Merge branch 'bug-fixes' of git://farnsworth.org/dale/linux-2.6-mv643xx_eth into...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/cpu_acct.h>
56 #include <linux/kthread.h>
57 #include <linux/seq_file.h>
58 #include <linux/sysctl.h>
59 #include <linux/syscalls.h>
60 #include <linux/times.h>
61 #include <linux/tsacct_kern.h>
62 #include <linux/kprobes.h>
63 #include <linux/delayacct.h>
64 #include <linux/reciprocal_div.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67
68 #include <asm/tlb.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (1000000000 / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 };
175
176 /* Default task group's sched entity on each cpu */
177 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
178 /* Default task group's cfs_rq on each cpu */
179 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
180
181 static struct sched_entity *init_sched_entity_p[NR_CPUS];
182 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
183
184 /* Default task group.
185 * Every task in system belong to this group at bootup.
186 */
187 struct task_group init_task_group = {
188 .se = init_sched_entity_p,
189 .cfs_rq = init_cfs_rq_p,
190 };
191
192 #ifdef CONFIG_FAIR_USER_SCHED
193 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
194 #else
195 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
196 #endif
197
198 static int init_task_group_load = INIT_TASK_GRP_LOAD;
199
200 /* return group to which a task belongs */
201 static inline struct task_group *task_group(struct task_struct *p)
202 {
203 struct task_group *tg;
204
205 #ifdef CONFIG_FAIR_USER_SCHED
206 tg = p->user->tg;
207 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
208 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
209 struct task_group, css);
210 #else
211 tg = &init_task_group;
212 #endif
213
214 return tg;
215 }
216
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct *p)
219 {
220 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
221 p->se.parent = task_group(p)->se[task_cpu(p)];
222 }
223
224 #else
225
226 static inline void set_task_cfs_rq(struct task_struct *p) { }
227
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
229
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
235 u64 exec_clock;
236 u64 min_vruntime;
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
245
246 unsigned long nr_spread_over;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
251 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
252 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
253 * (like users, containers etc.)
254 *
255 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
256 * list is used during load balance.
257 */
258 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
259 struct task_group *tg; /* group that "owns" this runqueue */
260 struct rcu_head rcu;
261 #endif
262 };
263
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269 };
270
271 /*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
316
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
324
325 atomic_t nr_iowait;
326
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
335
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
339
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
349
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
354
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
358
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
363 };
364
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
367
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369 {
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371 }
372
373 static inline int cpu_of(struct rq *rq)
374 {
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
380 }
381
382 /*
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
385 */
386 static void __update_rq_clock(struct rq *rq)
387 {
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
421 }
422
423 static void update_rq_clock(struct rq *rq)
424 {
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
427 }
428
429 /*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
444 /*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
452
453 /*
454 * Debugging: various feature bits
455 */
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_START_DEBIT = 2,
459 SCHED_FEAT_TREE_AVG = 4,
460 SCHED_FEAT_APPROX_AVG = 8,
461 SCHED_FEAT_WAKEUP_PREEMPT = 16,
462 SCHED_FEAT_PREEMPT_RESTRICT = 32,
463 };
464
465 const_debug unsigned int sysctl_sched_features =
466 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0 |
470 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
471 SCHED_FEAT_PREEMPT_RESTRICT * 1;
472
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
475 /*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479 unsigned long long cpu_clock(int cpu)
480 {
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
484
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
490
491 return now;
492 }
493 EXPORT_SYMBOL_GPL(cpu_clock);
494
495 #ifndef prepare_arch_switch
496 # define prepare_arch_switch(next) do { } while (0)
497 #endif
498 #ifndef finish_arch_switch
499 # define finish_arch_switch(prev) do { } while (0)
500 #endif
501
502 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
503 static inline int task_running(struct rq *rq, struct task_struct *p)
504 {
505 return rq->curr == p;
506 }
507
508 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
509 {
510 }
511
512 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
513 {
514 #ifdef CONFIG_DEBUG_SPINLOCK
515 /* this is a valid case when another task releases the spinlock */
516 rq->lock.owner = current;
517 #endif
518 /*
519 * If we are tracking spinlock dependencies then we have to
520 * fix up the runqueue lock - which gets 'carried over' from
521 * prev into current:
522 */
523 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
524
525 spin_unlock_irq(&rq->lock);
526 }
527
528 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
529 static inline int task_running(struct rq *rq, struct task_struct *p)
530 {
531 #ifdef CONFIG_SMP
532 return p->oncpu;
533 #else
534 return rq->curr == p;
535 #endif
536 }
537
538 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
539 {
540 #ifdef CONFIG_SMP
541 /*
542 * We can optimise this out completely for !SMP, because the
543 * SMP rebalancing from interrupt is the only thing that cares
544 * here.
545 */
546 next->oncpu = 1;
547 #endif
548 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549 spin_unlock_irq(&rq->lock);
550 #else
551 spin_unlock(&rq->lock);
552 #endif
553 }
554
555 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
556 {
557 #ifdef CONFIG_SMP
558 /*
559 * After ->oncpu is cleared, the task can be moved to a different CPU.
560 * We must ensure this doesn't happen until the switch is completely
561 * finished.
562 */
563 smp_wmb();
564 prev->oncpu = 0;
565 #endif
566 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
567 local_irq_enable();
568 #endif
569 }
570 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
571
572 /*
573 * __task_rq_lock - lock the runqueue a given task resides on.
574 * Must be called interrupts disabled.
575 */
576 static inline struct rq *__task_rq_lock(struct task_struct *p)
577 __acquires(rq->lock)
578 {
579 for (;;) {
580 struct rq *rq = task_rq(p);
581 spin_lock(&rq->lock);
582 if (likely(rq == task_rq(p)))
583 return rq;
584 spin_unlock(&rq->lock);
585 }
586 }
587
588 /*
589 * task_rq_lock - lock the runqueue a given task resides on and disable
590 * interrupts. Note the ordering: we can safely lookup the task_rq without
591 * explicitly disabling preemption.
592 */
593 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
594 __acquires(rq->lock)
595 {
596 struct rq *rq;
597
598 for (;;) {
599 local_irq_save(*flags);
600 rq = task_rq(p);
601 spin_lock(&rq->lock);
602 if (likely(rq == task_rq(p)))
603 return rq;
604 spin_unlock_irqrestore(&rq->lock, *flags);
605 }
606 }
607
608 static void __task_rq_unlock(struct rq *rq)
609 __releases(rq->lock)
610 {
611 spin_unlock(&rq->lock);
612 }
613
614 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
615 __releases(rq->lock)
616 {
617 spin_unlock_irqrestore(&rq->lock, *flags);
618 }
619
620 /*
621 * this_rq_lock - lock this runqueue and disable interrupts.
622 */
623 static struct rq *this_rq_lock(void)
624 __acquires(rq->lock)
625 {
626 struct rq *rq;
627
628 local_irq_disable();
629 rq = this_rq();
630 spin_lock(&rq->lock);
631
632 return rq;
633 }
634
635 /*
636 * We are going deep-idle (irqs are disabled):
637 */
638 void sched_clock_idle_sleep_event(void)
639 {
640 struct rq *rq = cpu_rq(smp_processor_id());
641
642 spin_lock(&rq->lock);
643 __update_rq_clock(rq);
644 spin_unlock(&rq->lock);
645 rq->clock_deep_idle_events++;
646 }
647 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
648
649 /*
650 * We just idled delta nanoseconds (called with irqs disabled):
651 */
652 void sched_clock_idle_wakeup_event(u64 delta_ns)
653 {
654 struct rq *rq = cpu_rq(smp_processor_id());
655 u64 now = sched_clock();
656
657 rq->idle_clock += delta_ns;
658 /*
659 * Override the previous timestamp and ignore all
660 * sched_clock() deltas that occured while we idled,
661 * and use the PM-provided delta_ns to advance the
662 * rq clock:
663 */
664 spin_lock(&rq->lock);
665 rq->prev_clock_raw = now;
666 rq->clock += delta_ns;
667 spin_unlock(&rq->lock);
668 }
669 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
670
671 /*
672 * resched_task - mark a task 'to be rescheduled now'.
673 *
674 * On UP this means the setting of the need_resched flag, on SMP it
675 * might also involve a cross-CPU call to trigger the scheduler on
676 * the target CPU.
677 */
678 #ifdef CONFIG_SMP
679
680 #ifndef tsk_is_polling
681 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
682 #endif
683
684 static void resched_task(struct task_struct *p)
685 {
686 int cpu;
687
688 assert_spin_locked(&task_rq(p)->lock);
689
690 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
691 return;
692
693 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
694
695 cpu = task_cpu(p);
696 if (cpu == smp_processor_id())
697 return;
698
699 /* NEED_RESCHED must be visible before we test polling */
700 smp_mb();
701 if (!tsk_is_polling(p))
702 smp_send_reschedule(cpu);
703 }
704
705 static void resched_cpu(int cpu)
706 {
707 struct rq *rq = cpu_rq(cpu);
708 unsigned long flags;
709
710 if (!spin_trylock_irqsave(&rq->lock, flags))
711 return;
712 resched_task(cpu_curr(cpu));
713 spin_unlock_irqrestore(&rq->lock, flags);
714 }
715 #else
716 static inline void resched_task(struct task_struct *p)
717 {
718 assert_spin_locked(&task_rq(p)->lock);
719 set_tsk_need_resched(p);
720 }
721 #endif
722
723 #if BITS_PER_LONG == 32
724 # define WMULT_CONST (~0UL)
725 #else
726 # define WMULT_CONST (1UL << 32)
727 #endif
728
729 #define WMULT_SHIFT 32
730
731 /*
732 * Shift right and round:
733 */
734 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
735
736 static unsigned long
737 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
738 struct load_weight *lw)
739 {
740 u64 tmp;
741
742 if (unlikely(!lw->inv_weight))
743 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
744
745 tmp = (u64)delta_exec * weight;
746 /*
747 * Check whether we'd overflow the 64-bit multiplication:
748 */
749 if (unlikely(tmp > WMULT_CONST))
750 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
751 WMULT_SHIFT/2);
752 else
753 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
754
755 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
756 }
757
758 static inline unsigned long
759 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
760 {
761 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
762 }
763
764 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
765 {
766 lw->weight += inc;
767 }
768
769 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
770 {
771 lw->weight -= dec;
772 }
773
774 /*
775 * To aid in avoiding the subversion of "niceness" due to uneven distribution
776 * of tasks with abnormal "nice" values across CPUs the contribution that
777 * each task makes to its run queue's load is weighted according to its
778 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
779 * scaled version of the new time slice allocation that they receive on time
780 * slice expiry etc.
781 */
782
783 #define WEIGHT_IDLEPRIO 2
784 #define WMULT_IDLEPRIO (1 << 31)
785
786 /*
787 * Nice levels are multiplicative, with a gentle 10% change for every
788 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
789 * nice 1, it will get ~10% less CPU time than another CPU-bound task
790 * that remained on nice 0.
791 *
792 * The "10% effect" is relative and cumulative: from _any_ nice level,
793 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
794 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
795 * If a task goes up by ~10% and another task goes down by ~10% then
796 * the relative distance between them is ~25%.)
797 */
798 static const int prio_to_weight[40] = {
799 /* -20 */ 88761, 71755, 56483, 46273, 36291,
800 /* -15 */ 29154, 23254, 18705, 14949, 11916,
801 /* -10 */ 9548, 7620, 6100, 4904, 3906,
802 /* -5 */ 3121, 2501, 1991, 1586, 1277,
803 /* 0 */ 1024, 820, 655, 526, 423,
804 /* 5 */ 335, 272, 215, 172, 137,
805 /* 10 */ 110, 87, 70, 56, 45,
806 /* 15 */ 36, 29, 23, 18, 15,
807 };
808
809 /*
810 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
811 *
812 * In cases where the weight does not change often, we can use the
813 * precalculated inverse to speed up arithmetics by turning divisions
814 * into multiplications:
815 */
816 static const u32 prio_to_wmult[40] = {
817 /* -20 */ 48388, 59856, 76040, 92818, 118348,
818 /* -15 */ 147320, 184698, 229616, 287308, 360437,
819 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
820 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
821 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
822 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
823 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
824 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
825 };
826
827 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
828
829 /*
830 * runqueue iterator, to support SMP load-balancing between different
831 * scheduling classes, without having to expose their internal data
832 * structures to the load-balancing proper:
833 */
834 struct rq_iterator {
835 void *arg;
836 struct task_struct *(*start)(void *);
837 struct task_struct *(*next)(void *);
838 };
839
840 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
841 unsigned long max_nr_move, unsigned long max_load_move,
842 struct sched_domain *sd, enum cpu_idle_type idle,
843 int *all_pinned, unsigned long *load_moved,
844 int *this_best_prio, struct rq_iterator *iterator);
845
846 #include "sched_stats.h"
847 #include "sched_idletask.c"
848 #include "sched_fair.c"
849 #include "sched_rt.c"
850 #ifdef CONFIG_SCHED_DEBUG
851 # include "sched_debug.c"
852 #endif
853
854 #define sched_class_highest (&rt_sched_class)
855
856 /*
857 * Update delta_exec, delta_fair fields for rq.
858 *
859 * delta_fair clock advances at a rate inversely proportional to
860 * total load (rq->load.weight) on the runqueue, while
861 * delta_exec advances at the same rate as wall-clock (provided
862 * cpu is not idle).
863 *
864 * delta_exec / delta_fair is a measure of the (smoothened) load on this
865 * runqueue over any given interval. This (smoothened) load is used
866 * during load balance.
867 *
868 * This function is called /before/ updating rq->load
869 * and when switching tasks.
870 */
871 static inline void inc_load(struct rq *rq, const struct task_struct *p)
872 {
873 update_load_add(&rq->load, p->se.load.weight);
874 }
875
876 static inline void dec_load(struct rq *rq, const struct task_struct *p)
877 {
878 update_load_sub(&rq->load, p->se.load.weight);
879 }
880
881 static void inc_nr_running(struct task_struct *p, struct rq *rq)
882 {
883 rq->nr_running++;
884 inc_load(rq, p);
885 }
886
887 static void dec_nr_running(struct task_struct *p, struct rq *rq)
888 {
889 rq->nr_running--;
890 dec_load(rq, p);
891 }
892
893 static void set_load_weight(struct task_struct *p)
894 {
895 if (task_has_rt_policy(p)) {
896 p->se.load.weight = prio_to_weight[0] * 2;
897 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
898 return;
899 }
900
901 /*
902 * SCHED_IDLE tasks get minimal weight:
903 */
904 if (p->policy == SCHED_IDLE) {
905 p->se.load.weight = WEIGHT_IDLEPRIO;
906 p->se.load.inv_weight = WMULT_IDLEPRIO;
907 return;
908 }
909
910 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
911 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
912 }
913
914 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
915 {
916 sched_info_queued(p);
917 p->sched_class->enqueue_task(rq, p, wakeup);
918 p->se.on_rq = 1;
919 }
920
921 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
922 {
923 p->sched_class->dequeue_task(rq, p, sleep);
924 p->se.on_rq = 0;
925 }
926
927 /*
928 * __normal_prio - return the priority that is based on the static prio
929 */
930 static inline int __normal_prio(struct task_struct *p)
931 {
932 return p->static_prio;
933 }
934
935 /*
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
941 */
942 static inline int normal_prio(struct task_struct *p)
943 {
944 int prio;
945
946 if (task_has_rt_policy(p))
947 prio = MAX_RT_PRIO-1 - p->rt_priority;
948 else
949 prio = __normal_prio(p);
950 return prio;
951 }
952
953 /*
954 * Calculate the current priority, i.e. the priority
955 * taken into account by the scheduler. This value might
956 * be boosted by RT tasks, or might be boosted by
957 * interactivity modifiers. Will be RT if the task got
958 * RT-boosted. If not then it returns p->normal_prio.
959 */
960 static int effective_prio(struct task_struct *p)
961 {
962 p->normal_prio = normal_prio(p);
963 /*
964 * If we are RT tasks or we were boosted to RT priority,
965 * keep the priority unchanged. Otherwise, update priority
966 * to the normal priority:
967 */
968 if (!rt_prio(p->prio))
969 return p->normal_prio;
970 return p->prio;
971 }
972
973 /*
974 * activate_task - move a task to the runqueue.
975 */
976 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
977 {
978 if (p->state == TASK_UNINTERRUPTIBLE)
979 rq->nr_uninterruptible--;
980
981 enqueue_task(rq, p, wakeup);
982 inc_nr_running(p, rq);
983 }
984
985 /*
986 * deactivate_task - remove a task from the runqueue.
987 */
988 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
989 {
990 if (p->state == TASK_UNINTERRUPTIBLE)
991 rq->nr_uninterruptible++;
992
993 dequeue_task(rq, p, sleep);
994 dec_nr_running(p, rq);
995 }
996
997 /**
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1000 */
1001 inline int task_curr(const struct task_struct *p)
1002 {
1003 return cpu_curr(task_cpu(p)) == p;
1004 }
1005
1006 /* Used instead of source_load when we know the type == 0 */
1007 unsigned long weighted_cpuload(const int cpu)
1008 {
1009 return cpu_rq(cpu)->load.weight;
1010 }
1011
1012 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1013 {
1014 #ifdef CONFIG_SMP
1015 task_thread_info(p)->cpu = cpu;
1016 #endif
1017 set_task_cfs_rq(p);
1018 }
1019
1020 #ifdef CONFIG_SMP
1021
1022 /*
1023 * Is this task likely cache-hot:
1024 */
1025 static inline int
1026 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1027 {
1028 s64 delta;
1029
1030 if (p->sched_class != &fair_sched_class)
1031 return 0;
1032
1033 if (sysctl_sched_migration_cost == -1)
1034 return 1;
1035 if (sysctl_sched_migration_cost == 0)
1036 return 0;
1037
1038 delta = now - p->se.exec_start;
1039
1040 return delta < (s64)sysctl_sched_migration_cost;
1041 }
1042
1043
1044 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1045 {
1046 int old_cpu = task_cpu(p);
1047 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1048 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1049 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1050 u64 clock_offset;
1051
1052 clock_offset = old_rq->clock - new_rq->clock;
1053
1054 #ifdef CONFIG_SCHEDSTATS
1055 if (p->se.wait_start)
1056 p->se.wait_start -= clock_offset;
1057 if (p->se.sleep_start)
1058 p->se.sleep_start -= clock_offset;
1059 if (p->se.block_start)
1060 p->se.block_start -= clock_offset;
1061 if (old_cpu != new_cpu) {
1062 schedstat_inc(p, se.nr_migrations);
1063 if (task_hot(p, old_rq->clock, NULL))
1064 schedstat_inc(p, se.nr_forced2_migrations);
1065 }
1066 #endif
1067 p->se.vruntime -= old_cfsrq->min_vruntime -
1068 new_cfsrq->min_vruntime;
1069
1070 __set_task_cpu(p, new_cpu);
1071 }
1072
1073 struct migration_req {
1074 struct list_head list;
1075
1076 struct task_struct *task;
1077 int dest_cpu;
1078
1079 struct completion done;
1080 };
1081
1082 /*
1083 * The task's runqueue lock must be held.
1084 * Returns true if you have to wait for migration thread.
1085 */
1086 static int
1087 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1088 {
1089 struct rq *rq = task_rq(p);
1090
1091 /*
1092 * If the task is not on a runqueue (and not running), then
1093 * it is sufficient to simply update the task's cpu field.
1094 */
1095 if (!p->se.on_rq && !task_running(rq, p)) {
1096 set_task_cpu(p, dest_cpu);
1097 return 0;
1098 }
1099
1100 init_completion(&req->done);
1101 req->task = p;
1102 req->dest_cpu = dest_cpu;
1103 list_add(&req->list, &rq->migration_queue);
1104
1105 return 1;
1106 }
1107
1108 /*
1109 * wait_task_inactive - wait for a thread to unschedule.
1110 *
1111 * The caller must ensure that the task *will* unschedule sometime soon,
1112 * else this function might spin for a *long* time. This function can't
1113 * be called with interrupts off, or it may introduce deadlock with
1114 * smp_call_function() if an IPI is sent by the same process we are
1115 * waiting to become inactive.
1116 */
1117 void wait_task_inactive(struct task_struct *p)
1118 {
1119 unsigned long flags;
1120 int running, on_rq;
1121 struct rq *rq;
1122
1123 for (;;) {
1124 /*
1125 * We do the initial early heuristics without holding
1126 * any task-queue locks at all. We'll only try to get
1127 * the runqueue lock when things look like they will
1128 * work out!
1129 */
1130 rq = task_rq(p);
1131
1132 /*
1133 * If the task is actively running on another CPU
1134 * still, just relax and busy-wait without holding
1135 * any locks.
1136 *
1137 * NOTE! Since we don't hold any locks, it's not
1138 * even sure that "rq" stays as the right runqueue!
1139 * But we don't care, since "task_running()" will
1140 * return false if the runqueue has changed and p
1141 * is actually now running somewhere else!
1142 */
1143 while (task_running(rq, p))
1144 cpu_relax();
1145
1146 /*
1147 * Ok, time to look more closely! We need the rq
1148 * lock now, to be *sure*. If we're wrong, we'll
1149 * just go back and repeat.
1150 */
1151 rq = task_rq_lock(p, &flags);
1152 running = task_running(rq, p);
1153 on_rq = p->se.on_rq;
1154 task_rq_unlock(rq, &flags);
1155
1156 /*
1157 * Was it really running after all now that we
1158 * checked with the proper locks actually held?
1159 *
1160 * Oops. Go back and try again..
1161 */
1162 if (unlikely(running)) {
1163 cpu_relax();
1164 continue;
1165 }
1166
1167 /*
1168 * It's not enough that it's not actively running,
1169 * it must be off the runqueue _entirely_, and not
1170 * preempted!
1171 *
1172 * So if it wa still runnable (but just not actively
1173 * running right now), it's preempted, and we should
1174 * yield - it could be a while.
1175 */
1176 if (unlikely(on_rq)) {
1177 schedule_timeout_uninterruptible(1);
1178 continue;
1179 }
1180
1181 /*
1182 * Ahh, all good. It wasn't running, and it wasn't
1183 * runnable, which means that it will never become
1184 * running in the future either. We're all done!
1185 */
1186 break;
1187 }
1188 }
1189
1190 /***
1191 * kick_process - kick a running thread to enter/exit the kernel
1192 * @p: the to-be-kicked thread
1193 *
1194 * Cause a process which is running on another CPU to enter
1195 * kernel-mode, without any delay. (to get signals handled.)
1196 *
1197 * NOTE: this function doesnt have to take the runqueue lock,
1198 * because all it wants to ensure is that the remote task enters
1199 * the kernel. If the IPI races and the task has been migrated
1200 * to another CPU then no harm is done and the purpose has been
1201 * achieved as well.
1202 */
1203 void kick_process(struct task_struct *p)
1204 {
1205 int cpu;
1206
1207 preempt_disable();
1208 cpu = task_cpu(p);
1209 if ((cpu != smp_processor_id()) && task_curr(p))
1210 smp_send_reschedule(cpu);
1211 preempt_enable();
1212 }
1213
1214 /*
1215 * Return a low guess at the load of a migration-source cpu weighted
1216 * according to the scheduling class and "nice" value.
1217 *
1218 * We want to under-estimate the load of migration sources, to
1219 * balance conservatively.
1220 */
1221 static unsigned long source_load(int cpu, int type)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long total = weighted_cpuload(cpu);
1225
1226 if (type == 0)
1227 return total;
1228
1229 return min(rq->cpu_load[type-1], total);
1230 }
1231
1232 /*
1233 * Return a high guess at the load of a migration-target cpu weighted
1234 * according to the scheduling class and "nice" value.
1235 */
1236 static unsigned long target_load(int cpu, int type)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239 unsigned long total = weighted_cpuload(cpu);
1240
1241 if (type == 0)
1242 return total;
1243
1244 return max(rq->cpu_load[type-1], total);
1245 }
1246
1247 /*
1248 * Return the average load per task on the cpu's run queue
1249 */
1250 static inline unsigned long cpu_avg_load_per_task(int cpu)
1251 {
1252 struct rq *rq = cpu_rq(cpu);
1253 unsigned long total = weighted_cpuload(cpu);
1254 unsigned long n = rq->nr_running;
1255
1256 return n ? total / n : SCHED_LOAD_SCALE;
1257 }
1258
1259 /*
1260 * find_idlest_group finds and returns the least busy CPU group within the
1261 * domain.
1262 */
1263 static struct sched_group *
1264 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1265 {
1266 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1267 unsigned long min_load = ULONG_MAX, this_load = 0;
1268 int load_idx = sd->forkexec_idx;
1269 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1270
1271 do {
1272 unsigned long load, avg_load;
1273 int local_group;
1274 int i;
1275
1276 /* Skip over this group if it has no CPUs allowed */
1277 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1278 continue;
1279
1280 local_group = cpu_isset(this_cpu, group->cpumask);
1281
1282 /* Tally up the load of all CPUs in the group */
1283 avg_load = 0;
1284
1285 for_each_cpu_mask(i, group->cpumask) {
1286 /* Bias balancing toward cpus of our domain */
1287 if (local_group)
1288 load = source_load(i, load_idx);
1289 else
1290 load = target_load(i, load_idx);
1291
1292 avg_load += load;
1293 }
1294
1295 /* Adjust by relative CPU power of the group */
1296 avg_load = sg_div_cpu_power(group,
1297 avg_load * SCHED_LOAD_SCALE);
1298
1299 if (local_group) {
1300 this_load = avg_load;
1301 this = group;
1302 } else if (avg_load < min_load) {
1303 min_load = avg_load;
1304 idlest = group;
1305 }
1306 } while (group = group->next, group != sd->groups);
1307
1308 if (!idlest || 100*this_load < imbalance*min_load)
1309 return NULL;
1310 return idlest;
1311 }
1312
1313 /*
1314 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1315 */
1316 static int
1317 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1318 {
1319 cpumask_t tmp;
1320 unsigned long load, min_load = ULONG_MAX;
1321 int idlest = -1;
1322 int i;
1323
1324 /* Traverse only the allowed CPUs */
1325 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1326
1327 for_each_cpu_mask(i, tmp) {
1328 load = weighted_cpuload(i);
1329
1330 if (load < min_load || (load == min_load && i == this_cpu)) {
1331 min_load = load;
1332 idlest = i;
1333 }
1334 }
1335
1336 return idlest;
1337 }
1338
1339 /*
1340 * sched_balance_self: balance the current task (running on cpu) in domains
1341 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1342 * SD_BALANCE_EXEC.
1343 *
1344 * Balance, ie. select the least loaded group.
1345 *
1346 * Returns the target CPU number, or the same CPU if no balancing is needed.
1347 *
1348 * preempt must be disabled.
1349 */
1350 static int sched_balance_self(int cpu, int flag)
1351 {
1352 struct task_struct *t = current;
1353 struct sched_domain *tmp, *sd = NULL;
1354
1355 for_each_domain(cpu, tmp) {
1356 /*
1357 * If power savings logic is enabled for a domain, stop there.
1358 */
1359 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1360 break;
1361 if (tmp->flags & flag)
1362 sd = tmp;
1363 }
1364
1365 while (sd) {
1366 cpumask_t span;
1367 struct sched_group *group;
1368 int new_cpu, weight;
1369
1370 if (!(sd->flags & flag)) {
1371 sd = sd->child;
1372 continue;
1373 }
1374
1375 span = sd->span;
1376 group = find_idlest_group(sd, t, cpu);
1377 if (!group) {
1378 sd = sd->child;
1379 continue;
1380 }
1381
1382 new_cpu = find_idlest_cpu(group, t, cpu);
1383 if (new_cpu == -1 || new_cpu == cpu) {
1384 /* Now try balancing at a lower domain level of cpu */
1385 sd = sd->child;
1386 continue;
1387 }
1388
1389 /* Now try balancing at a lower domain level of new_cpu */
1390 cpu = new_cpu;
1391 sd = NULL;
1392 weight = cpus_weight(span);
1393 for_each_domain(cpu, tmp) {
1394 if (weight <= cpus_weight(tmp->span))
1395 break;
1396 if (tmp->flags & flag)
1397 sd = tmp;
1398 }
1399 /* while loop will break here if sd == NULL */
1400 }
1401
1402 return cpu;
1403 }
1404
1405 #endif /* CONFIG_SMP */
1406
1407 /*
1408 * wake_idle() will wake a task on an idle cpu if task->cpu is
1409 * not idle and an idle cpu is available. The span of cpus to
1410 * search starts with cpus closest then further out as needed,
1411 * so we always favor a closer, idle cpu.
1412 *
1413 * Returns the CPU we should wake onto.
1414 */
1415 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1416 static int wake_idle(int cpu, struct task_struct *p)
1417 {
1418 cpumask_t tmp;
1419 struct sched_domain *sd;
1420 int i;
1421
1422 /*
1423 * If it is idle, then it is the best cpu to run this task.
1424 *
1425 * This cpu is also the best, if it has more than one task already.
1426 * Siblings must be also busy(in most cases) as they didn't already
1427 * pickup the extra load from this cpu and hence we need not check
1428 * sibling runqueue info. This will avoid the checks and cache miss
1429 * penalities associated with that.
1430 */
1431 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1432 return cpu;
1433
1434 for_each_domain(cpu, sd) {
1435 if (sd->flags & SD_WAKE_IDLE) {
1436 cpus_and(tmp, sd->span, p->cpus_allowed);
1437 for_each_cpu_mask(i, tmp) {
1438 if (idle_cpu(i)) {
1439 if (i != task_cpu(p)) {
1440 schedstat_inc(p,
1441 se.nr_wakeups_idle);
1442 }
1443 return i;
1444 }
1445 }
1446 } else {
1447 break;
1448 }
1449 }
1450 return cpu;
1451 }
1452 #else
1453 static inline int wake_idle(int cpu, struct task_struct *p)
1454 {
1455 return cpu;
1456 }
1457 #endif
1458
1459 /***
1460 * try_to_wake_up - wake up a thread
1461 * @p: the to-be-woken-up thread
1462 * @state: the mask of task states that can be woken
1463 * @sync: do a synchronous wakeup?
1464 *
1465 * Put it on the run-queue if it's not already there. The "current"
1466 * thread is always on the run-queue (except when the actual
1467 * re-schedule is in progress), and as such you're allowed to do
1468 * the simpler "current->state = TASK_RUNNING" to mark yourself
1469 * runnable without the overhead of this.
1470 *
1471 * returns failure only if the task is already active.
1472 */
1473 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1474 {
1475 int cpu, orig_cpu, this_cpu, success = 0;
1476 unsigned long flags;
1477 long old_state;
1478 struct rq *rq;
1479 #ifdef CONFIG_SMP
1480 struct sched_domain *sd, *this_sd = NULL;
1481 unsigned long load, this_load;
1482 int new_cpu;
1483 #endif
1484
1485 rq = task_rq_lock(p, &flags);
1486 old_state = p->state;
1487 if (!(old_state & state))
1488 goto out;
1489
1490 if (p->se.on_rq)
1491 goto out_running;
1492
1493 cpu = task_cpu(p);
1494 orig_cpu = cpu;
1495 this_cpu = smp_processor_id();
1496
1497 #ifdef CONFIG_SMP
1498 if (unlikely(task_running(rq, p)))
1499 goto out_activate;
1500
1501 new_cpu = cpu;
1502
1503 schedstat_inc(rq, ttwu_count);
1504 if (cpu == this_cpu) {
1505 schedstat_inc(rq, ttwu_local);
1506 goto out_set_cpu;
1507 }
1508
1509 for_each_domain(this_cpu, sd) {
1510 if (cpu_isset(cpu, sd->span)) {
1511 schedstat_inc(sd, ttwu_wake_remote);
1512 this_sd = sd;
1513 break;
1514 }
1515 }
1516
1517 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1518 goto out_set_cpu;
1519
1520 /*
1521 * Check for affine wakeup and passive balancing possibilities.
1522 */
1523 if (this_sd) {
1524 int idx = this_sd->wake_idx;
1525 unsigned int imbalance;
1526
1527 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1528
1529 load = source_load(cpu, idx);
1530 this_load = target_load(this_cpu, idx);
1531
1532 new_cpu = this_cpu; /* Wake to this CPU if we can */
1533
1534 if (this_sd->flags & SD_WAKE_AFFINE) {
1535 unsigned long tl = this_load;
1536 unsigned long tl_per_task;
1537
1538 /*
1539 * Attract cache-cold tasks on sync wakeups:
1540 */
1541 if (sync && !task_hot(p, rq->clock, this_sd))
1542 goto out_set_cpu;
1543
1544 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1545 tl_per_task = cpu_avg_load_per_task(this_cpu);
1546
1547 /*
1548 * If sync wakeup then subtract the (maximum possible)
1549 * effect of the currently running task from the load
1550 * of the current CPU:
1551 */
1552 if (sync)
1553 tl -= current->se.load.weight;
1554
1555 if ((tl <= load &&
1556 tl + target_load(cpu, idx) <= tl_per_task) ||
1557 100*(tl + p->se.load.weight) <= imbalance*load) {
1558 /*
1559 * This domain has SD_WAKE_AFFINE and
1560 * p is cache cold in this domain, and
1561 * there is no bad imbalance.
1562 */
1563 schedstat_inc(this_sd, ttwu_move_affine);
1564 schedstat_inc(p, se.nr_wakeups_affine);
1565 goto out_set_cpu;
1566 }
1567 }
1568
1569 /*
1570 * Start passive balancing when half the imbalance_pct
1571 * limit is reached.
1572 */
1573 if (this_sd->flags & SD_WAKE_BALANCE) {
1574 if (imbalance*this_load <= 100*load) {
1575 schedstat_inc(this_sd, ttwu_move_balance);
1576 schedstat_inc(p, se.nr_wakeups_passive);
1577 goto out_set_cpu;
1578 }
1579 }
1580 }
1581
1582 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1583 out_set_cpu:
1584 new_cpu = wake_idle(new_cpu, p);
1585 if (new_cpu != cpu) {
1586 set_task_cpu(p, new_cpu);
1587 task_rq_unlock(rq, &flags);
1588 /* might preempt at this point */
1589 rq = task_rq_lock(p, &flags);
1590 old_state = p->state;
1591 if (!(old_state & state))
1592 goto out;
1593 if (p->se.on_rq)
1594 goto out_running;
1595
1596 this_cpu = smp_processor_id();
1597 cpu = task_cpu(p);
1598 }
1599
1600 out_activate:
1601 #endif /* CONFIG_SMP */
1602 schedstat_inc(p, se.nr_wakeups);
1603 if (sync)
1604 schedstat_inc(p, se.nr_wakeups_sync);
1605 if (orig_cpu != cpu)
1606 schedstat_inc(p, se.nr_wakeups_migrate);
1607 if (cpu == this_cpu)
1608 schedstat_inc(p, se.nr_wakeups_local);
1609 else
1610 schedstat_inc(p, se.nr_wakeups_remote);
1611 update_rq_clock(rq);
1612 activate_task(rq, p, 1);
1613 check_preempt_curr(rq, p);
1614 success = 1;
1615
1616 out_running:
1617 p->state = TASK_RUNNING;
1618 out:
1619 task_rq_unlock(rq, &flags);
1620
1621 return success;
1622 }
1623
1624 int fastcall wake_up_process(struct task_struct *p)
1625 {
1626 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1627 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1628 }
1629 EXPORT_SYMBOL(wake_up_process);
1630
1631 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1632 {
1633 return try_to_wake_up(p, state, 0);
1634 }
1635
1636 /*
1637 * Perform scheduler related setup for a newly forked process p.
1638 * p is forked by current.
1639 *
1640 * __sched_fork() is basic setup used by init_idle() too:
1641 */
1642 static void __sched_fork(struct task_struct *p)
1643 {
1644 p->se.exec_start = 0;
1645 p->se.sum_exec_runtime = 0;
1646 p->se.prev_sum_exec_runtime = 0;
1647
1648 #ifdef CONFIG_SCHEDSTATS
1649 p->se.wait_start = 0;
1650 p->se.sum_sleep_runtime = 0;
1651 p->se.sleep_start = 0;
1652 p->se.block_start = 0;
1653 p->se.sleep_max = 0;
1654 p->se.block_max = 0;
1655 p->se.exec_max = 0;
1656 p->se.slice_max = 0;
1657 p->se.wait_max = 0;
1658 #endif
1659
1660 INIT_LIST_HEAD(&p->run_list);
1661 p->se.on_rq = 0;
1662
1663 #ifdef CONFIG_PREEMPT_NOTIFIERS
1664 INIT_HLIST_HEAD(&p->preempt_notifiers);
1665 #endif
1666
1667 /*
1668 * We mark the process as running here, but have not actually
1669 * inserted it onto the runqueue yet. This guarantees that
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1672 */
1673 p->state = TASK_RUNNING;
1674 }
1675
1676 /*
1677 * fork()/clone()-time setup:
1678 */
1679 void sched_fork(struct task_struct *p, int clone_flags)
1680 {
1681 int cpu = get_cpu();
1682
1683 __sched_fork(p);
1684
1685 #ifdef CONFIG_SMP
1686 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1687 #endif
1688 set_task_cpu(p, cpu);
1689
1690 /*
1691 * Make sure we do not leak PI boosting priority to the child:
1692 */
1693 p->prio = current->normal_prio;
1694 if (!rt_prio(p->prio))
1695 p->sched_class = &fair_sched_class;
1696
1697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1698 if (likely(sched_info_on()))
1699 memset(&p->sched_info, 0, sizeof(p->sched_info));
1700 #endif
1701 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1702 p->oncpu = 0;
1703 #endif
1704 #ifdef CONFIG_PREEMPT
1705 /* Want to start with kernel preemption disabled. */
1706 task_thread_info(p)->preempt_count = 1;
1707 #endif
1708 put_cpu();
1709 }
1710
1711 /*
1712 * wake_up_new_task - wake up a newly created task for the first time.
1713 *
1714 * This function will do some initial scheduler statistics housekeeping
1715 * that must be done for every newly created context, then puts the task
1716 * on the runqueue and wakes it.
1717 */
1718 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1719 {
1720 unsigned long flags;
1721 struct rq *rq;
1722
1723 rq = task_rq_lock(p, &flags);
1724 BUG_ON(p->state != TASK_RUNNING);
1725 update_rq_clock(rq);
1726
1727 p->prio = effective_prio(p);
1728
1729 if (!p->sched_class->task_new || !current->se.on_rq) {
1730 activate_task(rq, p, 0);
1731 } else {
1732 /*
1733 * Let the scheduling class do new task startup
1734 * management (if any):
1735 */
1736 p->sched_class->task_new(rq, p);
1737 inc_nr_running(p, rq);
1738 }
1739 check_preempt_curr(rq, p);
1740 task_rq_unlock(rq, &flags);
1741 }
1742
1743 #ifdef CONFIG_PREEMPT_NOTIFIERS
1744
1745 /**
1746 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1747 * @notifier: notifier struct to register
1748 */
1749 void preempt_notifier_register(struct preempt_notifier *notifier)
1750 {
1751 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1752 }
1753 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1754
1755 /**
1756 * preempt_notifier_unregister - no longer interested in preemption notifications
1757 * @notifier: notifier struct to unregister
1758 *
1759 * This is safe to call from within a preemption notifier.
1760 */
1761 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1762 {
1763 hlist_del(&notifier->link);
1764 }
1765 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1766
1767 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1768 {
1769 struct preempt_notifier *notifier;
1770 struct hlist_node *node;
1771
1772 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1773 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1774 }
1775
1776 static void
1777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779 {
1780 struct preempt_notifier *notifier;
1781 struct hlist_node *node;
1782
1783 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1784 notifier->ops->sched_out(notifier, next);
1785 }
1786
1787 #else
1788
1789 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1790 {
1791 }
1792
1793 static void
1794 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1795 struct task_struct *next)
1796 {
1797 }
1798
1799 #endif
1800
1801 /**
1802 * prepare_task_switch - prepare to switch tasks
1803 * @rq: the runqueue preparing to switch
1804 * @prev: the current task that is being switched out
1805 * @next: the task we are going to switch to.
1806 *
1807 * This is called with the rq lock held and interrupts off. It must
1808 * be paired with a subsequent finish_task_switch after the context
1809 * switch.
1810 *
1811 * prepare_task_switch sets up locking and calls architecture specific
1812 * hooks.
1813 */
1814 static inline void
1815 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1816 struct task_struct *next)
1817 {
1818 fire_sched_out_preempt_notifiers(prev, next);
1819 prepare_lock_switch(rq, next);
1820 prepare_arch_switch(next);
1821 }
1822
1823 /**
1824 * finish_task_switch - clean up after a task-switch
1825 * @rq: runqueue associated with task-switch
1826 * @prev: the thread we just switched away from.
1827 *
1828 * finish_task_switch must be called after the context switch, paired
1829 * with a prepare_task_switch call before the context switch.
1830 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1831 * and do any other architecture-specific cleanup actions.
1832 *
1833 * Note that we may have delayed dropping an mm in context_switch(). If
1834 * so, we finish that here outside of the runqueue lock. (Doing it
1835 * with the lock held can cause deadlocks; see schedule() for
1836 * details.)
1837 */
1838 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1839 __releases(rq->lock)
1840 {
1841 struct mm_struct *mm = rq->prev_mm;
1842 long prev_state;
1843
1844 rq->prev_mm = NULL;
1845
1846 /*
1847 * A task struct has one reference for the use as "current".
1848 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1849 * schedule one last time. The schedule call will never return, and
1850 * the scheduled task must drop that reference.
1851 * The test for TASK_DEAD must occur while the runqueue locks are
1852 * still held, otherwise prev could be scheduled on another cpu, die
1853 * there before we look at prev->state, and then the reference would
1854 * be dropped twice.
1855 * Manfred Spraul <manfred@colorfullife.com>
1856 */
1857 prev_state = prev->state;
1858 finish_arch_switch(prev);
1859 finish_lock_switch(rq, prev);
1860 fire_sched_in_preempt_notifiers(current);
1861 if (mm)
1862 mmdrop(mm);
1863 if (unlikely(prev_state == TASK_DEAD)) {
1864 /*
1865 * Remove function-return probe instances associated with this
1866 * task and put them back on the free list.
1867 */
1868 kprobe_flush_task(prev);
1869 put_task_struct(prev);
1870 }
1871 }
1872
1873 /**
1874 * schedule_tail - first thing a freshly forked thread must call.
1875 * @prev: the thread we just switched away from.
1876 */
1877 asmlinkage void schedule_tail(struct task_struct *prev)
1878 __releases(rq->lock)
1879 {
1880 struct rq *rq = this_rq();
1881
1882 finish_task_switch(rq, prev);
1883 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1884 /* In this case, finish_task_switch does not reenable preemption */
1885 preempt_enable();
1886 #endif
1887 if (current->set_child_tid)
1888 put_user(task_pid_vnr(current), current->set_child_tid);
1889 }
1890
1891 /*
1892 * context_switch - switch to the new MM and the new
1893 * thread's register state.
1894 */
1895 static inline void
1896 context_switch(struct rq *rq, struct task_struct *prev,
1897 struct task_struct *next)
1898 {
1899 struct mm_struct *mm, *oldmm;
1900
1901 prepare_task_switch(rq, prev, next);
1902 mm = next->mm;
1903 oldmm = prev->active_mm;
1904 /*
1905 * For paravirt, this is coupled with an exit in switch_to to
1906 * combine the page table reload and the switch backend into
1907 * one hypercall.
1908 */
1909 arch_enter_lazy_cpu_mode();
1910
1911 if (unlikely(!mm)) {
1912 next->active_mm = oldmm;
1913 atomic_inc(&oldmm->mm_count);
1914 enter_lazy_tlb(oldmm, next);
1915 } else
1916 switch_mm(oldmm, mm, next);
1917
1918 if (unlikely(!prev->mm)) {
1919 prev->active_mm = NULL;
1920 rq->prev_mm = oldmm;
1921 }
1922 /*
1923 * Since the runqueue lock will be released by the next
1924 * task (which is an invalid locking op but in the case
1925 * of the scheduler it's an obvious special-case), so we
1926 * do an early lockdep release here:
1927 */
1928 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1930 #endif
1931
1932 /* Here we just switch the register state and the stack. */
1933 switch_to(prev, next, prev);
1934
1935 barrier();
1936 /*
1937 * this_rq must be evaluated again because prev may have moved
1938 * CPUs since it called schedule(), thus the 'rq' on its stack
1939 * frame will be invalid.
1940 */
1941 finish_task_switch(this_rq(), prev);
1942 }
1943
1944 /*
1945 * nr_running, nr_uninterruptible and nr_context_switches:
1946 *
1947 * externally visible scheduler statistics: current number of runnable
1948 * threads, current number of uninterruptible-sleeping threads, total
1949 * number of context switches performed since bootup.
1950 */
1951 unsigned long nr_running(void)
1952 {
1953 unsigned long i, sum = 0;
1954
1955 for_each_online_cpu(i)
1956 sum += cpu_rq(i)->nr_running;
1957
1958 return sum;
1959 }
1960
1961 unsigned long nr_uninterruptible(void)
1962 {
1963 unsigned long i, sum = 0;
1964
1965 for_each_possible_cpu(i)
1966 sum += cpu_rq(i)->nr_uninterruptible;
1967
1968 /*
1969 * Since we read the counters lockless, it might be slightly
1970 * inaccurate. Do not allow it to go below zero though:
1971 */
1972 if (unlikely((long)sum < 0))
1973 sum = 0;
1974
1975 return sum;
1976 }
1977
1978 unsigned long long nr_context_switches(void)
1979 {
1980 int i;
1981 unsigned long long sum = 0;
1982
1983 for_each_possible_cpu(i)
1984 sum += cpu_rq(i)->nr_switches;
1985
1986 return sum;
1987 }
1988
1989 unsigned long nr_iowait(void)
1990 {
1991 unsigned long i, sum = 0;
1992
1993 for_each_possible_cpu(i)
1994 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1995
1996 return sum;
1997 }
1998
1999 unsigned long nr_active(void)
2000 {
2001 unsigned long i, running = 0, uninterruptible = 0;
2002
2003 for_each_online_cpu(i) {
2004 running += cpu_rq(i)->nr_running;
2005 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2006 }
2007
2008 if (unlikely((long)uninterruptible < 0))
2009 uninterruptible = 0;
2010
2011 return running + uninterruptible;
2012 }
2013
2014 /*
2015 * Update rq->cpu_load[] statistics. This function is usually called every
2016 * scheduler tick (TICK_NSEC).
2017 */
2018 static void update_cpu_load(struct rq *this_rq)
2019 {
2020 unsigned long this_load = this_rq->load.weight;
2021 int i, scale;
2022
2023 this_rq->nr_load_updates++;
2024
2025 /* Update our load: */
2026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2027 unsigned long old_load, new_load;
2028
2029 /* scale is effectively 1 << i now, and >> i divides by scale */
2030
2031 old_load = this_rq->cpu_load[i];
2032 new_load = this_load;
2033 /*
2034 * Round up the averaging division if load is increasing. This
2035 * prevents us from getting stuck on 9 if the load is 10, for
2036 * example.
2037 */
2038 if (new_load > old_load)
2039 new_load += scale-1;
2040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2041 }
2042 }
2043
2044 #ifdef CONFIG_SMP
2045
2046 /*
2047 * double_rq_lock - safely lock two runqueues
2048 *
2049 * Note this does not disable interrupts like task_rq_lock,
2050 * you need to do so manually before calling.
2051 */
2052 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2053 __acquires(rq1->lock)
2054 __acquires(rq2->lock)
2055 {
2056 BUG_ON(!irqs_disabled());
2057 if (rq1 == rq2) {
2058 spin_lock(&rq1->lock);
2059 __acquire(rq2->lock); /* Fake it out ;) */
2060 } else {
2061 if (rq1 < rq2) {
2062 spin_lock(&rq1->lock);
2063 spin_lock(&rq2->lock);
2064 } else {
2065 spin_lock(&rq2->lock);
2066 spin_lock(&rq1->lock);
2067 }
2068 }
2069 update_rq_clock(rq1);
2070 update_rq_clock(rq2);
2071 }
2072
2073 /*
2074 * double_rq_unlock - safely unlock two runqueues
2075 *
2076 * Note this does not restore interrupts like task_rq_unlock,
2077 * you need to do so manually after calling.
2078 */
2079 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2080 __releases(rq1->lock)
2081 __releases(rq2->lock)
2082 {
2083 spin_unlock(&rq1->lock);
2084 if (rq1 != rq2)
2085 spin_unlock(&rq2->lock);
2086 else
2087 __release(rq2->lock);
2088 }
2089
2090 /*
2091 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2092 */
2093 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2094 __releases(this_rq->lock)
2095 __acquires(busiest->lock)
2096 __acquires(this_rq->lock)
2097 {
2098 if (unlikely(!irqs_disabled())) {
2099 /* printk() doesn't work good under rq->lock */
2100 spin_unlock(&this_rq->lock);
2101 BUG_ON(1);
2102 }
2103 if (unlikely(!spin_trylock(&busiest->lock))) {
2104 if (busiest < this_rq) {
2105 spin_unlock(&this_rq->lock);
2106 spin_lock(&busiest->lock);
2107 spin_lock(&this_rq->lock);
2108 } else
2109 spin_lock(&busiest->lock);
2110 }
2111 }
2112
2113 /*
2114 * If dest_cpu is allowed for this process, migrate the task to it.
2115 * This is accomplished by forcing the cpu_allowed mask to only
2116 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2117 * the cpu_allowed mask is restored.
2118 */
2119 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2120 {
2121 struct migration_req req;
2122 unsigned long flags;
2123 struct rq *rq;
2124
2125 rq = task_rq_lock(p, &flags);
2126 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2127 || unlikely(cpu_is_offline(dest_cpu)))
2128 goto out;
2129
2130 /* force the process onto the specified CPU */
2131 if (migrate_task(p, dest_cpu, &req)) {
2132 /* Need to wait for migration thread (might exit: take ref). */
2133 struct task_struct *mt = rq->migration_thread;
2134
2135 get_task_struct(mt);
2136 task_rq_unlock(rq, &flags);
2137 wake_up_process(mt);
2138 put_task_struct(mt);
2139 wait_for_completion(&req.done);
2140
2141 return;
2142 }
2143 out:
2144 task_rq_unlock(rq, &flags);
2145 }
2146
2147 /*
2148 * sched_exec - execve() is a valuable balancing opportunity, because at
2149 * this point the task has the smallest effective memory and cache footprint.
2150 */
2151 void sched_exec(void)
2152 {
2153 int new_cpu, this_cpu = get_cpu();
2154 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2155 put_cpu();
2156 if (new_cpu != this_cpu)
2157 sched_migrate_task(current, new_cpu);
2158 }
2159
2160 /*
2161 * pull_task - move a task from a remote runqueue to the local runqueue.
2162 * Both runqueues must be locked.
2163 */
2164 static void pull_task(struct rq *src_rq, struct task_struct *p,
2165 struct rq *this_rq, int this_cpu)
2166 {
2167 deactivate_task(src_rq, p, 0);
2168 set_task_cpu(p, this_cpu);
2169 activate_task(this_rq, p, 0);
2170 /*
2171 * Note that idle threads have a prio of MAX_PRIO, for this test
2172 * to be always true for them.
2173 */
2174 check_preempt_curr(this_rq, p);
2175 }
2176
2177 /*
2178 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2179 */
2180 static
2181 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2182 struct sched_domain *sd, enum cpu_idle_type idle,
2183 int *all_pinned)
2184 {
2185 /*
2186 * We do not migrate tasks that are:
2187 * 1) running (obviously), or
2188 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2189 * 3) are cache-hot on their current CPU.
2190 */
2191 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2192 schedstat_inc(p, se.nr_failed_migrations_affine);
2193 return 0;
2194 }
2195 *all_pinned = 0;
2196
2197 if (task_running(rq, p)) {
2198 schedstat_inc(p, se.nr_failed_migrations_running);
2199 return 0;
2200 }
2201
2202 /*
2203 * Aggressive migration if:
2204 * 1) task is cache cold, or
2205 * 2) too many balance attempts have failed.
2206 */
2207
2208 if (!task_hot(p, rq->clock, sd) ||
2209 sd->nr_balance_failed > sd->cache_nice_tries) {
2210 #ifdef CONFIG_SCHEDSTATS
2211 if (task_hot(p, rq->clock, sd)) {
2212 schedstat_inc(sd, lb_hot_gained[idle]);
2213 schedstat_inc(p, se.nr_forced_migrations);
2214 }
2215 #endif
2216 return 1;
2217 }
2218
2219 if (task_hot(p, rq->clock, sd)) {
2220 schedstat_inc(p, se.nr_failed_migrations_hot);
2221 return 0;
2222 }
2223 return 1;
2224 }
2225
2226 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2227 unsigned long max_nr_move, unsigned long max_load_move,
2228 struct sched_domain *sd, enum cpu_idle_type idle,
2229 int *all_pinned, unsigned long *load_moved,
2230 int *this_best_prio, struct rq_iterator *iterator)
2231 {
2232 int pulled = 0, pinned = 0, skip_for_load;
2233 struct task_struct *p;
2234 long rem_load_move = max_load_move;
2235
2236 if (max_nr_move == 0 || max_load_move == 0)
2237 goto out;
2238
2239 pinned = 1;
2240
2241 /*
2242 * Start the load-balancing iterator:
2243 */
2244 p = iterator->start(iterator->arg);
2245 next:
2246 if (!p)
2247 goto out;
2248 /*
2249 * To help distribute high priority tasks accross CPUs we don't
2250 * skip a task if it will be the highest priority task (i.e. smallest
2251 * prio value) on its new queue regardless of its load weight
2252 */
2253 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2254 SCHED_LOAD_SCALE_FUZZ;
2255 if ((skip_for_load && p->prio >= *this_best_prio) ||
2256 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2257 p = iterator->next(iterator->arg);
2258 goto next;
2259 }
2260
2261 pull_task(busiest, p, this_rq, this_cpu);
2262 pulled++;
2263 rem_load_move -= p->se.load.weight;
2264
2265 /*
2266 * We only want to steal up to the prescribed number of tasks
2267 * and the prescribed amount of weighted load.
2268 */
2269 if (pulled < max_nr_move && rem_load_move > 0) {
2270 if (p->prio < *this_best_prio)
2271 *this_best_prio = p->prio;
2272 p = iterator->next(iterator->arg);
2273 goto next;
2274 }
2275 out:
2276 /*
2277 * Right now, this is the only place pull_task() is called,
2278 * so we can safely collect pull_task() stats here rather than
2279 * inside pull_task().
2280 */
2281 schedstat_add(sd, lb_gained[idle], pulled);
2282
2283 if (all_pinned)
2284 *all_pinned = pinned;
2285 *load_moved = max_load_move - rem_load_move;
2286 return pulled;
2287 }
2288
2289 /*
2290 * move_tasks tries to move up to max_load_move weighted load from busiest to
2291 * this_rq, as part of a balancing operation within domain "sd".
2292 * Returns 1 if successful and 0 otherwise.
2293 *
2294 * Called with both runqueues locked.
2295 */
2296 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2297 unsigned long max_load_move,
2298 struct sched_domain *sd, enum cpu_idle_type idle,
2299 int *all_pinned)
2300 {
2301 const struct sched_class *class = sched_class_highest;
2302 unsigned long total_load_moved = 0;
2303 int this_best_prio = this_rq->curr->prio;
2304
2305 do {
2306 total_load_moved +=
2307 class->load_balance(this_rq, this_cpu, busiest,
2308 ULONG_MAX, max_load_move - total_load_moved,
2309 sd, idle, all_pinned, &this_best_prio);
2310 class = class->next;
2311 } while (class && max_load_move > total_load_moved);
2312
2313 return total_load_moved > 0;
2314 }
2315
2316 /*
2317 * move_one_task tries to move exactly one task from busiest to this_rq, as
2318 * part of active balancing operations within "domain".
2319 * Returns 1 if successful and 0 otherwise.
2320 *
2321 * Called with both runqueues locked.
2322 */
2323 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2324 struct sched_domain *sd, enum cpu_idle_type idle)
2325 {
2326 const struct sched_class *class;
2327 int this_best_prio = MAX_PRIO;
2328
2329 for (class = sched_class_highest; class; class = class->next)
2330 if (class->load_balance(this_rq, this_cpu, busiest,
2331 1, ULONG_MAX, sd, idle, NULL,
2332 &this_best_prio))
2333 return 1;
2334
2335 return 0;
2336 }
2337
2338 /*
2339 * find_busiest_group finds and returns the busiest CPU group within the
2340 * domain. It calculates and returns the amount of weighted load which
2341 * should be moved to restore balance via the imbalance parameter.
2342 */
2343 static struct sched_group *
2344 find_busiest_group(struct sched_domain *sd, int this_cpu,
2345 unsigned long *imbalance, enum cpu_idle_type idle,
2346 int *sd_idle, cpumask_t *cpus, int *balance)
2347 {
2348 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2349 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2350 unsigned long max_pull;
2351 unsigned long busiest_load_per_task, busiest_nr_running;
2352 unsigned long this_load_per_task, this_nr_running;
2353 int load_idx, group_imb = 0;
2354 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2355 int power_savings_balance = 1;
2356 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2357 unsigned long min_nr_running = ULONG_MAX;
2358 struct sched_group *group_min = NULL, *group_leader = NULL;
2359 #endif
2360
2361 max_load = this_load = total_load = total_pwr = 0;
2362 busiest_load_per_task = busiest_nr_running = 0;
2363 this_load_per_task = this_nr_running = 0;
2364 if (idle == CPU_NOT_IDLE)
2365 load_idx = sd->busy_idx;
2366 else if (idle == CPU_NEWLY_IDLE)
2367 load_idx = sd->newidle_idx;
2368 else
2369 load_idx = sd->idle_idx;
2370
2371 do {
2372 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2373 int local_group;
2374 int i;
2375 int __group_imb = 0;
2376 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2377 unsigned long sum_nr_running, sum_weighted_load;
2378
2379 local_group = cpu_isset(this_cpu, group->cpumask);
2380
2381 if (local_group)
2382 balance_cpu = first_cpu(group->cpumask);
2383
2384 /* Tally up the load of all CPUs in the group */
2385 sum_weighted_load = sum_nr_running = avg_load = 0;
2386 max_cpu_load = 0;
2387 min_cpu_load = ~0UL;
2388
2389 for_each_cpu_mask(i, group->cpumask) {
2390 struct rq *rq;
2391
2392 if (!cpu_isset(i, *cpus))
2393 continue;
2394
2395 rq = cpu_rq(i);
2396
2397 if (*sd_idle && rq->nr_running)
2398 *sd_idle = 0;
2399
2400 /* Bias balancing toward cpus of our domain */
2401 if (local_group) {
2402 if (idle_cpu(i) && !first_idle_cpu) {
2403 first_idle_cpu = 1;
2404 balance_cpu = i;
2405 }
2406
2407 load = target_load(i, load_idx);
2408 } else {
2409 load = source_load(i, load_idx);
2410 if (load > max_cpu_load)
2411 max_cpu_load = load;
2412 if (min_cpu_load > load)
2413 min_cpu_load = load;
2414 }
2415
2416 avg_load += load;
2417 sum_nr_running += rq->nr_running;
2418 sum_weighted_load += weighted_cpuload(i);
2419 }
2420
2421 /*
2422 * First idle cpu or the first cpu(busiest) in this sched group
2423 * is eligible for doing load balancing at this and above
2424 * domains. In the newly idle case, we will allow all the cpu's
2425 * to do the newly idle load balance.
2426 */
2427 if (idle != CPU_NEWLY_IDLE && local_group &&
2428 balance_cpu != this_cpu && balance) {
2429 *balance = 0;
2430 goto ret;
2431 }
2432
2433 total_load += avg_load;
2434 total_pwr += group->__cpu_power;
2435
2436 /* Adjust by relative CPU power of the group */
2437 avg_load = sg_div_cpu_power(group,
2438 avg_load * SCHED_LOAD_SCALE);
2439
2440 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2441 __group_imb = 1;
2442
2443 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2444
2445 if (local_group) {
2446 this_load = avg_load;
2447 this = group;
2448 this_nr_running = sum_nr_running;
2449 this_load_per_task = sum_weighted_load;
2450 } else if (avg_load > max_load &&
2451 (sum_nr_running > group_capacity || __group_imb)) {
2452 max_load = avg_load;
2453 busiest = group;
2454 busiest_nr_running = sum_nr_running;
2455 busiest_load_per_task = sum_weighted_load;
2456 group_imb = __group_imb;
2457 }
2458
2459 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2460 /*
2461 * Busy processors will not participate in power savings
2462 * balance.
2463 */
2464 if (idle == CPU_NOT_IDLE ||
2465 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2466 goto group_next;
2467
2468 /*
2469 * If the local group is idle or completely loaded
2470 * no need to do power savings balance at this domain
2471 */
2472 if (local_group && (this_nr_running >= group_capacity ||
2473 !this_nr_running))
2474 power_savings_balance = 0;
2475
2476 /*
2477 * If a group is already running at full capacity or idle,
2478 * don't include that group in power savings calculations
2479 */
2480 if (!power_savings_balance || sum_nr_running >= group_capacity
2481 || !sum_nr_running)
2482 goto group_next;
2483
2484 /*
2485 * Calculate the group which has the least non-idle load.
2486 * This is the group from where we need to pick up the load
2487 * for saving power
2488 */
2489 if ((sum_nr_running < min_nr_running) ||
2490 (sum_nr_running == min_nr_running &&
2491 first_cpu(group->cpumask) <
2492 first_cpu(group_min->cpumask))) {
2493 group_min = group;
2494 min_nr_running = sum_nr_running;
2495 min_load_per_task = sum_weighted_load /
2496 sum_nr_running;
2497 }
2498
2499 /*
2500 * Calculate the group which is almost near its
2501 * capacity but still has some space to pick up some load
2502 * from other group and save more power
2503 */
2504 if (sum_nr_running <= group_capacity - 1) {
2505 if (sum_nr_running > leader_nr_running ||
2506 (sum_nr_running == leader_nr_running &&
2507 first_cpu(group->cpumask) >
2508 first_cpu(group_leader->cpumask))) {
2509 group_leader = group;
2510 leader_nr_running = sum_nr_running;
2511 }
2512 }
2513 group_next:
2514 #endif
2515 group = group->next;
2516 } while (group != sd->groups);
2517
2518 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2519 goto out_balanced;
2520
2521 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2522
2523 if (this_load >= avg_load ||
2524 100*max_load <= sd->imbalance_pct*this_load)
2525 goto out_balanced;
2526
2527 busiest_load_per_task /= busiest_nr_running;
2528 if (group_imb)
2529 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2530
2531 /*
2532 * We're trying to get all the cpus to the average_load, so we don't
2533 * want to push ourselves above the average load, nor do we wish to
2534 * reduce the max loaded cpu below the average load, as either of these
2535 * actions would just result in more rebalancing later, and ping-pong
2536 * tasks around. Thus we look for the minimum possible imbalance.
2537 * Negative imbalances (*we* are more loaded than anyone else) will
2538 * be counted as no imbalance for these purposes -- we can't fix that
2539 * by pulling tasks to us. Be careful of negative numbers as they'll
2540 * appear as very large values with unsigned longs.
2541 */
2542 if (max_load <= busiest_load_per_task)
2543 goto out_balanced;
2544
2545 /*
2546 * In the presence of smp nice balancing, certain scenarios can have
2547 * max load less than avg load(as we skip the groups at or below
2548 * its cpu_power, while calculating max_load..)
2549 */
2550 if (max_load < avg_load) {
2551 *imbalance = 0;
2552 goto small_imbalance;
2553 }
2554
2555 /* Don't want to pull so many tasks that a group would go idle */
2556 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2557
2558 /* How much load to actually move to equalise the imbalance */
2559 *imbalance = min(max_pull * busiest->__cpu_power,
2560 (avg_load - this_load) * this->__cpu_power)
2561 / SCHED_LOAD_SCALE;
2562
2563 /*
2564 * if *imbalance is less than the average load per runnable task
2565 * there is no gaurantee that any tasks will be moved so we'll have
2566 * a think about bumping its value to force at least one task to be
2567 * moved
2568 */
2569 if (*imbalance < busiest_load_per_task) {
2570 unsigned long tmp, pwr_now, pwr_move;
2571 unsigned int imbn;
2572
2573 small_imbalance:
2574 pwr_move = pwr_now = 0;
2575 imbn = 2;
2576 if (this_nr_running) {
2577 this_load_per_task /= this_nr_running;
2578 if (busiest_load_per_task > this_load_per_task)
2579 imbn = 1;
2580 } else
2581 this_load_per_task = SCHED_LOAD_SCALE;
2582
2583 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2584 busiest_load_per_task * imbn) {
2585 *imbalance = busiest_load_per_task;
2586 return busiest;
2587 }
2588
2589 /*
2590 * OK, we don't have enough imbalance to justify moving tasks,
2591 * however we may be able to increase total CPU power used by
2592 * moving them.
2593 */
2594
2595 pwr_now += busiest->__cpu_power *
2596 min(busiest_load_per_task, max_load);
2597 pwr_now += this->__cpu_power *
2598 min(this_load_per_task, this_load);
2599 pwr_now /= SCHED_LOAD_SCALE;
2600
2601 /* Amount of load we'd subtract */
2602 tmp = sg_div_cpu_power(busiest,
2603 busiest_load_per_task * SCHED_LOAD_SCALE);
2604 if (max_load > tmp)
2605 pwr_move += busiest->__cpu_power *
2606 min(busiest_load_per_task, max_load - tmp);
2607
2608 /* Amount of load we'd add */
2609 if (max_load * busiest->__cpu_power <
2610 busiest_load_per_task * SCHED_LOAD_SCALE)
2611 tmp = sg_div_cpu_power(this,
2612 max_load * busiest->__cpu_power);
2613 else
2614 tmp = sg_div_cpu_power(this,
2615 busiest_load_per_task * SCHED_LOAD_SCALE);
2616 pwr_move += this->__cpu_power *
2617 min(this_load_per_task, this_load + tmp);
2618 pwr_move /= SCHED_LOAD_SCALE;
2619
2620 /* Move if we gain throughput */
2621 if (pwr_move > pwr_now)
2622 *imbalance = busiest_load_per_task;
2623 }
2624
2625 return busiest;
2626
2627 out_balanced:
2628 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2629 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2630 goto ret;
2631
2632 if (this == group_leader && group_leader != group_min) {
2633 *imbalance = min_load_per_task;
2634 return group_min;
2635 }
2636 #endif
2637 ret:
2638 *imbalance = 0;
2639 return NULL;
2640 }
2641
2642 /*
2643 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2644 */
2645 static struct rq *
2646 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2647 unsigned long imbalance, cpumask_t *cpus)
2648 {
2649 struct rq *busiest = NULL, *rq;
2650 unsigned long max_load = 0;
2651 int i;
2652
2653 for_each_cpu_mask(i, group->cpumask) {
2654 unsigned long wl;
2655
2656 if (!cpu_isset(i, *cpus))
2657 continue;
2658
2659 rq = cpu_rq(i);
2660 wl = weighted_cpuload(i);
2661
2662 if (rq->nr_running == 1 && wl > imbalance)
2663 continue;
2664
2665 if (wl > max_load) {
2666 max_load = wl;
2667 busiest = rq;
2668 }
2669 }
2670
2671 return busiest;
2672 }
2673
2674 /*
2675 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2676 * so long as it is large enough.
2677 */
2678 #define MAX_PINNED_INTERVAL 512
2679
2680 /*
2681 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2682 * tasks if there is an imbalance.
2683 */
2684 static int load_balance(int this_cpu, struct rq *this_rq,
2685 struct sched_domain *sd, enum cpu_idle_type idle,
2686 int *balance)
2687 {
2688 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2689 struct sched_group *group;
2690 unsigned long imbalance;
2691 struct rq *busiest;
2692 cpumask_t cpus = CPU_MASK_ALL;
2693 unsigned long flags;
2694
2695 /*
2696 * When power savings policy is enabled for the parent domain, idle
2697 * sibling can pick up load irrespective of busy siblings. In this case,
2698 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2699 * portraying it as CPU_NOT_IDLE.
2700 */
2701 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2702 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2703 sd_idle = 1;
2704
2705 schedstat_inc(sd, lb_count[idle]);
2706
2707 redo:
2708 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2709 &cpus, balance);
2710
2711 if (*balance == 0)
2712 goto out_balanced;
2713
2714 if (!group) {
2715 schedstat_inc(sd, lb_nobusyg[idle]);
2716 goto out_balanced;
2717 }
2718
2719 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2720 if (!busiest) {
2721 schedstat_inc(sd, lb_nobusyq[idle]);
2722 goto out_balanced;
2723 }
2724
2725 BUG_ON(busiest == this_rq);
2726
2727 schedstat_add(sd, lb_imbalance[idle], imbalance);
2728
2729 ld_moved = 0;
2730 if (busiest->nr_running > 1) {
2731 /*
2732 * Attempt to move tasks. If find_busiest_group has found
2733 * an imbalance but busiest->nr_running <= 1, the group is
2734 * still unbalanced. ld_moved simply stays zero, so it is
2735 * correctly treated as an imbalance.
2736 */
2737 local_irq_save(flags);
2738 double_rq_lock(this_rq, busiest);
2739 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2740 imbalance, sd, idle, &all_pinned);
2741 double_rq_unlock(this_rq, busiest);
2742 local_irq_restore(flags);
2743
2744 /*
2745 * some other cpu did the load balance for us.
2746 */
2747 if (ld_moved && this_cpu != smp_processor_id())
2748 resched_cpu(this_cpu);
2749
2750 /* All tasks on this runqueue were pinned by CPU affinity */
2751 if (unlikely(all_pinned)) {
2752 cpu_clear(cpu_of(busiest), cpus);
2753 if (!cpus_empty(cpus))
2754 goto redo;
2755 goto out_balanced;
2756 }
2757 }
2758
2759 if (!ld_moved) {
2760 schedstat_inc(sd, lb_failed[idle]);
2761 sd->nr_balance_failed++;
2762
2763 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2764
2765 spin_lock_irqsave(&busiest->lock, flags);
2766
2767 /* don't kick the migration_thread, if the curr
2768 * task on busiest cpu can't be moved to this_cpu
2769 */
2770 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2771 spin_unlock_irqrestore(&busiest->lock, flags);
2772 all_pinned = 1;
2773 goto out_one_pinned;
2774 }
2775
2776 if (!busiest->active_balance) {
2777 busiest->active_balance = 1;
2778 busiest->push_cpu = this_cpu;
2779 active_balance = 1;
2780 }
2781 spin_unlock_irqrestore(&busiest->lock, flags);
2782 if (active_balance)
2783 wake_up_process(busiest->migration_thread);
2784
2785 /*
2786 * We've kicked active balancing, reset the failure
2787 * counter.
2788 */
2789 sd->nr_balance_failed = sd->cache_nice_tries+1;
2790 }
2791 } else
2792 sd->nr_balance_failed = 0;
2793
2794 if (likely(!active_balance)) {
2795 /* We were unbalanced, so reset the balancing interval */
2796 sd->balance_interval = sd->min_interval;
2797 } else {
2798 /*
2799 * If we've begun active balancing, start to back off. This
2800 * case may not be covered by the all_pinned logic if there
2801 * is only 1 task on the busy runqueue (because we don't call
2802 * move_tasks).
2803 */
2804 if (sd->balance_interval < sd->max_interval)
2805 sd->balance_interval *= 2;
2806 }
2807
2808 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2810 return -1;
2811 return ld_moved;
2812
2813 out_balanced:
2814 schedstat_inc(sd, lb_balanced[idle]);
2815
2816 sd->nr_balance_failed = 0;
2817
2818 out_one_pinned:
2819 /* tune up the balancing interval */
2820 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2821 (sd->balance_interval < sd->max_interval))
2822 sd->balance_interval *= 2;
2823
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 return -1;
2827 return 0;
2828 }
2829
2830 /*
2831 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2832 * tasks if there is an imbalance.
2833 *
2834 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2835 * this_rq is locked.
2836 */
2837 static int
2838 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2839 {
2840 struct sched_group *group;
2841 struct rq *busiest = NULL;
2842 unsigned long imbalance;
2843 int ld_moved = 0;
2844 int sd_idle = 0;
2845 int all_pinned = 0;
2846 cpumask_t cpus = CPU_MASK_ALL;
2847
2848 /*
2849 * When power savings policy is enabled for the parent domain, idle
2850 * sibling can pick up load irrespective of busy siblings. In this case,
2851 * let the state of idle sibling percolate up as IDLE, instead of
2852 * portraying it as CPU_NOT_IDLE.
2853 */
2854 if (sd->flags & SD_SHARE_CPUPOWER &&
2855 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2856 sd_idle = 1;
2857
2858 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2859 redo:
2860 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2861 &sd_idle, &cpus, NULL);
2862 if (!group) {
2863 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2864 goto out_balanced;
2865 }
2866
2867 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2868 &cpus);
2869 if (!busiest) {
2870 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2871 goto out_balanced;
2872 }
2873
2874 BUG_ON(busiest == this_rq);
2875
2876 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2877
2878 ld_moved = 0;
2879 if (busiest->nr_running > 1) {
2880 /* Attempt to move tasks */
2881 double_lock_balance(this_rq, busiest);
2882 /* this_rq->clock is already updated */
2883 update_rq_clock(busiest);
2884 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2885 imbalance, sd, CPU_NEWLY_IDLE,
2886 &all_pinned);
2887 spin_unlock(&busiest->lock);
2888
2889 if (unlikely(all_pinned)) {
2890 cpu_clear(cpu_of(busiest), cpus);
2891 if (!cpus_empty(cpus))
2892 goto redo;
2893 }
2894 }
2895
2896 if (!ld_moved) {
2897 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2898 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2899 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2900 return -1;
2901 } else
2902 sd->nr_balance_failed = 0;
2903
2904 return ld_moved;
2905
2906 out_balanced:
2907 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2908 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2909 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2910 return -1;
2911 sd->nr_balance_failed = 0;
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * idle_balance is called by schedule() if this_cpu is about to become
2918 * idle. Attempts to pull tasks from other CPUs.
2919 */
2920 static void idle_balance(int this_cpu, struct rq *this_rq)
2921 {
2922 struct sched_domain *sd;
2923 int pulled_task = -1;
2924 unsigned long next_balance = jiffies + HZ;
2925
2926 for_each_domain(this_cpu, sd) {
2927 unsigned long interval;
2928
2929 if (!(sd->flags & SD_LOAD_BALANCE))
2930 continue;
2931
2932 if (sd->flags & SD_BALANCE_NEWIDLE)
2933 /* If we've pulled tasks over stop searching: */
2934 pulled_task = load_balance_newidle(this_cpu,
2935 this_rq, sd);
2936
2937 interval = msecs_to_jiffies(sd->balance_interval);
2938 if (time_after(next_balance, sd->last_balance + interval))
2939 next_balance = sd->last_balance + interval;
2940 if (pulled_task)
2941 break;
2942 }
2943 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2944 /*
2945 * We are going idle. next_balance may be set based on
2946 * a busy processor. So reset next_balance.
2947 */
2948 this_rq->next_balance = next_balance;
2949 }
2950 }
2951
2952 /*
2953 * active_load_balance is run by migration threads. It pushes running tasks
2954 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2955 * running on each physical CPU where possible, and avoids physical /
2956 * logical imbalances.
2957 *
2958 * Called with busiest_rq locked.
2959 */
2960 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2961 {
2962 int target_cpu = busiest_rq->push_cpu;
2963 struct sched_domain *sd;
2964 struct rq *target_rq;
2965
2966 /* Is there any task to move? */
2967 if (busiest_rq->nr_running <= 1)
2968 return;
2969
2970 target_rq = cpu_rq(target_cpu);
2971
2972 /*
2973 * This condition is "impossible", if it occurs
2974 * we need to fix it. Originally reported by
2975 * Bjorn Helgaas on a 128-cpu setup.
2976 */
2977 BUG_ON(busiest_rq == target_rq);
2978
2979 /* move a task from busiest_rq to target_rq */
2980 double_lock_balance(busiest_rq, target_rq);
2981 update_rq_clock(busiest_rq);
2982 update_rq_clock(target_rq);
2983
2984 /* Search for an sd spanning us and the target CPU. */
2985 for_each_domain(target_cpu, sd) {
2986 if ((sd->flags & SD_LOAD_BALANCE) &&
2987 cpu_isset(busiest_cpu, sd->span))
2988 break;
2989 }
2990
2991 if (likely(sd)) {
2992 schedstat_inc(sd, alb_count);
2993
2994 if (move_one_task(target_rq, target_cpu, busiest_rq,
2995 sd, CPU_IDLE))
2996 schedstat_inc(sd, alb_pushed);
2997 else
2998 schedstat_inc(sd, alb_failed);
2999 }
3000 spin_unlock(&target_rq->lock);
3001 }
3002
3003 #ifdef CONFIG_NO_HZ
3004 static struct {
3005 atomic_t load_balancer;
3006 cpumask_t cpu_mask;
3007 } nohz ____cacheline_aligned = {
3008 .load_balancer = ATOMIC_INIT(-1),
3009 .cpu_mask = CPU_MASK_NONE,
3010 };
3011
3012 /*
3013 * This routine will try to nominate the ilb (idle load balancing)
3014 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3015 * load balancing on behalf of all those cpus. If all the cpus in the system
3016 * go into this tickless mode, then there will be no ilb owner (as there is
3017 * no need for one) and all the cpus will sleep till the next wakeup event
3018 * arrives...
3019 *
3020 * For the ilb owner, tick is not stopped. And this tick will be used
3021 * for idle load balancing. ilb owner will still be part of
3022 * nohz.cpu_mask..
3023 *
3024 * While stopping the tick, this cpu will become the ilb owner if there
3025 * is no other owner. And will be the owner till that cpu becomes busy
3026 * or if all cpus in the system stop their ticks at which point
3027 * there is no need for ilb owner.
3028 *
3029 * When the ilb owner becomes busy, it nominates another owner, during the
3030 * next busy scheduler_tick()
3031 */
3032 int select_nohz_load_balancer(int stop_tick)
3033 {
3034 int cpu = smp_processor_id();
3035
3036 if (stop_tick) {
3037 cpu_set(cpu, nohz.cpu_mask);
3038 cpu_rq(cpu)->in_nohz_recently = 1;
3039
3040 /*
3041 * If we are going offline and still the leader, give up!
3042 */
3043 if (cpu_is_offline(cpu) &&
3044 atomic_read(&nohz.load_balancer) == cpu) {
3045 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3046 BUG();
3047 return 0;
3048 }
3049
3050 /* time for ilb owner also to sleep */
3051 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3052 if (atomic_read(&nohz.load_balancer) == cpu)
3053 atomic_set(&nohz.load_balancer, -1);
3054 return 0;
3055 }
3056
3057 if (atomic_read(&nohz.load_balancer) == -1) {
3058 /* make me the ilb owner */
3059 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3060 return 1;
3061 } else if (atomic_read(&nohz.load_balancer) == cpu)
3062 return 1;
3063 } else {
3064 if (!cpu_isset(cpu, nohz.cpu_mask))
3065 return 0;
3066
3067 cpu_clear(cpu, nohz.cpu_mask);
3068
3069 if (atomic_read(&nohz.load_balancer) == cpu)
3070 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3071 BUG();
3072 }
3073 return 0;
3074 }
3075 #endif
3076
3077 static DEFINE_SPINLOCK(balancing);
3078
3079 /*
3080 * It checks each scheduling domain to see if it is due to be balanced,
3081 * and initiates a balancing operation if so.
3082 *
3083 * Balancing parameters are set up in arch_init_sched_domains.
3084 */
3085 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3086 {
3087 int balance = 1;
3088 struct rq *rq = cpu_rq(cpu);
3089 unsigned long interval;
3090 struct sched_domain *sd;
3091 /* Earliest time when we have to do rebalance again */
3092 unsigned long next_balance = jiffies + 60*HZ;
3093 int update_next_balance = 0;
3094
3095 for_each_domain(cpu, sd) {
3096 if (!(sd->flags & SD_LOAD_BALANCE))
3097 continue;
3098
3099 interval = sd->balance_interval;
3100 if (idle != CPU_IDLE)
3101 interval *= sd->busy_factor;
3102
3103 /* scale ms to jiffies */
3104 interval = msecs_to_jiffies(interval);
3105 if (unlikely(!interval))
3106 interval = 1;
3107 if (interval > HZ*NR_CPUS/10)
3108 interval = HZ*NR_CPUS/10;
3109
3110
3111 if (sd->flags & SD_SERIALIZE) {
3112 if (!spin_trylock(&balancing))
3113 goto out;
3114 }
3115
3116 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3117 if (load_balance(cpu, rq, sd, idle, &balance)) {
3118 /*
3119 * We've pulled tasks over so either we're no
3120 * longer idle, or one of our SMT siblings is
3121 * not idle.
3122 */
3123 idle = CPU_NOT_IDLE;
3124 }
3125 sd->last_balance = jiffies;
3126 }
3127 if (sd->flags & SD_SERIALIZE)
3128 spin_unlock(&balancing);
3129 out:
3130 if (time_after(next_balance, sd->last_balance + interval)) {
3131 next_balance = sd->last_balance + interval;
3132 update_next_balance = 1;
3133 }
3134
3135 /*
3136 * Stop the load balance at this level. There is another
3137 * CPU in our sched group which is doing load balancing more
3138 * actively.
3139 */
3140 if (!balance)
3141 break;
3142 }
3143
3144 /*
3145 * next_balance will be updated only when there is a need.
3146 * When the cpu is attached to null domain for ex, it will not be
3147 * updated.
3148 */
3149 if (likely(update_next_balance))
3150 rq->next_balance = next_balance;
3151 }
3152
3153 /*
3154 * run_rebalance_domains is triggered when needed from the scheduler tick.
3155 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3156 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3157 */
3158 static void run_rebalance_domains(struct softirq_action *h)
3159 {
3160 int this_cpu = smp_processor_id();
3161 struct rq *this_rq = cpu_rq(this_cpu);
3162 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3163 CPU_IDLE : CPU_NOT_IDLE;
3164
3165 rebalance_domains(this_cpu, idle);
3166
3167 #ifdef CONFIG_NO_HZ
3168 /*
3169 * If this cpu is the owner for idle load balancing, then do the
3170 * balancing on behalf of the other idle cpus whose ticks are
3171 * stopped.
3172 */
3173 if (this_rq->idle_at_tick &&
3174 atomic_read(&nohz.load_balancer) == this_cpu) {
3175 cpumask_t cpus = nohz.cpu_mask;
3176 struct rq *rq;
3177 int balance_cpu;
3178
3179 cpu_clear(this_cpu, cpus);
3180 for_each_cpu_mask(balance_cpu, cpus) {
3181 /*
3182 * If this cpu gets work to do, stop the load balancing
3183 * work being done for other cpus. Next load
3184 * balancing owner will pick it up.
3185 */
3186 if (need_resched())
3187 break;
3188
3189 rebalance_domains(balance_cpu, CPU_IDLE);
3190
3191 rq = cpu_rq(balance_cpu);
3192 if (time_after(this_rq->next_balance, rq->next_balance))
3193 this_rq->next_balance = rq->next_balance;
3194 }
3195 }
3196 #endif
3197 }
3198
3199 /*
3200 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3201 *
3202 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3203 * idle load balancing owner or decide to stop the periodic load balancing,
3204 * if the whole system is idle.
3205 */
3206 static inline void trigger_load_balance(struct rq *rq, int cpu)
3207 {
3208 #ifdef CONFIG_NO_HZ
3209 /*
3210 * If we were in the nohz mode recently and busy at the current
3211 * scheduler tick, then check if we need to nominate new idle
3212 * load balancer.
3213 */
3214 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3215 rq->in_nohz_recently = 0;
3216
3217 if (atomic_read(&nohz.load_balancer) == cpu) {
3218 cpu_clear(cpu, nohz.cpu_mask);
3219 atomic_set(&nohz.load_balancer, -1);
3220 }
3221
3222 if (atomic_read(&nohz.load_balancer) == -1) {
3223 /*
3224 * simple selection for now: Nominate the
3225 * first cpu in the nohz list to be the next
3226 * ilb owner.
3227 *
3228 * TBD: Traverse the sched domains and nominate
3229 * the nearest cpu in the nohz.cpu_mask.
3230 */
3231 int ilb = first_cpu(nohz.cpu_mask);
3232
3233 if (ilb != NR_CPUS)
3234 resched_cpu(ilb);
3235 }
3236 }
3237
3238 /*
3239 * If this cpu is idle and doing idle load balancing for all the
3240 * cpus with ticks stopped, is it time for that to stop?
3241 */
3242 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3243 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3244 resched_cpu(cpu);
3245 return;
3246 }
3247
3248 /*
3249 * If this cpu is idle and the idle load balancing is done by
3250 * someone else, then no need raise the SCHED_SOFTIRQ
3251 */
3252 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3253 cpu_isset(cpu, nohz.cpu_mask))
3254 return;
3255 #endif
3256 if (time_after_eq(jiffies, rq->next_balance))
3257 raise_softirq(SCHED_SOFTIRQ);
3258 }
3259
3260 #else /* CONFIG_SMP */
3261
3262 /*
3263 * on UP we do not need to balance between CPUs:
3264 */
3265 static inline void idle_balance(int cpu, struct rq *rq)
3266 {
3267 }
3268
3269 /* Avoid "used but not defined" warning on UP */
3270 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3271 unsigned long max_nr_move, unsigned long max_load_move,
3272 struct sched_domain *sd, enum cpu_idle_type idle,
3273 int *all_pinned, unsigned long *load_moved,
3274 int *this_best_prio, struct rq_iterator *iterator)
3275 {
3276 *load_moved = 0;
3277
3278 return 0;
3279 }
3280
3281 #endif
3282
3283 DEFINE_PER_CPU(struct kernel_stat, kstat);
3284
3285 EXPORT_PER_CPU_SYMBOL(kstat);
3286
3287 /*
3288 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3289 * that have not yet been banked in case the task is currently running.
3290 */
3291 unsigned long long task_sched_runtime(struct task_struct *p)
3292 {
3293 unsigned long flags;
3294 u64 ns, delta_exec;
3295 struct rq *rq;
3296
3297 rq = task_rq_lock(p, &flags);
3298 ns = p->se.sum_exec_runtime;
3299 if (rq->curr == p) {
3300 update_rq_clock(rq);
3301 delta_exec = rq->clock - p->se.exec_start;
3302 if ((s64)delta_exec > 0)
3303 ns += delta_exec;
3304 }
3305 task_rq_unlock(rq, &flags);
3306
3307 return ns;
3308 }
3309
3310 /*
3311 * Account user cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
3313 * @cputime: the cpu time spent in user space since the last update
3314 */
3315 void account_user_time(struct task_struct *p, cputime_t cputime)
3316 {
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3318 cputime64_t tmp;
3319 struct rq *rq = this_rq();
3320
3321 p->utime = cputime_add(p->utime, cputime);
3322
3323 if (p != rq->idle)
3324 cpuacct_charge(p, cputime);
3325
3326 /* Add user time to cpustat. */
3327 tmp = cputime_to_cputime64(cputime);
3328 if (TASK_NICE(p) > 0)
3329 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3330 else
3331 cpustat->user = cputime64_add(cpustat->user, tmp);
3332 }
3333
3334 /*
3335 * Account guest cpu time to a process.
3336 * @p: the process that the cpu time gets accounted to
3337 * @cputime: the cpu time spent in virtual machine since the last update
3338 */
3339 void account_guest_time(struct task_struct *p, cputime_t cputime)
3340 {
3341 cputime64_t tmp;
3342 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3343
3344 tmp = cputime_to_cputime64(cputime);
3345
3346 p->utime = cputime_add(p->utime, cputime);
3347 p->gtime = cputime_add(p->gtime, cputime);
3348
3349 cpustat->user = cputime64_add(cpustat->user, tmp);
3350 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3351 }
3352
3353 /*
3354 * Account scaled user cpu time to a process.
3355 * @p: the process that the cpu time gets accounted to
3356 * @cputime: the cpu time spent in user space since the last update
3357 */
3358 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3359 {
3360 p->utimescaled = cputime_add(p->utimescaled, cputime);
3361 }
3362
3363 /*
3364 * Account system cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @hardirq_offset: the offset to subtract from hardirq_count()
3367 * @cputime: the cpu time spent in kernel space since the last update
3368 */
3369 void account_system_time(struct task_struct *p, int hardirq_offset,
3370 cputime_t cputime)
3371 {
3372 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3373 struct rq *rq = this_rq();
3374 cputime64_t tmp;
3375
3376 if (p->flags & PF_VCPU) {
3377 account_guest_time(p, cputime);
3378 return;
3379 }
3380
3381 p->stime = cputime_add(p->stime, cputime);
3382
3383 /* Add system time to cpustat. */
3384 tmp = cputime_to_cputime64(cputime);
3385 if (hardirq_count() - hardirq_offset)
3386 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3387 else if (softirq_count())
3388 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3389 else if (p != rq->idle) {
3390 cpustat->system = cputime64_add(cpustat->system, tmp);
3391 cpuacct_charge(p, cputime);
3392 } else if (atomic_read(&rq->nr_iowait) > 0)
3393 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3394 else
3395 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3396 /* Account for system time used */
3397 acct_update_integrals(p);
3398 }
3399
3400 /*
3401 * Account scaled system cpu time to a process.
3402 * @p: the process that the cpu time gets accounted to
3403 * @hardirq_offset: the offset to subtract from hardirq_count()
3404 * @cputime: the cpu time spent in kernel space since the last update
3405 */
3406 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3407 {
3408 p->stimescaled = cputime_add(p->stimescaled, cputime);
3409 }
3410
3411 /*
3412 * Account for involuntary wait time.
3413 * @p: the process from which the cpu time has been stolen
3414 * @steal: the cpu time spent in involuntary wait
3415 */
3416 void account_steal_time(struct task_struct *p, cputime_t steal)
3417 {
3418 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3419 cputime64_t tmp = cputime_to_cputime64(steal);
3420 struct rq *rq = this_rq();
3421
3422 if (p == rq->idle) {
3423 p->stime = cputime_add(p->stime, steal);
3424 if (atomic_read(&rq->nr_iowait) > 0)
3425 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3426 else
3427 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3428 } else {
3429 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3430 cpuacct_charge(p, -tmp);
3431 }
3432 }
3433
3434 /*
3435 * This function gets called by the timer code, with HZ frequency.
3436 * We call it with interrupts disabled.
3437 *
3438 * It also gets called by the fork code, when changing the parent's
3439 * timeslices.
3440 */
3441 void scheduler_tick(void)
3442 {
3443 int cpu = smp_processor_id();
3444 struct rq *rq = cpu_rq(cpu);
3445 struct task_struct *curr = rq->curr;
3446 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3447
3448 spin_lock(&rq->lock);
3449 __update_rq_clock(rq);
3450 /*
3451 * Let rq->clock advance by at least TICK_NSEC:
3452 */
3453 if (unlikely(rq->clock < next_tick))
3454 rq->clock = next_tick;
3455 rq->tick_timestamp = rq->clock;
3456 update_cpu_load(rq);
3457 if (curr != rq->idle) /* FIXME: needed? */
3458 curr->sched_class->task_tick(rq, curr);
3459 spin_unlock(&rq->lock);
3460
3461 #ifdef CONFIG_SMP
3462 rq->idle_at_tick = idle_cpu(cpu);
3463 trigger_load_balance(rq, cpu);
3464 #endif
3465 }
3466
3467 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3468
3469 void fastcall add_preempt_count(int val)
3470 {
3471 /*
3472 * Underflow?
3473 */
3474 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3475 return;
3476 preempt_count() += val;
3477 /*
3478 * Spinlock count overflowing soon?
3479 */
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3481 PREEMPT_MASK - 10);
3482 }
3483 EXPORT_SYMBOL(add_preempt_count);
3484
3485 void fastcall sub_preempt_count(int val)
3486 {
3487 /*
3488 * Underflow?
3489 */
3490 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3491 return;
3492 /*
3493 * Is the spinlock portion underflowing?
3494 */
3495 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3496 !(preempt_count() & PREEMPT_MASK)))
3497 return;
3498
3499 preempt_count() -= val;
3500 }
3501 EXPORT_SYMBOL(sub_preempt_count);
3502
3503 #endif
3504
3505 /*
3506 * Print scheduling while atomic bug:
3507 */
3508 static noinline void __schedule_bug(struct task_struct *prev)
3509 {
3510 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3511 prev->comm, preempt_count(), task_pid_nr(prev));
3512 debug_show_held_locks(prev);
3513 if (irqs_disabled())
3514 print_irqtrace_events(prev);
3515 dump_stack();
3516 }
3517
3518 /*
3519 * Various schedule()-time debugging checks and statistics:
3520 */
3521 static inline void schedule_debug(struct task_struct *prev)
3522 {
3523 /*
3524 * Test if we are atomic. Since do_exit() needs to call into
3525 * schedule() atomically, we ignore that path for now.
3526 * Otherwise, whine if we are scheduling when we should not be.
3527 */
3528 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3529 __schedule_bug(prev);
3530
3531 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3532
3533 schedstat_inc(this_rq(), sched_count);
3534 #ifdef CONFIG_SCHEDSTATS
3535 if (unlikely(prev->lock_depth >= 0)) {
3536 schedstat_inc(this_rq(), bkl_count);
3537 schedstat_inc(prev, sched_info.bkl_count);
3538 }
3539 #endif
3540 }
3541
3542 /*
3543 * Pick up the highest-prio task:
3544 */
3545 static inline struct task_struct *
3546 pick_next_task(struct rq *rq, struct task_struct *prev)
3547 {
3548 const struct sched_class *class;
3549 struct task_struct *p;
3550
3551 /*
3552 * Optimization: we know that if all tasks are in
3553 * the fair class we can call that function directly:
3554 */
3555 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3556 p = fair_sched_class.pick_next_task(rq);
3557 if (likely(p))
3558 return p;
3559 }
3560
3561 class = sched_class_highest;
3562 for ( ; ; ) {
3563 p = class->pick_next_task(rq);
3564 if (p)
3565 return p;
3566 /*
3567 * Will never be NULL as the idle class always
3568 * returns a non-NULL p:
3569 */
3570 class = class->next;
3571 }
3572 }
3573
3574 /*
3575 * schedule() is the main scheduler function.
3576 */
3577 asmlinkage void __sched schedule(void)
3578 {
3579 struct task_struct *prev, *next;
3580 long *switch_count;
3581 struct rq *rq;
3582 int cpu;
3583
3584 need_resched:
3585 preempt_disable();
3586 cpu = smp_processor_id();
3587 rq = cpu_rq(cpu);
3588 rcu_qsctr_inc(cpu);
3589 prev = rq->curr;
3590 switch_count = &prev->nivcsw;
3591
3592 release_kernel_lock(prev);
3593 need_resched_nonpreemptible:
3594
3595 schedule_debug(prev);
3596
3597 /*
3598 * Do the rq-clock update outside the rq lock:
3599 */
3600 local_irq_disable();
3601 __update_rq_clock(rq);
3602 spin_lock(&rq->lock);
3603 clear_tsk_need_resched(prev);
3604
3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3606 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3607 unlikely(signal_pending(prev)))) {
3608 prev->state = TASK_RUNNING;
3609 } else {
3610 deactivate_task(rq, prev, 1);
3611 }
3612 switch_count = &prev->nvcsw;
3613 }
3614
3615 if (unlikely(!rq->nr_running))
3616 idle_balance(cpu, rq);
3617
3618 prev->sched_class->put_prev_task(rq, prev);
3619 next = pick_next_task(rq, prev);
3620
3621 sched_info_switch(prev, next);
3622
3623 if (likely(prev != next)) {
3624 rq->nr_switches++;
3625 rq->curr = next;
3626 ++*switch_count;
3627
3628 context_switch(rq, prev, next); /* unlocks the rq */
3629 } else
3630 spin_unlock_irq(&rq->lock);
3631
3632 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
3635 goto need_resched_nonpreemptible;
3636 }
3637 preempt_enable_no_resched();
3638 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3639 goto need_resched;
3640 }
3641 EXPORT_SYMBOL(schedule);
3642
3643 #ifdef CONFIG_PREEMPT
3644 /*
3645 * this is the entry point to schedule() from in-kernel preemption
3646 * off of preempt_enable. Kernel preemptions off return from interrupt
3647 * occur there and call schedule directly.
3648 */
3649 asmlinkage void __sched preempt_schedule(void)
3650 {
3651 struct thread_info *ti = current_thread_info();
3652 #ifdef CONFIG_PREEMPT_BKL
3653 struct task_struct *task = current;
3654 int saved_lock_depth;
3655 #endif
3656 /*
3657 * If there is a non-zero preempt_count or interrupts are disabled,
3658 * we do not want to preempt the current task. Just return..
3659 */
3660 if (likely(ti->preempt_count || irqs_disabled()))
3661 return;
3662
3663 do {
3664 add_preempt_count(PREEMPT_ACTIVE);
3665
3666 /*
3667 * We keep the big kernel semaphore locked, but we
3668 * clear ->lock_depth so that schedule() doesnt
3669 * auto-release the semaphore:
3670 */
3671 #ifdef CONFIG_PREEMPT_BKL
3672 saved_lock_depth = task->lock_depth;
3673 task->lock_depth = -1;
3674 #endif
3675 schedule();
3676 #ifdef CONFIG_PREEMPT_BKL
3677 task->lock_depth = saved_lock_depth;
3678 #endif
3679 sub_preempt_count(PREEMPT_ACTIVE);
3680
3681 /*
3682 * Check again in case we missed a preemption opportunity
3683 * between schedule and now.
3684 */
3685 barrier();
3686 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3687 }
3688 EXPORT_SYMBOL(preempt_schedule);
3689
3690 /*
3691 * this is the entry point to schedule() from kernel preemption
3692 * off of irq context.
3693 * Note, that this is called and return with irqs disabled. This will
3694 * protect us against recursive calling from irq.
3695 */
3696 asmlinkage void __sched preempt_schedule_irq(void)
3697 {
3698 struct thread_info *ti = current_thread_info();
3699 #ifdef CONFIG_PREEMPT_BKL
3700 struct task_struct *task = current;
3701 int saved_lock_depth;
3702 #endif
3703 /* Catch callers which need to be fixed */
3704 BUG_ON(ti->preempt_count || !irqs_disabled());
3705
3706 do {
3707 add_preempt_count(PREEMPT_ACTIVE);
3708
3709 /*
3710 * We keep the big kernel semaphore locked, but we
3711 * clear ->lock_depth so that schedule() doesnt
3712 * auto-release the semaphore:
3713 */
3714 #ifdef CONFIG_PREEMPT_BKL
3715 saved_lock_depth = task->lock_depth;
3716 task->lock_depth = -1;
3717 #endif
3718 local_irq_enable();
3719 schedule();
3720 local_irq_disable();
3721 #ifdef CONFIG_PREEMPT_BKL
3722 task->lock_depth = saved_lock_depth;
3723 #endif
3724 sub_preempt_count(PREEMPT_ACTIVE);
3725
3726 /*
3727 * Check again in case we missed a preemption opportunity
3728 * between schedule and now.
3729 */
3730 barrier();
3731 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3732 }
3733
3734 #endif /* CONFIG_PREEMPT */
3735
3736 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3737 void *key)
3738 {
3739 return try_to_wake_up(curr->private, mode, sync);
3740 }
3741 EXPORT_SYMBOL(default_wake_function);
3742
3743 /*
3744 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3745 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3746 * number) then we wake all the non-exclusive tasks and one exclusive task.
3747 *
3748 * There are circumstances in which we can try to wake a task which has already
3749 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3750 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3751 */
3752 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3753 int nr_exclusive, int sync, void *key)
3754 {
3755 wait_queue_t *curr, *next;
3756
3757 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3758 unsigned flags = curr->flags;
3759
3760 if (curr->func(curr, mode, sync, key) &&
3761 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3762 break;
3763 }
3764 }
3765
3766 /**
3767 * __wake_up - wake up threads blocked on a waitqueue.
3768 * @q: the waitqueue
3769 * @mode: which threads
3770 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3771 * @key: is directly passed to the wakeup function
3772 */
3773 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3774 int nr_exclusive, void *key)
3775 {
3776 unsigned long flags;
3777
3778 spin_lock_irqsave(&q->lock, flags);
3779 __wake_up_common(q, mode, nr_exclusive, 0, key);
3780 spin_unlock_irqrestore(&q->lock, flags);
3781 }
3782 EXPORT_SYMBOL(__wake_up);
3783
3784 /*
3785 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3786 */
3787 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3788 {
3789 __wake_up_common(q, mode, 1, 0, NULL);
3790 }
3791
3792 /**
3793 * __wake_up_sync - wake up threads blocked on a waitqueue.
3794 * @q: the waitqueue
3795 * @mode: which threads
3796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3797 *
3798 * The sync wakeup differs that the waker knows that it will schedule
3799 * away soon, so while the target thread will be woken up, it will not
3800 * be migrated to another CPU - ie. the two threads are 'synchronized'
3801 * with each other. This can prevent needless bouncing between CPUs.
3802 *
3803 * On UP it can prevent extra preemption.
3804 */
3805 void fastcall
3806 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3807 {
3808 unsigned long flags;
3809 int sync = 1;
3810
3811 if (unlikely(!q))
3812 return;
3813
3814 if (unlikely(!nr_exclusive))
3815 sync = 0;
3816
3817 spin_lock_irqsave(&q->lock, flags);
3818 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3819 spin_unlock_irqrestore(&q->lock, flags);
3820 }
3821 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3822
3823 void fastcall complete(struct completion *x)
3824 {
3825 unsigned long flags;
3826
3827 spin_lock_irqsave(&x->wait.lock, flags);
3828 x->done++;
3829 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3830 1, 0, NULL);
3831 spin_unlock_irqrestore(&x->wait.lock, flags);
3832 }
3833 EXPORT_SYMBOL(complete);
3834
3835 void fastcall complete_all(struct completion *x)
3836 {
3837 unsigned long flags;
3838
3839 spin_lock_irqsave(&x->wait.lock, flags);
3840 x->done += UINT_MAX/2;
3841 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3842 0, 0, NULL);
3843 spin_unlock_irqrestore(&x->wait.lock, flags);
3844 }
3845 EXPORT_SYMBOL(complete_all);
3846
3847 static inline long __sched
3848 do_wait_for_common(struct completion *x, long timeout, int state)
3849 {
3850 if (!x->done) {
3851 DECLARE_WAITQUEUE(wait, current);
3852
3853 wait.flags |= WQ_FLAG_EXCLUSIVE;
3854 __add_wait_queue_tail(&x->wait, &wait);
3855 do {
3856 if (state == TASK_INTERRUPTIBLE &&
3857 signal_pending(current)) {
3858 __remove_wait_queue(&x->wait, &wait);
3859 return -ERESTARTSYS;
3860 }
3861 __set_current_state(state);
3862 spin_unlock_irq(&x->wait.lock);
3863 timeout = schedule_timeout(timeout);
3864 spin_lock_irq(&x->wait.lock);
3865 if (!timeout) {
3866 __remove_wait_queue(&x->wait, &wait);
3867 return timeout;
3868 }
3869 } while (!x->done);
3870 __remove_wait_queue(&x->wait, &wait);
3871 }
3872 x->done--;
3873 return timeout;
3874 }
3875
3876 static long __sched
3877 wait_for_common(struct completion *x, long timeout, int state)
3878 {
3879 might_sleep();
3880
3881 spin_lock_irq(&x->wait.lock);
3882 timeout = do_wait_for_common(x, timeout, state);
3883 spin_unlock_irq(&x->wait.lock);
3884 return timeout;
3885 }
3886
3887 void fastcall __sched wait_for_completion(struct completion *x)
3888 {
3889 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3890 }
3891 EXPORT_SYMBOL(wait_for_completion);
3892
3893 unsigned long fastcall __sched
3894 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3895 {
3896 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3897 }
3898 EXPORT_SYMBOL(wait_for_completion_timeout);
3899
3900 int __sched wait_for_completion_interruptible(struct completion *x)
3901 {
3902 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3903 if (t == -ERESTARTSYS)
3904 return t;
3905 return 0;
3906 }
3907 EXPORT_SYMBOL(wait_for_completion_interruptible);
3908
3909 unsigned long fastcall __sched
3910 wait_for_completion_interruptible_timeout(struct completion *x,
3911 unsigned long timeout)
3912 {
3913 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3914 }
3915 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3916
3917 static long __sched
3918 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3919 {
3920 unsigned long flags;
3921 wait_queue_t wait;
3922
3923 init_waitqueue_entry(&wait, current);
3924
3925 __set_current_state(state);
3926
3927 spin_lock_irqsave(&q->lock, flags);
3928 __add_wait_queue(q, &wait);
3929 spin_unlock(&q->lock);
3930 timeout = schedule_timeout(timeout);
3931 spin_lock_irq(&q->lock);
3932 __remove_wait_queue(q, &wait);
3933 spin_unlock_irqrestore(&q->lock, flags);
3934
3935 return timeout;
3936 }
3937
3938 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3939 {
3940 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3941 }
3942 EXPORT_SYMBOL(interruptible_sleep_on);
3943
3944 long __sched
3945 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3946 {
3947 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3948 }
3949 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3950
3951 void __sched sleep_on(wait_queue_head_t *q)
3952 {
3953 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3954 }
3955 EXPORT_SYMBOL(sleep_on);
3956
3957 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3958 {
3959 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3960 }
3961 EXPORT_SYMBOL(sleep_on_timeout);
3962
3963 #ifdef CONFIG_RT_MUTEXES
3964
3965 /*
3966 * rt_mutex_setprio - set the current priority of a task
3967 * @p: task
3968 * @prio: prio value (kernel-internal form)
3969 *
3970 * This function changes the 'effective' priority of a task. It does
3971 * not touch ->normal_prio like __setscheduler().
3972 *
3973 * Used by the rt_mutex code to implement priority inheritance logic.
3974 */
3975 void rt_mutex_setprio(struct task_struct *p, int prio)
3976 {
3977 unsigned long flags;
3978 int oldprio, on_rq, running;
3979 struct rq *rq;
3980
3981 BUG_ON(prio < 0 || prio > MAX_PRIO);
3982
3983 rq = task_rq_lock(p, &flags);
3984 update_rq_clock(rq);
3985
3986 oldprio = p->prio;
3987 on_rq = p->se.on_rq;
3988 running = task_running(rq, p);
3989 if (on_rq) {
3990 dequeue_task(rq, p, 0);
3991 if (running)
3992 p->sched_class->put_prev_task(rq, p);
3993 }
3994
3995 if (rt_prio(prio))
3996 p->sched_class = &rt_sched_class;
3997 else
3998 p->sched_class = &fair_sched_class;
3999
4000 p->prio = prio;
4001
4002 if (on_rq) {
4003 if (running)
4004 p->sched_class->set_curr_task(rq);
4005 enqueue_task(rq, p, 0);
4006 /*
4007 * Reschedule if we are currently running on this runqueue and
4008 * our priority decreased, or if we are not currently running on
4009 * this runqueue and our priority is higher than the current's
4010 */
4011 if (running) {
4012 if (p->prio > oldprio)
4013 resched_task(rq->curr);
4014 } else {
4015 check_preempt_curr(rq, p);
4016 }
4017 }
4018 task_rq_unlock(rq, &flags);
4019 }
4020
4021 #endif
4022
4023 void set_user_nice(struct task_struct *p, long nice)
4024 {
4025 int old_prio, delta, on_rq;
4026 unsigned long flags;
4027 struct rq *rq;
4028
4029 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4030 return;
4031 /*
4032 * We have to be careful, if called from sys_setpriority(),
4033 * the task might be in the middle of scheduling on another CPU.
4034 */
4035 rq = task_rq_lock(p, &flags);
4036 update_rq_clock(rq);
4037 /*
4038 * The RT priorities are set via sched_setscheduler(), but we still
4039 * allow the 'normal' nice value to be set - but as expected
4040 * it wont have any effect on scheduling until the task is
4041 * SCHED_FIFO/SCHED_RR:
4042 */
4043 if (task_has_rt_policy(p)) {
4044 p->static_prio = NICE_TO_PRIO(nice);
4045 goto out_unlock;
4046 }
4047 on_rq = p->se.on_rq;
4048 if (on_rq) {
4049 dequeue_task(rq, p, 0);
4050 dec_load(rq, p);
4051 }
4052
4053 p->static_prio = NICE_TO_PRIO(nice);
4054 set_load_weight(p);
4055 old_prio = p->prio;
4056 p->prio = effective_prio(p);
4057 delta = p->prio - old_prio;
4058
4059 if (on_rq) {
4060 enqueue_task(rq, p, 0);
4061 inc_load(rq, p);
4062 /*
4063 * If the task increased its priority or is running and
4064 * lowered its priority, then reschedule its CPU:
4065 */
4066 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4067 resched_task(rq->curr);
4068 }
4069 out_unlock:
4070 task_rq_unlock(rq, &flags);
4071 }
4072 EXPORT_SYMBOL(set_user_nice);
4073
4074 /*
4075 * can_nice - check if a task can reduce its nice value
4076 * @p: task
4077 * @nice: nice value
4078 */
4079 int can_nice(const struct task_struct *p, const int nice)
4080 {
4081 /* convert nice value [19,-20] to rlimit style value [1,40] */
4082 int nice_rlim = 20 - nice;
4083
4084 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4085 capable(CAP_SYS_NICE));
4086 }
4087
4088 #ifdef __ARCH_WANT_SYS_NICE
4089
4090 /*
4091 * sys_nice - change the priority of the current process.
4092 * @increment: priority increment
4093 *
4094 * sys_setpriority is a more generic, but much slower function that
4095 * does similar things.
4096 */
4097 asmlinkage long sys_nice(int increment)
4098 {
4099 long nice, retval;
4100
4101 /*
4102 * Setpriority might change our priority at the same moment.
4103 * We don't have to worry. Conceptually one call occurs first
4104 * and we have a single winner.
4105 */
4106 if (increment < -40)
4107 increment = -40;
4108 if (increment > 40)
4109 increment = 40;
4110
4111 nice = PRIO_TO_NICE(current->static_prio) + increment;
4112 if (nice < -20)
4113 nice = -20;
4114 if (nice > 19)
4115 nice = 19;
4116
4117 if (increment < 0 && !can_nice(current, nice))
4118 return -EPERM;
4119
4120 retval = security_task_setnice(current, nice);
4121 if (retval)
4122 return retval;
4123
4124 set_user_nice(current, nice);
4125 return 0;
4126 }
4127
4128 #endif
4129
4130 /**
4131 * task_prio - return the priority value of a given task.
4132 * @p: the task in question.
4133 *
4134 * This is the priority value as seen by users in /proc.
4135 * RT tasks are offset by -200. Normal tasks are centered
4136 * around 0, value goes from -16 to +15.
4137 */
4138 int task_prio(const struct task_struct *p)
4139 {
4140 return p->prio - MAX_RT_PRIO;
4141 }
4142
4143 /**
4144 * task_nice - return the nice value of a given task.
4145 * @p: the task in question.
4146 */
4147 int task_nice(const struct task_struct *p)
4148 {
4149 return TASK_NICE(p);
4150 }
4151 EXPORT_SYMBOL_GPL(task_nice);
4152
4153 /**
4154 * idle_cpu - is a given cpu idle currently?
4155 * @cpu: the processor in question.
4156 */
4157 int idle_cpu(int cpu)
4158 {
4159 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4160 }
4161
4162 /**
4163 * idle_task - return the idle task for a given cpu.
4164 * @cpu: the processor in question.
4165 */
4166 struct task_struct *idle_task(int cpu)
4167 {
4168 return cpu_rq(cpu)->idle;
4169 }
4170
4171 /**
4172 * find_process_by_pid - find a process with a matching PID value.
4173 * @pid: the pid in question.
4174 */
4175 static struct task_struct *find_process_by_pid(pid_t pid)
4176 {
4177 return pid ? find_task_by_vpid(pid) : current;
4178 }
4179
4180 /* Actually do priority change: must hold rq lock. */
4181 static void
4182 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4183 {
4184 BUG_ON(p->se.on_rq);
4185
4186 p->policy = policy;
4187 switch (p->policy) {
4188 case SCHED_NORMAL:
4189 case SCHED_BATCH:
4190 case SCHED_IDLE:
4191 p->sched_class = &fair_sched_class;
4192 break;
4193 case SCHED_FIFO:
4194 case SCHED_RR:
4195 p->sched_class = &rt_sched_class;
4196 break;
4197 }
4198
4199 p->rt_priority = prio;
4200 p->normal_prio = normal_prio(p);
4201 /* we are holding p->pi_lock already */
4202 p->prio = rt_mutex_getprio(p);
4203 set_load_weight(p);
4204 }
4205
4206 /**
4207 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4208 * @p: the task in question.
4209 * @policy: new policy.
4210 * @param: structure containing the new RT priority.
4211 *
4212 * NOTE that the task may be already dead.
4213 */
4214 int sched_setscheduler(struct task_struct *p, int policy,
4215 struct sched_param *param)
4216 {
4217 int retval, oldprio, oldpolicy = -1, on_rq, running;
4218 unsigned long flags;
4219 struct rq *rq;
4220
4221 /* may grab non-irq protected spin_locks */
4222 BUG_ON(in_interrupt());
4223 recheck:
4224 /* double check policy once rq lock held */
4225 if (policy < 0)
4226 policy = oldpolicy = p->policy;
4227 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4228 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4229 policy != SCHED_IDLE)
4230 return -EINVAL;
4231 /*
4232 * Valid priorities for SCHED_FIFO and SCHED_RR are
4233 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4234 * SCHED_BATCH and SCHED_IDLE is 0.
4235 */
4236 if (param->sched_priority < 0 ||
4237 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4238 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4239 return -EINVAL;
4240 if (rt_policy(policy) != (param->sched_priority != 0))
4241 return -EINVAL;
4242
4243 /*
4244 * Allow unprivileged RT tasks to decrease priority:
4245 */
4246 if (!capable(CAP_SYS_NICE)) {
4247 if (rt_policy(policy)) {
4248 unsigned long rlim_rtprio;
4249
4250 if (!lock_task_sighand(p, &flags))
4251 return -ESRCH;
4252 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4253 unlock_task_sighand(p, &flags);
4254
4255 /* can't set/change the rt policy */
4256 if (policy != p->policy && !rlim_rtprio)
4257 return -EPERM;
4258
4259 /* can't increase priority */
4260 if (param->sched_priority > p->rt_priority &&
4261 param->sched_priority > rlim_rtprio)
4262 return -EPERM;
4263 }
4264 /*
4265 * Like positive nice levels, dont allow tasks to
4266 * move out of SCHED_IDLE either:
4267 */
4268 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4269 return -EPERM;
4270
4271 /* can't change other user's priorities */
4272 if ((current->euid != p->euid) &&
4273 (current->euid != p->uid))
4274 return -EPERM;
4275 }
4276
4277 retval = security_task_setscheduler(p, policy, param);
4278 if (retval)
4279 return retval;
4280 /*
4281 * make sure no PI-waiters arrive (or leave) while we are
4282 * changing the priority of the task:
4283 */
4284 spin_lock_irqsave(&p->pi_lock, flags);
4285 /*
4286 * To be able to change p->policy safely, the apropriate
4287 * runqueue lock must be held.
4288 */
4289 rq = __task_rq_lock(p);
4290 /* recheck policy now with rq lock held */
4291 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4292 policy = oldpolicy = -1;
4293 __task_rq_unlock(rq);
4294 spin_unlock_irqrestore(&p->pi_lock, flags);
4295 goto recheck;
4296 }
4297 update_rq_clock(rq);
4298 on_rq = p->se.on_rq;
4299 running = task_running(rq, p);
4300 if (on_rq) {
4301 deactivate_task(rq, p, 0);
4302 if (running)
4303 p->sched_class->put_prev_task(rq, p);
4304 }
4305
4306 oldprio = p->prio;
4307 __setscheduler(rq, p, policy, param->sched_priority);
4308
4309 if (on_rq) {
4310 if (running)
4311 p->sched_class->set_curr_task(rq);
4312 activate_task(rq, p, 0);
4313 /*
4314 * Reschedule if we are currently running on this runqueue and
4315 * our priority decreased, or if we are not currently running on
4316 * this runqueue and our priority is higher than the current's
4317 */
4318 if (running) {
4319 if (p->prio > oldprio)
4320 resched_task(rq->curr);
4321 } else {
4322 check_preempt_curr(rq, p);
4323 }
4324 }
4325 __task_rq_unlock(rq);
4326 spin_unlock_irqrestore(&p->pi_lock, flags);
4327
4328 rt_mutex_adjust_pi(p);
4329
4330 return 0;
4331 }
4332 EXPORT_SYMBOL_GPL(sched_setscheduler);
4333
4334 static int
4335 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4336 {
4337 struct sched_param lparam;
4338 struct task_struct *p;
4339 int retval;
4340
4341 if (!param || pid < 0)
4342 return -EINVAL;
4343 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4344 return -EFAULT;
4345
4346 rcu_read_lock();
4347 retval = -ESRCH;
4348 p = find_process_by_pid(pid);
4349 if (p != NULL)
4350 retval = sched_setscheduler(p, policy, &lparam);
4351 rcu_read_unlock();
4352
4353 return retval;
4354 }
4355
4356 /**
4357 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4358 * @pid: the pid in question.
4359 * @policy: new policy.
4360 * @param: structure containing the new RT priority.
4361 */
4362 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4363 struct sched_param __user *param)
4364 {
4365 /* negative values for policy are not valid */
4366 if (policy < 0)
4367 return -EINVAL;
4368
4369 return do_sched_setscheduler(pid, policy, param);
4370 }
4371
4372 /**
4373 * sys_sched_setparam - set/change the RT priority of a thread
4374 * @pid: the pid in question.
4375 * @param: structure containing the new RT priority.
4376 */
4377 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4378 {
4379 return do_sched_setscheduler(pid, -1, param);
4380 }
4381
4382 /**
4383 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4384 * @pid: the pid in question.
4385 */
4386 asmlinkage long sys_sched_getscheduler(pid_t pid)
4387 {
4388 struct task_struct *p;
4389 int retval;
4390
4391 if (pid < 0)
4392 return -EINVAL;
4393
4394 retval = -ESRCH;
4395 read_lock(&tasklist_lock);
4396 p = find_process_by_pid(pid);
4397 if (p) {
4398 retval = security_task_getscheduler(p);
4399 if (!retval)
4400 retval = p->policy;
4401 }
4402 read_unlock(&tasklist_lock);
4403 return retval;
4404 }
4405
4406 /**
4407 * sys_sched_getscheduler - get the RT priority of a thread
4408 * @pid: the pid in question.
4409 * @param: structure containing the RT priority.
4410 */
4411 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4412 {
4413 struct sched_param lp;
4414 struct task_struct *p;
4415 int retval;
4416
4417 if (!param || pid < 0)
4418 return -EINVAL;
4419
4420 read_lock(&tasklist_lock);
4421 p = find_process_by_pid(pid);
4422 retval = -ESRCH;
4423 if (!p)
4424 goto out_unlock;
4425
4426 retval = security_task_getscheduler(p);
4427 if (retval)
4428 goto out_unlock;
4429
4430 lp.sched_priority = p->rt_priority;
4431 read_unlock(&tasklist_lock);
4432
4433 /*
4434 * This one might sleep, we cannot do it with a spinlock held ...
4435 */
4436 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4437
4438 return retval;
4439
4440 out_unlock:
4441 read_unlock(&tasklist_lock);
4442 return retval;
4443 }
4444
4445 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4446 {
4447 cpumask_t cpus_allowed;
4448 struct task_struct *p;
4449 int retval;
4450
4451 mutex_lock(&sched_hotcpu_mutex);
4452 read_lock(&tasklist_lock);
4453
4454 p = find_process_by_pid(pid);
4455 if (!p) {
4456 read_unlock(&tasklist_lock);
4457 mutex_unlock(&sched_hotcpu_mutex);
4458 return -ESRCH;
4459 }
4460
4461 /*
4462 * It is not safe to call set_cpus_allowed with the
4463 * tasklist_lock held. We will bump the task_struct's
4464 * usage count and then drop tasklist_lock.
4465 */
4466 get_task_struct(p);
4467 read_unlock(&tasklist_lock);
4468
4469 retval = -EPERM;
4470 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4471 !capable(CAP_SYS_NICE))
4472 goto out_unlock;
4473
4474 retval = security_task_setscheduler(p, 0, NULL);
4475 if (retval)
4476 goto out_unlock;
4477
4478 cpus_allowed = cpuset_cpus_allowed(p);
4479 cpus_and(new_mask, new_mask, cpus_allowed);
4480 again:
4481 retval = set_cpus_allowed(p, new_mask);
4482
4483 if (!retval) {
4484 cpus_allowed = cpuset_cpus_allowed(p);
4485 if (!cpus_subset(new_mask, cpus_allowed)) {
4486 /*
4487 * We must have raced with a concurrent cpuset
4488 * update. Just reset the cpus_allowed to the
4489 * cpuset's cpus_allowed
4490 */
4491 new_mask = cpus_allowed;
4492 goto again;
4493 }
4494 }
4495 out_unlock:
4496 put_task_struct(p);
4497 mutex_unlock(&sched_hotcpu_mutex);
4498 return retval;
4499 }
4500
4501 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4502 cpumask_t *new_mask)
4503 {
4504 if (len < sizeof(cpumask_t)) {
4505 memset(new_mask, 0, sizeof(cpumask_t));
4506 } else if (len > sizeof(cpumask_t)) {
4507 len = sizeof(cpumask_t);
4508 }
4509 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4510 }
4511
4512 /**
4513 * sys_sched_setaffinity - set the cpu affinity of a process
4514 * @pid: pid of the process
4515 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4516 * @user_mask_ptr: user-space pointer to the new cpu mask
4517 */
4518 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4519 unsigned long __user *user_mask_ptr)
4520 {
4521 cpumask_t new_mask;
4522 int retval;
4523
4524 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4525 if (retval)
4526 return retval;
4527
4528 return sched_setaffinity(pid, new_mask);
4529 }
4530
4531 /*
4532 * Represents all cpu's present in the system
4533 * In systems capable of hotplug, this map could dynamically grow
4534 * as new cpu's are detected in the system via any platform specific
4535 * method, such as ACPI for e.g.
4536 */
4537
4538 cpumask_t cpu_present_map __read_mostly;
4539 EXPORT_SYMBOL(cpu_present_map);
4540
4541 #ifndef CONFIG_SMP
4542 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4543 EXPORT_SYMBOL(cpu_online_map);
4544
4545 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4546 EXPORT_SYMBOL(cpu_possible_map);
4547 #endif
4548
4549 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4550 {
4551 struct task_struct *p;
4552 int retval;
4553
4554 mutex_lock(&sched_hotcpu_mutex);
4555 read_lock(&tasklist_lock);
4556
4557 retval = -ESRCH;
4558 p = find_process_by_pid(pid);
4559 if (!p)
4560 goto out_unlock;
4561
4562 retval = security_task_getscheduler(p);
4563 if (retval)
4564 goto out_unlock;
4565
4566 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4567
4568 out_unlock:
4569 read_unlock(&tasklist_lock);
4570 mutex_unlock(&sched_hotcpu_mutex);
4571
4572 return retval;
4573 }
4574
4575 /**
4576 * sys_sched_getaffinity - get the cpu affinity of a process
4577 * @pid: pid of the process
4578 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4579 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4580 */
4581 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4582 unsigned long __user *user_mask_ptr)
4583 {
4584 int ret;
4585 cpumask_t mask;
4586
4587 if (len < sizeof(cpumask_t))
4588 return -EINVAL;
4589
4590 ret = sched_getaffinity(pid, &mask);
4591 if (ret < 0)
4592 return ret;
4593
4594 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4595 return -EFAULT;
4596
4597 return sizeof(cpumask_t);
4598 }
4599
4600 /**
4601 * sys_sched_yield - yield the current processor to other threads.
4602 *
4603 * This function yields the current CPU to other tasks. If there are no
4604 * other threads running on this CPU then this function will return.
4605 */
4606 asmlinkage long sys_sched_yield(void)
4607 {
4608 struct rq *rq = this_rq_lock();
4609
4610 schedstat_inc(rq, yld_count);
4611 current->sched_class->yield_task(rq);
4612
4613 /*
4614 * Since we are going to call schedule() anyway, there's
4615 * no need to preempt or enable interrupts:
4616 */
4617 __release(rq->lock);
4618 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4619 _raw_spin_unlock(&rq->lock);
4620 preempt_enable_no_resched();
4621
4622 schedule();
4623
4624 return 0;
4625 }
4626
4627 static void __cond_resched(void)
4628 {
4629 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4630 __might_sleep(__FILE__, __LINE__);
4631 #endif
4632 /*
4633 * The BKS might be reacquired before we have dropped
4634 * PREEMPT_ACTIVE, which could trigger a second
4635 * cond_resched() call.
4636 */
4637 do {
4638 add_preempt_count(PREEMPT_ACTIVE);
4639 schedule();
4640 sub_preempt_count(PREEMPT_ACTIVE);
4641 } while (need_resched());
4642 }
4643
4644 int __sched cond_resched(void)
4645 {
4646 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4647 system_state == SYSTEM_RUNNING) {
4648 __cond_resched();
4649 return 1;
4650 }
4651 return 0;
4652 }
4653 EXPORT_SYMBOL(cond_resched);
4654
4655 /*
4656 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4657 * call schedule, and on return reacquire the lock.
4658 *
4659 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4660 * operations here to prevent schedule() from being called twice (once via
4661 * spin_unlock(), once by hand).
4662 */
4663 int cond_resched_lock(spinlock_t *lock)
4664 {
4665 int ret = 0;
4666
4667 if (need_lockbreak(lock)) {
4668 spin_unlock(lock);
4669 cpu_relax();
4670 ret = 1;
4671 spin_lock(lock);
4672 }
4673 if (need_resched() && system_state == SYSTEM_RUNNING) {
4674 spin_release(&lock->dep_map, 1, _THIS_IP_);
4675 _raw_spin_unlock(lock);
4676 preempt_enable_no_resched();
4677 __cond_resched();
4678 ret = 1;
4679 spin_lock(lock);
4680 }
4681 return ret;
4682 }
4683 EXPORT_SYMBOL(cond_resched_lock);
4684
4685 int __sched cond_resched_softirq(void)
4686 {
4687 BUG_ON(!in_softirq());
4688
4689 if (need_resched() && system_state == SYSTEM_RUNNING) {
4690 local_bh_enable();
4691 __cond_resched();
4692 local_bh_disable();
4693 return 1;
4694 }
4695 return 0;
4696 }
4697 EXPORT_SYMBOL(cond_resched_softirq);
4698
4699 /**
4700 * yield - yield the current processor to other threads.
4701 *
4702 * This is a shortcut for kernel-space yielding - it marks the
4703 * thread runnable and calls sys_sched_yield().
4704 */
4705 void __sched yield(void)
4706 {
4707 set_current_state(TASK_RUNNING);
4708 sys_sched_yield();
4709 }
4710 EXPORT_SYMBOL(yield);
4711
4712 /*
4713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4714 * that process accounting knows that this is a task in IO wait state.
4715 *
4716 * But don't do that if it is a deliberate, throttling IO wait (this task
4717 * has set its backing_dev_info: the queue against which it should throttle)
4718 */
4719 void __sched io_schedule(void)
4720 {
4721 struct rq *rq = &__raw_get_cpu_var(runqueues);
4722
4723 delayacct_blkio_start();
4724 atomic_inc(&rq->nr_iowait);
4725 schedule();
4726 atomic_dec(&rq->nr_iowait);
4727 delayacct_blkio_end();
4728 }
4729 EXPORT_SYMBOL(io_schedule);
4730
4731 long __sched io_schedule_timeout(long timeout)
4732 {
4733 struct rq *rq = &__raw_get_cpu_var(runqueues);
4734 long ret;
4735
4736 delayacct_blkio_start();
4737 atomic_inc(&rq->nr_iowait);
4738 ret = schedule_timeout(timeout);
4739 atomic_dec(&rq->nr_iowait);
4740 delayacct_blkio_end();
4741 return ret;
4742 }
4743
4744 /**
4745 * sys_sched_get_priority_max - return maximum RT priority.
4746 * @policy: scheduling class.
4747 *
4748 * this syscall returns the maximum rt_priority that can be used
4749 * by a given scheduling class.
4750 */
4751 asmlinkage long sys_sched_get_priority_max(int policy)
4752 {
4753 int ret = -EINVAL;
4754
4755 switch (policy) {
4756 case SCHED_FIFO:
4757 case SCHED_RR:
4758 ret = MAX_USER_RT_PRIO-1;
4759 break;
4760 case SCHED_NORMAL:
4761 case SCHED_BATCH:
4762 case SCHED_IDLE:
4763 ret = 0;
4764 break;
4765 }
4766 return ret;
4767 }
4768
4769 /**
4770 * sys_sched_get_priority_min - return minimum RT priority.
4771 * @policy: scheduling class.
4772 *
4773 * this syscall returns the minimum rt_priority that can be used
4774 * by a given scheduling class.
4775 */
4776 asmlinkage long sys_sched_get_priority_min(int policy)
4777 {
4778 int ret = -EINVAL;
4779
4780 switch (policy) {
4781 case SCHED_FIFO:
4782 case SCHED_RR:
4783 ret = 1;
4784 break;
4785 case SCHED_NORMAL:
4786 case SCHED_BATCH:
4787 case SCHED_IDLE:
4788 ret = 0;
4789 }
4790 return ret;
4791 }
4792
4793 /**
4794 * sys_sched_rr_get_interval - return the default timeslice of a process.
4795 * @pid: pid of the process.
4796 * @interval: userspace pointer to the timeslice value.
4797 *
4798 * this syscall writes the default timeslice value of a given process
4799 * into the user-space timespec buffer. A value of '0' means infinity.
4800 */
4801 asmlinkage
4802 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4803 {
4804 struct task_struct *p;
4805 unsigned int time_slice;
4806 int retval;
4807 struct timespec t;
4808
4809 if (pid < 0)
4810 return -EINVAL;
4811
4812 retval = -ESRCH;
4813 read_lock(&tasklist_lock);
4814 p = find_process_by_pid(pid);
4815 if (!p)
4816 goto out_unlock;
4817
4818 retval = security_task_getscheduler(p);
4819 if (retval)
4820 goto out_unlock;
4821
4822 if (p->policy == SCHED_FIFO)
4823 time_slice = 0;
4824 else if (p->policy == SCHED_RR)
4825 time_slice = DEF_TIMESLICE;
4826 else {
4827 struct sched_entity *se = &p->se;
4828 unsigned long flags;
4829 struct rq *rq;
4830
4831 rq = task_rq_lock(p, &flags);
4832 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4833 task_rq_unlock(rq, &flags);
4834 }
4835 read_unlock(&tasklist_lock);
4836 jiffies_to_timespec(time_slice, &t);
4837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4838 return retval;
4839
4840 out_unlock:
4841 read_unlock(&tasklist_lock);
4842 return retval;
4843 }
4844
4845 static const char stat_nam[] = "RSDTtZX";
4846
4847 static void show_task(struct task_struct *p)
4848 {
4849 unsigned long free = 0;
4850 unsigned state;
4851
4852 state = p->state ? __ffs(p->state) + 1 : 0;
4853 printk(KERN_INFO "%-13.13s %c", p->comm,
4854 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4855 #if BITS_PER_LONG == 32
4856 if (state == TASK_RUNNING)
4857 printk(KERN_CONT " running ");
4858 else
4859 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4860 #else
4861 if (state == TASK_RUNNING)
4862 printk(KERN_CONT " running task ");
4863 else
4864 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4865 #endif
4866 #ifdef CONFIG_DEBUG_STACK_USAGE
4867 {
4868 unsigned long *n = end_of_stack(p);
4869 while (!*n)
4870 n++;
4871 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4872 }
4873 #endif
4874 printk(KERN_CONT "%5lu %5d %6d\n", free,
4875 task_pid_nr(p), task_pid_nr(p->parent));
4876
4877 if (state != TASK_RUNNING)
4878 show_stack(p, NULL);
4879 }
4880
4881 void show_state_filter(unsigned long state_filter)
4882 {
4883 struct task_struct *g, *p;
4884
4885 #if BITS_PER_LONG == 32
4886 printk(KERN_INFO
4887 " task PC stack pid father\n");
4888 #else
4889 printk(KERN_INFO
4890 " task PC stack pid father\n");
4891 #endif
4892 read_lock(&tasklist_lock);
4893 do_each_thread(g, p) {
4894 /*
4895 * reset the NMI-timeout, listing all files on a slow
4896 * console might take alot of time:
4897 */
4898 touch_nmi_watchdog();
4899 if (!state_filter || (p->state & state_filter))
4900 show_task(p);
4901 } while_each_thread(g, p);
4902
4903 touch_all_softlockup_watchdogs();
4904
4905 #ifdef CONFIG_SCHED_DEBUG
4906 sysrq_sched_debug_show();
4907 #endif
4908 read_unlock(&tasklist_lock);
4909 /*
4910 * Only show locks if all tasks are dumped:
4911 */
4912 if (state_filter == -1)
4913 debug_show_all_locks();
4914 }
4915
4916 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4917 {
4918 idle->sched_class = &idle_sched_class;
4919 }
4920
4921 /**
4922 * init_idle - set up an idle thread for a given CPU
4923 * @idle: task in question
4924 * @cpu: cpu the idle task belongs to
4925 *
4926 * NOTE: this function does not set the idle thread's NEED_RESCHED
4927 * flag, to make booting more robust.
4928 */
4929 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4930 {
4931 struct rq *rq = cpu_rq(cpu);
4932 unsigned long flags;
4933
4934 __sched_fork(idle);
4935 idle->se.exec_start = sched_clock();
4936
4937 idle->prio = idle->normal_prio = MAX_PRIO;
4938 idle->cpus_allowed = cpumask_of_cpu(cpu);
4939 __set_task_cpu(idle, cpu);
4940
4941 spin_lock_irqsave(&rq->lock, flags);
4942 rq->curr = rq->idle = idle;
4943 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4944 idle->oncpu = 1;
4945 #endif
4946 spin_unlock_irqrestore(&rq->lock, flags);
4947
4948 /* Set the preempt count _outside_ the spinlocks! */
4949 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4950 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4951 #else
4952 task_thread_info(idle)->preempt_count = 0;
4953 #endif
4954 /*
4955 * The idle tasks have their own, simple scheduling class:
4956 */
4957 idle->sched_class = &idle_sched_class;
4958 }
4959
4960 /*
4961 * In a system that switches off the HZ timer nohz_cpu_mask
4962 * indicates which cpus entered this state. This is used
4963 * in the rcu update to wait only for active cpus. For system
4964 * which do not switch off the HZ timer nohz_cpu_mask should
4965 * always be CPU_MASK_NONE.
4966 */
4967 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4968
4969 #ifdef CONFIG_SMP
4970 /*
4971 * This is how migration works:
4972 *
4973 * 1) we queue a struct migration_req structure in the source CPU's
4974 * runqueue and wake up that CPU's migration thread.
4975 * 2) we down() the locked semaphore => thread blocks.
4976 * 3) migration thread wakes up (implicitly it forces the migrated
4977 * thread off the CPU)
4978 * 4) it gets the migration request and checks whether the migrated
4979 * task is still in the wrong runqueue.
4980 * 5) if it's in the wrong runqueue then the migration thread removes
4981 * it and puts it into the right queue.
4982 * 6) migration thread up()s the semaphore.
4983 * 7) we wake up and the migration is done.
4984 */
4985
4986 /*
4987 * Change a given task's CPU affinity. Migrate the thread to a
4988 * proper CPU and schedule it away if the CPU it's executing on
4989 * is removed from the allowed bitmask.
4990 *
4991 * NOTE: the caller must have a valid reference to the task, the
4992 * task must not exit() & deallocate itself prematurely. The
4993 * call is not atomic; no spinlocks may be held.
4994 */
4995 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4996 {
4997 struct migration_req req;
4998 unsigned long flags;
4999 struct rq *rq;
5000 int ret = 0;
5001
5002 rq = task_rq_lock(p, &flags);
5003 if (!cpus_intersects(new_mask, cpu_online_map)) {
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
5008 p->cpus_allowed = new_mask;
5009 /* Can the task run on the task's current CPU? If so, we're done */
5010 if (cpu_isset(task_cpu(p), new_mask))
5011 goto out;
5012
5013 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5014 /* Need help from migration thread: drop lock and wait. */
5015 task_rq_unlock(rq, &flags);
5016 wake_up_process(rq->migration_thread);
5017 wait_for_completion(&req.done);
5018 tlb_migrate_finish(p->mm);
5019 return 0;
5020 }
5021 out:
5022 task_rq_unlock(rq, &flags);
5023
5024 return ret;
5025 }
5026 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5027
5028 /*
5029 * Move (not current) task off this cpu, onto dest cpu. We're doing
5030 * this because either it can't run here any more (set_cpus_allowed()
5031 * away from this CPU, or CPU going down), or because we're
5032 * attempting to rebalance this task on exec (sched_exec).
5033 *
5034 * So we race with normal scheduler movements, but that's OK, as long
5035 * as the task is no longer on this CPU.
5036 *
5037 * Returns non-zero if task was successfully migrated.
5038 */
5039 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5040 {
5041 struct rq *rq_dest, *rq_src;
5042 int ret = 0, on_rq;
5043
5044 if (unlikely(cpu_is_offline(dest_cpu)))
5045 return ret;
5046
5047 rq_src = cpu_rq(src_cpu);
5048 rq_dest = cpu_rq(dest_cpu);
5049
5050 double_rq_lock(rq_src, rq_dest);
5051 /* Already moved. */
5052 if (task_cpu(p) != src_cpu)
5053 goto out;
5054 /* Affinity changed (again). */
5055 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5056 goto out;
5057
5058 on_rq = p->se.on_rq;
5059 if (on_rq)
5060 deactivate_task(rq_src, p, 0);
5061
5062 set_task_cpu(p, dest_cpu);
5063 if (on_rq) {
5064 activate_task(rq_dest, p, 0);
5065 check_preempt_curr(rq_dest, p);
5066 }
5067 ret = 1;
5068 out:
5069 double_rq_unlock(rq_src, rq_dest);
5070 return ret;
5071 }
5072
5073 /*
5074 * migration_thread - this is a highprio system thread that performs
5075 * thread migration by bumping thread off CPU then 'pushing' onto
5076 * another runqueue.
5077 */
5078 static int migration_thread(void *data)
5079 {
5080 int cpu = (long)data;
5081 struct rq *rq;
5082
5083 rq = cpu_rq(cpu);
5084 BUG_ON(rq->migration_thread != current);
5085
5086 set_current_state(TASK_INTERRUPTIBLE);
5087 while (!kthread_should_stop()) {
5088 struct migration_req *req;
5089 struct list_head *head;
5090
5091 spin_lock_irq(&rq->lock);
5092
5093 if (cpu_is_offline(cpu)) {
5094 spin_unlock_irq(&rq->lock);
5095 goto wait_to_die;
5096 }
5097
5098 if (rq->active_balance) {
5099 active_load_balance(rq, cpu);
5100 rq->active_balance = 0;
5101 }
5102
5103 head = &rq->migration_queue;
5104
5105 if (list_empty(head)) {
5106 spin_unlock_irq(&rq->lock);
5107 schedule();
5108 set_current_state(TASK_INTERRUPTIBLE);
5109 continue;
5110 }
5111 req = list_entry(head->next, struct migration_req, list);
5112 list_del_init(head->next);
5113
5114 spin_unlock(&rq->lock);
5115 __migrate_task(req->task, cpu, req->dest_cpu);
5116 local_irq_enable();
5117
5118 complete(&req->done);
5119 }
5120 __set_current_state(TASK_RUNNING);
5121 return 0;
5122
5123 wait_to_die:
5124 /* Wait for kthread_stop */
5125 set_current_state(TASK_INTERRUPTIBLE);
5126 while (!kthread_should_stop()) {
5127 schedule();
5128 set_current_state(TASK_INTERRUPTIBLE);
5129 }
5130 __set_current_state(TASK_RUNNING);
5131 return 0;
5132 }
5133
5134 #ifdef CONFIG_HOTPLUG_CPU
5135
5136 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5137 {
5138 int ret;
5139
5140 local_irq_disable();
5141 ret = __migrate_task(p, src_cpu, dest_cpu);
5142 local_irq_enable();
5143 return ret;
5144 }
5145
5146 /*
5147 * Figure out where task on dead CPU should go, use force if necessary.
5148 * NOTE: interrupts should be disabled by the caller
5149 */
5150 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5151 {
5152 unsigned long flags;
5153 cpumask_t mask;
5154 struct rq *rq;
5155 int dest_cpu;
5156
5157 do {
5158 /* On same node? */
5159 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5160 cpus_and(mask, mask, p->cpus_allowed);
5161 dest_cpu = any_online_cpu(mask);
5162
5163 /* On any allowed CPU? */
5164 if (dest_cpu == NR_CPUS)
5165 dest_cpu = any_online_cpu(p->cpus_allowed);
5166
5167 /* No more Mr. Nice Guy. */
5168 if (dest_cpu == NR_CPUS) {
5169 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5170 /*
5171 * Try to stay on the same cpuset, where the
5172 * current cpuset may be a subset of all cpus.
5173 * The cpuset_cpus_allowed_locked() variant of
5174 * cpuset_cpus_allowed() will not block. It must be
5175 * called within calls to cpuset_lock/cpuset_unlock.
5176 */
5177 rq = task_rq_lock(p, &flags);
5178 p->cpus_allowed = cpus_allowed;
5179 dest_cpu = any_online_cpu(p->cpus_allowed);
5180 task_rq_unlock(rq, &flags);
5181
5182 /*
5183 * Don't tell them about moving exiting tasks or
5184 * kernel threads (both mm NULL), since they never
5185 * leave kernel.
5186 */
5187 if (p->mm && printk_ratelimit())
5188 printk(KERN_INFO "process %d (%s) no "
5189 "longer affine to cpu%d\n",
5190 task_pid_nr(p), p->comm, dead_cpu);
5191 }
5192 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5193 }
5194
5195 /*
5196 * While a dead CPU has no uninterruptible tasks queued at this point,
5197 * it might still have a nonzero ->nr_uninterruptible counter, because
5198 * for performance reasons the counter is not stricly tracking tasks to
5199 * their home CPUs. So we just add the counter to another CPU's counter,
5200 * to keep the global sum constant after CPU-down:
5201 */
5202 static void migrate_nr_uninterruptible(struct rq *rq_src)
5203 {
5204 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5205 unsigned long flags;
5206
5207 local_irq_save(flags);
5208 double_rq_lock(rq_src, rq_dest);
5209 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5210 rq_src->nr_uninterruptible = 0;
5211 double_rq_unlock(rq_src, rq_dest);
5212 local_irq_restore(flags);
5213 }
5214
5215 /* Run through task list and migrate tasks from the dead cpu. */
5216 static void migrate_live_tasks(int src_cpu)
5217 {
5218 struct task_struct *p, *t;
5219
5220 read_lock(&tasklist_lock);
5221
5222 do_each_thread(t, p) {
5223 if (p == current)
5224 continue;
5225
5226 if (task_cpu(p) == src_cpu)
5227 move_task_off_dead_cpu(src_cpu, p);
5228 } while_each_thread(t, p);
5229
5230 read_unlock(&tasklist_lock);
5231 }
5232
5233 /*
5234 * activate_idle_task - move idle task to the _front_ of runqueue.
5235 */
5236 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5237 {
5238 update_rq_clock(rq);
5239
5240 if (p->state == TASK_UNINTERRUPTIBLE)
5241 rq->nr_uninterruptible--;
5242
5243 enqueue_task(rq, p, 0);
5244 inc_nr_running(p, rq);
5245 }
5246
5247 /*
5248 * Schedules idle task to be the next runnable task on current CPU.
5249 * It does so by boosting its priority to highest possible and adding it to
5250 * the _front_ of the runqueue. Used by CPU offline code.
5251 */
5252 void sched_idle_next(void)
5253 {
5254 int this_cpu = smp_processor_id();
5255 struct rq *rq = cpu_rq(this_cpu);
5256 struct task_struct *p = rq->idle;
5257 unsigned long flags;
5258
5259 /* cpu has to be offline */
5260 BUG_ON(cpu_online(this_cpu));
5261
5262 /*
5263 * Strictly not necessary since rest of the CPUs are stopped by now
5264 * and interrupts disabled on the current cpu.
5265 */
5266 spin_lock_irqsave(&rq->lock, flags);
5267
5268 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5269
5270 /* Add idle task to the _front_ of its priority queue: */
5271 activate_idle_task(p, rq);
5272
5273 spin_unlock_irqrestore(&rq->lock, flags);
5274 }
5275
5276 /*
5277 * Ensures that the idle task is using init_mm right before its cpu goes
5278 * offline.
5279 */
5280 void idle_task_exit(void)
5281 {
5282 struct mm_struct *mm = current->active_mm;
5283
5284 BUG_ON(cpu_online(smp_processor_id()));
5285
5286 if (mm != &init_mm)
5287 switch_mm(mm, &init_mm, current);
5288 mmdrop(mm);
5289 }
5290
5291 /* called under rq->lock with disabled interrupts */
5292 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5293 {
5294 struct rq *rq = cpu_rq(dead_cpu);
5295
5296 /* Must be exiting, otherwise would be on tasklist. */
5297 BUG_ON(!p->exit_state);
5298
5299 /* Cannot have done final schedule yet: would have vanished. */
5300 BUG_ON(p->state == TASK_DEAD);
5301
5302 get_task_struct(p);
5303
5304 /*
5305 * Drop lock around migration; if someone else moves it,
5306 * that's OK. No task can be added to this CPU, so iteration is
5307 * fine.
5308 */
5309 spin_unlock_irq(&rq->lock);
5310 move_task_off_dead_cpu(dead_cpu, p);
5311 spin_lock_irq(&rq->lock);
5312
5313 put_task_struct(p);
5314 }
5315
5316 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5317 static void migrate_dead_tasks(unsigned int dead_cpu)
5318 {
5319 struct rq *rq = cpu_rq(dead_cpu);
5320 struct task_struct *next;
5321
5322 for ( ; ; ) {
5323 if (!rq->nr_running)
5324 break;
5325 update_rq_clock(rq);
5326 next = pick_next_task(rq, rq->curr);
5327 if (!next)
5328 break;
5329 migrate_dead(dead_cpu, next);
5330
5331 }
5332 }
5333 #endif /* CONFIG_HOTPLUG_CPU */
5334
5335 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5336
5337 static struct ctl_table sd_ctl_dir[] = {
5338 {
5339 .procname = "sched_domain",
5340 .mode = 0555,
5341 },
5342 {0,},
5343 };
5344
5345 static struct ctl_table sd_ctl_root[] = {
5346 {
5347 .ctl_name = CTL_KERN,
5348 .procname = "kernel",
5349 .mode = 0555,
5350 .child = sd_ctl_dir,
5351 },
5352 {0,},
5353 };
5354
5355 static struct ctl_table *sd_alloc_ctl_entry(int n)
5356 {
5357 struct ctl_table *entry =
5358 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5359
5360 return entry;
5361 }
5362
5363 static void sd_free_ctl_entry(struct ctl_table **tablep)
5364 {
5365 struct ctl_table *entry;
5366
5367 /*
5368 * In the intermediate directories, both the child directory and
5369 * procname are dynamically allocated and could fail but the mode
5370 * will always be set. In the lowest directory the names are
5371 * static strings and all have proc handlers.
5372 */
5373 for (entry = *tablep; entry->mode; entry++) {
5374 if (entry->child)
5375 sd_free_ctl_entry(&entry->child);
5376 if (entry->proc_handler == NULL)
5377 kfree(entry->procname);
5378 }
5379
5380 kfree(*tablep);
5381 *tablep = NULL;
5382 }
5383
5384 static void
5385 set_table_entry(struct ctl_table *entry,
5386 const char *procname, void *data, int maxlen,
5387 mode_t mode, proc_handler *proc_handler)
5388 {
5389 entry->procname = procname;
5390 entry->data = data;
5391 entry->maxlen = maxlen;
5392 entry->mode = mode;
5393 entry->proc_handler = proc_handler;
5394 }
5395
5396 static struct ctl_table *
5397 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5398 {
5399 struct ctl_table *table = sd_alloc_ctl_entry(12);
5400
5401 if (table == NULL)
5402 return NULL;
5403
5404 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5405 sizeof(long), 0644, proc_doulongvec_minmax);
5406 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5407 sizeof(long), 0644, proc_doulongvec_minmax);
5408 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5409 sizeof(int), 0644, proc_dointvec_minmax);
5410 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5411 sizeof(int), 0644, proc_dointvec_minmax);
5412 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5413 sizeof(int), 0644, proc_dointvec_minmax);
5414 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5415 sizeof(int), 0644, proc_dointvec_minmax);
5416 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5417 sizeof(int), 0644, proc_dointvec_minmax);
5418 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5419 sizeof(int), 0644, proc_dointvec_minmax);
5420 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5421 sizeof(int), 0644, proc_dointvec_minmax);
5422 set_table_entry(&table[9], "cache_nice_tries",
5423 &sd->cache_nice_tries,
5424 sizeof(int), 0644, proc_dointvec_minmax);
5425 set_table_entry(&table[10], "flags", &sd->flags,
5426 sizeof(int), 0644, proc_dointvec_minmax);
5427 /* &table[11] is terminator */
5428
5429 return table;
5430 }
5431
5432 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5433 {
5434 struct ctl_table *entry, *table;
5435 struct sched_domain *sd;
5436 int domain_num = 0, i;
5437 char buf[32];
5438
5439 for_each_domain(cpu, sd)
5440 domain_num++;
5441 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5442 if (table == NULL)
5443 return NULL;
5444
5445 i = 0;
5446 for_each_domain(cpu, sd) {
5447 snprintf(buf, 32, "domain%d", i);
5448 entry->procname = kstrdup(buf, GFP_KERNEL);
5449 entry->mode = 0555;
5450 entry->child = sd_alloc_ctl_domain_table(sd);
5451 entry++;
5452 i++;
5453 }
5454 return table;
5455 }
5456
5457 static struct ctl_table_header *sd_sysctl_header;
5458 static void register_sched_domain_sysctl(void)
5459 {
5460 int i, cpu_num = num_online_cpus();
5461 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5462 char buf[32];
5463
5464 if (entry == NULL)
5465 return;
5466
5467 sd_ctl_dir[0].child = entry;
5468
5469 for_each_online_cpu(i) {
5470 snprintf(buf, 32, "cpu%d", i);
5471 entry->procname = kstrdup(buf, GFP_KERNEL);
5472 entry->mode = 0555;
5473 entry->child = sd_alloc_ctl_cpu_table(i);
5474 entry++;
5475 }
5476 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5477 }
5478
5479 static void unregister_sched_domain_sysctl(void)
5480 {
5481 unregister_sysctl_table(sd_sysctl_header);
5482 sd_sysctl_header = NULL;
5483 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5484 }
5485 #else
5486 static void register_sched_domain_sysctl(void)
5487 {
5488 }
5489 static void unregister_sched_domain_sysctl(void)
5490 {
5491 }
5492 #endif
5493
5494 /*
5495 * migration_call - callback that gets triggered when a CPU is added.
5496 * Here we can start up the necessary migration thread for the new CPU.
5497 */
5498 static int __cpuinit
5499 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5500 {
5501 struct task_struct *p;
5502 int cpu = (long)hcpu;
5503 unsigned long flags;
5504 struct rq *rq;
5505
5506 switch (action) {
5507 case CPU_LOCK_ACQUIRE:
5508 mutex_lock(&sched_hotcpu_mutex);
5509 break;
5510
5511 case CPU_UP_PREPARE:
5512 case CPU_UP_PREPARE_FROZEN:
5513 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5514 if (IS_ERR(p))
5515 return NOTIFY_BAD;
5516 kthread_bind(p, cpu);
5517 /* Must be high prio: stop_machine expects to yield to it. */
5518 rq = task_rq_lock(p, &flags);
5519 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5520 task_rq_unlock(rq, &flags);
5521 cpu_rq(cpu)->migration_thread = p;
5522 break;
5523
5524 case CPU_ONLINE:
5525 case CPU_ONLINE_FROZEN:
5526 /* Strictly unnecessary, as first user will wake it. */
5527 wake_up_process(cpu_rq(cpu)->migration_thread);
5528 break;
5529
5530 #ifdef CONFIG_HOTPLUG_CPU
5531 case CPU_UP_CANCELED:
5532 case CPU_UP_CANCELED_FROZEN:
5533 if (!cpu_rq(cpu)->migration_thread)
5534 break;
5535 /* Unbind it from offline cpu so it can run. Fall thru. */
5536 kthread_bind(cpu_rq(cpu)->migration_thread,
5537 any_online_cpu(cpu_online_map));
5538 kthread_stop(cpu_rq(cpu)->migration_thread);
5539 cpu_rq(cpu)->migration_thread = NULL;
5540 break;
5541
5542 case CPU_DEAD:
5543 case CPU_DEAD_FROZEN:
5544 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5545 migrate_live_tasks(cpu);
5546 rq = cpu_rq(cpu);
5547 kthread_stop(rq->migration_thread);
5548 rq->migration_thread = NULL;
5549 /* Idle task back to normal (off runqueue, low prio) */
5550 spin_lock_irq(&rq->lock);
5551 update_rq_clock(rq);
5552 deactivate_task(rq, rq->idle, 0);
5553 rq->idle->static_prio = MAX_PRIO;
5554 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5555 rq->idle->sched_class = &idle_sched_class;
5556 migrate_dead_tasks(cpu);
5557 spin_unlock_irq(&rq->lock);
5558 cpuset_unlock();
5559 migrate_nr_uninterruptible(rq);
5560 BUG_ON(rq->nr_running != 0);
5561
5562 /* No need to migrate the tasks: it was best-effort if
5563 * they didn't take sched_hotcpu_mutex. Just wake up
5564 * the requestors. */
5565 spin_lock_irq(&rq->lock);
5566 while (!list_empty(&rq->migration_queue)) {
5567 struct migration_req *req;
5568
5569 req = list_entry(rq->migration_queue.next,
5570 struct migration_req, list);
5571 list_del_init(&req->list);
5572 complete(&req->done);
5573 }
5574 spin_unlock_irq(&rq->lock);
5575 break;
5576 #endif
5577 case CPU_LOCK_RELEASE:
5578 mutex_unlock(&sched_hotcpu_mutex);
5579 break;
5580 }
5581 return NOTIFY_OK;
5582 }
5583
5584 /* Register at highest priority so that task migration (migrate_all_tasks)
5585 * happens before everything else.
5586 */
5587 static struct notifier_block __cpuinitdata migration_notifier = {
5588 .notifier_call = migration_call,
5589 .priority = 10
5590 };
5591
5592 int __init migration_init(void)
5593 {
5594 void *cpu = (void *)(long)smp_processor_id();
5595 int err;
5596
5597 /* Start one for the boot CPU: */
5598 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5599 BUG_ON(err == NOTIFY_BAD);
5600 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5601 register_cpu_notifier(&migration_notifier);
5602
5603 return 0;
5604 }
5605 #endif
5606
5607 #ifdef CONFIG_SMP
5608
5609 /* Number of possible processor ids */
5610 int nr_cpu_ids __read_mostly = NR_CPUS;
5611 EXPORT_SYMBOL(nr_cpu_ids);
5612
5613 #ifdef CONFIG_SCHED_DEBUG
5614 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5615 {
5616 int level = 0;
5617
5618 if (!sd) {
5619 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5620 return;
5621 }
5622
5623 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5624
5625 do {
5626 int i;
5627 char str[NR_CPUS];
5628 struct sched_group *group = sd->groups;
5629 cpumask_t groupmask;
5630
5631 cpumask_scnprintf(str, NR_CPUS, sd->span);
5632 cpus_clear(groupmask);
5633
5634 printk(KERN_DEBUG);
5635 for (i = 0; i < level + 1; i++)
5636 printk(" ");
5637 printk("domain %d: ", level);
5638
5639 if (!(sd->flags & SD_LOAD_BALANCE)) {
5640 printk("does not load-balance\n");
5641 if (sd->parent)
5642 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5643 " has parent");
5644 break;
5645 }
5646
5647 printk("span %s\n", str);
5648
5649 if (!cpu_isset(cpu, sd->span))
5650 printk(KERN_ERR "ERROR: domain->span does not contain "
5651 "CPU%d\n", cpu);
5652 if (!cpu_isset(cpu, group->cpumask))
5653 printk(KERN_ERR "ERROR: domain->groups does not contain"
5654 " CPU%d\n", cpu);
5655
5656 printk(KERN_DEBUG);
5657 for (i = 0; i < level + 2; i++)
5658 printk(" ");
5659 printk("groups:");
5660 do {
5661 if (!group) {
5662 printk("\n");
5663 printk(KERN_ERR "ERROR: group is NULL\n");
5664 break;
5665 }
5666
5667 if (!group->__cpu_power) {
5668 printk(KERN_CONT "\n");
5669 printk(KERN_ERR "ERROR: domain->cpu_power not "
5670 "set\n");
5671 break;
5672 }
5673
5674 if (!cpus_weight(group->cpumask)) {
5675 printk(KERN_CONT "\n");
5676 printk(KERN_ERR "ERROR: empty group\n");
5677 break;
5678 }
5679
5680 if (cpus_intersects(groupmask, group->cpumask)) {
5681 printk(KERN_CONT "\n");
5682 printk(KERN_ERR "ERROR: repeated CPUs\n");
5683 break;
5684 }
5685
5686 cpus_or(groupmask, groupmask, group->cpumask);
5687
5688 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5689 printk(KERN_CONT " %s", str);
5690
5691 group = group->next;
5692 } while (group != sd->groups);
5693 printk(KERN_CONT "\n");
5694
5695 if (!cpus_equal(sd->span, groupmask))
5696 printk(KERN_ERR "ERROR: groups don't span "
5697 "domain->span\n");
5698
5699 level++;
5700 sd = sd->parent;
5701 if (!sd)
5702 continue;
5703
5704 if (!cpus_subset(groupmask, sd->span))
5705 printk(KERN_ERR "ERROR: parent span is not a superset "
5706 "of domain->span\n");
5707
5708 } while (sd);
5709 }
5710 #else
5711 # define sched_domain_debug(sd, cpu) do { } while (0)
5712 #endif
5713
5714 static int sd_degenerate(struct sched_domain *sd)
5715 {
5716 if (cpus_weight(sd->span) == 1)
5717 return 1;
5718
5719 /* Following flags need at least 2 groups */
5720 if (sd->flags & (SD_LOAD_BALANCE |
5721 SD_BALANCE_NEWIDLE |
5722 SD_BALANCE_FORK |
5723 SD_BALANCE_EXEC |
5724 SD_SHARE_CPUPOWER |
5725 SD_SHARE_PKG_RESOURCES)) {
5726 if (sd->groups != sd->groups->next)
5727 return 0;
5728 }
5729
5730 /* Following flags don't use groups */
5731 if (sd->flags & (SD_WAKE_IDLE |
5732 SD_WAKE_AFFINE |
5733 SD_WAKE_BALANCE))
5734 return 0;
5735
5736 return 1;
5737 }
5738
5739 static int
5740 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5741 {
5742 unsigned long cflags = sd->flags, pflags = parent->flags;
5743
5744 if (sd_degenerate(parent))
5745 return 1;
5746
5747 if (!cpus_equal(sd->span, parent->span))
5748 return 0;
5749
5750 /* Does parent contain flags not in child? */
5751 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5752 if (cflags & SD_WAKE_AFFINE)
5753 pflags &= ~SD_WAKE_BALANCE;
5754 /* Flags needing groups don't count if only 1 group in parent */
5755 if (parent->groups == parent->groups->next) {
5756 pflags &= ~(SD_LOAD_BALANCE |
5757 SD_BALANCE_NEWIDLE |
5758 SD_BALANCE_FORK |
5759 SD_BALANCE_EXEC |
5760 SD_SHARE_CPUPOWER |
5761 SD_SHARE_PKG_RESOURCES);
5762 }
5763 if (~cflags & pflags)
5764 return 0;
5765
5766 return 1;
5767 }
5768
5769 /*
5770 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5771 * hold the hotplug lock.
5772 */
5773 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5774 {
5775 struct rq *rq = cpu_rq(cpu);
5776 struct sched_domain *tmp;
5777
5778 /* Remove the sched domains which do not contribute to scheduling. */
5779 for (tmp = sd; tmp; tmp = tmp->parent) {
5780 struct sched_domain *parent = tmp->parent;
5781 if (!parent)
5782 break;
5783 if (sd_parent_degenerate(tmp, parent)) {
5784 tmp->parent = parent->parent;
5785 if (parent->parent)
5786 parent->parent->child = tmp;
5787 }
5788 }
5789
5790 if (sd && sd_degenerate(sd)) {
5791 sd = sd->parent;
5792 if (sd)
5793 sd->child = NULL;
5794 }
5795
5796 sched_domain_debug(sd, cpu);
5797
5798 rcu_assign_pointer(rq->sd, sd);
5799 }
5800
5801 /* cpus with isolated domains */
5802 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5803
5804 /* Setup the mask of cpus configured for isolated domains */
5805 static int __init isolated_cpu_setup(char *str)
5806 {
5807 int ints[NR_CPUS], i;
5808
5809 str = get_options(str, ARRAY_SIZE(ints), ints);
5810 cpus_clear(cpu_isolated_map);
5811 for (i = 1; i <= ints[0]; i++)
5812 if (ints[i] < NR_CPUS)
5813 cpu_set(ints[i], cpu_isolated_map);
5814 return 1;
5815 }
5816
5817 __setup("isolcpus=", isolated_cpu_setup);
5818
5819 /*
5820 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5821 * to a function which identifies what group(along with sched group) a CPU
5822 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5823 * (due to the fact that we keep track of groups covered with a cpumask_t).
5824 *
5825 * init_sched_build_groups will build a circular linked list of the groups
5826 * covered by the given span, and will set each group's ->cpumask correctly,
5827 * and ->cpu_power to 0.
5828 */
5829 static void
5830 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5831 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5832 struct sched_group **sg))
5833 {
5834 struct sched_group *first = NULL, *last = NULL;
5835 cpumask_t covered = CPU_MASK_NONE;
5836 int i;
5837
5838 for_each_cpu_mask(i, span) {
5839 struct sched_group *sg;
5840 int group = group_fn(i, cpu_map, &sg);
5841 int j;
5842
5843 if (cpu_isset(i, covered))
5844 continue;
5845
5846 sg->cpumask = CPU_MASK_NONE;
5847 sg->__cpu_power = 0;
5848
5849 for_each_cpu_mask(j, span) {
5850 if (group_fn(j, cpu_map, NULL) != group)
5851 continue;
5852
5853 cpu_set(j, covered);
5854 cpu_set(j, sg->cpumask);
5855 }
5856 if (!first)
5857 first = sg;
5858 if (last)
5859 last->next = sg;
5860 last = sg;
5861 }
5862 last->next = first;
5863 }
5864
5865 #define SD_NODES_PER_DOMAIN 16
5866
5867 #ifdef CONFIG_NUMA
5868
5869 /**
5870 * find_next_best_node - find the next node to include in a sched_domain
5871 * @node: node whose sched_domain we're building
5872 * @used_nodes: nodes already in the sched_domain
5873 *
5874 * Find the next node to include in a given scheduling domain. Simply
5875 * finds the closest node not already in the @used_nodes map.
5876 *
5877 * Should use nodemask_t.
5878 */
5879 static int find_next_best_node(int node, unsigned long *used_nodes)
5880 {
5881 int i, n, val, min_val, best_node = 0;
5882
5883 min_val = INT_MAX;
5884
5885 for (i = 0; i < MAX_NUMNODES; i++) {
5886 /* Start at @node */
5887 n = (node + i) % MAX_NUMNODES;
5888
5889 if (!nr_cpus_node(n))
5890 continue;
5891
5892 /* Skip already used nodes */
5893 if (test_bit(n, used_nodes))
5894 continue;
5895
5896 /* Simple min distance search */
5897 val = node_distance(node, n);
5898
5899 if (val < min_val) {
5900 min_val = val;
5901 best_node = n;
5902 }
5903 }
5904
5905 set_bit(best_node, used_nodes);
5906 return best_node;
5907 }
5908
5909 /**
5910 * sched_domain_node_span - get a cpumask for a node's sched_domain
5911 * @node: node whose cpumask we're constructing
5912 * @size: number of nodes to include in this span
5913 *
5914 * Given a node, construct a good cpumask for its sched_domain to span. It
5915 * should be one that prevents unnecessary balancing, but also spreads tasks
5916 * out optimally.
5917 */
5918 static cpumask_t sched_domain_node_span(int node)
5919 {
5920 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5921 cpumask_t span, nodemask;
5922 int i;
5923
5924 cpus_clear(span);
5925 bitmap_zero(used_nodes, MAX_NUMNODES);
5926
5927 nodemask = node_to_cpumask(node);
5928 cpus_or(span, span, nodemask);
5929 set_bit(node, used_nodes);
5930
5931 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5932 int next_node = find_next_best_node(node, used_nodes);
5933
5934 nodemask = node_to_cpumask(next_node);
5935 cpus_or(span, span, nodemask);
5936 }
5937
5938 return span;
5939 }
5940 #endif
5941
5942 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5943
5944 /*
5945 * SMT sched-domains:
5946 */
5947 #ifdef CONFIG_SCHED_SMT
5948 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5949 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5950
5951 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5952 struct sched_group **sg)
5953 {
5954 if (sg)
5955 *sg = &per_cpu(sched_group_cpus, cpu);
5956 return cpu;
5957 }
5958 #endif
5959
5960 /*
5961 * multi-core sched-domains:
5962 */
5963 #ifdef CONFIG_SCHED_MC
5964 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5965 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5966 #endif
5967
5968 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5969 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5970 struct sched_group **sg)
5971 {
5972 int group;
5973 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5974 cpus_and(mask, mask, *cpu_map);
5975 group = first_cpu(mask);
5976 if (sg)
5977 *sg = &per_cpu(sched_group_core, group);
5978 return group;
5979 }
5980 #elif defined(CONFIG_SCHED_MC)
5981 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5982 struct sched_group **sg)
5983 {
5984 if (sg)
5985 *sg = &per_cpu(sched_group_core, cpu);
5986 return cpu;
5987 }
5988 #endif
5989
5990 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5991 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5992
5993 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5994 struct sched_group **sg)
5995 {
5996 int group;
5997 #ifdef CONFIG_SCHED_MC
5998 cpumask_t mask = cpu_coregroup_map(cpu);
5999 cpus_and(mask, mask, *cpu_map);
6000 group = first_cpu(mask);
6001 #elif defined(CONFIG_SCHED_SMT)
6002 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6003 cpus_and(mask, mask, *cpu_map);
6004 group = first_cpu(mask);
6005 #else
6006 group = cpu;
6007 #endif
6008 if (sg)
6009 *sg = &per_cpu(sched_group_phys, group);
6010 return group;
6011 }
6012
6013 #ifdef CONFIG_NUMA
6014 /*
6015 * The init_sched_build_groups can't handle what we want to do with node
6016 * groups, so roll our own. Now each node has its own list of groups which
6017 * gets dynamically allocated.
6018 */
6019 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6020 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6021
6022 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6023 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6024
6025 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6026 struct sched_group **sg)
6027 {
6028 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6029 int group;
6030
6031 cpus_and(nodemask, nodemask, *cpu_map);
6032 group = first_cpu(nodemask);
6033
6034 if (sg)
6035 *sg = &per_cpu(sched_group_allnodes, group);
6036 return group;
6037 }
6038
6039 static void init_numa_sched_groups_power(struct sched_group *group_head)
6040 {
6041 struct sched_group *sg = group_head;
6042 int j;
6043
6044 if (!sg)
6045 return;
6046 do {
6047 for_each_cpu_mask(j, sg->cpumask) {
6048 struct sched_domain *sd;
6049
6050 sd = &per_cpu(phys_domains, j);
6051 if (j != first_cpu(sd->groups->cpumask)) {
6052 /*
6053 * Only add "power" once for each
6054 * physical package.
6055 */
6056 continue;
6057 }
6058
6059 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6060 }
6061 sg = sg->next;
6062 } while (sg != group_head);
6063 }
6064 #endif
6065
6066 #ifdef CONFIG_NUMA
6067 /* Free memory allocated for various sched_group structures */
6068 static void free_sched_groups(const cpumask_t *cpu_map)
6069 {
6070 int cpu, i;
6071
6072 for_each_cpu_mask(cpu, *cpu_map) {
6073 struct sched_group **sched_group_nodes
6074 = sched_group_nodes_bycpu[cpu];
6075
6076 if (!sched_group_nodes)
6077 continue;
6078
6079 for (i = 0; i < MAX_NUMNODES; i++) {
6080 cpumask_t nodemask = node_to_cpumask(i);
6081 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6082
6083 cpus_and(nodemask, nodemask, *cpu_map);
6084 if (cpus_empty(nodemask))
6085 continue;
6086
6087 if (sg == NULL)
6088 continue;
6089 sg = sg->next;
6090 next_sg:
6091 oldsg = sg;
6092 sg = sg->next;
6093 kfree(oldsg);
6094 if (oldsg != sched_group_nodes[i])
6095 goto next_sg;
6096 }
6097 kfree(sched_group_nodes);
6098 sched_group_nodes_bycpu[cpu] = NULL;
6099 }
6100 }
6101 #else
6102 static void free_sched_groups(const cpumask_t *cpu_map)
6103 {
6104 }
6105 #endif
6106
6107 /*
6108 * Initialize sched groups cpu_power.
6109 *
6110 * cpu_power indicates the capacity of sched group, which is used while
6111 * distributing the load between different sched groups in a sched domain.
6112 * Typically cpu_power for all the groups in a sched domain will be same unless
6113 * there are asymmetries in the topology. If there are asymmetries, group
6114 * having more cpu_power will pickup more load compared to the group having
6115 * less cpu_power.
6116 *
6117 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6118 * the maximum number of tasks a group can handle in the presence of other idle
6119 * or lightly loaded groups in the same sched domain.
6120 */
6121 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6122 {
6123 struct sched_domain *child;
6124 struct sched_group *group;
6125
6126 WARN_ON(!sd || !sd->groups);
6127
6128 if (cpu != first_cpu(sd->groups->cpumask))
6129 return;
6130
6131 child = sd->child;
6132
6133 sd->groups->__cpu_power = 0;
6134
6135 /*
6136 * For perf policy, if the groups in child domain share resources
6137 * (for example cores sharing some portions of the cache hierarchy
6138 * or SMT), then set this domain groups cpu_power such that each group
6139 * can handle only one task, when there are other idle groups in the
6140 * same sched domain.
6141 */
6142 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6143 (child->flags &
6144 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6145 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6146 return;
6147 }
6148
6149 /*
6150 * add cpu_power of each child group to this groups cpu_power
6151 */
6152 group = child->groups;
6153 do {
6154 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6155 group = group->next;
6156 } while (group != child->groups);
6157 }
6158
6159 /*
6160 * Build sched domains for a given set of cpus and attach the sched domains
6161 * to the individual cpus
6162 */
6163 static int build_sched_domains(const cpumask_t *cpu_map)
6164 {
6165 int i;
6166 #ifdef CONFIG_NUMA
6167 struct sched_group **sched_group_nodes = NULL;
6168 int sd_allnodes = 0;
6169
6170 /*
6171 * Allocate the per-node list of sched groups
6172 */
6173 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6174 GFP_KERNEL);
6175 if (!sched_group_nodes) {
6176 printk(KERN_WARNING "Can not alloc sched group node list\n");
6177 return -ENOMEM;
6178 }
6179 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6180 #endif
6181
6182 /*
6183 * Set up domains for cpus specified by the cpu_map.
6184 */
6185 for_each_cpu_mask(i, *cpu_map) {
6186 struct sched_domain *sd = NULL, *p;
6187 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6188
6189 cpus_and(nodemask, nodemask, *cpu_map);
6190
6191 #ifdef CONFIG_NUMA
6192 if (cpus_weight(*cpu_map) >
6193 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6194 sd = &per_cpu(allnodes_domains, i);
6195 *sd = SD_ALLNODES_INIT;
6196 sd->span = *cpu_map;
6197 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6198 p = sd;
6199 sd_allnodes = 1;
6200 } else
6201 p = NULL;
6202
6203 sd = &per_cpu(node_domains, i);
6204 *sd = SD_NODE_INIT;
6205 sd->span = sched_domain_node_span(cpu_to_node(i));
6206 sd->parent = p;
6207 if (p)
6208 p->child = sd;
6209 cpus_and(sd->span, sd->span, *cpu_map);
6210 #endif
6211
6212 p = sd;
6213 sd = &per_cpu(phys_domains, i);
6214 *sd = SD_CPU_INIT;
6215 sd->span = nodemask;
6216 sd->parent = p;
6217 if (p)
6218 p->child = sd;
6219 cpu_to_phys_group(i, cpu_map, &sd->groups);
6220
6221 #ifdef CONFIG_SCHED_MC
6222 p = sd;
6223 sd = &per_cpu(core_domains, i);
6224 *sd = SD_MC_INIT;
6225 sd->span = cpu_coregroup_map(i);
6226 cpus_and(sd->span, sd->span, *cpu_map);
6227 sd->parent = p;
6228 p->child = sd;
6229 cpu_to_core_group(i, cpu_map, &sd->groups);
6230 #endif
6231
6232 #ifdef CONFIG_SCHED_SMT
6233 p = sd;
6234 sd = &per_cpu(cpu_domains, i);
6235 *sd = SD_SIBLING_INIT;
6236 sd->span = per_cpu(cpu_sibling_map, i);
6237 cpus_and(sd->span, sd->span, *cpu_map);
6238 sd->parent = p;
6239 p->child = sd;
6240 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6241 #endif
6242 }
6243
6244 #ifdef CONFIG_SCHED_SMT
6245 /* Set up CPU (sibling) groups */
6246 for_each_cpu_mask(i, *cpu_map) {
6247 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6248 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6249 if (i != first_cpu(this_sibling_map))
6250 continue;
6251
6252 init_sched_build_groups(this_sibling_map, cpu_map,
6253 &cpu_to_cpu_group);
6254 }
6255 #endif
6256
6257 #ifdef CONFIG_SCHED_MC
6258 /* Set up multi-core groups */
6259 for_each_cpu_mask(i, *cpu_map) {
6260 cpumask_t this_core_map = cpu_coregroup_map(i);
6261 cpus_and(this_core_map, this_core_map, *cpu_map);
6262 if (i != first_cpu(this_core_map))
6263 continue;
6264 init_sched_build_groups(this_core_map, cpu_map,
6265 &cpu_to_core_group);
6266 }
6267 #endif
6268
6269 /* Set up physical groups */
6270 for (i = 0; i < MAX_NUMNODES; i++) {
6271 cpumask_t nodemask = node_to_cpumask(i);
6272
6273 cpus_and(nodemask, nodemask, *cpu_map);
6274 if (cpus_empty(nodemask))
6275 continue;
6276
6277 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6278 }
6279
6280 #ifdef CONFIG_NUMA
6281 /* Set up node groups */
6282 if (sd_allnodes)
6283 init_sched_build_groups(*cpu_map, cpu_map,
6284 &cpu_to_allnodes_group);
6285
6286 for (i = 0; i < MAX_NUMNODES; i++) {
6287 /* Set up node groups */
6288 struct sched_group *sg, *prev;
6289 cpumask_t nodemask = node_to_cpumask(i);
6290 cpumask_t domainspan;
6291 cpumask_t covered = CPU_MASK_NONE;
6292 int j;
6293
6294 cpus_and(nodemask, nodemask, *cpu_map);
6295 if (cpus_empty(nodemask)) {
6296 sched_group_nodes[i] = NULL;
6297 continue;
6298 }
6299
6300 domainspan = sched_domain_node_span(i);
6301 cpus_and(domainspan, domainspan, *cpu_map);
6302
6303 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6304 if (!sg) {
6305 printk(KERN_WARNING "Can not alloc domain group for "
6306 "node %d\n", i);
6307 goto error;
6308 }
6309 sched_group_nodes[i] = sg;
6310 for_each_cpu_mask(j, nodemask) {
6311 struct sched_domain *sd;
6312
6313 sd = &per_cpu(node_domains, j);
6314 sd->groups = sg;
6315 }
6316 sg->__cpu_power = 0;
6317 sg->cpumask = nodemask;
6318 sg->next = sg;
6319 cpus_or(covered, covered, nodemask);
6320 prev = sg;
6321
6322 for (j = 0; j < MAX_NUMNODES; j++) {
6323 cpumask_t tmp, notcovered;
6324 int n = (i + j) % MAX_NUMNODES;
6325
6326 cpus_complement(notcovered, covered);
6327 cpus_and(tmp, notcovered, *cpu_map);
6328 cpus_and(tmp, tmp, domainspan);
6329 if (cpus_empty(tmp))
6330 break;
6331
6332 nodemask = node_to_cpumask(n);
6333 cpus_and(tmp, tmp, nodemask);
6334 if (cpus_empty(tmp))
6335 continue;
6336
6337 sg = kmalloc_node(sizeof(struct sched_group),
6338 GFP_KERNEL, i);
6339 if (!sg) {
6340 printk(KERN_WARNING
6341 "Can not alloc domain group for node %d\n", j);
6342 goto error;
6343 }
6344 sg->__cpu_power = 0;
6345 sg->cpumask = tmp;
6346 sg->next = prev->next;
6347 cpus_or(covered, covered, tmp);
6348 prev->next = sg;
6349 prev = sg;
6350 }
6351 }
6352 #endif
6353
6354 /* Calculate CPU power for physical packages and nodes */
6355 #ifdef CONFIG_SCHED_SMT
6356 for_each_cpu_mask(i, *cpu_map) {
6357 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6358
6359 init_sched_groups_power(i, sd);
6360 }
6361 #endif
6362 #ifdef CONFIG_SCHED_MC
6363 for_each_cpu_mask(i, *cpu_map) {
6364 struct sched_domain *sd = &per_cpu(core_domains, i);
6365
6366 init_sched_groups_power(i, sd);
6367 }
6368 #endif
6369
6370 for_each_cpu_mask(i, *cpu_map) {
6371 struct sched_domain *sd = &per_cpu(phys_domains, i);
6372
6373 init_sched_groups_power(i, sd);
6374 }
6375
6376 #ifdef CONFIG_NUMA
6377 for (i = 0; i < MAX_NUMNODES; i++)
6378 init_numa_sched_groups_power(sched_group_nodes[i]);
6379
6380 if (sd_allnodes) {
6381 struct sched_group *sg;
6382
6383 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6384 init_numa_sched_groups_power(sg);
6385 }
6386 #endif
6387
6388 /* Attach the domains */
6389 for_each_cpu_mask(i, *cpu_map) {
6390 struct sched_domain *sd;
6391 #ifdef CONFIG_SCHED_SMT
6392 sd = &per_cpu(cpu_domains, i);
6393 #elif defined(CONFIG_SCHED_MC)
6394 sd = &per_cpu(core_domains, i);
6395 #else
6396 sd = &per_cpu(phys_domains, i);
6397 #endif
6398 cpu_attach_domain(sd, i);
6399 }
6400
6401 return 0;
6402
6403 #ifdef CONFIG_NUMA
6404 error:
6405 free_sched_groups(cpu_map);
6406 return -ENOMEM;
6407 #endif
6408 }
6409
6410 static cpumask_t *doms_cur; /* current sched domains */
6411 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6412
6413 /*
6414 * Special case: If a kmalloc of a doms_cur partition (array of
6415 * cpumask_t) fails, then fallback to a single sched domain,
6416 * as determined by the single cpumask_t fallback_doms.
6417 */
6418 static cpumask_t fallback_doms;
6419
6420 /*
6421 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6422 * For now this just excludes isolated cpus, but could be used to
6423 * exclude other special cases in the future.
6424 */
6425 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6426 {
6427 ndoms_cur = 1;
6428 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6429 if (!doms_cur)
6430 doms_cur = &fallback_doms;
6431 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6432 register_sched_domain_sysctl();
6433 return build_sched_domains(doms_cur);
6434 }
6435
6436 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6437 {
6438 free_sched_groups(cpu_map);
6439 }
6440
6441 /*
6442 * Detach sched domains from a group of cpus specified in cpu_map
6443 * These cpus will now be attached to the NULL domain
6444 */
6445 static void detach_destroy_domains(const cpumask_t *cpu_map)
6446 {
6447 int i;
6448
6449 unregister_sched_domain_sysctl();
6450
6451 for_each_cpu_mask(i, *cpu_map)
6452 cpu_attach_domain(NULL, i);
6453 synchronize_sched();
6454 arch_destroy_sched_domains(cpu_map);
6455 }
6456
6457 /*
6458 * Partition sched domains as specified by the 'ndoms_new'
6459 * cpumasks in the array doms_new[] of cpumasks. This compares
6460 * doms_new[] to the current sched domain partitioning, doms_cur[].
6461 * It destroys each deleted domain and builds each new domain.
6462 *
6463 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6464 * The masks don't intersect (don't overlap.) We should setup one
6465 * sched domain for each mask. CPUs not in any of the cpumasks will
6466 * not be load balanced. If the same cpumask appears both in the
6467 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6468 * it as it is.
6469 *
6470 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6471 * ownership of it and will kfree it when done with it. If the caller
6472 * failed the kmalloc call, then it can pass in doms_new == NULL,
6473 * and partition_sched_domains() will fallback to the single partition
6474 * 'fallback_doms'.
6475 *
6476 * Call with hotplug lock held
6477 */
6478 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6479 {
6480 int i, j;
6481
6482 if (doms_new == NULL) {
6483 ndoms_new = 1;
6484 doms_new = &fallback_doms;
6485 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6486 }
6487
6488 /* Destroy deleted domains */
6489 for (i = 0; i < ndoms_cur; i++) {
6490 for (j = 0; j < ndoms_new; j++) {
6491 if (cpus_equal(doms_cur[i], doms_new[j]))
6492 goto match1;
6493 }
6494 /* no match - a current sched domain not in new doms_new[] */
6495 detach_destroy_domains(doms_cur + i);
6496 match1:
6497 ;
6498 }
6499
6500 /* Build new domains */
6501 for (i = 0; i < ndoms_new; i++) {
6502 for (j = 0; j < ndoms_cur; j++) {
6503 if (cpus_equal(doms_new[i], doms_cur[j]))
6504 goto match2;
6505 }
6506 /* no match - add a new doms_new */
6507 build_sched_domains(doms_new + i);
6508 match2:
6509 ;
6510 }
6511
6512 /* Remember the new sched domains */
6513 if (doms_cur != &fallback_doms)
6514 kfree(doms_cur);
6515 doms_cur = doms_new;
6516 ndoms_cur = ndoms_new;
6517 }
6518
6519 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6520 static int arch_reinit_sched_domains(void)
6521 {
6522 int err;
6523
6524 mutex_lock(&sched_hotcpu_mutex);
6525 detach_destroy_domains(&cpu_online_map);
6526 err = arch_init_sched_domains(&cpu_online_map);
6527 mutex_unlock(&sched_hotcpu_mutex);
6528
6529 return err;
6530 }
6531
6532 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6533 {
6534 int ret;
6535
6536 if (buf[0] != '0' && buf[0] != '1')
6537 return -EINVAL;
6538
6539 if (smt)
6540 sched_smt_power_savings = (buf[0] == '1');
6541 else
6542 sched_mc_power_savings = (buf[0] == '1');
6543
6544 ret = arch_reinit_sched_domains();
6545
6546 return ret ? ret : count;
6547 }
6548
6549 #ifdef CONFIG_SCHED_MC
6550 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6551 {
6552 return sprintf(page, "%u\n", sched_mc_power_savings);
6553 }
6554 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6555 const char *buf, size_t count)
6556 {
6557 return sched_power_savings_store(buf, count, 0);
6558 }
6559 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6560 sched_mc_power_savings_store);
6561 #endif
6562
6563 #ifdef CONFIG_SCHED_SMT
6564 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6565 {
6566 return sprintf(page, "%u\n", sched_smt_power_savings);
6567 }
6568 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6569 const char *buf, size_t count)
6570 {
6571 return sched_power_savings_store(buf, count, 1);
6572 }
6573 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6574 sched_smt_power_savings_store);
6575 #endif
6576
6577 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6578 {
6579 int err = 0;
6580
6581 #ifdef CONFIG_SCHED_SMT
6582 if (smt_capable())
6583 err = sysfs_create_file(&cls->kset.kobj,
6584 &attr_sched_smt_power_savings.attr);
6585 #endif
6586 #ifdef CONFIG_SCHED_MC
6587 if (!err && mc_capable())
6588 err = sysfs_create_file(&cls->kset.kobj,
6589 &attr_sched_mc_power_savings.attr);
6590 #endif
6591 return err;
6592 }
6593 #endif
6594
6595 /*
6596 * Force a reinitialization of the sched domains hierarchy. The domains
6597 * and groups cannot be updated in place without racing with the balancing
6598 * code, so we temporarily attach all running cpus to the NULL domain
6599 * which will prevent rebalancing while the sched domains are recalculated.
6600 */
6601 static int update_sched_domains(struct notifier_block *nfb,
6602 unsigned long action, void *hcpu)
6603 {
6604 switch (action) {
6605 case CPU_UP_PREPARE:
6606 case CPU_UP_PREPARE_FROZEN:
6607 case CPU_DOWN_PREPARE:
6608 case CPU_DOWN_PREPARE_FROZEN:
6609 detach_destroy_domains(&cpu_online_map);
6610 return NOTIFY_OK;
6611
6612 case CPU_UP_CANCELED:
6613 case CPU_UP_CANCELED_FROZEN:
6614 case CPU_DOWN_FAILED:
6615 case CPU_DOWN_FAILED_FROZEN:
6616 case CPU_ONLINE:
6617 case CPU_ONLINE_FROZEN:
6618 case CPU_DEAD:
6619 case CPU_DEAD_FROZEN:
6620 /*
6621 * Fall through and re-initialise the domains.
6622 */
6623 break;
6624 default:
6625 return NOTIFY_DONE;
6626 }
6627
6628 /* The hotplug lock is already held by cpu_up/cpu_down */
6629 arch_init_sched_domains(&cpu_online_map);
6630
6631 return NOTIFY_OK;
6632 }
6633
6634 void __init sched_init_smp(void)
6635 {
6636 cpumask_t non_isolated_cpus;
6637
6638 mutex_lock(&sched_hotcpu_mutex);
6639 arch_init_sched_domains(&cpu_online_map);
6640 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6641 if (cpus_empty(non_isolated_cpus))
6642 cpu_set(smp_processor_id(), non_isolated_cpus);
6643 mutex_unlock(&sched_hotcpu_mutex);
6644 /* XXX: Theoretical race here - CPU may be hotplugged now */
6645 hotcpu_notifier(update_sched_domains, 0);
6646
6647 /* Move init over to a non-isolated CPU */
6648 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6649 BUG();
6650 }
6651 #else
6652 void __init sched_init_smp(void)
6653 {
6654 }
6655 #endif /* CONFIG_SMP */
6656
6657 int in_sched_functions(unsigned long addr)
6658 {
6659 /* Linker adds these: start and end of __sched functions */
6660 extern char __sched_text_start[], __sched_text_end[];
6661
6662 return in_lock_functions(addr) ||
6663 (addr >= (unsigned long)__sched_text_start
6664 && addr < (unsigned long)__sched_text_end);
6665 }
6666
6667 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6668 {
6669 cfs_rq->tasks_timeline = RB_ROOT;
6670 #ifdef CONFIG_FAIR_GROUP_SCHED
6671 cfs_rq->rq = rq;
6672 #endif
6673 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6674 }
6675
6676 void __init sched_init(void)
6677 {
6678 int highest_cpu = 0;
6679 int i, j;
6680
6681 for_each_possible_cpu(i) {
6682 struct rt_prio_array *array;
6683 struct rq *rq;
6684
6685 rq = cpu_rq(i);
6686 spin_lock_init(&rq->lock);
6687 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6688 rq->nr_running = 0;
6689 rq->clock = 1;
6690 init_cfs_rq(&rq->cfs, rq);
6691 #ifdef CONFIG_FAIR_GROUP_SCHED
6692 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6693 {
6694 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6695 struct sched_entity *se =
6696 &per_cpu(init_sched_entity, i);
6697
6698 init_cfs_rq_p[i] = cfs_rq;
6699 init_cfs_rq(cfs_rq, rq);
6700 cfs_rq->tg = &init_task_group;
6701 list_add(&cfs_rq->leaf_cfs_rq_list,
6702 &rq->leaf_cfs_rq_list);
6703
6704 init_sched_entity_p[i] = se;
6705 se->cfs_rq = &rq->cfs;
6706 se->my_q = cfs_rq;
6707 se->load.weight = init_task_group_load;
6708 se->load.inv_weight =
6709 div64_64(1ULL<<32, init_task_group_load);
6710 se->parent = NULL;
6711 }
6712 init_task_group.shares = init_task_group_load;
6713 spin_lock_init(&init_task_group.lock);
6714 #endif
6715
6716 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6717 rq->cpu_load[j] = 0;
6718 #ifdef CONFIG_SMP
6719 rq->sd = NULL;
6720 rq->active_balance = 0;
6721 rq->next_balance = jiffies;
6722 rq->push_cpu = 0;
6723 rq->cpu = i;
6724 rq->migration_thread = NULL;
6725 INIT_LIST_HEAD(&rq->migration_queue);
6726 #endif
6727 atomic_set(&rq->nr_iowait, 0);
6728
6729 array = &rq->rt.active;
6730 for (j = 0; j < MAX_RT_PRIO; j++) {
6731 INIT_LIST_HEAD(array->queue + j);
6732 __clear_bit(j, array->bitmap);
6733 }
6734 highest_cpu = i;
6735 /* delimiter for bitsearch: */
6736 __set_bit(MAX_RT_PRIO, array->bitmap);
6737 }
6738
6739 set_load_weight(&init_task);
6740
6741 #ifdef CONFIG_PREEMPT_NOTIFIERS
6742 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6743 #endif
6744
6745 #ifdef CONFIG_SMP
6746 nr_cpu_ids = highest_cpu + 1;
6747 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6748 #endif
6749
6750 #ifdef CONFIG_RT_MUTEXES
6751 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6752 #endif
6753
6754 /*
6755 * The boot idle thread does lazy MMU switching as well:
6756 */
6757 atomic_inc(&init_mm.mm_count);
6758 enter_lazy_tlb(&init_mm, current);
6759
6760 /*
6761 * Make us the idle thread. Technically, schedule() should not be
6762 * called from this thread, however somewhere below it might be,
6763 * but because we are the idle thread, we just pick up running again
6764 * when this runqueue becomes "idle".
6765 */
6766 init_idle(current, smp_processor_id());
6767 /*
6768 * During early bootup we pretend to be a normal task:
6769 */
6770 current->sched_class = &fair_sched_class;
6771 }
6772
6773 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6774 void __might_sleep(char *file, int line)
6775 {
6776 #ifdef in_atomic
6777 static unsigned long prev_jiffy; /* ratelimiting */
6778
6779 if ((in_atomic() || irqs_disabled()) &&
6780 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6781 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6782 return;
6783 prev_jiffy = jiffies;
6784 printk(KERN_ERR "BUG: sleeping function called from invalid"
6785 " context at %s:%d\n", file, line);
6786 printk("in_atomic():%d, irqs_disabled():%d\n",
6787 in_atomic(), irqs_disabled());
6788 debug_show_held_locks(current);
6789 if (irqs_disabled())
6790 print_irqtrace_events(current);
6791 dump_stack();
6792 }
6793 #endif
6794 }
6795 EXPORT_SYMBOL(__might_sleep);
6796 #endif
6797
6798 #ifdef CONFIG_MAGIC_SYSRQ
6799 static void normalize_task(struct rq *rq, struct task_struct *p)
6800 {
6801 int on_rq;
6802 update_rq_clock(rq);
6803 on_rq = p->se.on_rq;
6804 if (on_rq)
6805 deactivate_task(rq, p, 0);
6806 __setscheduler(rq, p, SCHED_NORMAL, 0);
6807 if (on_rq) {
6808 activate_task(rq, p, 0);
6809 resched_task(rq->curr);
6810 }
6811 }
6812
6813 void normalize_rt_tasks(void)
6814 {
6815 struct task_struct *g, *p;
6816 unsigned long flags;
6817 struct rq *rq;
6818
6819 read_lock_irq(&tasklist_lock);
6820 do_each_thread(g, p) {
6821 /*
6822 * Only normalize user tasks:
6823 */
6824 if (!p->mm)
6825 continue;
6826
6827 p->se.exec_start = 0;
6828 #ifdef CONFIG_SCHEDSTATS
6829 p->se.wait_start = 0;
6830 p->se.sleep_start = 0;
6831 p->se.block_start = 0;
6832 #endif
6833 task_rq(p)->clock = 0;
6834
6835 if (!rt_task(p)) {
6836 /*
6837 * Renice negative nice level userspace
6838 * tasks back to 0:
6839 */
6840 if (TASK_NICE(p) < 0 && p->mm)
6841 set_user_nice(p, 0);
6842 continue;
6843 }
6844
6845 spin_lock_irqsave(&p->pi_lock, flags);
6846 rq = __task_rq_lock(p);
6847
6848 normalize_task(rq, p);
6849
6850 __task_rq_unlock(rq);
6851 spin_unlock_irqrestore(&p->pi_lock, flags);
6852 } while_each_thread(g, p);
6853
6854 read_unlock_irq(&tasklist_lock);
6855 }
6856
6857 #endif /* CONFIG_MAGIC_SYSRQ */
6858
6859 #ifdef CONFIG_IA64
6860 /*
6861 * These functions are only useful for the IA64 MCA handling.
6862 *
6863 * They can only be called when the whole system has been
6864 * stopped - every CPU needs to be quiescent, and no scheduling
6865 * activity can take place. Using them for anything else would
6866 * be a serious bug, and as a result, they aren't even visible
6867 * under any other configuration.
6868 */
6869
6870 /**
6871 * curr_task - return the current task for a given cpu.
6872 * @cpu: the processor in question.
6873 *
6874 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6875 */
6876 struct task_struct *curr_task(int cpu)
6877 {
6878 return cpu_curr(cpu);
6879 }
6880
6881 /**
6882 * set_curr_task - set the current task for a given cpu.
6883 * @cpu: the processor in question.
6884 * @p: the task pointer to set.
6885 *
6886 * Description: This function must only be used when non-maskable interrupts
6887 * are serviced on a separate stack. It allows the architecture to switch the
6888 * notion of the current task on a cpu in a non-blocking manner. This function
6889 * must be called with all CPU's synchronized, and interrupts disabled, the
6890 * and caller must save the original value of the current task (see
6891 * curr_task() above) and restore that value before reenabling interrupts and
6892 * re-starting the system.
6893 *
6894 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6895 */
6896 void set_curr_task(int cpu, struct task_struct *p)
6897 {
6898 cpu_curr(cpu) = p;
6899 }
6900
6901 #endif
6902
6903 #ifdef CONFIG_FAIR_GROUP_SCHED
6904
6905 /* allocate runqueue etc for a new task group */
6906 struct task_group *sched_create_group(void)
6907 {
6908 struct task_group *tg;
6909 struct cfs_rq *cfs_rq;
6910 struct sched_entity *se;
6911 struct rq *rq;
6912 int i;
6913
6914 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6915 if (!tg)
6916 return ERR_PTR(-ENOMEM);
6917
6918 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6919 if (!tg->cfs_rq)
6920 goto err;
6921 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6922 if (!tg->se)
6923 goto err;
6924
6925 for_each_possible_cpu(i) {
6926 rq = cpu_rq(i);
6927
6928 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6929 cpu_to_node(i));
6930 if (!cfs_rq)
6931 goto err;
6932
6933 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6934 cpu_to_node(i));
6935 if (!se)
6936 goto err;
6937
6938 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6939 memset(se, 0, sizeof(struct sched_entity));
6940
6941 tg->cfs_rq[i] = cfs_rq;
6942 init_cfs_rq(cfs_rq, rq);
6943 cfs_rq->tg = tg;
6944
6945 tg->se[i] = se;
6946 se->cfs_rq = &rq->cfs;
6947 se->my_q = cfs_rq;
6948 se->load.weight = NICE_0_LOAD;
6949 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6950 se->parent = NULL;
6951 }
6952
6953 for_each_possible_cpu(i) {
6954 rq = cpu_rq(i);
6955 cfs_rq = tg->cfs_rq[i];
6956 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6957 }
6958
6959 tg->shares = NICE_0_LOAD;
6960 spin_lock_init(&tg->lock);
6961
6962 return tg;
6963
6964 err:
6965 for_each_possible_cpu(i) {
6966 if (tg->cfs_rq)
6967 kfree(tg->cfs_rq[i]);
6968 if (tg->se)
6969 kfree(tg->se[i]);
6970 }
6971 kfree(tg->cfs_rq);
6972 kfree(tg->se);
6973 kfree(tg);
6974
6975 return ERR_PTR(-ENOMEM);
6976 }
6977
6978 /* rcu callback to free various structures associated with a task group */
6979 static void free_sched_group(struct rcu_head *rhp)
6980 {
6981 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6982 struct task_group *tg = cfs_rq->tg;
6983 struct sched_entity *se;
6984 int i;
6985
6986 /* now it should be safe to free those cfs_rqs */
6987 for_each_possible_cpu(i) {
6988 cfs_rq = tg->cfs_rq[i];
6989 kfree(cfs_rq);
6990
6991 se = tg->se[i];
6992 kfree(se);
6993 }
6994
6995 kfree(tg->cfs_rq);
6996 kfree(tg->se);
6997 kfree(tg);
6998 }
6999
7000 /* Destroy runqueue etc associated with a task group */
7001 void sched_destroy_group(struct task_group *tg)
7002 {
7003 struct cfs_rq *cfs_rq;
7004 int i;
7005
7006 for_each_possible_cpu(i) {
7007 cfs_rq = tg->cfs_rq[i];
7008 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7009 }
7010
7011 cfs_rq = tg->cfs_rq[0];
7012
7013 /* wait for possible concurrent references to cfs_rqs complete */
7014 call_rcu(&cfs_rq->rcu, free_sched_group);
7015 }
7016
7017 /* change task's runqueue when it moves between groups.
7018 * The caller of this function should have put the task in its new group
7019 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7020 * reflect its new group.
7021 */
7022 void sched_move_task(struct task_struct *tsk)
7023 {
7024 int on_rq, running;
7025 unsigned long flags;
7026 struct rq *rq;
7027
7028 rq = task_rq_lock(tsk, &flags);
7029
7030 if (tsk->sched_class != &fair_sched_class)
7031 goto done;
7032
7033 update_rq_clock(rq);
7034
7035 running = task_running(rq, tsk);
7036 on_rq = tsk->se.on_rq;
7037
7038 if (on_rq) {
7039 dequeue_task(rq, tsk, 0);
7040 if (unlikely(running))
7041 tsk->sched_class->put_prev_task(rq, tsk);
7042 }
7043
7044 set_task_cfs_rq(tsk);
7045
7046 if (on_rq) {
7047 if (unlikely(running))
7048 tsk->sched_class->set_curr_task(rq);
7049 enqueue_task(rq, tsk, 0);
7050 }
7051
7052 done:
7053 task_rq_unlock(rq, &flags);
7054 }
7055
7056 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7057 {
7058 struct cfs_rq *cfs_rq = se->cfs_rq;
7059 struct rq *rq = cfs_rq->rq;
7060 int on_rq;
7061
7062 spin_lock_irq(&rq->lock);
7063
7064 on_rq = se->on_rq;
7065 if (on_rq)
7066 dequeue_entity(cfs_rq, se, 0);
7067
7068 se->load.weight = shares;
7069 se->load.inv_weight = div64_64((1ULL<<32), shares);
7070
7071 if (on_rq)
7072 enqueue_entity(cfs_rq, se, 0);
7073
7074 spin_unlock_irq(&rq->lock);
7075 }
7076
7077 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7078 {
7079 int i;
7080
7081 spin_lock(&tg->lock);
7082 if (tg->shares == shares)
7083 goto done;
7084
7085 tg->shares = shares;
7086 for_each_possible_cpu(i)
7087 set_se_shares(tg->se[i], shares);
7088
7089 done:
7090 spin_unlock(&tg->lock);
7091 return 0;
7092 }
7093
7094 unsigned long sched_group_shares(struct task_group *tg)
7095 {
7096 return tg->shares;
7097 }
7098
7099 #endif /* CONFIG_FAIR_GROUP_SCHED */
7100
7101 #ifdef CONFIG_FAIR_CGROUP_SCHED
7102
7103 /* return corresponding task_group object of a cgroup */
7104 static inline struct task_group *cgroup_tg(struct cgroup *cont)
7105 {
7106 return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
7107 struct task_group, css);
7108 }
7109
7110 static struct cgroup_subsys_state *
7111 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
7112 {
7113 struct task_group *tg;
7114
7115 if (!cont->parent) {
7116 /* This is early initialization for the top cgroup */
7117 init_task_group.css.cgroup = cont;
7118 return &init_task_group.css;
7119 }
7120
7121 /* we support only 1-level deep hierarchical scheduler atm */
7122 if (cont->parent->parent)
7123 return ERR_PTR(-EINVAL);
7124
7125 tg = sched_create_group();
7126 if (IS_ERR(tg))
7127 return ERR_PTR(-ENOMEM);
7128
7129 /* Bind the cgroup to task_group object we just created */
7130 tg->css.cgroup = cont;
7131
7132 return &tg->css;
7133 }
7134
7135 static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7136 struct cgroup *cont)
7137 {
7138 struct task_group *tg = cgroup_tg(cont);
7139
7140 sched_destroy_group(tg);
7141 }
7142
7143 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7144 struct cgroup *cont, struct task_struct *tsk)
7145 {
7146 /* We don't support RT-tasks being in separate groups */
7147 if (tsk->sched_class != &fair_sched_class)
7148 return -EINVAL;
7149
7150 return 0;
7151 }
7152
7153 static void
7154 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
7155 struct cgroup *old_cont, struct task_struct *tsk)
7156 {
7157 sched_move_task(tsk);
7158 }
7159
7160 static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
7161 struct file *file, const char __user *userbuf,
7162 size_t nbytes, loff_t *ppos)
7163 {
7164 unsigned long shareval;
7165 struct task_group *tg = cgroup_tg(cont);
7166 char buffer[2*sizeof(unsigned long) + 1];
7167 int rc;
7168
7169 if (nbytes > 2*sizeof(unsigned long)) /* safety check */
7170 return -E2BIG;
7171
7172 if (copy_from_user(buffer, userbuf, nbytes))
7173 return -EFAULT;
7174
7175 buffer[nbytes] = 0; /* nul-terminate */
7176 shareval = simple_strtoul(buffer, NULL, 10);
7177
7178 rc = sched_group_set_shares(tg, shareval);
7179
7180 return (rc < 0 ? rc : nbytes);
7181 }
7182
7183 static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
7184 {
7185 struct task_group *tg = cgroup_tg(cont);
7186
7187 return (u64) tg->shares;
7188 }
7189
7190 static struct cftype cpu_shares = {
7191 .name = "shares",
7192 .read_uint = cpu_shares_read_uint,
7193 .write = cpu_shares_write,
7194 };
7195
7196 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7197 {
7198 return cgroup_add_file(cont, ss, &cpu_shares);
7199 }
7200
7201 struct cgroup_subsys cpu_cgroup_subsys = {
7202 .name = "cpu",
7203 .create = cpu_cgroup_create,
7204 .destroy = cpu_cgroup_destroy,
7205 .can_attach = cpu_cgroup_can_attach,
7206 .attach = cpu_cgroup_attach,
7207 .populate = cpu_cgroup_populate,
7208 .subsys_id = cpu_cgroup_subsys_id,
7209 .early_init = 1,
7210 };
7211
7212 #endif /* CONFIG_FAIR_CGROUP_SCHED */
This page took 0.204033 seconds and 6 git commands to generate.