sched: fix overload performance: buddy wakeups
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
178 #endif
179
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185 #endif
186
187 struct rcu_head rcu;
188 struct list_head list;
189 };
190
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 #endif
200
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
204
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
207 #endif
208
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
211 */
212 static DEFINE_SPINLOCK(task_group_lock);
213
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
216
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220 #else
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222 #endif
223
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225 #endif
226
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
229 */
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
239 #endif
240 };
241
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
244 {
245 struct task_group *tg;
246
247 #ifdef CONFIG_USER_SCHED
248 tg = p->user->tg;
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
252 #else
253 tg = &init_task_group;
254 #endif
255 return tg;
256 }
257
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
260 {
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
269 #endif
270 }
271
272 static inline void lock_doms_cur(void)
273 {
274 mutex_lock(&doms_cur_mutex);
275 }
276
277 static inline void unlock_doms_cur(void)
278 {
279 mutex_unlock(&doms_cur_mutex);
280 }
281
282 #else
283
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
287
288 #endif /* CONFIG_GROUP_SCHED */
289
290 /* CFS-related fields in a runqueue */
291 struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
295 u64 exec_clock;
296 u64 min_vruntime;
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
304 struct sched_entity *curr, *next;
305
306 unsigned long nr_spread_over;
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
321 #endif
322 };
323
324 /* Real-Time classes' related field in a runqueue: */
325 struct rt_rq {
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
330 #endif
331 #ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 int overloaded;
334 #endif
335 int rt_throttled;
336 u64 rt_time;
337
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
340
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345 #endif
346 };
347
348 #ifdef CONFIG_SMP
349
350 /*
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
357 */
358 struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
362
363 /*
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
368 atomic_t rto_count;
369 };
370
371 /*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
375 static struct root_domain def_root_domain;
376
377 #endif
378
379 /*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
386 struct rq {
387 /* runqueue lock: */
388 spinlock_t lock;
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
398 #ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400 #endif
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
407 struct rt_rq rt;
408 u64 rt_period_expire;
409 int rt_throttled;
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
414 #endif
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
417 #endif
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
430
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
434 unsigned int clock_warps, clock_overflows, clock_underflows;
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
437 u64 tick_timestamp;
438
439 atomic_t nr_iowait;
440
441 #ifdef CONFIG_SMP
442 struct root_domain *rd;
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
448 /* cpu of this runqueue: */
449 int cpu;
450
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
453 #endif
454
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459 #endif
460
461 #ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
470
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
475
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
479
480 /* BKL stats */
481 unsigned int bkl_count;
482 #endif
483 struct lock_class_key rq_lock_key;
484 };
485
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
487
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489 {
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491 }
492
493 static inline int cpu_of(struct rq *rq)
494 {
495 #ifdef CONFIG_SMP
496 return rq->cpu;
497 #else
498 return 0;
499 #endif
500 }
501
502 /*
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
505 */
506 static void __update_rq_clock(struct rq *rq)
507 {
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515 #endif
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
541 }
542
543 static void update_rq_clock(struct rq *rq)
544 {
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
547 }
548
549 /*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
558
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
564 unsigned long rt_needs_cpu(int cpu)
565 {
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579 }
580
581 /*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
586 #else
587 # define const_debug static const
588 #endif
589
590 /*
591 * Debugging: various feature bits
592 */
593 enum {
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
601 };
602
603 const_debug unsigned int sysctl_sched_features =
604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
611
612 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
613
614 /*
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
617 */
618 const_debug unsigned int sysctl_sched_nr_migrate = 32;
619
620 /*
621 * period over which we measure -rt task cpu usage in us.
622 * default: 1s
623 */
624 unsigned int sysctl_sched_rt_period = 1000000;
625
626 static __read_mostly int scheduler_running;
627
628 /*
629 * part of the period that we allow rt tasks to run in us.
630 * default: 0.95s
631 */
632 int sysctl_sched_rt_runtime = 950000;
633
634 /*
635 * single value that denotes runtime == period, ie unlimited time.
636 */
637 #define RUNTIME_INF ((u64)~0ULL)
638
639 /*
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
642 */
643 unsigned long long cpu_clock(int cpu)
644 {
645 unsigned long long now;
646 unsigned long flags;
647 struct rq *rq;
648
649 /*
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
652 */
653 if (unlikely(!scheduler_running))
654 return 0;
655
656 local_irq_save(flags);
657 rq = cpu_rq(cpu);
658 update_rq_clock(rq);
659 now = rq->clock;
660 local_irq_restore(flags);
661
662 return now;
663 }
664 EXPORT_SYMBOL_GPL(cpu_clock);
665
666 #ifndef prepare_arch_switch
667 # define prepare_arch_switch(next) do { } while (0)
668 #endif
669 #ifndef finish_arch_switch
670 # define finish_arch_switch(prev) do { } while (0)
671 #endif
672
673 static inline int task_current(struct rq *rq, struct task_struct *p)
674 {
675 return rq->curr == p;
676 }
677
678 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
679 static inline int task_running(struct rq *rq, struct task_struct *p)
680 {
681 return task_current(rq, p);
682 }
683
684 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
685 {
686 }
687
688 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
689 {
690 #ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
693 #endif
694 /*
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
697 * prev into current:
698 */
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
700
701 spin_unlock_irq(&rq->lock);
702 }
703
704 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
705 static inline int task_running(struct rq *rq, struct task_struct *p)
706 {
707 #ifdef CONFIG_SMP
708 return p->oncpu;
709 #else
710 return task_current(rq, p);
711 #endif
712 }
713
714 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
715 {
716 #ifdef CONFIG_SMP
717 /*
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
720 * here.
721 */
722 next->oncpu = 1;
723 #endif
724 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
726 #else
727 spin_unlock(&rq->lock);
728 #endif
729 }
730
731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 {
733 #ifdef CONFIG_SMP
734 /*
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->oncpu = 0;
741 #endif
742 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 local_irq_enable();
744 #endif
745 }
746 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
747
748 /*
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
751 */
752 static inline struct rq *__task_rq_lock(struct task_struct *p)
753 __acquires(rq->lock)
754 {
755 for (;;) {
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
759 return rq;
760 spin_unlock(&rq->lock);
761 }
762 }
763
764 /*
765 * task_rq_lock - lock the runqueue a given task resides on and disable
766 * interrupts. Note the ordering: we can safely lookup the task_rq without
767 * explicitly disabling preemption.
768 */
769 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
770 __acquires(rq->lock)
771 {
772 struct rq *rq;
773
774 for (;;) {
775 local_irq_save(*flags);
776 rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
780 spin_unlock_irqrestore(&rq->lock, *flags);
781 }
782 }
783
784 static void __task_rq_unlock(struct rq *rq)
785 __releases(rq->lock)
786 {
787 spin_unlock(&rq->lock);
788 }
789
790 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
791 __releases(rq->lock)
792 {
793 spin_unlock_irqrestore(&rq->lock, *flags);
794 }
795
796 /*
797 * this_rq_lock - lock this runqueue and disable interrupts.
798 */
799 static struct rq *this_rq_lock(void)
800 __acquires(rq->lock)
801 {
802 struct rq *rq;
803
804 local_irq_disable();
805 rq = this_rq();
806 spin_lock(&rq->lock);
807
808 return rq;
809 }
810
811 /*
812 * We are going deep-idle (irqs are disabled):
813 */
814 void sched_clock_idle_sleep_event(void)
815 {
816 struct rq *rq = cpu_rq(smp_processor_id());
817
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
822 }
823 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
824
825 /*
826 * We just idled delta nanoseconds (called with irqs disabled):
827 */
828 void sched_clock_idle_wakeup_event(u64 delta_ns)
829 {
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
832
833 rq->idle_clock += delta_ns;
834 /*
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
838 * rq clock:
839 */
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
844 touch_softlockup_watchdog();
845 }
846 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
847
848 static void __resched_task(struct task_struct *p, int tif_bit);
849
850 static inline void resched_task(struct task_struct *p)
851 {
852 __resched_task(p, TIF_NEED_RESCHED);
853 }
854
855 #ifdef CONFIG_SCHED_HRTICK
856 /*
857 * Use HR-timers to deliver accurate preemption points.
858 *
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
861 * reschedule event.
862 *
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
864 * rq->lock.
865 */
866 static inline void resched_hrt(struct task_struct *p)
867 {
868 __resched_task(p, TIF_HRTICK_RESCHED);
869 }
870
871 static inline void resched_rq(struct rq *rq)
872 {
873 unsigned long flags;
874
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
878 }
879
880 enum {
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
883 };
884
885 /*
886 * Use hrtick when:
887 * - enabled by features
888 * - hrtimer is actually high res
889 */
890 static inline int hrtick_enabled(struct rq *rq)
891 {
892 if (!sched_feat(HRTICK))
893 return 0;
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
895 }
896
897 /*
898 * Called to set the hrtick timer state.
899 *
900 * called with rq->lock held and irqs disabled
901 */
902 static void hrtick_start(struct rq *rq, u64 delay, int reset)
903 {
904 assert_spin_locked(&rq->lock);
905
906 /*
907 * preempt at: now + delay
908 */
909 rq->hrtick_expire =
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
911 /*
912 * indicate we need to program the timer
913 */
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
915 if (reset)
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
917
918 /*
919 * New slices are called from the schedule path and don't need a
920 * forced reschedule.
921 */
922 if (reset)
923 resched_hrt(rq->curr);
924 }
925
926 static void hrtick_clear(struct rq *rq)
927 {
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
930 }
931
932 /*
933 * Update the timer from the possible pending state.
934 */
935 static void hrtick_set(struct rq *rq)
936 {
937 ktime_t time;
938 int set, reset;
939 unsigned long flags;
940
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
942
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
949
950 if (set) {
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
953 resched_rq(rq);
954 } else
955 hrtick_clear(rq);
956 }
957
958 /*
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
961 */
962 static enum hrtimer_restart hrtick(struct hrtimer *timer)
963 {
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
965
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
967
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
972
973 return HRTIMER_NORESTART;
974 }
975
976 static inline void init_rq_hrtick(struct rq *rq)
977 {
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
982 }
983
984 void hrtick_resched(void)
985 {
986 struct rq *rq;
987 unsigned long flags;
988
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
990 return;
991
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
994 hrtick_set(rq);
995 local_irq_restore(flags);
996 }
997 #else
998 static inline void hrtick_clear(struct rq *rq)
999 {
1000 }
1001
1002 static inline void hrtick_set(struct rq *rq)
1003 {
1004 }
1005
1006 static inline void init_rq_hrtick(struct rq *rq)
1007 {
1008 }
1009
1010 void hrtick_resched(void)
1011 {
1012 }
1013 #endif
1014
1015 /*
1016 * resched_task - mark a task 'to be rescheduled now'.
1017 *
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1020 * the target CPU.
1021 */
1022 #ifdef CONFIG_SMP
1023
1024 #ifndef tsk_is_polling
1025 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1026 #endif
1027
1028 static void __resched_task(struct task_struct *p, int tif_bit)
1029 {
1030 int cpu;
1031
1032 assert_spin_locked(&task_rq(p)->lock);
1033
1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1035 return;
1036
1037 set_tsk_thread_flag(p, tif_bit);
1038
1039 cpu = task_cpu(p);
1040 if (cpu == smp_processor_id())
1041 return;
1042
1043 /* NEED_RESCHED must be visible before we test polling */
1044 smp_mb();
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1047 }
1048
1049 static void resched_cpu(int cpu)
1050 {
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1053
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1055 return;
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1058 }
1059 #else
1060 static void __resched_task(struct task_struct *p, int tif_bit)
1061 {
1062 assert_spin_locked(&task_rq(p)->lock);
1063 set_tsk_thread_flag(p, tif_bit);
1064 }
1065 #endif
1066
1067 #if BITS_PER_LONG == 32
1068 # define WMULT_CONST (~0UL)
1069 #else
1070 # define WMULT_CONST (1UL << 32)
1071 #endif
1072
1073 #define WMULT_SHIFT 32
1074
1075 /*
1076 * Shift right and round:
1077 */
1078 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1079
1080 static unsigned long
1081 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1083 {
1084 u64 tmp;
1085
1086 if (unlikely(!lw->inv_weight))
1087 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1088
1089 tmp = (u64)delta_exec * weight;
1090 /*
1091 * Check whether we'd overflow the 64-bit multiplication:
1092 */
1093 if (unlikely(tmp > WMULT_CONST))
1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1095 WMULT_SHIFT/2);
1096 else
1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1098
1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1100 }
1101
1102 static inline unsigned long
1103 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1104 {
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1106 }
1107
1108 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1109 {
1110 lw->weight += inc;
1111 lw->inv_weight = 0;
1112 }
1113
1114 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1115 {
1116 lw->weight -= dec;
1117 lw->inv_weight = 0;
1118 }
1119
1120 /*
1121 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1122 * of tasks with abnormal "nice" values across CPUs the contribution that
1123 * each task makes to its run queue's load is weighted according to its
1124 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1125 * scaled version of the new time slice allocation that they receive on time
1126 * slice expiry etc.
1127 */
1128
1129 #define WEIGHT_IDLEPRIO 2
1130 #define WMULT_IDLEPRIO (1 << 31)
1131
1132 /*
1133 * Nice levels are multiplicative, with a gentle 10% change for every
1134 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1135 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1136 * that remained on nice 0.
1137 *
1138 * The "10% effect" is relative and cumulative: from _any_ nice level,
1139 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1140 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1141 * If a task goes up by ~10% and another task goes down by ~10% then
1142 * the relative distance between them is ~25%.)
1143 */
1144 static const int prio_to_weight[40] = {
1145 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1146 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1147 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1148 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1149 /* 0 */ 1024, 820, 655, 526, 423,
1150 /* 5 */ 335, 272, 215, 172, 137,
1151 /* 10 */ 110, 87, 70, 56, 45,
1152 /* 15 */ 36, 29, 23, 18, 15,
1153 };
1154
1155 /*
1156 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1157 *
1158 * In cases where the weight does not change often, we can use the
1159 * precalculated inverse to speed up arithmetics by turning divisions
1160 * into multiplications:
1161 */
1162 static const u32 prio_to_wmult[40] = {
1163 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1164 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1165 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1166 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1167 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1168 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1169 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1170 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1171 };
1172
1173 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1174
1175 /*
1176 * runqueue iterator, to support SMP load-balancing between different
1177 * scheduling classes, without having to expose their internal data
1178 * structures to the load-balancing proper:
1179 */
1180 struct rq_iterator {
1181 void *arg;
1182 struct task_struct *(*start)(void *);
1183 struct task_struct *(*next)(void *);
1184 };
1185
1186 #ifdef CONFIG_SMP
1187 static unsigned long
1188 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1189 unsigned long max_load_move, struct sched_domain *sd,
1190 enum cpu_idle_type idle, int *all_pinned,
1191 int *this_best_prio, struct rq_iterator *iterator);
1192
1193 static int
1194 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1195 struct sched_domain *sd, enum cpu_idle_type idle,
1196 struct rq_iterator *iterator);
1197 #endif
1198
1199 #ifdef CONFIG_CGROUP_CPUACCT
1200 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1201 #else
1202 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1203 #endif
1204
1205 #ifdef CONFIG_SMP
1206 static unsigned long source_load(int cpu, int type);
1207 static unsigned long target_load(int cpu, int type);
1208 static unsigned long cpu_avg_load_per_task(int cpu);
1209 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1210 #endif /* CONFIG_SMP */
1211
1212 #include "sched_stats.h"
1213 #include "sched_idletask.c"
1214 #include "sched_fair.c"
1215 #include "sched_rt.c"
1216 #ifdef CONFIG_SCHED_DEBUG
1217 # include "sched_debug.c"
1218 #endif
1219
1220 #define sched_class_highest (&rt_sched_class)
1221
1222 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1223 {
1224 update_load_add(&rq->load, p->se.load.weight);
1225 }
1226
1227 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1228 {
1229 update_load_sub(&rq->load, p->se.load.weight);
1230 }
1231
1232 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1233 {
1234 rq->nr_running++;
1235 inc_load(rq, p);
1236 }
1237
1238 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1239 {
1240 rq->nr_running--;
1241 dec_load(rq, p);
1242 }
1243
1244 static void set_load_weight(struct task_struct *p)
1245 {
1246 if (task_has_rt_policy(p)) {
1247 p->se.load.weight = prio_to_weight[0] * 2;
1248 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1249 return;
1250 }
1251
1252 /*
1253 * SCHED_IDLE tasks get minimal weight:
1254 */
1255 if (p->policy == SCHED_IDLE) {
1256 p->se.load.weight = WEIGHT_IDLEPRIO;
1257 p->se.load.inv_weight = WMULT_IDLEPRIO;
1258 return;
1259 }
1260
1261 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1262 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1263 }
1264
1265 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1266 {
1267 sched_info_queued(p);
1268 p->sched_class->enqueue_task(rq, p, wakeup);
1269 p->se.on_rq = 1;
1270 }
1271
1272 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1273 {
1274 p->sched_class->dequeue_task(rq, p, sleep);
1275 p->se.on_rq = 0;
1276 }
1277
1278 /*
1279 * __normal_prio - return the priority that is based on the static prio
1280 */
1281 static inline int __normal_prio(struct task_struct *p)
1282 {
1283 return p->static_prio;
1284 }
1285
1286 /*
1287 * Calculate the expected normal priority: i.e. priority
1288 * without taking RT-inheritance into account. Might be
1289 * boosted by interactivity modifiers. Changes upon fork,
1290 * setprio syscalls, and whenever the interactivity
1291 * estimator recalculates.
1292 */
1293 static inline int normal_prio(struct task_struct *p)
1294 {
1295 int prio;
1296
1297 if (task_has_rt_policy(p))
1298 prio = MAX_RT_PRIO-1 - p->rt_priority;
1299 else
1300 prio = __normal_prio(p);
1301 return prio;
1302 }
1303
1304 /*
1305 * Calculate the current priority, i.e. the priority
1306 * taken into account by the scheduler. This value might
1307 * be boosted by RT tasks, or might be boosted by
1308 * interactivity modifiers. Will be RT if the task got
1309 * RT-boosted. If not then it returns p->normal_prio.
1310 */
1311 static int effective_prio(struct task_struct *p)
1312 {
1313 p->normal_prio = normal_prio(p);
1314 /*
1315 * If we are RT tasks or we were boosted to RT priority,
1316 * keep the priority unchanged. Otherwise, update priority
1317 * to the normal priority:
1318 */
1319 if (!rt_prio(p->prio))
1320 return p->normal_prio;
1321 return p->prio;
1322 }
1323
1324 /*
1325 * activate_task - move a task to the runqueue.
1326 */
1327 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1328 {
1329 if (task_contributes_to_load(p))
1330 rq->nr_uninterruptible--;
1331
1332 enqueue_task(rq, p, wakeup);
1333 inc_nr_running(p, rq);
1334 }
1335
1336 /*
1337 * deactivate_task - remove a task from the runqueue.
1338 */
1339 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1340 {
1341 if (task_contributes_to_load(p))
1342 rq->nr_uninterruptible++;
1343
1344 dequeue_task(rq, p, sleep);
1345 dec_nr_running(p, rq);
1346 }
1347
1348 /**
1349 * task_curr - is this task currently executing on a CPU?
1350 * @p: the task in question.
1351 */
1352 inline int task_curr(const struct task_struct *p)
1353 {
1354 return cpu_curr(task_cpu(p)) == p;
1355 }
1356
1357 /* Used instead of source_load when we know the type == 0 */
1358 unsigned long weighted_cpuload(const int cpu)
1359 {
1360 return cpu_rq(cpu)->load.weight;
1361 }
1362
1363 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1364 {
1365 set_task_rq(p, cpu);
1366 #ifdef CONFIG_SMP
1367 /*
1368 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1369 * successfuly executed on another CPU. We must ensure that updates of
1370 * per-task data have been completed by this moment.
1371 */
1372 smp_wmb();
1373 task_thread_info(p)->cpu = cpu;
1374 #endif
1375 }
1376
1377 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1378 const struct sched_class *prev_class,
1379 int oldprio, int running)
1380 {
1381 if (prev_class != p->sched_class) {
1382 if (prev_class->switched_from)
1383 prev_class->switched_from(rq, p, running);
1384 p->sched_class->switched_to(rq, p, running);
1385 } else
1386 p->sched_class->prio_changed(rq, p, oldprio, running);
1387 }
1388
1389 #ifdef CONFIG_SMP
1390
1391 /*
1392 * Is this task likely cache-hot:
1393 */
1394 static int
1395 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1396 {
1397 s64 delta;
1398
1399 if (p->sched_class != &fair_sched_class)
1400 return 0;
1401
1402 if (sysctl_sched_migration_cost == -1)
1403 return 1;
1404 if (sysctl_sched_migration_cost == 0)
1405 return 0;
1406
1407 delta = now - p->se.exec_start;
1408
1409 return delta < (s64)sysctl_sched_migration_cost;
1410 }
1411
1412
1413 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1414 {
1415 int old_cpu = task_cpu(p);
1416 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1417 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1418 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1419 u64 clock_offset;
1420
1421 clock_offset = old_rq->clock - new_rq->clock;
1422
1423 #ifdef CONFIG_SCHEDSTATS
1424 if (p->se.wait_start)
1425 p->se.wait_start -= clock_offset;
1426 if (p->se.sleep_start)
1427 p->se.sleep_start -= clock_offset;
1428 if (p->se.block_start)
1429 p->se.block_start -= clock_offset;
1430 if (old_cpu != new_cpu) {
1431 schedstat_inc(p, se.nr_migrations);
1432 if (task_hot(p, old_rq->clock, NULL))
1433 schedstat_inc(p, se.nr_forced2_migrations);
1434 }
1435 #endif
1436 p->se.vruntime -= old_cfsrq->min_vruntime -
1437 new_cfsrq->min_vruntime;
1438
1439 __set_task_cpu(p, new_cpu);
1440 }
1441
1442 struct migration_req {
1443 struct list_head list;
1444
1445 struct task_struct *task;
1446 int dest_cpu;
1447
1448 struct completion done;
1449 };
1450
1451 /*
1452 * The task's runqueue lock must be held.
1453 * Returns true if you have to wait for migration thread.
1454 */
1455 static int
1456 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1457 {
1458 struct rq *rq = task_rq(p);
1459
1460 /*
1461 * If the task is not on a runqueue (and not running), then
1462 * it is sufficient to simply update the task's cpu field.
1463 */
1464 if (!p->se.on_rq && !task_running(rq, p)) {
1465 set_task_cpu(p, dest_cpu);
1466 return 0;
1467 }
1468
1469 init_completion(&req->done);
1470 req->task = p;
1471 req->dest_cpu = dest_cpu;
1472 list_add(&req->list, &rq->migration_queue);
1473
1474 return 1;
1475 }
1476
1477 /*
1478 * wait_task_inactive - wait for a thread to unschedule.
1479 *
1480 * The caller must ensure that the task *will* unschedule sometime soon,
1481 * else this function might spin for a *long* time. This function can't
1482 * be called with interrupts off, or it may introduce deadlock with
1483 * smp_call_function() if an IPI is sent by the same process we are
1484 * waiting to become inactive.
1485 */
1486 void wait_task_inactive(struct task_struct *p)
1487 {
1488 unsigned long flags;
1489 int running, on_rq;
1490 struct rq *rq;
1491
1492 for (;;) {
1493 /*
1494 * We do the initial early heuristics without holding
1495 * any task-queue locks at all. We'll only try to get
1496 * the runqueue lock when things look like they will
1497 * work out!
1498 */
1499 rq = task_rq(p);
1500
1501 /*
1502 * If the task is actively running on another CPU
1503 * still, just relax and busy-wait without holding
1504 * any locks.
1505 *
1506 * NOTE! Since we don't hold any locks, it's not
1507 * even sure that "rq" stays as the right runqueue!
1508 * But we don't care, since "task_running()" will
1509 * return false if the runqueue has changed and p
1510 * is actually now running somewhere else!
1511 */
1512 while (task_running(rq, p))
1513 cpu_relax();
1514
1515 /*
1516 * Ok, time to look more closely! We need the rq
1517 * lock now, to be *sure*. If we're wrong, we'll
1518 * just go back and repeat.
1519 */
1520 rq = task_rq_lock(p, &flags);
1521 running = task_running(rq, p);
1522 on_rq = p->se.on_rq;
1523 task_rq_unlock(rq, &flags);
1524
1525 /*
1526 * Was it really running after all now that we
1527 * checked with the proper locks actually held?
1528 *
1529 * Oops. Go back and try again..
1530 */
1531 if (unlikely(running)) {
1532 cpu_relax();
1533 continue;
1534 }
1535
1536 /*
1537 * It's not enough that it's not actively running,
1538 * it must be off the runqueue _entirely_, and not
1539 * preempted!
1540 *
1541 * So if it wa still runnable (but just not actively
1542 * running right now), it's preempted, and we should
1543 * yield - it could be a while.
1544 */
1545 if (unlikely(on_rq)) {
1546 schedule_timeout_uninterruptible(1);
1547 continue;
1548 }
1549
1550 /*
1551 * Ahh, all good. It wasn't running, and it wasn't
1552 * runnable, which means that it will never become
1553 * running in the future either. We're all done!
1554 */
1555 break;
1556 }
1557 }
1558
1559 /***
1560 * kick_process - kick a running thread to enter/exit the kernel
1561 * @p: the to-be-kicked thread
1562 *
1563 * Cause a process which is running on another CPU to enter
1564 * kernel-mode, without any delay. (to get signals handled.)
1565 *
1566 * NOTE: this function doesnt have to take the runqueue lock,
1567 * because all it wants to ensure is that the remote task enters
1568 * the kernel. If the IPI races and the task has been migrated
1569 * to another CPU then no harm is done and the purpose has been
1570 * achieved as well.
1571 */
1572 void kick_process(struct task_struct *p)
1573 {
1574 int cpu;
1575
1576 preempt_disable();
1577 cpu = task_cpu(p);
1578 if ((cpu != smp_processor_id()) && task_curr(p))
1579 smp_send_reschedule(cpu);
1580 preempt_enable();
1581 }
1582
1583 /*
1584 * Return a low guess at the load of a migration-source cpu weighted
1585 * according to the scheduling class and "nice" value.
1586 *
1587 * We want to under-estimate the load of migration sources, to
1588 * balance conservatively.
1589 */
1590 static unsigned long source_load(int cpu, int type)
1591 {
1592 struct rq *rq = cpu_rq(cpu);
1593 unsigned long total = weighted_cpuload(cpu);
1594
1595 if (type == 0)
1596 return total;
1597
1598 return min(rq->cpu_load[type-1], total);
1599 }
1600
1601 /*
1602 * Return a high guess at the load of a migration-target cpu weighted
1603 * according to the scheduling class and "nice" value.
1604 */
1605 static unsigned long target_load(int cpu, int type)
1606 {
1607 struct rq *rq = cpu_rq(cpu);
1608 unsigned long total = weighted_cpuload(cpu);
1609
1610 if (type == 0)
1611 return total;
1612
1613 return max(rq->cpu_load[type-1], total);
1614 }
1615
1616 /*
1617 * Return the average load per task on the cpu's run queue
1618 */
1619 static unsigned long cpu_avg_load_per_task(int cpu)
1620 {
1621 struct rq *rq = cpu_rq(cpu);
1622 unsigned long total = weighted_cpuload(cpu);
1623 unsigned long n = rq->nr_running;
1624
1625 return n ? total / n : SCHED_LOAD_SCALE;
1626 }
1627
1628 /*
1629 * find_idlest_group finds and returns the least busy CPU group within the
1630 * domain.
1631 */
1632 static struct sched_group *
1633 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1634 {
1635 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1636 unsigned long min_load = ULONG_MAX, this_load = 0;
1637 int load_idx = sd->forkexec_idx;
1638 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1639
1640 do {
1641 unsigned long load, avg_load;
1642 int local_group;
1643 int i;
1644
1645 /* Skip over this group if it has no CPUs allowed */
1646 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1647 continue;
1648
1649 local_group = cpu_isset(this_cpu, group->cpumask);
1650
1651 /* Tally up the load of all CPUs in the group */
1652 avg_load = 0;
1653
1654 for_each_cpu_mask(i, group->cpumask) {
1655 /* Bias balancing toward cpus of our domain */
1656 if (local_group)
1657 load = source_load(i, load_idx);
1658 else
1659 load = target_load(i, load_idx);
1660
1661 avg_load += load;
1662 }
1663
1664 /* Adjust by relative CPU power of the group */
1665 avg_load = sg_div_cpu_power(group,
1666 avg_load * SCHED_LOAD_SCALE);
1667
1668 if (local_group) {
1669 this_load = avg_load;
1670 this = group;
1671 } else if (avg_load < min_load) {
1672 min_load = avg_load;
1673 idlest = group;
1674 }
1675 } while (group = group->next, group != sd->groups);
1676
1677 if (!idlest || 100*this_load < imbalance*min_load)
1678 return NULL;
1679 return idlest;
1680 }
1681
1682 /*
1683 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1684 */
1685 static int
1686 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1687 {
1688 cpumask_t tmp;
1689 unsigned long load, min_load = ULONG_MAX;
1690 int idlest = -1;
1691 int i;
1692
1693 /* Traverse only the allowed CPUs */
1694 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1695
1696 for_each_cpu_mask(i, tmp) {
1697 load = weighted_cpuload(i);
1698
1699 if (load < min_load || (load == min_load && i == this_cpu)) {
1700 min_load = load;
1701 idlest = i;
1702 }
1703 }
1704
1705 return idlest;
1706 }
1707
1708 /*
1709 * sched_balance_self: balance the current task (running on cpu) in domains
1710 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1711 * SD_BALANCE_EXEC.
1712 *
1713 * Balance, ie. select the least loaded group.
1714 *
1715 * Returns the target CPU number, or the same CPU if no balancing is needed.
1716 *
1717 * preempt must be disabled.
1718 */
1719 static int sched_balance_self(int cpu, int flag)
1720 {
1721 struct task_struct *t = current;
1722 struct sched_domain *tmp, *sd = NULL;
1723
1724 for_each_domain(cpu, tmp) {
1725 /*
1726 * If power savings logic is enabled for a domain, stop there.
1727 */
1728 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1729 break;
1730 if (tmp->flags & flag)
1731 sd = tmp;
1732 }
1733
1734 while (sd) {
1735 cpumask_t span;
1736 struct sched_group *group;
1737 int new_cpu, weight;
1738
1739 if (!(sd->flags & flag)) {
1740 sd = sd->child;
1741 continue;
1742 }
1743
1744 span = sd->span;
1745 group = find_idlest_group(sd, t, cpu);
1746 if (!group) {
1747 sd = sd->child;
1748 continue;
1749 }
1750
1751 new_cpu = find_idlest_cpu(group, t, cpu);
1752 if (new_cpu == -1 || new_cpu == cpu) {
1753 /* Now try balancing at a lower domain level of cpu */
1754 sd = sd->child;
1755 continue;
1756 }
1757
1758 /* Now try balancing at a lower domain level of new_cpu */
1759 cpu = new_cpu;
1760 sd = NULL;
1761 weight = cpus_weight(span);
1762 for_each_domain(cpu, tmp) {
1763 if (weight <= cpus_weight(tmp->span))
1764 break;
1765 if (tmp->flags & flag)
1766 sd = tmp;
1767 }
1768 /* while loop will break here if sd == NULL */
1769 }
1770
1771 return cpu;
1772 }
1773
1774 #endif /* CONFIG_SMP */
1775
1776 /***
1777 * try_to_wake_up - wake up a thread
1778 * @p: the to-be-woken-up thread
1779 * @state: the mask of task states that can be woken
1780 * @sync: do a synchronous wakeup?
1781 *
1782 * Put it on the run-queue if it's not already there. The "current"
1783 * thread is always on the run-queue (except when the actual
1784 * re-schedule is in progress), and as such you're allowed to do
1785 * the simpler "current->state = TASK_RUNNING" to mark yourself
1786 * runnable without the overhead of this.
1787 *
1788 * returns failure only if the task is already active.
1789 */
1790 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1791 {
1792 int cpu, orig_cpu, this_cpu, success = 0;
1793 unsigned long flags;
1794 long old_state;
1795 struct rq *rq;
1796
1797 smp_wmb();
1798 rq = task_rq_lock(p, &flags);
1799 old_state = p->state;
1800 if (!(old_state & state))
1801 goto out;
1802
1803 if (p->se.on_rq)
1804 goto out_running;
1805
1806 cpu = task_cpu(p);
1807 orig_cpu = cpu;
1808 this_cpu = smp_processor_id();
1809
1810 #ifdef CONFIG_SMP
1811 if (unlikely(task_running(rq, p)))
1812 goto out_activate;
1813
1814 cpu = p->sched_class->select_task_rq(p, sync);
1815 if (cpu != orig_cpu) {
1816 set_task_cpu(p, cpu);
1817 task_rq_unlock(rq, &flags);
1818 /* might preempt at this point */
1819 rq = task_rq_lock(p, &flags);
1820 old_state = p->state;
1821 if (!(old_state & state))
1822 goto out;
1823 if (p->se.on_rq)
1824 goto out_running;
1825
1826 this_cpu = smp_processor_id();
1827 cpu = task_cpu(p);
1828 }
1829
1830 #ifdef CONFIG_SCHEDSTATS
1831 schedstat_inc(rq, ttwu_count);
1832 if (cpu == this_cpu)
1833 schedstat_inc(rq, ttwu_local);
1834 else {
1835 struct sched_domain *sd;
1836 for_each_domain(this_cpu, sd) {
1837 if (cpu_isset(cpu, sd->span)) {
1838 schedstat_inc(sd, ttwu_wake_remote);
1839 break;
1840 }
1841 }
1842 }
1843 #endif
1844
1845 out_activate:
1846 #endif /* CONFIG_SMP */
1847 schedstat_inc(p, se.nr_wakeups);
1848 if (sync)
1849 schedstat_inc(p, se.nr_wakeups_sync);
1850 if (orig_cpu != cpu)
1851 schedstat_inc(p, se.nr_wakeups_migrate);
1852 if (cpu == this_cpu)
1853 schedstat_inc(p, se.nr_wakeups_local);
1854 else
1855 schedstat_inc(p, se.nr_wakeups_remote);
1856 update_rq_clock(rq);
1857 activate_task(rq, p, 1);
1858 check_preempt_curr(rq, p);
1859 success = 1;
1860
1861 out_running:
1862 p->state = TASK_RUNNING;
1863 #ifdef CONFIG_SMP
1864 if (p->sched_class->task_wake_up)
1865 p->sched_class->task_wake_up(rq, p);
1866 #endif
1867 out:
1868 task_rq_unlock(rq, &flags);
1869
1870 return success;
1871 }
1872
1873 int wake_up_process(struct task_struct *p)
1874 {
1875 return try_to_wake_up(p, TASK_ALL, 0);
1876 }
1877 EXPORT_SYMBOL(wake_up_process);
1878
1879 int wake_up_state(struct task_struct *p, unsigned int state)
1880 {
1881 return try_to_wake_up(p, state, 0);
1882 }
1883
1884 /*
1885 * Perform scheduler related setup for a newly forked process p.
1886 * p is forked by current.
1887 *
1888 * __sched_fork() is basic setup used by init_idle() too:
1889 */
1890 static void __sched_fork(struct task_struct *p)
1891 {
1892 p->se.exec_start = 0;
1893 p->se.sum_exec_runtime = 0;
1894 p->se.prev_sum_exec_runtime = 0;
1895
1896 #ifdef CONFIG_SCHEDSTATS
1897 p->se.wait_start = 0;
1898 p->se.sum_sleep_runtime = 0;
1899 p->se.sleep_start = 0;
1900 p->se.block_start = 0;
1901 p->se.sleep_max = 0;
1902 p->se.block_max = 0;
1903 p->se.exec_max = 0;
1904 p->se.slice_max = 0;
1905 p->se.wait_max = 0;
1906 #endif
1907
1908 INIT_LIST_HEAD(&p->rt.run_list);
1909 p->se.on_rq = 0;
1910
1911 #ifdef CONFIG_PREEMPT_NOTIFIERS
1912 INIT_HLIST_HEAD(&p->preempt_notifiers);
1913 #endif
1914
1915 /*
1916 * We mark the process as running here, but have not actually
1917 * inserted it onto the runqueue yet. This guarantees that
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
1921 p->state = TASK_RUNNING;
1922 }
1923
1924 /*
1925 * fork()/clone()-time setup:
1926 */
1927 void sched_fork(struct task_struct *p, int clone_flags)
1928 {
1929 int cpu = get_cpu();
1930
1931 __sched_fork(p);
1932
1933 #ifdef CONFIG_SMP
1934 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1935 #endif
1936 set_task_cpu(p, cpu);
1937
1938 /*
1939 * Make sure we do not leak PI boosting priority to the child:
1940 */
1941 p->prio = current->normal_prio;
1942 if (!rt_prio(p->prio))
1943 p->sched_class = &fair_sched_class;
1944
1945 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1946 if (likely(sched_info_on()))
1947 memset(&p->sched_info, 0, sizeof(p->sched_info));
1948 #endif
1949 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1950 p->oncpu = 0;
1951 #endif
1952 #ifdef CONFIG_PREEMPT
1953 /* Want to start with kernel preemption disabled. */
1954 task_thread_info(p)->preempt_count = 1;
1955 #endif
1956 put_cpu();
1957 }
1958
1959 /*
1960 * wake_up_new_task - wake up a newly created task for the first time.
1961 *
1962 * This function will do some initial scheduler statistics housekeeping
1963 * that must be done for every newly created context, then puts the task
1964 * on the runqueue and wakes it.
1965 */
1966 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1967 {
1968 unsigned long flags;
1969 struct rq *rq;
1970
1971 rq = task_rq_lock(p, &flags);
1972 BUG_ON(p->state != TASK_RUNNING);
1973 update_rq_clock(rq);
1974
1975 p->prio = effective_prio(p);
1976
1977 if (!p->sched_class->task_new || !current->se.on_rq) {
1978 activate_task(rq, p, 0);
1979 } else {
1980 /*
1981 * Let the scheduling class do new task startup
1982 * management (if any):
1983 */
1984 p->sched_class->task_new(rq, p);
1985 inc_nr_running(p, rq);
1986 }
1987 check_preempt_curr(rq, p);
1988 #ifdef CONFIG_SMP
1989 if (p->sched_class->task_wake_up)
1990 p->sched_class->task_wake_up(rq, p);
1991 #endif
1992 task_rq_unlock(rq, &flags);
1993 }
1994
1995 #ifdef CONFIG_PREEMPT_NOTIFIERS
1996
1997 /**
1998 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1999 * @notifier: notifier struct to register
2000 */
2001 void preempt_notifier_register(struct preempt_notifier *notifier)
2002 {
2003 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2004 }
2005 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2006
2007 /**
2008 * preempt_notifier_unregister - no longer interested in preemption notifications
2009 * @notifier: notifier struct to unregister
2010 *
2011 * This is safe to call from within a preemption notifier.
2012 */
2013 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2014 {
2015 hlist_del(&notifier->link);
2016 }
2017 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2018
2019 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2020 {
2021 struct preempt_notifier *notifier;
2022 struct hlist_node *node;
2023
2024 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2025 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2026 }
2027
2028 static void
2029 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2030 struct task_struct *next)
2031 {
2032 struct preempt_notifier *notifier;
2033 struct hlist_node *node;
2034
2035 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2036 notifier->ops->sched_out(notifier, next);
2037 }
2038
2039 #else
2040
2041 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2042 {
2043 }
2044
2045 static void
2046 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2047 struct task_struct *next)
2048 {
2049 }
2050
2051 #endif
2052
2053 /**
2054 * prepare_task_switch - prepare to switch tasks
2055 * @rq: the runqueue preparing to switch
2056 * @prev: the current task that is being switched out
2057 * @next: the task we are going to switch to.
2058 *
2059 * This is called with the rq lock held and interrupts off. It must
2060 * be paired with a subsequent finish_task_switch after the context
2061 * switch.
2062 *
2063 * prepare_task_switch sets up locking and calls architecture specific
2064 * hooks.
2065 */
2066 static inline void
2067 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2068 struct task_struct *next)
2069 {
2070 fire_sched_out_preempt_notifiers(prev, next);
2071 prepare_lock_switch(rq, next);
2072 prepare_arch_switch(next);
2073 }
2074
2075 /**
2076 * finish_task_switch - clean up after a task-switch
2077 * @rq: runqueue associated with task-switch
2078 * @prev: the thread we just switched away from.
2079 *
2080 * finish_task_switch must be called after the context switch, paired
2081 * with a prepare_task_switch call before the context switch.
2082 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2083 * and do any other architecture-specific cleanup actions.
2084 *
2085 * Note that we may have delayed dropping an mm in context_switch(). If
2086 * so, we finish that here outside of the runqueue lock. (Doing it
2087 * with the lock held can cause deadlocks; see schedule() for
2088 * details.)
2089 */
2090 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2091 __releases(rq->lock)
2092 {
2093 struct mm_struct *mm = rq->prev_mm;
2094 long prev_state;
2095
2096 rq->prev_mm = NULL;
2097
2098 /*
2099 * A task struct has one reference for the use as "current".
2100 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2101 * schedule one last time. The schedule call will never return, and
2102 * the scheduled task must drop that reference.
2103 * The test for TASK_DEAD must occur while the runqueue locks are
2104 * still held, otherwise prev could be scheduled on another cpu, die
2105 * there before we look at prev->state, and then the reference would
2106 * be dropped twice.
2107 * Manfred Spraul <manfred@colorfullife.com>
2108 */
2109 prev_state = prev->state;
2110 finish_arch_switch(prev);
2111 finish_lock_switch(rq, prev);
2112 #ifdef CONFIG_SMP
2113 if (current->sched_class->post_schedule)
2114 current->sched_class->post_schedule(rq);
2115 #endif
2116
2117 fire_sched_in_preempt_notifiers(current);
2118 if (mm)
2119 mmdrop(mm);
2120 if (unlikely(prev_state == TASK_DEAD)) {
2121 /*
2122 * Remove function-return probe instances associated with this
2123 * task and put them back on the free list.
2124 */
2125 kprobe_flush_task(prev);
2126 put_task_struct(prev);
2127 }
2128 }
2129
2130 /**
2131 * schedule_tail - first thing a freshly forked thread must call.
2132 * @prev: the thread we just switched away from.
2133 */
2134 asmlinkage void schedule_tail(struct task_struct *prev)
2135 __releases(rq->lock)
2136 {
2137 struct rq *rq = this_rq();
2138
2139 finish_task_switch(rq, prev);
2140 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2141 /* In this case, finish_task_switch does not reenable preemption */
2142 preempt_enable();
2143 #endif
2144 if (current->set_child_tid)
2145 put_user(task_pid_vnr(current), current->set_child_tid);
2146 }
2147
2148 /*
2149 * context_switch - switch to the new MM and the new
2150 * thread's register state.
2151 */
2152 static inline void
2153 context_switch(struct rq *rq, struct task_struct *prev,
2154 struct task_struct *next)
2155 {
2156 struct mm_struct *mm, *oldmm;
2157
2158 prepare_task_switch(rq, prev, next);
2159 mm = next->mm;
2160 oldmm = prev->active_mm;
2161 /*
2162 * For paravirt, this is coupled with an exit in switch_to to
2163 * combine the page table reload and the switch backend into
2164 * one hypercall.
2165 */
2166 arch_enter_lazy_cpu_mode();
2167
2168 if (unlikely(!mm)) {
2169 next->active_mm = oldmm;
2170 atomic_inc(&oldmm->mm_count);
2171 enter_lazy_tlb(oldmm, next);
2172 } else
2173 switch_mm(oldmm, mm, next);
2174
2175 if (unlikely(!prev->mm)) {
2176 prev->active_mm = NULL;
2177 rq->prev_mm = oldmm;
2178 }
2179 /*
2180 * Since the runqueue lock will be released by the next
2181 * task (which is an invalid locking op but in the case
2182 * of the scheduler it's an obvious special-case), so we
2183 * do an early lockdep release here:
2184 */
2185 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2186 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2187 #endif
2188
2189 /* Here we just switch the register state and the stack. */
2190 switch_to(prev, next, prev);
2191
2192 barrier();
2193 /*
2194 * this_rq must be evaluated again because prev may have moved
2195 * CPUs since it called schedule(), thus the 'rq' on its stack
2196 * frame will be invalid.
2197 */
2198 finish_task_switch(this_rq(), prev);
2199 }
2200
2201 /*
2202 * nr_running, nr_uninterruptible and nr_context_switches:
2203 *
2204 * externally visible scheduler statistics: current number of runnable
2205 * threads, current number of uninterruptible-sleeping threads, total
2206 * number of context switches performed since bootup.
2207 */
2208 unsigned long nr_running(void)
2209 {
2210 unsigned long i, sum = 0;
2211
2212 for_each_online_cpu(i)
2213 sum += cpu_rq(i)->nr_running;
2214
2215 return sum;
2216 }
2217
2218 unsigned long nr_uninterruptible(void)
2219 {
2220 unsigned long i, sum = 0;
2221
2222 for_each_possible_cpu(i)
2223 sum += cpu_rq(i)->nr_uninterruptible;
2224
2225 /*
2226 * Since we read the counters lockless, it might be slightly
2227 * inaccurate. Do not allow it to go below zero though:
2228 */
2229 if (unlikely((long)sum < 0))
2230 sum = 0;
2231
2232 return sum;
2233 }
2234
2235 unsigned long long nr_context_switches(void)
2236 {
2237 int i;
2238 unsigned long long sum = 0;
2239
2240 for_each_possible_cpu(i)
2241 sum += cpu_rq(i)->nr_switches;
2242
2243 return sum;
2244 }
2245
2246 unsigned long nr_iowait(void)
2247 {
2248 unsigned long i, sum = 0;
2249
2250 for_each_possible_cpu(i)
2251 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2252
2253 return sum;
2254 }
2255
2256 unsigned long nr_active(void)
2257 {
2258 unsigned long i, running = 0, uninterruptible = 0;
2259
2260 for_each_online_cpu(i) {
2261 running += cpu_rq(i)->nr_running;
2262 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2263 }
2264
2265 if (unlikely((long)uninterruptible < 0))
2266 uninterruptible = 0;
2267
2268 return running + uninterruptible;
2269 }
2270
2271 /*
2272 * Update rq->cpu_load[] statistics. This function is usually called every
2273 * scheduler tick (TICK_NSEC).
2274 */
2275 static void update_cpu_load(struct rq *this_rq)
2276 {
2277 unsigned long this_load = this_rq->load.weight;
2278 int i, scale;
2279
2280 this_rq->nr_load_updates++;
2281
2282 /* Update our load: */
2283 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2284 unsigned long old_load, new_load;
2285
2286 /* scale is effectively 1 << i now, and >> i divides by scale */
2287
2288 old_load = this_rq->cpu_load[i];
2289 new_load = this_load;
2290 /*
2291 * Round up the averaging division if load is increasing. This
2292 * prevents us from getting stuck on 9 if the load is 10, for
2293 * example.
2294 */
2295 if (new_load > old_load)
2296 new_load += scale-1;
2297 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2298 }
2299 }
2300
2301 #ifdef CONFIG_SMP
2302
2303 /*
2304 * double_rq_lock - safely lock two runqueues
2305 *
2306 * Note this does not disable interrupts like task_rq_lock,
2307 * you need to do so manually before calling.
2308 */
2309 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2310 __acquires(rq1->lock)
2311 __acquires(rq2->lock)
2312 {
2313 BUG_ON(!irqs_disabled());
2314 if (rq1 == rq2) {
2315 spin_lock(&rq1->lock);
2316 __acquire(rq2->lock); /* Fake it out ;) */
2317 } else {
2318 if (rq1 < rq2) {
2319 spin_lock(&rq1->lock);
2320 spin_lock(&rq2->lock);
2321 } else {
2322 spin_lock(&rq2->lock);
2323 spin_lock(&rq1->lock);
2324 }
2325 }
2326 update_rq_clock(rq1);
2327 update_rq_clock(rq2);
2328 }
2329
2330 /*
2331 * double_rq_unlock - safely unlock two runqueues
2332 *
2333 * Note this does not restore interrupts like task_rq_unlock,
2334 * you need to do so manually after calling.
2335 */
2336 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2337 __releases(rq1->lock)
2338 __releases(rq2->lock)
2339 {
2340 spin_unlock(&rq1->lock);
2341 if (rq1 != rq2)
2342 spin_unlock(&rq2->lock);
2343 else
2344 __release(rq2->lock);
2345 }
2346
2347 /*
2348 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2349 */
2350 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2351 __releases(this_rq->lock)
2352 __acquires(busiest->lock)
2353 __acquires(this_rq->lock)
2354 {
2355 int ret = 0;
2356
2357 if (unlikely(!irqs_disabled())) {
2358 /* printk() doesn't work good under rq->lock */
2359 spin_unlock(&this_rq->lock);
2360 BUG_ON(1);
2361 }
2362 if (unlikely(!spin_trylock(&busiest->lock))) {
2363 if (busiest < this_rq) {
2364 spin_unlock(&this_rq->lock);
2365 spin_lock(&busiest->lock);
2366 spin_lock(&this_rq->lock);
2367 ret = 1;
2368 } else
2369 spin_lock(&busiest->lock);
2370 }
2371 return ret;
2372 }
2373
2374 /*
2375 * If dest_cpu is allowed for this process, migrate the task to it.
2376 * This is accomplished by forcing the cpu_allowed mask to only
2377 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2378 * the cpu_allowed mask is restored.
2379 */
2380 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2381 {
2382 struct migration_req req;
2383 unsigned long flags;
2384 struct rq *rq;
2385
2386 rq = task_rq_lock(p, &flags);
2387 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2388 || unlikely(cpu_is_offline(dest_cpu)))
2389 goto out;
2390
2391 /* force the process onto the specified CPU */
2392 if (migrate_task(p, dest_cpu, &req)) {
2393 /* Need to wait for migration thread (might exit: take ref). */
2394 struct task_struct *mt = rq->migration_thread;
2395
2396 get_task_struct(mt);
2397 task_rq_unlock(rq, &flags);
2398 wake_up_process(mt);
2399 put_task_struct(mt);
2400 wait_for_completion(&req.done);
2401
2402 return;
2403 }
2404 out:
2405 task_rq_unlock(rq, &flags);
2406 }
2407
2408 /*
2409 * sched_exec - execve() is a valuable balancing opportunity, because at
2410 * this point the task has the smallest effective memory and cache footprint.
2411 */
2412 void sched_exec(void)
2413 {
2414 int new_cpu, this_cpu = get_cpu();
2415 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2416 put_cpu();
2417 if (new_cpu != this_cpu)
2418 sched_migrate_task(current, new_cpu);
2419 }
2420
2421 /*
2422 * pull_task - move a task from a remote runqueue to the local runqueue.
2423 * Both runqueues must be locked.
2424 */
2425 static void pull_task(struct rq *src_rq, struct task_struct *p,
2426 struct rq *this_rq, int this_cpu)
2427 {
2428 deactivate_task(src_rq, p, 0);
2429 set_task_cpu(p, this_cpu);
2430 activate_task(this_rq, p, 0);
2431 /*
2432 * Note that idle threads have a prio of MAX_PRIO, for this test
2433 * to be always true for them.
2434 */
2435 check_preempt_curr(this_rq, p);
2436 }
2437
2438 /*
2439 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2440 */
2441 static
2442 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2443 struct sched_domain *sd, enum cpu_idle_type idle,
2444 int *all_pinned)
2445 {
2446 /*
2447 * We do not migrate tasks that are:
2448 * 1) running (obviously), or
2449 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2450 * 3) are cache-hot on their current CPU.
2451 */
2452 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2453 schedstat_inc(p, se.nr_failed_migrations_affine);
2454 return 0;
2455 }
2456 *all_pinned = 0;
2457
2458 if (task_running(rq, p)) {
2459 schedstat_inc(p, se.nr_failed_migrations_running);
2460 return 0;
2461 }
2462
2463 /*
2464 * Aggressive migration if:
2465 * 1) task is cache cold, or
2466 * 2) too many balance attempts have failed.
2467 */
2468
2469 if (!task_hot(p, rq->clock, sd) ||
2470 sd->nr_balance_failed > sd->cache_nice_tries) {
2471 #ifdef CONFIG_SCHEDSTATS
2472 if (task_hot(p, rq->clock, sd)) {
2473 schedstat_inc(sd, lb_hot_gained[idle]);
2474 schedstat_inc(p, se.nr_forced_migrations);
2475 }
2476 #endif
2477 return 1;
2478 }
2479
2480 if (task_hot(p, rq->clock, sd)) {
2481 schedstat_inc(p, se.nr_failed_migrations_hot);
2482 return 0;
2483 }
2484 return 1;
2485 }
2486
2487 static unsigned long
2488 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2489 unsigned long max_load_move, struct sched_domain *sd,
2490 enum cpu_idle_type idle, int *all_pinned,
2491 int *this_best_prio, struct rq_iterator *iterator)
2492 {
2493 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2494 struct task_struct *p;
2495 long rem_load_move = max_load_move;
2496
2497 if (max_load_move == 0)
2498 goto out;
2499
2500 pinned = 1;
2501
2502 /*
2503 * Start the load-balancing iterator:
2504 */
2505 p = iterator->start(iterator->arg);
2506 next:
2507 if (!p || loops++ > sysctl_sched_nr_migrate)
2508 goto out;
2509 /*
2510 * To help distribute high priority tasks across CPUs we don't
2511 * skip a task if it will be the highest priority task (i.e. smallest
2512 * prio value) on its new queue regardless of its load weight
2513 */
2514 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2515 SCHED_LOAD_SCALE_FUZZ;
2516 if ((skip_for_load && p->prio >= *this_best_prio) ||
2517 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2518 p = iterator->next(iterator->arg);
2519 goto next;
2520 }
2521
2522 pull_task(busiest, p, this_rq, this_cpu);
2523 pulled++;
2524 rem_load_move -= p->se.load.weight;
2525
2526 /*
2527 * We only want to steal up to the prescribed amount of weighted load.
2528 */
2529 if (rem_load_move > 0) {
2530 if (p->prio < *this_best_prio)
2531 *this_best_prio = p->prio;
2532 p = iterator->next(iterator->arg);
2533 goto next;
2534 }
2535 out:
2536 /*
2537 * Right now, this is one of only two places pull_task() is called,
2538 * so we can safely collect pull_task() stats here rather than
2539 * inside pull_task().
2540 */
2541 schedstat_add(sd, lb_gained[idle], pulled);
2542
2543 if (all_pinned)
2544 *all_pinned = pinned;
2545
2546 return max_load_move - rem_load_move;
2547 }
2548
2549 /*
2550 * move_tasks tries to move up to max_load_move weighted load from busiest to
2551 * this_rq, as part of a balancing operation within domain "sd".
2552 * Returns 1 if successful and 0 otherwise.
2553 *
2554 * Called with both runqueues locked.
2555 */
2556 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2557 unsigned long max_load_move,
2558 struct sched_domain *sd, enum cpu_idle_type idle,
2559 int *all_pinned)
2560 {
2561 const struct sched_class *class = sched_class_highest;
2562 unsigned long total_load_moved = 0;
2563 int this_best_prio = this_rq->curr->prio;
2564
2565 do {
2566 total_load_moved +=
2567 class->load_balance(this_rq, this_cpu, busiest,
2568 max_load_move - total_load_moved,
2569 sd, idle, all_pinned, &this_best_prio);
2570 class = class->next;
2571 } while (class && max_load_move > total_load_moved);
2572
2573 return total_load_moved > 0;
2574 }
2575
2576 static int
2577 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2578 struct sched_domain *sd, enum cpu_idle_type idle,
2579 struct rq_iterator *iterator)
2580 {
2581 struct task_struct *p = iterator->start(iterator->arg);
2582 int pinned = 0;
2583
2584 while (p) {
2585 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2586 pull_task(busiest, p, this_rq, this_cpu);
2587 /*
2588 * Right now, this is only the second place pull_task()
2589 * is called, so we can safely collect pull_task()
2590 * stats here rather than inside pull_task().
2591 */
2592 schedstat_inc(sd, lb_gained[idle]);
2593
2594 return 1;
2595 }
2596 p = iterator->next(iterator->arg);
2597 }
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * move_one_task tries to move exactly one task from busiest to this_rq, as
2604 * part of active balancing operations within "domain".
2605 * Returns 1 if successful and 0 otherwise.
2606 *
2607 * Called with both runqueues locked.
2608 */
2609 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2610 struct sched_domain *sd, enum cpu_idle_type idle)
2611 {
2612 const struct sched_class *class;
2613
2614 for (class = sched_class_highest; class; class = class->next)
2615 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2616 return 1;
2617
2618 return 0;
2619 }
2620
2621 /*
2622 * find_busiest_group finds and returns the busiest CPU group within the
2623 * domain. It calculates and returns the amount of weighted load which
2624 * should be moved to restore balance via the imbalance parameter.
2625 */
2626 static struct sched_group *
2627 find_busiest_group(struct sched_domain *sd, int this_cpu,
2628 unsigned long *imbalance, enum cpu_idle_type idle,
2629 int *sd_idle, cpumask_t *cpus, int *balance)
2630 {
2631 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2632 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2633 unsigned long max_pull;
2634 unsigned long busiest_load_per_task, busiest_nr_running;
2635 unsigned long this_load_per_task, this_nr_running;
2636 int load_idx, group_imb = 0;
2637 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2638 int power_savings_balance = 1;
2639 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2640 unsigned long min_nr_running = ULONG_MAX;
2641 struct sched_group *group_min = NULL, *group_leader = NULL;
2642 #endif
2643
2644 max_load = this_load = total_load = total_pwr = 0;
2645 busiest_load_per_task = busiest_nr_running = 0;
2646 this_load_per_task = this_nr_running = 0;
2647 if (idle == CPU_NOT_IDLE)
2648 load_idx = sd->busy_idx;
2649 else if (idle == CPU_NEWLY_IDLE)
2650 load_idx = sd->newidle_idx;
2651 else
2652 load_idx = sd->idle_idx;
2653
2654 do {
2655 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2656 int local_group;
2657 int i;
2658 int __group_imb = 0;
2659 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2660 unsigned long sum_nr_running, sum_weighted_load;
2661
2662 local_group = cpu_isset(this_cpu, group->cpumask);
2663
2664 if (local_group)
2665 balance_cpu = first_cpu(group->cpumask);
2666
2667 /* Tally up the load of all CPUs in the group */
2668 sum_weighted_load = sum_nr_running = avg_load = 0;
2669 max_cpu_load = 0;
2670 min_cpu_load = ~0UL;
2671
2672 for_each_cpu_mask(i, group->cpumask) {
2673 struct rq *rq;
2674
2675 if (!cpu_isset(i, *cpus))
2676 continue;
2677
2678 rq = cpu_rq(i);
2679
2680 if (*sd_idle && rq->nr_running)
2681 *sd_idle = 0;
2682
2683 /* Bias balancing toward cpus of our domain */
2684 if (local_group) {
2685 if (idle_cpu(i) && !first_idle_cpu) {
2686 first_idle_cpu = 1;
2687 balance_cpu = i;
2688 }
2689
2690 load = target_load(i, load_idx);
2691 } else {
2692 load = source_load(i, load_idx);
2693 if (load > max_cpu_load)
2694 max_cpu_load = load;
2695 if (min_cpu_load > load)
2696 min_cpu_load = load;
2697 }
2698
2699 avg_load += load;
2700 sum_nr_running += rq->nr_running;
2701 sum_weighted_load += weighted_cpuload(i);
2702 }
2703
2704 /*
2705 * First idle cpu or the first cpu(busiest) in this sched group
2706 * is eligible for doing load balancing at this and above
2707 * domains. In the newly idle case, we will allow all the cpu's
2708 * to do the newly idle load balance.
2709 */
2710 if (idle != CPU_NEWLY_IDLE && local_group &&
2711 balance_cpu != this_cpu && balance) {
2712 *balance = 0;
2713 goto ret;
2714 }
2715
2716 total_load += avg_load;
2717 total_pwr += group->__cpu_power;
2718
2719 /* Adjust by relative CPU power of the group */
2720 avg_load = sg_div_cpu_power(group,
2721 avg_load * SCHED_LOAD_SCALE);
2722
2723 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2724 __group_imb = 1;
2725
2726 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2727
2728 if (local_group) {
2729 this_load = avg_load;
2730 this = group;
2731 this_nr_running = sum_nr_running;
2732 this_load_per_task = sum_weighted_load;
2733 } else if (avg_load > max_load &&
2734 (sum_nr_running > group_capacity || __group_imb)) {
2735 max_load = avg_load;
2736 busiest = group;
2737 busiest_nr_running = sum_nr_running;
2738 busiest_load_per_task = sum_weighted_load;
2739 group_imb = __group_imb;
2740 }
2741
2742 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2743 /*
2744 * Busy processors will not participate in power savings
2745 * balance.
2746 */
2747 if (idle == CPU_NOT_IDLE ||
2748 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2749 goto group_next;
2750
2751 /*
2752 * If the local group is idle or completely loaded
2753 * no need to do power savings balance at this domain
2754 */
2755 if (local_group && (this_nr_running >= group_capacity ||
2756 !this_nr_running))
2757 power_savings_balance = 0;
2758
2759 /*
2760 * If a group is already running at full capacity or idle,
2761 * don't include that group in power savings calculations
2762 */
2763 if (!power_savings_balance || sum_nr_running >= group_capacity
2764 || !sum_nr_running)
2765 goto group_next;
2766
2767 /*
2768 * Calculate the group which has the least non-idle load.
2769 * This is the group from where we need to pick up the load
2770 * for saving power
2771 */
2772 if ((sum_nr_running < min_nr_running) ||
2773 (sum_nr_running == min_nr_running &&
2774 first_cpu(group->cpumask) <
2775 first_cpu(group_min->cpumask))) {
2776 group_min = group;
2777 min_nr_running = sum_nr_running;
2778 min_load_per_task = sum_weighted_load /
2779 sum_nr_running;
2780 }
2781
2782 /*
2783 * Calculate the group which is almost near its
2784 * capacity but still has some space to pick up some load
2785 * from other group and save more power
2786 */
2787 if (sum_nr_running <= group_capacity - 1) {
2788 if (sum_nr_running > leader_nr_running ||
2789 (sum_nr_running == leader_nr_running &&
2790 first_cpu(group->cpumask) >
2791 first_cpu(group_leader->cpumask))) {
2792 group_leader = group;
2793 leader_nr_running = sum_nr_running;
2794 }
2795 }
2796 group_next:
2797 #endif
2798 group = group->next;
2799 } while (group != sd->groups);
2800
2801 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2802 goto out_balanced;
2803
2804 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2805
2806 if (this_load >= avg_load ||
2807 100*max_load <= sd->imbalance_pct*this_load)
2808 goto out_balanced;
2809
2810 busiest_load_per_task /= busiest_nr_running;
2811 if (group_imb)
2812 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2813
2814 /*
2815 * We're trying to get all the cpus to the average_load, so we don't
2816 * want to push ourselves above the average load, nor do we wish to
2817 * reduce the max loaded cpu below the average load, as either of these
2818 * actions would just result in more rebalancing later, and ping-pong
2819 * tasks around. Thus we look for the minimum possible imbalance.
2820 * Negative imbalances (*we* are more loaded than anyone else) will
2821 * be counted as no imbalance for these purposes -- we can't fix that
2822 * by pulling tasks to us. Be careful of negative numbers as they'll
2823 * appear as very large values with unsigned longs.
2824 */
2825 if (max_load <= busiest_load_per_task)
2826 goto out_balanced;
2827
2828 /*
2829 * In the presence of smp nice balancing, certain scenarios can have
2830 * max load less than avg load(as we skip the groups at or below
2831 * its cpu_power, while calculating max_load..)
2832 */
2833 if (max_load < avg_load) {
2834 *imbalance = 0;
2835 goto small_imbalance;
2836 }
2837
2838 /* Don't want to pull so many tasks that a group would go idle */
2839 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2840
2841 /* How much load to actually move to equalise the imbalance */
2842 *imbalance = min(max_pull * busiest->__cpu_power,
2843 (avg_load - this_load) * this->__cpu_power)
2844 / SCHED_LOAD_SCALE;
2845
2846 /*
2847 * if *imbalance is less than the average load per runnable task
2848 * there is no gaurantee that any tasks will be moved so we'll have
2849 * a think about bumping its value to force at least one task to be
2850 * moved
2851 */
2852 if (*imbalance < busiest_load_per_task) {
2853 unsigned long tmp, pwr_now, pwr_move;
2854 unsigned int imbn;
2855
2856 small_imbalance:
2857 pwr_move = pwr_now = 0;
2858 imbn = 2;
2859 if (this_nr_running) {
2860 this_load_per_task /= this_nr_running;
2861 if (busiest_load_per_task > this_load_per_task)
2862 imbn = 1;
2863 } else
2864 this_load_per_task = SCHED_LOAD_SCALE;
2865
2866 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2867 busiest_load_per_task * imbn) {
2868 *imbalance = busiest_load_per_task;
2869 return busiest;
2870 }
2871
2872 /*
2873 * OK, we don't have enough imbalance to justify moving tasks,
2874 * however we may be able to increase total CPU power used by
2875 * moving them.
2876 */
2877
2878 pwr_now += busiest->__cpu_power *
2879 min(busiest_load_per_task, max_load);
2880 pwr_now += this->__cpu_power *
2881 min(this_load_per_task, this_load);
2882 pwr_now /= SCHED_LOAD_SCALE;
2883
2884 /* Amount of load we'd subtract */
2885 tmp = sg_div_cpu_power(busiest,
2886 busiest_load_per_task * SCHED_LOAD_SCALE);
2887 if (max_load > tmp)
2888 pwr_move += busiest->__cpu_power *
2889 min(busiest_load_per_task, max_load - tmp);
2890
2891 /* Amount of load we'd add */
2892 if (max_load * busiest->__cpu_power <
2893 busiest_load_per_task * SCHED_LOAD_SCALE)
2894 tmp = sg_div_cpu_power(this,
2895 max_load * busiest->__cpu_power);
2896 else
2897 tmp = sg_div_cpu_power(this,
2898 busiest_load_per_task * SCHED_LOAD_SCALE);
2899 pwr_move += this->__cpu_power *
2900 min(this_load_per_task, this_load + tmp);
2901 pwr_move /= SCHED_LOAD_SCALE;
2902
2903 /* Move if we gain throughput */
2904 if (pwr_move > pwr_now)
2905 *imbalance = busiest_load_per_task;
2906 }
2907
2908 return busiest;
2909
2910 out_balanced:
2911 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2912 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2913 goto ret;
2914
2915 if (this == group_leader && group_leader != group_min) {
2916 *imbalance = min_load_per_task;
2917 return group_min;
2918 }
2919 #endif
2920 ret:
2921 *imbalance = 0;
2922 return NULL;
2923 }
2924
2925 /*
2926 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2927 */
2928 static struct rq *
2929 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2930 unsigned long imbalance, cpumask_t *cpus)
2931 {
2932 struct rq *busiest = NULL, *rq;
2933 unsigned long max_load = 0;
2934 int i;
2935
2936 for_each_cpu_mask(i, group->cpumask) {
2937 unsigned long wl;
2938
2939 if (!cpu_isset(i, *cpus))
2940 continue;
2941
2942 rq = cpu_rq(i);
2943 wl = weighted_cpuload(i);
2944
2945 if (rq->nr_running == 1 && wl > imbalance)
2946 continue;
2947
2948 if (wl > max_load) {
2949 max_load = wl;
2950 busiest = rq;
2951 }
2952 }
2953
2954 return busiest;
2955 }
2956
2957 /*
2958 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2959 * so long as it is large enough.
2960 */
2961 #define MAX_PINNED_INTERVAL 512
2962
2963 /*
2964 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2965 * tasks if there is an imbalance.
2966 */
2967 static int load_balance(int this_cpu, struct rq *this_rq,
2968 struct sched_domain *sd, enum cpu_idle_type idle,
2969 int *balance)
2970 {
2971 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2972 struct sched_group *group;
2973 unsigned long imbalance;
2974 struct rq *busiest;
2975 cpumask_t cpus = CPU_MASK_ALL;
2976 unsigned long flags;
2977
2978 /*
2979 * When power savings policy is enabled for the parent domain, idle
2980 * sibling can pick up load irrespective of busy siblings. In this case,
2981 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2982 * portraying it as CPU_NOT_IDLE.
2983 */
2984 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2985 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2986 sd_idle = 1;
2987
2988 schedstat_inc(sd, lb_count[idle]);
2989
2990 redo:
2991 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2992 &cpus, balance);
2993
2994 if (*balance == 0)
2995 goto out_balanced;
2996
2997 if (!group) {
2998 schedstat_inc(sd, lb_nobusyg[idle]);
2999 goto out_balanced;
3000 }
3001
3002 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3003 if (!busiest) {
3004 schedstat_inc(sd, lb_nobusyq[idle]);
3005 goto out_balanced;
3006 }
3007
3008 BUG_ON(busiest == this_rq);
3009
3010 schedstat_add(sd, lb_imbalance[idle], imbalance);
3011
3012 ld_moved = 0;
3013 if (busiest->nr_running > 1) {
3014 /*
3015 * Attempt to move tasks. If find_busiest_group has found
3016 * an imbalance but busiest->nr_running <= 1, the group is
3017 * still unbalanced. ld_moved simply stays zero, so it is
3018 * correctly treated as an imbalance.
3019 */
3020 local_irq_save(flags);
3021 double_rq_lock(this_rq, busiest);
3022 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3023 imbalance, sd, idle, &all_pinned);
3024 double_rq_unlock(this_rq, busiest);
3025 local_irq_restore(flags);
3026
3027 /*
3028 * some other cpu did the load balance for us.
3029 */
3030 if (ld_moved && this_cpu != smp_processor_id())
3031 resched_cpu(this_cpu);
3032
3033 /* All tasks on this runqueue were pinned by CPU affinity */
3034 if (unlikely(all_pinned)) {
3035 cpu_clear(cpu_of(busiest), cpus);
3036 if (!cpus_empty(cpus))
3037 goto redo;
3038 goto out_balanced;
3039 }
3040 }
3041
3042 if (!ld_moved) {
3043 schedstat_inc(sd, lb_failed[idle]);
3044 sd->nr_balance_failed++;
3045
3046 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3047
3048 spin_lock_irqsave(&busiest->lock, flags);
3049
3050 /* don't kick the migration_thread, if the curr
3051 * task on busiest cpu can't be moved to this_cpu
3052 */
3053 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3054 spin_unlock_irqrestore(&busiest->lock, flags);
3055 all_pinned = 1;
3056 goto out_one_pinned;
3057 }
3058
3059 if (!busiest->active_balance) {
3060 busiest->active_balance = 1;
3061 busiest->push_cpu = this_cpu;
3062 active_balance = 1;
3063 }
3064 spin_unlock_irqrestore(&busiest->lock, flags);
3065 if (active_balance)
3066 wake_up_process(busiest->migration_thread);
3067
3068 /*
3069 * We've kicked active balancing, reset the failure
3070 * counter.
3071 */
3072 sd->nr_balance_failed = sd->cache_nice_tries+1;
3073 }
3074 } else
3075 sd->nr_balance_failed = 0;
3076
3077 if (likely(!active_balance)) {
3078 /* We were unbalanced, so reset the balancing interval */
3079 sd->balance_interval = sd->min_interval;
3080 } else {
3081 /*
3082 * If we've begun active balancing, start to back off. This
3083 * case may not be covered by the all_pinned logic if there
3084 * is only 1 task on the busy runqueue (because we don't call
3085 * move_tasks).
3086 */
3087 if (sd->balance_interval < sd->max_interval)
3088 sd->balance_interval *= 2;
3089 }
3090
3091 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3092 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3093 return -1;
3094 return ld_moved;
3095
3096 out_balanced:
3097 schedstat_inc(sd, lb_balanced[idle]);
3098
3099 sd->nr_balance_failed = 0;
3100
3101 out_one_pinned:
3102 /* tune up the balancing interval */
3103 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3104 (sd->balance_interval < sd->max_interval))
3105 sd->balance_interval *= 2;
3106
3107 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3108 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3109 return -1;
3110 return 0;
3111 }
3112
3113 /*
3114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3115 * tasks if there is an imbalance.
3116 *
3117 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3118 * this_rq is locked.
3119 */
3120 static int
3121 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3122 {
3123 struct sched_group *group;
3124 struct rq *busiest = NULL;
3125 unsigned long imbalance;
3126 int ld_moved = 0;
3127 int sd_idle = 0;
3128 int all_pinned = 0;
3129 cpumask_t cpus = CPU_MASK_ALL;
3130
3131 /*
3132 * When power savings policy is enabled for the parent domain, idle
3133 * sibling can pick up load irrespective of busy siblings. In this case,
3134 * let the state of idle sibling percolate up as IDLE, instead of
3135 * portraying it as CPU_NOT_IDLE.
3136 */
3137 if (sd->flags & SD_SHARE_CPUPOWER &&
3138 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3139 sd_idle = 1;
3140
3141 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3142 redo:
3143 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3144 &sd_idle, &cpus, NULL);
3145 if (!group) {
3146 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3147 goto out_balanced;
3148 }
3149
3150 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3151 &cpus);
3152 if (!busiest) {
3153 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3154 goto out_balanced;
3155 }
3156
3157 BUG_ON(busiest == this_rq);
3158
3159 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3160
3161 ld_moved = 0;
3162 if (busiest->nr_running > 1) {
3163 /* Attempt to move tasks */
3164 double_lock_balance(this_rq, busiest);
3165 /* this_rq->clock is already updated */
3166 update_rq_clock(busiest);
3167 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3168 imbalance, sd, CPU_NEWLY_IDLE,
3169 &all_pinned);
3170 spin_unlock(&busiest->lock);
3171
3172 if (unlikely(all_pinned)) {
3173 cpu_clear(cpu_of(busiest), cpus);
3174 if (!cpus_empty(cpus))
3175 goto redo;
3176 }
3177 }
3178
3179 if (!ld_moved) {
3180 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3181 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3182 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3183 return -1;
3184 } else
3185 sd->nr_balance_failed = 0;
3186
3187 return ld_moved;
3188
3189 out_balanced:
3190 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3191 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3192 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3193 return -1;
3194 sd->nr_balance_failed = 0;
3195
3196 return 0;
3197 }
3198
3199 /*
3200 * idle_balance is called by schedule() if this_cpu is about to become
3201 * idle. Attempts to pull tasks from other CPUs.
3202 */
3203 static void idle_balance(int this_cpu, struct rq *this_rq)
3204 {
3205 struct sched_domain *sd;
3206 int pulled_task = -1;
3207 unsigned long next_balance = jiffies + HZ;
3208
3209 for_each_domain(this_cpu, sd) {
3210 unsigned long interval;
3211
3212 if (!(sd->flags & SD_LOAD_BALANCE))
3213 continue;
3214
3215 if (sd->flags & SD_BALANCE_NEWIDLE)
3216 /* If we've pulled tasks over stop searching: */
3217 pulled_task = load_balance_newidle(this_cpu,
3218 this_rq, sd);
3219
3220 interval = msecs_to_jiffies(sd->balance_interval);
3221 if (time_after(next_balance, sd->last_balance + interval))
3222 next_balance = sd->last_balance + interval;
3223 if (pulled_task)
3224 break;
3225 }
3226 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3227 /*
3228 * We are going idle. next_balance may be set based on
3229 * a busy processor. So reset next_balance.
3230 */
3231 this_rq->next_balance = next_balance;
3232 }
3233 }
3234
3235 /*
3236 * active_load_balance is run by migration threads. It pushes running tasks
3237 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3238 * running on each physical CPU where possible, and avoids physical /
3239 * logical imbalances.
3240 *
3241 * Called with busiest_rq locked.
3242 */
3243 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3244 {
3245 int target_cpu = busiest_rq->push_cpu;
3246 struct sched_domain *sd;
3247 struct rq *target_rq;
3248
3249 /* Is there any task to move? */
3250 if (busiest_rq->nr_running <= 1)
3251 return;
3252
3253 target_rq = cpu_rq(target_cpu);
3254
3255 /*
3256 * This condition is "impossible", if it occurs
3257 * we need to fix it. Originally reported by
3258 * Bjorn Helgaas on a 128-cpu setup.
3259 */
3260 BUG_ON(busiest_rq == target_rq);
3261
3262 /* move a task from busiest_rq to target_rq */
3263 double_lock_balance(busiest_rq, target_rq);
3264 update_rq_clock(busiest_rq);
3265 update_rq_clock(target_rq);
3266
3267 /* Search for an sd spanning us and the target CPU. */
3268 for_each_domain(target_cpu, sd) {
3269 if ((sd->flags & SD_LOAD_BALANCE) &&
3270 cpu_isset(busiest_cpu, sd->span))
3271 break;
3272 }
3273
3274 if (likely(sd)) {
3275 schedstat_inc(sd, alb_count);
3276
3277 if (move_one_task(target_rq, target_cpu, busiest_rq,
3278 sd, CPU_IDLE))
3279 schedstat_inc(sd, alb_pushed);
3280 else
3281 schedstat_inc(sd, alb_failed);
3282 }
3283 spin_unlock(&target_rq->lock);
3284 }
3285
3286 #ifdef CONFIG_NO_HZ
3287 static struct {
3288 atomic_t load_balancer;
3289 cpumask_t cpu_mask;
3290 } nohz ____cacheline_aligned = {
3291 .load_balancer = ATOMIC_INIT(-1),
3292 .cpu_mask = CPU_MASK_NONE,
3293 };
3294
3295 /*
3296 * This routine will try to nominate the ilb (idle load balancing)
3297 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3298 * load balancing on behalf of all those cpus. If all the cpus in the system
3299 * go into this tickless mode, then there will be no ilb owner (as there is
3300 * no need for one) and all the cpus will sleep till the next wakeup event
3301 * arrives...
3302 *
3303 * For the ilb owner, tick is not stopped. And this tick will be used
3304 * for idle load balancing. ilb owner will still be part of
3305 * nohz.cpu_mask..
3306 *
3307 * While stopping the tick, this cpu will become the ilb owner if there
3308 * is no other owner. And will be the owner till that cpu becomes busy
3309 * or if all cpus in the system stop their ticks at which point
3310 * there is no need for ilb owner.
3311 *
3312 * When the ilb owner becomes busy, it nominates another owner, during the
3313 * next busy scheduler_tick()
3314 */
3315 int select_nohz_load_balancer(int stop_tick)
3316 {
3317 int cpu = smp_processor_id();
3318
3319 if (stop_tick) {
3320 cpu_set(cpu, nohz.cpu_mask);
3321 cpu_rq(cpu)->in_nohz_recently = 1;
3322
3323 /*
3324 * If we are going offline and still the leader, give up!
3325 */
3326 if (cpu_is_offline(cpu) &&
3327 atomic_read(&nohz.load_balancer) == cpu) {
3328 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3329 BUG();
3330 return 0;
3331 }
3332
3333 /* time for ilb owner also to sleep */
3334 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3335 if (atomic_read(&nohz.load_balancer) == cpu)
3336 atomic_set(&nohz.load_balancer, -1);
3337 return 0;
3338 }
3339
3340 if (atomic_read(&nohz.load_balancer) == -1) {
3341 /* make me the ilb owner */
3342 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3343 return 1;
3344 } else if (atomic_read(&nohz.load_balancer) == cpu)
3345 return 1;
3346 } else {
3347 if (!cpu_isset(cpu, nohz.cpu_mask))
3348 return 0;
3349
3350 cpu_clear(cpu, nohz.cpu_mask);
3351
3352 if (atomic_read(&nohz.load_balancer) == cpu)
3353 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3354 BUG();
3355 }
3356 return 0;
3357 }
3358 #endif
3359
3360 static DEFINE_SPINLOCK(balancing);
3361
3362 /*
3363 * It checks each scheduling domain to see if it is due to be balanced,
3364 * and initiates a balancing operation if so.
3365 *
3366 * Balancing parameters are set up in arch_init_sched_domains.
3367 */
3368 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3369 {
3370 int balance = 1;
3371 struct rq *rq = cpu_rq(cpu);
3372 unsigned long interval;
3373 struct sched_domain *sd;
3374 /* Earliest time when we have to do rebalance again */
3375 unsigned long next_balance = jiffies + 60*HZ;
3376 int update_next_balance = 0;
3377
3378 for_each_domain(cpu, sd) {
3379 if (!(sd->flags & SD_LOAD_BALANCE))
3380 continue;
3381
3382 interval = sd->balance_interval;
3383 if (idle != CPU_IDLE)
3384 interval *= sd->busy_factor;
3385
3386 /* scale ms to jiffies */
3387 interval = msecs_to_jiffies(interval);
3388 if (unlikely(!interval))
3389 interval = 1;
3390 if (interval > HZ*NR_CPUS/10)
3391 interval = HZ*NR_CPUS/10;
3392
3393
3394 if (sd->flags & SD_SERIALIZE) {
3395 if (!spin_trylock(&balancing))
3396 goto out;
3397 }
3398
3399 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3400 if (load_balance(cpu, rq, sd, idle, &balance)) {
3401 /*
3402 * We've pulled tasks over so either we're no
3403 * longer idle, or one of our SMT siblings is
3404 * not idle.
3405 */
3406 idle = CPU_NOT_IDLE;
3407 }
3408 sd->last_balance = jiffies;
3409 }
3410 if (sd->flags & SD_SERIALIZE)
3411 spin_unlock(&balancing);
3412 out:
3413 if (time_after(next_balance, sd->last_balance + interval)) {
3414 next_balance = sd->last_balance + interval;
3415 update_next_balance = 1;
3416 }
3417
3418 /*
3419 * Stop the load balance at this level. There is another
3420 * CPU in our sched group which is doing load balancing more
3421 * actively.
3422 */
3423 if (!balance)
3424 break;
3425 }
3426
3427 /*
3428 * next_balance will be updated only when there is a need.
3429 * When the cpu is attached to null domain for ex, it will not be
3430 * updated.
3431 */
3432 if (likely(update_next_balance))
3433 rq->next_balance = next_balance;
3434 }
3435
3436 /*
3437 * run_rebalance_domains is triggered when needed from the scheduler tick.
3438 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3439 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3440 */
3441 static void run_rebalance_domains(struct softirq_action *h)
3442 {
3443 int this_cpu = smp_processor_id();
3444 struct rq *this_rq = cpu_rq(this_cpu);
3445 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3446 CPU_IDLE : CPU_NOT_IDLE;
3447
3448 rebalance_domains(this_cpu, idle);
3449
3450 #ifdef CONFIG_NO_HZ
3451 /*
3452 * If this cpu is the owner for idle load balancing, then do the
3453 * balancing on behalf of the other idle cpus whose ticks are
3454 * stopped.
3455 */
3456 if (this_rq->idle_at_tick &&
3457 atomic_read(&nohz.load_balancer) == this_cpu) {
3458 cpumask_t cpus = nohz.cpu_mask;
3459 struct rq *rq;
3460 int balance_cpu;
3461
3462 cpu_clear(this_cpu, cpus);
3463 for_each_cpu_mask(balance_cpu, cpus) {
3464 /*
3465 * If this cpu gets work to do, stop the load balancing
3466 * work being done for other cpus. Next load
3467 * balancing owner will pick it up.
3468 */
3469 if (need_resched())
3470 break;
3471
3472 rebalance_domains(balance_cpu, CPU_IDLE);
3473
3474 rq = cpu_rq(balance_cpu);
3475 if (time_after(this_rq->next_balance, rq->next_balance))
3476 this_rq->next_balance = rq->next_balance;
3477 }
3478 }
3479 #endif
3480 }
3481
3482 /*
3483 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3484 *
3485 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3486 * idle load balancing owner or decide to stop the periodic load balancing,
3487 * if the whole system is idle.
3488 */
3489 static inline void trigger_load_balance(struct rq *rq, int cpu)
3490 {
3491 #ifdef CONFIG_NO_HZ
3492 /*
3493 * If we were in the nohz mode recently and busy at the current
3494 * scheduler tick, then check if we need to nominate new idle
3495 * load balancer.
3496 */
3497 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3498 rq->in_nohz_recently = 0;
3499
3500 if (atomic_read(&nohz.load_balancer) == cpu) {
3501 cpu_clear(cpu, nohz.cpu_mask);
3502 atomic_set(&nohz.load_balancer, -1);
3503 }
3504
3505 if (atomic_read(&nohz.load_balancer) == -1) {
3506 /*
3507 * simple selection for now: Nominate the
3508 * first cpu in the nohz list to be the next
3509 * ilb owner.
3510 *
3511 * TBD: Traverse the sched domains and nominate
3512 * the nearest cpu in the nohz.cpu_mask.
3513 */
3514 int ilb = first_cpu(nohz.cpu_mask);
3515
3516 if (ilb != NR_CPUS)
3517 resched_cpu(ilb);
3518 }
3519 }
3520
3521 /*
3522 * If this cpu is idle and doing idle load balancing for all the
3523 * cpus with ticks stopped, is it time for that to stop?
3524 */
3525 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3526 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3527 resched_cpu(cpu);
3528 return;
3529 }
3530
3531 /*
3532 * If this cpu is idle and the idle load balancing is done by
3533 * someone else, then no need raise the SCHED_SOFTIRQ
3534 */
3535 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3536 cpu_isset(cpu, nohz.cpu_mask))
3537 return;
3538 #endif
3539 if (time_after_eq(jiffies, rq->next_balance))
3540 raise_softirq(SCHED_SOFTIRQ);
3541 }
3542
3543 #else /* CONFIG_SMP */
3544
3545 /*
3546 * on UP we do not need to balance between CPUs:
3547 */
3548 static inline void idle_balance(int cpu, struct rq *rq)
3549 {
3550 }
3551
3552 #endif
3553
3554 DEFINE_PER_CPU(struct kernel_stat, kstat);
3555
3556 EXPORT_PER_CPU_SYMBOL(kstat);
3557
3558 /*
3559 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3560 * that have not yet been banked in case the task is currently running.
3561 */
3562 unsigned long long task_sched_runtime(struct task_struct *p)
3563 {
3564 unsigned long flags;
3565 u64 ns, delta_exec;
3566 struct rq *rq;
3567
3568 rq = task_rq_lock(p, &flags);
3569 ns = p->se.sum_exec_runtime;
3570 if (task_current(rq, p)) {
3571 update_rq_clock(rq);
3572 delta_exec = rq->clock - p->se.exec_start;
3573 if ((s64)delta_exec > 0)
3574 ns += delta_exec;
3575 }
3576 task_rq_unlock(rq, &flags);
3577
3578 return ns;
3579 }
3580
3581 /*
3582 * Account user cpu time to a process.
3583 * @p: the process that the cpu time gets accounted to
3584 * @cputime: the cpu time spent in user space since the last update
3585 */
3586 void account_user_time(struct task_struct *p, cputime_t cputime)
3587 {
3588 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3589 cputime64_t tmp;
3590
3591 p->utime = cputime_add(p->utime, cputime);
3592
3593 /* Add user time to cpustat. */
3594 tmp = cputime_to_cputime64(cputime);
3595 if (TASK_NICE(p) > 0)
3596 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3597 else
3598 cpustat->user = cputime64_add(cpustat->user, tmp);
3599 }
3600
3601 /*
3602 * Account guest cpu time to a process.
3603 * @p: the process that the cpu time gets accounted to
3604 * @cputime: the cpu time spent in virtual machine since the last update
3605 */
3606 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3607 {
3608 cputime64_t tmp;
3609 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3610
3611 tmp = cputime_to_cputime64(cputime);
3612
3613 p->utime = cputime_add(p->utime, cputime);
3614 p->gtime = cputime_add(p->gtime, cputime);
3615
3616 cpustat->user = cputime64_add(cpustat->user, tmp);
3617 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3618 }
3619
3620 /*
3621 * Account scaled user cpu time to a process.
3622 * @p: the process that the cpu time gets accounted to
3623 * @cputime: the cpu time spent in user space since the last update
3624 */
3625 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3626 {
3627 p->utimescaled = cputime_add(p->utimescaled, cputime);
3628 }
3629
3630 /*
3631 * Account system cpu time to a process.
3632 * @p: the process that the cpu time gets accounted to
3633 * @hardirq_offset: the offset to subtract from hardirq_count()
3634 * @cputime: the cpu time spent in kernel space since the last update
3635 */
3636 void account_system_time(struct task_struct *p, int hardirq_offset,
3637 cputime_t cputime)
3638 {
3639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3640 struct rq *rq = this_rq();
3641 cputime64_t tmp;
3642
3643 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3644 return account_guest_time(p, cputime);
3645
3646 p->stime = cputime_add(p->stime, cputime);
3647
3648 /* Add system time to cpustat. */
3649 tmp = cputime_to_cputime64(cputime);
3650 if (hardirq_count() - hardirq_offset)
3651 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3652 else if (softirq_count())
3653 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3654 else if (p != rq->idle)
3655 cpustat->system = cputime64_add(cpustat->system, tmp);
3656 else if (atomic_read(&rq->nr_iowait) > 0)
3657 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3658 else
3659 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3660 /* Account for system time used */
3661 acct_update_integrals(p);
3662 }
3663
3664 /*
3665 * Account scaled system cpu time to a process.
3666 * @p: the process that the cpu time gets accounted to
3667 * @hardirq_offset: the offset to subtract from hardirq_count()
3668 * @cputime: the cpu time spent in kernel space since the last update
3669 */
3670 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3671 {
3672 p->stimescaled = cputime_add(p->stimescaled, cputime);
3673 }
3674
3675 /*
3676 * Account for involuntary wait time.
3677 * @p: the process from which the cpu time has been stolen
3678 * @steal: the cpu time spent in involuntary wait
3679 */
3680 void account_steal_time(struct task_struct *p, cputime_t steal)
3681 {
3682 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3683 cputime64_t tmp = cputime_to_cputime64(steal);
3684 struct rq *rq = this_rq();
3685
3686 if (p == rq->idle) {
3687 p->stime = cputime_add(p->stime, steal);
3688 if (atomic_read(&rq->nr_iowait) > 0)
3689 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3690 else
3691 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3692 } else
3693 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3694 }
3695
3696 /*
3697 * This function gets called by the timer code, with HZ frequency.
3698 * We call it with interrupts disabled.
3699 *
3700 * It also gets called by the fork code, when changing the parent's
3701 * timeslices.
3702 */
3703 void scheduler_tick(void)
3704 {
3705 int cpu = smp_processor_id();
3706 struct rq *rq = cpu_rq(cpu);
3707 struct task_struct *curr = rq->curr;
3708 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3709
3710 spin_lock(&rq->lock);
3711 __update_rq_clock(rq);
3712 /*
3713 * Let rq->clock advance by at least TICK_NSEC:
3714 */
3715 if (unlikely(rq->clock < next_tick)) {
3716 rq->clock = next_tick;
3717 rq->clock_underflows++;
3718 }
3719 rq->tick_timestamp = rq->clock;
3720 update_cpu_load(rq);
3721 curr->sched_class->task_tick(rq, curr, 0);
3722 update_sched_rt_period(rq);
3723 spin_unlock(&rq->lock);
3724
3725 #ifdef CONFIG_SMP
3726 rq->idle_at_tick = idle_cpu(cpu);
3727 trigger_load_balance(rq, cpu);
3728 #endif
3729 }
3730
3731 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3732
3733 void __kprobes add_preempt_count(int val)
3734 {
3735 /*
3736 * Underflow?
3737 */
3738 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3739 return;
3740 preempt_count() += val;
3741 /*
3742 * Spinlock count overflowing soon?
3743 */
3744 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3745 PREEMPT_MASK - 10);
3746 }
3747 EXPORT_SYMBOL(add_preempt_count);
3748
3749 void __kprobes sub_preempt_count(int val)
3750 {
3751 /*
3752 * Underflow?
3753 */
3754 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3755 return;
3756 /*
3757 * Is the spinlock portion underflowing?
3758 */
3759 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3760 !(preempt_count() & PREEMPT_MASK)))
3761 return;
3762
3763 preempt_count() -= val;
3764 }
3765 EXPORT_SYMBOL(sub_preempt_count);
3766
3767 #endif
3768
3769 /*
3770 * Print scheduling while atomic bug:
3771 */
3772 static noinline void __schedule_bug(struct task_struct *prev)
3773 {
3774 struct pt_regs *regs = get_irq_regs();
3775
3776 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3777 prev->comm, prev->pid, preempt_count());
3778
3779 debug_show_held_locks(prev);
3780 if (irqs_disabled())
3781 print_irqtrace_events(prev);
3782
3783 if (regs)
3784 show_regs(regs);
3785 else
3786 dump_stack();
3787 }
3788
3789 /*
3790 * Various schedule()-time debugging checks and statistics:
3791 */
3792 static inline void schedule_debug(struct task_struct *prev)
3793 {
3794 /*
3795 * Test if we are atomic. Since do_exit() needs to call into
3796 * schedule() atomically, we ignore that path for now.
3797 * Otherwise, whine if we are scheduling when we should not be.
3798 */
3799 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3800 __schedule_bug(prev);
3801
3802 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3803
3804 schedstat_inc(this_rq(), sched_count);
3805 #ifdef CONFIG_SCHEDSTATS
3806 if (unlikely(prev->lock_depth >= 0)) {
3807 schedstat_inc(this_rq(), bkl_count);
3808 schedstat_inc(prev, sched_info.bkl_count);
3809 }
3810 #endif
3811 }
3812
3813 /*
3814 * Pick up the highest-prio task:
3815 */
3816 static inline struct task_struct *
3817 pick_next_task(struct rq *rq, struct task_struct *prev)
3818 {
3819 const struct sched_class *class;
3820 struct task_struct *p;
3821
3822 /*
3823 * Optimization: we know that if all tasks are in
3824 * the fair class we can call that function directly:
3825 */
3826 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3827 p = fair_sched_class.pick_next_task(rq);
3828 if (likely(p))
3829 return p;
3830 }
3831
3832 class = sched_class_highest;
3833 for ( ; ; ) {
3834 p = class->pick_next_task(rq);
3835 if (p)
3836 return p;
3837 /*
3838 * Will never be NULL as the idle class always
3839 * returns a non-NULL p:
3840 */
3841 class = class->next;
3842 }
3843 }
3844
3845 /*
3846 * schedule() is the main scheduler function.
3847 */
3848 asmlinkage void __sched schedule(void)
3849 {
3850 struct task_struct *prev, *next;
3851 unsigned long *switch_count;
3852 struct rq *rq;
3853 int cpu;
3854
3855 need_resched:
3856 preempt_disable();
3857 cpu = smp_processor_id();
3858 rq = cpu_rq(cpu);
3859 rcu_qsctr_inc(cpu);
3860 prev = rq->curr;
3861 switch_count = &prev->nivcsw;
3862
3863 release_kernel_lock(prev);
3864 need_resched_nonpreemptible:
3865
3866 schedule_debug(prev);
3867
3868 hrtick_clear(rq);
3869
3870 /*
3871 * Do the rq-clock update outside the rq lock:
3872 */
3873 local_irq_disable();
3874 __update_rq_clock(rq);
3875 spin_lock(&rq->lock);
3876 clear_tsk_need_resched(prev);
3877
3878 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3879 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3880 unlikely(signal_pending(prev)))) {
3881 prev->state = TASK_RUNNING;
3882 } else {
3883 deactivate_task(rq, prev, 1);
3884 }
3885 switch_count = &prev->nvcsw;
3886 }
3887
3888 #ifdef CONFIG_SMP
3889 if (prev->sched_class->pre_schedule)
3890 prev->sched_class->pre_schedule(rq, prev);
3891 #endif
3892
3893 if (unlikely(!rq->nr_running))
3894 idle_balance(cpu, rq);
3895
3896 prev->sched_class->put_prev_task(rq, prev);
3897 next = pick_next_task(rq, prev);
3898
3899 sched_info_switch(prev, next);
3900
3901 if (likely(prev != next)) {
3902 rq->nr_switches++;
3903 rq->curr = next;
3904 ++*switch_count;
3905
3906 context_switch(rq, prev, next); /* unlocks the rq */
3907 /*
3908 * the context switch might have flipped the stack from under
3909 * us, hence refresh the local variables.
3910 */
3911 cpu = smp_processor_id();
3912 rq = cpu_rq(cpu);
3913 } else
3914 spin_unlock_irq(&rq->lock);
3915
3916 hrtick_set(rq);
3917
3918 if (unlikely(reacquire_kernel_lock(current) < 0))
3919 goto need_resched_nonpreemptible;
3920
3921 preempt_enable_no_resched();
3922 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3923 goto need_resched;
3924 }
3925 EXPORT_SYMBOL(schedule);
3926
3927 #ifdef CONFIG_PREEMPT
3928 /*
3929 * this is the entry point to schedule() from in-kernel preemption
3930 * off of preempt_enable. Kernel preemptions off return from interrupt
3931 * occur there and call schedule directly.
3932 */
3933 asmlinkage void __sched preempt_schedule(void)
3934 {
3935 struct thread_info *ti = current_thread_info();
3936 struct task_struct *task = current;
3937 int saved_lock_depth;
3938
3939 /*
3940 * If there is a non-zero preempt_count or interrupts are disabled,
3941 * we do not want to preempt the current task. Just return..
3942 */
3943 if (likely(ti->preempt_count || irqs_disabled()))
3944 return;
3945
3946 do {
3947 add_preempt_count(PREEMPT_ACTIVE);
3948
3949 /*
3950 * We keep the big kernel semaphore locked, but we
3951 * clear ->lock_depth so that schedule() doesnt
3952 * auto-release the semaphore:
3953 */
3954 saved_lock_depth = task->lock_depth;
3955 task->lock_depth = -1;
3956 schedule();
3957 task->lock_depth = saved_lock_depth;
3958 sub_preempt_count(PREEMPT_ACTIVE);
3959
3960 /*
3961 * Check again in case we missed a preemption opportunity
3962 * between schedule and now.
3963 */
3964 barrier();
3965 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3966 }
3967 EXPORT_SYMBOL(preempt_schedule);
3968
3969 /*
3970 * this is the entry point to schedule() from kernel preemption
3971 * off of irq context.
3972 * Note, that this is called and return with irqs disabled. This will
3973 * protect us against recursive calling from irq.
3974 */
3975 asmlinkage void __sched preempt_schedule_irq(void)
3976 {
3977 struct thread_info *ti = current_thread_info();
3978 struct task_struct *task = current;
3979 int saved_lock_depth;
3980
3981 /* Catch callers which need to be fixed */
3982 BUG_ON(ti->preempt_count || !irqs_disabled());
3983
3984 do {
3985 add_preempt_count(PREEMPT_ACTIVE);
3986
3987 /*
3988 * We keep the big kernel semaphore locked, but we
3989 * clear ->lock_depth so that schedule() doesnt
3990 * auto-release the semaphore:
3991 */
3992 saved_lock_depth = task->lock_depth;
3993 task->lock_depth = -1;
3994 local_irq_enable();
3995 schedule();
3996 local_irq_disable();
3997 task->lock_depth = saved_lock_depth;
3998 sub_preempt_count(PREEMPT_ACTIVE);
3999
4000 /*
4001 * Check again in case we missed a preemption opportunity
4002 * between schedule and now.
4003 */
4004 barrier();
4005 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4006 }
4007
4008 #endif /* CONFIG_PREEMPT */
4009
4010 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4011 void *key)
4012 {
4013 return try_to_wake_up(curr->private, mode, sync);
4014 }
4015 EXPORT_SYMBOL(default_wake_function);
4016
4017 /*
4018 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4019 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4020 * number) then we wake all the non-exclusive tasks and one exclusive task.
4021 *
4022 * There are circumstances in which we can try to wake a task which has already
4023 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4024 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4025 */
4026 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4027 int nr_exclusive, int sync, void *key)
4028 {
4029 wait_queue_t *curr, *next;
4030
4031 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4032 unsigned flags = curr->flags;
4033
4034 if (curr->func(curr, mode, sync, key) &&
4035 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4036 break;
4037 }
4038 }
4039
4040 /**
4041 * __wake_up - wake up threads blocked on a waitqueue.
4042 * @q: the waitqueue
4043 * @mode: which threads
4044 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4045 * @key: is directly passed to the wakeup function
4046 */
4047 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4048 int nr_exclusive, void *key)
4049 {
4050 unsigned long flags;
4051
4052 spin_lock_irqsave(&q->lock, flags);
4053 __wake_up_common(q, mode, nr_exclusive, 0, key);
4054 spin_unlock_irqrestore(&q->lock, flags);
4055 }
4056 EXPORT_SYMBOL(__wake_up);
4057
4058 /*
4059 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4060 */
4061 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4062 {
4063 __wake_up_common(q, mode, 1, 0, NULL);
4064 }
4065
4066 /**
4067 * __wake_up_sync - wake up threads blocked on a waitqueue.
4068 * @q: the waitqueue
4069 * @mode: which threads
4070 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4071 *
4072 * The sync wakeup differs that the waker knows that it will schedule
4073 * away soon, so while the target thread will be woken up, it will not
4074 * be migrated to another CPU - ie. the two threads are 'synchronized'
4075 * with each other. This can prevent needless bouncing between CPUs.
4076 *
4077 * On UP it can prevent extra preemption.
4078 */
4079 void
4080 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4081 {
4082 unsigned long flags;
4083 int sync = 1;
4084
4085 if (unlikely(!q))
4086 return;
4087
4088 if (unlikely(!nr_exclusive))
4089 sync = 0;
4090
4091 spin_lock_irqsave(&q->lock, flags);
4092 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4093 spin_unlock_irqrestore(&q->lock, flags);
4094 }
4095 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4096
4097 void complete(struct completion *x)
4098 {
4099 unsigned long flags;
4100
4101 spin_lock_irqsave(&x->wait.lock, flags);
4102 x->done++;
4103 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4104 spin_unlock_irqrestore(&x->wait.lock, flags);
4105 }
4106 EXPORT_SYMBOL(complete);
4107
4108 void complete_all(struct completion *x)
4109 {
4110 unsigned long flags;
4111
4112 spin_lock_irqsave(&x->wait.lock, flags);
4113 x->done += UINT_MAX/2;
4114 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4115 spin_unlock_irqrestore(&x->wait.lock, flags);
4116 }
4117 EXPORT_SYMBOL(complete_all);
4118
4119 static inline long __sched
4120 do_wait_for_common(struct completion *x, long timeout, int state)
4121 {
4122 if (!x->done) {
4123 DECLARE_WAITQUEUE(wait, current);
4124
4125 wait.flags |= WQ_FLAG_EXCLUSIVE;
4126 __add_wait_queue_tail(&x->wait, &wait);
4127 do {
4128 if ((state == TASK_INTERRUPTIBLE &&
4129 signal_pending(current)) ||
4130 (state == TASK_KILLABLE &&
4131 fatal_signal_pending(current))) {
4132 __remove_wait_queue(&x->wait, &wait);
4133 return -ERESTARTSYS;
4134 }
4135 __set_current_state(state);
4136 spin_unlock_irq(&x->wait.lock);
4137 timeout = schedule_timeout(timeout);
4138 spin_lock_irq(&x->wait.lock);
4139 if (!timeout) {
4140 __remove_wait_queue(&x->wait, &wait);
4141 return timeout;
4142 }
4143 } while (!x->done);
4144 __remove_wait_queue(&x->wait, &wait);
4145 }
4146 x->done--;
4147 return timeout;
4148 }
4149
4150 static long __sched
4151 wait_for_common(struct completion *x, long timeout, int state)
4152 {
4153 might_sleep();
4154
4155 spin_lock_irq(&x->wait.lock);
4156 timeout = do_wait_for_common(x, timeout, state);
4157 spin_unlock_irq(&x->wait.lock);
4158 return timeout;
4159 }
4160
4161 void __sched wait_for_completion(struct completion *x)
4162 {
4163 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4164 }
4165 EXPORT_SYMBOL(wait_for_completion);
4166
4167 unsigned long __sched
4168 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4169 {
4170 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4171 }
4172 EXPORT_SYMBOL(wait_for_completion_timeout);
4173
4174 int __sched wait_for_completion_interruptible(struct completion *x)
4175 {
4176 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4177 if (t == -ERESTARTSYS)
4178 return t;
4179 return 0;
4180 }
4181 EXPORT_SYMBOL(wait_for_completion_interruptible);
4182
4183 unsigned long __sched
4184 wait_for_completion_interruptible_timeout(struct completion *x,
4185 unsigned long timeout)
4186 {
4187 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4188 }
4189 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4190
4191 int __sched wait_for_completion_killable(struct completion *x)
4192 {
4193 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4194 if (t == -ERESTARTSYS)
4195 return t;
4196 return 0;
4197 }
4198 EXPORT_SYMBOL(wait_for_completion_killable);
4199
4200 static long __sched
4201 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4202 {
4203 unsigned long flags;
4204 wait_queue_t wait;
4205
4206 init_waitqueue_entry(&wait, current);
4207
4208 __set_current_state(state);
4209
4210 spin_lock_irqsave(&q->lock, flags);
4211 __add_wait_queue(q, &wait);
4212 spin_unlock(&q->lock);
4213 timeout = schedule_timeout(timeout);
4214 spin_lock_irq(&q->lock);
4215 __remove_wait_queue(q, &wait);
4216 spin_unlock_irqrestore(&q->lock, flags);
4217
4218 return timeout;
4219 }
4220
4221 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4222 {
4223 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4224 }
4225 EXPORT_SYMBOL(interruptible_sleep_on);
4226
4227 long __sched
4228 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4229 {
4230 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4231 }
4232 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4233
4234 void __sched sleep_on(wait_queue_head_t *q)
4235 {
4236 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4237 }
4238 EXPORT_SYMBOL(sleep_on);
4239
4240 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4241 {
4242 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4243 }
4244 EXPORT_SYMBOL(sleep_on_timeout);
4245
4246 #ifdef CONFIG_RT_MUTEXES
4247
4248 /*
4249 * rt_mutex_setprio - set the current priority of a task
4250 * @p: task
4251 * @prio: prio value (kernel-internal form)
4252 *
4253 * This function changes the 'effective' priority of a task. It does
4254 * not touch ->normal_prio like __setscheduler().
4255 *
4256 * Used by the rt_mutex code to implement priority inheritance logic.
4257 */
4258 void rt_mutex_setprio(struct task_struct *p, int prio)
4259 {
4260 unsigned long flags;
4261 int oldprio, on_rq, running;
4262 struct rq *rq;
4263 const struct sched_class *prev_class = p->sched_class;
4264
4265 BUG_ON(prio < 0 || prio > MAX_PRIO);
4266
4267 rq = task_rq_lock(p, &flags);
4268 update_rq_clock(rq);
4269
4270 oldprio = p->prio;
4271 on_rq = p->se.on_rq;
4272 running = task_current(rq, p);
4273 if (on_rq)
4274 dequeue_task(rq, p, 0);
4275 if (running)
4276 p->sched_class->put_prev_task(rq, p);
4277
4278 if (rt_prio(prio))
4279 p->sched_class = &rt_sched_class;
4280 else
4281 p->sched_class = &fair_sched_class;
4282
4283 p->prio = prio;
4284
4285 if (running)
4286 p->sched_class->set_curr_task(rq);
4287 if (on_rq) {
4288 enqueue_task(rq, p, 0);
4289
4290 check_class_changed(rq, p, prev_class, oldprio, running);
4291 }
4292 task_rq_unlock(rq, &flags);
4293 }
4294
4295 #endif
4296
4297 void set_user_nice(struct task_struct *p, long nice)
4298 {
4299 int old_prio, delta, on_rq;
4300 unsigned long flags;
4301 struct rq *rq;
4302
4303 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4304 return;
4305 /*
4306 * We have to be careful, if called from sys_setpriority(),
4307 * the task might be in the middle of scheduling on another CPU.
4308 */
4309 rq = task_rq_lock(p, &flags);
4310 update_rq_clock(rq);
4311 /*
4312 * The RT priorities are set via sched_setscheduler(), but we still
4313 * allow the 'normal' nice value to be set - but as expected
4314 * it wont have any effect on scheduling until the task is
4315 * SCHED_FIFO/SCHED_RR:
4316 */
4317 if (task_has_rt_policy(p)) {
4318 p->static_prio = NICE_TO_PRIO(nice);
4319 goto out_unlock;
4320 }
4321 on_rq = p->se.on_rq;
4322 if (on_rq) {
4323 dequeue_task(rq, p, 0);
4324 dec_load(rq, p);
4325 }
4326
4327 p->static_prio = NICE_TO_PRIO(nice);
4328 set_load_weight(p);
4329 old_prio = p->prio;
4330 p->prio = effective_prio(p);
4331 delta = p->prio - old_prio;
4332
4333 if (on_rq) {
4334 enqueue_task(rq, p, 0);
4335 inc_load(rq, p);
4336 /*
4337 * If the task increased its priority or is running and
4338 * lowered its priority, then reschedule its CPU:
4339 */
4340 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4341 resched_task(rq->curr);
4342 }
4343 out_unlock:
4344 task_rq_unlock(rq, &flags);
4345 }
4346 EXPORT_SYMBOL(set_user_nice);
4347
4348 /*
4349 * can_nice - check if a task can reduce its nice value
4350 * @p: task
4351 * @nice: nice value
4352 */
4353 int can_nice(const struct task_struct *p, const int nice)
4354 {
4355 /* convert nice value [19,-20] to rlimit style value [1,40] */
4356 int nice_rlim = 20 - nice;
4357
4358 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4359 capable(CAP_SYS_NICE));
4360 }
4361
4362 #ifdef __ARCH_WANT_SYS_NICE
4363
4364 /*
4365 * sys_nice - change the priority of the current process.
4366 * @increment: priority increment
4367 *
4368 * sys_setpriority is a more generic, but much slower function that
4369 * does similar things.
4370 */
4371 asmlinkage long sys_nice(int increment)
4372 {
4373 long nice, retval;
4374
4375 /*
4376 * Setpriority might change our priority at the same moment.
4377 * We don't have to worry. Conceptually one call occurs first
4378 * and we have a single winner.
4379 */
4380 if (increment < -40)
4381 increment = -40;
4382 if (increment > 40)
4383 increment = 40;
4384
4385 nice = PRIO_TO_NICE(current->static_prio) + increment;
4386 if (nice < -20)
4387 nice = -20;
4388 if (nice > 19)
4389 nice = 19;
4390
4391 if (increment < 0 && !can_nice(current, nice))
4392 return -EPERM;
4393
4394 retval = security_task_setnice(current, nice);
4395 if (retval)
4396 return retval;
4397
4398 set_user_nice(current, nice);
4399 return 0;
4400 }
4401
4402 #endif
4403
4404 /**
4405 * task_prio - return the priority value of a given task.
4406 * @p: the task in question.
4407 *
4408 * This is the priority value as seen by users in /proc.
4409 * RT tasks are offset by -200. Normal tasks are centered
4410 * around 0, value goes from -16 to +15.
4411 */
4412 int task_prio(const struct task_struct *p)
4413 {
4414 return p->prio - MAX_RT_PRIO;
4415 }
4416
4417 /**
4418 * task_nice - return the nice value of a given task.
4419 * @p: the task in question.
4420 */
4421 int task_nice(const struct task_struct *p)
4422 {
4423 return TASK_NICE(p);
4424 }
4425 EXPORT_SYMBOL(task_nice);
4426
4427 /**
4428 * idle_cpu - is a given cpu idle currently?
4429 * @cpu: the processor in question.
4430 */
4431 int idle_cpu(int cpu)
4432 {
4433 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4434 }
4435
4436 /**
4437 * idle_task - return the idle task for a given cpu.
4438 * @cpu: the processor in question.
4439 */
4440 struct task_struct *idle_task(int cpu)
4441 {
4442 return cpu_rq(cpu)->idle;
4443 }
4444
4445 /**
4446 * find_process_by_pid - find a process with a matching PID value.
4447 * @pid: the pid in question.
4448 */
4449 static struct task_struct *find_process_by_pid(pid_t pid)
4450 {
4451 return pid ? find_task_by_vpid(pid) : current;
4452 }
4453
4454 /* Actually do priority change: must hold rq lock. */
4455 static void
4456 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4457 {
4458 BUG_ON(p->se.on_rq);
4459
4460 p->policy = policy;
4461 switch (p->policy) {
4462 case SCHED_NORMAL:
4463 case SCHED_BATCH:
4464 case SCHED_IDLE:
4465 p->sched_class = &fair_sched_class;
4466 break;
4467 case SCHED_FIFO:
4468 case SCHED_RR:
4469 p->sched_class = &rt_sched_class;
4470 break;
4471 }
4472
4473 p->rt_priority = prio;
4474 p->normal_prio = normal_prio(p);
4475 /* we are holding p->pi_lock already */
4476 p->prio = rt_mutex_getprio(p);
4477 set_load_weight(p);
4478 }
4479
4480 /**
4481 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4482 * @p: the task in question.
4483 * @policy: new policy.
4484 * @param: structure containing the new RT priority.
4485 *
4486 * NOTE that the task may be already dead.
4487 */
4488 int sched_setscheduler(struct task_struct *p, int policy,
4489 struct sched_param *param)
4490 {
4491 int retval, oldprio, oldpolicy = -1, on_rq, running;
4492 unsigned long flags;
4493 const struct sched_class *prev_class = p->sched_class;
4494 struct rq *rq;
4495
4496 /* may grab non-irq protected spin_locks */
4497 BUG_ON(in_interrupt());
4498 recheck:
4499 /* double check policy once rq lock held */
4500 if (policy < 0)
4501 policy = oldpolicy = p->policy;
4502 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4503 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4504 policy != SCHED_IDLE)
4505 return -EINVAL;
4506 /*
4507 * Valid priorities for SCHED_FIFO and SCHED_RR are
4508 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4509 * SCHED_BATCH and SCHED_IDLE is 0.
4510 */
4511 if (param->sched_priority < 0 ||
4512 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4513 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4514 return -EINVAL;
4515 if (rt_policy(policy) != (param->sched_priority != 0))
4516 return -EINVAL;
4517
4518 /*
4519 * Allow unprivileged RT tasks to decrease priority:
4520 */
4521 if (!capable(CAP_SYS_NICE)) {
4522 if (rt_policy(policy)) {
4523 unsigned long rlim_rtprio;
4524
4525 if (!lock_task_sighand(p, &flags))
4526 return -ESRCH;
4527 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4528 unlock_task_sighand(p, &flags);
4529
4530 /* can't set/change the rt policy */
4531 if (policy != p->policy && !rlim_rtprio)
4532 return -EPERM;
4533
4534 /* can't increase priority */
4535 if (param->sched_priority > p->rt_priority &&
4536 param->sched_priority > rlim_rtprio)
4537 return -EPERM;
4538 }
4539 /*
4540 * Like positive nice levels, dont allow tasks to
4541 * move out of SCHED_IDLE either:
4542 */
4543 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4544 return -EPERM;
4545
4546 /* can't change other user's priorities */
4547 if ((current->euid != p->euid) &&
4548 (current->euid != p->uid))
4549 return -EPERM;
4550 }
4551
4552 #ifdef CONFIG_RT_GROUP_SCHED
4553 /*
4554 * Do not allow realtime tasks into groups that have no runtime
4555 * assigned.
4556 */
4557 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4558 return -EPERM;
4559 #endif
4560
4561 retval = security_task_setscheduler(p, policy, param);
4562 if (retval)
4563 return retval;
4564 /*
4565 * make sure no PI-waiters arrive (or leave) while we are
4566 * changing the priority of the task:
4567 */
4568 spin_lock_irqsave(&p->pi_lock, flags);
4569 /*
4570 * To be able to change p->policy safely, the apropriate
4571 * runqueue lock must be held.
4572 */
4573 rq = __task_rq_lock(p);
4574 /* recheck policy now with rq lock held */
4575 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4576 policy = oldpolicy = -1;
4577 __task_rq_unlock(rq);
4578 spin_unlock_irqrestore(&p->pi_lock, flags);
4579 goto recheck;
4580 }
4581 update_rq_clock(rq);
4582 on_rq = p->se.on_rq;
4583 running = task_current(rq, p);
4584 if (on_rq)
4585 deactivate_task(rq, p, 0);
4586 if (running)
4587 p->sched_class->put_prev_task(rq, p);
4588
4589 oldprio = p->prio;
4590 __setscheduler(rq, p, policy, param->sched_priority);
4591
4592 if (running)
4593 p->sched_class->set_curr_task(rq);
4594 if (on_rq) {
4595 activate_task(rq, p, 0);
4596
4597 check_class_changed(rq, p, prev_class, oldprio, running);
4598 }
4599 __task_rq_unlock(rq);
4600 spin_unlock_irqrestore(&p->pi_lock, flags);
4601
4602 rt_mutex_adjust_pi(p);
4603
4604 return 0;
4605 }
4606 EXPORT_SYMBOL_GPL(sched_setscheduler);
4607
4608 static int
4609 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4610 {
4611 struct sched_param lparam;
4612 struct task_struct *p;
4613 int retval;
4614
4615 if (!param || pid < 0)
4616 return -EINVAL;
4617 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4618 return -EFAULT;
4619
4620 rcu_read_lock();
4621 retval = -ESRCH;
4622 p = find_process_by_pid(pid);
4623 if (p != NULL)
4624 retval = sched_setscheduler(p, policy, &lparam);
4625 rcu_read_unlock();
4626
4627 return retval;
4628 }
4629
4630 /**
4631 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4632 * @pid: the pid in question.
4633 * @policy: new policy.
4634 * @param: structure containing the new RT priority.
4635 */
4636 asmlinkage long
4637 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4638 {
4639 /* negative values for policy are not valid */
4640 if (policy < 0)
4641 return -EINVAL;
4642
4643 return do_sched_setscheduler(pid, policy, param);
4644 }
4645
4646 /**
4647 * sys_sched_setparam - set/change the RT priority of a thread
4648 * @pid: the pid in question.
4649 * @param: structure containing the new RT priority.
4650 */
4651 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4652 {
4653 return do_sched_setscheduler(pid, -1, param);
4654 }
4655
4656 /**
4657 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4658 * @pid: the pid in question.
4659 */
4660 asmlinkage long sys_sched_getscheduler(pid_t pid)
4661 {
4662 struct task_struct *p;
4663 int retval;
4664
4665 if (pid < 0)
4666 return -EINVAL;
4667
4668 retval = -ESRCH;
4669 read_lock(&tasklist_lock);
4670 p = find_process_by_pid(pid);
4671 if (p) {
4672 retval = security_task_getscheduler(p);
4673 if (!retval)
4674 retval = p->policy;
4675 }
4676 read_unlock(&tasklist_lock);
4677 return retval;
4678 }
4679
4680 /**
4681 * sys_sched_getscheduler - get the RT priority of a thread
4682 * @pid: the pid in question.
4683 * @param: structure containing the RT priority.
4684 */
4685 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4686 {
4687 struct sched_param lp;
4688 struct task_struct *p;
4689 int retval;
4690
4691 if (!param || pid < 0)
4692 return -EINVAL;
4693
4694 read_lock(&tasklist_lock);
4695 p = find_process_by_pid(pid);
4696 retval = -ESRCH;
4697 if (!p)
4698 goto out_unlock;
4699
4700 retval = security_task_getscheduler(p);
4701 if (retval)
4702 goto out_unlock;
4703
4704 lp.sched_priority = p->rt_priority;
4705 read_unlock(&tasklist_lock);
4706
4707 /*
4708 * This one might sleep, we cannot do it with a spinlock held ...
4709 */
4710 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4711
4712 return retval;
4713
4714 out_unlock:
4715 read_unlock(&tasklist_lock);
4716 return retval;
4717 }
4718
4719 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4720 {
4721 cpumask_t cpus_allowed;
4722 struct task_struct *p;
4723 int retval;
4724
4725 get_online_cpus();
4726 read_lock(&tasklist_lock);
4727
4728 p = find_process_by_pid(pid);
4729 if (!p) {
4730 read_unlock(&tasklist_lock);
4731 put_online_cpus();
4732 return -ESRCH;
4733 }
4734
4735 /*
4736 * It is not safe to call set_cpus_allowed with the
4737 * tasklist_lock held. We will bump the task_struct's
4738 * usage count and then drop tasklist_lock.
4739 */
4740 get_task_struct(p);
4741 read_unlock(&tasklist_lock);
4742
4743 retval = -EPERM;
4744 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4745 !capable(CAP_SYS_NICE))
4746 goto out_unlock;
4747
4748 retval = security_task_setscheduler(p, 0, NULL);
4749 if (retval)
4750 goto out_unlock;
4751
4752 cpus_allowed = cpuset_cpus_allowed(p);
4753 cpus_and(new_mask, new_mask, cpus_allowed);
4754 again:
4755 retval = set_cpus_allowed(p, new_mask);
4756
4757 if (!retval) {
4758 cpus_allowed = cpuset_cpus_allowed(p);
4759 if (!cpus_subset(new_mask, cpus_allowed)) {
4760 /*
4761 * We must have raced with a concurrent cpuset
4762 * update. Just reset the cpus_allowed to the
4763 * cpuset's cpus_allowed
4764 */
4765 new_mask = cpus_allowed;
4766 goto again;
4767 }
4768 }
4769 out_unlock:
4770 put_task_struct(p);
4771 put_online_cpus();
4772 return retval;
4773 }
4774
4775 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4776 cpumask_t *new_mask)
4777 {
4778 if (len < sizeof(cpumask_t)) {
4779 memset(new_mask, 0, sizeof(cpumask_t));
4780 } else if (len > sizeof(cpumask_t)) {
4781 len = sizeof(cpumask_t);
4782 }
4783 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784 }
4785
4786 /**
4787 * sys_sched_setaffinity - set the cpu affinity of a process
4788 * @pid: pid of the process
4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790 * @user_mask_ptr: user-space pointer to the new cpu mask
4791 */
4792 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4793 unsigned long __user *user_mask_ptr)
4794 {
4795 cpumask_t new_mask;
4796 int retval;
4797
4798 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4799 if (retval)
4800 return retval;
4801
4802 return sched_setaffinity(pid, new_mask);
4803 }
4804
4805 /*
4806 * Represents all cpu's present in the system
4807 * In systems capable of hotplug, this map could dynamically grow
4808 * as new cpu's are detected in the system via any platform specific
4809 * method, such as ACPI for e.g.
4810 */
4811
4812 cpumask_t cpu_present_map __read_mostly;
4813 EXPORT_SYMBOL(cpu_present_map);
4814
4815 #ifndef CONFIG_SMP
4816 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4817 EXPORT_SYMBOL(cpu_online_map);
4818
4819 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4820 EXPORT_SYMBOL(cpu_possible_map);
4821 #endif
4822
4823 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4824 {
4825 struct task_struct *p;
4826 int retval;
4827
4828 get_online_cpus();
4829 read_lock(&tasklist_lock);
4830
4831 retval = -ESRCH;
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4835
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4839
4840 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4841
4842 out_unlock:
4843 read_unlock(&tasklist_lock);
4844 put_online_cpus();
4845
4846 return retval;
4847 }
4848
4849 /**
4850 * sys_sched_getaffinity - get the cpu affinity of a process
4851 * @pid: pid of the process
4852 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4853 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4854 */
4855 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4856 unsigned long __user *user_mask_ptr)
4857 {
4858 int ret;
4859 cpumask_t mask;
4860
4861 if (len < sizeof(cpumask_t))
4862 return -EINVAL;
4863
4864 ret = sched_getaffinity(pid, &mask);
4865 if (ret < 0)
4866 return ret;
4867
4868 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4869 return -EFAULT;
4870
4871 return sizeof(cpumask_t);
4872 }
4873
4874 /**
4875 * sys_sched_yield - yield the current processor to other threads.
4876 *
4877 * This function yields the current CPU to other tasks. If there are no
4878 * other threads running on this CPU then this function will return.
4879 */
4880 asmlinkage long sys_sched_yield(void)
4881 {
4882 struct rq *rq = this_rq_lock();
4883
4884 schedstat_inc(rq, yld_count);
4885 current->sched_class->yield_task(rq);
4886
4887 /*
4888 * Since we are going to call schedule() anyway, there's
4889 * no need to preempt or enable interrupts:
4890 */
4891 __release(rq->lock);
4892 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4893 _raw_spin_unlock(&rq->lock);
4894 preempt_enable_no_resched();
4895
4896 schedule();
4897
4898 return 0;
4899 }
4900
4901 static void __cond_resched(void)
4902 {
4903 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4904 __might_sleep(__FILE__, __LINE__);
4905 #endif
4906 /*
4907 * The BKS might be reacquired before we have dropped
4908 * PREEMPT_ACTIVE, which could trigger a second
4909 * cond_resched() call.
4910 */
4911 do {
4912 add_preempt_count(PREEMPT_ACTIVE);
4913 schedule();
4914 sub_preempt_count(PREEMPT_ACTIVE);
4915 } while (need_resched());
4916 }
4917
4918 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4919 int __sched _cond_resched(void)
4920 {
4921 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4922 system_state == SYSTEM_RUNNING) {
4923 __cond_resched();
4924 return 1;
4925 }
4926 return 0;
4927 }
4928 EXPORT_SYMBOL(_cond_resched);
4929 #endif
4930
4931 /*
4932 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4933 * call schedule, and on return reacquire the lock.
4934 *
4935 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4936 * operations here to prevent schedule() from being called twice (once via
4937 * spin_unlock(), once by hand).
4938 */
4939 int cond_resched_lock(spinlock_t *lock)
4940 {
4941 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4942 int ret = 0;
4943
4944 if (spin_needbreak(lock) || resched) {
4945 spin_unlock(lock);
4946 if (resched && need_resched())
4947 __cond_resched();
4948 else
4949 cpu_relax();
4950 ret = 1;
4951 spin_lock(lock);
4952 }
4953 return ret;
4954 }
4955 EXPORT_SYMBOL(cond_resched_lock);
4956
4957 int __sched cond_resched_softirq(void)
4958 {
4959 BUG_ON(!in_softirq());
4960
4961 if (need_resched() && system_state == SYSTEM_RUNNING) {
4962 local_bh_enable();
4963 __cond_resched();
4964 local_bh_disable();
4965 return 1;
4966 }
4967 return 0;
4968 }
4969 EXPORT_SYMBOL(cond_resched_softirq);
4970
4971 /**
4972 * yield - yield the current processor to other threads.
4973 *
4974 * This is a shortcut for kernel-space yielding - it marks the
4975 * thread runnable and calls sys_sched_yield().
4976 */
4977 void __sched yield(void)
4978 {
4979 set_current_state(TASK_RUNNING);
4980 sys_sched_yield();
4981 }
4982 EXPORT_SYMBOL(yield);
4983
4984 /*
4985 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4986 * that process accounting knows that this is a task in IO wait state.
4987 *
4988 * But don't do that if it is a deliberate, throttling IO wait (this task
4989 * has set its backing_dev_info: the queue against which it should throttle)
4990 */
4991 void __sched io_schedule(void)
4992 {
4993 struct rq *rq = &__raw_get_cpu_var(runqueues);
4994
4995 delayacct_blkio_start();
4996 atomic_inc(&rq->nr_iowait);
4997 schedule();
4998 atomic_dec(&rq->nr_iowait);
4999 delayacct_blkio_end();
5000 }
5001 EXPORT_SYMBOL(io_schedule);
5002
5003 long __sched io_schedule_timeout(long timeout)
5004 {
5005 struct rq *rq = &__raw_get_cpu_var(runqueues);
5006 long ret;
5007
5008 delayacct_blkio_start();
5009 atomic_inc(&rq->nr_iowait);
5010 ret = schedule_timeout(timeout);
5011 atomic_dec(&rq->nr_iowait);
5012 delayacct_blkio_end();
5013 return ret;
5014 }
5015
5016 /**
5017 * sys_sched_get_priority_max - return maximum RT priority.
5018 * @policy: scheduling class.
5019 *
5020 * this syscall returns the maximum rt_priority that can be used
5021 * by a given scheduling class.
5022 */
5023 asmlinkage long sys_sched_get_priority_max(int policy)
5024 {
5025 int ret = -EINVAL;
5026
5027 switch (policy) {
5028 case SCHED_FIFO:
5029 case SCHED_RR:
5030 ret = MAX_USER_RT_PRIO-1;
5031 break;
5032 case SCHED_NORMAL:
5033 case SCHED_BATCH:
5034 case SCHED_IDLE:
5035 ret = 0;
5036 break;
5037 }
5038 return ret;
5039 }
5040
5041 /**
5042 * sys_sched_get_priority_min - return minimum RT priority.
5043 * @policy: scheduling class.
5044 *
5045 * this syscall returns the minimum rt_priority that can be used
5046 * by a given scheduling class.
5047 */
5048 asmlinkage long sys_sched_get_priority_min(int policy)
5049 {
5050 int ret = -EINVAL;
5051
5052 switch (policy) {
5053 case SCHED_FIFO:
5054 case SCHED_RR:
5055 ret = 1;
5056 break;
5057 case SCHED_NORMAL:
5058 case SCHED_BATCH:
5059 case SCHED_IDLE:
5060 ret = 0;
5061 }
5062 return ret;
5063 }
5064
5065 /**
5066 * sys_sched_rr_get_interval - return the default timeslice of a process.
5067 * @pid: pid of the process.
5068 * @interval: userspace pointer to the timeslice value.
5069 *
5070 * this syscall writes the default timeslice value of a given process
5071 * into the user-space timespec buffer. A value of '0' means infinity.
5072 */
5073 asmlinkage
5074 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5075 {
5076 struct task_struct *p;
5077 unsigned int time_slice;
5078 int retval;
5079 struct timespec t;
5080
5081 if (pid < 0)
5082 return -EINVAL;
5083
5084 retval = -ESRCH;
5085 read_lock(&tasklist_lock);
5086 p = find_process_by_pid(pid);
5087 if (!p)
5088 goto out_unlock;
5089
5090 retval = security_task_getscheduler(p);
5091 if (retval)
5092 goto out_unlock;
5093
5094 /*
5095 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5096 * tasks that are on an otherwise idle runqueue:
5097 */
5098 time_slice = 0;
5099 if (p->policy == SCHED_RR) {
5100 time_slice = DEF_TIMESLICE;
5101 } else if (p->policy != SCHED_FIFO) {
5102 struct sched_entity *se = &p->se;
5103 unsigned long flags;
5104 struct rq *rq;
5105
5106 rq = task_rq_lock(p, &flags);
5107 if (rq->cfs.load.weight)
5108 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5109 task_rq_unlock(rq, &flags);
5110 }
5111 read_unlock(&tasklist_lock);
5112 jiffies_to_timespec(time_slice, &t);
5113 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5114 return retval;
5115
5116 out_unlock:
5117 read_unlock(&tasklist_lock);
5118 return retval;
5119 }
5120
5121 static const char stat_nam[] = "RSDTtZX";
5122
5123 void sched_show_task(struct task_struct *p)
5124 {
5125 unsigned long free = 0;
5126 unsigned state;
5127
5128 state = p->state ? __ffs(p->state) + 1 : 0;
5129 printk(KERN_INFO "%-13.13s %c", p->comm,
5130 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5131 #if BITS_PER_LONG == 32
5132 if (state == TASK_RUNNING)
5133 printk(KERN_CONT " running ");
5134 else
5135 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5136 #else
5137 if (state == TASK_RUNNING)
5138 printk(KERN_CONT " running task ");
5139 else
5140 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5141 #endif
5142 #ifdef CONFIG_DEBUG_STACK_USAGE
5143 {
5144 unsigned long *n = end_of_stack(p);
5145 while (!*n)
5146 n++;
5147 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5148 }
5149 #endif
5150 printk(KERN_CONT "%5lu %5d %6d\n", free,
5151 task_pid_nr(p), task_pid_nr(p->real_parent));
5152
5153 show_stack(p, NULL);
5154 }
5155
5156 void show_state_filter(unsigned long state_filter)
5157 {
5158 struct task_struct *g, *p;
5159
5160 #if BITS_PER_LONG == 32
5161 printk(KERN_INFO
5162 " task PC stack pid father\n");
5163 #else
5164 printk(KERN_INFO
5165 " task PC stack pid father\n");
5166 #endif
5167 read_lock(&tasklist_lock);
5168 do_each_thread(g, p) {
5169 /*
5170 * reset the NMI-timeout, listing all files on a slow
5171 * console might take alot of time:
5172 */
5173 touch_nmi_watchdog();
5174 if (!state_filter || (p->state & state_filter))
5175 sched_show_task(p);
5176 } while_each_thread(g, p);
5177
5178 touch_all_softlockup_watchdogs();
5179
5180 #ifdef CONFIG_SCHED_DEBUG
5181 sysrq_sched_debug_show();
5182 #endif
5183 read_unlock(&tasklist_lock);
5184 /*
5185 * Only show locks if all tasks are dumped:
5186 */
5187 if (state_filter == -1)
5188 debug_show_all_locks();
5189 }
5190
5191 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5192 {
5193 idle->sched_class = &idle_sched_class;
5194 }
5195
5196 /**
5197 * init_idle - set up an idle thread for a given CPU
5198 * @idle: task in question
5199 * @cpu: cpu the idle task belongs to
5200 *
5201 * NOTE: this function does not set the idle thread's NEED_RESCHED
5202 * flag, to make booting more robust.
5203 */
5204 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5205 {
5206 struct rq *rq = cpu_rq(cpu);
5207 unsigned long flags;
5208
5209 __sched_fork(idle);
5210 idle->se.exec_start = sched_clock();
5211
5212 idle->prio = idle->normal_prio = MAX_PRIO;
5213 idle->cpus_allowed = cpumask_of_cpu(cpu);
5214 __set_task_cpu(idle, cpu);
5215
5216 spin_lock_irqsave(&rq->lock, flags);
5217 rq->curr = rq->idle = idle;
5218 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5219 idle->oncpu = 1;
5220 #endif
5221 spin_unlock_irqrestore(&rq->lock, flags);
5222
5223 /* Set the preempt count _outside_ the spinlocks! */
5224 task_thread_info(idle)->preempt_count = 0;
5225
5226 /*
5227 * The idle tasks have their own, simple scheduling class:
5228 */
5229 idle->sched_class = &idle_sched_class;
5230 }
5231
5232 /*
5233 * In a system that switches off the HZ timer nohz_cpu_mask
5234 * indicates which cpus entered this state. This is used
5235 * in the rcu update to wait only for active cpus. For system
5236 * which do not switch off the HZ timer nohz_cpu_mask should
5237 * always be CPU_MASK_NONE.
5238 */
5239 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5240
5241 /*
5242 * Increase the granularity value when there are more CPUs,
5243 * because with more CPUs the 'effective latency' as visible
5244 * to users decreases. But the relationship is not linear,
5245 * so pick a second-best guess by going with the log2 of the
5246 * number of CPUs.
5247 *
5248 * This idea comes from the SD scheduler of Con Kolivas:
5249 */
5250 static inline void sched_init_granularity(void)
5251 {
5252 unsigned int factor = 1 + ilog2(num_online_cpus());
5253 const unsigned long limit = 200000000;
5254
5255 sysctl_sched_min_granularity *= factor;
5256 if (sysctl_sched_min_granularity > limit)
5257 sysctl_sched_min_granularity = limit;
5258
5259 sysctl_sched_latency *= factor;
5260 if (sysctl_sched_latency > limit)
5261 sysctl_sched_latency = limit;
5262
5263 sysctl_sched_wakeup_granularity *= factor;
5264 sysctl_sched_batch_wakeup_granularity *= factor;
5265 }
5266
5267 #ifdef CONFIG_SMP
5268 /*
5269 * This is how migration works:
5270 *
5271 * 1) we queue a struct migration_req structure in the source CPU's
5272 * runqueue and wake up that CPU's migration thread.
5273 * 2) we down() the locked semaphore => thread blocks.
5274 * 3) migration thread wakes up (implicitly it forces the migrated
5275 * thread off the CPU)
5276 * 4) it gets the migration request and checks whether the migrated
5277 * task is still in the wrong runqueue.
5278 * 5) if it's in the wrong runqueue then the migration thread removes
5279 * it and puts it into the right queue.
5280 * 6) migration thread up()s the semaphore.
5281 * 7) we wake up and the migration is done.
5282 */
5283
5284 /*
5285 * Change a given task's CPU affinity. Migrate the thread to a
5286 * proper CPU and schedule it away if the CPU it's executing on
5287 * is removed from the allowed bitmask.
5288 *
5289 * NOTE: the caller must have a valid reference to the task, the
5290 * task must not exit() & deallocate itself prematurely. The
5291 * call is not atomic; no spinlocks may be held.
5292 */
5293 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5294 {
5295 struct migration_req req;
5296 unsigned long flags;
5297 struct rq *rq;
5298 int ret = 0;
5299
5300 rq = task_rq_lock(p, &flags);
5301 if (!cpus_intersects(new_mask, cpu_online_map)) {
5302 ret = -EINVAL;
5303 goto out;
5304 }
5305
5306 if (p->sched_class->set_cpus_allowed)
5307 p->sched_class->set_cpus_allowed(p, &new_mask);
5308 else {
5309 p->cpus_allowed = new_mask;
5310 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5311 }
5312
5313 /* Can the task run on the task's current CPU? If so, we're done */
5314 if (cpu_isset(task_cpu(p), new_mask))
5315 goto out;
5316
5317 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5318 /* Need help from migration thread: drop lock and wait. */
5319 task_rq_unlock(rq, &flags);
5320 wake_up_process(rq->migration_thread);
5321 wait_for_completion(&req.done);
5322 tlb_migrate_finish(p->mm);
5323 return 0;
5324 }
5325 out:
5326 task_rq_unlock(rq, &flags);
5327
5328 return ret;
5329 }
5330 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5331
5332 /*
5333 * Move (not current) task off this cpu, onto dest cpu. We're doing
5334 * this because either it can't run here any more (set_cpus_allowed()
5335 * away from this CPU, or CPU going down), or because we're
5336 * attempting to rebalance this task on exec (sched_exec).
5337 *
5338 * So we race with normal scheduler movements, but that's OK, as long
5339 * as the task is no longer on this CPU.
5340 *
5341 * Returns non-zero if task was successfully migrated.
5342 */
5343 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5344 {
5345 struct rq *rq_dest, *rq_src;
5346 int ret = 0, on_rq;
5347
5348 if (unlikely(cpu_is_offline(dest_cpu)))
5349 return ret;
5350
5351 rq_src = cpu_rq(src_cpu);
5352 rq_dest = cpu_rq(dest_cpu);
5353
5354 double_rq_lock(rq_src, rq_dest);
5355 /* Already moved. */
5356 if (task_cpu(p) != src_cpu)
5357 goto out;
5358 /* Affinity changed (again). */
5359 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5360 goto out;
5361
5362 on_rq = p->se.on_rq;
5363 if (on_rq)
5364 deactivate_task(rq_src, p, 0);
5365
5366 set_task_cpu(p, dest_cpu);
5367 if (on_rq) {
5368 activate_task(rq_dest, p, 0);
5369 check_preempt_curr(rq_dest, p);
5370 }
5371 ret = 1;
5372 out:
5373 double_rq_unlock(rq_src, rq_dest);
5374 return ret;
5375 }
5376
5377 /*
5378 * migration_thread - this is a highprio system thread that performs
5379 * thread migration by bumping thread off CPU then 'pushing' onto
5380 * another runqueue.
5381 */
5382 static int migration_thread(void *data)
5383 {
5384 int cpu = (long)data;
5385 struct rq *rq;
5386
5387 rq = cpu_rq(cpu);
5388 BUG_ON(rq->migration_thread != current);
5389
5390 set_current_state(TASK_INTERRUPTIBLE);
5391 while (!kthread_should_stop()) {
5392 struct migration_req *req;
5393 struct list_head *head;
5394
5395 spin_lock_irq(&rq->lock);
5396
5397 if (cpu_is_offline(cpu)) {
5398 spin_unlock_irq(&rq->lock);
5399 goto wait_to_die;
5400 }
5401
5402 if (rq->active_balance) {
5403 active_load_balance(rq, cpu);
5404 rq->active_balance = 0;
5405 }
5406
5407 head = &rq->migration_queue;
5408
5409 if (list_empty(head)) {
5410 spin_unlock_irq(&rq->lock);
5411 schedule();
5412 set_current_state(TASK_INTERRUPTIBLE);
5413 continue;
5414 }
5415 req = list_entry(head->next, struct migration_req, list);
5416 list_del_init(head->next);
5417
5418 spin_unlock(&rq->lock);
5419 __migrate_task(req->task, cpu, req->dest_cpu);
5420 local_irq_enable();
5421
5422 complete(&req->done);
5423 }
5424 __set_current_state(TASK_RUNNING);
5425 return 0;
5426
5427 wait_to_die:
5428 /* Wait for kthread_stop */
5429 set_current_state(TASK_INTERRUPTIBLE);
5430 while (!kthread_should_stop()) {
5431 schedule();
5432 set_current_state(TASK_INTERRUPTIBLE);
5433 }
5434 __set_current_state(TASK_RUNNING);
5435 return 0;
5436 }
5437
5438 #ifdef CONFIG_HOTPLUG_CPU
5439
5440 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5441 {
5442 int ret;
5443
5444 local_irq_disable();
5445 ret = __migrate_task(p, src_cpu, dest_cpu);
5446 local_irq_enable();
5447 return ret;
5448 }
5449
5450 /*
5451 * Figure out where task on dead CPU should go, use force if necessary.
5452 * NOTE: interrupts should be disabled by the caller
5453 */
5454 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5455 {
5456 unsigned long flags;
5457 cpumask_t mask;
5458 struct rq *rq;
5459 int dest_cpu;
5460
5461 do {
5462 /* On same node? */
5463 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5464 cpus_and(mask, mask, p->cpus_allowed);
5465 dest_cpu = any_online_cpu(mask);
5466
5467 /* On any allowed CPU? */
5468 if (dest_cpu == NR_CPUS)
5469 dest_cpu = any_online_cpu(p->cpus_allowed);
5470
5471 /* No more Mr. Nice Guy. */
5472 if (dest_cpu == NR_CPUS) {
5473 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5474 /*
5475 * Try to stay on the same cpuset, where the
5476 * current cpuset may be a subset of all cpus.
5477 * The cpuset_cpus_allowed_locked() variant of
5478 * cpuset_cpus_allowed() will not block. It must be
5479 * called within calls to cpuset_lock/cpuset_unlock.
5480 */
5481 rq = task_rq_lock(p, &flags);
5482 p->cpus_allowed = cpus_allowed;
5483 dest_cpu = any_online_cpu(p->cpus_allowed);
5484 task_rq_unlock(rq, &flags);
5485
5486 /*
5487 * Don't tell them about moving exiting tasks or
5488 * kernel threads (both mm NULL), since they never
5489 * leave kernel.
5490 */
5491 if (p->mm && printk_ratelimit()) {
5492 printk(KERN_INFO "process %d (%s) no "
5493 "longer affine to cpu%d\n",
5494 task_pid_nr(p), p->comm, dead_cpu);
5495 }
5496 }
5497 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5498 }
5499
5500 /*
5501 * While a dead CPU has no uninterruptible tasks queued at this point,
5502 * it might still have a nonzero ->nr_uninterruptible counter, because
5503 * for performance reasons the counter is not stricly tracking tasks to
5504 * their home CPUs. So we just add the counter to another CPU's counter,
5505 * to keep the global sum constant after CPU-down:
5506 */
5507 static void migrate_nr_uninterruptible(struct rq *rq_src)
5508 {
5509 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5510 unsigned long flags;
5511
5512 local_irq_save(flags);
5513 double_rq_lock(rq_src, rq_dest);
5514 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5515 rq_src->nr_uninterruptible = 0;
5516 double_rq_unlock(rq_src, rq_dest);
5517 local_irq_restore(flags);
5518 }
5519
5520 /* Run through task list and migrate tasks from the dead cpu. */
5521 static void migrate_live_tasks(int src_cpu)
5522 {
5523 struct task_struct *p, *t;
5524
5525 read_lock(&tasklist_lock);
5526
5527 do_each_thread(t, p) {
5528 if (p == current)
5529 continue;
5530
5531 if (task_cpu(p) == src_cpu)
5532 move_task_off_dead_cpu(src_cpu, p);
5533 } while_each_thread(t, p);
5534
5535 read_unlock(&tasklist_lock);
5536 }
5537
5538 /*
5539 * Schedules idle task to be the next runnable task on current CPU.
5540 * It does so by boosting its priority to highest possible.
5541 * Used by CPU offline code.
5542 */
5543 void sched_idle_next(void)
5544 {
5545 int this_cpu = smp_processor_id();
5546 struct rq *rq = cpu_rq(this_cpu);
5547 struct task_struct *p = rq->idle;
5548 unsigned long flags;
5549
5550 /* cpu has to be offline */
5551 BUG_ON(cpu_online(this_cpu));
5552
5553 /*
5554 * Strictly not necessary since rest of the CPUs are stopped by now
5555 * and interrupts disabled on the current cpu.
5556 */
5557 spin_lock_irqsave(&rq->lock, flags);
5558
5559 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5560
5561 update_rq_clock(rq);
5562 activate_task(rq, p, 0);
5563
5564 spin_unlock_irqrestore(&rq->lock, flags);
5565 }
5566
5567 /*
5568 * Ensures that the idle task is using init_mm right before its cpu goes
5569 * offline.
5570 */
5571 void idle_task_exit(void)
5572 {
5573 struct mm_struct *mm = current->active_mm;
5574
5575 BUG_ON(cpu_online(smp_processor_id()));
5576
5577 if (mm != &init_mm)
5578 switch_mm(mm, &init_mm, current);
5579 mmdrop(mm);
5580 }
5581
5582 /* called under rq->lock with disabled interrupts */
5583 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5584 {
5585 struct rq *rq = cpu_rq(dead_cpu);
5586
5587 /* Must be exiting, otherwise would be on tasklist. */
5588 BUG_ON(!p->exit_state);
5589
5590 /* Cannot have done final schedule yet: would have vanished. */
5591 BUG_ON(p->state == TASK_DEAD);
5592
5593 get_task_struct(p);
5594
5595 /*
5596 * Drop lock around migration; if someone else moves it,
5597 * that's OK. No task can be added to this CPU, so iteration is
5598 * fine.
5599 */
5600 spin_unlock_irq(&rq->lock);
5601 move_task_off_dead_cpu(dead_cpu, p);
5602 spin_lock_irq(&rq->lock);
5603
5604 put_task_struct(p);
5605 }
5606
5607 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5608 static void migrate_dead_tasks(unsigned int dead_cpu)
5609 {
5610 struct rq *rq = cpu_rq(dead_cpu);
5611 struct task_struct *next;
5612
5613 for ( ; ; ) {
5614 if (!rq->nr_running)
5615 break;
5616 update_rq_clock(rq);
5617 next = pick_next_task(rq, rq->curr);
5618 if (!next)
5619 break;
5620 migrate_dead(dead_cpu, next);
5621
5622 }
5623 }
5624 #endif /* CONFIG_HOTPLUG_CPU */
5625
5626 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5627
5628 static struct ctl_table sd_ctl_dir[] = {
5629 {
5630 .procname = "sched_domain",
5631 .mode = 0555,
5632 },
5633 {0, },
5634 };
5635
5636 static struct ctl_table sd_ctl_root[] = {
5637 {
5638 .ctl_name = CTL_KERN,
5639 .procname = "kernel",
5640 .mode = 0555,
5641 .child = sd_ctl_dir,
5642 },
5643 {0, },
5644 };
5645
5646 static struct ctl_table *sd_alloc_ctl_entry(int n)
5647 {
5648 struct ctl_table *entry =
5649 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5650
5651 return entry;
5652 }
5653
5654 static void sd_free_ctl_entry(struct ctl_table **tablep)
5655 {
5656 struct ctl_table *entry;
5657
5658 /*
5659 * In the intermediate directories, both the child directory and
5660 * procname are dynamically allocated and could fail but the mode
5661 * will always be set. In the lowest directory the names are
5662 * static strings and all have proc handlers.
5663 */
5664 for (entry = *tablep; entry->mode; entry++) {
5665 if (entry->child)
5666 sd_free_ctl_entry(&entry->child);
5667 if (entry->proc_handler == NULL)
5668 kfree(entry->procname);
5669 }
5670
5671 kfree(*tablep);
5672 *tablep = NULL;
5673 }
5674
5675 static void
5676 set_table_entry(struct ctl_table *entry,
5677 const char *procname, void *data, int maxlen,
5678 mode_t mode, proc_handler *proc_handler)
5679 {
5680 entry->procname = procname;
5681 entry->data = data;
5682 entry->maxlen = maxlen;
5683 entry->mode = mode;
5684 entry->proc_handler = proc_handler;
5685 }
5686
5687 static struct ctl_table *
5688 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5689 {
5690 struct ctl_table *table = sd_alloc_ctl_entry(12);
5691
5692 if (table == NULL)
5693 return NULL;
5694
5695 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5696 sizeof(long), 0644, proc_doulongvec_minmax);
5697 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5698 sizeof(long), 0644, proc_doulongvec_minmax);
5699 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5700 sizeof(int), 0644, proc_dointvec_minmax);
5701 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5702 sizeof(int), 0644, proc_dointvec_minmax);
5703 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5704 sizeof(int), 0644, proc_dointvec_minmax);
5705 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5706 sizeof(int), 0644, proc_dointvec_minmax);
5707 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5708 sizeof(int), 0644, proc_dointvec_minmax);
5709 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5710 sizeof(int), 0644, proc_dointvec_minmax);
5711 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5712 sizeof(int), 0644, proc_dointvec_minmax);
5713 set_table_entry(&table[9], "cache_nice_tries",
5714 &sd->cache_nice_tries,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[10], "flags", &sd->flags,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 /* &table[11] is terminator */
5719
5720 return table;
5721 }
5722
5723 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5724 {
5725 struct ctl_table *entry, *table;
5726 struct sched_domain *sd;
5727 int domain_num = 0, i;
5728 char buf[32];
5729
5730 for_each_domain(cpu, sd)
5731 domain_num++;
5732 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5733 if (table == NULL)
5734 return NULL;
5735
5736 i = 0;
5737 for_each_domain(cpu, sd) {
5738 snprintf(buf, 32, "domain%d", i);
5739 entry->procname = kstrdup(buf, GFP_KERNEL);
5740 entry->mode = 0555;
5741 entry->child = sd_alloc_ctl_domain_table(sd);
5742 entry++;
5743 i++;
5744 }
5745 return table;
5746 }
5747
5748 static struct ctl_table_header *sd_sysctl_header;
5749 static void register_sched_domain_sysctl(void)
5750 {
5751 int i, cpu_num = num_online_cpus();
5752 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5753 char buf[32];
5754
5755 WARN_ON(sd_ctl_dir[0].child);
5756 sd_ctl_dir[0].child = entry;
5757
5758 if (entry == NULL)
5759 return;
5760
5761 for_each_online_cpu(i) {
5762 snprintf(buf, 32, "cpu%d", i);
5763 entry->procname = kstrdup(buf, GFP_KERNEL);
5764 entry->mode = 0555;
5765 entry->child = sd_alloc_ctl_cpu_table(i);
5766 entry++;
5767 }
5768
5769 WARN_ON(sd_sysctl_header);
5770 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5771 }
5772
5773 /* may be called multiple times per register */
5774 static void unregister_sched_domain_sysctl(void)
5775 {
5776 if (sd_sysctl_header)
5777 unregister_sysctl_table(sd_sysctl_header);
5778 sd_sysctl_header = NULL;
5779 if (sd_ctl_dir[0].child)
5780 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5781 }
5782 #else
5783 static void register_sched_domain_sysctl(void)
5784 {
5785 }
5786 static void unregister_sched_domain_sysctl(void)
5787 {
5788 }
5789 #endif
5790
5791 /*
5792 * migration_call - callback that gets triggered when a CPU is added.
5793 * Here we can start up the necessary migration thread for the new CPU.
5794 */
5795 static int __cpuinit
5796 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5797 {
5798 struct task_struct *p;
5799 int cpu = (long)hcpu;
5800 unsigned long flags;
5801 struct rq *rq;
5802
5803 switch (action) {
5804
5805 case CPU_UP_PREPARE:
5806 case CPU_UP_PREPARE_FROZEN:
5807 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5808 if (IS_ERR(p))
5809 return NOTIFY_BAD;
5810 kthread_bind(p, cpu);
5811 /* Must be high prio: stop_machine expects to yield to it. */
5812 rq = task_rq_lock(p, &flags);
5813 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5814 task_rq_unlock(rq, &flags);
5815 cpu_rq(cpu)->migration_thread = p;
5816 break;
5817
5818 case CPU_ONLINE:
5819 case CPU_ONLINE_FROZEN:
5820 /* Strictly unnecessary, as first user will wake it. */
5821 wake_up_process(cpu_rq(cpu)->migration_thread);
5822
5823 /* Update our root-domain */
5824 rq = cpu_rq(cpu);
5825 spin_lock_irqsave(&rq->lock, flags);
5826 if (rq->rd) {
5827 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5828 cpu_set(cpu, rq->rd->online);
5829 }
5830 spin_unlock_irqrestore(&rq->lock, flags);
5831 break;
5832
5833 #ifdef CONFIG_HOTPLUG_CPU
5834 case CPU_UP_CANCELED:
5835 case CPU_UP_CANCELED_FROZEN:
5836 if (!cpu_rq(cpu)->migration_thread)
5837 break;
5838 /* Unbind it from offline cpu so it can run. Fall thru. */
5839 kthread_bind(cpu_rq(cpu)->migration_thread,
5840 any_online_cpu(cpu_online_map));
5841 kthread_stop(cpu_rq(cpu)->migration_thread);
5842 cpu_rq(cpu)->migration_thread = NULL;
5843 break;
5844
5845 case CPU_DEAD:
5846 case CPU_DEAD_FROZEN:
5847 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5848 migrate_live_tasks(cpu);
5849 rq = cpu_rq(cpu);
5850 kthread_stop(rq->migration_thread);
5851 rq->migration_thread = NULL;
5852 /* Idle task back to normal (off runqueue, low prio) */
5853 spin_lock_irq(&rq->lock);
5854 update_rq_clock(rq);
5855 deactivate_task(rq, rq->idle, 0);
5856 rq->idle->static_prio = MAX_PRIO;
5857 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5858 rq->idle->sched_class = &idle_sched_class;
5859 migrate_dead_tasks(cpu);
5860 spin_unlock_irq(&rq->lock);
5861 cpuset_unlock();
5862 migrate_nr_uninterruptible(rq);
5863 BUG_ON(rq->nr_running != 0);
5864
5865 /*
5866 * No need to migrate the tasks: it was best-effort if
5867 * they didn't take sched_hotcpu_mutex. Just wake up
5868 * the requestors.
5869 */
5870 spin_lock_irq(&rq->lock);
5871 while (!list_empty(&rq->migration_queue)) {
5872 struct migration_req *req;
5873
5874 req = list_entry(rq->migration_queue.next,
5875 struct migration_req, list);
5876 list_del_init(&req->list);
5877 complete(&req->done);
5878 }
5879 spin_unlock_irq(&rq->lock);
5880 break;
5881
5882 case CPU_DYING:
5883 case CPU_DYING_FROZEN:
5884 /* Update our root-domain */
5885 rq = cpu_rq(cpu);
5886 spin_lock_irqsave(&rq->lock, flags);
5887 if (rq->rd) {
5888 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5889 cpu_clear(cpu, rq->rd->online);
5890 }
5891 spin_unlock_irqrestore(&rq->lock, flags);
5892 break;
5893 #endif
5894 }
5895 return NOTIFY_OK;
5896 }
5897
5898 /* Register at highest priority so that task migration (migrate_all_tasks)
5899 * happens before everything else.
5900 */
5901 static struct notifier_block __cpuinitdata migration_notifier = {
5902 .notifier_call = migration_call,
5903 .priority = 10
5904 };
5905
5906 void __init migration_init(void)
5907 {
5908 void *cpu = (void *)(long)smp_processor_id();
5909 int err;
5910
5911 /* Start one for the boot CPU: */
5912 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5913 BUG_ON(err == NOTIFY_BAD);
5914 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5915 register_cpu_notifier(&migration_notifier);
5916 }
5917 #endif
5918
5919 #ifdef CONFIG_SMP
5920
5921 /* Number of possible processor ids */
5922 int nr_cpu_ids __read_mostly = NR_CPUS;
5923 EXPORT_SYMBOL(nr_cpu_ids);
5924
5925 #ifdef CONFIG_SCHED_DEBUG
5926
5927 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5928 {
5929 struct sched_group *group = sd->groups;
5930 cpumask_t groupmask;
5931 char str[NR_CPUS];
5932
5933 cpumask_scnprintf(str, NR_CPUS, sd->span);
5934 cpus_clear(groupmask);
5935
5936 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5937
5938 if (!(sd->flags & SD_LOAD_BALANCE)) {
5939 printk("does not load-balance\n");
5940 if (sd->parent)
5941 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5942 " has parent");
5943 return -1;
5944 }
5945
5946 printk(KERN_CONT "span %s\n", str);
5947
5948 if (!cpu_isset(cpu, sd->span)) {
5949 printk(KERN_ERR "ERROR: domain->span does not contain "
5950 "CPU%d\n", cpu);
5951 }
5952 if (!cpu_isset(cpu, group->cpumask)) {
5953 printk(KERN_ERR "ERROR: domain->groups does not contain"
5954 " CPU%d\n", cpu);
5955 }
5956
5957 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5958 do {
5959 if (!group) {
5960 printk("\n");
5961 printk(KERN_ERR "ERROR: group is NULL\n");
5962 break;
5963 }
5964
5965 if (!group->__cpu_power) {
5966 printk(KERN_CONT "\n");
5967 printk(KERN_ERR "ERROR: domain->cpu_power not "
5968 "set\n");
5969 break;
5970 }
5971
5972 if (!cpus_weight(group->cpumask)) {
5973 printk(KERN_CONT "\n");
5974 printk(KERN_ERR "ERROR: empty group\n");
5975 break;
5976 }
5977
5978 if (cpus_intersects(groupmask, group->cpumask)) {
5979 printk(KERN_CONT "\n");
5980 printk(KERN_ERR "ERROR: repeated CPUs\n");
5981 break;
5982 }
5983
5984 cpus_or(groupmask, groupmask, group->cpumask);
5985
5986 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5987 printk(KERN_CONT " %s", str);
5988
5989 group = group->next;
5990 } while (group != sd->groups);
5991 printk(KERN_CONT "\n");
5992
5993 if (!cpus_equal(sd->span, groupmask))
5994 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5995
5996 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5997 printk(KERN_ERR "ERROR: parent span is not a superset "
5998 "of domain->span\n");
5999 return 0;
6000 }
6001
6002 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6003 {
6004 int level = 0;
6005
6006 if (!sd) {
6007 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6008 return;
6009 }
6010
6011 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6012
6013 for (;;) {
6014 if (sched_domain_debug_one(sd, cpu, level))
6015 break;
6016 level++;
6017 sd = sd->parent;
6018 if (!sd)
6019 break;
6020 }
6021 }
6022 #else
6023 # define sched_domain_debug(sd, cpu) do { } while (0)
6024 #endif
6025
6026 static int sd_degenerate(struct sched_domain *sd)
6027 {
6028 if (cpus_weight(sd->span) == 1)
6029 return 1;
6030
6031 /* Following flags need at least 2 groups */
6032 if (sd->flags & (SD_LOAD_BALANCE |
6033 SD_BALANCE_NEWIDLE |
6034 SD_BALANCE_FORK |
6035 SD_BALANCE_EXEC |
6036 SD_SHARE_CPUPOWER |
6037 SD_SHARE_PKG_RESOURCES)) {
6038 if (sd->groups != sd->groups->next)
6039 return 0;
6040 }
6041
6042 /* Following flags don't use groups */
6043 if (sd->flags & (SD_WAKE_IDLE |
6044 SD_WAKE_AFFINE |
6045 SD_WAKE_BALANCE))
6046 return 0;
6047
6048 return 1;
6049 }
6050
6051 static int
6052 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6053 {
6054 unsigned long cflags = sd->flags, pflags = parent->flags;
6055
6056 if (sd_degenerate(parent))
6057 return 1;
6058
6059 if (!cpus_equal(sd->span, parent->span))
6060 return 0;
6061
6062 /* Does parent contain flags not in child? */
6063 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6064 if (cflags & SD_WAKE_AFFINE)
6065 pflags &= ~SD_WAKE_BALANCE;
6066 /* Flags needing groups don't count if only 1 group in parent */
6067 if (parent->groups == parent->groups->next) {
6068 pflags &= ~(SD_LOAD_BALANCE |
6069 SD_BALANCE_NEWIDLE |
6070 SD_BALANCE_FORK |
6071 SD_BALANCE_EXEC |
6072 SD_SHARE_CPUPOWER |
6073 SD_SHARE_PKG_RESOURCES);
6074 }
6075 if (~cflags & pflags)
6076 return 0;
6077
6078 return 1;
6079 }
6080
6081 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6082 {
6083 unsigned long flags;
6084 const struct sched_class *class;
6085
6086 spin_lock_irqsave(&rq->lock, flags);
6087
6088 if (rq->rd) {
6089 struct root_domain *old_rd = rq->rd;
6090
6091 for (class = sched_class_highest; class; class = class->next) {
6092 if (class->leave_domain)
6093 class->leave_domain(rq);
6094 }
6095
6096 cpu_clear(rq->cpu, old_rd->span);
6097 cpu_clear(rq->cpu, old_rd->online);
6098
6099 if (atomic_dec_and_test(&old_rd->refcount))
6100 kfree(old_rd);
6101 }
6102
6103 atomic_inc(&rd->refcount);
6104 rq->rd = rd;
6105
6106 cpu_set(rq->cpu, rd->span);
6107 if (cpu_isset(rq->cpu, cpu_online_map))
6108 cpu_set(rq->cpu, rd->online);
6109
6110 for (class = sched_class_highest; class; class = class->next) {
6111 if (class->join_domain)
6112 class->join_domain(rq);
6113 }
6114
6115 spin_unlock_irqrestore(&rq->lock, flags);
6116 }
6117
6118 static void init_rootdomain(struct root_domain *rd)
6119 {
6120 memset(rd, 0, sizeof(*rd));
6121
6122 cpus_clear(rd->span);
6123 cpus_clear(rd->online);
6124 }
6125
6126 static void init_defrootdomain(void)
6127 {
6128 init_rootdomain(&def_root_domain);
6129 atomic_set(&def_root_domain.refcount, 1);
6130 }
6131
6132 static struct root_domain *alloc_rootdomain(void)
6133 {
6134 struct root_domain *rd;
6135
6136 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6137 if (!rd)
6138 return NULL;
6139
6140 init_rootdomain(rd);
6141
6142 return rd;
6143 }
6144
6145 /*
6146 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6147 * hold the hotplug lock.
6148 */
6149 static void
6150 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6151 {
6152 struct rq *rq = cpu_rq(cpu);
6153 struct sched_domain *tmp;
6154
6155 /* Remove the sched domains which do not contribute to scheduling. */
6156 for (tmp = sd; tmp; tmp = tmp->parent) {
6157 struct sched_domain *parent = tmp->parent;
6158 if (!parent)
6159 break;
6160 if (sd_parent_degenerate(tmp, parent)) {
6161 tmp->parent = parent->parent;
6162 if (parent->parent)
6163 parent->parent->child = tmp;
6164 }
6165 }
6166
6167 if (sd && sd_degenerate(sd)) {
6168 sd = sd->parent;
6169 if (sd)
6170 sd->child = NULL;
6171 }
6172
6173 sched_domain_debug(sd, cpu);
6174
6175 rq_attach_root(rq, rd);
6176 rcu_assign_pointer(rq->sd, sd);
6177 }
6178
6179 /* cpus with isolated domains */
6180 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6181
6182 /* Setup the mask of cpus configured for isolated domains */
6183 static int __init isolated_cpu_setup(char *str)
6184 {
6185 int ints[NR_CPUS], i;
6186
6187 str = get_options(str, ARRAY_SIZE(ints), ints);
6188 cpus_clear(cpu_isolated_map);
6189 for (i = 1; i <= ints[0]; i++)
6190 if (ints[i] < NR_CPUS)
6191 cpu_set(ints[i], cpu_isolated_map);
6192 return 1;
6193 }
6194
6195 __setup("isolcpus=", isolated_cpu_setup);
6196
6197 /*
6198 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6199 * to a function which identifies what group(along with sched group) a CPU
6200 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6201 * (due to the fact that we keep track of groups covered with a cpumask_t).
6202 *
6203 * init_sched_build_groups will build a circular linked list of the groups
6204 * covered by the given span, and will set each group's ->cpumask correctly,
6205 * and ->cpu_power to 0.
6206 */
6207 static void
6208 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6209 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6210 struct sched_group **sg))
6211 {
6212 struct sched_group *first = NULL, *last = NULL;
6213 cpumask_t covered = CPU_MASK_NONE;
6214 int i;
6215
6216 for_each_cpu_mask(i, span) {
6217 struct sched_group *sg;
6218 int group = group_fn(i, cpu_map, &sg);
6219 int j;
6220
6221 if (cpu_isset(i, covered))
6222 continue;
6223
6224 sg->cpumask = CPU_MASK_NONE;
6225 sg->__cpu_power = 0;
6226
6227 for_each_cpu_mask(j, span) {
6228 if (group_fn(j, cpu_map, NULL) != group)
6229 continue;
6230
6231 cpu_set(j, covered);
6232 cpu_set(j, sg->cpumask);
6233 }
6234 if (!first)
6235 first = sg;
6236 if (last)
6237 last->next = sg;
6238 last = sg;
6239 }
6240 last->next = first;
6241 }
6242
6243 #define SD_NODES_PER_DOMAIN 16
6244
6245 #ifdef CONFIG_NUMA
6246
6247 /**
6248 * find_next_best_node - find the next node to include in a sched_domain
6249 * @node: node whose sched_domain we're building
6250 * @used_nodes: nodes already in the sched_domain
6251 *
6252 * Find the next node to include in a given scheduling domain. Simply
6253 * finds the closest node not already in the @used_nodes map.
6254 *
6255 * Should use nodemask_t.
6256 */
6257 static int find_next_best_node(int node, unsigned long *used_nodes)
6258 {
6259 int i, n, val, min_val, best_node = 0;
6260
6261 min_val = INT_MAX;
6262
6263 for (i = 0; i < MAX_NUMNODES; i++) {
6264 /* Start at @node */
6265 n = (node + i) % MAX_NUMNODES;
6266
6267 if (!nr_cpus_node(n))
6268 continue;
6269
6270 /* Skip already used nodes */
6271 if (test_bit(n, used_nodes))
6272 continue;
6273
6274 /* Simple min distance search */
6275 val = node_distance(node, n);
6276
6277 if (val < min_val) {
6278 min_val = val;
6279 best_node = n;
6280 }
6281 }
6282
6283 set_bit(best_node, used_nodes);
6284 return best_node;
6285 }
6286
6287 /**
6288 * sched_domain_node_span - get a cpumask for a node's sched_domain
6289 * @node: node whose cpumask we're constructing
6290 * @size: number of nodes to include in this span
6291 *
6292 * Given a node, construct a good cpumask for its sched_domain to span. It
6293 * should be one that prevents unnecessary balancing, but also spreads tasks
6294 * out optimally.
6295 */
6296 static cpumask_t sched_domain_node_span(int node)
6297 {
6298 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6299 cpumask_t span, nodemask;
6300 int i;
6301
6302 cpus_clear(span);
6303 bitmap_zero(used_nodes, MAX_NUMNODES);
6304
6305 nodemask = node_to_cpumask(node);
6306 cpus_or(span, span, nodemask);
6307 set_bit(node, used_nodes);
6308
6309 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6310 int next_node = find_next_best_node(node, used_nodes);
6311
6312 nodemask = node_to_cpumask(next_node);
6313 cpus_or(span, span, nodemask);
6314 }
6315
6316 return span;
6317 }
6318 #endif
6319
6320 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6321
6322 /*
6323 * SMT sched-domains:
6324 */
6325 #ifdef CONFIG_SCHED_SMT
6326 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6327 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6328
6329 static int
6330 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6331 {
6332 if (sg)
6333 *sg = &per_cpu(sched_group_cpus, cpu);
6334 return cpu;
6335 }
6336 #endif
6337
6338 /*
6339 * multi-core sched-domains:
6340 */
6341 #ifdef CONFIG_SCHED_MC
6342 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6343 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6344 #endif
6345
6346 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6347 static int
6348 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6349 {
6350 int group;
6351 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6352 cpus_and(mask, mask, *cpu_map);
6353 group = first_cpu(mask);
6354 if (sg)
6355 *sg = &per_cpu(sched_group_core, group);
6356 return group;
6357 }
6358 #elif defined(CONFIG_SCHED_MC)
6359 static int
6360 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6361 {
6362 if (sg)
6363 *sg = &per_cpu(sched_group_core, cpu);
6364 return cpu;
6365 }
6366 #endif
6367
6368 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6369 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6370
6371 static int
6372 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6373 {
6374 int group;
6375 #ifdef CONFIG_SCHED_MC
6376 cpumask_t mask = cpu_coregroup_map(cpu);
6377 cpus_and(mask, mask, *cpu_map);
6378 group = first_cpu(mask);
6379 #elif defined(CONFIG_SCHED_SMT)
6380 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6381 cpus_and(mask, mask, *cpu_map);
6382 group = first_cpu(mask);
6383 #else
6384 group = cpu;
6385 #endif
6386 if (sg)
6387 *sg = &per_cpu(sched_group_phys, group);
6388 return group;
6389 }
6390
6391 #ifdef CONFIG_NUMA
6392 /*
6393 * The init_sched_build_groups can't handle what we want to do with node
6394 * groups, so roll our own. Now each node has its own list of groups which
6395 * gets dynamically allocated.
6396 */
6397 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6398 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6399
6400 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6401 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6402
6403 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6404 struct sched_group **sg)
6405 {
6406 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6407 int group;
6408
6409 cpus_and(nodemask, nodemask, *cpu_map);
6410 group = first_cpu(nodemask);
6411
6412 if (sg)
6413 *sg = &per_cpu(sched_group_allnodes, group);
6414 return group;
6415 }
6416
6417 static void init_numa_sched_groups_power(struct sched_group *group_head)
6418 {
6419 struct sched_group *sg = group_head;
6420 int j;
6421
6422 if (!sg)
6423 return;
6424 do {
6425 for_each_cpu_mask(j, sg->cpumask) {
6426 struct sched_domain *sd;
6427
6428 sd = &per_cpu(phys_domains, j);
6429 if (j != first_cpu(sd->groups->cpumask)) {
6430 /*
6431 * Only add "power" once for each
6432 * physical package.
6433 */
6434 continue;
6435 }
6436
6437 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6438 }
6439 sg = sg->next;
6440 } while (sg != group_head);
6441 }
6442 #endif
6443
6444 #ifdef CONFIG_NUMA
6445 /* Free memory allocated for various sched_group structures */
6446 static void free_sched_groups(const cpumask_t *cpu_map)
6447 {
6448 int cpu, i;
6449
6450 for_each_cpu_mask(cpu, *cpu_map) {
6451 struct sched_group **sched_group_nodes
6452 = sched_group_nodes_bycpu[cpu];
6453
6454 if (!sched_group_nodes)
6455 continue;
6456
6457 for (i = 0; i < MAX_NUMNODES; i++) {
6458 cpumask_t nodemask = node_to_cpumask(i);
6459 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6460
6461 cpus_and(nodemask, nodemask, *cpu_map);
6462 if (cpus_empty(nodemask))
6463 continue;
6464
6465 if (sg == NULL)
6466 continue;
6467 sg = sg->next;
6468 next_sg:
6469 oldsg = sg;
6470 sg = sg->next;
6471 kfree(oldsg);
6472 if (oldsg != sched_group_nodes[i])
6473 goto next_sg;
6474 }
6475 kfree(sched_group_nodes);
6476 sched_group_nodes_bycpu[cpu] = NULL;
6477 }
6478 }
6479 #else
6480 static void free_sched_groups(const cpumask_t *cpu_map)
6481 {
6482 }
6483 #endif
6484
6485 /*
6486 * Initialize sched groups cpu_power.
6487 *
6488 * cpu_power indicates the capacity of sched group, which is used while
6489 * distributing the load between different sched groups in a sched domain.
6490 * Typically cpu_power for all the groups in a sched domain will be same unless
6491 * there are asymmetries in the topology. If there are asymmetries, group
6492 * having more cpu_power will pickup more load compared to the group having
6493 * less cpu_power.
6494 *
6495 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6496 * the maximum number of tasks a group can handle in the presence of other idle
6497 * or lightly loaded groups in the same sched domain.
6498 */
6499 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6500 {
6501 struct sched_domain *child;
6502 struct sched_group *group;
6503
6504 WARN_ON(!sd || !sd->groups);
6505
6506 if (cpu != first_cpu(sd->groups->cpumask))
6507 return;
6508
6509 child = sd->child;
6510
6511 sd->groups->__cpu_power = 0;
6512
6513 /*
6514 * For perf policy, if the groups in child domain share resources
6515 * (for example cores sharing some portions of the cache hierarchy
6516 * or SMT), then set this domain groups cpu_power such that each group
6517 * can handle only one task, when there are other idle groups in the
6518 * same sched domain.
6519 */
6520 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6521 (child->flags &
6522 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6523 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6524 return;
6525 }
6526
6527 /*
6528 * add cpu_power of each child group to this groups cpu_power
6529 */
6530 group = child->groups;
6531 do {
6532 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6533 group = group->next;
6534 } while (group != child->groups);
6535 }
6536
6537 /*
6538 * Build sched domains for a given set of cpus and attach the sched domains
6539 * to the individual cpus
6540 */
6541 static int build_sched_domains(const cpumask_t *cpu_map)
6542 {
6543 int i;
6544 struct root_domain *rd;
6545 #ifdef CONFIG_NUMA
6546 struct sched_group **sched_group_nodes = NULL;
6547 int sd_allnodes = 0;
6548
6549 /*
6550 * Allocate the per-node list of sched groups
6551 */
6552 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6553 GFP_KERNEL);
6554 if (!sched_group_nodes) {
6555 printk(KERN_WARNING "Can not alloc sched group node list\n");
6556 return -ENOMEM;
6557 }
6558 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6559 #endif
6560
6561 rd = alloc_rootdomain();
6562 if (!rd) {
6563 printk(KERN_WARNING "Cannot alloc root domain\n");
6564 return -ENOMEM;
6565 }
6566
6567 /*
6568 * Set up domains for cpus specified by the cpu_map.
6569 */
6570 for_each_cpu_mask(i, *cpu_map) {
6571 struct sched_domain *sd = NULL, *p;
6572 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6573
6574 cpus_and(nodemask, nodemask, *cpu_map);
6575
6576 #ifdef CONFIG_NUMA
6577 if (cpus_weight(*cpu_map) >
6578 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6579 sd = &per_cpu(allnodes_domains, i);
6580 *sd = SD_ALLNODES_INIT;
6581 sd->span = *cpu_map;
6582 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6583 p = sd;
6584 sd_allnodes = 1;
6585 } else
6586 p = NULL;
6587
6588 sd = &per_cpu(node_domains, i);
6589 *sd = SD_NODE_INIT;
6590 sd->span = sched_domain_node_span(cpu_to_node(i));
6591 sd->parent = p;
6592 if (p)
6593 p->child = sd;
6594 cpus_and(sd->span, sd->span, *cpu_map);
6595 #endif
6596
6597 p = sd;
6598 sd = &per_cpu(phys_domains, i);
6599 *sd = SD_CPU_INIT;
6600 sd->span = nodemask;
6601 sd->parent = p;
6602 if (p)
6603 p->child = sd;
6604 cpu_to_phys_group(i, cpu_map, &sd->groups);
6605
6606 #ifdef CONFIG_SCHED_MC
6607 p = sd;
6608 sd = &per_cpu(core_domains, i);
6609 *sd = SD_MC_INIT;
6610 sd->span = cpu_coregroup_map(i);
6611 cpus_and(sd->span, sd->span, *cpu_map);
6612 sd->parent = p;
6613 p->child = sd;
6614 cpu_to_core_group(i, cpu_map, &sd->groups);
6615 #endif
6616
6617 #ifdef CONFIG_SCHED_SMT
6618 p = sd;
6619 sd = &per_cpu(cpu_domains, i);
6620 *sd = SD_SIBLING_INIT;
6621 sd->span = per_cpu(cpu_sibling_map, i);
6622 cpus_and(sd->span, sd->span, *cpu_map);
6623 sd->parent = p;
6624 p->child = sd;
6625 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6626 #endif
6627 }
6628
6629 #ifdef CONFIG_SCHED_SMT
6630 /* Set up CPU (sibling) groups */
6631 for_each_cpu_mask(i, *cpu_map) {
6632 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6633 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6634 if (i != first_cpu(this_sibling_map))
6635 continue;
6636
6637 init_sched_build_groups(this_sibling_map, cpu_map,
6638 &cpu_to_cpu_group);
6639 }
6640 #endif
6641
6642 #ifdef CONFIG_SCHED_MC
6643 /* Set up multi-core groups */
6644 for_each_cpu_mask(i, *cpu_map) {
6645 cpumask_t this_core_map = cpu_coregroup_map(i);
6646 cpus_and(this_core_map, this_core_map, *cpu_map);
6647 if (i != first_cpu(this_core_map))
6648 continue;
6649 init_sched_build_groups(this_core_map, cpu_map,
6650 &cpu_to_core_group);
6651 }
6652 #endif
6653
6654 /* Set up physical groups */
6655 for (i = 0; i < MAX_NUMNODES; i++) {
6656 cpumask_t nodemask = node_to_cpumask(i);
6657
6658 cpus_and(nodemask, nodemask, *cpu_map);
6659 if (cpus_empty(nodemask))
6660 continue;
6661
6662 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6663 }
6664
6665 #ifdef CONFIG_NUMA
6666 /* Set up node groups */
6667 if (sd_allnodes)
6668 init_sched_build_groups(*cpu_map, cpu_map,
6669 &cpu_to_allnodes_group);
6670
6671 for (i = 0; i < MAX_NUMNODES; i++) {
6672 /* Set up node groups */
6673 struct sched_group *sg, *prev;
6674 cpumask_t nodemask = node_to_cpumask(i);
6675 cpumask_t domainspan;
6676 cpumask_t covered = CPU_MASK_NONE;
6677 int j;
6678
6679 cpus_and(nodemask, nodemask, *cpu_map);
6680 if (cpus_empty(nodemask)) {
6681 sched_group_nodes[i] = NULL;
6682 continue;
6683 }
6684
6685 domainspan = sched_domain_node_span(i);
6686 cpus_and(domainspan, domainspan, *cpu_map);
6687
6688 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6689 if (!sg) {
6690 printk(KERN_WARNING "Can not alloc domain group for "
6691 "node %d\n", i);
6692 goto error;
6693 }
6694 sched_group_nodes[i] = sg;
6695 for_each_cpu_mask(j, nodemask) {
6696 struct sched_domain *sd;
6697
6698 sd = &per_cpu(node_domains, j);
6699 sd->groups = sg;
6700 }
6701 sg->__cpu_power = 0;
6702 sg->cpumask = nodemask;
6703 sg->next = sg;
6704 cpus_or(covered, covered, nodemask);
6705 prev = sg;
6706
6707 for (j = 0; j < MAX_NUMNODES; j++) {
6708 cpumask_t tmp, notcovered;
6709 int n = (i + j) % MAX_NUMNODES;
6710
6711 cpus_complement(notcovered, covered);
6712 cpus_and(tmp, notcovered, *cpu_map);
6713 cpus_and(tmp, tmp, domainspan);
6714 if (cpus_empty(tmp))
6715 break;
6716
6717 nodemask = node_to_cpumask(n);
6718 cpus_and(tmp, tmp, nodemask);
6719 if (cpus_empty(tmp))
6720 continue;
6721
6722 sg = kmalloc_node(sizeof(struct sched_group),
6723 GFP_KERNEL, i);
6724 if (!sg) {
6725 printk(KERN_WARNING
6726 "Can not alloc domain group for node %d\n", j);
6727 goto error;
6728 }
6729 sg->__cpu_power = 0;
6730 sg->cpumask = tmp;
6731 sg->next = prev->next;
6732 cpus_or(covered, covered, tmp);
6733 prev->next = sg;
6734 prev = sg;
6735 }
6736 }
6737 #endif
6738
6739 /* Calculate CPU power for physical packages and nodes */
6740 #ifdef CONFIG_SCHED_SMT
6741 for_each_cpu_mask(i, *cpu_map) {
6742 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6743
6744 init_sched_groups_power(i, sd);
6745 }
6746 #endif
6747 #ifdef CONFIG_SCHED_MC
6748 for_each_cpu_mask(i, *cpu_map) {
6749 struct sched_domain *sd = &per_cpu(core_domains, i);
6750
6751 init_sched_groups_power(i, sd);
6752 }
6753 #endif
6754
6755 for_each_cpu_mask(i, *cpu_map) {
6756 struct sched_domain *sd = &per_cpu(phys_domains, i);
6757
6758 init_sched_groups_power(i, sd);
6759 }
6760
6761 #ifdef CONFIG_NUMA
6762 for (i = 0; i < MAX_NUMNODES; i++)
6763 init_numa_sched_groups_power(sched_group_nodes[i]);
6764
6765 if (sd_allnodes) {
6766 struct sched_group *sg;
6767
6768 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6769 init_numa_sched_groups_power(sg);
6770 }
6771 #endif
6772
6773 /* Attach the domains */
6774 for_each_cpu_mask(i, *cpu_map) {
6775 struct sched_domain *sd;
6776 #ifdef CONFIG_SCHED_SMT
6777 sd = &per_cpu(cpu_domains, i);
6778 #elif defined(CONFIG_SCHED_MC)
6779 sd = &per_cpu(core_domains, i);
6780 #else
6781 sd = &per_cpu(phys_domains, i);
6782 #endif
6783 cpu_attach_domain(sd, rd, i);
6784 }
6785
6786 return 0;
6787
6788 #ifdef CONFIG_NUMA
6789 error:
6790 free_sched_groups(cpu_map);
6791 return -ENOMEM;
6792 #endif
6793 }
6794
6795 static cpumask_t *doms_cur; /* current sched domains */
6796 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6797
6798 /*
6799 * Special case: If a kmalloc of a doms_cur partition (array of
6800 * cpumask_t) fails, then fallback to a single sched domain,
6801 * as determined by the single cpumask_t fallback_doms.
6802 */
6803 static cpumask_t fallback_doms;
6804
6805 /*
6806 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6807 * For now this just excludes isolated cpus, but could be used to
6808 * exclude other special cases in the future.
6809 */
6810 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6811 {
6812 int err;
6813
6814 ndoms_cur = 1;
6815 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6816 if (!doms_cur)
6817 doms_cur = &fallback_doms;
6818 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6819 err = build_sched_domains(doms_cur);
6820 register_sched_domain_sysctl();
6821
6822 return err;
6823 }
6824
6825 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6826 {
6827 free_sched_groups(cpu_map);
6828 }
6829
6830 /*
6831 * Detach sched domains from a group of cpus specified in cpu_map
6832 * These cpus will now be attached to the NULL domain
6833 */
6834 static void detach_destroy_domains(const cpumask_t *cpu_map)
6835 {
6836 int i;
6837
6838 unregister_sched_domain_sysctl();
6839
6840 for_each_cpu_mask(i, *cpu_map)
6841 cpu_attach_domain(NULL, &def_root_domain, i);
6842 synchronize_sched();
6843 arch_destroy_sched_domains(cpu_map);
6844 }
6845
6846 /*
6847 * Partition sched domains as specified by the 'ndoms_new'
6848 * cpumasks in the array doms_new[] of cpumasks. This compares
6849 * doms_new[] to the current sched domain partitioning, doms_cur[].
6850 * It destroys each deleted domain and builds each new domain.
6851 *
6852 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6853 * The masks don't intersect (don't overlap.) We should setup one
6854 * sched domain for each mask. CPUs not in any of the cpumasks will
6855 * not be load balanced. If the same cpumask appears both in the
6856 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6857 * it as it is.
6858 *
6859 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6860 * ownership of it and will kfree it when done with it. If the caller
6861 * failed the kmalloc call, then it can pass in doms_new == NULL,
6862 * and partition_sched_domains() will fallback to the single partition
6863 * 'fallback_doms'.
6864 *
6865 * Call with hotplug lock held
6866 */
6867 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6868 {
6869 int i, j;
6870
6871 lock_doms_cur();
6872
6873 /* always unregister in case we don't destroy any domains */
6874 unregister_sched_domain_sysctl();
6875
6876 if (doms_new == NULL) {
6877 ndoms_new = 1;
6878 doms_new = &fallback_doms;
6879 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6880 }
6881
6882 /* Destroy deleted domains */
6883 for (i = 0; i < ndoms_cur; i++) {
6884 for (j = 0; j < ndoms_new; j++) {
6885 if (cpus_equal(doms_cur[i], doms_new[j]))
6886 goto match1;
6887 }
6888 /* no match - a current sched domain not in new doms_new[] */
6889 detach_destroy_domains(doms_cur + i);
6890 match1:
6891 ;
6892 }
6893
6894 /* Build new domains */
6895 for (i = 0; i < ndoms_new; i++) {
6896 for (j = 0; j < ndoms_cur; j++) {
6897 if (cpus_equal(doms_new[i], doms_cur[j]))
6898 goto match2;
6899 }
6900 /* no match - add a new doms_new */
6901 build_sched_domains(doms_new + i);
6902 match2:
6903 ;
6904 }
6905
6906 /* Remember the new sched domains */
6907 if (doms_cur != &fallback_doms)
6908 kfree(doms_cur);
6909 doms_cur = doms_new;
6910 ndoms_cur = ndoms_new;
6911
6912 register_sched_domain_sysctl();
6913
6914 unlock_doms_cur();
6915 }
6916
6917 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6918 static int arch_reinit_sched_domains(void)
6919 {
6920 int err;
6921
6922 get_online_cpus();
6923 detach_destroy_domains(&cpu_online_map);
6924 err = arch_init_sched_domains(&cpu_online_map);
6925 put_online_cpus();
6926
6927 return err;
6928 }
6929
6930 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6931 {
6932 int ret;
6933
6934 if (buf[0] != '0' && buf[0] != '1')
6935 return -EINVAL;
6936
6937 if (smt)
6938 sched_smt_power_savings = (buf[0] == '1');
6939 else
6940 sched_mc_power_savings = (buf[0] == '1');
6941
6942 ret = arch_reinit_sched_domains();
6943
6944 return ret ? ret : count;
6945 }
6946
6947 #ifdef CONFIG_SCHED_MC
6948 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6949 {
6950 return sprintf(page, "%u\n", sched_mc_power_savings);
6951 }
6952 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6953 const char *buf, size_t count)
6954 {
6955 return sched_power_savings_store(buf, count, 0);
6956 }
6957 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6958 sched_mc_power_savings_store);
6959 #endif
6960
6961 #ifdef CONFIG_SCHED_SMT
6962 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6963 {
6964 return sprintf(page, "%u\n", sched_smt_power_savings);
6965 }
6966 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6967 const char *buf, size_t count)
6968 {
6969 return sched_power_savings_store(buf, count, 1);
6970 }
6971 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6972 sched_smt_power_savings_store);
6973 #endif
6974
6975 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6976 {
6977 int err = 0;
6978
6979 #ifdef CONFIG_SCHED_SMT
6980 if (smt_capable())
6981 err = sysfs_create_file(&cls->kset.kobj,
6982 &attr_sched_smt_power_savings.attr);
6983 #endif
6984 #ifdef CONFIG_SCHED_MC
6985 if (!err && mc_capable())
6986 err = sysfs_create_file(&cls->kset.kobj,
6987 &attr_sched_mc_power_savings.attr);
6988 #endif
6989 return err;
6990 }
6991 #endif
6992
6993 /*
6994 * Force a reinitialization of the sched domains hierarchy. The domains
6995 * and groups cannot be updated in place without racing with the balancing
6996 * code, so we temporarily attach all running cpus to the NULL domain
6997 * which will prevent rebalancing while the sched domains are recalculated.
6998 */
6999 static int update_sched_domains(struct notifier_block *nfb,
7000 unsigned long action, void *hcpu)
7001 {
7002 switch (action) {
7003 case CPU_UP_PREPARE:
7004 case CPU_UP_PREPARE_FROZEN:
7005 case CPU_DOWN_PREPARE:
7006 case CPU_DOWN_PREPARE_FROZEN:
7007 detach_destroy_domains(&cpu_online_map);
7008 return NOTIFY_OK;
7009
7010 case CPU_UP_CANCELED:
7011 case CPU_UP_CANCELED_FROZEN:
7012 case CPU_DOWN_FAILED:
7013 case CPU_DOWN_FAILED_FROZEN:
7014 case CPU_ONLINE:
7015 case CPU_ONLINE_FROZEN:
7016 case CPU_DEAD:
7017 case CPU_DEAD_FROZEN:
7018 /*
7019 * Fall through and re-initialise the domains.
7020 */
7021 break;
7022 default:
7023 return NOTIFY_DONE;
7024 }
7025
7026 /* The hotplug lock is already held by cpu_up/cpu_down */
7027 arch_init_sched_domains(&cpu_online_map);
7028
7029 return NOTIFY_OK;
7030 }
7031
7032 void __init sched_init_smp(void)
7033 {
7034 cpumask_t non_isolated_cpus;
7035
7036 get_online_cpus();
7037 arch_init_sched_domains(&cpu_online_map);
7038 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7039 if (cpus_empty(non_isolated_cpus))
7040 cpu_set(smp_processor_id(), non_isolated_cpus);
7041 put_online_cpus();
7042 /* XXX: Theoretical race here - CPU may be hotplugged now */
7043 hotcpu_notifier(update_sched_domains, 0);
7044
7045 /* Move init over to a non-isolated CPU */
7046 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7047 BUG();
7048 sched_init_granularity();
7049 }
7050 #else
7051 void __init sched_init_smp(void)
7052 {
7053 sched_init_granularity();
7054 }
7055 #endif /* CONFIG_SMP */
7056
7057 int in_sched_functions(unsigned long addr)
7058 {
7059 return in_lock_functions(addr) ||
7060 (addr >= (unsigned long)__sched_text_start
7061 && addr < (unsigned long)__sched_text_end);
7062 }
7063
7064 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7065 {
7066 cfs_rq->tasks_timeline = RB_ROOT;
7067 #ifdef CONFIG_FAIR_GROUP_SCHED
7068 cfs_rq->rq = rq;
7069 #endif
7070 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7071 }
7072
7073 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7074 {
7075 struct rt_prio_array *array;
7076 int i;
7077
7078 array = &rt_rq->active;
7079 for (i = 0; i < MAX_RT_PRIO; i++) {
7080 INIT_LIST_HEAD(array->queue + i);
7081 __clear_bit(i, array->bitmap);
7082 }
7083 /* delimiter for bitsearch: */
7084 __set_bit(MAX_RT_PRIO, array->bitmap);
7085
7086 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7087 rt_rq->highest_prio = MAX_RT_PRIO;
7088 #endif
7089 #ifdef CONFIG_SMP
7090 rt_rq->rt_nr_migratory = 0;
7091 rt_rq->overloaded = 0;
7092 #endif
7093
7094 rt_rq->rt_time = 0;
7095 rt_rq->rt_throttled = 0;
7096
7097 #ifdef CONFIG_RT_GROUP_SCHED
7098 rt_rq->rt_nr_boosted = 0;
7099 rt_rq->rq = rq;
7100 #endif
7101 }
7102
7103 #ifdef CONFIG_FAIR_GROUP_SCHED
7104 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7105 struct cfs_rq *cfs_rq, struct sched_entity *se,
7106 int cpu, int add)
7107 {
7108 tg->cfs_rq[cpu] = cfs_rq;
7109 init_cfs_rq(cfs_rq, rq);
7110 cfs_rq->tg = tg;
7111 if (add)
7112 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7113
7114 tg->se[cpu] = se;
7115 se->cfs_rq = &rq->cfs;
7116 se->my_q = cfs_rq;
7117 se->load.weight = tg->shares;
7118 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7119 se->parent = NULL;
7120 }
7121 #endif
7122
7123 #ifdef CONFIG_RT_GROUP_SCHED
7124 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7125 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7126 int cpu, int add)
7127 {
7128 tg->rt_rq[cpu] = rt_rq;
7129 init_rt_rq(rt_rq, rq);
7130 rt_rq->tg = tg;
7131 rt_rq->rt_se = rt_se;
7132 if (add)
7133 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7134
7135 tg->rt_se[cpu] = rt_se;
7136 rt_se->rt_rq = &rq->rt;
7137 rt_se->my_q = rt_rq;
7138 rt_se->parent = NULL;
7139 INIT_LIST_HEAD(&rt_se->run_list);
7140 }
7141 #endif
7142
7143 void __init sched_init(void)
7144 {
7145 int highest_cpu = 0;
7146 int i, j;
7147
7148 #ifdef CONFIG_SMP
7149 init_defrootdomain();
7150 #endif
7151
7152 #ifdef CONFIG_GROUP_SCHED
7153 list_add(&init_task_group.list, &task_groups);
7154 #endif
7155
7156 for_each_possible_cpu(i) {
7157 struct rq *rq;
7158
7159 rq = cpu_rq(i);
7160 spin_lock_init(&rq->lock);
7161 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7162 rq->nr_running = 0;
7163 rq->clock = 1;
7164 init_cfs_rq(&rq->cfs, rq);
7165 init_rt_rq(&rq->rt, rq);
7166 #ifdef CONFIG_FAIR_GROUP_SCHED
7167 init_task_group.shares = init_task_group_load;
7168 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7169 init_tg_cfs_entry(rq, &init_task_group,
7170 &per_cpu(init_cfs_rq, i),
7171 &per_cpu(init_sched_entity, i), i, 1);
7172
7173 #endif
7174 #ifdef CONFIG_RT_GROUP_SCHED
7175 init_task_group.rt_runtime =
7176 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7177 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7178 init_tg_rt_entry(rq, &init_task_group,
7179 &per_cpu(init_rt_rq, i),
7180 &per_cpu(init_sched_rt_entity, i), i, 1);
7181 #endif
7182 rq->rt_period_expire = 0;
7183 rq->rt_throttled = 0;
7184
7185 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7186 rq->cpu_load[j] = 0;
7187 #ifdef CONFIG_SMP
7188 rq->sd = NULL;
7189 rq->rd = NULL;
7190 rq->active_balance = 0;
7191 rq->next_balance = jiffies;
7192 rq->push_cpu = 0;
7193 rq->cpu = i;
7194 rq->migration_thread = NULL;
7195 INIT_LIST_HEAD(&rq->migration_queue);
7196 rq_attach_root(rq, &def_root_domain);
7197 #endif
7198 init_rq_hrtick(rq);
7199 atomic_set(&rq->nr_iowait, 0);
7200 highest_cpu = i;
7201 }
7202
7203 set_load_weight(&init_task);
7204
7205 #ifdef CONFIG_PREEMPT_NOTIFIERS
7206 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7207 #endif
7208
7209 #ifdef CONFIG_SMP
7210 nr_cpu_ids = highest_cpu + 1;
7211 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7212 #endif
7213
7214 #ifdef CONFIG_RT_MUTEXES
7215 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7216 #endif
7217
7218 /*
7219 * The boot idle thread does lazy MMU switching as well:
7220 */
7221 atomic_inc(&init_mm.mm_count);
7222 enter_lazy_tlb(&init_mm, current);
7223
7224 /*
7225 * Make us the idle thread. Technically, schedule() should not be
7226 * called from this thread, however somewhere below it might be,
7227 * but because we are the idle thread, we just pick up running again
7228 * when this runqueue becomes "idle".
7229 */
7230 init_idle(current, smp_processor_id());
7231 /*
7232 * During early bootup we pretend to be a normal task:
7233 */
7234 current->sched_class = &fair_sched_class;
7235
7236 scheduler_running = 1;
7237 }
7238
7239 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7240 void __might_sleep(char *file, int line)
7241 {
7242 #ifdef in_atomic
7243 static unsigned long prev_jiffy; /* ratelimiting */
7244
7245 if ((in_atomic() || irqs_disabled()) &&
7246 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7247 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7248 return;
7249 prev_jiffy = jiffies;
7250 printk(KERN_ERR "BUG: sleeping function called from invalid"
7251 " context at %s:%d\n", file, line);
7252 printk("in_atomic():%d, irqs_disabled():%d\n",
7253 in_atomic(), irqs_disabled());
7254 debug_show_held_locks(current);
7255 if (irqs_disabled())
7256 print_irqtrace_events(current);
7257 dump_stack();
7258 }
7259 #endif
7260 }
7261 EXPORT_SYMBOL(__might_sleep);
7262 #endif
7263
7264 #ifdef CONFIG_MAGIC_SYSRQ
7265 static void normalize_task(struct rq *rq, struct task_struct *p)
7266 {
7267 int on_rq;
7268 update_rq_clock(rq);
7269 on_rq = p->se.on_rq;
7270 if (on_rq)
7271 deactivate_task(rq, p, 0);
7272 __setscheduler(rq, p, SCHED_NORMAL, 0);
7273 if (on_rq) {
7274 activate_task(rq, p, 0);
7275 resched_task(rq->curr);
7276 }
7277 }
7278
7279 void normalize_rt_tasks(void)
7280 {
7281 struct task_struct *g, *p;
7282 unsigned long flags;
7283 struct rq *rq;
7284
7285 read_lock_irqsave(&tasklist_lock, flags);
7286 do_each_thread(g, p) {
7287 /*
7288 * Only normalize user tasks:
7289 */
7290 if (!p->mm)
7291 continue;
7292
7293 p->se.exec_start = 0;
7294 #ifdef CONFIG_SCHEDSTATS
7295 p->se.wait_start = 0;
7296 p->se.sleep_start = 0;
7297 p->se.block_start = 0;
7298 #endif
7299 task_rq(p)->clock = 0;
7300
7301 if (!rt_task(p)) {
7302 /*
7303 * Renice negative nice level userspace
7304 * tasks back to 0:
7305 */
7306 if (TASK_NICE(p) < 0 && p->mm)
7307 set_user_nice(p, 0);
7308 continue;
7309 }
7310
7311 spin_lock(&p->pi_lock);
7312 rq = __task_rq_lock(p);
7313
7314 normalize_task(rq, p);
7315
7316 __task_rq_unlock(rq);
7317 spin_unlock(&p->pi_lock);
7318 } while_each_thread(g, p);
7319
7320 read_unlock_irqrestore(&tasklist_lock, flags);
7321 }
7322
7323 #endif /* CONFIG_MAGIC_SYSRQ */
7324
7325 #ifdef CONFIG_IA64
7326 /*
7327 * These functions are only useful for the IA64 MCA handling.
7328 *
7329 * They can only be called when the whole system has been
7330 * stopped - every CPU needs to be quiescent, and no scheduling
7331 * activity can take place. Using them for anything else would
7332 * be a serious bug, and as a result, they aren't even visible
7333 * under any other configuration.
7334 */
7335
7336 /**
7337 * curr_task - return the current task for a given cpu.
7338 * @cpu: the processor in question.
7339 *
7340 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7341 */
7342 struct task_struct *curr_task(int cpu)
7343 {
7344 return cpu_curr(cpu);
7345 }
7346
7347 /**
7348 * set_curr_task - set the current task for a given cpu.
7349 * @cpu: the processor in question.
7350 * @p: the task pointer to set.
7351 *
7352 * Description: This function must only be used when non-maskable interrupts
7353 * are serviced on a separate stack. It allows the architecture to switch the
7354 * notion of the current task on a cpu in a non-blocking manner. This function
7355 * must be called with all CPU's synchronized, and interrupts disabled, the
7356 * and caller must save the original value of the current task (see
7357 * curr_task() above) and restore that value before reenabling interrupts and
7358 * re-starting the system.
7359 *
7360 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7361 */
7362 void set_curr_task(int cpu, struct task_struct *p)
7363 {
7364 cpu_curr(cpu) = p;
7365 }
7366
7367 #endif
7368
7369 #ifdef CONFIG_GROUP_SCHED
7370
7371 #ifdef CONFIG_FAIR_GROUP_SCHED
7372 static void free_fair_sched_group(struct task_group *tg)
7373 {
7374 int i;
7375
7376 for_each_possible_cpu(i) {
7377 if (tg->cfs_rq)
7378 kfree(tg->cfs_rq[i]);
7379 if (tg->se)
7380 kfree(tg->se[i]);
7381 }
7382
7383 kfree(tg->cfs_rq);
7384 kfree(tg->se);
7385 }
7386
7387 static int alloc_fair_sched_group(struct task_group *tg)
7388 {
7389 struct cfs_rq *cfs_rq;
7390 struct sched_entity *se;
7391 struct rq *rq;
7392 int i;
7393
7394 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7395 if (!tg->cfs_rq)
7396 goto err;
7397 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7398 if (!tg->se)
7399 goto err;
7400
7401 tg->shares = NICE_0_LOAD;
7402
7403 for_each_possible_cpu(i) {
7404 rq = cpu_rq(i);
7405
7406 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7407 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7408 if (!cfs_rq)
7409 goto err;
7410
7411 se = kmalloc_node(sizeof(struct sched_entity),
7412 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7413 if (!se)
7414 goto err;
7415
7416 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7417 }
7418
7419 return 1;
7420
7421 err:
7422 return 0;
7423 }
7424
7425 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7426 {
7427 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7428 &cpu_rq(cpu)->leaf_cfs_rq_list);
7429 }
7430
7431 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7432 {
7433 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7434 }
7435 #else
7436 static inline void free_fair_sched_group(struct task_group *tg)
7437 {
7438 }
7439
7440 static inline int alloc_fair_sched_group(struct task_group *tg)
7441 {
7442 return 1;
7443 }
7444
7445 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7446 {
7447 }
7448
7449 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7450 {
7451 }
7452 #endif
7453
7454 #ifdef CONFIG_RT_GROUP_SCHED
7455 static void free_rt_sched_group(struct task_group *tg)
7456 {
7457 int i;
7458
7459 for_each_possible_cpu(i) {
7460 if (tg->rt_rq)
7461 kfree(tg->rt_rq[i]);
7462 if (tg->rt_se)
7463 kfree(tg->rt_se[i]);
7464 }
7465
7466 kfree(tg->rt_rq);
7467 kfree(tg->rt_se);
7468 }
7469
7470 static int alloc_rt_sched_group(struct task_group *tg)
7471 {
7472 struct rt_rq *rt_rq;
7473 struct sched_rt_entity *rt_se;
7474 struct rq *rq;
7475 int i;
7476
7477 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7478 if (!tg->rt_rq)
7479 goto err;
7480 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7481 if (!tg->rt_se)
7482 goto err;
7483
7484 tg->rt_runtime = 0;
7485
7486 for_each_possible_cpu(i) {
7487 rq = cpu_rq(i);
7488
7489 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7490 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7491 if (!rt_rq)
7492 goto err;
7493
7494 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7495 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7496 if (!rt_se)
7497 goto err;
7498
7499 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7500 }
7501
7502 return 1;
7503
7504 err:
7505 return 0;
7506 }
7507
7508 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7509 {
7510 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7511 &cpu_rq(cpu)->leaf_rt_rq_list);
7512 }
7513
7514 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7515 {
7516 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7517 }
7518 #else
7519 static inline void free_rt_sched_group(struct task_group *tg)
7520 {
7521 }
7522
7523 static inline int alloc_rt_sched_group(struct task_group *tg)
7524 {
7525 return 1;
7526 }
7527
7528 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7529 {
7530 }
7531
7532 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7533 {
7534 }
7535 #endif
7536
7537 static void free_sched_group(struct task_group *tg)
7538 {
7539 free_fair_sched_group(tg);
7540 free_rt_sched_group(tg);
7541 kfree(tg);
7542 }
7543
7544 /* allocate runqueue etc for a new task group */
7545 struct task_group *sched_create_group(void)
7546 {
7547 struct task_group *tg;
7548 unsigned long flags;
7549 int i;
7550
7551 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7552 if (!tg)
7553 return ERR_PTR(-ENOMEM);
7554
7555 if (!alloc_fair_sched_group(tg))
7556 goto err;
7557
7558 if (!alloc_rt_sched_group(tg))
7559 goto err;
7560
7561 spin_lock_irqsave(&task_group_lock, flags);
7562 for_each_possible_cpu(i) {
7563 register_fair_sched_group(tg, i);
7564 register_rt_sched_group(tg, i);
7565 }
7566 list_add_rcu(&tg->list, &task_groups);
7567 spin_unlock_irqrestore(&task_group_lock, flags);
7568
7569 return tg;
7570
7571 err:
7572 free_sched_group(tg);
7573 return ERR_PTR(-ENOMEM);
7574 }
7575
7576 /* rcu callback to free various structures associated with a task group */
7577 static void free_sched_group_rcu(struct rcu_head *rhp)
7578 {
7579 /* now it should be safe to free those cfs_rqs */
7580 free_sched_group(container_of(rhp, struct task_group, rcu));
7581 }
7582
7583 /* Destroy runqueue etc associated with a task group */
7584 void sched_destroy_group(struct task_group *tg)
7585 {
7586 unsigned long flags;
7587 int i;
7588
7589 spin_lock_irqsave(&task_group_lock, flags);
7590 for_each_possible_cpu(i) {
7591 unregister_fair_sched_group(tg, i);
7592 unregister_rt_sched_group(tg, i);
7593 }
7594 list_del_rcu(&tg->list);
7595 spin_unlock_irqrestore(&task_group_lock, flags);
7596
7597 /* wait for possible concurrent references to cfs_rqs complete */
7598 call_rcu(&tg->rcu, free_sched_group_rcu);
7599 }
7600
7601 /* change task's runqueue when it moves between groups.
7602 * The caller of this function should have put the task in its new group
7603 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7604 * reflect its new group.
7605 */
7606 void sched_move_task(struct task_struct *tsk)
7607 {
7608 int on_rq, running;
7609 unsigned long flags;
7610 struct rq *rq;
7611
7612 rq = task_rq_lock(tsk, &flags);
7613
7614 update_rq_clock(rq);
7615
7616 running = task_current(rq, tsk);
7617 on_rq = tsk->se.on_rq;
7618
7619 if (on_rq)
7620 dequeue_task(rq, tsk, 0);
7621 if (unlikely(running))
7622 tsk->sched_class->put_prev_task(rq, tsk);
7623
7624 set_task_rq(tsk, task_cpu(tsk));
7625
7626 #ifdef CONFIG_FAIR_GROUP_SCHED
7627 if (tsk->sched_class->moved_group)
7628 tsk->sched_class->moved_group(tsk);
7629 #endif
7630
7631 if (unlikely(running))
7632 tsk->sched_class->set_curr_task(rq);
7633 if (on_rq)
7634 enqueue_task(rq, tsk, 0);
7635
7636 task_rq_unlock(rq, &flags);
7637 }
7638
7639 #ifdef CONFIG_FAIR_GROUP_SCHED
7640 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7641 {
7642 struct cfs_rq *cfs_rq = se->cfs_rq;
7643 struct rq *rq = cfs_rq->rq;
7644 int on_rq;
7645
7646 spin_lock_irq(&rq->lock);
7647
7648 on_rq = se->on_rq;
7649 if (on_rq)
7650 dequeue_entity(cfs_rq, se, 0);
7651
7652 se->load.weight = shares;
7653 se->load.inv_weight = div64_64((1ULL<<32), shares);
7654
7655 if (on_rq)
7656 enqueue_entity(cfs_rq, se, 0);
7657
7658 spin_unlock_irq(&rq->lock);
7659 }
7660
7661 static DEFINE_MUTEX(shares_mutex);
7662
7663 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7664 {
7665 int i;
7666 unsigned long flags;
7667
7668 /*
7669 * A weight of 0 or 1 can cause arithmetics problems.
7670 * (The default weight is 1024 - so there's no practical
7671 * limitation from this.)
7672 */
7673 if (shares < 2)
7674 shares = 2;
7675
7676 mutex_lock(&shares_mutex);
7677 if (tg->shares == shares)
7678 goto done;
7679
7680 spin_lock_irqsave(&task_group_lock, flags);
7681 for_each_possible_cpu(i)
7682 unregister_fair_sched_group(tg, i);
7683 spin_unlock_irqrestore(&task_group_lock, flags);
7684
7685 /* wait for any ongoing reference to this group to finish */
7686 synchronize_sched();
7687
7688 /*
7689 * Now we are free to modify the group's share on each cpu
7690 * w/o tripping rebalance_share or load_balance_fair.
7691 */
7692 tg->shares = shares;
7693 for_each_possible_cpu(i)
7694 set_se_shares(tg->se[i], shares);
7695
7696 /*
7697 * Enable load balance activity on this group, by inserting it back on
7698 * each cpu's rq->leaf_cfs_rq_list.
7699 */
7700 spin_lock_irqsave(&task_group_lock, flags);
7701 for_each_possible_cpu(i)
7702 register_fair_sched_group(tg, i);
7703 spin_unlock_irqrestore(&task_group_lock, flags);
7704 done:
7705 mutex_unlock(&shares_mutex);
7706 return 0;
7707 }
7708
7709 unsigned long sched_group_shares(struct task_group *tg)
7710 {
7711 return tg->shares;
7712 }
7713 #endif
7714
7715 #ifdef CONFIG_RT_GROUP_SCHED
7716 /*
7717 * Ensure that the real time constraints are schedulable.
7718 */
7719 static DEFINE_MUTEX(rt_constraints_mutex);
7720
7721 static unsigned long to_ratio(u64 period, u64 runtime)
7722 {
7723 if (runtime == RUNTIME_INF)
7724 return 1ULL << 16;
7725
7726 return div64_64(runtime << 16, period);
7727 }
7728
7729 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7730 {
7731 struct task_group *tgi;
7732 unsigned long total = 0;
7733 unsigned long global_ratio =
7734 to_ratio(sysctl_sched_rt_period,
7735 sysctl_sched_rt_runtime < 0 ?
7736 RUNTIME_INF : sysctl_sched_rt_runtime);
7737
7738 rcu_read_lock();
7739 list_for_each_entry_rcu(tgi, &task_groups, list) {
7740 if (tgi == tg)
7741 continue;
7742
7743 total += to_ratio(period, tgi->rt_runtime);
7744 }
7745 rcu_read_unlock();
7746
7747 return total + to_ratio(period, runtime) < global_ratio;
7748 }
7749
7750 /* Must be called with tasklist_lock held */
7751 static inline int tg_has_rt_tasks(struct task_group *tg)
7752 {
7753 struct task_struct *g, *p;
7754 do_each_thread(g, p) {
7755 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7756 return 1;
7757 } while_each_thread(g, p);
7758 return 0;
7759 }
7760
7761 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7762 {
7763 u64 rt_runtime, rt_period;
7764 int err = 0;
7765
7766 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7767 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7768 if (rt_runtime_us == -1)
7769 rt_runtime = RUNTIME_INF;
7770
7771 mutex_lock(&rt_constraints_mutex);
7772 read_lock(&tasklist_lock);
7773 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7774 err = -EBUSY;
7775 goto unlock;
7776 }
7777 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7778 err = -EINVAL;
7779 goto unlock;
7780 }
7781 tg->rt_runtime = rt_runtime;
7782 unlock:
7783 read_unlock(&tasklist_lock);
7784 mutex_unlock(&rt_constraints_mutex);
7785
7786 return err;
7787 }
7788
7789 long sched_group_rt_runtime(struct task_group *tg)
7790 {
7791 u64 rt_runtime_us;
7792
7793 if (tg->rt_runtime == RUNTIME_INF)
7794 return -1;
7795
7796 rt_runtime_us = tg->rt_runtime;
7797 do_div(rt_runtime_us, NSEC_PER_USEC);
7798 return rt_runtime_us;
7799 }
7800 #endif
7801 #endif /* CONFIG_GROUP_SCHED */
7802
7803 #ifdef CONFIG_CGROUP_SCHED
7804
7805 /* return corresponding task_group object of a cgroup */
7806 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7807 {
7808 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7809 struct task_group, css);
7810 }
7811
7812 static struct cgroup_subsys_state *
7813 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7814 {
7815 struct task_group *tg;
7816
7817 if (!cgrp->parent) {
7818 /* This is early initialization for the top cgroup */
7819 init_task_group.css.cgroup = cgrp;
7820 return &init_task_group.css;
7821 }
7822
7823 /* we support only 1-level deep hierarchical scheduler atm */
7824 if (cgrp->parent->parent)
7825 return ERR_PTR(-EINVAL);
7826
7827 tg = sched_create_group();
7828 if (IS_ERR(tg))
7829 return ERR_PTR(-ENOMEM);
7830
7831 /* Bind the cgroup to task_group object we just created */
7832 tg->css.cgroup = cgrp;
7833
7834 return &tg->css;
7835 }
7836
7837 static void
7838 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7839 {
7840 struct task_group *tg = cgroup_tg(cgrp);
7841
7842 sched_destroy_group(tg);
7843 }
7844
7845 static int
7846 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7847 struct task_struct *tsk)
7848 {
7849 #ifdef CONFIG_RT_GROUP_SCHED
7850 /* Don't accept realtime tasks when there is no way for them to run */
7851 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7852 return -EINVAL;
7853 #else
7854 /* We don't support RT-tasks being in separate groups */
7855 if (tsk->sched_class != &fair_sched_class)
7856 return -EINVAL;
7857 #endif
7858
7859 return 0;
7860 }
7861
7862 static void
7863 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7864 struct cgroup *old_cont, struct task_struct *tsk)
7865 {
7866 sched_move_task(tsk);
7867 }
7868
7869 #ifdef CONFIG_FAIR_GROUP_SCHED
7870 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7871 u64 shareval)
7872 {
7873 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7874 }
7875
7876 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7877 {
7878 struct task_group *tg = cgroup_tg(cgrp);
7879
7880 return (u64) tg->shares;
7881 }
7882 #endif
7883
7884 #ifdef CONFIG_RT_GROUP_SCHED
7885 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7886 struct file *file,
7887 const char __user *userbuf,
7888 size_t nbytes, loff_t *unused_ppos)
7889 {
7890 char buffer[64];
7891 int retval = 0;
7892 s64 val;
7893 char *end;
7894
7895 if (!nbytes)
7896 return -EINVAL;
7897 if (nbytes >= sizeof(buffer))
7898 return -E2BIG;
7899 if (copy_from_user(buffer, userbuf, nbytes))
7900 return -EFAULT;
7901
7902 buffer[nbytes] = 0; /* nul-terminate */
7903
7904 /* strip newline if necessary */
7905 if (nbytes && (buffer[nbytes-1] == '\n'))
7906 buffer[nbytes-1] = 0;
7907 val = simple_strtoll(buffer, &end, 0);
7908 if (*end)
7909 return -EINVAL;
7910
7911 /* Pass to subsystem */
7912 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7913 if (!retval)
7914 retval = nbytes;
7915 return retval;
7916 }
7917
7918 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7919 struct file *file,
7920 char __user *buf, size_t nbytes,
7921 loff_t *ppos)
7922 {
7923 char tmp[64];
7924 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7925 int len = sprintf(tmp, "%ld\n", val);
7926
7927 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7928 }
7929 #endif
7930
7931 static struct cftype cpu_files[] = {
7932 #ifdef CONFIG_FAIR_GROUP_SCHED
7933 {
7934 .name = "shares",
7935 .read_uint = cpu_shares_read_uint,
7936 .write_uint = cpu_shares_write_uint,
7937 },
7938 #endif
7939 #ifdef CONFIG_RT_GROUP_SCHED
7940 {
7941 .name = "rt_runtime_us",
7942 .read = cpu_rt_runtime_read,
7943 .write = cpu_rt_runtime_write,
7944 },
7945 #endif
7946 };
7947
7948 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7949 {
7950 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7951 }
7952
7953 struct cgroup_subsys cpu_cgroup_subsys = {
7954 .name = "cpu",
7955 .create = cpu_cgroup_create,
7956 .destroy = cpu_cgroup_destroy,
7957 .can_attach = cpu_cgroup_can_attach,
7958 .attach = cpu_cgroup_attach,
7959 .populate = cpu_cgroup_populate,
7960 .subsys_id = cpu_cgroup_subsys_id,
7961 .early_init = 1,
7962 };
7963
7964 #endif /* CONFIG_CGROUP_SCHED */
7965
7966 #ifdef CONFIG_CGROUP_CPUACCT
7967
7968 /*
7969 * CPU accounting code for task groups.
7970 *
7971 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7972 * (balbir@in.ibm.com).
7973 */
7974
7975 /* track cpu usage of a group of tasks */
7976 struct cpuacct {
7977 struct cgroup_subsys_state css;
7978 /* cpuusage holds pointer to a u64-type object on every cpu */
7979 u64 *cpuusage;
7980 };
7981
7982 struct cgroup_subsys cpuacct_subsys;
7983
7984 /* return cpu accounting group corresponding to this container */
7985 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7986 {
7987 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7988 struct cpuacct, css);
7989 }
7990
7991 /* return cpu accounting group to which this task belongs */
7992 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7993 {
7994 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7995 struct cpuacct, css);
7996 }
7997
7998 /* create a new cpu accounting group */
7999 static struct cgroup_subsys_state *cpuacct_create(
8000 struct cgroup_subsys *ss, struct cgroup *cont)
8001 {
8002 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8003
8004 if (!ca)
8005 return ERR_PTR(-ENOMEM);
8006
8007 ca->cpuusage = alloc_percpu(u64);
8008 if (!ca->cpuusage) {
8009 kfree(ca);
8010 return ERR_PTR(-ENOMEM);
8011 }
8012
8013 return &ca->css;
8014 }
8015
8016 /* destroy an existing cpu accounting group */
8017 static void
8018 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8019 {
8020 struct cpuacct *ca = cgroup_ca(cont);
8021
8022 free_percpu(ca->cpuusage);
8023 kfree(ca);
8024 }
8025
8026 /* return total cpu usage (in nanoseconds) of a group */
8027 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8028 {
8029 struct cpuacct *ca = cgroup_ca(cont);
8030 u64 totalcpuusage = 0;
8031 int i;
8032
8033 for_each_possible_cpu(i) {
8034 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8035
8036 /*
8037 * Take rq->lock to make 64-bit addition safe on 32-bit
8038 * platforms.
8039 */
8040 spin_lock_irq(&cpu_rq(i)->lock);
8041 totalcpuusage += *cpuusage;
8042 spin_unlock_irq(&cpu_rq(i)->lock);
8043 }
8044
8045 return totalcpuusage;
8046 }
8047
8048 static struct cftype files[] = {
8049 {
8050 .name = "usage",
8051 .read_uint = cpuusage_read,
8052 },
8053 };
8054
8055 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8056 {
8057 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8058 }
8059
8060 /*
8061 * charge this task's execution time to its accounting group.
8062 *
8063 * called with rq->lock held.
8064 */
8065 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8066 {
8067 struct cpuacct *ca;
8068
8069 if (!cpuacct_subsys.active)
8070 return;
8071
8072 ca = task_ca(tsk);
8073 if (ca) {
8074 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8075
8076 *cpuusage += cputime;
8077 }
8078 }
8079
8080 struct cgroup_subsys cpuacct_subsys = {
8081 .name = "cpuacct",
8082 .create = cpuacct_create,
8083 .destroy = cpuacct_destroy,
8084 .populate = cpuacct_populate,
8085 .subsys_id = cpuacct_subsys_id,
8086 };
8087 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.193899 seconds and 6 git commands to generate.