Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
545
546 struct cfs_rq cfs;
547 struct rt_rq rt;
548
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
568
569 u64 clock;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
585
586 unsigned long avg_load_per_task;
587
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
590
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(int cpu)
685 {
686 return spin_is_locked(&cpu_rq(cpu)->lock);
687 }
688
689 /*
690 * Debugging: various feature bits
691 */
692
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
696 enum {
697 #include "sched_features.h"
698 };
699
700 #undef SCHED_FEAT
701
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
707 0;
708
709 #undef SCHED_FEAT
710
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
714
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
718 };
719
720 #undef SCHED_FEAT
721
722 static int sched_feat_show(struct seq_file *m, void *v)
723 {
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
730 }
731 seq_puts(m, "\n");
732
733 return 0;
734 }
735
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739 {
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
753 if (strncmp(buf, "NO_", 3) == 0) {
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776 }
777
778 static int sched_feat_open(struct inode *inode, struct file *filp)
779 {
780 return single_open(filp, sched_feat_show, NULL);
781 }
782
783 static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
789 };
790
791 static __init int sched_init_debug(void)
792 {
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797 }
798 late_initcall(sched_init_debug);
799
800 #endif
801
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803
804 /*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
810 /*
811 * ratelimit for updating the group shares.
812 * default: 0.25ms
813 */
814 unsigned int sysctl_sched_shares_ratelimit = 250000;
815
816 /*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821 unsigned int sysctl_sched_shares_thresh = 4;
822
823 /*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
831 /*
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
834 */
835 unsigned int sysctl_sched_rt_period = 1000000;
836
837 static __read_mostly int scheduler_running;
838
839 /*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843 int sysctl_sched_rt_runtime = 950000;
844
845 static inline u64 global_rt_period(void)
846 {
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848 }
849
850 static inline u64 global_rt_runtime(void)
851 {
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856 }
857
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
864
865 static inline int task_current(struct rq *rq, struct task_struct *p)
866 {
867 return rq->curr == p;
868 }
869
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
872 {
873 return task_current(rq, p);
874 }
875
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 {
878 }
879
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 {
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
893 spin_unlock_irq(&rq->lock);
894 }
895
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
898 {
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
921 }
922
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 {
925 #ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
937 }
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
939
940 /*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
946 {
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
953 }
954 }
955
956 /*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
960 */
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
963 {
964 struct rq *rq;
965
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974 }
975
976 void task_rq_unlock_wait(struct task_struct *p)
977 {
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982 }
983
984 static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
986 {
987 spin_unlock(&rq->lock);
988 }
989
990 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
992 {
993 spin_unlock_irqrestore(&rq->lock, *flags);
994 }
995
996 /*
997 * this_rq_lock - lock this runqueue and disable interrupts.
998 */
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1001 {
1002 struct rq *rq;
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009 }
1010
1011 #ifdef CONFIG_SCHED_HRTICK
1012 /*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
1022
1023 /*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028 static inline int hrtick_enabled(struct rq *rq)
1029 {
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035 }
1036
1037 static void hrtick_clear(struct rq *rq)
1038 {
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041 }
1042
1043 /*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048 {
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059 }
1060
1061 #ifdef CONFIG_SMP
1062 /*
1063 * called from hardirq (IPI) context
1064 */
1065 static void __hrtick_start(void *arg)
1066 {
1067 struct rq *rq = arg;
1068
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1073 }
1074
1075 /*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080 static void hrtick_start(struct rq *rq, u64 delay)
1081 {
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084
1085 hrtimer_set_expires(timer, time);
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1092 }
1093 }
1094
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097 {
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112 }
1113
1114 static __init void init_hrtick(void)
1115 {
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117 }
1118 #else
1119 /*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124 static void hrtick_start(struct rq *rq, u64 delay)
1125 {
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1128 }
1129
1130 static inline void init_hrtick(void)
1131 {
1132 }
1133 #endif /* CONFIG_SMP */
1134
1135 static void init_rq_hrtick(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1139
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1144
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1147 }
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1150 {
1151 }
1152
1153 static inline void init_rq_hrtick(struct rq *rq)
1154 {
1155 }
1156
1157 static inline void init_hrtick(void)
1158 {
1159 }
1160 #endif /* CONFIG_SCHED_HRTICK */
1161
1162 /*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169 #ifdef CONFIG_SMP
1170
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1174
1175 static void resched_task(struct task_struct *p)
1176 {
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
1181 if (test_tsk_need_resched(p))
1182 return;
1183
1184 set_tsk_need_resched(p);
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194 }
1195
1196 static void resched_cpu(int cpu)
1197 {
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205 }
1206
1207 #ifdef CONFIG_NO_HZ
1208 /*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218 void wake_up_idle_cpu(int cpu)
1219 {
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
1240 set_tsk_need_resched(rq->idle);
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246 }
1247 #endif /* CONFIG_NO_HZ */
1248
1249 static u64 sched_avg_period(void)
1250 {
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252 }
1253
1254 static void sched_avg_update(struct rq *rq)
1255 {
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262 }
1263
1264 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265 {
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268 }
1269
1270 #else /* !CONFIG_SMP */
1271 static void resched_task(struct task_struct *p)
1272 {
1273 assert_spin_locked(&task_rq(p)->lock);
1274 set_tsk_need_resched(p);
1275 }
1276
1277 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278 {
1279 }
1280 #endif /* CONFIG_SMP */
1281
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1284 #else
1285 # define WMULT_CONST (1UL << 32)
1286 #endif
1287
1288 #define WMULT_SHIFT 32
1289
1290 /*
1291 * Shift right and round:
1292 */
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1294
1295 /*
1296 * delta *= weight / lw
1297 */
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301 {
1302 u64 tmp;
1303
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
1316 if (unlikely(tmp > WMULT_CONST))
1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1318 WMULT_SHIFT/2);
1319 else
1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321
1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1323 }
1324
1325 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 {
1327 lw->weight += inc;
1328 lw->inv_weight = 0;
1329 }
1330
1331 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 {
1333 lw->weight -= dec;
1334 lw->inv_weight = 0;
1335 }
1336
1337 /*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1348
1349 /*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1360 */
1361 static const int prio_to_weight[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1370 };
1371
1372 /*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
1379 static const u32 prio_to_wmult[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1388 };
1389
1390 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392 /*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397 struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401 };
1402
1403 #ifdef CONFIG_SMP
1404 static unsigned long
1405 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410 static int
1411 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
1414 #endif
1415
1416 /* Time spent by the tasks of the cpu accounting group executing in ... */
1417 enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422 };
1423
1424 #ifdef CONFIG_CGROUP_CPUACCT
1425 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1426 static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
1428 #else
1429 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1430 static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
1432 #endif
1433
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435 {
1436 update_load_add(&rq->load, load);
1437 }
1438
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_sub(&rq->load, load);
1442 }
1443
1444 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1445 typedef int (*tg_visitor)(struct task_group *, void *);
1446
1447 /*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
1451 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1452 {
1453 struct task_group *parent, *child;
1454 int ret;
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458 down:
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466 up:
1467 continue;
1468 }
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
1477 out_unlock:
1478 rcu_read_unlock();
1479
1480 return ret;
1481 }
1482
1483 static int tg_nop(struct task_group *tg, void *data)
1484 {
1485 return 0;
1486 }
1487 #endif
1488
1489 #ifdef CONFIG_SMP
1490 /* Used instead of source_load when we know the type == 0 */
1491 static unsigned long weighted_cpuload(const int cpu)
1492 {
1493 return cpu_rq(cpu)->load.weight;
1494 }
1495
1496 /*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503 static unsigned long source_load(int cpu, int type)
1504 {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512 }
1513
1514 /*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518 static unsigned long target_load(int cpu, int type)
1519 {
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527 }
1528
1529 static struct sched_group *group_of(int cpu)
1530 {
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537 }
1538
1539 static unsigned long power_of(int cpu)
1540 {
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547 }
1548
1549 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551 static unsigned long cpu_avg_load_per_task(int cpu)
1552 {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1555
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1560
1561 return rq->avg_load_per_task;
1562 }
1563
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1565
1566 struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568 };
1569
1570 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574 /*
1575 * Calculate and set the cpu's group shares.
1576 */
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1581 {
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1584
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
1590
1591 /*
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1595 */
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
1610 }
1611
1612 /*
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1616 */
1617 static int tg_shares_up(struct task_group *tg, void *data)
1618 {
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1624
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1652
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
1657
1658 return 0;
1659 }
1660
1661 /*
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1665 */
1666 static int tg_load_down(struct task_group *tg, void *data)
1667 {
1668 unsigned long load;
1669 long cpu = (long)data;
1670
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
1678
1679 tg->cfs_rq[cpu]->h_load = load;
1680
1681 return 0;
1682 }
1683
1684 static void update_shares(struct sched_domain *sd)
1685 {
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1698 }
1699 }
1700
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702 {
1703 if (root_task_group_empty())
1704 return;
1705
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709 }
1710
1711 static void update_h_load(long cpu)
1712 {
1713 if (root_task_group_empty())
1714 return;
1715
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717 }
1718
1719 #else
1720
1721 static inline void update_shares(struct sched_domain *sd)
1722 {
1723 }
1724
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726 {
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_PREEMPT
1732
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
1735 /*
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1742 */
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747 {
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752 }
1753
1754 #else
1755 /*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766 {
1767 int ret = 0;
1768
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779 }
1780
1781 #endif /* CONFIG_PREEMPT */
1782
1783 /*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787 {
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795 }
1796
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799 {
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802 }
1803 #endif
1804
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807 {
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1811 }
1812 #endif
1813
1814 static void calc_load_account_active(struct rq *this_rq);
1815
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1823
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1827
1828 static void inc_nr_running(struct rq *rq)
1829 {
1830 rq->nr_running++;
1831 }
1832
1833 static void dec_nr_running(struct rq *rq)
1834 {
1835 rq->nr_running--;
1836 }
1837
1838 static void set_load_weight(struct task_struct *p)
1839 {
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
1845
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
1854
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857 }
1858
1859 static void update_avg(u64 *avg, u64 sample)
1860 {
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863 }
1864
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866 {
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1873 }
1874
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876 {
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
1886 }
1887
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1891 }
1892
1893 /*
1894 * __normal_prio - return the priority that is based on the static prio
1895 */
1896 static inline int __normal_prio(struct task_struct *p)
1897 {
1898 return p->static_prio;
1899 }
1900
1901 /*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
1908 static inline int normal_prio(struct task_struct *p)
1909 {
1910 int prio;
1911
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917 }
1918
1919 /*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
1926 static int effective_prio(struct task_struct *p)
1927 {
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937 }
1938
1939 /*
1940 * activate_task - move a task to the runqueue.
1941 */
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1943 {
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1946
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1949 }
1950
1951 /*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1958
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1961 }
1962
1963 /**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
1967 inline int task_curr(const struct task_struct *p)
1968 {
1969 return cpu_curr(task_cpu(p)) == p;
1970 }
1971
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973 {
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1984 }
1985
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989 {
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996 }
1997
1998 #ifdef CONFIG_SMP
1999 /*
2000 * Is this task likely cache-hot:
2001 */
2002 static int
2003 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 {
2005 s64 delta;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026 }
2027
2028
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2030 {
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
2038
2039 trace_sched_migrate_task(p, new_cpu);
2040
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048 #endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2058 }
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2061
2062 __set_task_cpu(p, new_cpu);
2063 }
2064
2065 struct migration_req {
2066 struct list_head list;
2067
2068 struct task_struct *task;
2069 int dest_cpu;
2070
2071 struct completion done;
2072 };
2073
2074 /*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2080 {
2081 struct rq *rq = task_rq(p);
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2096
2097 return 1;
2098 }
2099
2100 /*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106 void wait_task_context_switch(struct task_struct *p)
2107 {
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141 }
2142
2143 /*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2160 {
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2165
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
2174
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2190 }
2191
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2205
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
2222
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
2236
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
2244
2245 return ncsw;
2246 }
2247
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
2261 void kick_process(struct task_struct *p)
2262 {
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270 }
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2273
2274 /**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285 {
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293 }
2294
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2311 {
2312 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags;
2314 struct rq *rq;
2315
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC;
2318
2319 this_cpu = get_cpu();
2320
2321 smp_wmb();
2322 rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq);
2324 if (!(p->state & state))
2325 goto out;
2326
2327 if (p->se.on_rq)
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
2331 orig_cpu = cpu;
2332
2333 #ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2340 *
2341 * First fix up the nr_uninterruptible count:
2342 */
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu);
2351
2352 rq = task_rq_lock(p, &flags);
2353 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p);
2355
2356 #ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq, ttwu_count);
2358 if (cpu == this_cpu)
2359 schedstat_inc(rq, ttwu_local);
2360 else {
2361 struct sched_domain *sd;
2362 for_each_domain(this_cpu, sd) {
2363 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2364 schedstat_inc(sd, ttwu_wake_remote);
2365 break;
2366 }
2367 }
2368 }
2369 #endif /* CONFIG_SCHEDSTATS */
2370
2371 out_activate:
2372 #endif /* CONFIG_SMP */
2373 schedstat_inc(p, se.nr_wakeups);
2374 if (wake_flags & WF_SYNC)
2375 schedstat_inc(p, se.nr_wakeups_sync);
2376 if (orig_cpu != cpu)
2377 schedstat_inc(p, se.nr_wakeups_migrate);
2378 if (cpu == this_cpu)
2379 schedstat_inc(p, se.nr_wakeups_local);
2380 else
2381 schedstat_inc(p, se.nr_wakeups_remote);
2382 activate_task(rq, p, 1);
2383 success = 1;
2384
2385 /*
2386 * Only attribute actual wakeups done by this task.
2387 */
2388 if (!in_interrupt()) {
2389 struct sched_entity *se = &current->se;
2390 u64 sample = se->sum_exec_runtime;
2391
2392 if (se->last_wakeup)
2393 sample -= se->last_wakeup;
2394 else
2395 sample -= se->start_runtime;
2396 update_avg(&se->avg_wakeup, sample);
2397
2398 se->last_wakeup = se->sum_exec_runtime;
2399 }
2400
2401 out_running:
2402 trace_sched_wakeup(rq, p, success);
2403 check_preempt_curr(rq, p, wake_flags);
2404
2405 p->state = TASK_RUNNING;
2406 #ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p);
2409 #endif
2410 out:
2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2413
2414 return success;
2415 }
2416
2417 /**
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2420 *
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2423 * running.
2424 *
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2427 */
2428 int wake_up_process(struct task_struct *p)
2429 {
2430 return try_to_wake_up(p, TASK_ALL, 0);
2431 }
2432 EXPORT_SYMBOL(wake_up_process);
2433
2434 int wake_up_state(struct task_struct *p, unsigned int state)
2435 {
2436 return try_to_wake_up(p, state, 0);
2437 }
2438
2439 /*
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
2442 *
2443 * __sched_fork() is basic setup used by init_idle() too:
2444 */
2445 static void __sched_fork(struct task_struct *p)
2446 {
2447 p->se.exec_start = 0;
2448 p->se.sum_exec_runtime = 0;
2449 p->se.prev_sum_exec_runtime = 0;
2450 p->se.nr_migrations = 0;
2451 p->se.last_wakeup = 0;
2452 p->se.avg_overlap = 0;
2453 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2456
2457 #ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
2459 p->se.wait_max = 0;
2460 p->se.wait_count = 0;
2461 p->se.wait_sum = 0;
2462
2463 p->se.sleep_start = 0;
2464 p->se.sleep_max = 0;
2465 p->se.sum_sleep_runtime = 0;
2466
2467 p->se.block_start = 0;
2468 p->se.block_max = 0;
2469 p->se.exec_max = 0;
2470 p->se.slice_max = 0;
2471
2472 p->se.nr_migrations_cold = 0;
2473 p->se.nr_failed_migrations_affine = 0;
2474 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2478
2479 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0;
2481 p->se.nr_wakeups_migrate = 0;
2482 p->se.nr_wakeups_local = 0;
2483 p->se.nr_wakeups_remote = 0;
2484 p->se.nr_wakeups_affine = 0;
2485 p->se.nr_wakeups_affine_attempts = 0;
2486 p->se.nr_wakeups_passive = 0;
2487 p->se.nr_wakeups_idle = 0;
2488
2489 #endif
2490
2491 INIT_LIST_HEAD(&p->rt.run_list);
2492 p->se.on_rq = 0;
2493 INIT_LIST_HEAD(&p->se.group_node);
2494
2495 #ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497 #endif
2498
2499 /*
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2504 */
2505 p->state = TASK_RUNNING;
2506 }
2507
2508 /*
2509 * fork()/clone()-time setup:
2510 */
2511 void sched_fork(struct task_struct *p, int clone_flags)
2512 {
2513 int cpu = get_cpu();
2514
2515 __sched_fork(p);
2516
2517 /*
2518 * Make sure we do not leak PI boosting priority to the child.
2519 */
2520 p->prio = current->normal_prio;
2521
2522 /*
2523 * Revert to default priority/policy on fork if requested.
2524 */
2525 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2527 p->policy = SCHED_NORMAL;
2528
2529 if (p->normal_prio < DEFAULT_PRIO)
2530 p->prio = DEFAULT_PRIO;
2531
2532 if (PRIO_TO_NICE(p->static_prio) < 0) {
2533 p->static_prio = NICE_TO_PRIO(0);
2534 set_load_weight(p);
2535 }
2536
2537 /*
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2540 */
2541 p->sched_reset_on_fork = 0;
2542 }
2543
2544 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class;
2546
2547 #ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549 #endif
2550 set_task_cpu(p, cpu);
2551
2552 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2553 if (likely(sched_info_on()))
2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
2555 #endif
2556 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2557 p->oncpu = 0;
2558 #endif
2559 #ifdef CONFIG_PREEMPT
2560 /* Want to start with kernel preemption disabled. */
2561 task_thread_info(p)->preempt_count = 1;
2562 #endif
2563 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2564
2565 put_cpu();
2566 }
2567
2568 /*
2569 * wake_up_new_task - wake up a newly created task for the first time.
2570 *
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2574 */
2575 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2576 {
2577 unsigned long flags;
2578 struct rq *rq;
2579
2580 rq = task_rq_lock(p, &flags);
2581 BUG_ON(p->state != TASK_RUNNING);
2582 update_rq_clock(rq);
2583
2584 p->prio = effective_prio(p);
2585
2586 if (!p->sched_class->task_new || !current->se.on_rq) {
2587 activate_task(rq, p, 0);
2588 } else {
2589 /*
2590 * Let the scheduling class do new task startup
2591 * management (if any):
2592 */
2593 p->sched_class->task_new(rq, p);
2594 inc_nr_running(rq);
2595 }
2596 trace_sched_wakeup_new(rq, p, 1);
2597 check_preempt_curr(rq, p, WF_FORK);
2598 #ifdef CONFIG_SMP
2599 if (p->sched_class->task_wake_up)
2600 p->sched_class->task_wake_up(rq, p);
2601 #endif
2602 task_rq_unlock(rq, &flags);
2603 }
2604
2605 #ifdef CONFIG_PREEMPT_NOTIFIERS
2606
2607 /**
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2610 */
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2612 {
2613 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2614 }
2615 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2616
2617 /**
2618 * preempt_notifier_unregister - no longer interested in preemption notifications
2619 * @notifier: notifier struct to unregister
2620 *
2621 * This is safe to call from within a preemption notifier.
2622 */
2623 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2624 {
2625 hlist_del(&notifier->link);
2626 }
2627 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2628
2629 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2630 {
2631 struct preempt_notifier *notifier;
2632 struct hlist_node *node;
2633
2634 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2635 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2636 }
2637
2638 static void
2639 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2641 {
2642 struct preempt_notifier *notifier;
2643 struct hlist_node *node;
2644
2645 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_out(notifier, next);
2647 }
2648
2649 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2650
2651 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652 {
2653 }
2654
2655 static void
2656 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658 {
2659 }
2660
2661 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2662
2663 /**
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
2666 * @prev: the current task that is being switched out
2667 * @next: the task we are going to switch to.
2668 *
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2672 *
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2675 */
2676 static inline void
2677 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
2679 {
2680 fire_sched_out_preempt_notifiers(prev, next);
2681 prepare_lock_switch(rq, next);
2682 prepare_arch_switch(next);
2683 }
2684
2685 /**
2686 * finish_task_switch - clean up after a task-switch
2687 * @rq: runqueue associated with task-switch
2688 * @prev: the thread we just switched away from.
2689 *
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
2694 *
2695 * Note that we may have delayed dropping an mm in context_switch(). If
2696 * so, we finish that here outside of the runqueue lock. (Doing it
2697 * with the lock held can cause deadlocks; see schedule() for
2698 * details.)
2699 */
2700 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2701 __releases(rq->lock)
2702 {
2703 struct mm_struct *mm = rq->prev_mm;
2704 long prev_state;
2705
2706 rq->prev_mm = NULL;
2707
2708 /*
2709 * A task struct has one reference for the use as "current".
2710 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2711 * schedule one last time. The schedule call will never return, and
2712 * the scheduled task must drop that reference.
2713 * The test for TASK_DEAD must occur while the runqueue locks are
2714 * still held, otherwise prev could be scheduled on another cpu, die
2715 * there before we look at prev->state, and then the reference would
2716 * be dropped twice.
2717 * Manfred Spraul <manfred@colorfullife.com>
2718 */
2719 prev_state = prev->state;
2720 finish_arch_switch(prev);
2721 perf_counter_task_sched_in(current, cpu_of(rq));
2722 finish_lock_switch(rq, prev);
2723
2724 fire_sched_in_preempt_notifiers(current);
2725 if (mm)
2726 mmdrop(mm);
2727 if (unlikely(prev_state == TASK_DEAD)) {
2728 /*
2729 * Remove function-return probe instances associated with this
2730 * task and put them back on the free list.
2731 */
2732 kprobe_flush_task(prev);
2733 put_task_struct(prev);
2734 }
2735 }
2736
2737 #ifdef CONFIG_SMP
2738
2739 /* assumes rq->lock is held */
2740 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2741 {
2742 if (prev->sched_class->pre_schedule)
2743 prev->sched_class->pre_schedule(rq, prev);
2744 }
2745
2746 /* rq->lock is NOT held, but preemption is disabled */
2747 static inline void post_schedule(struct rq *rq)
2748 {
2749 if (rq->post_schedule) {
2750 unsigned long flags;
2751
2752 spin_lock_irqsave(&rq->lock, flags);
2753 if (rq->curr->sched_class->post_schedule)
2754 rq->curr->sched_class->post_schedule(rq);
2755 spin_unlock_irqrestore(&rq->lock, flags);
2756
2757 rq->post_schedule = 0;
2758 }
2759 }
2760
2761 #else
2762
2763 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2764 {
2765 }
2766
2767 static inline void post_schedule(struct rq *rq)
2768 {
2769 }
2770
2771 #endif
2772
2773 /**
2774 * schedule_tail - first thing a freshly forked thread must call.
2775 * @prev: the thread we just switched away from.
2776 */
2777 asmlinkage void schedule_tail(struct task_struct *prev)
2778 __releases(rq->lock)
2779 {
2780 struct rq *rq = this_rq();
2781
2782 finish_task_switch(rq, prev);
2783
2784 /*
2785 * FIXME: do we need to worry about rq being invalidated by the
2786 * task_switch?
2787 */
2788 post_schedule(rq);
2789
2790 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2791 /* In this case, finish_task_switch does not reenable preemption */
2792 preempt_enable();
2793 #endif
2794 if (current->set_child_tid)
2795 put_user(task_pid_vnr(current), current->set_child_tid);
2796 }
2797
2798 /*
2799 * context_switch - switch to the new MM and the new
2800 * thread's register state.
2801 */
2802 static inline void
2803 context_switch(struct rq *rq, struct task_struct *prev,
2804 struct task_struct *next)
2805 {
2806 struct mm_struct *mm, *oldmm;
2807
2808 prepare_task_switch(rq, prev, next);
2809 trace_sched_switch(rq, prev, next);
2810 mm = next->mm;
2811 oldmm = prev->active_mm;
2812 /*
2813 * For paravirt, this is coupled with an exit in switch_to to
2814 * combine the page table reload and the switch backend into
2815 * one hypercall.
2816 */
2817 arch_start_context_switch(prev);
2818
2819 if (unlikely(!mm)) {
2820 next->active_mm = oldmm;
2821 atomic_inc(&oldmm->mm_count);
2822 enter_lazy_tlb(oldmm, next);
2823 } else
2824 switch_mm(oldmm, mm, next);
2825
2826 if (unlikely(!prev->mm)) {
2827 prev->active_mm = NULL;
2828 rq->prev_mm = oldmm;
2829 }
2830 /*
2831 * Since the runqueue lock will be released by the next
2832 * task (which is an invalid locking op but in the case
2833 * of the scheduler it's an obvious special-case), so we
2834 * do an early lockdep release here:
2835 */
2836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2837 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2838 #endif
2839
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev, next, prev);
2842
2843 barrier();
2844 /*
2845 * this_rq must be evaluated again because prev may have moved
2846 * CPUs since it called schedule(), thus the 'rq' on its stack
2847 * frame will be invalid.
2848 */
2849 finish_task_switch(this_rq(), prev);
2850 }
2851
2852 /*
2853 * nr_running, nr_uninterruptible and nr_context_switches:
2854 *
2855 * externally visible scheduler statistics: current number of runnable
2856 * threads, current number of uninterruptible-sleeping threads, total
2857 * number of context switches performed since bootup.
2858 */
2859 unsigned long nr_running(void)
2860 {
2861 unsigned long i, sum = 0;
2862
2863 for_each_online_cpu(i)
2864 sum += cpu_rq(i)->nr_running;
2865
2866 return sum;
2867 }
2868
2869 unsigned long nr_uninterruptible(void)
2870 {
2871 unsigned long i, sum = 0;
2872
2873 for_each_possible_cpu(i)
2874 sum += cpu_rq(i)->nr_uninterruptible;
2875
2876 /*
2877 * Since we read the counters lockless, it might be slightly
2878 * inaccurate. Do not allow it to go below zero though:
2879 */
2880 if (unlikely((long)sum < 0))
2881 sum = 0;
2882
2883 return sum;
2884 }
2885
2886 unsigned long long nr_context_switches(void)
2887 {
2888 int i;
2889 unsigned long long sum = 0;
2890
2891 for_each_possible_cpu(i)
2892 sum += cpu_rq(i)->nr_switches;
2893
2894 return sum;
2895 }
2896
2897 unsigned long nr_iowait(void)
2898 {
2899 unsigned long i, sum = 0;
2900
2901 for_each_possible_cpu(i)
2902 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2903
2904 return sum;
2905 }
2906
2907 /* Variables and functions for calc_load */
2908 static atomic_long_t calc_load_tasks;
2909 static unsigned long calc_load_update;
2910 unsigned long avenrun[3];
2911 EXPORT_SYMBOL(avenrun);
2912
2913 /**
2914 * get_avenrun - get the load average array
2915 * @loads: pointer to dest load array
2916 * @offset: offset to add
2917 * @shift: shift count to shift the result left
2918 *
2919 * These values are estimates at best, so no need for locking.
2920 */
2921 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2922 {
2923 loads[0] = (avenrun[0] + offset) << shift;
2924 loads[1] = (avenrun[1] + offset) << shift;
2925 loads[2] = (avenrun[2] + offset) << shift;
2926 }
2927
2928 static unsigned long
2929 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2930 {
2931 load *= exp;
2932 load += active * (FIXED_1 - exp);
2933 return load >> FSHIFT;
2934 }
2935
2936 /*
2937 * calc_load - update the avenrun load estimates 10 ticks after the
2938 * CPUs have updated calc_load_tasks.
2939 */
2940 void calc_global_load(void)
2941 {
2942 unsigned long upd = calc_load_update + 10;
2943 long active;
2944
2945 if (time_before(jiffies, upd))
2946 return;
2947
2948 active = atomic_long_read(&calc_load_tasks);
2949 active = active > 0 ? active * FIXED_1 : 0;
2950
2951 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2952 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2953 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2954
2955 calc_load_update += LOAD_FREQ;
2956 }
2957
2958 /*
2959 * Either called from update_cpu_load() or from a cpu going idle
2960 */
2961 static void calc_load_account_active(struct rq *this_rq)
2962 {
2963 long nr_active, delta;
2964
2965 nr_active = this_rq->nr_running;
2966 nr_active += (long) this_rq->nr_uninterruptible;
2967
2968 if (nr_active != this_rq->calc_load_active) {
2969 delta = nr_active - this_rq->calc_load_active;
2970 this_rq->calc_load_active = nr_active;
2971 atomic_long_add(delta, &calc_load_tasks);
2972 }
2973 }
2974
2975 /*
2976 * Externally visible per-cpu scheduler statistics:
2977 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2978 */
2979 u64 cpu_nr_migrations(int cpu)
2980 {
2981 return cpu_rq(cpu)->nr_migrations_in;
2982 }
2983
2984 /*
2985 * Update rq->cpu_load[] statistics. This function is usually called every
2986 * scheduler tick (TICK_NSEC).
2987 */
2988 static void update_cpu_load(struct rq *this_rq)
2989 {
2990 unsigned long this_load = this_rq->load.weight;
2991 int i, scale;
2992
2993 this_rq->nr_load_updates++;
2994
2995 /* Update our load: */
2996 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2997 unsigned long old_load, new_load;
2998
2999 /* scale is effectively 1 << i now, and >> i divides by scale */
3000
3001 old_load = this_rq->cpu_load[i];
3002 new_load = this_load;
3003 /*
3004 * Round up the averaging division if load is increasing. This
3005 * prevents us from getting stuck on 9 if the load is 10, for
3006 * example.
3007 */
3008 if (new_load > old_load)
3009 new_load += scale-1;
3010 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3011 }
3012
3013 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3014 this_rq->calc_load_update += LOAD_FREQ;
3015 calc_load_account_active(this_rq);
3016 }
3017 }
3018
3019 #ifdef CONFIG_SMP
3020
3021 /*
3022 * double_rq_lock - safely lock two runqueues
3023 *
3024 * Note this does not disable interrupts like task_rq_lock,
3025 * you need to do so manually before calling.
3026 */
3027 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3028 __acquires(rq1->lock)
3029 __acquires(rq2->lock)
3030 {
3031 BUG_ON(!irqs_disabled());
3032 if (rq1 == rq2) {
3033 spin_lock(&rq1->lock);
3034 __acquire(rq2->lock); /* Fake it out ;) */
3035 } else {
3036 if (rq1 < rq2) {
3037 spin_lock(&rq1->lock);
3038 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3039 } else {
3040 spin_lock(&rq2->lock);
3041 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3042 }
3043 }
3044 update_rq_clock(rq1);
3045 update_rq_clock(rq2);
3046 }
3047
3048 /*
3049 * double_rq_unlock - safely unlock two runqueues
3050 *
3051 * Note this does not restore interrupts like task_rq_unlock,
3052 * you need to do so manually after calling.
3053 */
3054 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3055 __releases(rq1->lock)
3056 __releases(rq2->lock)
3057 {
3058 spin_unlock(&rq1->lock);
3059 if (rq1 != rq2)
3060 spin_unlock(&rq2->lock);
3061 else
3062 __release(rq2->lock);
3063 }
3064
3065 /*
3066 * If dest_cpu is allowed for this process, migrate the task to it.
3067 * This is accomplished by forcing the cpu_allowed mask to only
3068 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3069 * the cpu_allowed mask is restored.
3070 */
3071 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3072 {
3073 struct migration_req req;
3074 unsigned long flags;
3075 struct rq *rq;
3076
3077 rq = task_rq_lock(p, &flags);
3078 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3079 || unlikely(!cpu_active(dest_cpu)))
3080 goto out;
3081
3082 /* force the process onto the specified CPU */
3083 if (migrate_task(p, dest_cpu, &req)) {
3084 /* Need to wait for migration thread (might exit: take ref). */
3085 struct task_struct *mt = rq->migration_thread;
3086
3087 get_task_struct(mt);
3088 task_rq_unlock(rq, &flags);
3089 wake_up_process(mt);
3090 put_task_struct(mt);
3091 wait_for_completion(&req.done);
3092
3093 return;
3094 }
3095 out:
3096 task_rq_unlock(rq, &flags);
3097 }
3098
3099 /*
3100 * sched_exec - execve() is a valuable balancing opportunity, because at
3101 * this point the task has the smallest effective memory and cache footprint.
3102 */
3103 void sched_exec(void)
3104 {
3105 int new_cpu, this_cpu = get_cpu();
3106 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3107 put_cpu();
3108 if (new_cpu != this_cpu)
3109 sched_migrate_task(current, new_cpu);
3110 }
3111
3112 /*
3113 * pull_task - move a task from a remote runqueue to the local runqueue.
3114 * Both runqueues must be locked.
3115 */
3116 static void pull_task(struct rq *src_rq, struct task_struct *p,
3117 struct rq *this_rq, int this_cpu)
3118 {
3119 deactivate_task(src_rq, p, 0);
3120 set_task_cpu(p, this_cpu);
3121 activate_task(this_rq, p, 0);
3122 /*
3123 * Note that idle threads have a prio of MAX_PRIO, for this test
3124 * to be always true for them.
3125 */
3126 check_preempt_curr(this_rq, p, 0);
3127 }
3128
3129 /*
3130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3131 */
3132 static
3133 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3134 struct sched_domain *sd, enum cpu_idle_type idle,
3135 int *all_pinned)
3136 {
3137 int tsk_cache_hot = 0;
3138 /*
3139 * We do not migrate tasks that are:
3140 * 1) running (obviously), or
3141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3142 * 3) are cache-hot on their current CPU.
3143 */
3144 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3145 schedstat_inc(p, se.nr_failed_migrations_affine);
3146 return 0;
3147 }
3148 *all_pinned = 0;
3149
3150 if (task_running(rq, p)) {
3151 schedstat_inc(p, se.nr_failed_migrations_running);
3152 return 0;
3153 }
3154
3155 /*
3156 * Aggressive migration if:
3157 * 1) task is cache cold, or
3158 * 2) too many balance attempts have failed.
3159 */
3160
3161 tsk_cache_hot = task_hot(p, rq->clock, sd);
3162 if (!tsk_cache_hot ||
3163 sd->nr_balance_failed > sd->cache_nice_tries) {
3164 #ifdef CONFIG_SCHEDSTATS
3165 if (tsk_cache_hot) {
3166 schedstat_inc(sd, lb_hot_gained[idle]);
3167 schedstat_inc(p, se.nr_forced_migrations);
3168 }
3169 #endif
3170 return 1;
3171 }
3172
3173 if (tsk_cache_hot) {
3174 schedstat_inc(p, se.nr_failed_migrations_hot);
3175 return 0;
3176 }
3177 return 1;
3178 }
3179
3180 static unsigned long
3181 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 unsigned long max_load_move, struct sched_domain *sd,
3183 enum cpu_idle_type idle, int *all_pinned,
3184 int *this_best_prio, struct rq_iterator *iterator)
3185 {
3186 int loops = 0, pulled = 0, pinned = 0;
3187 struct task_struct *p;
3188 long rem_load_move = max_load_move;
3189
3190 if (max_load_move == 0)
3191 goto out;
3192
3193 pinned = 1;
3194
3195 /*
3196 * Start the load-balancing iterator:
3197 */
3198 p = iterator->start(iterator->arg);
3199 next:
3200 if (!p || loops++ > sysctl_sched_nr_migrate)
3201 goto out;
3202
3203 if ((p->se.load.weight >> 1) > rem_load_move ||
3204 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3205 p = iterator->next(iterator->arg);
3206 goto next;
3207 }
3208
3209 pull_task(busiest, p, this_rq, this_cpu);
3210 pulled++;
3211 rem_load_move -= p->se.load.weight;
3212
3213 #ifdef CONFIG_PREEMPT
3214 /*
3215 * NEWIDLE balancing is a source of latency, so preemptible kernels
3216 * will stop after the first task is pulled to minimize the critical
3217 * section.
3218 */
3219 if (idle == CPU_NEWLY_IDLE)
3220 goto out;
3221 #endif
3222
3223 /*
3224 * We only want to steal up to the prescribed amount of weighted load.
3225 */
3226 if (rem_load_move > 0) {
3227 if (p->prio < *this_best_prio)
3228 *this_best_prio = p->prio;
3229 p = iterator->next(iterator->arg);
3230 goto next;
3231 }
3232 out:
3233 /*
3234 * Right now, this is one of only two places pull_task() is called,
3235 * so we can safely collect pull_task() stats here rather than
3236 * inside pull_task().
3237 */
3238 schedstat_add(sd, lb_gained[idle], pulled);
3239
3240 if (all_pinned)
3241 *all_pinned = pinned;
3242
3243 return max_load_move - rem_load_move;
3244 }
3245
3246 /*
3247 * move_tasks tries to move up to max_load_move weighted load from busiest to
3248 * this_rq, as part of a balancing operation within domain "sd".
3249 * Returns 1 if successful and 0 otherwise.
3250 *
3251 * Called with both runqueues locked.
3252 */
3253 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3254 unsigned long max_load_move,
3255 struct sched_domain *sd, enum cpu_idle_type idle,
3256 int *all_pinned)
3257 {
3258 const struct sched_class *class = sched_class_highest;
3259 unsigned long total_load_moved = 0;
3260 int this_best_prio = this_rq->curr->prio;
3261
3262 do {
3263 total_load_moved +=
3264 class->load_balance(this_rq, this_cpu, busiest,
3265 max_load_move - total_load_moved,
3266 sd, idle, all_pinned, &this_best_prio);
3267 class = class->next;
3268
3269 #ifdef CONFIG_PREEMPT
3270 /*
3271 * NEWIDLE balancing is a source of latency, so preemptible
3272 * kernels will stop after the first task is pulled to minimize
3273 * the critical section.
3274 */
3275 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3276 break;
3277 #endif
3278 } while (class && max_load_move > total_load_moved);
3279
3280 return total_load_moved > 0;
3281 }
3282
3283 static int
3284 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3285 struct sched_domain *sd, enum cpu_idle_type idle,
3286 struct rq_iterator *iterator)
3287 {
3288 struct task_struct *p = iterator->start(iterator->arg);
3289 int pinned = 0;
3290
3291 while (p) {
3292 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3293 pull_task(busiest, p, this_rq, this_cpu);
3294 /*
3295 * Right now, this is only the second place pull_task()
3296 * is called, so we can safely collect pull_task()
3297 * stats here rather than inside pull_task().
3298 */
3299 schedstat_inc(sd, lb_gained[idle]);
3300
3301 return 1;
3302 }
3303 p = iterator->next(iterator->arg);
3304 }
3305
3306 return 0;
3307 }
3308
3309 /*
3310 * move_one_task tries to move exactly one task from busiest to this_rq, as
3311 * part of active balancing operations within "domain".
3312 * Returns 1 if successful and 0 otherwise.
3313 *
3314 * Called with both runqueues locked.
3315 */
3316 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3317 struct sched_domain *sd, enum cpu_idle_type idle)
3318 {
3319 const struct sched_class *class;
3320
3321 for_each_class(class) {
3322 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3323 return 1;
3324 }
3325
3326 return 0;
3327 }
3328 /********** Helpers for find_busiest_group ************************/
3329 /*
3330 * sd_lb_stats - Structure to store the statistics of a sched_domain
3331 * during load balancing.
3332 */
3333 struct sd_lb_stats {
3334 struct sched_group *busiest; /* Busiest group in this sd */
3335 struct sched_group *this; /* Local group in this sd */
3336 unsigned long total_load; /* Total load of all groups in sd */
3337 unsigned long total_pwr; /* Total power of all groups in sd */
3338 unsigned long avg_load; /* Average load across all groups in sd */
3339
3340 /** Statistics of this group */
3341 unsigned long this_load;
3342 unsigned long this_load_per_task;
3343 unsigned long this_nr_running;
3344
3345 /* Statistics of the busiest group */
3346 unsigned long max_load;
3347 unsigned long busiest_load_per_task;
3348 unsigned long busiest_nr_running;
3349
3350 int group_imb; /* Is there imbalance in this sd */
3351 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3352 int power_savings_balance; /* Is powersave balance needed for this sd */
3353 struct sched_group *group_min; /* Least loaded group in sd */
3354 struct sched_group *group_leader; /* Group which relieves group_min */
3355 unsigned long min_load_per_task; /* load_per_task in group_min */
3356 unsigned long leader_nr_running; /* Nr running of group_leader */
3357 unsigned long min_nr_running; /* Nr running of group_min */
3358 #endif
3359 };
3360
3361 /*
3362 * sg_lb_stats - stats of a sched_group required for load_balancing
3363 */
3364 struct sg_lb_stats {
3365 unsigned long avg_load; /*Avg load across the CPUs of the group */
3366 unsigned long group_load; /* Total load over the CPUs of the group */
3367 unsigned long sum_nr_running; /* Nr tasks running in the group */
3368 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3369 unsigned long group_capacity;
3370 int group_imb; /* Is there an imbalance in the group ? */
3371 };
3372
3373 /**
3374 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3375 * @group: The group whose first cpu is to be returned.
3376 */
3377 static inline unsigned int group_first_cpu(struct sched_group *group)
3378 {
3379 return cpumask_first(sched_group_cpus(group));
3380 }
3381
3382 /**
3383 * get_sd_load_idx - Obtain the load index for a given sched domain.
3384 * @sd: The sched_domain whose load_idx is to be obtained.
3385 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3386 */
3387 static inline int get_sd_load_idx(struct sched_domain *sd,
3388 enum cpu_idle_type idle)
3389 {
3390 int load_idx;
3391
3392 switch (idle) {
3393 case CPU_NOT_IDLE:
3394 load_idx = sd->busy_idx;
3395 break;
3396
3397 case CPU_NEWLY_IDLE:
3398 load_idx = sd->newidle_idx;
3399 break;
3400 default:
3401 load_idx = sd->idle_idx;
3402 break;
3403 }
3404
3405 return load_idx;
3406 }
3407
3408
3409 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3410 /**
3411 * init_sd_power_savings_stats - Initialize power savings statistics for
3412 * the given sched_domain, during load balancing.
3413 *
3414 * @sd: Sched domain whose power-savings statistics are to be initialized.
3415 * @sds: Variable containing the statistics for sd.
3416 * @idle: Idle status of the CPU at which we're performing load-balancing.
3417 */
3418 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3419 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3420 {
3421 /*
3422 * Busy processors will not participate in power savings
3423 * balance.
3424 */
3425 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3426 sds->power_savings_balance = 0;
3427 else {
3428 sds->power_savings_balance = 1;
3429 sds->min_nr_running = ULONG_MAX;
3430 sds->leader_nr_running = 0;
3431 }
3432 }
3433
3434 /**
3435 * update_sd_power_savings_stats - Update the power saving stats for a
3436 * sched_domain while performing load balancing.
3437 *
3438 * @group: sched_group belonging to the sched_domain under consideration.
3439 * @sds: Variable containing the statistics of the sched_domain
3440 * @local_group: Does group contain the CPU for which we're performing
3441 * load balancing ?
3442 * @sgs: Variable containing the statistics of the group.
3443 */
3444 static inline void update_sd_power_savings_stats(struct sched_group *group,
3445 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3446 {
3447
3448 if (!sds->power_savings_balance)
3449 return;
3450
3451 /*
3452 * If the local group is idle or completely loaded
3453 * no need to do power savings balance at this domain
3454 */
3455 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3456 !sds->this_nr_running))
3457 sds->power_savings_balance = 0;
3458
3459 /*
3460 * If a group is already running at full capacity or idle,
3461 * don't include that group in power savings calculations
3462 */
3463 if (!sds->power_savings_balance ||
3464 sgs->sum_nr_running >= sgs->group_capacity ||
3465 !sgs->sum_nr_running)
3466 return;
3467
3468 /*
3469 * Calculate the group which has the least non-idle load.
3470 * This is the group from where we need to pick up the load
3471 * for saving power
3472 */
3473 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3474 (sgs->sum_nr_running == sds->min_nr_running &&
3475 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3476 sds->group_min = group;
3477 sds->min_nr_running = sgs->sum_nr_running;
3478 sds->min_load_per_task = sgs->sum_weighted_load /
3479 sgs->sum_nr_running;
3480 }
3481
3482 /*
3483 * Calculate the group which is almost near its
3484 * capacity but still has some space to pick up some load
3485 * from other group and save more power
3486 */
3487 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3488 return;
3489
3490 if (sgs->sum_nr_running > sds->leader_nr_running ||
3491 (sgs->sum_nr_running == sds->leader_nr_running &&
3492 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3493 sds->group_leader = group;
3494 sds->leader_nr_running = sgs->sum_nr_running;
3495 }
3496 }
3497
3498 /**
3499 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3500 * @sds: Variable containing the statistics of the sched_domain
3501 * under consideration.
3502 * @this_cpu: Cpu at which we're currently performing load-balancing.
3503 * @imbalance: Variable to store the imbalance.
3504 *
3505 * Description:
3506 * Check if we have potential to perform some power-savings balance.
3507 * If yes, set the busiest group to be the least loaded group in the
3508 * sched_domain, so that it's CPUs can be put to idle.
3509 *
3510 * Returns 1 if there is potential to perform power-savings balance.
3511 * Else returns 0.
3512 */
3513 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3514 int this_cpu, unsigned long *imbalance)
3515 {
3516 if (!sds->power_savings_balance)
3517 return 0;
3518
3519 if (sds->this != sds->group_leader ||
3520 sds->group_leader == sds->group_min)
3521 return 0;
3522
3523 *imbalance = sds->min_load_per_task;
3524 sds->busiest = sds->group_min;
3525
3526 return 1;
3527
3528 }
3529 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3530 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3531 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3532 {
3533 return;
3534 }
3535
3536 static inline void update_sd_power_savings_stats(struct sched_group *group,
3537 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3538 {
3539 return;
3540 }
3541
3542 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3543 int this_cpu, unsigned long *imbalance)
3544 {
3545 return 0;
3546 }
3547 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3548
3549
3550 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3551 {
3552 return SCHED_LOAD_SCALE;
3553 }
3554
3555 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3556 {
3557 return default_scale_freq_power(sd, cpu);
3558 }
3559
3560 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3561 {
3562 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3563 unsigned long smt_gain = sd->smt_gain;
3564
3565 smt_gain /= weight;
3566
3567 return smt_gain;
3568 }
3569
3570 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3571 {
3572 return default_scale_smt_power(sd, cpu);
3573 }
3574
3575 unsigned long scale_rt_power(int cpu)
3576 {
3577 struct rq *rq = cpu_rq(cpu);
3578 u64 total, available;
3579
3580 sched_avg_update(rq);
3581
3582 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3583 available = total - rq->rt_avg;
3584
3585 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3586 total = SCHED_LOAD_SCALE;
3587
3588 total >>= SCHED_LOAD_SHIFT;
3589
3590 return div_u64(available, total);
3591 }
3592
3593 static void update_cpu_power(struct sched_domain *sd, int cpu)
3594 {
3595 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3596 unsigned long power = SCHED_LOAD_SCALE;
3597 struct sched_group *sdg = sd->groups;
3598
3599 if (sched_feat(ARCH_POWER))
3600 power *= arch_scale_freq_power(sd, cpu);
3601 else
3602 power *= default_scale_freq_power(sd, cpu);
3603
3604 power >>= SCHED_LOAD_SHIFT;
3605
3606 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3607 if (sched_feat(ARCH_POWER))
3608 power *= arch_scale_smt_power(sd, cpu);
3609 else
3610 power *= default_scale_smt_power(sd, cpu);
3611
3612 power >>= SCHED_LOAD_SHIFT;
3613 }
3614
3615 power *= scale_rt_power(cpu);
3616 power >>= SCHED_LOAD_SHIFT;
3617
3618 if (!power)
3619 power = 1;
3620
3621 sdg->cpu_power = power;
3622 }
3623
3624 static void update_group_power(struct sched_domain *sd, int cpu)
3625 {
3626 struct sched_domain *child = sd->child;
3627 struct sched_group *group, *sdg = sd->groups;
3628 unsigned long power;
3629
3630 if (!child) {
3631 update_cpu_power(sd, cpu);
3632 return;
3633 }
3634
3635 power = 0;
3636
3637 group = child->groups;
3638 do {
3639 power += group->cpu_power;
3640 group = group->next;
3641 } while (group != child->groups);
3642
3643 sdg->cpu_power = power;
3644 }
3645
3646 /**
3647 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3648 * @group: sched_group whose statistics are to be updated.
3649 * @this_cpu: Cpu for which load balance is currently performed.
3650 * @idle: Idle status of this_cpu
3651 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3652 * @sd_idle: Idle status of the sched_domain containing group.
3653 * @local_group: Does group contain this_cpu.
3654 * @cpus: Set of cpus considered for load balancing.
3655 * @balance: Should we balance.
3656 * @sgs: variable to hold the statistics for this group.
3657 */
3658 static inline void update_sg_lb_stats(struct sched_domain *sd,
3659 struct sched_group *group, int this_cpu,
3660 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3661 int local_group, const struct cpumask *cpus,
3662 int *balance, struct sg_lb_stats *sgs)
3663 {
3664 unsigned long load, max_cpu_load, min_cpu_load;
3665 int i;
3666 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3667 unsigned long sum_avg_load_per_task;
3668 unsigned long avg_load_per_task;
3669
3670 if (local_group) {
3671 balance_cpu = group_first_cpu(group);
3672 if (balance_cpu == this_cpu)
3673 update_group_power(sd, this_cpu);
3674 }
3675
3676 /* Tally up the load of all CPUs in the group */
3677 sum_avg_load_per_task = avg_load_per_task = 0;
3678 max_cpu_load = 0;
3679 min_cpu_load = ~0UL;
3680
3681 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3682 struct rq *rq = cpu_rq(i);
3683
3684 if (*sd_idle && rq->nr_running)
3685 *sd_idle = 0;
3686
3687 /* Bias balancing toward cpus of our domain */
3688 if (local_group) {
3689 if (idle_cpu(i) && !first_idle_cpu) {
3690 first_idle_cpu = 1;
3691 balance_cpu = i;
3692 }
3693
3694 load = target_load(i, load_idx);
3695 } else {
3696 load = source_load(i, load_idx);
3697 if (load > max_cpu_load)
3698 max_cpu_load = load;
3699 if (min_cpu_load > load)
3700 min_cpu_load = load;
3701 }
3702
3703 sgs->group_load += load;
3704 sgs->sum_nr_running += rq->nr_running;
3705 sgs->sum_weighted_load += weighted_cpuload(i);
3706
3707 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3708 }
3709
3710 /*
3711 * First idle cpu or the first cpu(busiest) in this sched group
3712 * is eligible for doing load balancing at this and above
3713 * domains. In the newly idle case, we will allow all the cpu's
3714 * to do the newly idle load balance.
3715 */
3716 if (idle != CPU_NEWLY_IDLE && local_group &&
3717 balance_cpu != this_cpu && balance) {
3718 *balance = 0;
3719 return;
3720 }
3721
3722 /* Adjust by relative CPU power of the group */
3723 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3724
3725
3726 /*
3727 * Consider the group unbalanced when the imbalance is larger
3728 * than the average weight of two tasks.
3729 *
3730 * APZ: with cgroup the avg task weight can vary wildly and
3731 * might not be a suitable number - should we keep a
3732 * normalized nr_running number somewhere that negates
3733 * the hierarchy?
3734 */
3735 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3736 group->cpu_power;
3737
3738 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3739 sgs->group_imb = 1;
3740
3741 sgs->group_capacity =
3742 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3743 }
3744
3745 /**
3746 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3747 * @sd: sched_domain whose statistics are to be updated.
3748 * @this_cpu: Cpu for which load balance is currently performed.
3749 * @idle: Idle status of this_cpu
3750 * @sd_idle: Idle status of the sched_domain containing group.
3751 * @cpus: Set of cpus considered for load balancing.
3752 * @balance: Should we balance.
3753 * @sds: variable to hold the statistics for this sched_domain.
3754 */
3755 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3756 enum cpu_idle_type idle, int *sd_idle,
3757 const struct cpumask *cpus, int *balance,
3758 struct sd_lb_stats *sds)
3759 {
3760 struct sched_domain *child = sd->child;
3761 struct sched_group *group = sd->groups;
3762 struct sg_lb_stats sgs;
3763 int load_idx, prefer_sibling = 0;
3764
3765 if (child && child->flags & SD_PREFER_SIBLING)
3766 prefer_sibling = 1;
3767
3768 init_sd_power_savings_stats(sd, sds, idle);
3769 load_idx = get_sd_load_idx(sd, idle);
3770
3771 do {
3772 int local_group;
3773
3774 local_group = cpumask_test_cpu(this_cpu,
3775 sched_group_cpus(group));
3776 memset(&sgs, 0, sizeof(sgs));
3777 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3778 local_group, cpus, balance, &sgs);
3779
3780 if (local_group && balance && !(*balance))
3781 return;
3782
3783 sds->total_load += sgs.group_load;
3784 sds->total_pwr += group->cpu_power;
3785
3786 /*
3787 * In case the child domain prefers tasks go to siblings
3788 * first, lower the group capacity to one so that we'll try
3789 * and move all the excess tasks away.
3790 */
3791 if (prefer_sibling)
3792 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3793
3794 if (local_group) {
3795 sds->this_load = sgs.avg_load;
3796 sds->this = group;
3797 sds->this_nr_running = sgs.sum_nr_running;
3798 sds->this_load_per_task = sgs.sum_weighted_load;
3799 } else if (sgs.avg_load > sds->max_load &&
3800 (sgs.sum_nr_running > sgs.group_capacity ||
3801 sgs.group_imb)) {
3802 sds->max_load = sgs.avg_load;
3803 sds->busiest = group;
3804 sds->busiest_nr_running = sgs.sum_nr_running;
3805 sds->busiest_load_per_task = sgs.sum_weighted_load;
3806 sds->group_imb = sgs.group_imb;
3807 }
3808
3809 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3810 group = group->next;
3811 } while (group != sd->groups);
3812 }
3813
3814 /**
3815 * fix_small_imbalance - Calculate the minor imbalance that exists
3816 * amongst the groups of a sched_domain, during
3817 * load balancing.
3818 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3819 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3820 * @imbalance: Variable to store the imbalance.
3821 */
3822 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3823 int this_cpu, unsigned long *imbalance)
3824 {
3825 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3826 unsigned int imbn = 2;
3827
3828 if (sds->this_nr_running) {
3829 sds->this_load_per_task /= sds->this_nr_running;
3830 if (sds->busiest_load_per_task >
3831 sds->this_load_per_task)
3832 imbn = 1;
3833 } else
3834 sds->this_load_per_task =
3835 cpu_avg_load_per_task(this_cpu);
3836
3837 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3838 sds->busiest_load_per_task * imbn) {
3839 *imbalance = sds->busiest_load_per_task;
3840 return;
3841 }
3842
3843 /*
3844 * OK, we don't have enough imbalance to justify moving tasks,
3845 * however we may be able to increase total CPU power used by
3846 * moving them.
3847 */
3848
3849 pwr_now += sds->busiest->cpu_power *
3850 min(sds->busiest_load_per_task, sds->max_load);
3851 pwr_now += sds->this->cpu_power *
3852 min(sds->this_load_per_task, sds->this_load);
3853 pwr_now /= SCHED_LOAD_SCALE;
3854
3855 /* Amount of load we'd subtract */
3856 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3857 sds->busiest->cpu_power;
3858 if (sds->max_load > tmp)
3859 pwr_move += sds->busiest->cpu_power *
3860 min(sds->busiest_load_per_task, sds->max_load - tmp);
3861
3862 /* Amount of load we'd add */
3863 if (sds->max_load * sds->busiest->cpu_power <
3864 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3865 tmp = (sds->max_load * sds->busiest->cpu_power) /
3866 sds->this->cpu_power;
3867 else
3868 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3869 sds->this->cpu_power;
3870 pwr_move += sds->this->cpu_power *
3871 min(sds->this_load_per_task, sds->this_load + tmp);
3872 pwr_move /= SCHED_LOAD_SCALE;
3873
3874 /* Move if we gain throughput */
3875 if (pwr_move > pwr_now)
3876 *imbalance = sds->busiest_load_per_task;
3877 }
3878
3879 /**
3880 * calculate_imbalance - Calculate the amount of imbalance present within the
3881 * groups of a given sched_domain during load balance.
3882 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3883 * @this_cpu: Cpu for which currently load balance is being performed.
3884 * @imbalance: The variable to store the imbalance.
3885 */
3886 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3887 unsigned long *imbalance)
3888 {
3889 unsigned long max_pull;
3890 /*
3891 * In the presence of smp nice balancing, certain scenarios can have
3892 * max load less than avg load(as we skip the groups at or below
3893 * its cpu_power, while calculating max_load..)
3894 */
3895 if (sds->max_load < sds->avg_load) {
3896 *imbalance = 0;
3897 return fix_small_imbalance(sds, this_cpu, imbalance);
3898 }
3899
3900 /* Don't want to pull so many tasks that a group would go idle */
3901 max_pull = min(sds->max_load - sds->avg_load,
3902 sds->max_load - sds->busiest_load_per_task);
3903
3904 /* How much load to actually move to equalise the imbalance */
3905 *imbalance = min(max_pull * sds->busiest->cpu_power,
3906 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3907 / SCHED_LOAD_SCALE;
3908
3909 /*
3910 * if *imbalance is less than the average load per runnable task
3911 * there is no gaurantee that any tasks will be moved so we'll have
3912 * a think about bumping its value to force at least one task to be
3913 * moved
3914 */
3915 if (*imbalance < sds->busiest_load_per_task)
3916 return fix_small_imbalance(sds, this_cpu, imbalance);
3917
3918 }
3919 /******* find_busiest_group() helpers end here *********************/
3920
3921 /**
3922 * find_busiest_group - Returns the busiest group within the sched_domain
3923 * if there is an imbalance. If there isn't an imbalance, and
3924 * the user has opted for power-savings, it returns a group whose
3925 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3926 * such a group exists.
3927 *
3928 * Also calculates the amount of weighted load which should be moved
3929 * to restore balance.
3930 *
3931 * @sd: The sched_domain whose busiest group is to be returned.
3932 * @this_cpu: The cpu for which load balancing is currently being performed.
3933 * @imbalance: Variable which stores amount of weighted load which should
3934 * be moved to restore balance/put a group to idle.
3935 * @idle: The idle status of this_cpu.
3936 * @sd_idle: The idleness of sd
3937 * @cpus: The set of CPUs under consideration for load-balancing.
3938 * @balance: Pointer to a variable indicating if this_cpu
3939 * is the appropriate cpu to perform load balancing at this_level.
3940 *
3941 * Returns: - the busiest group if imbalance exists.
3942 * - If no imbalance and user has opted for power-savings balance,
3943 * return the least loaded group whose CPUs can be
3944 * put to idle by rebalancing its tasks onto our group.
3945 */
3946 static struct sched_group *
3947 find_busiest_group(struct sched_domain *sd, int this_cpu,
3948 unsigned long *imbalance, enum cpu_idle_type idle,
3949 int *sd_idle, const struct cpumask *cpus, int *balance)
3950 {
3951 struct sd_lb_stats sds;
3952
3953 memset(&sds, 0, sizeof(sds));
3954
3955 /*
3956 * Compute the various statistics relavent for load balancing at
3957 * this level.
3958 */
3959 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3960 balance, &sds);
3961
3962 /* Cases where imbalance does not exist from POV of this_cpu */
3963 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3964 * at this level.
3965 * 2) There is no busy sibling group to pull from.
3966 * 3) This group is the busiest group.
3967 * 4) This group is more busy than the avg busieness at this
3968 * sched_domain.
3969 * 5) The imbalance is within the specified limit.
3970 * 6) Any rebalance would lead to ping-pong
3971 */
3972 if (balance && !(*balance))
3973 goto ret;
3974
3975 if (!sds.busiest || sds.busiest_nr_running == 0)
3976 goto out_balanced;
3977
3978 if (sds.this_load >= sds.max_load)
3979 goto out_balanced;
3980
3981 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3982
3983 if (sds.this_load >= sds.avg_load)
3984 goto out_balanced;
3985
3986 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3987 goto out_balanced;
3988
3989 sds.busiest_load_per_task /= sds.busiest_nr_running;
3990 if (sds.group_imb)
3991 sds.busiest_load_per_task =
3992 min(sds.busiest_load_per_task, sds.avg_load);
3993
3994 /*
3995 * We're trying to get all the cpus to the average_load, so we don't
3996 * want to push ourselves above the average load, nor do we wish to
3997 * reduce the max loaded cpu below the average load, as either of these
3998 * actions would just result in more rebalancing later, and ping-pong
3999 * tasks around. Thus we look for the minimum possible imbalance.
4000 * Negative imbalances (*we* are more loaded than anyone else) will
4001 * be counted as no imbalance for these purposes -- we can't fix that
4002 * by pulling tasks to us. Be careful of negative numbers as they'll
4003 * appear as very large values with unsigned longs.
4004 */
4005 if (sds.max_load <= sds.busiest_load_per_task)
4006 goto out_balanced;
4007
4008 /* Looks like there is an imbalance. Compute it */
4009 calculate_imbalance(&sds, this_cpu, imbalance);
4010 return sds.busiest;
4011
4012 out_balanced:
4013 /*
4014 * There is no obvious imbalance. But check if we can do some balancing
4015 * to save power.
4016 */
4017 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4018 return sds.busiest;
4019 ret:
4020 *imbalance = 0;
4021 return NULL;
4022 }
4023
4024 /*
4025 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4026 */
4027 static struct rq *
4028 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4029 unsigned long imbalance, const struct cpumask *cpus)
4030 {
4031 struct rq *busiest = NULL, *rq;
4032 unsigned long max_load = 0;
4033 int i;
4034
4035 for_each_cpu(i, sched_group_cpus(group)) {
4036 unsigned long power = power_of(i);
4037 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4038 unsigned long wl;
4039
4040 if (!cpumask_test_cpu(i, cpus))
4041 continue;
4042
4043 rq = cpu_rq(i);
4044 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4045 wl /= power;
4046
4047 if (capacity && rq->nr_running == 1 && wl > imbalance)
4048 continue;
4049
4050 if (wl > max_load) {
4051 max_load = wl;
4052 busiest = rq;
4053 }
4054 }
4055
4056 return busiest;
4057 }
4058
4059 /*
4060 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4061 * so long as it is large enough.
4062 */
4063 #define MAX_PINNED_INTERVAL 512
4064
4065 /* Working cpumask for load_balance and load_balance_newidle. */
4066 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4067
4068 /*
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
4071 */
4072 static int load_balance(int this_cpu, struct rq *this_rq,
4073 struct sched_domain *sd, enum cpu_idle_type idle,
4074 int *balance)
4075 {
4076 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4077 struct sched_group *group;
4078 unsigned long imbalance;
4079 struct rq *busiest;
4080 unsigned long flags;
4081 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4082
4083 cpumask_setall(cpus);
4084
4085 /*
4086 * When power savings policy is enabled for the parent domain, idle
4087 * sibling can pick up load irrespective of busy siblings. In this case,
4088 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4089 * portraying it as CPU_NOT_IDLE.
4090 */
4091 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4092 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4093 sd_idle = 1;
4094
4095 schedstat_inc(sd, lb_count[idle]);
4096
4097 redo:
4098 update_shares(sd);
4099 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4100 cpus, balance);
4101
4102 if (*balance == 0)
4103 goto out_balanced;
4104
4105 if (!group) {
4106 schedstat_inc(sd, lb_nobusyg[idle]);
4107 goto out_balanced;
4108 }
4109
4110 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4111 if (!busiest) {
4112 schedstat_inc(sd, lb_nobusyq[idle]);
4113 goto out_balanced;
4114 }
4115
4116 BUG_ON(busiest == this_rq);
4117
4118 schedstat_add(sd, lb_imbalance[idle], imbalance);
4119
4120 ld_moved = 0;
4121 if (busiest->nr_running > 1) {
4122 /*
4123 * Attempt to move tasks. If find_busiest_group has found
4124 * an imbalance but busiest->nr_running <= 1, the group is
4125 * still unbalanced. ld_moved simply stays zero, so it is
4126 * correctly treated as an imbalance.
4127 */
4128 local_irq_save(flags);
4129 double_rq_lock(this_rq, busiest);
4130 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4131 imbalance, sd, idle, &all_pinned);
4132 double_rq_unlock(this_rq, busiest);
4133 local_irq_restore(flags);
4134
4135 /*
4136 * some other cpu did the load balance for us.
4137 */
4138 if (ld_moved && this_cpu != smp_processor_id())
4139 resched_cpu(this_cpu);
4140
4141 /* All tasks on this runqueue were pinned by CPU affinity */
4142 if (unlikely(all_pinned)) {
4143 cpumask_clear_cpu(cpu_of(busiest), cpus);
4144 if (!cpumask_empty(cpus))
4145 goto redo;
4146 goto out_balanced;
4147 }
4148 }
4149
4150 if (!ld_moved) {
4151 schedstat_inc(sd, lb_failed[idle]);
4152 sd->nr_balance_failed++;
4153
4154 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4155
4156 spin_lock_irqsave(&busiest->lock, flags);
4157
4158 /* don't kick the migration_thread, if the curr
4159 * task on busiest cpu can't be moved to this_cpu
4160 */
4161 if (!cpumask_test_cpu(this_cpu,
4162 &busiest->curr->cpus_allowed)) {
4163 spin_unlock_irqrestore(&busiest->lock, flags);
4164 all_pinned = 1;
4165 goto out_one_pinned;
4166 }
4167
4168 if (!busiest->active_balance) {
4169 busiest->active_balance = 1;
4170 busiest->push_cpu = this_cpu;
4171 active_balance = 1;
4172 }
4173 spin_unlock_irqrestore(&busiest->lock, flags);
4174 if (active_balance)
4175 wake_up_process(busiest->migration_thread);
4176
4177 /*
4178 * We've kicked active balancing, reset the failure
4179 * counter.
4180 */
4181 sd->nr_balance_failed = sd->cache_nice_tries+1;
4182 }
4183 } else
4184 sd->nr_balance_failed = 0;
4185
4186 if (likely(!active_balance)) {
4187 /* We were unbalanced, so reset the balancing interval */
4188 sd->balance_interval = sd->min_interval;
4189 } else {
4190 /*
4191 * If we've begun active balancing, start to back off. This
4192 * case may not be covered by the all_pinned logic if there
4193 * is only 1 task on the busy runqueue (because we don't call
4194 * move_tasks).
4195 */
4196 if (sd->balance_interval < sd->max_interval)
4197 sd->balance_interval *= 2;
4198 }
4199
4200 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4202 ld_moved = -1;
4203
4204 goto out;
4205
4206 out_balanced:
4207 schedstat_inc(sd, lb_balanced[idle]);
4208
4209 sd->nr_balance_failed = 0;
4210
4211 out_one_pinned:
4212 /* tune up the balancing interval */
4213 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4214 (sd->balance_interval < sd->max_interval))
4215 sd->balance_interval *= 2;
4216
4217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4219 ld_moved = -1;
4220 else
4221 ld_moved = 0;
4222 out:
4223 if (ld_moved)
4224 update_shares(sd);
4225 return ld_moved;
4226 }
4227
4228 /*
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4231 *
4232 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4233 * this_rq is locked.
4234 */
4235 static int
4236 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4237 {
4238 struct sched_group *group;
4239 struct rq *busiest = NULL;
4240 unsigned long imbalance;
4241 int ld_moved = 0;
4242 int sd_idle = 0;
4243 int all_pinned = 0;
4244 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4245
4246 cpumask_setall(cpus);
4247
4248 /*
4249 * When power savings policy is enabled for the parent domain, idle
4250 * sibling can pick up load irrespective of busy siblings. In this case,
4251 * let the state of idle sibling percolate up as IDLE, instead of
4252 * portraying it as CPU_NOT_IDLE.
4253 */
4254 if (sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 sd_idle = 1;
4257
4258 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4259 redo:
4260 update_shares_locked(this_rq, sd);
4261 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4262 &sd_idle, cpus, NULL);
4263 if (!group) {
4264 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4265 goto out_balanced;
4266 }
4267
4268 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4269 if (!busiest) {
4270 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4271 goto out_balanced;
4272 }
4273
4274 BUG_ON(busiest == this_rq);
4275
4276 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4277
4278 ld_moved = 0;
4279 if (busiest->nr_running > 1) {
4280 /* Attempt to move tasks */
4281 double_lock_balance(this_rq, busiest);
4282 /* this_rq->clock is already updated */
4283 update_rq_clock(busiest);
4284 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4285 imbalance, sd, CPU_NEWLY_IDLE,
4286 &all_pinned);
4287 double_unlock_balance(this_rq, busiest);
4288
4289 if (unlikely(all_pinned)) {
4290 cpumask_clear_cpu(cpu_of(busiest), cpus);
4291 if (!cpumask_empty(cpus))
4292 goto redo;
4293 }
4294 }
4295
4296 if (!ld_moved) {
4297 int active_balance = 0;
4298
4299 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4302 return -1;
4303
4304 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4305 return -1;
4306
4307 if (sd->nr_balance_failed++ < 2)
4308 return -1;
4309
4310 /*
4311 * The only task running in a non-idle cpu can be moved to this
4312 * cpu in an attempt to completely freeup the other CPU
4313 * package. The same method used to move task in load_balance()
4314 * have been extended for load_balance_newidle() to speedup
4315 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4316 *
4317 * The package power saving logic comes from
4318 * find_busiest_group(). If there are no imbalance, then
4319 * f_b_g() will return NULL. However when sched_mc={1,2} then
4320 * f_b_g() will select a group from which a running task may be
4321 * pulled to this cpu in order to make the other package idle.
4322 * If there is no opportunity to make a package idle and if
4323 * there are no imbalance, then f_b_g() will return NULL and no
4324 * action will be taken in load_balance_newidle().
4325 *
4326 * Under normal task pull operation due to imbalance, there
4327 * will be more than one task in the source run queue and
4328 * move_tasks() will succeed. ld_moved will be true and this
4329 * active balance code will not be triggered.
4330 */
4331
4332 /* Lock busiest in correct order while this_rq is held */
4333 double_lock_balance(this_rq, busiest);
4334
4335 /*
4336 * don't kick the migration_thread, if the curr
4337 * task on busiest cpu can't be moved to this_cpu
4338 */
4339 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4340 double_unlock_balance(this_rq, busiest);
4341 all_pinned = 1;
4342 return ld_moved;
4343 }
4344
4345 if (!busiest->active_balance) {
4346 busiest->active_balance = 1;
4347 busiest->push_cpu = this_cpu;
4348 active_balance = 1;
4349 }
4350
4351 double_unlock_balance(this_rq, busiest);
4352 /*
4353 * Should not call ttwu while holding a rq->lock
4354 */
4355 spin_unlock(&this_rq->lock);
4356 if (active_balance)
4357 wake_up_process(busiest->migration_thread);
4358 spin_lock(&this_rq->lock);
4359
4360 } else
4361 sd->nr_balance_failed = 0;
4362
4363 update_shares_locked(this_rq, sd);
4364 return ld_moved;
4365
4366 out_balanced:
4367 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4370 return -1;
4371 sd->nr_balance_failed = 0;
4372
4373 return 0;
4374 }
4375
4376 /*
4377 * idle_balance is called by schedule() if this_cpu is about to become
4378 * idle. Attempts to pull tasks from other CPUs.
4379 */
4380 static void idle_balance(int this_cpu, struct rq *this_rq)
4381 {
4382 struct sched_domain *sd;
4383 int pulled_task = 0;
4384 unsigned long next_balance = jiffies + HZ;
4385
4386 for_each_domain(this_cpu, sd) {
4387 unsigned long interval;
4388
4389 if (!(sd->flags & SD_LOAD_BALANCE))
4390 continue;
4391
4392 if (sd->flags & SD_BALANCE_NEWIDLE)
4393 /* If we've pulled tasks over stop searching: */
4394 pulled_task = load_balance_newidle(this_cpu, this_rq,
4395 sd);
4396
4397 interval = msecs_to_jiffies(sd->balance_interval);
4398 if (time_after(next_balance, sd->last_balance + interval))
4399 next_balance = sd->last_balance + interval;
4400 if (pulled_task)
4401 break;
4402 }
4403 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4404 /*
4405 * We are going idle. next_balance may be set based on
4406 * a busy processor. So reset next_balance.
4407 */
4408 this_rq->next_balance = next_balance;
4409 }
4410 }
4411
4412 /*
4413 * active_load_balance is run by migration threads. It pushes running tasks
4414 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4415 * running on each physical CPU where possible, and avoids physical /
4416 * logical imbalances.
4417 *
4418 * Called with busiest_rq locked.
4419 */
4420 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4421 {
4422 int target_cpu = busiest_rq->push_cpu;
4423 struct sched_domain *sd;
4424 struct rq *target_rq;
4425
4426 /* Is there any task to move? */
4427 if (busiest_rq->nr_running <= 1)
4428 return;
4429
4430 target_rq = cpu_rq(target_cpu);
4431
4432 /*
4433 * This condition is "impossible", if it occurs
4434 * we need to fix it. Originally reported by
4435 * Bjorn Helgaas on a 128-cpu setup.
4436 */
4437 BUG_ON(busiest_rq == target_rq);
4438
4439 /* move a task from busiest_rq to target_rq */
4440 double_lock_balance(busiest_rq, target_rq);
4441 update_rq_clock(busiest_rq);
4442 update_rq_clock(target_rq);
4443
4444 /* Search for an sd spanning us and the target CPU. */
4445 for_each_domain(target_cpu, sd) {
4446 if ((sd->flags & SD_LOAD_BALANCE) &&
4447 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4448 break;
4449 }
4450
4451 if (likely(sd)) {
4452 schedstat_inc(sd, alb_count);
4453
4454 if (move_one_task(target_rq, target_cpu, busiest_rq,
4455 sd, CPU_IDLE))
4456 schedstat_inc(sd, alb_pushed);
4457 else
4458 schedstat_inc(sd, alb_failed);
4459 }
4460 double_unlock_balance(busiest_rq, target_rq);
4461 }
4462
4463 #ifdef CONFIG_NO_HZ
4464 static struct {
4465 atomic_t load_balancer;
4466 cpumask_var_t cpu_mask;
4467 cpumask_var_t ilb_grp_nohz_mask;
4468 } nohz ____cacheline_aligned = {
4469 .load_balancer = ATOMIC_INIT(-1),
4470 };
4471
4472 int get_nohz_load_balancer(void)
4473 {
4474 return atomic_read(&nohz.load_balancer);
4475 }
4476
4477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4478 /**
4479 * lowest_flag_domain - Return lowest sched_domain containing flag.
4480 * @cpu: The cpu whose lowest level of sched domain is to
4481 * be returned.
4482 * @flag: The flag to check for the lowest sched_domain
4483 * for the given cpu.
4484 *
4485 * Returns the lowest sched_domain of a cpu which contains the given flag.
4486 */
4487 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4488 {
4489 struct sched_domain *sd;
4490
4491 for_each_domain(cpu, sd)
4492 if (sd && (sd->flags & flag))
4493 break;
4494
4495 return sd;
4496 }
4497
4498 /**
4499 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4500 * @cpu: The cpu whose domains we're iterating over.
4501 * @sd: variable holding the value of the power_savings_sd
4502 * for cpu.
4503 * @flag: The flag to filter the sched_domains to be iterated.
4504 *
4505 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4506 * set, starting from the lowest sched_domain to the highest.
4507 */
4508 #define for_each_flag_domain(cpu, sd, flag) \
4509 for (sd = lowest_flag_domain(cpu, flag); \
4510 (sd && (sd->flags & flag)); sd = sd->parent)
4511
4512 /**
4513 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4514 * @ilb_group: group to be checked for semi-idleness
4515 *
4516 * Returns: 1 if the group is semi-idle. 0 otherwise.
4517 *
4518 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4519 * and atleast one non-idle CPU. This helper function checks if the given
4520 * sched_group is semi-idle or not.
4521 */
4522 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4523 {
4524 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4525 sched_group_cpus(ilb_group));
4526
4527 /*
4528 * A sched_group is semi-idle when it has atleast one busy cpu
4529 * and atleast one idle cpu.
4530 */
4531 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4532 return 0;
4533
4534 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4535 return 0;
4536
4537 return 1;
4538 }
4539 /**
4540 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4541 * @cpu: The cpu which is nominating a new idle_load_balancer.
4542 *
4543 * Returns: Returns the id of the idle load balancer if it exists,
4544 * Else, returns >= nr_cpu_ids.
4545 *
4546 * This algorithm picks the idle load balancer such that it belongs to a
4547 * semi-idle powersavings sched_domain. The idea is to try and avoid
4548 * completely idle packages/cores just for the purpose of idle load balancing
4549 * when there are other idle cpu's which are better suited for that job.
4550 */
4551 static int find_new_ilb(int cpu)
4552 {
4553 struct sched_domain *sd;
4554 struct sched_group *ilb_group;
4555
4556 /*
4557 * Have idle load balancer selection from semi-idle packages only
4558 * when power-aware load balancing is enabled
4559 */
4560 if (!(sched_smt_power_savings || sched_mc_power_savings))
4561 goto out_done;
4562
4563 /*
4564 * Optimize for the case when we have no idle CPUs or only one
4565 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4566 */
4567 if (cpumask_weight(nohz.cpu_mask) < 2)
4568 goto out_done;
4569
4570 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4571 ilb_group = sd->groups;
4572
4573 do {
4574 if (is_semi_idle_group(ilb_group))
4575 return cpumask_first(nohz.ilb_grp_nohz_mask);
4576
4577 ilb_group = ilb_group->next;
4578
4579 } while (ilb_group != sd->groups);
4580 }
4581
4582 out_done:
4583 return cpumask_first(nohz.cpu_mask);
4584 }
4585 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4586 static inline int find_new_ilb(int call_cpu)
4587 {
4588 return cpumask_first(nohz.cpu_mask);
4589 }
4590 #endif
4591
4592 /*
4593 * This routine will try to nominate the ilb (idle load balancing)
4594 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4595 * load balancing on behalf of all those cpus. If all the cpus in the system
4596 * go into this tickless mode, then there will be no ilb owner (as there is
4597 * no need for one) and all the cpus will sleep till the next wakeup event
4598 * arrives...
4599 *
4600 * For the ilb owner, tick is not stopped. And this tick will be used
4601 * for idle load balancing. ilb owner will still be part of
4602 * nohz.cpu_mask..
4603 *
4604 * While stopping the tick, this cpu will become the ilb owner if there
4605 * is no other owner. And will be the owner till that cpu becomes busy
4606 * or if all cpus in the system stop their ticks at which point
4607 * there is no need for ilb owner.
4608 *
4609 * When the ilb owner becomes busy, it nominates another owner, during the
4610 * next busy scheduler_tick()
4611 */
4612 int select_nohz_load_balancer(int stop_tick)
4613 {
4614 int cpu = smp_processor_id();
4615
4616 if (stop_tick) {
4617 cpu_rq(cpu)->in_nohz_recently = 1;
4618
4619 if (!cpu_active(cpu)) {
4620 if (atomic_read(&nohz.load_balancer) != cpu)
4621 return 0;
4622
4623 /*
4624 * If we are going offline and still the leader,
4625 * give up!
4626 */
4627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4628 BUG();
4629
4630 return 0;
4631 }
4632
4633 cpumask_set_cpu(cpu, nohz.cpu_mask);
4634
4635 /* time for ilb owner also to sleep */
4636 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4637 if (atomic_read(&nohz.load_balancer) == cpu)
4638 atomic_set(&nohz.load_balancer, -1);
4639 return 0;
4640 }
4641
4642 if (atomic_read(&nohz.load_balancer) == -1) {
4643 /* make me the ilb owner */
4644 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4645 return 1;
4646 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4647 int new_ilb;
4648
4649 if (!(sched_smt_power_savings ||
4650 sched_mc_power_savings))
4651 return 1;
4652 /*
4653 * Check to see if there is a more power-efficient
4654 * ilb.
4655 */
4656 new_ilb = find_new_ilb(cpu);
4657 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4658 atomic_set(&nohz.load_balancer, -1);
4659 resched_cpu(new_ilb);
4660 return 0;
4661 }
4662 return 1;
4663 }
4664 } else {
4665 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4666 return 0;
4667
4668 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4669
4670 if (atomic_read(&nohz.load_balancer) == cpu)
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4673 }
4674 return 0;
4675 }
4676 #endif
4677
4678 static DEFINE_SPINLOCK(balancing);
4679
4680 /*
4681 * It checks each scheduling domain to see if it is due to be balanced,
4682 * and initiates a balancing operation if so.
4683 *
4684 * Balancing parameters are set up in arch_init_sched_domains.
4685 */
4686 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4687 {
4688 int balance = 1;
4689 struct rq *rq = cpu_rq(cpu);
4690 unsigned long interval;
4691 struct sched_domain *sd;
4692 /* Earliest time when we have to do rebalance again */
4693 unsigned long next_balance = jiffies + 60*HZ;
4694 int update_next_balance = 0;
4695 int need_serialize;
4696
4697 for_each_domain(cpu, sd) {
4698 if (!(sd->flags & SD_LOAD_BALANCE))
4699 continue;
4700
4701 interval = sd->balance_interval;
4702 if (idle != CPU_IDLE)
4703 interval *= sd->busy_factor;
4704
4705 /* scale ms to jiffies */
4706 interval = msecs_to_jiffies(interval);
4707 if (unlikely(!interval))
4708 interval = 1;
4709 if (interval > HZ*NR_CPUS/10)
4710 interval = HZ*NR_CPUS/10;
4711
4712 need_serialize = sd->flags & SD_SERIALIZE;
4713
4714 if (need_serialize) {
4715 if (!spin_trylock(&balancing))
4716 goto out;
4717 }
4718
4719 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4720 if (load_balance(cpu, rq, sd, idle, &balance)) {
4721 /*
4722 * We've pulled tasks over so either we're no
4723 * longer idle, or one of our SMT siblings is
4724 * not idle.
4725 */
4726 idle = CPU_NOT_IDLE;
4727 }
4728 sd->last_balance = jiffies;
4729 }
4730 if (need_serialize)
4731 spin_unlock(&balancing);
4732 out:
4733 if (time_after(next_balance, sd->last_balance + interval)) {
4734 next_balance = sd->last_balance + interval;
4735 update_next_balance = 1;
4736 }
4737
4738 /*
4739 * Stop the load balance at this level. There is another
4740 * CPU in our sched group which is doing load balancing more
4741 * actively.
4742 */
4743 if (!balance)
4744 break;
4745 }
4746
4747 /*
4748 * next_balance will be updated only when there is a need.
4749 * When the cpu is attached to null domain for ex, it will not be
4750 * updated.
4751 */
4752 if (likely(update_next_balance))
4753 rq->next_balance = next_balance;
4754 }
4755
4756 /*
4757 * run_rebalance_domains is triggered when needed from the scheduler tick.
4758 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4759 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4760 */
4761 static void run_rebalance_domains(struct softirq_action *h)
4762 {
4763 int this_cpu = smp_processor_id();
4764 struct rq *this_rq = cpu_rq(this_cpu);
4765 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4766 CPU_IDLE : CPU_NOT_IDLE;
4767
4768 rebalance_domains(this_cpu, idle);
4769
4770 #ifdef CONFIG_NO_HZ
4771 /*
4772 * If this cpu is the owner for idle load balancing, then do the
4773 * balancing on behalf of the other idle cpus whose ticks are
4774 * stopped.
4775 */
4776 if (this_rq->idle_at_tick &&
4777 atomic_read(&nohz.load_balancer) == this_cpu) {
4778 struct rq *rq;
4779 int balance_cpu;
4780
4781 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4782 if (balance_cpu == this_cpu)
4783 continue;
4784
4785 /*
4786 * If this cpu gets work to do, stop the load balancing
4787 * work being done for other cpus. Next load
4788 * balancing owner will pick it up.
4789 */
4790 if (need_resched())
4791 break;
4792
4793 rebalance_domains(balance_cpu, CPU_IDLE);
4794
4795 rq = cpu_rq(balance_cpu);
4796 if (time_after(this_rq->next_balance, rq->next_balance))
4797 this_rq->next_balance = rq->next_balance;
4798 }
4799 }
4800 #endif
4801 }
4802
4803 static inline int on_null_domain(int cpu)
4804 {
4805 return !rcu_dereference(cpu_rq(cpu)->sd);
4806 }
4807
4808 /*
4809 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4810 *
4811 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4812 * idle load balancing owner or decide to stop the periodic load balancing,
4813 * if the whole system is idle.
4814 */
4815 static inline void trigger_load_balance(struct rq *rq, int cpu)
4816 {
4817 #ifdef CONFIG_NO_HZ
4818 /*
4819 * If we were in the nohz mode recently and busy at the current
4820 * scheduler tick, then check if we need to nominate new idle
4821 * load balancer.
4822 */
4823 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4824 rq->in_nohz_recently = 0;
4825
4826 if (atomic_read(&nohz.load_balancer) == cpu) {
4827 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4828 atomic_set(&nohz.load_balancer, -1);
4829 }
4830
4831 if (atomic_read(&nohz.load_balancer) == -1) {
4832 int ilb = find_new_ilb(cpu);
4833
4834 if (ilb < nr_cpu_ids)
4835 resched_cpu(ilb);
4836 }
4837 }
4838
4839 /*
4840 * If this cpu is idle and doing idle load balancing for all the
4841 * cpus with ticks stopped, is it time for that to stop?
4842 */
4843 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4844 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4845 resched_cpu(cpu);
4846 return;
4847 }
4848
4849 /*
4850 * If this cpu is idle and the idle load balancing is done by
4851 * someone else, then no need raise the SCHED_SOFTIRQ
4852 */
4853 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4854 cpumask_test_cpu(cpu, nohz.cpu_mask))
4855 return;
4856 #endif
4857 /* Don't need to rebalance while attached to NULL domain */
4858 if (time_after_eq(jiffies, rq->next_balance) &&
4859 likely(!on_null_domain(cpu)))
4860 raise_softirq(SCHED_SOFTIRQ);
4861 }
4862
4863 #else /* CONFIG_SMP */
4864
4865 /*
4866 * on UP we do not need to balance between CPUs:
4867 */
4868 static inline void idle_balance(int cpu, struct rq *rq)
4869 {
4870 }
4871
4872 #endif
4873
4874 DEFINE_PER_CPU(struct kernel_stat, kstat);
4875
4876 EXPORT_PER_CPU_SYMBOL(kstat);
4877
4878 /*
4879 * Return any ns on the sched_clock that have not yet been accounted in
4880 * @p in case that task is currently running.
4881 *
4882 * Called with task_rq_lock() held on @rq.
4883 */
4884 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4885 {
4886 u64 ns = 0;
4887
4888 if (task_current(rq, p)) {
4889 update_rq_clock(rq);
4890 ns = rq->clock - p->se.exec_start;
4891 if ((s64)ns < 0)
4892 ns = 0;
4893 }
4894
4895 return ns;
4896 }
4897
4898 unsigned long long task_delta_exec(struct task_struct *p)
4899 {
4900 unsigned long flags;
4901 struct rq *rq;
4902 u64 ns = 0;
4903
4904 rq = task_rq_lock(p, &flags);
4905 ns = do_task_delta_exec(p, rq);
4906 task_rq_unlock(rq, &flags);
4907
4908 return ns;
4909 }
4910
4911 /*
4912 * Return accounted runtime for the task.
4913 * In case the task is currently running, return the runtime plus current's
4914 * pending runtime that have not been accounted yet.
4915 */
4916 unsigned long long task_sched_runtime(struct task_struct *p)
4917 {
4918 unsigned long flags;
4919 struct rq *rq;
4920 u64 ns = 0;
4921
4922 rq = task_rq_lock(p, &flags);
4923 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4924 task_rq_unlock(rq, &flags);
4925
4926 return ns;
4927 }
4928
4929 /*
4930 * Return sum_exec_runtime for the thread group.
4931 * In case the task is currently running, return the sum plus current's
4932 * pending runtime that have not been accounted yet.
4933 *
4934 * Note that the thread group might have other running tasks as well,
4935 * so the return value not includes other pending runtime that other
4936 * running tasks might have.
4937 */
4938 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4939 {
4940 struct task_cputime totals;
4941 unsigned long flags;
4942 struct rq *rq;
4943 u64 ns;
4944
4945 rq = task_rq_lock(p, &flags);
4946 thread_group_cputime(p, &totals);
4947 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4948 task_rq_unlock(rq, &flags);
4949
4950 return ns;
4951 }
4952
4953 /*
4954 * Account user cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
4956 * @cputime: the cpu time spent in user space since the last update
4957 * @cputime_scaled: cputime scaled by cpu frequency
4958 */
4959 void account_user_time(struct task_struct *p, cputime_t cputime,
4960 cputime_t cputime_scaled)
4961 {
4962 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4963 cputime64_t tmp;
4964
4965 /* Add user time to process. */
4966 p->utime = cputime_add(p->utime, cputime);
4967 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4968 account_group_user_time(p, cputime);
4969
4970 /* Add user time to cpustat. */
4971 tmp = cputime_to_cputime64(cputime);
4972 if (TASK_NICE(p) > 0)
4973 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4974 else
4975 cpustat->user = cputime64_add(cpustat->user, tmp);
4976
4977 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4978 /* Account for user time used */
4979 acct_update_integrals(p);
4980 }
4981
4982 /*
4983 * Account guest cpu time to a process.
4984 * @p: the process that the cpu time gets accounted to
4985 * @cputime: the cpu time spent in virtual machine since the last update
4986 * @cputime_scaled: cputime scaled by cpu frequency
4987 */
4988 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4989 cputime_t cputime_scaled)
4990 {
4991 cputime64_t tmp;
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993
4994 tmp = cputime_to_cputime64(cputime);
4995
4996 /* Add guest time to process. */
4997 p->utime = cputime_add(p->utime, cputime);
4998 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4999 account_group_user_time(p, cputime);
5000 p->gtime = cputime_add(p->gtime, cputime);
5001
5002 /* Add guest time to cpustat. */
5003 cpustat->user = cputime64_add(cpustat->user, tmp);
5004 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5005 }
5006
5007 /*
5008 * Account system cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @hardirq_offset: the offset to subtract from hardirq_count()
5011 * @cputime: the cpu time spent in kernel space since the last update
5012 * @cputime_scaled: cputime scaled by cpu frequency
5013 */
5014 void account_system_time(struct task_struct *p, int hardirq_offset,
5015 cputime_t cputime, cputime_t cputime_scaled)
5016 {
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5018 cputime64_t tmp;
5019
5020 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5021 account_guest_time(p, cputime, cputime_scaled);
5022 return;
5023 }
5024
5025 /* Add system time to process. */
5026 p->stime = cputime_add(p->stime, cputime);
5027 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5028 account_group_system_time(p, cputime);
5029
5030 /* Add system time to cpustat. */
5031 tmp = cputime_to_cputime64(cputime);
5032 if (hardirq_count() - hardirq_offset)
5033 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5034 else if (softirq_count())
5035 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5036 else
5037 cpustat->system = cputime64_add(cpustat->system, tmp);
5038
5039 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5040
5041 /* Account for system time used */
5042 acct_update_integrals(p);
5043 }
5044
5045 /*
5046 * Account for involuntary wait time.
5047 * @steal: the cpu time spent in involuntary wait
5048 */
5049 void account_steal_time(cputime_t cputime)
5050 {
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5052 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5053
5054 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5055 }
5056
5057 /*
5058 * Account for idle time.
5059 * @cputime: the cpu time spent in idle wait
5060 */
5061 void account_idle_time(cputime_t cputime)
5062 {
5063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5064 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5065 struct rq *rq = this_rq();
5066
5067 if (atomic_read(&rq->nr_iowait) > 0)
5068 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5069 else
5070 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5071 }
5072
5073 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5074
5075 /*
5076 * Account a single tick of cpu time.
5077 * @p: the process that the cpu time gets accounted to
5078 * @user_tick: indicates if the tick is a user or a system tick
5079 */
5080 void account_process_tick(struct task_struct *p, int user_tick)
5081 {
5082 cputime_t one_jiffy = jiffies_to_cputime(1);
5083 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5084 struct rq *rq = this_rq();
5085
5086 if (user_tick)
5087 account_user_time(p, one_jiffy, one_jiffy_scaled);
5088 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5089 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5090 one_jiffy_scaled);
5091 else
5092 account_idle_time(one_jiffy);
5093 }
5094
5095 /*
5096 * Account multiple ticks of steal time.
5097 * @p: the process from which the cpu time has been stolen
5098 * @ticks: number of stolen ticks
5099 */
5100 void account_steal_ticks(unsigned long ticks)
5101 {
5102 account_steal_time(jiffies_to_cputime(ticks));
5103 }
5104
5105 /*
5106 * Account multiple ticks of idle time.
5107 * @ticks: number of stolen ticks
5108 */
5109 void account_idle_ticks(unsigned long ticks)
5110 {
5111 account_idle_time(jiffies_to_cputime(ticks));
5112 }
5113
5114 #endif
5115
5116 /*
5117 * Use precise platform statistics if available:
5118 */
5119 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5120 cputime_t task_utime(struct task_struct *p)
5121 {
5122 return p->utime;
5123 }
5124
5125 cputime_t task_stime(struct task_struct *p)
5126 {
5127 return p->stime;
5128 }
5129 #else
5130 cputime_t task_utime(struct task_struct *p)
5131 {
5132 clock_t utime = cputime_to_clock_t(p->utime),
5133 total = utime + cputime_to_clock_t(p->stime);
5134 u64 temp;
5135
5136 /*
5137 * Use CFS's precise accounting:
5138 */
5139 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5140
5141 if (total) {
5142 temp *= utime;
5143 do_div(temp, total);
5144 }
5145 utime = (clock_t)temp;
5146
5147 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5148 return p->prev_utime;
5149 }
5150
5151 cputime_t task_stime(struct task_struct *p)
5152 {
5153 clock_t stime;
5154
5155 /*
5156 * Use CFS's precise accounting. (we subtract utime from
5157 * the total, to make sure the total observed by userspace
5158 * grows monotonically - apps rely on that):
5159 */
5160 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5161 cputime_to_clock_t(task_utime(p));
5162
5163 if (stime >= 0)
5164 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5165
5166 return p->prev_stime;
5167 }
5168 #endif
5169
5170 inline cputime_t task_gtime(struct task_struct *p)
5171 {
5172 return p->gtime;
5173 }
5174
5175 /*
5176 * This function gets called by the timer code, with HZ frequency.
5177 * We call it with interrupts disabled.
5178 *
5179 * It also gets called by the fork code, when changing the parent's
5180 * timeslices.
5181 */
5182 void scheduler_tick(void)
5183 {
5184 int cpu = smp_processor_id();
5185 struct rq *rq = cpu_rq(cpu);
5186 struct task_struct *curr = rq->curr;
5187
5188 sched_clock_tick();
5189
5190 spin_lock(&rq->lock);
5191 update_rq_clock(rq);
5192 update_cpu_load(rq);
5193 curr->sched_class->task_tick(rq, curr, 0);
5194 spin_unlock(&rq->lock);
5195
5196 perf_counter_task_tick(curr, cpu);
5197
5198 #ifdef CONFIG_SMP
5199 rq->idle_at_tick = idle_cpu(cpu);
5200 trigger_load_balance(rq, cpu);
5201 #endif
5202 }
5203
5204 notrace unsigned long get_parent_ip(unsigned long addr)
5205 {
5206 if (in_lock_functions(addr)) {
5207 addr = CALLER_ADDR2;
5208 if (in_lock_functions(addr))
5209 addr = CALLER_ADDR3;
5210 }
5211 return addr;
5212 }
5213
5214 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5215 defined(CONFIG_PREEMPT_TRACER))
5216
5217 void __kprobes add_preempt_count(int val)
5218 {
5219 #ifdef CONFIG_DEBUG_PREEMPT
5220 /*
5221 * Underflow?
5222 */
5223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5224 return;
5225 #endif
5226 preempt_count() += val;
5227 #ifdef CONFIG_DEBUG_PREEMPT
5228 /*
5229 * Spinlock count overflowing soon?
5230 */
5231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5232 PREEMPT_MASK - 10);
5233 #endif
5234 if (preempt_count() == val)
5235 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5236 }
5237 EXPORT_SYMBOL(add_preempt_count);
5238
5239 void __kprobes sub_preempt_count(int val)
5240 {
5241 #ifdef CONFIG_DEBUG_PREEMPT
5242 /*
5243 * Underflow?
5244 */
5245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5246 return;
5247 /*
5248 * Is the spinlock portion underflowing?
5249 */
5250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5251 !(preempt_count() & PREEMPT_MASK)))
5252 return;
5253 #endif
5254
5255 if (preempt_count() == val)
5256 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5257 preempt_count() -= val;
5258 }
5259 EXPORT_SYMBOL(sub_preempt_count);
5260
5261 #endif
5262
5263 /*
5264 * Print scheduling while atomic bug:
5265 */
5266 static noinline void __schedule_bug(struct task_struct *prev)
5267 {
5268 struct pt_regs *regs = get_irq_regs();
5269
5270 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5271 prev->comm, prev->pid, preempt_count());
5272
5273 debug_show_held_locks(prev);
5274 print_modules();
5275 if (irqs_disabled())
5276 print_irqtrace_events(prev);
5277
5278 if (regs)
5279 show_regs(regs);
5280 else
5281 dump_stack();
5282 }
5283
5284 /*
5285 * Various schedule()-time debugging checks and statistics:
5286 */
5287 static inline void schedule_debug(struct task_struct *prev)
5288 {
5289 /*
5290 * Test if we are atomic. Since do_exit() needs to call into
5291 * schedule() atomically, we ignore that path for now.
5292 * Otherwise, whine if we are scheduling when we should not be.
5293 */
5294 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5295 __schedule_bug(prev);
5296
5297 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5298
5299 schedstat_inc(this_rq(), sched_count);
5300 #ifdef CONFIG_SCHEDSTATS
5301 if (unlikely(prev->lock_depth >= 0)) {
5302 schedstat_inc(this_rq(), bkl_count);
5303 schedstat_inc(prev, sched_info.bkl_count);
5304 }
5305 #endif
5306 }
5307
5308 static void put_prev_task(struct rq *rq, struct task_struct *p)
5309 {
5310 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5311
5312 update_avg(&p->se.avg_running, runtime);
5313
5314 if (p->state == TASK_RUNNING) {
5315 /*
5316 * In order to avoid avg_overlap growing stale when we are
5317 * indeed overlapping and hence not getting put to sleep, grow
5318 * the avg_overlap on preemption.
5319 *
5320 * We use the average preemption runtime because that
5321 * correlates to the amount of cache footprint a task can
5322 * build up.
5323 */
5324 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325 update_avg(&p->se.avg_overlap, runtime);
5326 } else {
5327 update_avg(&p->se.avg_running, 0);
5328 }
5329 p->sched_class->put_prev_task(rq, p);
5330 }
5331
5332 /*
5333 * Pick up the highest-prio task:
5334 */
5335 static inline struct task_struct *
5336 pick_next_task(struct rq *rq)
5337 {
5338 const struct sched_class *class;
5339 struct task_struct *p;
5340
5341 /*
5342 * Optimization: we know that if all tasks are in
5343 * the fair class we can call that function directly:
5344 */
5345 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5346 p = fair_sched_class.pick_next_task(rq);
5347 if (likely(p))
5348 return p;
5349 }
5350
5351 class = sched_class_highest;
5352 for ( ; ; ) {
5353 p = class->pick_next_task(rq);
5354 if (p)
5355 return p;
5356 /*
5357 * Will never be NULL as the idle class always
5358 * returns a non-NULL p:
5359 */
5360 class = class->next;
5361 }
5362 }
5363
5364 /*
5365 * schedule() is the main scheduler function.
5366 */
5367 asmlinkage void __sched schedule(void)
5368 {
5369 struct task_struct *prev, *next;
5370 unsigned long *switch_count;
5371 struct rq *rq;
5372 int cpu;
5373
5374 need_resched:
5375 preempt_disable();
5376 cpu = smp_processor_id();
5377 rq = cpu_rq(cpu);
5378 rcu_sched_qs(cpu);
5379 prev = rq->curr;
5380 switch_count = &prev->nivcsw;
5381
5382 release_kernel_lock(prev);
5383 need_resched_nonpreemptible:
5384
5385 schedule_debug(prev);
5386
5387 if (sched_feat(HRTICK))
5388 hrtick_clear(rq);
5389
5390 spin_lock_irq(&rq->lock);
5391 update_rq_clock(rq);
5392 clear_tsk_need_resched(prev);
5393
5394 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5395 if (unlikely(signal_pending_state(prev->state, prev)))
5396 prev->state = TASK_RUNNING;
5397 else
5398 deactivate_task(rq, prev, 1);
5399 switch_count = &prev->nvcsw;
5400 }
5401
5402 pre_schedule(rq, prev);
5403
5404 if (unlikely(!rq->nr_running))
5405 idle_balance(cpu, rq);
5406
5407 put_prev_task(rq, prev);
5408 next = pick_next_task(rq);
5409
5410 if (likely(prev != next)) {
5411 sched_info_switch(prev, next);
5412 perf_counter_task_sched_out(prev, next, cpu);
5413
5414 rq->nr_switches++;
5415 rq->curr = next;
5416 ++*switch_count;
5417
5418 context_switch(rq, prev, next); /* unlocks the rq */
5419 /*
5420 * the context switch might have flipped the stack from under
5421 * us, hence refresh the local variables.
5422 */
5423 cpu = smp_processor_id();
5424 rq = cpu_rq(cpu);
5425 } else
5426 spin_unlock_irq(&rq->lock);
5427
5428 post_schedule(rq);
5429
5430 if (unlikely(reacquire_kernel_lock(current) < 0))
5431 goto need_resched_nonpreemptible;
5432
5433 preempt_enable_no_resched();
5434 if (need_resched())
5435 goto need_resched;
5436 }
5437 EXPORT_SYMBOL(schedule);
5438
5439 #ifdef CONFIG_SMP
5440 /*
5441 * Look out! "owner" is an entirely speculative pointer
5442 * access and not reliable.
5443 */
5444 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5445 {
5446 unsigned int cpu;
5447 struct rq *rq;
5448
5449 if (!sched_feat(OWNER_SPIN))
5450 return 0;
5451
5452 #ifdef CONFIG_DEBUG_PAGEALLOC
5453 /*
5454 * Need to access the cpu field knowing that
5455 * DEBUG_PAGEALLOC could have unmapped it if
5456 * the mutex owner just released it and exited.
5457 */
5458 if (probe_kernel_address(&owner->cpu, cpu))
5459 goto out;
5460 #else
5461 cpu = owner->cpu;
5462 #endif
5463
5464 /*
5465 * Even if the access succeeded (likely case),
5466 * the cpu field may no longer be valid.
5467 */
5468 if (cpu >= nr_cpumask_bits)
5469 goto out;
5470
5471 /*
5472 * We need to validate that we can do a
5473 * get_cpu() and that we have the percpu area.
5474 */
5475 if (!cpu_online(cpu))
5476 goto out;
5477
5478 rq = cpu_rq(cpu);
5479
5480 for (;;) {
5481 /*
5482 * Owner changed, break to re-assess state.
5483 */
5484 if (lock->owner != owner)
5485 break;
5486
5487 /*
5488 * Is that owner really running on that cpu?
5489 */
5490 if (task_thread_info(rq->curr) != owner || need_resched())
5491 return 0;
5492
5493 cpu_relax();
5494 }
5495 out:
5496 return 1;
5497 }
5498 #endif
5499
5500 #ifdef CONFIG_PREEMPT
5501 /*
5502 * this is the entry point to schedule() from in-kernel preemption
5503 * off of preempt_enable. Kernel preemptions off return from interrupt
5504 * occur there and call schedule directly.
5505 */
5506 asmlinkage void __sched preempt_schedule(void)
5507 {
5508 struct thread_info *ti = current_thread_info();
5509
5510 /*
5511 * If there is a non-zero preempt_count or interrupts are disabled,
5512 * we do not want to preempt the current task. Just return..
5513 */
5514 if (likely(ti->preempt_count || irqs_disabled()))
5515 return;
5516
5517 do {
5518 add_preempt_count(PREEMPT_ACTIVE);
5519 schedule();
5520 sub_preempt_count(PREEMPT_ACTIVE);
5521
5522 /*
5523 * Check again in case we missed a preemption opportunity
5524 * between schedule and now.
5525 */
5526 barrier();
5527 } while (need_resched());
5528 }
5529 EXPORT_SYMBOL(preempt_schedule);
5530
5531 /*
5532 * this is the entry point to schedule() from kernel preemption
5533 * off of irq context.
5534 * Note, that this is called and return with irqs disabled. This will
5535 * protect us against recursive calling from irq.
5536 */
5537 asmlinkage void __sched preempt_schedule_irq(void)
5538 {
5539 struct thread_info *ti = current_thread_info();
5540
5541 /* Catch callers which need to be fixed */
5542 BUG_ON(ti->preempt_count || !irqs_disabled());
5543
5544 do {
5545 add_preempt_count(PREEMPT_ACTIVE);
5546 local_irq_enable();
5547 schedule();
5548 local_irq_disable();
5549 sub_preempt_count(PREEMPT_ACTIVE);
5550
5551 /*
5552 * Check again in case we missed a preemption opportunity
5553 * between schedule and now.
5554 */
5555 barrier();
5556 } while (need_resched());
5557 }
5558
5559 #endif /* CONFIG_PREEMPT */
5560
5561 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5562 void *key)
5563 {
5564 return try_to_wake_up(curr->private, mode, wake_flags);
5565 }
5566 EXPORT_SYMBOL(default_wake_function);
5567
5568 /*
5569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5571 * number) then we wake all the non-exclusive tasks and one exclusive task.
5572 *
5573 * There are circumstances in which we can try to wake a task which has already
5574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5576 */
5577 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5578 int nr_exclusive, int wake_flags, void *key)
5579 {
5580 wait_queue_t *curr, *next;
5581
5582 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5583 unsigned flags = curr->flags;
5584
5585 if (curr->func(curr, mode, wake_flags, key) &&
5586 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5587 break;
5588 }
5589 }
5590
5591 /**
5592 * __wake_up - wake up threads blocked on a waitqueue.
5593 * @q: the waitqueue
5594 * @mode: which threads
5595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5596 * @key: is directly passed to the wakeup function
5597 *
5598 * It may be assumed that this function implies a write memory barrier before
5599 * changing the task state if and only if any tasks are woken up.
5600 */
5601 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5602 int nr_exclusive, void *key)
5603 {
5604 unsigned long flags;
5605
5606 spin_lock_irqsave(&q->lock, flags);
5607 __wake_up_common(q, mode, nr_exclusive, 0, key);
5608 spin_unlock_irqrestore(&q->lock, flags);
5609 }
5610 EXPORT_SYMBOL(__wake_up);
5611
5612 /*
5613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5614 */
5615 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5616 {
5617 __wake_up_common(q, mode, 1, 0, NULL);
5618 }
5619
5620 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5621 {
5622 __wake_up_common(q, mode, 1, 0, key);
5623 }
5624
5625 /**
5626 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5627 * @q: the waitqueue
5628 * @mode: which threads
5629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5630 * @key: opaque value to be passed to wakeup targets
5631 *
5632 * The sync wakeup differs that the waker knows that it will schedule
5633 * away soon, so while the target thread will be woken up, it will not
5634 * be migrated to another CPU - ie. the two threads are 'synchronized'
5635 * with each other. This can prevent needless bouncing between CPUs.
5636 *
5637 * On UP it can prevent extra preemption.
5638 *
5639 * It may be assumed that this function implies a write memory barrier before
5640 * changing the task state if and only if any tasks are woken up.
5641 */
5642 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5643 int nr_exclusive, void *key)
5644 {
5645 unsigned long flags;
5646 int wake_flags = WF_SYNC;
5647
5648 if (unlikely(!q))
5649 return;
5650
5651 if (unlikely(!nr_exclusive))
5652 wake_flags = 0;
5653
5654 spin_lock_irqsave(&q->lock, flags);
5655 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5656 spin_unlock_irqrestore(&q->lock, flags);
5657 }
5658 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5659
5660 /*
5661 * __wake_up_sync - see __wake_up_sync_key()
5662 */
5663 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5664 {
5665 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5666 }
5667 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5668
5669 /**
5670 * complete: - signals a single thread waiting on this completion
5671 * @x: holds the state of this particular completion
5672 *
5673 * This will wake up a single thread waiting on this completion. Threads will be
5674 * awakened in the same order in which they were queued.
5675 *
5676 * See also complete_all(), wait_for_completion() and related routines.
5677 *
5678 * It may be assumed that this function implies a write memory barrier before
5679 * changing the task state if and only if any tasks are woken up.
5680 */
5681 void complete(struct completion *x)
5682 {
5683 unsigned long flags;
5684
5685 spin_lock_irqsave(&x->wait.lock, flags);
5686 x->done++;
5687 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5688 spin_unlock_irqrestore(&x->wait.lock, flags);
5689 }
5690 EXPORT_SYMBOL(complete);
5691
5692 /**
5693 * complete_all: - signals all threads waiting on this completion
5694 * @x: holds the state of this particular completion
5695 *
5696 * This will wake up all threads waiting on this particular completion event.
5697 *
5698 * It may be assumed that this function implies a write memory barrier before
5699 * changing the task state if and only if any tasks are woken up.
5700 */
5701 void complete_all(struct completion *x)
5702 {
5703 unsigned long flags;
5704
5705 spin_lock_irqsave(&x->wait.lock, flags);
5706 x->done += UINT_MAX/2;
5707 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5708 spin_unlock_irqrestore(&x->wait.lock, flags);
5709 }
5710 EXPORT_SYMBOL(complete_all);
5711
5712 static inline long __sched
5713 do_wait_for_common(struct completion *x, long timeout, int state)
5714 {
5715 if (!x->done) {
5716 DECLARE_WAITQUEUE(wait, current);
5717
5718 wait.flags |= WQ_FLAG_EXCLUSIVE;
5719 __add_wait_queue_tail(&x->wait, &wait);
5720 do {
5721 if (signal_pending_state(state, current)) {
5722 timeout = -ERESTARTSYS;
5723 break;
5724 }
5725 __set_current_state(state);
5726 spin_unlock_irq(&x->wait.lock);
5727 timeout = schedule_timeout(timeout);
5728 spin_lock_irq(&x->wait.lock);
5729 } while (!x->done && timeout);
5730 __remove_wait_queue(&x->wait, &wait);
5731 if (!x->done)
5732 return timeout;
5733 }
5734 x->done--;
5735 return timeout ?: 1;
5736 }
5737
5738 static long __sched
5739 wait_for_common(struct completion *x, long timeout, int state)
5740 {
5741 might_sleep();
5742
5743 spin_lock_irq(&x->wait.lock);
5744 timeout = do_wait_for_common(x, timeout, state);
5745 spin_unlock_irq(&x->wait.lock);
5746 return timeout;
5747 }
5748
5749 /**
5750 * wait_for_completion: - waits for completion of a task
5751 * @x: holds the state of this particular completion
5752 *
5753 * This waits to be signaled for completion of a specific task. It is NOT
5754 * interruptible and there is no timeout.
5755 *
5756 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5757 * and interrupt capability. Also see complete().
5758 */
5759 void __sched wait_for_completion(struct completion *x)
5760 {
5761 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5762 }
5763 EXPORT_SYMBOL(wait_for_completion);
5764
5765 /**
5766 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5767 * @x: holds the state of this particular completion
5768 * @timeout: timeout value in jiffies
5769 *
5770 * This waits for either a completion of a specific task to be signaled or for a
5771 * specified timeout to expire. The timeout is in jiffies. It is not
5772 * interruptible.
5773 */
5774 unsigned long __sched
5775 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5776 {
5777 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5778 }
5779 EXPORT_SYMBOL(wait_for_completion_timeout);
5780
5781 /**
5782 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5783 * @x: holds the state of this particular completion
5784 *
5785 * This waits for completion of a specific task to be signaled. It is
5786 * interruptible.
5787 */
5788 int __sched wait_for_completion_interruptible(struct completion *x)
5789 {
5790 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5791 if (t == -ERESTARTSYS)
5792 return t;
5793 return 0;
5794 }
5795 EXPORT_SYMBOL(wait_for_completion_interruptible);
5796
5797 /**
5798 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5801 *
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5804 */
5805 unsigned long __sched
5806 wait_for_completion_interruptible_timeout(struct completion *x,
5807 unsigned long timeout)
5808 {
5809 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5810 }
5811 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5812
5813 /**
5814 * wait_for_completion_killable: - waits for completion of a task (killable)
5815 * @x: holds the state of this particular completion
5816 *
5817 * This waits to be signaled for completion of a specific task. It can be
5818 * interrupted by a kill signal.
5819 */
5820 int __sched wait_for_completion_killable(struct completion *x)
5821 {
5822 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5823 if (t == -ERESTARTSYS)
5824 return t;
5825 return 0;
5826 }
5827 EXPORT_SYMBOL(wait_for_completion_killable);
5828
5829 /**
5830 * try_wait_for_completion - try to decrement a completion without blocking
5831 * @x: completion structure
5832 *
5833 * Returns: 0 if a decrement cannot be done without blocking
5834 * 1 if a decrement succeeded.
5835 *
5836 * If a completion is being used as a counting completion,
5837 * attempt to decrement the counter without blocking. This
5838 * enables us to avoid waiting if the resource the completion
5839 * is protecting is not available.
5840 */
5841 bool try_wait_for_completion(struct completion *x)
5842 {
5843 int ret = 1;
5844
5845 spin_lock_irq(&x->wait.lock);
5846 if (!x->done)
5847 ret = 0;
5848 else
5849 x->done--;
5850 spin_unlock_irq(&x->wait.lock);
5851 return ret;
5852 }
5853 EXPORT_SYMBOL(try_wait_for_completion);
5854
5855 /**
5856 * completion_done - Test to see if a completion has any waiters
5857 * @x: completion structure
5858 *
5859 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5860 * 1 if there are no waiters.
5861 *
5862 */
5863 bool completion_done(struct completion *x)
5864 {
5865 int ret = 1;
5866
5867 spin_lock_irq(&x->wait.lock);
5868 if (!x->done)
5869 ret = 0;
5870 spin_unlock_irq(&x->wait.lock);
5871 return ret;
5872 }
5873 EXPORT_SYMBOL(completion_done);
5874
5875 static long __sched
5876 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5877 {
5878 unsigned long flags;
5879 wait_queue_t wait;
5880
5881 init_waitqueue_entry(&wait, current);
5882
5883 __set_current_state(state);
5884
5885 spin_lock_irqsave(&q->lock, flags);
5886 __add_wait_queue(q, &wait);
5887 spin_unlock(&q->lock);
5888 timeout = schedule_timeout(timeout);
5889 spin_lock_irq(&q->lock);
5890 __remove_wait_queue(q, &wait);
5891 spin_unlock_irqrestore(&q->lock, flags);
5892
5893 return timeout;
5894 }
5895
5896 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5897 {
5898 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5899 }
5900 EXPORT_SYMBOL(interruptible_sleep_on);
5901
5902 long __sched
5903 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5904 {
5905 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5906 }
5907 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5908
5909 void __sched sleep_on(wait_queue_head_t *q)
5910 {
5911 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5912 }
5913 EXPORT_SYMBOL(sleep_on);
5914
5915 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5916 {
5917 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5918 }
5919 EXPORT_SYMBOL(sleep_on_timeout);
5920
5921 #ifdef CONFIG_RT_MUTEXES
5922
5923 /*
5924 * rt_mutex_setprio - set the current priority of a task
5925 * @p: task
5926 * @prio: prio value (kernel-internal form)
5927 *
5928 * This function changes the 'effective' priority of a task. It does
5929 * not touch ->normal_prio like __setscheduler().
5930 *
5931 * Used by the rt_mutex code to implement priority inheritance logic.
5932 */
5933 void rt_mutex_setprio(struct task_struct *p, int prio)
5934 {
5935 unsigned long flags;
5936 int oldprio, on_rq, running;
5937 struct rq *rq;
5938 const struct sched_class *prev_class = p->sched_class;
5939
5940 BUG_ON(prio < 0 || prio > MAX_PRIO);
5941
5942 rq = task_rq_lock(p, &flags);
5943 update_rq_clock(rq);
5944
5945 oldprio = p->prio;
5946 on_rq = p->se.on_rq;
5947 running = task_current(rq, p);
5948 if (on_rq)
5949 dequeue_task(rq, p, 0);
5950 if (running)
5951 p->sched_class->put_prev_task(rq, p);
5952
5953 if (rt_prio(prio))
5954 p->sched_class = &rt_sched_class;
5955 else
5956 p->sched_class = &fair_sched_class;
5957
5958 p->prio = prio;
5959
5960 if (running)
5961 p->sched_class->set_curr_task(rq);
5962 if (on_rq) {
5963 enqueue_task(rq, p, 0);
5964
5965 check_class_changed(rq, p, prev_class, oldprio, running);
5966 }
5967 task_rq_unlock(rq, &flags);
5968 }
5969
5970 #endif
5971
5972 void set_user_nice(struct task_struct *p, long nice)
5973 {
5974 int old_prio, delta, on_rq;
5975 unsigned long flags;
5976 struct rq *rq;
5977
5978 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5979 return;
5980 /*
5981 * We have to be careful, if called from sys_setpriority(),
5982 * the task might be in the middle of scheduling on another CPU.
5983 */
5984 rq = task_rq_lock(p, &flags);
5985 update_rq_clock(rq);
5986 /*
5987 * The RT priorities are set via sched_setscheduler(), but we still
5988 * allow the 'normal' nice value to be set - but as expected
5989 * it wont have any effect on scheduling until the task is
5990 * SCHED_FIFO/SCHED_RR:
5991 */
5992 if (task_has_rt_policy(p)) {
5993 p->static_prio = NICE_TO_PRIO(nice);
5994 goto out_unlock;
5995 }
5996 on_rq = p->se.on_rq;
5997 if (on_rq)
5998 dequeue_task(rq, p, 0);
5999
6000 p->static_prio = NICE_TO_PRIO(nice);
6001 set_load_weight(p);
6002 old_prio = p->prio;
6003 p->prio = effective_prio(p);
6004 delta = p->prio - old_prio;
6005
6006 if (on_rq) {
6007 enqueue_task(rq, p, 0);
6008 /*
6009 * If the task increased its priority or is running and
6010 * lowered its priority, then reschedule its CPU:
6011 */
6012 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6013 resched_task(rq->curr);
6014 }
6015 out_unlock:
6016 task_rq_unlock(rq, &flags);
6017 }
6018 EXPORT_SYMBOL(set_user_nice);
6019
6020 /*
6021 * can_nice - check if a task can reduce its nice value
6022 * @p: task
6023 * @nice: nice value
6024 */
6025 int can_nice(const struct task_struct *p, const int nice)
6026 {
6027 /* convert nice value [19,-20] to rlimit style value [1,40] */
6028 int nice_rlim = 20 - nice;
6029
6030 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6031 capable(CAP_SYS_NICE));
6032 }
6033
6034 #ifdef __ARCH_WANT_SYS_NICE
6035
6036 /*
6037 * sys_nice - change the priority of the current process.
6038 * @increment: priority increment
6039 *
6040 * sys_setpriority is a more generic, but much slower function that
6041 * does similar things.
6042 */
6043 SYSCALL_DEFINE1(nice, int, increment)
6044 {
6045 long nice, retval;
6046
6047 /*
6048 * Setpriority might change our priority at the same moment.
6049 * We don't have to worry. Conceptually one call occurs first
6050 * and we have a single winner.
6051 */
6052 if (increment < -40)
6053 increment = -40;
6054 if (increment > 40)
6055 increment = 40;
6056
6057 nice = TASK_NICE(current) + increment;
6058 if (nice < -20)
6059 nice = -20;
6060 if (nice > 19)
6061 nice = 19;
6062
6063 if (increment < 0 && !can_nice(current, nice))
6064 return -EPERM;
6065
6066 retval = security_task_setnice(current, nice);
6067 if (retval)
6068 return retval;
6069
6070 set_user_nice(current, nice);
6071 return 0;
6072 }
6073
6074 #endif
6075
6076 /**
6077 * task_prio - return the priority value of a given task.
6078 * @p: the task in question.
6079 *
6080 * This is the priority value as seen by users in /proc.
6081 * RT tasks are offset by -200. Normal tasks are centered
6082 * around 0, value goes from -16 to +15.
6083 */
6084 int task_prio(const struct task_struct *p)
6085 {
6086 return p->prio - MAX_RT_PRIO;
6087 }
6088
6089 /**
6090 * task_nice - return the nice value of a given task.
6091 * @p: the task in question.
6092 */
6093 int task_nice(const struct task_struct *p)
6094 {
6095 return TASK_NICE(p);
6096 }
6097 EXPORT_SYMBOL(task_nice);
6098
6099 /**
6100 * idle_cpu - is a given cpu idle currently?
6101 * @cpu: the processor in question.
6102 */
6103 int idle_cpu(int cpu)
6104 {
6105 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6106 }
6107
6108 /**
6109 * idle_task - return the idle task for a given cpu.
6110 * @cpu: the processor in question.
6111 */
6112 struct task_struct *idle_task(int cpu)
6113 {
6114 return cpu_rq(cpu)->idle;
6115 }
6116
6117 /**
6118 * find_process_by_pid - find a process with a matching PID value.
6119 * @pid: the pid in question.
6120 */
6121 static struct task_struct *find_process_by_pid(pid_t pid)
6122 {
6123 return pid ? find_task_by_vpid(pid) : current;
6124 }
6125
6126 /* Actually do priority change: must hold rq lock. */
6127 static void
6128 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6129 {
6130 BUG_ON(p->se.on_rq);
6131
6132 p->policy = policy;
6133 switch (p->policy) {
6134 case SCHED_NORMAL:
6135 case SCHED_BATCH:
6136 case SCHED_IDLE:
6137 p->sched_class = &fair_sched_class;
6138 break;
6139 case SCHED_FIFO:
6140 case SCHED_RR:
6141 p->sched_class = &rt_sched_class;
6142 break;
6143 }
6144
6145 p->rt_priority = prio;
6146 p->normal_prio = normal_prio(p);
6147 /* we are holding p->pi_lock already */
6148 p->prio = rt_mutex_getprio(p);
6149 set_load_weight(p);
6150 }
6151
6152 /*
6153 * check the target process has a UID that matches the current process's
6154 */
6155 static bool check_same_owner(struct task_struct *p)
6156 {
6157 const struct cred *cred = current_cred(), *pcred;
6158 bool match;
6159
6160 rcu_read_lock();
6161 pcred = __task_cred(p);
6162 match = (cred->euid == pcred->euid ||
6163 cred->euid == pcred->uid);
6164 rcu_read_unlock();
6165 return match;
6166 }
6167
6168 static int __sched_setscheduler(struct task_struct *p, int policy,
6169 struct sched_param *param, bool user)
6170 {
6171 int retval, oldprio, oldpolicy = -1, on_rq, running;
6172 unsigned long flags;
6173 const struct sched_class *prev_class = p->sched_class;
6174 struct rq *rq;
6175 int reset_on_fork;
6176
6177 /* may grab non-irq protected spin_locks */
6178 BUG_ON(in_interrupt());
6179 recheck:
6180 /* double check policy once rq lock held */
6181 if (policy < 0) {
6182 reset_on_fork = p->sched_reset_on_fork;
6183 policy = oldpolicy = p->policy;
6184 } else {
6185 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6186 policy &= ~SCHED_RESET_ON_FORK;
6187
6188 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6189 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6190 policy != SCHED_IDLE)
6191 return -EINVAL;
6192 }
6193
6194 /*
6195 * Valid priorities for SCHED_FIFO and SCHED_RR are
6196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6197 * SCHED_BATCH and SCHED_IDLE is 0.
6198 */
6199 if (param->sched_priority < 0 ||
6200 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6201 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6202 return -EINVAL;
6203 if (rt_policy(policy) != (param->sched_priority != 0))
6204 return -EINVAL;
6205
6206 /*
6207 * Allow unprivileged RT tasks to decrease priority:
6208 */
6209 if (user && !capable(CAP_SYS_NICE)) {
6210 if (rt_policy(policy)) {
6211 unsigned long rlim_rtprio;
6212
6213 if (!lock_task_sighand(p, &flags))
6214 return -ESRCH;
6215 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6216 unlock_task_sighand(p, &flags);
6217
6218 /* can't set/change the rt policy */
6219 if (policy != p->policy && !rlim_rtprio)
6220 return -EPERM;
6221
6222 /* can't increase priority */
6223 if (param->sched_priority > p->rt_priority &&
6224 param->sched_priority > rlim_rtprio)
6225 return -EPERM;
6226 }
6227 /*
6228 * Like positive nice levels, dont allow tasks to
6229 * move out of SCHED_IDLE either:
6230 */
6231 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6232 return -EPERM;
6233
6234 /* can't change other user's priorities */
6235 if (!check_same_owner(p))
6236 return -EPERM;
6237
6238 /* Normal users shall not reset the sched_reset_on_fork flag */
6239 if (p->sched_reset_on_fork && !reset_on_fork)
6240 return -EPERM;
6241 }
6242
6243 if (user) {
6244 #ifdef CONFIG_RT_GROUP_SCHED
6245 /*
6246 * Do not allow realtime tasks into groups that have no runtime
6247 * assigned.
6248 */
6249 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6250 task_group(p)->rt_bandwidth.rt_runtime == 0)
6251 return -EPERM;
6252 #endif
6253
6254 retval = security_task_setscheduler(p, policy, param);
6255 if (retval)
6256 return retval;
6257 }
6258
6259 /*
6260 * make sure no PI-waiters arrive (or leave) while we are
6261 * changing the priority of the task:
6262 */
6263 spin_lock_irqsave(&p->pi_lock, flags);
6264 /*
6265 * To be able to change p->policy safely, the apropriate
6266 * runqueue lock must be held.
6267 */
6268 rq = __task_rq_lock(p);
6269 /* recheck policy now with rq lock held */
6270 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6271 policy = oldpolicy = -1;
6272 __task_rq_unlock(rq);
6273 spin_unlock_irqrestore(&p->pi_lock, flags);
6274 goto recheck;
6275 }
6276 update_rq_clock(rq);
6277 on_rq = p->se.on_rq;
6278 running = task_current(rq, p);
6279 if (on_rq)
6280 deactivate_task(rq, p, 0);
6281 if (running)
6282 p->sched_class->put_prev_task(rq, p);
6283
6284 p->sched_reset_on_fork = reset_on_fork;
6285
6286 oldprio = p->prio;
6287 __setscheduler(rq, p, policy, param->sched_priority);
6288
6289 if (running)
6290 p->sched_class->set_curr_task(rq);
6291 if (on_rq) {
6292 activate_task(rq, p, 0);
6293
6294 check_class_changed(rq, p, prev_class, oldprio, running);
6295 }
6296 __task_rq_unlock(rq);
6297 spin_unlock_irqrestore(&p->pi_lock, flags);
6298
6299 rt_mutex_adjust_pi(p);
6300
6301 return 0;
6302 }
6303
6304 /**
6305 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6306 * @p: the task in question.
6307 * @policy: new policy.
6308 * @param: structure containing the new RT priority.
6309 *
6310 * NOTE that the task may be already dead.
6311 */
6312 int sched_setscheduler(struct task_struct *p, int policy,
6313 struct sched_param *param)
6314 {
6315 return __sched_setscheduler(p, policy, param, true);
6316 }
6317 EXPORT_SYMBOL_GPL(sched_setscheduler);
6318
6319 /**
6320 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6321 * @p: the task in question.
6322 * @policy: new policy.
6323 * @param: structure containing the new RT priority.
6324 *
6325 * Just like sched_setscheduler, only don't bother checking if the
6326 * current context has permission. For example, this is needed in
6327 * stop_machine(): we create temporary high priority worker threads,
6328 * but our caller might not have that capability.
6329 */
6330 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6331 struct sched_param *param)
6332 {
6333 return __sched_setscheduler(p, policy, param, false);
6334 }
6335
6336 static int
6337 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6338 {
6339 struct sched_param lparam;
6340 struct task_struct *p;
6341 int retval;
6342
6343 if (!param || pid < 0)
6344 return -EINVAL;
6345 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6346 return -EFAULT;
6347
6348 rcu_read_lock();
6349 retval = -ESRCH;
6350 p = find_process_by_pid(pid);
6351 if (p != NULL)
6352 retval = sched_setscheduler(p, policy, &lparam);
6353 rcu_read_unlock();
6354
6355 return retval;
6356 }
6357
6358 /**
6359 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6360 * @pid: the pid in question.
6361 * @policy: new policy.
6362 * @param: structure containing the new RT priority.
6363 */
6364 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6365 struct sched_param __user *, param)
6366 {
6367 /* negative values for policy are not valid */
6368 if (policy < 0)
6369 return -EINVAL;
6370
6371 return do_sched_setscheduler(pid, policy, param);
6372 }
6373
6374 /**
6375 * sys_sched_setparam - set/change the RT priority of a thread
6376 * @pid: the pid in question.
6377 * @param: structure containing the new RT priority.
6378 */
6379 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6380 {
6381 return do_sched_setscheduler(pid, -1, param);
6382 }
6383
6384 /**
6385 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6386 * @pid: the pid in question.
6387 */
6388 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6389 {
6390 struct task_struct *p;
6391 int retval;
6392
6393 if (pid < 0)
6394 return -EINVAL;
6395
6396 retval = -ESRCH;
6397 read_lock(&tasklist_lock);
6398 p = find_process_by_pid(pid);
6399 if (p) {
6400 retval = security_task_getscheduler(p);
6401 if (!retval)
6402 retval = p->policy
6403 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6404 }
6405 read_unlock(&tasklist_lock);
6406 return retval;
6407 }
6408
6409 /**
6410 * sys_sched_getparam - get the RT priority of a thread
6411 * @pid: the pid in question.
6412 * @param: structure containing the RT priority.
6413 */
6414 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6415 {
6416 struct sched_param lp;
6417 struct task_struct *p;
6418 int retval;
6419
6420 if (!param || pid < 0)
6421 return -EINVAL;
6422
6423 read_lock(&tasklist_lock);
6424 p = find_process_by_pid(pid);
6425 retval = -ESRCH;
6426 if (!p)
6427 goto out_unlock;
6428
6429 retval = security_task_getscheduler(p);
6430 if (retval)
6431 goto out_unlock;
6432
6433 lp.sched_priority = p->rt_priority;
6434 read_unlock(&tasklist_lock);
6435
6436 /*
6437 * This one might sleep, we cannot do it with a spinlock held ...
6438 */
6439 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6440
6441 return retval;
6442
6443 out_unlock:
6444 read_unlock(&tasklist_lock);
6445 return retval;
6446 }
6447
6448 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6449 {
6450 cpumask_var_t cpus_allowed, new_mask;
6451 struct task_struct *p;
6452 int retval;
6453
6454 get_online_cpus();
6455 read_lock(&tasklist_lock);
6456
6457 p = find_process_by_pid(pid);
6458 if (!p) {
6459 read_unlock(&tasklist_lock);
6460 put_online_cpus();
6461 return -ESRCH;
6462 }
6463
6464 /*
6465 * It is not safe to call set_cpus_allowed with the
6466 * tasklist_lock held. We will bump the task_struct's
6467 * usage count and then drop tasklist_lock.
6468 */
6469 get_task_struct(p);
6470 read_unlock(&tasklist_lock);
6471
6472 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6473 retval = -ENOMEM;
6474 goto out_put_task;
6475 }
6476 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6477 retval = -ENOMEM;
6478 goto out_free_cpus_allowed;
6479 }
6480 retval = -EPERM;
6481 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6482 goto out_unlock;
6483
6484 retval = security_task_setscheduler(p, 0, NULL);
6485 if (retval)
6486 goto out_unlock;
6487
6488 cpuset_cpus_allowed(p, cpus_allowed);
6489 cpumask_and(new_mask, in_mask, cpus_allowed);
6490 again:
6491 retval = set_cpus_allowed_ptr(p, new_mask);
6492
6493 if (!retval) {
6494 cpuset_cpus_allowed(p, cpus_allowed);
6495 if (!cpumask_subset(new_mask, cpus_allowed)) {
6496 /*
6497 * We must have raced with a concurrent cpuset
6498 * update. Just reset the cpus_allowed to the
6499 * cpuset's cpus_allowed
6500 */
6501 cpumask_copy(new_mask, cpus_allowed);
6502 goto again;
6503 }
6504 }
6505 out_unlock:
6506 free_cpumask_var(new_mask);
6507 out_free_cpus_allowed:
6508 free_cpumask_var(cpus_allowed);
6509 out_put_task:
6510 put_task_struct(p);
6511 put_online_cpus();
6512 return retval;
6513 }
6514
6515 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6516 struct cpumask *new_mask)
6517 {
6518 if (len < cpumask_size())
6519 cpumask_clear(new_mask);
6520 else if (len > cpumask_size())
6521 len = cpumask_size();
6522
6523 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6524 }
6525
6526 /**
6527 * sys_sched_setaffinity - set the cpu affinity of a process
6528 * @pid: pid of the process
6529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6530 * @user_mask_ptr: user-space pointer to the new cpu mask
6531 */
6532 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6533 unsigned long __user *, user_mask_ptr)
6534 {
6535 cpumask_var_t new_mask;
6536 int retval;
6537
6538 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6539 return -ENOMEM;
6540
6541 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6542 if (retval == 0)
6543 retval = sched_setaffinity(pid, new_mask);
6544 free_cpumask_var(new_mask);
6545 return retval;
6546 }
6547
6548 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6549 {
6550 struct task_struct *p;
6551 int retval;
6552
6553 get_online_cpus();
6554 read_lock(&tasklist_lock);
6555
6556 retval = -ESRCH;
6557 p = find_process_by_pid(pid);
6558 if (!p)
6559 goto out_unlock;
6560
6561 retval = security_task_getscheduler(p);
6562 if (retval)
6563 goto out_unlock;
6564
6565 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6566
6567 out_unlock:
6568 read_unlock(&tasklist_lock);
6569 put_online_cpus();
6570
6571 return retval;
6572 }
6573
6574 /**
6575 * sys_sched_getaffinity - get the cpu affinity of a process
6576 * @pid: pid of the process
6577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6578 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6579 */
6580 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6581 unsigned long __user *, user_mask_ptr)
6582 {
6583 int ret;
6584 cpumask_var_t mask;
6585
6586 if (len < cpumask_size())
6587 return -EINVAL;
6588
6589 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6590 return -ENOMEM;
6591
6592 ret = sched_getaffinity(pid, mask);
6593 if (ret == 0) {
6594 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6595 ret = -EFAULT;
6596 else
6597 ret = cpumask_size();
6598 }
6599 free_cpumask_var(mask);
6600
6601 return ret;
6602 }
6603
6604 /**
6605 * sys_sched_yield - yield the current processor to other threads.
6606 *
6607 * This function yields the current CPU to other tasks. If there are no
6608 * other threads running on this CPU then this function will return.
6609 */
6610 SYSCALL_DEFINE0(sched_yield)
6611 {
6612 struct rq *rq = this_rq_lock();
6613
6614 schedstat_inc(rq, yld_count);
6615 current->sched_class->yield_task(rq);
6616
6617 /*
6618 * Since we are going to call schedule() anyway, there's
6619 * no need to preempt or enable interrupts:
6620 */
6621 __release(rq->lock);
6622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6623 _raw_spin_unlock(&rq->lock);
6624 preempt_enable_no_resched();
6625
6626 schedule();
6627
6628 return 0;
6629 }
6630
6631 static inline int should_resched(void)
6632 {
6633 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6634 }
6635
6636 static void __cond_resched(void)
6637 {
6638 add_preempt_count(PREEMPT_ACTIVE);
6639 schedule();
6640 sub_preempt_count(PREEMPT_ACTIVE);
6641 }
6642
6643 int __sched _cond_resched(void)
6644 {
6645 if (should_resched()) {
6646 __cond_resched();
6647 return 1;
6648 }
6649 return 0;
6650 }
6651 EXPORT_SYMBOL(_cond_resched);
6652
6653 /*
6654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6655 * call schedule, and on return reacquire the lock.
6656 *
6657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6658 * operations here to prevent schedule() from being called twice (once via
6659 * spin_unlock(), once by hand).
6660 */
6661 int __cond_resched_lock(spinlock_t *lock)
6662 {
6663 int resched = should_resched();
6664 int ret = 0;
6665
6666 lockdep_assert_held(lock);
6667
6668 if (spin_needbreak(lock) || resched) {
6669 spin_unlock(lock);
6670 if (resched)
6671 __cond_resched();
6672 else
6673 cpu_relax();
6674 ret = 1;
6675 spin_lock(lock);
6676 }
6677 return ret;
6678 }
6679 EXPORT_SYMBOL(__cond_resched_lock);
6680
6681 int __sched __cond_resched_softirq(void)
6682 {
6683 BUG_ON(!in_softirq());
6684
6685 if (should_resched()) {
6686 local_bh_enable();
6687 __cond_resched();
6688 local_bh_disable();
6689 return 1;
6690 }
6691 return 0;
6692 }
6693 EXPORT_SYMBOL(__cond_resched_softirq);
6694
6695 /**
6696 * yield - yield the current processor to other threads.
6697 *
6698 * This is a shortcut for kernel-space yielding - it marks the
6699 * thread runnable and calls sys_sched_yield().
6700 */
6701 void __sched yield(void)
6702 {
6703 set_current_state(TASK_RUNNING);
6704 sys_sched_yield();
6705 }
6706 EXPORT_SYMBOL(yield);
6707
6708 /*
6709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6710 * that process accounting knows that this is a task in IO wait state.
6711 *
6712 * But don't do that if it is a deliberate, throttling IO wait (this task
6713 * has set its backing_dev_info: the queue against which it should throttle)
6714 */
6715 void __sched io_schedule(void)
6716 {
6717 struct rq *rq = raw_rq();
6718
6719 delayacct_blkio_start();
6720 atomic_inc(&rq->nr_iowait);
6721 current->in_iowait = 1;
6722 schedule();
6723 current->in_iowait = 0;
6724 atomic_dec(&rq->nr_iowait);
6725 delayacct_blkio_end();
6726 }
6727 EXPORT_SYMBOL(io_schedule);
6728
6729 long __sched io_schedule_timeout(long timeout)
6730 {
6731 struct rq *rq = raw_rq();
6732 long ret;
6733
6734 delayacct_blkio_start();
6735 atomic_inc(&rq->nr_iowait);
6736 current->in_iowait = 1;
6737 ret = schedule_timeout(timeout);
6738 current->in_iowait = 0;
6739 atomic_dec(&rq->nr_iowait);
6740 delayacct_blkio_end();
6741 return ret;
6742 }
6743
6744 /**
6745 * sys_sched_get_priority_max - return maximum RT priority.
6746 * @policy: scheduling class.
6747 *
6748 * this syscall returns the maximum rt_priority that can be used
6749 * by a given scheduling class.
6750 */
6751 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6752 {
6753 int ret = -EINVAL;
6754
6755 switch (policy) {
6756 case SCHED_FIFO:
6757 case SCHED_RR:
6758 ret = MAX_USER_RT_PRIO-1;
6759 break;
6760 case SCHED_NORMAL:
6761 case SCHED_BATCH:
6762 case SCHED_IDLE:
6763 ret = 0;
6764 break;
6765 }
6766 return ret;
6767 }
6768
6769 /**
6770 * sys_sched_get_priority_min - return minimum RT priority.
6771 * @policy: scheduling class.
6772 *
6773 * this syscall returns the minimum rt_priority that can be used
6774 * by a given scheduling class.
6775 */
6776 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6777 {
6778 int ret = -EINVAL;
6779
6780 switch (policy) {
6781 case SCHED_FIFO:
6782 case SCHED_RR:
6783 ret = 1;
6784 break;
6785 case SCHED_NORMAL:
6786 case SCHED_BATCH:
6787 case SCHED_IDLE:
6788 ret = 0;
6789 }
6790 return ret;
6791 }
6792
6793 /**
6794 * sys_sched_rr_get_interval - return the default timeslice of a process.
6795 * @pid: pid of the process.
6796 * @interval: userspace pointer to the timeslice value.
6797 *
6798 * this syscall writes the default timeslice value of a given process
6799 * into the user-space timespec buffer. A value of '0' means infinity.
6800 */
6801 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6802 struct timespec __user *, interval)
6803 {
6804 struct task_struct *p;
6805 unsigned int time_slice;
6806 int retval;
6807 struct timespec t;
6808
6809 if (pid < 0)
6810 return -EINVAL;
6811
6812 retval = -ESRCH;
6813 read_lock(&tasklist_lock);
6814 p = find_process_by_pid(pid);
6815 if (!p)
6816 goto out_unlock;
6817
6818 retval = security_task_getscheduler(p);
6819 if (retval)
6820 goto out_unlock;
6821
6822 time_slice = p->sched_class->get_rr_interval(p);
6823
6824 read_unlock(&tasklist_lock);
6825 jiffies_to_timespec(time_slice, &t);
6826 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6827 return retval;
6828
6829 out_unlock:
6830 read_unlock(&tasklist_lock);
6831 return retval;
6832 }
6833
6834 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6835
6836 void sched_show_task(struct task_struct *p)
6837 {
6838 unsigned long free = 0;
6839 unsigned state;
6840
6841 state = p->state ? __ffs(p->state) + 1 : 0;
6842 printk(KERN_INFO "%-13.13s %c", p->comm,
6843 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6844 #if BITS_PER_LONG == 32
6845 if (state == TASK_RUNNING)
6846 printk(KERN_CONT " running ");
6847 else
6848 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6849 #else
6850 if (state == TASK_RUNNING)
6851 printk(KERN_CONT " running task ");
6852 else
6853 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6854 #endif
6855 #ifdef CONFIG_DEBUG_STACK_USAGE
6856 free = stack_not_used(p);
6857 #endif
6858 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6859 task_pid_nr(p), task_pid_nr(p->real_parent),
6860 (unsigned long)task_thread_info(p)->flags);
6861
6862 show_stack(p, NULL);
6863 }
6864
6865 void show_state_filter(unsigned long state_filter)
6866 {
6867 struct task_struct *g, *p;
6868
6869 #if BITS_PER_LONG == 32
6870 printk(KERN_INFO
6871 " task PC stack pid father\n");
6872 #else
6873 printk(KERN_INFO
6874 " task PC stack pid father\n");
6875 #endif
6876 read_lock(&tasklist_lock);
6877 do_each_thread(g, p) {
6878 /*
6879 * reset the NMI-timeout, listing all files on a slow
6880 * console might take alot of time:
6881 */
6882 touch_nmi_watchdog();
6883 if (!state_filter || (p->state & state_filter))
6884 sched_show_task(p);
6885 } while_each_thread(g, p);
6886
6887 touch_all_softlockup_watchdogs();
6888
6889 #ifdef CONFIG_SCHED_DEBUG
6890 sysrq_sched_debug_show();
6891 #endif
6892 read_unlock(&tasklist_lock);
6893 /*
6894 * Only show locks if all tasks are dumped:
6895 */
6896 if (state_filter == -1)
6897 debug_show_all_locks();
6898 }
6899
6900 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6901 {
6902 idle->sched_class = &idle_sched_class;
6903 }
6904
6905 /**
6906 * init_idle - set up an idle thread for a given CPU
6907 * @idle: task in question
6908 * @cpu: cpu the idle task belongs to
6909 *
6910 * NOTE: this function does not set the idle thread's NEED_RESCHED
6911 * flag, to make booting more robust.
6912 */
6913 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6914 {
6915 struct rq *rq = cpu_rq(cpu);
6916 unsigned long flags;
6917
6918 spin_lock_irqsave(&rq->lock, flags);
6919
6920 __sched_fork(idle);
6921 idle->se.exec_start = sched_clock();
6922
6923 idle->prio = idle->normal_prio = MAX_PRIO;
6924 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6925 __set_task_cpu(idle, cpu);
6926
6927 rq->curr = rq->idle = idle;
6928 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6929 idle->oncpu = 1;
6930 #endif
6931 spin_unlock_irqrestore(&rq->lock, flags);
6932
6933 /* Set the preempt count _outside_ the spinlocks! */
6934 #if defined(CONFIG_PREEMPT)
6935 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6936 #else
6937 task_thread_info(idle)->preempt_count = 0;
6938 #endif
6939 /*
6940 * The idle tasks have their own, simple scheduling class:
6941 */
6942 idle->sched_class = &idle_sched_class;
6943 ftrace_graph_init_task(idle);
6944 }
6945
6946 /*
6947 * In a system that switches off the HZ timer nohz_cpu_mask
6948 * indicates which cpus entered this state. This is used
6949 * in the rcu update to wait only for active cpus. For system
6950 * which do not switch off the HZ timer nohz_cpu_mask should
6951 * always be CPU_BITS_NONE.
6952 */
6953 cpumask_var_t nohz_cpu_mask;
6954
6955 /*
6956 * Increase the granularity value when there are more CPUs,
6957 * because with more CPUs the 'effective latency' as visible
6958 * to users decreases. But the relationship is not linear,
6959 * so pick a second-best guess by going with the log2 of the
6960 * number of CPUs.
6961 *
6962 * This idea comes from the SD scheduler of Con Kolivas:
6963 */
6964 static inline void sched_init_granularity(void)
6965 {
6966 unsigned int factor = 1 + ilog2(num_online_cpus());
6967 const unsigned long limit = 200000000;
6968
6969 sysctl_sched_min_granularity *= factor;
6970 if (sysctl_sched_min_granularity > limit)
6971 sysctl_sched_min_granularity = limit;
6972
6973 sysctl_sched_latency *= factor;
6974 if (sysctl_sched_latency > limit)
6975 sysctl_sched_latency = limit;
6976
6977 sysctl_sched_wakeup_granularity *= factor;
6978
6979 sysctl_sched_shares_ratelimit *= factor;
6980 }
6981
6982 #ifdef CONFIG_SMP
6983 /*
6984 * This is how migration works:
6985 *
6986 * 1) we queue a struct migration_req structure in the source CPU's
6987 * runqueue and wake up that CPU's migration thread.
6988 * 2) we down() the locked semaphore => thread blocks.
6989 * 3) migration thread wakes up (implicitly it forces the migrated
6990 * thread off the CPU)
6991 * 4) it gets the migration request and checks whether the migrated
6992 * task is still in the wrong runqueue.
6993 * 5) if it's in the wrong runqueue then the migration thread removes
6994 * it and puts it into the right queue.
6995 * 6) migration thread up()s the semaphore.
6996 * 7) we wake up and the migration is done.
6997 */
6998
6999 /*
7000 * Change a given task's CPU affinity. Migrate the thread to a
7001 * proper CPU and schedule it away if the CPU it's executing on
7002 * is removed from the allowed bitmask.
7003 *
7004 * NOTE: the caller must have a valid reference to the task, the
7005 * task must not exit() & deallocate itself prematurely. The
7006 * call is not atomic; no spinlocks may be held.
7007 */
7008 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7009 {
7010 struct migration_req req;
7011 unsigned long flags;
7012 struct rq *rq;
7013 int ret = 0;
7014
7015 rq = task_rq_lock(p, &flags);
7016 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7017 ret = -EINVAL;
7018 goto out;
7019 }
7020
7021 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7022 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7023 ret = -EINVAL;
7024 goto out;
7025 }
7026
7027 if (p->sched_class->set_cpus_allowed)
7028 p->sched_class->set_cpus_allowed(p, new_mask);
7029 else {
7030 cpumask_copy(&p->cpus_allowed, new_mask);
7031 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7032 }
7033
7034 /* Can the task run on the task's current CPU? If so, we're done */
7035 if (cpumask_test_cpu(task_cpu(p), new_mask))
7036 goto out;
7037
7038 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7039 /* Need help from migration thread: drop lock and wait. */
7040 struct task_struct *mt = rq->migration_thread;
7041
7042 get_task_struct(mt);
7043 task_rq_unlock(rq, &flags);
7044 wake_up_process(rq->migration_thread);
7045 put_task_struct(mt);
7046 wait_for_completion(&req.done);
7047 tlb_migrate_finish(p->mm);
7048 return 0;
7049 }
7050 out:
7051 task_rq_unlock(rq, &flags);
7052
7053 return ret;
7054 }
7055 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7056
7057 /*
7058 * Move (not current) task off this cpu, onto dest cpu. We're doing
7059 * this because either it can't run here any more (set_cpus_allowed()
7060 * away from this CPU, or CPU going down), or because we're
7061 * attempting to rebalance this task on exec (sched_exec).
7062 *
7063 * So we race with normal scheduler movements, but that's OK, as long
7064 * as the task is no longer on this CPU.
7065 *
7066 * Returns non-zero if task was successfully migrated.
7067 */
7068 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7069 {
7070 struct rq *rq_dest, *rq_src;
7071 int ret = 0, on_rq;
7072
7073 if (unlikely(!cpu_active(dest_cpu)))
7074 return ret;
7075
7076 rq_src = cpu_rq(src_cpu);
7077 rq_dest = cpu_rq(dest_cpu);
7078
7079 double_rq_lock(rq_src, rq_dest);
7080 /* Already moved. */
7081 if (task_cpu(p) != src_cpu)
7082 goto done;
7083 /* Affinity changed (again). */
7084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7085 goto fail;
7086
7087 on_rq = p->se.on_rq;
7088 if (on_rq)
7089 deactivate_task(rq_src, p, 0);
7090
7091 set_task_cpu(p, dest_cpu);
7092 if (on_rq) {
7093 activate_task(rq_dest, p, 0);
7094 check_preempt_curr(rq_dest, p, 0);
7095 }
7096 done:
7097 ret = 1;
7098 fail:
7099 double_rq_unlock(rq_src, rq_dest);
7100 return ret;
7101 }
7102
7103 #define RCU_MIGRATION_IDLE 0
7104 #define RCU_MIGRATION_NEED_QS 1
7105 #define RCU_MIGRATION_GOT_QS 2
7106 #define RCU_MIGRATION_MUST_SYNC 3
7107
7108 /*
7109 * migration_thread - this is a highprio system thread that performs
7110 * thread migration by bumping thread off CPU then 'pushing' onto
7111 * another runqueue.
7112 */
7113 static int migration_thread(void *data)
7114 {
7115 int badcpu;
7116 int cpu = (long)data;
7117 struct rq *rq;
7118
7119 rq = cpu_rq(cpu);
7120 BUG_ON(rq->migration_thread != current);
7121
7122 set_current_state(TASK_INTERRUPTIBLE);
7123 while (!kthread_should_stop()) {
7124 struct migration_req *req;
7125 struct list_head *head;
7126
7127 spin_lock_irq(&rq->lock);
7128
7129 if (cpu_is_offline(cpu)) {
7130 spin_unlock_irq(&rq->lock);
7131 break;
7132 }
7133
7134 if (rq->active_balance) {
7135 active_load_balance(rq, cpu);
7136 rq->active_balance = 0;
7137 }
7138
7139 head = &rq->migration_queue;
7140
7141 if (list_empty(head)) {
7142 spin_unlock_irq(&rq->lock);
7143 schedule();
7144 set_current_state(TASK_INTERRUPTIBLE);
7145 continue;
7146 }
7147 req = list_entry(head->next, struct migration_req, list);
7148 list_del_init(head->next);
7149
7150 if (req->task != NULL) {
7151 spin_unlock(&rq->lock);
7152 __migrate_task(req->task, cpu, req->dest_cpu);
7153 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7154 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7155 spin_unlock(&rq->lock);
7156 } else {
7157 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7158 spin_unlock(&rq->lock);
7159 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7160 }
7161 local_irq_enable();
7162
7163 complete(&req->done);
7164 }
7165 __set_current_state(TASK_RUNNING);
7166
7167 return 0;
7168 }
7169
7170 #ifdef CONFIG_HOTPLUG_CPU
7171
7172 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7173 {
7174 int ret;
7175
7176 local_irq_disable();
7177 ret = __migrate_task(p, src_cpu, dest_cpu);
7178 local_irq_enable();
7179 return ret;
7180 }
7181
7182 /*
7183 * Figure out where task on dead CPU should go, use force if necessary.
7184 */
7185 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7186 {
7187 int dest_cpu;
7188 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7189
7190 again:
7191 /* Look for allowed, online CPU in same node. */
7192 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7193 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7194 goto move;
7195
7196 /* Any allowed, online CPU? */
7197 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7198 if (dest_cpu < nr_cpu_ids)
7199 goto move;
7200
7201 /* No more Mr. Nice Guy. */
7202 if (dest_cpu >= nr_cpu_ids) {
7203 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7204 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7205
7206 /*
7207 * Don't tell them about moving exiting tasks or
7208 * kernel threads (both mm NULL), since they never
7209 * leave kernel.
7210 */
7211 if (p->mm && printk_ratelimit()) {
7212 printk(KERN_INFO "process %d (%s) no "
7213 "longer affine to cpu%d\n",
7214 task_pid_nr(p), p->comm, dead_cpu);
7215 }
7216 }
7217
7218 move:
7219 /* It can have affinity changed while we were choosing. */
7220 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7221 goto again;
7222 }
7223
7224 /*
7225 * While a dead CPU has no uninterruptible tasks queued at this point,
7226 * it might still have a nonzero ->nr_uninterruptible counter, because
7227 * for performance reasons the counter is not stricly tracking tasks to
7228 * their home CPUs. So we just add the counter to another CPU's counter,
7229 * to keep the global sum constant after CPU-down:
7230 */
7231 static void migrate_nr_uninterruptible(struct rq *rq_src)
7232 {
7233 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7234 unsigned long flags;
7235
7236 local_irq_save(flags);
7237 double_rq_lock(rq_src, rq_dest);
7238 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7239 rq_src->nr_uninterruptible = 0;
7240 double_rq_unlock(rq_src, rq_dest);
7241 local_irq_restore(flags);
7242 }
7243
7244 /* Run through task list and migrate tasks from the dead cpu. */
7245 static void migrate_live_tasks(int src_cpu)
7246 {
7247 struct task_struct *p, *t;
7248
7249 read_lock(&tasklist_lock);
7250
7251 do_each_thread(t, p) {
7252 if (p == current)
7253 continue;
7254
7255 if (task_cpu(p) == src_cpu)
7256 move_task_off_dead_cpu(src_cpu, p);
7257 } while_each_thread(t, p);
7258
7259 read_unlock(&tasklist_lock);
7260 }
7261
7262 /*
7263 * Schedules idle task to be the next runnable task on current CPU.
7264 * It does so by boosting its priority to highest possible.
7265 * Used by CPU offline code.
7266 */
7267 void sched_idle_next(void)
7268 {
7269 int this_cpu = smp_processor_id();
7270 struct rq *rq = cpu_rq(this_cpu);
7271 struct task_struct *p = rq->idle;
7272 unsigned long flags;
7273
7274 /* cpu has to be offline */
7275 BUG_ON(cpu_online(this_cpu));
7276
7277 /*
7278 * Strictly not necessary since rest of the CPUs are stopped by now
7279 * and interrupts disabled on the current cpu.
7280 */
7281 spin_lock_irqsave(&rq->lock, flags);
7282
7283 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7284
7285 update_rq_clock(rq);
7286 activate_task(rq, p, 0);
7287
7288 spin_unlock_irqrestore(&rq->lock, flags);
7289 }
7290
7291 /*
7292 * Ensures that the idle task is using init_mm right before its cpu goes
7293 * offline.
7294 */
7295 void idle_task_exit(void)
7296 {
7297 struct mm_struct *mm = current->active_mm;
7298
7299 BUG_ON(cpu_online(smp_processor_id()));
7300
7301 if (mm != &init_mm)
7302 switch_mm(mm, &init_mm, current);
7303 mmdrop(mm);
7304 }
7305
7306 /* called under rq->lock with disabled interrupts */
7307 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7308 {
7309 struct rq *rq = cpu_rq(dead_cpu);
7310
7311 /* Must be exiting, otherwise would be on tasklist. */
7312 BUG_ON(!p->exit_state);
7313
7314 /* Cannot have done final schedule yet: would have vanished. */
7315 BUG_ON(p->state == TASK_DEAD);
7316
7317 get_task_struct(p);
7318
7319 /*
7320 * Drop lock around migration; if someone else moves it,
7321 * that's OK. No task can be added to this CPU, so iteration is
7322 * fine.
7323 */
7324 spin_unlock_irq(&rq->lock);
7325 move_task_off_dead_cpu(dead_cpu, p);
7326 spin_lock_irq(&rq->lock);
7327
7328 put_task_struct(p);
7329 }
7330
7331 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7332 static void migrate_dead_tasks(unsigned int dead_cpu)
7333 {
7334 struct rq *rq = cpu_rq(dead_cpu);
7335 struct task_struct *next;
7336
7337 for ( ; ; ) {
7338 if (!rq->nr_running)
7339 break;
7340 update_rq_clock(rq);
7341 next = pick_next_task(rq);
7342 if (!next)
7343 break;
7344 next->sched_class->put_prev_task(rq, next);
7345 migrate_dead(dead_cpu, next);
7346
7347 }
7348 }
7349
7350 /*
7351 * remove the tasks which were accounted by rq from calc_load_tasks.
7352 */
7353 static void calc_global_load_remove(struct rq *rq)
7354 {
7355 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7356 rq->calc_load_active = 0;
7357 }
7358 #endif /* CONFIG_HOTPLUG_CPU */
7359
7360 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7361
7362 static struct ctl_table sd_ctl_dir[] = {
7363 {
7364 .procname = "sched_domain",
7365 .mode = 0555,
7366 },
7367 {0, },
7368 };
7369
7370 static struct ctl_table sd_ctl_root[] = {
7371 {
7372 .ctl_name = CTL_KERN,
7373 .procname = "kernel",
7374 .mode = 0555,
7375 .child = sd_ctl_dir,
7376 },
7377 {0, },
7378 };
7379
7380 static struct ctl_table *sd_alloc_ctl_entry(int n)
7381 {
7382 struct ctl_table *entry =
7383 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7384
7385 return entry;
7386 }
7387
7388 static void sd_free_ctl_entry(struct ctl_table **tablep)
7389 {
7390 struct ctl_table *entry;
7391
7392 /*
7393 * In the intermediate directories, both the child directory and
7394 * procname are dynamically allocated and could fail but the mode
7395 * will always be set. In the lowest directory the names are
7396 * static strings and all have proc handlers.
7397 */
7398 for (entry = *tablep; entry->mode; entry++) {
7399 if (entry->child)
7400 sd_free_ctl_entry(&entry->child);
7401 if (entry->proc_handler == NULL)
7402 kfree(entry->procname);
7403 }
7404
7405 kfree(*tablep);
7406 *tablep = NULL;
7407 }
7408
7409 static void
7410 set_table_entry(struct ctl_table *entry,
7411 const char *procname, void *data, int maxlen,
7412 mode_t mode, proc_handler *proc_handler)
7413 {
7414 entry->procname = procname;
7415 entry->data = data;
7416 entry->maxlen = maxlen;
7417 entry->mode = mode;
7418 entry->proc_handler = proc_handler;
7419 }
7420
7421 static struct ctl_table *
7422 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7423 {
7424 struct ctl_table *table = sd_alloc_ctl_entry(13);
7425
7426 if (table == NULL)
7427 return NULL;
7428
7429 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7430 sizeof(long), 0644, proc_doulongvec_minmax);
7431 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7432 sizeof(long), 0644, proc_doulongvec_minmax);
7433 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7434 sizeof(int), 0644, proc_dointvec_minmax);
7435 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7436 sizeof(int), 0644, proc_dointvec_minmax);
7437 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7438 sizeof(int), 0644, proc_dointvec_minmax);
7439 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7440 sizeof(int), 0644, proc_dointvec_minmax);
7441 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7442 sizeof(int), 0644, proc_dointvec_minmax);
7443 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7444 sizeof(int), 0644, proc_dointvec_minmax);
7445 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7446 sizeof(int), 0644, proc_dointvec_minmax);
7447 set_table_entry(&table[9], "cache_nice_tries",
7448 &sd->cache_nice_tries,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[10], "flags", &sd->flags,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[11], "name", sd->name,
7453 CORENAME_MAX_SIZE, 0444, proc_dostring);
7454 /* &table[12] is terminator */
7455
7456 return table;
7457 }
7458
7459 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7460 {
7461 struct ctl_table *entry, *table;
7462 struct sched_domain *sd;
7463 int domain_num = 0, i;
7464 char buf[32];
7465
7466 for_each_domain(cpu, sd)
7467 domain_num++;
7468 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7469 if (table == NULL)
7470 return NULL;
7471
7472 i = 0;
7473 for_each_domain(cpu, sd) {
7474 snprintf(buf, 32, "domain%d", i);
7475 entry->procname = kstrdup(buf, GFP_KERNEL);
7476 entry->mode = 0555;
7477 entry->child = sd_alloc_ctl_domain_table(sd);
7478 entry++;
7479 i++;
7480 }
7481 return table;
7482 }
7483
7484 static struct ctl_table_header *sd_sysctl_header;
7485 static void register_sched_domain_sysctl(void)
7486 {
7487 int i, cpu_num = num_online_cpus();
7488 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7489 char buf[32];
7490
7491 WARN_ON(sd_ctl_dir[0].child);
7492 sd_ctl_dir[0].child = entry;
7493
7494 if (entry == NULL)
7495 return;
7496
7497 for_each_online_cpu(i) {
7498 snprintf(buf, 32, "cpu%d", i);
7499 entry->procname = kstrdup(buf, GFP_KERNEL);
7500 entry->mode = 0555;
7501 entry->child = sd_alloc_ctl_cpu_table(i);
7502 entry++;
7503 }
7504
7505 WARN_ON(sd_sysctl_header);
7506 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7507 }
7508
7509 /* may be called multiple times per register */
7510 static void unregister_sched_domain_sysctl(void)
7511 {
7512 if (sd_sysctl_header)
7513 unregister_sysctl_table(sd_sysctl_header);
7514 sd_sysctl_header = NULL;
7515 if (sd_ctl_dir[0].child)
7516 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7517 }
7518 #else
7519 static void register_sched_domain_sysctl(void)
7520 {
7521 }
7522 static void unregister_sched_domain_sysctl(void)
7523 {
7524 }
7525 #endif
7526
7527 static void set_rq_online(struct rq *rq)
7528 {
7529 if (!rq->online) {
7530 const struct sched_class *class;
7531
7532 cpumask_set_cpu(rq->cpu, rq->rd->online);
7533 rq->online = 1;
7534
7535 for_each_class(class) {
7536 if (class->rq_online)
7537 class->rq_online(rq);
7538 }
7539 }
7540 }
7541
7542 static void set_rq_offline(struct rq *rq)
7543 {
7544 if (rq->online) {
7545 const struct sched_class *class;
7546
7547 for_each_class(class) {
7548 if (class->rq_offline)
7549 class->rq_offline(rq);
7550 }
7551
7552 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7553 rq->online = 0;
7554 }
7555 }
7556
7557 /*
7558 * migration_call - callback that gets triggered when a CPU is added.
7559 * Here we can start up the necessary migration thread for the new CPU.
7560 */
7561 static int __cpuinit
7562 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7563 {
7564 struct task_struct *p;
7565 int cpu = (long)hcpu;
7566 unsigned long flags;
7567 struct rq *rq;
7568
7569 switch (action) {
7570
7571 case CPU_UP_PREPARE:
7572 case CPU_UP_PREPARE_FROZEN:
7573 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7574 if (IS_ERR(p))
7575 return NOTIFY_BAD;
7576 kthread_bind(p, cpu);
7577 /* Must be high prio: stop_machine expects to yield to it. */
7578 rq = task_rq_lock(p, &flags);
7579 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7580 task_rq_unlock(rq, &flags);
7581 get_task_struct(p);
7582 cpu_rq(cpu)->migration_thread = p;
7583 rq->calc_load_update = calc_load_update;
7584 break;
7585
7586 case CPU_ONLINE:
7587 case CPU_ONLINE_FROZEN:
7588 /* Strictly unnecessary, as first user will wake it. */
7589 wake_up_process(cpu_rq(cpu)->migration_thread);
7590
7591 /* Update our root-domain */
7592 rq = cpu_rq(cpu);
7593 spin_lock_irqsave(&rq->lock, flags);
7594 if (rq->rd) {
7595 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7596
7597 set_rq_online(rq);
7598 }
7599 spin_unlock_irqrestore(&rq->lock, flags);
7600 break;
7601
7602 #ifdef CONFIG_HOTPLUG_CPU
7603 case CPU_UP_CANCELED:
7604 case CPU_UP_CANCELED_FROZEN:
7605 if (!cpu_rq(cpu)->migration_thread)
7606 break;
7607 /* Unbind it from offline cpu so it can run. Fall thru. */
7608 kthread_bind(cpu_rq(cpu)->migration_thread,
7609 cpumask_any(cpu_online_mask));
7610 kthread_stop(cpu_rq(cpu)->migration_thread);
7611 put_task_struct(cpu_rq(cpu)->migration_thread);
7612 cpu_rq(cpu)->migration_thread = NULL;
7613 break;
7614
7615 case CPU_DEAD:
7616 case CPU_DEAD_FROZEN:
7617 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7618 migrate_live_tasks(cpu);
7619 rq = cpu_rq(cpu);
7620 kthread_stop(rq->migration_thread);
7621 put_task_struct(rq->migration_thread);
7622 rq->migration_thread = NULL;
7623 /* Idle task back to normal (off runqueue, low prio) */
7624 spin_lock_irq(&rq->lock);
7625 update_rq_clock(rq);
7626 deactivate_task(rq, rq->idle, 0);
7627 rq->idle->static_prio = MAX_PRIO;
7628 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7629 rq->idle->sched_class = &idle_sched_class;
7630 migrate_dead_tasks(cpu);
7631 spin_unlock_irq(&rq->lock);
7632 cpuset_unlock();
7633 migrate_nr_uninterruptible(rq);
7634 BUG_ON(rq->nr_running != 0);
7635 calc_global_load_remove(rq);
7636 /*
7637 * No need to migrate the tasks: it was best-effort if
7638 * they didn't take sched_hotcpu_mutex. Just wake up
7639 * the requestors.
7640 */
7641 spin_lock_irq(&rq->lock);
7642 while (!list_empty(&rq->migration_queue)) {
7643 struct migration_req *req;
7644
7645 req = list_entry(rq->migration_queue.next,
7646 struct migration_req, list);
7647 list_del_init(&req->list);
7648 spin_unlock_irq(&rq->lock);
7649 complete(&req->done);
7650 spin_lock_irq(&rq->lock);
7651 }
7652 spin_unlock_irq(&rq->lock);
7653 break;
7654
7655 case CPU_DYING:
7656 case CPU_DYING_FROZEN:
7657 /* Update our root-domain */
7658 rq = cpu_rq(cpu);
7659 spin_lock_irqsave(&rq->lock, flags);
7660 if (rq->rd) {
7661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7662 set_rq_offline(rq);
7663 }
7664 spin_unlock_irqrestore(&rq->lock, flags);
7665 break;
7666 #endif
7667 }
7668 return NOTIFY_OK;
7669 }
7670
7671 /*
7672 * Register at high priority so that task migration (migrate_all_tasks)
7673 * happens before everything else. This has to be lower priority than
7674 * the notifier in the perf_counter subsystem, though.
7675 */
7676 static struct notifier_block __cpuinitdata migration_notifier = {
7677 .notifier_call = migration_call,
7678 .priority = 10
7679 };
7680
7681 static int __init migration_init(void)
7682 {
7683 void *cpu = (void *)(long)smp_processor_id();
7684 int err;
7685
7686 /* Start one for the boot CPU: */
7687 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7688 BUG_ON(err == NOTIFY_BAD);
7689 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7690 register_cpu_notifier(&migration_notifier);
7691
7692 return 0;
7693 }
7694 early_initcall(migration_init);
7695 #endif
7696
7697 #ifdef CONFIG_SMP
7698
7699 #ifdef CONFIG_SCHED_DEBUG
7700
7701 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7702 struct cpumask *groupmask)
7703 {
7704 struct sched_group *group = sd->groups;
7705 char str[256];
7706
7707 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7708 cpumask_clear(groupmask);
7709
7710 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7711
7712 if (!(sd->flags & SD_LOAD_BALANCE)) {
7713 printk("does not load-balance\n");
7714 if (sd->parent)
7715 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7716 " has parent");
7717 return -1;
7718 }
7719
7720 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7721
7722 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7723 printk(KERN_ERR "ERROR: domain->span does not contain "
7724 "CPU%d\n", cpu);
7725 }
7726 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7727 printk(KERN_ERR "ERROR: domain->groups does not contain"
7728 " CPU%d\n", cpu);
7729 }
7730
7731 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7732 do {
7733 if (!group) {
7734 printk("\n");
7735 printk(KERN_ERR "ERROR: group is NULL\n");
7736 break;
7737 }
7738
7739 if (!group->cpu_power) {
7740 printk(KERN_CONT "\n");
7741 printk(KERN_ERR "ERROR: domain->cpu_power not "
7742 "set\n");
7743 break;
7744 }
7745
7746 if (!cpumask_weight(sched_group_cpus(group))) {
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: empty group\n");
7749 break;
7750 }
7751
7752 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7753 printk(KERN_CONT "\n");
7754 printk(KERN_ERR "ERROR: repeated CPUs\n");
7755 break;
7756 }
7757
7758 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7759
7760 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7761
7762 printk(KERN_CONT " %s", str);
7763 if (group->cpu_power != SCHED_LOAD_SCALE) {
7764 printk(KERN_CONT " (cpu_power = %d)",
7765 group->cpu_power);
7766 }
7767
7768 group = group->next;
7769 } while (group != sd->groups);
7770 printk(KERN_CONT "\n");
7771
7772 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7773 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7774
7775 if (sd->parent &&
7776 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7777 printk(KERN_ERR "ERROR: parent span is not a superset "
7778 "of domain->span\n");
7779 return 0;
7780 }
7781
7782 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7783 {
7784 cpumask_var_t groupmask;
7785 int level = 0;
7786
7787 if (!sd) {
7788 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7789 return;
7790 }
7791
7792 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7793
7794 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7795 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7796 return;
7797 }
7798
7799 for (;;) {
7800 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7801 break;
7802 level++;
7803 sd = sd->parent;
7804 if (!sd)
7805 break;
7806 }
7807 free_cpumask_var(groupmask);
7808 }
7809 #else /* !CONFIG_SCHED_DEBUG */
7810 # define sched_domain_debug(sd, cpu) do { } while (0)
7811 #endif /* CONFIG_SCHED_DEBUG */
7812
7813 static int sd_degenerate(struct sched_domain *sd)
7814 {
7815 if (cpumask_weight(sched_domain_span(sd)) == 1)
7816 return 1;
7817
7818 /* Following flags need at least 2 groups */
7819 if (sd->flags & (SD_LOAD_BALANCE |
7820 SD_BALANCE_NEWIDLE |
7821 SD_BALANCE_FORK |
7822 SD_BALANCE_EXEC |
7823 SD_SHARE_CPUPOWER |
7824 SD_SHARE_PKG_RESOURCES)) {
7825 if (sd->groups != sd->groups->next)
7826 return 0;
7827 }
7828
7829 /* Following flags don't use groups */
7830 if (sd->flags & (SD_WAKE_AFFINE))
7831 return 0;
7832
7833 return 1;
7834 }
7835
7836 static int
7837 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7838 {
7839 unsigned long cflags = sd->flags, pflags = parent->flags;
7840
7841 if (sd_degenerate(parent))
7842 return 1;
7843
7844 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7845 return 0;
7846
7847 /* Flags needing groups don't count if only 1 group in parent */
7848 if (parent->groups == parent->groups->next) {
7849 pflags &= ~(SD_LOAD_BALANCE |
7850 SD_BALANCE_NEWIDLE |
7851 SD_BALANCE_FORK |
7852 SD_BALANCE_EXEC |
7853 SD_SHARE_CPUPOWER |
7854 SD_SHARE_PKG_RESOURCES);
7855 if (nr_node_ids == 1)
7856 pflags &= ~SD_SERIALIZE;
7857 }
7858 if (~cflags & pflags)
7859 return 0;
7860
7861 return 1;
7862 }
7863
7864 static void free_rootdomain(struct root_domain *rd)
7865 {
7866 cpupri_cleanup(&rd->cpupri);
7867
7868 free_cpumask_var(rd->rto_mask);
7869 free_cpumask_var(rd->online);
7870 free_cpumask_var(rd->span);
7871 kfree(rd);
7872 }
7873
7874 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7875 {
7876 struct root_domain *old_rd = NULL;
7877 unsigned long flags;
7878
7879 spin_lock_irqsave(&rq->lock, flags);
7880
7881 if (rq->rd) {
7882 old_rd = rq->rd;
7883
7884 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7885 set_rq_offline(rq);
7886
7887 cpumask_clear_cpu(rq->cpu, old_rd->span);
7888
7889 /*
7890 * If we dont want to free the old_rt yet then
7891 * set old_rd to NULL to skip the freeing later
7892 * in this function:
7893 */
7894 if (!atomic_dec_and_test(&old_rd->refcount))
7895 old_rd = NULL;
7896 }
7897
7898 atomic_inc(&rd->refcount);
7899 rq->rd = rd;
7900
7901 cpumask_set_cpu(rq->cpu, rd->span);
7902 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7903 set_rq_online(rq);
7904
7905 spin_unlock_irqrestore(&rq->lock, flags);
7906
7907 if (old_rd)
7908 free_rootdomain(old_rd);
7909 }
7910
7911 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7912 {
7913 gfp_t gfp = GFP_KERNEL;
7914
7915 memset(rd, 0, sizeof(*rd));
7916
7917 if (bootmem)
7918 gfp = GFP_NOWAIT;
7919
7920 if (!alloc_cpumask_var(&rd->span, gfp))
7921 goto out;
7922 if (!alloc_cpumask_var(&rd->online, gfp))
7923 goto free_span;
7924 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7925 goto free_online;
7926
7927 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7928 goto free_rto_mask;
7929 return 0;
7930
7931 free_rto_mask:
7932 free_cpumask_var(rd->rto_mask);
7933 free_online:
7934 free_cpumask_var(rd->online);
7935 free_span:
7936 free_cpumask_var(rd->span);
7937 out:
7938 return -ENOMEM;
7939 }
7940
7941 static void init_defrootdomain(void)
7942 {
7943 init_rootdomain(&def_root_domain, true);
7944
7945 atomic_set(&def_root_domain.refcount, 1);
7946 }
7947
7948 static struct root_domain *alloc_rootdomain(void)
7949 {
7950 struct root_domain *rd;
7951
7952 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7953 if (!rd)
7954 return NULL;
7955
7956 if (init_rootdomain(rd, false) != 0) {
7957 kfree(rd);
7958 return NULL;
7959 }
7960
7961 return rd;
7962 }
7963
7964 /*
7965 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7966 * hold the hotplug lock.
7967 */
7968 static void
7969 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7970 {
7971 struct rq *rq = cpu_rq(cpu);
7972 struct sched_domain *tmp;
7973
7974 /* Remove the sched domains which do not contribute to scheduling. */
7975 for (tmp = sd; tmp; ) {
7976 struct sched_domain *parent = tmp->parent;
7977 if (!parent)
7978 break;
7979
7980 if (sd_parent_degenerate(tmp, parent)) {
7981 tmp->parent = parent->parent;
7982 if (parent->parent)
7983 parent->parent->child = tmp;
7984 } else
7985 tmp = tmp->parent;
7986 }
7987
7988 if (sd && sd_degenerate(sd)) {
7989 sd = sd->parent;
7990 if (sd)
7991 sd->child = NULL;
7992 }
7993
7994 sched_domain_debug(sd, cpu);
7995
7996 rq_attach_root(rq, rd);
7997 rcu_assign_pointer(rq->sd, sd);
7998 }
7999
8000 /* cpus with isolated domains */
8001 static cpumask_var_t cpu_isolated_map;
8002
8003 /* Setup the mask of cpus configured for isolated domains */
8004 static int __init isolated_cpu_setup(char *str)
8005 {
8006 cpulist_parse(str, cpu_isolated_map);
8007 return 1;
8008 }
8009
8010 __setup("isolcpus=", isolated_cpu_setup);
8011
8012 /*
8013 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8014 * to a function which identifies what group(along with sched group) a CPU
8015 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8016 * (due to the fact that we keep track of groups covered with a struct cpumask).
8017 *
8018 * init_sched_build_groups will build a circular linked list of the groups
8019 * covered by the given span, and will set each group's ->cpumask correctly,
8020 * and ->cpu_power to 0.
8021 */
8022 static void
8023 init_sched_build_groups(const struct cpumask *span,
8024 const struct cpumask *cpu_map,
8025 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8026 struct sched_group **sg,
8027 struct cpumask *tmpmask),
8028 struct cpumask *covered, struct cpumask *tmpmask)
8029 {
8030 struct sched_group *first = NULL, *last = NULL;
8031 int i;
8032
8033 cpumask_clear(covered);
8034
8035 for_each_cpu(i, span) {
8036 struct sched_group *sg;
8037 int group = group_fn(i, cpu_map, &sg, tmpmask);
8038 int j;
8039
8040 if (cpumask_test_cpu(i, covered))
8041 continue;
8042
8043 cpumask_clear(sched_group_cpus(sg));
8044 sg->cpu_power = 0;
8045
8046 for_each_cpu(j, span) {
8047 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8048 continue;
8049
8050 cpumask_set_cpu(j, covered);
8051 cpumask_set_cpu(j, sched_group_cpus(sg));
8052 }
8053 if (!first)
8054 first = sg;
8055 if (last)
8056 last->next = sg;
8057 last = sg;
8058 }
8059 last->next = first;
8060 }
8061
8062 #define SD_NODES_PER_DOMAIN 16
8063
8064 #ifdef CONFIG_NUMA
8065
8066 /**
8067 * find_next_best_node - find the next node to include in a sched_domain
8068 * @node: node whose sched_domain we're building
8069 * @used_nodes: nodes already in the sched_domain
8070 *
8071 * Find the next node to include in a given scheduling domain. Simply
8072 * finds the closest node not already in the @used_nodes map.
8073 *
8074 * Should use nodemask_t.
8075 */
8076 static int find_next_best_node(int node, nodemask_t *used_nodes)
8077 {
8078 int i, n, val, min_val, best_node = 0;
8079
8080 min_val = INT_MAX;
8081
8082 for (i = 0; i < nr_node_ids; i++) {
8083 /* Start at @node */
8084 n = (node + i) % nr_node_ids;
8085
8086 if (!nr_cpus_node(n))
8087 continue;
8088
8089 /* Skip already used nodes */
8090 if (node_isset(n, *used_nodes))
8091 continue;
8092
8093 /* Simple min distance search */
8094 val = node_distance(node, n);
8095
8096 if (val < min_val) {
8097 min_val = val;
8098 best_node = n;
8099 }
8100 }
8101
8102 node_set(best_node, *used_nodes);
8103 return best_node;
8104 }
8105
8106 /**
8107 * sched_domain_node_span - get a cpumask for a node's sched_domain
8108 * @node: node whose cpumask we're constructing
8109 * @span: resulting cpumask
8110 *
8111 * Given a node, construct a good cpumask for its sched_domain to span. It
8112 * should be one that prevents unnecessary balancing, but also spreads tasks
8113 * out optimally.
8114 */
8115 static void sched_domain_node_span(int node, struct cpumask *span)
8116 {
8117 nodemask_t used_nodes;
8118 int i;
8119
8120 cpumask_clear(span);
8121 nodes_clear(used_nodes);
8122
8123 cpumask_or(span, span, cpumask_of_node(node));
8124 node_set(node, used_nodes);
8125
8126 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8127 int next_node = find_next_best_node(node, &used_nodes);
8128
8129 cpumask_or(span, span, cpumask_of_node(next_node));
8130 }
8131 }
8132 #endif /* CONFIG_NUMA */
8133
8134 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8135
8136 /*
8137 * The cpus mask in sched_group and sched_domain hangs off the end.
8138 *
8139 * ( See the the comments in include/linux/sched.h:struct sched_group
8140 * and struct sched_domain. )
8141 */
8142 struct static_sched_group {
8143 struct sched_group sg;
8144 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8145 };
8146
8147 struct static_sched_domain {
8148 struct sched_domain sd;
8149 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8150 };
8151
8152 struct s_data {
8153 #ifdef CONFIG_NUMA
8154 int sd_allnodes;
8155 cpumask_var_t domainspan;
8156 cpumask_var_t covered;
8157 cpumask_var_t notcovered;
8158 #endif
8159 cpumask_var_t nodemask;
8160 cpumask_var_t this_sibling_map;
8161 cpumask_var_t this_core_map;
8162 cpumask_var_t send_covered;
8163 cpumask_var_t tmpmask;
8164 struct sched_group **sched_group_nodes;
8165 struct root_domain *rd;
8166 };
8167
8168 enum s_alloc {
8169 sa_sched_groups = 0,
8170 sa_rootdomain,
8171 sa_tmpmask,
8172 sa_send_covered,
8173 sa_this_core_map,
8174 sa_this_sibling_map,
8175 sa_nodemask,
8176 sa_sched_group_nodes,
8177 #ifdef CONFIG_NUMA
8178 sa_notcovered,
8179 sa_covered,
8180 sa_domainspan,
8181 #endif
8182 sa_none,
8183 };
8184
8185 /*
8186 * SMT sched-domains:
8187 */
8188 #ifdef CONFIG_SCHED_SMT
8189 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8190 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8191
8192 static int
8193 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8194 struct sched_group **sg, struct cpumask *unused)
8195 {
8196 if (sg)
8197 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8198 return cpu;
8199 }
8200 #endif /* CONFIG_SCHED_SMT */
8201
8202 /*
8203 * multi-core sched-domains:
8204 */
8205 #ifdef CONFIG_SCHED_MC
8206 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8207 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8208 #endif /* CONFIG_SCHED_MC */
8209
8210 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8211 static int
8212 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8213 struct sched_group **sg, struct cpumask *mask)
8214 {
8215 int group;
8216
8217 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8218 group = cpumask_first(mask);
8219 if (sg)
8220 *sg = &per_cpu(sched_group_core, group).sg;
8221 return group;
8222 }
8223 #elif defined(CONFIG_SCHED_MC)
8224 static int
8225 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8226 struct sched_group **sg, struct cpumask *unused)
8227 {
8228 if (sg)
8229 *sg = &per_cpu(sched_group_core, cpu).sg;
8230 return cpu;
8231 }
8232 #endif
8233
8234 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8235 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8236
8237 static int
8238 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8239 struct sched_group **sg, struct cpumask *mask)
8240 {
8241 int group;
8242 #ifdef CONFIG_SCHED_MC
8243 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8244 group = cpumask_first(mask);
8245 #elif defined(CONFIG_SCHED_SMT)
8246 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8247 group = cpumask_first(mask);
8248 #else
8249 group = cpu;
8250 #endif
8251 if (sg)
8252 *sg = &per_cpu(sched_group_phys, group).sg;
8253 return group;
8254 }
8255
8256 #ifdef CONFIG_NUMA
8257 /*
8258 * The init_sched_build_groups can't handle what we want to do with node
8259 * groups, so roll our own. Now each node has its own list of groups which
8260 * gets dynamically allocated.
8261 */
8262 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8263 static struct sched_group ***sched_group_nodes_bycpu;
8264
8265 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8266 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8267
8268 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8269 struct sched_group **sg,
8270 struct cpumask *nodemask)
8271 {
8272 int group;
8273
8274 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8275 group = cpumask_first(nodemask);
8276
8277 if (sg)
8278 *sg = &per_cpu(sched_group_allnodes, group).sg;
8279 return group;
8280 }
8281
8282 static void init_numa_sched_groups_power(struct sched_group *group_head)
8283 {
8284 struct sched_group *sg = group_head;
8285 int j;
8286
8287 if (!sg)
8288 return;
8289 do {
8290 for_each_cpu(j, sched_group_cpus(sg)) {
8291 struct sched_domain *sd;
8292
8293 sd = &per_cpu(phys_domains, j).sd;
8294 if (j != group_first_cpu(sd->groups)) {
8295 /*
8296 * Only add "power" once for each
8297 * physical package.
8298 */
8299 continue;
8300 }
8301
8302 sg->cpu_power += sd->groups->cpu_power;
8303 }
8304 sg = sg->next;
8305 } while (sg != group_head);
8306 }
8307
8308 static int build_numa_sched_groups(struct s_data *d,
8309 const struct cpumask *cpu_map, int num)
8310 {
8311 struct sched_domain *sd;
8312 struct sched_group *sg, *prev;
8313 int n, j;
8314
8315 cpumask_clear(d->covered);
8316 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8317 if (cpumask_empty(d->nodemask)) {
8318 d->sched_group_nodes[num] = NULL;
8319 goto out;
8320 }
8321
8322 sched_domain_node_span(num, d->domainspan);
8323 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8324
8325 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8326 GFP_KERNEL, num);
8327 if (!sg) {
8328 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8329 num);
8330 return -ENOMEM;
8331 }
8332 d->sched_group_nodes[num] = sg;
8333
8334 for_each_cpu(j, d->nodemask) {
8335 sd = &per_cpu(node_domains, j).sd;
8336 sd->groups = sg;
8337 }
8338
8339 sg->cpu_power = 0;
8340 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8341 sg->next = sg;
8342 cpumask_or(d->covered, d->covered, d->nodemask);
8343
8344 prev = sg;
8345 for (j = 0; j < nr_node_ids; j++) {
8346 n = (num + j) % nr_node_ids;
8347 cpumask_complement(d->notcovered, d->covered);
8348 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8349 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8350 if (cpumask_empty(d->tmpmask))
8351 break;
8352 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8353 if (cpumask_empty(d->tmpmask))
8354 continue;
8355 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8356 GFP_KERNEL, num);
8357 if (!sg) {
8358 printk(KERN_WARNING
8359 "Can not alloc domain group for node %d\n", j);
8360 return -ENOMEM;
8361 }
8362 sg->cpu_power = 0;
8363 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8364 sg->next = prev->next;
8365 cpumask_or(d->covered, d->covered, d->tmpmask);
8366 prev->next = sg;
8367 prev = sg;
8368 }
8369 out:
8370 return 0;
8371 }
8372 #endif /* CONFIG_NUMA */
8373
8374 #ifdef CONFIG_NUMA
8375 /* Free memory allocated for various sched_group structures */
8376 static void free_sched_groups(const struct cpumask *cpu_map,
8377 struct cpumask *nodemask)
8378 {
8379 int cpu, i;
8380
8381 for_each_cpu(cpu, cpu_map) {
8382 struct sched_group **sched_group_nodes
8383 = sched_group_nodes_bycpu[cpu];
8384
8385 if (!sched_group_nodes)
8386 continue;
8387
8388 for (i = 0; i < nr_node_ids; i++) {
8389 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8390
8391 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8392 if (cpumask_empty(nodemask))
8393 continue;
8394
8395 if (sg == NULL)
8396 continue;
8397 sg = sg->next;
8398 next_sg:
8399 oldsg = sg;
8400 sg = sg->next;
8401 kfree(oldsg);
8402 if (oldsg != sched_group_nodes[i])
8403 goto next_sg;
8404 }
8405 kfree(sched_group_nodes);
8406 sched_group_nodes_bycpu[cpu] = NULL;
8407 }
8408 }
8409 #else /* !CONFIG_NUMA */
8410 static void free_sched_groups(const struct cpumask *cpu_map,
8411 struct cpumask *nodemask)
8412 {
8413 }
8414 #endif /* CONFIG_NUMA */
8415
8416 /*
8417 * Initialize sched groups cpu_power.
8418 *
8419 * cpu_power indicates the capacity of sched group, which is used while
8420 * distributing the load between different sched groups in a sched domain.
8421 * Typically cpu_power for all the groups in a sched domain will be same unless
8422 * there are asymmetries in the topology. If there are asymmetries, group
8423 * having more cpu_power will pickup more load compared to the group having
8424 * less cpu_power.
8425 */
8426 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8427 {
8428 struct sched_domain *child;
8429 struct sched_group *group;
8430 long power;
8431 int weight;
8432
8433 WARN_ON(!sd || !sd->groups);
8434
8435 if (cpu != group_first_cpu(sd->groups))
8436 return;
8437
8438 child = sd->child;
8439
8440 sd->groups->cpu_power = 0;
8441
8442 if (!child) {
8443 power = SCHED_LOAD_SCALE;
8444 weight = cpumask_weight(sched_domain_span(sd));
8445 /*
8446 * SMT siblings share the power of a single core.
8447 * Usually multiple threads get a better yield out of
8448 * that one core than a single thread would have,
8449 * reflect that in sd->smt_gain.
8450 */
8451 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8452 power *= sd->smt_gain;
8453 power /= weight;
8454 power >>= SCHED_LOAD_SHIFT;
8455 }
8456 sd->groups->cpu_power += power;
8457 return;
8458 }
8459
8460 /*
8461 * Add cpu_power of each child group to this groups cpu_power.
8462 */
8463 group = child->groups;
8464 do {
8465 sd->groups->cpu_power += group->cpu_power;
8466 group = group->next;
8467 } while (group != child->groups);
8468 }
8469
8470 /*
8471 * Initializers for schedule domains
8472 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8473 */
8474
8475 #ifdef CONFIG_SCHED_DEBUG
8476 # define SD_INIT_NAME(sd, type) sd->name = #type
8477 #else
8478 # define SD_INIT_NAME(sd, type) do { } while (0)
8479 #endif
8480
8481 #define SD_INIT(sd, type) sd_init_##type(sd)
8482
8483 #define SD_INIT_FUNC(type) \
8484 static noinline void sd_init_##type(struct sched_domain *sd) \
8485 { \
8486 memset(sd, 0, sizeof(*sd)); \
8487 *sd = SD_##type##_INIT; \
8488 sd->level = SD_LV_##type; \
8489 SD_INIT_NAME(sd, type); \
8490 }
8491
8492 SD_INIT_FUNC(CPU)
8493 #ifdef CONFIG_NUMA
8494 SD_INIT_FUNC(ALLNODES)
8495 SD_INIT_FUNC(NODE)
8496 #endif
8497 #ifdef CONFIG_SCHED_SMT
8498 SD_INIT_FUNC(SIBLING)
8499 #endif
8500 #ifdef CONFIG_SCHED_MC
8501 SD_INIT_FUNC(MC)
8502 #endif
8503
8504 static int default_relax_domain_level = -1;
8505
8506 static int __init setup_relax_domain_level(char *str)
8507 {
8508 unsigned long val;
8509
8510 val = simple_strtoul(str, NULL, 0);
8511 if (val < SD_LV_MAX)
8512 default_relax_domain_level = val;
8513
8514 return 1;
8515 }
8516 __setup("relax_domain_level=", setup_relax_domain_level);
8517
8518 static void set_domain_attribute(struct sched_domain *sd,
8519 struct sched_domain_attr *attr)
8520 {
8521 int request;
8522
8523 if (!attr || attr->relax_domain_level < 0) {
8524 if (default_relax_domain_level < 0)
8525 return;
8526 else
8527 request = default_relax_domain_level;
8528 } else
8529 request = attr->relax_domain_level;
8530 if (request < sd->level) {
8531 /* turn off idle balance on this domain */
8532 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8533 } else {
8534 /* turn on idle balance on this domain */
8535 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8536 }
8537 }
8538
8539 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8540 const struct cpumask *cpu_map)
8541 {
8542 switch (what) {
8543 case sa_sched_groups:
8544 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8545 d->sched_group_nodes = NULL;
8546 case sa_rootdomain:
8547 free_rootdomain(d->rd); /* fall through */
8548 case sa_tmpmask:
8549 free_cpumask_var(d->tmpmask); /* fall through */
8550 case sa_send_covered:
8551 free_cpumask_var(d->send_covered); /* fall through */
8552 case sa_this_core_map:
8553 free_cpumask_var(d->this_core_map); /* fall through */
8554 case sa_this_sibling_map:
8555 free_cpumask_var(d->this_sibling_map); /* fall through */
8556 case sa_nodemask:
8557 free_cpumask_var(d->nodemask); /* fall through */
8558 case sa_sched_group_nodes:
8559 #ifdef CONFIG_NUMA
8560 kfree(d->sched_group_nodes); /* fall through */
8561 case sa_notcovered:
8562 free_cpumask_var(d->notcovered); /* fall through */
8563 case sa_covered:
8564 free_cpumask_var(d->covered); /* fall through */
8565 case sa_domainspan:
8566 free_cpumask_var(d->domainspan); /* fall through */
8567 #endif
8568 case sa_none:
8569 break;
8570 }
8571 }
8572
8573 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8574 const struct cpumask *cpu_map)
8575 {
8576 #ifdef CONFIG_NUMA
8577 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8578 return sa_none;
8579 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8580 return sa_domainspan;
8581 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8582 return sa_covered;
8583 /* Allocate the per-node list of sched groups */
8584 d->sched_group_nodes = kcalloc(nr_node_ids,
8585 sizeof(struct sched_group *), GFP_KERNEL);
8586 if (!d->sched_group_nodes) {
8587 printk(KERN_WARNING "Can not alloc sched group node list\n");
8588 return sa_notcovered;
8589 }
8590 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8591 #endif
8592 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8593 return sa_sched_group_nodes;
8594 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8595 return sa_nodemask;
8596 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8597 return sa_this_sibling_map;
8598 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8599 return sa_this_core_map;
8600 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8601 return sa_send_covered;
8602 d->rd = alloc_rootdomain();
8603 if (!d->rd) {
8604 printk(KERN_WARNING "Cannot alloc root domain\n");
8605 return sa_tmpmask;
8606 }
8607 return sa_rootdomain;
8608 }
8609
8610 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8611 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8612 {
8613 struct sched_domain *sd = NULL;
8614 #ifdef CONFIG_NUMA
8615 struct sched_domain *parent;
8616
8617 d->sd_allnodes = 0;
8618 if (cpumask_weight(cpu_map) >
8619 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8620 sd = &per_cpu(allnodes_domains, i).sd;
8621 SD_INIT(sd, ALLNODES);
8622 set_domain_attribute(sd, attr);
8623 cpumask_copy(sched_domain_span(sd), cpu_map);
8624 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8625 d->sd_allnodes = 1;
8626 }
8627 parent = sd;
8628
8629 sd = &per_cpu(node_domains, i).sd;
8630 SD_INIT(sd, NODE);
8631 set_domain_attribute(sd, attr);
8632 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8633 sd->parent = parent;
8634 if (parent)
8635 parent->child = sd;
8636 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8637 #endif
8638 return sd;
8639 }
8640
8641 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8642 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8643 struct sched_domain *parent, int i)
8644 {
8645 struct sched_domain *sd;
8646 sd = &per_cpu(phys_domains, i).sd;
8647 SD_INIT(sd, CPU);
8648 set_domain_attribute(sd, attr);
8649 cpumask_copy(sched_domain_span(sd), d->nodemask);
8650 sd->parent = parent;
8651 if (parent)
8652 parent->child = sd;
8653 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8654 return sd;
8655 }
8656
8657 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8658 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8659 struct sched_domain *parent, int i)
8660 {
8661 struct sched_domain *sd = parent;
8662 #ifdef CONFIG_SCHED_MC
8663 sd = &per_cpu(core_domains, i).sd;
8664 SD_INIT(sd, MC);
8665 set_domain_attribute(sd, attr);
8666 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8667 sd->parent = parent;
8668 parent->child = sd;
8669 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8670 #endif
8671 return sd;
8672 }
8673
8674 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8675 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8676 struct sched_domain *parent, int i)
8677 {
8678 struct sched_domain *sd = parent;
8679 #ifdef CONFIG_SCHED_SMT
8680 sd = &per_cpu(cpu_domains, i).sd;
8681 SD_INIT(sd, SIBLING);
8682 set_domain_attribute(sd, attr);
8683 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8684 sd->parent = parent;
8685 parent->child = sd;
8686 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8687 #endif
8688 return sd;
8689 }
8690
8691 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8692 const struct cpumask *cpu_map, int cpu)
8693 {
8694 switch (l) {
8695 #ifdef CONFIG_SCHED_SMT
8696 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8697 cpumask_and(d->this_sibling_map, cpu_map,
8698 topology_thread_cpumask(cpu));
8699 if (cpu == cpumask_first(d->this_sibling_map))
8700 init_sched_build_groups(d->this_sibling_map, cpu_map,
8701 &cpu_to_cpu_group,
8702 d->send_covered, d->tmpmask);
8703 break;
8704 #endif
8705 #ifdef CONFIG_SCHED_MC
8706 case SD_LV_MC: /* set up multi-core groups */
8707 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8708 if (cpu == cpumask_first(d->this_core_map))
8709 init_sched_build_groups(d->this_core_map, cpu_map,
8710 &cpu_to_core_group,
8711 d->send_covered, d->tmpmask);
8712 break;
8713 #endif
8714 case SD_LV_CPU: /* set up physical groups */
8715 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8716 if (!cpumask_empty(d->nodemask))
8717 init_sched_build_groups(d->nodemask, cpu_map,
8718 &cpu_to_phys_group,
8719 d->send_covered, d->tmpmask);
8720 break;
8721 #ifdef CONFIG_NUMA
8722 case SD_LV_ALLNODES:
8723 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8724 d->send_covered, d->tmpmask);
8725 break;
8726 #endif
8727 default:
8728 break;
8729 }
8730 }
8731
8732 /*
8733 * Build sched domains for a given set of cpus and attach the sched domains
8734 * to the individual cpus
8735 */
8736 static int __build_sched_domains(const struct cpumask *cpu_map,
8737 struct sched_domain_attr *attr)
8738 {
8739 enum s_alloc alloc_state = sa_none;
8740 struct s_data d;
8741 struct sched_domain *sd;
8742 int i;
8743 #ifdef CONFIG_NUMA
8744 d.sd_allnodes = 0;
8745 #endif
8746
8747 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8748 if (alloc_state != sa_rootdomain)
8749 goto error;
8750 alloc_state = sa_sched_groups;
8751
8752 /*
8753 * Set up domains for cpus specified by the cpu_map.
8754 */
8755 for_each_cpu(i, cpu_map) {
8756 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8757 cpu_map);
8758
8759 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8760 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8761 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8762 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8763 }
8764
8765 for_each_cpu(i, cpu_map) {
8766 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8767 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8768 }
8769
8770 /* Set up physical groups */
8771 for (i = 0; i < nr_node_ids; i++)
8772 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8773
8774 #ifdef CONFIG_NUMA
8775 /* Set up node groups */
8776 if (d.sd_allnodes)
8777 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8778
8779 for (i = 0; i < nr_node_ids; i++)
8780 if (build_numa_sched_groups(&d, cpu_map, i))
8781 goto error;
8782 #endif
8783
8784 /* Calculate CPU power for physical packages and nodes */
8785 #ifdef CONFIG_SCHED_SMT
8786 for_each_cpu(i, cpu_map) {
8787 sd = &per_cpu(cpu_domains, i).sd;
8788 init_sched_groups_power(i, sd);
8789 }
8790 #endif
8791 #ifdef CONFIG_SCHED_MC
8792 for_each_cpu(i, cpu_map) {
8793 sd = &per_cpu(core_domains, i).sd;
8794 init_sched_groups_power(i, sd);
8795 }
8796 #endif
8797
8798 for_each_cpu(i, cpu_map) {
8799 sd = &per_cpu(phys_domains, i).sd;
8800 init_sched_groups_power(i, sd);
8801 }
8802
8803 #ifdef CONFIG_NUMA
8804 for (i = 0; i < nr_node_ids; i++)
8805 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8806
8807 if (d.sd_allnodes) {
8808 struct sched_group *sg;
8809
8810 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8811 d.tmpmask);
8812 init_numa_sched_groups_power(sg);
8813 }
8814 #endif
8815
8816 /* Attach the domains */
8817 for_each_cpu(i, cpu_map) {
8818 #ifdef CONFIG_SCHED_SMT
8819 sd = &per_cpu(cpu_domains, i).sd;
8820 #elif defined(CONFIG_SCHED_MC)
8821 sd = &per_cpu(core_domains, i).sd;
8822 #else
8823 sd = &per_cpu(phys_domains, i).sd;
8824 #endif
8825 cpu_attach_domain(sd, d.rd, i);
8826 }
8827
8828 d.sched_group_nodes = NULL; /* don't free this we still need it */
8829 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8830 return 0;
8831
8832 error:
8833 __free_domain_allocs(&d, alloc_state, cpu_map);
8834 return -ENOMEM;
8835 }
8836
8837 static int build_sched_domains(const struct cpumask *cpu_map)
8838 {
8839 return __build_sched_domains(cpu_map, NULL);
8840 }
8841
8842 static struct cpumask *doms_cur; /* current sched domains */
8843 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8844 static struct sched_domain_attr *dattr_cur;
8845 /* attribues of custom domains in 'doms_cur' */
8846
8847 /*
8848 * Special case: If a kmalloc of a doms_cur partition (array of
8849 * cpumask) fails, then fallback to a single sched domain,
8850 * as determined by the single cpumask fallback_doms.
8851 */
8852 static cpumask_var_t fallback_doms;
8853
8854 /*
8855 * arch_update_cpu_topology lets virtualized architectures update the
8856 * cpu core maps. It is supposed to return 1 if the topology changed
8857 * or 0 if it stayed the same.
8858 */
8859 int __attribute__((weak)) arch_update_cpu_topology(void)
8860 {
8861 return 0;
8862 }
8863
8864 /*
8865 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8866 * For now this just excludes isolated cpus, but could be used to
8867 * exclude other special cases in the future.
8868 */
8869 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8870 {
8871 int err;
8872
8873 arch_update_cpu_topology();
8874 ndoms_cur = 1;
8875 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8876 if (!doms_cur)
8877 doms_cur = fallback_doms;
8878 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8879 dattr_cur = NULL;
8880 err = build_sched_domains(doms_cur);
8881 register_sched_domain_sysctl();
8882
8883 return err;
8884 }
8885
8886 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8887 struct cpumask *tmpmask)
8888 {
8889 free_sched_groups(cpu_map, tmpmask);
8890 }
8891
8892 /*
8893 * Detach sched domains from a group of cpus specified in cpu_map
8894 * These cpus will now be attached to the NULL domain
8895 */
8896 static void detach_destroy_domains(const struct cpumask *cpu_map)
8897 {
8898 /* Save because hotplug lock held. */
8899 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8900 int i;
8901
8902 for_each_cpu(i, cpu_map)
8903 cpu_attach_domain(NULL, &def_root_domain, i);
8904 synchronize_sched();
8905 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8906 }
8907
8908 /* handle null as "default" */
8909 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8910 struct sched_domain_attr *new, int idx_new)
8911 {
8912 struct sched_domain_attr tmp;
8913
8914 /* fast path */
8915 if (!new && !cur)
8916 return 1;
8917
8918 tmp = SD_ATTR_INIT;
8919 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8920 new ? (new + idx_new) : &tmp,
8921 sizeof(struct sched_domain_attr));
8922 }
8923
8924 /*
8925 * Partition sched domains as specified by the 'ndoms_new'
8926 * cpumasks in the array doms_new[] of cpumasks. This compares
8927 * doms_new[] to the current sched domain partitioning, doms_cur[].
8928 * It destroys each deleted domain and builds each new domain.
8929 *
8930 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8931 * The masks don't intersect (don't overlap.) We should setup one
8932 * sched domain for each mask. CPUs not in any of the cpumasks will
8933 * not be load balanced. If the same cpumask appears both in the
8934 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8935 * it as it is.
8936 *
8937 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8938 * ownership of it and will kfree it when done with it. If the caller
8939 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8940 * ndoms_new == 1, and partition_sched_domains() will fallback to
8941 * the single partition 'fallback_doms', it also forces the domains
8942 * to be rebuilt.
8943 *
8944 * If doms_new == NULL it will be replaced with cpu_online_mask.
8945 * ndoms_new == 0 is a special case for destroying existing domains,
8946 * and it will not create the default domain.
8947 *
8948 * Call with hotplug lock held
8949 */
8950 /* FIXME: Change to struct cpumask *doms_new[] */
8951 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8952 struct sched_domain_attr *dattr_new)
8953 {
8954 int i, j, n;
8955 int new_topology;
8956
8957 mutex_lock(&sched_domains_mutex);
8958
8959 /* always unregister in case we don't destroy any domains */
8960 unregister_sched_domain_sysctl();
8961
8962 /* Let architecture update cpu core mappings. */
8963 new_topology = arch_update_cpu_topology();
8964
8965 n = doms_new ? ndoms_new : 0;
8966
8967 /* Destroy deleted domains */
8968 for (i = 0; i < ndoms_cur; i++) {
8969 for (j = 0; j < n && !new_topology; j++) {
8970 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8971 && dattrs_equal(dattr_cur, i, dattr_new, j))
8972 goto match1;
8973 }
8974 /* no match - a current sched domain not in new doms_new[] */
8975 detach_destroy_domains(doms_cur + i);
8976 match1:
8977 ;
8978 }
8979
8980 if (doms_new == NULL) {
8981 ndoms_cur = 0;
8982 doms_new = fallback_doms;
8983 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8984 WARN_ON_ONCE(dattr_new);
8985 }
8986
8987 /* Build new domains */
8988 for (i = 0; i < ndoms_new; i++) {
8989 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8990 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8991 && dattrs_equal(dattr_new, i, dattr_cur, j))
8992 goto match2;
8993 }
8994 /* no match - add a new doms_new */
8995 __build_sched_domains(doms_new + i,
8996 dattr_new ? dattr_new + i : NULL);
8997 match2:
8998 ;
8999 }
9000
9001 /* Remember the new sched domains */
9002 if (doms_cur != fallback_doms)
9003 kfree(doms_cur);
9004 kfree(dattr_cur); /* kfree(NULL) is safe */
9005 doms_cur = doms_new;
9006 dattr_cur = dattr_new;
9007 ndoms_cur = ndoms_new;
9008
9009 register_sched_domain_sysctl();
9010
9011 mutex_unlock(&sched_domains_mutex);
9012 }
9013
9014 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9015 static void arch_reinit_sched_domains(void)
9016 {
9017 get_online_cpus();
9018
9019 /* Destroy domains first to force the rebuild */
9020 partition_sched_domains(0, NULL, NULL);
9021
9022 rebuild_sched_domains();
9023 put_online_cpus();
9024 }
9025
9026 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9027 {
9028 unsigned int level = 0;
9029
9030 if (sscanf(buf, "%u", &level) != 1)
9031 return -EINVAL;
9032
9033 /*
9034 * level is always be positive so don't check for
9035 * level < POWERSAVINGS_BALANCE_NONE which is 0
9036 * What happens on 0 or 1 byte write,
9037 * need to check for count as well?
9038 */
9039
9040 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9041 return -EINVAL;
9042
9043 if (smt)
9044 sched_smt_power_savings = level;
9045 else
9046 sched_mc_power_savings = level;
9047
9048 arch_reinit_sched_domains();
9049
9050 return count;
9051 }
9052
9053 #ifdef CONFIG_SCHED_MC
9054 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9055 char *page)
9056 {
9057 return sprintf(page, "%u\n", sched_mc_power_savings);
9058 }
9059 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9060 const char *buf, size_t count)
9061 {
9062 return sched_power_savings_store(buf, count, 0);
9063 }
9064 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9065 sched_mc_power_savings_show,
9066 sched_mc_power_savings_store);
9067 #endif
9068
9069 #ifdef CONFIG_SCHED_SMT
9070 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9071 char *page)
9072 {
9073 return sprintf(page, "%u\n", sched_smt_power_savings);
9074 }
9075 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9076 const char *buf, size_t count)
9077 {
9078 return sched_power_savings_store(buf, count, 1);
9079 }
9080 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9081 sched_smt_power_savings_show,
9082 sched_smt_power_savings_store);
9083 #endif
9084
9085 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9086 {
9087 int err = 0;
9088
9089 #ifdef CONFIG_SCHED_SMT
9090 if (smt_capable())
9091 err = sysfs_create_file(&cls->kset.kobj,
9092 &attr_sched_smt_power_savings.attr);
9093 #endif
9094 #ifdef CONFIG_SCHED_MC
9095 if (!err && mc_capable())
9096 err = sysfs_create_file(&cls->kset.kobj,
9097 &attr_sched_mc_power_savings.attr);
9098 #endif
9099 return err;
9100 }
9101 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9102
9103 #ifndef CONFIG_CPUSETS
9104 /*
9105 * Add online and remove offline CPUs from the scheduler domains.
9106 * When cpusets are enabled they take over this function.
9107 */
9108 static int update_sched_domains(struct notifier_block *nfb,
9109 unsigned long action, void *hcpu)
9110 {
9111 switch (action) {
9112 case CPU_ONLINE:
9113 case CPU_ONLINE_FROZEN:
9114 case CPU_DEAD:
9115 case CPU_DEAD_FROZEN:
9116 partition_sched_domains(1, NULL, NULL);
9117 return NOTIFY_OK;
9118
9119 default:
9120 return NOTIFY_DONE;
9121 }
9122 }
9123 #endif
9124
9125 static int update_runtime(struct notifier_block *nfb,
9126 unsigned long action, void *hcpu)
9127 {
9128 int cpu = (int)(long)hcpu;
9129
9130 switch (action) {
9131 case CPU_DOWN_PREPARE:
9132 case CPU_DOWN_PREPARE_FROZEN:
9133 disable_runtime(cpu_rq(cpu));
9134 return NOTIFY_OK;
9135
9136 case CPU_DOWN_FAILED:
9137 case CPU_DOWN_FAILED_FROZEN:
9138 case CPU_ONLINE:
9139 case CPU_ONLINE_FROZEN:
9140 enable_runtime(cpu_rq(cpu));
9141 return NOTIFY_OK;
9142
9143 default:
9144 return NOTIFY_DONE;
9145 }
9146 }
9147
9148 void __init sched_init_smp(void)
9149 {
9150 cpumask_var_t non_isolated_cpus;
9151
9152 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9153 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9154
9155 #if defined(CONFIG_NUMA)
9156 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9157 GFP_KERNEL);
9158 BUG_ON(sched_group_nodes_bycpu == NULL);
9159 #endif
9160 get_online_cpus();
9161 mutex_lock(&sched_domains_mutex);
9162 arch_init_sched_domains(cpu_online_mask);
9163 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9164 if (cpumask_empty(non_isolated_cpus))
9165 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9166 mutex_unlock(&sched_domains_mutex);
9167 put_online_cpus();
9168
9169 #ifndef CONFIG_CPUSETS
9170 /* XXX: Theoretical race here - CPU may be hotplugged now */
9171 hotcpu_notifier(update_sched_domains, 0);
9172 #endif
9173
9174 /* RT runtime code needs to handle some hotplug events */
9175 hotcpu_notifier(update_runtime, 0);
9176
9177 init_hrtick();
9178
9179 /* Move init over to a non-isolated CPU */
9180 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9181 BUG();
9182 sched_init_granularity();
9183 free_cpumask_var(non_isolated_cpus);
9184
9185 init_sched_rt_class();
9186 }
9187 #else
9188 void __init sched_init_smp(void)
9189 {
9190 sched_init_granularity();
9191 }
9192 #endif /* CONFIG_SMP */
9193
9194 const_debug unsigned int sysctl_timer_migration = 1;
9195
9196 int in_sched_functions(unsigned long addr)
9197 {
9198 return in_lock_functions(addr) ||
9199 (addr >= (unsigned long)__sched_text_start
9200 && addr < (unsigned long)__sched_text_end);
9201 }
9202
9203 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9204 {
9205 cfs_rq->tasks_timeline = RB_ROOT;
9206 INIT_LIST_HEAD(&cfs_rq->tasks);
9207 #ifdef CONFIG_FAIR_GROUP_SCHED
9208 cfs_rq->rq = rq;
9209 #endif
9210 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9211 }
9212
9213 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9214 {
9215 struct rt_prio_array *array;
9216 int i;
9217
9218 array = &rt_rq->active;
9219 for (i = 0; i < MAX_RT_PRIO; i++) {
9220 INIT_LIST_HEAD(array->queue + i);
9221 __clear_bit(i, array->bitmap);
9222 }
9223 /* delimiter for bitsearch: */
9224 __set_bit(MAX_RT_PRIO, array->bitmap);
9225
9226 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9227 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9228 #ifdef CONFIG_SMP
9229 rt_rq->highest_prio.next = MAX_RT_PRIO;
9230 #endif
9231 #endif
9232 #ifdef CONFIG_SMP
9233 rt_rq->rt_nr_migratory = 0;
9234 rt_rq->overloaded = 0;
9235 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9236 #endif
9237
9238 rt_rq->rt_time = 0;
9239 rt_rq->rt_throttled = 0;
9240 rt_rq->rt_runtime = 0;
9241 spin_lock_init(&rt_rq->rt_runtime_lock);
9242
9243 #ifdef CONFIG_RT_GROUP_SCHED
9244 rt_rq->rt_nr_boosted = 0;
9245 rt_rq->rq = rq;
9246 #endif
9247 }
9248
9249 #ifdef CONFIG_FAIR_GROUP_SCHED
9250 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9251 struct sched_entity *se, int cpu, int add,
9252 struct sched_entity *parent)
9253 {
9254 struct rq *rq = cpu_rq(cpu);
9255 tg->cfs_rq[cpu] = cfs_rq;
9256 init_cfs_rq(cfs_rq, rq);
9257 cfs_rq->tg = tg;
9258 if (add)
9259 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9260
9261 tg->se[cpu] = se;
9262 /* se could be NULL for init_task_group */
9263 if (!se)
9264 return;
9265
9266 if (!parent)
9267 se->cfs_rq = &rq->cfs;
9268 else
9269 se->cfs_rq = parent->my_q;
9270
9271 se->my_q = cfs_rq;
9272 se->load.weight = tg->shares;
9273 se->load.inv_weight = 0;
9274 se->parent = parent;
9275 }
9276 #endif
9277
9278 #ifdef CONFIG_RT_GROUP_SCHED
9279 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9280 struct sched_rt_entity *rt_se, int cpu, int add,
9281 struct sched_rt_entity *parent)
9282 {
9283 struct rq *rq = cpu_rq(cpu);
9284
9285 tg->rt_rq[cpu] = rt_rq;
9286 init_rt_rq(rt_rq, rq);
9287 rt_rq->tg = tg;
9288 rt_rq->rt_se = rt_se;
9289 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9290 if (add)
9291 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9292
9293 tg->rt_se[cpu] = rt_se;
9294 if (!rt_se)
9295 return;
9296
9297 if (!parent)
9298 rt_se->rt_rq = &rq->rt;
9299 else
9300 rt_se->rt_rq = parent->my_q;
9301
9302 rt_se->my_q = rt_rq;
9303 rt_se->parent = parent;
9304 INIT_LIST_HEAD(&rt_se->run_list);
9305 }
9306 #endif
9307
9308 void __init sched_init(void)
9309 {
9310 int i, j;
9311 unsigned long alloc_size = 0, ptr;
9312
9313 #ifdef CONFIG_FAIR_GROUP_SCHED
9314 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9315 #endif
9316 #ifdef CONFIG_RT_GROUP_SCHED
9317 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9318 #endif
9319 #ifdef CONFIG_USER_SCHED
9320 alloc_size *= 2;
9321 #endif
9322 #ifdef CONFIG_CPUMASK_OFFSTACK
9323 alloc_size += num_possible_cpus() * cpumask_size();
9324 #endif
9325 /*
9326 * As sched_init() is called before page_alloc is setup,
9327 * we use alloc_bootmem().
9328 */
9329 if (alloc_size) {
9330 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9331
9332 #ifdef CONFIG_FAIR_GROUP_SCHED
9333 init_task_group.se = (struct sched_entity **)ptr;
9334 ptr += nr_cpu_ids * sizeof(void **);
9335
9336 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9337 ptr += nr_cpu_ids * sizeof(void **);
9338
9339 #ifdef CONFIG_USER_SCHED
9340 root_task_group.se = (struct sched_entity **)ptr;
9341 ptr += nr_cpu_ids * sizeof(void **);
9342
9343 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9344 ptr += nr_cpu_ids * sizeof(void **);
9345 #endif /* CONFIG_USER_SCHED */
9346 #endif /* CONFIG_FAIR_GROUP_SCHED */
9347 #ifdef CONFIG_RT_GROUP_SCHED
9348 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9349 ptr += nr_cpu_ids * sizeof(void **);
9350
9351 init_task_group.rt_rq = (struct rt_rq **)ptr;
9352 ptr += nr_cpu_ids * sizeof(void **);
9353
9354 #ifdef CONFIG_USER_SCHED
9355 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
9357
9358 root_task_group.rt_rq = (struct rt_rq **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
9360 #endif /* CONFIG_USER_SCHED */
9361 #endif /* CONFIG_RT_GROUP_SCHED */
9362 #ifdef CONFIG_CPUMASK_OFFSTACK
9363 for_each_possible_cpu(i) {
9364 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9365 ptr += cpumask_size();
9366 }
9367 #endif /* CONFIG_CPUMASK_OFFSTACK */
9368 }
9369
9370 #ifdef CONFIG_SMP
9371 init_defrootdomain();
9372 #endif
9373
9374 init_rt_bandwidth(&def_rt_bandwidth,
9375 global_rt_period(), global_rt_runtime());
9376
9377 #ifdef CONFIG_RT_GROUP_SCHED
9378 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9379 global_rt_period(), global_rt_runtime());
9380 #ifdef CONFIG_USER_SCHED
9381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9382 global_rt_period(), RUNTIME_INF);
9383 #endif /* CONFIG_USER_SCHED */
9384 #endif /* CONFIG_RT_GROUP_SCHED */
9385
9386 #ifdef CONFIG_GROUP_SCHED
9387 list_add(&init_task_group.list, &task_groups);
9388 INIT_LIST_HEAD(&init_task_group.children);
9389
9390 #ifdef CONFIG_USER_SCHED
9391 INIT_LIST_HEAD(&root_task_group.children);
9392 init_task_group.parent = &root_task_group;
9393 list_add(&init_task_group.siblings, &root_task_group.children);
9394 #endif /* CONFIG_USER_SCHED */
9395 #endif /* CONFIG_GROUP_SCHED */
9396
9397 for_each_possible_cpu(i) {
9398 struct rq *rq;
9399
9400 rq = cpu_rq(i);
9401 spin_lock_init(&rq->lock);
9402 rq->nr_running = 0;
9403 rq->calc_load_active = 0;
9404 rq->calc_load_update = jiffies + LOAD_FREQ;
9405 init_cfs_rq(&rq->cfs, rq);
9406 init_rt_rq(&rq->rt, rq);
9407 #ifdef CONFIG_FAIR_GROUP_SCHED
9408 init_task_group.shares = init_task_group_load;
9409 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9410 #ifdef CONFIG_CGROUP_SCHED
9411 /*
9412 * How much cpu bandwidth does init_task_group get?
9413 *
9414 * In case of task-groups formed thr' the cgroup filesystem, it
9415 * gets 100% of the cpu resources in the system. This overall
9416 * system cpu resource is divided among the tasks of
9417 * init_task_group and its child task-groups in a fair manner,
9418 * based on each entity's (task or task-group's) weight
9419 * (se->load.weight).
9420 *
9421 * In other words, if init_task_group has 10 tasks of weight
9422 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9423 * then A0's share of the cpu resource is:
9424 *
9425 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9426 *
9427 * We achieve this by letting init_task_group's tasks sit
9428 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9429 */
9430 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9431 #elif defined CONFIG_USER_SCHED
9432 root_task_group.shares = NICE_0_LOAD;
9433 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9434 /*
9435 * In case of task-groups formed thr' the user id of tasks,
9436 * init_task_group represents tasks belonging to root user.
9437 * Hence it forms a sibling of all subsequent groups formed.
9438 * In this case, init_task_group gets only a fraction of overall
9439 * system cpu resource, based on the weight assigned to root
9440 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9441 * by letting tasks of init_task_group sit in a separate cfs_rq
9442 * (init_tg_cfs_rq) and having one entity represent this group of
9443 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9444 */
9445 init_tg_cfs_entry(&init_task_group,
9446 &per_cpu(init_tg_cfs_rq, i),
9447 &per_cpu(init_sched_entity, i), i, 1,
9448 root_task_group.se[i]);
9449
9450 #endif
9451 #endif /* CONFIG_FAIR_GROUP_SCHED */
9452
9453 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9454 #ifdef CONFIG_RT_GROUP_SCHED
9455 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9456 #ifdef CONFIG_CGROUP_SCHED
9457 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9458 #elif defined CONFIG_USER_SCHED
9459 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9460 init_tg_rt_entry(&init_task_group,
9461 &per_cpu(init_rt_rq, i),
9462 &per_cpu(init_sched_rt_entity, i), i, 1,
9463 root_task_group.rt_se[i]);
9464 #endif
9465 #endif
9466
9467 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9468 rq->cpu_load[j] = 0;
9469 #ifdef CONFIG_SMP
9470 rq->sd = NULL;
9471 rq->rd = NULL;
9472 rq->post_schedule = 0;
9473 rq->active_balance = 0;
9474 rq->next_balance = jiffies;
9475 rq->push_cpu = 0;
9476 rq->cpu = i;
9477 rq->online = 0;
9478 rq->migration_thread = NULL;
9479 INIT_LIST_HEAD(&rq->migration_queue);
9480 rq_attach_root(rq, &def_root_domain);
9481 #endif
9482 init_rq_hrtick(rq);
9483 atomic_set(&rq->nr_iowait, 0);
9484 }
9485
9486 set_load_weight(&init_task);
9487
9488 #ifdef CONFIG_PREEMPT_NOTIFIERS
9489 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9490 #endif
9491
9492 #ifdef CONFIG_SMP
9493 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9494 #endif
9495
9496 #ifdef CONFIG_RT_MUTEXES
9497 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9498 #endif
9499
9500 /*
9501 * The boot idle thread does lazy MMU switching as well:
9502 */
9503 atomic_inc(&init_mm.mm_count);
9504 enter_lazy_tlb(&init_mm, current);
9505
9506 /*
9507 * Make us the idle thread. Technically, schedule() should not be
9508 * called from this thread, however somewhere below it might be,
9509 * but because we are the idle thread, we just pick up running again
9510 * when this runqueue becomes "idle".
9511 */
9512 init_idle(current, smp_processor_id());
9513
9514 calc_load_update = jiffies + LOAD_FREQ;
9515
9516 /*
9517 * During early bootup we pretend to be a normal task:
9518 */
9519 current->sched_class = &fair_sched_class;
9520
9521 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9522 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9523 #ifdef CONFIG_SMP
9524 #ifdef CONFIG_NO_HZ
9525 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9526 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9527 #endif
9528 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9529 #endif /* SMP */
9530
9531 perf_counter_init();
9532
9533 scheduler_running = 1;
9534 }
9535
9536 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9537 static inline int preempt_count_equals(int preempt_offset)
9538 {
9539 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9540
9541 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9542 }
9543
9544 void __might_sleep(char *file, int line, int preempt_offset)
9545 {
9546 #ifdef in_atomic
9547 static unsigned long prev_jiffy; /* ratelimiting */
9548
9549 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9550 system_state != SYSTEM_RUNNING || oops_in_progress)
9551 return;
9552 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9553 return;
9554 prev_jiffy = jiffies;
9555
9556 printk(KERN_ERR
9557 "BUG: sleeping function called from invalid context at %s:%d\n",
9558 file, line);
9559 printk(KERN_ERR
9560 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9561 in_atomic(), irqs_disabled(),
9562 current->pid, current->comm);
9563
9564 debug_show_held_locks(current);
9565 if (irqs_disabled())
9566 print_irqtrace_events(current);
9567 dump_stack();
9568 #endif
9569 }
9570 EXPORT_SYMBOL(__might_sleep);
9571 #endif
9572
9573 #ifdef CONFIG_MAGIC_SYSRQ
9574 static void normalize_task(struct rq *rq, struct task_struct *p)
9575 {
9576 int on_rq;
9577
9578 update_rq_clock(rq);
9579 on_rq = p->se.on_rq;
9580 if (on_rq)
9581 deactivate_task(rq, p, 0);
9582 __setscheduler(rq, p, SCHED_NORMAL, 0);
9583 if (on_rq) {
9584 activate_task(rq, p, 0);
9585 resched_task(rq->curr);
9586 }
9587 }
9588
9589 void normalize_rt_tasks(void)
9590 {
9591 struct task_struct *g, *p;
9592 unsigned long flags;
9593 struct rq *rq;
9594
9595 read_lock_irqsave(&tasklist_lock, flags);
9596 do_each_thread(g, p) {
9597 /*
9598 * Only normalize user tasks:
9599 */
9600 if (!p->mm)
9601 continue;
9602
9603 p->se.exec_start = 0;
9604 #ifdef CONFIG_SCHEDSTATS
9605 p->se.wait_start = 0;
9606 p->se.sleep_start = 0;
9607 p->se.block_start = 0;
9608 #endif
9609
9610 if (!rt_task(p)) {
9611 /*
9612 * Renice negative nice level userspace
9613 * tasks back to 0:
9614 */
9615 if (TASK_NICE(p) < 0 && p->mm)
9616 set_user_nice(p, 0);
9617 continue;
9618 }
9619
9620 spin_lock(&p->pi_lock);
9621 rq = __task_rq_lock(p);
9622
9623 normalize_task(rq, p);
9624
9625 __task_rq_unlock(rq);
9626 spin_unlock(&p->pi_lock);
9627 } while_each_thread(g, p);
9628
9629 read_unlock_irqrestore(&tasklist_lock, flags);
9630 }
9631
9632 #endif /* CONFIG_MAGIC_SYSRQ */
9633
9634 #ifdef CONFIG_IA64
9635 /*
9636 * These functions are only useful for the IA64 MCA handling.
9637 *
9638 * They can only be called when the whole system has been
9639 * stopped - every CPU needs to be quiescent, and no scheduling
9640 * activity can take place. Using them for anything else would
9641 * be a serious bug, and as a result, they aren't even visible
9642 * under any other configuration.
9643 */
9644
9645 /**
9646 * curr_task - return the current task for a given cpu.
9647 * @cpu: the processor in question.
9648 *
9649 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9650 */
9651 struct task_struct *curr_task(int cpu)
9652 {
9653 return cpu_curr(cpu);
9654 }
9655
9656 /**
9657 * set_curr_task - set the current task for a given cpu.
9658 * @cpu: the processor in question.
9659 * @p: the task pointer to set.
9660 *
9661 * Description: This function must only be used when non-maskable interrupts
9662 * are serviced on a separate stack. It allows the architecture to switch the
9663 * notion of the current task on a cpu in a non-blocking manner. This function
9664 * must be called with all CPU's synchronized, and interrupts disabled, the
9665 * and caller must save the original value of the current task (see
9666 * curr_task() above) and restore that value before reenabling interrupts and
9667 * re-starting the system.
9668 *
9669 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9670 */
9671 void set_curr_task(int cpu, struct task_struct *p)
9672 {
9673 cpu_curr(cpu) = p;
9674 }
9675
9676 #endif
9677
9678 #ifdef CONFIG_FAIR_GROUP_SCHED
9679 static void free_fair_sched_group(struct task_group *tg)
9680 {
9681 int i;
9682
9683 for_each_possible_cpu(i) {
9684 if (tg->cfs_rq)
9685 kfree(tg->cfs_rq[i]);
9686 if (tg->se)
9687 kfree(tg->se[i]);
9688 }
9689
9690 kfree(tg->cfs_rq);
9691 kfree(tg->se);
9692 }
9693
9694 static
9695 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9696 {
9697 struct cfs_rq *cfs_rq;
9698 struct sched_entity *se;
9699 struct rq *rq;
9700 int i;
9701
9702 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9703 if (!tg->cfs_rq)
9704 goto err;
9705 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9706 if (!tg->se)
9707 goto err;
9708
9709 tg->shares = NICE_0_LOAD;
9710
9711 for_each_possible_cpu(i) {
9712 rq = cpu_rq(i);
9713
9714 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9715 GFP_KERNEL, cpu_to_node(i));
9716 if (!cfs_rq)
9717 goto err;
9718
9719 se = kzalloc_node(sizeof(struct sched_entity),
9720 GFP_KERNEL, cpu_to_node(i));
9721 if (!se)
9722 goto err;
9723
9724 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9725 }
9726
9727 return 1;
9728
9729 err:
9730 return 0;
9731 }
9732
9733 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9734 {
9735 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9736 &cpu_rq(cpu)->leaf_cfs_rq_list);
9737 }
9738
9739 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9740 {
9741 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9742 }
9743 #else /* !CONFG_FAIR_GROUP_SCHED */
9744 static inline void free_fair_sched_group(struct task_group *tg)
9745 {
9746 }
9747
9748 static inline
9749 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9750 {
9751 return 1;
9752 }
9753
9754 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9755 {
9756 }
9757
9758 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9759 {
9760 }
9761 #endif /* CONFIG_FAIR_GROUP_SCHED */
9762
9763 #ifdef CONFIG_RT_GROUP_SCHED
9764 static void free_rt_sched_group(struct task_group *tg)
9765 {
9766 int i;
9767
9768 destroy_rt_bandwidth(&tg->rt_bandwidth);
9769
9770 for_each_possible_cpu(i) {
9771 if (tg->rt_rq)
9772 kfree(tg->rt_rq[i]);
9773 if (tg->rt_se)
9774 kfree(tg->rt_se[i]);
9775 }
9776
9777 kfree(tg->rt_rq);
9778 kfree(tg->rt_se);
9779 }
9780
9781 static
9782 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9783 {
9784 struct rt_rq *rt_rq;
9785 struct sched_rt_entity *rt_se;
9786 struct rq *rq;
9787 int i;
9788
9789 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9790 if (!tg->rt_rq)
9791 goto err;
9792 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9793 if (!tg->rt_se)
9794 goto err;
9795
9796 init_rt_bandwidth(&tg->rt_bandwidth,
9797 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9798
9799 for_each_possible_cpu(i) {
9800 rq = cpu_rq(i);
9801
9802 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9803 GFP_KERNEL, cpu_to_node(i));
9804 if (!rt_rq)
9805 goto err;
9806
9807 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9808 GFP_KERNEL, cpu_to_node(i));
9809 if (!rt_se)
9810 goto err;
9811
9812 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9813 }
9814
9815 return 1;
9816
9817 err:
9818 return 0;
9819 }
9820
9821 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9822 {
9823 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9824 &cpu_rq(cpu)->leaf_rt_rq_list);
9825 }
9826
9827 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9828 {
9829 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9830 }
9831 #else /* !CONFIG_RT_GROUP_SCHED */
9832 static inline void free_rt_sched_group(struct task_group *tg)
9833 {
9834 }
9835
9836 static inline
9837 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9838 {
9839 return 1;
9840 }
9841
9842 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9843 {
9844 }
9845
9846 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9847 {
9848 }
9849 #endif /* CONFIG_RT_GROUP_SCHED */
9850
9851 #ifdef CONFIG_GROUP_SCHED
9852 static void free_sched_group(struct task_group *tg)
9853 {
9854 free_fair_sched_group(tg);
9855 free_rt_sched_group(tg);
9856 kfree(tg);
9857 }
9858
9859 /* allocate runqueue etc for a new task group */
9860 struct task_group *sched_create_group(struct task_group *parent)
9861 {
9862 struct task_group *tg;
9863 unsigned long flags;
9864 int i;
9865
9866 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9867 if (!tg)
9868 return ERR_PTR(-ENOMEM);
9869
9870 if (!alloc_fair_sched_group(tg, parent))
9871 goto err;
9872
9873 if (!alloc_rt_sched_group(tg, parent))
9874 goto err;
9875
9876 spin_lock_irqsave(&task_group_lock, flags);
9877 for_each_possible_cpu(i) {
9878 register_fair_sched_group(tg, i);
9879 register_rt_sched_group(tg, i);
9880 }
9881 list_add_rcu(&tg->list, &task_groups);
9882
9883 WARN_ON(!parent); /* root should already exist */
9884
9885 tg->parent = parent;
9886 INIT_LIST_HEAD(&tg->children);
9887 list_add_rcu(&tg->siblings, &parent->children);
9888 spin_unlock_irqrestore(&task_group_lock, flags);
9889
9890 return tg;
9891
9892 err:
9893 free_sched_group(tg);
9894 return ERR_PTR(-ENOMEM);
9895 }
9896
9897 /* rcu callback to free various structures associated with a task group */
9898 static void free_sched_group_rcu(struct rcu_head *rhp)
9899 {
9900 /* now it should be safe to free those cfs_rqs */
9901 free_sched_group(container_of(rhp, struct task_group, rcu));
9902 }
9903
9904 /* Destroy runqueue etc associated with a task group */
9905 void sched_destroy_group(struct task_group *tg)
9906 {
9907 unsigned long flags;
9908 int i;
9909
9910 spin_lock_irqsave(&task_group_lock, flags);
9911 for_each_possible_cpu(i) {
9912 unregister_fair_sched_group(tg, i);
9913 unregister_rt_sched_group(tg, i);
9914 }
9915 list_del_rcu(&tg->list);
9916 list_del_rcu(&tg->siblings);
9917 spin_unlock_irqrestore(&task_group_lock, flags);
9918
9919 /* wait for possible concurrent references to cfs_rqs complete */
9920 call_rcu(&tg->rcu, free_sched_group_rcu);
9921 }
9922
9923 /* change task's runqueue when it moves between groups.
9924 * The caller of this function should have put the task in its new group
9925 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9926 * reflect its new group.
9927 */
9928 void sched_move_task(struct task_struct *tsk)
9929 {
9930 int on_rq, running;
9931 unsigned long flags;
9932 struct rq *rq;
9933
9934 rq = task_rq_lock(tsk, &flags);
9935
9936 update_rq_clock(rq);
9937
9938 running = task_current(rq, tsk);
9939 on_rq = tsk->se.on_rq;
9940
9941 if (on_rq)
9942 dequeue_task(rq, tsk, 0);
9943 if (unlikely(running))
9944 tsk->sched_class->put_prev_task(rq, tsk);
9945
9946 set_task_rq(tsk, task_cpu(tsk));
9947
9948 #ifdef CONFIG_FAIR_GROUP_SCHED
9949 if (tsk->sched_class->moved_group)
9950 tsk->sched_class->moved_group(tsk);
9951 #endif
9952
9953 if (unlikely(running))
9954 tsk->sched_class->set_curr_task(rq);
9955 if (on_rq)
9956 enqueue_task(rq, tsk, 0);
9957
9958 task_rq_unlock(rq, &flags);
9959 }
9960 #endif /* CONFIG_GROUP_SCHED */
9961
9962 #ifdef CONFIG_FAIR_GROUP_SCHED
9963 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9964 {
9965 struct cfs_rq *cfs_rq = se->cfs_rq;
9966 int on_rq;
9967
9968 on_rq = se->on_rq;
9969 if (on_rq)
9970 dequeue_entity(cfs_rq, se, 0);
9971
9972 se->load.weight = shares;
9973 se->load.inv_weight = 0;
9974
9975 if (on_rq)
9976 enqueue_entity(cfs_rq, se, 0);
9977 }
9978
9979 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9980 {
9981 struct cfs_rq *cfs_rq = se->cfs_rq;
9982 struct rq *rq = cfs_rq->rq;
9983 unsigned long flags;
9984
9985 spin_lock_irqsave(&rq->lock, flags);
9986 __set_se_shares(se, shares);
9987 spin_unlock_irqrestore(&rq->lock, flags);
9988 }
9989
9990 static DEFINE_MUTEX(shares_mutex);
9991
9992 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9993 {
9994 int i;
9995 unsigned long flags;
9996
9997 /*
9998 * We can't change the weight of the root cgroup.
9999 */
10000 if (!tg->se[0])
10001 return -EINVAL;
10002
10003 if (shares < MIN_SHARES)
10004 shares = MIN_SHARES;
10005 else if (shares > MAX_SHARES)
10006 shares = MAX_SHARES;
10007
10008 mutex_lock(&shares_mutex);
10009 if (tg->shares == shares)
10010 goto done;
10011
10012 spin_lock_irqsave(&task_group_lock, flags);
10013 for_each_possible_cpu(i)
10014 unregister_fair_sched_group(tg, i);
10015 list_del_rcu(&tg->siblings);
10016 spin_unlock_irqrestore(&task_group_lock, flags);
10017
10018 /* wait for any ongoing reference to this group to finish */
10019 synchronize_sched();
10020
10021 /*
10022 * Now we are free to modify the group's share on each cpu
10023 * w/o tripping rebalance_share or load_balance_fair.
10024 */
10025 tg->shares = shares;
10026 for_each_possible_cpu(i) {
10027 /*
10028 * force a rebalance
10029 */
10030 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10031 set_se_shares(tg->se[i], shares);
10032 }
10033
10034 /*
10035 * Enable load balance activity on this group, by inserting it back on
10036 * each cpu's rq->leaf_cfs_rq_list.
10037 */
10038 spin_lock_irqsave(&task_group_lock, flags);
10039 for_each_possible_cpu(i)
10040 register_fair_sched_group(tg, i);
10041 list_add_rcu(&tg->siblings, &tg->parent->children);
10042 spin_unlock_irqrestore(&task_group_lock, flags);
10043 done:
10044 mutex_unlock(&shares_mutex);
10045 return 0;
10046 }
10047
10048 unsigned long sched_group_shares(struct task_group *tg)
10049 {
10050 return tg->shares;
10051 }
10052 #endif
10053
10054 #ifdef CONFIG_RT_GROUP_SCHED
10055 /*
10056 * Ensure that the real time constraints are schedulable.
10057 */
10058 static DEFINE_MUTEX(rt_constraints_mutex);
10059
10060 static unsigned long to_ratio(u64 period, u64 runtime)
10061 {
10062 if (runtime == RUNTIME_INF)
10063 return 1ULL << 20;
10064
10065 return div64_u64(runtime << 20, period);
10066 }
10067
10068 /* Must be called with tasklist_lock held */
10069 static inline int tg_has_rt_tasks(struct task_group *tg)
10070 {
10071 struct task_struct *g, *p;
10072
10073 do_each_thread(g, p) {
10074 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10075 return 1;
10076 } while_each_thread(g, p);
10077
10078 return 0;
10079 }
10080
10081 struct rt_schedulable_data {
10082 struct task_group *tg;
10083 u64 rt_period;
10084 u64 rt_runtime;
10085 };
10086
10087 static int tg_schedulable(struct task_group *tg, void *data)
10088 {
10089 struct rt_schedulable_data *d = data;
10090 struct task_group *child;
10091 unsigned long total, sum = 0;
10092 u64 period, runtime;
10093
10094 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10095 runtime = tg->rt_bandwidth.rt_runtime;
10096
10097 if (tg == d->tg) {
10098 period = d->rt_period;
10099 runtime = d->rt_runtime;
10100 }
10101
10102 #ifdef CONFIG_USER_SCHED
10103 if (tg == &root_task_group) {
10104 period = global_rt_period();
10105 runtime = global_rt_runtime();
10106 }
10107 #endif
10108
10109 /*
10110 * Cannot have more runtime than the period.
10111 */
10112 if (runtime > period && runtime != RUNTIME_INF)
10113 return -EINVAL;
10114
10115 /*
10116 * Ensure we don't starve existing RT tasks.
10117 */
10118 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10119 return -EBUSY;
10120
10121 total = to_ratio(period, runtime);
10122
10123 /*
10124 * Nobody can have more than the global setting allows.
10125 */
10126 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10127 return -EINVAL;
10128
10129 /*
10130 * The sum of our children's runtime should not exceed our own.
10131 */
10132 list_for_each_entry_rcu(child, &tg->children, siblings) {
10133 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10134 runtime = child->rt_bandwidth.rt_runtime;
10135
10136 if (child == d->tg) {
10137 period = d->rt_period;
10138 runtime = d->rt_runtime;
10139 }
10140
10141 sum += to_ratio(period, runtime);
10142 }
10143
10144 if (sum > total)
10145 return -EINVAL;
10146
10147 return 0;
10148 }
10149
10150 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10151 {
10152 struct rt_schedulable_data data = {
10153 .tg = tg,
10154 .rt_period = period,
10155 .rt_runtime = runtime,
10156 };
10157
10158 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10159 }
10160
10161 static int tg_set_bandwidth(struct task_group *tg,
10162 u64 rt_period, u64 rt_runtime)
10163 {
10164 int i, err = 0;
10165
10166 mutex_lock(&rt_constraints_mutex);
10167 read_lock(&tasklist_lock);
10168 err = __rt_schedulable(tg, rt_period, rt_runtime);
10169 if (err)
10170 goto unlock;
10171
10172 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10173 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10174 tg->rt_bandwidth.rt_runtime = rt_runtime;
10175
10176 for_each_possible_cpu(i) {
10177 struct rt_rq *rt_rq = tg->rt_rq[i];
10178
10179 spin_lock(&rt_rq->rt_runtime_lock);
10180 rt_rq->rt_runtime = rt_runtime;
10181 spin_unlock(&rt_rq->rt_runtime_lock);
10182 }
10183 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10184 unlock:
10185 read_unlock(&tasklist_lock);
10186 mutex_unlock(&rt_constraints_mutex);
10187
10188 return err;
10189 }
10190
10191 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10192 {
10193 u64 rt_runtime, rt_period;
10194
10195 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10196 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10197 if (rt_runtime_us < 0)
10198 rt_runtime = RUNTIME_INF;
10199
10200 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10201 }
10202
10203 long sched_group_rt_runtime(struct task_group *tg)
10204 {
10205 u64 rt_runtime_us;
10206
10207 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10208 return -1;
10209
10210 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10211 do_div(rt_runtime_us, NSEC_PER_USEC);
10212 return rt_runtime_us;
10213 }
10214
10215 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10216 {
10217 u64 rt_runtime, rt_period;
10218
10219 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10220 rt_runtime = tg->rt_bandwidth.rt_runtime;
10221
10222 if (rt_period == 0)
10223 return -EINVAL;
10224
10225 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10226 }
10227
10228 long sched_group_rt_period(struct task_group *tg)
10229 {
10230 u64 rt_period_us;
10231
10232 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10233 do_div(rt_period_us, NSEC_PER_USEC);
10234 return rt_period_us;
10235 }
10236
10237 static int sched_rt_global_constraints(void)
10238 {
10239 u64 runtime, period;
10240 int ret = 0;
10241
10242 if (sysctl_sched_rt_period <= 0)
10243 return -EINVAL;
10244
10245 runtime = global_rt_runtime();
10246 period = global_rt_period();
10247
10248 /*
10249 * Sanity check on the sysctl variables.
10250 */
10251 if (runtime > period && runtime != RUNTIME_INF)
10252 return -EINVAL;
10253
10254 mutex_lock(&rt_constraints_mutex);
10255 read_lock(&tasklist_lock);
10256 ret = __rt_schedulable(NULL, 0, 0);
10257 read_unlock(&tasklist_lock);
10258 mutex_unlock(&rt_constraints_mutex);
10259
10260 return ret;
10261 }
10262
10263 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10264 {
10265 /* Don't accept realtime tasks when there is no way for them to run */
10266 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10267 return 0;
10268
10269 return 1;
10270 }
10271
10272 #else /* !CONFIG_RT_GROUP_SCHED */
10273 static int sched_rt_global_constraints(void)
10274 {
10275 unsigned long flags;
10276 int i;
10277
10278 if (sysctl_sched_rt_period <= 0)
10279 return -EINVAL;
10280
10281 /*
10282 * There's always some RT tasks in the root group
10283 * -- migration, kstopmachine etc..
10284 */
10285 if (sysctl_sched_rt_runtime == 0)
10286 return -EBUSY;
10287
10288 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10289 for_each_possible_cpu(i) {
10290 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10291
10292 spin_lock(&rt_rq->rt_runtime_lock);
10293 rt_rq->rt_runtime = global_rt_runtime();
10294 spin_unlock(&rt_rq->rt_runtime_lock);
10295 }
10296 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10297
10298 return 0;
10299 }
10300 #endif /* CONFIG_RT_GROUP_SCHED */
10301
10302 int sched_rt_handler(struct ctl_table *table, int write,
10303 struct file *filp, void __user *buffer, size_t *lenp,
10304 loff_t *ppos)
10305 {
10306 int ret;
10307 int old_period, old_runtime;
10308 static DEFINE_MUTEX(mutex);
10309
10310 mutex_lock(&mutex);
10311 old_period = sysctl_sched_rt_period;
10312 old_runtime = sysctl_sched_rt_runtime;
10313
10314 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10315
10316 if (!ret && write) {
10317 ret = sched_rt_global_constraints();
10318 if (ret) {
10319 sysctl_sched_rt_period = old_period;
10320 sysctl_sched_rt_runtime = old_runtime;
10321 } else {
10322 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10323 def_rt_bandwidth.rt_period =
10324 ns_to_ktime(global_rt_period());
10325 }
10326 }
10327 mutex_unlock(&mutex);
10328
10329 return ret;
10330 }
10331
10332 #ifdef CONFIG_CGROUP_SCHED
10333
10334 /* return corresponding task_group object of a cgroup */
10335 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10336 {
10337 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10338 struct task_group, css);
10339 }
10340
10341 static struct cgroup_subsys_state *
10342 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10343 {
10344 struct task_group *tg, *parent;
10345
10346 if (!cgrp->parent) {
10347 /* This is early initialization for the top cgroup */
10348 return &init_task_group.css;
10349 }
10350
10351 parent = cgroup_tg(cgrp->parent);
10352 tg = sched_create_group(parent);
10353 if (IS_ERR(tg))
10354 return ERR_PTR(-ENOMEM);
10355
10356 return &tg->css;
10357 }
10358
10359 static void
10360 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10361 {
10362 struct task_group *tg = cgroup_tg(cgrp);
10363
10364 sched_destroy_group(tg);
10365 }
10366
10367 static int
10368 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10369 struct task_struct *tsk)
10370 {
10371 #ifdef CONFIG_RT_GROUP_SCHED
10372 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10373 return -EINVAL;
10374 #else
10375 /* We don't support RT-tasks being in separate groups */
10376 if (tsk->sched_class != &fair_sched_class)
10377 return -EINVAL;
10378 #endif
10379
10380 return 0;
10381 }
10382
10383 static void
10384 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10385 struct cgroup *old_cont, struct task_struct *tsk)
10386 {
10387 sched_move_task(tsk);
10388 }
10389
10390 #ifdef CONFIG_FAIR_GROUP_SCHED
10391 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10392 u64 shareval)
10393 {
10394 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10395 }
10396
10397 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10398 {
10399 struct task_group *tg = cgroup_tg(cgrp);
10400
10401 return (u64) tg->shares;
10402 }
10403 #endif /* CONFIG_FAIR_GROUP_SCHED */
10404
10405 #ifdef CONFIG_RT_GROUP_SCHED
10406 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10407 s64 val)
10408 {
10409 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10410 }
10411
10412 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10413 {
10414 return sched_group_rt_runtime(cgroup_tg(cgrp));
10415 }
10416
10417 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10418 u64 rt_period_us)
10419 {
10420 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10421 }
10422
10423 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10424 {
10425 return sched_group_rt_period(cgroup_tg(cgrp));
10426 }
10427 #endif /* CONFIG_RT_GROUP_SCHED */
10428
10429 static struct cftype cpu_files[] = {
10430 #ifdef CONFIG_FAIR_GROUP_SCHED
10431 {
10432 .name = "shares",
10433 .read_u64 = cpu_shares_read_u64,
10434 .write_u64 = cpu_shares_write_u64,
10435 },
10436 #endif
10437 #ifdef CONFIG_RT_GROUP_SCHED
10438 {
10439 .name = "rt_runtime_us",
10440 .read_s64 = cpu_rt_runtime_read,
10441 .write_s64 = cpu_rt_runtime_write,
10442 },
10443 {
10444 .name = "rt_period_us",
10445 .read_u64 = cpu_rt_period_read_uint,
10446 .write_u64 = cpu_rt_period_write_uint,
10447 },
10448 #endif
10449 };
10450
10451 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10452 {
10453 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10454 }
10455
10456 struct cgroup_subsys cpu_cgroup_subsys = {
10457 .name = "cpu",
10458 .create = cpu_cgroup_create,
10459 .destroy = cpu_cgroup_destroy,
10460 .can_attach = cpu_cgroup_can_attach,
10461 .attach = cpu_cgroup_attach,
10462 .populate = cpu_cgroup_populate,
10463 .subsys_id = cpu_cgroup_subsys_id,
10464 .early_init = 1,
10465 };
10466
10467 #endif /* CONFIG_CGROUP_SCHED */
10468
10469 #ifdef CONFIG_CGROUP_CPUACCT
10470
10471 /*
10472 * CPU accounting code for task groups.
10473 *
10474 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10475 * (balbir@in.ibm.com).
10476 */
10477
10478 /* track cpu usage of a group of tasks and its child groups */
10479 struct cpuacct {
10480 struct cgroup_subsys_state css;
10481 /* cpuusage holds pointer to a u64-type object on every cpu */
10482 u64 *cpuusage;
10483 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10484 struct cpuacct *parent;
10485 };
10486
10487 struct cgroup_subsys cpuacct_subsys;
10488
10489 /* return cpu accounting group corresponding to this container */
10490 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10491 {
10492 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10493 struct cpuacct, css);
10494 }
10495
10496 /* return cpu accounting group to which this task belongs */
10497 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10498 {
10499 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10500 struct cpuacct, css);
10501 }
10502
10503 /* create a new cpu accounting group */
10504 static struct cgroup_subsys_state *cpuacct_create(
10505 struct cgroup_subsys *ss, struct cgroup *cgrp)
10506 {
10507 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10508 int i;
10509
10510 if (!ca)
10511 goto out;
10512
10513 ca->cpuusage = alloc_percpu(u64);
10514 if (!ca->cpuusage)
10515 goto out_free_ca;
10516
10517 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10518 if (percpu_counter_init(&ca->cpustat[i], 0))
10519 goto out_free_counters;
10520
10521 if (cgrp->parent)
10522 ca->parent = cgroup_ca(cgrp->parent);
10523
10524 return &ca->css;
10525
10526 out_free_counters:
10527 while (--i >= 0)
10528 percpu_counter_destroy(&ca->cpustat[i]);
10529 free_percpu(ca->cpuusage);
10530 out_free_ca:
10531 kfree(ca);
10532 out:
10533 return ERR_PTR(-ENOMEM);
10534 }
10535
10536 /* destroy an existing cpu accounting group */
10537 static void
10538 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10539 {
10540 struct cpuacct *ca = cgroup_ca(cgrp);
10541 int i;
10542
10543 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10544 percpu_counter_destroy(&ca->cpustat[i]);
10545 free_percpu(ca->cpuusage);
10546 kfree(ca);
10547 }
10548
10549 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10550 {
10551 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10552 u64 data;
10553
10554 #ifndef CONFIG_64BIT
10555 /*
10556 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10557 */
10558 spin_lock_irq(&cpu_rq(cpu)->lock);
10559 data = *cpuusage;
10560 spin_unlock_irq(&cpu_rq(cpu)->lock);
10561 #else
10562 data = *cpuusage;
10563 #endif
10564
10565 return data;
10566 }
10567
10568 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10569 {
10570 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10571
10572 #ifndef CONFIG_64BIT
10573 /*
10574 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10575 */
10576 spin_lock_irq(&cpu_rq(cpu)->lock);
10577 *cpuusage = val;
10578 spin_unlock_irq(&cpu_rq(cpu)->lock);
10579 #else
10580 *cpuusage = val;
10581 #endif
10582 }
10583
10584 /* return total cpu usage (in nanoseconds) of a group */
10585 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10586 {
10587 struct cpuacct *ca = cgroup_ca(cgrp);
10588 u64 totalcpuusage = 0;
10589 int i;
10590
10591 for_each_present_cpu(i)
10592 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10593
10594 return totalcpuusage;
10595 }
10596
10597 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10598 u64 reset)
10599 {
10600 struct cpuacct *ca = cgroup_ca(cgrp);
10601 int err = 0;
10602 int i;
10603
10604 if (reset) {
10605 err = -EINVAL;
10606 goto out;
10607 }
10608
10609 for_each_present_cpu(i)
10610 cpuacct_cpuusage_write(ca, i, 0);
10611
10612 out:
10613 return err;
10614 }
10615
10616 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10617 struct seq_file *m)
10618 {
10619 struct cpuacct *ca = cgroup_ca(cgroup);
10620 u64 percpu;
10621 int i;
10622
10623 for_each_present_cpu(i) {
10624 percpu = cpuacct_cpuusage_read(ca, i);
10625 seq_printf(m, "%llu ", (unsigned long long) percpu);
10626 }
10627 seq_printf(m, "\n");
10628 return 0;
10629 }
10630
10631 static const char *cpuacct_stat_desc[] = {
10632 [CPUACCT_STAT_USER] = "user",
10633 [CPUACCT_STAT_SYSTEM] = "system",
10634 };
10635
10636 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10637 struct cgroup_map_cb *cb)
10638 {
10639 struct cpuacct *ca = cgroup_ca(cgrp);
10640 int i;
10641
10642 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10643 s64 val = percpu_counter_read(&ca->cpustat[i]);
10644 val = cputime64_to_clock_t(val);
10645 cb->fill(cb, cpuacct_stat_desc[i], val);
10646 }
10647 return 0;
10648 }
10649
10650 static struct cftype files[] = {
10651 {
10652 .name = "usage",
10653 .read_u64 = cpuusage_read,
10654 .write_u64 = cpuusage_write,
10655 },
10656 {
10657 .name = "usage_percpu",
10658 .read_seq_string = cpuacct_percpu_seq_read,
10659 },
10660 {
10661 .name = "stat",
10662 .read_map = cpuacct_stats_show,
10663 },
10664 };
10665
10666 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10667 {
10668 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10669 }
10670
10671 /*
10672 * charge this task's execution time to its accounting group.
10673 *
10674 * called with rq->lock held.
10675 */
10676 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10677 {
10678 struct cpuacct *ca;
10679 int cpu;
10680
10681 if (unlikely(!cpuacct_subsys.active))
10682 return;
10683
10684 cpu = task_cpu(tsk);
10685
10686 rcu_read_lock();
10687
10688 ca = task_ca(tsk);
10689
10690 for (; ca; ca = ca->parent) {
10691 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10692 *cpuusage += cputime;
10693 }
10694
10695 rcu_read_unlock();
10696 }
10697
10698 /*
10699 * Charge the system/user time to the task's accounting group.
10700 */
10701 static void cpuacct_update_stats(struct task_struct *tsk,
10702 enum cpuacct_stat_index idx, cputime_t val)
10703 {
10704 struct cpuacct *ca;
10705
10706 if (unlikely(!cpuacct_subsys.active))
10707 return;
10708
10709 rcu_read_lock();
10710 ca = task_ca(tsk);
10711
10712 do {
10713 percpu_counter_add(&ca->cpustat[idx], val);
10714 ca = ca->parent;
10715 } while (ca);
10716 rcu_read_unlock();
10717 }
10718
10719 struct cgroup_subsys cpuacct_subsys = {
10720 .name = "cpuacct",
10721 .create = cpuacct_create,
10722 .destroy = cpuacct_destroy,
10723 .populate = cpuacct_populate,
10724 .subsys_id = cpuacct_subsys_id,
10725 };
10726 #endif /* CONFIG_CGROUP_CPUACCT */
10727
10728 #ifndef CONFIG_SMP
10729
10730 int rcu_expedited_torture_stats(char *page)
10731 {
10732 return 0;
10733 }
10734 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10735
10736 void synchronize_sched_expedited(void)
10737 {
10738 }
10739 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10740
10741 #else /* #ifndef CONFIG_SMP */
10742
10743 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10744 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10745
10746 #define RCU_EXPEDITED_STATE_POST -2
10747 #define RCU_EXPEDITED_STATE_IDLE -1
10748
10749 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10750
10751 int rcu_expedited_torture_stats(char *page)
10752 {
10753 int cnt = 0;
10754 int cpu;
10755
10756 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10757 for_each_online_cpu(cpu) {
10758 cnt += sprintf(&page[cnt], " %d:%d",
10759 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10760 }
10761 cnt += sprintf(&page[cnt], "\n");
10762 return cnt;
10763 }
10764 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10765
10766 static long synchronize_sched_expedited_count;
10767
10768 /*
10769 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10770 * approach to force grace period to end quickly. This consumes
10771 * significant time on all CPUs, and is thus not recommended for
10772 * any sort of common-case code.
10773 *
10774 * Note that it is illegal to call this function while holding any
10775 * lock that is acquired by a CPU-hotplug notifier. Failing to
10776 * observe this restriction will result in deadlock.
10777 */
10778 void synchronize_sched_expedited(void)
10779 {
10780 int cpu;
10781 unsigned long flags;
10782 bool need_full_sync = 0;
10783 struct rq *rq;
10784 struct migration_req *req;
10785 long snap;
10786 int trycount = 0;
10787
10788 smp_mb(); /* ensure prior mod happens before capturing snap. */
10789 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10790 get_online_cpus();
10791 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10792 put_online_cpus();
10793 if (trycount++ < 10)
10794 udelay(trycount * num_online_cpus());
10795 else {
10796 synchronize_sched();
10797 return;
10798 }
10799 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10800 smp_mb(); /* ensure test happens before caller kfree */
10801 return;
10802 }
10803 get_online_cpus();
10804 }
10805 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10806 for_each_online_cpu(cpu) {
10807 rq = cpu_rq(cpu);
10808 req = &per_cpu(rcu_migration_req, cpu);
10809 init_completion(&req->done);
10810 req->task = NULL;
10811 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10812 spin_lock_irqsave(&rq->lock, flags);
10813 list_add(&req->list, &rq->migration_queue);
10814 spin_unlock_irqrestore(&rq->lock, flags);
10815 wake_up_process(rq->migration_thread);
10816 }
10817 for_each_online_cpu(cpu) {
10818 rcu_expedited_state = cpu;
10819 req = &per_cpu(rcu_migration_req, cpu);
10820 rq = cpu_rq(cpu);
10821 wait_for_completion(&req->done);
10822 spin_lock_irqsave(&rq->lock, flags);
10823 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10824 need_full_sync = 1;
10825 req->dest_cpu = RCU_MIGRATION_IDLE;
10826 spin_unlock_irqrestore(&rq->lock, flags);
10827 }
10828 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10829 mutex_unlock(&rcu_sched_expedited_mutex);
10830 put_online_cpus();
10831 if (need_full_sync)
10832 synchronize_sched();
10833 }
10834 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10835
10836 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.285714 seconds and 6 git commands to generate.