sched: Move sched_balance_self() into sched_fair.c
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 #ifdef CONFIG_SMP
380 static int root_task_group_empty(void)
381 {
382 return 1;
383 }
384 #endif
385
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 static inline struct task_group *task_group(struct task_struct *p)
388 {
389 return NULL;
390 }
391
392 #endif /* CONFIG_GROUP_SCHED */
393
394 /* CFS-related fields in a runqueue */
395 struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
399 u64 exec_clock;
400 u64 min_vruntime;
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
412 struct sched_entity *curr, *next, *last;
413
414 unsigned int nr_spread_over;
415
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
429
430 #ifdef CONFIG_SMP
431 /*
432 * the part of load.weight contributed by tasks
433 */
434 unsigned long task_weight;
435
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
443
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
453 #endif
454 #endif
455 };
456
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned long rt_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 int next; /* next highest */
466 #endif
467 } highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474 #endif
475 int rt_throttled;
476 u64 rt_time;
477 u64 rt_runtime;
478 /* Nests inside the rq lock: */
479 spinlock_t rt_runtime_lock;
480
481 #ifdef CONFIG_RT_GROUP_SCHED
482 unsigned long rt_nr_boosted;
483
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488 #endif
489 };
490
491 #ifdef CONFIG_SMP
492
493 /*
494 * We add the notion of a root-domain which will be used to define per-domain
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
500 */
501 struct root_domain {
502 atomic_t refcount;
503 cpumask_var_t span;
504 cpumask_var_t online;
505
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 atomic_t rto_count;
512 #ifdef CONFIG_SMP
513 struct cpupri cpupri;
514 #endif
515 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522 #endif
523 };
524
525 /*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
529 static struct root_domain def_root_domain;
530
531 #endif
532
533 /*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
540 struct rq {
541 /* runqueue lock: */
542 spinlock_t lock;
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
551 #ifdef CONFIG_NO_HZ
552 unsigned long last_tick_seen;
553 unsigned char in_nohz_recently;
554 #endif
555 /* capture load from *all* tasks on this cpu: */
556 struct load_weight load;
557 unsigned long nr_load_updates;
558 u64 nr_switches;
559 u64 nr_migrations_in;
560
561 struct cfs_rq cfs;
562 struct rt_rq rt;
563
564 #ifdef CONFIG_FAIR_GROUP_SCHED
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
567 #endif
568 #ifdef CONFIG_RT_GROUP_SCHED
569 struct list_head leaf_rt_rq_list;
570 #endif
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
580 struct task_struct *curr, *idle;
581 unsigned long next_balance;
582 struct mm_struct *prev_mm;
583
584 u64 clock;
585
586 atomic_t nr_iowait;
587
588 #ifdef CONFIG_SMP
589 struct root_domain *rd;
590 struct sched_domain *sd;
591
592 unsigned char idle_at_tick;
593 /* For active balancing */
594 int post_schedule;
595 int active_balance;
596 int push_cpu;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
601 unsigned long avg_load_per_task;
602
603 struct task_struct *migration_thread;
604 struct list_head migration_queue;
605
606 u64 rt_avg;
607 u64 age_stamp;
608 #endif
609
610 /* calc_load related fields */
611 unsigned long calc_load_update;
612 long calc_load_active;
613
614 #ifdef CONFIG_SCHED_HRTICK
615 #ifdef CONFIG_SMP
616 int hrtick_csd_pending;
617 struct call_single_data hrtick_csd;
618 #endif
619 struct hrtimer hrtick_timer;
620 #endif
621
622 #ifdef CONFIG_SCHEDSTATS
623 /* latency stats */
624 struct sched_info rq_sched_info;
625 unsigned long long rq_cpu_time;
626 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
627
628 /* sys_sched_yield() stats */
629 unsigned int yld_count;
630
631 /* schedule() stats */
632 unsigned int sched_switch;
633 unsigned int sched_count;
634 unsigned int sched_goidle;
635
636 /* try_to_wake_up() stats */
637 unsigned int ttwu_count;
638 unsigned int ttwu_local;
639
640 /* BKL stats */
641 unsigned int bkl_count;
642 #endif
643 };
644
645 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
646
647 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
648 {
649 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
650 }
651
652 static inline int cpu_of(struct rq *rq)
653 {
654 #ifdef CONFIG_SMP
655 return rq->cpu;
656 #else
657 return 0;
658 #endif
659 }
660
661 /*
662 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
663 * See detach_destroy_domains: synchronize_sched for details.
664 *
665 * The domain tree of any CPU may only be accessed from within
666 * preempt-disabled sections.
667 */
668 #define for_each_domain(cpu, __sd) \
669 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
670
671 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
672 #define this_rq() (&__get_cpu_var(runqueues))
673 #define task_rq(p) cpu_rq(task_cpu(p))
674 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
675 #define raw_rq() (&__raw_get_cpu_var(runqueues))
676
677 inline void update_rq_clock(struct rq *rq)
678 {
679 rq->clock = sched_clock_cpu(cpu_of(rq));
680 }
681
682 /*
683 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
684 */
685 #ifdef CONFIG_SCHED_DEBUG
686 # define const_debug __read_mostly
687 #else
688 # define const_debug static const
689 #endif
690
691 /**
692 * runqueue_is_locked
693 *
694 * Returns true if the current cpu runqueue is locked.
695 * This interface allows printk to be called with the runqueue lock
696 * held and know whether or not it is OK to wake up the klogd.
697 */
698 int runqueue_is_locked(void)
699 {
700 int cpu = get_cpu();
701 struct rq *rq = cpu_rq(cpu);
702 int ret;
703
704 ret = spin_is_locked(&rq->lock);
705 put_cpu();
706 return ret;
707 }
708
709 /*
710 * Debugging: various feature bits
711 */
712
713 #define SCHED_FEAT(name, enabled) \
714 __SCHED_FEAT_##name ,
715
716 enum {
717 #include "sched_features.h"
718 };
719
720 #undef SCHED_FEAT
721
722 #define SCHED_FEAT(name, enabled) \
723 (1UL << __SCHED_FEAT_##name) * enabled |
724
725 const_debug unsigned int sysctl_sched_features =
726 #include "sched_features.h"
727 0;
728
729 #undef SCHED_FEAT
730
731 #ifdef CONFIG_SCHED_DEBUG
732 #define SCHED_FEAT(name, enabled) \
733 #name ,
734
735 static __read_mostly char *sched_feat_names[] = {
736 #include "sched_features.h"
737 NULL
738 };
739
740 #undef SCHED_FEAT
741
742 static int sched_feat_show(struct seq_file *m, void *v)
743 {
744 int i;
745
746 for (i = 0; sched_feat_names[i]; i++) {
747 if (!(sysctl_sched_features & (1UL << i)))
748 seq_puts(m, "NO_");
749 seq_printf(m, "%s ", sched_feat_names[i]);
750 }
751 seq_puts(m, "\n");
752
753 return 0;
754 }
755
756 static ssize_t
757 sched_feat_write(struct file *filp, const char __user *ubuf,
758 size_t cnt, loff_t *ppos)
759 {
760 char buf[64];
761 char *cmp = buf;
762 int neg = 0;
763 int i;
764
765 if (cnt > 63)
766 cnt = 63;
767
768 if (copy_from_user(&buf, ubuf, cnt))
769 return -EFAULT;
770
771 buf[cnt] = 0;
772
773 if (strncmp(buf, "NO_", 3) == 0) {
774 neg = 1;
775 cmp += 3;
776 }
777
778 for (i = 0; sched_feat_names[i]; i++) {
779 int len = strlen(sched_feat_names[i]);
780
781 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
782 if (neg)
783 sysctl_sched_features &= ~(1UL << i);
784 else
785 sysctl_sched_features |= (1UL << i);
786 break;
787 }
788 }
789
790 if (!sched_feat_names[i])
791 return -EINVAL;
792
793 filp->f_pos += cnt;
794
795 return cnt;
796 }
797
798 static int sched_feat_open(struct inode *inode, struct file *filp)
799 {
800 return single_open(filp, sched_feat_show, NULL);
801 }
802
803 static struct file_operations sched_feat_fops = {
804 .open = sched_feat_open,
805 .write = sched_feat_write,
806 .read = seq_read,
807 .llseek = seq_lseek,
808 .release = single_release,
809 };
810
811 static __init int sched_init_debug(void)
812 {
813 debugfs_create_file("sched_features", 0644, NULL, NULL,
814 &sched_feat_fops);
815
816 return 0;
817 }
818 late_initcall(sched_init_debug);
819
820 #endif
821
822 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
823
824 /*
825 * Number of tasks to iterate in a single balance run.
826 * Limited because this is done with IRQs disabled.
827 */
828 const_debug unsigned int sysctl_sched_nr_migrate = 32;
829
830 /*
831 * ratelimit for updating the group shares.
832 * default: 0.25ms
833 */
834 unsigned int sysctl_sched_shares_ratelimit = 250000;
835
836 /*
837 * Inject some fuzzyness into changing the per-cpu group shares
838 * this avoids remote rq-locks at the expense of fairness.
839 * default: 4
840 */
841 unsigned int sysctl_sched_shares_thresh = 4;
842
843 /*
844 * period over which we average the RT time consumption, measured
845 * in ms.
846 *
847 * default: 1s
848 */
849 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
850
851 /*
852 * period over which we measure -rt task cpu usage in us.
853 * default: 1s
854 */
855 unsigned int sysctl_sched_rt_period = 1000000;
856
857 static __read_mostly int scheduler_running;
858
859 /*
860 * part of the period that we allow rt tasks to run in us.
861 * default: 0.95s
862 */
863 int sysctl_sched_rt_runtime = 950000;
864
865 static inline u64 global_rt_period(void)
866 {
867 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
868 }
869
870 static inline u64 global_rt_runtime(void)
871 {
872 if (sysctl_sched_rt_runtime < 0)
873 return RUNTIME_INF;
874
875 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
876 }
877
878 #ifndef prepare_arch_switch
879 # define prepare_arch_switch(next) do { } while (0)
880 #endif
881 #ifndef finish_arch_switch
882 # define finish_arch_switch(prev) do { } while (0)
883 #endif
884
885 static inline int task_current(struct rq *rq, struct task_struct *p)
886 {
887 return rq->curr == p;
888 }
889
890 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
891 static inline int task_running(struct rq *rq, struct task_struct *p)
892 {
893 return task_current(rq, p);
894 }
895
896 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 {
898 }
899
900 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 {
902 #ifdef CONFIG_DEBUG_SPINLOCK
903 /* this is a valid case when another task releases the spinlock */
904 rq->lock.owner = current;
905 #endif
906 /*
907 * If we are tracking spinlock dependencies then we have to
908 * fix up the runqueue lock - which gets 'carried over' from
909 * prev into current:
910 */
911 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
912
913 spin_unlock_irq(&rq->lock);
914 }
915
916 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
917 static inline int task_running(struct rq *rq, struct task_struct *p)
918 {
919 #ifdef CONFIG_SMP
920 return p->oncpu;
921 #else
922 return task_current(rq, p);
923 #endif
924 }
925
926 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * We can optimise this out completely for !SMP, because the
931 * SMP rebalancing from interrupt is the only thing that cares
932 * here.
933 */
934 next->oncpu = 1;
935 #endif
936 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 spin_unlock_irq(&rq->lock);
938 #else
939 spin_unlock(&rq->lock);
940 #endif
941 }
942
943 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
944 {
945 #ifdef CONFIG_SMP
946 /*
947 * After ->oncpu is cleared, the task can be moved to a different CPU.
948 * We must ensure this doesn't happen until the switch is completely
949 * finished.
950 */
951 smp_wmb();
952 prev->oncpu = 0;
953 #endif
954 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
955 local_irq_enable();
956 #endif
957 }
958 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
959
960 /*
961 * __task_rq_lock - lock the runqueue a given task resides on.
962 * Must be called interrupts disabled.
963 */
964 static inline struct rq *__task_rq_lock(struct task_struct *p)
965 __acquires(rq->lock)
966 {
967 for (;;) {
968 struct rq *rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock(&rq->lock);
973 }
974 }
975
976 /*
977 * task_rq_lock - lock the runqueue a given task resides on and disable
978 * interrupts. Note the ordering: we can safely lookup the task_rq without
979 * explicitly disabling preemption.
980 */
981 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
982 __acquires(rq->lock)
983 {
984 struct rq *rq;
985
986 for (;;) {
987 local_irq_save(*flags);
988 rq = task_rq(p);
989 spin_lock(&rq->lock);
990 if (likely(rq == task_rq(p)))
991 return rq;
992 spin_unlock_irqrestore(&rq->lock, *flags);
993 }
994 }
995
996 void task_rq_unlock_wait(struct task_struct *p)
997 {
998 struct rq *rq = task_rq(p);
999
1000 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1001 spin_unlock_wait(&rq->lock);
1002 }
1003
1004 static void __task_rq_unlock(struct rq *rq)
1005 __releases(rq->lock)
1006 {
1007 spin_unlock(&rq->lock);
1008 }
1009
1010 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1011 __releases(rq->lock)
1012 {
1013 spin_unlock_irqrestore(&rq->lock, *flags);
1014 }
1015
1016 /*
1017 * this_rq_lock - lock this runqueue and disable interrupts.
1018 */
1019 static struct rq *this_rq_lock(void)
1020 __acquires(rq->lock)
1021 {
1022 struct rq *rq;
1023
1024 local_irq_disable();
1025 rq = this_rq();
1026 spin_lock(&rq->lock);
1027
1028 return rq;
1029 }
1030
1031 #ifdef CONFIG_SCHED_HRTICK
1032 /*
1033 * Use HR-timers to deliver accurate preemption points.
1034 *
1035 * Its all a bit involved since we cannot program an hrt while holding the
1036 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1037 * reschedule event.
1038 *
1039 * When we get rescheduled we reprogram the hrtick_timer outside of the
1040 * rq->lock.
1041 */
1042
1043 /*
1044 * Use hrtick when:
1045 * - enabled by features
1046 * - hrtimer is actually high res
1047 */
1048 static inline int hrtick_enabled(struct rq *rq)
1049 {
1050 if (!sched_feat(HRTICK))
1051 return 0;
1052 if (!cpu_active(cpu_of(rq)))
1053 return 0;
1054 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055 }
1056
1057 static void hrtick_clear(struct rq *rq)
1058 {
1059 if (hrtimer_active(&rq->hrtick_timer))
1060 hrtimer_cancel(&rq->hrtick_timer);
1061 }
1062
1063 /*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068 {
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
1074 update_rq_clock(rq);
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079 }
1080
1081 #ifdef CONFIG_SMP
1082 /*
1083 * called from hardirq (IPI) context
1084 */
1085 static void __hrtick_start(void *arg)
1086 {
1087 struct rq *rq = arg;
1088
1089 spin_lock(&rq->lock);
1090 hrtimer_restart(&rq->hrtick_timer);
1091 rq->hrtick_csd_pending = 0;
1092 spin_unlock(&rq->lock);
1093 }
1094
1095 /*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100 static void hrtick_start(struct rq *rq, u64 delay)
1101 {
1102 struct hrtimer *timer = &rq->hrtick_timer;
1103 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1104
1105 hrtimer_set_expires(timer, time);
1106
1107 if (rq == this_rq()) {
1108 hrtimer_restart(timer);
1109 } else if (!rq->hrtick_csd_pending) {
1110 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1111 rq->hrtick_csd_pending = 1;
1112 }
1113 }
1114
1115 static int
1116 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1117 {
1118 int cpu = (int)(long)hcpu;
1119
1120 switch (action) {
1121 case CPU_UP_CANCELED:
1122 case CPU_UP_CANCELED_FROZEN:
1123 case CPU_DOWN_PREPARE:
1124 case CPU_DOWN_PREPARE_FROZEN:
1125 case CPU_DEAD:
1126 case CPU_DEAD_FROZEN:
1127 hrtick_clear(cpu_rq(cpu));
1128 return NOTIFY_OK;
1129 }
1130
1131 return NOTIFY_DONE;
1132 }
1133
1134 static __init void init_hrtick(void)
1135 {
1136 hotcpu_notifier(hotplug_hrtick, 0);
1137 }
1138 #else
1139 /*
1140 * Called to set the hrtick timer state.
1141 *
1142 * called with rq->lock held and irqs disabled
1143 */
1144 static void hrtick_start(struct rq *rq, u64 delay)
1145 {
1146 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1147 HRTIMER_MODE_REL_PINNED, 0);
1148 }
1149
1150 static inline void init_hrtick(void)
1151 {
1152 }
1153 #endif /* CONFIG_SMP */
1154
1155 static void init_rq_hrtick(struct rq *rq)
1156 {
1157 #ifdef CONFIG_SMP
1158 rq->hrtick_csd_pending = 0;
1159
1160 rq->hrtick_csd.flags = 0;
1161 rq->hrtick_csd.func = __hrtick_start;
1162 rq->hrtick_csd.info = rq;
1163 #endif
1164
1165 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1166 rq->hrtick_timer.function = hrtick;
1167 }
1168 #else /* CONFIG_SCHED_HRTICK */
1169 static inline void hrtick_clear(struct rq *rq)
1170 {
1171 }
1172
1173 static inline void init_rq_hrtick(struct rq *rq)
1174 {
1175 }
1176
1177 static inline void init_hrtick(void)
1178 {
1179 }
1180 #endif /* CONFIG_SCHED_HRTICK */
1181
1182 /*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189 #ifdef CONFIG_SMP
1190
1191 #ifndef tsk_is_polling
1192 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193 #endif
1194
1195 static void resched_task(struct task_struct *p)
1196 {
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
1201 if (test_tsk_need_resched(p))
1202 return;
1203
1204 set_tsk_need_resched(p);
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214 }
1215
1216 static void resched_cpu(int cpu)
1217 {
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225 }
1226
1227 #ifdef CONFIG_NO_HZ
1228 /*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238 void wake_up_idle_cpu(int cpu)
1239 {
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
1260 set_tsk_need_resched(rq->idle);
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266 }
1267 #endif /* CONFIG_NO_HZ */
1268
1269 static u64 sched_avg_period(void)
1270 {
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272 }
1273
1274 static void sched_avg_update(struct rq *rq)
1275 {
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 rq->age_stamp += period;
1280 rq->rt_avg /= 2;
1281 }
1282 }
1283
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 {
1286 rq->rt_avg += rt_delta;
1287 sched_avg_update(rq);
1288 }
1289
1290 #else /* !CONFIG_SMP */
1291 static void resched_task(struct task_struct *p)
1292 {
1293 assert_spin_locked(&task_rq(p)->lock);
1294 set_tsk_need_resched(p);
1295 }
1296
1297 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298 {
1299 }
1300 #endif /* CONFIG_SMP */
1301
1302 #if BITS_PER_LONG == 32
1303 # define WMULT_CONST (~0UL)
1304 #else
1305 # define WMULT_CONST (1UL << 32)
1306 #endif
1307
1308 #define WMULT_SHIFT 32
1309
1310 /*
1311 * Shift right and round:
1312 */
1313 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1314
1315 /*
1316 * delta *= weight / lw
1317 */
1318 static unsigned long
1319 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1320 struct load_weight *lw)
1321 {
1322 u64 tmp;
1323
1324 if (!lw->inv_weight) {
1325 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1326 lw->inv_weight = 1;
1327 else
1328 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1329 / (lw->weight+1);
1330 }
1331
1332 tmp = (u64)delta_exec * weight;
1333 /*
1334 * Check whether we'd overflow the 64-bit multiplication:
1335 */
1336 if (unlikely(tmp > WMULT_CONST))
1337 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1338 WMULT_SHIFT/2);
1339 else
1340 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1341
1342 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1343 }
1344
1345 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1346 {
1347 lw->weight += inc;
1348 lw->inv_weight = 0;
1349 }
1350
1351 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1352 {
1353 lw->weight -= dec;
1354 lw->inv_weight = 0;
1355 }
1356
1357 /*
1358 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1359 * of tasks with abnormal "nice" values across CPUs the contribution that
1360 * each task makes to its run queue's load is weighted according to its
1361 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1362 * scaled version of the new time slice allocation that they receive on time
1363 * slice expiry etc.
1364 */
1365
1366 #define WEIGHT_IDLEPRIO 3
1367 #define WMULT_IDLEPRIO 1431655765
1368
1369 /*
1370 * Nice levels are multiplicative, with a gentle 10% change for every
1371 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1372 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1373 * that remained on nice 0.
1374 *
1375 * The "10% effect" is relative and cumulative: from _any_ nice level,
1376 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1377 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1378 * If a task goes up by ~10% and another task goes down by ~10% then
1379 * the relative distance between them is ~25%.)
1380 */
1381 static const int prio_to_weight[40] = {
1382 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1383 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1384 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1385 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1386 /* 0 */ 1024, 820, 655, 526, 423,
1387 /* 5 */ 335, 272, 215, 172, 137,
1388 /* 10 */ 110, 87, 70, 56, 45,
1389 /* 15 */ 36, 29, 23, 18, 15,
1390 };
1391
1392 /*
1393 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1394 *
1395 * In cases where the weight does not change often, we can use the
1396 * precalculated inverse to speed up arithmetics by turning divisions
1397 * into multiplications:
1398 */
1399 static const u32 prio_to_wmult[40] = {
1400 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1401 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1402 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1403 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1404 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1405 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1406 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1407 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1408 };
1409
1410 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1411
1412 /*
1413 * runqueue iterator, to support SMP load-balancing between different
1414 * scheduling classes, without having to expose their internal data
1415 * structures to the load-balancing proper:
1416 */
1417 struct rq_iterator {
1418 void *arg;
1419 struct task_struct *(*start)(void *);
1420 struct task_struct *(*next)(void *);
1421 };
1422
1423 #ifdef CONFIG_SMP
1424 static unsigned long
1425 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1426 unsigned long max_load_move, struct sched_domain *sd,
1427 enum cpu_idle_type idle, int *all_pinned,
1428 int *this_best_prio, struct rq_iterator *iterator);
1429
1430 static int
1431 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1432 struct sched_domain *sd, enum cpu_idle_type idle,
1433 struct rq_iterator *iterator);
1434 #endif
1435
1436 /* Time spent by the tasks of the cpu accounting group executing in ... */
1437 enum cpuacct_stat_index {
1438 CPUACCT_STAT_USER, /* ... user mode */
1439 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1440
1441 CPUACCT_STAT_NSTATS,
1442 };
1443
1444 #ifdef CONFIG_CGROUP_CPUACCT
1445 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1446 static void cpuacct_update_stats(struct task_struct *tsk,
1447 enum cpuacct_stat_index idx, cputime_t val);
1448 #else
1449 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1450 static inline void cpuacct_update_stats(struct task_struct *tsk,
1451 enum cpuacct_stat_index idx, cputime_t val) {}
1452 #endif
1453
1454 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1455 {
1456 update_load_add(&rq->load, load);
1457 }
1458
1459 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1460 {
1461 update_load_sub(&rq->load, load);
1462 }
1463
1464 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1465 typedef int (*tg_visitor)(struct task_group *, void *);
1466
1467 /*
1468 * Iterate the full tree, calling @down when first entering a node and @up when
1469 * leaving it for the final time.
1470 */
1471 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1472 {
1473 struct task_group *parent, *child;
1474 int ret;
1475
1476 rcu_read_lock();
1477 parent = &root_task_group;
1478 down:
1479 ret = (*down)(parent, data);
1480 if (ret)
1481 goto out_unlock;
1482 list_for_each_entry_rcu(child, &parent->children, siblings) {
1483 parent = child;
1484 goto down;
1485
1486 up:
1487 continue;
1488 }
1489 ret = (*up)(parent, data);
1490 if (ret)
1491 goto out_unlock;
1492
1493 child = parent;
1494 parent = parent->parent;
1495 if (parent)
1496 goto up;
1497 out_unlock:
1498 rcu_read_unlock();
1499
1500 return ret;
1501 }
1502
1503 static int tg_nop(struct task_group *tg, void *data)
1504 {
1505 return 0;
1506 }
1507 #endif
1508
1509 #ifdef CONFIG_SMP
1510 /* Used instead of source_load when we know the type == 0 */
1511 static unsigned long weighted_cpuload(const int cpu)
1512 {
1513 return cpu_rq(cpu)->load.weight;
1514 }
1515
1516 /*
1517 * Return a low guess at the load of a migration-source cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 *
1520 * We want to under-estimate the load of migration sources, to
1521 * balance conservatively.
1522 */
1523 static unsigned long source_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return min(rq->cpu_load[type-1], total);
1532 }
1533
1534 /*
1535 * Return a high guess at the load of a migration-target cpu weighted
1536 * according to the scheduling class and "nice" value.
1537 */
1538 static unsigned long target_load(int cpu, int type)
1539 {
1540 struct rq *rq = cpu_rq(cpu);
1541 unsigned long total = weighted_cpuload(cpu);
1542
1543 if (type == 0 || !sched_feat(LB_BIAS))
1544 return total;
1545
1546 return max(rq->cpu_load[type-1], total);
1547 }
1548
1549 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551 static unsigned long cpu_avg_load_per_task(int cpu)
1552 {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1555
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1560
1561 return rq->avg_load_per_task;
1562 }
1563
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1565
1566 struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568 };
1569
1570 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574 /*
1575 * Calculate and set the cpu's group shares.
1576 */
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1581 {
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1584
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
1590
1591 /*
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1595 */
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
1610 }
1611
1612 /*
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1616 */
1617 static int tg_shares_up(struct task_group *tg, void *data)
1618 {
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1624
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1652
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
1657
1658 return 0;
1659 }
1660
1661 /*
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1665 */
1666 static int tg_load_down(struct task_group *tg, void *data)
1667 {
1668 unsigned long load;
1669 long cpu = (long)data;
1670
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
1678
1679 tg->cfs_rq[cpu]->h_load = load;
1680
1681 return 0;
1682 }
1683
1684 static void update_shares(struct sched_domain *sd)
1685 {
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1698 }
1699 }
1700
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702 {
1703 if (root_task_group_empty())
1704 return;
1705
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709 }
1710
1711 static void update_h_load(long cpu)
1712 {
1713 if (root_task_group_empty())
1714 return;
1715
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717 }
1718
1719 #else
1720
1721 static inline void update_shares(struct sched_domain *sd)
1722 {
1723 }
1724
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726 {
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_PREEMPT
1732
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
1735 /*
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1742 */
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747 {
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752 }
1753
1754 #else
1755 /*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766 {
1767 int ret = 0;
1768
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779 }
1780
1781 #endif /* CONFIG_PREEMPT */
1782
1783 /*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787 {
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795 }
1796
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799 {
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802 }
1803 #endif
1804
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807 {
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1811 }
1812 #endif
1813
1814 static void calc_load_account_active(struct rq *this_rq);
1815
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1823
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1827
1828 static void inc_nr_running(struct rq *rq)
1829 {
1830 rq->nr_running++;
1831 }
1832
1833 static void dec_nr_running(struct rq *rq)
1834 {
1835 rq->nr_running--;
1836 }
1837
1838 static void set_load_weight(struct task_struct *p)
1839 {
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
1845
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
1854
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857 }
1858
1859 static void update_avg(u64 *avg, u64 sample)
1860 {
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863 }
1864
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866 {
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1873 }
1874
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876 {
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
1886 }
1887
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1891 }
1892
1893 /*
1894 * __normal_prio - return the priority that is based on the static prio
1895 */
1896 static inline int __normal_prio(struct task_struct *p)
1897 {
1898 return p->static_prio;
1899 }
1900
1901 /*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
1908 static inline int normal_prio(struct task_struct *p)
1909 {
1910 int prio;
1911
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917 }
1918
1919 /*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
1926 static int effective_prio(struct task_struct *p)
1927 {
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937 }
1938
1939 /*
1940 * activate_task - move a task to the runqueue.
1941 */
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1943 {
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1946
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1949 }
1950
1951 /*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1958
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1961 }
1962
1963 /**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
1967 inline int task_curr(const struct task_struct *p)
1968 {
1969 return cpu_curr(task_cpu(p)) == p;
1970 }
1971
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973 {
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1984 }
1985
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989 {
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996 }
1997
1998 #ifdef CONFIG_SMP
1999 /*
2000 * Is this task likely cache-hot:
2001 */
2002 static int
2003 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 {
2005 s64 delta;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026 }
2027
2028
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2030 {
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
2038
2039 trace_sched_migrate_task(p, new_cpu);
2040
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048 #endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2058 }
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2061
2062 __set_task_cpu(p, new_cpu);
2063 }
2064
2065 struct migration_req {
2066 struct list_head list;
2067
2068 struct task_struct *task;
2069 int dest_cpu;
2070
2071 struct completion done;
2072 };
2073
2074 /*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2080 {
2081 struct rq *rq = task_rq(p);
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2096
2097 return 1;
2098 }
2099
2100 /*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106 void wait_task_context_switch(struct task_struct *p)
2107 {
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141 }
2142
2143 /*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2160 {
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2165
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
2174
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2190 }
2191
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2205
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
2222
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
2236
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
2244
2245 return ncsw;
2246 }
2247
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
2261 void kick_process(struct task_struct *p)
2262 {
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270 }
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2273
2274 /**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285 {
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293 }
2294
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2310 {
2311 int cpu, orig_cpu, this_cpu, success = 0;
2312 unsigned long flags;
2313 long old_state;
2314 struct rq *rq;
2315
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 sync = 0;
2318
2319 #ifdef CONFIG_SMP
2320 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2321 struct sched_domain *sd;
2322
2323 this_cpu = raw_smp_processor_id();
2324 cpu = task_cpu(p);
2325
2326 for_each_domain(this_cpu, sd) {
2327 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2328 update_shares(sd);
2329 break;
2330 }
2331 }
2332 }
2333 #endif
2334
2335 smp_wmb();
2336 rq = task_rq_lock(p, &flags);
2337 update_rq_clock(rq);
2338 old_state = p->state;
2339 if (!(old_state & state))
2340 goto out;
2341
2342 if (p->se.on_rq)
2343 goto out_running;
2344
2345 cpu = task_cpu(p);
2346 orig_cpu = cpu;
2347 this_cpu = smp_processor_id();
2348
2349 #ifdef CONFIG_SMP
2350 if (unlikely(task_running(rq, p)))
2351 goto out_activate;
2352
2353 cpu = p->sched_class->select_task_rq(p, sync);
2354 if (cpu != orig_cpu) {
2355 set_task_cpu(p, cpu);
2356 task_rq_unlock(rq, &flags);
2357 /* might preempt at this point */
2358 rq = task_rq_lock(p, &flags);
2359 old_state = p->state;
2360 if (!(old_state & state))
2361 goto out;
2362 if (p->se.on_rq)
2363 goto out_running;
2364
2365 this_cpu = smp_processor_id();
2366 cpu = task_cpu(p);
2367 }
2368
2369 #ifdef CONFIG_SCHEDSTATS
2370 schedstat_inc(rq, ttwu_count);
2371 if (cpu == this_cpu)
2372 schedstat_inc(rq, ttwu_local);
2373 else {
2374 struct sched_domain *sd;
2375 for_each_domain(this_cpu, sd) {
2376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2377 schedstat_inc(sd, ttwu_wake_remote);
2378 break;
2379 }
2380 }
2381 }
2382 #endif /* CONFIG_SCHEDSTATS */
2383
2384 out_activate:
2385 #endif /* CONFIG_SMP */
2386 schedstat_inc(p, se.nr_wakeups);
2387 if (sync)
2388 schedstat_inc(p, se.nr_wakeups_sync);
2389 if (orig_cpu != cpu)
2390 schedstat_inc(p, se.nr_wakeups_migrate);
2391 if (cpu == this_cpu)
2392 schedstat_inc(p, se.nr_wakeups_local);
2393 else
2394 schedstat_inc(p, se.nr_wakeups_remote);
2395 activate_task(rq, p, 1);
2396 success = 1;
2397
2398 /*
2399 * Only attribute actual wakeups done by this task.
2400 */
2401 if (!in_interrupt()) {
2402 struct sched_entity *se = &current->se;
2403 u64 sample = se->sum_exec_runtime;
2404
2405 if (se->last_wakeup)
2406 sample -= se->last_wakeup;
2407 else
2408 sample -= se->start_runtime;
2409 update_avg(&se->avg_wakeup, sample);
2410
2411 se->last_wakeup = se->sum_exec_runtime;
2412 }
2413
2414 out_running:
2415 trace_sched_wakeup(rq, p, success);
2416 check_preempt_curr(rq, p, sync);
2417
2418 p->state = TASK_RUNNING;
2419 #ifdef CONFIG_SMP
2420 if (p->sched_class->task_wake_up)
2421 p->sched_class->task_wake_up(rq, p);
2422 #endif
2423 out:
2424 task_rq_unlock(rq, &flags);
2425
2426 return success;
2427 }
2428
2429 /**
2430 * wake_up_process - Wake up a specific process
2431 * @p: The process to be woken up.
2432 *
2433 * Attempt to wake up the nominated process and move it to the set of runnable
2434 * processes. Returns 1 if the process was woken up, 0 if it was already
2435 * running.
2436 *
2437 * It may be assumed that this function implies a write memory barrier before
2438 * changing the task state if and only if any tasks are woken up.
2439 */
2440 int wake_up_process(struct task_struct *p)
2441 {
2442 return try_to_wake_up(p, TASK_ALL, 0);
2443 }
2444 EXPORT_SYMBOL(wake_up_process);
2445
2446 int wake_up_state(struct task_struct *p, unsigned int state)
2447 {
2448 return try_to_wake_up(p, state, 0);
2449 }
2450
2451 /*
2452 * Perform scheduler related setup for a newly forked process p.
2453 * p is forked by current.
2454 *
2455 * __sched_fork() is basic setup used by init_idle() too:
2456 */
2457 static void __sched_fork(struct task_struct *p)
2458 {
2459 p->se.exec_start = 0;
2460 p->se.sum_exec_runtime = 0;
2461 p->se.prev_sum_exec_runtime = 0;
2462 p->se.nr_migrations = 0;
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2467
2468 #ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
2470 p->se.wait_max = 0;
2471 p->se.wait_count = 0;
2472 p->se.wait_sum = 0;
2473
2474 p->se.sleep_start = 0;
2475 p->se.sleep_max = 0;
2476 p->se.sum_sleep_runtime = 0;
2477
2478 p->se.block_start = 0;
2479 p->se.block_max = 0;
2480 p->se.exec_max = 0;
2481 p->se.slice_max = 0;
2482
2483 p->se.nr_migrations_cold = 0;
2484 p->se.nr_failed_migrations_affine = 0;
2485 p->se.nr_failed_migrations_running = 0;
2486 p->se.nr_failed_migrations_hot = 0;
2487 p->se.nr_forced_migrations = 0;
2488 p->se.nr_forced2_migrations = 0;
2489
2490 p->se.nr_wakeups = 0;
2491 p->se.nr_wakeups_sync = 0;
2492 p->se.nr_wakeups_migrate = 0;
2493 p->se.nr_wakeups_local = 0;
2494 p->se.nr_wakeups_remote = 0;
2495 p->se.nr_wakeups_affine = 0;
2496 p->se.nr_wakeups_affine_attempts = 0;
2497 p->se.nr_wakeups_passive = 0;
2498 p->se.nr_wakeups_idle = 0;
2499
2500 #endif
2501
2502 INIT_LIST_HEAD(&p->rt.run_list);
2503 p->se.on_rq = 0;
2504 INIT_LIST_HEAD(&p->se.group_node);
2505
2506 #ifdef CONFIG_PREEMPT_NOTIFIERS
2507 INIT_HLIST_HEAD(&p->preempt_notifiers);
2508 #endif
2509
2510 /*
2511 * We mark the process as running here, but have not actually
2512 * inserted it onto the runqueue yet. This guarantees that
2513 * nobody will actually run it, and a signal or other external
2514 * event cannot wake it up and insert it on the runqueue either.
2515 */
2516 p->state = TASK_RUNNING;
2517 }
2518
2519 /*
2520 * fork()/clone()-time setup:
2521 */
2522 void sched_fork(struct task_struct *p, int clone_flags)
2523 {
2524 int cpu = get_cpu();
2525
2526 __sched_fork(p);
2527
2528 #ifdef CONFIG_SMP
2529 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2530 #endif
2531 set_task_cpu(p, cpu);
2532
2533 /*
2534 * Make sure we do not leak PI boosting priority to the child.
2535 */
2536 p->prio = current->normal_prio;
2537
2538 /*
2539 * Revert to default priority/policy on fork if requested.
2540 */
2541 if (unlikely(p->sched_reset_on_fork)) {
2542 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2543 p->policy = SCHED_NORMAL;
2544
2545 if (p->normal_prio < DEFAULT_PRIO)
2546 p->prio = DEFAULT_PRIO;
2547
2548 if (PRIO_TO_NICE(p->static_prio) < 0) {
2549 p->static_prio = NICE_TO_PRIO(0);
2550 set_load_weight(p);
2551 }
2552
2553 /*
2554 * We don't need the reset flag anymore after the fork. It has
2555 * fulfilled its duty:
2556 */
2557 p->sched_reset_on_fork = 0;
2558 }
2559
2560 if (!rt_prio(p->prio))
2561 p->sched_class = &fair_sched_class;
2562
2563 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2564 if (likely(sched_info_on()))
2565 memset(&p->sched_info, 0, sizeof(p->sched_info));
2566 #endif
2567 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2568 p->oncpu = 0;
2569 #endif
2570 #ifdef CONFIG_PREEMPT
2571 /* Want to start with kernel preemption disabled. */
2572 task_thread_info(p)->preempt_count = 1;
2573 #endif
2574 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2575
2576 put_cpu();
2577 }
2578
2579 /*
2580 * wake_up_new_task - wake up a newly created task for the first time.
2581 *
2582 * This function will do some initial scheduler statistics housekeeping
2583 * that must be done for every newly created context, then puts the task
2584 * on the runqueue and wakes it.
2585 */
2586 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2587 {
2588 unsigned long flags;
2589 struct rq *rq;
2590
2591 rq = task_rq_lock(p, &flags);
2592 BUG_ON(p->state != TASK_RUNNING);
2593 update_rq_clock(rq);
2594
2595 p->prio = effective_prio(p);
2596
2597 if (!p->sched_class->task_new || !current->se.on_rq) {
2598 activate_task(rq, p, 0);
2599 } else {
2600 /*
2601 * Let the scheduling class do new task startup
2602 * management (if any):
2603 */
2604 p->sched_class->task_new(rq, p);
2605 inc_nr_running(rq);
2606 }
2607 trace_sched_wakeup_new(rq, p, 1);
2608 check_preempt_curr(rq, p, 0);
2609 #ifdef CONFIG_SMP
2610 if (p->sched_class->task_wake_up)
2611 p->sched_class->task_wake_up(rq, p);
2612 #endif
2613 task_rq_unlock(rq, &flags);
2614 }
2615
2616 #ifdef CONFIG_PREEMPT_NOTIFIERS
2617
2618 /**
2619 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2620 * @notifier: notifier struct to register
2621 */
2622 void preempt_notifier_register(struct preempt_notifier *notifier)
2623 {
2624 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2625 }
2626 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2627
2628 /**
2629 * preempt_notifier_unregister - no longer interested in preemption notifications
2630 * @notifier: notifier struct to unregister
2631 *
2632 * This is safe to call from within a preemption notifier.
2633 */
2634 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2635 {
2636 hlist_del(&notifier->link);
2637 }
2638 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2639
2640 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641 {
2642 struct preempt_notifier *notifier;
2643 struct hlist_node *node;
2644
2645 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2647 }
2648
2649 static void
2650 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2651 struct task_struct *next)
2652 {
2653 struct preempt_notifier *notifier;
2654 struct hlist_node *node;
2655
2656 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2657 notifier->ops->sched_out(notifier, next);
2658 }
2659
2660 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2661
2662 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2663 {
2664 }
2665
2666 static void
2667 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 struct task_struct *next)
2669 {
2670 }
2671
2672 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2673
2674 /**
2675 * prepare_task_switch - prepare to switch tasks
2676 * @rq: the runqueue preparing to switch
2677 * @prev: the current task that is being switched out
2678 * @next: the task we are going to switch to.
2679 *
2680 * This is called with the rq lock held and interrupts off. It must
2681 * be paired with a subsequent finish_task_switch after the context
2682 * switch.
2683 *
2684 * prepare_task_switch sets up locking and calls architecture specific
2685 * hooks.
2686 */
2687 static inline void
2688 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2689 struct task_struct *next)
2690 {
2691 fire_sched_out_preempt_notifiers(prev, next);
2692 prepare_lock_switch(rq, next);
2693 prepare_arch_switch(next);
2694 }
2695
2696 /**
2697 * finish_task_switch - clean up after a task-switch
2698 * @rq: runqueue associated with task-switch
2699 * @prev: the thread we just switched away from.
2700 *
2701 * finish_task_switch must be called after the context switch, paired
2702 * with a prepare_task_switch call before the context switch.
2703 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2704 * and do any other architecture-specific cleanup actions.
2705 *
2706 * Note that we may have delayed dropping an mm in context_switch(). If
2707 * so, we finish that here outside of the runqueue lock. (Doing it
2708 * with the lock held can cause deadlocks; see schedule() for
2709 * details.)
2710 */
2711 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2712 __releases(rq->lock)
2713 {
2714 struct mm_struct *mm = rq->prev_mm;
2715 long prev_state;
2716
2717 rq->prev_mm = NULL;
2718
2719 /*
2720 * A task struct has one reference for the use as "current".
2721 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2722 * schedule one last time. The schedule call will never return, and
2723 * the scheduled task must drop that reference.
2724 * The test for TASK_DEAD must occur while the runqueue locks are
2725 * still held, otherwise prev could be scheduled on another cpu, die
2726 * there before we look at prev->state, and then the reference would
2727 * be dropped twice.
2728 * Manfred Spraul <manfred@colorfullife.com>
2729 */
2730 prev_state = prev->state;
2731 finish_arch_switch(prev);
2732 perf_counter_task_sched_in(current, cpu_of(rq));
2733 finish_lock_switch(rq, prev);
2734
2735 fire_sched_in_preempt_notifiers(current);
2736 if (mm)
2737 mmdrop(mm);
2738 if (unlikely(prev_state == TASK_DEAD)) {
2739 /*
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
2742 */
2743 kprobe_flush_task(prev);
2744 put_task_struct(prev);
2745 }
2746 }
2747
2748 #ifdef CONFIG_SMP
2749
2750 /* assumes rq->lock is held */
2751 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2752 {
2753 if (prev->sched_class->pre_schedule)
2754 prev->sched_class->pre_schedule(rq, prev);
2755 }
2756
2757 /* rq->lock is NOT held, but preemption is disabled */
2758 static inline void post_schedule(struct rq *rq)
2759 {
2760 if (rq->post_schedule) {
2761 unsigned long flags;
2762
2763 spin_lock_irqsave(&rq->lock, flags);
2764 if (rq->curr->sched_class->post_schedule)
2765 rq->curr->sched_class->post_schedule(rq);
2766 spin_unlock_irqrestore(&rq->lock, flags);
2767
2768 rq->post_schedule = 0;
2769 }
2770 }
2771
2772 #else
2773
2774 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2775 {
2776 }
2777
2778 static inline void post_schedule(struct rq *rq)
2779 {
2780 }
2781
2782 #endif
2783
2784 /**
2785 * schedule_tail - first thing a freshly forked thread must call.
2786 * @prev: the thread we just switched away from.
2787 */
2788 asmlinkage void schedule_tail(struct task_struct *prev)
2789 __releases(rq->lock)
2790 {
2791 struct rq *rq = this_rq();
2792
2793 finish_task_switch(rq, prev);
2794
2795 /*
2796 * FIXME: do we need to worry about rq being invalidated by the
2797 * task_switch?
2798 */
2799 post_schedule(rq);
2800
2801 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2802 /* In this case, finish_task_switch does not reenable preemption */
2803 preempt_enable();
2804 #endif
2805 if (current->set_child_tid)
2806 put_user(task_pid_vnr(current), current->set_child_tid);
2807 }
2808
2809 /*
2810 * context_switch - switch to the new MM and the new
2811 * thread's register state.
2812 */
2813 static inline void
2814 context_switch(struct rq *rq, struct task_struct *prev,
2815 struct task_struct *next)
2816 {
2817 struct mm_struct *mm, *oldmm;
2818
2819 prepare_task_switch(rq, prev, next);
2820 trace_sched_switch(rq, prev, next);
2821 mm = next->mm;
2822 oldmm = prev->active_mm;
2823 /*
2824 * For paravirt, this is coupled with an exit in switch_to to
2825 * combine the page table reload and the switch backend into
2826 * one hypercall.
2827 */
2828 arch_start_context_switch(prev);
2829
2830 if (unlikely(!mm)) {
2831 next->active_mm = oldmm;
2832 atomic_inc(&oldmm->mm_count);
2833 enter_lazy_tlb(oldmm, next);
2834 } else
2835 switch_mm(oldmm, mm, next);
2836
2837 if (unlikely(!prev->mm)) {
2838 prev->active_mm = NULL;
2839 rq->prev_mm = oldmm;
2840 }
2841 /*
2842 * Since the runqueue lock will be released by the next
2843 * task (which is an invalid locking op but in the case
2844 * of the scheduler it's an obvious special-case), so we
2845 * do an early lockdep release here:
2846 */
2847 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2848 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2849 #endif
2850
2851 /* Here we just switch the register state and the stack. */
2852 switch_to(prev, next, prev);
2853
2854 barrier();
2855 /*
2856 * this_rq must be evaluated again because prev may have moved
2857 * CPUs since it called schedule(), thus the 'rq' on its stack
2858 * frame will be invalid.
2859 */
2860 finish_task_switch(this_rq(), prev);
2861 }
2862
2863 /*
2864 * nr_running, nr_uninterruptible and nr_context_switches:
2865 *
2866 * externally visible scheduler statistics: current number of runnable
2867 * threads, current number of uninterruptible-sleeping threads, total
2868 * number of context switches performed since bootup.
2869 */
2870 unsigned long nr_running(void)
2871 {
2872 unsigned long i, sum = 0;
2873
2874 for_each_online_cpu(i)
2875 sum += cpu_rq(i)->nr_running;
2876
2877 return sum;
2878 }
2879
2880 unsigned long nr_uninterruptible(void)
2881 {
2882 unsigned long i, sum = 0;
2883
2884 for_each_possible_cpu(i)
2885 sum += cpu_rq(i)->nr_uninterruptible;
2886
2887 /*
2888 * Since we read the counters lockless, it might be slightly
2889 * inaccurate. Do not allow it to go below zero though:
2890 */
2891 if (unlikely((long)sum < 0))
2892 sum = 0;
2893
2894 return sum;
2895 }
2896
2897 unsigned long long nr_context_switches(void)
2898 {
2899 int i;
2900 unsigned long long sum = 0;
2901
2902 for_each_possible_cpu(i)
2903 sum += cpu_rq(i)->nr_switches;
2904
2905 return sum;
2906 }
2907
2908 unsigned long nr_iowait(void)
2909 {
2910 unsigned long i, sum = 0;
2911
2912 for_each_possible_cpu(i)
2913 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914
2915 return sum;
2916 }
2917
2918 /* Variables and functions for calc_load */
2919 static atomic_long_t calc_load_tasks;
2920 static unsigned long calc_load_update;
2921 unsigned long avenrun[3];
2922 EXPORT_SYMBOL(avenrun);
2923
2924 /**
2925 * get_avenrun - get the load average array
2926 * @loads: pointer to dest load array
2927 * @offset: offset to add
2928 * @shift: shift count to shift the result left
2929 *
2930 * These values are estimates at best, so no need for locking.
2931 */
2932 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2933 {
2934 loads[0] = (avenrun[0] + offset) << shift;
2935 loads[1] = (avenrun[1] + offset) << shift;
2936 loads[2] = (avenrun[2] + offset) << shift;
2937 }
2938
2939 static unsigned long
2940 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2941 {
2942 load *= exp;
2943 load += active * (FIXED_1 - exp);
2944 return load >> FSHIFT;
2945 }
2946
2947 /*
2948 * calc_load - update the avenrun load estimates 10 ticks after the
2949 * CPUs have updated calc_load_tasks.
2950 */
2951 void calc_global_load(void)
2952 {
2953 unsigned long upd = calc_load_update + 10;
2954 long active;
2955
2956 if (time_before(jiffies, upd))
2957 return;
2958
2959 active = atomic_long_read(&calc_load_tasks);
2960 active = active > 0 ? active * FIXED_1 : 0;
2961
2962 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2963 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2964 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2965
2966 calc_load_update += LOAD_FREQ;
2967 }
2968
2969 /*
2970 * Either called from update_cpu_load() or from a cpu going idle
2971 */
2972 static void calc_load_account_active(struct rq *this_rq)
2973 {
2974 long nr_active, delta;
2975
2976 nr_active = this_rq->nr_running;
2977 nr_active += (long) this_rq->nr_uninterruptible;
2978
2979 if (nr_active != this_rq->calc_load_active) {
2980 delta = nr_active - this_rq->calc_load_active;
2981 this_rq->calc_load_active = nr_active;
2982 atomic_long_add(delta, &calc_load_tasks);
2983 }
2984 }
2985
2986 /*
2987 * Externally visible per-cpu scheduler statistics:
2988 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2989 */
2990 u64 cpu_nr_migrations(int cpu)
2991 {
2992 return cpu_rq(cpu)->nr_migrations_in;
2993 }
2994
2995 /*
2996 * Update rq->cpu_load[] statistics. This function is usually called every
2997 * scheduler tick (TICK_NSEC).
2998 */
2999 static void update_cpu_load(struct rq *this_rq)
3000 {
3001 unsigned long this_load = this_rq->load.weight;
3002 int i, scale;
3003
3004 this_rq->nr_load_updates++;
3005
3006 /* Update our load: */
3007 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3008 unsigned long old_load, new_load;
3009
3010 /* scale is effectively 1 << i now, and >> i divides by scale */
3011
3012 old_load = this_rq->cpu_load[i];
3013 new_load = this_load;
3014 /*
3015 * Round up the averaging division if load is increasing. This
3016 * prevents us from getting stuck on 9 if the load is 10, for
3017 * example.
3018 */
3019 if (new_load > old_load)
3020 new_load += scale-1;
3021 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3022 }
3023
3024 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3025 this_rq->calc_load_update += LOAD_FREQ;
3026 calc_load_account_active(this_rq);
3027 }
3028 }
3029
3030 #ifdef CONFIG_SMP
3031
3032 /*
3033 * double_rq_lock - safely lock two runqueues
3034 *
3035 * Note this does not disable interrupts like task_rq_lock,
3036 * you need to do so manually before calling.
3037 */
3038 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3039 __acquires(rq1->lock)
3040 __acquires(rq2->lock)
3041 {
3042 BUG_ON(!irqs_disabled());
3043 if (rq1 == rq2) {
3044 spin_lock(&rq1->lock);
3045 __acquire(rq2->lock); /* Fake it out ;) */
3046 } else {
3047 if (rq1 < rq2) {
3048 spin_lock(&rq1->lock);
3049 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3050 } else {
3051 spin_lock(&rq2->lock);
3052 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3053 }
3054 }
3055 update_rq_clock(rq1);
3056 update_rq_clock(rq2);
3057 }
3058
3059 /*
3060 * double_rq_unlock - safely unlock two runqueues
3061 *
3062 * Note this does not restore interrupts like task_rq_unlock,
3063 * you need to do so manually after calling.
3064 */
3065 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3066 __releases(rq1->lock)
3067 __releases(rq2->lock)
3068 {
3069 spin_unlock(&rq1->lock);
3070 if (rq1 != rq2)
3071 spin_unlock(&rq2->lock);
3072 else
3073 __release(rq2->lock);
3074 }
3075
3076 /*
3077 * If dest_cpu is allowed for this process, migrate the task to it.
3078 * This is accomplished by forcing the cpu_allowed mask to only
3079 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3080 * the cpu_allowed mask is restored.
3081 */
3082 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3083 {
3084 struct migration_req req;
3085 unsigned long flags;
3086 struct rq *rq;
3087
3088 rq = task_rq_lock(p, &flags);
3089 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3090 || unlikely(!cpu_active(dest_cpu)))
3091 goto out;
3092
3093 /* force the process onto the specified CPU */
3094 if (migrate_task(p, dest_cpu, &req)) {
3095 /* Need to wait for migration thread (might exit: take ref). */
3096 struct task_struct *mt = rq->migration_thread;
3097
3098 get_task_struct(mt);
3099 task_rq_unlock(rq, &flags);
3100 wake_up_process(mt);
3101 put_task_struct(mt);
3102 wait_for_completion(&req.done);
3103
3104 return;
3105 }
3106 out:
3107 task_rq_unlock(rq, &flags);
3108 }
3109
3110 /*
3111 * sched_exec - execve() is a valuable balancing opportunity, because at
3112 * this point the task has the smallest effective memory and cache footprint.
3113 */
3114 void sched_exec(void)
3115 {
3116 int new_cpu, this_cpu = get_cpu();
3117 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3118 put_cpu();
3119 if (new_cpu != this_cpu)
3120 sched_migrate_task(current, new_cpu);
3121 }
3122
3123 /*
3124 * pull_task - move a task from a remote runqueue to the local runqueue.
3125 * Both runqueues must be locked.
3126 */
3127 static void pull_task(struct rq *src_rq, struct task_struct *p,
3128 struct rq *this_rq, int this_cpu)
3129 {
3130 deactivate_task(src_rq, p, 0);
3131 set_task_cpu(p, this_cpu);
3132 activate_task(this_rq, p, 0);
3133 /*
3134 * Note that idle threads have a prio of MAX_PRIO, for this test
3135 * to be always true for them.
3136 */
3137 check_preempt_curr(this_rq, p, 0);
3138 }
3139
3140 /*
3141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3142 */
3143 static
3144 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3145 struct sched_domain *sd, enum cpu_idle_type idle,
3146 int *all_pinned)
3147 {
3148 int tsk_cache_hot = 0;
3149 /*
3150 * We do not migrate tasks that are:
3151 * 1) running (obviously), or
3152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3153 * 3) are cache-hot on their current CPU.
3154 */
3155 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3156 schedstat_inc(p, se.nr_failed_migrations_affine);
3157 return 0;
3158 }
3159 *all_pinned = 0;
3160
3161 if (task_running(rq, p)) {
3162 schedstat_inc(p, se.nr_failed_migrations_running);
3163 return 0;
3164 }
3165
3166 /*
3167 * Aggressive migration if:
3168 * 1) task is cache cold, or
3169 * 2) too many balance attempts have failed.
3170 */
3171
3172 tsk_cache_hot = task_hot(p, rq->clock, sd);
3173 if (!tsk_cache_hot ||
3174 sd->nr_balance_failed > sd->cache_nice_tries) {
3175 #ifdef CONFIG_SCHEDSTATS
3176 if (tsk_cache_hot) {
3177 schedstat_inc(sd, lb_hot_gained[idle]);
3178 schedstat_inc(p, se.nr_forced_migrations);
3179 }
3180 #endif
3181 return 1;
3182 }
3183
3184 if (tsk_cache_hot) {
3185 schedstat_inc(p, se.nr_failed_migrations_hot);
3186 return 0;
3187 }
3188 return 1;
3189 }
3190
3191 static unsigned long
3192 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3193 unsigned long max_load_move, struct sched_domain *sd,
3194 enum cpu_idle_type idle, int *all_pinned,
3195 int *this_best_prio, struct rq_iterator *iterator)
3196 {
3197 int loops = 0, pulled = 0, pinned = 0;
3198 struct task_struct *p;
3199 long rem_load_move = max_load_move;
3200
3201 if (max_load_move == 0)
3202 goto out;
3203
3204 pinned = 1;
3205
3206 /*
3207 * Start the load-balancing iterator:
3208 */
3209 p = iterator->start(iterator->arg);
3210 next:
3211 if (!p || loops++ > sysctl_sched_nr_migrate)
3212 goto out;
3213
3214 if ((p->se.load.weight >> 1) > rem_load_move ||
3215 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3216 p = iterator->next(iterator->arg);
3217 goto next;
3218 }
3219
3220 pull_task(busiest, p, this_rq, this_cpu);
3221 pulled++;
3222 rem_load_move -= p->se.load.weight;
3223
3224 #ifdef CONFIG_PREEMPT
3225 /*
3226 * NEWIDLE balancing is a source of latency, so preemptible kernels
3227 * will stop after the first task is pulled to minimize the critical
3228 * section.
3229 */
3230 if (idle == CPU_NEWLY_IDLE)
3231 goto out;
3232 #endif
3233
3234 /*
3235 * We only want to steal up to the prescribed amount of weighted load.
3236 */
3237 if (rem_load_move > 0) {
3238 if (p->prio < *this_best_prio)
3239 *this_best_prio = p->prio;
3240 p = iterator->next(iterator->arg);
3241 goto next;
3242 }
3243 out:
3244 /*
3245 * Right now, this is one of only two places pull_task() is called,
3246 * so we can safely collect pull_task() stats here rather than
3247 * inside pull_task().
3248 */
3249 schedstat_add(sd, lb_gained[idle], pulled);
3250
3251 if (all_pinned)
3252 *all_pinned = pinned;
3253
3254 return max_load_move - rem_load_move;
3255 }
3256
3257 /*
3258 * move_tasks tries to move up to max_load_move weighted load from busiest to
3259 * this_rq, as part of a balancing operation within domain "sd".
3260 * Returns 1 if successful and 0 otherwise.
3261 *
3262 * Called with both runqueues locked.
3263 */
3264 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3265 unsigned long max_load_move,
3266 struct sched_domain *sd, enum cpu_idle_type idle,
3267 int *all_pinned)
3268 {
3269 const struct sched_class *class = sched_class_highest;
3270 unsigned long total_load_moved = 0;
3271 int this_best_prio = this_rq->curr->prio;
3272
3273 do {
3274 total_load_moved +=
3275 class->load_balance(this_rq, this_cpu, busiest,
3276 max_load_move - total_load_moved,
3277 sd, idle, all_pinned, &this_best_prio);
3278 class = class->next;
3279
3280 #ifdef CONFIG_PREEMPT
3281 /*
3282 * NEWIDLE balancing is a source of latency, so preemptible
3283 * kernels will stop after the first task is pulled to minimize
3284 * the critical section.
3285 */
3286 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3287 break;
3288 #endif
3289 } while (class && max_load_move > total_load_moved);
3290
3291 return total_load_moved > 0;
3292 }
3293
3294 static int
3295 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3296 struct sched_domain *sd, enum cpu_idle_type idle,
3297 struct rq_iterator *iterator)
3298 {
3299 struct task_struct *p = iterator->start(iterator->arg);
3300 int pinned = 0;
3301
3302 while (p) {
3303 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3304 pull_task(busiest, p, this_rq, this_cpu);
3305 /*
3306 * Right now, this is only the second place pull_task()
3307 * is called, so we can safely collect pull_task()
3308 * stats here rather than inside pull_task().
3309 */
3310 schedstat_inc(sd, lb_gained[idle]);
3311
3312 return 1;
3313 }
3314 p = iterator->next(iterator->arg);
3315 }
3316
3317 return 0;
3318 }
3319
3320 /*
3321 * move_one_task tries to move exactly one task from busiest to this_rq, as
3322 * part of active balancing operations within "domain".
3323 * Returns 1 if successful and 0 otherwise.
3324 *
3325 * Called with both runqueues locked.
3326 */
3327 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3328 struct sched_domain *sd, enum cpu_idle_type idle)
3329 {
3330 const struct sched_class *class;
3331
3332 for_each_class(class) {
3333 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3334 return 1;
3335 }
3336
3337 return 0;
3338 }
3339 /********** Helpers for find_busiest_group ************************/
3340 /*
3341 * sd_lb_stats - Structure to store the statistics of a sched_domain
3342 * during load balancing.
3343 */
3344 struct sd_lb_stats {
3345 struct sched_group *busiest; /* Busiest group in this sd */
3346 struct sched_group *this; /* Local group in this sd */
3347 unsigned long total_load; /* Total load of all groups in sd */
3348 unsigned long total_pwr; /* Total power of all groups in sd */
3349 unsigned long avg_load; /* Average load across all groups in sd */
3350
3351 /** Statistics of this group */
3352 unsigned long this_load;
3353 unsigned long this_load_per_task;
3354 unsigned long this_nr_running;
3355
3356 /* Statistics of the busiest group */
3357 unsigned long max_load;
3358 unsigned long busiest_load_per_task;
3359 unsigned long busiest_nr_running;
3360
3361 int group_imb; /* Is there imbalance in this sd */
3362 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3363 int power_savings_balance; /* Is powersave balance needed for this sd */
3364 struct sched_group *group_min; /* Least loaded group in sd */
3365 struct sched_group *group_leader; /* Group which relieves group_min */
3366 unsigned long min_load_per_task; /* load_per_task in group_min */
3367 unsigned long leader_nr_running; /* Nr running of group_leader */
3368 unsigned long min_nr_running; /* Nr running of group_min */
3369 #endif
3370 };
3371
3372 /*
3373 * sg_lb_stats - stats of a sched_group required for load_balancing
3374 */
3375 struct sg_lb_stats {
3376 unsigned long avg_load; /*Avg load across the CPUs of the group */
3377 unsigned long group_load; /* Total load over the CPUs of the group */
3378 unsigned long sum_nr_running; /* Nr tasks running in the group */
3379 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3380 unsigned long group_capacity;
3381 int group_imb; /* Is there an imbalance in the group ? */
3382 };
3383
3384 /**
3385 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3386 * @group: The group whose first cpu is to be returned.
3387 */
3388 static inline unsigned int group_first_cpu(struct sched_group *group)
3389 {
3390 return cpumask_first(sched_group_cpus(group));
3391 }
3392
3393 /**
3394 * get_sd_load_idx - Obtain the load index for a given sched domain.
3395 * @sd: The sched_domain whose load_idx is to be obtained.
3396 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3397 */
3398 static inline int get_sd_load_idx(struct sched_domain *sd,
3399 enum cpu_idle_type idle)
3400 {
3401 int load_idx;
3402
3403 switch (idle) {
3404 case CPU_NOT_IDLE:
3405 load_idx = sd->busy_idx;
3406 break;
3407
3408 case CPU_NEWLY_IDLE:
3409 load_idx = sd->newidle_idx;
3410 break;
3411 default:
3412 load_idx = sd->idle_idx;
3413 break;
3414 }
3415
3416 return load_idx;
3417 }
3418
3419
3420 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3421 /**
3422 * init_sd_power_savings_stats - Initialize power savings statistics for
3423 * the given sched_domain, during load balancing.
3424 *
3425 * @sd: Sched domain whose power-savings statistics are to be initialized.
3426 * @sds: Variable containing the statistics for sd.
3427 * @idle: Idle status of the CPU at which we're performing load-balancing.
3428 */
3429 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3430 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3431 {
3432 /*
3433 * Busy processors will not participate in power savings
3434 * balance.
3435 */
3436 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3437 sds->power_savings_balance = 0;
3438 else {
3439 sds->power_savings_balance = 1;
3440 sds->min_nr_running = ULONG_MAX;
3441 sds->leader_nr_running = 0;
3442 }
3443 }
3444
3445 /**
3446 * update_sd_power_savings_stats - Update the power saving stats for a
3447 * sched_domain while performing load balancing.
3448 *
3449 * @group: sched_group belonging to the sched_domain under consideration.
3450 * @sds: Variable containing the statistics of the sched_domain
3451 * @local_group: Does group contain the CPU for which we're performing
3452 * load balancing ?
3453 * @sgs: Variable containing the statistics of the group.
3454 */
3455 static inline void update_sd_power_savings_stats(struct sched_group *group,
3456 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3457 {
3458
3459 if (!sds->power_savings_balance)
3460 return;
3461
3462 /*
3463 * If the local group is idle or completely loaded
3464 * no need to do power savings balance at this domain
3465 */
3466 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3467 !sds->this_nr_running))
3468 sds->power_savings_balance = 0;
3469
3470 /*
3471 * If a group is already running at full capacity or idle,
3472 * don't include that group in power savings calculations
3473 */
3474 if (!sds->power_savings_balance ||
3475 sgs->sum_nr_running >= sgs->group_capacity ||
3476 !sgs->sum_nr_running)
3477 return;
3478
3479 /*
3480 * Calculate the group which has the least non-idle load.
3481 * This is the group from where we need to pick up the load
3482 * for saving power
3483 */
3484 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3485 (sgs->sum_nr_running == sds->min_nr_running &&
3486 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3487 sds->group_min = group;
3488 sds->min_nr_running = sgs->sum_nr_running;
3489 sds->min_load_per_task = sgs->sum_weighted_load /
3490 sgs->sum_nr_running;
3491 }
3492
3493 /*
3494 * Calculate the group which is almost near its
3495 * capacity but still has some space to pick up some load
3496 * from other group and save more power
3497 */
3498 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3499 return;
3500
3501 if (sgs->sum_nr_running > sds->leader_nr_running ||
3502 (sgs->sum_nr_running == sds->leader_nr_running &&
3503 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3504 sds->group_leader = group;
3505 sds->leader_nr_running = sgs->sum_nr_running;
3506 }
3507 }
3508
3509 /**
3510 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3511 * @sds: Variable containing the statistics of the sched_domain
3512 * under consideration.
3513 * @this_cpu: Cpu at which we're currently performing load-balancing.
3514 * @imbalance: Variable to store the imbalance.
3515 *
3516 * Description:
3517 * Check if we have potential to perform some power-savings balance.
3518 * If yes, set the busiest group to be the least loaded group in the
3519 * sched_domain, so that it's CPUs can be put to idle.
3520 *
3521 * Returns 1 if there is potential to perform power-savings balance.
3522 * Else returns 0.
3523 */
3524 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3525 int this_cpu, unsigned long *imbalance)
3526 {
3527 if (!sds->power_savings_balance)
3528 return 0;
3529
3530 if (sds->this != sds->group_leader ||
3531 sds->group_leader == sds->group_min)
3532 return 0;
3533
3534 *imbalance = sds->min_load_per_task;
3535 sds->busiest = sds->group_min;
3536
3537 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3538 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3539 group_first_cpu(sds->group_leader);
3540 }
3541
3542 return 1;
3543
3544 }
3545 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3546 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3547 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3548 {
3549 return;
3550 }
3551
3552 static inline void update_sd_power_savings_stats(struct sched_group *group,
3553 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3554 {
3555 return;
3556 }
3557
3558 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3559 int this_cpu, unsigned long *imbalance)
3560 {
3561 return 0;
3562 }
3563 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564
3565 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3566 {
3567 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3568 unsigned long smt_gain = sd->smt_gain;
3569
3570 smt_gain /= weight;
3571
3572 return smt_gain;
3573 }
3574
3575 unsigned long scale_rt_power(int cpu)
3576 {
3577 struct rq *rq = cpu_rq(cpu);
3578 u64 total, available;
3579
3580 sched_avg_update(rq);
3581
3582 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3583 available = total - rq->rt_avg;
3584
3585 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3586 total = SCHED_LOAD_SCALE;
3587
3588 total >>= SCHED_LOAD_SHIFT;
3589
3590 return div_u64(available, total);
3591 }
3592
3593 static void update_cpu_power(struct sched_domain *sd, int cpu)
3594 {
3595 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3596 unsigned long power = SCHED_LOAD_SCALE;
3597 struct sched_group *sdg = sd->groups;
3598
3599 /* here we could scale based on cpufreq */
3600
3601 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3602 power *= arch_scale_smt_power(sd, cpu);
3603 power >>= SCHED_LOAD_SHIFT;
3604 }
3605
3606 power *= scale_rt_power(cpu);
3607 power >>= SCHED_LOAD_SHIFT;
3608
3609 if (!power)
3610 power = 1;
3611
3612 sdg->cpu_power = power;
3613 }
3614
3615 static void update_group_power(struct sched_domain *sd, int cpu)
3616 {
3617 struct sched_domain *child = sd->child;
3618 struct sched_group *group, *sdg = sd->groups;
3619 unsigned long power;
3620
3621 if (!child) {
3622 update_cpu_power(sd, cpu);
3623 return;
3624 }
3625
3626 power = 0;
3627
3628 group = child->groups;
3629 do {
3630 power += group->cpu_power;
3631 group = group->next;
3632 } while (group != child->groups);
3633
3634 sdg->cpu_power = power;
3635 }
3636
3637 /**
3638 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3639 * @group: sched_group whose statistics are to be updated.
3640 * @this_cpu: Cpu for which load balance is currently performed.
3641 * @idle: Idle status of this_cpu
3642 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3643 * @sd_idle: Idle status of the sched_domain containing group.
3644 * @local_group: Does group contain this_cpu.
3645 * @cpus: Set of cpus considered for load balancing.
3646 * @balance: Should we balance.
3647 * @sgs: variable to hold the statistics for this group.
3648 */
3649 static inline void update_sg_lb_stats(struct sched_domain *sd,
3650 struct sched_group *group, int this_cpu,
3651 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3652 int local_group, const struct cpumask *cpus,
3653 int *balance, struct sg_lb_stats *sgs)
3654 {
3655 unsigned long load, max_cpu_load, min_cpu_load;
3656 int i;
3657 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3658 unsigned long sum_avg_load_per_task;
3659 unsigned long avg_load_per_task;
3660
3661 if (local_group) {
3662 balance_cpu = group_first_cpu(group);
3663 if (balance_cpu == this_cpu)
3664 update_group_power(sd, this_cpu);
3665 }
3666
3667 /* Tally up the load of all CPUs in the group */
3668 sum_avg_load_per_task = avg_load_per_task = 0;
3669 max_cpu_load = 0;
3670 min_cpu_load = ~0UL;
3671
3672 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3673 struct rq *rq = cpu_rq(i);
3674
3675 if (*sd_idle && rq->nr_running)
3676 *sd_idle = 0;
3677
3678 /* Bias balancing toward cpus of our domain */
3679 if (local_group) {
3680 if (idle_cpu(i) && !first_idle_cpu) {
3681 first_idle_cpu = 1;
3682 balance_cpu = i;
3683 }
3684
3685 load = target_load(i, load_idx);
3686 } else {
3687 load = source_load(i, load_idx);
3688 if (load > max_cpu_load)
3689 max_cpu_load = load;
3690 if (min_cpu_load > load)
3691 min_cpu_load = load;
3692 }
3693
3694 sgs->group_load += load;
3695 sgs->sum_nr_running += rq->nr_running;
3696 sgs->sum_weighted_load += weighted_cpuload(i);
3697
3698 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3699 }
3700
3701 /*
3702 * First idle cpu or the first cpu(busiest) in this sched group
3703 * is eligible for doing load balancing at this and above
3704 * domains. In the newly idle case, we will allow all the cpu's
3705 * to do the newly idle load balance.
3706 */
3707 if (idle != CPU_NEWLY_IDLE && local_group &&
3708 balance_cpu != this_cpu && balance) {
3709 *balance = 0;
3710 return;
3711 }
3712
3713 /* Adjust by relative CPU power of the group */
3714 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3715
3716
3717 /*
3718 * Consider the group unbalanced when the imbalance is larger
3719 * than the average weight of two tasks.
3720 *
3721 * APZ: with cgroup the avg task weight can vary wildly and
3722 * might not be a suitable number - should we keep a
3723 * normalized nr_running number somewhere that negates
3724 * the hierarchy?
3725 */
3726 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3727 group->cpu_power;
3728
3729 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3730 sgs->group_imb = 1;
3731
3732 sgs->group_capacity =
3733 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3734 }
3735
3736 /**
3737 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3738 * @sd: sched_domain whose statistics are to be updated.
3739 * @this_cpu: Cpu for which load balance is currently performed.
3740 * @idle: Idle status of this_cpu
3741 * @sd_idle: Idle status of the sched_domain containing group.
3742 * @cpus: Set of cpus considered for load balancing.
3743 * @balance: Should we balance.
3744 * @sds: variable to hold the statistics for this sched_domain.
3745 */
3746 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3747 enum cpu_idle_type idle, int *sd_idle,
3748 const struct cpumask *cpus, int *balance,
3749 struct sd_lb_stats *sds)
3750 {
3751 struct sched_domain *child = sd->child;
3752 struct sched_group *group = sd->groups;
3753 struct sg_lb_stats sgs;
3754 int load_idx, prefer_sibling = 0;
3755
3756 if (child && child->flags & SD_PREFER_SIBLING)
3757 prefer_sibling = 1;
3758
3759 init_sd_power_savings_stats(sd, sds, idle);
3760 load_idx = get_sd_load_idx(sd, idle);
3761
3762 do {
3763 int local_group;
3764
3765 local_group = cpumask_test_cpu(this_cpu,
3766 sched_group_cpus(group));
3767 memset(&sgs, 0, sizeof(sgs));
3768 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3769 local_group, cpus, balance, &sgs);
3770
3771 if (local_group && balance && !(*balance))
3772 return;
3773
3774 sds->total_load += sgs.group_load;
3775 sds->total_pwr += group->cpu_power;
3776
3777 /*
3778 * In case the child domain prefers tasks go to siblings
3779 * first, lower the group capacity to one so that we'll try
3780 * and move all the excess tasks away.
3781 */
3782 if (prefer_sibling)
3783 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3784
3785 if (local_group) {
3786 sds->this_load = sgs.avg_load;
3787 sds->this = group;
3788 sds->this_nr_running = sgs.sum_nr_running;
3789 sds->this_load_per_task = sgs.sum_weighted_load;
3790 } else if (sgs.avg_load > sds->max_load &&
3791 (sgs.sum_nr_running > sgs.group_capacity ||
3792 sgs.group_imb)) {
3793 sds->max_load = sgs.avg_load;
3794 sds->busiest = group;
3795 sds->busiest_nr_running = sgs.sum_nr_running;
3796 sds->busiest_load_per_task = sgs.sum_weighted_load;
3797 sds->group_imb = sgs.group_imb;
3798 }
3799
3800 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3801 group = group->next;
3802 } while (group != sd->groups);
3803 }
3804
3805 /**
3806 * fix_small_imbalance - Calculate the minor imbalance that exists
3807 * amongst the groups of a sched_domain, during
3808 * load balancing.
3809 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3810 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3811 * @imbalance: Variable to store the imbalance.
3812 */
3813 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3814 int this_cpu, unsigned long *imbalance)
3815 {
3816 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3817 unsigned int imbn = 2;
3818
3819 if (sds->this_nr_running) {
3820 sds->this_load_per_task /= sds->this_nr_running;
3821 if (sds->busiest_load_per_task >
3822 sds->this_load_per_task)
3823 imbn = 1;
3824 } else
3825 sds->this_load_per_task =
3826 cpu_avg_load_per_task(this_cpu);
3827
3828 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3829 sds->busiest_load_per_task * imbn) {
3830 *imbalance = sds->busiest_load_per_task;
3831 return;
3832 }
3833
3834 /*
3835 * OK, we don't have enough imbalance to justify moving tasks,
3836 * however we may be able to increase total CPU power used by
3837 * moving them.
3838 */
3839
3840 pwr_now += sds->busiest->cpu_power *
3841 min(sds->busiest_load_per_task, sds->max_load);
3842 pwr_now += sds->this->cpu_power *
3843 min(sds->this_load_per_task, sds->this_load);
3844 pwr_now /= SCHED_LOAD_SCALE;
3845
3846 /* Amount of load we'd subtract */
3847 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3848 sds->busiest->cpu_power;
3849 if (sds->max_load > tmp)
3850 pwr_move += sds->busiest->cpu_power *
3851 min(sds->busiest_load_per_task, sds->max_load - tmp);
3852
3853 /* Amount of load we'd add */
3854 if (sds->max_load * sds->busiest->cpu_power <
3855 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3856 tmp = (sds->max_load * sds->busiest->cpu_power) /
3857 sds->this->cpu_power;
3858 else
3859 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3860 sds->this->cpu_power;
3861 pwr_move += sds->this->cpu_power *
3862 min(sds->this_load_per_task, sds->this_load + tmp);
3863 pwr_move /= SCHED_LOAD_SCALE;
3864
3865 /* Move if we gain throughput */
3866 if (pwr_move > pwr_now)
3867 *imbalance = sds->busiest_load_per_task;
3868 }
3869
3870 /**
3871 * calculate_imbalance - Calculate the amount of imbalance present within the
3872 * groups of a given sched_domain during load balance.
3873 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3874 * @this_cpu: Cpu for which currently load balance is being performed.
3875 * @imbalance: The variable to store the imbalance.
3876 */
3877 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3878 unsigned long *imbalance)
3879 {
3880 unsigned long max_pull;
3881 /*
3882 * In the presence of smp nice balancing, certain scenarios can have
3883 * max load less than avg load(as we skip the groups at or below
3884 * its cpu_power, while calculating max_load..)
3885 */
3886 if (sds->max_load < sds->avg_load) {
3887 *imbalance = 0;
3888 return fix_small_imbalance(sds, this_cpu, imbalance);
3889 }
3890
3891 /* Don't want to pull so many tasks that a group would go idle */
3892 max_pull = min(sds->max_load - sds->avg_load,
3893 sds->max_load - sds->busiest_load_per_task);
3894
3895 /* How much load to actually move to equalise the imbalance */
3896 *imbalance = min(max_pull * sds->busiest->cpu_power,
3897 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3898 / SCHED_LOAD_SCALE;
3899
3900 /*
3901 * if *imbalance is less than the average load per runnable task
3902 * there is no gaurantee that any tasks will be moved so we'll have
3903 * a think about bumping its value to force at least one task to be
3904 * moved
3905 */
3906 if (*imbalance < sds->busiest_load_per_task)
3907 return fix_small_imbalance(sds, this_cpu, imbalance);
3908
3909 }
3910 /******* find_busiest_group() helpers end here *********************/
3911
3912 /**
3913 * find_busiest_group - Returns the busiest group within the sched_domain
3914 * if there is an imbalance. If there isn't an imbalance, and
3915 * the user has opted for power-savings, it returns a group whose
3916 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3917 * such a group exists.
3918 *
3919 * Also calculates the amount of weighted load which should be moved
3920 * to restore balance.
3921 *
3922 * @sd: The sched_domain whose busiest group is to be returned.
3923 * @this_cpu: The cpu for which load balancing is currently being performed.
3924 * @imbalance: Variable which stores amount of weighted load which should
3925 * be moved to restore balance/put a group to idle.
3926 * @idle: The idle status of this_cpu.
3927 * @sd_idle: The idleness of sd
3928 * @cpus: The set of CPUs under consideration for load-balancing.
3929 * @balance: Pointer to a variable indicating if this_cpu
3930 * is the appropriate cpu to perform load balancing at this_level.
3931 *
3932 * Returns: - the busiest group if imbalance exists.
3933 * - If no imbalance and user has opted for power-savings balance,
3934 * return the least loaded group whose CPUs can be
3935 * put to idle by rebalancing its tasks onto our group.
3936 */
3937 static struct sched_group *
3938 find_busiest_group(struct sched_domain *sd, int this_cpu,
3939 unsigned long *imbalance, enum cpu_idle_type idle,
3940 int *sd_idle, const struct cpumask *cpus, int *balance)
3941 {
3942 struct sd_lb_stats sds;
3943
3944 memset(&sds, 0, sizeof(sds));
3945
3946 /*
3947 * Compute the various statistics relavent for load balancing at
3948 * this level.
3949 */
3950 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3951 balance, &sds);
3952
3953 /* Cases where imbalance does not exist from POV of this_cpu */
3954 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3955 * at this level.
3956 * 2) There is no busy sibling group to pull from.
3957 * 3) This group is the busiest group.
3958 * 4) This group is more busy than the avg busieness at this
3959 * sched_domain.
3960 * 5) The imbalance is within the specified limit.
3961 * 6) Any rebalance would lead to ping-pong
3962 */
3963 if (balance && !(*balance))
3964 goto ret;
3965
3966 if (!sds.busiest || sds.busiest_nr_running == 0)
3967 goto out_balanced;
3968
3969 if (sds.this_load >= sds.max_load)
3970 goto out_balanced;
3971
3972 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3973
3974 if (sds.this_load >= sds.avg_load)
3975 goto out_balanced;
3976
3977 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3978 goto out_balanced;
3979
3980 sds.busiest_load_per_task /= sds.busiest_nr_running;
3981 if (sds.group_imb)
3982 sds.busiest_load_per_task =
3983 min(sds.busiest_load_per_task, sds.avg_load);
3984
3985 /*
3986 * We're trying to get all the cpus to the average_load, so we don't
3987 * want to push ourselves above the average load, nor do we wish to
3988 * reduce the max loaded cpu below the average load, as either of these
3989 * actions would just result in more rebalancing later, and ping-pong
3990 * tasks around. Thus we look for the minimum possible imbalance.
3991 * Negative imbalances (*we* are more loaded than anyone else) will
3992 * be counted as no imbalance for these purposes -- we can't fix that
3993 * by pulling tasks to us. Be careful of negative numbers as they'll
3994 * appear as very large values with unsigned longs.
3995 */
3996 if (sds.max_load <= sds.busiest_load_per_task)
3997 goto out_balanced;
3998
3999 /* Looks like there is an imbalance. Compute it */
4000 calculate_imbalance(&sds, this_cpu, imbalance);
4001 return sds.busiest;
4002
4003 out_balanced:
4004 /*
4005 * There is no obvious imbalance. But check if we can do some balancing
4006 * to save power.
4007 */
4008 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4009 return sds.busiest;
4010 ret:
4011 *imbalance = 0;
4012 return NULL;
4013 }
4014
4015 static struct sched_group *group_of(int cpu)
4016 {
4017 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4018
4019 if (!sd)
4020 return NULL;
4021
4022 return sd->groups;
4023 }
4024
4025 static unsigned long power_of(int cpu)
4026 {
4027 struct sched_group *group = group_of(cpu);
4028
4029 if (!group)
4030 return SCHED_LOAD_SCALE;
4031
4032 return group->cpu_power;
4033 }
4034
4035 /*
4036 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4037 */
4038 static struct rq *
4039 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4040 unsigned long imbalance, const struct cpumask *cpus)
4041 {
4042 struct rq *busiest = NULL, *rq;
4043 unsigned long max_load = 0;
4044 int i;
4045
4046 for_each_cpu(i, sched_group_cpus(group)) {
4047 unsigned long power = power_of(i);
4048 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4049 unsigned long wl;
4050
4051 if (!cpumask_test_cpu(i, cpus))
4052 continue;
4053
4054 rq = cpu_rq(i);
4055 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4056 wl /= power;
4057
4058 if (capacity && rq->nr_running == 1 && wl > imbalance)
4059 continue;
4060
4061 if (wl > max_load) {
4062 max_load = wl;
4063 busiest = rq;
4064 }
4065 }
4066
4067 return busiest;
4068 }
4069
4070 /*
4071 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4072 * so long as it is large enough.
4073 */
4074 #define MAX_PINNED_INTERVAL 512
4075
4076 /* Working cpumask for load_balance and load_balance_newidle. */
4077 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4078
4079 /*
4080 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4081 * tasks if there is an imbalance.
4082 */
4083 static int load_balance(int this_cpu, struct rq *this_rq,
4084 struct sched_domain *sd, enum cpu_idle_type idle,
4085 int *balance)
4086 {
4087 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4088 struct sched_group *group;
4089 unsigned long imbalance;
4090 struct rq *busiest;
4091 unsigned long flags;
4092 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4093
4094 cpumask_setall(cpus);
4095
4096 /*
4097 * When power savings policy is enabled for the parent domain, idle
4098 * sibling can pick up load irrespective of busy siblings. In this case,
4099 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4100 * portraying it as CPU_NOT_IDLE.
4101 */
4102 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4103 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4104 sd_idle = 1;
4105
4106 schedstat_inc(sd, lb_count[idle]);
4107
4108 redo:
4109 update_shares(sd);
4110 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4111 cpus, balance);
4112
4113 if (*balance == 0)
4114 goto out_balanced;
4115
4116 if (!group) {
4117 schedstat_inc(sd, lb_nobusyg[idle]);
4118 goto out_balanced;
4119 }
4120
4121 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4122 if (!busiest) {
4123 schedstat_inc(sd, lb_nobusyq[idle]);
4124 goto out_balanced;
4125 }
4126
4127 BUG_ON(busiest == this_rq);
4128
4129 schedstat_add(sd, lb_imbalance[idle], imbalance);
4130
4131 ld_moved = 0;
4132 if (busiest->nr_running > 1) {
4133 /*
4134 * Attempt to move tasks. If find_busiest_group has found
4135 * an imbalance but busiest->nr_running <= 1, the group is
4136 * still unbalanced. ld_moved simply stays zero, so it is
4137 * correctly treated as an imbalance.
4138 */
4139 local_irq_save(flags);
4140 double_rq_lock(this_rq, busiest);
4141 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4142 imbalance, sd, idle, &all_pinned);
4143 double_rq_unlock(this_rq, busiest);
4144 local_irq_restore(flags);
4145
4146 /*
4147 * some other cpu did the load balance for us.
4148 */
4149 if (ld_moved && this_cpu != smp_processor_id())
4150 resched_cpu(this_cpu);
4151
4152 /* All tasks on this runqueue were pinned by CPU affinity */
4153 if (unlikely(all_pinned)) {
4154 cpumask_clear_cpu(cpu_of(busiest), cpus);
4155 if (!cpumask_empty(cpus))
4156 goto redo;
4157 goto out_balanced;
4158 }
4159 }
4160
4161 if (!ld_moved) {
4162 schedstat_inc(sd, lb_failed[idle]);
4163 sd->nr_balance_failed++;
4164
4165 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4166
4167 spin_lock_irqsave(&busiest->lock, flags);
4168
4169 /* don't kick the migration_thread, if the curr
4170 * task on busiest cpu can't be moved to this_cpu
4171 */
4172 if (!cpumask_test_cpu(this_cpu,
4173 &busiest->curr->cpus_allowed)) {
4174 spin_unlock_irqrestore(&busiest->lock, flags);
4175 all_pinned = 1;
4176 goto out_one_pinned;
4177 }
4178
4179 if (!busiest->active_balance) {
4180 busiest->active_balance = 1;
4181 busiest->push_cpu = this_cpu;
4182 active_balance = 1;
4183 }
4184 spin_unlock_irqrestore(&busiest->lock, flags);
4185 if (active_balance)
4186 wake_up_process(busiest->migration_thread);
4187
4188 /*
4189 * We've kicked active balancing, reset the failure
4190 * counter.
4191 */
4192 sd->nr_balance_failed = sd->cache_nice_tries+1;
4193 }
4194 } else
4195 sd->nr_balance_failed = 0;
4196
4197 if (likely(!active_balance)) {
4198 /* We were unbalanced, so reset the balancing interval */
4199 sd->balance_interval = sd->min_interval;
4200 } else {
4201 /*
4202 * If we've begun active balancing, start to back off. This
4203 * case may not be covered by the all_pinned logic if there
4204 * is only 1 task on the busy runqueue (because we don't call
4205 * move_tasks).
4206 */
4207 if (sd->balance_interval < sd->max_interval)
4208 sd->balance_interval *= 2;
4209 }
4210
4211 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4212 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4213 ld_moved = -1;
4214
4215 goto out;
4216
4217 out_balanced:
4218 schedstat_inc(sd, lb_balanced[idle]);
4219
4220 sd->nr_balance_failed = 0;
4221
4222 out_one_pinned:
4223 /* tune up the balancing interval */
4224 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4225 (sd->balance_interval < sd->max_interval))
4226 sd->balance_interval *= 2;
4227
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 ld_moved = -1;
4231 else
4232 ld_moved = 0;
4233 out:
4234 if (ld_moved)
4235 update_shares(sd);
4236 return ld_moved;
4237 }
4238
4239 /*
4240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4241 * tasks if there is an imbalance.
4242 *
4243 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4244 * this_rq is locked.
4245 */
4246 static int
4247 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4248 {
4249 struct sched_group *group;
4250 struct rq *busiest = NULL;
4251 unsigned long imbalance;
4252 int ld_moved = 0;
4253 int sd_idle = 0;
4254 int all_pinned = 0;
4255 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4256
4257 cpumask_setall(cpus);
4258
4259 /*
4260 * When power savings policy is enabled for the parent domain, idle
4261 * sibling can pick up load irrespective of busy siblings. In this case,
4262 * let the state of idle sibling percolate up as IDLE, instead of
4263 * portraying it as CPU_NOT_IDLE.
4264 */
4265 if (sd->flags & SD_SHARE_CPUPOWER &&
4266 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4267 sd_idle = 1;
4268
4269 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4270 redo:
4271 update_shares_locked(this_rq, sd);
4272 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4273 &sd_idle, cpus, NULL);
4274 if (!group) {
4275 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4276 goto out_balanced;
4277 }
4278
4279 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4280 if (!busiest) {
4281 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4282 goto out_balanced;
4283 }
4284
4285 BUG_ON(busiest == this_rq);
4286
4287 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4288
4289 ld_moved = 0;
4290 if (busiest->nr_running > 1) {
4291 /* Attempt to move tasks */
4292 double_lock_balance(this_rq, busiest);
4293 /* this_rq->clock is already updated */
4294 update_rq_clock(busiest);
4295 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4296 imbalance, sd, CPU_NEWLY_IDLE,
4297 &all_pinned);
4298 double_unlock_balance(this_rq, busiest);
4299
4300 if (unlikely(all_pinned)) {
4301 cpumask_clear_cpu(cpu_of(busiest), cpus);
4302 if (!cpumask_empty(cpus))
4303 goto redo;
4304 }
4305 }
4306
4307 if (!ld_moved) {
4308 int active_balance = 0;
4309
4310 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4311 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4312 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4313 return -1;
4314
4315 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4316 return -1;
4317
4318 if (sd->nr_balance_failed++ < 2)
4319 return -1;
4320
4321 /*
4322 * The only task running in a non-idle cpu can be moved to this
4323 * cpu in an attempt to completely freeup the other CPU
4324 * package. The same method used to move task in load_balance()
4325 * have been extended for load_balance_newidle() to speedup
4326 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4327 *
4328 * The package power saving logic comes from
4329 * find_busiest_group(). If there are no imbalance, then
4330 * f_b_g() will return NULL. However when sched_mc={1,2} then
4331 * f_b_g() will select a group from which a running task may be
4332 * pulled to this cpu in order to make the other package idle.
4333 * If there is no opportunity to make a package idle and if
4334 * there are no imbalance, then f_b_g() will return NULL and no
4335 * action will be taken in load_balance_newidle().
4336 *
4337 * Under normal task pull operation due to imbalance, there
4338 * will be more than one task in the source run queue and
4339 * move_tasks() will succeed. ld_moved will be true and this
4340 * active balance code will not be triggered.
4341 */
4342
4343 /* Lock busiest in correct order while this_rq is held */
4344 double_lock_balance(this_rq, busiest);
4345
4346 /*
4347 * don't kick the migration_thread, if the curr
4348 * task on busiest cpu can't be moved to this_cpu
4349 */
4350 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4351 double_unlock_balance(this_rq, busiest);
4352 all_pinned = 1;
4353 return ld_moved;
4354 }
4355
4356 if (!busiest->active_balance) {
4357 busiest->active_balance = 1;
4358 busiest->push_cpu = this_cpu;
4359 active_balance = 1;
4360 }
4361
4362 double_unlock_balance(this_rq, busiest);
4363 /*
4364 * Should not call ttwu while holding a rq->lock
4365 */
4366 spin_unlock(&this_rq->lock);
4367 if (active_balance)
4368 wake_up_process(busiest->migration_thread);
4369 spin_lock(&this_rq->lock);
4370
4371 } else
4372 sd->nr_balance_failed = 0;
4373
4374 update_shares_locked(this_rq, sd);
4375 return ld_moved;
4376
4377 out_balanced:
4378 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4379 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4381 return -1;
4382 sd->nr_balance_failed = 0;
4383
4384 return 0;
4385 }
4386
4387 /*
4388 * idle_balance is called by schedule() if this_cpu is about to become
4389 * idle. Attempts to pull tasks from other CPUs.
4390 */
4391 static void idle_balance(int this_cpu, struct rq *this_rq)
4392 {
4393 struct sched_domain *sd;
4394 int pulled_task = 0;
4395 unsigned long next_balance = jiffies + HZ;
4396
4397 for_each_domain(this_cpu, sd) {
4398 unsigned long interval;
4399
4400 if (!(sd->flags & SD_LOAD_BALANCE))
4401 continue;
4402
4403 if (sd->flags & SD_BALANCE_NEWIDLE)
4404 /* If we've pulled tasks over stop searching: */
4405 pulled_task = load_balance_newidle(this_cpu, this_rq,
4406 sd);
4407
4408 interval = msecs_to_jiffies(sd->balance_interval);
4409 if (time_after(next_balance, sd->last_balance + interval))
4410 next_balance = sd->last_balance + interval;
4411 if (pulled_task)
4412 break;
4413 }
4414 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4415 /*
4416 * We are going idle. next_balance may be set based on
4417 * a busy processor. So reset next_balance.
4418 */
4419 this_rq->next_balance = next_balance;
4420 }
4421 }
4422
4423 /*
4424 * active_load_balance is run by migration threads. It pushes running tasks
4425 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4426 * running on each physical CPU where possible, and avoids physical /
4427 * logical imbalances.
4428 *
4429 * Called with busiest_rq locked.
4430 */
4431 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4432 {
4433 int target_cpu = busiest_rq->push_cpu;
4434 struct sched_domain *sd;
4435 struct rq *target_rq;
4436
4437 /* Is there any task to move? */
4438 if (busiest_rq->nr_running <= 1)
4439 return;
4440
4441 target_rq = cpu_rq(target_cpu);
4442
4443 /*
4444 * This condition is "impossible", if it occurs
4445 * we need to fix it. Originally reported by
4446 * Bjorn Helgaas on a 128-cpu setup.
4447 */
4448 BUG_ON(busiest_rq == target_rq);
4449
4450 /* move a task from busiest_rq to target_rq */
4451 double_lock_balance(busiest_rq, target_rq);
4452 update_rq_clock(busiest_rq);
4453 update_rq_clock(target_rq);
4454
4455 /* Search for an sd spanning us and the target CPU. */
4456 for_each_domain(target_cpu, sd) {
4457 if ((sd->flags & SD_LOAD_BALANCE) &&
4458 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4459 break;
4460 }
4461
4462 if (likely(sd)) {
4463 schedstat_inc(sd, alb_count);
4464
4465 if (move_one_task(target_rq, target_cpu, busiest_rq,
4466 sd, CPU_IDLE))
4467 schedstat_inc(sd, alb_pushed);
4468 else
4469 schedstat_inc(sd, alb_failed);
4470 }
4471 double_unlock_balance(busiest_rq, target_rq);
4472 }
4473
4474 #ifdef CONFIG_NO_HZ
4475 static struct {
4476 atomic_t load_balancer;
4477 cpumask_var_t cpu_mask;
4478 cpumask_var_t ilb_grp_nohz_mask;
4479 } nohz ____cacheline_aligned = {
4480 .load_balancer = ATOMIC_INIT(-1),
4481 };
4482
4483 int get_nohz_load_balancer(void)
4484 {
4485 return atomic_read(&nohz.load_balancer);
4486 }
4487
4488 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4489 /**
4490 * lowest_flag_domain - Return lowest sched_domain containing flag.
4491 * @cpu: The cpu whose lowest level of sched domain is to
4492 * be returned.
4493 * @flag: The flag to check for the lowest sched_domain
4494 * for the given cpu.
4495 *
4496 * Returns the lowest sched_domain of a cpu which contains the given flag.
4497 */
4498 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4499 {
4500 struct sched_domain *sd;
4501
4502 for_each_domain(cpu, sd)
4503 if (sd && (sd->flags & flag))
4504 break;
4505
4506 return sd;
4507 }
4508
4509 /**
4510 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4511 * @cpu: The cpu whose domains we're iterating over.
4512 * @sd: variable holding the value of the power_savings_sd
4513 * for cpu.
4514 * @flag: The flag to filter the sched_domains to be iterated.
4515 *
4516 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4517 * set, starting from the lowest sched_domain to the highest.
4518 */
4519 #define for_each_flag_domain(cpu, sd, flag) \
4520 for (sd = lowest_flag_domain(cpu, flag); \
4521 (sd && (sd->flags & flag)); sd = sd->parent)
4522
4523 /**
4524 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4525 * @ilb_group: group to be checked for semi-idleness
4526 *
4527 * Returns: 1 if the group is semi-idle. 0 otherwise.
4528 *
4529 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4530 * and atleast one non-idle CPU. This helper function checks if the given
4531 * sched_group is semi-idle or not.
4532 */
4533 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4534 {
4535 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4536 sched_group_cpus(ilb_group));
4537
4538 /*
4539 * A sched_group is semi-idle when it has atleast one busy cpu
4540 * and atleast one idle cpu.
4541 */
4542 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4543 return 0;
4544
4545 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4546 return 0;
4547
4548 return 1;
4549 }
4550 /**
4551 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4552 * @cpu: The cpu which is nominating a new idle_load_balancer.
4553 *
4554 * Returns: Returns the id of the idle load balancer if it exists,
4555 * Else, returns >= nr_cpu_ids.
4556 *
4557 * This algorithm picks the idle load balancer such that it belongs to a
4558 * semi-idle powersavings sched_domain. The idea is to try and avoid
4559 * completely idle packages/cores just for the purpose of idle load balancing
4560 * when there are other idle cpu's which are better suited for that job.
4561 */
4562 static int find_new_ilb(int cpu)
4563 {
4564 struct sched_domain *sd;
4565 struct sched_group *ilb_group;
4566
4567 /*
4568 * Have idle load balancer selection from semi-idle packages only
4569 * when power-aware load balancing is enabled
4570 */
4571 if (!(sched_smt_power_savings || sched_mc_power_savings))
4572 goto out_done;
4573
4574 /*
4575 * Optimize for the case when we have no idle CPUs or only one
4576 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4577 */
4578 if (cpumask_weight(nohz.cpu_mask) < 2)
4579 goto out_done;
4580
4581 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4582 ilb_group = sd->groups;
4583
4584 do {
4585 if (is_semi_idle_group(ilb_group))
4586 return cpumask_first(nohz.ilb_grp_nohz_mask);
4587
4588 ilb_group = ilb_group->next;
4589
4590 } while (ilb_group != sd->groups);
4591 }
4592
4593 out_done:
4594 return cpumask_first(nohz.cpu_mask);
4595 }
4596 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4597 static inline int find_new_ilb(int call_cpu)
4598 {
4599 return cpumask_first(nohz.cpu_mask);
4600 }
4601 #endif
4602
4603 /*
4604 * This routine will try to nominate the ilb (idle load balancing)
4605 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4606 * load balancing on behalf of all those cpus. If all the cpus in the system
4607 * go into this tickless mode, then there will be no ilb owner (as there is
4608 * no need for one) and all the cpus will sleep till the next wakeup event
4609 * arrives...
4610 *
4611 * For the ilb owner, tick is not stopped. And this tick will be used
4612 * for idle load balancing. ilb owner will still be part of
4613 * nohz.cpu_mask..
4614 *
4615 * While stopping the tick, this cpu will become the ilb owner if there
4616 * is no other owner. And will be the owner till that cpu becomes busy
4617 * or if all cpus in the system stop their ticks at which point
4618 * there is no need for ilb owner.
4619 *
4620 * When the ilb owner becomes busy, it nominates another owner, during the
4621 * next busy scheduler_tick()
4622 */
4623 int select_nohz_load_balancer(int stop_tick)
4624 {
4625 int cpu = smp_processor_id();
4626
4627 if (stop_tick) {
4628 cpu_rq(cpu)->in_nohz_recently = 1;
4629
4630 if (!cpu_active(cpu)) {
4631 if (atomic_read(&nohz.load_balancer) != cpu)
4632 return 0;
4633
4634 /*
4635 * If we are going offline and still the leader,
4636 * give up!
4637 */
4638 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4639 BUG();
4640
4641 return 0;
4642 }
4643
4644 cpumask_set_cpu(cpu, nohz.cpu_mask);
4645
4646 /* time for ilb owner also to sleep */
4647 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4648 if (atomic_read(&nohz.load_balancer) == cpu)
4649 atomic_set(&nohz.load_balancer, -1);
4650 return 0;
4651 }
4652
4653 if (atomic_read(&nohz.load_balancer) == -1) {
4654 /* make me the ilb owner */
4655 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4656 return 1;
4657 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4658 int new_ilb;
4659
4660 if (!(sched_smt_power_savings ||
4661 sched_mc_power_savings))
4662 return 1;
4663 /*
4664 * Check to see if there is a more power-efficient
4665 * ilb.
4666 */
4667 new_ilb = find_new_ilb(cpu);
4668 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4669 atomic_set(&nohz.load_balancer, -1);
4670 resched_cpu(new_ilb);
4671 return 0;
4672 }
4673 return 1;
4674 }
4675 } else {
4676 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4677 return 0;
4678
4679 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4680
4681 if (atomic_read(&nohz.load_balancer) == cpu)
4682 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4683 BUG();
4684 }
4685 return 0;
4686 }
4687 #endif
4688
4689 static DEFINE_SPINLOCK(balancing);
4690
4691 /*
4692 * It checks each scheduling domain to see if it is due to be balanced,
4693 * and initiates a balancing operation if so.
4694 *
4695 * Balancing parameters are set up in arch_init_sched_domains.
4696 */
4697 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4698 {
4699 int balance = 1;
4700 struct rq *rq = cpu_rq(cpu);
4701 unsigned long interval;
4702 struct sched_domain *sd;
4703 /* Earliest time when we have to do rebalance again */
4704 unsigned long next_balance = jiffies + 60*HZ;
4705 int update_next_balance = 0;
4706 int need_serialize;
4707
4708 for_each_domain(cpu, sd) {
4709 if (!(sd->flags & SD_LOAD_BALANCE))
4710 continue;
4711
4712 interval = sd->balance_interval;
4713 if (idle != CPU_IDLE)
4714 interval *= sd->busy_factor;
4715
4716 /* scale ms to jiffies */
4717 interval = msecs_to_jiffies(interval);
4718 if (unlikely(!interval))
4719 interval = 1;
4720 if (interval > HZ*NR_CPUS/10)
4721 interval = HZ*NR_CPUS/10;
4722
4723 need_serialize = sd->flags & SD_SERIALIZE;
4724
4725 if (need_serialize) {
4726 if (!spin_trylock(&balancing))
4727 goto out;
4728 }
4729
4730 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4731 if (load_balance(cpu, rq, sd, idle, &balance)) {
4732 /*
4733 * We've pulled tasks over so either we're no
4734 * longer idle, or one of our SMT siblings is
4735 * not idle.
4736 */
4737 idle = CPU_NOT_IDLE;
4738 }
4739 sd->last_balance = jiffies;
4740 }
4741 if (need_serialize)
4742 spin_unlock(&balancing);
4743 out:
4744 if (time_after(next_balance, sd->last_balance + interval)) {
4745 next_balance = sd->last_balance + interval;
4746 update_next_balance = 1;
4747 }
4748
4749 /*
4750 * Stop the load balance at this level. There is another
4751 * CPU in our sched group which is doing load balancing more
4752 * actively.
4753 */
4754 if (!balance)
4755 break;
4756 }
4757
4758 /*
4759 * next_balance will be updated only when there is a need.
4760 * When the cpu is attached to null domain for ex, it will not be
4761 * updated.
4762 */
4763 if (likely(update_next_balance))
4764 rq->next_balance = next_balance;
4765 }
4766
4767 /*
4768 * run_rebalance_domains is triggered when needed from the scheduler tick.
4769 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4770 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4771 */
4772 static void run_rebalance_domains(struct softirq_action *h)
4773 {
4774 int this_cpu = smp_processor_id();
4775 struct rq *this_rq = cpu_rq(this_cpu);
4776 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4777 CPU_IDLE : CPU_NOT_IDLE;
4778
4779 rebalance_domains(this_cpu, idle);
4780
4781 #ifdef CONFIG_NO_HZ
4782 /*
4783 * If this cpu is the owner for idle load balancing, then do the
4784 * balancing on behalf of the other idle cpus whose ticks are
4785 * stopped.
4786 */
4787 if (this_rq->idle_at_tick &&
4788 atomic_read(&nohz.load_balancer) == this_cpu) {
4789 struct rq *rq;
4790 int balance_cpu;
4791
4792 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4793 if (balance_cpu == this_cpu)
4794 continue;
4795
4796 /*
4797 * If this cpu gets work to do, stop the load balancing
4798 * work being done for other cpus. Next load
4799 * balancing owner will pick it up.
4800 */
4801 if (need_resched())
4802 break;
4803
4804 rebalance_domains(balance_cpu, CPU_IDLE);
4805
4806 rq = cpu_rq(balance_cpu);
4807 if (time_after(this_rq->next_balance, rq->next_balance))
4808 this_rq->next_balance = rq->next_balance;
4809 }
4810 }
4811 #endif
4812 }
4813
4814 static inline int on_null_domain(int cpu)
4815 {
4816 return !rcu_dereference(cpu_rq(cpu)->sd);
4817 }
4818
4819 /*
4820 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4821 *
4822 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4823 * idle load balancing owner or decide to stop the periodic load balancing,
4824 * if the whole system is idle.
4825 */
4826 static inline void trigger_load_balance(struct rq *rq, int cpu)
4827 {
4828 #ifdef CONFIG_NO_HZ
4829 /*
4830 * If we were in the nohz mode recently and busy at the current
4831 * scheduler tick, then check if we need to nominate new idle
4832 * load balancer.
4833 */
4834 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4835 rq->in_nohz_recently = 0;
4836
4837 if (atomic_read(&nohz.load_balancer) == cpu) {
4838 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4839 atomic_set(&nohz.load_balancer, -1);
4840 }
4841
4842 if (atomic_read(&nohz.load_balancer) == -1) {
4843 int ilb = find_new_ilb(cpu);
4844
4845 if (ilb < nr_cpu_ids)
4846 resched_cpu(ilb);
4847 }
4848 }
4849
4850 /*
4851 * If this cpu is idle and doing idle load balancing for all the
4852 * cpus with ticks stopped, is it time for that to stop?
4853 */
4854 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4855 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4856 resched_cpu(cpu);
4857 return;
4858 }
4859
4860 /*
4861 * If this cpu is idle and the idle load balancing is done by
4862 * someone else, then no need raise the SCHED_SOFTIRQ
4863 */
4864 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4865 cpumask_test_cpu(cpu, nohz.cpu_mask))
4866 return;
4867 #endif
4868 /* Don't need to rebalance while attached to NULL domain */
4869 if (time_after_eq(jiffies, rq->next_balance) &&
4870 likely(!on_null_domain(cpu)))
4871 raise_softirq(SCHED_SOFTIRQ);
4872 }
4873
4874 #else /* CONFIG_SMP */
4875
4876 /*
4877 * on UP we do not need to balance between CPUs:
4878 */
4879 static inline void idle_balance(int cpu, struct rq *rq)
4880 {
4881 }
4882
4883 #endif
4884
4885 DEFINE_PER_CPU(struct kernel_stat, kstat);
4886
4887 EXPORT_PER_CPU_SYMBOL(kstat);
4888
4889 /*
4890 * Return any ns on the sched_clock that have not yet been accounted in
4891 * @p in case that task is currently running.
4892 *
4893 * Called with task_rq_lock() held on @rq.
4894 */
4895 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4896 {
4897 u64 ns = 0;
4898
4899 if (task_current(rq, p)) {
4900 update_rq_clock(rq);
4901 ns = rq->clock - p->se.exec_start;
4902 if ((s64)ns < 0)
4903 ns = 0;
4904 }
4905
4906 return ns;
4907 }
4908
4909 unsigned long long task_delta_exec(struct task_struct *p)
4910 {
4911 unsigned long flags;
4912 struct rq *rq;
4913 u64 ns = 0;
4914
4915 rq = task_rq_lock(p, &flags);
4916 ns = do_task_delta_exec(p, rq);
4917 task_rq_unlock(rq, &flags);
4918
4919 return ns;
4920 }
4921
4922 /*
4923 * Return accounted runtime for the task.
4924 * In case the task is currently running, return the runtime plus current's
4925 * pending runtime that have not been accounted yet.
4926 */
4927 unsigned long long task_sched_runtime(struct task_struct *p)
4928 {
4929 unsigned long flags;
4930 struct rq *rq;
4931 u64 ns = 0;
4932
4933 rq = task_rq_lock(p, &flags);
4934 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4935 task_rq_unlock(rq, &flags);
4936
4937 return ns;
4938 }
4939
4940 /*
4941 * Return sum_exec_runtime for the thread group.
4942 * In case the task is currently running, return the sum plus current's
4943 * pending runtime that have not been accounted yet.
4944 *
4945 * Note that the thread group might have other running tasks as well,
4946 * so the return value not includes other pending runtime that other
4947 * running tasks might have.
4948 */
4949 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4950 {
4951 struct task_cputime totals;
4952 unsigned long flags;
4953 struct rq *rq;
4954 u64 ns;
4955
4956 rq = task_rq_lock(p, &flags);
4957 thread_group_cputime(p, &totals);
4958 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4959 task_rq_unlock(rq, &flags);
4960
4961 return ns;
4962 }
4963
4964 /*
4965 * Account user cpu time to a process.
4966 * @p: the process that the cpu time gets accounted to
4967 * @cputime: the cpu time spent in user space since the last update
4968 * @cputime_scaled: cputime scaled by cpu frequency
4969 */
4970 void account_user_time(struct task_struct *p, cputime_t cputime,
4971 cputime_t cputime_scaled)
4972 {
4973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4974 cputime64_t tmp;
4975
4976 /* Add user time to process. */
4977 p->utime = cputime_add(p->utime, cputime);
4978 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4979 account_group_user_time(p, cputime);
4980
4981 /* Add user time to cpustat. */
4982 tmp = cputime_to_cputime64(cputime);
4983 if (TASK_NICE(p) > 0)
4984 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4985 else
4986 cpustat->user = cputime64_add(cpustat->user, tmp);
4987
4988 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4989 /* Account for user time used */
4990 acct_update_integrals(p);
4991 }
4992
4993 /*
4994 * Account guest cpu time to a process.
4995 * @p: the process that the cpu time gets accounted to
4996 * @cputime: the cpu time spent in virtual machine since the last update
4997 * @cputime_scaled: cputime scaled by cpu frequency
4998 */
4999 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5000 cputime_t cputime_scaled)
5001 {
5002 cputime64_t tmp;
5003 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5004
5005 tmp = cputime_to_cputime64(cputime);
5006
5007 /* Add guest time to process. */
5008 p->utime = cputime_add(p->utime, cputime);
5009 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5010 account_group_user_time(p, cputime);
5011 p->gtime = cputime_add(p->gtime, cputime);
5012
5013 /* Add guest time to cpustat. */
5014 cpustat->user = cputime64_add(cpustat->user, tmp);
5015 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5016 }
5017
5018 /*
5019 * Account system cpu time to a process.
5020 * @p: the process that the cpu time gets accounted to
5021 * @hardirq_offset: the offset to subtract from hardirq_count()
5022 * @cputime: the cpu time spent in kernel space since the last update
5023 * @cputime_scaled: cputime scaled by cpu frequency
5024 */
5025 void account_system_time(struct task_struct *p, int hardirq_offset,
5026 cputime_t cputime, cputime_t cputime_scaled)
5027 {
5028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5029 cputime64_t tmp;
5030
5031 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5032 account_guest_time(p, cputime, cputime_scaled);
5033 return;
5034 }
5035
5036 /* Add system time to process. */
5037 p->stime = cputime_add(p->stime, cputime);
5038 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5039 account_group_system_time(p, cputime);
5040
5041 /* Add system time to cpustat. */
5042 tmp = cputime_to_cputime64(cputime);
5043 if (hardirq_count() - hardirq_offset)
5044 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5045 else if (softirq_count())
5046 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5047 else
5048 cpustat->system = cputime64_add(cpustat->system, tmp);
5049
5050 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5051
5052 /* Account for system time used */
5053 acct_update_integrals(p);
5054 }
5055
5056 /*
5057 * Account for involuntary wait time.
5058 * @steal: the cpu time spent in involuntary wait
5059 */
5060 void account_steal_time(cputime_t cputime)
5061 {
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5063 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5064
5065 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5066 }
5067
5068 /*
5069 * Account for idle time.
5070 * @cputime: the cpu time spent in idle wait
5071 */
5072 void account_idle_time(cputime_t cputime)
5073 {
5074 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5075 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5076 struct rq *rq = this_rq();
5077
5078 if (atomic_read(&rq->nr_iowait) > 0)
5079 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5080 else
5081 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5082 }
5083
5084 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5085
5086 /*
5087 * Account a single tick of cpu time.
5088 * @p: the process that the cpu time gets accounted to
5089 * @user_tick: indicates if the tick is a user or a system tick
5090 */
5091 void account_process_tick(struct task_struct *p, int user_tick)
5092 {
5093 cputime_t one_jiffy = jiffies_to_cputime(1);
5094 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5095 struct rq *rq = this_rq();
5096
5097 if (user_tick)
5098 account_user_time(p, one_jiffy, one_jiffy_scaled);
5099 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5100 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5101 one_jiffy_scaled);
5102 else
5103 account_idle_time(one_jiffy);
5104 }
5105
5106 /*
5107 * Account multiple ticks of steal time.
5108 * @p: the process from which the cpu time has been stolen
5109 * @ticks: number of stolen ticks
5110 */
5111 void account_steal_ticks(unsigned long ticks)
5112 {
5113 account_steal_time(jiffies_to_cputime(ticks));
5114 }
5115
5116 /*
5117 * Account multiple ticks of idle time.
5118 * @ticks: number of stolen ticks
5119 */
5120 void account_idle_ticks(unsigned long ticks)
5121 {
5122 account_idle_time(jiffies_to_cputime(ticks));
5123 }
5124
5125 #endif
5126
5127 /*
5128 * Use precise platform statistics if available:
5129 */
5130 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5131 cputime_t task_utime(struct task_struct *p)
5132 {
5133 return p->utime;
5134 }
5135
5136 cputime_t task_stime(struct task_struct *p)
5137 {
5138 return p->stime;
5139 }
5140 #else
5141 cputime_t task_utime(struct task_struct *p)
5142 {
5143 clock_t utime = cputime_to_clock_t(p->utime),
5144 total = utime + cputime_to_clock_t(p->stime);
5145 u64 temp;
5146
5147 /*
5148 * Use CFS's precise accounting:
5149 */
5150 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5151
5152 if (total) {
5153 temp *= utime;
5154 do_div(temp, total);
5155 }
5156 utime = (clock_t)temp;
5157
5158 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5159 return p->prev_utime;
5160 }
5161
5162 cputime_t task_stime(struct task_struct *p)
5163 {
5164 clock_t stime;
5165
5166 /*
5167 * Use CFS's precise accounting. (we subtract utime from
5168 * the total, to make sure the total observed by userspace
5169 * grows monotonically - apps rely on that):
5170 */
5171 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5172 cputime_to_clock_t(task_utime(p));
5173
5174 if (stime >= 0)
5175 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5176
5177 return p->prev_stime;
5178 }
5179 #endif
5180
5181 inline cputime_t task_gtime(struct task_struct *p)
5182 {
5183 return p->gtime;
5184 }
5185
5186 /*
5187 * This function gets called by the timer code, with HZ frequency.
5188 * We call it with interrupts disabled.
5189 *
5190 * It also gets called by the fork code, when changing the parent's
5191 * timeslices.
5192 */
5193 void scheduler_tick(void)
5194 {
5195 int cpu = smp_processor_id();
5196 struct rq *rq = cpu_rq(cpu);
5197 struct task_struct *curr = rq->curr;
5198
5199 sched_clock_tick();
5200
5201 spin_lock(&rq->lock);
5202 update_rq_clock(rq);
5203 update_cpu_load(rq);
5204 curr->sched_class->task_tick(rq, curr, 0);
5205 spin_unlock(&rq->lock);
5206
5207 perf_counter_task_tick(curr, cpu);
5208
5209 #ifdef CONFIG_SMP
5210 rq->idle_at_tick = idle_cpu(cpu);
5211 trigger_load_balance(rq, cpu);
5212 #endif
5213 }
5214
5215 notrace unsigned long get_parent_ip(unsigned long addr)
5216 {
5217 if (in_lock_functions(addr)) {
5218 addr = CALLER_ADDR2;
5219 if (in_lock_functions(addr))
5220 addr = CALLER_ADDR3;
5221 }
5222 return addr;
5223 }
5224
5225 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5226 defined(CONFIG_PREEMPT_TRACER))
5227
5228 void __kprobes add_preempt_count(int val)
5229 {
5230 #ifdef CONFIG_DEBUG_PREEMPT
5231 /*
5232 * Underflow?
5233 */
5234 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5235 return;
5236 #endif
5237 preempt_count() += val;
5238 #ifdef CONFIG_DEBUG_PREEMPT
5239 /*
5240 * Spinlock count overflowing soon?
5241 */
5242 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5243 PREEMPT_MASK - 10);
5244 #endif
5245 if (preempt_count() == val)
5246 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5247 }
5248 EXPORT_SYMBOL(add_preempt_count);
5249
5250 void __kprobes sub_preempt_count(int val)
5251 {
5252 #ifdef CONFIG_DEBUG_PREEMPT
5253 /*
5254 * Underflow?
5255 */
5256 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5257 return;
5258 /*
5259 * Is the spinlock portion underflowing?
5260 */
5261 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5262 !(preempt_count() & PREEMPT_MASK)))
5263 return;
5264 #endif
5265
5266 if (preempt_count() == val)
5267 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5268 preempt_count() -= val;
5269 }
5270 EXPORT_SYMBOL(sub_preempt_count);
5271
5272 #endif
5273
5274 /*
5275 * Print scheduling while atomic bug:
5276 */
5277 static noinline void __schedule_bug(struct task_struct *prev)
5278 {
5279 struct pt_regs *regs = get_irq_regs();
5280
5281 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5282 prev->comm, prev->pid, preempt_count());
5283
5284 debug_show_held_locks(prev);
5285 print_modules();
5286 if (irqs_disabled())
5287 print_irqtrace_events(prev);
5288
5289 if (regs)
5290 show_regs(regs);
5291 else
5292 dump_stack();
5293 }
5294
5295 /*
5296 * Various schedule()-time debugging checks and statistics:
5297 */
5298 static inline void schedule_debug(struct task_struct *prev)
5299 {
5300 /*
5301 * Test if we are atomic. Since do_exit() needs to call into
5302 * schedule() atomically, we ignore that path for now.
5303 * Otherwise, whine if we are scheduling when we should not be.
5304 */
5305 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5306 __schedule_bug(prev);
5307
5308 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5309
5310 schedstat_inc(this_rq(), sched_count);
5311 #ifdef CONFIG_SCHEDSTATS
5312 if (unlikely(prev->lock_depth >= 0)) {
5313 schedstat_inc(this_rq(), bkl_count);
5314 schedstat_inc(prev, sched_info.bkl_count);
5315 }
5316 #endif
5317 }
5318
5319 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5320 {
5321 if (prev->state == TASK_RUNNING) {
5322 u64 runtime = prev->se.sum_exec_runtime;
5323
5324 runtime -= prev->se.prev_sum_exec_runtime;
5325 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5326
5327 /*
5328 * In order to avoid avg_overlap growing stale when we are
5329 * indeed overlapping and hence not getting put to sleep, grow
5330 * the avg_overlap on preemption.
5331 *
5332 * We use the average preemption runtime because that
5333 * correlates to the amount of cache footprint a task can
5334 * build up.
5335 */
5336 update_avg(&prev->se.avg_overlap, runtime);
5337 }
5338 prev->sched_class->put_prev_task(rq, prev);
5339 }
5340
5341 /*
5342 * Pick up the highest-prio task:
5343 */
5344 static inline struct task_struct *
5345 pick_next_task(struct rq *rq)
5346 {
5347 const struct sched_class *class;
5348 struct task_struct *p;
5349
5350 /*
5351 * Optimization: we know that if all tasks are in
5352 * the fair class we can call that function directly:
5353 */
5354 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5355 p = fair_sched_class.pick_next_task(rq);
5356 if (likely(p))
5357 return p;
5358 }
5359
5360 class = sched_class_highest;
5361 for ( ; ; ) {
5362 p = class->pick_next_task(rq);
5363 if (p)
5364 return p;
5365 /*
5366 * Will never be NULL as the idle class always
5367 * returns a non-NULL p:
5368 */
5369 class = class->next;
5370 }
5371 }
5372
5373 /*
5374 * schedule() is the main scheduler function.
5375 */
5376 asmlinkage void __sched schedule(void)
5377 {
5378 struct task_struct *prev, *next;
5379 unsigned long *switch_count;
5380 struct rq *rq;
5381 int cpu;
5382
5383 need_resched:
5384 preempt_disable();
5385 cpu = smp_processor_id();
5386 rq = cpu_rq(cpu);
5387 rcu_sched_qs(cpu);
5388 prev = rq->curr;
5389 switch_count = &prev->nivcsw;
5390
5391 release_kernel_lock(prev);
5392 need_resched_nonpreemptible:
5393
5394 schedule_debug(prev);
5395
5396 if (sched_feat(HRTICK))
5397 hrtick_clear(rq);
5398
5399 spin_lock_irq(&rq->lock);
5400 update_rq_clock(rq);
5401 clear_tsk_need_resched(prev);
5402
5403 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5404 if (unlikely(signal_pending_state(prev->state, prev)))
5405 prev->state = TASK_RUNNING;
5406 else
5407 deactivate_task(rq, prev, 1);
5408 switch_count = &prev->nvcsw;
5409 }
5410
5411 pre_schedule(rq, prev);
5412
5413 if (unlikely(!rq->nr_running))
5414 idle_balance(cpu, rq);
5415
5416 put_prev_task(rq, prev);
5417 next = pick_next_task(rq);
5418
5419 if (likely(prev != next)) {
5420 sched_info_switch(prev, next);
5421 perf_counter_task_sched_out(prev, next, cpu);
5422
5423 rq->nr_switches++;
5424 rq->curr = next;
5425 ++*switch_count;
5426
5427 context_switch(rq, prev, next); /* unlocks the rq */
5428 /*
5429 * the context switch might have flipped the stack from under
5430 * us, hence refresh the local variables.
5431 */
5432 cpu = smp_processor_id();
5433 rq = cpu_rq(cpu);
5434 } else
5435 spin_unlock_irq(&rq->lock);
5436
5437 post_schedule(rq);
5438
5439 if (unlikely(reacquire_kernel_lock(current) < 0))
5440 goto need_resched_nonpreemptible;
5441
5442 preempt_enable_no_resched();
5443 if (need_resched())
5444 goto need_resched;
5445 }
5446 EXPORT_SYMBOL(schedule);
5447
5448 #ifdef CONFIG_SMP
5449 /*
5450 * Look out! "owner" is an entirely speculative pointer
5451 * access and not reliable.
5452 */
5453 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5454 {
5455 unsigned int cpu;
5456 struct rq *rq;
5457
5458 if (!sched_feat(OWNER_SPIN))
5459 return 0;
5460
5461 #ifdef CONFIG_DEBUG_PAGEALLOC
5462 /*
5463 * Need to access the cpu field knowing that
5464 * DEBUG_PAGEALLOC could have unmapped it if
5465 * the mutex owner just released it and exited.
5466 */
5467 if (probe_kernel_address(&owner->cpu, cpu))
5468 goto out;
5469 #else
5470 cpu = owner->cpu;
5471 #endif
5472
5473 /*
5474 * Even if the access succeeded (likely case),
5475 * the cpu field may no longer be valid.
5476 */
5477 if (cpu >= nr_cpumask_bits)
5478 goto out;
5479
5480 /*
5481 * We need to validate that we can do a
5482 * get_cpu() and that we have the percpu area.
5483 */
5484 if (!cpu_online(cpu))
5485 goto out;
5486
5487 rq = cpu_rq(cpu);
5488
5489 for (;;) {
5490 /*
5491 * Owner changed, break to re-assess state.
5492 */
5493 if (lock->owner != owner)
5494 break;
5495
5496 /*
5497 * Is that owner really running on that cpu?
5498 */
5499 if (task_thread_info(rq->curr) != owner || need_resched())
5500 return 0;
5501
5502 cpu_relax();
5503 }
5504 out:
5505 return 1;
5506 }
5507 #endif
5508
5509 #ifdef CONFIG_PREEMPT
5510 /*
5511 * this is the entry point to schedule() from in-kernel preemption
5512 * off of preempt_enable. Kernel preemptions off return from interrupt
5513 * occur there and call schedule directly.
5514 */
5515 asmlinkage void __sched preempt_schedule(void)
5516 {
5517 struct thread_info *ti = current_thread_info();
5518
5519 /*
5520 * If there is a non-zero preempt_count or interrupts are disabled,
5521 * we do not want to preempt the current task. Just return..
5522 */
5523 if (likely(ti->preempt_count || irqs_disabled()))
5524 return;
5525
5526 do {
5527 add_preempt_count(PREEMPT_ACTIVE);
5528 schedule();
5529 sub_preempt_count(PREEMPT_ACTIVE);
5530
5531 /*
5532 * Check again in case we missed a preemption opportunity
5533 * between schedule and now.
5534 */
5535 barrier();
5536 } while (need_resched());
5537 }
5538 EXPORT_SYMBOL(preempt_schedule);
5539
5540 /*
5541 * this is the entry point to schedule() from kernel preemption
5542 * off of irq context.
5543 * Note, that this is called and return with irqs disabled. This will
5544 * protect us against recursive calling from irq.
5545 */
5546 asmlinkage void __sched preempt_schedule_irq(void)
5547 {
5548 struct thread_info *ti = current_thread_info();
5549
5550 /* Catch callers which need to be fixed */
5551 BUG_ON(ti->preempt_count || !irqs_disabled());
5552
5553 do {
5554 add_preempt_count(PREEMPT_ACTIVE);
5555 local_irq_enable();
5556 schedule();
5557 local_irq_disable();
5558 sub_preempt_count(PREEMPT_ACTIVE);
5559
5560 /*
5561 * Check again in case we missed a preemption opportunity
5562 * between schedule and now.
5563 */
5564 barrier();
5565 } while (need_resched());
5566 }
5567
5568 #endif /* CONFIG_PREEMPT */
5569
5570 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5571 void *key)
5572 {
5573 return try_to_wake_up(curr->private, mode, sync);
5574 }
5575 EXPORT_SYMBOL(default_wake_function);
5576
5577 /*
5578 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5579 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5580 * number) then we wake all the non-exclusive tasks and one exclusive task.
5581 *
5582 * There are circumstances in which we can try to wake a task which has already
5583 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5584 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5585 */
5586 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5587 int nr_exclusive, int sync, void *key)
5588 {
5589 wait_queue_t *curr, *next;
5590
5591 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5592 unsigned flags = curr->flags;
5593
5594 if (curr->func(curr, mode, sync, key) &&
5595 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5596 break;
5597 }
5598 }
5599
5600 /**
5601 * __wake_up - wake up threads blocked on a waitqueue.
5602 * @q: the waitqueue
5603 * @mode: which threads
5604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5605 * @key: is directly passed to the wakeup function
5606 *
5607 * It may be assumed that this function implies a write memory barrier before
5608 * changing the task state if and only if any tasks are woken up.
5609 */
5610 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5611 int nr_exclusive, void *key)
5612 {
5613 unsigned long flags;
5614
5615 spin_lock_irqsave(&q->lock, flags);
5616 __wake_up_common(q, mode, nr_exclusive, 0, key);
5617 spin_unlock_irqrestore(&q->lock, flags);
5618 }
5619 EXPORT_SYMBOL(__wake_up);
5620
5621 /*
5622 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5623 */
5624 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5625 {
5626 __wake_up_common(q, mode, 1, 0, NULL);
5627 }
5628
5629 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5630 {
5631 __wake_up_common(q, mode, 1, 0, key);
5632 }
5633
5634 /**
5635 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5636 * @q: the waitqueue
5637 * @mode: which threads
5638 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5639 * @key: opaque value to be passed to wakeup targets
5640 *
5641 * The sync wakeup differs that the waker knows that it will schedule
5642 * away soon, so while the target thread will be woken up, it will not
5643 * be migrated to another CPU - ie. the two threads are 'synchronized'
5644 * with each other. This can prevent needless bouncing between CPUs.
5645 *
5646 * On UP it can prevent extra preemption.
5647 *
5648 * It may be assumed that this function implies a write memory barrier before
5649 * changing the task state if and only if any tasks are woken up.
5650 */
5651 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5652 int nr_exclusive, void *key)
5653 {
5654 unsigned long flags;
5655 int sync = 1;
5656
5657 if (unlikely(!q))
5658 return;
5659
5660 if (unlikely(!nr_exclusive))
5661 sync = 0;
5662
5663 spin_lock_irqsave(&q->lock, flags);
5664 __wake_up_common(q, mode, nr_exclusive, sync, key);
5665 spin_unlock_irqrestore(&q->lock, flags);
5666 }
5667 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5668
5669 /*
5670 * __wake_up_sync - see __wake_up_sync_key()
5671 */
5672 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5673 {
5674 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5675 }
5676 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5677
5678 /**
5679 * complete: - signals a single thread waiting on this completion
5680 * @x: holds the state of this particular completion
5681 *
5682 * This will wake up a single thread waiting on this completion. Threads will be
5683 * awakened in the same order in which they were queued.
5684 *
5685 * See also complete_all(), wait_for_completion() and related routines.
5686 *
5687 * It may be assumed that this function implies a write memory barrier before
5688 * changing the task state if and only if any tasks are woken up.
5689 */
5690 void complete(struct completion *x)
5691 {
5692 unsigned long flags;
5693
5694 spin_lock_irqsave(&x->wait.lock, flags);
5695 x->done++;
5696 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5697 spin_unlock_irqrestore(&x->wait.lock, flags);
5698 }
5699 EXPORT_SYMBOL(complete);
5700
5701 /**
5702 * complete_all: - signals all threads waiting on this completion
5703 * @x: holds the state of this particular completion
5704 *
5705 * This will wake up all threads waiting on this particular completion event.
5706 *
5707 * It may be assumed that this function implies a write memory barrier before
5708 * changing the task state if and only if any tasks are woken up.
5709 */
5710 void complete_all(struct completion *x)
5711 {
5712 unsigned long flags;
5713
5714 spin_lock_irqsave(&x->wait.lock, flags);
5715 x->done += UINT_MAX/2;
5716 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5717 spin_unlock_irqrestore(&x->wait.lock, flags);
5718 }
5719 EXPORT_SYMBOL(complete_all);
5720
5721 static inline long __sched
5722 do_wait_for_common(struct completion *x, long timeout, int state)
5723 {
5724 if (!x->done) {
5725 DECLARE_WAITQUEUE(wait, current);
5726
5727 wait.flags |= WQ_FLAG_EXCLUSIVE;
5728 __add_wait_queue_tail(&x->wait, &wait);
5729 do {
5730 if (signal_pending_state(state, current)) {
5731 timeout = -ERESTARTSYS;
5732 break;
5733 }
5734 __set_current_state(state);
5735 spin_unlock_irq(&x->wait.lock);
5736 timeout = schedule_timeout(timeout);
5737 spin_lock_irq(&x->wait.lock);
5738 } while (!x->done && timeout);
5739 __remove_wait_queue(&x->wait, &wait);
5740 if (!x->done)
5741 return timeout;
5742 }
5743 x->done--;
5744 return timeout ?: 1;
5745 }
5746
5747 static long __sched
5748 wait_for_common(struct completion *x, long timeout, int state)
5749 {
5750 might_sleep();
5751
5752 spin_lock_irq(&x->wait.lock);
5753 timeout = do_wait_for_common(x, timeout, state);
5754 spin_unlock_irq(&x->wait.lock);
5755 return timeout;
5756 }
5757
5758 /**
5759 * wait_for_completion: - waits for completion of a task
5760 * @x: holds the state of this particular completion
5761 *
5762 * This waits to be signaled for completion of a specific task. It is NOT
5763 * interruptible and there is no timeout.
5764 *
5765 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5766 * and interrupt capability. Also see complete().
5767 */
5768 void __sched wait_for_completion(struct completion *x)
5769 {
5770 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5771 }
5772 EXPORT_SYMBOL(wait_for_completion);
5773
5774 /**
5775 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5776 * @x: holds the state of this particular completion
5777 * @timeout: timeout value in jiffies
5778 *
5779 * This waits for either a completion of a specific task to be signaled or for a
5780 * specified timeout to expire. The timeout is in jiffies. It is not
5781 * interruptible.
5782 */
5783 unsigned long __sched
5784 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5785 {
5786 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5787 }
5788 EXPORT_SYMBOL(wait_for_completion_timeout);
5789
5790 /**
5791 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5792 * @x: holds the state of this particular completion
5793 *
5794 * This waits for completion of a specific task to be signaled. It is
5795 * interruptible.
5796 */
5797 int __sched wait_for_completion_interruptible(struct completion *x)
5798 {
5799 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5800 if (t == -ERESTARTSYS)
5801 return t;
5802 return 0;
5803 }
5804 EXPORT_SYMBOL(wait_for_completion_interruptible);
5805
5806 /**
5807 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5808 * @x: holds the state of this particular completion
5809 * @timeout: timeout value in jiffies
5810 *
5811 * This waits for either a completion of a specific task to be signaled or for a
5812 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5813 */
5814 unsigned long __sched
5815 wait_for_completion_interruptible_timeout(struct completion *x,
5816 unsigned long timeout)
5817 {
5818 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5819 }
5820 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5821
5822 /**
5823 * wait_for_completion_killable: - waits for completion of a task (killable)
5824 * @x: holds the state of this particular completion
5825 *
5826 * This waits to be signaled for completion of a specific task. It can be
5827 * interrupted by a kill signal.
5828 */
5829 int __sched wait_for_completion_killable(struct completion *x)
5830 {
5831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5832 if (t == -ERESTARTSYS)
5833 return t;
5834 return 0;
5835 }
5836 EXPORT_SYMBOL(wait_for_completion_killable);
5837
5838 /**
5839 * try_wait_for_completion - try to decrement a completion without blocking
5840 * @x: completion structure
5841 *
5842 * Returns: 0 if a decrement cannot be done without blocking
5843 * 1 if a decrement succeeded.
5844 *
5845 * If a completion is being used as a counting completion,
5846 * attempt to decrement the counter without blocking. This
5847 * enables us to avoid waiting if the resource the completion
5848 * is protecting is not available.
5849 */
5850 bool try_wait_for_completion(struct completion *x)
5851 {
5852 int ret = 1;
5853
5854 spin_lock_irq(&x->wait.lock);
5855 if (!x->done)
5856 ret = 0;
5857 else
5858 x->done--;
5859 spin_unlock_irq(&x->wait.lock);
5860 return ret;
5861 }
5862 EXPORT_SYMBOL(try_wait_for_completion);
5863
5864 /**
5865 * completion_done - Test to see if a completion has any waiters
5866 * @x: completion structure
5867 *
5868 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5869 * 1 if there are no waiters.
5870 *
5871 */
5872 bool completion_done(struct completion *x)
5873 {
5874 int ret = 1;
5875
5876 spin_lock_irq(&x->wait.lock);
5877 if (!x->done)
5878 ret = 0;
5879 spin_unlock_irq(&x->wait.lock);
5880 return ret;
5881 }
5882 EXPORT_SYMBOL(completion_done);
5883
5884 static long __sched
5885 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5886 {
5887 unsigned long flags;
5888 wait_queue_t wait;
5889
5890 init_waitqueue_entry(&wait, current);
5891
5892 __set_current_state(state);
5893
5894 spin_lock_irqsave(&q->lock, flags);
5895 __add_wait_queue(q, &wait);
5896 spin_unlock(&q->lock);
5897 timeout = schedule_timeout(timeout);
5898 spin_lock_irq(&q->lock);
5899 __remove_wait_queue(q, &wait);
5900 spin_unlock_irqrestore(&q->lock, flags);
5901
5902 return timeout;
5903 }
5904
5905 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5906 {
5907 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5908 }
5909 EXPORT_SYMBOL(interruptible_sleep_on);
5910
5911 long __sched
5912 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5913 {
5914 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5915 }
5916 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5917
5918 void __sched sleep_on(wait_queue_head_t *q)
5919 {
5920 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5921 }
5922 EXPORT_SYMBOL(sleep_on);
5923
5924 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5925 {
5926 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5927 }
5928 EXPORT_SYMBOL(sleep_on_timeout);
5929
5930 #ifdef CONFIG_RT_MUTEXES
5931
5932 /*
5933 * rt_mutex_setprio - set the current priority of a task
5934 * @p: task
5935 * @prio: prio value (kernel-internal form)
5936 *
5937 * This function changes the 'effective' priority of a task. It does
5938 * not touch ->normal_prio like __setscheduler().
5939 *
5940 * Used by the rt_mutex code to implement priority inheritance logic.
5941 */
5942 void rt_mutex_setprio(struct task_struct *p, int prio)
5943 {
5944 unsigned long flags;
5945 int oldprio, on_rq, running;
5946 struct rq *rq;
5947 const struct sched_class *prev_class = p->sched_class;
5948
5949 BUG_ON(prio < 0 || prio > MAX_PRIO);
5950
5951 rq = task_rq_lock(p, &flags);
5952 update_rq_clock(rq);
5953
5954 oldprio = p->prio;
5955 on_rq = p->se.on_rq;
5956 running = task_current(rq, p);
5957 if (on_rq)
5958 dequeue_task(rq, p, 0);
5959 if (running)
5960 p->sched_class->put_prev_task(rq, p);
5961
5962 if (rt_prio(prio))
5963 p->sched_class = &rt_sched_class;
5964 else
5965 p->sched_class = &fair_sched_class;
5966
5967 p->prio = prio;
5968
5969 if (running)
5970 p->sched_class->set_curr_task(rq);
5971 if (on_rq) {
5972 enqueue_task(rq, p, 0);
5973
5974 check_class_changed(rq, p, prev_class, oldprio, running);
5975 }
5976 task_rq_unlock(rq, &flags);
5977 }
5978
5979 #endif
5980
5981 void set_user_nice(struct task_struct *p, long nice)
5982 {
5983 int old_prio, delta, on_rq;
5984 unsigned long flags;
5985 struct rq *rq;
5986
5987 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5988 return;
5989 /*
5990 * We have to be careful, if called from sys_setpriority(),
5991 * the task might be in the middle of scheduling on another CPU.
5992 */
5993 rq = task_rq_lock(p, &flags);
5994 update_rq_clock(rq);
5995 /*
5996 * The RT priorities are set via sched_setscheduler(), but we still
5997 * allow the 'normal' nice value to be set - but as expected
5998 * it wont have any effect on scheduling until the task is
5999 * SCHED_FIFO/SCHED_RR:
6000 */
6001 if (task_has_rt_policy(p)) {
6002 p->static_prio = NICE_TO_PRIO(nice);
6003 goto out_unlock;
6004 }
6005 on_rq = p->se.on_rq;
6006 if (on_rq)
6007 dequeue_task(rq, p, 0);
6008
6009 p->static_prio = NICE_TO_PRIO(nice);
6010 set_load_weight(p);
6011 old_prio = p->prio;
6012 p->prio = effective_prio(p);
6013 delta = p->prio - old_prio;
6014
6015 if (on_rq) {
6016 enqueue_task(rq, p, 0);
6017 /*
6018 * If the task increased its priority or is running and
6019 * lowered its priority, then reschedule its CPU:
6020 */
6021 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6022 resched_task(rq->curr);
6023 }
6024 out_unlock:
6025 task_rq_unlock(rq, &flags);
6026 }
6027 EXPORT_SYMBOL(set_user_nice);
6028
6029 /*
6030 * can_nice - check if a task can reduce its nice value
6031 * @p: task
6032 * @nice: nice value
6033 */
6034 int can_nice(const struct task_struct *p, const int nice)
6035 {
6036 /* convert nice value [19,-20] to rlimit style value [1,40] */
6037 int nice_rlim = 20 - nice;
6038
6039 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6040 capable(CAP_SYS_NICE));
6041 }
6042
6043 #ifdef __ARCH_WANT_SYS_NICE
6044
6045 /*
6046 * sys_nice - change the priority of the current process.
6047 * @increment: priority increment
6048 *
6049 * sys_setpriority is a more generic, but much slower function that
6050 * does similar things.
6051 */
6052 SYSCALL_DEFINE1(nice, int, increment)
6053 {
6054 long nice, retval;
6055
6056 /*
6057 * Setpriority might change our priority at the same moment.
6058 * We don't have to worry. Conceptually one call occurs first
6059 * and we have a single winner.
6060 */
6061 if (increment < -40)
6062 increment = -40;
6063 if (increment > 40)
6064 increment = 40;
6065
6066 nice = TASK_NICE(current) + increment;
6067 if (nice < -20)
6068 nice = -20;
6069 if (nice > 19)
6070 nice = 19;
6071
6072 if (increment < 0 && !can_nice(current, nice))
6073 return -EPERM;
6074
6075 retval = security_task_setnice(current, nice);
6076 if (retval)
6077 return retval;
6078
6079 set_user_nice(current, nice);
6080 return 0;
6081 }
6082
6083 #endif
6084
6085 /**
6086 * task_prio - return the priority value of a given task.
6087 * @p: the task in question.
6088 *
6089 * This is the priority value as seen by users in /proc.
6090 * RT tasks are offset by -200. Normal tasks are centered
6091 * around 0, value goes from -16 to +15.
6092 */
6093 int task_prio(const struct task_struct *p)
6094 {
6095 return p->prio - MAX_RT_PRIO;
6096 }
6097
6098 /**
6099 * task_nice - return the nice value of a given task.
6100 * @p: the task in question.
6101 */
6102 int task_nice(const struct task_struct *p)
6103 {
6104 return TASK_NICE(p);
6105 }
6106 EXPORT_SYMBOL(task_nice);
6107
6108 /**
6109 * idle_cpu - is a given cpu idle currently?
6110 * @cpu: the processor in question.
6111 */
6112 int idle_cpu(int cpu)
6113 {
6114 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6115 }
6116
6117 /**
6118 * idle_task - return the idle task for a given cpu.
6119 * @cpu: the processor in question.
6120 */
6121 struct task_struct *idle_task(int cpu)
6122 {
6123 return cpu_rq(cpu)->idle;
6124 }
6125
6126 /**
6127 * find_process_by_pid - find a process with a matching PID value.
6128 * @pid: the pid in question.
6129 */
6130 static struct task_struct *find_process_by_pid(pid_t pid)
6131 {
6132 return pid ? find_task_by_vpid(pid) : current;
6133 }
6134
6135 /* Actually do priority change: must hold rq lock. */
6136 static void
6137 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6138 {
6139 BUG_ON(p->se.on_rq);
6140
6141 p->policy = policy;
6142 switch (p->policy) {
6143 case SCHED_NORMAL:
6144 case SCHED_BATCH:
6145 case SCHED_IDLE:
6146 p->sched_class = &fair_sched_class;
6147 break;
6148 case SCHED_FIFO:
6149 case SCHED_RR:
6150 p->sched_class = &rt_sched_class;
6151 break;
6152 }
6153
6154 p->rt_priority = prio;
6155 p->normal_prio = normal_prio(p);
6156 /* we are holding p->pi_lock already */
6157 p->prio = rt_mutex_getprio(p);
6158 set_load_weight(p);
6159 }
6160
6161 /*
6162 * check the target process has a UID that matches the current process's
6163 */
6164 static bool check_same_owner(struct task_struct *p)
6165 {
6166 const struct cred *cred = current_cred(), *pcred;
6167 bool match;
6168
6169 rcu_read_lock();
6170 pcred = __task_cred(p);
6171 match = (cred->euid == pcred->euid ||
6172 cred->euid == pcred->uid);
6173 rcu_read_unlock();
6174 return match;
6175 }
6176
6177 static int __sched_setscheduler(struct task_struct *p, int policy,
6178 struct sched_param *param, bool user)
6179 {
6180 int retval, oldprio, oldpolicy = -1, on_rq, running;
6181 unsigned long flags;
6182 const struct sched_class *prev_class = p->sched_class;
6183 struct rq *rq;
6184 int reset_on_fork;
6185
6186 /* may grab non-irq protected spin_locks */
6187 BUG_ON(in_interrupt());
6188 recheck:
6189 /* double check policy once rq lock held */
6190 if (policy < 0) {
6191 reset_on_fork = p->sched_reset_on_fork;
6192 policy = oldpolicy = p->policy;
6193 } else {
6194 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6195 policy &= ~SCHED_RESET_ON_FORK;
6196
6197 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6198 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6199 policy != SCHED_IDLE)
6200 return -EINVAL;
6201 }
6202
6203 /*
6204 * Valid priorities for SCHED_FIFO and SCHED_RR are
6205 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6206 * SCHED_BATCH and SCHED_IDLE is 0.
6207 */
6208 if (param->sched_priority < 0 ||
6209 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6210 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6211 return -EINVAL;
6212 if (rt_policy(policy) != (param->sched_priority != 0))
6213 return -EINVAL;
6214
6215 /*
6216 * Allow unprivileged RT tasks to decrease priority:
6217 */
6218 if (user && !capable(CAP_SYS_NICE)) {
6219 if (rt_policy(policy)) {
6220 unsigned long rlim_rtprio;
6221
6222 if (!lock_task_sighand(p, &flags))
6223 return -ESRCH;
6224 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6225 unlock_task_sighand(p, &flags);
6226
6227 /* can't set/change the rt policy */
6228 if (policy != p->policy && !rlim_rtprio)
6229 return -EPERM;
6230
6231 /* can't increase priority */
6232 if (param->sched_priority > p->rt_priority &&
6233 param->sched_priority > rlim_rtprio)
6234 return -EPERM;
6235 }
6236 /*
6237 * Like positive nice levels, dont allow tasks to
6238 * move out of SCHED_IDLE either:
6239 */
6240 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6241 return -EPERM;
6242
6243 /* can't change other user's priorities */
6244 if (!check_same_owner(p))
6245 return -EPERM;
6246
6247 /* Normal users shall not reset the sched_reset_on_fork flag */
6248 if (p->sched_reset_on_fork && !reset_on_fork)
6249 return -EPERM;
6250 }
6251
6252 if (user) {
6253 #ifdef CONFIG_RT_GROUP_SCHED
6254 /*
6255 * Do not allow realtime tasks into groups that have no runtime
6256 * assigned.
6257 */
6258 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6259 task_group(p)->rt_bandwidth.rt_runtime == 0)
6260 return -EPERM;
6261 #endif
6262
6263 retval = security_task_setscheduler(p, policy, param);
6264 if (retval)
6265 return retval;
6266 }
6267
6268 /*
6269 * make sure no PI-waiters arrive (or leave) while we are
6270 * changing the priority of the task:
6271 */
6272 spin_lock_irqsave(&p->pi_lock, flags);
6273 /*
6274 * To be able to change p->policy safely, the apropriate
6275 * runqueue lock must be held.
6276 */
6277 rq = __task_rq_lock(p);
6278 /* recheck policy now with rq lock held */
6279 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6280 policy = oldpolicy = -1;
6281 __task_rq_unlock(rq);
6282 spin_unlock_irqrestore(&p->pi_lock, flags);
6283 goto recheck;
6284 }
6285 update_rq_clock(rq);
6286 on_rq = p->se.on_rq;
6287 running = task_current(rq, p);
6288 if (on_rq)
6289 deactivate_task(rq, p, 0);
6290 if (running)
6291 p->sched_class->put_prev_task(rq, p);
6292
6293 p->sched_reset_on_fork = reset_on_fork;
6294
6295 oldprio = p->prio;
6296 __setscheduler(rq, p, policy, param->sched_priority);
6297
6298 if (running)
6299 p->sched_class->set_curr_task(rq);
6300 if (on_rq) {
6301 activate_task(rq, p, 0);
6302
6303 check_class_changed(rq, p, prev_class, oldprio, running);
6304 }
6305 __task_rq_unlock(rq);
6306 spin_unlock_irqrestore(&p->pi_lock, flags);
6307
6308 rt_mutex_adjust_pi(p);
6309
6310 return 0;
6311 }
6312
6313 /**
6314 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6315 * @p: the task in question.
6316 * @policy: new policy.
6317 * @param: structure containing the new RT priority.
6318 *
6319 * NOTE that the task may be already dead.
6320 */
6321 int sched_setscheduler(struct task_struct *p, int policy,
6322 struct sched_param *param)
6323 {
6324 return __sched_setscheduler(p, policy, param, true);
6325 }
6326 EXPORT_SYMBOL_GPL(sched_setscheduler);
6327
6328 /**
6329 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6330 * @p: the task in question.
6331 * @policy: new policy.
6332 * @param: structure containing the new RT priority.
6333 *
6334 * Just like sched_setscheduler, only don't bother checking if the
6335 * current context has permission. For example, this is needed in
6336 * stop_machine(): we create temporary high priority worker threads,
6337 * but our caller might not have that capability.
6338 */
6339 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6340 struct sched_param *param)
6341 {
6342 return __sched_setscheduler(p, policy, param, false);
6343 }
6344
6345 static int
6346 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6347 {
6348 struct sched_param lparam;
6349 struct task_struct *p;
6350 int retval;
6351
6352 if (!param || pid < 0)
6353 return -EINVAL;
6354 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6355 return -EFAULT;
6356
6357 rcu_read_lock();
6358 retval = -ESRCH;
6359 p = find_process_by_pid(pid);
6360 if (p != NULL)
6361 retval = sched_setscheduler(p, policy, &lparam);
6362 rcu_read_unlock();
6363
6364 return retval;
6365 }
6366
6367 /**
6368 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6369 * @pid: the pid in question.
6370 * @policy: new policy.
6371 * @param: structure containing the new RT priority.
6372 */
6373 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6374 struct sched_param __user *, param)
6375 {
6376 /* negative values for policy are not valid */
6377 if (policy < 0)
6378 return -EINVAL;
6379
6380 return do_sched_setscheduler(pid, policy, param);
6381 }
6382
6383 /**
6384 * sys_sched_setparam - set/change the RT priority of a thread
6385 * @pid: the pid in question.
6386 * @param: structure containing the new RT priority.
6387 */
6388 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6389 {
6390 return do_sched_setscheduler(pid, -1, param);
6391 }
6392
6393 /**
6394 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6395 * @pid: the pid in question.
6396 */
6397 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6398 {
6399 struct task_struct *p;
6400 int retval;
6401
6402 if (pid < 0)
6403 return -EINVAL;
6404
6405 retval = -ESRCH;
6406 read_lock(&tasklist_lock);
6407 p = find_process_by_pid(pid);
6408 if (p) {
6409 retval = security_task_getscheduler(p);
6410 if (!retval)
6411 retval = p->policy
6412 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6413 }
6414 read_unlock(&tasklist_lock);
6415 return retval;
6416 }
6417
6418 /**
6419 * sys_sched_getparam - get the RT priority of a thread
6420 * @pid: the pid in question.
6421 * @param: structure containing the RT priority.
6422 */
6423 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6424 {
6425 struct sched_param lp;
6426 struct task_struct *p;
6427 int retval;
6428
6429 if (!param || pid < 0)
6430 return -EINVAL;
6431
6432 read_lock(&tasklist_lock);
6433 p = find_process_by_pid(pid);
6434 retval = -ESRCH;
6435 if (!p)
6436 goto out_unlock;
6437
6438 retval = security_task_getscheduler(p);
6439 if (retval)
6440 goto out_unlock;
6441
6442 lp.sched_priority = p->rt_priority;
6443 read_unlock(&tasklist_lock);
6444
6445 /*
6446 * This one might sleep, we cannot do it with a spinlock held ...
6447 */
6448 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6449
6450 return retval;
6451
6452 out_unlock:
6453 read_unlock(&tasklist_lock);
6454 return retval;
6455 }
6456
6457 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6458 {
6459 cpumask_var_t cpus_allowed, new_mask;
6460 struct task_struct *p;
6461 int retval;
6462
6463 get_online_cpus();
6464 read_lock(&tasklist_lock);
6465
6466 p = find_process_by_pid(pid);
6467 if (!p) {
6468 read_unlock(&tasklist_lock);
6469 put_online_cpus();
6470 return -ESRCH;
6471 }
6472
6473 /*
6474 * It is not safe to call set_cpus_allowed with the
6475 * tasklist_lock held. We will bump the task_struct's
6476 * usage count and then drop tasklist_lock.
6477 */
6478 get_task_struct(p);
6479 read_unlock(&tasklist_lock);
6480
6481 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6482 retval = -ENOMEM;
6483 goto out_put_task;
6484 }
6485 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6486 retval = -ENOMEM;
6487 goto out_free_cpus_allowed;
6488 }
6489 retval = -EPERM;
6490 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6491 goto out_unlock;
6492
6493 retval = security_task_setscheduler(p, 0, NULL);
6494 if (retval)
6495 goto out_unlock;
6496
6497 cpuset_cpus_allowed(p, cpus_allowed);
6498 cpumask_and(new_mask, in_mask, cpus_allowed);
6499 again:
6500 retval = set_cpus_allowed_ptr(p, new_mask);
6501
6502 if (!retval) {
6503 cpuset_cpus_allowed(p, cpus_allowed);
6504 if (!cpumask_subset(new_mask, cpus_allowed)) {
6505 /*
6506 * We must have raced with a concurrent cpuset
6507 * update. Just reset the cpus_allowed to the
6508 * cpuset's cpus_allowed
6509 */
6510 cpumask_copy(new_mask, cpus_allowed);
6511 goto again;
6512 }
6513 }
6514 out_unlock:
6515 free_cpumask_var(new_mask);
6516 out_free_cpus_allowed:
6517 free_cpumask_var(cpus_allowed);
6518 out_put_task:
6519 put_task_struct(p);
6520 put_online_cpus();
6521 return retval;
6522 }
6523
6524 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6525 struct cpumask *new_mask)
6526 {
6527 if (len < cpumask_size())
6528 cpumask_clear(new_mask);
6529 else if (len > cpumask_size())
6530 len = cpumask_size();
6531
6532 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6533 }
6534
6535 /**
6536 * sys_sched_setaffinity - set the cpu affinity of a process
6537 * @pid: pid of the process
6538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6539 * @user_mask_ptr: user-space pointer to the new cpu mask
6540 */
6541 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6542 unsigned long __user *, user_mask_ptr)
6543 {
6544 cpumask_var_t new_mask;
6545 int retval;
6546
6547 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6548 return -ENOMEM;
6549
6550 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6551 if (retval == 0)
6552 retval = sched_setaffinity(pid, new_mask);
6553 free_cpumask_var(new_mask);
6554 return retval;
6555 }
6556
6557 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6558 {
6559 struct task_struct *p;
6560 int retval;
6561
6562 get_online_cpus();
6563 read_lock(&tasklist_lock);
6564
6565 retval = -ESRCH;
6566 p = find_process_by_pid(pid);
6567 if (!p)
6568 goto out_unlock;
6569
6570 retval = security_task_getscheduler(p);
6571 if (retval)
6572 goto out_unlock;
6573
6574 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6575
6576 out_unlock:
6577 read_unlock(&tasklist_lock);
6578 put_online_cpus();
6579
6580 return retval;
6581 }
6582
6583 /**
6584 * sys_sched_getaffinity - get the cpu affinity of a process
6585 * @pid: pid of the process
6586 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6587 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6588 */
6589 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6590 unsigned long __user *, user_mask_ptr)
6591 {
6592 int ret;
6593 cpumask_var_t mask;
6594
6595 if (len < cpumask_size())
6596 return -EINVAL;
6597
6598 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6599 return -ENOMEM;
6600
6601 ret = sched_getaffinity(pid, mask);
6602 if (ret == 0) {
6603 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6604 ret = -EFAULT;
6605 else
6606 ret = cpumask_size();
6607 }
6608 free_cpumask_var(mask);
6609
6610 return ret;
6611 }
6612
6613 /**
6614 * sys_sched_yield - yield the current processor to other threads.
6615 *
6616 * This function yields the current CPU to other tasks. If there are no
6617 * other threads running on this CPU then this function will return.
6618 */
6619 SYSCALL_DEFINE0(sched_yield)
6620 {
6621 struct rq *rq = this_rq_lock();
6622
6623 schedstat_inc(rq, yld_count);
6624 current->sched_class->yield_task(rq);
6625
6626 /*
6627 * Since we are going to call schedule() anyway, there's
6628 * no need to preempt or enable interrupts:
6629 */
6630 __release(rq->lock);
6631 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6632 _raw_spin_unlock(&rq->lock);
6633 preempt_enable_no_resched();
6634
6635 schedule();
6636
6637 return 0;
6638 }
6639
6640 static inline int should_resched(void)
6641 {
6642 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6643 }
6644
6645 static void __cond_resched(void)
6646 {
6647 add_preempt_count(PREEMPT_ACTIVE);
6648 schedule();
6649 sub_preempt_count(PREEMPT_ACTIVE);
6650 }
6651
6652 int __sched _cond_resched(void)
6653 {
6654 if (should_resched()) {
6655 __cond_resched();
6656 return 1;
6657 }
6658 return 0;
6659 }
6660 EXPORT_SYMBOL(_cond_resched);
6661
6662 /*
6663 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6664 * call schedule, and on return reacquire the lock.
6665 *
6666 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6667 * operations here to prevent schedule() from being called twice (once via
6668 * spin_unlock(), once by hand).
6669 */
6670 int __cond_resched_lock(spinlock_t *lock)
6671 {
6672 int resched = should_resched();
6673 int ret = 0;
6674
6675 lockdep_assert_held(lock);
6676
6677 if (spin_needbreak(lock) || resched) {
6678 spin_unlock(lock);
6679 if (resched)
6680 __cond_resched();
6681 else
6682 cpu_relax();
6683 ret = 1;
6684 spin_lock(lock);
6685 }
6686 return ret;
6687 }
6688 EXPORT_SYMBOL(__cond_resched_lock);
6689
6690 int __sched __cond_resched_softirq(void)
6691 {
6692 BUG_ON(!in_softirq());
6693
6694 if (should_resched()) {
6695 local_bh_enable();
6696 __cond_resched();
6697 local_bh_disable();
6698 return 1;
6699 }
6700 return 0;
6701 }
6702 EXPORT_SYMBOL(__cond_resched_softirq);
6703
6704 /**
6705 * yield - yield the current processor to other threads.
6706 *
6707 * This is a shortcut for kernel-space yielding - it marks the
6708 * thread runnable and calls sys_sched_yield().
6709 */
6710 void __sched yield(void)
6711 {
6712 set_current_state(TASK_RUNNING);
6713 sys_sched_yield();
6714 }
6715 EXPORT_SYMBOL(yield);
6716
6717 /*
6718 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6719 * that process accounting knows that this is a task in IO wait state.
6720 *
6721 * But don't do that if it is a deliberate, throttling IO wait (this task
6722 * has set its backing_dev_info: the queue against which it should throttle)
6723 */
6724 void __sched io_schedule(void)
6725 {
6726 struct rq *rq = raw_rq();
6727
6728 delayacct_blkio_start();
6729 atomic_inc(&rq->nr_iowait);
6730 current->in_iowait = 1;
6731 schedule();
6732 current->in_iowait = 0;
6733 atomic_dec(&rq->nr_iowait);
6734 delayacct_blkio_end();
6735 }
6736 EXPORT_SYMBOL(io_schedule);
6737
6738 long __sched io_schedule_timeout(long timeout)
6739 {
6740 struct rq *rq = raw_rq();
6741 long ret;
6742
6743 delayacct_blkio_start();
6744 atomic_inc(&rq->nr_iowait);
6745 current->in_iowait = 1;
6746 ret = schedule_timeout(timeout);
6747 current->in_iowait = 0;
6748 atomic_dec(&rq->nr_iowait);
6749 delayacct_blkio_end();
6750 return ret;
6751 }
6752
6753 /**
6754 * sys_sched_get_priority_max - return maximum RT priority.
6755 * @policy: scheduling class.
6756 *
6757 * this syscall returns the maximum rt_priority that can be used
6758 * by a given scheduling class.
6759 */
6760 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6761 {
6762 int ret = -EINVAL;
6763
6764 switch (policy) {
6765 case SCHED_FIFO:
6766 case SCHED_RR:
6767 ret = MAX_USER_RT_PRIO-1;
6768 break;
6769 case SCHED_NORMAL:
6770 case SCHED_BATCH:
6771 case SCHED_IDLE:
6772 ret = 0;
6773 break;
6774 }
6775 return ret;
6776 }
6777
6778 /**
6779 * sys_sched_get_priority_min - return minimum RT priority.
6780 * @policy: scheduling class.
6781 *
6782 * this syscall returns the minimum rt_priority that can be used
6783 * by a given scheduling class.
6784 */
6785 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6786 {
6787 int ret = -EINVAL;
6788
6789 switch (policy) {
6790 case SCHED_FIFO:
6791 case SCHED_RR:
6792 ret = 1;
6793 break;
6794 case SCHED_NORMAL:
6795 case SCHED_BATCH:
6796 case SCHED_IDLE:
6797 ret = 0;
6798 }
6799 return ret;
6800 }
6801
6802 /**
6803 * sys_sched_rr_get_interval - return the default timeslice of a process.
6804 * @pid: pid of the process.
6805 * @interval: userspace pointer to the timeslice value.
6806 *
6807 * this syscall writes the default timeslice value of a given process
6808 * into the user-space timespec buffer. A value of '0' means infinity.
6809 */
6810 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6811 struct timespec __user *, interval)
6812 {
6813 struct task_struct *p;
6814 unsigned int time_slice;
6815 int retval;
6816 struct timespec t;
6817
6818 if (pid < 0)
6819 return -EINVAL;
6820
6821 retval = -ESRCH;
6822 read_lock(&tasklist_lock);
6823 p = find_process_by_pid(pid);
6824 if (!p)
6825 goto out_unlock;
6826
6827 retval = security_task_getscheduler(p);
6828 if (retval)
6829 goto out_unlock;
6830
6831 /*
6832 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6833 * tasks that are on an otherwise idle runqueue:
6834 */
6835 time_slice = 0;
6836 if (p->policy == SCHED_RR) {
6837 time_slice = DEF_TIMESLICE;
6838 } else if (p->policy != SCHED_FIFO) {
6839 struct sched_entity *se = &p->se;
6840 unsigned long flags;
6841 struct rq *rq;
6842
6843 rq = task_rq_lock(p, &flags);
6844 if (rq->cfs.load.weight)
6845 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6846 task_rq_unlock(rq, &flags);
6847 }
6848 read_unlock(&tasklist_lock);
6849 jiffies_to_timespec(time_slice, &t);
6850 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6851 return retval;
6852
6853 out_unlock:
6854 read_unlock(&tasklist_lock);
6855 return retval;
6856 }
6857
6858 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6859
6860 void sched_show_task(struct task_struct *p)
6861 {
6862 unsigned long free = 0;
6863 unsigned state;
6864
6865 state = p->state ? __ffs(p->state) + 1 : 0;
6866 printk(KERN_INFO "%-13.13s %c", p->comm,
6867 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6868 #if BITS_PER_LONG == 32
6869 if (state == TASK_RUNNING)
6870 printk(KERN_CONT " running ");
6871 else
6872 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6873 #else
6874 if (state == TASK_RUNNING)
6875 printk(KERN_CONT " running task ");
6876 else
6877 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6878 #endif
6879 #ifdef CONFIG_DEBUG_STACK_USAGE
6880 free = stack_not_used(p);
6881 #endif
6882 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6883 task_pid_nr(p), task_pid_nr(p->real_parent),
6884 (unsigned long)task_thread_info(p)->flags);
6885
6886 show_stack(p, NULL);
6887 }
6888
6889 void show_state_filter(unsigned long state_filter)
6890 {
6891 struct task_struct *g, *p;
6892
6893 #if BITS_PER_LONG == 32
6894 printk(KERN_INFO
6895 " task PC stack pid father\n");
6896 #else
6897 printk(KERN_INFO
6898 " task PC stack pid father\n");
6899 #endif
6900 read_lock(&tasklist_lock);
6901 do_each_thread(g, p) {
6902 /*
6903 * reset the NMI-timeout, listing all files on a slow
6904 * console might take alot of time:
6905 */
6906 touch_nmi_watchdog();
6907 if (!state_filter || (p->state & state_filter))
6908 sched_show_task(p);
6909 } while_each_thread(g, p);
6910
6911 touch_all_softlockup_watchdogs();
6912
6913 #ifdef CONFIG_SCHED_DEBUG
6914 sysrq_sched_debug_show();
6915 #endif
6916 read_unlock(&tasklist_lock);
6917 /*
6918 * Only show locks if all tasks are dumped:
6919 */
6920 if (state_filter == -1)
6921 debug_show_all_locks();
6922 }
6923
6924 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6925 {
6926 idle->sched_class = &idle_sched_class;
6927 }
6928
6929 /**
6930 * init_idle - set up an idle thread for a given CPU
6931 * @idle: task in question
6932 * @cpu: cpu the idle task belongs to
6933 *
6934 * NOTE: this function does not set the idle thread's NEED_RESCHED
6935 * flag, to make booting more robust.
6936 */
6937 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6938 {
6939 struct rq *rq = cpu_rq(cpu);
6940 unsigned long flags;
6941
6942 spin_lock_irqsave(&rq->lock, flags);
6943
6944 __sched_fork(idle);
6945 idle->se.exec_start = sched_clock();
6946
6947 idle->prio = idle->normal_prio = MAX_PRIO;
6948 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6949 __set_task_cpu(idle, cpu);
6950
6951 rq->curr = rq->idle = idle;
6952 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6953 idle->oncpu = 1;
6954 #endif
6955 spin_unlock_irqrestore(&rq->lock, flags);
6956
6957 /* Set the preempt count _outside_ the spinlocks! */
6958 #if defined(CONFIG_PREEMPT)
6959 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6960 #else
6961 task_thread_info(idle)->preempt_count = 0;
6962 #endif
6963 /*
6964 * The idle tasks have their own, simple scheduling class:
6965 */
6966 idle->sched_class = &idle_sched_class;
6967 ftrace_graph_init_task(idle);
6968 }
6969
6970 /*
6971 * In a system that switches off the HZ timer nohz_cpu_mask
6972 * indicates which cpus entered this state. This is used
6973 * in the rcu update to wait only for active cpus. For system
6974 * which do not switch off the HZ timer nohz_cpu_mask should
6975 * always be CPU_BITS_NONE.
6976 */
6977 cpumask_var_t nohz_cpu_mask;
6978
6979 /*
6980 * Increase the granularity value when there are more CPUs,
6981 * because with more CPUs the 'effective latency' as visible
6982 * to users decreases. But the relationship is not linear,
6983 * so pick a second-best guess by going with the log2 of the
6984 * number of CPUs.
6985 *
6986 * This idea comes from the SD scheduler of Con Kolivas:
6987 */
6988 static inline void sched_init_granularity(void)
6989 {
6990 unsigned int factor = 1 + ilog2(num_online_cpus());
6991 const unsigned long limit = 200000000;
6992
6993 sysctl_sched_min_granularity *= factor;
6994 if (sysctl_sched_min_granularity > limit)
6995 sysctl_sched_min_granularity = limit;
6996
6997 sysctl_sched_latency *= factor;
6998 if (sysctl_sched_latency > limit)
6999 sysctl_sched_latency = limit;
7000
7001 sysctl_sched_wakeup_granularity *= factor;
7002
7003 sysctl_sched_shares_ratelimit *= factor;
7004 }
7005
7006 #ifdef CONFIG_SMP
7007 /*
7008 * This is how migration works:
7009 *
7010 * 1) we queue a struct migration_req structure in the source CPU's
7011 * runqueue and wake up that CPU's migration thread.
7012 * 2) we down() the locked semaphore => thread blocks.
7013 * 3) migration thread wakes up (implicitly it forces the migrated
7014 * thread off the CPU)
7015 * 4) it gets the migration request and checks whether the migrated
7016 * task is still in the wrong runqueue.
7017 * 5) if it's in the wrong runqueue then the migration thread removes
7018 * it and puts it into the right queue.
7019 * 6) migration thread up()s the semaphore.
7020 * 7) we wake up and the migration is done.
7021 */
7022
7023 /*
7024 * Change a given task's CPU affinity. Migrate the thread to a
7025 * proper CPU and schedule it away if the CPU it's executing on
7026 * is removed from the allowed bitmask.
7027 *
7028 * NOTE: the caller must have a valid reference to the task, the
7029 * task must not exit() & deallocate itself prematurely. The
7030 * call is not atomic; no spinlocks may be held.
7031 */
7032 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7033 {
7034 struct migration_req req;
7035 unsigned long flags;
7036 struct rq *rq;
7037 int ret = 0;
7038
7039 rq = task_rq_lock(p, &flags);
7040 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7041 ret = -EINVAL;
7042 goto out;
7043 }
7044
7045 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7046 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7047 ret = -EINVAL;
7048 goto out;
7049 }
7050
7051 if (p->sched_class->set_cpus_allowed)
7052 p->sched_class->set_cpus_allowed(p, new_mask);
7053 else {
7054 cpumask_copy(&p->cpus_allowed, new_mask);
7055 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7056 }
7057
7058 /* Can the task run on the task's current CPU? If so, we're done */
7059 if (cpumask_test_cpu(task_cpu(p), new_mask))
7060 goto out;
7061
7062 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7063 /* Need help from migration thread: drop lock and wait. */
7064 struct task_struct *mt = rq->migration_thread;
7065
7066 get_task_struct(mt);
7067 task_rq_unlock(rq, &flags);
7068 wake_up_process(rq->migration_thread);
7069 put_task_struct(mt);
7070 wait_for_completion(&req.done);
7071 tlb_migrate_finish(p->mm);
7072 return 0;
7073 }
7074 out:
7075 task_rq_unlock(rq, &flags);
7076
7077 return ret;
7078 }
7079 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7080
7081 /*
7082 * Move (not current) task off this cpu, onto dest cpu. We're doing
7083 * this because either it can't run here any more (set_cpus_allowed()
7084 * away from this CPU, or CPU going down), or because we're
7085 * attempting to rebalance this task on exec (sched_exec).
7086 *
7087 * So we race with normal scheduler movements, but that's OK, as long
7088 * as the task is no longer on this CPU.
7089 *
7090 * Returns non-zero if task was successfully migrated.
7091 */
7092 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7093 {
7094 struct rq *rq_dest, *rq_src;
7095 int ret = 0, on_rq;
7096
7097 if (unlikely(!cpu_active(dest_cpu)))
7098 return ret;
7099
7100 rq_src = cpu_rq(src_cpu);
7101 rq_dest = cpu_rq(dest_cpu);
7102
7103 double_rq_lock(rq_src, rq_dest);
7104 /* Already moved. */
7105 if (task_cpu(p) != src_cpu)
7106 goto done;
7107 /* Affinity changed (again). */
7108 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7109 goto fail;
7110
7111 on_rq = p->se.on_rq;
7112 if (on_rq)
7113 deactivate_task(rq_src, p, 0);
7114
7115 set_task_cpu(p, dest_cpu);
7116 if (on_rq) {
7117 activate_task(rq_dest, p, 0);
7118 check_preempt_curr(rq_dest, p, 0);
7119 }
7120 done:
7121 ret = 1;
7122 fail:
7123 double_rq_unlock(rq_src, rq_dest);
7124 return ret;
7125 }
7126
7127 #define RCU_MIGRATION_IDLE 0
7128 #define RCU_MIGRATION_NEED_QS 1
7129 #define RCU_MIGRATION_GOT_QS 2
7130 #define RCU_MIGRATION_MUST_SYNC 3
7131
7132 /*
7133 * migration_thread - this is a highprio system thread that performs
7134 * thread migration by bumping thread off CPU then 'pushing' onto
7135 * another runqueue.
7136 */
7137 static int migration_thread(void *data)
7138 {
7139 int badcpu;
7140 int cpu = (long)data;
7141 struct rq *rq;
7142
7143 rq = cpu_rq(cpu);
7144 BUG_ON(rq->migration_thread != current);
7145
7146 set_current_state(TASK_INTERRUPTIBLE);
7147 while (!kthread_should_stop()) {
7148 struct migration_req *req;
7149 struct list_head *head;
7150
7151 spin_lock_irq(&rq->lock);
7152
7153 if (cpu_is_offline(cpu)) {
7154 spin_unlock_irq(&rq->lock);
7155 break;
7156 }
7157
7158 if (rq->active_balance) {
7159 active_load_balance(rq, cpu);
7160 rq->active_balance = 0;
7161 }
7162
7163 head = &rq->migration_queue;
7164
7165 if (list_empty(head)) {
7166 spin_unlock_irq(&rq->lock);
7167 schedule();
7168 set_current_state(TASK_INTERRUPTIBLE);
7169 continue;
7170 }
7171 req = list_entry(head->next, struct migration_req, list);
7172 list_del_init(head->next);
7173
7174 if (req->task != NULL) {
7175 spin_unlock(&rq->lock);
7176 __migrate_task(req->task, cpu, req->dest_cpu);
7177 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7178 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7179 spin_unlock(&rq->lock);
7180 } else {
7181 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7182 spin_unlock(&rq->lock);
7183 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7184 }
7185 local_irq_enable();
7186
7187 complete(&req->done);
7188 }
7189 __set_current_state(TASK_RUNNING);
7190
7191 return 0;
7192 }
7193
7194 #ifdef CONFIG_HOTPLUG_CPU
7195
7196 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7197 {
7198 int ret;
7199
7200 local_irq_disable();
7201 ret = __migrate_task(p, src_cpu, dest_cpu);
7202 local_irq_enable();
7203 return ret;
7204 }
7205
7206 /*
7207 * Figure out where task on dead CPU should go, use force if necessary.
7208 */
7209 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7210 {
7211 int dest_cpu;
7212 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7213
7214 again:
7215 /* Look for allowed, online CPU in same node. */
7216 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7217 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7218 goto move;
7219
7220 /* Any allowed, online CPU? */
7221 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7222 if (dest_cpu < nr_cpu_ids)
7223 goto move;
7224
7225 /* No more Mr. Nice Guy. */
7226 if (dest_cpu >= nr_cpu_ids) {
7227 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7228 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7229
7230 /*
7231 * Don't tell them about moving exiting tasks or
7232 * kernel threads (both mm NULL), since they never
7233 * leave kernel.
7234 */
7235 if (p->mm && printk_ratelimit()) {
7236 printk(KERN_INFO "process %d (%s) no "
7237 "longer affine to cpu%d\n",
7238 task_pid_nr(p), p->comm, dead_cpu);
7239 }
7240 }
7241
7242 move:
7243 /* It can have affinity changed while we were choosing. */
7244 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7245 goto again;
7246 }
7247
7248 /*
7249 * While a dead CPU has no uninterruptible tasks queued at this point,
7250 * it might still have a nonzero ->nr_uninterruptible counter, because
7251 * for performance reasons the counter is not stricly tracking tasks to
7252 * their home CPUs. So we just add the counter to another CPU's counter,
7253 * to keep the global sum constant after CPU-down:
7254 */
7255 static void migrate_nr_uninterruptible(struct rq *rq_src)
7256 {
7257 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7258 unsigned long flags;
7259
7260 local_irq_save(flags);
7261 double_rq_lock(rq_src, rq_dest);
7262 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7263 rq_src->nr_uninterruptible = 0;
7264 double_rq_unlock(rq_src, rq_dest);
7265 local_irq_restore(flags);
7266 }
7267
7268 /* Run through task list and migrate tasks from the dead cpu. */
7269 static void migrate_live_tasks(int src_cpu)
7270 {
7271 struct task_struct *p, *t;
7272
7273 read_lock(&tasklist_lock);
7274
7275 do_each_thread(t, p) {
7276 if (p == current)
7277 continue;
7278
7279 if (task_cpu(p) == src_cpu)
7280 move_task_off_dead_cpu(src_cpu, p);
7281 } while_each_thread(t, p);
7282
7283 read_unlock(&tasklist_lock);
7284 }
7285
7286 /*
7287 * Schedules idle task to be the next runnable task on current CPU.
7288 * It does so by boosting its priority to highest possible.
7289 * Used by CPU offline code.
7290 */
7291 void sched_idle_next(void)
7292 {
7293 int this_cpu = smp_processor_id();
7294 struct rq *rq = cpu_rq(this_cpu);
7295 struct task_struct *p = rq->idle;
7296 unsigned long flags;
7297
7298 /* cpu has to be offline */
7299 BUG_ON(cpu_online(this_cpu));
7300
7301 /*
7302 * Strictly not necessary since rest of the CPUs are stopped by now
7303 * and interrupts disabled on the current cpu.
7304 */
7305 spin_lock_irqsave(&rq->lock, flags);
7306
7307 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7308
7309 update_rq_clock(rq);
7310 activate_task(rq, p, 0);
7311
7312 spin_unlock_irqrestore(&rq->lock, flags);
7313 }
7314
7315 /*
7316 * Ensures that the idle task is using init_mm right before its cpu goes
7317 * offline.
7318 */
7319 void idle_task_exit(void)
7320 {
7321 struct mm_struct *mm = current->active_mm;
7322
7323 BUG_ON(cpu_online(smp_processor_id()));
7324
7325 if (mm != &init_mm)
7326 switch_mm(mm, &init_mm, current);
7327 mmdrop(mm);
7328 }
7329
7330 /* called under rq->lock with disabled interrupts */
7331 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7332 {
7333 struct rq *rq = cpu_rq(dead_cpu);
7334
7335 /* Must be exiting, otherwise would be on tasklist. */
7336 BUG_ON(!p->exit_state);
7337
7338 /* Cannot have done final schedule yet: would have vanished. */
7339 BUG_ON(p->state == TASK_DEAD);
7340
7341 get_task_struct(p);
7342
7343 /*
7344 * Drop lock around migration; if someone else moves it,
7345 * that's OK. No task can be added to this CPU, so iteration is
7346 * fine.
7347 */
7348 spin_unlock_irq(&rq->lock);
7349 move_task_off_dead_cpu(dead_cpu, p);
7350 spin_lock_irq(&rq->lock);
7351
7352 put_task_struct(p);
7353 }
7354
7355 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7356 static void migrate_dead_tasks(unsigned int dead_cpu)
7357 {
7358 struct rq *rq = cpu_rq(dead_cpu);
7359 struct task_struct *next;
7360
7361 for ( ; ; ) {
7362 if (!rq->nr_running)
7363 break;
7364 update_rq_clock(rq);
7365 next = pick_next_task(rq);
7366 if (!next)
7367 break;
7368 next->sched_class->put_prev_task(rq, next);
7369 migrate_dead(dead_cpu, next);
7370
7371 }
7372 }
7373
7374 /*
7375 * remove the tasks which were accounted by rq from calc_load_tasks.
7376 */
7377 static void calc_global_load_remove(struct rq *rq)
7378 {
7379 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7380 rq->calc_load_active = 0;
7381 }
7382 #endif /* CONFIG_HOTPLUG_CPU */
7383
7384 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7385
7386 static struct ctl_table sd_ctl_dir[] = {
7387 {
7388 .procname = "sched_domain",
7389 .mode = 0555,
7390 },
7391 {0, },
7392 };
7393
7394 static struct ctl_table sd_ctl_root[] = {
7395 {
7396 .ctl_name = CTL_KERN,
7397 .procname = "kernel",
7398 .mode = 0555,
7399 .child = sd_ctl_dir,
7400 },
7401 {0, },
7402 };
7403
7404 static struct ctl_table *sd_alloc_ctl_entry(int n)
7405 {
7406 struct ctl_table *entry =
7407 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7408
7409 return entry;
7410 }
7411
7412 static void sd_free_ctl_entry(struct ctl_table **tablep)
7413 {
7414 struct ctl_table *entry;
7415
7416 /*
7417 * In the intermediate directories, both the child directory and
7418 * procname are dynamically allocated and could fail but the mode
7419 * will always be set. In the lowest directory the names are
7420 * static strings and all have proc handlers.
7421 */
7422 for (entry = *tablep; entry->mode; entry++) {
7423 if (entry->child)
7424 sd_free_ctl_entry(&entry->child);
7425 if (entry->proc_handler == NULL)
7426 kfree(entry->procname);
7427 }
7428
7429 kfree(*tablep);
7430 *tablep = NULL;
7431 }
7432
7433 static void
7434 set_table_entry(struct ctl_table *entry,
7435 const char *procname, void *data, int maxlen,
7436 mode_t mode, proc_handler *proc_handler)
7437 {
7438 entry->procname = procname;
7439 entry->data = data;
7440 entry->maxlen = maxlen;
7441 entry->mode = mode;
7442 entry->proc_handler = proc_handler;
7443 }
7444
7445 static struct ctl_table *
7446 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7447 {
7448 struct ctl_table *table = sd_alloc_ctl_entry(13);
7449
7450 if (table == NULL)
7451 return NULL;
7452
7453 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7454 sizeof(long), 0644, proc_doulongvec_minmax);
7455 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7456 sizeof(long), 0644, proc_doulongvec_minmax);
7457 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7466 sizeof(int), 0644, proc_dointvec_minmax);
7467 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7468 sizeof(int), 0644, proc_dointvec_minmax);
7469 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7470 sizeof(int), 0644, proc_dointvec_minmax);
7471 set_table_entry(&table[9], "cache_nice_tries",
7472 &sd->cache_nice_tries,
7473 sizeof(int), 0644, proc_dointvec_minmax);
7474 set_table_entry(&table[10], "flags", &sd->flags,
7475 sizeof(int), 0644, proc_dointvec_minmax);
7476 set_table_entry(&table[11], "name", sd->name,
7477 CORENAME_MAX_SIZE, 0444, proc_dostring);
7478 /* &table[12] is terminator */
7479
7480 return table;
7481 }
7482
7483 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7484 {
7485 struct ctl_table *entry, *table;
7486 struct sched_domain *sd;
7487 int domain_num = 0, i;
7488 char buf[32];
7489
7490 for_each_domain(cpu, sd)
7491 domain_num++;
7492 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7493 if (table == NULL)
7494 return NULL;
7495
7496 i = 0;
7497 for_each_domain(cpu, sd) {
7498 snprintf(buf, 32, "domain%d", i);
7499 entry->procname = kstrdup(buf, GFP_KERNEL);
7500 entry->mode = 0555;
7501 entry->child = sd_alloc_ctl_domain_table(sd);
7502 entry++;
7503 i++;
7504 }
7505 return table;
7506 }
7507
7508 static struct ctl_table_header *sd_sysctl_header;
7509 static void register_sched_domain_sysctl(void)
7510 {
7511 int i, cpu_num = num_online_cpus();
7512 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7513 char buf[32];
7514
7515 WARN_ON(sd_ctl_dir[0].child);
7516 sd_ctl_dir[0].child = entry;
7517
7518 if (entry == NULL)
7519 return;
7520
7521 for_each_online_cpu(i) {
7522 snprintf(buf, 32, "cpu%d", i);
7523 entry->procname = kstrdup(buf, GFP_KERNEL);
7524 entry->mode = 0555;
7525 entry->child = sd_alloc_ctl_cpu_table(i);
7526 entry++;
7527 }
7528
7529 WARN_ON(sd_sysctl_header);
7530 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7531 }
7532
7533 /* may be called multiple times per register */
7534 static void unregister_sched_domain_sysctl(void)
7535 {
7536 if (sd_sysctl_header)
7537 unregister_sysctl_table(sd_sysctl_header);
7538 sd_sysctl_header = NULL;
7539 if (sd_ctl_dir[0].child)
7540 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7541 }
7542 #else
7543 static void register_sched_domain_sysctl(void)
7544 {
7545 }
7546 static void unregister_sched_domain_sysctl(void)
7547 {
7548 }
7549 #endif
7550
7551 static void set_rq_online(struct rq *rq)
7552 {
7553 if (!rq->online) {
7554 const struct sched_class *class;
7555
7556 cpumask_set_cpu(rq->cpu, rq->rd->online);
7557 rq->online = 1;
7558
7559 for_each_class(class) {
7560 if (class->rq_online)
7561 class->rq_online(rq);
7562 }
7563 }
7564 }
7565
7566 static void set_rq_offline(struct rq *rq)
7567 {
7568 if (rq->online) {
7569 const struct sched_class *class;
7570
7571 for_each_class(class) {
7572 if (class->rq_offline)
7573 class->rq_offline(rq);
7574 }
7575
7576 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7577 rq->online = 0;
7578 }
7579 }
7580
7581 /*
7582 * migration_call - callback that gets triggered when a CPU is added.
7583 * Here we can start up the necessary migration thread for the new CPU.
7584 */
7585 static int __cpuinit
7586 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7587 {
7588 struct task_struct *p;
7589 int cpu = (long)hcpu;
7590 unsigned long flags;
7591 struct rq *rq;
7592
7593 switch (action) {
7594
7595 case CPU_UP_PREPARE:
7596 case CPU_UP_PREPARE_FROZEN:
7597 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7598 if (IS_ERR(p))
7599 return NOTIFY_BAD;
7600 kthread_bind(p, cpu);
7601 /* Must be high prio: stop_machine expects to yield to it. */
7602 rq = task_rq_lock(p, &flags);
7603 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7604 task_rq_unlock(rq, &flags);
7605 get_task_struct(p);
7606 cpu_rq(cpu)->migration_thread = p;
7607 rq->calc_load_update = calc_load_update;
7608 break;
7609
7610 case CPU_ONLINE:
7611 case CPU_ONLINE_FROZEN:
7612 /* Strictly unnecessary, as first user will wake it. */
7613 wake_up_process(cpu_rq(cpu)->migration_thread);
7614
7615 /* Update our root-domain */
7616 rq = cpu_rq(cpu);
7617 spin_lock_irqsave(&rq->lock, flags);
7618 if (rq->rd) {
7619 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7620
7621 set_rq_online(rq);
7622 }
7623 spin_unlock_irqrestore(&rq->lock, flags);
7624 break;
7625
7626 #ifdef CONFIG_HOTPLUG_CPU
7627 case CPU_UP_CANCELED:
7628 case CPU_UP_CANCELED_FROZEN:
7629 if (!cpu_rq(cpu)->migration_thread)
7630 break;
7631 /* Unbind it from offline cpu so it can run. Fall thru. */
7632 kthread_bind(cpu_rq(cpu)->migration_thread,
7633 cpumask_any(cpu_online_mask));
7634 kthread_stop(cpu_rq(cpu)->migration_thread);
7635 put_task_struct(cpu_rq(cpu)->migration_thread);
7636 cpu_rq(cpu)->migration_thread = NULL;
7637 break;
7638
7639 case CPU_DEAD:
7640 case CPU_DEAD_FROZEN:
7641 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7642 migrate_live_tasks(cpu);
7643 rq = cpu_rq(cpu);
7644 kthread_stop(rq->migration_thread);
7645 put_task_struct(rq->migration_thread);
7646 rq->migration_thread = NULL;
7647 /* Idle task back to normal (off runqueue, low prio) */
7648 spin_lock_irq(&rq->lock);
7649 update_rq_clock(rq);
7650 deactivate_task(rq, rq->idle, 0);
7651 rq->idle->static_prio = MAX_PRIO;
7652 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7653 rq->idle->sched_class = &idle_sched_class;
7654 migrate_dead_tasks(cpu);
7655 spin_unlock_irq(&rq->lock);
7656 cpuset_unlock();
7657 migrate_nr_uninterruptible(rq);
7658 BUG_ON(rq->nr_running != 0);
7659 calc_global_load_remove(rq);
7660 /*
7661 * No need to migrate the tasks: it was best-effort if
7662 * they didn't take sched_hotcpu_mutex. Just wake up
7663 * the requestors.
7664 */
7665 spin_lock_irq(&rq->lock);
7666 while (!list_empty(&rq->migration_queue)) {
7667 struct migration_req *req;
7668
7669 req = list_entry(rq->migration_queue.next,
7670 struct migration_req, list);
7671 list_del_init(&req->list);
7672 spin_unlock_irq(&rq->lock);
7673 complete(&req->done);
7674 spin_lock_irq(&rq->lock);
7675 }
7676 spin_unlock_irq(&rq->lock);
7677 break;
7678
7679 case CPU_DYING:
7680 case CPU_DYING_FROZEN:
7681 /* Update our root-domain */
7682 rq = cpu_rq(cpu);
7683 spin_lock_irqsave(&rq->lock, flags);
7684 if (rq->rd) {
7685 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7686 set_rq_offline(rq);
7687 }
7688 spin_unlock_irqrestore(&rq->lock, flags);
7689 break;
7690 #endif
7691 }
7692 return NOTIFY_OK;
7693 }
7694
7695 /*
7696 * Register at high priority so that task migration (migrate_all_tasks)
7697 * happens before everything else. This has to be lower priority than
7698 * the notifier in the perf_counter subsystem, though.
7699 */
7700 static struct notifier_block __cpuinitdata migration_notifier = {
7701 .notifier_call = migration_call,
7702 .priority = 10
7703 };
7704
7705 static int __init migration_init(void)
7706 {
7707 void *cpu = (void *)(long)smp_processor_id();
7708 int err;
7709
7710 /* Start one for the boot CPU: */
7711 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7712 BUG_ON(err == NOTIFY_BAD);
7713 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7714 register_cpu_notifier(&migration_notifier);
7715
7716 return 0;
7717 }
7718 early_initcall(migration_init);
7719 #endif
7720
7721 #ifdef CONFIG_SMP
7722
7723 #ifdef CONFIG_SCHED_DEBUG
7724
7725 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7726 struct cpumask *groupmask)
7727 {
7728 struct sched_group *group = sd->groups;
7729 char str[256];
7730
7731 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7732 cpumask_clear(groupmask);
7733
7734 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7735
7736 if (!(sd->flags & SD_LOAD_BALANCE)) {
7737 printk("does not load-balance\n");
7738 if (sd->parent)
7739 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7740 " has parent");
7741 return -1;
7742 }
7743
7744 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7745
7746 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7747 printk(KERN_ERR "ERROR: domain->span does not contain "
7748 "CPU%d\n", cpu);
7749 }
7750 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7751 printk(KERN_ERR "ERROR: domain->groups does not contain"
7752 " CPU%d\n", cpu);
7753 }
7754
7755 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7756 do {
7757 if (!group) {
7758 printk("\n");
7759 printk(KERN_ERR "ERROR: group is NULL\n");
7760 break;
7761 }
7762
7763 if (!group->cpu_power) {
7764 printk(KERN_CONT "\n");
7765 printk(KERN_ERR "ERROR: domain->cpu_power not "
7766 "set\n");
7767 break;
7768 }
7769
7770 if (!cpumask_weight(sched_group_cpus(group))) {
7771 printk(KERN_CONT "\n");
7772 printk(KERN_ERR "ERROR: empty group\n");
7773 break;
7774 }
7775
7776 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7777 printk(KERN_CONT "\n");
7778 printk(KERN_ERR "ERROR: repeated CPUs\n");
7779 break;
7780 }
7781
7782 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7783
7784 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7785
7786 printk(KERN_CONT " %s", str);
7787 if (group->cpu_power != SCHED_LOAD_SCALE) {
7788 printk(KERN_CONT " (cpu_power = %d)",
7789 group->cpu_power);
7790 }
7791
7792 group = group->next;
7793 } while (group != sd->groups);
7794 printk(KERN_CONT "\n");
7795
7796 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7797 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7798
7799 if (sd->parent &&
7800 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7801 printk(KERN_ERR "ERROR: parent span is not a superset "
7802 "of domain->span\n");
7803 return 0;
7804 }
7805
7806 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7807 {
7808 cpumask_var_t groupmask;
7809 int level = 0;
7810
7811 if (!sd) {
7812 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7813 return;
7814 }
7815
7816 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7817
7818 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7819 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7820 return;
7821 }
7822
7823 for (;;) {
7824 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7825 break;
7826 level++;
7827 sd = sd->parent;
7828 if (!sd)
7829 break;
7830 }
7831 free_cpumask_var(groupmask);
7832 }
7833 #else /* !CONFIG_SCHED_DEBUG */
7834 # define sched_domain_debug(sd, cpu) do { } while (0)
7835 #endif /* CONFIG_SCHED_DEBUG */
7836
7837 static int sd_degenerate(struct sched_domain *sd)
7838 {
7839 if (cpumask_weight(sched_domain_span(sd)) == 1)
7840 return 1;
7841
7842 /* Following flags need at least 2 groups */
7843 if (sd->flags & (SD_LOAD_BALANCE |
7844 SD_BALANCE_NEWIDLE |
7845 SD_BALANCE_FORK |
7846 SD_BALANCE_EXEC |
7847 SD_SHARE_CPUPOWER |
7848 SD_SHARE_PKG_RESOURCES)) {
7849 if (sd->groups != sd->groups->next)
7850 return 0;
7851 }
7852
7853 /* Following flags don't use groups */
7854 if (sd->flags & (SD_WAKE_IDLE |
7855 SD_WAKE_AFFINE |
7856 SD_WAKE_BALANCE))
7857 return 0;
7858
7859 return 1;
7860 }
7861
7862 static int
7863 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7864 {
7865 unsigned long cflags = sd->flags, pflags = parent->flags;
7866
7867 if (sd_degenerate(parent))
7868 return 1;
7869
7870 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7871 return 0;
7872
7873 /* Does parent contain flags not in child? */
7874 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7875 if (cflags & SD_WAKE_AFFINE)
7876 pflags &= ~SD_WAKE_BALANCE;
7877 /* Flags needing groups don't count if only 1 group in parent */
7878 if (parent->groups == parent->groups->next) {
7879 pflags &= ~(SD_LOAD_BALANCE |
7880 SD_BALANCE_NEWIDLE |
7881 SD_BALANCE_FORK |
7882 SD_BALANCE_EXEC |
7883 SD_SHARE_CPUPOWER |
7884 SD_SHARE_PKG_RESOURCES);
7885 if (nr_node_ids == 1)
7886 pflags &= ~SD_SERIALIZE;
7887 }
7888 if (~cflags & pflags)
7889 return 0;
7890
7891 return 1;
7892 }
7893
7894 static void free_rootdomain(struct root_domain *rd)
7895 {
7896 cpupri_cleanup(&rd->cpupri);
7897
7898 free_cpumask_var(rd->rto_mask);
7899 free_cpumask_var(rd->online);
7900 free_cpumask_var(rd->span);
7901 kfree(rd);
7902 }
7903
7904 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7905 {
7906 struct root_domain *old_rd = NULL;
7907 unsigned long flags;
7908
7909 spin_lock_irqsave(&rq->lock, flags);
7910
7911 if (rq->rd) {
7912 old_rd = rq->rd;
7913
7914 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7915 set_rq_offline(rq);
7916
7917 cpumask_clear_cpu(rq->cpu, old_rd->span);
7918
7919 /*
7920 * If we dont want to free the old_rt yet then
7921 * set old_rd to NULL to skip the freeing later
7922 * in this function:
7923 */
7924 if (!atomic_dec_and_test(&old_rd->refcount))
7925 old_rd = NULL;
7926 }
7927
7928 atomic_inc(&rd->refcount);
7929 rq->rd = rd;
7930
7931 cpumask_set_cpu(rq->cpu, rd->span);
7932 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7933 set_rq_online(rq);
7934
7935 spin_unlock_irqrestore(&rq->lock, flags);
7936
7937 if (old_rd)
7938 free_rootdomain(old_rd);
7939 }
7940
7941 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7942 {
7943 gfp_t gfp = GFP_KERNEL;
7944
7945 memset(rd, 0, sizeof(*rd));
7946
7947 if (bootmem)
7948 gfp = GFP_NOWAIT;
7949
7950 if (!alloc_cpumask_var(&rd->span, gfp))
7951 goto out;
7952 if (!alloc_cpumask_var(&rd->online, gfp))
7953 goto free_span;
7954 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7955 goto free_online;
7956
7957 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7958 goto free_rto_mask;
7959 return 0;
7960
7961 free_rto_mask:
7962 free_cpumask_var(rd->rto_mask);
7963 free_online:
7964 free_cpumask_var(rd->online);
7965 free_span:
7966 free_cpumask_var(rd->span);
7967 out:
7968 return -ENOMEM;
7969 }
7970
7971 static void init_defrootdomain(void)
7972 {
7973 init_rootdomain(&def_root_domain, true);
7974
7975 atomic_set(&def_root_domain.refcount, 1);
7976 }
7977
7978 static struct root_domain *alloc_rootdomain(void)
7979 {
7980 struct root_domain *rd;
7981
7982 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7983 if (!rd)
7984 return NULL;
7985
7986 if (init_rootdomain(rd, false) != 0) {
7987 kfree(rd);
7988 return NULL;
7989 }
7990
7991 return rd;
7992 }
7993
7994 /*
7995 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7996 * hold the hotplug lock.
7997 */
7998 static void
7999 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8000 {
8001 struct rq *rq = cpu_rq(cpu);
8002 struct sched_domain *tmp;
8003
8004 /* Remove the sched domains which do not contribute to scheduling. */
8005 for (tmp = sd; tmp; ) {
8006 struct sched_domain *parent = tmp->parent;
8007 if (!parent)
8008 break;
8009
8010 if (sd_parent_degenerate(tmp, parent)) {
8011 tmp->parent = parent->parent;
8012 if (parent->parent)
8013 parent->parent->child = tmp;
8014 } else
8015 tmp = tmp->parent;
8016 }
8017
8018 if (sd && sd_degenerate(sd)) {
8019 sd = sd->parent;
8020 if (sd)
8021 sd->child = NULL;
8022 }
8023
8024 sched_domain_debug(sd, cpu);
8025
8026 rq_attach_root(rq, rd);
8027 rcu_assign_pointer(rq->sd, sd);
8028 }
8029
8030 /* cpus with isolated domains */
8031 static cpumask_var_t cpu_isolated_map;
8032
8033 /* Setup the mask of cpus configured for isolated domains */
8034 static int __init isolated_cpu_setup(char *str)
8035 {
8036 cpulist_parse(str, cpu_isolated_map);
8037 return 1;
8038 }
8039
8040 __setup("isolcpus=", isolated_cpu_setup);
8041
8042 /*
8043 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8044 * to a function which identifies what group(along with sched group) a CPU
8045 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8046 * (due to the fact that we keep track of groups covered with a struct cpumask).
8047 *
8048 * init_sched_build_groups will build a circular linked list of the groups
8049 * covered by the given span, and will set each group's ->cpumask correctly,
8050 * and ->cpu_power to 0.
8051 */
8052 static void
8053 init_sched_build_groups(const struct cpumask *span,
8054 const struct cpumask *cpu_map,
8055 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8056 struct sched_group **sg,
8057 struct cpumask *tmpmask),
8058 struct cpumask *covered, struct cpumask *tmpmask)
8059 {
8060 struct sched_group *first = NULL, *last = NULL;
8061 int i;
8062
8063 cpumask_clear(covered);
8064
8065 for_each_cpu(i, span) {
8066 struct sched_group *sg;
8067 int group = group_fn(i, cpu_map, &sg, tmpmask);
8068 int j;
8069
8070 if (cpumask_test_cpu(i, covered))
8071 continue;
8072
8073 cpumask_clear(sched_group_cpus(sg));
8074 sg->cpu_power = 0;
8075
8076 for_each_cpu(j, span) {
8077 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8078 continue;
8079
8080 cpumask_set_cpu(j, covered);
8081 cpumask_set_cpu(j, sched_group_cpus(sg));
8082 }
8083 if (!first)
8084 first = sg;
8085 if (last)
8086 last->next = sg;
8087 last = sg;
8088 }
8089 last->next = first;
8090 }
8091
8092 #define SD_NODES_PER_DOMAIN 16
8093
8094 #ifdef CONFIG_NUMA
8095
8096 /**
8097 * find_next_best_node - find the next node to include in a sched_domain
8098 * @node: node whose sched_domain we're building
8099 * @used_nodes: nodes already in the sched_domain
8100 *
8101 * Find the next node to include in a given scheduling domain. Simply
8102 * finds the closest node not already in the @used_nodes map.
8103 *
8104 * Should use nodemask_t.
8105 */
8106 static int find_next_best_node(int node, nodemask_t *used_nodes)
8107 {
8108 int i, n, val, min_val, best_node = 0;
8109
8110 min_val = INT_MAX;
8111
8112 for (i = 0; i < nr_node_ids; i++) {
8113 /* Start at @node */
8114 n = (node + i) % nr_node_ids;
8115
8116 if (!nr_cpus_node(n))
8117 continue;
8118
8119 /* Skip already used nodes */
8120 if (node_isset(n, *used_nodes))
8121 continue;
8122
8123 /* Simple min distance search */
8124 val = node_distance(node, n);
8125
8126 if (val < min_val) {
8127 min_val = val;
8128 best_node = n;
8129 }
8130 }
8131
8132 node_set(best_node, *used_nodes);
8133 return best_node;
8134 }
8135
8136 /**
8137 * sched_domain_node_span - get a cpumask for a node's sched_domain
8138 * @node: node whose cpumask we're constructing
8139 * @span: resulting cpumask
8140 *
8141 * Given a node, construct a good cpumask for its sched_domain to span. It
8142 * should be one that prevents unnecessary balancing, but also spreads tasks
8143 * out optimally.
8144 */
8145 static void sched_domain_node_span(int node, struct cpumask *span)
8146 {
8147 nodemask_t used_nodes;
8148 int i;
8149
8150 cpumask_clear(span);
8151 nodes_clear(used_nodes);
8152
8153 cpumask_or(span, span, cpumask_of_node(node));
8154 node_set(node, used_nodes);
8155
8156 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8157 int next_node = find_next_best_node(node, &used_nodes);
8158
8159 cpumask_or(span, span, cpumask_of_node(next_node));
8160 }
8161 }
8162 #endif /* CONFIG_NUMA */
8163
8164 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8165
8166 /*
8167 * The cpus mask in sched_group and sched_domain hangs off the end.
8168 *
8169 * ( See the the comments in include/linux/sched.h:struct sched_group
8170 * and struct sched_domain. )
8171 */
8172 struct static_sched_group {
8173 struct sched_group sg;
8174 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8175 };
8176
8177 struct static_sched_domain {
8178 struct sched_domain sd;
8179 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8180 };
8181
8182 struct s_data {
8183 #ifdef CONFIG_NUMA
8184 int sd_allnodes;
8185 cpumask_var_t domainspan;
8186 cpumask_var_t covered;
8187 cpumask_var_t notcovered;
8188 #endif
8189 cpumask_var_t nodemask;
8190 cpumask_var_t this_sibling_map;
8191 cpumask_var_t this_core_map;
8192 cpumask_var_t send_covered;
8193 cpumask_var_t tmpmask;
8194 struct sched_group **sched_group_nodes;
8195 struct root_domain *rd;
8196 };
8197
8198 enum s_alloc {
8199 sa_sched_groups = 0,
8200 sa_rootdomain,
8201 sa_tmpmask,
8202 sa_send_covered,
8203 sa_this_core_map,
8204 sa_this_sibling_map,
8205 sa_nodemask,
8206 sa_sched_group_nodes,
8207 #ifdef CONFIG_NUMA
8208 sa_notcovered,
8209 sa_covered,
8210 sa_domainspan,
8211 #endif
8212 sa_none,
8213 };
8214
8215 /*
8216 * SMT sched-domains:
8217 */
8218 #ifdef CONFIG_SCHED_SMT
8219 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8220 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8221
8222 static int
8223 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8224 struct sched_group **sg, struct cpumask *unused)
8225 {
8226 if (sg)
8227 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8228 return cpu;
8229 }
8230 #endif /* CONFIG_SCHED_SMT */
8231
8232 /*
8233 * multi-core sched-domains:
8234 */
8235 #ifdef CONFIG_SCHED_MC
8236 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8237 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8238 #endif /* CONFIG_SCHED_MC */
8239
8240 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8241 static int
8242 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8243 struct sched_group **sg, struct cpumask *mask)
8244 {
8245 int group;
8246
8247 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8248 group = cpumask_first(mask);
8249 if (sg)
8250 *sg = &per_cpu(sched_group_core, group).sg;
8251 return group;
8252 }
8253 #elif defined(CONFIG_SCHED_MC)
8254 static int
8255 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8256 struct sched_group **sg, struct cpumask *unused)
8257 {
8258 if (sg)
8259 *sg = &per_cpu(sched_group_core, cpu).sg;
8260 return cpu;
8261 }
8262 #endif
8263
8264 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8265 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8266
8267 static int
8268 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8269 struct sched_group **sg, struct cpumask *mask)
8270 {
8271 int group;
8272 #ifdef CONFIG_SCHED_MC
8273 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8274 group = cpumask_first(mask);
8275 #elif defined(CONFIG_SCHED_SMT)
8276 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8277 group = cpumask_first(mask);
8278 #else
8279 group = cpu;
8280 #endif
8281 if (sg)
8282 *sg = &per_cpu(sched_group_phys, group).sg;
8283 return group;
8284 }
8285
8286 #ifdef CONFIG_NUMA
8287 /*
8288 * The init_sched_build_groups can't handle what we want to do with node
8289 * groups, so roll our own. Now each node has its own list of groups which
8290 * gets dynamically allocated.
8291 */
8292 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8293 static struct sched_group ***sched_group_nodes_bycpu;
8294
8295 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8296 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8297
8298 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8299 struct sched_group **sg,
8300 struct cpumask *nodemask)
8301 {
8302 int group;
8303
8304 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8305 group = cpumask_first(nodemask);
8306
8307 if (sg)
8308 *sg = &per_cpu(sched_group_allnodes, group).sg;
8309 return group;
8310 }
8311
8312 static void init_numa_sched_groups_power(struct sched_group *group_head)
8313 {
8314 struct sched_group *sg = group_head;
8315 int j;
8316
8317 if (!sg)
8318 return;
8319 do {
8320 for_each_cpu(j, sched_group_cpus(sg)) {
8321 struct sched_domain *sd;
8322
8323 sd = &per_cpu(phys_domains, j).sd;
8324 if (j != group_first_cpu(sd->groups)) {
8325 /*
8326 * Only add "power" once for each
8327 * physical package.
8328 */
8329 continue;
8330 }
8331
8332 sg->cpu_power += sd->groups->cpu_power;
8333 }
8334 sg = sg->next;
8335 } while (sg != group_head);
8336 }
8337
8338 static int build_numa_sched_groups(struct s_data *d,
8339 const struct cpumask *cpu_map, int num)
8340 {
8341 struct sched_domain *sd;
8342 struct sched_group *sg, *prev;
8343 int n, j;
8344
8345 cpumask_clear(d->covered);
8346 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8347 if (cpumask_empty(d->nodemask)) {
8348 d->sched_group_nodes[num] = NULL;
8349 goto out;
8350 }
8351
8352 sched_domain_node_span(num, d->domainspan);
8353 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8354
8355 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8356 GFP_KERNEL, num);
8357 if (!sg) {
8358 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8359 num);
8360 return -ENOMEM;
8361 }
8362 d->sched_group_nodes[num] = sg;
8363
8364 for_each_cpu(j, d->nodemask) {
8365 sd = &per_cpu(node_domains, j).sd;
8366 sd->groups = sg;
8367 }
8368
8369 sg->cpu_power = 0;
8370 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8371 sg->next = sg;
8372 cpumask_or(d->covered, d->covered, d->nodemask);
8373
8374 prev = sg;
8375 for (j = 0; j < nr_node_ids; j++) {
8376 n = (num + j) % nr_node_ids;
8377 cpumask_complement(d->notcovered, d->covered);
8378 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8379 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8380 if (cpumask_empty(d->tmpmask))
8381 break;
8382 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8383 if (cpumask_empty(d->tmpmask))
8384 continue;
8385 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8386 GFP_KERNEL, num);
8387 if (!sg) {
8388 printk(KERN_WARNING
8389 "Can not alloc domain group for node %d\n", j);
8390 return -ENOMEM;
8391 }
8392 sg->cpu_power = 0;
8393 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8394 sg->next = prev->next;
8395 cpumask_or(d->covered, d->covered, d->tmpmask);
8396 prev->next = sg;
8397 prev = sg;
8398 }
8399 out:
8400 return 0;
8401 }
8402 #endif /* CONFIG_NUMA */
8403
8404 #ifdef CONFIG_NUMA
8405 /* Free memory allocated for various sched_group structures */
8406 static void free_sched_groups(const struct cpumask *cpu_map,
8407 struct cpumask *nodemask)
8408 {
8409 int cpu, i;
8410
8411 for_each_cpu(cpu, cpu_map) {
8412 struct sched_group **sched_group_nodes
8413 = sched_group_nodes_bycpu[cpu];
8414
8415 if (!sched_group_nodes)
8416 continue;
8417
8418 for (i = 0; i < nr_node_ids; i++) {
8419 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8420
8421 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8422 if (cpumask_empty(nodemask))
8423 continue;
8424
8425 if (sg == NULL)
8426 continue;
8427 sg = sg->next;
8428 next_sg:
8429 oldsg = sg;
8430 sg = sg->next;
8431 kfree(oldsg);
8432 if (oldsg != sched_group_nodes[i])
8433 goto next_sg;
8434 }
8435 kfree(sched_group_nodes);
8436 sched_group_nodes_bycpu[cpu] = NULL;
8437 }
8438 }
8439 #else /* !CONFIG_NUMA */
8440 static void free_sched_groups(const struct cpumask *cpu_map,
8441 struct cpumask *nodemask)
8442 {
8443 }
8444 #endif /* CONFIG_NUMA */
8445
8446 /*
8447 * Initialize sched groups cpu_power.
8448 *
8449 * cpu_power indicates the capacity of sched group, which is used while
8450 * distributing the load between different sched groups in a sched domain.
8451 * Typically cpu_power for all the groups in a sched domain will be same unless
8452 * there are asymmetries in the topology. If there are asymmetries, group
8453 * having more cpu_power will pickup more load compared to the group having
8454 * less cpu_power.
8455 */
8456 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8457 {
8458 struct sched_domain *child;
8459 struct sched_group *group;
8460 long power;
8461 int weight;
8462
8463 WARN_ON(!sd || !sd->groups);
8464
8465 if (cpu != group_first_cpu(sd->groups))
8466 return;
8467
8468 child = sd->child;
8469
8470 sd->groups->cpu_power = 0;
8471
8472 if (!child) {
8473 power = SCHED_LOAD_SCALE;
8474 weight = cpumask_weight(sched_domain_span(sd));
8475 /*
8476 * SMT siblings share the power of a single core.
8477 * Usually multiple threads get a better yield out of
8478 * that one core than a single thread would have,
8479 * reflect that in sd->smt_gain.
8480 */
8481 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8482 power *= sd->smt_gain;
8483 power /= weight;
8484 power >>= SCHED_LOAD_SHIFT;
8485 }
8486 sd->groups->cpu_power += power;
8487 return;
8488 }
8489
8490 /*
8491 * Add cpu_power of each child group to this groups cpu_power.
8492 */
8493 group = child->groups;
8494 do {
8495 sd->groups->cpu_power += group->cpu_power;
8496 group = group->next;
8497 } while (group != child->groups);
8498 }
8499
8500 /*
8501 * Initializers for schedule domains
8502 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8503 */
8504
8505 #ifdef CONFIG_SCHED_DEBUG
8506 # define SD_INIT_NAME(sd, type) sd->name = #type
8507 #else
8508 # define SD_INIT_NAME(sd, type) do { } while (0)
8509 #endif
8510
8511 #define SD_INIT(sd, type) sd_init_##type(sd)
8512
8513 #define SD_INIT_FUNC(type) \
8514 static noinline void sd_init_##type(struct sched_domain *sd) \
8515 { \
8516 memset(sd, 0, sizeof(*sd)); \
8517 *sd = SD_##type##_INIT; \
8518 sd->level = SD_LV_##type; \
8519 SD_INIT_NAME(sd, type); \
8520 }
8521
8522 SD_INIT_FUNC(CPU)
8523 #ifdef CONFIG_NUMA
8524 SD_INIT_FUNC(ALLNODES)
8525 SD_INIT_FUNC(NODE)
8526 #endif
8527 #ifdef CONFIG_SCHED_SMT
8528 SD_INIT_FUNC(SIBLING)
8529 #endif
8530 #ifdef CONFIG_SCHED_MC
8531 SD_INIT_FUNC(MC)
8532 #endif
8533
8534 static int default_relax_domain_level = -1;
8535
8536 static int __init setup_relax_domain_level(char *str)
8537 {
8538 unsigned long val;
8539
8540 val = simple_strtoul(str, NULL, 0);
8541 if (val < SD_LV_MAX)
8542 default_relax_domain_level = val;
8543
8544 return 1;
8545 }
8546 __setup("relax_domain_level=", setup_relax_domain_level);
8547
8548 static void set_domain_attribute(struct sched_domain *sd,
8549 struct sched_domain_attr *attr)
8550 {
8551 int request;
8552
8553 if (!attr || attr->relax_domain_level < 0) {
8554 if (default_relax_domain_level < 0)
8555 return;
8556 else
8557 request = default_relax_domain_level;
8558 } else
8559 request = attr->relax_domain_level;
8560 if (request < sd->level) {
8561 /* turn off idle balance on this domain */
8562 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8563 } else {
8564 /* turn on idle balance on this domain */
8565 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8566 }
8567 }
8568
8569 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8570 const struct cpumask *cpu_map)
8571 {
8572 switch (what) {
8573 case sa_sched_groups:
8574 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8575 d->sched_group_nodes = NULL;
8576 case sa_rootdomain:
8577 free_rootdomain(d->rd); /* fall through */
8578 case sa_tmpmask:
8579 free_cpumask_var(d->tmpmask); /* fall through */
8580 case sa_send_covered:
8581 free_cpumask_var(d->send_covered); /* fall through */
8582 case sa_this_core_map:
8583 free_cpumask_var(d->this_core_map); /* fall through */
8584 case sa_this_sibling_map:
8585 free_cpumask_var(d->this_sibling_map); /* fall through */
8586 case sa_nodemask:
8587 free_cpumask_var(d->nodemask); /* fall through */
8588 case sa_sched_group_nodes:
8589 #ifdef CONFIG_NUMA
8590 kfree(d->sched_group_nodes); /* fall through */
8591 case sa_notcovered:
8592 free_cpumask_var(d->notcovered); /* fall through */
8593 case sa_covered:
8594 free_cpumask_var(d->covered); /* fall through */
8595 case sa_domainspan:
8596 free_cpumask_var(d->domainspan); /* fall through */
8597 #endif
8598 case sa_none:
8599 break;
8600 }
8601 }
8602
8603 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8604 const struct cpumask *cpu_map)
8605 {
8606 #ifdef CONFIG_NUMA
8607 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8608 return sa_none;
8609 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8610 return sa_domainspan;
8611 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8612 return sa_covered;
8613 /* Allocate the per-node list of sched groups */
8614 d->sched_group_nodes = kcalloc(nr_node_ids,
8615 sizeof(struct sched_group *), GFP_KERNEL);
8616 if (!d->sched_group_nodes) {
8617 printk(KERN_WARNING "Can not alloc sched group node list\n");
8618 return sa_notcovered;
8619 }
8620 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8621 #endif
8622 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8623 return sa_sched_group_nodes;
8624 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8625 return sa_nodemask;
8626 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8627 return sa_this_sibling_map;
8628 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8629 return sa_this_core_map;
8630 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8631 return sa_send_covered;
8632 d->rd = alloc_rootdomain();
8633 if (!d->rd) {
8634 printk(KERN_WARNING "Cannot alloc root domain\n");
8635 return sa_tmpmask;
8636 }
8637 return sa_rootdomain;
8638 }
8639
8640 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8641 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8642 {
8643 struct sched_domain *sd = NULL;
8644 #ifdef CONFIG_NUMA
8645 struct sched_domain *parent;
8646
8647 d->sd_allnodes = 0;
8648 if (cpumask_weight(cpu_map) >
8649 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8650 sd = &per_cpu(allnodes_domains, i).sd;
8651 SD_INIT(sd, ALLNODES);
8652 set_domain_attribute(sd, attr);
8653 cpumask_copy(sched_domain_span(sd), cpu_map);
8654 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8655 d->sd_allnodes = 1;
8656 }
8657 parent = sd;
8658
8659 sd = &per_cpu(node_domains, i).sd;
8660 SD_INIT(sd, NODE);
8661 set_domain_attribute(sd, attr);
8662 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8663 sd->parent = parent;
8664 if (parent)
8665 parent->child = sd;
8666 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8667 #endif
8668 return sd;
8669 }
8670
8671 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8672 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8673 struct sched_domain *parent, int i)
8674 {
8675 struct sched_domain *sd;
8676 sd = &per_cpu(phys_domains, i).sd;
8677 SD_INIT(sd, CPU);
8678 set_domain_attribute(sd, attr);
8679 cpumask_copy(sched_domain_span(sd), d->nodemask);
8680 sd->parent = parent;
8681 if (parent)
8682 parent->child = sd;
8683 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8684 return sd;
8685 }
8686
8687 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8688 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8689 struct sched_domain *parent, int i)
8690 {
8691 struct sched_domain *sd = parent;
8692 #ifdef CONFIG_SCHED_MC
8693 sd = &per_cpu(core_domains, i).sd;
8694 SD_INIT(sd, MC);
8695 set_domain_attribute(sd, attr);
8696 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8697 sd->parent = parent;
8698 parent->child = sd;
8699 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8700 #endif
8701 return sd;
8702 }
8703
8704 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8705 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8706 struct sched_domain *parent, int i)
8707 {
8708 struct sched_domain *sd = parent;
8709 #ifdef CONFIG_SCHED_SMT
8710 sd = &per_cpu(cpu_domains, i).sd;
8711 SD_INIT(sd, SIBLING);
8712 set_domain_attribute(sd, attr);
8713 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8714 sd->parent = parent;
8715 parent->child = sd;
8716 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8717 #endif
8718 return sd;
8719 }
8720
8721 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8722 const struct cpumask *cpu_map, int cpu)
8723 {
8724 switch (l) {
8725 #ifdef CONFIG_SCHED_SMT
8726 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8727 cpumask_and(d->this_sibling_map, cpu_map,
8728 topology_thread_cpumask(cpu));
8729 if (cpu == cpumask_first(d->this_sibling_map))
8730 init_sched_build_groups(d->this_sibling_map, cpu_map,
8731 &cpu_to_cpu_group,
8732 d->send_covered, d->tmpmask);
8733 break;
8734 #endif
8735 #ifdef CONFIG_SCHED_MC
8736 case SD_LV_MC: /* set up multi-core groups */
8737 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8738 if (cpu == cpumask_first(d->this_core_map))
8739 init_sched_build_groups(d->this_core_map, cpu_map,
8740 &cpu_to_core_group,
8741 d->send_covered, d->tmpmask);
8742 break;
8743 #endif
8744 case SD_LV_CPU: /* set up physical groups */
8745 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8746 if (!cpumask_empty(d->nodemask))
8747 init_sched_build_groups(d->nodemask, cpu_map,
8748 &cpu_to_phys_group,
8749 d->send_covered, d->tmpmask);
8750 break;
8751 #ifdef CONFIG_NUMA
8752 case SD_LV_ALLNODES:
8753 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8754 d->send_covered, d->tmpmask);
8755 break;
8756 #endif
8757 default:
8758 break;
8759 }
8760 }
8761
8762 /*
8763 * Build sched domains for a given set of cpus and attach the sched domains
8764 * to the individual cpus
8765 */
8766 static int __build_sched_domains(const struct cpumask *cpu_map,
8767 struct sched_domain_attr *attr)
8768 {
8769 enum s_alloc alloc_state = sa_none;
8770 struct s_data d;
8771 struct sched_domain *sd;
8772 int i;
8773 #ifdef CONFIG_NUMA
8774 d.sd_allnodes = 0;
8775 #endif
8776
8777 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8778 if (alloc_state != sa_rootdomain)
8779 goto error;
8780 alloc_state = sa_sched_groups;
8781
8782 /*
8783 * Set up domains for cpus specified by the cpu_map.
8784 */
8785 for_each_cpu(i, cpu_map) {
8786 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8787 cpu_map);
8788
8789 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8790 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8791 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8792 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8793 }
8794
8795 for_each_cpu(i, cpu_map) {
8796 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8797 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8798 }
8799
8800 /* Set up physical groups */
8801 for (i = 0; i < nr_node_ids; i++)
8802 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8803
8804 #ifdef CONFIG_NUMA
8805 /* Set up node groups */
8806 if (d.sd_allnodes)
8807 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8808
8809 for (i = 0; i < nr_node_ids; i++)
8810 if (build_numa_sched_groups(&d, cpu_map, i))
8811 goto error;
8812 #endif
8813
8814 /* Calculate CPU power for physical packages and nodes */
8815 #ifdef CONFIG_SCHED_SMT
8816 for_each_cpu(i, cpu_map) {
8817 sd = &per_cpu(cpu_domains, i).sd;
8818 init_sched_groups_power(i, sd);
8819 }
8820 #endif
8821 #ifdef CONFIG_SCHED_MC
8822 for_each_cpu(i, cpu_map) {
8823 sd = &per_cpu(core_domains, i).sd;
8824 init_sched_groups_power(i, sd);
8825 }
8826 #endif
8827
8828 for_each_cpu(i, cpu_map) {
8829 sd = &per_cpu(phys_domains, i).sd;
8830 init_sched_groups_power(i, sd);
8831 }
8832
8833 #ifdef CONFIG_NUMA
8834 for (i = 0; i < nr_node_ids; i++)
8835 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8836
8837 if (d.sd_allnodes) {
8838 struct sched_group *sg;
8839
8840 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8841 d.tmpmask);
8842 init_numa_sched_groups_power(sg);
8843 }
8844 #endif
8845
8846 /* Attach the domains */
8847 for_each_cpu(i, cpu_map) {
8848 #ifdef CONFIG_SCHED_SMT
8849 sd = &per_cpu(cpu_domains, i).sd;
8850 #elif defined(CONFIG_SCHED_MC)
8851 sd = &per_cpu(core_domains, i).sd;
8852 #else
8853 sd = &per_cpu(phys_domains, i).sd;
8854 #endif
8855 cpu_attach_domain(sd, d.rd, i);
8856 }
8857
8858 d.sched_group_nodes = NULL; /* don't free this we still need it */
8859 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8860 return 0;
8861
8862 error:
8863 __free_domain_allocs(&d, alloc_state, cpu_map);
8864 return -ENOMEM;
8865 }
8866
8867 static int build_sched_domains(const struct cpumask *cpu_map)
8868 {
8869 return __build_sched_domains(cpu_map, NULL);
8870 }
8871
8872 static struct cpumask *doms_cur; /* current sched domains */
8873 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8874 static struct sched_domain_attr *dattr_cur;
8875 /* attribues of custom domains in 'doms_cur' */
8876
8877 /*
8878 * Special case: If a kmalloc of a doms_cur partition (array of
8879 * cpumask) fails, then fallback to a single sched domain,
8880 * as determined by the single cpumask fallback_doms.
8881 */
8882 static cpumask_var_t fallback_doms;
8883
8884 /*
8885 * arch_update_cpu_topology lets virtualized architectures update the
8886 * cpu core maps. It is supposed to return 1 if the topology changed
8887 * or 0 if it stayed the same.
8888 */
8889 int __attribute__((weak)) arch_update_cpu_topology(void)
8890 {
8891 return 0;
8892 }
8893
8894 /*
8895 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8896 * For now this just excludes isolated cpus, but could be used to
8897 * exclude other special cases in the future.
8898 */
8899 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8900 {
8901 int err;
8902
8903 arch_update_cpu_topology();
8904 ndoms_cur = 1;
8905 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8906 if (!doms_cur)
8907 doms_cur = fallback_doms;
8908 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8909 dattr_cur = NULL;
8910 err = build_sched_domains(doms_cur);
8911 register_sched_domain_sysctl();
8912
8913 return err;
8914 }
8915
8916 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8917 struct cpumask *tmpmask)
8918 {
8919 free_sched_groups(cpu_map, tmpmask);
8920 }
8921
8922 /*
8923 * Detach sched domains from a group of cpus specified in cpu_map
8924 * These cpus will now be attached to the NULL domain
8925 */
8926 static void detach_destroy_domains(const struct cpumask *cpu_map)
8927 {
8928 /* Save because hotplug lock held. */
8929 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8930 int i;
8931
8932 for_each_cpu(i, cpu_map)
8933 cpu_attach_domain(NULL, &def_root_domain, i);
8934 synchronize_sched();
8935 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8936 }
8937
8938 /* handle null as "default" */
8939 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8940 struct sched_domain_attr *new, int idx_new)
8941 {
8942 struct sched_domain_attr tmp;
8943
8944 /* fast path */
8945 if (!new && !cur)
8946 return 1;
8947
8948 tmp = SD_ATTR_INIT;
8949 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8950 new ? (new + idx_new) : &tmp,
8951 sizeof(struct sched_domain_attr));
8952 }
8953
8954 /*
8955 * Partition sched domains as specified by the 'ndoms_new'
8956 * cpumasks in the array doms_new[] of cpumasks. This compares
8957 * doms_new[] to the current sched domain partitioning, doms_cur[].
8958 * It destroys each deleted domain and builds each new domain.
8959 *
8960 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8961 * The masks don't intersect (don't overlap.) We should setup one
8962 * sched domain for each mask. CPUs not in any of the cpumasks will
8963 * not be load balanced. If the same cpumask appears both in the
8964 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8965 * it as it is.
8966 *
8967 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8968 * ownership of it and will kfree it when done with it. If the caller
8969 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8970 * ndoms_new == 1, and partition_sched_domains() will fallback to
8971 * the single partition 'fallback_doms', it also forces the domains
8972 * to be rebuilt.
8973 *
8974 * If doms_new == NULL it will be replaced with cpu_online_mask.
8975 * ndoms_new == 0 is a special case for destroying existing domains,
8976 * and it will not create the default domain.
8977 *
8978 * Call with hotplug lock held
8979 */
8980 /* FIXME: Change to struct cpumask *doms_new[] */
8981 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8982 struct sched_domain_attr *dattr_new)
8983 {
8984 int i, j, n;
8985 int new_topology;
8986
8987 mutex_lock(&sched_domains_mutex);
8988
8989 /* always unregister in case we don't destroy any domains */
8990 unregister_sched_domain_sysctl();
8991
8992 /* Let architecture update cpu core mappings. */
8993 new_topology = arch_update_cpu_topology();
8994
8995 n = doms_new ? ndoms_new : 0;
8996
8997 /* Destroy deleted domains */
8998 for (i = 0; i < ndoms_cur; i++) {
8999 for (j = 0; j < n && !new_topology; j++) {
9000 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9001 && dattrs_equal(dattr_cur, i, dattr_new, j))
9002 goto match1;
9003 }
9004 /* no match - a current sched domain not in new doms_new[] */
9005 detach_destroy_domains(doms_cur + i);
9006 match1:
9007 ;
9008 }
9009
9010 if (doms_new == NULL) {
9011 ndoms_cur = 0;
9012 doms_new = fallback_doms;
9013 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9014 WARN_ON_ONCE(dattr_new);
9015 }
9016
9017 /* Build new domains */
9018 for (i = 0; i < ndoms_new; i++) {
9019 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9020 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9021 && dattrs_equal(dattr_new, i, dattr_cur, j))
9022 goto match2;
9023 }
9024 /* no match - add a new doms_new */
9025 __build_sched_domains(doms_new + i,
9026 dattr_new ? dattr_new + i : NULL);
9027 match2:
9028 ;
9029 }
9030
9031 /* Remember the new sched domains */
9032 if (doms_cur != fallback_doms)
9033 kfree(doms_cur);
9034 kfree(dattr_cur); /* kfree(NULL) is safe */
9035 doms_cur = doms_new;
9036 dattr_cur = dattr_new;
9037 ndoms_cur = ndoms_new;
9038
9039 register_sched_domain_sysctl();
9040
9041 mutex_unlock(&sched_domains_mutex);
9042 }
9043
9044 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9045 static void arch_reinit_sched_domains(void)
9046 {
9047 get_online_cpus();
9048
9049 /* Destroy domains first to force the rebuild */
9050 partition_sched_domains(0, NULL, NULL);
9051
9052 rebuild_sched_domains();
9053 put_online_cpus();
9054 }
9055
9056 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9057 {
9058 unsigned int level = 0;
9059
9060 if (sscanf(buf, "%u", &level) != 1)
9061 return -EINVAL;
9062
9063 /*
9064 * level is always be positive so don't check for
9065 * level < POWERSAVINGS_BALANCE_NONE which is 0
9066 * What happens on 0 or 1 byte write,
9067 * need to check for count as well?
9068 */
9069
9070 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9071 return -EINVAL;
9072
9073 if (smt)
9074 sched_smt_power_savings = level;
9075 else
9076 sched_mc_power_savings = level;
9077
9078 arch_reinit_sched_domains();
9079
9080 return count;
9081 }
9082
9083 #ifdef CONFIG_SCHED_MC
9084 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9085 char *page)
9086 {
9087 return sprintf(page, "%u\n", sched_mc_power_savings);
9088 }
9089 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9090 const char *buf, size_t count)
9091 {
9092 return sched_power_savings_store(buf, count, 0);
9093 }
9094 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9095 sched_mc_power_savings_show,
9096 sched_mc_power_savings_store);
9097 #endif
9098
9099 #ifdef CONFIG_SCHED_SMT
9100 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9101 char *page)
9102 {
9103 return sprintf(page, "%u\n", sched_smt_power_savings);
9104 }
9105 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9106 const char *buf, size_t count)
9107 {
9108 return sched_power_savings_store(buf, count, 1);
9109 }
9110 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9111 sched_smt_power_savings_show,
9112 sched_smt_power_savings_store);
9113 #endif
9114
9115 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9116 {
9117 int err = 0;
9118
9119 #ifdef CONFIG_SCHED_SMT
9120 if (smt_capable())
9121 err = sysfs_create_file(&cls->kset.kobj,
9122 &attr_sched_smt_power_savings.attr);
9123 #endif
9124 #ifdef CONFIG_SCHED_MC
9125 if (!err && mc_capable())
9126 err = sysfs_create_file(&cls->kset.kobj,
9127 &attr_sched_mc_power_savings.attr);
9128 #endif
9129 return err;
9130 }
9131 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9132
9133 #ifndef CONFIG_CPUSETS
9134 /*
9135 * Add online and remove offline CPUs from the scheduler domains.
9136 * When cpusets are enabled they take over this function.
9137 */
9138 static int update_sched_domains(struct notifier_block *nfb,
9139 unsigned long action, void *hcpu)
9140 {
9141 switch (action) {
9142 case CPU_ONLINE:
9143 case CPU_ONLINE_FROZEN:
9144 case CPU_DEAD:
9145 case CPU_DEAD_FROZEN:
9146 partition_sched_domains(1, NULL, NULL);
9147 return NOTIFY_OK;
9148
9149 default:
9150 return NOTIFY_DONE;
9151 }
9152 }
9153 #endif
9154
9155 static int update_runtime(struct notifier_block *nfb,
9156 unsigned long action, void *hcpu)
9157 {
9158 int cpu = (int)(long)hcpu;
9159
9160 switch (action) {
9161 case CPU_DOWN_PREPARE:
9162 case CPU_DOWN_PREPARE_FROZEN:
9163 disable_runtime(cpu_rq(cpu));
9164 return NOTIFY_OK;
9165
9166 case CPU_DOWN_FAILED:
9167 case CPU_DOWN_FAILED_FROZEN:
9168 case CPU_ONLINE:
9169 case CPU_ONLINE_FROZEN:
9170 enable_runtime(cpu_rq(cpu));
9171 return NOTIFY_OK;
9172
9173 default:
9174 return NOTIFY_DONE;
9175 }
9176 }
9177
9178 void __init sched_init_smp(void)
9179 {
9180 cpumask_var_t non_isolated_cpus;
9181
9182 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9183
9184 #if defined(CONFIG_NUMA)
9185 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9186 GFP_KERNEL);
9187 BUG_ON(sched_group_nodes_bycpu == NULL);
9188 #endif
9189 get_online_cpus();
9190 mutex_lock(&sched_domains_mutex);
9191 arch_init_sched_domains(cpu_online_mask);
9192 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9193 if (cpumask_empty(non_isolated_cpus))
9194 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9195 mutex_unlock(&sched_domains_mutex);
9196 put_online_cpus();
9197
9198 #ifndef CONFIG_CPUSETS
9199 /* XXX: Theoretical race here - CPU may be hotplugged now */
9200 hotcpu_notifier(update_sched_domains, 0);
9201 #endif
9202
9203 /* RT runtime code needs to handle some hotplug events */
9204 hotcpu_notifier(update_runtime, 0);
9205
9206 init_hrtick();
9207
9208 /* Move init over to a non-isolated CPU */
9209 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9210 BUG();
9211 sched_init_granularity();
9212 free_cpumask_var(non_isolated_cpus);
9213
9214 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9215 init_sched_rt_class();
9216 }
9217 #else
9218 void __init sched_init_smp(void)
9219 {
9220 sched_init_granularity();
9221 }
9222 #endif /* CONFIG_SMP */
9223
9224 const_debug unsigned int sysctl_timer_migration = 1;
9225
9226 int in_sched_functions(unsigned long addr)
9227 {
9228 return in_lock_functions(addr) ||
9229 (addr >= (unsigned long)__sched_text_start
9230 && addr < (unsigned long)__sched_text_end);
9231 }
9232
9233 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9234 {
9235 cfs_rq->tasks_timeline = RB_ROOT;
9236 INIT_LIST_HEAD(&cfs_rq->tasks);
9237 #ifdef CONFIG_FAIR_GROUP_SCHED
9238 cfs_rq->rq = rq;
9239 #endif
9240 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9241 }
9242
9243 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9244 {
9245 struct rt_prio_array *array;
9246 int i;
9247
9248 array = &rt_rq->active;
9249 for (i = 0; i < MAX_RT_PRIO; i++) {
9250 INIT_LIST_HEAD(array->queue + i);
9251 __clear_bit(i, array->bitmap);
9252 }
9253 /* delimiter for bitsearch: */
9254 __set_bit(MAX_RT_PRIO, array->bitmap);
9255
9256 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9257 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9258 #ifdef CONFIG_SMP
9259 rt_rq->highest_prio.next = MAX_RT_PRIO;
9260 #endif
9261 #endif
9262 #ifdef CONFIG_SMP
9263 rt_rq->rt_nr_migratory = 0;
9264 rt_rq->overloaded = 0;
9265 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9266 #endif
9267
9268 rt_rq->rt_time = 0;
9269 rt_rq->rt_throttled = 0;
9270 rt_rq->rt_runtime = 0;
9271 spin_lock_init(&rt_rq->rt_runtime_lock);
9272
9273 #ifdef CONFIG_RT_GROUP_SCHED
9274 rt_rq->rt_nr_boosted = 0;
9275 rt_rq->rq = rq;
9276 #endif
9277 }
9278
9279 #ifdef CONFIG_FAIR_GROUP_SCHED
9280 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9281 struct sched_entity *se, int cpu, int add,
9282 struct sched_entity *parent)
9283 {
9284 struct rq *rq = cpu_rq(cpu);
9285 tg->cfs_rq[cpu] = cfs_rq;
9286 init_cfs_rq(cfs_rq, rq);
9287 cfs_rq->tg = tg;
9288 if (add)
9289 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9290
9291 tg->se[cpu] = se;
9292 /* se could be NULL for init_task_group */
9293 if (!se)
9294 return;
9295
9296 if (!parent)
9297 se->cfs_rq = &rq->cfs;
9298 else
9299 se->cfs_rq = parent->my_q;
9300
9301 se->my_q = cfs_rq;
9302 se->load.weight = tg->shares;
9303 se->load.inv_weight = 0;
9304 se->parent = parent;
9305 }
9306 #endif
9307
9308 #ifdef CONFIG_RT_GROUP_SCHED
9309 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9310 struct sched_rt_entity *rt_se, int cpu, int add,
9311 struct sched_rt_entity *parent)
9312 {
9313 struct rq *rq = cpu_rq(cpu);
9314
9315 tg->rt_rq[cpu] = rt_rq;
9316 init_rt_rq(rt_rq, rq);
9317 rt_rq->tg = tg;
9318 rt_rq->rt_se = rt_se;
9319 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9320 if (add)
9321 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9322
9323 tg->rt_se[cpu] = rt_se;
9324 if (!rt_se)
9325 return;
9326
9327 if (!parent)
9328 rt_se->rt_rq = &rq->rt;
9329 else
9330 rt_se->rt_rq = parent->my_q;
9331
9332 rt_se->my_q = rt_rq;
9333 rt_se->parent = parent;
9334 INIT_LIST_HEAD(&rt_se->run_list);
9335 }
9336 #endif
9337
9338 void __init sched_init(void)
9339 {
9340 int i, j;
9341 unsigned long alloc_size = 0, ptr;
9342
9343 #ifdef CONFIG_FAIR_GROUP_SCHED
9344 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9345 #endif
9346 #ifdef CONFIG_RT_GROUP_SCHED
9347 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9348 #endif
9349 #ifdef CONFIG_USER_SCHED
9350 alloc_size *= 2;
9351 #endif
9352 #ifdef CONFIG_CPUMASK_OFFSTACK
9353 alloc_size += num_possible_cpus() * cpumask_size();
9354 #endif
9355 /*
9356 * As sched_init() is called before page_alloc is setup,
9357 * we use alloc_bootmem().
9358 */
9359 if (alloc_size) {
9360 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9361
9362 #ifdef CONFIG_FAIR_GROUP_SCHED
9363 init_task_group.se = (struct sched_entity **)ptr;
9364 ptr += nr_cpu_ids * sizeof(void **);
9365
9366 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9367 ptr += nr_cpu_ids * sizeof(void **);
9368
9369 #ifdef CONFIG_USER_SCHED
9370 root_task_group.se = (struct sched_entity **)ptr;
9371 ptr += nr_cpu_ids * sizeof(void **);
9372
9373 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9374 ptr += nr_cpu_ids * sizeof(void **);
9375 #endif /* CONFIG_USER_SCHED */
9376 #endif /* CONFIG_FAIR_GROUP_SCHED */
9377 #ifdef CONFIG_RT_GROUP_SCHED
9378 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9379 ptr += nr_cpu_ids * sizeof(void **);
9380
9381 init_task_group.rt_rq = (struct rt_rq **)ptr;
9382 ptr += nr_cpu_ids * sizeof(void **);
9383
9384 #ifdef CONFIG_USER_SCHED
9385 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9386 ptr += nr_cpu_ids * sizeof(void **);
9387
9388 root_task_group.rt_rq = (struct rt_rq **)ptr;
9389 ptr += nr_cpu_ids * sizeof(void **);
9390 #endif /* CONFIG_USER_SCHED */
9391 #endif /* CONFIG_RT_GROUP_SCHED */
9392 #ifdef CONFIG_CPUMASK_OFFSTACK
9393 for_each_possible_cpu(i) {
9394 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9395 ptr += cpumask_size();
9396 }
9397 #endif /* CONFIG_CPUMASK_OFFSTACK */
9398 }
9399
9400 #ifdef CONFIG_SMP
9401 init_defrootdomain();
9402 #endif
9403
9404 init_rt_bandwidth(&def_rt_bandwidth,
9405 global_rt_period(), global_rt_runtime());
9406
9407 #ifdef CONFIG_RT_GROUP_SCHED
9408 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9409 global_rt_period(), global_rt_runtime());
9410 #ifdef CONFIG_USER_SCHED
9411 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9412 global_rt_period(), RUNTIME_INF);
9413 #endif /* CONFIG_USER_SCHED */
9414 #endif /* CONFIG_RT_GROUP_SCHED */
9415
9416 #ifdef CONFIG_GROUP_SCHED
9417 list_add(&init_task_group.list, &task_groups);
9418 INIT_LIST_HEAD(&init_task_group.children);
9419
9420 #ifdef CONFIG_USER_SCHED
9421 INIT_LIST_HEAD(&root_task_group.children);
9422 init_task_group.parent = &root_task_group;
9423 list_add(&init_task_group.siblings, &root_task_group.children);
9424 #endif /* CONFIG_USER_SCHED */
9425 #endif /* CONFIG_GROUP_SCHED */
9426
9427 for_each_possible_cpu(i) {
9428 struct rq *rq;
9429
9430 rq = cpu_rq(i);
9431 spin_lock_init(&rq->lock);
9432 rq->nr_running = 0;
9433 rq->calc_load_active = 0;
9434 rq->calc_load_update = jiffies + LOAD_FREQ;
9435 init_cfs_rq(&rq->cfs, rq);
9436 init_rt_rq(&rq->rt, rq);
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 init_task_group.shares = init_task_group_load;
9439 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9440 #ifdef CONFIG_CGROUP_SCHED
9441 /*
9442 * How much cpu bandwidth does init_task_group get?
9443 *
9444 * In case of task-groups formed thr' the cgroup filesystem, it
9445 * gets 100% of the cpu resources in the system. This overall
9446 * system cpu resource is divided among the tasks of
9447 * init_task_group and its child task-groups in a fair manner,
9448 * based on each entity's (task or task-group's) weight
9449 * (se->load.weight).
9450 *
9451 * In other words, if init_task_group has 10 tasks of weight
9452 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9453 * then A0's share of the cpu resource is:
9454 *
9455 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9456 *
9457 * We achieve this by letting init_task_group's tasks sit
9458 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9459 */
9460 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9461 #elif defined CONFIG_USER_SCHED
9462 root_task_group.shares = NICE_0_LOAD;
9463 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9464 /*
9465 * In case of task-groups formed thr' the user id of tasks,
9466 * init_task_group represents tasks belonging to root user.
9467 * Hence it forms a sibling of all subsequent groups formed.
9468 * In this case, init_task_group gets only a fraction of overall
9469 * system cpu resource, based on the weight assigned to root
9470 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9471 * by letting tasks of init_task_group sit in a separate cfs_rq
9472 * (init_tg_cfs_rq) and having one entity represent this group of
9473 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9474 */
9475 init_tg_cfs_entry(&init_task_group,
9476 &per_cpu(init_tg_cfs_rq, i),
9477 &per_cpu(init_sched_entity, i), i, 1,
9478 root_task_group.se[i]);
9479
9480 #endif
9481 #endif /* CONFIG_FAIR_GROUP_SCHED */
9482
9483 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9484 #ifdef CONFIG_RT_GROUP_SCHED
9485 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9486 #ifdef CONFIG_CGROUP_SCHED
9487 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9488 #elif defined CONFIG_USER_SCHED
9489 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9490 init_tg_rt_entry(&init_task_group,
9491 &per_cpu(init_rt_rq, i),
9492 &per_cpu(init_sched_rt_entity, i), i, 1,
9493 root_task_group.rt_se[i]);
9494 #endif
9495 #endif
9496
9497 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9498 rq->cpu_load[j] = 0;
9499 #ifdef CONFIG_SMP
9500 rq->sd = NULL;
9501 rq->rd = NULL;
9502 rq->post_schedule = 0;
9503 rq->active_balance = 0;
9504 rq->next_balance = jiffies;
9505 rq->push_cpu = 0;
9506 rq->cpu = i;
9507 rq->online = 0;
9508 rq->migration_thread = NULL;
9509 INIT_LIST_HEAD(&rq->migration_queue);
9510 rq_attach_root(rq, &def_root_domain);
9511 #endif
9512 init_rq_hrtick(rq);
9513 atomic_set(&rq->nr_iowait, 0);
9514 }
9515
9516 set_load_weight(&init_task);
9517
9518 #ifdef CONFIG_PREEMPT_NOTIFIERS
9519 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9520 #endif
9521
9522 #ifdef CONFIG_SMP
9523 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9524 #endif
9525
9526 #ifdef CONFIG_RT_MUTEXES
9527 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9528 #endif
9529
9530 /*
9531 * The boot idle thread does lazy MMU switching as well:
9532 */
9533 atomic_inc(&init_mm.mm_count);
9534 enter_lazy_tlb(&init_mm, current);
9535
9536 /*
9537 * Make us the idle thread. Technically, schedule() should not be
9538 * called from this thread, however somewhere below it might be,
9539 * but because we are the idle thread, we just pick up running again
9540 * when this runqueue becomes "idle".
9541 */
9542 init_idle(current, smp_processor_id());
9543
9544 calc_load_update = jiffies + LOAD_FREQ;
9545
9546 /*
9547 * During early bootup we pretend to be a normal task:
9548 */
9549 current->sched_class = &fair_sched_class;
9550
9551 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9552 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9553 #ifdef CONFIG_SMP
9554 #ifdef CONFIG_NO_HZ
9555 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9556 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9557 #endif
9558 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9559 #endif /* SMP */
9560
9561 perf_counter_init();
9562
9563 scheduler_running = 1;
9564 }
9565
9566 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9567 static inline int preempt_count_equals(int preempt_offset)
9568 {
9569 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9570
9571 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9572 }
9573
9574 void __might_sleep(char *file, int line, int preempt_offset)
9575 {
9576 #ifdef in_atomic
9577 static unsigned long prev_jiffy; /* ratelimiting */
9578
9579 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9580 system_state != SYSTEM_RUNNING || oops_in_progress)
9581 return;
9582 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9583 return;
9584 prev_jiffy = jiffies;
9585
9586 printk(KERN_ERR
9587 "BUG: sleeping function called from invalid context at %s:%d\n",
9588 file, line);
9589 printk(KERN_ERR
9590 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9591 in_atomic(), irqs_disabled(),
9592 current->pid, current->comm);
9593
9594 debug_show_held_locks(current);
9595 if (irqs_disabled())
9596 print_irqtrace_events(current);
9597 dump_stack();
9598 #endif
9599 }
9600 EXPORT_SYMBOL(__might_sleep);
9601 #endif
9602
9603 #ifdef CONFIG_MAGIC_SYSRQ
9604 static void normalize_task(struct rq *rq, struct task_struct *p)
9605 {
9606 int on_rq;
9607
9608 update_rq_clock(rq);
9609 on_rq = p->se.on_rq;
9610 if (on_rq)
9611 deactivate_task(rq, p, 0);
9612 __setscheduler(rq, p, SCHED_NORMAL, 0);
9613 if (on_rq) {
9614 activate_task(rq, p, 0);
9615 resched_task(rq->curr);
9616 }
9617 }
9618
9619 void normalize_rt_tasks(void)
9620 {
9621 struct task_struct *g, *p;
9622 unsigned long flags;
9623 struct rq *rq;
9624
9625 read_lock_irqsave(&tasklist_lock, flags);
9626 do_each_thread(g, p) {
9627 /*
9628 * Only normalize user tasks:
9629 */
9630 if (!p->mm)
9631 continue;
9632
9633 p->se.exec_start = 0;
9634 #ifdef CONFIG_SCHEDSTATS
9635 p->se.wait_start = 0;
9636 p->se.sleep_start = 0;
9637 p->se.block_start = 0;
9638 #endif
9639
9640 if (!rt_task(p)) {
9641 /*
9642 * Renice negative nice level userspace
9643 * tasks back to 0:
9644 */
9645 if (TASK_NICE(p) < 0 && p->mm)
9646 set_user_nice(p, 0);
9647 continue;
9648 }
9649
9650 spin_lock(&p->pi_lock);
9651 rq = __task_rq_lock(p);
9652
9653 normalize_task(rq, p);
9654
9655 __task_rq_unlock(rq);
9656 spin_unlock(&p->pi_lock);
9657 } while_each_thread(g, p);
9658
9659 read_unlock_irqrestore(&tasklist_lock, flags);
9660 }
9661
9662 #endif /* CONFIG_MAGIC_SYSRQ */
9663
9664 #ifdef CONFIG_IA64
9665 /*
9666 * These functions are only useful for the IA64 MCA handling.
9667 *
9668 * They can only be called when the whole system has been
9669 * stopped - every CPU needs to be quiescent, and no scheduling
9670 * activity can take place. Using them for anything else would
9671 * be a serious bug, and as a result, they aren't even visible
9672 * under any other configuration.
9673 */
9674
9675 /**
9676 * curr_task - return the current task for a given cpu.
9677 * @cpu: the processor in question.
9678 *
9679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9680 */
9681 struct task_struct *curr_task(int cpu)
9682 {
9683 return cpu_curr(cpu);
9684 }
9685
9686 /**
9687 * set_curr_task - set the current task for a given cpu.
9688 * @cpu: the processor in question.
9689 * @p: the task pointer to set.
9690 *
9691 * Description: This function must only be used when non-maskable interrupts
9692 * are serviced on a separate stack. It allows the architecture to switch the
9693 * notion of the current task on a cpu in a non-blocking manner. This function
9694 * must be called with all CPU's synchronized, and interrupts disabled, the
9695 * and caller must save the original value of the current task (see
9696 * curr_task() above) and restore that value before reenabling interrupts and
9697 * re-starting the system.
9698 *
9699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9700 */
9701 void set_curr_task(int cpu, struct task_struct *p)
9702 {
9703 cpu_curr(cpu) = p;
9704 }
9705
9706 #endif
9707
9708 #ifdef CONFIG_FAIR_GROUP_SCHED
9709 static void free_fair_sched_group(struct task_group *tg)
9710 {
9711 int i;
9712
9713 for_each_possible_cpu(i) {
9714 if (tg->cfs_rq)
9715 kfree(tg->cfs_rq[i]);
9716 if (tg->se)
9717 kfree(tg->se[i]);
9718 }
9719
9720 kfree(tg->cfs_rq);
9721 kfree(tg->se);
9722 }
9723
9724 static
9725 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9726 {
9727 struct cfs_rq *cfs_rq;
9728 struct sched_entity *se;
9729 struct rq *rq;
9730 int i;
9731
9732 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9733 if (!tg->cfs_rq)
9734 goto err;
9735 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9736 if (!tg->se)
9737 goto err;
9738
9739 tg->shares = NICE_0_LOAD;
9740
9741 for_each_possible_cpu(i) {
9742 rq = cpu_rq(i);
9743
9744 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9745 GFP_KERNEL, cpu_to_node(i));
9746 if (!cfs_rq)
9747 goto err;
9748
9749 se = kzalloc_node(sizeof(struct sched_entity),
9750 GFP_KERNEL, cpu_to_node(i));
9751 if (!se)
9752 goto err;
9753
9754 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9755 }
9756
9757 return 1;
9758
9759 err:
9760 return 0;
9761 }
9762
9763 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9764 {
9765 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9766 &cpu_rq(cpu)->leaf_cfs_rq_list);
9767 }
9768
9769 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9770 {
9771 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9772 }
9773 #else /* !CONFG_FAIR_GROUP_SCHED */
9774 static inline void free_fair_sched_group(struct task_group *tg)
9775 {
9776 }
9777
9778 static inline
9779 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9780 {
9781 return 1;
9782 }
9783
9784 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9785 {
9786 }
9787
9788 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9789 {
9790 }
9791 #endif /* CONFIG_FAIR_GROUP_SCHED */
9792
9793 #ifdef CONFIG_RT_GROUP_SCHED
9794 static void free_rt_sched_group(struct task_group *tg)
9795 {
9796 int i;
9797
9798 destroy_rt_bandwidth(&tg->rt_bandwidth);
9799
9800 for_each_possible_cpu(i) {
9801 if (tg->rt_rq)
9802 kfree(tg->rt_rq[i]);
9803 if (tg->rt_se)
9804 kfree(tg->rt_se[i]);
9805 }
9806
9807 kfree(tg->rt_rq);
9808 kfree(tg->rt_se);
9809 }
9810
9811 static
9812 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9813 {
9814 struct rt_rq *rt_rq;
9815 struct sched_rt_entity *rt_se;
9816 struct rq *rq;
9817 int i;
9818
9819 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9820 if (!tg->rt_rq)
9821 goto err;
9822 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9823 if (!tg->rt_se)
9824 goto err;
9825
9826 init_rt_bandwidth(&tg->rt_bandwidth,
9827 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9828
9829 for_each_possible_cpu(i) {
9830 rq = cpu_rq(i);
9831
9832 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9833 GFP_KERNEL, cpu_to_node(i));
9834 if (!rt_rq)
9835 goto err;
9836
9837 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9838 GFP_KERNEL, cpu_to_node(i));
9839 if (!rt_se)
9840 goto err;
9841
9842 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9843 }
9844
9845 return 1;
9846
9847 err:
9848 return 0;
9849 }
9850
9851 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9852 {
9853 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9854 &cpu_rq(cpu)->leaf_rt_rq_list);
9855 }
9856
9857 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9858 {
9859 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9860 }
9861 #else /* !CONFIG_RT_GROUP_SCHED */
9862 static inline void free_rt_sched_group(struct task_group *tg)
9863 {
9864 }
9865
9866 static inline
9867 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9868 {
9869 return 1;
9870 }
9871
9872 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9873 {
9874 }
9875
9876 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9877 {
9878 }
9879 #endif /* CONFIG_RT_GROUP_SCHED */
9880
9881 #ifdef CONFIG_GROUP_SCHED
9882 static void free_sched_group(struct task_group *tg)
9883 {
9884 free_fair_sched_group(tg);
9885 free_rt_sched_group(tg);
9886 kfree(tg);
9887 }
9888
9889 /* allocate runqueue etc for a new task group */
9890 struct task_group *sched_create_group(struct task_group *parent)
9891 {
9892 struct task_group *tg;
9893 unsigned long flags;
9894 int i;
9895
9896 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9897 if (!tg)
9898 return ERR_PTR(-ENOMEM);
9899
9900 if (!alloc_fair_sched_group(tg, parent))
9901 goto err;
9902
9903 if (!alloc_rt_sched_group(tg, parent))
9904 goto err;
9905
9906 spin_lock_irqsave(&task_group_lock, flags);
9907 for_each_possible_cpu(i) {
9908 register_fair_sched_group(tg, i);
9909 register_rt_sched_group(tg, i);
9910 }
9911 list_add_rcu(&tg->list, &task_groups);
9912
9913 WARN_ON(!parent); /* root should already exist */
9914
9915 tg->parent = parent;
9916 INIT_LIST_HEAD(&tg->children);
9917 list_add_rcu(&tg->siblings, &parent->children);
9918 spin_unlock_irqrestore(&task_group_lock, flags);
9919
9920 return tg;
9921
9922 err:
9923 free_sched_group(tg);
9924 return ERR_PTR(-ENOMEM);
9925 }
9926
9927 /* rcu callback to free various structures associated with a task group */
9928 static void free_sched_group_rcu(struct rcu_head *rhp)
9929 {
9930 /* now it should be safe to free those cfs_rqs */
9931 free_sched_group(container_of(rhp, struct task_group, rcu));
9932 }
9933
9934 /* Destroy runqueue etc associated with a task group */
9935 void sched_destroy_group(struct task_group *tg)
9936 {
9937 unsigned long flags;
9938 int i;
9939
9940 spin_lock_irqsave(&task_group_lock, flags);
9941 for_each_possible_cpu(i) {
9942 unregister_fair_sched_group(tg, i);
9943 unregister_rt_sched_group(tg, i);
9944 }
9945 list_del_rcu(&tg->list);
9946 list_del_rcu(&tg->siblings);
9947 spin_unlock_irqrestore(&task_group_lock, flags);
9948
9949 /* wait for possible concurrent references to cfs_rqs complete */
9950 call_rcu(&tg->rcu, free_sched_group_rcu);
9951 }
9952
9953 /* change task's runqueue when it moves between groups.
9954 * The caller of this function should have put the task in its new group
9955 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9956 * reflect its new group.
9957 */
9958 void sched_move_task(struct task_struct *tsk)
9959 {
9960 int on_rq, running;
9961 unsigned long flags;
9962 struct rq *rq;
9963
9964 rq = task_rq_lock(tsk, &flags);
9965
9966 update_rq_clock(rq);
9967
9968 running = task_current(rq, tsk);
9969 on_rq = tsk->se.on_rq;
9970
9971 if (on_rq)
9972 dequeue_task(rq, tsk, 0);
9973 if (unlikely(running))
9974 tsk->sched_class->put_prev_task(rq, tsk);
9975
9976 set_task_rq(tsk, task_cpu(tsk));
9977
9978 #ifdef CONFIG_FAIR_GROUP_SCHED
9979 if (tsk->sched_class->moved_group)
9980 tsk->sched_class->moved_group(tsk);
9981 #endif
9982
9983 if (unlikely(running))
9984 tsk->sched_class->set_curr_task(rq);
9985 if (on_rq)
9986 enqueue_task(rq, tsk, 0);
9987
9988 task_rq_unlock(rq, &flags);
9989 }
9990 #endif /* CONFIG_GROUP_SCHED */
9991
9992 #ifdef CONFIG_FAIR_GROUP_SCHED
9993 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9994 {
9995 struct cfs_rq *cfs_rq = se->cfs_rq;
9996 int on_rq;
9997
9998 on_rq = se->on_rq;
9999 if (on_rq)
10000 dequeue_entity(cfs_rq, se, 0);
10001
10002 se->load.weight = shares;
10003 se->load.inv_weight = 0;
10004
10005 if (on_rq)
10006 enqueue_entity(cfs_rq, se, 0);
10007 }
10008
10009 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10010 {
10011 struct cfs_rq *cfs_rq = se->cfs_rq;
10012 struct rq *rq = cfs_rq->rq;
10013 unsigned long flags;
10014
10015 spin_lock_irqsave(&rq->lock, flags);
10016 __set_se_shares(se, shares);
10017 spin_unlock_irqrestore(&rq->lock, flags);
10018 }
10019
10020 static DEFINE_MUTEX(shares_mutex);
10021
10022 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10023 {
10024 int i;
10025 unsigned long flags;
10026
10027 /*
10028 * We can't change the weight of the root cgroup.
10029 */
10030 if (!tg->se[0])
10031 return -EINVAL;
10032
10033 if (shares < MIN_SHARES)
10034 shares = MIN_SHARES;
10035 else if (shares > MAX_SHARES)
10036 shares = MAX_SHARES;
10037
10038 mutex_lock(&shares_mutex);
10039 if (tg->shares == shares)
10040 goto done;
10041
10042 spin_lock_irqsave(&task_group_lock, flags);
10043 for_each_possible_cpu(i)
10044 unregister_fair_sched_group(tg, i);
10045 list_del_rcu(&tg->siblings);
10046 spin_unlock_irqrestore(&task_group_lock, flags);
10047
10048 /* wait for any ongoing reference to this group to finish */
10049 synchronize_sched();
10050
10051 /*
10052 * Now we are free to modify the group's share on each cpu
10053 * w/o tripping rebalance_share or load_balance_fair.
10054 */
10055 tg->shares = shares;
10056 for_each_possible_cpu(i) {
10057 /*
10058 * force a rebalance
10059 */
10060 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10061 set_se_shares(tg->se[i], shares);
10062 }
10063
10064 /*
10065 * Enable load balance activity on this group, by inserting it back on
10066 * each cpu's rq->leaf_cfs_rq_list.
10067 */
10068 spin_lock_irqsave(&task_group_lock, flags);
10069 for_each_possible_cpu(i)
10070 register_fair_sched_group(tg, i);
10071 list_add_rcu(&tg->siblings, &tg->parent->children);
10072 spin_unlock_irqrestore(&task_group_lock, flags);
10073 done:
10074 mutex_unlock(&shares_mutex);
10075 return 0;
10076 }
10077
10078 unsigned long sched_group_shares(struct task_group *tg)
10079 {
10080 return tg->shares;
10081 }
10082 #endif
10083
10084 #ifdef CONFIG_RT_GROUP_SCHED
10085 /*
10086 * Ensure that the real time constraints are schedulable.
10087 */
10088 static DEFINE_MUTEX(rt_constraints_mutex);
10089
10090 static unsigned long to_ratio(u64 period, u64 runtime)
10091 {
10092 if (runtime == RUNTIME_INF)
10093 return 1ULL << 20;
10094
10095 return div64_u64(runtime << 20, period);
10096 }
10097
10098 /* Must be called with tasklist_lock held */
10099 static inline int tg_has_rt_tasks(struct task_group *tg)
10100 {
10101 struct task_struct *g, *p;
10102
10103 do_each_thread(g, p) {
10104 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10105 return 1;
10106 } while_each_thread(g, p);
10107
10108 return 0;
10109 }
10110
10111 struct rt_schedulable_data {
10112 struct task_group *tg;
10113 u64 rt_period;
10114 u64 rt_runtime;
10115 };
10116
10117 static int tg_schedulable(struct task_group *tg, void *data)
10118 {
10119 struct rt_schedulable_data *d = data;
10120 struct task_group *child;
10121 unsigned long total, sum = 0;
10122 u64 period, runtime;
10123
10124 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10125 runtime = tg->rt_bandwidth.rt_runtime;
10126
10127 if (tg == d->tg) {
10128 period = d->rt_period;
10129 runtime = d->rt_runtime;
10130 }
10131
10132 #ifdef CONFIG_USER_SCHED
10133 if (tg == &root_task_group) {
10134 period = global_rt_period();
10135 runtime = global_rt_runtime();
10136 }
10137 #endif
10138
10139 /*
10140 * Cannot have more runtime than the period.
10141 */
10142 if (runtime > period && runtime != RUNTIME_INF)
10143 return -EINVAL;
10144
10145 /*
10146 * Ensure we don't starve existing RT tasks.
10147 */
10148 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10149 return -EBUSY;
10150
10151 total = to_ratio(period, runtime);
10152
10153 /*
10154 * Nobody can have more than the global setting allows.
10155 */
10156 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10157 return -EINVAL;
10158
10159 /*
10160 * The sum of our children's runtime should not exceed our own.
10161 */
10162 list_for_each_entry_rcu(child, &tg->children, siblings) {
10163 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10164 runtime = child->rt_bandwidth.rt_runtime;
10165
10166 if (child == d->tg) {
10167 period = d->rt_period;
10168 runtime = d->rt_runtime;
10169 }
10170
10171 sum += to_ratio(period, runtime);
10172 }
10173
10174 if (sum > total)
10175 return -EINVAL;
10176
10177 return 0;
10178 }
10179
10180 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10181 {
10182 struct rt_schedulable_data data = {
10183 .tg = tg,
10184 .rt_period = period,
10185 .rt_runtime = runtime,
10186 };
10187
10188 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10189 }
10190
10191 static int tg_set_bandwidth(struct task_group *tg,
10192 u64 rt_period, u64 rt_runtime)
10193 {
10194 int i, err = 0;
10195
10196 mutex_lock(&rt_constraints_mutex);
10197 read_lock(&tasklist_lock);
10198 err = __rt_schedulable(tg, rt_period, rt_runtime);
10199 if (err)
10200 goto unlock;
10201
10202 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10203 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10204 tg->rt_bandwidth.rt_runtime = rt_runtime;
10205
10206 for_each_possible_cpu(i) {
10207 struct rt_rq *rt_rq = tg->rt_rq[i];
10208
10209 spin_lock(&rt_rq->rt_runtime_lock);
10210 rt_rq->rt_runtime = rt_runtime;
10211 spin_unlock(&rt_rq->rt_runtime_lock);
10212 }
10213 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10214 unlock:
10215 read_unlock(&tasklist_lock);
10216 mutex_unlock(&rt_constraints_mutex);
10217
10218 return err;
10219 }
10220
10221 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10222 {
10223 u64 rt_runtime, rt_period;
10224
10225 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10226 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10227 if (rt_runtime_us < 0)
10228 rt_runtime = RUNTIME_INF;
10229
10230 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10231 }
10232
10233 long sched_group_rt_runtime(struct task_group *tg)
10234 {
10235 u64 rt_runtime_us;
10236
10237 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10238 return -1;
10239
10240 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10241 do_div(rt_runtime_us, NSEC_PER_USEC);
10242 return rt_runtime_us;
10243 }
10244
10245 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10246 {
10247 u64 rt_runtime, rt_period;
10248
10249 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10250 rt_runtime = tg->rt_bandwidth.rt_runtime;
10251
10252 if (rt_period == 0)
10253 return -EINVAL;
10254
10255 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10256 }
10257
10258 long sched_group_rt_period(struct task_group *tg)
10259 {
10260 u64 rt_period_us;
10261
10262 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10263 do_div(rt_period_us, NSEC_PER_USEC);
10264 return rt_period_us;
10265 }
10266
10267 static int sched_rt_global_constraints(void)
10268 {
10269 u64 runtime, period;
10270 int ret = 0;
10271
10272 if (sysctl_sched_rt_period <= 0)
10273 return -EINVAL;
10274
10275 runtime = global_rt_runtime();
10276 period = global_rt_period();
10277
10278 /*
10279 * Sanity check on the sysctl variables.
10280 */
10281 if (runtime > period && runtime != RUNTIME_INF)
10282 return -EINVAL;
10283
10284 mutex_lock(&rt_constraints_mutex);
10285 read_lock(&tasklist_lock);
10286 ret = __rt_schedulable(NULL, 0, 0);
10287 read_unlock(&tasklist_lock);
10288 mutex_unlock(&rt_constraints_mutex);
10289
10290 return ret;
10291 }
10292
10293 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10294 {
10295 /* Don't accept realtime tasks when there is no way for them to run */
10296 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10297 return 0;
10298
10299 return 1;
10300 }
10301
10302 #else /* !CONFIG_RT_GROUP_SCHED */
10303 static int sched_rt_global_constraints(void)
10304 {
10305 unsigned long flags;
10306 int i;
10307
10308 if (sysctl_sched_rt_period <= 0)
10309 return -EINVAL;
10310
10311 /*
10312 * There's always some RT tasks in the root group
10313 * -- migration, kstopmachine etc..
10314 */
10315 if (sysctl_sched_rt_runtime == 0)
10316 return -EBUSY;
10317
10318 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10319 for_each_possible_cpu(i) {
10320 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10321
10322 spin_lock(&rt_rq->rt_runtime_lock);
10323 rt_rq->rt_runtime = global_rt_runtime();
10324 spin_unlock(&rt_rq->rt_runtime_lock);
10325 }
10326 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10327
10328 return 0;
10329 }
10330 #endif /* CONFIG_RT_GROUP_SCHED */
10331
10332 int sched_rt_handler(struct ctl_table *table, int write,
10333 struct file *filp, void __user *buffer, size_t *lenp,
10334 loff_t *ppos)
10335 {
10336 int ret;
10337 int old_period, old_runtime;
10338 static DEFINE_MUTEX(mutex);
10339
10340 mutex_lock(&mutex);
10341 old_period = sysctl_sched_rt_period;
10342 old_runtime = sysctl_sched_rt_runtime;
10343
10344 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10345
10346 if (!ret && write) {
10347 ret = sched_rt_global_constraints();
10348 if (ret) {
10349 sysctl_sched_rt_period = old_period;
10350 sysctl_sched_rt_runtime = old_runtime;
10351 } else {
10352 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10353 def_rt_bandwidth.rt_period =
10354 ns_to_ktime(global_rt_period());
10355 }
10356 }
10357 mutex_unlock(&mutex);
10358
10359 return ret;
10360 }
10361
10362 #ifdef CONFIG_CGROUP_SCHED
10363
10364 /* return corresponding task_group object of a cgroup */
10365 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10366 {
10367 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10368 struct task_group, css);
10369 }
10370
10371 static struct cgroup_subsys_state *
10372 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10373 {
10374 struct task_group *tg, *parent;
10375
10376 if (!cgrp->parent) {
10377 /* This is early initialization for the top cgroup */
10378 return &init_task_group.css;
10379 }
10380
10381 parent = cgroup_tg(cgrp->parent);
10382 tg = sched_create_group(parent);
10383 if (IS_ERR(tg))
10384 return ERR_PTR(-ENOMEM);
10385
10386 return &tg->css;
10387 }
10388
10389 static void
10390 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10391 {
10392 struct task_group *tg = cgroup_tg(cgrp);
10393
10394 sched_destroy_group(tg);
10395 }
10396
10397 static int
10398 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10399 struct task_struct *tsk)
10400 {
10401 #ifdef CONFIG_RT_GROUP_SCHED
10402 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10403 return -EINVAL;
10404 #else
10405 /* We don't support RT-tasks being in separate groups */
10406 if (tsk->sched_class != &fair_sched_class)
10407 return -EINVAL;
10408 #endif
10409
10410 return 0;
10411 }
10412
10413 static void
10414 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10415 struct cgroup *old_cont, struct task_struct *tsk)
10416 {
10417 sched_move_task(tsk);
10418 }
10419
10420 #ifdef CONFIG_FAIR_GROUP_SCHED
10421 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10422 u64 shareval)
10423 {
10424 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10425 }
10426
10427 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10428 {
10429 struct task_group *tg = cgroup_tg(cgrp);
10430
10431 return (u64) tg->shares;
10432 }
10433 #endif /* CONFIG_FAIR_GROUP_SCHED */
10434
10435 #ifdef CONFIG_RT_GROUP_SCHED
10436 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10437 s64 val)
10438 {
10439 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10440 }
10441
10442 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10443 {
10444 return sched_group_rt_runtime(cgroup_tg(cgrp));
10445 }
10446
10447 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10448 u64 rt_period_us)
10449 {
10450 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10451 }
10452
10453 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10454 {
10455 return sched_group_rt_period(cgroup_tg(cgrp));
10456 }
10457 #endif /* CONFIG_RT_GROUP_SCHED */
10458
10459 static struct cftype cpu_files[] = {
10460 #ifdef CONFIG_FAIR_GROUP_SCHED
10461 {
10462 .name = "shares",
10463 .read_u64 = cpu_shares_read_u64,
10464 .write_u64 = cpu_shares_write_u64,
10465 },
10466 #endif
10467 #ifdef CONFIG_RT_GROUP_SCHED
10468 {
10469 .name = "rt_runtime_us",
10470 .read_s64 = cpu_rt_runtime_read,
10471 .write_s64 = cpu_rt_runtime_write,
10472 },
10473 {
10474 .name = "rt_period_us",
10475 .read_u64 = cpu_rt_period_read_uint,
10476 .write_u64 = cpu_rt_period_write_uint,
10477 },
10478 #endif
10479 };
10480
10481 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10482 {
10483 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10484 }
10485
10486 struct cgroup_subsys cpu_cgroup_subsys = {
10487 .name = "cpu",
10488 .create = cpu_cgroup_create,
10489 .destroy = cpu_cgroup_destroy,
10490 .can_attach = cpu_cgroup_can_attach,
10491 .attach = cpu_cgroup_attach,
10492 .populate = cpu_cgroup_populate,
10493 .subsys_id = cpu_cgroup_subsys_id,
10494 .early_init = 1,
10495 };
10496
10497 #endif /* CONFIG_CGROUP_SCHED */
10498
10499 #ifdef CONFIG_CGROUP_CPUACCT
10500
10501 /*
10502 * CPU accounting code for task groups.
10503 *
10504 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10505 * (balbir@in.ibm.com).
10506 */
10507
10508 /* track cpu usage of a group of tasks and its child groups */
10509 struct cpuacct {
10510 struct cgroup_subsys_state css;
10511 /* cpuusage holds pointer to a u64-type object on every cpu */
10512 u64 *cpuusage;
10513 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10514 struct cpuacct *parent;
10515 };
10516
10517 struct cgroup_subsys cpuacct_subsys;
10518
10519 /* return cpu accounting group corresponding to this container */
10520 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10521 {
10522 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10523 struct cpuacct, css);
10524 }
10525
10526 /* return cpu accounting group to which this task belongs */
10527 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10528 {
10529 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10530 struct cpuacct, css);
10531 }
10532
10533 /* create a new cpu accounting group */
10534 static struct cgroup_subsys_state *cpuacct_create(
10535 struct cgroup_subsys *ss, struct cgroup *cgrp)
10536 {
10537 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10538 int i;
10539
10540 if (!ca)
10541 goto out;
10542
10543 ca->cpuusage = alloc_percpu(u64);
10544 if (!ca->cpuusage)
10545 goto out_free_ca;
10546
10547 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10548 if (percpu_counter_init(&ca->cpustat[i], 0))
10549 goto out_free_counters;
10550
10551 if (cgrp->parent)
10552 ca->parent = cgroup_ca(cgrp->parent);
10553
10554 return &ca->css;
10555
10556 out_free_counters:
10557 while (--i >= 0)
10558 percpu_counter_destroy(&ca->cpustat[i]);
10559 free_percpu(ca->cpuusage);
10560 out_free_ca:
10561 kfree(ca);
10562 out:
10563 return ERR_PTR(-ENOMEM);
10564 }
10565
10566 /* destroy an existing cpu accounting group */
10567 static void
10568 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10569 {
10570 struct cpuacct *ca = cgroup_ca(cgrp);
10571 int i;
10572
10573 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10574 percpu_counter_destroy(&ca->cpustat[i]);
10575 free_percpu(ca->cpuusage);
10576 kfree(ca);
10577 }
10578
10579 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10580 {
10581 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10582 u64 data;
10583
10584 #ifndef CONFIG_64BIT
10585 /*
10586 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10587 */
10588 spin_lock_irq(&cpu_rq(cpu)->lock);
10589 data = *cpuusage;
10590 spin_unlock_irq(&cpu_rq(cpu)->lock);
10591 #else
10592 data = *cpuusage;
10593 #endif
10594
10595 return data;
10596 }
10597
10598 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10599 {
10600 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10601
10602 #ifndef CONFIG_64BIT
10603 /*
10604 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10605 */
10606 spin_lock_irq(&cpu_rq(cpu)->lock);
10607 *cpuusage = val;
10608 spin_unlock_irq(&cpu_rq(cpu)->lock);
10609 #else
10610 *cpuusage = val;
10611 #endif
10612 }
10613
10614 /* return total cpu usage (in nanoseconds) of a group */
10615 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10616 {
10617 struct cpuacct *ca = cgroup_ca(cgrp);
10618 u64 totalcpuusage = 0;
10619 int i;
10620
10621 for_each_present_cpu(i)
10622 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10623
10624 return totalcpuusage;
10625 }
10626
10627 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10628 u64 reset)
10629 {
10630 struct cpuacct *ca = cgroup_ca(cgrp);
10631 int err = 0;
10632 int i;
10633
10634 if (reset) {
10635 err = -EINVAL;
10636 goto out;
10637 }
10638
10639 for_each_present_cpu(i)
10640 cpuacct_cpuusage_write(ca, i, 0);
10641
10642 out:
10643 return err;
10644 }
10645
10646 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10647 struct seq_file *m)
10648 {
10649 struct cpuacct *ca = cgroup_ca(cgroup);
10650 u64 percpu;
10651 int i;
10652
10653 for_each_present_cpu(i) {
10654 percpu = cpuacct_cpuusage_read(ca, i);
10655 seq_printf(m, "%llu ", (unsigned long long) percpu);
10656 }
10657 seq_printf(m, "\n");
10658 return 0;
10659 }
10660
10661 static const char *cpuacct_stat_desc[] = {
10662 [CPUACCT_STAT_USER] = "user",
10663 [CPUACCT_STAT_SYSTEM] = "system",
10664 };
10665
10666 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10667 struct cgroup_map_cb *cb)
10668 {
10669 struct cpuacct *ca = cgroup_ca(cgrp);
10670 int i;
10671
10672 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10673 s64 val = percpu_counter_read(&ca->cpustat[i]);
10674 val = cputime64_to_clock_t(val);
10675 cb->fill(cb, cpuacct_stat_desc[i], val);
10676 }
10677 return 0;
10678 }
10679
10680 static struct cftype files[] = {
10681 {
10682 .name = "usage",
10683 .read_u64 = cpuusage_read,
10684 .write_u64 = cpuusage_write,
10685 },
10686 {
10687 .name = "usage_percpu",
10688 .read_seq_string = cpuacct_percpu_seq_read,
10689 },
10690 {
10691 .name = "stat",
10692 .read_map = cpuacct_stats_show,
10693 },
10694 };
10695
10696 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10697 {
10698 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10699 }
10700
10701 /*
10702 * charge this task's execution time to its accounting group.
10703 *
10704 * called with rq->lock held.
10705 */
10706 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10707 {
10708 struct cpuacct *ca;
10709 int cpu;
10710
10711 if (unlikely(!cpuacct_subsys.active))
10712 return;
10713
10714 cpu = task_cpu(tsk);
10715
10716 rcu_read_lock();
10717
10718 ca = task_ca(tsk);
10719
10720 for (; ca; ca = ca->parent) {
10721 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10722 *cpuusage += cputime;
10723 }
10724
10725 rcu_read_unlock();
10726 }
10727
10728 /*
10729 * Charge the system/user time to the task's accounting group.
10730 */
10731 static void cpuacct_update_stats(struct task_struct *tsk,
10732 enum cpuacct_stat_index idx, cputime_t val)
10733 {
10734 struct cpuacct *ca;
10735
10736 if (unlikely(!cpuacct_subsys.active))
10737 return;
10738
10739 rcu_read_lock();
10740 ca = task_ca(tsk);
10741
10742 do {
10743 percpu_counter_add(&ca->cpustat[idx], val);
10744 ca = ca->parent;
10745 } while (ca);
10746 rcu_read_unlock();
10747 }
10748
10749 struct cgroup_subsys cpuacct_subsys = {
10750 .name = "cpuacct",
10751 .create = cpuacct_create,
10752 .destroy = cpuacct_destroy,
10753 .populate = cpuacct_populate,
10754 .subsys_id = cpuacct_subsys_id,
10755 };
10756 #endif /* CONFIG_CGROUP_CPUACCT */
10757
10758 #ifndef CONFIG_SMP
10759
10760 int rcu_expedited_torture_stats(char *page)
10761 {
10762 return 0;
10763 }
10764 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10765
10766 void synchronize_sched_expedited(void)
10767 {
10768 }
10769 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10770
10771 #else /* #ifndef CONFIG_SMP */
10772
10773 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10774 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10775
10776 #define RCU_EXPEDITED_STATE_POST -2
10777 #define RCU_EXPEDITED_STATE_IDLE -1
10778
10779 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10780
10781 int rcu_expedited_torture_stats(char *page)
10782 {
10783 int cnt = 0;
10784 int cpu;
10785
10786 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10787 for_each_online_cpu(cpu) {
10788 cnt += sprintf(&page[cnt], " %d:%d",
10789 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10790 }
10791 cnt += sprintf(&page[cnt], "\n");
10792 return cnt;
10793 }
10794 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10795
10796 static long synchronize_sched_expedited_count;
10797
10798 /*
10799 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10800 * approach to force grace period to end quickly. This consumes
10801 * significant time on all CPUs, and is thus not recommended for
10802 * any sort of common-case code.
10803 *
10804 * Note that it is illegal to call this function while holding any
10805 * lock that is acquired by a CPU-hotplug notifier. Failing to
10806 * observe this restriction will result in deadlock.
10807 */
10808 void synchronize_sched_expedited(void)
10809 {
10810 int cpu;
10811 unsigned long flags;
10812 bool need_full_sync = 0;
10813 struct rq *rq;
10814 struct migration_req *req;
10815 long snap;
10816 int trycount = 0;
10817
10818 smp_mb(); /* ensure prior mod happens before capturing snap. */
10819 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10820 get_online_cpus();
10821 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10822 put_online_cpus();
10823 if (trycount++ < 10)
10824 udelay(trycount * num_online_cpus());
10825 else {
10826 synchronize_sched();
10827 return;
10828 }
10829 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10830 smp_mb(); /* ensure test happens before caller kfree */
10831 return;
10832 }
10833 get_online_cpus();
10834 }
10835 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10836 for_each_online_cpu(cpu) {
10837 rq = cpu_rq(cpu);
10838 req = &per_cpu(rcu_migration_req, cpu);
10839 init_completion(&req->done);
10840 req->task = NULL;
10841 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10842 spin_lock_irqsave(&rq->lock, flags);
10843 list_add(&req->list, &rq->migration_queue);
10844 spin_unlock_irqrestore(&rq->lock, flags);
10845 wake_up_process(rq->migration_thread);
10846 }
10847 for_each_online_cpu(cpu) {
10848 rcu_expedited_state = cpu;
10849 req = &per_cpu(rcu_migration_req, cpu);
10850 rq = cpu_rq(cpu);
10851 wait_for_completion(&req->done);
10852 spin_lock_irqsave(&rq->lock, flags);
10853 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10854 need_full_sync = 1;
10855 req->dest_cpu = RCU_MIGRATION_IDLE;
10856 spin_unlock_irqrestore(&rq->lock, flags);
10857 }
10858 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10859 mutex_unlock(&rcu_sched_expedited_mutex);
10860 put_online_cpus();
10861 if (need_full_sync)
10862 synchronize_sched();
10863 }
10864 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10865
10866 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.377196 seconds and 6 git commands to generate.