315 #endif
7316 tmpmask = (cpumask_t *)allmasks;
7317
7318
7319 #ifdef CONFIG_NUMA
7320 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7321 #endif
7322
7323 /*
7324 * Set up domains for cpus specified by the cpu_map.
7325 */
7326 for_each_cpu_mask(i, *cpu_map) {
7327 struct sched_domain *sd = NULL, *p;
7328 SCHED_CPUMASK_VAR(nodemask, allmasks);
7329
7330 *nodemask = node_to_cpumask(cpu_to_node(i));
7331 cpus_and(*nodemask, *nodemask, *cpu_map);
7332
7333 #ifdef CONFIG_NUMA
7334 if (cpus_weight(*cpu_map) >
7335 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7336 sd = &per_cpu(allnodes_domains, i);
7337 SD_INIT(sd, ALLNODES);
7338 set_domain_attribute(sd, attr);
7339 sd->span = *cpu_map;
7340 sd->first_cpu = first_cpu(sd->span);
7341 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7342 p = sd;
7343 sd_allnodes = 1;
7344 } else
7345 p = NULL;
7346
7347 sd = &per_cpu(node_domains, i);
7348 SD_INIT(sd, NODE);
7349 set_domain_attribute(sd, attr);
7350 sched_domain_node_span(cpu_to_node(i), &sd->span);
7351 sd->first_cpu = first_cpu(sd->span);
7352 sd->parent = p;
7353 if (p)
7354 p->child = sd;
7355 cpus_and(sd->span, sd->span, *cpu_map);
7356 #endif
7357
7358 p = sd;
7359 sd = &per_cpu(phys_domains, i);
7360 SD_INIT(sd, CPU);
7361 set_domain_attribute(sd, attr);
7362 sd->span = *nodemask;
7363 sd->first_cpu = first_cpu(sd->span);
7364 sd->parent = p;
7365 if (p)
7366 p->child = sd;
7367 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7368
7369 #ifdef CONFIG_SCHED_MC
7370 p = sd;
7371 sd = &per_cpu(core_domains, i);
7372 SD_INIT(sd, MC);
7373 set_domain_attribute(sd, attr);
7374 sd->span = cpu_coregroup_map(i);
7375 sd->first_cpu = first_cpu(sd->span);
7376 cpus_and(sd->span, sd->span, *cpu_map);
7377 sd->parent = p;
7378 p->child = sd;
7379 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7380 #endif
7381
7382 #ifdef CONFIG_SCHED_SMT
7383 p = sd;
7384 sd = &per_cpu(cpu_domains, i);
7385 SD_INIT(sd, SIBLING);
7386 set_domain_attribute(sd, attr);
7387 sd->span = per_cpu(cpu_sibling_map, i);
7388 sd->first_cpu = first_cpu(sd->span);
7389 cpus_and(sd->span, sd->span, *cpu_map);
7390 sd->parent = p;
7391 p->child = sd;
7392 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7393 #endif
7394 }
7395
7396 #ifdef CONFIG_SCHED_SMT
7397 /* Set up CPU (sibling) groups */
7398 for_each_cpu_mask(i, *cpu_map) {
7399 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7400 SCHED_CPUMASK_VAR(send_covered, allmasks);
7401
7402 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7403 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7404 if (i != first_cpu(*this_sibling_map))
7405 continue;
7406
7407 init_sched_build_groups(this_sibling_map, cpu_map,
7408 &cpu_to_cpu_group,
7409 send_covered, tmpmask);
7410 }
7411 #endif
7412
7413 #ifdef CONFIG_SCHED_MC
7414 /* Set up multi-core groups */
7415 for_each_cpu_mask(i, *cpu_map) {
7416 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7417 SCHED_CPUMASK_VAR(send_covered, allmasks);
7418
7419 *this_core_map = cpu_coregroup_map(i);
7420 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7421 if (i != first_cpu(*this_core_map))
7422 continue;
7423
7424 init_sched_build_groups(this_core_map, cpu_map,
7425 &cpu_to_core_group,
7426 send_covered, tmpmask);
7427 }
7428 #endif
7429
7430 /* Set up physical groups */
7431 for (i = 0; i < MAX_NUMNODES; i++) {
7432 SCHED_CPUMASK_VAR(nodemask, allmasks);
7433 SCHED_CPUMASK_VAR(send_covered, allmasks);
7434
7435 *nodemask = node_to_cpumask(i);
7436 cpus_and(*nodemask, *nodemask, *cpu_map);
7437 if (cpus_empty(*nodemask))
7438 continue;
7439
7440 init_sched_build_groups(nodemask, cpu_map,
7441 &cpu_to_phys_group,
7442 send_covered, tmpmask);
7443 }
7444
7445 #ifdef CONFIG_NUMA
7446 /* Set up node groups */
7447 if (sd_allnodes) {
7448 SCHED_CPUMASK_VAR(send_covered, allmasks);
7449
7450 init_sched_build_groups(cpu_map, cpu_map,
7451 &cpu_to_allnodes_group,
7452 send_covered, tmpmask);
7453 }
7454
7455 for (i = 0; i < MAX_NUMNODES; i++) {
7456 /* Set up node groups */
7457 struct sched_group *sg, *prev;
7458 SCHED_CPUMASK_VAR(nodemask, allmasks);
7459 SCHED_CPUMASK_VAR(domainspan, allmasks);
7460 SCHED_CPUMASK_VAR(covered, allmasks);
7461 int j;
7462
7463 *nodemask = node_to_cpumask(i);
7464 cpus_clear(*covered);
7465
7466 cpus_and(*nodemask, *nodemask, *cpu_map);
7467 if (cpus_empty(*nodemask)) {
7468 sched_group_nodes[i] = NULL;
7469 continue;
7470 }
7471
7472 sched_domain_node_span(i, domainspan);
7473 cpus_and(*domainspan, *domainspan, *cpu_map);
7474
7475 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7476 if (!sg) {
7477 printk(KERN_WARNING "Can not alloc domain group for "
7478 "node %d\n", i);
7479 goto error;
7480 }
7481 sched_group_nodes[i] = sg;
7482 for_each_cpu_mask(j, *nodemask) {
7483 struct sched_domain *sd;
7484
7485 sd = &per_cpu(node_domains, j);
7486 sd->groups = sg;
7487 }
7488 sg->__cpu_power = 0;
7489 sg->cpumask = *nodemask;
7490 sg->next = sg;
7491 cpus_or(*covered, *covered, *nodemask);
7492 prev = sg;
7493
7494 for (j = 0; j < MAX_NUMNODES; j++) {
7495 SCHED_CPUMASK_VAR(notcovered, allmasks);
7496 int n = (i + j) % MAX_NUMNODES;
7497 node_to_cpumask_ptr(pnodemask, n);
7498
7499 cpus_complement(*notcovered, *covered);
7500 cpus_and(*tmpmask, *notcovered, *cpu_map);
7501 cpus_and(*tmpmask, *tmpmask, *domainspan);
7502 if (cpus_empty(*tmpmask))
7503 break;
7504
7505 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7506 if (cpus_empty(*tmpmask))
7507 continue;
7508
7509 sg = kmalloc_node(sizeof(struct sched_group),
7510 GFP_KERNEL, i);
7511 if (!sg) {
7512 printk(KERN_WARNING
7513 "Can not alloc domain group for node %d\n", j);
7514 goto error;
7515 }
7516 sg->__cpu_power = 0;
7517 sg->cpumask = *tmpmask;
7518 sg->next = prev->next;
7519 cpus_or(*covered, *covered, *tmpmask);
7520 prev->next = sg;
7521 prev = sg;
7522 }
7523 }
7524 #endif
7525
7526 /* Calculate CPU power for physical packages and nodes */
7527 #ifdef CONFIG_SCHED_SMT
7528 for_each_cpu_mask(i, *cpu_map) {
7529 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7530
7531 init_sched_groups_power(i, sd);
7532 }
7533 #endif
7534 #ifdef CONFIG_SCHED_MC
7535 for_each_cpu_mask(i, *cpu_map) {
7536 struct sched_domain *sd = &per_cpu(core_domains, i);
7537
7538 init_sched_groups_power(i, sd);
7539 }
7540 #endif
7541
7542 for_each_cpu_mask(i, *cpu_map) {
7543 struct sched_domain *sd = &per_cpu(phys_domains, i);
7544
7545 init_sched_groups_power(i, sd);
7546 }
7547
7548 #ifdef CONFIG_NUMA
7549 for (i = 0; i < MAX_NUMNODES; i++)
7550 init_numa_sched_groups_power(sched_group_nodes[i]);
7551
7552 if (sd_allnodes) {
7553 struct sched_group *sg;
7554
7555 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7556 tmpmask);
7557 init_numa_sched_groups_power(sg);
7558 }
7559 #endif
7560
7561 /* Attach the domains */
7562 for_each_cpu_mask(i, *cpu_map) {
7563 struct sched_domain *sd;
7564 #ifdef CONFIG_SCHED_SMT
7565 sd = &per_cpu(cpu_domains, i);
7566 #elif defined(CONFIG_SCHED_MC)
7567 sd = &per_cpu(core_domains, i);
7568 #else
7569 sd = &per_cpu(phys_domains, i);
7570 #endif
7571 cpu_attach_domain(sd, rd, i);
7572 }
7573
7574 SCHED_CPUMASK_FREE((void *)allmasks);
7575 return 0;
7576
7577 #ifdef CONFIG_NUMA
7578 error:
7579 free_sched_groups(cpu_map, tmpmask);
7580 SCHED_CPUMASK_FREE((void *)allmasks);
7581 return -ENOMEM;
7582 #endif
7583 }
7584
7585 static int build_sched_domains(const cpumask_t *cpu_map)
7586 {
7587 return __build_sched_domains(cpu_map, NULL);
7588 }
7589
7590 static cpumask_t *doms_cur; /* current sched domains */
7591 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7592 static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7593 in 'doms_cur' */
7594
7595 /*
7596 * Special case: If a kmalloc of a doms_cur partition (array of
7597 * cpumask_t) fails, then fallback to a single sched domain,
7598 * as determined by the single cpumask_t fallback_doms.
7599 */
7600 static cpumask_t fallback_doms;
7601
7602 void __attribute__((weak)) arch_update_cpu_topology(void)
7603 {
7604 }
7605
7606 /*
7607 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7608 * For now this just excludes isolated cpus, but could be used to
7609 * exclude other special cases in the future.
7610 */
7611 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7612 {
7613 int err;
7614
7615 arch_update_cpu_topology();
7616 ndoms_cur = 1;
7617 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7618 if (!doms_cur)
7619 doms_cur = &fallback_doms;
7620 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7621 dattr_cur = NULL;
7622 err = build_sched_domains(doms_cur);
7623 register_sched_domain_sysctl();
7624
7625 return err;
7626 }
7627
7628 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7629 cpumask_t *tmpmask)
7630 {
7631 free_sched_groups(cpu_map, tmpmask);
7632 }
7633
7634 /*
7635 * Detach sched domains from a group of cpus specified in cpu_map
7636 * These cpus will now be attached to the NULL domain
7637 */
7638 static void detach_destroy_domains(const cpumask_t *cpu_map)
7639 {
7640 cpumask_t tmpmask;
7641 int i;
7642
7643 unregister_sched_domain_sysctl();
7644
7645 for_each_cpu_mask(i, *cpu_map)
7646 cpu_attach_domain(NULL, &def_root_domain, i);
7647 synchronize_sched();
7648 arch_destroy_sched_domains(cpu_map, &tmpmask);
7649 }
7650
7651 /* handle null as "default" */
7652 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7653 struct sched_domain_attr *new, int idx_new)
7654 {
7655 struct sched_domain_attr tmp;
7656
7657 /* fast path */
7658 if (!new && !cur)
7659 return 1;
7660
7661 tmp = SD_ATTR_INIT;
7662 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7663 new ? (new + idx_new) : &tmp,
7664 sizeof(struct sched_domain_attr));
7665 }
7666
7667 /*
7668 * Partition sched domains as specified by the 'ndoms_new'
7669 * cpumasks in the array doms_new[] of cpumasks. This compares
7670 * doms_new[] to the current sched domain partitioning, doms_cur[].
7671 * It destroys each deleted domain and builds each new domain.
7672 *
7673 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7674 * The masks don't intersect (don't overlap.) We should setup one
7675 * sched domain for each mask. CPUs not in any of the cpumasks will
7676 * not be load balanced. If the same cpumask appears both in the
7677 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7678 * it as it is.
7679 *
7680 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7681 * ownership of it and will kfree it when done with it. If the caller
7682 * failed the kmalloc call, then it can pass in doms_new == NULL,
7683 * and partition_sched_domains() will fallback to the single partition
7684 * 'fallback_doms'.
7685 *
7686 * Call with hotplug lock held
7687 */
7688 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7689 struct sched_domain_attr *dattr_new)
7690 {
7691 int i, j;
7692
7693 mutex_lock(&sched_domains_mutex);
7694
7695 /* always unregister in case we don't destroy any domains */
7696 unregister_sched_domain_sysctl();
7697
7698 if (doms_new == NULL) {
7699 ndoms_new = 1;
7700 doms_new = &fallback_doms;
7701 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7702 dattr_new = NULL;
7703 }
7704
7705 /* Destroy deleted domains */
7706 for (i = 0; i < ndoms_cur; i++) {
7707 for (j = 0; j < ndoms_new; j++) {
7708 if (cpus_equal(doms_cur[i], doms_new[j])
7709 && dattrs_equal(dattr_cur, i, dattr_new, j))
7710 goto match1;
7711 }
7712 /* no match - a current sched domain not in new doms_new[] */
7713 detach_destroy_domains(doms_cur + i);
7714 match1:
7715 ;
7716 }
7717
7718 /* Build new domains */
7719 for (i = 0; i < ndoms_new; i++) {
7720 for (j = 0; j < ndoms_cur; j++) {
7721 if (cpus_equal(doms_new[i], doms_cur[j])
7722 && dattrs_equal(dattr_new, i, dattr_cur, j))
7723 goto match2;
7724 }
7725 /* no match - add a new doms_new */
7726 __build_sched_domains(doms_new + i,
7727 dattr_new ? dattr_new + i : NULL);
7728 match2:
7729 ;
7730 }
7731
7732 /* Remember the new sched domains */
7733 if (doms_cur != &fallback_doms)
7734 kfree(doms_cur);
7735 kfree(dattr_cur); /* kfree(NULL) is safe */
7736 doms_cur = doms_new;
7737 dattr_cur = dattr_new;
7738 ndoms_cur = ndoms_new;
7739
7740 register_sched_domain_sysctl();
7741
7742 mutex_unlock(&sched_domains_mutex);
7743 }
7744
7745 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7746 int arch_reinit_sched_domains(void)
7747 {
7748 int err;
7749
7750 get_online_cpus();
7751 mutex_lock(&sched_domains_mutex);
7752 detach_destroy_domains(&cpu_online_map);
7753 err = arch_init_sched_domains(&cpu_online_map);
7754 mutex_unlock(&sched_domains_mutex);
7755 put_online_cpus();
7756
7757 return err;
7758 }
7759
7760 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7761 {
7762 int ret;
7763
7764 if (buf[0] != '0' && buf[0] != '1')
7765 return -EINVAL;
7766
7767 if (smt)
7768 sched_smt_power_savings = (buf[0] == '1');
7769 else
7770 sched_mc_power_savings = (buf[0] == '1');
7771
7772 ret = arch_reinit_sched_domains();
7773
7774 return ret ? ret : count;
7775 }
7776
7777 #ifdef CONFIG_SCHED_MC
7778 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7779 {
7780 return sprintf(page, "%u\n", sched_mc_power_savings);
7781 }
7782 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7783 const char *buf, size_t count)
7784 {
7785 return sched_power_savings_store(buf, count, 0);
7786 }
7787 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7788 sched_mc_power_savings_store);
7789 #endif
7790
7791 #ifdef CONFIG_SCHED_SMT
7792 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7793 {
7794 return sprintf(page, "%u\n", sched_smt_power_savings);
7795 }
7796 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7797 const char *buf, size_t count)
7798 {
7799 return sched_power_savings_store(buf, count, 1);
7800 }
7801 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7802 sched_smt_power_savings_store);
7803 #endif
7804
7805 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7806 {
7807 int err = 0;
7808
7809 #ifdef CONFIG_SCHED_SMT
7810 if (smt_capable())
7811 err = sysfs_create_file(&cls->kset.kobj,
7812 &attr_sched_smt_power_savings.attr);
7813 #endif
7814 #ifdef CONFIG_SCHED_MC
7815 if (!err && mc_capable())
7816 err = sysfs_create_file(&cls->kset.kobj,
7817 &attr_sched_mc_power_savings.attr);
7818 #endif
7819 return err;
7820 }
7821 #endif
7822
7823 /*
7824 * Force a reinitialization of the sched domains hierarchy. The domains
7825 * and groups cannot be updated in place without racing with the balancing
7826 * code, so we temporarily attach all running cpus to the NULL domain
7827 * which will prevent rebalancing while the sched domains are recalculated.
7828 */
7829 static int update_sched_domains(struct notifier_block *nfb,
7830 unsigned long action, void *hcpu)
7831 {
7832 switch (action) {
7833 case CPU_UP_PREPARE:
7834 case CPU_UP_PREPARE_FROZEN:
7835 case CPU_DOWN_PREPARE:
7836 case CPU_DOWN_PREPARE_FROZEN:
7837 detach_destroy_domains(&cpu_online_map);
7838 return NOTIFY_OK;
7839
7840 case CPU_UP_CANCELED:
7841 case CPU_UP_CANCELED_FROZEN:
7842 case CPU_DOWN_FAILED:
7843 case CPU_DOWN_FAILED_FROZEN:
7844 case CPU_ONLINE:
7845 case CPU_ONLINE_FROZEN:
7846 case CPU_DEAD:
7847 case CPU_DEAD_FROZEN:
7848 /*
7849 * Fall through and re-initialise the domains.
7850 */
7851 break;
7852 default:
7853 return NOTIFY_DONE;
7854 }
7855
7856 /* The hotplug lock is already held by cpu_up/cpu_down */
7857 arch_init_sched_domains(&cpu_online_map);
7858
7859 return NOTIFY_OK;
7860 }
7861
7862 void __init sched_init_smp(void)
7863 {
7864 cpumask_t non_isolated_cpus;
7865
7866 #if defined(CONFIG_NUMA)
7867 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7868 GFP_KERNEL);
7869 BUG_ON(sched_group_nodes_bycpu == NULL);
7870 #endif
7871 get_online_cpus();
7872 mutex_lock(&sched_domains_mutex);
7873 arch_init_sched_domains(&cpu_online_map);
7874 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7875 if (cpus_empty(non_isolated_cpus))
7876 cpu_set(smp_processor_id(), non_isolated_cpus);
7877 mutex_unlock(&sched_domains_mutex);
7878 put_online_cpus();
7879 /* XXX: Theoretical race here - CPU may be hotplugged now */
7880 hotcpu_notifier(update_sched_domains, 0);
7881 init_hrtick();
7882
7883 /* Move init over to a non-isolated CPU */
7884 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7885 BUG();
7886 sched_init_granularity();
7887 }
7888 #else
7889 void __init sched_init_smp(void)
7890 {
7891 sched_init_granularity();
7892 }
7893 #endif /* CONFIG_SMP */
7894
7895 int in_sched_functions(unsigned long addr)
7896 {
7897 return in_lock_functions(addr) ||
7898 (addr >= (unsigned long)__sched_text_start
7899 && addr < (unsigned long)__sched_text_end);
7900 }
7901
7902 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7903 {
7904 cfs_rq->tasks_timeline = RB_ROOT;
7905 INIT_LIST_HEAD(&cfs_rq->tasks);
7906 #ifdef CONFIG_FAIR_GROUP_SCHED
7907 cfs_rq->rq = rq;
7908 #endif
7909 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7910 }
7911
7912 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7913 {
7914 struct rt_prio_array *array;
7915 int i;
7916
7917 array = &rt_rq->active;
7918 for (i = 0; i < MAX_RT_PRIO; i++) {
7919 INIT_LIST_HEAD(array->queue + i);
7920 __clear_bit(i, array->bitmap);
7921 }
7922 /* delimiter for bitsearch: */
7923 __set_bit(MAX_RT_PRIO, array->bitmap);
7924
7925 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7926 rt_rq->highest_prio = MAX_RT_PRIO;
7927 #endif
7928 #ifdef CONFIG_SMP
7929 rt_rq->rt_nr_migratory = 0;
7930 rt_rq->overloaded = 0;
7931 #endif
7932
7933 rt_rq->rt_time = 0;
7934 rt_rq->rt_throttled = 0;
7935 rt_rq->rt_runtime = 0;
7936 spin_lock_init(&rt_rq->rt_runtime_lock);
7937
7938 #ifdef CONFIG_RT_GROUP_SCHED
7939 rt_rq->rt_nr_boosted = 0;
7940 rt_rq->rq = rq;
7941 #endif
7942 }
7943
7944 #ifdef CONFIG_FAIR_GROUP_SCHED
7945 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7946 struct sched_entity *se, int cpu, int add,
7947 struct sched_entity *parent)
7948 {
7949 struct rq *rq = cpu_rq(cpu);
7950 tg->cfs_rq[cpu] = cfs_rq;
7951 init_cfs_rq(cfs_rq, rq);
7952 cfs_rq->tg = tg;
7953 if (add)
7954 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7955
7956 tg->se[cpu] = se;
7957 /* se could be NULL for init_task_group */
7958 if (!se)
7959 return;
7960
7961 if (!parent)
7962 se->cfs_rq = &rq->cfs;
7963 else
7964 se->cfs_rq = parent->my_q;
7965
7966 se->my_q = cfs_rq;
7967 se->load.weight = tg->shares;
7968 se->load.inv_weight = 0;
7969 se->parent = parent;
7970 }
7971 #endif
7972
7973 #ifdef CONFIG_RT_GROUP_SCHED
7974 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7975 struct sched_rt_entity *rt_se, int cpu, int add,
7976 struct sched_rt_entity *parent)
7977 {
7978 struct rq *rq = cpu_rq(cpu);
7979
7980 tg->rt_rq[cpu] = rt_rq;
7981 init_rt_rq(rt_rq, rq);
7982 rt_rq->tg = tg;
7983 rt_rq->rt_se = rt_se;
7984 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7985 if (add)
7986 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7987
7988 tg->rt_se[cpu] = rt_se;
7989 if (!rt_se)
7990 return;
7991
7992 if (!parent)
7993 rt_se->rt_rq = &rq->rt;
7994 else
7995 rt_se->rt_rq = parent->my_q;
7996
7997 rt_se->rt_rq = &rq->rt;
7998 rt_se->my_q = rt_rq;
7999 rt_se->parent = parent;
8000 INIT_LIST_HEAD(&rt_se->run_list);
8001 }
8002 #endif
8003
8004 void __init sched_init(void)
8005 {
8006 int i, j;
8007 unsigned long alloc_size = 0, ptr;
8008
8009 #ifdef CONFIG_FAIR_GROUP_SCHED
8010 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8011 #endif
8012 #ifdef CONFIG_RT_GROUP_SCHED
8013 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8014 #endif
8015 #ifdef CONFIG_USER_SCHED
8016 alloc_size *= 2;
8017 #endif
8018 /*
8019 * As sched_init() is called before page_alloc is setup,
8020 * we use alloc_bootmem().
8021 */
8022 if (alloc_size) {
8023 ptr = (unsigned long)alloc_bootmem(alloc_size);
8024
8025 #ifdef CONFIG_FAIR_GROUP_SCHED
8026 init_task_group.se = (struct sched_entity **)ptr;
8027 ptr += nr_cpu_ids * sizeof(void **);
8028
8029 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8030 ptr += nr_cpu_ids * sizeof(void **);
8031
8032 #ifdef CONFIG_USER_SCHED
8033 root_task_group.se = (struct sched_entity **)ptr;
8034 ptr += nr_cpu_ids * sizeof(void **);
8035
8036 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8037 ptr += nr_cpu_ids * sizeof(void **);
8038 #endif
8039 #endif
8040 #ifdef CONFIG_RT_GROUP_SCHED
8041 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8042 ptr += nr_cpu_ids * sizeof(void **);
8043
8044 init_task_group.rt_rq = (struct rt_rq **)ptr;
8045 ptr += nr_cpu_ids * sizeof(void **);
8046
8047 #ifdef CONFIG_USER_SCHED
8048 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8049 ptr += nr_cpu_ids * sizeof(void **);
8050
8051 root_task_group.rt_rq = (struct rt_rq **)ptr;
8052 ptr += nr_cpu_ids * sizeof(void **);
8053 #endif
8054 #endif
8055 }
8056
8057 #ifdef CONFIG_SMP
8058 init_aggregate();
8059 init_defrootdomain();
8060 #endif
8061
8062 init_rt_bandwidth(&def_rt_bandwidth,
8063 global_rt_period(), global_rt_runtime());
8064
8065 #ifdef CONFIG_RT_GROUP_SCHED
8066 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8067 global_rt_period(), global_rt_runtime());
8068 #ifdef CONFIG_USER_SCHED
8069 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8070 global_rt_period(), RUNTIME_INF);
8071 #endif
8072 #endif
8073
8074 #ifdef CONFIG_GROUP_SCHED
8075 list_add(&init_task_group.list, &task_groups);
8076 INIT_LIST_HEAD(&init_task_group.children);
8077
8078 #ifdef CONFIG_USER_SCHED
8079 INIT_LIST_HEAD(&root_task_group.children);
8080 init_task_group.parent = &root_task_group;
8081 list_add(&init_task_group.siblings, &root_task_group.children);
8082 #endif
8083 #endif
8084
8085 for_each_possible_cpu(i) {
8086 struct rq *rq;
8087
8088 rq = cpu_rq(i);
8089 spin_lock_init(&rq->lock);
8090 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8091 rq->nr_running = 0;
8092 init_cfs_rq(&rq->cfs, rq);
8093 init_rt_rq(&rq->rt, rq);
8094 #ifdef CONFIG_FAIR_GROUP_SCHED
8095 init_task_group.shares = init_task_group_load;
8096 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8097 #ifdef CONFIG_CGROUP_SCHED
8098 /*
8099 * How much cpu bandwidth does init_task_group get?
8100 *
8101 * In case of task-groups formed thr' the cgroup filesystem, it
8102 * gets 100% of the cpu resources in the system. This overall
8103 * system cpu resource is divided among the tasks of
8104 * init_task_group and its child task-groups in a fair manner,
8105 * based on each entity's (task or task-group's) weight
8106 * (se->load.weight).
8107 *
8108 * In other words, if init_task_group has 10 tasks of weight
8109 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8110 * then A0's share of the cpu resource is:
8111 *
8112 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8113 *
8114 * We achieve this by letting init_task_group's tasks sit
8115 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8116 */
8117 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8118 #elif defined CONFIG_USER_SCHED
8119 root_task_group.shares = NICE_0_LOAD;
8120 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8121 /*
8122 * In case of task-groups formed thr' the user id of tasks,
8123 * init_task_group represents tasks belonging to root user.
8124 * Hence it forms a sibling of all subsequent groups formed.
8125 * In this case, init_task_group gets only a fraction of overall
8126 * system cpu resource, based on the weight assigned to root
8127 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8128 * by letting tasks of init_task_group sit in a separate cfs_rq
8129 * (init_cfs_rq) and having one entity represent this group of
8130 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8131 */
8132 init_tg_cfs_entry(&init_task_group,
8133 &per_cpu(init_cfs_rq, i),
8134 &per_cpu(init_sched_entity, i), i, 1,
8135 root_task_group.se[i]);
8136
8137 #endif
8138 #endif /* CONFIG_FAIR_GROUP_SCHED */
8139
8140 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8141 #ifdef CONFIG_RT_GROUP_SCHED
8142 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8143 #ifdef CONFIG_CGROUP_SCHED
8144 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8145 #elif defined CONFIG_USER_SCHED
8146 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8147 init_tg_rt_entry(&init_task_group,
8148 &per_cpu(init_rt_rq, i),
8149 &per_cpu(init_sched_rt_entity, i), i, 1,
8150 root_task_group.rt_se[i]);
8151 #endif
8152 #endif
8153
8154 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8155 rq->cpu_load[j] = 0;
8156 #ifdef CONFIG_SMP
8157 rq->sd = NULL;
8158 rq->rd = NULL;
8159 rq->active_balance = 0;
8160 rq->next_balance = jiffies;
8161 rq->push_cpu = 0;
8162 rq->cpu = i;
8163 rq->migration_thread = NULL;
8164 INIT_LIST_HEAD(&rq->migration_queue);
8165 rq_attach_root(rq, &def_root_domain);
8166 #endif
8167 init_rq_hrtick(rq);
8168 atomic_set(&rq->nr_iowait, 0);
8169 }
8170
8171 set_load_weight(&init_task);
8172
8173 #ifdef CONFIG_PREEMPT_NOTIFIERS
8174 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8175 #endif
8176
8177 #ifdef CONFIG_SMP
8178 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8179 #endif
8180
8181 #ifdef CONFIG_RT_MUTEXES
8182 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8183 #endif
8184
8185 /*
8186 * The boot idle thread does lazy MMU switching as well:
8187 */
8188 atomic_inc(&init_mm.mm_count);
8189 enter_lazy_tlb(&init_mm, current);
8190
8191 /*
8192 * Make us the idle thread. Technically, schedule() should not be
8193 * called from this thread, however somewhere below it might be,
8194 * but because we are the idle thread, we just pick up running again
8195 * when this runqueue becomes "idle".
8196 */
8197 init_idle(current, smp_processor_id());
8198 /*
8199 * During early bootup we pretend to be a normal task:
8200 */
8201 current->sched_class = &fair_sched_class;
8202
8203 scheduler_running = 1;
8204 }
8205
8206 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8207 void __might_sleep(char *file, int line)
8208 {
8209 #ifdef in_atomic
8210 static unsigned long prev_jiffy; /* ratelimiting */
8211
8212 if ((in_atomic() || irqs_disabled()) &&
8213 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8214 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8215 return;
8216 prev_jiffy = jiffies;
8217 printk(KERN_ERR "BUG: sleeping function called from invalid"
8218 " context at %s:%d\n", file, line);
8219 printk("in_atomic():%d, irqs_disabled():%d\n",
8220 in_atomic(), irqs_disabled());
8221 debug_show_held_locks(current);
8222 if (irqs_disabled())
8223 print_irqtrace_events(current);
8224 dump_stack();
8225 }
8226 #endif
8227 }
8228 EXPORT_SYMBOL(__might_sleep);
8229 #endif
8230
8231 #ifdef CONFIG_MAGIC_SYSRQ
8232 static void normalize_task(struct rq *rq, struct task_struct *p)
8233 {
8234 int on_rq;
8235
8236 update_rq_clock(rq);
8237 on_rq = p->se.on_rq;
8238 if (on_rq)
8239 deactivate_task(rq, p, 0);
8240 __setscheduler(rq, p, SCHED_NORMAL, 0);
8241 if (on_rq) {
8242 activate_task(rq, p, 0);
8243 resched_task(rq->curr);
8244 }
8245 }
8246
8247 void normalize_rt_tasks(void)
8248 {
8249 struct task_struct *g, *p;
8250 unsigned long flags;
8251 struct rq *rq;
8252
8253 read_lock_irqsave(&tasklist_lock, flags);
8254 do_each_thread(g, p) {
8255 /*
8256 * Only normalize user tasks:
8257 */
8258 if (!p->mm)
8259 continue;
8260
8261 p->se.exec_start = 0;
8262 #ifdef CONFIG_SCHEDSTATS
8263 p->se.wait_start = 0;
8264 p->se.sleep_start = 0;
8265 p->se.block_start = 0;
8266 #endif
8267
8268 if (!rt_task(p)) {
8269 /*
8270 * Renice negative nice level userspace
8271 * tasks back to 0:
8272 */
8273 if (TASK_NICE(p) < 0 && p->mm)
8274 set_user_nice(p, 0);
8275 continue;
8276 }
8277
8278 spin_lock(&p->pi_lock);
8279 rq = __task_rq_lock(p);
8280
8281 normalize_task(rq, p);
8282
8283 __task_rq_unlock(rq);
8284 spin_unlock(&p->pi_lock);
8285 } while_each_thread(g, p);
8286
8287 read_unlock_irqrestore(&tasklist_lock, flags);
8288 }
8289
8290 #endif /* CONFIG_MAGIC_SYSRQ */
8291
8292 #ifdef CONFIG_IA64
8293 /*
8294 * These functions are only useful for the IA64 MCA handling.
8295 *
8296 * They can only be called when the whole system has been
8297 * stopped - every CPU needs to be quiescent, and no scheduling
8298 * activity can take place. Using them for anything else would
8299 * be a serious bug, and as a result, they aren't even visible
8300 * under any other configuration.
8301 */
8302
8303 /**
8304 * curr_task - return the current task for a given cpu.
8305 * @cpu: the processor in question.
8306 *
8307 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8308 */
8309 struct task_struct *curr_task(int cpu)
8310 {
8311 return cpu_curr(cpu);
8312 }
8313
8314 /**
8315 * set_curr_task - set the current task for a given cpu.
8316 * @cpu: the processor in question.
8317 * @p: the task pointer to set.
8318 *
8319 * Description: This function must only be used when non-maskable interrupts
8320 * are serviced on a separate stack. It allows the architecture to switch the
8321 * notion of the current task on a cpu in a non-blocking manner. This function
8322 * must be called with all CPU's synchronized, and interrupts disabled, the
8323 * and caller must save the original value of the current task (see
8324 * curr_task() above) and restore that value before reenabling interrupts and
8325 * re-starting the system.
8326 *
8327 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8328 */
8329 void set_curr_task(int cpu, struct task_struct *p)
8330 {
8331 cpu_curr(cpu) = p;
8332 }
8333
8334 #endif
8335
8336 #ifdef CONFIG_FAIR_GROUP_SCHED
8337 static void free_fair_sched_group(struct task_group *tg)
8338 {
8339 int i;
8340
8341 for_each_possible_cpu(i) {
8342 if (tg->cfs_rq)
8343 kfree(tg->cfs_rq[i]);
8344 if (tg->se)
8345 kfree(tg->se[i]);
8346 }
8347
8348 kfree(tg->cfs_rq);
8349 kfree(tg->se);
8350 }
8351
8352 static
8353 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8354 {
8355 struct cfs_rq *cfs_rq;
8356 struct sched_entity *se, *parent_se;
8357 struct rq *rq;
8358 int i;
8359
8360 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8361 if (!tg->cfs_rq)
8362 goto err;
8363 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8364 if (!tg->se)
8365 goto err;
8366
8367 tg->shares = NICE_0_LOAD;
8368
8369 for_each_possible_cpu(i) {
8370 rq = cpu_rq(i);
8371
8372 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8373 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8374 if (!cfs_rq)
8375 goto err;
8376
8377 se = kmalloc_node(sizeof(struct sched_entity),
8378 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8379 if (!se)
8380 goto err;
8381
8382 parent_se = parent ? parent->se[i] : NULL;
8383 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8384 }
8385
8386 return 1;
8387
8388 err:
8389 return 0;
8390 }
8391
8392 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8393 {
8394 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8395 &cpu_rq(cpu)->leaf_cfs_rq_list);
8396 }
8397
8398 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8399 {
8400 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8401 }
8402 #else
8403 static inline void free_fair_sched_group(struct task_group *tg)
8404 {
8405 }
8406
8407 static inline
8408 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8409 {
8410 return 1;
8411 }
8412
8413 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8414 {
8415 }
8416
8417 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8418 {
8419 }
8420 #endif
8421
8422 #ifdef CONFIG_RT_GROUP_SCHED
8423 static void free_rt_sched_group(struct task_group *tg)
8424 {
8425 int i;
8426
8427 destroy_rt_bandwidth(&tg->rt_bandwidth);
8428
8429 for_each_possible_cpu(i) {
8430 if (tg->rt_rq)
8431 kfree(tg->rt_rq[i]);
8432 if (tg->rt_se)
8433 kfree(tg->rt_se[i]);
8434 }
8435
8436 kfree(tg->rt_rq);
8437 kfree(tg->rt_se);
8438 }
8439
8440 static
8441 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8442 {
8443 struct rt_rq *rt_rq;
8444 struct sched_rt_entity *rt_se, *parent_se;
8445 struct rq *rq;
8446 int i;
8447
8448 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8449 if (!tg->rt_rq)
8450 goto err;
8451 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8452 if (!tg->rt_se)
8453 goto err;
8454
8455 init_rt_bandwidth(&tg->rt_bandwidth,
8456 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8457
8458 for_each_possible_cpu(i) {
8459 rq = cpu_rq(i);
8460
8461 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8462 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8463 if (!rt_rq)
8464 goto err;
8465
8466 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8467 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8468 if (!rt_se)
8469 goto err;
8470
8471 parent_se = parent ? parent->rt_se[i] : NULL;
8472 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8473 }
8474
8475 return 1;
8476
8477 err:
8478 return 0;
8479 }
8480
8481 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8482 {
8483 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8484 &cpu_rq(cpu)->leaf_rt_rq_list);
8485 }
8486
8487 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8488 {
8489 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8490 }
8491 #else
8492 static inline void free_rt_sched_group(struct task_group *tg)
8493 {
8494 }
8495
8496 static inline
8497 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8498 {
8499 return 1;
8500 }
8501
8502 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8503 {
8504 }
8505
8506 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8507 {
8508 }
8509 #endif
8510
8511 #ifdef CONFIG_GROUP_SCHED
8512 static void free_sched_group(struct task_group *tg)
8513 {
8514 free_fair_sched_group(tg);
8515 free_rt_sched_group(tg);
8516 kfree(tg);
8517 }
8518
8519 /* allocate runqueue etc for a new task group */
8520 struct task_group *sched_create_group(struct task_group *parent)
8521 {
8522 struct task_group *tg;
8523 unsigned long flags;
8524 int i;
8525
8526 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8527 if (!tg)
8528 return ERR_PTR(-ENOMEM);
8529
8530 if (!alloc_fair_sched_group(tg, parent))
8531 goto err;
8532
8533 if (!alloc_rt_sched_group(tg, parent))
8534 goto err;
8535
8536 spin_lock_irqsave(&task_group_lock, flags);
8537 for_each_possible_cpu(i) {
8538 register_fair_sched_group(tg, i);
8539 register_rt_sched_group(tg, i);
8540 }
8541 list_add_rcu(&tg->list, &task_groups);
8542
8543 WARN_ON(!parent); /* root should already exist */
8544
8545 tg->parent = parent;
8546 list_add_rcu(&tg->siblings, &parent->children);
8547 INIT_LIST_HEAD(&tg->children);
8548 spin_unlock_irqrestore(&task_group_lock, flags);
8549
8550 return tg;
8551
8552 err:
8553 free_sched_group(tg);
8554 return ERR_PTR(-ENOMEM);
8555 }
8556
8557 /* rcu callback to free various structures associated with a task group */
8558 static void free_sched_group_rcu(struct rcu_head *rhp)
8559 {
8560 /* now it should be safe to free those cfs_rqs */
8561 free_sched_group(container_of(rhp, struct task_group, rcu));
8562 }
8563
8564 /* Destroy runqueue etc associated with a task group */
8565 void sched_destroy_group(struct task_group *tg)
8566 {
8567 unsigned long flags;
8568 int i;
8569
8570 spin_lock_irqsave(&task_group_lock, flags);
8571 for_each_possible_cpu(i) {
8572 unregister_fair_sched_group(tg, i);
8573 unregister_rt_sched_group(tg, i);
8574 }
8575 list_del_rcu(&tg->list);
8576 list_del_rcu(&tg->siblings);
8577 spin_unlock_irqrestore(&task_group_lock, flags);
8578
8579 /* wait for possible concurrent references to cfs_rqs complete */
8580 call_rcu(&tg->rcu, free_sched_group_rcu);
8581 }
8582
8583 /* change task's runqueue when it moves between groups.
8584 * The caller of this function should have put the task in its new group
8585 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8586 * reflect its new group.
8587 */
8588 void sched_move_task(struct task_struct *tsk)
8589 {
8590 int on_rq, running;
8591 unsigned long flags;
8592 struct rq *rq;
8593
8594 rq = task_rq_lock(tsk, &flags);
8595
8596 update_rq_clock(rq);
8597
8598 running = task_current(rq, tsk);
8599 on_rq = tsk->se.on_rq;
8600
8601 if (on_rq)
8602 dequeue_task(rq, tsk, 0);
8603 if (unlikely(running))
8604 tsk->sched_class->put_prev_task(rq, tsk);
8605
8606 set_task_rq(tsk, task_cpu(tsk));
8607
8608 #ifdef CONFIG_FAIR_GROUP_SCHED
8609 if (tsk->sched_class->moved_group)
8610 tsk->sched_class->moved_group(tsk);
8611 #endif
8612
8613 if (unlikely(running))
8614 tsk->sched_class->set_curr_task(rq);
8615 if (on_rq)
8616 enqueue_task(rq, tsk, 0);
8617
8618 task_rq_unlock(rq, &flags);
8619 }
8620 #endif
8621
8622 #ifdef CONFIG_FAIR_GROUP_SCHED
8623 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8624 {
8625 struct cfs_rq *cfs_rq = se->cfs_rq;
8626 int on_rq;
8627
8628 on_rq = se->on_rq;
8629 if (on_rq)
8630 dequeue_entity(cfs_rq, se, 0);
8631
8632 se->load.weight = shares;
8633 se->load.inv_weight = 0;
8634
8635 if (on_rq)
8636 enqueue_entity(cfs_rq, se, 0);
8637 }
8638
8639 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8640 {
8641 struct cfs_rq *cfs_rq = se->cfs_rq;
8642 struct rq *rq = cfs_rq->rq;
8643 unsigned long flags;
8644
8645 spin_lock_irqsave(&rq->lock, flags);
8646 __set_se_shares(se, shares);
8647 spin_unlock_irqrestore(&rq->lock, flags);
8648 }
8649
8650 static DEFINE_MUTEX(shares_mutex);
8651
8652 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8653 {
8654 int i;
8655 unsigned long flags;
8656
8657 /*
8658 * We can't change the weight of the root cgroup.
8659 */
8660 if (!tg->se[0])
8661 return -EINVAL;
8662
8663 if (shares < MIN_SHARES)
8664 shares = MIN_SHARES;
8665 else if (shares > MAX_SHARES)
8666 shares = MAX_SHARES;
8667
8668 mutex_lock(&shares_mutex);
8669 if (tg->shares == shares)
8670 goto done;
8671
8672 spin_lock_irqsave(&task_group_lock, flags);
8673 for_each_possible_cpu(i)
8674 unregister_fair_sched_group(tg, i);
8675 list_del_rcu(&tg->siblings);
8676 spin_unlock_irqrestore(&task_group_lock, flags);
8677
8678 /* wait for any ongoing reference to this group to finish */
8679 synchronize_sched();
8680
8681 /*
8682 * Now we are free to modify the group's share on each cpu
8683 * w/o tripping rebalance_share or load_balance_fair.
8684 */
8685 tg->shares = shares;
8686 for_each_possible_cpu(i) {
8687 /*
8688 * force a rebalance
8689 */
8690 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8691 set_se_shares(tg->se[i], shares);
8692 }
8693
8694 /*
8695 * Enable load balance activity on this group, by inserting it back on
8696 * each cpu's rq->leaf_cfs_rq_list.
8697 */
8698 spin_lock_irqsave(&task_group_lock, flags);
8699 for_each_possible_cpu(i)
8700 register_fair_sched_group(tg, i);
8701 list_add_rcu(&tg->siblings, &tg->parent->children);
8702 spin_unlock_irqrestore(&task_group_lock, flags);
8703 done:
8704 mutex_unlock(&shares_mutex);
8705 return 0;
8706 }
8707
8708 unsigned long sched_group_shares(struct task_group *tg)
8709 {
8710 return tg->shares;
8711 }
8712 #endif
8713
8714 #ifdef CONFIG_RT_GROUP_SCHED
8715 /*
8716 * Ensure that the real time constraints are schedulable.
8717 */
8718 static DEFINE_MUTEX(rt_constraints_mutex);
8719
8720 static unsigned long to_ratio(u64 period, u64 runtime)
8721 {
8722 if (runtime == RUNTIME_INF)
8723 return 1ULL << 16;
8724
8725 return div64_u64(runtime << 16, period);
8726 }
8727
8728 #ifdef CONFIG_CGROUP_SCHED
8729 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8730 {
8731 struct task_group *tgi, *parent = tg->parent;
8732 unsigned long total = 0;
8733
8734 if (!parent) {
8735 if (global_rt_period() < period)
8736 return 0;
8737
8738 return to_ratio(period, runtime) <
8739 to_ratio(global_rt_period(), global_rt_runtime());
8740 }
8741
8742 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8743 return 0;
8744
8745 rcu_read_lock();
8746 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8747 if (tgi == tg)
8748 continue;
8749
8750 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8751 tgi->rt_bandwidth.rt_runtime);
8752 }
8753 rcu_read_unlock();
8754
8755 return total + to_ratio(period, runtime) <
8756 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8757 parent->rt_bandwidth.rt_runtime);
8758 }
8759 #elif defined CONFIG_USER_SCHED
8760 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8761 {
8762 struct task_group *tgi;
8763 unsigned long total = 0;
8764 unsigned long global_ratio =
8765 to_ratio(global_rt_period(), global_rt_runtime());
8766
8767 rcu_read_lock();
8768 list_for_each_entry_rcu(tgi, &task_groups, list) {
8769 if (tgi == tg)
8770 continue;
8771
8772 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8773 tgi->rt_bandwidth.rt_runtime);
8774 }
8775 rcu_read_unlock();
8776
8777 return total + to_ratio(period, runtime) < global_ratio;
8778 }
8779 #endif
8780
8781 /* Must be called with tasklist_lock held */
8782 static inline int tg_has_rt_tasks(struct task_group *tg)
8783 {
8784 struct task_struct *g, *p;
8785 do_each_thread(g, p) {
8786 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8787 return 1;
8788 } while_each_thread(g, p);
8789 return 0;
8790 }
8791
8792 static int tg_set_bandwidth(struct task_group *tg,
8793 u64 rt_period, u64 rt_runtime)
8794 {
8795 int i, err = 0;
8796
8797 mutex_lock(&rt_constraints_mutex);
8798 read_lock(&tasklist_lock);
8799 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8800 err = -EBUSY;
8801 goto unlock;
8802 }
8803 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8804 err = -EINVAL;
8805 goto unlock;
8806 }
8807
8808 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8809 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8810 tg->rt_bandwidth.rt_runtime = rt_runtime;
8811
8812 for_each_possible_cpu(i) {
8813 struct rt_rq *rt_rq = tg->rt_rq[i];
8814
8815 spin_lock(&rt_rq->rt_runtime_lock);
8816 rt_rq->rt_runtime = rt_runtime;
8817 spin_unlock(&rt_rq->rt_runtime_lock);
8818 }
8819 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8820 unlock:
8821 read_unlock(&tasklist_lock);
8822 mutex_unlock(&rt_constraints_mutex);
8823
8824 return err;
8825 }
8826
8827 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8828 {
8829 u64 rt_runtime, rt_period;
8830
8831 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8832 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8833 if (rt_runtime_us < 0)
8834 rt_runtime = RUNTIME_INF;
8835
8836 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8837 }
8838
8839 long sched_group_rt_runtime(struct task_group *tg)
8840 {
8841 u64 rt_runtime_us;
8842
8843 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8844 return -1;
8845
8846 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8847 do_div(rt_runtime_us, NSEC_PER_USEC);
8848 return rt_runtime_us;
8849 }
8850
8851 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8852 {
8853 u64 rt_runtime, rt_period;
8854
8855 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8856 rt_runtime = tg->rt_bandwidth.rt_runtime;
8857
8858 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8859 }
8860
8861 long sched_group_rt_period(struct task_group *tg)
8862 {
8863 u64 rt_period_us;
8864
8865 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8866 do_div(rt_period_us, NSEC_PER_USEC);
8867 return rt_period_us;
8868 }
8869
8870 static int sched_rt_global_constraints(void)
8871 {
8872 int ret = 0;
8873
8874 mutex_lock(&rt_constraints_mutex);
8875 if (!__rt_schedulable(NULL, 1, 0))
8876 ret = -EINVAL;
8877 mutex_unlock(&rt_constraints_mutex);
8878
8879 return ret;
8880 }
8881 #else
8882 static int sched_rt_global_constraints(void)
8883 {
8884 unsigned long flags;
8885 int i;
8886
8887 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8888 for_each_possible_cpu(i) {
8889 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8890
8891 spin_lock(&rt_rq->rt_runtime_lock);
8892 rt_rq->rt_runtime = global_rt_runtime();
8893 spin_unlock(&rt_rq->rt_runtime_lock);
8894 }
8895 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8896
8897 return 0;
8898 }
8899 #endif
8900
8901 int sched_rt_handler(struct ctl_table *table, int write,
8902 struct file *filp, void __user *buffer, size_t *lenp,
8903 loff_t *ppos)
8904 {
8905 int ret;
8906 int old_period, old_runtime;
8907 static DEFINE_MUTEX(mutex);
8908
8909 mutex_lock(&mutex);
8910 old_period = sysctl_sched_rt_period;
8911 old_runtime = sysctl_sched_rt_runtime;
8912
8913 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8914
8915 if (!ret && write) {
8916 ret = sched_rt_global_constraints();
8917 if (ret) {
8918 sysctl_sched_rt_period = old_period;
8919 sysctl_sched_rt_runtime = old_runtime;
8920 } else {
8921 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8922 def_rt_bandwidth.rt_period =
8923 ns_to_ktime(global_rt_period());
8924 }
8925 }
8926 mutex_unlock(&mutex);
8927
8928 return ret;
8929 }
8930
8931 #ifdef CONFIG_CGROUP_SCHED
8932
8933 /* return corresponding task_group object of a cgroup */
8934 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8935 {
8936 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8937 struct task_group, css);
8938 }
8939
8940 static struct cgroup_subsys_state *
8941 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8942 {
8943 struct task_group *tg, *parent;
8944
8945 if (!cgrp->parent) {
8946 /* This is early initialization for the top cgroup */
8947 init_task_group.css.cgroup = cgrp;
8948 return &init_task_group.css;
8949 }
8950
8951 parent = cgroup_tg(cgrp->parent);
8952 tg = sched_create_group(parent);
8953 if (IS_ERR(tg))
8954 return ERR_PTR(-ENOMEM);
8955
8956 /* Bind the cgroup to task_group object we just created */
8957 tg->css.cgroup = cgrp;
8958
8959 return &tg->css;
8960 }
8961
8962 static void
8963 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8964 {
8965 struct task_group *tg = cgroup_tg(cgrp);
8966
8967 sched_destroy_group(tg);
8968 }
8969
8970 static int
8971 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8972 struct task_struct *tsk)
8973 {
8974 #ifdef CONFIG_RT_GROUP_SCHED
8975 /* Don't accept realtime tasks when there is no way for them to run */
8976 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8977 return -EINVAL;
8978 #else
8979 /* We don't support RT-tasks being in separate groups */
8980 if (tsk->sched_class != &fair_sched_class)
8981 return -EINVAL;
8982 #endif
8983
8984 return 0;
8985 }
8986
8987 static void
8988 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8989 struct cgroup *old_cont, struct task_struct *tsk)
8990 {
8991 sched_move_task(tsk);
8992 }
8993
8994 #ifdef CONFIG_FAIR_GROUP_SCHED
8995 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8996 u64 shareval)
8997 {
8998 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8999 }
9000
9001 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9002 {
9003 struct task_group *tg = cgroup_tg(cgrp);
9004
9005 return (u64) tg->shares;
9006 }
9007 #endif
9008
9009 #ifdef CONFIG_RT_GROUP_SCHED
9010 static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9011 s64 val)
9012 {
9013 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9014 }
9015
9016 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9017 {
9018 return sched_group_rt_runtime(cgroup_tg(cgrp));
9019 }
9020
9021 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9022 u64 rt_period_us)
9023 {
9024 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9025 }
9026
9027 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9028 {
9029 return sched_group_rt_period(cgroup_tg(cgrp));
9030 }
9031 #endif
9032
9033 static struct cftype cpu_files[] = {
9034 #ifdef CONFIG_FAIR_GROUP_SCHED
9035 {
9036 .name = "shares",
9037 .read_u64 = cpu_shares_read_u64,
9038 .write_u64 = cpu_shares_write_u64,
9039 },
9040 #endif
9041 #ifdef CONFIG_RT_GROUP_SCHED
9042 {
9043 .name = "rt_runtime_us",
9044 .read_s64 = cpu_rt_runtime_read,
9045 .write_s64 = cpu_rt_runtime_write,
9046 },
9047 {
9048 .name = "rt_period_us",
9049 .read_u64 = cpu_rt_period_read_uint,
9050 .write_u64 = cpu_rt_period_write_uint,
9051 },
9052 #endif
9053 };
9054
9055 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9056 {
9057 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9058 }
9059
9060 struct cgroup_subsys cpu_cgroup_subsys = {
9061 .name = "cpu",
9062 .create = cpu_cgroup_create,
9063 .destroy = cpu_cgroup_destroy,
9064 .can_attach = cpu_cgroup_can_attach,
9065 .attach = cpu_cgroup_attach,
9066 .populate = cpu_cgroup_populate,
9067 .subsys_id = cpu_cgroup_subsys_id,
9068 .early_init = 1,
9069 };
9070
9071 #endif /* CONFIG_CGROUP_SCHED */
9072
9073 #ifdef CONFIG_CGROUP_CPUACCT
9074
9075 /*
9076 * CPU accounting code for task groups.
9077 *
9078 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9079 * (balbir@in.ibm.com).
9080 */
9081
9082 /* track cpu usage of a group of tasks */
9083 struct cpuacct {
9084 struct cgroup_subsys_state css;
9085 /* cpuusage holds pointer to a u64-type object on every cpu */
9086 u64 *cpuusage;
9087 };
9088
9089 struct cgroup_subsys cpuacct_subsys;
9090
9091 /* return cpu accounting group corresponding to this container */
9092 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9093 {
9094 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9095 struct cpuacct, css);
9096 }
9097
9098 /* return cpu accounting group to which this task belongs */
9099 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9100 {
9101 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9102 struct cpuacct, css);
9103 }
9104
9105 /* create a new cpu accounting group */
9106 static struct cgroup_subsys_state *cpuacct_create(
9107 struct cgroup_subsys *ss, struct cgroup *cgrp)
9108 {
9109 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9110
9111 if (!ca)
9112 return ERR_PTR(-ENOMEM);
9113
9114 ca->cpuusage = alloc_percpu(u64);
9115 if (!ca->cpuusage) {
9116 kfree(ca);
9117 return ERR_PTR(-ENOMEM);
9118 }
9119
9120 return &ca->css;
9121 }
9122
9123 /* destroy an existing cpu accounting group */
9124 static void
9125 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9126 {
9127 struct cpuacct *ca = cgroup_ca(cgrp);
9128
9129 free_percpu(ca->cpuusage);
9130 kfree(ca);
9131 }
9132
9133 /* return total cpu usage (in nanoseconds) of a group */
9134 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9135 {
9136 struct cpuacct *ca = cgroup_ca(cgrp);
9137 u64 totalcpuusage = 0;
9138 int i;
9139
9140 for_each_possible_cpu(i) {
9141 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9142
9143 /*
9144 * Take rq->lock to make 64-bit addition safe on 32-bit
9145 * platforms.
9146 */
9147 spin_lock_irq(&cpu_rq(i)->lock);
9148 totalcpuusage += *cpuusage;
9149 spin_unlock_irq(&cpu_rq(i)->lock);
9150 }
9151
9152 return totalcpuusage;
9153 }
9154
9155 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9156 u64 reset)
9157 {
9158 struct cpuacct *ca = cgroup_ca(cgrp);
9159 int err = 0;
9160 int i;
9161
9162 if (reset) {
9163 err = -EINVAL;
9164 goto out;
9165 }
9166
9167 for_each_possible_cpu(i) {
9168 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9169
9170 spin_lock_irq(&cpu_rq(i)->lock);
9171 *cpuusage = 0;
9172 spin_unlock_irq(&cpu_rq(i)->lock);
9173 }
9174 out:
9175 return err;
9176 }
9177
9178 static struct cftype files[] = {
9179 {
9180 .name = "usage",
9181 .read_u64 = cpuusage_read,
9182 .write_u64 = cpuusage_write,
9183 },
9184 };
9185
9186 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9187 {
9188 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9189 }
9190
9191 /*
9192 * charge this task's execution time to its accounting group.
9193 *
9194 * called with rq->lock held.
9195 */
9196 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9197 {
9198 struct cpuacct *ca;
9199
9200 if (!cpuacct_subsys.active)
9201 return;
9202
9203 ca = task_ca(tsk);
9204 if (ca) {
9205 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9206
9207 *cpuusage += cputime;
9208 }
9209 }
9210
9211 struct cgroup_subsys cpuacct_subsys = {
9212 .name = "cpuacct",
9213 .create = cpuacct_create,
9214 .destroy = cpuacct_destroy,
9215 .populate = cpuacct_populate,
9216 .subsys_id = cpuacct_subsys_id,
9217 };
9218 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.410572 seconds and 6 git commands to generate.