sched: Weaken SD_POWERSAVINGS_BALANCE
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 #ifdef CONFIG_SMP
380 static int root_task_group_empty(void)
381 {
382 return 1;
383 }
384 #endif
385
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 static inline struct task_group *task_group(struct task_struct *p)
388 {
389 return NULL;
390 }
391
392 #endif /* CONFIG_GROUP_SCHED */
393
394 /* CFS-related fields in a runqueue */
395 struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
399 u64 exec_clock;
400 u64 min_vruntime;
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
412 struct sched_entity *curr, *next, *last;
413
414 unsigned int nr_spread_over;
415
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
429
430 #ifdef CONFIG_SMP
431 /*
432 * the part of load.weight contributed by tasks
433 */
434 unsigned long task_weight;
435
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
443
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
453 #endif
454 #endif
455 };
456
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned long rt_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 int next; /* next highest */
466 #endif
467 } highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474 #endif
475 int rt_throttled;
476 u64 rt_time;
477 u64 rt_runtime;
478 /* Nests inside the rq lock: */
479 spinlock_t rt_runtime_lock;
480
481 #ifdef CONFIG_RT_GROUP_SCHED
482 unsigned long rt_nr_boosted;
483
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488 #endif
489 };
490
491 #ifdef CONFIG_SMP
492
493 /*
494 * We add the notion of a root-domain which will be used to define per-domain
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
500 */
501 struct root_domain {
502 atomic_t refcount;
503 cpumask_var_t span;
504 cpumask_var_t online;
505
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 atomic_t rto_count;
512 #ifdef CONFIG_SMP
513 struct cpupri cpupri;
514 #endif
515 };
516
517 /*
518 * By default the system creates a single root-domain with all cpus as
519 * members (mimicking the global state we have today).
520 */
521 static struct root_domain def_root_domain;
522
523 #endif
524
525 /*
526 * This is the main, per-CPU runqueue data structure.
527 *
528 * Locking rule: those places that want to lock multiple runqueues
529 * (such as the load balancing or the thread migration code), lock
530 * acquire operations must be ordered by ascending &runqueue.
531 */
532 struct rq {
533 /* runqueue lock: */
534 spinlock_t lock;
535
536 /*
537 * nr_running and cpu_load should be in the same cacheline because
538 * remote CPUs use both these fields when doing load calculation.
539 */
540 unsigned long nr_running;
541 #define CPU_LOAD_IDX_MAX 5
542 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
543 #ifdef CONFIG_NO_HZ
544 unsigned long last_tick_seen;
545 unsigned char in_nohz_recently;
546 #endif
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
549 unsigned long nr_load_updates;
550 u64 nr_switches;
551 u64 nr_migrations_in;
552
553 struct cfs_rq cfs;
554 struct rt_rq rt;
555
556 #ifdef CONFIG_FAIR_GROUP_SCHED
557 /* list of leaf cfs_rq on this cpu: */
558 struct list_head leaf_cfs_rq_list;
559 #endif
560 #ifdef CONFIG_RT_GROUP_SCHED
561 struct list_head leaf_rt_rq_list;
562 #endif
563
564 /*
565 * This is part of a global counter where only the total sum
566 * over all CPUs matters. A task can increase this counter on
567 * one CPU and if it got migrated afterwards it may decrease
568 * it on another CPU. Always updated under the runqueue lock:
569 */
570 unsigned long nr_uninterruptible;
571
572 struct task_struct *curr, *idle;
573 unsigned long next_balance;
574 struct mm_struct *prev_mm;
575
576 u64 clock;
577
578 atomic_t nr_iowait;
579
580 #ifdef CONFIG_SMP
581 struct root_domain *rd;
582 struct sched_domain *sd;
583
584 unsigned char idle_at_tick;
585 /* For active balancing */
586 int post_schedule;
587 int active_balance;
588 int push_cpu;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
593 unsigned long avg_load_per_task;
594
595 struct task_struct *migration_thread;
596 struct list_head migration_queue;
597
598 u64 rt_avg;
599 u64 age_stamp;
600 #endif
601
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
605
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
613
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
619
620 /* sys_sched_yield() stats */
621 unsigned int yld_count;
622
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
635 };
636
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
638
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
640 {
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
642 }
643
644 static inline int cpu_of(struct rq *rq)
645 {
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
651 }
652
653 /*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
662
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667 #define raw_rq() (&__raw_get_cpu_var(runqueues))
668
669 inline void update_rq_clock(struct rq *rq)
670 {
671 rq->clock = sched_clock_cpu(cpu_of(rq));
672 }
673
674 /*
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 */
677 #ifdef CONFIG_SCHED_DEBUG
678 # define const_debug __read_mostly
679 #else
680 # define const_debug static const
681 #endif
682
683 /**
684 * runqueue_is_locked
685 *
686 * Returns true if the current cpu runqueue is locked.
687 * This interface allows printk to be called with the runqueue lock
688 * held and know whether or not it is OK to wake up the klogd.
689 */
690 int runqueue_is_locked(void)
691 {
692 int cpu = get_cpu();
693 struct rq *rq = cpu_rq(cpu);
694 int ret;
695
696 ret = spin_is_locked(&rq->lock);
697 put_cpu();
698 return ret;
699 }
700
701 /*
702 * Debugging: various feature bits
703 */
704
705 #define SCHED_FEAT(name, enabled) \
706 __SCHED_FEAT_##name ,
707
708 enum {
709 #include "sched_features.h"
710 };
711
712 #undef SCHED_FEAT
713
714 #define SCHED_FEAT(name, enabled) \
715 (1UL << __SCHED_FEAT_##name) * enabled |
716
717 const_debug unsigned int sysctl_sched_features =
718 #include "sched_features.h"
719 0;
720
721 #undef SCHED_FEAT
722
723 #ifdef CONFIG_SCHED_DEBUG
724 #define SCHED_FEAT(name, enabled) \
725 #name ,
726
727 static __read_mostly char *sched_feat_names[] = {
728 #include "sched_features.h"
729 NULL
730 };
731
732 #undef SCHED_FEAT
733
734 static int sched_feat_show(struct seq_file *m, void *v)
735 {
736 int i;
737
738 for (i = 0; sched_feat_names[i]; i++) {
739 if (!(sysctl_sched_features & (1UL << i)))
740 seq_puts(m, "NO_");
741 seq_printf(m, "%s ", sched_feat_names[i]);
742 }
743 seq_puts(m, "\n");
744
745 return 0;
746 }
747
748 static ssize_t
749 sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
751 {
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
756
757 if (cnt > 63)
758 cnt = 63;
759
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
762
763 buf[cnt] = 0;
764
765 if (strncmp(buf, "NO_", 3) == 0) {
766 neg = 1;
767 cmp += 3;
768 }
769
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
772
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
779 }
780 }
781
782 if (!sched_feat_names[i])
783 return -EINVAL;
784
785 filp->f_pos += cnt;
786
787 return cnt;
788 }
789
790 static int sched_feat_open(struct inode *inode, struct file *filp)
791 {
792 return single_open(filp, sched_feat_show, NULL);
793 }
794
795 static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .write = sched_feat_write,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
801 };
802
803 static __init int sched_init_debug(void)
804 {
805 debugfs_create_file("sched_features", 0644, NULL, NULL,
806 &sched_feat_fops);
807
808 return 0;
809 }
810 late_initcall(sched_init_debug);
811
812 #endif
813
814 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
815
816 /*
817 * Number of tasks to iterate in a single balance run.
818 * Limited because this is done with IRQs disabled.
819 */
820 const_debug unsigned int sysctl_sched_nr_migrate = 32;
821
822 /*
823 * ratelimit for updating the group shares.
824 * default: 0.25ms
825 */
826 unsigned int sysctl_sched_shares_ratelimit = 250000;
827
828 /*
829 * Inject some fuzzyness into changing the per-cpu group shares
830 * this avoids remote rq-locks at the expense of fairness.
831 * default: 4
832 */
833 unsigned int sysctl_sched_shares_thresh = 4;
834
835 /*
836 * period over which we average the RT time consumption, measured
837 * in ms.
838 *
839 * default: 1s
840 */
841 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
842
843 /*
844 * period over which we measure -rt task cpu usage in us.
845 * default: 1s
846 */
847 unsigned int sysctl_sched_rt_period = 1000000;
848
849 static __read_mostly int scheduler_running;
850
851 /*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855 int sysctl_sched_rt_runtime = 950000;
856
857 static inline u64 global_rt_period(void)
858 {
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860 }
861
862 static inline u64 global_rt_runtime(void)
863 {
864 if (sysctl_sched_rt_runtime < 0)
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868 }
869
870 #ifndef prepare_arch_switch
871 # define prepare_arch_switch(next) do { } while (0)
872 #endif
873 #ifndef finish_arch_switch
874 # define finish_arch_switch(prev) do { } while (0)
875 #endif
876
877 static inline int task_current(struct rq *rq, struct task_struct *p)
878 {
879 return rq->curr == p;
880 }
881
882 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
883 static inline int task_running(struct rq *rq, struct task_struct *p)
884 {
885 return task_current(rq, p);
886 }
887
888 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 {
890 }
891
892 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
893 {
894 #ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897 #endif
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
905 spin_unlock_irq(&rq->lock);
906 }
907
908 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
909 static inline int task_running(struct rq *rq, struct task_struct *p)
910 {
911 #ifdef CONFIG_SMP
912 return p->oncpu;
913 #else
914 return task_current(rq, p);
915 #endif
916 }
917
918 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
919 {
920 #ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927 #endif
928 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930 #else
931 spin_unlock(&rq->lock);
932 #endif
933 }
934
935 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
936 {
937 #ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945 #endif
946 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
948 #endif
949 }
950 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
951
952 /*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
956 static inline struct rq *__task_rq_lock(struct task_struct *p)
957 __acquires(rq->lock)
958 {
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
964 spin_unlock(&rq->lock);
965 }
966 }
967
968 /*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
970 * interrupts. Note the ordering: we can safely lookup the task_rq without
971 * explicitly disabling preemption.
972 */
973 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
974 __acquires(rq->lock)
975 {
976 struct rq *rq;
977
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
984 spin_unlock_irqrestore(&rq->lock, *flags);
985 }
986 }
987
988 void task_rq_unlock_wait(struct task_struct *p)
989 {
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994 }
995
996 static void __task_rq_unlock(struct rq *rq)
997 __releases(rq->lock)
998 {
999 spin_unlock(&rq->lock);
1000 }
1001
1002 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1003 __releases(rq->lock)
1004 {
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006 }
1007
1008 /*
1009 * this_rq_lock - lock this runqueue and disable interrupts.
1010 */
1011 static struct rq *this_rq_lock(void)
1012 __acquires(rq->lock)
1013 {
1014 struct rq *rq;
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021 }
1022
1023 #ifdef CONFIG_SCHED_HRTICK
1024 /*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
1034
1035 /*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040 static inline int hrtick_enabled(struct rq *rq)
1041 {
1042 if (!sched_feat(HRTICK))
1043 return 0;
1044 if (!cpu_active(cpu_of(rq)))
1045 return 0;
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047 }
1048
1049 static void hrtick_clear(struct rq *rq)
1050 {
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053 }
1054
1055 /*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060 {
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
1066 update_rq_clock(rq);
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071 }
1072
1073 #ifdef CONFIG_SMP
1074 /*
1075 * called from hardirq (IPI) context
1076 */
1077 static void __hrtick_start(void *arg)
1078 {
1079 struct rq *rq = arg;
1080
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
1085 }
1086
1087 /*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092 static void hrtick_start(struct rq *rq, u64 delay)
1093 {
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1096
1097 hrtimer_set_expires(timer, time);
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1103 rq->hrtick_csd_pending = 1;
1104 }
1105 }
1106
1107 static int
1108 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109 {
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hrtick_clear(cpu_rq(cpu));
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124 }
1125
1126 static __init void init_hrtick(void)
1127 {
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129 }
1130 #else
1131 /*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136 static void hrtick_start(struct rq *rq, u64 delay)
1137 {
1138 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1139 HRTIMER_MODE_REL_PINNED, 0);
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SMP */
1146
1147 static void init_rq_hrtick(struct rq *rq)
1148 {
1149 #ifdef CONFIG_SMP
1150 rq->hrtick_csd_pending = 0;
1151
1152 rq->hrtick_csd.flags = 0;
1153 rq->hrtick_csd.func = __hrtick_start;
1154 rq->hrtick_csd.info = rq;
1155 #endif
1156
1157 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1158 rq->hrtick_timer.function = hrtick;
1159 }
1160 #else /* CONFIG_SCHED_HRTICK */
1161 static inline void hrtick_clear(struct rq *rq)
1162 {
1163 }
1164
1165 static inline void init_rq_hrtick(struct rq *rq)
1166 {
1167 }
1168
1169 static inline void init_hrtick(void)
1170 {
1171 }
1172 #endif /* CONFIG_SCHED_HRTICK */
1173
1174 /*
1175 * resched_task - mark a task 'to be rescheduled now'.
1176 *
1177 * On UP this means the setting of the need_resched flag, on SMP it
1178 * might also involve a cross-CPU call to trigger the scheduler on
1179 * the target CPU.
1180 */
1181 #ifdef CONFIG_SMP
1182
1183 #ifndef tsk_is_polling
1184 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185 #endif
1186
1187 static void resched_task(struct task_struct *p)
1188 {
1189 int cpu;
1190
1191 assert_spin_locked(&task_rq(p)->lock);
1192
1193 if (test_tsk_need_resched(p))
1194 return;
1195
1196 set_tsk_need_resched(p);
1197
1198 cpu = task_cpu(p);
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(p))
1205 smp_send_reschedule(cpu);
1206 }
1207
1208 static void resched_cpu(int cpu)
1209 {
1210 struct rq *rq = cpu_rq(cpu);
1211 unsigned long flags;
1212
1213 if (!spin_trylock_irqsave(&rq->lock, flags))
1214 return;
1215 resched_task(cpu_curr(cpu));
1216 spin_unlock_irqrestore(&rq->lock, flags);
1217 }
1218
1219 #ifdef CONFIG_NO_HZ
1220 /*
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1229 */
1230 void wake_up_idle_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233
1234 if (cpu == smp_processor_id())
1235 return;
1236
1237 /*
1238 * This is safe, as this function is called with the timer
1239 * wheel base lock of (cpu) held. When the CPU is on the way
1240 * to idle and has not yet set rq->curr to idle then it will
1241 * be serialized on the timer wheel base lock and take the new
1242 * timer into account automatically.
1243 */
1244 if (rq->curr != rq->idle)
1245 return;
1246
1247 /*
1248 * We can set TIF_RESCHED on the idle task of the other CPU
1249 * lockless. The worst case is that the other CPU runs the
1250 * idle task through an additional NOOP schedule()
1251 */
1252 set_tsk_need_resched(rq->idle);
1253
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(rq->idle))
1257 smp_send_reschedule(cpu);
1258 }
1259 #endif /* CONFIG_NO_HZ */
1260
1261 static u64 sched_avg_period(void)
1262 {
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264 }
1265
1266 static void sched_avg_update(struct rq *rq)
1267 {
1268 s64 period = sched_avg_period();
1269
1270 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274 }
1275
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277 {
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280 }
1281
1282 #else /* !CONFIG_SMP */
1283 static void resched_task(struct task_struct *p)
1284 {
1285 assert_spin_locked(&task_rq(p)->lock);
1286 set_tsk_need_resched(p);
1287 }
1288
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290 {
1291 }
1292 #endif /* CONFIG_SMP */
1293
1294 #if BITS_PER_LONG == 32
1295 # define WMULT_CONST (~0UL)
1296 #else
1297 # define WMULT_CONST (1UL << 32)
1298 #endif
1299
1300 #define WMULT_SHIFT 32
1301
1302 /*
1303 * Shift right and round:
1304 */
1305 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1306
1307 /*
1308 * delta *= weight / lw
1309 */
1310 static unsigned long
1311 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313 {
1314 u64 tmp;
1315
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
1328 if (unlikely(tmp > WMULT_CONST))
1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1330 WMULT_SHIFT/2);
1331 else
1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333
1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 }
1336
1337 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 {
1339 lw->weight += inc;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 {
1345 lw->weight -= dec;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404 /*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409 struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413 };
1414
1415 #ifdef CONFIG_SMP
1416 static unsigned long
1417 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422 static int
1423 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
1426 #endif
1427
1428 /* Time spent by the tasks of the cpu accounting group executing in ... */
1429 enum cpuacct_stat_index {
1430 CPUACCT_STAT_USER, /* ... user mode */
1431 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1432
1433 CPUACCT_STAT_NSTATS,
1434 };
1435
1436 #ifdef CONFIG_CGROUP_CPUACCT
1437 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1438 static void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val);
1440 #else
1441 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1442 static inline void cpuacct_update_stats(struct task_struct *tsk,
1443 enum cpuacct_stat_index idx, cputime_t val) {}
1444 #endif
1445
1446 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1447 {
1448 update_load_add(&rq->load, load);
1449 }
1450
1451 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1452 {
1453 update_load_sub(&rq->load, load);
1454 }
1455
1456 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1457 typedef int (*tg_visitor)(struct task_group *, void *);
1458
1459 /*
1460 * Iterate the full tree, calling @down when first entering a node and @up when
1461 * leaving it for the final time.
1462 */
1463 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1464 {
1465 struct task_group *parent, *child;
1466 int ret;
1467
1468 rcu_read_lock();
1469 parent = &root_task_group;
1470 down:
1471 ret = (*down)(parent, data);
1472 if (ret)
1473 goto out_unlock;
1474 list_for_each_entry_rcu(child, &parent->children, siblings) {
1475 parent = child;
1476 goto down;
1477
1478 up:
1479 continue;
1480 }
1481 ret = (*up)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 out_unlock:
1490 rcu_read_unlock();
1491
1492 return ret;
1493 }
1494
1495 static int tg_nop(struct task_group *tg, void *data)
1496 {
1497 return 0;
1498 }
1499 #endif
1500
1501 #ifdef CONFIG_SMP
1502 /* Used instead of source_load when we know the type == 0 */
1503 static unsigned long weighted_cpuload(const int cpu)
1504 {
1505 return cpu_rq(cpu)->load.weight;
1506 }
1507
1508 /*
1509 * Return a low guess at the load of a migration-source cpu weighted
1510 * according to the scheduling class and "nice" value.
1511 *
1512 * We want to under-estimate the load of migration sources, to
1513 * balance conservatively.
1514 */
1515 static unsigned long source_load(int cpu, int type)
1516 {
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1519
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1522
1523 return min(rq->cpu_load[type-1], total);
1524 }
1525
1526 /*
1527 * Return a high guess at the load of a migration-target cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 */
1530 static unsigned long target_load(int cpu, int type)
1531 {
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long total = weighted_cpuload(cpu);
1534
1535 if (type == 0 || !sched_feat(LB_BIAS))
1536 return total;
1537
1538 return max(rq->cpu_load[type-1], total);
1539 }
1540
1541 static struct sched_group *group_of(int cpu)
1542 {
1543 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1544
1545 if (!sd)
1546 return NULL;
1547
1548 return sd->groups;
1549 }
1550
1551 static unsigned long power_of(int cpu)
1552 {
1553 struct sched_group *group = group_of(cpu);
1554
1555 if (!group)
1556 return SCHED_LOAD_SCALE;
1557
1558 return group->cpu_power;
1559 }
1560
1561 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1562
1563 static unsigned long cpu_avg_load_per_task(int cpu)
1564 {
1565 struct rq *rq = cpu_rq(cpu);
1566 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1567
1568 if (nr_running)
1569 rq->avg_load_per_task = rq->load.weight / nr_running;
1570 else
1571 rq->avg_load_per_task = 0;
1572
1573 return rq->avg_load_per_task;
1574 }
1575
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1577
1578 struct update_shares_data {
1579 unsigned long rq_weight[NR_CPUS];
1580 };
1581
1582 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1583
1584 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1585
1586 /*
1587 * Calculate and set the cpu's group shares.
1588 */
1589 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1590 unsigned long sd_shares,
1591 unsigned long sd_rq_weight,
1592 struct update_shares_data *usd)
1593 {
1594 unsigned long shares, rq_weight;
1595 int boost = 0;
1596
1597 rq_weight = usd->rq_weight[cpu];
1598 if (!rq_weight) {
1599 boost = 1;
1600 rq_weight = NICE_0_LOAD;
1601 }
1602
1603 /*
1604 * \Sum_j shares_j * rq_weight_i
1605 * shares_i = -----------------------------
1606 * \Sum_j rq_weight_j
1607 */
1608 shares = (sd_shares * rq_weight) / sd_rq_weight;
1609 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1610
1611 if (abs(shares - tg->se[cpu]->load.weight) >
1612 sysctl_sched_shares_thresh) {
1613 struct rq *rq = cpu_rq(cpu);
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&rq->lock, flags);
1617 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1618 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1619 __set_se_shares(tg->se[cpu], shares);
1620 spin_unlock_irqrestore(&rq->lock, flags);
1621 }
1622 }
1623
1624 /*
1625 * Re-compute the task group their per cpu shares over the given domain.
1626 * This needs to be done in a bottom-up fashion because the rq weight of a
1627 * parent group depends on the shares of its child groups.
1628 */
1629 static int tg_shares_up(struct task_group *tg, void *data)
1630 {
1631 unsigned long weight, rq_weight = 0, shares = 0;
1632 struct update_shares_data *usd;
1633 struct sched_domain *sd = data;
1634 unsigned long flags;
1635 int i;
1636
1637 if (!tg->se[0])
1638 return 0;
1639
1640 local_irq_save(flags);
1641 usd = &__get_cpu_var(update_shares_data);
1642
1643 for_each_cpu(i, sched_domain_span(sd)) {
1644 weight = tg->cfs_rq[i]->load.weight;
1645 usd->rq_weight[i] = weight;
1646
1647 /*
1648 * If there are currently no tasks on the cpu pretend there
1649 * is one of average load so that when a new task gets to
1650 * run here it will not get delayed by group starvation.
1651 */
1652 if (!weight)
1653 weight = NICE_0_LOAD;
1654
1655 rq_weight += weight;
1656 shares += tg->cfs_rq[i]->shares;
1657 }
1658
1659 if ((!shares && rq_weight) || shares > tg->shares)
1660 shares = tg->shares;
1661
1662 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1663 shares = tg->shares;
1664
1665 for_each_cpu(i, sched_domain_span(sd))
1666 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1667
1668 local_irq_restore(flags);
1669
1670 return 0;
1671 }
1672
1673 /*
1674 * Compute the cpu's hierarchical load factor for each task group.
1675 * This needs to be done in a top-down fashion because the load of a child
1676 * group is a fraction of its parents load.
1677 */
1678 static int tg_load_down(struct task_group *tg, void *data)
1679 {
1680 unsigned long load;
1681 long cpu = (long)data;
1682
1683 if (!tg->parent) {
1684 load = cpu_rq(cpu)->load.weight;
1685 } else {
1686 load = tg->parent->cfs_rq[cpu]->h_load;
1687 load *= tg->cfs_rq[cpu]->shares;
1688 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1689 }
1690
1691 tg->cfs_rq[cpu]->h_load = load;
1692
1693 return 0;
1694 }
1695
1696 static void update_shares(struct sched_domain *sd)
1697 {
1698 s64 elapsed;
1699 u64 now;
1700
1701 if (root_task_group_empty())
1702 return;
1703
1704 now = cpu_clock(raw_smp_processor_id());
1705 elapsed = now - sd->last_update;
1706
1707 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1708 sd->last_update = now;
1709 walk_tg_tree(tg_nop, tg_shares_up, sd);
1710 }
1711 }
1712
1713 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1714 {
1715 if (root_task_group_empty())
1716 return;
1717
1718 spin_unlock(&rq->lock);
1719 update_shares(sd);
1720 spin_lock(&rq->lock);
1721 }
1722
1723 static void update_h_load(long cpu)
1724 {
1725 if (root_task_group_empty())
1726 return;
1727
1728 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1729 }
1730
1731 #else
1732
1733 static inline void update_shares(struct sched_domain *sd)
1734 {
1735 }
1736
1737 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1738 {
1739 }
1740
1741 #endif
1742
1743 #ifdef CONFIG_PREEMPT
1744
1745 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1746
1747 /*
1748 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1749 * way at the expense of forcing extra atomic operations in all
1750 * invocations. This assures that the double_lock is acquired using the
1751 * same underlying policy as the spinlock_t on this architecture, which
1752 * reduces latency compared to the unfair variant below. However, it
1753 * also adds more overhead and therefore may reduce throughput.
1754 */
1755 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(this_rq->lock)
1757 __acquires(busiest->lock)
1758 __acquires(this_rq->lock)
1759 {
1760 spin_unlock(&this_rq->lock);
1761 double_rq_lock(this_rq, busiest);
1762
1763 return 1;
1764 }
1765
1766 #else
1767 /*
1768 * Unfair double_lock_balance: Optimizes throughput at the expense of
1769 * latency by eliminating extra atomic operations when the locks are
1770 * already in proper order on entry. This favors lower cpu-ids and will
1771 * grant the double lock to lower cpus over higher ids under contention,
1772 * regardless of entry order into the function.
1773 */
1774 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1775 __releases(this_rq->lock)
1776 __acquires(busiest->lock)
1777 __acquires(this_rq->lock)
1778 {
1779 int ret = 0;
1780
1781 if (unlikely(!spin_trylock(&busiest->lock))) {
1782 if (busiest < this_rq) {
1783 spin_unlock(&this_rq->lock);
1784 spin_lock(&busiest->lock);
1785 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1786 ret = 1;
1787 } else
1788 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1789 }
1790 return ret;
1791 }
1792
1793 #endif /* CONFIG_PREEMPT */
1794
1795 /*
1796 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1797 */
1798 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1799 {
1800 if (unlikely(!irqs_disabled())) {
1801 /* printk() doesn't work good under rq->lock */
1802 spin_unlock(&this_rq->lock);
1803 BUG_ON(1);
1804 }
1805
1806 return _double_lock_balance(this_rq, busiest);
1807 }
1808
1809 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1810 __releases(busiest->lock)
1811 {
1812 spin_unlock(&busiest->lock);
1813 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1814 }
1815 #endif
1816
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819 {
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1823 }
1824 #endif
1825
1826 static void calc_load_account_active(struct rq *this_rq);
1827
1828 #include "sched_stats.h"
1829 #include "sched_idletask.c"
1830 #include "sched_fair.c"
1831 #include "sched_rt.c"
1832 #ifdef CONFIG_SCHED_DEBUG
1833 # include "sched_debug.c"
1834 #endif
1835
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1839
1840 static void inc_nr_running(struct rq *rq)
1841 {
1842 rq->nr_running++;
1843 }
1844
1845 static void dec_nr_running(struct rq *rq)
1846 {
1847 rq->nr_running--;
1848 }
1849
1850 static void set_load_weight(struct task_struct *p)
1851 {
1852 if (task_has_rt_policy(p)) {
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
1857
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
1866
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 }
1870
1871 static void update_avg(u64 *avg, u64 sample)
1872 {
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875 }
1876
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1878 {
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
1882 sched_info_queued(p);
1883 p->sched_class->enqueue_task(rq, p, wakeup);
1884 p->se.on_rq = 1;
1885 }
1886
1887 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1888 {
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
1898 }
1899
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1903 }
1904
1905 /*
1906 * __normal_prio - return the priority that is based on the static prio
1907 */
1908 static inline int __normal_prio(struct task_struct *p)
1909 {
1910 return p->static_prio;
1911 }
1912
1913 /*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
1920 static inline int normal_prio(struct task_struct *p)
1921 {
1922 int prio;
1923
1924 if (task_has_rt_policy(p))
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929 }
1930
1931 /*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
1938 static int effective_prio(struct task_struct *p)
1939 {
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949 }
1950
1951 /*
1952 * activate_task - move a task to the runqueue.
1953 */
1954 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible--;
1958
1959 enqueue_task(rq, p, wakeup);
1960 inc_nr_running(rq);
1961 }
1962
1963 /*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
1966 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1967 {
1968 if (task_contributes_to_load(p))
1969 rq->nr_uninterruptible++;
1970
1971 dequeue_task(rq, p, sleep);
1972 dec_nr_running(rq);
1973 }
1974
1975 /**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
1979 inline int task_curr(const struct task_struct *p)
1980 {
1981 return cpu_curr(task_cpu(p)) == p;
1982 }
1983
1984 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1985 {
1986 set_task_rq(p, cpu);
1987 #ifdef CONFIG_SMP
1988 /*
1989 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1990 * successfuly executed on another CPU. We must ensure that updates of
1991 * per-task data have been completed by this moment.
1992 */
1993 smp_wmb();
1994 task_thread_info(p)->cpu = cpu;
1995 #endif
1996 }
1997
1998 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1999 const struct sched_class *prev_class,
2000 int oldprio, int running)
2001 {
2002 if (prev_class != p->sched_class) {
2003 if (prev_class->switched_from)
2004 prev_class->switched_from(rq, p, running);
2005 p->sched_class->switched_to(rq, p, running);
2006 } else
2007 p->sched_class->prio_changed(rq, p, oldprio, running);
2008 }
2009
2010 #ifdef CONFIG_SMP
2011 /*
2012 * Is this task likely cache-hot:
2013 */
2014 static int
2015 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2016 {
2017 s64 delta;
2018
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
2022 if (sched_feat(CACHE_HOT_BUDDY) &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2026
2027 if (p->sched_class != &fair_sched_class)
2028 return 0;
2029
2030 if (sysctl_sched_migration_cost == -1)
2031 return 1;
2032 if (sysctl_sched_migration_cost == 0)
2033 return 0;
2034
2035 delta = now - p->se.exec_start;
2036
2037 return delta < (s64)sysctl_sched_migration_cost;
2038 }
2039
2040
2041 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2042 {
2043 int old_cpu = task_cpu(p);
2044 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2045 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2046 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2047 u64 clock_offset;
2048
2049 clock_offset = old_rq->clock - new_rq->clock;
2050
2051 trace_sched_migrate_task(p, new_cpu);
2052
2053 #ifdef CONFIG_SCHEDSTATS
2054 if (p->se.wait_start)
2055 p->se.wait_start -= clock_offset;
2056 if (p->se.sleep_start)
2057 p->se.sleep_start -= clock_offset;
2058 if (p->se.block_start)
2059 p->se.block_start -= clock_offset;
2060 #endif
2061 if (old_cpu != new_cpu) {
2062 p->se.nr_migrations++;
2063 new_rq->nr_migrations_in++;
2064 #ifdef CONFIG_SCHEDSTATS
2065 if (task_hot(p, old_rq->clock, NULL))
2066 schedstat_inc(p, se.nr_forced2_migrations);
2067 #endif
2068 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2069 1, 1, NULL, 0);
2070 }
2071 p->se.vruntime -= old_cfsrq->min_vruntime -
2072 new_cfsrq->min_vruntime;
2073
2074 __set_task_cpu(p, new_cpu);
2075 }
2076
2077 struct migration_req {
2078 struct list_head list;
2079
2080 struct task_struct *task;
2081 int dest_cpu;
2082
2083 struct completion done;
2084 };
2085
2086 /*
2087 * The task's runqueue lock must be held.
2088 * Returns true if you have to wait for migration thread.
2089 */
2090 static int
2091 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2092 {
2093 struct rq *rq = task_rq(p);
2094
2095 /*
2096 * If the task is not on a runqueue (and not running), then
2097 * it is sufficient to simply update the task's cpu field.
2098 */
2099 if (!p->se.on_rq && !task_running(rq, p)) {
2100 set_task_cpu(p, dest_cpu);
2101 return 0;
2102 }
2103
2104 init_completion(&req->done);
2105 req->task = p;
2106 req->dest_cpu = dest_cpu;
2107 list_add(&req->list, &rq->migration_queue);
2108
2109 return 1;
2110 }
2111
2112 /*
2113 * wait_task_context_switch - wait for a thread to complete at least one
2114 * context switch.
2115 *
2116 * @p must not be current.
2117 */
2118 void wait_task_context_switch(struct task_struct *p)
2119 {
2120 unsigned long nvcsw, nivcsw, flags;
2121 int running;
2122 struct rq *rq;
2123
2124 nvcsw = p->nvcsw;
2125 nivcsw = p->nivcsw;
2126 for (;;) {
2127 /*
2128 * The runqueue is assigned before the actual context
2129 * switch. We need to take the runqueue lock.
2130 *
2131 * We could check initially without the lock but it is
2132 * very likely that we need to take the lock in every
2133 * iteration.
2134 */
2135 rq = task_rq_lock(p, &flags);
2136 running = task_running(rq, p);
2137 task_rq_unlock(rq, &flags);
2138
2139 if (likely(!running))
2140 break;
2141 /*
2142 * The switch count is incremented before the actual
2143 * context switch. We thus wait for two switches to be
2144 * sure at least one completed.
2145 */
2146 if ((p->nvcsw - nvcsw) > 1)
2147 break;
2148 if ((p->nivcsw - nivcsw) > 1)
2149 break;
2150
2151 cpu_relax();
2152 }
2153 }
2154
2155 /*
2156 * wait_task_inactive - wait for a thread to unschedule.
2157 *
2158 * If @match_state is nonzero, it's the @p->state value just checked and
2159 * not expected to change. If it changes, i.e. @p might have woken up,
2160 * then return zero. When we succeed in waiting for @p to be off its CPU,
2161 * we return a positive number (its total switch count). If a second call
2162 * a short while later returns the same number, the caller can be sure that
2163 * @p has remained unscheduled the whole time.
2164 *
2165 * The caller must ensure that the task *will* unschedule sometime soon,
2166 * else this function might spin for a *long* time. This function can't
2167 * be called with interrupts off, or it may introduce deadlock with
2168 * smp_call_function() if an IPI is sent by the same process we are
2169 * waiting to become inactive.
2170 */
2171 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2172 {
2173 unsigned long flags;
2174 int running, on_rq;
2175 unsigned long ncsw;
2176 struct rq *rq;
2177
2178 for (;;) {
2179 /*
2180 * We do the initial early heuristics without holding
2181 * any task-queue locks at all. We'll only try to get
2182 * the runqueue lock when things look like they will
2183 * work out!
2184 */
2185 rq = task_rq(p);
2186
2187 /*
2188 * If the task is actively running on another CPU
2189 * still, just relax and busy-wait without holding
2190 * any locks.
2191 *
2192 * NOTE! Since we don't hold any locks, it's not
2193 * even sure that "rq" stays as the right runqueue!
2194 * But we don't care, since "task_running()" will
2195 * return false if the runqueue has changed and p
2196 * is actually now running somewhere else!
2197 */
2198 while (task_running(rq, p)) {
2199 if (match_state && unlikely(p->state != match_state))
2200 return 0;
2201 cpu_relax();
2202 }
2203
2204 /*
2205 * Ok, time to look more closely! We need the rq
2206 * lock now, to be *sure*. If we're wrong, we'll
2207 * just go back and repeat.
2208 */
2209 rq = task_rq_lock(p, &flags);
2210 trace_sched_wait_task(rq, p);
2211 running = task_running(rq, p);
2212 on_rq = p->se.on_rq;
2213 ncsw = 0;
2214 if (!match_state || p->state == match_state)
2215 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2216 task_rq_unlock(rq, &flags);
2217
2218 /*
2219 * If it changed from the expected state, bail out now.
2220 */
2221 if (unlikely(!ncsw))
2222 break;
2223
2224 /*
2225 * Was it really running after all now that we
2226 * checked with the proper locks actually held?
2227 *
2228 * Oops. Go back and try again..
2229 */
2230 if (unlikely(running)) {
2231 cpu_relax();
2232 continue;
2233 }
2234
2235 /*
2236 * It's not enough that it's not actively running,
2237 * it must be off the runqueue _entirely_, and not
2238 * preempted!
2239 *
2240 * So if it was still runnable (but just not actively
2241 * running right now), it's preempted, and we should
2242 * yield - it could be a while.
2243 */
2244 if (unlikely(on_rq)) {
2245 schedule_timeout_uninterruptible(1);
2246 continue;
2247 }
2248
2249 /*
2250 * Ahh, all good. It wasn't running, and it wasn't
2251 * runnable, which means that it will never become
2252 * running in the future either. We're all done!
2253 */
2254 break;
2255 }
2256
2257 return ncsw;
2258 }
2259
2260 /***
2261 * kick_process - kick a running thread to enter/exit the kernel
2262 * @p: the to-be-kicked thread
2263 *
2264 * Cause a process which is running on another CPU to enter
2265 * kernel-mode, without any delay. (to get signals handled.)
2266 *
2267 * NOTE: this function doesnt have to take the runqueue lock,
2268 * because all it wants to ensure is that the remote task enters
2269 * the kernel. If the IPI races and the task has been migrated
2270 * to another CPU then no harm is done and the purpose has been
2271 * achieved as well.
2272 */
2273 void kick_process(struct task_struct *p)
2274 {
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if ((cpu != smp_processor_id()) && task_curr(p))
2280 smp_send_reschedule(cpu);
2281 preempt_enable();
2282 }
2283 EXPORT_SYMBOL_GPL(kick_process);
2284 #endif /* CONFIG_SMP */
2285
2286 /**
2287 * task_oncpu_function_call - call a function on the cpu on which a task runs
2288 * @p: the task to evaluate
2289 * @func: the function to be called
2290 * @info: the function call argument
2291 *
2292 * Calls the function @func when the task is currently running. This might
2293 * be on the current CPU, which just calls the function directly
2294 */
2295 void task_oncpu_function_call(struct task_struct *p,
2296 void (*func) (void *info), void *info)
2297 {
2298 int cpu;
2299
2300 preempt_disable();
2301 cpu = task_cpu(p);
2302 if (task_curr(p))
2303 smp_call_function_single(cpu, func, info, 1);
2304 preempt_enable();
2305 }
2306
2307 /***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2322 {
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2325 struct rq *rq;
2326
2327 if (!sched_feat(SYNC_WAKEUPS))
2328 sync = 0;
2329
2330 this_cpu = get_cpu();
2331
2332 smp_wmb();
2333 rq = task_rq_lock(p, &flags);
2334 update_rq_clock(rq);
2335 if (!(p->state & state))
2336 goto out;
2337
2338 if (p->se.on_rq)
2339 goto out_running;
2340
2341 cpu = task_cpu(p);
2342 orig_cpu = cpu;
2343
2344 #ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2347
2348 /*
2349 * In order to handle concurrent wakeups and release the rq->lock
2350 * we put the task in TASK_WAKING state.
2351 */
2352 p->state = TASK_WAKING;
2353 task_rq_unlock(rq, &flags);
2354
2355 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
2356 if (cpu != orig_cpu)
2357 set_task_cpu(p, cpu);
2358
2359 rq = task_rq_lock(p, &flags);
2360 WARN_ON(p->state != TASK_WAKING);
2361 cpu = task_cpu(p);
2362
2363 #ifdef CONFIG_SCHEDSTATS
2364 schedstat_inc(rq, ttwu_count);
2365 if (cpu == this_cpu)
2366 schedstat_inc(rq, ttwu_local);
2367 else {
2368 struct sched_domain *sd;
2369 for_each_domain(this_cpu, sd) {
2370 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2371 schedstat_inc(sd, ttwu_wake_remote);
2372 break;
2373 }
2374 }
2375 }
2376 #endif /* CONFIG_SCHEDSTATS */
2377
2378 out_activate:
2379 #endif /* CONFIG_SMP */
2380 schedstat_inc(p, se.nr_wakeups);
2381 if (sync)
2382 schedstat_inc(p, se.nr_wakeups_sync);
2383 if (orig_cpu != cpu)
2384 schedstat_inc(p, se.nr_wakeups_migrate);
2385 if (cpu == this_cpu)
2386 schedstat_inc(p, se.nr_wakeups_local);
2387 else
2388 schedstat_inc(p, se.nr_wakeups_remote);
2389 activate_task(rq, p, 1);
2390 success = 1;
2391
2392 /*
2393 * Only attribute actual wakeups done by this task.
2394 */
2395 if (!in_interrupt()) {
2396 struct sched_entity *se = &current->se;
2397 u64 sample = se->sum_exec_runtime;
2398
2399 if (se->last_wakeup)
2400 sample -= se->last_wakeup;
2401 else
2402 sample -= se->start_runtime;
2403 update_avg(&se->avg_wakeup, sample);
2404
2405 se->last_wakeup = se->sum_exec_runtime;
2406 }
2407
2408 out_running:
2409 trace_sched_wakeup(rq, p, success);
2410 check_preempt_curr(rq, p, sync);
2411
2412 p->state = TASK_RUNNING;
2413 #ifdef CONFIG_SMP
2414 if (p->sched_class->task_wake_up)
2415 p->sched_class->task_wake_up(rq, p);
2416 #endif
2417 out:
2418 task_rq_unlock(rq, &flags);
2419 put_cpu();
2420
2421 return success;
2422 }
2423
2424 /**
2425 * wake_up_process - Wake up a specific process
2426 * @p: The process to be woken up.
2427 *
2428 * Attempt to wake up the nominated process and move it to the set of runnable
2429 * processes. Returns 1 if the process was woken up, 0 if it was already
2430 * running.
2431 *
2432 * It may be assumed that this function implies a write memory barrier before
2433 * changing the task state if and only if any tasks are woken up.
2434 */
2435 int wake_up_process(struct task_struct *p)
2436 {
2437 return try_to_wake_up(p, TASK_ALL, 0);
2438 }
2439 EXPORT_SYMBOL(wake_up_process);
2440
2441 int wake_up_state(struct task_struct *p, unsigned int state)
2442 {
2443 return try_to_wake_up(p, state, 0);
2444 }
2445
2446 /*
2447 * Perform scheduler related setup for a newly forked process p.
2448 * p is forked by current.
2449 *
2450 * __sched_fork() is basic setup used by init_idle() too:
2451 */
2452 static void __sched_fork(struct task_struct *p)
2453 {
2454 p->se.exec_start = 0;
2455 p->se.sum_exec_runtime = 0;
2456 p->se.prev_sum_exec_runtime = 0;
2457 p->se.nr_migrations = 0;
2458 p->se.last_wakeup = 0;
2459 p->se.avg_overlap = 0;
2460 p->se.start_runtime = 0;
2461 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2462
2463 #ifdef CONFIG_SCHEDSTATS
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2468
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2472
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2484
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2494
2495 #endif
2496
2497 INIT_LIST_HEAD(&p->rt.run_list);
2498 p->se.on_rq = 0;
2499 INIT_LIST_HEAD(&p->se.group_node);
2500
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503 #endif
2504
2505 /*
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
2511 p->state = TASK_RUNNING;
2512 }
2513
2514 /*
2515 * fork()/clone()-time setup:
2516 */
2517 void sched_fork(struct task_struct *p, int clone_flags)
2518 {
2519 int cpu = get_cpu();
2520
2521 __sched_fork(p);
2522
2523 /*
2524 * Make sure we do not leak PI boosting priority to the child.
2525 */
2526 p->prio = current->normal_prio;
2527
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2534
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2537
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2541 }
2542
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
2549
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
2552
2553 #ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555 #endif
2556 set_task_cpu(p, cpu);
2557
2558 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2559 if (likely(sched_info_on()))
2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
2561 #endif
2562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2563 p->oncpu = 0;
2564 #endif
2565 #ifdef CONFIG_PREEMPT
2566 /* Want to start with kernel preemption disabled. */
2567 task_thread_info(p)->preempt_count = 1;
2568 #endif
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570
2571 put_cpu();
2572 }
2573
2574 /*
2575 * wake_up_new_task - wake up a newly created task for the first time.
2576 *
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2580 */
2581 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2582 {
2583 unsigned long flags;
2584 struct rq *rq;
2585
2586 rq = task_rq_lock(p, &flags);
2587 BUG_ON(p->state != TASK_RUNNING);
2588 update_rq_clock(rq);
2589
2590 p->prio = effective_prio(p);
2591
2592 if (!p->sched_class->task_new || !current->se.on_rq) {
2593 activate_task(rq, p, 0);
2594 } else {
2595 /*
2596 * Let the scheduling class do new task startup
2597 * management (if any):
2598 */
2599 p->sched_class->task_new(rq, p);
2600 inc_nr_running(rq);
2601 }
2602 trace_sched_wakeup_new(rq, p, 1);
2603 check_preempt_curr(rq, p, 0);
2604 #ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607 #endif
2608 task_rq_unlock(rq, &flags);
2609 }
2610
2611 #ifdef CONFIG_PREEMPT_NOTIFIERS
2612
2613 /**
2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2615 * @notifier: notifier struct to register
2616 */
2617 void preempt_notifier_register(struct preempt_notifier *notifier)
2618 {
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2620 }
2621 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2622
2623 /**
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
2625 * @notifier: notifier struct to unregister
2626 *
2627 * This is safe to call from within a preemption notifier.
2628 */
2629 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2630 {
2631 hlist_del(&notifier->link);
2632 }
2633 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2634
2635 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636 {
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2639
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642 }
2643
2644 static void
2645 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2647 {
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2653 }
2654
2655 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2656
2657 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658 {
2659 }
2660
2661 static void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664 {
2665 }
2666
2667 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2668
2669 /**
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
2672 * @prev: the current task that is being switched out
2673 * @next: the task we are going to switch to.
2674 *
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2678 *
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2681 */
2682 static inline void
2683 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
2685 {
2686 fire_sched_out_preempt_notifiers(prev, next);
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2689 }
2690
2691 /**
2692 * finish_task_switch - clean up after a task-switch
2693 * @rq: runqueue associated with task-switch
2694 * @prev: the thread we just switched away from.
2695 *
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
2702 * so, we finish that here outside of the runqueue lock. (Doing it
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2705 */
2706 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2707 __releases(rq->lock)
2708 {
2709 struct mm_struct *mm = rq->prev_mm;
2710 long prev_state;
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
2719 * The test for TASK_DEAD must occur while the runqueue locks are
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2724 */
2725 prev_state = prev->state;
2726 finish_arch_switch(prev);
2727 perf_counter_task_sched_in(current, cpu_of(rq));
2728 finish_lock_switch(rq, prev);
2729
2730 fire_sched_in_preempt_notifiers(current);
2731 if (mm)
2732 mmdrop(mm);
2733 if (unlikely(prev_state == TASK_DEAD)) {
2734 /*
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
2737 */
2738 kprobe_flush_task(prev);
2739 put_task_struct(prev);
2740 }
2741 }
2742
2743 #ifdef CONFIG_SMP
2744
2745 /* assumes rq->lock is held */
2746 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2747 {
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2750 }
2751
2752 /* rq->lock is NOT held, but preemption is disabled */
2753 static inline void post_schedule(struct rq *rq)
2754 {
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2762
2763 rq->post_schedule = 0;
2764 }
2765 }
2766
2767 #else
2768
2769 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770 {
2771 }
2772
2773 static inline void post_schedule(struct rq *rq)
2774 {
2775 }
2776
2777 #endif
2778
2779 /**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
2783 asmlinkage void schedule_tail(struct task_struct *prev)
2784 __releases(rq->lock)
2785 {
2786 struct rq *rq = this_rq();
2787
2788 finish_task_switch(rq, prev);
2789
2790 /*
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2793 */
2794 post_schedule(rq);
2795
2796 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799 #endif
2800 if (current->set_child_tid)
2801 put_user(task_pid_vnr(current), current->set_child_tid);
2802 }
2803
2804 /*
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2807 */
2808 static inline void
2809 context_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
2811 {
2812 struct mm_struct *mm, *oldmm;
2813
2814 prepare_task_switch(rq, prev, next);
2815 trace_sched_switch(rq, prev, next);
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
2823 arch_start_context_switch(prev);
2824
2825 if (unlikely(!mm)) {
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2831
2832 if (unlikely(!prev->mm)) {
2833 prev->active_mm = NULL;
2834 rq->prev_mm = oldmm;
2835 }
2836 /*
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2841 */
2842 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2844 #endif
2845
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2848
2849 barrier();
2850 /*
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2854 */
2855 finish_task_switch(this_rq(), prev);
2856 }
2857
2858 /*
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2860 *
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2864 */
2865 unsigned long nr_running(void)
2866 {
2867 unsigned long i, sum = 0;
2868
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2871
2872 return sum;
2873 }
2874
2875 unsigned long nr_uninterruptible(void)
2876 {
2877 unsigned long i, sum = 0;
2878
2879 for_each_possible_cpu(i)
2880 sum += cpu_rq(i)->nr_uninterruptible;
2881
2882 /*
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2885 */
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2888
2889 return sum;
2890 }
2891
2892 unsigned long long nr_context_switches(void)
2893 {
2894 int i;
2895 unsigned long long sum = 0;
2896
2897 for_each_possible_cpu(i)
2898 sum += cpu_rq(i)->nr_switches;
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_iowait(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_possible_cpu(i)
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2909
2910 return sum;
2911 }
2912
2913 /* Variables and functions for calc_load */
2914 static atomic_long_t calc_load_tasks;
2915 static unsigned long calc_load_update;
2916 unsigned long avenrun[3];
2917 EXPORT_SYMBOL(avenrun);
2918
2919 /**
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2924 *
2925 * These values are estimates at best, so no need for locking.
2926 */
2927 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2928 {
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2932 }
2933
2934 static unsigned long
2935 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2936 {
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2940 }
2941
2942 /*
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2945 */
2946 void calc_global_load(void)
2947 {
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2950
2951 if (time_before(jiffies, upd))
2952 return;
2953
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
2956
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2960
2961 calc_load_update += LOAD_FREQ;
2962 }
2963
2964 /*
2965 * Either called from update_cpu_load() or from a cpu going idle
2966 */
2967 static void calc_load_account_active(struct rq *this_rq)
2968 {
2969 long nr_active, delta;
2970
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2973
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2978 }
2979 }
2980
2981 /*
2982 * Externally visible per-cpu scheduler statistics:
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2984 */
2985 u64 cpu_nr_migrations(int cpu)
2986 {
2987 return cpu_rq(cpu)->nr_migrations_in;
2988 }
2989
2990 /*
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
2993 */
2994 static void update_cpu_load(struct rq *this_rq)
2995 {
2996 unsigned long this_load = this_rq->load.weight;
2997 int i, scale;
2998
2999 this_rq->nr_load_updates++;
3000
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3004
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3006
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
3009 /*
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3013 */
3014 if (new_load > old_load)
3015 new_load += scale-1;
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3017 }
3018
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3022 }
3023 }
3024
3025 #ifdef CONFIG_SMP
3026
3027 /*
3028 * double_rq_lock - safely lock two runqueues
3029 *
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3032 */
3033 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3036 {
3037 BUG_ON(!irqs_disabled());
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
3042 if (rq1 < rq2) {
3043 spin_lock(&rq1->lock);
3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3045 } else {
3046 spin_lock(&rq2->lock);
3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3048 }
3049 }
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
3052 }
3053
3054 /*
3055 * double_rq_unlock - safely unlock two runqueues
3056 *
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3059 */
3060 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3063 {
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3069 }
3070
3071 /*
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3075 * the cpu_allowed mask is restored.
3076 */
3077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3078 {
3079 struct migration_req req;
3080 unsigned long flags;
3081 struct rq *rq;
3082
3083 rq = task_rq_lock(p, &flags);
3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3085 || unlikely(!cpu_active(dest_cpu)))
3086 goto out;
3087
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
3092
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
3098
3099 return;
3100 }
3101 out:
3102 task_rq_unlock(rq, &flags);
3103 }
3104
3105 /*
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
3108 */
3109 void sched_exec(void)
3110 {
3111 int new_cpu, this_cpu = get_cpu();
3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3113 put_cpu();
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
3116 }
3117
3118 /*
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3121 */
3122 static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
3124 {
3125 deactivate_task(src_rq, p, 0);
3126 set_task_cpu(p, this_cpu);
3127 activate_task(this_rq, p, 0);
3128 /*
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3131 */
3132 check_preempt_curr(this_rq, p, 0);
3133 }
3134
3135 /*
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3137 */
3138 static
3139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142 {
3143 int tsk_cache_hot = 0;
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3151 schedstat_inc(p, se.nr_failed_migrations_affine);
3152 return 0;
3153 }
3154 *all_pinned = 0;
3155
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
3158 return 0;
3159 }
3160
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(sd, lb_hot_gained[idle]);
3173 schedstat_inc(p, se.nr_forced_migrations);
3174 }
3175 #endif
3176 return 1;
3177 }
3178
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.nr_failed_migrations_hot);
3181 return 0;
3182 }
3183 return 1;
3184 }
3185
3186 static unsigned long
3187 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
3191 {
3192 int loops = 0, pulled = 0, pinned = 0;
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
3195
3196 if (max_load_move == 0)
3197 goto out;
3198
3199 pinned = 1;
3200
3201 /*
3202 * Start the load-balancing iterator:
3203 */
3204 p = iterator->start(iterator->arg);
3205 next:
3206 if (!p || loops++ > sysctl_sched_nr_migrate)
3207 goto out;
3208
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3211 p = iterator->next(iterator->arg);
3212 goto next;
3213 }
3214
3215 pull_task(busiest, p, this_rq, this_cpu);
3216 pulled++;
3217 rem_load_move -= p->se.load.weight;
3218
3219 #ifdef CONFIG_PREEMPT
3220 /*
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3224 */
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227 #endif
3228
3229 /*
3230 * We only want to steal up to the prescribed amount of weighted load.
3231 */
3232 if (rem_load_move > 0) {
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
3235 p = iterator->next(iterator->arg);
3236 goto next;
3237 }
3238 out:
3239 /*
3240 * Right now, this is one of only two places pull_task() is called,
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3243 */
3244 schedstat_add(sd, lb_gained[idle], pulled);
3245
3246 if (all_pinned)
3247 *all_pinned = pinned;
3248
3249 return max_load_move - rem_load_move;
3250 }
3251
3252 /*
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
3256 *
3257 * Called with both runqueues locked.
3258 */
3259 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3260 unsigned long max_load_move,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3263 {
3264 const struct sched_class *class = sched_class_highest;
3265 unsigned long total_load_moved = 0;
3266 int this_best_prio = this_rq->curr->prio;
3267
3268 do {
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
3271 max_load_move - total_load_moved,
3272 sd, idle, all_pinned, &this_best_prio);
3273 class = class->next;
3274
3275 #ifdef CONFIG_PREEMPT
3276 /*
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3280 */
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
3283 #endif
3284 } while (class && max_load_move > total_load_moved);
3285
3286 return total_load_moved > 0;
3287 }
3288
3289 static int
3290 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3293 {
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3296
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3300 /*
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3304 */
3305 schedstat_inc(sd, lb_gained[idle]);
3306
3307 return 1;
3308 }
3309 p = iterator->next(iterator->arg);
3310 }
3311
3312 return 0;
3313 }
3314
3315 /*
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3324 {
3325 const struct sched_class *class;
3326
3327 for_each_class(class) {
3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3329 return 1;
3330 }
3331
3332 return 0;
3333 }
3334 /********** Helpers for find_busiest_group ************************/
3335 /*
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
3338 */
3339 struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3345
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3350
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3355
3356 int group_imb; /* Is there imbalance in this sd */
3357 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
3364 #endif
3365 };
3366
3367 /*
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3369 */
3370 struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3377 };
3378
3379 /**
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3382 */
3383 static inline unsigned int group_first_cpu(struct sched_group *group)
3384 {
3385 return cpumask_first(sched_group_cpus(group));
3386 }
3387
3388 /**
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3392 */
3393 static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3395 {
3396 int load_idx;
3397
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
3400 load_idx = sd->busy_idx;
3401 break;
3402
3403 case CPU_NEWLY_IDLE:
3404 load_idx = sd->newidle_idx;
3405 break;
3406 default:
3407 load_idx = sd->idle_idx;
3408 break;
3409 }
3410
3411 return load_idx;
3412 }
3413
3414
3415 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3416 /**
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3419 *
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3423 */
3424 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3426 {
3427 /*
3428 * Busy processors will not participate in power savings
3429 * balance.
3430 */
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3437 }
3438 }
3439
3440 /**
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3443 *
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3449 */
3450 static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3452 {
3453
3454 if (!sds->power_savings_balance)
3455 return;
3456
3457 /*
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3460 */
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
3464
3465 /*
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3468 */
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
3473
3474 /*
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3478 */
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3486 }
3487
3488 /*
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3492 */
3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3494 return;
3495
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3501 }
3502 }
3503
3504 /**
3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3510 *
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3515 *
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3518 */
3519 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3521 {
3522 if (!sds->power_savings_balance)
3523 return 0;
3524
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
3528
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
3531
3532 return 1;
3533
3534 }
3535 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3538 {
3539 return;
3540 }
3541
3542 static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3544 {
3545 return;
3546 }
3547
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550 {
3551 return 0;
3552 }
3553 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554
3555 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3556 {
3557 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3558 unsigned long smt_gain = sd->smt_gain;
3559
3560 smt_gain /= weight;
3561
3562 return smt_gain;
3563 }
3564
3565 unsigned long scale_rt_power(int cpu)
3566 {
3567 struct rq *rq = cpu_rq(cpu);
3568 u64 total, available;
3569
3570 sched_avg_update(rq);
3571
3572 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3573 available = total - rq->rt_avg;
3574
3575 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3576 total = SCHED_LOAD_SCALE;
3577
3578 total >>= SCHED_LOAD_SHIFT;
3579
3580 return div_u64(available, total);
3581 }
3582
3583 static void update_cpu_power(struct sched_domain *sd, int cpu)
3584 {
3585 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3586 unsigned long power = SCHED_LOAD_SCALE;
3587 struct sched_group *sdg = sd->groups;
3588
3589 /* here we could scale based on cpufreq */
3590
3591 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3592 power *= arch_scale_smt_power(sd, cpu);
3593 power >>= SCHED_LOAD_SHIFT;
3594 }
3595
3596 power *= scale_rt_power(cpu);
3597 power >>= SCHED_LOAD_SHIFT;
3598
3599 if (!power)
3600 power = 1;
3601
3602 sdg->cpu_power = power;
3603 }
3604
3605 static void update_group_power(struct sched_domain *sd, int cpu)
3606 {
3607 struct sched_domain *child = sd->child;
3608 struct sched_group *group, *sdg = sd->groups;
3609 unsigned long power;
3610
3611 if (!child) {
3612 update_cpu_power(sd, cpu);
3613 return;
3614 }
3615
3616 power = 0;
3617
3618 group = child->groups;
3619 do {
3620 power += group->cpu_power;
3621 group = group->next;
3622 } while (group != child->groups);
3623
3624 sdg->cpu_power = power;
3625 }
3626
3627 /**
3628 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3629 * @group: sched_group whose statistics are to be updated.
3630 * @this_cpu: Cpu for which load balance is currently performed.
3631 * @idle: Idle status of this_cpu
3632 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3633 * @sd_idle: Idle status of the sched_domain containing group.
3634 * @local_group: Does group contain this_cpu.
3635 * @cpus: Set of cpus considered for load balancing.
3636 * @balance: Should we balance.
3637 * @sgs: variable to hold the statistics for this group.
3638 */
3639 static inline void update_sg_lb_stats(struct sched_domain *sd,
3640 struct sched_group *group, int this_cpu,
3641 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3642 int local_group, const struct cpumask *cpus,
3643 int *balance, struct sg_lb_stats *sgs)
3644 {
3645 unsigned long load, max_cpu_load, min_cpu_load;
3646 int i;
3647 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3648 unsigned long sum_avg_load_per_task;
3649 unsigned long avg_load_per_task;
3650
3651 if (local_group) {
3652 balance_cpu = group_first_cpu(group);
3653 if (balance_cpu == this_cpu)
3654 update_group_power(sd, this_cpu);
3655 }
3656
3657 /* Tally up the load of all CPUs in the group */
3658 sum_avg_load_per_task = avg_load_per_task = 0;
3659 max_cpu_load = 0;
3660 min_cpu_load = ~0UL;
3661
3662 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3663 struct rq *rq = cpu_rq(i);
3664
3665 if (*sd_idle && rq->nr_running)
3666 *sd_idle = 0;
3667
3668 /* Bias balancing toward cpus of our domain */
3669 if (local_group) {
3670 if (idle_cpu(i) && !first_idle_cpu) {
3671 first_idle_cpu = 1;
3672 balance_cpu = i;
3673 }
3674
3675 load = target_load(i, load_idx);
3676 } else {
3677 load = source_load(i, load_idx);
3678 if (load > max_cpu_load)
3679 max_cpu_load = load;
3680 if (min_cpu_load > load)
3681 min_cpu_load = load;
3682 }
3683
3684 sgs->group_load += load;
3685 sgs->sum_nr_running += rq->nr_running;
3686 sgs->sum_weighted_load += weighted_cpuload(i);
3687
3688 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3689 }
3690
3691 /*
3692 * First idle cpu or the first cpu(busiest) in this sched group
3693 * is eligible for doing load balancing at this and above
3694 * domains. In the newly idle case, we will allow all the cpu's
3695 * to do the newly idle load balance.
3696 */
3697 if (idle != CPU_NEWLY_IDLE && local_group &&
3698 balance_cpu != this_cpu && balance) {
3699 *balance = 0;
3700 return;
3701 }
3702
3703 /* Adjust by relative CPU power of the group */
3704 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3705
3706
3707 /*
3708 * Consider the group unbalanced when the imbalance is larger
3709 * than the average weight of two tasks.
3710 *
3711 * APZ: with cgroup the avg task weight can vary wildly and
3712 * might not be a suitable number - should we keep a
3713 * normalized nr_running number somewhere that negates
3714 * the hierarchy?
3715 */
3716 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3717 group->cpu_power;
3718
3719 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3720 sgs->group_imb = 1;
3721
3722 sgs->group_capacity =
3723 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3724 }
3725
3726 /**
3727 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3728 * @sd: sched_domain whose statistics are to be updated.
3729 * @this_cpu: Cpu for which load balance is currently performed.
3730 * @idle: Idle status of this_cpu
3731 * @sd_idle: Idle status of the sched_domain containing group.
3732 * @cpus: Set of cpus considered for load balancing.
3733 * @balance: Should we balance.
3734 * @sds: variable to hold the statistics for this sched_domain.
3735 */
3736 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3737 enum cpu_idle_type idle, int *sd_idle,
3738 const struct cpumask *cpus, int *balance,
3739 struct sd_lb_stats *sds)
3740 {
3741 struct sched_domain *child = sd->child;
3742 struct sched_group *group = sd->groups;
3743 struct sg_lb_stats sgs;
3744 int load_idx, prefer_sibling = 0;
3745
3746 if (child && child->flags & SD_PREFER_SIBLING)
3747 prefer_sibling = 1;
3748
3749 init_sd_power_savings_stats(sd, sds, idle);
3750 load_idx = get_sd_load_idx(sd, idle);
3751
3752 do {
3753 int local_group;
3754
3755 local_group = cpumask_test_cpu(this_cpu,
3756 sched_group_cpus(group));
3757 memset(&sgs, 0, sizeof(sgs));
3758 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3759 local_group, cpus, balance, &sgs);
3760
3761 if (local_group && balance && !(*balance))
3762 return;
3763
3764 sds->total_load += sgs.group_load;
3765 sds->total_pwr += group->cpu_power;
3766
3767 /*
3768 * In case the child domain prefers tasks go to siblings
3769 * first, lower the group capacity to one so that we'll try
3770 * and move all the excess tasks away.
3771 */
3772 if (prefer_sibling)
3773 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3774
3775 if (local_group) {
3776 sds->this_load = sgs.avg_load;
3777 sds->this = group;
3778 sds->this_nr_running = sgs.sum_nr_running;
3779 sds->this_load_per_task = sgs.sum_weighted_load;
3780 } else if (sgs.avg_load > sds->max_load &&
3781 (sgs.sum_nr_running > sgs.group_capacity ||
3782 sgs.group_imb)) {
3783 sds->max_load = sgs.avg_load;
3784 sds->busiest = group;
3785 sds->busiest_nr_running = sgs.sum_nr_running;
3786 sds->busiest_load_per_task = sgs.sum_weighted_load;
3787 sds->group_imb = sgs.group_imb;
3788 }
3789
3790 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3791 group = group->next;
3792 } while (group != sd->groups);
3793 }
3794
3795 /**
3796 * fix_small_imbalance - Calculate the minor imbalance that exists
3797 * amongst the groups of a sched_domain, during
3798 * load balancing.
3799 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3800 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3801 * @imbalance: Variable to store the imbalance.
3802 */
3803 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3804 int this_cpu, unsigned long *imbalance)
3805 {
3806 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3807 unsigned int imbn = 2;
3808
3809 if (sds->this_nr_running) {
3810 sds->this_load_per_task /= sds->this_nr_running;
3811 if (sds->busiest_load_per_task >
3812 sds->this_load_per_task)
3813 imbn = 1;
3814 } else
3815 sds->this_load_per_task =
3816 cpu_avg_load_per_task(this_cpu);
3817
3818 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3819 sds->busiest_load_per_task * imbn) {
3820 *imbalance = sds->busiest_load_per_task;
3821 return;
3822 }
3823
3824 /*
3825 * OK, we don't have enough imbalance to justify moving tasks,
3826 * however we may be able to increase total CPU power used by
3827 * moving them.
3828 */
3829
3830 pwr_now += sds->busiest->cpu_power *
3831 min(sds->busiest_load_per_task, sds->max_load);
3832 pwr_now += sds->this->cpu_power *
3833 min(sds->this_load_per_task, sds->this_load);
3834 pwr_now /= SCHED_LOAD_SCALE;
3835
3836 /* Amount of load we'd subtract */
3837 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3838 sds->busiest->cpu_power;
3839 if (sds->max_load > tmp)
3840 pwr_move += sds->busiest->cpu_power *
3841 min(sds->busiest_load_per_task, sds->max_load - tmp);
3842
3843 /* Amount of load we'd add */
3844 if (sds->max_load * sds->busiest->cpu_power <
3845 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3846 tmp = (sds->max_load * sds->busiest->cpu_power) /
3847 sds->this->cpu_power;
3848 else
3849 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3850 sds->this->cpu_power;
3851 pwr_move += sds->this->cpu_power *
3852 min(sds->this_load_per_task, sds->this_load + tmp);
3853 pwr_move /= SCHED_LOAD_SCALE;
3854
3855 /* Move if we gain throughput */
3856 if (pwr_move > pwr_now)
3857 *imbalance = sds->busiest_load_per_task;
3858 }
3859
3860 /**
3861 * calculate_imbalance - Calculate the amount of imbalance present within the
3862 * groups of a given sched_domain during load balance.
3863 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3864 * @this_cpu: Cpu for which currently load balance is being performed.
3865 * @imbalance: The variable to store the imbalance.
3866 */
3867 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3868 unsigned long *imbalance)
3869 {
3870 unsigned long max_pull;
3871 /*
3872 * In the presence of smp nice balancing, certain scenarios can have
3873 * max load less than avg load(as we skip the groups at or below
3874 * its cpu_power, while calculating max_load..)
3875 */
3876 if (sds->max_load < sds->avg_load) {
3877 *imbalance = 0;
3878 return fix_small_imbalance(sds, this_cpu, imbalance);
3879 }
3880
3881 /* Don't want to pull so many tasks that a group would go idle */
3882 max_pull = min(sds->max_load - sds->avg_load,
3883 sds->max_load - sds->busiest_load_per_task);
3884
3885 /* How much load to actually move to equalise the imbalance */
3886 *imbalance = min(max_pull * sds->busiest->cpu_power,
3887 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3888 / SCHED_LOAD_SCALE;
3889
3890 /*
3891 * if *imbalance is less than the average load per runnable task
3892 * there is no gaurantee that any tasks will be moved so we'll have
3893 * a think about bumping its value to force at least one task to be
3894 * moved
3895 */
3896 if (*imbalance < sds->busiest_load_per_task)
3897 return fix_small_imbalance(sds, this_cpu, imbalance);
3898
3899 }
3900 /******* find_busiest_group() helpers end here *********************/
3901
3902 /**
3903 * find_busiest_group - Returns the busiest group within the sched_domain
3904 * if there is an imbalance. If there isn't an imbalance, and
3905 * the user has opted for power-savings, it returns a group whose
3906 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3907 * such a group exists.
3908 *
3909 * Also calculates the amount of weighted load which should be moved
3910 * to restore balance.
3911 *
3912 * @sd: The sched_domain whose busiest group is to be returned.
3913 * @this_cpu: The cpu for which load balancing is currently being performed.
3914 * @imbalance: Variable which stores amount of weighted load which should
3915 * be moved to restore balance/put a group to idle.
3916 * @idle: The idle status of this_cpu.
3917 * @sd_idle: The idleness of sd
3918 * @cpus: The set of CPUs under consideration for load-balancing.
3919 * @balance: Pointer to a variable indicating if this_cpu
3920 * is the appropriate cpu to perform load balancing at this_level.
3921 *
3922 * Returns: - the busiest group if imbalance exists.
3923 * - If no imbalance and user has opted for power-savings balance,
3924 * return the least loaded group whose CPUs can be
3925 * put to idle by rebalancing its tasks onto our group.
3926 */
3927 static struct sched_group *
3928 find_busiest_group(struct sched_domain *sd, int this_cpu,
3929 unsigned long *imbalance, enum cpu_idle_type idle,
3930 int *sd_idle, const struct cpumask *cpus, int *balance)
3931 {
3932 struct sd_lb_stats sds;
3933
3934 memset(&sds, 0, sizeof(sds));
3935
3936 /*
3937 * Compute the various statistics relavent for load balancing at
3938 * this level.
3939 */
3940 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3941 balance, &sds);
3942
3943 /* Cases where imbalance does not exist from POV of this_cpu */
3944 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3945 * at this level.
3946 * 2) There is no busy sibling group to pull from.
3947 * 3) This group is the busiest group.
3948 * 4) This group is more busy than the avg busieness at this
3949 * sched_domain.
3950 * 5) The imbalance is within the specified limit.
3951 * 6) Any rebalance would lead to ping-pong
3952 */
3953 if (balance && !(*balance))
3954 goto ret;
3955
3956 if (!sds.busiest || sds.busiest_nr_running == 0)
3957 goto out_balanced;
3958
3959 if (sds.this_load >= sds.max_load)
3960 goto out_balanced;
3961
3962 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3963
3964 if (sds.this_load >= sds.avg_load)
3965 goto out_balanced;
3966
3967 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3968 goto out_balanced;
3969
3970 sds.busiest_load_per_task /= sds.busiest_nr_running;
3971 if (sds.group_imb)
3972 sds.busiest_load_per_task =
3973 min(sds.busiest_load_per_task, sds.avg_load);
3974
3975 /*
3976 * We're trying to get all the cpus to the average_load, so we don't
3977 * want to push ourselves above the average load, nor do we wish to
3978 * reduce the max loaded cpu below the average load, as either of these
3979 * actions would just result in more rebalancing later, and ping-pong
3980 * tasks around. Thus we look for the minimum possible imbalance.
3981 * Negative imbalances (*we* are more loaded than anyone else) will
3982 * be counted as no imbalance for these purposes -- we can't fix that
3983 * by pulling tasks to us. Be careful of negative numbers as they'll
3984 * appear as very large values with unsigned longs.
3985 */
3986 if (sds.max_load <= sds.busiest_load_per_task)
3987 goto out_balanced;
3988
3989 /* Looks like there is an imbalance. Compute it */
3990 calculate_imbalance(&sds, this_cpu, imbalance);
3991 return sds.busiest;
3992
3993 out_balanced:
3994 /*
3995 * There is no obvious imbalance. But check if we can do some balancing
3996 * to save power.
3997 */
3998 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3999 return sds.busiest;
4000 ret:
4001 *imbalance = 0;
4002 return NULL;
4003 }
4004
4005 /*
4006 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4007 */
4008 static struct rq *
4009 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4010 unsigned long imbalance, const struct cpumask *cpus)
4011 {
4012 struct rq *busiest = NULL, *rq;
4013 unsigned long max_load = 0;
4014 int i;
4015
4016 for_each_cpu(i, sched_group_cpus(group)) {
4017 unsigned long power = power_of(i);
4018 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4019 unsigned long wl;
4020
4021 if (!cpumask_test_cpu(i, cpus))
4022 continue;
4023
4024 rq = cpu_rq(i);
4025 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4026 wl /= power;
4027
4028 if (capacity && rq->nr_running == 1 && wl > imbalance)
4029 continue;
4030
4031 if (wl > max_load) {
4032 max_load = wl;
4033 busiest = rq;
4034 }
4035 }
4036
4037 return busiest;
4038 }
4039
4040 /*
4041 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4042 * so long as it is large enough.
4043 */
4044 #define MAX_PINNED_INTERVAL 512
4045
4046 /* Working cpumask for load_balance and load_balance_newidle. */
4047 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4048
4049 /*
4050 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4051 * tasks if there is an imbalance.
4052 */
4053 static int load_balance(int this_cpu, struct rq *this_rq,
4054 struct sched_domain *sd, enum cpu_idle_type idle,
4055 int *balance)
4056 {
4057 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4058 struct sched_group *group;
4059 unsigned long imbalance;
4060 struct rq *busiest;
4061 unsigned long flags;
4062 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4063
4064 cpumask_setall(cpus);
4065
4066 /*
4067 * When power savings policy is enabled for the parent domain, idle
4068 * sibling can pick up load irrespective of busy siblings. In this case,
4069 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4070 * portraying it as CPU_NOT_IDLE.
4071 */
4072 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4073 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4074 sd_idle = 1;
4075
4076 schedstat_inc(sd, lb_count[idle]);
4077
4078 redo:
4079 update_shares(sd);
4080 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4081 cpus, balance);
4082
4083 if (*balance == 0)
4084 goto out_balanced;
4085
4086 if (!group) {
4087 schedstat_inc(sd, lb_nobusyg[idle]);
4088 goto out_balanced;
4089 }
4090
4091 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4092 if (!busiest) {
4093 schedstat_inc(sd, lb_nobusyq[idle]);
4094 goto out_balanced;
4095 }
4096
4097 BUG_ON(busiest == this_rq);
4098
4099 schedstat_add(sd, lb_imbalance[idle], imbalance);
4100
4101 ld_moved = 0;
4102 if (busiest->nr_running > 1) {
4103 /*
4104 * Attempt to move tasks. If find_busiest_group has found
4105 * an imbalance but busiest->nr_running <= 1, the group is
4106 * still unbalanced. ld_moved simply stays zero, so it is
4107 * correctly treated as an imbalance.
4108 */
4109 local_irq_save(flags);
4110 double_rq_lock(this_rq, busiest);
4111 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4112 imbalance, sd, idle, &all_pinned);
4113 double_rq_unlock(this_rq, busiest);
4114 local_irq_restore(flags);
4115
4116 /*
4117 * some other cpu did the load balance for us.
4118 */
4119 if (ld_moved && this_cpu != smp_processor_id())
4120 resched_cpu(this_cpu);
4121
4122 /* All tasks on this runqueue were pinned by CPU affinity */
4123 if (unlikely(all_pinned)) {
4124 cpumask_clear_cpu(cpu_of(busiest), cpus);
4125 if (!cpumask_empty(cpus))
4126 goto redo;
4127 goto out_balanced;
4128 }
4129 }
4130
4131 if (!ld_moved) {
4132 schedstat_inc(sd, lb_failed[idle]);
4133 sd->nr_balance_failed++;
4134
4135 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4136
4137 spin_lock_irqsave(&busiest->lock, flags);
4138
4139 /* don't kick the migration_thread, if the curr
4140 * task on busiest cpu can't be moved to this_cpu
4141 */
4142 if (!cpumask_test_cpu(this_cpu,
4143 &busiest->curr->cpus_allowed)) {
4144 spin_unlock_irqrestore(&busiest->lock, flags);
4145 all_pinned = 1;
4146 goto out_one_pinned;
4147 }
4148
4149 if (!busiest->active_balance) {
4150 busiest->active_balance = 1;
4151 busiest->push_cpu = this_cpu;
4152 active_balance = 1;
4153 }
4154 spin_unlock_irqrestore(&busiest->lock, flags);
4155 if (active_balance)
4156 wake_up_process(busiest->migration_thread);
4157
4158 /*
4159 * We've kicked active balancing, reset the failure
4160 * counter.
4161 */
4162 sd->nr_balance_failed = sd->cache_nice_tries+1;
4163 }
4164 } else
4165 sd->nr_balance_failed = 0;
4166
4167 if (likely(!active_balance)) {
4168 /* We were unbalanced, so reset the balancing interval */
4169 sd->balance_interval = sd->min_interval;
4170 } else {
4171 /*
4172 * If we've begun active balancing, start to back off. This
4173 * case may not be covered by the all_pinned logic if there
4174 * is only 1 task on the busy runqueue (because we don't call
4175 * move_tasks).
4176 */
4177 if (sd->balance_interval < sd->max_interval)
4178 sd->balance_interval *= 2;
4179 }
4180
4181 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4182 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4183 ld_moved = -1;
4184
4185 goto out;
4186
4187 out_balanced:
4188 schedstat_inc(sd, lb_balanced[idle]);
4189
4190 sd->nr_balance_failed = 0;
4191
4192 out_one_pinned:
4193 /* tune up the balancing interval */
4194 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4195 (sd->balance_interval < sd->max_interval))
4196 sd->balance_interval *= 2;
4197
4198 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4199 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4200 ld_moved = -1;
4201 else
4202 ld_moved = 0;
4203 out:
4204 if (ld_moved)
4205 update_shares(sd);
4206 return ld_moved;
4207 }
4208
4209 /*
4210 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4211 * tasks if there is an imbalance.
4212 *
4213 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4214 * this_rq is locked.
4215 */
4216 static int
4217 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4218 {
4219 struct sched_group *group;
4220 struct rq *busiest = NULL;
4221 unsigned long imbalance;
4222 int ld_moved = 0;
4223 int sd_idle = 0;
4224 int all_pinned = 0;
4225 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4226
4227 cpumask_setall(cpus);
4228
4229 /*
4230 * When power savings policy is enabled for the parent domain, idle
4231 * sibling can pick up load irrespective of busy siblings. In this case,
4232 * let the state of idle sibling percolate up as IDLE, instead of
4233 * portraying it as CPU_NOT_IDLE.
4234 */
4235 if (sd->flags & SD_SHARE_CPUPOWER &&
4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 sd_idle = 1;
4238
4239 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4240 redo:
4241 update_shares_locked(this_rq, sd);
4242 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4243 &sd_idle, cpus, NULL);
4244 if (!group) {
4245 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4246 goto out_balanced;
4247 }
4248
4249 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4250 if (!busiest) {
4251 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4252 goto out_balanced;
4253 }
4254
4255 BUG_ON(busiest == this_rq);
4256
4257 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4258
4259 ld_moved = 0;
4260 if (busiest->nr_running > 1) {
4261 /* Attempt to move tasks */
4262 double_lock_balance(this_rq, busiest);
4263 /* this_rq->clock is already updated */
4264 update_rq_clock(busiest);
4265 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4266 imbalance, sd, CPU_NEWLY_IDLE,
4267 &all_pinned);
4268 double_unlock_balance(this_rq, busiest);
4269
4270 if (unlikely(all_pinned)) {
4271 cpumask_clear_cpu(cpu_of(busiest), cpus);
4272 if (!cpumask_empty(cpus))
4273 goto redo;
4274 }
4275 }
4276
4277 if (!ld_moved) {
4278 int active_balance = 0;
4279
4280 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4281 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4283 return -1;
4284
4285 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4286 return -1;
4287
4288 if (sd->nr_balance_failed++ < 2)
4289 return -1;
4290
4291 /*
4292 * The only task running in a non-idle cpu can be moved to this
4293 * cpu in an attempt to completely freeup the other CPU
4294 * package. The same method used to move task in load_balance()
4295 * have been extended for load_balance_newidle() to speedup
4296 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4297 *
4298 * The package power saving logic comes from
4299 * find_busiest_group(). If there are no imbalance, then
4300 * f_b_g() will return NULL. However when sched_mc={1,2} then
4301 * f_b_g() will select a group from which a running task may be
4302 * pulled to this cpu in order to make the other package idle.
4303 * If there is no opportunity to make a package idle and if
4304 * there are no imbalance, then f_b_g() will return NULL and no
4305 * action will be taken in load_balance_newidle().
4306 *
4307 * Under normal task pull operation due to imbalance, there
4308 * will be more than one task in the source run queue and
4309 * move_tasks() will succeed. ld_moved will be true and this
4310 * active balance code will not be triggered.
4311 */
4312
4313 /* Lock busiest in correct order while this_rq is held */
4314 double_lock_balance(this_rq, busiest);
4315
4316 /*
4317 * don't kick the migration_thread, if the curr
4318 * task on busiest cpu can't be moved to this_cpu
4319 */
4320 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4321 double_unlock_balance(this_rq, busiest);
4322 all_pinned = 1;
4323 return ld_moved;
4324 }
4325
4326 if (!busiest->active_balance) {
4327 busiest->active_balance = 1;
4328 busiest->push_cpu = this_cpu;
4329 active_balance = 1;
4330 }
4331
4332 double_unlock_balance(this_rq, busiest);
4333 /*
4334 * Should not call ttwu while holding a rq->lock
4335 */
4336 spin_unlock(&this_rq->lock);
4337 if (active_balance)
4338 wake_up_process(busiest->migration_thread);
4339 spin_lock(&this_rq->lock);
4340
4341 } else
4342 sd->nr_balance_failed = 0;
4343
4344 update_shares_locked(this_rq, sd);
4345 return ld_moved;
4346
4347 out_balanced:
4348 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4349 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4350 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4351 return -1;
4352 sd->nr_balance_failed = 0;
4353
4354 return 0;
4355 }
4356
4357 /*
4358 * idle_balance is called by schedule() if this_cpu is about to become
4359 * idle. Attempts to pull tasks from other CPUs.
4360 */
4361 static void idle_balance(int this_cpu, struct rq *this_rq)
4362 {
4363 struct sched_domain *sd;
4364 int pulled_task = 0;
4365 unsigned long next_balance = jiffies + HZ;
4366
4367 for_each_domain(this_cpu, sd) {
4368 unsigned long interval;
4369
4370 if (!(sd->flags & SD_LOAD_BALANCE))
4371 continue;
4372
4373 if (sd->flags & SD_BALANCE_NEWIDLE)
4374 /* If we've pulled tasks over stop searching: */
4375 pulled_task = load_balance_newidle(this_cpu, this_rq,
4376 sd);
4377
4378 interval = msecs_to_jiffies(sd->balance_interval);
4379 if (time_after(next_balance, sd->last_balance + interval))
4380 next_balance = sd->last_balance + interval;
4381 if (pulled_task)
4382 break;
4383 }
4384 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4385 /*
4386 * We are going idle. next_balance may be set based on
4387 * a busy processor. So reset next_balance.
4388 */
4389 this_rq->next_balance = next_balance;
4390 }
4391 }
4392
4393 /*
4394 * active_load_balance is run by migration threads. It pushes running tasks
4395 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4396 * running on each physical CPU where possible, and avoids physical /
4397 * logical imbalances.
4398 *
4399 * Called with busiest_rq locked.
4400 */
4401 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4402 {
4403 int target_cpu = busiest_rq->push_cpu;
4404 struct sched_domain *sd;
4405 struct rq *target_rq;
4406
4407 /* Is there any task to move? */
4408 if (busiest_rq->nr_running <= 1)
4409 return;
4410
4411 target_rq = cpu_rq(target_cpu);
4412
4413 /*
4414 * This condition is "impossible", if it occurs
4415 * we need to fix it. Originally reported by
4416 * Bjorn Helgaas on a 128-cpu setup.
4417 */
4418 BUG_ON(busiest_rq == target_rq);
4419
4420 /* move a task from busiest_rq to target_rq */
4421 double_lock_balance(busiest_rq, target_rq);
4422 update_rq_clock(busiest_rq);
4423 update_rq_clock(target_rq);
4424
4425 /* Search for an sd spanning us and the target CPU. */
4426 for_each_domain(target_cpu, sd) {
4427 if ((sd->flags & SD_LOAD_BALANCE) &&
4428 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4429 break;
4430 }
4431
4432 if (likely(sd)) {
4433 schedstat_inc(sd, alb_count);
4434
4435 if (move_one_task(target_rq, target_cpu, busiest_rq,
4436 sd, CPU_IDLE))
4437 schedstat_inc(sd, alb_pushed);
4438 else
4439 schedstat_inc(sd, alb_failed);
4440 }
4441 double_unlock_balance(busiest_rq, target_rq);
4442 }
4443
4444 #ifdef CONFIG_NO_HZ
4445 static struct {
4446 atomic_t load_balancer;
4447 cpumask_var_t cpu_mask;
4448 cpumask_var_t ilb_grp_nohz_mask;
4449 } nohz ____cacheline_aligned = {
4450 .load_balancer = ATOMIC_INIT(-1),
4451 };
4452
4453 int get_nohz_load_balancer(void)
4454 {
4455 return atomic_read(&nohz.load_balancer);
4456 }
4457
4458 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4459 /**
4460 * lowest_flag_domain - Return lowest sched_domain containing flag.
4461 * @cpu: The cpu whose lowest level of sched domain is to
4462 * be returned.
4463 * @flag: The flag to check for the lowest sched_domain
4464 * for the given cpu.
4465 *
4466 * Returns the lowest sched_domain of a cpu which contains the given flag.
4467 */
4468 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4469 {
4470 struct sched_domain *sd;
4471
4472 for_each_domain(cpu, sd)
4473 if (sd && (sd->flags & flag))
4474 break;
4475
4476 return sd;
4477 }
4478
4479 /**
4480 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4481 * @cpu: The cpu whose domains we're iterating over.
4482 * @sd: variable holding the value of the power_savings_sd
4483 * for cpu.
4484 * @flag: The flag to filter the sched_domains to be iterated.
4485 *
4486 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4487 * set, starting from the lowest sched_domain to the highest.
4488 */
4489 #define for_each_flag_domain(cpu, sd, flag) \
4490 for (sd = lowest_flag_domain(cpu, flag); \
4491 (sd && (sd->flags & flag)); sd = sd->parent)
4492
4493 /**
4494 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4495 * @ilb_group: group to be checked for semi-idleness
4496 *
4497 * Returns: 1 if the group is semi-idle. 0 otherwise.
4498 *
4499 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4500 * and atleast one non-idle CPU. This helper function checks if the given
4501 * sched_group is semi-idle or not.
4502 */
4503 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4504 {
4505 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4506 sched_group_cpus(ilb_group));
4507
4508 /*
4509 * A sched_group is semi-idle when it has atleast one busy cpu
4510 * and atleast one idle cpu.
4511 */
4512 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4513 return 0;
4514
4515 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4516 return 0;
4517
4518 return 1;
4519 }
4520 /**
4521 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4522 * @cpu: The cpu which is nominating a new idle_load_balancer.
4523 *
4524 * Returns: Returns the id of the idle load balancer if it exists,
4525 * Else, returns >= nr_cpu_ids.
4526 *
4527 * This algorithm picks the idle load balancer such that it belongs to a
4528 * semi-idle powersavings sched_domain. The idea is to try and avoid
4529 * completely idle packages/cores just for the purpose of idle load balancing
4530 * when there are other idle cpu's which are better suited for that job.
4531 */
4532 static int find_new_ilb(int cpu)
4533 {
4534 struct sched_domain *sd;
4535 struct sched_group *ilb_group;
4536
4537 /*
4538 * Have idle load balancer selection from semi-idle packages only
4539 * when power-aware load balancing is enabled
4540 */
4541 if (!(sched_smt_power_savings || sched_mc_power_savings))
4542 goto out_done;
4543
4544 /*
4545 * Optimize for the case when we have no idle CPUs or only one
4546 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4547 */
4548 if (cpumask_weight(nohz.cpu_mask) < 2)
4549 goto out_done;
4550
4551 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4552 ilb_group = sd->groups;
4553
4554 do {
4555 if (is_semi_idle_group(ilb_group))
4556 return cpumask_first(nohz.ilb_grp_nohz_mask);
4557
4558 ilb_group = ilb_group->next;
4559
4560 } while (ilb_group != sd->groups);
4561 }
4562
4563 out_done:
4564 return cpumask_first(nohz.cpu_mask);
4565 }
4566 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4567 static inline int find_new_ilb(int call_cpu)
4568 {
4569 return cpumask_first(nohz.cpu_mask);
4570 }
4571 #endif
4572
4573 /*
4574 * This routine will try to nominate the ilb (idle load balancing)
4575 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4576 * load balancing on behalf of all those cpus. If all the cpus in the system
4577 * go into this tickless mode, then there will be no ilb owner (as there is
4578 * no need for one) and all the cpus will sleep till the next wakeup event
4579 * arrives...
4580 *
4581 * For the ilb owner, tick is not stopped. And this tick will be used
4582 * for idle load balancing. ilb owner will still be part of
4583 * nohz.cpu_mask..
4584 *
4585 * While stopping the tick, this cpu will become the ilb owner if there
4586 * is no other owner. And will be the owner till that cpu becomes busy
4587 * or if all cpus in the system stop their ticks at which point
4588 * there is no need for ilb owner.
4589 *
4590 * When the ilb owner becomes busy, it nominates another owner, during the
4591 * next busy scheduler_tick()
4592 */
4593 int select_nohz_load_balancer(int stop_tick)
4594 {
4595 int cpu = smp_processor_id();
4596
4597 if (stop_tick) {
4598 cpu_rq(cpu)->in_nohz_recently = 1;
4599
4600 if (!cpu_active(cpu)) {
4601 if (atomic_read(&nohz.load_balancer) != cpu)
4602 return 0;
4603
4604 /*
4605 * If we are going offline and still the leader,
4606 * give up!
4607 */
4608 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4609 BUG();
4610
4611 return 0;
4612 }
4613
4614 cpumask_set_cpu(cpu, nohz.cpu_mask);
4615
4616 /* time for ilb owner also to sleep */
4617 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4618 if (atomic_read(&nohz.load_balancer) == cpu)
4619 atomic_set(&nohz.load_balancer, -1);
4620 return 0;
4621 }
4622
4623 if (atomic_read(&nohz.load_balancer) == -1) {
4624 /* make me the ilb owner */
4625 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4626 return 1;
4627 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4628 int new_ilb;
4629
4630 if (!(sched_smt_power_savings ||
4631 sched_mc_power_savings))
4632 return 1;
4633 /*
4634 * Check to see if there is a more power-efficient
4635 * ilb.
4636 */
4637 new_ilb = find_new_ilb(cpu);
4638 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4639 atomic_set(&nohz.load_balancer, -1);
4640 resched_cpu(new_ilb);
4641 return 0;
4642 }
4643 return 1;
4644 }
4645 } else {
4646 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4647 return 0;
4648
4649 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4650
4651 if (atomic_read(&nohz.load_balancer) == cpu)
4652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4653 BUG();
4654 }
4655 return 0;
4656 }
4657 #endif
4658
4659 static DEFINE_SPINLOCK(balancing);
4660
4661 /*
4662 * It checks each scheduling domain to see if it is due to be balanced,
4663 * and initiates a balancing operation if so.
4664 *
4665 * Balancing parameters are set up in arch_init_sched_domains.
4666 */
4667 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4668 {
4669 int balance = 1;
4670 struct rq *rq = cpu_rq(cpu);
4671 unsigned long interval;
4672 struct sched_domain *sd;
4673 /* Earliest time when we have to do rebalance again */
4674 unsigned long next_balance = jiffies + 60*HZ;
4675 int update_next_balance = 0;
4676 int need_serialize;
4677
4678 for_each_domain(cpu, sd) {
4679 if (!(sd->flags & SD_LOAD_BALANCE))
4680 continue;
4681
4682 interval = sd->balance_interval;
4683 if (idle != CPU_IDLE)
4684 interval *= sd->busy_factor;
4685
4686 /* scale ms to jiffies */
4687 interval = msecs_to_jiffies(interval);
4688 if (unlikely(!interval))
4689 interval = 1;
4690 if (interval > HZ*NR_CPUS/10)
4691 interval = HZ*NR_CPUS/10;
4692
4693 need_serialize = sd->flags & SD_SERIALIZE;
4694
4695 if (need_serialize) {
4696 if (!spin_trylock(&balancing))
4697 goto out;
4698 }
4699
4700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4701 if (load_balance(cpu, rq, sd, idle, &balance)) {
4702 /*
4703 * We've pulled tasks over so either we're no
4704 * longer idle, or one of our SMT siblings is
4705 * not idle.
4706 */
4707 idle = CPU_NOT_IDLE;
4708 }
4709 sd->last_balance = jiffies;
4710 }
4711 if (need_serialize)
4712 spin_unlock(&balancing);
4713 out:
4714 if (time_after(next_balance, sd->last_balance + interval)) {
4715 next_balance = sd->last_balance + interval;
4716 update_next_balance = 1;
4717 }
4718
4719 /*
4720 * Stop the load balance at this level. There is another
4721 * CPU in our sched group which is doing load balancing more
4722 * actively.
4723 */
4724 if (!balance)
4725 break;
4726 }
4727
4728 /*
4729 * next_balance will be updated only when there is a need.
4730 * When the cpu is attached to null domain for ex, it will not be
4731 * updated.
4732 */
4733 if (likely(update_next_balance))
4734 rq->next_balance = next_balance;
4735 }
4736
4737 /*
4738 * run_rebalance_domains is triggered when needed from the scheduler tick.
4739 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4740 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4741 */
4742 static void run_rebalance_domains(struct softirq_action *h)
4743 {
4744 int this_cpu = smp_processor_id();
4745 struct rq *this_rq = cpu_rq(this_cpu);
4746 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4747 CPU_IDLE : CPU_NOT_IDLE;
4748
4749 rebalance_domains(this_cpu, idle);
4750
4751 #ifdef CONFIG_NO_HZ
4752 /*
4753 * If this cpu is the owner for idle load balancing, then do the
4754 * balancing on behalf of the other idle cpus whose ticks are
4755 * stopped.
4756 */
4757 if (this_rq->idle_at_tick &&
4758 atomic_read(&nohz.load_balancer) == this_cpu) {
4759 struct rq *rq;
4760 int balance_cpu;
4761
4762 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4763 if (balance_cpu == this_cpu)
4764 continue;
4765
4766 /*
4767 * If this cpu gets work to do, stop the load balancing
4768 * work being done for other cpus. Next load
4769 * balancing owner will pick it up.
4770 */
4771 if (need_resched())
4772 break;
4773
4774 rebalance_domains(balance_cpu, CPU_IDLE);
4775
4776 rq = cpu_rq(balance_cpu);
4777 if (time_after(this_rq->next_balance, rq->next_balance))
4778 this_rq->next_balance = rq->next_balance;
4779 }
4780 }
4781 #endif
4782 }
4783
4784 static inline int on_null_domain(int cpu)
4785 {
4786 return !rcu_dereference(cpu_rq(cpu)->sd);
4787 }
4788
4789 /*
4790 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4791 *
4792 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4793 * idle load balancing owner or decide to stop the periodic load balancing,
4794 * if the whole system is idle.
4795 */
4796 static inline void trigger_load_balance(struct rq *rq, int cpu)
4797 {
4798 #ifdef CONFIG_NO_HZ
4799 /*
4800 * If we were in the nohz mode recently and busy at the current
4801 * scheduler tick, then check if we need to nominate new idle
4802 * load balancer.
4803 */
4804 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4805 rq->in_nohz_recently = 0;
4806
4807 if (atomic_read(&nohz.load_balancer) == cpu) {
4808 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4809 atomic_set(&nohz.load_balancer, -1);
4810 }
4811
4812 if (atomic_read(&nohz.load_balancer) == -1) {
4813 int ilb = find_new_ilb(cpu);
4814
4815 if (ilb < nr_cpu_ids)
4816 resched_cpu(ilb);
4817 }
4818 }
4819
4820 /*
4821 * If this cpu is idle and doing idle load balancing for all the
4822 * cpus with ticks stopped, is it time for that to stop?
4823 */
4824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4825 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4826 resched_cpu(cpu);
4827 return;
4828 }
4829
4830 /*
4831 * If this cpu is idle and the idle load balancing is done by
4832 * someone else, then no need raise the SCHED_SOFTIRQ
4833 */
4834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4835 cpumask_test_cpu(cpu, nohz.cpu_mask))
4836 return;
4837 #endif
4838 /* Don't need to rebalance while attached to NULL domain */
4839 if (time_after_eq(jiffies, rq->next_balance) &&
4840 likely(!on_null_domain(cpu)))
4841 raise_softirq(SCHED_SOFTIRQ);
4842 }
4843
4844 #else /* CONFIG_SMP */
4845
4846 /*
4847 * on UP we do not need to balance between CPUs:
4848 */
4849 static inline void idle_balance(int cpu, struct rq *rq)
4850 {
4851 }
4852
4853 #endif
4854
4855 DEFINE_PER_CPU(struct kernel_stat, kstat);
4856
4857 EXPORT_PER_CPU_SYMBOL(kstat);
4858
4859 /*
4860 * Return any ns on the sched_clock that have not yet been accounted in
4861 * @p in case that task is currently running.
4862 *
4863 * Called with task_rq_lock() held on @rq.
4864 */
4865 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4866 {
4867 u64 ns = 0;
4868
4869 if (task_current(rq, p)) {
4870 update_rq_clock(rq);
4871 ns = rq->clock - p->se.exec_start;
4872 if ((s64)ns < 0)
4873 ns = 0;
4874 }
4875
4876 return ns;
4877 }
4878
4879 unsigned long long task_delta_exec(struct task_struct *p)
4880 {
4881 unsigned long flags;
4882 struct rq *rq;
4883 u64 ns = 0;
4884
4885 rq = task_rq_lock(p, &flags);
4886 ns = do_task_delta_exec(p, rq);
4887 task_rq_unlock(rq, &flags);
4888
4889 return ns;
4890 }
4891
4892 /*
4893 * Return accounted runtime for the task.
4894 * In case the task is currently running, return the runtime plus current's
4895 * pending runtime that have not been accounted yet.
4896 */
4897 unsigned long long task_sched_runtime(struct task_struct *p)
4898 {
4899 unsigned long flags;
4900 struct rq *rq;
4901 u64 ns = 0;
4902
4903 rq = task_rq_lock(p, &flags);
4904 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4905 task_rq_unlock(rq, &flags);
4906
4907 return ns;
4908 }
4909
4910 /*
4911 * Return sum_exec_runtime for the thread group.
4912 * In case the task is currently running, return the sum plus current's
4913 * pending runtime that have not been accounted yet.
4914 *
4915 * Note that the thread group might have other running tasks as well,
4916 * so the return value not includes other pending runtime that other
4917 * running tasks might have.
4918 */
4919 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4920 {
4921 struct task_cputime totals;
4922 unsigned long flags;
4923 struct rq *rq;
4924 u64 ns;
4925
4926 rq = task_rq_lock(p, &flags);
4927 thread_group_cputime(p, &totals);
4928 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4929 task_rq_unlock(rq, &flags);
4930
4931 return ns;
4932 }
4933
4934 /*
4935 * Account user cpu time to a process.
4936 * @p: the process that the cpu time gets accounted to
4937 * @cputime: the cpu time spent in user space since the last update
4938 * @cputime_scaled: cputime scaled by cpu frequency
4939 */
4940 void account_user_time(struct task_struct *p, cputime_t cputime,
4941 cputime_t cputime_scaled)
4942 {
4943 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4944 cputime64_t tmp;
4945
4946 /* Add user time to process. */
4947 p->utime = cputime_add(p->utime, cputime);
4948 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4949 account_group_user_time(p, cputime);
4950
4951 /* Add user time to cpustat. */
4952 tmp = cputime_to_cputime64(cputime);
4953 if (TASK_NICE(p) > 0)
4954 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4955 else
4956 cpustat->user = cputime64_add(cpustat->user, tmp);
4957
4958 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4959 /* Account for user time used */
4960 acct_update_integrals(p);
4961 }
4962
4963 /*
4964 * Account guest cpu time to a process.
4965 * @p: the process that the cpu time gets accounted to
4966 * @cputime: the cpu time spent in virtual machine since the last update
4967 * @cputime_scaled: cputime scaled by cpu frequency
4968 */
4969 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4970 cputime_t cputime_scaled)
4971 {
4972 cputime64_t tmp;
4973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4974
4975 tmp = cputime_to_cputime64(cputime);
4976
4977 /* Add guest time to process. */
4978 p->utime = cputime_add(p->utime, cputime);
4979 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4980 account_group_user_time(p, cputime);
4981 p->gtime = cputime_add(p->gtime, cputime);
4982
4983 /* Add guest time to cpustat. */
4984 cpustat->user = cputime64_add(cpustat->user, tmp);
4985 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4986 }
4987
4988 /*
4989 * Account system cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @hardirq_offset: the offset to subtract from hardirq_count()
4992 * @cputime: the cpu time spent in kernel space since the last update
4993 * @cputime_scaled: cputime scaled by cpu frequency
4994 */
4995 void account_system_time(struct task_struct *p, int hardirq_offset,
4996 cputime_t cputime, cputime_t cputime_scaled)
4997 {
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4999 cputime64_t tmp;
5000
5001 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5002 account_guest_time(p, cputime, cputime_scaled);
5003 return;
5004 }
5005
5006 /* Add system time to process. */
5007 p->stime = cputime_add(p->stime, cputime);
5008 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5009 account_group_system_time(p, cputime);
5010
5011 /* Add system time to cpustat. */
5012 tmp = cputime_to_cputime64(cputime);
5013 if (hardirq_count() - hardirq_offset)
5014 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5015 else if (softirq_count())
5016 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5017 else
5018 cpustat->system = cputime64_add(cpustat->system, tmp);
5019
5020 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5021
5022 /* Account for system time used */
5023 acct_update_integrals(p);
5024 }
5025
5026 /*
5027 * Account for involuntary wait time.
5028 * @steal: the cpu time spent in involuntary wait
5029 */
5030 void account_steal_time(cputime_t cputime)
5031 {
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5033 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5034
5035 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5036 }
5037
5038 /*
5039 * Account for idle time.
5040 * @cputime: the cpu time spent in idle wait
5041 */
5042 void account_idle_time(cputime_t cputime)
5043 {
5044 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5045 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5046 struct rq *rq = this_rq();
5047
5048 if (atomic_read(&rq->nr_iowait) > 0)
5049 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5050 else
5051 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5052 }
5053
5054 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5055
5056 /*
5057 * Account a single tick of cpu time.
5058 * @p: the process that the cpu time gets accounted to
5059 * @user_tick: indicates if the tick is a user or a system tick
5060 */
5061 void account_process_tick(struct task_struct *p, int user_tick)
5062 {
5063 cputime_t one_jiffy = jiffies_to_cputime(1);
5064 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5065 struct rq *rq = this_rq();
5066
5067 if (user_tick)
5068 account_user_time(p, one_jiffy, one_jiffy_scaled);
5069 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5070 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5071 one_jiffy_scaled);
5072 else
5073 account_idle_time(one_jiffy);
5074 }
5075
5076 /*
5077 * Account multiple ticks of steal time.
5078 * @p: the process from which the cpu time has been stolen
5079 * @ticks: number of stolen ticks
5080 */
5081 void account_steal_ticks(unsigned long ticks)
5082 {
5083 account_steal_time(jiffies_to_cputime(ticks));
5084 }
5085
5086 /*
5087 * Account multiple ticks of idle time.
5088 * @ticks: number of stolen ticks
5089 */
5090 void account_idle_ticks(unsigned long ticks)
5091 {
5092 account_idle_time(jiffies_to_cputime(ticks));
5093 }
5094
5095 #endif
5096
5097 /*
5098 * Use precise platform statistics if available:
5099 */
5100 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5101 cputime_t task_utime(struct task_struct *p)
5102 {
5103 return p->utime;
5104 }
5105
5106 cputime_t task_stime(struct task_struct *p)
5107 {
5108 return p->stime;
5109 }
5110 #else
5111 cputime_t task_utime(struct task_struct *p)
5112 {
5113 clock_t utime = cputime_to_clock_t(p->utime),
5114 total = utime + cputime_to_clock_t(p->stime);
5115 u64 temp;
5116
5117 /*
5118 * Use CFS's precise accounting:
5119 */
5120 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5121
5122 if (total) {
5123 temp *= utime;
5124 do_div(temp, total);
5125 }
5126 utime = (clock_t)temp;
5127
5128 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5129 return p->prev_utime;
5130 }
5131
5132 cputime_t task_stime(struct task_struct *p)
5133 {
5134 clock_t stime;
5135
5136 /*
5137 * Use CFS's precise accounting. (we subtract utime from
5138 * the total, to make sure the total observed by userspace
5139 * grows monotonically - apps rely on that):
5140 */
5141 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5142 cputime_to_clock_t(task_utime(p));
5143
5144 if (stime >= 0)
5145 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5146
5147 return p->prev_stime;
5148 }
5149 #endif
5150
5151 inline cputime_t task_gtime(struct task_struct *p)
5152 {
5153 return p->gtime;
5154 }
5155
5156 /*
5157 * This function gets called by the timer code, with HZ frequency.
5158 * We call it with interrupts disabled.
5159 *
5160 * It also gets called by the fork code, when changing the parent's
5161 * timeslices.
5162 */
5163 void scheduler_tick(void)
5164 {
5165 int cpu = smp_processor_id();
5166 struct rq *rq = cpu_rq(cpu);
5167 struct task_struct *curr = rq->curr;
5168
5169 sched_clock_tick();
5170
5171 spin_lock(&rq->lock);
5172 update_rq_clock(rq);
5173 update_cpu_load(rq);
5174 curr->sched_class->task_tick(rq, curr, 0);
5175 spin_unlock(&rq->lock);
5176
5177 perf_counter_task_tick(curr, cpu);
5178
5179 #ifdef CONFIG_SMP
5180 rq->idle_at_tick = idle_cpu(cpu);
5181 trigger_load_balance(rq, cpu);
5182 #endif
5183 }
5184
5185 notrace unsigned long get_parent_ip(unsigned long addr)
5186 {
5187 if (in_lock_functions(addr)) {
5188 addr = CALLER_ADDR2;
5189 if (in_lock_functions(addr))
5190 addr = CALLER_ADDR3;
5191 }
5192 return addr;
5193 }
5194
5195 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5196 defined(CONFIG_PREEMPT_TRACER))
5197
5198 void __kprobes add_preempt_count(int val)
5199 {
5200 #ifdef CONFIG_DEBUG_PREEMPT
5201 /*
5202 * Underflow?
5203 */
5204 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5205 return;
5206 #endif
5207 preempt_count() += val;
5208 #ifdef CONFIG_DEBUG_PREEMPT
5209 /*
5210 * Spinlock count overflowing soon?
5211 */
5212 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5213 PREEMPT_MASK - 10);
5214 #endif
5215 if (preempt_count() == val)
5216 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5217 }
5218 EXPORT_SYMBOL(add_preempt_count);
5219
5220 void __kprobes sub_preempt_count(int val)
5221 {
5222 #ifdef CONFIG_DEBUG_PREEMPT
5223 /*
5224 * Underflow?
5225 */
5226 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5227 return;
5228 /*
5229 * Is the spinlock portion underflowing?
5230 */
5231 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5232 !(preempt_count() & PREEMPT_MASK)))
5233 return;
5234 #endif
5235
5236 if (preempt_count() == val)
5237 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5238 preempt_count() -= val;
5239 }
5240 EXPORT_SYMBOL(sub_preempt_count);
5241
5242 #endif
5243
5244 /*
5245 * Print scheduling while atomic bug:
5246 */
5247 static noinline void __schedule_bug(struct task_struct *prev)
5248 {
5249 struct pt_regs *regs = get_irq_regs();
5250
5251 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5252 prev->comm, prev->pid, preempt_count());
5253
5254 debug_show_held_locks(prev);
5255 print_modules();
5256 if (irqs_disabled())
5257 print_irqtrace_events(prev);
5258
5259 if (regs)
5260 show_regs(regs);
5261 else
5262 dump_stack();
5263 }
5264
5265 /*
5266 * Various schedule()-time debugging checks and statistics:
5267 */
5268 static inline void schedule_debug(struct task_struct *prev)
5269 {
5270 /*
5271 * Test if we are atomic. Since do_exit() needs to call into
5272 * schedule() atomically, we ignore that path for now.
5273 * Otherwise, whine if we are scheduling when we should not be.
5274 */
5275 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5276 __schedule_bug(prev);
5277
5278 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5279
5280 schedstat_inc(this_rq(), sched_count);
5281 #ifdef CONFIG_SCHEDSTATS
5282 if (unlikely(prev->lock_depth >= 0)) {
5283 schedstat_inc(this_rq(), bkl_count);
5284 schedstat_inc(prev, sched_info.bkl_count);
5285 }
5286 #endif
5287 }
5288
5289 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5290 {
5291 if (prev->state == TASK_RUNNING) {
5292 u64 runtime = prev->se.sum_exec_runtime;
5293
5294 runtime -= prev->se.prev_sum_exec_runtime;
5295 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5296
5297 /*
5298 * In order to avoid avg_overlap growing stale when we are
5299 * indeed overlapping and hence not getting put to sleep, grow
5300 * the avg_overlap on preemption.
5301 *
5302 * We use the average preemption runtime because that
5303 * correlates to the amount of cache footprint a task can
5304 * build up.
5305 */
5306 update_avg(&prev->se.avg_overlap, runtime);
5307 }
5308 prev->sched_class->put_prev_task(rq, prev);
5309 }
5310
5311 /*
5312 * Pick up the highest-prio task:
5313 */
5314 static inline struct task_struct *
5315 pick_next_task(struct rq *rq)
5316 {
5317 const struct sched_class *class;
5318 struct task_struct *p;
5319
5320 /*
5321 * Optimization: we know that if all tasks are in
5322 * the fair class we can call that function directly:
5323 */
5324 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5325 p = fair_sched_class.pick_next_task(rq);
5326 if (likely(p))
5327 return p;
5328 }
5329
5330 class = sched_class_highest;
5331 for ( ; ; ) {
5332 p = class->pick_next_task(rq);
5333 if (p)
5334 return p;
5335 /*
5336 * Will never be NULL as the idle class always
5337 * returns a non-NULL p:
5338 */
5339 class = class->next;
5340 }
5341 }
5342
5343 /*
5344 * schedule() is the main scheduler function.
5345 */
5346 asmlinkage void __sched schedule(void)
5347 {
5348 struct task_struct *prev, *next;
5349 unsigned long *switch_count;
5350 struct rq *rq;
5351 int cpu;
5352
5353 need_resched:
5354 preempt_disable();
5355 cpu = smp_processor_id();
5356 rq = cpu_rq(cpu);
5357 rcu_sched_qs(cpu);
5358 prev = rq->curr;
5359 switch_count = &prev->nivcsw;
5360
5361 release_kernel_lock(prev);
5362 need_resched_nonpreemptible:
5363
5364 schedule_debug(prev);
5365
5366 if (sched_feat(HRTICK))
5367 hrtick_clear(rq);
5368
5369 spin_lock_irq(&rq->lock);
5370 update_rq_clock(rq);
5371 clear_tsk_need_resched(prev);
5372
5373 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5374 if (unlikely(signal_pending_state(prev->state, prev)))
5375 prev->state = TASK_RUNNING;
5376 else
5377 deactivate_task(rq, prev, 1);
5378 switch_count = &prev->nvcsw;
5379 }
5380
5381 pre_schedule(rq, prev);
5382
5383 if (unlikely(!rq->nr_running))
5384 idle_balance(cpu, rq);
5385
5386 put_prev_task(rq, prev);
5387 next = pick_next_task(rq);
5388
5389 if (likely(prev != next)) {
5390 sched_info_switch(prev, next);
5391 perf_counter_task_sched_out(prev, next, cpu);
5392
5393 rq->nr_switches++;
5394 rq->curr = next;
5395 ++*switch_count;
5396
5397 context_switch(rq, prev, next); /* unlocks the rq */
5398 /*
5399 * the context switch might have flipped the stack from under
5400 * us, hence refresh the local variables.
5401 */
5402 cpu = smp_processor_id();
5403 rq = cpu_rq(cpu);
5404 } else
5405 spin_unlock_irq(&rq->lock);
5406
5407 post_schedule(rq);
5408
5409 if (unlikely(reacquire_kernel_lock(current) < 0))
5410 goto need_resched_nonpreemptible;
5411
5412 preempt_enable_no_resched();
5413 if (need_resched())
5414 goto need_resched;
5415 }
5416 EXPORT_SYMBOL(schedule);
5417
5418 #ifdef CONFIG_SMP
5419 /*
5420 * Look out! "owner" is an entirely speculative pointer
5421 * access and not reliable.
5422 */
5423 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5424 {
5425 unsigned int cpu;
5426 struct rq *rq;
5427
5428 if (!sched_feat(OWNER_SPIN))
5429 return 0;
5430
5431 #ifdef CONFIG_DEBUG_PAGEALLOC
5432 /*
5433 * Need to access the cpu field knowing that
5434 * DEBUG_PAGEALLOC could have unmapped it if
5435 * the mutex owner just released it and exited.
5436 */
5437 if (probe_kernel_address(&owner->cpu, cpu))
5438 goto out;
5439 #else
5440 cpu = owner->cpu;
5441 #endif
5442
5443 /*
5444 * Even if the access succeeded (likely case),
5445 * the cpu field may no longer be valid.
5446 */
5447 if (cpu >= nr_cpumask_bits)
5448 goto out;
5449
5450 /*
5451 * We need to validate that we can do a
5452 * get_cpu() and that we have the percpu area.
5453 */
5454 if (!cpu_online(cpu))
5455 goto out;
5456
5457 rq = cpu_rq(cpu);
5458
5459 for (;;) {
5460 /*
5461 * Owner changed, break to re-assess state.
5462 */
5463 if (lock->owner != owner)
5464 break;
5465
5466 /*
5467 * Is that owner really running on that cpu?
5468 */
5469 if (task_thread_info(rq->curr) != owner || need_resched())
5470 return 0;
5471
5472 cpu_relax();
5473 }
5474 out:
5475 return 1;
5476 }
5477 #endif
5478
5479 #ifdef CONFIG_PREEMPT
5480 /*
5481 * this is the entry point to schedule() from in-kernel preemption
5482 * off of preempt_enable. Kernel preemptions off return from interrupt
5483 * occur there and call schedule directly.
5484 */
5485 asmlinkage void __sched preempt_schedule(void)
5486 {
5487 struct thread_info *ti = current_thread_info();
5488
5489 /*
5490 * If there is a non-zero preempt_count or interrupts are disabled,
5491 * we do not want to preempt the current task. Just return..
5492 */
5493 if (likely(ti->preempt_count || irqs_disabled()))
5494 return;
5495
5496 do {
5497 add_preempt_count(PREEMPT_ACTIVE);
5498 schedule();
5499 sub_preempt_count(PREEMPT_ACTIVE);
5500
5501 /*
5502 * Check again in case we missed a preemption opportunity
5503 * between schedule and now.
5504 */
5505 barrier();
5506 } while (need_resched());
5507 }
5508 EXPORT_SYMBOL(preempt_schedule);
5509
5510 /*
5511 * this is the entry point to schedule() from kernel preemption
5512 * off of irq context.
5513 * Note, that this is called and return with irqs disabled. This will
5514 * protect us against recursive calling from irq.
5515 */
5516 asmlinkage void __sched preempt_schedule_irq(void)
5517 {
5518 struct thread_info *ti = current_thread_info();
5519
5520 /* Catch callers which need to be fixed */
5521 BUG_ON(ti->preempt_count || !irqs_disabled());
5522
5523 do {
5524 add_preempt_count(PREEMPT_ACTIVE);
5525 local_irq_enable();
5526 schedule();
5527 local_irq_disable();
5528 sub_preempt_count(PREEMPT_ACTIVE);
5529
5530 /*
5531 * Check again in case we missed a preemption opportunity
5532 * between schedule and now.
5533 */
5534 barrier();
5535 } while (need_resched());
5536 }
5537
5538 #endif /* CONFIG_PREEMPT */
5539
5540 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5541 void *key)
5542 {
5543 return try_to_wake_up(curr->private, mode, sync);
5544 }
5545 EXPORT_SYMBOL(default_wake_function);
5546
5547 /*
5548 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5549 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5550 * number) then we wake all the non-exclusive tasks and one exclusive task.
5551 *
5552 * There are circumstances in which we can try to wake a task which has already
5553 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5554 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5555 */
5556 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5557 int nr_exclusive, int sync, void *key)
5558 {
5559 wait_queue_t *curr, *next;
5560
5561 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5562 unsigned flags = curr->flags;
5563
5564 if (curr->func(curr, mode, sync, key) &&
5565 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5566 break;
5567 }
5568 }
5569
5570 /**
5571 * __wake_up - wake up threads blocked on a waitqueue.
5572 * @q: the waitqueue
5573 * @mode: which threads
5574 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5575 * @key: is directly passed to the wakeup function
5576 *
5577 * It may be assumed that this function implies a write memory barrier before
5578 * changing the task state if and only if any tasks are woken up.
5579 */
5580 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5581 int nr_exclusive, void *key)
5582 {
5583 unsigned long flags;
5584
5585 spin_lock_irqsave(&q->lock, flags);
5586 __wake_up_common(q, mode, nr_exclusive, 0, key);
5587 spin_unlock_irqrestore(&q->lock, flags);
5588 }
5589 EXPORT_SYMBOL(__wake_up);
5590
5591 /*
5592 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5593 */
5594 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5595 {
5596 __wake_up_common(q, mode, 1, 0, NULL);
5597 }
5598
5599 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5600 {
5601 __wake_up_common(q, mode, 1, 0, key);
5602 }
5603
5604 /**
5605 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5606 * @q: the waitqueue
5607 * @mode: which threads
5608 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5609 * @key: opaque value to be passed to wakeup targets
5610 *
5611 * The sync wakeup differs that the waker knows that it will schedule
5612 * away soon, so while the target thread will be woken up, it will not
5613 * be migrated to another CPU - ie. the two threads are 'synchronized'
5614 * with each other. This can prevent needless bouncing between CPUs.
5615 *
5616 * On UP it can prevent extra preemption.
5617 *
5618 * It may be assumed that this function implies a write memory barrier before
5619 * changing the task state if and only if any tasks are woken up.
5620 */
5621 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5622 int nr_exclusive, void *key)
5623 {
5624 unsigned long flags;
5625 int sync = 1;
5626
5627 if (unlikely(!q))
5628 return;
5629
5630 if (unlikely(!nr_exclusive))
5631 sync = 0;
5632
5633 spin_lock_irqsave(&q->lock, flags);
5634 __wake_up_common(q, mode, nr_exclusive, sync, key);
5635 spin_unlock_irqrestore(&q->lock, flags);
5636 }
5637 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5638
5639 /*
5640 * __wake_up_sync - see __wake_up_sync_key()
5641 */
5642 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5643 {
5644 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5645 }
5646 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5647
5648 /**
5649 * complete: - signals a single thread waiting on this completion
5650 * @x: holds the state of this particular completion
5651 *
5652 * This will wake up a single thread waiting on this completion. Threads will be
5653 * awakened in the same order in which they were queued.
5654 *
5655 * See also complete_all(), wait_for_completion() and related routines.
5656 *
5657 * It may be assumed that this function implies a write memory barrier before
5658 * changing the task state if and only if any tasks are woken up.
5659 */
5660 void complete(struct completion *x)
5661 {
5662 unsigned long flags;
5663
5664 spin_lock_irqsave(&x->wait.lock, flags);
5665 x->done++;
5666 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5667 spin_unlock_irqrestore(&x->wait.lock, flags);
5668 }
5669 EXPORT_SYMBOL(complete);
5670
5671 /**
5672 * complete_all: - signals all threads waiting on this completion
5673 * @x: holds the state of this particular completion
5674 *
5675 * This will wake up all threads waiting on this particular completion event.
5676 *
5677 * It may be assumed that this function implies a write memory barrier before
5678 * changing the task state if and only if any tasks are woken up.
5679 */
5680 void complete_all(struct completion *x)
5681 {
5682 unsigned long flags;
5683
5684 spin_lock_irqsave(&x->wait.lock, flags);
5685 x->done += UINT_MAX/2;
5686 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5687 spin_unlock_irqrestore(&x->wait.lock, flags);
5688 }
5689 EXPORT_SYMBOL(complete_all);
5690
5691 static inline long __sched
5692 do_wait_for_common(struct completion *x, long timeout, int state)
5693 {
5694 if (!x->done) {
5695 DECLARE_WAITQUEUE(wait, current);
5696
5697 wait.flags |= WQ_FLAG_EXCLUSIVE;
5698 __add_wait_queue_tail(&x->wait, &wait);
5699 do {
5700 if (signal_pending_state(state, current)) {
5701 timeout = -ERESTARTSYS;
5702 break;
5703 }
5704 __set_current_state(state);
5705 spin_unlock_irq(&x->wait.lock);
5706 timeout = schedule_timeout(timeout);
5707 spin_lock_irq(&x->wait.lock);
5708 } while (!x->done && timeout);
5709 __remove_wait_queue(&x->wait, &wait);
5710 if (!x->done)
5711 return timeout;
5712 }
5713 x->done--;
5714 return timeout ?: 1;
5715 }
5716
5717 static long __sched
5718 wait_for_common(struct completion *x, long timeout, int state)
5719 {
5720 might_sleep();
5721
5722 spin_lock_irq(&x->wait.lock);
5723 timeout = do_wait_for_common(x, timeout, state);
5724 spin_unlock_irq(&x->wait.lock);
5725 return timeout;
5726 }
5727
5728 /**
5729 * wait_for_completion: - waits for completion of a task
5730 * @x: holds the state of this particular completion
5731 *
5732 * This waits to be signaled for completion of a specific task. It is NOT
5733 * interruptible and there is no timeout.
5734 *
5735 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5736 * and interrupt capability. Also see complete().
5737 */
5738 void __sched wait_for_completion(struct completion *x)
5739 {
5740 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5741 }
5742 EXPORT_SYMBOL(wait_for_completion);
5743
5744 /**
5745 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5746 * @x: holds the state of this particular completion
5747 * @timeout: timeout value in jiffies
5748 *
5749 * This waits for either a completion of a specific task to be signaled or for a
5750 * specified timeout to expire. The timeout is in jiffies. It is not
5751 * interruptible.
5752 */
5753 unsigned long __sched
5754 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5755 {
5756 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5757 }
5758 EXPORT_SYMBOL(wait_for_completion_timeout);
5759
5760 /**
5761 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5762 * @x: holds the state of this particular completion
5763 *
5764 * This waits for completion of a specific task to be signaled. It is
5765 * interruptible.
5766 */
5767 int __sched wait_for_completion_interruptible(struct completion *x)
5768 {
5769 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5770 if (t == -ERESTARTSYS)
5771 return t;
5772 return 0;
5773 }
5774 EXPORT_SYMBOL(wait_for_completion_interruptible);
5775
5776 /**
5777 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5778 * @x: holds the state of this particular completion
5779 * @timeout: timeout value in jiffies
5780 *
5781 * This waits for either a completion of a specific task to be signaled or for a
5782 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5783 */
5784 unsigned long __sched
5785 wait_for_completion_interruptible_timeout(struct completion *x,
5786 unsigned long timeout)
5787 {
5788 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5789 }
5790 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5791
5792 /**
5793 * wait_for_completion_killable: - waits for completion of a task (killable)
5794 * @x: holds the state of this particular completion
5795 *
5796 * This waits to be signaled for completion of a specific task. It can be
5797 * interrupted by a kill signal.
5798 */
5799 int __sched wait_for_completion_killable(struct completion *x)
5800 {
5801 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5802 if (t == -ERESTARTSYS)
5803 return t;
5804 return 0;
5805 }
5806 EXPORT_SYMBOL(wait_for_completion_killable);
5807
5808 /**
5809 * try_wait_for_completion - try to decrement a completion without blocking
5810 * @x: completion structure
5811 *
5812 * Returns: 0 if a decrement cannot be done without blocking
5813 * 1 if a decrement succeeded.
5814 *
5815 * If a completion is being used as a counting completion,
5816 * attempt to decrement the counter without blocking. This
5817 * enables us to avoid waiting if the resource the completion
5818 * is protecting is not available.
5819 */
5820 bool try_wait_for_completion(struct completion *x)
5821 {
5822 int ret = 1;
5823
5824 spin_lock_irq(&x->wait.lock);
5825 if (!x->done)
5826 ret = 0;
5827 else
5828 x->done--;
5829 spin_unlock_irq(&x->wait.lock);
5830 return ret;
5831 }
5832 EXPORT_SYMBOL(try_wait_for_completion);
5833
5834 /**
5835 * completion_done - Test to see if a completion has any waiters
5836 * @x: completion structure
5837 *
5838 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5839 * 1 if there are no waiters.
5840 *
5841 */
5842 bool completion_done(struct completion *x)
5843 {
5844 int ret = 1;
5845
5846 spin_lock_irq(&x->wait.lock);
5847 if (!x->done)
5848 ret = 0;
5849 spin_unlock_irq(&x->wait.lock);
5850 return ret;
5851 }
5852 EXPORT_SYMBOL(completion_done);
5853
5854 static long __sched
5855 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5856 {
5857 unsigned long flags;
5858 wait_queue_t wait;
5859
5860 init_waitqueue_entry(&wait, current);
5861
5862 __set_current_state(state);
5863
5864 spin_lock_irqsave(&q->lock, flags);
5865 __add_wait_queue(q, &wait);
5866 spin_unlock(&q->lock);
5867 timeout = schedule_timeout(timeout);
5868 spin_lock_irq(&q->lock);
5869 __remove_wait_queue(q, &wait);
5870 spin_unlock_irqrestore(&q->lock, flags);
5871
5872 return timeout;
5873 }
5874
5875 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5876 {
5877 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5878 }
5879 EXPORT_SYMBOL(interruptible_sleep_on);
5880
5881 long __sched
5882 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5883 {
5884 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5885 }
5886 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5887
5888 void __sched sleep_on(wait_queue_head_t *q)
5889 {
5890 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5891 }
5892 EXPORT_SYMBOL(sleep_on);
5893
5894 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5895 {
5896 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5897 }
5898 EXPORT_SYMBOL(sleep_on_timeout);
5899
5900 #ifdef CONFIG_RT_MUTEXES
5901
5902 /*
5903 * rt_mutex_setprio - set the current priority of a task
5904 * @p: task
5905 * @prio: prio value (kernel-internal form)
5906 *
5907 * This function changes the 'effective' priority of a task. It does
5908 * not touch ->normal_prio like __setscheduler().
5909 *
5910 * Used by the rt_mutex code to implement priority inheritance logic.
5911 */
5912 void rt_mutex_setprio(struct task_struct *p, int prio)
5913 {
5914 unsigned long flags;
5915 int oldprio, on_rq, running;
5916 struct rq *rq;
5917 const struct sched_class *prev_class = p->sched_class;
5918
5919 BUG_ON(prio < 0 || prio > MAX_PRIO);
5920
5921 rq = task_rq_lock(p, &flags);
5922 update_rq_clock(rq);
5923
5924 oldprio = p->prio;
5925 on_rq = p->se.on_rq;
5926 running = task_current(rq, p);
5927 if (on_rq)
5928 dequeue_task(rq, p, 0);
5929 if (running)
5930 p->sched_class->put_prev_task(rq, p);
5931
5932 if (rt_prio(prio))
5933 p->sched_class = &rt_sched_class;
5934 else
5935 p->sched_class = &fair_sched_class;
5936
5937 p->prio = prio;
5938
5939 if (running)
5940 p->sched_class->set_curr_task(rq);
5941 if (on_rq) {
5942 enqueue_task(rq, p, 0);
5943
5944 check_class_changed(rq, p, prev_class, oldprio, running);
5945 }
5946 task_rq_unlock(rq, &flags);
5947 }
5948
5949 #endif
5950
5951 void set_user_nice(struct task_struct *p, long nice)
5952 {
5953 int old_prio, delta, on_rq;
5954 unsigned long flags;
5955 struct rq *rq;
5956
5957 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5958 return;
5959 /*
5960 * We have to be careful, if called from sys_setpriority(),
5961 * the task might be in the middle of scheduling on another CPU.
5962 */
5963 rq = task_rq_lock(p, &flags);
5964 update_rq_clock(rq);
5965 /*
5966 * The RT priorities are set via sched_setscheduler(), but we still
5967 * allow the 'normal' nice value to be set - but as expected
5968 * it wont have any effect on scheduling until the task is
5969 * SCHED_FIFO/SCHED_RR:
5970 */
5971 if (task_has_rt_policy(p)) {
5972 p->static_prio = NICE_TO_PRIO(nice);
5973 goto out_unlock;
5974 }
5975 on_rq = p->se.on_rq;
5976 if (on_rq)
5977 dequeue_task(rq, p, 0);
5978
5979 p->static_prio = NICE_TO_PRIO(nice);
5980 set_load_weight(p);
5981 old_prio = p->prio;
5982 p->prio = effective_prio(p);
5983 delta = p->prio - old_prio;
5984
5985 if (on_rq) {
5986 enqueue_task(rq, p, 0);
5987 /*
5988 * If the task increased its priority or is running and
5989 * lowered its priority, then reschedule its CPU:
5990 */
5991 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5992 resched_task(rq->curr);
5993 }
5994 out_unlock:
5995 task_rq_unlock(rq, &flags);
5996 }
5997 EXPORT_SYMBOL(set_user_nice);
5998
5999 /*
6000 * can_nice - check if a task can reduce its nice value
6001 * @p: task
6002 * @nice: nice value
6003 */
6004 int can_nice(const struct task_struct *p, const int nice)
6005 {
6006 /* convert nice value [19,-20] to rlimit style value [1,40] */
6007 int nice_rlim = 20 - nice;
6008
6009 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6010 capable(CAP_SYS_NICE));
6011 }
6012
6013 #ifdef __ARCH_WANT_SYS_NICE
6014
6015 /*
6016 * sys_nice - change the priority of the current process.
6017 * @increment: priority increment
6018 *
6019 * sys_setpriority is a more generic, but much slower function that
6020 * does similar things.
6021 */
6022 SYSCALL_DEFINE1(nice, int, increment)
6023 {
6024 long nice, retval;
6025
6026 /*
6027 * Setpriority might change our priority at the same moment.
6028 * We don't have to worry. Conceptually one call occurs first
6029 * and we have a single winner.
6030 */
6031 if (increment < -40)
6032 increment = -40;
6033 if (increment > 40)
6034 increment = 40;
6035
6036 nice = TASK_NICE(current) + increment;
6037 if (nice < -20)
6038 nice = -20;
6039 if (nice > 19)
6040 nice = 19;
6041
6042 if (increment < 0 && !can_nice(current, nice))
6043 return -EPERM;
6044
6045 retval = security_task_setnice(current, nice);
6046 if (retval)
6047 return retval;
6048
6049 set_user_nice(current, nice);
6050 return 0;
6051 }
6052
6053 #endif
6054
6055 /**
6056 * task_prio - return the priority value of a given task.
6057 * @p: the task in question.
6058 *
6059 * This is the priority value as seen by users in /proc.
6060 * RT tasks are offset by -200. Normal tasks are centered
6061 * around 0, value goes from -16 to +15.
6062 */
6063 int task_prio(const struct task_struct *p)
6064 {
6065 return p->prio - MAX_RT_PRIO;
6066 }
6067
6068 /**
6069 * task_nice - return the nice value of a given task.
6070 * @p: the task in question.
6071 */
6072 int task_nice(const struct task_struct *p)
6073 {
6074 return TASK_NICE(p);
6075 }
6076 EXPORT_SYMBOL(task_nice);
6077
6078 /**
6079 * idle_cpu - is a given cpu idle currently?
6080 * @cpu: the processor in question.
6081 */
6082 int idle_cpu(int cpu)
6083 {
6084 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6085 }
6086
6087 /**
6088 * idle_task - return the idle task for a given cpu.
6089 * @cpu: the processor in question.
6090 */
6091 struct task_struct *idle_task(int cpu)
6092 {
6093 return cpu_rq(cpu)->idle;
6094 }
6095
6096 /**
6097 * find_process_by_pid - find a process with a matching PID value.
6098 * @pid: the pid in question.
6099 */
6100 static struct task_struct *find_process_by_pid(pid_t pid)
6101 {
6102 return pid ? find_task_by_vpid(pid) : current;
6103 }
6104
6105 /* Actually do priority change: must hold rq lock. */
6106 static void
6107 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6108 {
6109 BUG_ON(p->se.on_rq);
6110
6111 p->policy = policy;
6112 switch (p->policy) {
6113 case SCHED_NORMAL:
6114 case SCHED_BATCH:
6115 case SCHED_IDLE:
6116 p->sched_class = &fair_sched_class;
6117 break;
6118 case SCHED_FIFO:
6119 case SCHED_RR:
6120 p->sched_class = &rt_sched_class;
6121 break;
6122 }
6123
6124 p->rt_priority = prio;
6125 p->normal_prio = normal_prio(p);
6126 /* we are holding p->pi_lock already */
6127 p->prio = rt_mutex_getprio(p);
6128 set_load_weight(p);
6129 }
6130
6131 /*
6132 * check the target process has a UID that matches the current process's
6133 */
6134 static bool check_same_owner(struct task_struct *p)
6135 {
6136 const struct cred *cred = current_cred(), *pcred;
6137 bool match;
6138
6139 rcu_read_lock();
6140 pcred = __task_cred(p);
6141 match = (cred->euid == pcred->euid ||
6142 cred->euid == pcred->uid);
6143 rcu_read_unlock();
6144 return match;
6145 }
6146
6147 static int __sched_setscheduler(struct task_struct *p, int policy,
6148 struct sched_param *param, bool user)
6149 {
6150 int retval, oldprio, oldpolicy = -1, on_rq, running;
6151 unsigned long flags;
6152 const struct sched_class *prev_class = p->sched_class;
6153 struct rq *rq;
6154 int reset_on_fork;
6155
6156 /* may grab non-irq protected spin_locks */
6157 BUG_ON(in_interrupt());
6158 recheck:
6159 /* double check policy once rq lock held */
6160 if (policy < 0) {
6161 reset_on_fork = p->sched_reset_on_fork;
6162 policy = oldpolicy = p->policy;
6163 } else {
6164 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6165 policy &= ~SCHED_RESET_ON_FORK;
6166
6167 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6168 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6169 policy != SCHED_IDLE)
6170 return -EINVAL;
6171 }
6172
6173 /*
6174 * Valid priorities for SCHED_FIFO and SCHED_RR are
6175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6176 * SCHED_BATCH and SCHED_IDLE is 0.
6177 */
6178 if (param->sched_priority < 0 ||
6179 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6180 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6181 return -EINVAL;
6182 if (rt_policy(policy) != (param->sched_priority != 0))
6183 return -EINVAL;
6184
6185 /*
6186 * Allow unprivileged RT tasks to decrease priority:
6187 */
6188 if (user && !capable(CAP_SYS_NICE)) {
6189 if (rt_policy(policy)) {
6190 unsigned long rlim_rtprio;
6191
6192 if (!lock_task_sighand(p, &flags))
6193 return -ESRCH;
6194 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6195 unlock_task_sighand(p, &flags);
6196
6197 /* can't set/change the rt policy */
6198 if (policy != p->policy && !rlim_rtprio)
6199 return -EPERM;
6200
6201 /* can't increase priority */
6202 if (param->sched_priority > p->rt_priority &&
6203 param->sched_priority > rlim_rtprio)
6204 return -EPERM;
6205 }
6206 /*
6207 * Like positive nice levels, dont allow tasks to
6208 * move out of SCHED_IDLE either:
6209 */
6210 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6211 return -EPERM;
6212
6213 /* can't change other user's priorities */
6214 if (!check_same_owner(p))
6215 return -EPERM;
6216
6217 /* Normal users shall not reset the sched_reset_on_fork flag */
6218 if (p->sched_reset_on_fork && !reset_on_fork)
6219 return -EPERM;
6220 }
6221
6222 if (user) {
6223 #ifdef CONFIG_RT_GROUP_SCHED
6224 /*
6225 * Do not allow realtime tasks into groups that have no runtime
6226 * assigned.
6227 */
6228 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6229 task_group(p)->rt_bandwidth.rt_runtime == 0)
6230 return -EPERM;
6231 #endif
6232
6233 retval = security_task_setscheduler(p, policy, param);
6234 if (retval)
6235 return retval;
6236 }
6237
6238 /*
6239 * make sure no PI-waiters arrive (or leave) while we are
6240 * changing the priority of the task:
6241 */
6242 spin_lock_irqsave(&p->pi_lock, flags);
6243 /*
6244 * To be able to change p->policy safely, the apropriate
6245 * runqueue lock must be held.
6246 */
6247 rq = __task_rq_lock(p);
6248 /* recheck policy now with rq lock held */
6249 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6250 policy = oldpolicy = -1;
6251 __task_rq_unlock(rq);
6252 spin_unlock_irqrestore(&p->pi_lock, flags);
6253 goto recheck;
6254 }
6255 update_rq_clock(rq);
6256 on_rq = p->se.on_rq;
6257 running = task_current(rq, p);
6258 if (on_rq)
6259 deactivate_task(rq, p, 0);
6260 if (running)
6261 p->sched_class->put_prev_task(rq, p);
6262
6263 p->sched_reset_on_fork = reset_on_fork;
6264
6265 oldprio = p->prio;
6266 __setscheduler(rq, p, policy, param->sched_priority);
6267
6268 if (running)
6269 p->sched_class->set_curr_task(rq);
6270 if (on_rq) {
6271 activate_task(rq, p, 0);
6272
6273 check_class_changed(rq, p, prev_class, oldprio, running);
6274 }
6275 __task_rq_unlock(rq);
6276 spin_unlock_irqrestore(&p->pi_lock, flags);
6277
6278 rt_mutex_adjust_pi(p);
6279
6280 return 0;
6281 }
6282
6283 /**
6284 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6285 * @p: the task in question.
6286 * @policy: new policy.
6287 * @param: structure containing the new RT priority.
6288 *
6289 * NOTE that the task may be already dead.
6290 */
6291 int sched_setscheduler(struct task_struct *p, int policy,
6292 struct sched_param *param)
6293 {
6294 return __sched_setscheduler(p, policy, param, true);
6295 }
6296 EXPORT_SYMBOL_GPL(sched_setscheduler);
6297
6298 /**
6299 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6300 * @p: the task in question.
6301 * @policy: new policy.
6302 * @param: structure containing the new RT priority.
6303 *
6304 * Just like sched_setscheduler, only don't bother checking if the
6305 * current context has permission. For example, this is needed in
6306 * stop_machine(): we create temporary high priority worker threads,
6307 * but our caller might not have that capability.
6308 */
6309 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6310 struct sched_param *param)
6311 {
6312 return __sched_setscheduler(p, policy, param, false);
6313 }
6314
6315 static int
6316 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6317 {
6318 struct sched_param lparam;
6319 struct task_struct *p;
6320 int retval;
6321
6322 if (!param || pid < 0)
6323 return -EINVAL;
6324 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6325 return -EFAULT;
6326
6327 rcu_read_lock();
6328 retval = -ESRCH;
6329 p = find_process_by_pid(pid);
6330 if (p != NULL)
6331 retval = sched_setscheduler(p, policy, &lparam);
6332 rcu_read_unlock();
6333
6334 return retval;
6335 }
6336
6337 /**
6338 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6339 * @pid: the pid in question.
6340 * @policy: new policy.
6341 * @param: structure containing the new RT priority.
6342 */
6343 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6344 struct sched_param __user *, param)
6345 {
6346 /* negative values for policy are not valid */
6347 if (policy < 0)
6348 return -EINVAL;
6349
6350 return do_sched_setscheduler(pid, policy, param);
6351 }
6352
6353 /**
6354 * sys_sched_setparam - set/change the RT priority of a thread
6355 * @pid: the pid in question.
6356 * @param: structure containing the new RT priority.
6357 */
6358 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6359 {
6360 return do_sched_setscheduler(pid, -1, param);
6361 }
6362
6363 /**
6364 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6365 * @pid: the pid in question.
6366 */
6367 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6368 {
6369 struct task_struct *p;
6370 int retval;
6371
6372 if (pid < 0)
6373 return -EINVAL;
6374
6375 retval = -ESRCH;
6376 read_lock(&tasklist_lock);
6377 p = find_process_by_pid(pid);
6378 if (p) {
6379 retval = security_task_getscheduler(p);
6380 if (!retval)
6381 retval = p->policy
6382 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6383 }
6384 read_unlock(&tasklist_lock);
6385 return retval;
6386 }
6387
6388 /**
6389 * sys_sched_getparam - get the RT priority of a thread
6390 * @pid: the pid in question.
6391 * @param: structure containing the RT priority.
6392 */
6393 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6394 {
6395 struct sched_param lp;
6396 struct task_struct *p;
6397 int retval;
6398
6399 if (!param || pid < 0)
6400 return -EINVAL;
6401
6402 read_lock(&tasklist_lock);
6403 p = find_process_by_pid(pid);
6404 retval = -ESRCH;
6405 if (!p)
6406 goto out_unlock;
6407
6408 retval = security_task_getscheduler(p);
6409 if (retval)
6410 goto out_unlock;
6411
6412 lp.sched_priority = p->rt_priority;
6413 read_unlock(&tasklist_lock);
6414
6415 /*
6416 * This one might sleep, we cannot do it with a spinlock held ...
6417 */
6418 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6419
6420 return retval;
6421
6422 out_unlock:
6423 read_unlock(&tasklist_lock);
6424 return retval;
6425 }
6426
6427 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6428 {
6429 cpumask_var_t cpus_allowed, new_mask;
6430 struct task_struct *p;
6431 int retval;
6432
6433 get_online_cpus();
6434 read_lock(&tasklist_lock);
6435
6436 p = find_process_by_pid(pid);
6437 if (!p) {
6438 read_unlock(&tasklist_lock);
6439 put_online_cpus();
6440 return -ESRCH;
6441 }
6442
6443 /*
6444 * It is not safe to call set_cpus_allowed with the
6445 * tasklist_lock held. We will bump the task_struct's
6446 * usage count and then drop tasklist_lock.
6447 */
6448 get_task_struct(p);
6449 read_unlock(&tasklist_lock);
6450
6451 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6452 retval = -ENOMEM;
6453 goto out_put_task;
6454 }
6455 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6456 retval = -ENOMEM;
6457 goto out_free_cpus_allowed;
6458 }
6459 retval = -EPERM;
6460 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6461 goto out_unlock;
6462
6463 retval = security_task_setscheduler(p, 0, NULL);
6464 if (retval)
6465 goto out_unlock;
6466
6467 cpuset_cpus_allowed(p, cpus_allowed);
6468 cpumask_and(new_mask, in_mask, cpus_allowed);
6469 again:
6470 retval = set_cpus_allowed_ptr(p, new_mask);
6471
6472 if (!retval) {
6473 cpuset_cpus_allowed(p, cpus_allowed);
6474 if (!cpumask_subset(new_mask, cpus_allowed)) {
6475 /*
6476 * We must have raced with a concurrent cpuset
6477 * update. Just reset the cpus_allowed to the
6478 * cpuset's cpus_allowed
6479 */
6480 cpumask_copy(new_mask, cpus_allowed);
6481 goto again;
6482 }
6483 }
6484 out_unlock:
6485 free_cpumask_var(new_mask);
6486 out_free_cpus_allowed:
6487 free_cpumask_var(cpus_allowed);
6488 out_put_task:
6489 put_task_struct(p);
6490 put_online_cpus();
6491 return retval;
6492 }
6493
6494 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6495 struct cpumask *new_mask)
6496 {
6497 if (len < cpumask_size())
6498 cpumask_clear(new_mask);
6499 else if (len > cpumask_size())
6500 len = cpumask_size();
6501
6502 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6503 }
6504
6505 /**
6506 * sys_sched_setaffinity - set the cpu affinity of a process
6507 * @pid: pid of the process
6508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6509 * @user_mask_ptr: user-space pointer to the new cpu mask
6510 */
6511 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6512 unsigned long __user *, user_mask_ptr)
6513 {
6514 cpumask_var_t new_mask;
6515 int retval;
6516
6517 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6518 return -ENOMEM;
6519
6520 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6521 if (retval == 0)
6522 retval = sched_setaffinity(pid, new_mask);
6523 free_cpumask_var(new_mask);
6524 return retval;
6525 }
6526
6527 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6528 {
6529 struct task_struct *p;
6530 int retval;
6531
6532 get_online_cpus();
6533 read_lock(&tasklist_lock);
6534
6535 retval = -ESRCH;
6536 p = find_process_by_pid(pid);
6537 if (!p)
6538 goto out_unlock;
6539
6540 retval = security_task_getscheduler(p);
6541 if (retval)
6542 goto out_unlock;
6543
6544 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6545
6546 out_unlock:
6547 read_unlock(&tasklist_lock);
6548 put_online_cpus();
6549
6550 return retval;
6551 }
6552
6553 /**
6554 * sys_sched_getaffinity - get the cpu affinity of a process
6555 * @pid: pid of the process
6556 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6557 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6558 */
6559 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6560 unsigned long __user *, user_mask_ptr)
6561 {
6562 int ret;
6563 cpumask_var_t mask;
6564
6565 if (len < cpumask_size())
6566 return -EINVAL;
6567
6568 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6569 return -ENOMEM;
6570
6571 ret = sched_getaffinity(pid, mask);
6572 if (ret == 0) {
6573 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6574 ret = -EFAULT;
6575 else
6576 ret = cpumask_size();
6577 }
6578 free_cpumask_var(mask);
6579
6580 return ret;
6581 }
6582
6583 /**
6584 * sys_sched_yield - yield the current processor to other threads.
6585 *
6586 * This function yields the current CPU to other tasks. If there are no
6587 * other threads running on this CPU then this function will return.
6588 */
6589 SYSCALL_DEFINE0(sched_yield)
6590 {
6591 struct rq *rq = this_rq_lock();
6592
6593 schedstat_inc(rq, yld_count);
6594 current->sched_class->yield_task(rq);
6595
6596 /*
6597 * Since we are going to call schedule() anyway, there's
6598 * no need to preempt or enable interrupts:
6599 */
6600 __release(rq->lock);
6601 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6602 _raw_spin_unlock(&rq->lock);
6603 preempt_enable_no_resched();
6604
6605 schedule();
6606
6607 return 0;
6608 }
6609
6610 static inline int should_resched(void)
6611 {
6612 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6613 }
6614
6615 static void __cond_resched(void)
6616 {
6617 add_preempt_count(PREEMPT_ACTIVE);
6618 schedule();
6619 sub_preempt_count(PREEMPT_ACTIVE);
6620 }
6621
6622 int __sched _cond_resched(void)
6623 {
6624 if (should_resched()) {
6625 __cond_resched();
6626 return 1;
6627 }
6628 return 0;
6629 }
6630 EXPORT_SYMBOL(_cond_resched);
6631
6632 /*
6633 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6634 * call schedule, and on return reacquire the lock.
6635 *
6636 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6637 * operations here to prevent schedule() from being called twice (once via
6638 * spin_unlock(), once by hand).
6639 */
6640 int __cond_resched_lock(spinlock_t *lock)
6641 {
6642 int resched = should_resched();
6643 int ret = 0;
6644
6645 lockdep_assert_held(lock);
6646
6647 if (spin_needbreak(lock) || resched) {
6648 spin_unlock(lock);
6649 if (resched)
6650 __cond_resched();
6651 else
6652 cpu_relax();
6653 ret = 1;
6654 spin_lock(lock);
6655 }
6656 return ret;
6657 }
6658 EXPORT_SYMBOL(__cond_resched_lock);
6659
6660 int __sched __cond_resched_softirq(void)
6661 {
6662 BUG_ON(!in_softirq());
6663
6664 if (should_resched()) {
6665 local_bh_enable();
6666 __cond_resched();
6667 local_bh_disable();
6668 return 1;
6669 }
6670 return 0;
6671 }
6672 EXPORT_SYMBOL(__cond_resched_softirq);
6673
6674 /**
6675 * yield - yield the current processor to other threads.
6676 *
6677 * This is a shortcut for kernel-space yielding - it marks the
6678 * thread runnable and calls sys_sched_yield().
6679 */
6680 void __sched yield(void)
6681 {
6682 set_current_state(TASK_RUNNING);
6683 sys_sched_yield();
6684 }
6685 EXPORT_SYMBOL(yield);
6686
6687 /*
6688 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6689 * that process accounting knows that this is a task in IO wait state.
6690 *
6691 * But don't do that if it is a deliberate, throttling IO wait (this task
6692 * has set its backing_dev_info: the queue against which it should throttle)
6693 */
6694 void __sched io_schedule(void)
6695 {
6696 struct rq *rq = raw_rq();
6697
6698 delayacct_blkio_start();
6699 atomic_inc(&rq->nr_iowait);
6700 current->in_iowait = 1;
6701 schedule();
6702 current->in_iowait = 0;
6703 atomic_dec(&rq->nr_iowait);
6704 delayacct_blkio_end();
6705 }
6706 EXPORT_SYMBOL(io_schedule);
6707
6708 long __sched io_schedule_timeout(long timeout)
6709 {
6710 struct rq *rq = raw_rq();
6711 long ret;
6712
6713 delayacct_blkio_start();
6714 atomic_inc(&rq->nr_iowait);
6715 current->in_iowait = 1;
6716 ret = schedule_timeout(timeout);
6717 current->in_iowait = 0;
6718 atomic_dec(&rq->nr_iowait);
6719 delayacct_blkio_end();
6720 return ret;
6721 }
6722
6723 /**
6724 * sys_sched_get_priority_max - return maximum RT priority.
6725 * @policy: scheduling class.
6726 *
6727 * this syscall returns the maximum rt_priority that can be used
6728 * by a given scheduling class.
6729 */
6730 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6731 {
6732 int ret = -EINVAL;
6733
6734 switch (policy) {
6735 case SCHED_FIFO:
6736 case SCHED_RR:
6737 ret = MAX_USER_RT_PRIO-1;
6738 break;
6739 case SCHED_NORMAL:
6740 case SCHED_BATCH:
6741 case SCHED_IDLE:
6742 ret = 0;
6743 break;
6744 }
6745 return ret;
6746 }
6747
6748 /**
6749 * sys_sched_get_priority_min - return minimum RT priority.
6750 * @policy: scheduling class.
6751 *
6752 * this syscall returns the minimum rt_priority that can be used
6753 * by a given scheduling class.
6754 */
6755 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6756 {
6757 int ret = -EINVAL;
6758
6759 switch (policy) {
6760 case SCHED_FIFO:
6761 case SCHED_RR:
6762 ret = 1;
6763 break;
6764 case SCHED_NORMAL:
6765 case SCHED_BATCH:
6766 case SCHED_IDLE:
6767 ret = 0;
6768 }
6769 return ret;
6770 }
6771
6772 /**
6773 * sys_sched_rr_get_interval - return the default timeslice of a process.
6774 * @pid: pid of the process.
6775 * @interval: userspace pointer to the timeslice value.
6776 *
6777 * this syscall writes the default timeslice value of a given process
6778 * into the user-space timespec buffer. A value of '0' means infinity.
6779 */
6780 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6781 struct timespec __user *, interval)
6782 {
6783 struct task_struct *p;
6784 unsigned int time_slice;
6785 int retval;
6786 struct timespec t;
6787
6788 if (pid < 0)
6789 return -EINVAL;
6790
6791 retval = -ESRCH;
6792 read_lock(&tasklist_lock);
6793 p = find_process_by_pid(pid);
6794 if (!p)
6795 goto out_unlock;
6796
6797 retval = security_task_getscheduler(p);
6798 if (retval)
6799 goto out_unlock;
6800
6801 /*
6802 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6803 * tasks that are on an otherwise idle runqueue:
6804 */
6805 time_slice = 0;
6806 if (p->policy == SCHED_RR) {
6807 time_slice = DEF_TIMESLICE;
6808 } else if (p->policy != SCHED_FIFO) {
6809 struct sched_entity *se = &p->se;
6810 unsigned long flags;
6811 struct rq *rq;
6812
6813 rq = task_rq_lock(p, &flags);
6814 if (rq->cfs.load.weight)
6815 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6816 task_rq_unlock(rq, &flags);
6817 }
6818 read_unlock(&tasklist_lock);
6819 jiffies_to_timespec(time_slice, &t);
6820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6821 return retval;
6822
6823 out_unlock:
6824 read_unlock(&tasklist_lock);
6825 return retval;
6826 }
6827
6828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6829
6830 void sched_show_task(struct task_struct *p)
6831 {
6832 unsigned long free = 0;
6833 unsigned state;
6834
6835 state = p->state ? __ffs(p->state) + 1 : 0;
6836 printk(KERN_INFO "%-13.13s %c", p->comm,
6837 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6838 #if BITS_PER_LONG == 32
6839 if (state == TASK_RUNNING)
6840 printk(KERN_CONT " running ");
6841 else
6842 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6843 #else
6844 if (state == TASK_RUNNING)
6845 printk(KERN_CONT " running task ");
6846 else
6847 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6848 #endif
6849 #ifdef CONFIG_DEBUG_STACK_USAGE
6850 free = stack_not_used(p);
6851 #endif
6852 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6853 task_pid_nr(p), task_pid_nr(p->real_parent),
6854 (unsigned long)task_thread_info(p)->flags);
6855
6856 show_stack(p, NULL);
6857 }
6858
6859 void show_state_filter(unsigned long state_filter)
6860 {
6861 struct task_struct *g, *p;
6862
6863 #if BITS_PER_LONG == 32
6864 printk(KERN_INFO
6865 " task PC stack pid father\n");
6866 #else
6867 printk(KERN_INFO
6868 " task PC stack pid father\n");
6869 #endif
6870 read_lock(&tasklist_lock);
6871 do_each_thread(g, p) {
6872 /*
6873 * reset the NMI-timeout, listing all files on a slow
6874 * console might take alot of time:
6875 */
6876 touch_nmi_watchdog();
6877 if (!state_filter || (p->state & state_filter))
6878 sched_show_task(p);
6879 } while_each_thread(g, p);
6880
6881 touch_all_softlockup_watchdogs();
6882
6883 #ifdef CONFIG_SCHED_DEBUG
6884 sysrq_sched_debug_show();
6885 #endif
6886 read_unlock(&tasklist_lock);
6887 /*
6888 * Only show locks if all tasks are dumped:
6889 */
6890 if (state_filter == -1)
6891 debug_show_all_locks();
6892 }
6893
6894 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6895 {
6896 idle->sched_class = &idle_sched_class;
6897 }
6898
6899 /**
6900 * init_idle - set up an idle thread for a given CPU
6901 * @idle: task in question
6902 * @cpu: cpu the idle task belongs to
6903 *
6904 * NOTE: this function does not set the idle thread's NEED_RESCHED
6905 * flag, to make booting more robust.
6906 */
6907 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6908 {
6909 struct rq *rq = cpu_rq(cpu);
6910 unsigned long flags;
6911
6912 spin_lock_irqsave(&rq->lock, flags);
6913
6914 __sched_fork(idle);
6915 idle->se.exec_start = sched_clock();
6916
6917 idle->prio = idle->normal_prio = MAX_PRIO;
6918 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6919 __set_task_cpu(idle, cpu);
6920
6921 rq->curr = rq->idle = idle;
6922 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6923 idle->oncpu = 1;
6924 #endif
6925 spin_unlock_irqrestore(&rq->lock, flags);
6926
6927 /* Set the preempt count _outside_ the spinlocks! */
6928 #if defined(CONFIG_PREEMPT)
6929 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6930 #else
6931 task_thread_info(idle)->preempt_count = 0;
6932 #endif
6933 /*
6934 * The idle tasks have their own, simple scheduling class:
6935 */
6936 idle->sched_class = &idle_sched_class;
6937 ftrace_graph_init_task(idle);
6938 }
6939
6940 /*
6941 * In a system that switches off the HZ timer nohz_cpu_mask
6942 * indicates which cpus entered this state. This is used
6943 * in the rcu update to wait only for active cpus. For system
6944 * which do not switch off the HZ timer nohz_cpu_mask should
6945 * always be CPU_BITS_NONE.
6946 */
6947 cpumask_var_t nohz_cpu_mask;
6948
6949 /*
6950 * Increase the granularity value when there are more CPUs,
6951 * because with more CPUs the 'effective latency' as visible
6952 * to users decreases. But the relationship is not linear,
6953 * so pick a second-best guess by going with the log2 of the
6954 * number of CPUs.
6955 *
6956 * This idea comes from the SD scheduler of Con Kolivas:
6957 */
6958 static inline void sched_init_granularity(void)
6959 {
6960 unsigned int factor = 1 + ilog2(num_online_cpus());
6961 const unsigned long limit = 200000000;
6962
6963 sysctl_sched_min_granularity *= factor;
6964 if (sysctl_sched_min_granularity > limit)
6965 sysctl_sched_min_granularity = limit;
6966
6967 sysctl_sched_latency *= factor;
6968 if (sysctl_sched_latency > limit)
6969 sysctl_sched_latency = limit;
6970
6971 sysctl_sched_wakeup_granularity *= factor;
6972
6973 sysctl_sched_shares_ratelimit *= factor;
6974 }
6975
6976 #ifdef CONFIG_SMP
6977 /*
6978 * This is how migration works:
6979 *
6980 * 1) we queue a struct migration_req structure in the source CPU's
6981 * runqueue and wake up that CPU's migration thread.
6982 * 2) we down() the locked semaphore => thread blocks.
6983 * 3) migration thread wakes up (implicitly it forces the migrated
6984 * thread off the CPU)
6985 * 4) it gets the migration request and checks whether the migrated
6986 * task is still in the wrong runqueue.
6987 * 5) if it's in the wrong runqueue then the migration thread removes
6988 * it and puts it into the right queue.
6989 * 6) migration thread up()s the semaphore.
6990 * 7) we wake up and the migration is done.
6991 */
6992
6993 /*
6994 * Change a given task's CPU affinity. Migrate the thread to a
6995 * proper CPU and schedule it away if the CPU it's executing on
6996 * is removed from the allowed bitmask.
6997 *
6998 * NOTE: the caller must have a valid reference to the task, the
6999 * task must not exit() & deallocate itself prematurely. The
7000 * call is not atomic; no spinlocks may be held.
7001 */
7002 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7003 {
7004 struct migration_req req;
7005 unsigned long flags;
7006 struct rq *rq;
7007 int ret = 0;
7008
7009 rq = task_rq_lock(p, &flags);
7010 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7011 ret = -EINVAL;
7012 goto out;
7013 }
7014
7015 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7016 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7017 ret = -EINVAL;
7018 goto out;
7019 }
7020
7021 if (p->sched_class->set_cpus_allowed)
7022 p->sched_class->set_cpus_allowed(p, new_mask);
7023 else {
7024 cpumask_copy(&p->cpus_allowed, new_mask);
7025 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7026 }
7027
7028 /* Can the task run on the task's current CPU? If so, we're done */
7029 if (cpumask_test_cpu(task_cpu(p), new_mask))
7030 goto out;
7031
7032 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7033 /* Need help from migration thread: drop lock and wait. */
7034 struct task_struct *mt = rq->migration_thread;
7035
7036 get_task_struct(mt);
7037 task_rq_unlock(rq, &flags);
7038 wake_up_process(rq->migration_thread);
7039 put_task_struct(mt);
7040 wait_for_completion(&req.done);
7041 tlb_migrate_finish(p->mm);
7042 return 0;
7043 }
7044 out:
7045 task_rq_unlock(rq, &flags);
7046
7047 return ret;
7048 }
7049 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7050
7051 /*
7052 * Move (not current) task off this cpu, onto dest cpu. We're doing
7053 * this because either it can't run here any more (set_cpus_allowed()
7054 * away from this CPU, or CPU going down), or because we're
7055 * attempting to rebalance this task on exec (sched_exec).
7056 *
7057 * So we race with normal scheduler movements, but that's OK, as long
7058 * as the task is no longer on this CPU.
7059 *
7060 * Returns non-zero if task was successfully migrated.
7061 */
7062 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7063 {
7064 struct rq *rq_dest, *rq_src;
7065 int ret = 0, on_rq;
7066
7067 if (unlikely(!cpu_active(dest_cpu)))
7068 return ret;
7069
7070 rq_src = cpu_rq(src_cpu);
7071 rq_dest = cpu_rq(dest_cpu);
7072
7073 double_rq_lock(rq_src, rq_dest);
7074 /* Already moved. */
7075 if (task_cpu(p) != src_cpu)
7076 goto done;
7077 /* Affinity changed (again). */
7078 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7079 goto fail;
7080
7081 on_rq = p->se.on_rq;
7082 if (on_rq)
7083 deactivate_task(rq_src, p, 0);
7084
7085 set_task_cpu(p, dest_cpu);
7086 if (on_rq) {
7087 activate_task(rq_dest, p, 0);
7088 check_preempt_curr(rq_dest, p, 0);
7089 }
7090 done:
7091 ret = 1;
7092 fail:
7093 double_rq_unlock(rq_src, rq_dest);
7094 return ret;
7095 }
7096
7097 #define RCU_MIGRATION_IDLE 0
7098 #define RCU_MIGRATION_NEED_QS 1
7099 #define RCU_MIGRATION_GOT_QS 2
7100 #define RCU_MIGRATION_MUST_SYNC 3
7101
7102 /*
7103 * migration_thread - this is a highprio system thread that performs
7104 * thread migration by bumping thread off CPU then 'pushing' onto
7105 * another runqueue.
7106 */
7107 static int migration_thread(void *data)
7108 {
7109 int badcpu;
7110 int cpu = (long)data;
7111 struct rq *rq;
7112
7113 rq = cpu_rq(cpu);
7114 BUG_ON(rq->migration_thread != current);
7115
7116 set_current_state(TASK_INTERRUPTIBLE);
7117 while (!kthread_should_stop()) {
7118 struct migration_req *req;
7119 struct list_head *head;
7120
7121 spin_lock_irq(&rq->lock);
7122
7123 if (cpu_is_offline(cpu)) {
7124 spin_unlock_irq(&rq->lock);
7125 break;
7126 }
7127
7128 if (rq->active_balance) {
7129 active_load_balance(rq, cpu);
7130 rq->active_balance = 0;
7131 }
7132
7133 head = &rq->migration_queue;
7134
7135 if (list_empty(head)) {
7136 spin_unlock_irq(&rq->lock);
7137 schedule();
7138 set_current_state(TASK_INTERRUPTIBLE);
7139 continue;
7140 }
7141 req = list_entry(head->next, struct migration_req, list);
7142 list_del_init(head->next);
7143
7144 if (req->task != NULL) {
7145 spin_unlock(&rq->lock);
7146 __migrate_task(req->task, cpu, req->dest_cpu);
7147 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7148 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7149 spin_unlock(&rq->lock);
7150 } else {
7151 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7152 spin_unlock(&rq->lock);
7153 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7154 }
7155 local_irq_enable();
7156
7157 complete(&req->done);
7158 }
7159 __set_current_state(TASK_RUNNING);
7160
7161 return 0;
7162 }
7163
7164 #ifdef CONFIG_HOTPLUG_CPU
7165
7166 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7167 {
7168 int ret;
7169
7170 local_irq_disable();
7171 ret = __migrate_task(p, src_cpu, dest_cpu);
7172 local_irq_enable();
7173 return ret;
7174 }
7175
7176 /*
7177 * Figure out where task on dead CPU should go, use force if necessary.
7178 */
7179 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7180 {
7181 int dest_cpu;
7182 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7183
7184 again:
7185 /* Look for allowed, online CPU in same node. */
7186 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7187 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7188 goto move;
7189
7190 /* Any allowed, online CPU? */
7191 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7192 if (dest_cpu < nr_cpu_ids)
7193 goto move;
7194
7195 /* No more Mr. Nice Guy. */
7196 if (dest_cpu >= nr_cpu_ids) {
7197 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7198 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7199
7200 /*
7201 * Don't tell them about moving exiting tasks or
7202 * kernel threads (both mm NULL), since they never
7203 * leave kernel.
7204 */
7205 if (p->mm && printk_ratelimit()) {
7206 printk(KERN_INFO "process %d (%s) no "
7207 "longer affine to cpu%d\n",
7208 task_pid_nr(p), p->comm, dead_cpu);
7209 }
7210 }
7211
7212 move:
7213 /* It can have affinity changed while we were choosing. */
7214 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7215 goto again;
7216 }
7217
7218 /*
7219 * While a dead CPU has no uninterruptible tasks queued at this point,
7220 * it might still have a nonzero ->nr_uninterruptible counter, because
7221 * for performance reasons the counter is not stricly tracking tasks to
7222 * their home CPUs. So we just add the counter to another CPU's counter,
7223 * to keep the global sum constant after CPU-down:
7224 */
7225 static void migrate_nr_uninterruptible(struct rq *rq_src)
7226 {
7227 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7228 unsigned long flags;
7229
7230 local_irq_save(flags);
7231 double_rq_lock(rq_src, rq_dest);
7232 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7233 rq_src->nr_uninterruptible = 0;
7234 double_rq_unlock(rq_src, rq_dest);
7235 local_irq_restore(flags);
7236 }
7237
7238 /* Run through task list and migrate tasks from the dead cpu. */
7239 static void migrate_live_tasks(int src_cpu)
7240 {
7241 struct task_struct *p, *t;
7242
7243 read_lock(&tasklist_lock);
7244
7245 do_each_thread(t, p) {
7246 if (p == current)
7247 continue;
7248
7249 if (task_cpu(p) == src_cpu)
7250 move_task_off_dead_cpu(src_cpu, p);
7251 } while_each_thread(t, p);
7252
7253 read_unlock(&tasklist_lock);
7254 }
7255
7256 /*
7257 * Schedules idle task to be the next runnable task on current CPU.
7258 * It does so by boosting its priority to highest possible.
7259 * Used by CPU offline code.
7260 */
7261 void sched_idle_next(void)
7262 {
7263 int this_cpu = smp_processor_id();
7264 struct rq *rq = cpu_rq(this_cpu);
7265 struct task_struct *p = rq->idle;
7266 unsigned long flags;
7267
7268 /* cpu has to be offline */
7269 BUG_ON(cpu_online(this_cpu));
7270
7271 /*
7272 * Strictly not necessary since rest of the CPUs are stopped by now
7273 * and interrupts disabled on the current cpu.
7274 */
7275 spin_lock_irqsave(&rq->lock, flags);
7276
7277 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7278
7279 update_rq_clock(rq);
7280 activate_task(rq, p, 0);
7281
7282 spin_unlock_irqrestore(&rq->lock, flags);
7283 }
7284
7285 /*
7286 * Ensures that the idle task is using init_mm right before its cpu goes
7287 * offline.
7288 */
7289 void idle_task_exit(void)
7290 {
7291 struct mm_struct *mm = current->active_mm;
7292
7293 BUG_ON(cpu_online(smp_processor_id()));
7294
7295 if (mm != &init_mm)
7296 switch_mm(mm, &init_mm, current);
7297 mmdrop(mm);
7298 }
7299
7300 /* called under rq->lock with disabled interrupts */
7301 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7302 {
7303 struct rq *rq = cpu_rq(dead_cpu);
7304
7305 /* Must be exiting, otherwise would be on tasklist. */
7306 BUG_ON(!p->exit_state);
7307
7308 /* Cannot have done final schedule yet: would have vanished. */
7309 BUG_ON(p->state == TASK_DEAD);
7310
7311 get_task_struct(p);
7312
7313 /*
7314 * Drop lock around migration; if someone else moves it,
7315 * that's OK. No task can be added to this CPU, so iteration is
7316 * fine.
7317 */
7318 spin_unlock_irq(&rq->lock);
7319 move_task_off_dead_cpu(dead_cpu, p);
7320 spin_lock_irq(&rq->lock);
7321
7322 put_task_struct(p);
7323 }
7324
7325 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7326 static void migrate_dead_tasks(unsigned int dead_cpu)
7327 {
7328 struct rq *rq = cpu_rq(dead_cpu);
7329 struct task_struct *next;
7330
7331 for ( ; ; ) {
7332 if (!rq->nr_running)
7333 break;
7334 update_rq_clock(rq);
7335 next = pick_next_task(rq);
7336 if (!next)
7337 break;
7338 next->sched_class->put_prev_task(rq, next);
7339 migrate_dead(dead_cpu, next);
7340
7341 }
7342 }
7343
7344 /*
7345 * remove the tasks which were accounted by rq from calc_load_tasks.
7346 */
7347 static void calc_global_load_remove(struct rq *rq)
7348 {
7349 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7350 rq->calc_load_active = 0;
7351 }
7352 #endif /* CONFIG_HOTPLUG_CPU */
7353
7354 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7355
7356 static struct ctl_table sd_ctl_dir[] = {
7357 {
7358 .procname = "sched_domain",
7359 .mode = 0555,
7360 },
7361 {0, },
7362 };
7363
7364 static struct ctl_table sd_ctl_root[] = {
7365 {
7366 .ctl_name = CTL_KERN,
7367 .procname = "kernel",
7368 .mode = 0555,
7369 .child = sd_ctl_dir,
7370 },
7371 {0, },
7372 };
7373
7374 static struct ctl_table *sd_alloc_ctl_entry(int n)
7375 {
7376 struct ctl_table *entry =
7377 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7378
7379 return entry;
7380 }
7381
7382 static void sd_free_ctl_entry(struct ctl_table **tablep)
7383 {
7384 struct ctl_table *entry;
7385
7386 /*
7387 * In the intermediate directories, both the child directory and
7388 * procname are dynamically allocated and could fail but the mode
7389 * will always be set. In the lowest directory the names are
7390 * static strings and all have proc handlers.
7391 */
7392 for (entry = *tablep; entry->mode; entry++) {
7393 if (entry->child)
7394 sd_free_ctl_entry(&entry->child);
7395 if (entry->proc_handler == NULL)
7396 kfree(entry->procname);
7397 }
7398
7399 kfree(*tablep);
7400 *tablep = NULL;
7401 }
7402
7403 static void
7404 set_table_entry(struct ctl_table *entry,
7405 const char *procname, void *data, int maxlen,
7406 mode_t mode, proc_handler *proc_handler)
7407 {
7408 entry->procname = procname;
7409 entry->data = data;
7410 entry->maxlen = maxlen;
7411 entry->mode = mode;
7412 entry->proc_handler = proc_handler;
7413 }
7414
7415 static struct ctl_table *
7416 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7417 {
7418 struct ctl_table *table = sd_alloc_ctl_entry(13);
7419
7420 if (table == NULL)
7421 return NULL;
7422
7423 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7424 sizeof(long), 0644, proc_doulongvec_minmax);
7425 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7426 sizeof(long), 0644, proc_doulongvec_minmax);
7427 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7428 sizeof(int), 0644, proc_dointvec_minmax);
7429 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7430 sizeof(int), 0644, proc_dointvec_minmax);
7431 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7432 sizeof(int), 0644, proc_dointvec_minmax);
7433 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7434 sizeof(int), 0644, proc_dointvec_minmax);
7435 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7436 sizeof(int), 0644, proc_dointvec_minmax);
7437 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7438 sizeof(int), 0644, proc_dointvec_minmax);
7439 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7440 sizeof(int), 0644, proc_dointvec_minmax);
7441 set_table_entry(&table[9], "cache_nice_tries",
7442 &sd->cache_nice_tries,
7443 sizeof(int), 0644, proc_dointvec_minmax);
7444 set_table_entry(&table[10], "flags", &sd->flags,
7445 sizeof(int), 0644, proc_dointvec_minmax);
7446 set_table_entry(&table[11], "name", sd->name,
7447 CORENAME_MAX_SIZE, 0444, proc_dostring);
7448 /* &table[12] is terminator */
7449
7450 return table;
7451 }
7452
7453 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7454 {
7455 struct ctl_table *entry, *table;
7456 struct sched_domain *sd;
7457 int domain_num = 0, i;
7458 char buf[32];
7459
7460 for_each_domain(cpu, sd)
7461 domain_num++;
7462 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7463 if (table == NULL)
7464 return NULL;
7465
7466 i = 0;
7467 for_each_domain(cpu, sd) {
7468 snprintf(buf, 32, "domain%d", i);
7469 entry->procname = kstrdup(buf, GFP_KERNEL);
7470 entry->mode = 0555;
7471 entry->child = sd_alloc_ctl_domain_table(sd);
7472 entry++;
7473 i++;
7474 }
7475 return table;
7476 }
7477
7478 static struct ctl_table_header *sd_sysctl_header;
7479 static void register_sched_domain_sysctl(void)
7480 {
7481 int i, cpu_num = num_online_cpus();
7482 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7483 char buf[32];
7484
7485 WARN_ON(sd_ctl_dir[0].child);
7486 sd_ctl_dir[0].child = entry;
7487
7488 if (entry == NULL)
7489 return;
7490
7491 for_each_online_cpu(i) {
7492 snprintf(buf, 32, "cpu%d", i);
7493 entry->procname = kstrdup(buf, GFP_KERNEL);
7494 entry->mode = 0555;
7495 entry->child = sd_alloc_ctl_cpu_table(i);
7496 entry++;
7497 }
7498
7499 WARN_ON(sd_sysctl_header);
7500 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7501 }
7502
7503 /* may be called multiple times per register */
7504 static void unregister_sched_domain_sysctl(void)
7505 {
7506 if (sd_sysctl_header)
7507 unregister_sysctl_table(sd_sysctl_header);
7508 sd_sysctl_header = NULL;
7509 if (sd_ctl_dir[0].child)
7510 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7511 }
7512 #else
7513 static void register_sched_domain_sysctl(void)
7514 {
7515 }
7516 static void unregister_sched_domain_sysctl(void)
7517 {
7518 }
7519 #endif
7520
7521 static void set_rq_online(struct rq *rq)
7522 {
7523 if (!rq->online) {
7524 const struct sched_class *class;
7525
7526 cpumask_set_cpu(rq->cpu, rq->rd->online);
7527 rq->online = 1;
7528
7529 for_each_class(class) {
7530 if (class->rq_online)
7531 class->rq_online(rq);
7532 }
7533 }
7534 }
7535
7536 static void set_rq_offline(struct rq *rq)
7537 {
7538 if (rq->online) {
7539 const struct sched_class *class;
7540
7541 for_each_class(class) {
7542 if (class->rq_offline)
7543 class->rq_offline(rq);
7544 }
7545
7546 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7547 rq->online = 0;
7548 }
7549 }
7550
7551 /*
7552 * migration_call - callback that gets triggered when a CPU is added.
7553 * Here we can start up the necessary migration thread for the new CPU.
7554 */
7555 static int __cpuinit
7556 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7557 {
7558 struct task_struct *p;
7559 int cpu = (long)hcpu;
7560 unsigned long flags;
7561 struct rq *rq;
7562
7563 switch (action) {
7564
7565 case CPU_UP_PREPARE:
7566 case CPU_UP_PREPARE_FROZEN:
7567 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7568 if (IS_ERR(p))
7569 return NOTIFY_BAD;
7570 kthread_bind(p, cpu);
7571 /* Must be high prio: stop_machine expects to yield to it. */
7572 rq = task_rq_lock(p, &flags);
7573 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7574 task_rq_unlock(rq, &flags);
7575 get_task_struct(p);
7576 cpu_rq(cpu)->migration_thread = p;
7577 rq->calc_load_update = calc_load_update;
7578 break;
7579
7580 case CPU_ONLINE:
7581 case CPU_ONLINE_FROZEN:
7582 /* Strictly unnecessary, as first user will wake it. */
7583 wake_up_process(cpu_rq(cpu)->migration_thread);
7584
7585 /* Update our root-domain */
7586 rq = cpu_rq(cpu);
7587 spin_lock_irqsave(&rq->lock, flags);
7588 if (rq->rd) {
7589 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7590
7591 set_rq_online(rq);
7592 }
7593 spin_unlock_irqrestore(&rq->lock, flags);
7594 break;
7595
7596 #ifdef CONFIG_HOTPLUG_CPU
7597 case CPU_UP_CANCELED:
7598 case CPU_UP_CANCELED_FROZEN:
7599 if (!cpu_rq(cpu)->migration_thread)
7600 break;
7601 /* Unbind it from offline cpu so it can run. Fall thru. */
7602 kthread_bind(cpu_rq(cpu)->migration_thread,
7603 cpumask_any(cpu_online_mask));
7604 kthread_stop(cpu_rq(cpu)->migration_thread);
7605 put_task_struct(cpu_rq(cpu)->migration_thread);
7606 cpu_rq(cpu)->migration_thread = NULL;
7607 break;
7608
7609 case CPU_DEAD:
7610 case CPU_DEAD_FROZEN:
7611 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7612 migrate_live_tasks(cpu);
7613 rq = cpu_rq(cpu);
7614 kthread_stop(rq->migration_thread);
7615 put_task_struct(rq->migration_thread);
7616 rq->migration_thread = NULL;
7617 /* Idle task back to normal (off runqueue, low prio) */
7618 spin_lock_irq(&rq->lock);
7619 update_rq_clock(rq);
7620 deactivate_task(rq, rq->idle, 0);
7621 rq->idle->static_prio = MAX_PRIO;
7622 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7623 rq->idle->sched_class = &idle_sched_class;
7624 migrate_dead_tasks(cpu);
7625 spin_unlock_irq(&rq->lock);
7626 cpuset_unlock();
7627 migrate_nr_uninterruptible(rq);
7628 BUG_ON(rq->nr_running != 0);
7629 calc_global_load_remove(rq);
7630 /*
7631 * No need to migrate the tasks: it was best-effort if
7632 * they didn't take sched_hotcpu_mutex. Just wake up
7633 * the requestors.
7634 */
7635 spin_lock_irq(&rq->lock);
7636 while (!list_empty(&rq->migration_queue)) {
7637 struct migration_req *req;
7638
7639 req = list_entry(rq->migration_queue.next,
7640 struct migration_req, list);
7641 list_del_init(&req->list);
7642 spin_unlock_irq(&rq->lock);
7643 complete(&req->done);
7644 spin_lock_irq(&rq->lock);
7645 }
7646 spin_unlock_irq(&rq->lock);
7647 break;
7648
7649 case CPU_DYING:
7650 case CPU_DYING_FROZEN:
7651 /* Update our root-domain */
7652 rq = cpu_rq(cpu);
7653 spin_lock_irqsave(&rq->lock, flags);
7654 if (rq->rd) {
7655 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7656 set_rq_offline(rq);
7657 }
7658 spin_unlock_irqrestore(&rq->lock, flags);
7659 break;
7660 #endif
7661 }
7662 return NOTIFY_OK;
7663 }
7664
7665 /*
7666 * Register at high priority so that task migration (migrate_all_tasks)
7667 * happens before everything else. This has to be lower priority than
7668 * the notifier in the perf_counter subsystem, though.
7669 */
7670 static struct notifier_block __cpuinitdata migration_notifier = {
7671 .notifier_call = migration_call,
7672 .priority = 10
7673 };
7674
7675 static int __init migration_init(void)
7676 {
7677 void *cpu = (void *)(long)smp_processor_id();
7678 int err;
7679
7680 /* Start one for the boot CPU: */
7681 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7682 BUG_ON(err == NOTIFY_BAD);
7683 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7684 register_cpu_notifier(&migration_notifier);
7685
7686 return 0;
7687 }
7688 early_initcall(migration_init);
7689 #endif
7690
7691 #ifdef CONFIG_SMP
7692
7693 #ifdef CONFIG_SCHED_DEBUG
7694
7695 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7696 struct cpumask *groupmask)
7697 {
7698 struct sched_group *group = sd->groups;
7699 char str[256];
7700
7701 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7702 cpumask_clear(groupmask);
7703
7704 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7705
7706 if (!(sd->flags & SD_LOAD_BALANCE)) {
7707 printk("does not load-balance\n");
7708 if (sd->parent)
7709 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7710 " has parent");
7711 return -1;
7712 }
7713
7714 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7715
7716 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7717 printk(KERN_ERR "ERROR: domain->span does not contain "
7718 "CPU%d\n", cpu);
7719 }
7720 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7721 printk(KERN_ERR "ERROR: domain->groups does not contain"
7722 " CPU%d\n", cpu);
7723 }
7724
7725 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7726 do {
7727 if (!group) {
7728 printk("\n");
7729 printk(KERN_ERR "ERROR: group is NULL\n");
7730 break;
7731 }
7732
7733 if (!group->cpu_power) {
7734 printk(KERN_CONT "\n");
7735 printk(KERN_ERR "ERROR: domain->cpu_power not "
7736 "set\n");
7737 break;
7738 }
7739
7740 if (!cpumask_weight(sched_group_cpus(group))) {
7741 printk(KERN_CONT "\n");
7742 printk(KERN_ERR "ERROR: empty group\n");
7743 break;
7744 }
7745
7746 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: repeated CPUs\n");
7749 break;
7750 }
7751
7752 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7753
7754 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7755
7756 printk(KERN_CONT " %s", str);
7757 if (group->cpu_power != SCHED_LOAD_SCALE) {
7758 printk(KERN_CONT " (cpu_power = %d)",
7759 group->cpu_power);
7760 }
7761
7762 group = group->next;
7763 } while (group != sd->groups);
7764 printk(KERN_CONT "\n");
7765
7766 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7767 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7768
7769 if (sd->parent &&
7770 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7771 printk(KERN_ERR "ERROR: parent span is not a superset "
7772 "of domain->span\n");
7773 return 0;
7774 }
7775
7776 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7777 {
7778 cpumask_var_t groupmask;
7779 int level = 0;
7780
7781 if (!sd) {
7782 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7783 return;
7784 }
7785
7786 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7787
7788 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7789 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7790 return;
7791 }
7792
7793 for (;;) {
7794 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7795 break;
7796 level++;
7797 sd = sd->parent;
7798 if (!sd)
7799 break;
7800 }
7801 free_cpumask_var(groupmask);
7802 }
7803 #else /* !CONFIG_SCHED_DEBUG */
7804 # define sched_domain_debug(sd, cpu) do { } while (0)
7805 #endif /* CONFIG_SCHED_DEBUG */
7806
7807 static int sd_degenerate(struct sched_domain *sd)
7808 {
7809 if (cpumask_weight(sched_domain_span(sd)) == 1)
7810 return 1;
7811
7812 /* Following flags need at least 2 groups */
7813 if (sd->flags & (SD_LOAD_BALANCE |
7814 SD_BALANCE_NEWIDLE |
7815 SD_BALANCE_FORK |
7816 SD_BALANCE_EXEC |
7817 SD_SHARE_CPUPOWER |
7818 SD_SHARE_PKG_RESOURCES)) {
7819 if (sd->groups != sd->groups->next)
7820 return 0;
7821 }
7822
7823 /* Following flags don't use groups */
7824 if (sd->flags & (SD_WAKE_AFFINE))
7825 return 0;
7826
7827 return 1;
7828 }
7829
7830 static int
7831 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7832 {
7833 unsigned long cflags = sd->flags, pflags = parent->flags;
7834
7835 if (sd_degenerate(parent))
7836 return 1;
7837
7838 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7839 return 0;
7840
7841 /* Flags needing groups don't count if only 1 group in parent */
7842 if (parent->groups == parent->groups->next) {
7843 pflags &= ~(SD_LOAD_BALANCE |
7844 SD_BALANCE_NEWIDLE |
7845 SD_BALANCE_FORK |
7846 SD_BALANCE_EXEC |
7847 SD_SHARE_CPUPOWER |
7848 SD_SHARE_PKG_RESOURCES);
7849 if (nr_node_ids == 1)
7850 pflags &= ~SD_SERIALIZE;
7851 }
7852 if (~cflags & pflags)
7853 return 0;
7854
7855 return 1;
7856 }
7857
7858 static void free_rootdomain(struct root_domain *rd)
7859 {
7860 cpupri_cleanup(&rd->cpupri);
7861
7862 free_cpumask_var(rd->rto_mask);
7863 free_cpumask_var(rd->online);
7864 free_cpumask_var(rd->span);
7865 kfree(rd);
7866 }
7867
7868 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7869 {
7870 struct root_domain *old_rd = NULL;
7871 unsigned long flags;
7872
7873 spin_lock_irqsave(&rq->lock, flags);
7874
7875 if (rq->rd) {
7876 old_rd = rq->rd;
7877
7878 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7879 set_rq_offline(rq);
7880
7881 cpumask_clear_cpu(rq->cpu, old_rd->span);
7882
7883 /*
7884 * If we dont want to free the old_rt yet then
7885 * set old_rd to NULL to skip the freeing later
7886 * in this function:
7887 */
7888 if (!atomic_dec_and_test(&old_rd->refcount))
7889 old_rd = NULL;
7890 }
7891
7892 atomic_inc(&rd->refcount);
7893 rq->rd = rd;
7894
7895 cpumask_set_cpu(rq->cpu, rd->span);
7896 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7897 set_rq_online(rq);
7898
7899 spin_unlock_irqrestore(&rq->lock, flags);
7900
7901 if (old_rd)
7902 free_rootdomain(old_rd);
7903 }
7904
7905 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7906 {
7907 gfp_t gfp = GFP_KERNEL;
7908
7909 memset(rd, 0, sizeof(*rd));
7910
7911 if (bootmem)
7912 gfp = GFP_NOWAIT;
7913
7914 if (!alloc_cpumask_var(&rd->span, gfp))
7915 goto out;
7916 if (!alloc_cpumask_var(&rd->online, gfp))
7917 goto free_span;
7918 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7919 goto free_online;
7920
7921 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7922 goto free_rto_mask;
7923 return 0;
7924
7925 free_rto_mask:
7926 free_cpumask_var(rd->rto_mask);
7927 free_online:
7928 free_cpumask_var(rd->online);
7929 free_span:
7930 free_cpumask_var(rd->span);
7931 out:
7932 return -ENOMEM;
7933 }
7934
7935 static void init_defrootdomain(void)
7936 {
7937 init_rootdomain(&def_root_domain, true);
7938
7939 atomic_set(&def_root_domain.refcount, 1);
7940 }
7941
7942 static struct root_domain *alloc_rootdomain(void)
7943 {
7944 struct root_domain *rd;
7945
7946 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7947 if (!rd)
7948 return NULL;
7949
7950 if (init_rootdomain(rd, false) != 0) {
7951 kfree(rd);
7952 return NULL;
7953 }
7954
7955 return rd;
7956 }
7957
7958 /*
7959 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7960 * hold the hotplug lock.
7961 */
7962 static void
7963 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7964 {
7965 struct rq *rq = cpu_rq(cpu);
7966 struct sched_domain *tmp;
7967
7968 /* Remove the sched domains which do not contribute to scheduling. */
7969 for (tmp = sd; tmp; ) {
7970 struct sched_domain *parent = tmp->parent;
7971 if (!parent)
7972 break;
7973
7974 if (sd_parent_degenerate(tmp, parent)) {
7975 tmp->parent = parent->parent;
7976 if (parent->parent)
7977 parent->parent->child = tmp;
7978 } else
7979 tmp = tmp->parent;
7980 }
7981
7982 if (sd && sd_degenerate(sd)) {
7983 sd = sd->parent;
7984 if (sd)
7985 sd->child = NULL;
7986 }
7987
7988 sched_domain_debug(sd, cpu);
7989
7990 rq_attach_root(rq, rd);
7991 rcu_assign_pointer(rq->sd, sd);
7992 }
7993
7994 /* cpus with isolated domains */
7995 static cpumask_var_t cpu_isolated_map;
7996
7997 /* Setup the mask of cpus configured for isolated domains */
7998 static int __init isolated_cpu_setup(char *str)
7999 {
8000 cpulist_parse(str, cpu_isolated_map);
8001 return 1;
8002 }
8003
8004 __setup("isolcpus=", isolated_cpu_setup);
8005
8006 /*
8007 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8008 * to a function which identifies what group(along with sched group) a CPU
8009 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8010 * (due to the fact that we keep track of groups covered with a struct cpumask).
8011 *
8012 * init_sched_build_groups will build a circular linked list of the groups
8013 * covered by the given span, and will set each group's ->cpumask correctly,
8014 * and ->cpu_power to 0.
8015 */
8016 static void
8017 init_sched_build_groups(const struct cpumask *span,
8018 const struct cpumask *cpu_map,
8019 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8020 struct sched_group **sg,
8021 struct cpumask *tmpmask),
8022 struct cpumask *covered, struct cpumask *tmpmask)
8023 {
8024 struct sched_group *first = NULL, *last = NULL;
8025 int i;
8026
8027 cpumask_clear(covered);
8028
8029 for_each_cpu(i, span) {
8030 struct sched_group *sg;
8031 int group = group_fn(i, cpu_map, &sg, tmpmask);
8032 int j;
8033
8034 if (cpumask_test_cpu(i, covered))
8035 continue;
8036
8037 cpumask_clear(sched_group_cpus(sg));
8038 sg->cpu_power = 0;
8039
8040 for_each_cpu(j, span) {
8041 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8042 continue;
8043
8044 cpumask_set_cpu(j, covered);
8045 cpumask_set_cpu(j, sched_group_cpus(sg));
8046 }
8047 if (!first)
8048 first = sg;
8049 if (last)
8050 last->next = sg;
8051 last = sg;
8052 }
8053 last->next = first;
8054 }
8055
8056 #define SD_NODES_PER_DOMAIN 16
8057
8058 #ifdef CONFIG_NUMA
8059
8060 /**
8061 * find_next_best_node - find the next node to include in a sched_domain
8062 * @node: node whose sched_domain we're building
8063 * @used_nodes: nodes already in the sched_domain
8064 *
8065 * Find the next node to include in a given scheduling domain. Simply
8066 * finds the closest node not already in the @used_nodes map.
8067 *
8068 * Should use nodemask_t.
8069 */
8070 static int find_next_best_node(int node, nodemask_t *used_nodes)
8071 {
8072 int i, n, val, min_val, best_node = 0;
8073
8074 min_val = INT_MAX;
8075
8076 for (i = 0; i < nr_node_ids; i++) {
8077 /* Start at @node */
8078 n = (node + i) % nr_node_ids;
8079
8080 if (!nr_cpus_node(n))
8081 continue;
8082
8083 /* Skip already used nodes */
8084 if (node_isset(n, *used_nodes))
8085 continue;
8086
8087 /* Simple min distance search */
8088 val = node_distance(node, n);
8089
8090 if (val < min_val) {
8091 min_val = val;
8092 best_node = n;
8093 }
8094 }
8095
8096 node_set(best_node, *used_nodes);
8097 return best_node;
8098 }
8099
8100 /**
8101 * sched_domain_node_span - get a cpumask for a node's sched_domain
8102 * @node: node whose cpumask we're constructing
8103 * @span: resulting cpumask
8104 *
8105 * Given a node, construct a good cpumask for its sched_domain to span. It
8106 * should be one that prevents unnecessary balancing, but also spreads tasks
8107 * out optimally.
8108 */
8109 static void sched_domain_node_span(int node, struct cpumask *span)
8110 {
8111 nodemask_t used_nodes;
8112 int i;
8113
8114 cpumask_clear(span);
8115 nodes_clear(used_nodes);
8116
8117 cpumask_or(span, span, cpumask_of_node(node));
8118 node_set(node, used_nodes);
8119
8120 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8121 int next_node = find_next_best_node(node, &used_nodes);
8122
8123 cpumask_or(span, span, cpumask_of_node(next_node));
8124 }
8125 }
8126 #endif /* CONFIG_NUMA */
8127
8128 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8129
8130 /*
8131 * The cpus mask in sched_group and sched_domain hangs off the end.
8132 *
8133 * ( See the the comments in include/linux/sched.h:struct sched_group
8134 * and struct sched_domain. )
8135 */
8136 struct static_sched_group {
8137 struct sched_group sg;
8138 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8139 };
8140
8141 struct static_sched_domain {
8142 struct sched_domain sd;
8143 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8144 };
8145
8146 struct s_data {
8147 #ifdef CONFIG_NUMA
8148 int sd_allnodes;
8149 cpumask_var_t domainspan;
8150 cpumask_var_t covered;
8151 cpumask_var_t notcovered;
8152 #endif
8153 cpumask_var_t nodemask;
8154 cpumask_var_t this_sibling_map;
8155 cpumask_var_t this_core_map;
8156 cpumask_var_t send_covered;
8157 cpumask_var_t tmpmask;
8158 struct sched_group **sched_group_nodes;
8159 struct root_domain *rd;
8160 };
8161
8162 enum s_alloc {
8163 sa_sched_groups = 0,
8164 sa_rootdomain,
8165 sa_tmpmask,
8166 sa_send_covered,
8167 sa_this_core_map,
8168 sa_this_sibling_map,
8169 sa_nodemask,
8170 sa_sched_group_nodes,
8171 #ifdef CONFIG_NUMA
8172 sa_notcovered,
8173 sa_covered,
8174 sa_domainspan,
8175 #endif
8176 sa_none,
8177 };
8178
8179 /*
8180 * SMT sched-domains:
8181 */
8182 #ifdef CONFIG_SCHED_SMT
8183 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8184 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8185
8186 static int
8187 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8188 struct sched_group **sg, struct cpumask *unused)
8189 {
8190 if (sg)
8191 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8192 return cpu;
8193 }
8194 #endif /* CONFIG_SCHED_SMT */
8195
8196 /*
8197 * multi-core sched-domains:
8198 */
8199 #ifdef CONFIG_SCHED_MC
8200 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8201 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8202 #endif /* CONFIG_SCHED_MC */
8203
8204 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8205 static int
8206 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8207 struct sched_group **sg, struct cpumask *mask)
8208 {
8209 int group;
8210
8211 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8212 group = cpumask_first(mask);
8213 if (sg)
8214 *sg = &per_cpu(sched_group_core, group).sg;
8215 return group;
8216 }
8217 #elif defined(CONFIG_SCHED_MC)
8218 static int
8219 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8220 struct sched_group **sg, struct cpumask *unused)
8221 {
8222 if (sg)
8223 *sg = &per_cpu(sched_group_core, cpu).sg;
8224 return cpu;
8225 }
8226 #endif
8227
8228 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8229 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8230
8231 static int
8232 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8233 struct sched_group **sg, struct cpumask *mask)
8234 {
8235 int group;
8236 #ifdef CONFIG_SCHED_MC
8237 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8238 group = cpumask_first(mask);
8239 #elif defined(CONFIG_SCHED_SMT)
8240 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8241 group = cpumask_first(mask);
8242 #else
8243 group = cpu;
8244 #endif
8245 if (sg)
8246 *sg = &per_cpu(sched_group_phys, group).sg;
8247 return group;
8248 }
8249
8250 #ifdef CONFIG_NUMA
8251 /*
8252 * The init_sched_build_groups can't handle what we want to do with node
8253 * groups, so roll our own. Now each node has its own list of groups which
8254 * gets dynamically allocated.
8255 */
8256 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8257 static struct sched_group ***sched_group_nodes_bycpu;
8258
8259 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8260 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8261
8262 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8263 struct sched_group **sg,
8264 struct cpumask *nodemask)
8265 {
8266 int group;
8267
8268 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8269 group = cpumask_first(nodemask);
8270
8271 if (sg)
8272 *sg = &per_cpu(sched_group_allnodes, group).sg;
8273 return group;
8274 }
8275
8276 static void init_numa_sched_groups_power(struct sched_group *group_head)
8277 {
8278 struct sched_group *sg = group_head;
8279 int j;
8280
8281 if (!sg)
8282 return;
8283 do {
8284 for_each_cpu(j, sched_group_cpus(sg)) {
8285 struct sched_domain *sd;
8286
8287 sd = &per_cpu(phys_domains, j).sd;
8288 if (j != group_first_cpu(sd->groups)) {
8289 /*
8290 * Only add "power" once for each
8291 * physical package.
8292 */
8293 continue;
8294 }
8295
8296 sg->cpu_power += sd->groups->cpu_power;
8297 }
8298 sg = sg->next;
8299 } while (sg != group_head);
8300 }
8301
8302 static int build_numa_sched_groups(struct s_data *d,
8303 const struct cpumask *cpu_map, int num)
8304 {
8305 struct sched_domain *sd;
8306 struct sched_group *sg, *prev;
8307 int n, j;
8308
8309 cpumask_clear(d->covered);
8310 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8311 if (cpumask_empty(d->nodemask)) {
8312 d->sched_group_nodes[num] = NULL;
8313 goto out;
8314 }
8315
8316 sched_domain_node_span(num, d->domainspan);
8317 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8318
8319 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8320 GFP_KERNEL, num);
8321 if (!sg) {
8322 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8323 num);
8324 return -ENOMEM;
8325 }
8326 d->sched_group_nodes[num] = sg;
8327
8328 for_each_cpu(j, d->nodemask) {
8329 sd = &per_cpu(node_domains, j).sd;
8330 sd->groups = sg;
8331 }
8332
8333 sg->cpu_power = 0;
8334 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8335 sg->next = sg;
8336 cpumask_or(d->covered, d->covered, d->nodemask);
8337
8338 prev = sg;
8339 for (j = 0; j < nr_node_ids; j++) {
8340 n = (num + j) % nr_node_ids;
8341 cpumask_complement(d->notcovered, d->covered);
8342 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8343 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8344 if (cpumask_empty(d->tmpmask))
8345 break;
8346 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8347 if (cpumask_empty(d->tmpmask))
8348 continue;
8349 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8350 GFP_KERNEL, num);
8351 if (!sg) {
8352 printk(KERN_WARNING
8353 "Can not alloc domain group for node %d\n", j);
8354 return -ENOMEM;
8355 }
8356 sg->cpu_power = 0;
8357 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8358 sg->next = prev->next;
8359 cpumask_or(d->covered, d->covered, d->tmpmask);
8360 prev->next = sg;
8361 prev = sg;
8362 }
8363 out:
8364 return 0;
8365 }
8366 #endif /* CONFIG_NUMA */
8367
8368 #ifdef CONFIG_NUMA
8369 /* Free memory allocated for various sched_group structures */
8370 static void free_sched_groups(const struct cpumask *cpu_map,
8371 struct cpumask *nodemask)
8372 {
8373 int cpu, i;
8374
8375 for_each_cpu(cpu, cpu_map) {
8376 struct sched_group **sched_group_nodes
8377 = sched_group_nodes_bycpu[cpu];
8378
8379 if (!sched_group_nodes)
8380 continue;
8381
8382 for (i = 0; i < nr_node_ids; i++) {
8383 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8384
8385 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8386 if (cpumask_empty(nodemask))
8387 continue;
8388
8389 if (sg == NULL)
8390 continue;
8391 sg = sg->next;
8392 next_sg:
8393 oldsg = sg;
8394 sg = sg->next;
8395 kfree(oldsg);
8396 if (oldsg != sched_group_nodes[i])
8397 goto next_sg;
8398 }
8399 kfree(sched_group_nodes);
8400 sched_group_nodes_bycpu[cpu] = NULL;
8401 }
8402 }
8403 #else /* !CONFIG_NUMA */
8404 static void free_sched_groups(const struct cpumask *cpu_map,
8405 struct cpumask *nodemask)
8406 {
8407 }
8408 #endif /* CONFIG_NUMA */
8409
8410 /*
8411 * Initialize sched groups cpu_power.
8412 *
8413 * cpu_power indicates the capacity of sched group, which is used while
8414 * distributing the load between different sched groups in a sched domain.
8415 * Typically cpu_power for all the groups in a sched domain will be same unless
8416 * there are asymmetries in the topology. If there are asymmetries, group
8417 * having more cpu_power will pickup more load compared to the group having
8418 * less cpu_power.
8419 */
8420 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8421 {
8422 struct sched_domain *child;
8423 struct sched_group *group;
8424 long power;
8425 int weight;
8426
8427 WARN_ON(!sd || !sd->groups);
8428
8429 if (cpu != group_first_cpu(sd->groups))
8430 return;
8431
8432 child = sd->child;
8433
8434 sd->groups->cpu_power = 0;
8435
8436 if (!child) {
8437 power = SCHED_LOAD_SCALE;
8438 weight = cpumask_weight(sched_domain_span(sd));
8439 /*
8440 * SMT siblings share the power of a single core.
8441 * Usually multiple threads get a better yield out of
8442 * that one core than a single thread would have,
8443 * reflect that in sd->smt_gain.
8444 */
8445 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8446 power *= sd->smt_gain;
8447 power /= weight;
8448 power >>= SCHED_LOAD_SHIFT;
8449 }
8450 sd->groups->cpu_power += power;
8451 return;
8452 }
8453
8454 /*
8455 * Add cpu_power of each child group to this groups cpu_power.
8456 */
8457 group = child->groups;
8458 do {
8459 sd->groups->cpu_power += group->cpu_power;
8460 group = group->next;
8461 } while (group != child->groups);
8462 }
8463
8464 /*
8465 * Initializers for schedule domains
8466 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8467 */
8468
8469 #ifdef CONFIG_SCHED_DEBUG
8470 # define SD_INIT_NAME(sd, type) sd->name = #type
8471 #else
8472 # define SD_INIT_NAME(sd, type) do { } while (0)
8473 #endif
8474
8475 #define SD_INIT(sd, type) sd_init_##type(sd)
8476
8477 #define SD_INIT_FUNC(type) \
8478 static noinline void sd_init_##type(struct sched_domain *sd) \
8479 { \
8480 memset(sd, 0, sizeof(*sd)); \
8481 *sd = SD_##type##_INIT; \
8482 sd->level = SD_LV_##type; \
8483 SD_INIT_NAME(sd, type); \
8484 }
8485
8486 SD_INIT_FUNC(CPU)
8487 #ifdef CONFIG_NUMA
8488 SD_INIT_FUNC(ALLNODES)
8489 SD_INIT_FUNC(NODE)
8490 #endif
8491 #ifdef CONFIG_SCHED_SMT
8492 SD_INIT_FUNC(SIBLING)
8493 #endif
8494 #ifdef CONFIG_SCHED_MC
8495 SD_INIT_FUNC(MC)
8496 #endif
8497
8498 static int default_relax_domain_level = -1;
8499
8500 static int __init setup_relax_domain_level(char *str)
8501 {
8502 unsigned long val;
8503
8504 val = simple_strtoul(str, NULL, 0);
8505 if (val < SD_LV_MAX)
8506 default_relax_domain_level = val;
8507
8508 return 1;
8509 }
8510 __setup("relax_domain_level=", setup_relax_domain_level);
8511
8512 static void set_domain_attribute(struct sched_domain *sd,
8513 struct sched_domain_attr *attr)
8514 {
8515 int request;
8516
8517 if (!attr || attr->relax_domain_level < 0) {
8518 if (default_relax_domain_level < 0)
8519 return;
8520 else
8521 request = default_relax_domain_level;
8522 } else
8523 request = attr->relax_domain_level;
8524 if (request < sd->level) {
8525 /* turn off idle balance on this domain */
8526 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8527 } else {
8528 /* turn on idle balance on this domain */
8529 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8530 }
8531 }
8532
8533 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8534 const struct cpumask *cpu_map)
8535 {
8536 switch (what) {
8537 case sa_sched_groups:
8538 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8539 d->sched_group_nodes = NULL;
8540 case sa_rootdomain:
8541 free_rootdomain(d->rd); /* fall through */
8542 case sa_tmpmask:
8543 free_cpumask_var(d->tmpmask); /* fall through */
8544 case sa_send_covered:
8545 free_cpumask_var(d->send_covered); /* fall through */
8546 case sa_this_core_map:
8547 free_cpumask_var(d->this_core_map); /* fall through */
8548 case sa_this_sibling_map:
8549 free_cpumask_var(d->this_sibling_map); /* fall through */
8550 case sa_nodemask:
8551 free_cpumask_var(d->nodemask); /* fall through */
8552 case sa_sched_group_nodes:
8553 #ifdef CONFIG_NUMA
8554 kfree(d->sched_group_nodes); /* fall through */
8555 case sa_notcovered:
8556 free_cpumask_var(d->notcovered); /* fall through */
8557 case sa_covered:
8558 free_cpumask_var(d->covered); /* fall through */
8559 case sa_domainspan:
8560 free_cpumask_var(d->domainspan); /* fall through */
8561 #endif
8562 case sa_none:
8563 break;
8564 }
8565 }
8566
8567 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8568 const struct cpumask *cpu_map)
8569 {
8570 #ifdef CONFIG_NUMA
8571 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8572 return sa_none;
8573 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8574 return sa_domainspan;
8575 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8576 return sa_covered;
8577 /* Allocate the per-node list of sched groups */
8578 d->sched_group_nodes = kcalloc(nr_node_ids,
8579 sizeof(struct sched_group *), GFP_KERNEL);
8580 if (!d->sched_group_nodes) {
8581 printk(KERN_WARNING "Can not alloc sched group node list\n");
8582 return sa_notcovered;
8583 }
8584 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8585 #endif
8586 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8587 return sa_sched_group_nodes;
8588 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8589 return sa_nodemask;
8590 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8591 return sa_this_sibling_map;
8592 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8593 return sa_this_core_map;
8594 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8595 return sa_send_covered;
8596 d->rd = alloc_rootdomain();
8597 if (!d->rd) {
8598 printk(KERN_WARNING "Cannot alloc root domain\n");
8599 return sa_tmpmask;
8600 }
8601 return sa_rootdomain;
8602 }
8603
8604 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8605 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8606 {
8607 struct sched_domain *sd = NULL;
8608 #ifdef CONFIG_NUMA
8609 struct sched_domain *parent;
8610
8611 d->sd_allnodes = 0;
8612 if (cpumask_weight(cpu_map) >
8613 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8614 sd = &per_cpu(allnodes_domains, i).sd;
8615 SD_INIT(sd, ALLNODES);
8616 set_domain_attribute(sd, attr);
8617 cpumask_copy(sched_domain_span(sd), cpu_map);
8618 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8619 d->sd_allnodes = 1;
8620 }
8621 parent = sd;
8622
8623 sd = &per_cpu(node_domains, i).sd;
8624 SD_INIT(sd, NODE);
8625 set_domain_attribute(sd, attr);
8626 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8627 sd->parent = parent;
8628 if (parent)
8629 parent->child = sd;
8630 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8631 #endif
8632 return sd;
8633 }
8634
8635 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8636 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8637 struct sched_domain *parent, int i)
8638 {
8639 struct sched_domain *sd;
8640 sd = &per_cpu(phys_domains, i).sd;
8641 SD_INIT(sd, CPU);
8642 set_domain_attribute(sd, attr);
8643 cpumask_copy(sched_domain_span(sd), d->nodemask);
8644 sd->parent = parent;
8645 if (parent)
8646 parent->child = sd;
8647 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8648 return sd;
8649 }
8650
8651 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8652 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8653 struct sched_domain *parent, int i)
8654 {
8655 struct sched_domain *sd = parent;
8656 #ifdef CONFIG_SCHED_MC
8657 sd = &per_cpu(core_domains, i).sd;
8658 SD_INIT(sd, MC);
8659 set_domain_attribute(sd, attr);
8660 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8661 sd->parent = parent;
8662 parent->child = sd;
8663 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8664 #endif
8665 return sd;
8666 }
8667
8668 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8669 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8670 struct sched_domain *parent, int i)
8671 {
8672 struct sched_domain *sd = parent;
8673 #ifdef CONFIG_SCHED_SMT
8674 sd = &per_cpu(cpu_domains, i).sd;
8675 SD_INIT(sd, SIBLING);
8676 set_domain_attribute(sd, attr);
8677 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8678 sd->parent = parent;
8679 parent->child = sd;
8680 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8681 #endif
8682 return sd;
8683 }
8684
8685 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8686 const struct cpumask *cpu_map, int cpu)
8687 {
8688 switch (l) {
8689 #ifdef CONFIG_SCHED_SMT
8690 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8691 cpumask_and(d->this_sibling_map, cpu_map,
8692 topology_thread_cpumask(cpu));
8693 if (cpu == cpumask_first(d->this_sibling_map))
8694 init_sched_build_groups(d->this_sibling_map, cpu_map,
8695 &cpu_to_cpu_group,
8696 d->send_covered, d->tmpmask);
8697 break;
8698 #endif
8699 #ifdef CONFIG_SCHED_MC
8700 case SD_LV_MC: /* set up multi-core groups */
8701 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8702 if (cpu == cpumask_first(d->this_core_map))
8703 init_sched_build_groups(d->this_core_map, cpu_map,
8704 &cpu_to_core_group,
8705 d->send_covered, d->tmpmask);
8706 break;
8707 #endif
8708 case SD_LV_CPU: /* set up physical groups */
8709 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8710 if (!cpumask_empty(d->nodemask))
8711 init_sched_build_groups(d->nodemask, cpu_map,
8712 &cpu_to_phys_group,
8713 d->send_covered, d->tmpmask);
8714 break;
8715 #ifdef CONFIG_NUMA
8716 case SD_LV_ALLNODES:
8717 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8718 d->send_covered, d->tmpmask);
8719 break;
8720 #endif
8721 default:
8722 break;
8723 }
8724 }
8725
8726 /*
8727 * Build sched domains for a given set of cpus and attach the sched domains
8728 * to the individual cpus
8729 */
8730 static int __build_sched_domains(const struct cpumask *cpu_map,
8731 struct sched_domain_attr *attr)
8732 {
8733 enum s_alloc alloc_state = sa_none;
8734 struct s_data d;
8735 struct sched_domain *sd;
8736 int i;
8737 #ifdef CONFIG_NUMA
8738 d.sd_allnodes = 0;
8739 #endif
8740
8741 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8742 if (alloc_state != sa_rootdomain)
8743 goto error;
8744 alloc_state = sa_sched_groups;
8745
8746 /*
8747 * Set up domains for cpus specified by the cpu_map.
8748 */
8749 for_each_cpu(i, cpu_map) {
8750 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8751 cpu_map);
8752
8753 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8754 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8755 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8756 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8757 }
8758
8759 for_each_cpu(i, cpu_map) {
8760 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8761 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8762 }
8763
8764 /* Set up physical groups */
8765 for (i = 0; i < nr_node_ids; i++)
8766 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8767
8768 #ifdef CONFIG_NUMA
8769 /* Set up node groups */
8770 if (d.sd_allnodes)
8771 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8772
8773 for (i = 0; i < nr_node_ids; i++)
8774 if (build_numa_sched_groups(&d, cpu_map, i))
8775 goto error;
8776 #endif
8777
8778 /* Calculate CPU power for physical packages and nodes */
8779 #ifdef CONFIG_SCHED_SMT
8780 for_each_cpu(i, cpu_map) {
8781 sd = &per_cpu(cpu_domains, i).sd;
8782 init_sched_groups_power(i, sd);
8783 }
8784 #endif
8785 #ifdef CONFIG_SCHED_MC
8786 for_each_cpu(i, cpu_map) {
8787 sd = &per_cpu(core_domains, i).sd;
8788 init_sched_groups_power(i, sd);
8789 }
8790 #endif
8791
8792 for_each_cpu(i, cpu_map) {
8793 sd = &per_cpu(phys_domains, i).sd;
8794 init_sched_groups_power(i, sd);
8795 }
8796
8797 #ifdef CONFIG_NUMA
8798 for (i = 0; i < nr_node_ids; i++)
8799 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8800
8801 if (d.sd_allnodes) {
8802 struct sched_group *sg;
8803
8804 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8805 d.tmpmask);
8806 init_numa_sched_groups_power(sg);
8807 }
8808 #endif
8809
8810 /* Attach the domains */
8811 for_each_cpu(i, cpu_map) {
8812 #ifdef CONFIG_SCHED_SMT
8813 sd = &per_cpu(cpu_domains, i).sd;
8814 #elif defined(CONFIG_SCHED_MC)
8815 sd = &per_cpu(core_domains, i).sd;
8816 #else
8817 sd = &per_cpu(phys_domains, i).sd;
8818 #endif
8819 cpu_attach_domain(sd, d.rd, i);
8820 }
8821
8822 d.sched_group_nodes = NULL; /* don't free this we still need it */
8823 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8824 return 0;
8825
8826 error:
8827 __free_domain_allocs(&d, alloc_state, cpu_map);
8828 return -ENOMEM;
8829 }
8830
8831 static int build_sched_domains(const struct cpumask *cpu_map)
8832 {
8833 return __build_sched_domains(cpu_map, NULL);
8834 }
8835
8836 static struct cpumask *doms_cur; /* current sched domains */
8837 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8838 static struct sched_domain_attr *dattr_cur;
8839 /* attribues of custom domains in 'doms_cur' */
8840
8841 /*
8842 * Special case: If a kmalloc of a doms_cur partition (array of
8843 * cpumask) fails, then fallback to a single sched domain,
8844 * as determined by the single cpumask fallback_doms.
8845 */
8846 static cpumask_var_t fallback_doms;
8847
8848 /*
8849 * arch_update_cpu_topology lets virtualized architectures update the
8850 * cpu core maps. It is supposed to return 1 if the topology changed
8851 * or 0 if it stayed the same.
8852 */
8853 int __attribute__((weak)) arch_update_cpu_topology(void)
8854 {
8855 return 0;
8856 }
8857
8858 /*
8859 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8860 * For now this just excludes isolated cpus, but could be used to
8861 * exclude other special cases in the future.
8862 */
8863 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8864 {
8865 int err;
8866
8867 arch_update_cpu_topology();
8868 ndoms_cur = 1;
8869 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8870 if (!doms_cur)
8871 doms_cur = fallback_doms;
8872 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8873 dattr_cur = NULL;
8874 err = build_sched_domains(doms_cur);
8875 register_sched_domain_sysctl();
8876
8877 return err;
8878 }
8879
8880 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8881 struct cpumask *tmpmask)
8882 {
8883 free_sched_groups(cpu_map, tmpmask);
8884 }
8885
8886 /*
8887 * Detach sched domains from a group of cpus specified in cpu_map
8888 * These cpus will now be attached to the NULL domain
8889 */
8890 static void detach_destroy_domains(const struct cpumask *cpu_map)
8891 {
8892 /* Save because hotplug lock held. */
8893 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8894 int i;
8895
8896 for_each_cpu(i, cpu_map)
8897 cpu_attach_domain(NULL, &def_root_domain, i);
8898 synchronize_sched();
8899 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8900 }
8901
8902 /* handle null as "default" */
8903 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8904 struct sched_domain_attr *new, int idx_new)
8905 {
8906 struct sched_domain_attr tmp;
8907
8908 /* fast path */
8909 if (!new && !cur)
8910 return 1;
8911
8912 tmp = SD_ATTR_INIT;
8913 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8914 new ? (new + idx_new) : &tmp,
8915 sizeof(struct sched_domain_attr));
8916 }
8917
8918 /*
8919 * Partition sched domains as specified by the 'ndoms_new'
8920 * cpumasks in the array doms_new[] of cpumasks. This compares
8921 * doms_new[] to the current sched domain partitioning, doms_cur[].
8922 * It destroys each deleted domain and builds each new domain.
8923 *
8924 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8925 * The masks don't intersect (don't overlap.) We should setup one
8926 * sched domain for each mask. CPUs not in any of the cpumasks will
8927 * not be load balanced. If the same cpumask appears both in the
8928 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8929 * it as it is.
8930 *
8931 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8932 * ownership of it and will kfree it when done with it. If the caller
8933 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8934 * ndoms_new == 1, and partition_sched_domains() will fallback to
8935 * the single partition 'fallback_doms', it also forces the domains
8936 * to be rebuilt.
8937 *
8938 * If doms_new == NULL it will be replaced with cpu_online_mask.
8939 * ndoms_new == 0 is a special case for destroying existing domains,
8940 * and it will not create the default domain.
8941 *
8942 * Call with hotplug lock held
8943 */
8944 /* FIXME: Change to struct cpumask *doms_new[] */
8945 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8946 struct sched_domain_attr *dattr_new)
8947 {
8948 int i, j, n;
8949 int new_topology;
8950
8951 mutex_lock(&sched_domains_mutex);
8952
8953 /* always unregister in case we don't destroy any domains */
8954 unregister_sched_domain_sysctl();
8955
8956 /* Let architecture update cpu core mappings. */
8957 new_topology = arch_update_cpu_topology();
8958
8959 n = doms_new ? ndoms_new : 0;
8960
8961 /* Destroy deleted domains */
8962 for (i = 0; i < ndoms_cur; i++) {
8963 for (j = 0; j < n && !new_topology; j++) {
8964 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8965 && dattrs_equal(dattr_cur, i, dattr_new, j))
8966 goto match1;
8967 }
8968 /* no match - a current sched domain not in new doms_new[] */
8969 detach_destroy_domains(doms_cur + i);
8970 match1:
8971 ;
8972 }
8973
8974 if (doms_new == NULL) {
8975 ndoms_cur = 0;
8976 doms_new = fallback_doms;
8977 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8978 WARN_ON_ONCE(dattr_new);
8979 }
8980
8981 /* Build new domains */
8982 for (i = 0; i < ndoms_new; i++) {
8983 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8984 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8985 && dattrs_equal(dattr_new, i, dattr_cur, j))
8986 goto match2;
8987 }
8988 /* no match - add a new doms_new */
8989 __build_sched_domains(doms_new + i,
8990 dattr_new ? dattr_new + i : NULL);
8991 match2:
8992 ;
8993 }
8994
8995 /* Remember the new sched domains */
8996 if (doms_cur != fallback_doms)
8997 kfree(doms_cur);
8998 kfree(dattr_cur); /* kfree(NULL) is safe */
8999 doms_cur = doms_new;
9000 dattr_cur = dattr_new;
9001 ndoms_cur = ndoms_new;
9002
9003 register_sched_domain_sysctl();
9004
9005 mutex_unlock(&sched_domains_mutex);
9006 }
9007
9008 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9009 static void arch_reinit_sched_domains(void)
9010 {
9011 get_online_cpus();
9012
9013 /* Destroy domains first to force the rebuild */
9014 partition_sched_domains(0, NULL, NULL);
9015
9016 rebuild_sched_domains();
9017 put_online_cpus();
9018 }
9019
9020 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9021 {
9022 unsigned int level = 0;
9023
9024 if (sscanf(buf, "%u", &level) != 1)
9025 return -EINVAL;
9026
9027 /*
9028 * level is always be positive so don't check for
9029 * level < POWERSAVINGS_BALANCE_NONE which is 0
9030 * What happens on 0 or 1 byte write,
9031 * need to check for count as well?
9032 */
9033
9034 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9035 return -EINVAL;
9036
9037 if (smt)
9038 sched_smt_power_savings = level;
9039 else
9040 sched_mc_power_savings = level;
9041
9042 arch_reinit_sched_domains();
9043
9044 return count;
9045 }
9046
9047 #ifdef CONFIG_SCHED_MC
9048 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9049 char *page)
9050 {
9051 return sprintf(page, "%u\n", sched_mc_power_savings);
9052 }
9053 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9054 const char *buf, size_t count)
9055 {
9056 return sched_power_savings_store(buf, count, 0);
9057 }
9058 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9059 sched_mc_power_savings_show,
9060 sched_mc_power_savings_store);
9061 #endif
9062
9063 #ifdef CONFIG_SCHED_SMT
9064 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9065 char *page)
9066 {
9067 return sprintf(page, "%u\n", sched_smt_power_savings);
9068 }
9069 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9070 const char *buf, size_t count)
9071 {
9072 return sched_power_savings_store(buf, count, 1);
9073 }
9074 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9075 sched_smt_power_savings_show,
9076 sched_smt_power_savings_store);
9077 #endif
9078
9079 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9080 {
9081 int err = 0;
9082
9083 #ifdef CONFIG_SCHED_SMT
9084 if (smt_capable())
9085 err = sysfs_create_file(&cls->kset.kobj,
9086 &attr_sched_smt_power_savings.attr);
9087 #endif
9088 #ifdef CONFIG_SCHED_MC
9089 if (!err && mc_capable())
9090 err = sysfs_create_file(&cls->kset.kobj,
9091 &attr_sched_mc_power_savings.attr);
9092 #endif
9093 return err;
9094 }
9095 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9096
9097 #ifndef CONFIG_CPUSETS
9098 /*
9099 * Add online and remove offline CPUs from the scheduler domains.
9100 * When cpusets are enabled they take over this function.
9101 */
9102 static int update_sched_domains(struct notifier_block *nfb,
9103 unsigned long action, void *hcpu)
9104 {
9105 switch (action) {
9106 case CPU_ONLINE:
9107 case CPU_ONLINE_FROZEN:
9108 case CPU_DEAD:
9109 case CPU_DEAD_FROZEN:
9110 partition_sched_domains(1, NULL, NULL);
9111 return NOTIFY_OK;
9112
9113 default:
9114 return NOTIFY_DONE;
9115 }
9116 }
9117 #endif
9118
9119 static int update_runtime(struct notifier_block *nfb,
9120 unsigned long action, void *hcpu)
9121 {
9122 int cpu = (int)(long)hcpu;
9123
9124 switch (action) {
9125 case CPU_DOWN_PREPARE:
9126 case CPU_DOWN_PREPARE_FROZEN:
9127 disable_runtime(cpu_rq(cpu));
9128 return NOTIFY_OK;
9129
9130 case CPU_DOWN_FAILED:
9131 case CPU_DOWN_FAILED_FROZEN:
9132 case CPU_ONLINE:
9133 case CPU_ONLINE_FROZEN:
9134 enable_runtime(cpu_rq(cpu));
9135 return NOTIFY_OK;
9136
9137 default:
9138 return NOTIFY_DONE;
9139 }
9140 }
9141
9142 void __init sched_init_smp(void)
9143 {
9144 cpumask_var_t non_isolated_cpus;
9145
9146 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9147
9148 #if defined(CONFIG_NUMA)
9149 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9150 GFP_KERNEL);
9151 BUG_ON(sched_group_nodes_bycpu == NULL);
9152 #endif
9153 get_online_cpus();
9154 mutex_lock(&sched_domains_mutex);
9155 arch_init_sched_domains(cpu_online_mask);
9156 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9157 if (cpumask_empty(non_isolated_cpus))
9158 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9159 mutex_unlock(&sched_domains_mutex);
9160 put_online_cpus();
9161
9162 #ifndef CONFIG_CPUSETS
9163 /* XXX: Theoretical race here - CPU may be hotplugged now */
9164 hotcpu_notifier(update_sched_domains, 0);
9165 #endif
9166
9167 /* RT runtime code needs to handle some hotplug events */
9168 hotcpu_notifier(update_runtime, 0);
9169
9170 init_hrtick();
9171
9172 /* Move init over to a non-isolated CPU */
9173 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9174 BUG();
9175 sched_init_granularity();
9176 free_cpumask_var(non_isolated_cpus);
9177
9178 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9179 init_sched_rt_class();
9180 }
9181 #else
9182 void __init sched_init_smp(void)
9183 {
9184 sched_init_granularity();
9185 }
9186 #endif /* CONFIG_SMP */
9187
9188 const_debug unsigned int sysctl_timer_migration = 1;
9189
9190 int in_sched_functions(unsigned long addr)
9191 {
9192 return in_lock_functions(addr) ||
9193 (addr >= (unsigned long)__sched_text_start
9194 && addr < (unsigned long)__sched_text_end);
9195 }
9196
9197 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9198 {
9199 cfs_rq->tasks_timeline = RB_ROOT;
9200 INIT_LIST_HEAD(&cfs_rq->tasks);
9201 #ifdef CONFIG_FAIR_GROUP_SCHED
9202 cfs_rq->rq = rq;
9203 #endif
9204 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9205 }
9206
9207 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9208 {
9209 struct rt_prio_array *array;
9210 int i;
9211
9212 array = &rt_rq->active;
9213 for (i = 0; i < MAX_RT_PRIO; i++) {
9214 INIT_LIST_HEAD(array->queue + i);
9215 __clear_bit(i, array->bitmap);
9216 }
9217 /* delimiter for bitsearch: */
9218 __set_bit(MAX_RT_PRIO, array->bitmap);
9219
9220 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9221 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9222 #ifdef CONFIG_SMP
9223 rt_rq->highest_prio.next = MAX_RT_PRIO;
9224 #endif
9225 #endif
9226 #ifdef CONFIG_SMP
9227 rt_rq->rt_nr_migratory = 0;
9228 rt_rq->overloaded = 0;
9229 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9230 #endif
9231
9232 rt_rq->rt_time = 0;
9233 rt_rq->rt_throttled = 0;
9234 rt_rq->rt_runtime = 0;
9235 spin_lock_init(&rt_rq->rt_runtime_lock);
9236
9237 #ifdef CONFIG_RT_GROUP_SCHED
9238 rt_rq->rt_nr_boosted = 0;
9239 rt_rq->rq = rq;
9240 #endif
9241 }
9242
9243 #ifdef CONFIG_FAIR_GROUP_SCHED
9244 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9245 struct sched_entity *se, int cpu, int add,
9246 struct sched_entity *parent)
9247 {
9248 struct rq *rq = cpu_rq(cpu);
9249 tg->cfs_rq[cpu] = cfs_rq;
9250 init_cfs_rq(cfs_rq, rq);
9251 cfs_rq->tg = tg;
9252 if (add)
9253 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9254
9255 tg->se[cpu] = se;
9256 /* se could be NULL for init_task_group */
9257 if (!se)
9258 return;
9259
9260 if (!parent)
9261 se->cfs_rq = &rq->cfs;
9262 else
9263 se->cfs_rq = parent->my_q;
9264
9265 se->my_q = cfs_rq;
9266 se->load.weight = tg->shares;
9267 se->load.inv_weight = 0;
9268 se->parent = parent;
9269 }
9270 #endif
9271
9272 #ifdef CONFIG_RT_GROUP_SCHED
9273 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9274 struct sched_rt_entity *rt_se, int cpu, int add,
9275 struct sched_rt_entity *parent)
9276 {
9277 struct rq *rq = cpu_rq(cpu);
9278
9279 tg->rt_rq[cpu] = rt_rq;
9280 init_rt_rq(rt_rq, rq);
9281 rt_rq->tg = tg;
9282 rt_rq->rt_se = rt_se;
9283 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9284 if (add)
9285 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9286
9287 tg->rt_se[cpu] = rt_se;
9288 if (!rt_se)
9289 return;
9290
9291 if (!parent)
9292 rt_se->rt_rq = &rq->rt;
9293 else
9294 rt_se->rt_rq = parent->my_q;
9295
9296 rt_se->my_q = rt_rq;
9297 rt_se->parent = parent;
9298 INIT_LIST_HEAD(&rt_se->run_list);
9299 }
9300 #endif
9301
9302 void __init sched_init(void)
9303 {
9304 int i, j;
9305 unsigned long alloc_size = 0, ptr;
9306
9307 #ifdef CONFIG_FAIR_GROUP_SCHED
9308 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9309 #endif
9310 #ifdef CONFIG_RT_GROUP_SCHED
9311 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9312 #endif
9313 #ifdef CONFIG_USER_SCHED
9314 alloc_size *= 2;
9315 #endif
9316 #ifdef CONFIG_CPUMASK_OFFSTACK
9317 alloc_size += num_possible_cpus() * cpumask_size();
9318 #endif
9319 /*
9320 * As sched_init() is called before page_alloc is setup,
9321 * we use alloc_bootmem().
9322 */
9323 if (alloc_size) {
9324 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9325
9326 #ifdef CONFIG_FAIR_GROUP_SCHED
9327 init_task_group.se = (struct sched_entity **)ptr;
9328 ptr += nr_cpu_ids * sizeof(void **);
9329
9330 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9331 ptr += nr_cpu_ids * sizeof(void **);
9332
9333 #ifdef CONFIG_USER_SCHED
9334 root_task_group.se = (struct sched_entity **)ptr;
9335 ptr += nr_cpu_ids * sizeof(void **);
9336
9337 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9338 ptr += nr_cpu_ids * sizeof(void **);
9339 #endif /* CONFIG_USER_SCHED */
9340 #endif /* CONFIG_FAIR_GROUP_SCHED */
9341 #ifdef CONFIG_RT_GROUP_SCHED
9342 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9343 ptr += nr_cpu_ids * sizeof(void **);
9344
9345 init_task_group.rt_rq = (struct rt_rq **)ptr;
9346 ptr += nr_cpu_ids * sizeof(void **);
9347
9348 #ifdef CONFIG_USER_SCHED
9349 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9351
9352 root_task_group.rt_rq = (struct rt_rq **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
9354 #endif /* CONFIG_USER_SCHED */
9355 #endif /* CONFIG_RT_GROUP_SCHED */
9356 #ifdef CONFIG_CPUMASK_OFFSTACK
9357 for_each_possible_cpu(i) {
9358 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9359 ptr += cpumask_size();
9360 }
9361 #endif /* CONFIG_CPUMASK_OFFSTACK */
9362 }
9363
9364 #ifdef CONFIG_SMP
9365 init_defrootdomain();
9366 #endif
9367
9368 init_rt_bandwidth(&def_rt_bandwidth,
9369 global_rt_period(), global_rt_runtime());
9370
9371 #ifdef CONFIG_RT_GROUP_SCHED
9372 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9373 global_rt_period(), global_rt_runtime());
9374 #ifdef CONFIG_USER_SCHED
9375 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9376 global_rt_period(), RUNTIME_INF);
9377 #endif /* CONFIG_USER_SCHED */
9378 #endif /* CONFIG_RT_GROUP_SCHED */
9379
9380 #ifdef CONFIG_GROUP_SCHED
9381 list_add(&init_task_group.list, &task_groups);
9382 INIT_LIST_HEAD(&init_task_group.children);
9383
9384 #ifdef CONFIG_USER_SCHED
9385 INIT_LIST_HEAD(&root_task_group.children);
9386 init_task_group.parent = &root_task_group;
9387 list_add(&init_task_group.siblings, &root_task_group.children);
9388 #endif /* CONFIG_USER_SCHED */
9389 #endif /* CONFIG_GROUP_SCHED */
9390
9391 for_each_possible_cpu(i) {
9392 struct rq *rq;
9393
9394 rq = cpu_rq(i);
9395 spin_lock_init(&rq->lock);
9396 rq->nr_running = 0;
9397 rq->calc_load_active = 0;
9398 rq->calc_load_update = jiffies + LOAD_FREQ;
9399 init_cfs_rq(&rq->cfs, rq);
9400 init_rt_rq(&rq->rt, rq);
9401 #ifdef CONFIG_FAIR_GROUP_SCHED
9402 init_task_group.shares = init_task_group_load;
9403 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9404 #ifdef CONFIG_CGROUP_SCHED
9405 /*
9406 * How much cpu bandwidth does init_task_group get?
9407 *
9408 * In case of task-groups formed thr' the cgroup filesystem, it
9409 * gets 100% of the cpu resources in the system. This overall
9410 * system cpu resource is divided among the tasks of
9411 * init_task_group and its child task-groups in a fair manner,
9412 * based on each entity's (task or task-group's) weight
9413 * (se->load.weight).
9414 *
9415 * In other words, if init_task_group has 10 tasks of weight
9416 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9417 * then A0's share of the cpu resource is:
9418 *
9419 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9420 *
9421 * We achieve this by letting init_task_group's tasks sit
9422 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9423 */
9424 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9425 #elif defined CONFIG_USER_SCHED
9426 root_task_group.shares = NICE_0_LOAD;
9427 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9428 /*
9429 * In case of task-groups formed thr' the user id of tasks,
9430 * init_task_group represents tasks belonging to root user.
9431 * Hence it forms a sibling of all subsequent groups formed.
9432 * In this case, init_task_group gets only a fraction of overall
9433 * system cpu resource, based on the weight assigned to root
9434 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9435 * by letting tasks of init_task_group sit in a separate cfs_rq
9436 * (init_tg_cfs_rq) and having one entity represent this group of
9437 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9438 */
9439 init_tg_cfs_entry(&init_task_group,
9440 &per_cpu(init_tg_cfs_rq, i),
9441 &per_cpu(init_sched_entity, i), i, 1,
9442 root_task_group.se[i]);
9443
9444 #endif
9445 #endif /* CONFIG_FAIR_GROUP_SCHED */
9446
9447 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9448 #ifdef CONFIG_RT_GROUP_SCHED
9449 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9450 #ifdef CONFIG_CGROUP_SCHED
9451 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9452 #elif defined CONFIG_USER_SCHED
9453 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9454 init_tg_rt_entry(&init_task_group,
9455 &per_cpu(init_rt_rq, i),
9456 &per_cpu(init_sched_rt_entity, i), i, 1,
9457 root_task_group.rt_se[i]);
9458 #endif
9459 #endif
9460
9461 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9462 rq->cpu_load[j] = 0;
9463 #ifdef CONFIG_SMP
9464 rq->sd = NULL;
9465 rq->rd = NULL;
9466 rq->post_schedule = 0;
9467 rq->active_balance = 0;
9468 rq->next_balance = jiffies;
9469 rq->push_cpu = 0;
9470 rq->cpu = i;
9471 rq->online = 0;
9472 rq->migration_thread = NULL;
9473 INIT_LIST_HEAD(&rq->migration_queue);
9474 rq_attach_root(rq, &def_root_domain);
9475 #endif
9476 init_rq_hrtick(rq);
9477 atomic_set(&rq->nr_iowait, 0);
9478 }
9479
9480 set_load_weight(&init_task);
9481
9482 #ifdef CONFIG_PREEMPT_NOTIFIERS
9483 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9484 #endif
9485
9486 #ifdef CONFIG_SMP
9487 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9488 #endif
9489
9490 #ifdef CONFIG_RT_MUTEXES
9491 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9492 #endif
9493
9494 /*
9495 * The boot idle thread does lazy MMU switching as well:
9496 */
9497 atomic_inc(&init_mm.mm_count);
9498 enter_lazy_tlb(&init_mm, current);
9499
9500 /*
9501 * Make us the idle thread. Technically, schedule() should not be
9502 * called from this thread, however somewhere below it might be,
9503 * but because we are the idle thread, we just pick up running again
9504 * when this runqueue becomes "idle".
9505 */
9506 init_idle(current, smp_processor_id());
9507
9508 calc_load_update = jiffies + LOAD_FREQ;
9509
9510 /*
9511 * During early bootup we pretend to be a normal task:
9512 */
9513 current->sched_class = &fair_sched_class;
9514
9515 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9516 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9517 #ifdef CONFIG_SMP
9518 #ifdef CONFIG_NO_HZ
9519 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9520 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9521 #endif
9522 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9523 #endif /* SMP */
9524
9525 perf_counter_init();
9526
9527 scheduler_running = 1;
9528 }
9529
9530 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9531 static inline int preempt_count_equals(int preempt_offset)
9532 {
9533 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9534
9535 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9536 }
9537
9538 void __might_sleep(char *file, int line, int preempt_offset)
9539 {
9540 #ifdef in_atomic
9541 static unsigned long prev_jiffy; /* ratelimiting */
9542
9543 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9544 system_state != SYSTEM_RUNNING || oops_in_progress)
9545 return;
9546 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9547 return;
9548 prev_jiffy = jiffies;
9549
9550 printk(KERN_ERR
9551 "BUG: sleeping function called from invalid context at %s:%d\n",
9552 file, line);
9553 printk(KERN_ERR
9554 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9555 in_atomic(), irqs_disabled(),
9556 current->pid, current->comm);
9557
9558 debug_show_held_locks(current);
9559 if (irqs_disabled())
9560 print_irqtrace_events(current);
9561 dump_stack();
9562 #endif
9563 }
9564 EXPORT_SYMBOL(__might_sleep);
9565 #endif
9566
9567 #ifdef CONFIG_MAGIC_SYSRQ
9568 static void normalize_task(struct rq *rq, struct task_struct *p)
9569 {
9570 int on_rq;
9571
9572 update_rq_clock(rq);
9573 on_rq = p->se.on_rq;
9574 if (on_rq)
9575 deactivate_task(rq, p, 0);
9576 __setscheduler(rq, p, SCHED_NORMAL, 0);
9577 if (on_rq) {
9578 activate_task(rq, p, 0);
9579 resched_task(rq->curr);
9580 }
9581 }
9582
9583 void normalize_rt_tasks(void)
9584 {
9585 struct task_struct *g, *p;
9586 unsigned long flags;
9587 struct rq *rq;
9588
9589 read_lock_irqsave(&tasklist_lock, flags);
9590 do_each_thread(g, p) {
9591 /*
9592 * Only normalize user tasks:
9593 */
9594 if (!p->mm)
9595 continue;
9596
9597 p->se.exec_start = 0;
9598 #ifdef CONFIG_SCHEDSTATS
9599 p->se.wait_start = 0;
9600 p->se.sleep_start = 0;
9601 p->se.block_start = 0;
9602 #endif
9603
9604 if (!rt_task(p)) {
9605 /*
9606 * Renice negative nice level userspace
9607 * tasks back to 0:
9608 */
9609 if (TASK_NICE(p) < 0 && p->mm)
9610 set_user_nice(p, 0);
9611 continue;
9612 }
9613
9614 spin_lock(&p->pi_lock);
9615 rq = __task_rq_lock(p);
9616
9617 normalize_task(rq, p);
9618
9619 __task_rq_unlock(rq);
9620 spin_unlock(&p->pi_lock);
9621 } while_each_thread(g, p);
9622
9623 read_unlock_irqrestore(&tasklist_lock, flags);
9624 }
9625
9626 #endif /* CONFIG_MAGIC_SYSRQ */
9627
9628 #ifdef CONFIG_IA64
9629 /*
9630 * These functions are only useful for the IA64 MCA handling.
9631 *
9632 * They can only be called when the whole system has been
9633 * stopped - every CPU needs to be quiescent, and no scheduling
9634 * activity can take place. Using them for anything else would
9635 * be a serious bug, and as a result, they aren't even visible
9636 * under any other configuration.
9637 */
9638
9639 /**
9640 * curr_task - return the current task for a given cpu.
9641 * @cpu: the processor in question.
9642 *
9643 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9644 */
9645 struct task_struct *curr_task(int cpu)
9646 {
9647 return cpu_curr(cpu);
9648 }
9649
9650 /**
9651 * set_curr_task - set the current task for a given cpu.
9652 * @cpu: the processor in question.
9653 * @p: the task pointer to set.
9654 *
9655 * Description: This function must only be used when non-maskable interrupts
9656 * are serviced on a separate stack. It allows the architecture to switch the
9657 * notion of the current task on a cpu in a non-blocking manner. This function
9658 * must be called with all CPU's synchronized, and interrupts disabled, the
9659 * and caller must save the original value of the current task (see
9660 * curr_task() above) and restore that value before reenabling interrupts and
9661 * re-starting the system.
9662 *
9663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9664 */
9665 void set_curr_task(int cpu, struct task_struct *p)
9666 {
9667 cpu_curr(cpu) = p;
9668 }
9669
9670 #endif
9671
9672 #ifdef CONFIG_FAIR_GROUP_SCHED
9673 static void free_fair_sched_group(struct task_group *tg)
9674 {
9675 int i;
9676
9677 for_each_possible_cpu(i) {
9678 if (tg->cfs_rq)
9679 kfree(tg->cfs_rq[i]);
9680 if (tg->se)
9681 kfree(tg->se[i]);
9682 }
9683
9684 kfree(tg->cfs_rq);
9685 kfree(tg->se);
9686 }
9687
9688 static
9689 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9690 {
9691 struct cfs_rq *cfs_rq;
9692 struct sched_entity *se;
9693 struct rq *rq;
9694 int i;
9695
9696 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9697 if (!tg->cfs_rq)
9698 goto err;
9699 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9700 if (!tg->se)
9701 goto err;
9702
9703 tg->shares = NICE_0_LOAD;
9704
9705 for_each_possible_cpu(i) {
9706 rq = cpu_rq(i);
9707
9708 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9709 GFP_KERNEL, cpu_to_node(i));
9710 if (!cfs_rq)
9711 goto err;
9712
9713 se = kzalloc_node(sizeof(struct sched_entity),
9714 GFP_KERNEL, cpu_to_node(i));
9715 if (!se)
9716 goto err;
9717
9718 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9719 }
9720
9721 return 1;
9722
9723 err:
9724 return 0;
9725 }
9726
9727 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9728 {
9729 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9730 &cpu_rq(cpu)->leaf_cfs_rq_list);
9731 }
9732
9733 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9734 {
9735 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9736 }
9737 #else /* !CONFG_FAIR_GROUP_SCHED */
9738 static inline void free_fair_sched_group(struct task_group *tg)
9739 {
9740 }
9741
9742 static inline
9743 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9744 {
9745 return 1;
9746 }
9747
9748 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9749 {
9750 }
9751
9752 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9753 {
9754 }
9755 #endif /* CONFIG_FAIR_GROUP_SCHED */
9756
9757 #ifdef CONFIG_RT_GROUP_SCHED
9758 static void free_rt_sched_group(struct task_group *tg)
9759 {
9760 int i;
9761
9762 destroy_rt_bandwidth(&tg->rt_bandwidth);
9763
9764 for_each_possible_cpu(i) {
9765 if (tg->rt_rq)
9766 kfree(tg->rt_rq[i]);
9767 if (tg->rt_se)
9768 kfree(tg->rt_se[i]);
9769 }
9770
9771 kfree(tg->rt_rq);
9772 kfree(tg->rt_se);
9773 }
9774
9775 static
9776 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9777 {
9778 struct rt_rq *rt_rq;
9779 struct sched_rt_entity *rt_se;
9780 struct rq *rq;
9781 int i;
9782
9783 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9784 if (!tg->rt_rq)
9785 goto err;
9786 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9787 if (!tg->rt_se)
9788 goto err;
9789
9790 init_rt_bandwidth(&tg->rt_bandwidth,
9791 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9792
9793 for_each_possible_cpu(i) {
9794 rq = cpu_rq(i);
9795
9796 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9797 GFP_KERNEL, cpu_to_node(i));
9798 if (!rt_rq)
9799 goto err;
9800
9801 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9802 GFP_KERNEL, cpu_to_node(i));
9803 if (!rt_se)
9804 goto err;
9805
9806 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9807 }
9808
9809 return 1;
9810
9811 err:
9812 return 0;
9813 }
9814
9815 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9816 {
9817 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9818 &cpu_rq(cpu)->leaf_rt_rq_list);
9819 }
9820
9821 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9822 {
9823 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9824 }
9825 #else /* !CONFIG_RT_GROUP_SCHED */
9826 static inline void free_rt_sched_group(struct task_group *tg)
9827 {
9828 }
9829
9830 static inline
9831 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9832 {
9833 return 1;
9834 }
9835
9836 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9837 {
9838 }
9839
9840 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9841 {
9842 }
9843 #endif /* CONFIG_RT_GROUP_SCHED */
9844
9845 #ifdef CONFIG_GROUP_SCHED
9846 static void free_sched_group(struct task_group *tg)
9847 {
9848 free_fair_sched_group(tg);
9849 free_rt_sched_group(tg);
9850 kfree(tg);
9851 }
9852
9853 /* allocate runqueue etc for a new task group */
9854 struct task_group *sched_create_group(struct task_group *parent)
9855 {
9856 struct task_group *tg;
9857 unsigned long flags;
9858 int i;
9859
9860 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9861 if (!tg)
9862 return ERR_PTR(-ENOMEM);
9863
9864 if (!alloc_fair_sched_group(tg, parent))
9865 goto err;
9866
9867 if (!alloc_rt_sched_group(tg, parent))
9868 goto err;
9869
9870 spin_lock_irqsave(&task_group_lock, flags);
9871 for_each_possible_cpu(i) {
9872 register_fair_sched_group(tg, i);
9873 register_rt_sched_group(tg, i);
9874 }
9875 list_add_rcu(&tg->list, &task_groups);
9876
9877 WARN_ON(!parent); /* root should already exist */
9878
9879 tg->parent = parent;
9880 INIT_LIST_HEAD(&tg->children);
9881 list_add_rcu(&tg->siblings, &parent->children);
9882 spin_unlock_irqrestore(&task_group_lock, flags);
9883
9884 return tg;
9885
9886 err:
9887 free_sched_group(tg);
9888 return ERR_PTR(-ENOMEM);
9889 }
9890
9891 /* rcu callback to free various structures associated with a task group */
9892 static void free_sched_group_rcu(struct rcu_head *rhp)
9893 {
9894 /* now it should be safe to free those cfs_rqs */
9895 free_sched_group(container_of(rhp, struct task_group, rcu));
9896 }
9897
9898 /* Destroy runqueue etc associated with a task group */
9899 void sched_destroy_group(struct task_group *tg)
9900 {
9901 unsigned long flags;
9902 int i;
9903
9904 spin_lock_irqsave(&task_group_lock, flags);
9905 for_each_possible_cpu(i) {
9906 unregister_fair_sched_group(tg, i);
9907 unregister_rt_sched_group(tg, i);
9908 }
9909 list_del_rcu(&tg->list);
9910 list_del_rcu(&tg->siblings);
9911 spin_unlock_irqrestore(&task_group_lock, flags);
9912
9913 /* wait for possible concurrent references to cfs_rqs complete */
9914 call_rcu(&tg->rcu, free_sched_group_rcu);
9915 }
9916
9917 /* change task's runqueue when it moves between groups.
9918 * The caller of this function should have put the task in its new group
9919 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9920 * reflect its new group.
9921 */
9922 void sched_move_task(struct task_struct *tsk)
9923 {
9924 int on_rq, running;
9925 unsigned long flags;
9926 struct rq *rq;
9927
9928 rq = task_rq_lock(tsk, &flags);
9929
9930 update_rq_clock(rq);
9931
9932 running = task_current(rq, tsk);
9933 on_rq = tsk->se.on_rq;
9934
9935 if (on_rq)
9936 dequeue_task(rq, tsk, 0);
9937 if (unlikely(running))
9938 tsk->sched_class->put_prev_task(rq, tsk);
9939
9940 set_task_rq(tsk, task_cpu(tsk));
9941
9942 #ifdef CONFIG_FAIR_GROUP_SCHED
9943 if (tsk->sched_class->moved_group)
9944 tsk->sched_class->moved_group(tsk);
9945 #endif
9946
9947 if (unlikely(running))
9948 tsk->sched_class->set_curr_task(rq);
9949 if (on_rq)
9950 enqueue_task(rq, tsk, 0);
9951
9952 task_rq_unlock(rq, &flags);
9953 }
9954 #endif /* CONFIG_GROUP_SCHED */
9955
9956 #ifdef CONFIG_FAIR_GROUP_SCHED
9957 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9958 {
9959 struct cfs_rq *cfs_rq = se->cfs_rq;
9960 int on_rq;
9961
9962 on_rq = se->on_rq;
9963 if (on_rq)
9964 dequeue_entity(cfs_rq, se, 0);
9965
9966 se->load.weight = shares;
9967 se->load.inv_weight = 0;
9968
9969 if (on_rq)
9970 enqueue_entity(cfs_rq, se, 0);
9971 }
9972
9973 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9974 {
9975 struct cfs_rq *cfs_rq = se->cfs_rq;
9976 struct rq *rq = cfs_rq->rq;
9977 unsigned long flags;
9978
9979 spin_lock_irqsave(&rq->lock, flags);
9980 __set_se_shares(se, shares);
9981 spin_unlock_irqrestore(&rq->lock, flags);
9982 }
9983
9984 static DEFINE_MUTEX(shares_mutex);
9985
9986 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9987 {
9988 int i;
9989 unsigned long flags;
9990
9991 /*
9992 * We can't change the weight of the root cgroup.
9993 */
9994 if (!tg->se[0])
9995 return -EINVAL;
9996
9997 if (shares < MIN_SHARES)
9998 shares = MIN_SHARES;
9999 else if (shares > MAX_SHARES)
10000 shares = MAX_SHARES;
10001
10002 mutex_lock(&shares_mutex);
10003 if (tg->shares == shares)
10004 goto done;
10005
10006 spin_lock_irqsave(&task_group_lock, flags);
10007 for_each_possible_cpu(i)
10008 unregister_fair_sched_group(tg, i);
10009 list_del_rcu(&tg->siblings);
10010 spin_unlock_irqrestore(&task_group_lock, flags);
10011
10012 /* wait for any ongoing reference to this group to finish */
10013 synchronize_sched();
10014
10015 /*
10016 * Now we are free to modify the group's share on each cpu
10017 * w/o tripping rebalance_share or load_balance_fair.
10018 */
10019 tg->shares = shares;
10020 for_each_possible_cpu(i) {
10021 /*
10022 * force a rebalance
10023 */
10024 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10025 set_se_shares(tg->se[i], shares);
10026 }
10027
10028 /*
10029 * Enable load balance activity on this group, by inserting it back on
10030 * each cpu's rq->leaf_cfs_rq_list.
10031 */
10032 spin_lock_irqsave(&task_group_lock, flags);
10033 for_each_possible_cpu(i)
10034 register_fair_sched_group(tg, i);
10035 list_add_rcu(&tg->siblings, &tg->parent->children);
10036 spin_unlock_irqrestore(&task_group_lock, flags);
10037 done:
10038 mutex_unlock(&shares_mutex);
10039 return 0;
10040 }
10041
10042 unsigned long sched_group_shares(struct task_group *tg)
10043 {
10044 return tg->shares;
10045 }
10046 #endif
10047
10048 #ifdef CONFIG_RT_GROUP_SCHED
10049 /*
10050 * Ensure that the real time constraints are schedulable.
10051 */
10052 static DEFINE_MUTEX(rt_constraints_mutex);
10053
10054 static unsigned long to_ratio(u64 period, u64 runtime)
10055 {
10056 if (runtime == RUNTIME_INF)
10057 return 1ULL << 20;
10058
10059 return div64_u64(runtime << 20, period);
10060 }
10061
10062 /* Must be called with tasklist_lock held */
10063 static inline int tg_has_rt_tasks(struct task_group *tg)
10064 {
10065 struct task_struct *g, *p;
10066
10067 do_each_thread(g, p) {
10068 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10069 return 1;
10070 } while_each_thread(g, p);
10071
10072 return 0;
10073 }
10074
10075 struct rt_schedulable_data {
10076 struct task_group *tg;
10077 u64 rt_period;
10078 u64 rt_runtime;
10079 };
10080
10081 static int tg_schedulable(struct task_group *tg, void *data)
10082 {
10083 struct rt_schedulable_data *d = data;
10084 struct task_group *child;
10085 unsigned long total, sum = 0;
10086 u64 period, runtime;
10087
10088 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10089 runtime = tg->rt_bandwidth.rt_runtime;
10090
10091 if (tg == d->tg) {
10092 period = d->rt_period;
10093 runtime = d->rt_runtime;
10094 }
10095
10096 #ifdef CONFIG_USER_SCHED
10097 if (tg == &root_task_group) {
10098 period = global_rt_period();
10099 runtime = global_rt_runtime();
10100 }
10101 #endif
10102
10103 /*
10104 * Cannot have more runtime than the period.
10105 */
10106 if (runtime > period && runtime != RUNTIME_INF)
10107 return -EINVAL;
10108
10109 /*
10110 * Ensure we don't starve existing RT tasks.
10111 */
10112 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10113 return -EBUSY;
10114
10115 total = to_ratio(period, runtime);
10116
10117 /*
10118 * Nobody can have more than the global setting allows.
10119 */
10120 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10121 return -EINVAL;
10122
10123 /*
10124 * The sum of our children's runtime should not exceed our own.
10125 */
10126 list_for_each_entry_rcu(child, &tg->children, siblings) {
10127 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10128 runtime = child->rt_bandwidth.rt_runtime;
10129
10130 if (child == d->tg) {
10131 period = d->rt_period;
10132 runtime = d->rt_runtime;
10133 }
10134
10135 sum += to_ratio(period, runtime);
10136 }
10137
10138 if (sum > total)
10139 return -EINVAL;
10140
10141 return 0;
10142 }
10143
10144 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10145 {
10146 struct rt_schedulable_data data = {
10147 .tg = tg,
10148 .rt_period = period,
10149 .rt_runtime = runtime,
10150 };
10151
10152 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10153 }
10154
10155 static int tg_set_bandwidth(struct task_group *tg,
10156 u64 rt_period, u64 rt_runtime)
10157 {
10158 int i, err = 0;
10159
10160 mutex_lock(&rt_constraints_mutex);
10161 read_lock(&tasklist_lock);
10162 err = __rt_schedulable(tg, rt_period, rt_runtime);
10163 if (err)
10164 goto unlock;
10165
10166 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10167 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10168 tg->rt_bandwidth.rt_runtime = rt_runtime;
10169
10170 for_each_possible_cpu(i) {
10171 struct rt_rq *rt_rq = tg->rt_rq[i];
10172
10173 spin_lock(&rt_rq->rt_runtime_lock);
10174 rt_rq->rt_runtime = rt_runtime;
10175 spin_unlock(&rt_rq->rt_runtime_lock);
10176 }
10177 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10178 unlock:
10179 read_unlock(&tasklist_lock);
10180 mutex_unlock(&rt_constraints_mutex);
10181
10182 return err;
10183 }
10184
10185 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10186 {
10187 u64 rt_runtime, rt_period;
10188
10189 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10190 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10191 if (rt_runtime_us < 0)
10192 rt_runtime = RUNTIME_INF;
10193
10194 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10195 }
10196
10197 long sched_group_rt_runtime(struct task_group *tg)
10198 {
10199 u64 rt_runtime_us;
10200
10201 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10202 return -1;
10203
10204 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10205 do_div(rt_runtime_us, NSEC_PER_USEC);
10206 return rt_runtime_us;
10207 }
10208
10209 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10210 {
10211 u64 rt_runtime, rt_period;
10212
10213 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10214 rt_runtime = tg->rt_bandwidth.rt_runtime;
10215
10216 if (rt_period == 0)
10217 return -EINVAL;
10218
10219 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10220 }
10221
10222 long sched_group_rt_period(struct task_group *tg)
10223 {
10224 u64 rt_period_us;
10225
10226 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10227 do_div(rt_period_us, NSEC_PER_USEC);
10228 return rt_period_us;
10229 }
10230
10231 static int sched_rt_global_constraints(void)
10232 {
10233 u64 runtime, period;
10234 int ret = 0;
10235
10236 if (sysctl_sched_rt_period <= 0)
10237 return -EINVAL;
10238
10239 runtime = global_rt_runtime();
10240 period = global_rt_period();
10241
10242 /*
10243 * Sanity check on the sysctl variables.
10244 */
10245 if (runtime > period && runtime != RUNTIME_INF)
10246 return -EINVAL;
10247
10248 mutex_lock(&rt_constraints_mutex);
10249 read_lock(&tasklist_lock);
10250 ret = __rt_schedulable(NULL, 0, 0);
10251 read_unlock(&tasklist_lock);
10252 mutex_unlock(&rt_constraints_mutex);
10253
10254 return ret;
10255 }
10256
10257 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10258 {
10259 /* Don't accept realtime tasks when there is no way for them to run */
10260 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10261 return 0;
10262
10263 return 1;
10264 }
10265
10266 #else /* !CONFIG_RT_GROUP_SCHED */
10267 static int sched_rt_global_constraints(void)
10268 {
10269 unsigned long flags;
10270 int i;
10271
10272 if (sysctl_sched_rt_period <= 0)
10273 return -EINVAL;
10274
10275 /*
10276 * There's always some RT tasks in the root group
10277 * -- migration, kstopmachine etc..
10278 */
10279 if (sysctl_sched_rt_runtime == 0)
10280 return -EBUSY;
10281
10282 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10283 for_each_possible_cpu(i) {
10284 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10285
10286 spin_lock(&rt_rq->rt_runtime_lock);
10287 rt_rq->rt_runtime = global_rt_runtime();
10288 spin_unlock(&rt_rq->rt_runtime_lock);
10289 }
10290 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10291
10292 return 0;
10293 }
10294 #endif /* CONFIG_RT_GROUP_SCHED */
10295
10296 int sched_rt_handler(struct ctl_table *table, int write,
10297 struct file *filp, void __user *buffer, size_t *lenp,
10298 loff_t *ppos)
10299 {
10300 int ret;
10301 int old_period, old_runtime;
10302 static DEFINE_MUTEX(mutex);
10303
10304 mutex_lock(&mutex);
10305 old_period = sysctl_sched_rt_period;
10306 old_runtime = sysctl_sched_rt_runtime;
10307
10308 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10309
10310 if (!ret && write) {
10311 ret = sched_rt_global_constraints();
10312 if (ret) {
10313 sysctl_sched_rt_period = old_period;
10314 sysctl_sched_rt_runtime = old_runtime;
10315 } else {
10316 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10317 def_rt_bandwidth.rt_period =
10318 ns_to_ktime(global_rt_period());
10319 }
10320 }
10321 mutex_unlock(&mutex);
10322
10323 return ret;
10324 }
10325
10326 #ifdef CONFIG_CGROUP_SCHED
10327
10328 /* return corresponding task_group object of a cgroup */
10329 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10330 {
10331 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10332 struct task_group, css);
10333 }
10334
10335 static struct cgroup_subsys_state *
10336 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10337 {
10338 struct task_group *tg, *parent;
10339
10340 if (!cgrp->parent) {
10341 /* This is early initialization for the top cgroup */
10342 return &init_task_group.css;
10343 }
10344
10345 parent = cgroup_tg(cgrp->parent);
10346 tg = sched_create_group(parent);
10347 if (IS_ERR(tg))
10348 return ERR_PTR(-ENOMEM);
10349
10350 return &tg->css;
10351 }
10352
10353 static void
10354 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10355 {
10356 struct task_group *tg = cgroup_tg(cgrp);
10357
10358 sched_destroy_group(tg);
10359 }
10360
10361 static int
10362 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10363 struct task_struct *tsk)
10364 {
10365 #ifdef CONFIG_RT_GROUP_SCHED
10366 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10367 return -EINVAL;
10368 #else
10369 /* We don't support RT-tasks being in separate groups */
10370 if (tsk->sched_class != &fair_sched_class)
10371 return -EINVAL;
10372 #endif
10373
10374 return 0;
10375 }
10376
10377 static void
10378 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10379 struct cgroup *old_cont, struct task_struct *tsk)
10380 {
10381 sched_move_task(tsk);
10382 }
10383
10384 #ifdef CONFIG_FAIR_GROUP_SCHED
10385 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10386 u64 shareval)
10387 {
10388 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10389 }
10390
10391 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10392 {
10393 struct task_group *tg = cgroup_tg(cgrp);
10394
10395 return (u64) tg->shares;
10396 }
10397 #endif /* CONFIG_FAIR_GROUP_SCHED */
10398
10399 #ifdef CONFIG_RT_GROUP_SCHED
10400 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10401 s64 val)
10402 {
10403 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10404 }
10405
10406 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10407 {
10408 return sched_group_rt_runtime(cgroup_tg(cgrp));
10409 }
10410
10411 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10412 u64 rt_period_us)
10413 {
10414 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10415 }
10416
10417 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10418 {
10419 return sched_group_rt_period(cgroup_tg(cgrp));
10420 }
10421 #endif /* CONFIG_RT_GROUP_SCHED */
10422
10423 static struct cftype cpu_files[] = {
10424 #ifdef CONFIG_FAIR_GROUP_SCHED
10425 {
10426 .name = "shares",
10427 .read_u64 = cpu_shares_read_u64,
10428 .write_u64 = cpu_shares_write_u64,
10429 },
10430 #endif
10431 #ifdef CONFIG_RT_GROUP_SCHED
10432 {
10433 .name = "rt_runtime_us",
10434 .read_s64 = cpu_rt_runtime_read,
10435 .write_s64 = cpu_rt_runtime_write,
10436 },
10437 {
10438 .name = "rt_period_us",
10439 .read_u64 = cpu_rt_period_read_uint,
10440 .write_u64 = cpu_rt_period_write_uint,
10441 },
10442 #endif
10443 };
10444
10445 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10446 {
10447 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10448 }
10449
10450 struct cgroup_subsys cpu_cgroup_subsys = {
10451 .name = "cpu",
10452 .create = cpu_cgroup_create,
10453 .destroy = cpu_cgroup_destroy,
10454 .can_attach = cpu_cgroup_can_attach,
10455 .attach = cpu_cgroup_attach,
10456 .populate = cpu_cgroup_populate,
10457 .subsys_id = cpu_cgroup_subsys_id,
10458 .early_init = 1,
10459 };
10460
10461 #endif /* CONFIG_CGROUP_SCHED */
10462
10463 #ifdef CONFIG_CGROUP_CPUACCT
10464
10465 /*
10466 * CPU accounting code for task groups.
10467 *
10468 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10469 * (balbir@in.ibm.com).
10470 */
10471
10472 /* track cpu usage of a group of tasks and its child groups */
10473 struct cpuacct {
10474 struct cgroup_subsys_state css;
10475 /* cpuusage holds pointer to a u64-type object on every cpu */
10476 u64 *cpuusage;
10477 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10478 struct cpuacct *parent;
10479 };
10480
10481 struct cgroup_subsys cpuacct_subsys;
10482
10483 /* return cpu accounting group corresponding to this container */
10484 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10485 {
10486 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10487 struct cpuacct, css);
10488 }
10489
10490 /* return cpu accounting group to which this task belongs */
10491 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10492 {
10493 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10494 struct cpuacct, css);
10495 }
10496
10497 /* create a new cpu accounting group */
10498 static struct cgroup_subsys_state *cpuacct_create(
10499 struct cgroup_subsys *ss, struct cgroup *cgrp)
10500 {
10501 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10502 int i;
10503
10504 if (!ca)
10505 goto out;
10506
10507 ca->cpuusage = alloc_percpu(u64);
10508 if (!ca->cpuusage)
10509 goto out_free_ca;
10510
10511 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10512 if (percpu_counter_init(&ca->cpustat[i], 0))
10513 goto out_free_counters;
10514
10515 if (cgrp->parent)
10516 ca->parent = cgroup_ca(cgrp->parent);
10517
10518 return &ca->css;
10519
10520 out_free_counters:
10521 while (--i >= 0)
10522 percpu_counter_destroy(&ca->cpustat[i]);
10523 free_percpu(ca->cpuusage);
10524 out_free_ca:
10525 kfree(ca);
10526 out:
10527 return ERR_PTR(-ENOMEM);
10528 }
10529
10530 /* destroy an existing cpu accounting group */
10531 static void
10532 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10533 {
10534 struct cpuacct *ca = cgroup_ca(cgrp);
10535 int i;
10536
10537 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10538 percpu_counter_destroy(&ca->cpustat[i]);
10539 free_percpu(ca->cpuusage);
10540 kfree(ca);
10541 }
10542
10543 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10544 {
10545 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10546 u64 data;
10547
10548 #ifndef CONFIG_64BIT
10549 /*
10550 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10551 */
10552 spin_lock_irq(&cpu_rq(cpu)->lock);
10553 data = *cpuusage;
10554 spin_unlock_irq(&cpu_rq(cpu)->lock);
10555 #else
10556 data = *cpuusage;
10557 #endif
10558
10559 return data;
10560 }
10561
10562 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10563 {
10564 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10565
10566 #ifndef CONFIG_64BIT
10567 /*
10568 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10569 */
10570 spin_lock_irq(&cpu_rq(cpu)->lock);
10571 *cpuusage = val;
10572 spin_unlock_irq(&cpu_rq(cpu)->lock);
10573 #else
10574 *cpuusage = val;
10575 #endif
10576 }
10577
10578 /* return total cpu usage (in nanoseconds) of a group */
10579 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10580 {
10581 struct cpuacct *ca = cgroup_ca(cgrp);
10582 u64 totalcpuusage = 0;
10583 int i;
10584
10585 for_each_present_cpu(i)
10586 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10587
10588 return totalcpuusage;
10589 }
10590
10591 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10592 u64 reset)
10593 {
10594 struct cpuacct *ca = cgroup_ca(cgrp);
10595 int err = 0;
10596 int i;
10597
10598 if (reset) {
10599 err = -EINVAL;
10600 goto out;
10601 }
10602
10603 for_each_present_cpu(i)
10604 cpuacct_cpuusage_write(ca, i, 0);
10605
10606 out:
10607 return err;
10608 }
10609
10610 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10611 struct seq_file *m)
10612 {
10613 struct cpuacct *ca = cgroup_ca(cgroup);
10614 u64 percpu;
10615 int i;
10616
10617 for_each_present_cpu(i) {
10618 percpu = cpuacct_cpuusage_read(ca, i);
10619 seq_printf(m, "%llu ", (unsigned long long) percpu);
10620 }
10621 seq_printf(m, "\n");
10622 return 0;
10623 }
10624
10625 static const char *cpuacct_stat_desc[] = {
10626 [CPUACCT_STAT_USER] = "user",
10627 [CPUACCT_STAT_SYSTEM] = "system",
10628 };
10629
10630 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10631 struct cgroup_map_cb *cb)
10632 {
10633 struct cpuacct *ca = cgroup_ca(cgrp);
10634 int i;
10635
10636 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10637 s64 val = percpu_counter_read(&ca->cpustat[i]);
10638 val = cputime64_to_clock_t(val);
10639 cb->fill(cb, cpuacct_stat_desc[i], val);
10640 }
10641 return 0;
10642 }
10643
10644 static struct cftype files[] = {
10645 {
10646 .name = "usage",
10647 .read_u64 = cpuusage_read,
10648 .write_u64 = cpuusage_write,
10649 },
10650 {
10651 .name = "usage_percpu",
10652 .read_seq_string = cpuacct_percpu_seq_read,
10653 },
10654 {
10655 .name = "stat",
10656 .read_map = cpuacct_stats_show,
10657 },
10658 };
10659
10660 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10661 {
10662 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10663 }
10664
10665 /*
10666 * charge this task's execution time to its accounting group.
10667 *
10668 * called with rq->lock held.
10669 */
10670 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10671 {
10672 struct cpuacct *ca;
10673 int cpu;
10674
10675 if (unlikely(!cpuacct_subsys.active))
10676 return;
10677
10678 cpu = task_cpu(tsk);
10679
10680 rcu_read_lock();
10681
10682 ca = task_ca(tsk);
10683
10684 for (; ca; ca = ca->parent) {
10685 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10686 *cpuusage += cputime;
10687 }
10688
10689 rcu_read_unlock();
10690 }
10691
10692 /*
10693 * Charge the system/user time to the task's accounting group.
10694 */
10695 static void cpuacct_update_stats(struct task_struct *tsk,
10696 enum cpuacct_stat_index idx, cputime_t val)
10697 {
10698 struct cpuacct *ca;
10699
10700 if (unlikely(!cpuacct_subsys.active))
10701 return;
10702
10703 rcu_read_lock();
10704 ca = task_ca(tsk);
10705
10706 do {
10707 percpu_counter_add(&ca->cpustat[idx], val);
10708 ca = ca->parent;
10709 } while (ca);
10710 rcu_read_unlock();
10711 }
10712
10713 struct cgroup_subsys cpuacct_subsys = {
10714 .name = "cpuacct",
10715 .create = cpuacct_create,
10716 .destroy = cpuacct_destroy,
10717 .populate = cpuacct_populate,
10718 .subsys_id = cpuacct_subsys_id,
10719 };
10720 #endif /* CONFIG_CGROUP_CPUACCT */
10721
10722 #ifndef CONFIG_SMP
10723
10724 int rcu_expedited_torture_stats(char *page)
10725 {
10726 return 0;
10727 }
10728 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10729
10730 void synchronize_sched_expedited(void)
10731 {
10732 }
10733 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10734
10735 #else /* #ifndef CONFIG_SMP */
10736
10737 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10738 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10739
10740 #define RCU_EXPEDITED_STATE_POST -2
10741 #define RCU_EXPEDITED_STATE_IDLE -1
10742
10743 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10744
10745 int rcu_expedited_torture_stats(char *page)
10746 {
10747 int cnt = 0;
10748 int cpu;
10749
10750 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10751 for_each_online_cpu(cpu) {
10752 cnt += sprintf(&page[cnt], " %d:%d",
10753 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10754 }
10755 cnt += sprintf(&page[cnt], "\n");
10756 return cnt;
10757 }
10758 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10759
10760 static long synchronize_sched_expedited_count;
10761
10762 /*
10763 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10764 * approach to force grace period to end quickly. This consumes
10765 * significant time on all CPUs, and is thus not recommended for
10766 * any sort of common-case code.
10767 *
10768 * Note that it is illegal to call this function while holding any
10769 * lock that is acquired by a CPU-hotplug notifier. Failing to
10770 * observe this restriction will result in deadlock.
10771 */
10772 void synchronize_sched_expedited(void)
10773 {
10774 int cpu;
10775 unsigned long flags;
10776 bool need_full_sync = 0;
10777 struct rq *rq;
10778 struct migration_req *req;
10779 long snap;
10780 int trycount = 0;
10781
10782 smp_mb(); /* ensure prior mod happens before capturing snap. */
10783 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10784 get_online_cpus();
10785 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10786 put_online_cpus();
10787 if (trycount++ < 10)
10788 udelay(trycount * num_online_cpus());
10789 else {
10790 synchronize_sched();
10791 return;
10792 }
10793 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10794 smp_mb(); /* ensure test happens before caller kfree */
10795 return;
10796 }
10797 get_online_cpus();
10798 }
10799 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10800 for_each_online_cpu(cpu) {
10801 rq = cpu_rq(cpu);
10802 req = &per_cpu(rcu_migration_req, cpu);
10803 init_completion(&req->done);
10804 req->task = NULL;
10805 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10806 spin_lock_irqsave(&rq->lock, flags);
10807 list_add(&req->list, &rq->migration_queue);
10808 spin_unlock_irqrestore(&rq->lock, flags);
10809 wake_up_process(rq->migration_thread);
10810 }
10811 for_each_online_cpu(cpu) {
10812 rcu_expedited_state = cpu;
10813 req = &per_cpu(rcu_migration_req, cpu);
10814 rq = cpu_rq(cpu);
10815 wait_for_completion(&req->done);
10816 spin_lock_irqsave(&rq->lock, flags);
10817 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10818 need_full_sync = 1;
10819 req->dest_cpu = RCU_MIGRATION_IDLE;
10820 spin_unlock_irqrestore(&rq->lock, flags);
10821 }
10822 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10823 mutex_unlock(&rcu_sched_expedited_mutex);
10824 put_online_cpus();
10825 if (need_full_sync)
10826 synchronize_sched();
10827 }
10828 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10829
10830 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.418052 seconds and 6 git commands to generate.