sched: Provide arch_scale_freq_power
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 #ifdef CONFIG_SMP
380 static int root_task_group_empty(void)
381 {
382 return 1;
383 }
384 #endif
385
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 static inline struct task_group *task_group(struct task_struct *p)
388 {
389 return NULL;
390 }
391
392 #endif /* CONFIG_GROUP_SCHED */
393
394 /* CFS-related fields in a runqueue */
395 struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
399 u64 exec_clock;
400 u64 min_vruntime;
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
412 struct sched_entity *curr, *next, *last;
413
414 unsigned int nr_spread_over;
415
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
429
430 #ifdef CONFIG_SMP
431 /*
432 * the part of load.weight contributed by tasks
433 */
434 unsigned long task_weight;
435
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
443
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
453 #endif
454 #endif
455 };
456
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned long rt_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 int next; /* next highest */
466 #endif
467 } highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474 #endif
475 int rt_throttled;
476 u64 rt_time;
477 u64 rt_runtime;
478 /* Nests inside the rq lock: */
479 spinlock_t rt_runtime_lock;
480
481 #ifdef CONFIG_RT_GROUP_SCHED
482 unsigned long rt_nr_boosted;
483
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488 #endif
489 };
490
491 #ifdef CONFIG_SMP
492
493 /*
494 * We add the notion of a root-domain which will be used to define per-domain
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
500 */
501 struct root_domain {
502 atomic_t refcount;
503 cpumask_var_t span;
504 cpumask_var_t online;
505
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 atomic_t rto_count;
512 #ifdef CONFIG_SMP
513 struct cpupri cpupri;
514 #endif
515 };
516
517 /*
518 * By default the system creates a single root-domain with all cpus as
519 * members (mimicking the global state we have today).
520 */
521 static struct root_domain def_root_domain;
522
523 #endif
524
525 /*
526 * This is the main, per-CPU runqueue data structure.
527 *
528 * Locking rule: those places that want to lock multiple runqueues
529 * (such as the load balancing or the thread migration code), lock
530 * acquire operations must be ordered by ascending &runqueue.
531 */
532 struct rq {
533 /* runqueue lock: */
534 spinlock_t lock;
535
536 /*
537 * nr_running and cpu_load should be in the same cacheline because
538 * remote CPUs use both these fields when doing load calculation.
539 */
540 unsigned long nr_running;
541 #define CPU_LOAD_IDX_MAX 5
542 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
543 #ifdef CONFIG_NO_HZ
544 unsigned long last_tick_seen;
545 unsigned char in_nohz_recently;
546 #endif
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
549 unsigned long nr_load_updates;
550 u64 nr_switches;
551 u64 nr_migrations_in;
552
553 struct cfs_rq cfs;
554 struct rt_rq rt;
555
556 #ifdef CONFIG_FAIR_GROUP_SCHED
557 /* list of leaf cfs_rq on this cpu: */
558 struct list_head leaf_cfs_rq_list;
559 #endif
560 #ifdef CONFIG_RT_GROUP_SCHED
561 struct list_head leaf_rt_rq_list;
562 #endif
563
564 /*
565 * This is part of a global counter where only the total sum
566 * over all CPUs matters. A task can increase this counter on
567 * one CPU and if it got migrated afterwards it may decrease
568 * it on another CPU. Always updated under the runqueue lock:
569 */
570 unsigned long nr_uninterruptible;
571
572 struct task_struct *curr, *idle;
573 unsigned long next_balance;
574 struct mm_struct *prev_mm;
575
576 u64 clock;
577
578 atomic_t nr_iowait;
579
580 #ifdef CONFIG_SMP
581 struct root_domain *rd;
582 struct sched_domain *sd;
583
584 unsigned char idle_at_tick;
585 /* For active balancing */
586 int post_schedule;
587 int active_balance;
588 int push_cpu;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
593 unsigned long avg_load_per_task;
594
595 struct task_struct *migration_thread;
596 struct list_head migration_queue;
597
598 u64 rt_avg;
599 u64 age_stamp;
600 #endif
601
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
605
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
613
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
619
620 /* sys_sched_yield() stats */
621 unsigned int yld_count;
622
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
635 };
636
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
638
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
640 {
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
642 }
643
644 static inline int cpu_of(struct rq *rq)
645 {
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
651 }
652
653 /*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
662
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667 #define raw_rq() (&__raw_get_cpu_var(runqueues))
668
669 inline void update_rq_clock(struct rq *rq)
670 {
671 rq->clock = sched_clock_cpu(cpu_of(rq));
672 }
673
674 /*
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 */
677 #ifdef CONFIG_SCHED_DEBUG
678 # define const_debug __read_mostly
679 #else
680 # define const_debug static const
681 #endif
682
683 /**
684 * runqueue_is_locked
685 *
686 * Returns true if the current cpu runqueue is locked.
687 * This interface allows printk to be called with the runqueue lock
688 * held and know whether or not it is OK to wake up the klogd.
689 */
690 int runqueue_is_locked(void)
691 {
692 int cpu = get_cpu();
693 struct rq *rq = cpu_rq(cpu);
694 int ret;
695
696 ret = spin_is_locked(&rq->lock);
697 put_cpu();
698 return ret;
699 }
700
701 /*
702 * Debugging: various feature bits
703 */
704
705 #define SCHED_FEAT(name, enabled) \
706 __SCHED_FEAT_##name ,
707
708 enum {
709 #include "sched_features.h"
710 };
711
712 #undef SCHED_FEAT
713
714 #define SCHED_FEAT(name, enabled) \
715 (1UL << __SCHED_FEAT_##name) * enabled |
716
717 const_debug unsigned int sysctl_sched_features =
718 #include "sched_features.h"
719 0;
720
721 #undef SCHED_FEAT
722
723 #ifdef CONFIG_SCHED_DEBUG
724 #define SCHED_FEAT(name, enabled) \
725 #name ,
726
727 static __read_mostly char *sched_feat_names[] = {
728 #include "sched_features.h"
729 NULL
730 };
731
732 #undef SCHED_FEAT
733
734 static int sched_feat_show(struct seq_file *m, void *v)
735 {
736 int i;
737
738 for (i = 0; sched_feat_names[i]; i++) {
739 if (!(sysctl_sched_features & (1UL << i)))
740 seq_puts(m, "NO_");
741 seq_printf(m, "%s ", sched_feat_names[i]);
742 }
743 seq_puts(m, "\n");
744
745 return 0;
746 }
747
748 static ssize_t
749 sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
751 {
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
756
757 if (cnt > 63)
758 cnt = 63;
759
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
762
763 buf[cnt] = 0;
764
765 if (strncmp(buf, "NO_", 3) == 0) {
766 neg = 1;
767 cmp += 3;
768 }
769
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
772
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
779 }
780 }
781
782 if (!sched_feat_names[i])
783 return -EINVAL;
784
785 filp->f_pos += cnt;
786
787 return cnt;
788 }
789
790 static int sched_feat_open(struct inode *inode, struct file *filp)
791 {
792 return single_open(filp, sched_feat_show, NULL);
793 }
794
795 static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .write = sched_feat_write,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
801 };
802
803 static __init int sched_init_debug(void)
804 {
805 debugfs_create_file("sched_features", 0644, NULL, NULL,
806 &sched_feat_fops);
807
808 return 0;
809 }
810 late_initcall(sched_init_debug);
811
812 #endif
813
814 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
815
816 /*
817 * Number of tasks to iterate in a single balance run.
818 * Limited because this is done with IRQs disabled.
819 */
820 const_debug unsigned int sysctl_sched_nr_migrate = 32;
821
822 /*
823 * ratelimit for updating the group shares.
824 * default: 0.25ms
825 */
826 unsigned int sysctl_sched_shares_ratelimit = 250000;
827
828 /*
829 * Inject some fuzzyness into changing the per-cpu group shares
830 * this avoids remote rq-locks at the expense of fairness.
831 * default: 4
832 */
833 unsigned int sysctl_sched_shares_thresh = 4;
834
835 /*
836 * period over which we average the RT time consumption, measured
837 * in ms.
838 *
839 * default: 1s
840 */
841 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
842
843 /*
844 * period over which we measure -rt task cpu usage in us.
845 * default: 1s
846 */
847 unsigned int sysctl_sched_rt_period = 1000000;
848
849 static __read_mostly int scheduler_running;
850
851 /*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855 int sysctl_sched_rt_runtime = 950000;
856
857 static inline u64 global_rt_period(void)
858 {
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860 }
861
862 static inline u64 global_rt_runtime(void)
863 {
864 if (sysctl_sched_rt_runtime < 0)
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868 }
869
870 #ifndef prepare_arch_switch
871 # define prepare_arch_switch(next) do { } while (0)
872 #endif
873 #ifndef finish_arch_switch
874 # define finish_arch_switch(prev) do { } while (0)
875 #endif
876
877 static inline int task_current(struct rq *rq, struct task_struct *p)
878 {
879 return rq->curr == p;
880 }
881
882 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
883 static inline int task_running(struct rq *rq, struct task_struct *p)
884 {
885 return task_current(rq, p);
886 }
887
888 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 {
890 }
891
892 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
893 {
894 #ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897 #endif
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
905 spin_unlock_irq(&rq->lock);
906 }
907
908 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
909 static inline int task_running(struct rq *rq, struct task_struct *p)
910 {
911 #ifdef CONFIG_SMP
912 return p->oncpu;
913 #else
914 return task_current(rq, p);
915 #endif
916 }
917
918 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
919 {
920 #ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927 #endif
928 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930 #else
931 spin_unlock(&rq->lock);
932 #endif
933 }
934
935 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
936 {
937 #ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945 #endif
946 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
948 #endif
949 }
950 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
951
952 /*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
956 static inline struct rq *__task_rq_lock(struct task_struct *p)
957 __acquires(rq->lock)
958 {
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
964 spin_unlock(&rq->lock);
965 }
966 }
967
968 /*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
970 * interrupts. Note the ordering: we can safely lookup the task_rq without
971 * explicitly disabling preemption.
972 */
973 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
974 __acquires(rq->lock)
975 {
976 struct rq *rq;
977
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
984 spin_unlock_irqrestore(&rq->lock, *flags);
985 }
986 }
987
988 void task_rq_unlock_wait(struct task_struct *p)
989 {
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994 }
995
996 static void __task_rq_unlock(struct rq *rq)
997 __releases(rq->lock)
998 {
999 spin_unlock(&rq->lock);
1000 }
1001
1002 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1003 __releases(rq->lock)
1004 {
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006 }
1007
1008 /*
1009 * this_rq_lock - lock this runqueue and disable interrupts.
1010 */
1011 static struct rq *this_rq_lock(void)
1012 __acquires(rq->lock)
1013 {
1014 struct rq *rq;
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021 }
1022
1023 #ifdef CONFIG_SCHED_HRTICK
1024 /*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
1034
1035 /*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040 static inline int hrtick_enabled(struct rq *rq)
1041 {
1042 if (!sched_feat(HRTICK))
1043 return 0;
1044 if (!cpu_active(cpu_of(rq)))
1045 return 0;
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047 }
1048
1049 static void hrtick_clear(struct rq *rq)
1050 {
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053 }
1054
1055 /*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060 {
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
1066 update_rq_clock(rq);
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071 }
1072
1073 #ifdef CONFIG_SMP
1074 /*
1075 * called from hardirq (IPI) context
1076 */
1077 static void __hrtick_start(void *arg)
1078 {
1079 struct rq *rq = arg;
1080
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
1085 }
1086
1087 /*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092 static void hrtick_start(struct rq *rq, u64 delay)
1093 {
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1096
1097 hrtimer_set_expires(timer, time);
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1103 rq->hrtick_csd_pending = 1;
1104 }
1105 }
1106
1107 static int
1108 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109 {
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hrtick_clear(cpu_rq(cpu));
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124 }
1125
1126 static __init void init_hrtick(void)
1127 {
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129 }
1130 #else
1131 /*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136 static void hrtick_start(struct rq *rq, u64 delay)
1137 {
1138 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1139 HRTIMER_MODE_REL_PINNED, 0);
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SMP */
1146
1147 static void init_rq_hrtick(struct rq *rq)
1148 {
1149 #ifdef CONFIG_SMP
1150 rq->hrtick_csd_pending = 0;
1151
1152 rq->hrtick_csd.flags = 0;
1153 rq->hrtick_csd.func = __hrtick_start;
1154 rq->hrtick_csd.info = rq;
1155 #endif
1156
1157 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1158 rq->hrtick_timer.function = hrtick;
1159 }
1160 #else /* CONFIG_SCHED_HRTICK */
1161 static inline void hrtick_clear(struct rq *rq)
1162 {
1163 }
1164
1165 static inline void init_rq_hrtick(struct rq *rq)
1166 {
1167 }
1168
1169 static inline void init_hrtick(void)
1170 {
1171 }
1172 #endif /* CONFIG_SCHED_HRTICK */
1173
1174 /*
1175 * resched_task - mark a task 'to be rescheduled now'.
1176 *
1177 * On UP this means the setting of the need_resched flag, on SMP it
1178 * might also involve a cross-CPU call to trigger the scheduler on
1179 * the target CPU.
1180 */
1181 #ifdef CONFIG_SMP
1182
1183 #ifndef tsk_is_polling
1184 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185 #endif
1186
1187 static void resched_task(struct task_struct *p)
1188 {
1189 int cpu;
1190
1191 assert_spin_locked(&task_rq(p)->lock);
1192
1193 if (test_tsk_need_resched(p))
1194 return;
1195
1196 set_tsk_need_resched(p);
1197
1198 cpu = task_cpu(p);
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(p))
1205 smp_send_reschedule(cpu);
1206 }
1207
1208 static void resched_cpu(int cpu)
1209 {
1210 struct rq *rq = cpu_rq(cpu);
1211 unsigned long flags;
1212
1213 if (!spin_trylock_irqsave(&rq->lock, flags))
1214 return;
1215 resched_task(cpu_curr(cpu));
1216 spin_unlock_irqrestore(&rq->lock, flags);
1217 }
1218
1219 #ifdef CONFIG_NO_HZ
1220 /*
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1229 */
1230 void wake_up_idle_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233
1234 if (cpu == smp_processor_id())
1235 return;
1236
1237 /*
1238 * This is safe, as this function is called with the timer
1239 * wheel base lock of (cpu) held. When the CPU is on the way
1240 * to idle and has not yet set rq->curr to idle then it will
1241 * be serialized on the timer wheel base lock and take the new
1242 * timer into account automatically.
1243 */
1244 if (rq->curr != rq->idle)
1245 return;
1246
1247 /*
1248 * We can set TIF_RESCHED on the idle task of the other CPU
1249 * lockless. The worst case is that the other CPU runs the
1250 * idle task through an additional NOOP schedule()
1251 */
1252 set_tsk_need_resched(rq->idle);
1253
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(rq->idle))
1257 smp_send_reschedule(cpu);
1258 }
1259 #endif /* CONFIG_NO_HZ */
1260
1261 static u64 sched_avg_period(void)
1262 {
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264 }
1265
1266 static void sched_avg_update(struct rq *rq)
1267 {
1268 s64 period = sched_avg_period();
1269
1270 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274 }
1275
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277 {
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280 }
1281
1282 #else /* !CONFIG_SMP */
1283 static void resched_task(struct task_struct *p)
1284 {
1285 assert_spin_locked(&task_rq(p)->lock);
1286 set_tsk_need_resched(p);
1287 }
1288
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290 {
1291 }
1292 #endif /* CONFIG_SMP */
1293
1294 #if BITS_PER_LONG == 32
1295 # define WMULT_CONST (~0UL)
1296 #else
1297 # define WMULT_CONST (1UL << 32)
1298 #endif
1299
1300 #define WMULT_SHIFT 32
1301
1302 /*
1303 * Shift right and round:
1304 */
1305 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1306
1307 /*
1308 * delta *= weight / lw
1309 */
1310 static unsigned long
1311 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313 {
1314 u64 tmp;
1315
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
1328 if (unlikely(tmp > WMULT_CONST))
1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1330 WMULT_SHIFT/2);
1331 else
1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333
1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 }
1336
1337 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 {
1339 lw->weight += inc;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 {
1345 lw->weight -= dec;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404 /*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409 struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413 };
1414
1415 #ifdef CONFIG_SMP
1416 static unsigned long
1417 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422 static int
1423 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
1426 #endif
1427
1428 /* Time spent by the tasks of the cpu accounting group executing in ... */
1429 enum cpuacct_stat_index {
1430 CPUACCT_STAT_USER, /* ... user mode */
1431 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1432
1433 CPUACCT_STAT_NSTATS,
1434 };
1435
1436 #ifdef CONFIG_CGROUP_CPUACCT
1437 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1438 static void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val);
1440 #else
1441 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1442 static inline void cpuacct_update_stats(struct task_struct *tsk,
1443 enum cpuacct_stat_index idx, cputime_t val) {}
1444 #endif
1445
1446 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1447 {
1448 update_load_add(&rq->load, load);
1449 }
1450
1451 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1452 {
1453 update_load_sub(&rq->load, load);
1454 }
1455
1456 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1457 typedef int (*tg_visitor)(struct task_group *, void *);
1458
1459 /*
1460 * Iterate the full tree, calling @down when first entering a node and @up when
1461 * leaving it for the final time.
1462 */
1463 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1464 {
1465 struct task_group *parent, *child;
1466 int ret;
1467
1468 rcu_read_lock();
1469 parent = &root_task_group;
1470 down:
1471 ret = (*down)(parent, data);
1472 if (ret)
1473 goto out_unlock;
1474 list_for_each_entry_rcu(child, &parent->children, siblings) {
1475 parent = child;
1476 goto down;
1477
1478 up:
1479 continue;
1480 }
1481 ret = (*up)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 out_unlock:
1490 rcu_read_unlock();
1491
1492 return ret;
1493 }
1494
1495 static int tg_nop(struct task_group *tg, void *data)
1496 {
1497 return 0;
1498 }
1499 #endif
1500
1501 #ifdef CONFIG_SMP
1502 /* Used instead of source_load when we know the type == 0 */
1503 static unsigned long weighted_cpuload(const int cpu)
1504 {
1505 return cpu_rq(cpu)->load.weight;
1506 }
1507
1508 /*
1509 * Return a low guess at the load of a migration-source cpu weighted
1510 * according to the scheduling class and "nice" value.
1511 *
1512 * We want to under-estimate the load of migration sources, to
1513 * balance conservatively.
1514 */
1515 static unsigned long source_load(int cpu, int type)
1516 {
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1519
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1522
1523 return min(rq->cpu_load[type-1], total);
1524 }
1525
1526 /*
1527 * Return a high guess at the load of a migration-target cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 */
1530 static unsigned long target_load(int cpu, int type)
1531 {
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long total = weighted_cpuload(cpu);
1534
1535 if (type == 0 || !sched_feat(LB_BIAS))
1536 return total;
1537
1538 return max(rq->cpu_load[type-1], total);
1539 }
1540
1541 static struct sched_group *group_of(int cpu)
1542 {
1543 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1544
1545 if (!sd)
1546 return NULL;
1547
1548 return sd->groups;
1549 }
1550
1551 static unsigned long power_of(int cpu)
1552 {
1553 struct sched_group *group = group_of(cpu);
1554
1555 if (!group)
1556 return SCHED_LOAD_SCALE;
1557
1558 return group->cpu_power;
1559 }
1560
1561 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1562
1563 static unsigned long cpu_avg_load_per_task(int cpu)
1564 {
1565 struct rq *rq = cpu_rq(cpu);
1566 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1567
1568 if (nr_running)
1569 rq->avg_load_per_task = rq->load.weight / nr_running;
1570 else
1571 rq->avg_load_per_task = 0;
1572
1573 return rq->avg_load_per_task;
1574 }
1575
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1577
1578 struct update_shares_data {
1579 unsigned long rq_weight[NR_CPUS];
1580 };
1581
1582 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1583
1584 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1585
1586 /*
1587 * Calculate and set the cpu's group shares.
1588 */
1589 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1590 unsigned long sd_shares,
1591 unsigned long sd_rq_weight,
1592 struct update_shares_data *usd)
1593 {
1594 unsigned long shares, rq_weight;
1595 int boost = 0;
1596
1597 rq_weight = usd->rq_weight[cpu];
1598 if (!rq_weight) {
1599 boost = 1;
1600 rq_weight = NICE_0_LOAD;
1601 }
1602
1603 /*
1604 * \Sum_j shares_j * rq_weight_i
1605 * shares_i = -----------------------------
1606 * \Sum_j rq_weight_j
1607 */
1608 shares = (sd_shares * rq_weight) / sd_rq_weight;
1609 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1610
1611 if (abs(shares - tg->se[cpu]->load.weight) >
1612 sysctl_sched_shares_thresh) {
1613 struct rq *rq = cpu_rq(cpu);
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&rq->lock, flags);
1617 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1618 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1619 __set_se_shares(tg->se[cpu], shares);
1620 spin_unlock_irqrestore(&rq->lock, flags);
1621 }
1622 }
1623
1624 /*
1625 * Re-compute the task group their per cpu shares over the given domain.
1626 * This needs to be done in a bottom-up fashion because the rq weight of a
1627 * parent group depends on the shares of its child groups.
1628 */
1629 static int tg_shares_up(struct task_group *tg, void *data)
1630 {
1631 unsigned long weight, rq_weight = 0, shares = 0;
1632 struct update_shares_data *usd;
1633 struct sched_domain *sd = data;
1634 unsigned long flags;
1635 int i;
1636
1637 if (!tg->se[0])
1638 return 0;
1639
1640 local_irq_save(flags);
1641 usd = &__get_cpu_var(update_shares_data);
1642
1643 for_each_cpu(i, sched_domain_span(sd)) {
1644 weight = tg->cfs_rq[i]->load.weight;
1645 usd->rq_weight[i] = weight;
1646
1647 /*
1648 * If there are currently no tasks on the cpu pretend there
1649 * is one of average load so that when a new task gets to
1650 * run here it will not get delayed by group starvation.
1651 */
1652 if (!weight)
1653 weight = NICE_0_LOAD;
1654
1655 rq_weight += weight;
1656 shares += tg->cfs_rq[i]->shares;
1657 }
1658
1659 if ((!shares && rq_weight) || shares > tg->shares)
1660 shares = tg->shares;
1661
1662 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1663 shares = tg->shares;
1664
1665 for_each_cpu(i, sched_domain_span(sd))
1666 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1667
1668 local_irq_restore(flags);
1669
1670 return 0;
1671 }
1672
1673 /*
1674 * Compute the cpu's hierarchical load factor for each task group.
1675 * This needs to be done in a top-down fashion because the load of a child
1676 * group is a fraction of its parents load.
1677 */
1678 static int tg_load_down(struct task_group *tg, void *data)
1679 {
1680 unsigned long load;
1681 long cpu = (long)data;
1682
1683 if (!tg->parent) {
1684 load = cpu_rq(cpu)->load.weight;
1685 } else {
1686 load = tg->parent->cfs_rq[cpu]->h_load;
1687 load *= tg->cfs_rq[cpu]->shares;
1688 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1689 }
1690
1691 tg->cfs_rq[cpu]->h_load = load;
1692
1693 return 0;
1694 }
1695
1696 static void update_shares(struct sched_domain *sd)
1697 {
1698 s64 elapsed;
1699 u64 now;
1700
1701 if (root_task_group_empty())
1702 return;
1703
1704 now = cpu_clock(raw_smp_processor_id());
1705 elapsed = now - sd->last_update;
1706
1707 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1708 sd->last_update = now;
1709 walk_tg_tree(tg_nop, tg_shares_up, sd);
1710 }
1711 }
1712
1713 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1714 {
1715 if (root_task_group_empty())
1716 return;
1717
1718 spin_unlock(&rq->lock);
1719 update_shares(sd);
1720 spin_lock(&rq->lock);
1721 }
1722
1723 static void update_h_load(long cpu)
1724 {
1725 if (root_task_group_empty())
1726 return;
1727
1728 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1729 }
1730
1731 #else
1732
1733 static inline void update_shares(struct sched_domain *sd)
1734 {
1735 }
1736
1737 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1738 {
1739 }
1740
1741 #endif
1742
1743 #ifdef CONFIG_PREEMPT
1744
1745 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1746
1747 /*
1748 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1749 * way at the expense of forcing extra atomic operations in all
1750 * invocations. This assures that the double_lock is acquired using the
1751 * same underlying policy as the spinlock_t on this architecture, which
1752 * reduces latency compared to the unfair variant below. However, it
1753 * also adds more overhead and therefore may reduce throughput.
1754 */
1755 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(this_rq->lock)
1757 __acquires(busiest->lock)
1758 __acquires(this_rq->lock)
1759 {
1760 spin_unlock(&this_rq->lock);
1761 double_rq_lock(this_rq, busiest);
1762
1763 return 1;
1764 }
1765
1766 #else
1767 /*
1768 * Unfair double_lock_balance: Optimizes throughput at the expense of
1769 * latency by eliminating extra atomic operations when the locks are
1770 * already in proper order on entry. This favors lower cpu-ids and will
1771 * grant the double lock to lower cpus over higher ids under contention,
1772 * regardless of entry order into the function.
1773 */
1774 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1775 __releases(this_rq->lock)
1776 __acquires(busiest->lock)
1777 __acquires(this_rq->lock)
1778 {
1779 int ret = 0;
1780
1781 if (unlikely(!spin_trylock(&busiest->lock))) {
1782 if (busiest < this_rq) {
1783 spin_unlock(&this_rq->lock);
1784 spin_lock(&busiest->lock);
1785 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1786 ret = 1;
1787 } else
1788 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1789 }
1790 return ret;
1791 }
1792
1793 #endif /* CONFIG_PREEMPT */
1794
1795 /*
1796 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1797 */
1798 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1799 {
1800 if (unlikely(!irqs_disabled())) {
1801 /* printk() doesn't work good under rq->lock */
1802 spin_unlock(&this_rq->lock);
1803 BUG_ON(1);
1804 }
1805
1806 return _double_lock_balance(this_rq, busiest);
1807 }
1808
1809 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1810 __releases(busiest->lock)
1811 {
1812 spin_unlock(&busiest->lock);
1813 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1814 }
1815 #endif
1816
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819 {
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1823 }
1824 #endif
1825
1826 static void calc_load_account_active(struct rq *this_rq);
1827
1828 #include "sched_stats.h"
1829 #include "sched_idletask.c"
1830 #include "sched_fair.c"
1831 #include "sched_rt.c"
1832 #ifdef CONFIG_SCHED_DEBUG
1833 # include "sched_debug.c"
1834 #endif
1835
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1839
1840 static void inc_nr_running(struct rq *rq)
1841 {
1842 rq->nr_running++;
1843 }
1844
1845 static void dec_nr_running(struct rq *rq)
1846 {
1847 rq->nr_running--;
1848 }
1849
1850 static void set_load_weight(struct task_struct *p)
1851 {
1852 if (task_has_rt_policy(p)) {
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
1857
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
1866
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 }
1870
1871 static void update_avg(u64 *avg, u64 sample)
1872 {
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875 }
1876
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1878 {
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
1882 sched_info_queued(p);
1883 p->sched_class->enqueue_task(rq, p, wakeup);
1884 p->se.on_rq = 1;
1885 }
1886
1887 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1888 {
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
1898 }
1899
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1903 }
1904
1905 /*
1906 * __normal_prio - return the priority that is based on the static prio
1907 */
1908 static inline int __normal_prio(struct task_struct *p)
1909 {
1910 return p->static_prio;
1911 }
1912
1913 /*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
1920 static inline int normal_prio(struct task_struct *p)
1921 {
1922 int prio;
1923
1924 if (task_has_rt_policy(p))
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929 }
1930
1931 /*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
1938 static int effective_prio(struct task_struct *p)
1939 {
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949 }
1950
1951 /*
1952 * activate_task - move a task to the runqueue.
1953 */
1954 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible--;
1958
1959 enqueue_task(rq, p, wakeup);
1960 inc_nr_running(rq);
1961 }
1962
1963 /*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
1966 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1967 {
1968 if (task_contributes_to_load(p))
1969 rq->nr_uninterruptible++;
1970
1971 dequeue_task(rq, p, sleep);
1972 dec_nr_running(rq);
1973 }
1974
1975 /**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
1979 inline int task_curr(const struct task_struct *p)
1980 {
1981 return cpu_curr(task_cpu(p)) == p;
1982 }
1983
1984 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1985 {
1986 set_task_rq(p, cpu);
1987 #ifdef CONFIG_SMP
1988 /*
1989 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1990 * successfuly executed on another CPU. We must ensure that updates of
1991 * per-task data have been completed by this moment.
1992 */
1993 smp_wmb();
1994 task_thread_info(p)->cpu = cpu;
1995 #endif
1996 }
1997
1998 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1999 const struct sched_class *prev_class,
2000 int oldprio, int running)
2001 {
2002 if (prev_class != p->sched_class) {
2003 if (prev_class->switched_from)
2004 prev_class->switched_from(rq, p, running);
2005 p->sched_class->switched_to(rq, p, running);
2006 } else
2007 p->sched_class->prio_changed(rq, p, oldprio, running);
2008 }
2009
2010 #ifdef CONFIG_SMP
2011 /*
2012 * Is this task likely cache-hot:
2013 */
2014 static int
2015 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2016 {
2017 s64 delta;
2018
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
2022 if (sched_feat(CACHE_HOT_BUDDY) &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2026
2027 if (p->sched_class != &fair_sched_class)
2028 return 0;
2029
2030 if (sysctl_sched_migration_cost == -1)
2031 return 1;
2032 if (sysctl_sched_migration_cost == 0)
2033 return 0;
2034
2035 delta = now - p->se.exec_start;
2036
2037 return delta < (s64)sysctl_sched_migration_cost;
2038 }
2039
2040
2041 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2042 {
2043 int old_cpu = task_cpu(p);
2044 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2045 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2046 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2047 u64 clock_offset;
2048
2049 clock_offset = old_rq->clock - new_rq->clock;
2050
2051 trace_sched_migrate_task(p, new_cpu);
2052
2053 #ifdef CONFIG_SCHEDSTATS
2054 if (p->se.wait_start)
2055 p->se.wait_start -= clock_offset;
2056 if (p->se.sleep_start)
2057 p->se.sleep_start -= clock_offset;
2058 if (p->se.block_start)
2059 p->se.block_start -= clock_offset;
2060 #endif
2061 if (old_cpu != new_cpu) {
2062 p->se.nr_migrations++;
2063 new_rq->nr_migrations_in++;
2064 #ifdef CONFIG_SCHEDSTATS
2065 if (task_hot(p, old_rq->clock, NULL))
2066 schedstat_inc(p, se.nr_forced2_migrations);
2067 #endif
2068 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2069 1, 1, NULL, 0);
2070 }
2071 p->se.vruntime -= old_cfsrq->min_vruntime -
2072 new_cfsrq->min_vruntime;
2073
2074 __set_task_cpu(p, new_cpu);
2075 }
2076
2077 struct migration_req {
2078 struct list_head list;
2079
2080 struct task_struct *task;
2081 int dest_cpu;
2082
2083 struct completion done;
2084 };
2085
2086 /*
2087 * The task's runqueue lock must be held.
2088 * Returns true if you have to wait for migration thread.
2089 */
2090 static int
2091 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2092 {
2093 struct rq *rq = task_rq(p);
2094
2095 /*
2096 * If the task is not on a runqueue (and not running), then
2097 * it is sufficient to simply update the task's cpu field.
2098 */
2099 if (!p->se.on_rq && !task_running(rq, p)) {
2100 set_task_cpu(p, dest_cpu);
2101 return 0;
2102 }
2103
2104 init_completion(&req->done);
2105 req->task = p;
2106 req->dest_cpu = dest_cpu;
2107 list_add(&req->list, &rq->migration_queue);
2108
2109 return 1;
2110 }
2111
2112 /*
2113 * wait_task_context_switch - wait for a thread to complete at least one
2114 * context switch.
2115 *
2116 * @p must not be current.
2117 */
2118 void wait_task_context_switch(struct task_struct *p)
2119 {
2120 unsigned long nvcsw, nivcsw, flags;
2121 int running;
2122 struct rq *rq;
2123
2124 nvcsw = p->nvcsw;
2125 nivcsw = p->nivcsw;
2126 for (;;) {
2127 /*
2128 * The runqueue is assigned before the actual context
2129 * switch. We need to take the runqueue lock.
2130 *
2131 * We could check initially without the lock but it is
2132 * very likely that we need to take the lock in every
2133 * iteration.
2134 */
2135 rq = task_rq_lock(p, &flags);
2136 running = task_running(rq, p);
2137 task_rq_unlock(rq, &flags);
2138
2139 if (likely(!running))
2140 break;
2141 /*
2142 * The switch count is incremented before the actual
2143 * context switch. We thus wait for two switches to be
2144 * sure at least one completed.
2145 */
2146 if ((p->nvcsw - nvcsw) > 1)
2147 break;
2148 if ((p->nivcsw - nivcsw) > 1)
2149 break;
2150
2151 cpu_relax();
2152 }
2153 }
2154
2155 /*
2156 * wait_task_inactive - wait for a thread to unschedule.
2157 *
2158 * If @match_state is nonzero, it's the @p->state value just checked and
2159 * not expected to change. If it changes, i.e. @p might have woken up,
2160 * then return zero. When we succeed in waiting for @p to be off its CPU,
2161 * we return a positive number (its total switch count). If a second call
2162 * a short while later returns the same number, the caller can be sure that
2163 * @p has remained unscheduled the whole time.
2164 *
2165 * The caller must ensure that the task *will* unschedule sometime soon,
2166 * else this function might spin for a *long* time. This function can't
2167 * be called with interrupts off, or it may introduce deadlock with
2168 * smp_call_function() if an IPI is sent by the same process we are
2169 * waiting to become inactive.
2170 */
2171 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2172 {
2173 unsigned long flags;
2174 int running, on_rq;
2175 unsigned long ncsw;
2176 struct rq *rq;
2177
2178 for (;;) {
2179 /*
2180 * We do the initial early heuristics without holding
2181 * any task-queue locks at all. We'll only try to get
2182 * the runqueue lock when things look like they will
2183 * work out!
2184 */
2185 rq = task_rq(p);
2186
2187 /*
2188 * If the task is actively running on another CPU
2189 * still, just relax and busy-wait without holding
2190 * any locks.
2191 *
2192 * NOTE! Since we don't hold any locks, it's not
2193 * even sure that "rq" stays as the right runqueue!
2194 * But we don't care, since "task_running()" will
2195 * return false if the runqueue has changed and p
2196 * is actually now running somewhere else!
2197 */
2198 while (task_running(rq, p)) {
2199 if (match_state && unlikely(p->state != match_state))
2200 return 0;
2201 cpu_relax();
2202 }
2203
2204 /*
2205 * Ok, time to look more closely! We need the rq
2206 * lock now, to be *sure*. If we're wrong, we'll
2207 * just go back and repeat.
2208 */
2209 rq = task_rq_lock(p, &flags);
2210 trace_sched_wait_task(rq, p);
2211 running = task_running(rq, p);
2212 on_rq = p->se.on_rq;
2213 ncsw = 0;
2214 if (!match_state || p->state == match_state)
2215 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2216 task_rq_unlock(rq, &flags);
2217
2218 /*
2219 * If it changed from the expected state, bail out now.
2220 */
2221 if (unlikely(!ncsw))
2222 break;
2223
2224 /*
2225 * Was it really running after all now that we
2226 * checked with the proper locks actually held?
2227 *
2228 * Oops. Go back and try again..
2229 */
2230 if (unlikely(running)) {
2231 cpu_relax();
2232 continue;
2233 }
2234
2235 /*
2236 * It's not enough that it's not actively running,
2237 * it must be off the runqueue _entirely_, and not
2238 * preempted!
2239 *
2240 * So if it was still runnable (but just not actively
2241 * running right now), it's preempted, and we should
2242 * yield - it could be a while.
2243 */
2244 if (unlikely(on_rq)) {
2245 schedule_timeout_uninterruptible(1);
2246 continue;
2247 }
2248
2249 /*
2250 * Ahh, all good. It wasn't running, and it wasn't
2251 * runnable, which means that it will never become
2252 * running in the future either. We're all done!
2253 */
2254 break;
2255 }
2256
2257 return ncsw;
2258 }
2259
2260 /***
2261 * kick_process - kick a running thread to enter/exit the kernel
2262 * @p: the to-be-kicked thread
2263 *
2264 * Cause a process which is running on another CPU to enter
2265 * kernel-mode, without any delay. (to get signals handled.)
2266 *
2267 * NOTE: this function doesnt have to take the runqueue lock,
2268 * because all it wants to ensure is that the remote task enters
2269 * the kernel. If the IPI races and the task has been migrated
2270 * to another CPU then no harm is done and the purpose has been
2271 * achieved as well.
2272 */
2273 void kick_process(struct task_struct *p)
2274 {
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if ((cpu != smp_processor_id()) && task_curr(p))
2280 smp_send_reschedule(cpu);
2281 preempt_enable();
2282 }
2283 EXPORT_SYMBOL_GPL(kick_process);
2284 #endif /* CONFIG_SMP */
2285
2286 /**
2287 * task_oncpu_function_call - call a function on the cpu on which a task runs
2288 * @p: the task to evaluate
2289 * @func: the function to be called
2290 * @info: the function call argument
2291 *
2292 * Calls the function @func when the task is currently running. This might
2293 * be on the current CPU, which just calls the function directly
2294 */
2295 void task_oncpu_function_call(struct task_struct *p,
2296 void (*func) (void *info), void *info)
2297 {
2298 int cpu;
2299
2300 preempt_disable();
2301 cpu = task_cpu(p);
2302 if (task_curr(p))
2303 smp_call_function_single(cpu, func, info, 1);
2304 preempt_enable();
2305 }
2306
2307 /***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2322 {
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2325 struct rq *rq;
2326
2327 if (!sched_feat(SYNC_WAKEUPS))
2328 sync = 0;
2329
2330 this_cpu = get_cpu();
2331
2332 smp_wmb();
2333 rq = task_rq_lock(p, &flags);
2334 update_rq_clock(rq);
2335 if (!(p->state & state))
2336 goto out;
2337
2338 if (p->se.on_rq)
2339 goto out_running;
2340
2341 cpu = task_cpu(p);
2342 orig_cpu = cpu;
2343
2344 #ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2347
2348 /*
2349 * In order to handle concurrent wakeups and release the rq->lock
2350 * we put the task in TASK_WAKING state.
2351 */
2352 p->state = TASK_WAKING;
2353 task_rq_unlock(rq, &flags);
2354
2355 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
2356 if (cpu != orig_cpu)
2357 set_task_cpu(p, cpu);
2358
2359 rq = task_rq_lock(p, &flags);
2360 WARN_ON(p->state != TASK_WAKING);
2361 cpu = task_cpu(p);
2362
2363 #ifdef CONFIG_SCHEDSTATS
2364 schedstat_inc(rq, ttwu_count);
2365 if (cpu == this_cpu)
2366 schedstat_inc(rq, ttwu_local);
2367 else {
2368 struct sched_domain *sd;
2369 for_each_domain(this_cpu, sd) {
2370 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2371 schedstat_inc(sd, ttwu_wake_remote);
2372 break;
2373 }
2374 }
2375 }
2376 #endif /* CONFIG_SCHEDSTATS */
2377
2378 out_activate:
2379 #endif /* CONFIG_SMP */
2380 schedstat_inc(p, se.nr_wakeups);
2381 if (sync)
2382 schedstat_inc(p, se.nr_wakeups_sync);
2383 if (orig_cpu != cpu)
2384 schedstat_inc(p, se.nr_wakeups_migrate);
2385 if (cpu == this_cpu)
2386 schedstat_inc(p, se.nr_wakeups_local);
2387 else
2388 schedstat_inc(p, se.nr_wakeups_remote);
2389 activate_task(rq, p, 1);
2390 success = 1;
2391
2392 /*
2393 * Only attribute actual wakeups done by this task.
2394 */
2395 if (!in_interrupt()) {
2396 struct sched_entity *se = &current->se;
2397 u64 sample = se->sum_exec_runtime;
2398
2399 if (se->last_wakeup)
2400 sample -= se->last_wakeup;
2401 else
2402 sample -= se->start_runtime;
2403 update_avg(&se->avg_wakeup, sample);
2404
2405 se->last_wakeup = se->sum_exec_runtime;
2406 }
2407
2408 out_running:
2409 trace_sched_wakeup(rq, p, success);
2410 check_preempt_curr(rq, p, sync);
2411
2412 p->state = TASK_RUNNING;
2413 #ifdef CONFIG_SMP
2414 if (p->sched_class->task_wake_up)
2415 p->sched_class->task_wake_up(rq, p);
2416 #endif
2417 out:
2418 task_rq_unlock(rq, &flags);
2419 put_cpu();
2420
2421 return success;
2422 }
2423
2424 /**
2425 * wake_up_process - Wake up a specific process
2426 * @p: The process to be woken up.
2427 *
2428 * Attempt to wake up the nominated process and move it to the set of runnable
2429 * processes. Returns 1 if the process was woken up, 0 if it was already
2430 * running.
2431 *
2432 * It may be assumed that this function implies a write memory barrier before
2433 * changing the task state if and only if any tasks are woken up.
2434 */
2435 int wake_up_process(struct task_struct *p)
2436 {
2437 return try_to_wake_up(p, TASK_ALL, 0);
2438 }
2439 EXPORT_SYMBOL(wake_up_process);
2440
2441 int wake_up_state(struct task_struct *p, unsigned int state)
2442 {
2443 return try_to_wake_up(p, state, 0);
2444 }
2445
2446 /*
2447 * Perform scheduler related setup for a newly forked process p.
2448 * p is forked by current.
2449 *
2450 * __sched_fork() is basic setup used by init_idle() too:
2451 */
2452 static void __sched_fork(struct task_struct *p)
2453 {
2454 p->se.exec_start = 0;
2455 p->se.sum_exec_runtime = 0;
2456 p->se.prev_sum_exec_runtime = 0;
2457 p->se.nr_migrations = 0;
2458 p->se.last_wakeup = 0;
2459 p->se.avg_overlap = 0;
2460 p->se.start_runtime = 0;
2461 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2462
2463 #ifdef CONFIG_SCHEDSTATS
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2468
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2472
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2484
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2494
2495 #endif
2496
2497 INIT_LIST_HEAD(&p->rt.run_list);
2498 p->se.on_rq = 0;
2499 INIT_LIST_HEAD(&p->se.group_node);
2500
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503 #endif
2504
2505 /*
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
2511 p->state = TASK_RUNNING;
2512 }
2513
2514 /*
2515 * fork()/clone()-time setup:
2516 */
2517 void sched_fork(struct task_struct *p, int clone_flags)
2518 {
2519 int cpu = get_cpu();
2520
2521 __sched_fork(p);
2522
2523 /*
2524 * Make sure we do not leak PI boosting priority to the child.
2525 */
2526 p->prio = current->normal_prio;
2527
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2534
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2537
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2541 }
2542
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
2549
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
2552
2553 #ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555 #endif
2556 set_task_cpu(p, cpu);
2557
2558 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2559 if (likely(sched_info_on()))
2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
2561 #endif
2562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2563 p->oncpu = 0;
2564 #endif
2565 #ifdef CONFIG_PREEMPT
2566 /* Want to start with kernel preemption disabled. */
2567 task_thread_info(p)->preempt_count = 1;
2568 #endif
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570
2571 put_cpu();
2572 }
2573
2574 /*
2575 * wake_up_new_task - wake up a newly created task for the first time.
2576 *
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2580 */
2581 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2582 {
2583 unsigned long flags;
2584 struct rq *rq;
2585
2586 rq = task_rq_lock(p, &flags);
2587 BUG_ON(p->state != TASK_RUNNING);
2588 update_rq_clock(rq);
2589
2590 p->prio = effective_prio(p);
2591
2592 if (!p->sched_class->task_new || !current->se.on_rq) {
2593 activate_task(rq, p, 0);
2594 } else {
2595 /*
2596 * Let the scheduling class do new task startup
2597 * management (if any):
2598 */
2599 p->sched_class->task_new(rq, p);
2600 inc_nr_running(rq);
2601 }
2602 trace_sched_wakeup_new(rq, p, 1);
2603 check_preempt_curr(rq, p, 0);
2604 #ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607 #endif
2608 task_rq_unlock(rq, &flags);
2609 }
2610
2611 #ifdef CONFIG_PREEMPT_NOTIFIERS
2612
2613 /**
2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2615 * @notifier: notifier struct to register
2616 */
2617 void preempt_notifier_register(struct preempt_notifier *notifier)
2618 {
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2620 }
2621 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2622
2623 /**
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
2625 * @notifier: notifier struct to unregister
2626 *
2627 * This is safe to call from within a preemption notifier.
2628 */
2629 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2630 {
2631 hlist_del(&notifier->link);
2632 }
2633 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2634
2635 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636 {
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2639
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642 }
2643
2644 static void
2645 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2647 {
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2653 }
2654
2655 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2656
2657 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658 {
2659 }
2660
2661 static void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664 {
2665 }
2666
2667 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2668
2669 /**
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
2672 * @prev: the current task that is being switched out
2673 * @next: the task we are going to switch to.
2674 *
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2678 *
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2681 */
2682 static inline void
2683 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
2685 {
2686 fire_sched_out_preempt_notifiers(prev, next);
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2689 }
2690
2691 /**
2692 * finish_task_switch - clean up after a task-switch
2693 * @rq: runqueue associated with task-switch
2694 * @prev: the thread we just switched away from.
2695 *
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
2702 * so, we finish that here outside of the runqueue lock. (Doing it
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2705 */
2706 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2707 __releases(rq->lock)
2708 {
2709 struct mm_struct *mm = rq->prev_mm;
2710 long prev_state;
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
2719 * The test for TASK_DEAD must occur while the runqueue locks are
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2724 */
2725 prev_state = prev->state;
2726 finish_arch_switch(prev);
2727 perf_counter_task_sched_in(current, cpu_of(rq));
2728 finish_lock_switch(rq, prev);
2729
2730 fire_sched_in_preempt_notifiers(current);
2731 if (mm)
2732 mmdrop(mm);
2733 if (unlikely(prev_state == TASK_DEAD)) {
2734 /*
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
2737 */
2738 kprobe_flush_task(prev);
2739 put_task_struct(prev);
2740 }
2741 }
2742
2743 #ifdef CONFIG_SMP
2744
2745 /* assumes rq->lock is held */
2746 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2747 {
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2750 }
2751
2752 /* rq->lock is NOT held, but preemption is disabled */
2753 static inline void post_schedule(struct rq *rq)
2754 {
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2762
2763 rq->post_schedule = 0;
2764 }
2765 }
2766
2767 #else
2768
2769 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770 {
2771 }
2772
2773 static inline void post_schedule(struct rq *rq)
2774 {
2775 }
2776
2777 #endif
2778
2779 /**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
2783 asmlinkage void schedule_tail(struct task_struct *prev)
2784 __releases(rq->lock)
2785 {
2786 struct rq *rq = this_rq();
2787
2788 finish_task_switch(rq, prev);
2789
2790 /*
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2793 */
2794 post_schedule(rq);
2795
2796 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799 #endif
2800 if (current->set_child_tid)
2801 put_user(task_pid_vnr(current), current->set_child_tid);
2802 }
2803
2804 /*
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2807 */
2808 static inline void
2809 context_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
2811 {
2812 struct mm_struct *mm, *oldmm;
2813
2814 prepare_task_switch(rq, prev, next);
2815 trace_sched_switch(rq, prev, next);
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
2823 arch_start_context_switch(prev);
2824
2825 if (unlikely(!mm)) {
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2831
2832 if (unlikely(!prev->mm)) {
2833 prev->active_mm = NULL;
2834 rq->prev_mm = oldmm;
2835 }
2836 /*
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2841 */
2842 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2844 #endif
2845
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2848
2849 barrier();
2850 /*
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2854 */
2855 finish_task_switch(this_rq(), prev);
2856 }
2857
2858 /*
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2860 *
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2864 */
2865 unsigned long nr_running(void)
2866 {
2867 unsigned long i, sum = 0;
2868
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2871
2872 return sum;
2873 }
2874
2875 unsigned long nr_uninterruptible(void)
2876 {
2877 unsigned long i, sum = 0;
2878
2879 for_each_possible_cpu(i)
2880 sum += cpu_rq(i)->nr_uninterruptible;
2881
2882 /*
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2885 */
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2888
2889 return sum;
2890 }
2891
2892 unsigned long long nr_context_switches(void)
2893 {
2894 int i;
2895 unsigned long long sum = 0;
2896
2897 for_each_possible_cpu(i)
2898 sum += cpu_rq(i)->nr_switches;
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_iowait(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_possible_cpu(i)
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2909
2910 return sum;
2911 }
2912
2913 /* Variables and functions for calc_load */
2914 static atomic_long_t calc_load_tasks;
2915 static unsigned long calc_load_update;
2916 unsigned long avenrun[3];
2917 EXPORT_SYMBOL(avenrun);
2918
2919 /**
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2924 *
2925 * These values are estimates at best, so no need for locking.
2926 */
2927 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2928 {
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2932 }
2933
2934 static unsigned long
2935 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2936 {
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2940 }
2941
2942 /*
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2945 */
2946 void calc_global_load(void)
2947 {
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2950
2951 if (time_before(jiffies, upd))
2952 return;
2953
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
2956
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2960
2961 calc_load_update += LOAD_FREQ;
2962 }
2963
2964 /*
2965 * Either called from update_cpu_load() or from a cpu going idle
2966 */
2967 static void calc_load_account_active(struct rq *this_rq)
2968 {
2969 long nr_active, delta;
2970
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2973
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2978 }
2979 }
2980
2981 /*
2982 * Externally visible per-cpu scheduler statistics:
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2984 */
2985 u64 cpu_nr_migrations(int cpu)
2986 {
2987 return cpu_rq(cpu)->nr_migrations_in;
2988 }
2989
2990 /*
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
2993 */
2994 static void update_cpu_load(struct rq *this_rq)
2995 {
2996 unsigned long this_load = this_rq->load.weight;
2997 int i, scale;
2998
2999 this_rq->nr_load_updates++;
3000
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3004
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3006
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
3009 /*
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3013 */
3014 if (new_load > old_load)
3015 new_load += scale-1;
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3017 }
3018
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3022 }
3023 }
3024
3025 #ifdef CONFIG_SMP
3026
3027 /*
3028 * double_rq_lock - safely lock two runqueues
3029 *
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3032 */
3033 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3036 {
3037 BUG_ON(!irqs_disabled());
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
3042 if (rq1 < rq2) {
3043 spin_lock(&rq1->lock);
3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3045 } else {
3046 spin_lock(&rq2->lock);
3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3048 }
3049 }
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
3052 }
3053
3054 /*
3055 * double_rq_unlock - safely unlock two runqueues
3056 *
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3059 */
3060 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3063 {
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3069 }
3070
3071 /*
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3075 * the cpu_allowed mask is restored.
3076 */
3077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3078 {
3079 struct migration_req req;
3080 unsigned long flags;
3081 struct rq *rq;
3082
3083 rq = task_rq_lock(p, &flags);
3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3085 || unlikely(!cpu_active(dest_cpu)))
3086 goto out;
3087
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
3092
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
3098
3099 return;
3100 }
3101 out:
3102 task_rq_unlock(rq, &flags);
3103 }
3104
3105 /*
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
3108 */
3109 void sched_exec(void)
3110 {
3111 int new_cpu, this_cpu = get_cpu();
3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3113 put_cpu();
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
3116 }
3117
3118 /*
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3121 */
3122 static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
3124 {
3125 deactivate_task(src_rq, p, 0);
3126 set_task_cpu(p, this_cpu);
3127 activate_task(this_rq, p, 0);
3128 /*
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3131 */
3132 check_preempt_curr(this_rq, p, 0);
3133 }
3134
3135 /*
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3137 */
3138 static
3139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142 {
3143 int tsk_cache_hot = 0;
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3151 schedstat_inc(p, se.nr_failed_migrations_affine);
3152 return 0;
3153 }
3154 *all_pinned = 0;
3155
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
3158 return 0;
3159 }
3160
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(sd, lb_hot_gained[idle]);
3173 schedstat_inc(p, se.nr_forced_migrations);
3174 }
3175 #endif
3176 return 1;
3177 }
3178
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.nr_failed_migrations_hot);
3181 return 0;
3182 }
3183 return 1;
3184 }
3185
3186 static unsigned long
3187 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
3191 {
3192 int loops = 0, pulled = 0, pinned = 0;
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
3195
3196 if (max_load_move == 0)
3197 goto out;
3198
3199 pinned = 1;
3200
3201 /*
3202 * Start the load-balancing iterator:
3203 */
3204 p = iterator->start(iterator->arg);
3205 next:
3206 if (!p || loops++ > sysctl_sched_nr_migrate)
3207 goto out;
3208
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3211 p = iterator->next(iterator->arg);
3212 goto next;
3213 }
3214
3215 pull_task(busiest, p, this_rq, this_cpu);
3216 pulled++;
3217 rem_load_move -= p->se.load.weight;
3218
3219 #ifdef CONFIG_PREEMPT
3220 /*
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3224 */
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227 #endif
3228
3229 /*
3230 * We only want to steal up to the prescribed amount of weighted load.
3231 */
3232 if (rem_load_move > 0) {
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
3235 p = iterator->next(iterator->arg);
3236 goto next;
3237 }
3238 out:
3239 /*
3240 * Right now, this is one of only two places pull_task() is called,
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3243 */
3244 schedstat_add(sd, lb_gained[idle], pulled);
3245
3246 if (all_pinned)
3247 *all_pinned = pinned;
3248
3249 return max_load_move - rem_load_move;
3250 }
3251
3252 /*
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
3256 *
3257 * Called with both runqueues locked.
3258 */
3259 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3260 unsigned long max_load_move,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3263 {
3264 const struct sched_class *class = sched_class_highest;
3265 unsigned long total_load_moved = 0;
3266 int this_best_prio = this_rq->curr->prio;
3267
3268 do {
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
3271 max_load_move - total_load_moved,
3272 sd, idle, all_pinned, &this_best_prio);
3273 class = class->next;
3274
3275 #ifdef CONFIG_PREEMPT
3276 /*
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3280 */
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
3283 #endif
3284 } while (class && max_load_move > total_load_moved);
3285
3286 return total_load_moved > 0;
3287 }
3288
3289 static int
3290 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3293 {
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3296
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3300 /*
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3304 */
3305 schedstat_inc(sd, lb_gained[idle]);
3306
3307 return 1;
3308 }
3309 p = iterator->next(iterator->arg);
3310 }
3311
3312 return 0;
3313 }
3314
3315 /*
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3324 {
3325 const struct sched_class *class;
3326
3327 for_each_class(class) {
3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3329 return 1;
3330 }
3331
3332 return 0;
3333 }
3334 /********** Helpers for find_busiest_group ************************/
3335 /*
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
3338 */
3339 struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3345
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3350
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3355
3356 int group_imb; /* Is there imbalance in this sd */
3357 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
3364 #endif
3365 };
3366
3367 /*
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3369 */
3370 struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3377 };
3378
3379 /**
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3382 */
3383 static inline unsigned int group_first_cpu(struct sched_group *group)
3384 {
3385 return cpumask_first(sched_group_cpus(group));
3386 }
3387
3388 /**
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3392 */
3393 static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3395 {
3396 int load_idx;
3397
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
3400 load_idx = sd->busy_idx;
3401 break;
3402
3403 case CPU_NEWLY_IDLE:
3404 load_idx = sd->newidle_idx;
3405 break;
3406 default:
3407 load_idx = sd->idle_idx;
3408 break;
3409 }
3410
3411 return load_idx;
3412 }
3413
3414
3415 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3416 /**
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3419 *
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3423 */
3424 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3426 {
3427 /*
3428 * Busy processors will not participate in power savings
3429 * balance.
3430 */
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3437 }
3438 }
3439
3440 /**
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3443 *
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3449 */
3450 static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3452 {
3453
3454 if (!sds->power_savings_balance)
3455 return;
3456
3457 /*
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3460 */
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
3464
3465 /*
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3468 */
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
3473
3474 /*
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3478 */
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3486 }
3487
3488 /*
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3492 */
3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3494 return;
3495
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3501 }
3502 }
3503
3504 /**
3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3510 *
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3515 *
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3518 */
3519 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3521 {
3522 if (!sds->power_savings_balance)
3523 return 0;
3524
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
3528
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
3531
3532 return 1;
3533
3534 }
3535 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3538 {
3539 return;
3540 }
3541
3542 static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3544 {
3545 return;
3546 }
3547
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550 {
3551 return 0;
3552 }
3553 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554
3555
3556 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3557 {
3558 return SCHED_LOAD_SCALE;
3559 }
3560
3561 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3562 {
3563 return default_scale_freq_power(sd, cpu);
3564 }
3565
3566 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3567 {
3568 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3569 unsigned long smt_gain = sd->smt_gain;
3570
3571 smt_gain /= weight;
3572
3573 return smt_gain;
3574 }
3575
3576 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3577 {
3578 return default_scale_smt_power(sd, cpu);
3579 }
3580
3581 unsigned long scale_rt_power(int cpu)
3582 {
3583 struct rq *rq = cpu_rq(cpu);
3584 u64 total, available;
3585
3586 sched_avg_update(rq);
3587
3588 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3589 available = total - rq->rt_avg;
3590
3591 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3592 total = SCHED_LOAD_SCALE;
3593
3594 total >>= SCHED_LOAD_SHIFT;
3595
3596 return div_u64(available, total);
3597 }
3598
3599 static void update_cpu_power(struct sched_domain *sd, int cpu)
3600 {
3601 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3602 unsigned long power = SCHED_LOAD_SCALE;
3603 struct sched_group *sdg = sd->groups;
3604
3605 power *= arch_scale_freq_power(sd, cpu);
3606 power >>= SCHED_LOAD_SHIFT;
3607
3608 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3609 power *= arch_scale_smt_power(sd, cpu);
3610 power >>= SCHED_LOAD_SHIFT;
3611 }
3612
3613 power *= scale_rt_power(cpu);
3614 power >>= SCHED_LOAD_SHIFT;
3615
3616 if (!power)
3617 power = 1;
3618
3619 sdg->cpu_power = power;
3620 }
3621
3622 static void update_group_power(struct sched_domain *sd, int cpu)
3623 {
3624 struct sched_domain *child = sd->child;
3625 struct sched_group *group, *sdg = sd->groups;
3626 unsigned long power;
3627
3628 if (!child) {
3629 update_cpu_power(sd, cpu);
3630 return;
3631 }
3632
3633 power = 0;
3634
3635 group = child->groups;
3636 do {
3637 power += group->cpu_power;
3638 group = group->next;
3639 } while (group != child->groups);
3640
3641 sdg->cpu_power = power;
3642 }
3643
3644 /**
3645 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3646 * @group: sched_group whose statistics are to be updated.
3647 * @this_cpu: Cpu for which load balance is currently performed.
3648 * @idle: Idle status of this_cpu
3649 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3650 * @sd_idle: Idle status of the sched_domain containing group.
3651 * @local_group: Does group contain this_cpu.
3652 * @cpus: Set of cpus considered for load balancing.
3653 * @balance: Should we balance.
3654 * @sgs: variable to hold the statistics for this group.
3655 */
3656 static inline void update_sg_lb_stats(struct sched_domain *sd,
3657 struct sched_group *group, int this_cpu,
3658 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3659 int local_group, const struct cpumask *cpus,
3660 int *balance, struct sg_lb_stats *sgs)
3661 {
3662 unsigned long load, max_cpu_load, min_cpu_load;
3663 int i;
3664 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3665 unsigned long sum_avg_load_per_task;
3666 unsigned long avg_load_per_task;
3667
3668 if (local_group) {
3669 balance_cpu = group_first_cpu(group);
3670 if (balance_cpu == this_cpu)
3671 update_group_power(sd, this_cpu);
3672 }
3673
3674 /* Tally up the load of all CPUs in the group */
3675 sum_avg_load_per_task = avg_load_per_task = 0;
3676 max_cpu_load = 0;
3677 min_cpu_load = ~0UL;
3678
3679 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3680 struct rq *rq = cpu_rq(i);
3681
3682 if (*sd_idle && rq->nr_running)
3683 *sd_idle = 0;
3684
3685 /* Bias balancing toward cpus of our domain */
3686 if (local_group) {
3687 if (idle_cpu(i) && !first_idle_cpu) {
3688 first_idle_cpu = 1;
3689 balance_cpu = i;
3690 }
3691
3692 load = target_load(i, load_idx);
3693 } else {
3694 load = source_load(i, load_idx);
3695 if (load > max_cpu_load)
3696 max_cpu_load = load;
3697 if (min_cpu_load > load)
3698 min_cpu_load = load;
3699 }
3700
3701 sgs->group_load += load;
3702 sgs->sum_nr_running += rq->nr_running;
3703 sgs->sum_weighted_load += weighted_cpuload(i);
3704
3705 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3706 }
3707
3708 /*
3709 * First idle cpu or the first cpu(busiest) in this sched group
3710 * is eligible for doing load balancing at this and above
3711 * domains. In the newly idle case, we will allow all the cpu's
3712 * to do the newly idle load balance.
3713 */
3714 if (idle != CPU_NEWLY_IDLE && local_group &&
3715 balance_cpu != this_cpu && balance) {
3716 *balance = 0;
3717 return;
3718 }
3719
3720 /* Adjust by relative CPU power of the group */
3721 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3722
3723
3724 /*
3725 * Consider the group unbalanced when the imbalance is larger
3726 * than the average weight of two tasks.
3727 *
3728 * APZ: with cgroup the avg task weight can vary wildly and
3729 * might not be a suitable number - should we keep a
3730 * normalized nr_running number somewhere that negates
3731 * the hierarchy?
3732 */
3733 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3734 group->cpu_power;
3735
3736 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3737 sgs->group_imb = 1;
3738
3739 sgs->group_capacity =
3740 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3741 }
3742
3743 /**
3744 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3745 * @sd: sched_domain whose statistics are to be updated.
3746 * @this_cpu: Cpu for which load balance is currently performed.
3747 * @idle: Idle status of this_cpu
3748 * @sd_idle: Idle status of the sched_domain containing group.
3749 * @cpus: Set of cpus considered for load balancing.
3750 * @balance: Should we balance.
3751 * @sds: variable to hold the statistics for this sched_domain.
3752 */
3753 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3754 enum cpu_idle_type idle, int *sd_idle,
3755 const struct cpumask *cpus, int *balance,
3756 struct sd_lb_stats *sds)
3757 {
3758 struct sched_domain *child = sd->child;
3759 struct sched_group *group = sd->groups;
3760 struct sg_lb_stats sgs;
3761 int load_idx, prefer_sibling = 0;
3762
3763 if (child && child->flags & SD_PREFER_SIBLING)
3764 prefer_sibling = 1;
3765
3766 init_sd_power_savings_stats(sd, sds, idle);
3767 load_idx = get_sd_load_idx(sd, idle);
3768
3769 do {
3770 int local_group;
3771
3772 local_group = cpumask_test_cpu(this_cpu,
3773 sched_group_cpus(group));
3774 memset(&sgs, 0, sizeof(sgs));
3775 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3776 local_group, cpus, balance, &sgs);
3777
3778 if (local_group && balance && !(*balance))
3779 return;
3780
3781 sds->total_load += sgs.group_load;
3782 sds->total_pwr += group->cpu_power;
3783
3784 /*
3785 * In case the child domain prefers tasks go to siblings
3786 * first, lower the group capacity to one so that we'll try
3787 * and move all the excess tasks away.
3788 */
3789 if (prefer_sibling)
3790 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3791
3792 if (local_group) {
3793 sds->this_load = sgs.avg_load;
3794 sds->this = group;
3795 sds->this_nr_running = sgs.sum_nr_running;
3796 sds->this_load_per_task = sgs.sum_weighted_load;
3797 } else if (sgs.avg_load > sds->max_load &&
3798 (sgs.sum_nr_running > sgs.group_capacity ||
3799 sgs.group_imb)) {
3800 sds->max_load = sgs.avg_load;
3801 sds->busiest = group;
3802 sds->busiest_nr_running = sgs.sum_nr_running;
3803 sds->busiest_load_per_task = sgs.sum_weighted_load;
3804 sds->group_imb = sgs.group_imb;
3805 }
3806
3807 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3808 group = group->next;
3809 } while (group != sd->groups);
3810 }
3811
3812 /**
3813 * fix_small_imbalance - Calculate the minor imbalance that exists
3814 * amongst the groups of a sched_domain, during
3815 * load balancing.
3816 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3817 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3818 * @imbalance: Variable to store the imbalance.
3819 */
3820 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3821 int this_cpu, unsigned long *imbalance)
3822 {
3823 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3824 unsigned int imbn = 2;
3825
3826 if (sds->this_nr_running) {
3827 sds->this_load_per_task /= sds->this_nr_running;
3828 if (sds->busiest_load_per_task >
3829 sds->this_load_per_task)
3830 imbn = 1;
3831 } else
3832 sds->this_load_per_task =
3833 cpu_avg_load_per_task(this_cpu);
3834
3835 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3836 sds->busiest_load_per_task * imbn) {
3837 *imbalance = sds->busiest_load_per_task;
3838 return;
3839 }
3840
3841 /*
3842 * OK, we don't have enough imbalance to justify moving tasks,
3843 * however we may be able to increase total CPU power used by
3844 * moving them.
3845 */
3846
3847 pwr_now += sds->busiest->cpu_power *
3848 min(sds->busiest_load_per_task, sds->max_load);
3849 pwr_now += sds->this->cpu_power *
3850 min(sds->this_load_per_task, sds->this_load);
3851 pwr_now /= SCHED_LOAD_SCALE;
3852
3853 /* Amount of load we'd subtract */
3854 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3855 sds->busiest->cpu_power;
3856 if (sds->max_load > tmp)
3857 pwr_move += sds->busiest->cpu_power *
3858 min(sds->busiest_load_per_task, sds->max_load - tmp);
3859
3860 /* Amount of load we'd add */
3861 if (sds->max_load * sds->busiest->cpu_power <
3862 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3863 tmp = (sds->max_load * sds->busiest->cpu_power) /
3864 sds->this->cpu_power;
3865 else
3866 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3867 sds->this->cpu_power;
3868 pwr_move += sds->this->cpu_power *
3869 min(sds->this_load_per_task, sds->this_load + tmp);
3870 pwr_move /= SCHED_LOAD_SCALE;
3871
3872 /* Move if we gain throughput */
3873 if (pwr_move > pwr_now)
3874 *imbalance = sds->busiest_load_per_task;
3875 }
3876
3877 /**
3878 * calculate_imbalance - Calculate the amount of imbalance present within the
3879 * groups of a given sched_domain during load balance.
3880 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3881 * @this_cpu: Cpu for which currently load balance is being performed.
3882 * @imbalance: The variable to store the imbalance.
3883 */
3884 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3885 unsigned long *imbalance)
3886 {
3887 unsigned long max_pull;
3888 /*
3889 * In the presence of smp nice balancing, certain scenarios can have
3890 * max load less than avg load(as we skip the groups at or below
3891 * its cpu_power, while calculating max_load..)
3892 */
3893 if (sds->max_load < sds->avg_load) {
3894 *imbalance = 0;
3895 return fix_small_imbalance(sds, this_cpu, imbalance);
3896 }
3897
3898 /* Don't want to pull so many tasks that a group would go idle */
3899 max_pull = min(sds->max_load - sds->avg_load,
3900 sds->max_load - sds->busiest_load_per_task);
3901
3902 /* How much load to actually move to equalise the imbalance */
3903 *imbalance = min(max_pull * sds->busiest->cpu_power,
3904 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3905 / SCHED_LOAD_SCALE;
3906
3907 /*
3908 * if *imbalance is less than the average load per runnable task
3909 * there is no gaurantee that any tasks will be moved so we'll have
3910 * a think about bumping its value to force at least one task to be
3911 * moved
3912 */
3913 if (*imbalance < sds->busiest_load_per_task)
3914 return fix_small_imbalance(sds, this_cpu, imbalance);
3915
3916 }
3917 /******* find_busiest_group() helpers end here *********************/
3918
3919 /**
3920 * find_busiest_group - Returns the busiest group within the sched_domain
3921 * if there is an imbalance. If there isn't an imbalance, and
3922 * the user has opted for power-savings, it returns a group whose
3923 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3924 * such a group exists.
3925 *
3926 * Also calculates the amount of weighted load which should be moved
3927 * to restore balance.
3928 *
3929 * @sd: The sched_domain whose busiest group is to be returned.
3930 * @this_cpu: The cpu for which load balancing is currently being performed.
3931 * @imbalance: Variable which stores amount of weighted load which should
3932 * be moved to restore balance/put a group to idle.
3933 * @idle: The idle status of this_cpu.
3934 * @sd_idle: The idleness of sd
3935 * @cpus: The set of CPUs under consideration for load-balancing.
3936 * @balance: Pointer to a variable indicating if this_cpu
3937 * is the appropriate cpu to perform load balancing at this_level.
3938 *
3939 * Returns: - the busiest group if imbalance exists.
3940 * - If no imbalance and user has opted for power-savings balance,
3941 * return the least loaded group whose CPUs can be
3942 * put to idle by rebalancing its tasks onto our group.
3943 */
3944 static struct sched_group *
3945 find_busiest_group(struct sched_domain *sd, int this_cpu,
3946 unsigned long *imbalance, enum cpu_idle_type idle,
3947 int *sd_idle, const struct cpumask *cpus, int *balance)
3948 {
3949 struct sd_lb_stats sds;
3950
3951 memset(&sds, 0, sizeof(sds));
3952
3953 /*
3954 * Compute the various statistics relavent for load balancing at
3955 * this level.
3956 */
3957 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3958 balance, &sds);
3959
3960 /* Cases where imbalance does not exist from POV of this_cpu */
3961 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3962 * at this level.
3963 * 2) There is no busy sibling group to pull from.
3964 * 3) This group is the busiest group.
3965 * 4) This group is more busy than the avg busieness at this
3966 * sched_domain.
3967 * 5) The imbalance is within the specified limit.
3968 * 6) Any rebalance would lead to ping-pong
3969 */
3970 if (balance && !(*balance))
3971 goto ret;
3972
3973 if (!sds.busiest || sds.busiest_nr_running == 0)
3974 goto out_balanced;
3975
3976 if (sds.this_load >= sds.max_load)
3977 goto out_balanced;
3978
3979 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3980
3981 if (sds.this_load >= sds.avg_load)
3982 goto out_balanced;
3983
3984 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3985 goto out_balanced;
3986
3987 sds.busiest_load_per_task /= sds.busiest_nr_running;
3988 if (sds.group_imb)
3989 sds.busiest_load_per_task =
3990 min(sds.busiest_load_per_task, sds.avg_load);
3991
3992 /*
3993 * We're trying to get all the cpus to the average_load, so we don't
3994 * want to push ourselves above the average load, nor do we wish to
3995 * reduce the max loaded cpu below the average load, as either of these
3996 * actions would just result in more rebalancing later, and ping-pong
3997 * tasks around. Thus we look for the minimum possible imbalance.
3998 * Negative imbalances (*we* are more loaded than anyone else) will
3999 * be counted as no imbalance for these purposes -- we can't fix that
4000 * by pulling tasks to us. Be careful of negative numbers as they'll
4001 * appear as very large values with unsigned longs.
4002 */
4003 if (sds.max_load <= sds.busiest_load_per_task)
4004 goto out_balanced;
4005
4006 /* Looks like there is an imbalance. Compute it */
4007 calculate_imbalance(&sds, this_cpu, imbalance);
4008 return sds.busiest;
4009
4010 out_balanced:
4011 /*
4012 * There is no obvious imbalance. But check if we can do some balancing
4013 * to save power.
4014 */
4015 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4016 return sds.busiest;
4017 ret:
4018 *imbalance = 0;
4019 return NULL;
4020 }
4021
4022 /*
4023 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4024 */
4025 static struct rq *
4026 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4027 unsigned long imbalance, const struct cpumask *cpus)
4028 {
4029 struct rq *busiest = NULL, *rq;
4030 unsigned long max_load = 0;
4031 int i;
4032
4033 for_each_cpu(i, sched_group_cpus(group)) {
4034 unsigned long power = power_of(i);
4035 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4036 unsigned long wl;
4037
4038 if (!cpumask_test_cpu(i, cpus))
4039 continue;
4040
4041 rq = cpu_rq(i);
4042 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4043 wl /= power;
4044
4045 if (capacity && rq->nr_running == 1 && wl > imbalance)
4046 continue;
4047
4048 if (wl > max_load) {
4049 max_load = wl;
4050 busiest = rq;
4051 }
4052 }
4053
4054 return busiest;
4055 }
4056
4057 /*
4058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4059 * so long as it is large enough.
4060 */
4061 #define MAX_PINNED_INTERVAL 512
4062
4063 /* Working cpumask for load_balance and load_balance_newidle. */
4064 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4065
4066 /*
4067 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4068 * tasks if there is an imbalance.
4069 */
4070 static int load_balance(int this_cpu, struct rq *this_rq,
4071 struct sched_domain *sd, enum cpu_idle_type idle,
4072 int *balance)
4073 {
4074 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4075 struct sched_group *group;
4076 unsigned long imbalance;
4077 struct rq *busiest;
4078 unsigned long flags;
4079 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4080
4081 cpumask_setall(cpus);
4082
4083 /*
4084 * When power savings policy is enabled for the parent domain, idle
4085 * sibling can pick up load irrespective of busy siblings. In this case,
4086 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4087 * portraying it as CPU_NOT_IDLE.
4088 */
4089 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4090 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4091 sd_idle = 1;
4092
4093 schedstat_inc(sd, lb_count[idle]);
4094
4095 redo:
4096 update_shares(sd);
4097 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4098 cpus, balance);
4099
4100 if (*balance == 0)
4101 goto out_balanced;
4102
4103 if (!group) {
4104 schedstat_inc(sd, lb_nobusyg[idle]);
4105 goto out_balanced;
4106 }
4107
4108 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4109 if (!busiest) {
4110 schedstat_inc(sd, lb_nobusyq[idle]);
4111 goto out_balanced;
4112 }
4113
4114 BUG_ON(busiest == this_rq);
4115
4116 schedstat_add(sd, lb_imbalance[idle], imbalance);
4117
4118 ld_moved = 0;
4119 if (busiest->nr_running > 1) {
4120 /*
4121 * Attempt to move tasks. If find_busiest_group has found
4122 * an imbalance but busiest->nr_running <= 1, the group is
4123 * still unbalanced. ld_moved simply stays zero, so it is
4124 * correctly treated as an imbalance.
4125 */
4126 local_irq_save(flags);
4127 double_rq_lock(this_rq, busiest);
4128 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4129 imbalance, sd, idle, &all_pinned);
4130 double_rq_unlock(this_rq, busiest);
4131 local_irq_restore(flags);
4132
4133 /*
4134 * some other cpu did the load balance for us.
4135 */
4136 if (ld_moved && this_cpu != smp_processor_id())
4137 resched_cpu(this_cpu);
4138
4139 /* All tasks on this runqueue were pinned by CPU affinity */
4140 if (unlikely(all_pinned)) {
4141 cpumask_clear_cpu(cpu_of(busiest), cpus);
4142 if (!cpumask_empty(cpus))
4143 goto redo;
4144 goto out_balanced;
4145 }
4146 }
4147
4148 if (!ld_moved) {
4149 schedstat_inc(sd, lb_failed[idle]);
4150 sd->nr_balance_failed++;
4151
4152 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4153
4154 spin_lock_irqsave(&busiest->lock, flags);
4155
4156 /* don't kick the migration_thread, if the curr
4157 * task on busiest cpu can't be moved to this_cpu
4158 */
4159 if (!cpumask_test_cpu(this_cpu,
4160 &busiest->curr->cpus_allowed)) {
4161 spin_unlock_irqrestore(&busiest->lock, flags);
4162 all_pinned = 1;
4163 goto out_one_pinned;
4164 }
4165
4166 if (!busiest->active_balance) {
4167 busiest->active_balance = 1;
4168 busiest->push_cpu = this_cpu;
4169 active_balance = 1;
4170 }
4171 spin_unlock_irqrestore(&busiest->lock, flags);
4172 if (active_balance)
4173 wake_up_process(busiest->migration_thread);
4174
4175 /*
4176 * We've kicked active balancing, reset the failure
4177 * counter.
4178 */
4179 sd->nr_balance_failed = sd->cache_nice_tries+1;
4180 }
4181 } else
4182 sd->nr_balance_failed = 0;
4183
4184 if (likely(!active_balance)) {
4185 /* We were unbalanced, so reset the balancing interval */
4186 sd->balance_interval = sd->min_interval;
4187 } else {
4188 /*
4189 * If we've begun active balancing, start to back off. This
4190 * case may not be covered by the all_pinned logic if there
4191 * is only 1 task on the busy runqueue (because we don't call
4192 * move_tasks).
4193 */
4194 if (sd->balance_interval < sd->max_interval)
4195 sd->balance_interval *= 2;
4196 }
4197
4198 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4199 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4200 ld_moved = -1;
4201
4202 goto out;
4203
4204 out_balanced:
4205 schedstat_inc(sd, lb_balanced[idle]);
4206
4207 sd->nr_balance_failed = 0;
4208
4209 out_one_pinned:
4210 /* tune up the balancing interval */
4211 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4212 (sd->balance_interval < sd->max_interval))
4213 sd->balance_interval *= 2;
4214
4215 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4216 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4217 ld_moved = -1;
4218 else
4219 ld_moved = 0;
4220 out:
4221 if (ld_moved)
4222 update_shares(sd);
4223 return ld_moved;
4224 }
4225
4226 /*
4227 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4228 * tasks if there is an imbalance.
4229 *
4230 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4231 * this_rq is locked.
4232 */
4233 static int
4234 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4235 {
4236 struct sched_group *group;
4237 struct rq *busiest = NULL;
4238 unsigned long imbalance;
4239 int ld_moved = 0;
4240 int sd_idle = 0;
4241 int all_pinned = 0;
4242 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4243
4244 cpumask_setall(cpus);
4245
4246 /*
4247 * When power savings policy is enabled for the parent domain, idle
4248 * sibling can pick up load irrespective of busy siblings. In this case,
4249 * let the state of idle sibling percolate up as IDLE, instead of
4250 * portraying it as CPU_NOT_IDLE.
4251 */
4252 if (sd->flags & SD_SHARE_CPUPOWER &&
4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 sd_idle = 1;
4255
4256 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4257 redo:
4258 update_shares_locked(this_rq, sd);
4259 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4260 &sd_idle, cpus, NULL);
4261 if (!group) {
4262 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4263 goto out_balanced;
4264 }
4265
4266 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4267 if (!busiest) {
4268 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4269 goto out_balanced;
4270 }
4271
4272 BUG_ON(busiest == this_rq);
4273
4274 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4275
4276 ld_moved = 0;
4277 if (busiest->nr_running > 1) {
4278 /* Attempt to move tasks */
4279 double_lock_balance(this_rq, busiest);
4280 /* this_rq->clock is already updated */
4281 update_rq_clock(busiest);
4282 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4283 imbalance, sd, CPU_NEWLY_IDLE,
4284 &all_pinned);
4285 double_unlock_balance(this_rq, busiest);
4286
4287 if (unlikely(all_pinned)) {
4288 cpumask_clear_cpu(cpu_of(busiest), cpus);
4289 if (!cpumask_empty(cpus))
4290 goto redo;
4291 }
4292 }
4293
4294 if (!ld_moved) {
4295 int active_balance = 0;
4296
4297 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4298 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4299 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4300 return -1;
4301
4302 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4303 return -1;
4304
4305 if (sd->nr_balance_failed++ < 2)
4306 return -1;
4307
4308 /*
4309 * The only task running in a non-idle cpu can be moved to this
4310 * cpu in an attempt to completely freeup the other CPU
4311 * package. The same method used to move task in load_balance()
4312 * have been extended for load_balance_newidle() to speedup
4313 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4314 *
4315 * The package power saving logic comes from
4316 * find_busiest_group(). If there are no imbalance, then
4317 * f_b_g() will return NULL. However when sched_mc={1,2} then
4318 * f_b_g() will select a group from which a running task may be
4319 * pulled to this cpu in order to make the other package idle.
4320 * If there is no opportunity to make a package idle and if
4321 * there are no imbalance, then f_b_g() will return NULL and no
4322 * action will be taken in load_balance_newidle().
4323 *
4324 * Under normal task pull operation due to imbalance, there
4325 * will be more than one task in the source run queue and
4326 * move_tasks() will succeed. ld_moved will be true and this
4327 * active balance code will not be triggered.
4328 */
4329
4330 /* Lock busiest in correct order while this_rq is held */
4331 double_lock_balance(this_rq, busiest);
4332
4333 /*
4334 * don't kick the migration_thread, if the curr
4335 * task on busiest cpu can't be moved to this_cpu
4336 */
4337 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4338 double_unlock_balance(this_rq, busiest);
4339 all_pinned = 1;
4340 return ld_moved;
4341 }
4342
4343 if (!busiest->active_balance) {
4344 busiest->active_balance = 1;
4345 busiest->push_cpu = this_cpu;
4346 active_balance = 1;
4347 }
4348
4349 double_unlock_balance(this_rq, busiest);
4350 /*
4351 * Should not call ttwu while holding a rq->lock
4352 */
4353 spin_unlock(&this_rq->lock);
4354 if (active_balance)
4355 wake_up_process(busiest->migration_thread);
4356 spin_lock(&this_rq->lock);
4357
4358 } else
4359 sd->nr_balance_failed = 0;
4360
4361 update_shares_locked(this_rq, sd);
4362 return ld_moved;
4363
4364 out_balanced:
4365 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4366 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4367 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4368 return -1;
4369 sd->nr_balance_failed = 0;
4370
4371 return 0;
4372 }
4373
4374 /*
4375 * idle_balance is called by schedule() if this_cpu is about to become
4376 * idle. Attempts to pull tasks from other CPUs.
4377 */
4378 static void idle_balance(int this_cpu, struct rq *this_rq)
4379 {
4380 struct sched_domain *sd;
4381 int pulled_task = 0;
4382 unsigned long next_balance = jiffies + HZ;
4383
4384 for_each_domain(this_cpu, sd) {
4385 unsigned long interval;
4386
4387 if (!(sd->flags & SD_LOAD_BALANCE))
4388 continue;
4389
4390 if (sd->flags & SD_BALANCE_NEWIDLE)
4391 /* If we've pulled tasks over stop searching: */
4392 pulled_task = load_balance_newidle(this_cpu, this_rq,
4393 sd);
4394
4395 interval = msecs_to_jiffies(sd->balance_interval);
4396 if (time_after(next_balance, sd->last_balance + interval))
4397 next_balance = sd->last_balance + interval;
4398 if (pulled_task)
4399 break;
4400 }
4401 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4402 /*
4403 * We are going idle. next_balance may be set based on
4404 * a busy processor. So reset next_balance.
4405 */
4406 this_rq->next_balance = next_balance;
4407 }
4408 }
4409
4410 /*
4411 * active_load_balance is run by migration threads. It pushes running tasks
4412 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4413 * running on each physical CPU where possible, and avoids physical /
4414 * logical imbalances.
4415 *
4416 * Called with busiest_rq locked.
4417 */
4418 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4419 {
4420 int target_cpu = busiest_rq->push_cpu;
4421 struct sched_domain *sd;
4422 struct rq *target_rq;
4423
4424 /* Is there any task to move? */
4425 if (busiest_rq->nr_running <= 1)
4426 return;
4427
4428 target_rq = cpu_rq(target_cpu);
4429
4430 /*
4431 * This condition is "impossible", if it occurs
4432 * we need to fix it. Originally reported by
4433 * Bjorn Helgaas on a 128-cpu setup.
4434 */
4435 BUG_ON(busiest_rq == target_rq);
4436
4437 /* move a task from busiest_rq to target_rq */
4438 double_lock_balance(busiest_rq, target_rq);
4439 update_rq_clock(busiest_rq);
4440 update_rq_clock(target_rq);
4441
4442 /* Search for an sd spanning us and the target CPU. */
4443 for_each_domain(target_cpu, sd) {
4444 if ((sd->flags & SD_LOAD_BALANCE) &&
4445 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4446 break;
4447 }
4448
4449 if (likely(sd)) {
4450 schedstat_inc(sd, alb_count);
4451
4452 if (move_one_task(target_rq, target_cpu, busiest_rq,
4453 sd, CPU_IDLE))
4454 schedstat_inc(sd, alb_pushed);
4455 else
4456 schedstat_inc(sd, alb_failed);
4457 }
4458 double_unlock_balance(busiest_rq, target_rq);
4459 }
4460
4461 #ifdef CONFIG_NO_HZ
4462 static struct {
4463 atomic_t load_balancer;
4464 cpumask_var_t cpu_mask;
4465 cpumask_var_t ilb_grp_nohz_mask;
4466 } nohz ____cacheline_aligned = {
4467 .load_balancer = ATOMIC_INIT(-1),
4468 };
4469
4470 int get_nohz_load_balancer(void)
4471 {
4472 return atomic_read(&nohz.load_balancer);
4473 }
4474
4475 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4476 /**
4477 * lowest_flag_domain - Return lowest sched_domain containing flag.
4478 * @cpu: The cpu whose lowest level of sched domain is to
4479 * be returned.
4480 * @flag: The flag to check for the lowest sched_domain
4481 * for the given cpu.
4482 *
4483 * Returns the lowest sched_domain of a cpu which contains the given flag.
4484 */
4485 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4486 {
4487 struct sched_domain *sd;
4488
4489 for_each_domain(cpu, sd)
4490 if (sd && (sd->flags & flag))
4491 break;
4492
4493 return sd;
4494 }
4495
4496 /**
4497 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4498 * @cpu: The cpu whose domains we're iterating over.
4499 * @sd: variable holding the value of the power_savings_sd
4500 * for cpu.
4501 * @flag: The flag to filter the sched_domains to be iterated.
4502 *
4503 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4504 * set, starting from the lowest sched_domain to the highest.
4505 */
4506 #define for_each_flag_domain(cpu, sd, flag) \
4507 for (sd = lowest_flag_domain(cpu, flag); \
4508 (sd && (sd->flags & flag)); sd = sd->parent)
4509
4510 /**
4511 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4512 * @ilb_group: group to be checked for semi-idleness
4513 *
4514 * Returns: 1 if the group is semi-idle. 0 otherwise.
4515 *
4516 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4517 * and atleast one non-idle CPU. This helper function checks if the given
4518 * sched_group is semi-idle or not.
4519 */
4520 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4521 {
4522 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4523 sched_group_cpus(ilb_group));
4524
4525 /*
4526 * A sched_group is semi-idle when it has atleast one busy cpu
4527 * and atleast one idle cpu.
4528 */
4529 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4530 return 0;
4531
4532 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4533 return 0;
4534
4535 return 1;
4536 }
4537 /**
4538 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4539 * @cpu: The cpu which is nominating a new idle_load_balancer.
4540 *
4541 * Returns: Returns the id of the idle load balancer if it exists,
4542 * Else, returns >= nr_cpu_ids.
4543 *
4544 * This algorithm picks the idle load balancer such that it belongs to a
4545 * semi-idle powersavings sched_domain. The idea is to try and avoid
4546 * completely idle packages/cores just for the purpose of idle load balancing
4547 * when there are other idle cpu's which are better suited for that job.
4548 */
4549 static int find_new_ilb(int cpu)
4550 {
4551 struct sched_domain *sd;
4552 struct sched_group *ilb_group;
4553
4554 /*
4555 * Have idle load balancer selection from semi-idle packages only
4556 * when power-aware load balancing is enabled
4557 */
4558 if (!(sched_smt_power_savings || sched_mc_power_savings))
4559 goto out_done;
4560
4561 /*
4562 * Optimize for the case when we have no idle CPUs or only one
4563 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4564 */
4565 if (cpumask_weight(nohz.cpu_mask) < 2)
4566 goto out_done;
4567
4568 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4569 ilb_group = sd->groups;
4570
4571 do {
4572 if (is_semi_idle_group(ilb_group))
4573 return cpumask_first(nohz.ilb_grp_nohz_mask);
4574
4575 ilb_group = ilb_group->next;
4576
4577 } while (ilb_group != sd->groups);
4578 }
4579
4580 out_done:
4581 return cpumask_first(nohz.cpu_mask);
4582 }
4583 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4584 static inline int find_new_ilb(int call_cpu)
4585 {
4586 return cpumask_first(nohz.cpu_mask);
4587 }
4588 #endif
4589
4590 /*
4591 * This routine will try to nominate the ilb (idle load balancing)
4592 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4593 * load balancing on behalf of all those cpus. If all the cpus in the system
4594 * go into this tickless mode, then there will be no ilb owner (as there is
4595 * no need for one) and all the cpus will sleep till the next wakeup event
4596 * arrives...
4597 *
4598 * For the ilb owner, tick is not stopped. And this tick will be used
4599 * for idle load balancing. ilb owner will still be part of
4600 * nohz.cpu_mask..
4601 *
4602 * While stopping the tick, this cpu will become the ilb owner if there
4603 * is no other owner. And will be the owner till that cpu becomes busy
4604 * or if all cpus in the system stop their ticks at which point
4605 * there is no need for ilb owner.
4606 *
4607 * When the ilb owner becomes busy, it nominates another owner, during the
4608 * next busy scheduler_tick()
4609 */
4610 int select_nohz_load_balancer(int stop_tick)
4611 {
4612 int cpu = smp_processor_id();
4613
4614 if (stop_tick) {
4615 cpu_rq(cpu)->in_nohz_recently = 1;
4616
4617 if (!cpu_active(cpu)) {
4618 if (atomic_read(&nohz.load_balancer) != cpu)
4619 return 0;
4620
4621 /*
4622 * If we are going offline and still the leader,
4623 * give up!
4624 */
4625 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4626 BUG();
4627
4628 return 0;
4629 }
4630
4631 cpumask_set_cpu(cpu, nohz.cpu_mask);
4632
4633 /* time for ilb owner also to sleep */
4634 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4635 if (atomic_read(&nohz.load_balancer) == cpu)
4636 atomic_set(&nohz.load_balancer, -1);
4637 return 0;
4638 }
4639
4640 if (atomic_read(&nohz.load_balancer) == -1) {
4641 /* make me the ilb owner */
4642 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4643 return 1;
4644 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4645 int new_ilb;
4646
4647 if (!(sched_smt_power_savings ||
4648 sched_mc_power_savings))
4649 return 1;
4650 /*
4651 * Check to see if there is a more power-efficient
4652 * ilb.
4653 */
4654 new_ilb = find_new_ilb(cpu);
4655 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4656 atomic_set(&nohz.load_balancer, -1);
4657 resched_cpu(new_ilb);
4658 return 0;
4659 }
4660 return 1;
4661 }
4662 } else {
4663 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4664 return 0;
4665
4666 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4667
4668 if (atomic_read(&nohz.load_balancer) == cpu)
4669 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4670 BUG();
4671 }
4672 return 0;
4673 }
4674 #endif
4675
4676 static DEFINE_SPINLOCK(balancing);
4677
4678 /*
4679 * It checks each scheduling domain to see if it is due to be balanced,
4680 * and initiates a balancing operation if so.
4681 *
4682 * Balancing parameters are set up in arch_init_sched_domains.
4683 */
4684 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4685 {
4686 int balance = 1;
4687 struct rq *rq = cpu_rq(cpu);
4688 unsigned long interval;
4689 struct sched_domain *sd;
4690 /* Earliest time when we have to do rebalance again */
4691 unsigned long next_balance = jiffies + 60*HZ;
4692 int update_next_balance = 0;
4693 int need_serialize;
4694
4695 for_each_domain(cpu, sd) {
4696 if (!(sd->flags & SD_LOAD_BALANCE))
4697 continue;
4698
4699 interval = sd->balance_interval;
4700 if (idle != CPU_IDLE)
4701 interval *= sd->busy_factor;
4702
4703 /* scale ms to jiffies */
4704 interval = msecs_to_jiffies(interval);
4705 if (unlikely(!interval))
4706 interval = 1;
4707 if (interval > HZ*NR_CPUS/10)
4708 interval = HZ*NR_CPUS/10;
4709
4710 need_serialize = sd->flags & SD_SERIALIZE;
4711
4712 if (need_serialize) {
4713 if (!spin_trylock(&balancing))
4714 goto out;
4715 }
4716
4717 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4718 if (load_balance(cpu, rq, sd, idle, &balance)) {
4719 /*
4720 * We've pulled tasks over so either we're no
4721 * longer idle, or one of our SMT siblings is
4722 * not idle.
4723 */
4724 idle = CPU_NOT_IDLE;
4725 }
4726 sd->last_balance = jiffies;
4727 }
4728 if (need_serialize)
4729 spin_unlock(&balancing);
4730 out:
4731 if (time_after(next_balance, sd->last_balance + interval)) {
4732 next_balance = sd->last_balance + interval;
4733 update_next_balance = 1;
4734 }
4735
4736 /*
4737 * Stop the load balance at this level. There is another
4738 * CPU in our sched group which is doing load balancing more
4739 * actively.
4740 */
4741 if (!balance)
4742 break;
4743 }
4744
4745 /*
4746 * next_balance will be updated only when there is a need.
4747 * When the cpu is attached to null domain for ex, it will not be
4748 * updated.
4749 */
4750 if (likely(update_next_balance))
4751 rq->next_balance = next_balance;
4752 }
4753
4754 /*
4755 * run_rebalance_domains is triggered when needed from the scheduler tick.
4756 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4757 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4758 */
4759 static void run_rebalance_domains(struct softirq_action *h)
4760 {
4761 int this_cpu = smp_processor_id();
4762 struct rq *this_rq = cpu_rq(this_cpu);
4763 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4764 CPU_IDLE : CPU_NOT_IDLE;
4765
4766 rebalance_domains(this_cpu, idle);
4767
4768 #ifdef CONFIG_NO_HZ
4769 /*
4770 * If this cpu is the owner for idle load balancing, then do the
4771 * balancing on behalf of the other idle cpus whose ticks are
4772 * stopped.
4773 */
4774 if (this_rq->idle_at_tick &&
4775 atomic_read(&nohz.load_balancer) == this_cpu) {
4776 struct rq *rq;
4777 int balance_cpu;
4778
4779 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4780 if (balance_cpu == this_cpu)
4781 continue;
4782
4783 /*
4784 * If this cpu gets work to do, stop the load balancing
4785 * work being done for other cpus. Next load
4786 * balancing owner will pick it up.
4787 */
4788 if (need_resched())
4789 break;
4790
4791 rebalance_domains(balance_cpu, CPU_IDLE);
4792
4793 rq = cpu_rq(balance_cpu);
4794 if (time_after(this_rq->next_balance, rq->next_balance))
4795 this_rq->next_balance = rq->next_balance;
4796 }
4797 }
4798 #endif
4799 }
4800
4801 static inline int on_null_domain(int cpu)
4802 {
4803 return !rcu_dereference(cpu_rq(cpu)->sd);
4804 }
4805
4806 /*
4807 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4808 *
4809 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4810 * idle load balancing owner or decide to stop the periodic load balancing,
4811 * if the whole system is idle.
4812 */
4813 static inline void trigger_load_balance(struct rq *rq, int cpu)
4814 {
4815 #ifdef CONFIG_NO_HZ
4816 /*
4817 * If we were in the nohz mode recently and busy at the current
4818 * scheduler tick, then check if we need to nominate new idle
4819 * load balancer.
4820 */
4821 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4822 rq->in_nohz_recently = 0;
4823
4824 if (atomic_read(&nohz.load_balancer) == cpu) {
4825 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4826 atomic_set(&nohz.load_balancer, -1);
4827 }
4828
4829 if (atomic_read(&nohz.load_balancer) == -1) {
4830 int ilb = find_new_ilb(cpu);
4831
4832 if (ilb < nr_cpu_ids)
4833 resched_cpu(ilb);
4834 }
4835 }
4836
4837 /*
4838 * If this cpu is idle and doing idle load balancing for all the
4839 * cpus with ticks stopped, is it time for that to stop?
4840 */
4841 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4842 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4843 resched_cpu(cpu);
4844 return;
4845 }
4846
4847 /*
4848 * If this cpu is idle and the idle load balancing is done by
4849 * someone else, then no need raise the SCHED_SOFTIRQ
4850 */
4851 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4852 cpumask_test_cpu(cpu, nohz.cpu_mask))
4853 return;
4854 #endif
4855 /* Don't need to rebalance while attached to NULL domain */
4856 if (time_after_eq(jiffies, rq->next_balance) &&
4857 likely(!on_null_domain(cpu)))
4858 raise_softirq(SCHED_SOFTIRQ);
4859 }
4860
4861 #else /* CONFIG_SMP */
4862
4863 /*
4864 * on UP we do not need to balance between CPUs:
4865 */
4866 static inline void idle_balance(int cpu, struct rq *rq)
4867 {
4868 }
4869
4870 #endif
4871
4872 DEFINE_PER_CPU(struct kernel_stat, kstat);
4873
4874 EXPORT_PER_CPU_SYMBOL(kstat);
4875
4876 /*
4877 * Return any ns on the sched_clock that have not yet been accounted in
4878 * @p in case that task is currently running.
4879 *
4880 * Called with task_rq_lock() held on @rq.
4881 */
4882 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4883 {
4884 u64 ns = 0;
4885
4886 if (task_current(rq, p)) {
4887 update_rq_clock(rq);
4888 ns = rq->clock - p->se.exec_start;
4889 if ((s64)ns < 0)
4890 ns = 0;
4891 }
4892
4893 return ns;
4894 }
4895
4896 unsigned long long task_delta_exec(struct task_struct *p)
4897 {
4898 unsigned long flags;
4899 struct rq *rq;
4900 u64 ns = 0;
4901
4902 rq = task_rq_lock(p, &flags);
4903 ns = do_task_delta_exec(p, rq);
4904 task_rq_unlock(rq, &flags);
4905
4906 return ns;
4907 }
4908
4909 /*
4910 * Return accounted runtime for the task.
4911 * In case the task is currently running, return the runtime plus current's
4912 * pending runtime that have not been accounted yet.
4913 */
4914 unsigned long long task_sched_runtime(struct task_struct *p)
4915 {
4916 unsigned long flags;
4917 struct rq *rq;
4918 u64 ns = 0;
4919
4920 rq = task_rq_lock(p, &flags);
4921 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4922 task_rq_unlock(rq, &flags);
4923
4924 return ns;
4925 }
4926
4927 /*
4928 * Return sum_exec_runtime for the thread group.
4929 * In case the task is currently running, return the sum plus current's
4930 * pending runtime that have not been accounted yet.
4931 *
4932 * Note that the thread group might have other running tasks as well,
4933 * so the return value not includes other pending runtime that other
4934 * running tasks might have.
4935 */
4936 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4937 {
4938 struct task_cputime totals;
4939 unsigned long flags;
4940 struct rq *rq;
4941 u64 ns;
4942
4943 rq = task_rq_lock(p, &flags);
4944 thread_group_cputime(p, &totals);
4945 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4946 task_rq_unlock(rq, &flags);
4947
4948 return ns;
4949 }
4950
4951 /*
4952 * Account user cpu time to a process.
4953 * @p: the process that the cpu time gets accounted to
4954 * @cputime: the cpu time spent in user space since the last update
4955 * @cputime_scaled: cputime scaled by cpu frequency
4956 */
4957 void account_user_time(struct task_struct *p, cputime_t cputime,
4958 cputime_t cputime_scaled)
4959 {
4960 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4961 cputime64_t tmp;
4962
4963 /* Add user time to process. */
4964 p->utime = cputime_add(p->utime, cputime);
4965 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4966 account_group_user_time(p, cputime);
4967
4968 /* Add user time to cpustat. */
4969 tmp = cputime_to_cputime64(cputime);
4970 if (TASK_NICE(p) > 0)
4971 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4972 else
4973 cpustat->user = cputime64_add(cpustat->user, tmp);
4974
4975 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4976 /* Account for user time used */
4977 acct_update_integrals(p);
4978 }
4979
4980 /*
4981 * Account guest cpu time to a process.
4982 * @p: the process that the cpu time gets accounted to
4983 * @cputime: the cpu time spent in virtual machine since the last update
4984 * @cputime_scaled: cputime scaled by cpu frequency
4985 */
4986 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4987 cputime_t cputime_scaled)
4988 {
4989 cputime64_t tmp;
4990 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4991
4992 tmp = cputime_to_cputime64(cputime);
4993
4994 /* Add guest time to process. */
4995 p->utime = cputime_add(p->utime, cputime);
4996 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4997 account_group_user_time(p, cputime);
4998 p->gtime = cputime_add(p->gtime, cputime);
4999
5000 /* Add guest time to cpustat. */
5001 cpustat->user = cputime64_add(cpustat->user, tmp);
5002 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5003 }
5004
5005 /*
5006 * Account system cpu time to a process.
5007 * @p: the process that the cpu time gets accounted to
5008 * @hardirq_offset: the offset to subtract from hardirq_count()
5009 * @cputime: the cpu time spent in kernel space since the last update
5010 * @cputime_scaled: cputime scaled by cpu frequency
5011 */
5012 void account_system_time(struct task_struct *p, int hardirq_offset,
5013 cputime_t cputime, cputime_t cputime_scaled)
5014 {
5015 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5016 cputime64_t tmp;
5017
5018 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5019 account_guest_time(p, cputime, cputime_scaled);
5020 return;
5021 }
5022
5023 /* Add system time to process. */
5024 p->stime = cputime_add(p->stime, cputime);
5025 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5026 account_group_system_time(p, cputime);
5027
5028 /* Add system time to cpustat. */
5029 tmp = cputime_to_cputime64(cputime);
5030 if (hardirq_count() - hardirq_offset)
5031 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5032 else if (softirq_count())
5033 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5034 else
5035 cpustat->system = cputime64_add(cpustat->system, tmp);
5036
5037 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5038
5039 /* Account for system time used */
5040 acct_update_integrals(p);
5041 }
5042
5043 /*
5044 * Account for involuntary wait time.
5045 * @steal: the cpu time spent in involuntary wait
5046 */
5047 void account_steal_time(cputime_t cputime)
5048 {
5049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5050 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5051
5052 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5053 }
5054
5055 /*
5056 * Account for idle time.
5057 * @cputime: the cpu time spent in idle wait
5058 */
5059 void account_idle_time(cputime_t cputime)
5060 {
5061 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5062 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5063 struct rq *rq = this_rq();
5064
5065 if (atomic_read(&rq->nr_iowait) > 0)
5066 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5067 else
5068 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5069 }
5070
5071 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5072
5073 /*
5074 * Account a single tick of cpu time.
5075 * @p: the process that the cpu time gets accounted to
5076 * @user_tick: indicates if the tick is a user or a system tick
5077 */
5078 void account_process_tick(struct task_struct *p, int user_tick)
5079 {
5080 cputime_t one_jiffy = jiffies_to_cputime(1);
5081 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5082 struct rq *rq = this_rq();
5083
5084 if (user_tick)
5085 account_user_time(p, one_jiffy, one_jiffy_scaled);
5086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5087 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5088 one_jiffy_scaled);
5089 else
5090 account_idle_time(one_jiffy);
5091 }
5092
5093 /*
5094 * Account multiple ticks of steal time.
5095 * @p: the process from which the cpu time has been stolen
5096 * @ticks: number of stolen ticks
5097 */
5098 void account_steal_ticks(unsigned long ticks)
5099 {
5100 account_steal_time(jiffies_to_cputime(ticks));
5101 }
5102
5103 /*
5104 * Account multiple ticks of idle time.
5105 * @ticks: number of stolen ticks
5106 */
5107 void account_idle_ticks(unsigned long ticks)
5108 {
5109 account_idle_time(jiffies_to_cputime(ticks));
5110 }
5111
5112 #endif
5113
5114 /*
5115 * Use precise platform statistics if available:
5116 */
5117 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5118 cputime_t task_utime(struct task_struct *p)
5119 {
5120 return p->utime;
5121 }
5122
5123 cputime_t task_stime(struct task_struct *p)
5124 {
5125 return p->stime;
5126 }
5127 #else
5128 cputime_t task_utime(struct task_struct *p)
5129 {
5130 clock_t utime = cputime_to_clock_t(p->utime),
5131 total = utime + cputime_to_clock_t(p->stime);
5132 u64 temp;
5133
5134 /*
5135 * Use CFS's precise accounting:
5136 */
5137 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5138
5139 if (total) {
5140 temp *= utime;
5141 do_div(temp, total);
5142 }
5143 utime = (clock_t)temp;
5144
5145 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5146 return p->prev_utime;
5147 }
5148
5149 cputime_t task_stime(struct task_struct *p)
5150 {
5151 clock_t stime;
5152
5153 /*
5154 * Use CFS's precise accounting. (we subtract utime from
5155 * the total, to make sure the total observed by userspace
5156 * grows monotonically - apps rely on that):
5157 */
5158 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5159 cputime_to_clock_t(task_utime(p));
5160
5161 if (stime >= 0)
5162 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5163
5164 return p->prev_stime;
5165 }
5166 #endif
5167
5168 inline cputime_t task_gtime(struct task_struct *p)
5169 {
5170 return p->gtime;
5171 }
5172
5173 /*
5174 * This function gets called by the timer code, with HZ frequency.
5175 * We call it with interrupts disabled.
5176 *
5177 * It also gets called by the fork code, when changing the parent's
5178 * timeslices.
5179 */
5180 void scheduler_tick(void)
5181 {
5182 int cpu = smp_processor_id();
5183 struct rq *rq = cpu_rq(cpu);
5184 struct task_struct *curr = rq->curr;
5185
5186 sched_clock_tick();
5187
5188 spin_lock(&rq->lock);
5189 update_rq_clock(rq);
5190 update_cpu_load(rq);
5191 curr->sched_class->task_tick(rq, curr, 0);
5192 spin_unlock(&rq->lock);
5193
5194 perf_counter_task_tick(curr, cpu);
5195
5196 #ifdef CONFIG_SMP
5197 rq->idle_at_tick = idle_cpu(cpu);
5198 trigger_load_balance(rq, cpu);
5199 #endif
5200 }
5201
5202 notrace unsigned long get_parent_ip(unsigned long addr)
5203 {
5204 if (in_lock_functions(addr)) {
5205 addr = CALLER_ADDR2;
5206 if (in_lock_functions(addr))
5207 addr = CALLER_ADDR3;
5208 }
5209 return addr;
5210 }
5211
5212 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5213 defined(CONFIG_PREEMPT_TRACER))
5214
5215 void __kprobes add_preempt_count(int val)
5216 {
5217 #ifdef CONFIG_DEBUG_PREEMPT
5218 /*
5219 * Underflow?
5220 */
5221 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5222 return;
5223 #endif
5224 preempt_count() += val;
5225 #ifdef CONFIG_DEBUG_PREEMPT
5226 /*
5227 * Spinlock count overflowing soon?
5228 */
5229 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5230 PREEMPT_MASK - 10);
5231 #endif
5232 if (preempt_count() == val)
5233 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5234 }
5235 EXPORT_SYMBOL(add_preempt_count);
5236
5237 void __kprobes sub_preempt_count(int val)
5238 {
5239 #ifdef CONFIG_DEBUG_PREEMPT
5240 /*
5241 * Underflow?
5242 */
5243 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5244 return;
5245 /*
5246 * Is the spinlock portion underflowing?
5247 */
5248 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5249 !(preempt_count() & PREEMPT_MASK)))
5250 return;
5251 #endif
5252
5253 if (preempt_count() == val)
5254 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5255 preempt_count() -= val;
5256 }
5257 EXPORT_SYMBOL(sub_preempt_count);
5258
5259 #endif
5260
5261 /*
5262 * Print scheduling while atomic bug:
5263 */
5264 static noinline void __schedule_bug(struct task_struct *prev)
5265 {
5266 struct pt_regs *regs = get_irq_regs();
5267
5268 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5269 prev->comm, prev->pid, preempt_count());
5270
5271 debug_show_held_locks(prev);
5272 print_modules();
5273 if (irqs_disabled())
5274 print_irqtrace_events(prev);
5275
5276 if (regs)
5277 show_regs(regs);
5278 else
5279 dump_stack();
5280 }
5281
5282 /*
5283 * Various schedule()-time debugging checks and statistics:
5284 */
5285 static inline void schedule_debug(struct task_struct *prev)
5286 {
5287 /*
5288 * Test if we are atomic. Since do_exit() needs to call into
5289 * schedule() atomically, we ignore that path for now.
5290 * Otherwise, whine if we are scheduling when we should not be.
5291 */
5292 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5293 __schedule_bug(prev);
5294
5295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5296
5297 schedstat_inc(this_rq(), sched_count);
5298 #ifdef CONFIG_SCHEDSTATS
5299 if (unlikely(prev->lock_depth >= 0)) {
5300 schedstat_inc(this_rq(), bkl_count);
5301 schedstat_inc(prev, sched_info.bkl_count);
5302 }
5303 #endif
5304 }
5305
5306 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5307 {
5308 if (prev->state == TASK_RUNNING) {
5309 u64 runtime = prev->se.sum_exec_runtime;
5310
5311 runtime -= prev->se.prev_sum_exec_runtime;
5312 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5313
5314 /*
5315 * In order to avoid avg_overlap growing stale when we are
5316 * indeed overlapping and hence not getting put to sleep, grow
5317 * the avg_overlap on preemption.
5318 *
5319 * We use the average preemption runtime because that
5320 * correlates to the amount of cache footprint a task can
5321 * build up.
5322 */
5323 update_avg(&prev->se.avg_overlap, runtime);
5324 }
5325 prev->sched_class->put_prev_task(rq, prev);
5326 }
5327
5328 /*
5329 * Pick up the highest-prio task:
5330 */
5331 static inline struct task_struct *
5332 pick_next_task(struct rq *rq)
5333 {
5334 const struct sched_class *class;
5335 struct task_struct *p;
5336
5337 /*
5338 * Optimization: we know that if all tasks are in
5339 * the fair class we can call that function directly:
5340 */
5341 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5342 p = fair_sched_class.pick_next_task(rq);
5343 if (likely(p))
5344 return p;
5345 }
5346
5347 class = sched_class_highest;
5348 for ( ; ; ) {
5349 p = class->pick_next_task(rq);
5350 if (p)
5351 return p;
5352 /*
5353 * Will never be NULL as the idle class always
5354 * returns a non-NULL p:
5355 */
5356 class = class->next;
5357 }
5358 }
5359
5360 /*
5361 * schedule() is the main scheduler function.
5362 */
5363 asmlinkage void __sched schedule(void)
5364 {
5365 struct task_struct *prev, *next;
5366 unsigned long *switch_count;
5367 struct rq *rq;
5368 int cpu;
5369
5370 need_resched:
5371 preempt_disable();
5372 cpu = smp_processor_id();
5373 rq = cpu_rq(cpu);
5374 rcu_sched_qs(cpu);
5375 prev = rq->curr;
5376 switch_count = &prev->nivcsw;
5377
5378 release_kernel_lock(prev);
5379 need_resched_nonpreemptible:
5380
5381 schedule_debug(prev);
5382
5383 if (sched_feat(HRTICK))
5384 hrtick_clear(rq);
5385
5386 spin_lock_irq(&rq->lock);
5387 update_rq_clock(rq);
5388 clear_tsk_need_resched(prev);
5389
5390 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5391 if (unlikely(signal_pending_state(prev->state, prev)))
5392 prev->state = TASK_RUNNING;
5393 else
5394 deactivate_task(rq, prev, 1);
5395 switch_count = &prev->nvcsw;
5396 }
5397
5398 pre_schedule(rq, prev);
5399
5400 if (unlikely(!rq->nr_running))
5401 idle_balance(cpu, rq);
5402
5403 put_prev_task(rq, prev);
5404 next = pick_next_task(rq);
5405
5406 if (likely(prev != next)) {
5407 sched_info_switch(prev, next);
5408 perf_counter_task_sched_out(prev, next, cpu);
5409
5410 rq->nr_switches++;
5411 rq->curr = next;
5412 ++*switch_count;
5413
5414 context_switch(rq, prev, next); /* unlocks the rq */
5415 /*
5416 * the context switch might have flipped the stack from under
5417 * us, hence refresh the local variables.
5418 */
5419 cpu = smp_processor_id();
5420 rq = cpu_rq(cpu);
5421 } else
5422 spin_unlock_irq(&rq->lock);
5423
5424 post_schedule(rq);
5425
5426 if (unlikely(reacquire_kernel_lock(current) < 0))
5427 goto need_resched_nonpreemptible;
5428
5429 preempt_enable_no_resched();
5430 if (need_resched())
5431 goto need_resched;
5432 }
5433 EXPORT_SYMBOL(schedule);
5434
5435 #ifdef CONFIG_SMP
5436 /*
5437 * Look out! "owner" is an entirely speculative pointer
5438 * access and not reliable.
5439 */
5440 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5441 {
5442 unsigned int cpu;
5443 struct rq *rq;
5444
5445 if (!sched_feat(OWNER_SPIN))
5446 return 0;
5447
5448 #ifdef CONFIG_DEBUG_PAGEALLOC
5449 /*
5450 * Need to access the cpu field knowing that
5451 * DEBUG_PAGEALLOC could have unmapped it if
5452 * the mutex owner just released it and exited.
5453 */
5454 if (probe_kernel_address(&owner->cpu, cpu))
5455 goto out;
5456 #else
5457 cpu = owner->cpu;
5458 #endif
5459
5460 /*
5461 * Even if the access succeeded (likely case),
5462 * the cpu field may no longer be valid.
5463 */
5464 if (cpu >= nr_cpumask_bits)
5465 goto out;
5466
5467 /*
5468 * We need to validate that we can do a
5469 * get_cpu() and that we have the percpu area.
5470 */
5471 if (!cpu_online(cpu))
5472 goto out;
5473
5474 rq = cpu_rq(cpu);
5475
5476 for (;;) {
5477 /*
5478 * Owner changed, break to re-assess state.
5479 */
5480 if (lock->owner != owner)
5481 break;
5482
5483 /*
5484 * Is that owner really running on that cpu?
5485 */
5486 if (task_thread_info(rq->curr) != owner || need_resched())
5487 return 0;
5488
5489 cpu_relax();
5490 }
5491 out:
5492 return 1;
5493 }
5494 #endif
5495
5496 #ifdef CONFIG_PREEMPT
5497 /*
5498 * this is the entry point to schedule() from in-kernel preemption
5499 * off of preempt_enable. Kernel preemptions off return from interrupt
5500 * occur there and call schedule directly.
5501 */
5502 asmlinkage void __sched preempt_schedule(void)
5503 {
5504 struct thread_info *ti = current_thread_info();
5505
5506 /*
5507 * If there is a non-zero preempt_count or interrupts are disabled,
5508 * we do not want to preempt the current task. Just return..
5509 */
5510 if (likely(ti->preempt_count || irqs_disabled()))
5511 return;
5512
5513 do {
5514 add_preempt_count(PREEMPT_ACTIVE);
5515 schedule();
5516 sub_preempt_count(PREEMPT_ACTIVE);
5517
5518 /*
5519 * Check again in case we missed a preemption opportunity
5520 * between schedule and now.
5521 */
5522 barrier();
5523 } while (need_resched());
5524 }
5525 EXPORT_SYMBOL(preempt_schedule);
5526
5527 /*
5528 * this is the entry point to schedule() from kernel preemption
5529 * off of irq context.
5530 * Note, that this is called and return with irqs disabled. This will
5531 * protect us against recursive calling from irq.
5532 */
5533 asmlinkage void __sched preempt_schedule_irq(void)
5534 {
5535 struct thread_info *ti = current_thread_info();
5536
5537 /* Catch callers which need to be fixed */
5538 BUG_ON(ti->preempt_count || !irqs_disabled());
5539
5540 do {
5541 add_preempt_count(PREEMPT_ACTIVE);
5542 local_irq_enable();
5543 schedule();
5544 local_irq_disable();
5545 sub_preempt_count(PREEMPT_ACTIVE);
5546
5547 /*
5548 * Check again in case we missed a preemption opportunity
5549 * between schedule and now.
5550 */
5551 barrier();
5552 } while (need_resched());
5553 }
5554
5555 #endif /* CONFIG_PREEMPT */
5556
5557 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5558 void *key)
5559 {
5560 return try_to_wake_up(curr->private, mode, sync);
5561 }
5562 EXPORT_SYMBOL(default_wake_function);
5563
5564 /*
5565 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5566 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5567 * number) then we wake all the non-exclusive tasks and one exclusive task.
5568 *
5569 * There are circumstances in which we can try to wake a task which has already
5570 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5571 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5572 */
5573 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5574 int nr_exclusive, int sync, void *key)
5575 {
5576 wait_queue_t *curr, *next;
5577
5578 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5579 unsigned flags = curr->flags;
5580
5581 if (curr->func(curr, mode, sync, key) &&
5582 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5583 break;
5584 }
5585 }
5586
5587 /**
5588 * __wake_up - wake up threads blocked on a waitqueue.
5589 * @q: the waitqueue
5590 * @mode: which threads
5591 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5592 * @key: is directly passed to the wakeup function
5593 *
5594 * It may be assumed that this function implies a write memory barrier before
5595 * changing the task state if and only if any tasks are woken up.
5596 */
5597 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5598 int nr_exclusive, void *key)
5599 {
5600 unsigned long flags;
5601
5602 spin_lock_irqsave(&q->lock, flags);
5603 __wake_up_common(q, mode, nr_exclusive, 0, key);
5604 spin_unlock_irqrestore(&q->lock, flags);
5605 }
5606 EXPORT_SYMBOL(__wake_up);
5607
5608 /*
5609 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5610 */
5611 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5612 {
5613 __wake_up_common(q, mode, 1, 0, NULL);
5614 }
5615
5616 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5617 {
5618 __wake_up_common(q, mode, 1, 0, key);
5619 }
5620
5621 /**
5622 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5623 * @q: the waitqueue
5624 * @mode: which threads
5625 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5626 * @key: opaque value to be passed to wakeup targets
5627 *
5628 * The sync wakeup differs that the waker knows that it will schedule
5629 * away soon, so while the target thread will be woken up, it will not
5630 * be migrated to another CPU - ie. the two threads are 'synchronized'
5631 * with each other. This can prevent needless bouncing between CPUs.
5632 *
5633 * On UP it can prevent extra preemption.
5634 *
5635 * It may be assumed that this function implies a write memory barrier before
5636 * changing the task state if and only if any tasks are woken up.
5637 */
5638 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5639 int nr_exclusive, void *key)
5640 {
5641 unsigned long flags;
5642 int sync = 1;
5643
5644 if (unlikely(!q))
5645 return;
5646
5647 if (unlikely(!nr_exclusive))
5648 sync = 0;
5649
5650 spin_lock_irqsave(&q->lock, flags);
5651 __wake_up_common(q, mode, nr_exclusive, sync, key);
5652 spin_unlock_irqrestore(&q->lock, flags);
5653 }
5654 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5655
5656 /*
5657 * __wake_up_sync - see __wake_up_sync_key()
5658 */
5659 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5660 {
5661 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5662 }
5663 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5664
5665 /**
5666 * complete: - signals a single thread waiting on this completion
5667 * @x: holds the state of this particular completion
5668 *
5669 * This will wake up a single thread waiting on this completion. Threads will be
5670 * awakened in the same order in which they were queued.
5671 *
5672 * See also complete_all(), wait_for_completion() and related routines.
5673 *
5674 * It may be assumed that this function implies a write memory barrier before
5675 * changing the task state if and only if any tasks are woken up.
5676 */
5677 void complete(struct completion *x)
5678 {
5679 unsigned long flags;
5680
5681 spin_lock_irqsave(&x->wait.lock, flags);
5682 x->done++;
5683 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5684 spin_unlock_irqrestore(&x->wait.lock, flags);
5685 }
5686 EXPORT_SYMBOL(complete);
5687
5688 /**
5689 * complete_all: - signals all threads waiting on this completion
5690 * @x: holds the state of this particular completion
5691 *
5692 * This will wake up all threads waiting on this particular completion event.
5693 *
5694 * It may be assumed that this function implies a write memory barrier before
5695 * changing the task state if and only if any tasks are woken up.
5696 */
5697 void complete_all(struct completion *x)
5698 {
5699 unsigned long flags;
5700
5701 spin_lock_irqsave(&x->wait.lock, flags);
5702 x->done += UINT_MAX/2;
5703 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5704 spin_unlock_irqrestore(&x->wait.lock, flags);
5705 }
5706 EXPORT_SYMBOL(complete_all);
5707
5708 static inline long __sched
5709 do_wait_for_common(struct completion *x, long timeout, int state)
5710 {
5711 if (!x->done) {
5712 DECLARE_WAITQUEUE(wait, current);
5713
5714 wait.flags |= WQ_FLAG_EXCLUSIVE;
5715 __add_wait_queue_tail(&x->wait, &wait);
5716 do {
5717 if (signal_pending_state(state, current)) {
5718 timeout = -ERESTARTSYS;
5719 break;
5720 }
5721 __set_current_state(state);
5722 spin_unlock_irq(&x->wait.lock);
5723 timeout = schedule_timeout(timeout);
5724 spin_lock_irq(&x->wait.lock);
5725 } while (!x->done && timeout);
5726 __remove_wait_queue(&x->wait, &wait);
5727 if (!x->done)
5728 return timeout;
5729 }
5730 x->done--;
5731 return timeout ?: 1;
5732 }
5733
5734 static long __sched
5735 wait_for_common(struct completion *x, long timeout, int state)
5736 {
5737 might_sleep();
5738
5739 spin_lock_irq(&x->wait.lock);
5740 timeout = do_wait_for_common(x, timeout, state);
5741 spin_unlock_irq(&x->wait.lock);
5742 return timeout;
5743 }
5744
5745 /**
5746 * wait_for_completion: - waits for completion of a task
5747 * @x: holds the state of this particular completion
5748 *
5749 * This waits to be signaled for completion of a specific task. It is NOT
5750 * interruptible and there is no timeout.
5751 *
5752 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5753 * and interrupt capability. Also see complete().
5754 */
5755 void __sched wait_for_completion(struct completion *x)
5756 {
5757 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5758 }
5759 EXPORT_SYMBOL(wait_for_completion);
5760
5761 /**
5762 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5763 * @x: holds the state of this particular completion
5764 * @timeout: timeout value in jiffies
5765 *
5766 * This waits for either a completion of a specific task to be signaled or for a
5767 * specified timeout to expire. The timeout is in jiffies. It is not
5768 * interruptible.
5769 */
5770 unsigned long __sched
5771 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5772 {
5773 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5774 }
5775 EXPORT_SYMBOL(wait_for_completion_timeout);
5776
5777 /**
5778 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5779 * @x: holds the state of this particular completion
5780 *
5781 * This waits for completion of a specific task to be signaled. It is
5782 * interruptible.
5783 */
5784 int __sched wait_for_completion_interruptible(struct completion *x)
5785 {
5786 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5787 if (t == -ERESTARTSYS)
5788 return t;
5789 return 0;
5790 }
5791 EXPORT_SYMBOL(wait_for_completion_interruptible);
5792
5793 /**
5794 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5795 * @x: holds the state of this particular completion
5796 * @timeout: timeout value in jiffies
5797 *
5798 * This waits for either a completion of a specific task to be signaled or for a
5799 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5800 */
5801 unsigned long __sched
5802 wait_for_completion_interruptible_timeout(struct completion *x,
5803 unsigned long timeout)
5804 {
5805 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5806 }
5807 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5808
5809 /**
5810 * wait_for_completion_killable: - waits for completion of a task (killable)
5811 * @x: holds the state of this particular completion
5812 *
5813 * This waits to be signaled for completion of a specific task. It can be
5814 * interrupted by a kill signal.
5815 */
5816 int __sched wait_for_completion_killable(struct completion *x)
5817 {
5818 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5819 if (t == -ERESTARTSYS)
5820 return t;
5821 return 0;
5822 }
5823 EXPORT_SYMBOL(wait_for_completion_killable);
5824
5825 /**
5826 * try_wait_for_completion - try to decrement a completion without blocking
5827 * @x: completion structure
5828 *
5829 * Returns: 0 if a decrement cannot be done without blocking
5830 * 1 if a decrement succeeded.
5831 *
5832 * If a completion is being used as a counting completion,
5833 * attempt to decrement the counter without blocking. This
5834 * enables us to avoid waiting if the resource the completion
5835 * is protecting is not available.
5836 */
5837 bool try_wait_for_completion(struct completion *x)
5838 {
5839 int ret = 1;
5840
5841 spin_lock_irq(&x->wait.lock);
5842 if (!x->done)
5843 ret = 0;
5844 else
5845 x->done--;
5846 spin_unlock_irq(&x->wait.lock);
5847 return ret;
5848 }
5849 EXPORT_SYMBOL(try_wait_for_completion);
5850
5851 /**
5852 * completion_done - Test to see if a completion has any waiters
5853 * @x: completion structure
5854 *
5855 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5856 * 1 if there are no waiters.
5857 *
5858 */
5859 bool completion_done(struct completion *x)
5860 {
5861 int ret = 1;
5862
5863 spin_lock_irq(&x->wait.lock);
5864 if (!x->done)
5865 ret = 0;
5866 spin_unlock_irq(&x->wait.lock);
5867 return ret;
5868 }
5869 EXPORT_SYMBOL(completion_done);
5870
5871 static long __sched
5872 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5873 {
5874 unsigned long flags;
5875 wait_queue_t wait;
5876
5877 init_waitqueue_entry(&wait, current);
5878
5879 __set_current_state(state);
5880
5881 spin_lock_irqsave(&q->lock, flags);
5882 __add_wait_queue(q, &wait);
5883 spin_unlock(&q->lock);
5884 timeout = schedule_timeout(timeout);
5885 spin_lock_irq(&q->lock);
5886 __remove_wait_queue(q, &wait);
5887 spin_unlock_irqrestore(&q->lock, flags);
5888
5889 return timeout;
5890 }
5891
5892 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5893 {
5894 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5895 }
5896 EXPORT_SYMBOL(interruptible_sleep_on);
5897
5898 long __sched
5899 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5900 {
5901 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5902 }
5903 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5904
5905 void __sched sleep_on(wait_queue_head_t *q)
5906 {
5907 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5908 }
5909 EXPORT_SYMBOL(sleep_on);
5910
5911 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5912 {
5913 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5914 }
5915 EXPORT_SYMBOL(sleep_on_timeout);
5916
5917 #ifdef CONFIG_RT_MUTEXES
5918
5919 /*
5920 * rt_mutex_setprio - set the current priority of a task
5921 * @p: task
5922 * @prio: prio value (kernel-internal form)
5923 *
5924 * This function changes the 'effective' priority of a task. It does
5925 * not touch ->normal_prio like __setscheduler().
5926 *
5927 * Used by the rt_mutex code to implement priority inheritance logic.
5928 */
5929 void rt_mutex_setprio(struct task_struct *p, int prio)
5930 {
5931 unsigned long flags;
5932 int oldprio, on_rq, running;
5933 struct rq *rq;
5934 const struct sched_class *prev_class = p->sched_class;
5935
5936 BUG_ON(prio < 0 || prio > MAX_PRIO);
5937
5938 rq = task_rq_lock(p, &flags);
5939 update_rq_clock(rq);
5940
5941 oldprio = p->prio;
5942 on_rq = p->se.on_rq;
5943 running = task_current(rq, p);
5944 if (on_rq)
5945 dequeue_task(rq, p, 0);
5946 if (running)
5947 p->sched_class->put_prev_task(rq, p);
5948
5949 if (rt_prio(prio))
5950 p->sched_class = &rt_sched_class;
5951 else
5952 p->sched_class = &fair_sched_class;
5953
5954 p->prio = prio;
5955
5956 if (running)
5957 p->sched_class->set_curr_task(rq);
5958 if (on_rq) {
5959 enqueue_task(rq, p, 0);
5960
5961 check_class_changed(rq, p, prev_class, oldprio, running);
5962 }
5963 task_rq_unlock(rq, &flags);
5964 }
5965
5966 #endif
5967
5968 void set_user_nice(struct task_struct *p, long nice)
5969 {
5970 int old_prio, delta, on_rq;
5971 unsigned long flags;
5972 struct rq *rq;
5973
5974 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5975 return;
5976 /*
5977 * We have to be careful, if called from sys_setpriority(),
5978 * the task might be in the middle of scheduling on another CPU.
5979 */
5980 rq = task_rq_lock(p, &flags);
5981 update_rq_clock(rq);
5982 /*
5983 * The RT priorities are set via sched_setscheduler(), but we still
5984 * allow the 'normal' nice value to be set - but as expected
5985 * it wont have any effect on scheduling until the task is
5986 * SCHED_FIFO/SCHED_RR:
5987 */
5988 if (task_has_rt_policy(p)) {
5989 p->static_prio = NICE_TO_PRIO(nice);
5990 goto out_unlock;
5991 }
5992 on_rq = p->se.on_rq;
5993 if (on_rq)
5994 dequeue_task(rq, p, 0);
5995
5996 p->static_prio = NICE_TO_PRIO(nice);
5997 set_load_weight(p);
5998 old_prio = p->prio;
5999 p->prio = effective_prio(p);
6000 delta = p->prio - old_prio;
6001
6002 if (on_rq) {
6003 enqueue_task(rq, p, 0);
6004 /*
6005 * If the task increased its priority or is running and
6006 * lowered its priority, then reschedule its CPU:
6007 */
6008 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6009 resched_task(rq->curr);
6010 }
6011 out_unlock:
6012 task_rq_unlock(rq, &flags);
6013 }
6014 EXPORT_SYMBOL(set_user_nice);
6015
6016 /*
6017 * can_nice - check if a task can reduce its nice value
6018 * @p: task
6019 * @nice: nice value
6020 */
6021 int can_nice(const struct task_struct *p, const int nice)
6022 {
6023 /* convert nice value [19,-20] to rlimit style value [1,40] */
6024 int nice_rlim = 20 - nice;
6025
6026 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6027 capable(CAP_SYS_NICE));
6028 }
6029
6030 #ifdef __ARCH_WANT_SYS_NICE
6031
6032 /*
6033 * sys_nice - change the priority of the current process.
6034 * @increment: priority increment
6035 *
6036 * sys_setpriority is a more generic, but much slower function that
6037 * does similar things.
6038 */
6039 SYSCALL_DEFINE1(nice, int, increment)
6040 {
6041 long nice, retval;
6042
6043 /*
6044 * Setpriority might change our priority at the same moment.
6045 * We don't have to worry. Conceptually one call occurs first
6046 * and we have a single winner.
6047 */
6048 if (increment < -40)
6049 increment = -40;
6050 if (increment > 40)
6051 increment = 40;
6052
6053 nice = TASK_NICE(current) + increment;
6054 if (nice < -20)
6055 nice = -20;
6056 if (nice > 19)
6057 nice = 19;
6058
6059 if (increment < 0 && !can_nice(current, nice))
6060 return -EPERM;
6061
6062 retval = security_task_setnice(current, nice);
6063 if (retval)
6064 return retval;
6065
6066 set_user_nice(current, nice);
6067 return 0;
6068 }
6069
6070 #endif
6071
6072 /**
6073 * task_prio - return the priority value of a given task.
6074 * @p: the task in question.
6075 *
6076 * This is the priority value as seen by users in /proc.
6077 * RT tasks are offset by -200. Normal tasks are centered
6078 * around 0, value goes from -16 to +15.
6079 */
6080 int task_prio(const struct task_struct *p)
6081 {
6082 return p->prio - MAX_RT_PRIO;
6083 }
6084
6085 /**
6086 * task_nice - return the nice value of a given task.
6087 * @p: the task in question.
6088 */
6089 int task_nice(const struct task_struct *p)
6090 {
6091 return TASK_NICE(p);
6092 }
6093 EXPORT_SYMBOL(task_nice);
6094
6095 /**
6096 * idle_cpu - is a given cpu idle currently?
6097 * @cpu: the processor in question.
6098 */
6099 int idle_cpu(int cpu)
6100 {
6101 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6102 }
6103
6104 /**
6105 * idle_task - return the idle task for a given cpu.
6106 * @cpu: the processor in question.
6107 */
6108 struct task_struct *idle_task(int cpu)
6109 {
6110 return cpu_rq(cpu)->idle;
6111 }
6112
6113 /**
6114 * find_process_by_pid - find a process with a matching PID value.
6115 * @pid: the pid in question.
6116 */
6117 static struct task_struct *find_process_by_pid(pid_t pid)
6118 {
6119 return pid ? find_task_by_vpid(pid) : current;
6120 }
6121
6122 /* Actually do priority change: must hold rq lock. */
6123 static void
6124 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6125 {
6126 BUG_ON(p->se.on_rq);
6127
6128 p->policy = policy;
6129 switch (p->policy) {
6130 case SCHED_NORMAL:
6131 case SCHED_BATCH:
6132 case SCHED_IDLE:
6133 p->sched_class = &fair_sched_class;
6134 break;
6135 case SCHED_FIFO:
6136 case SCHED_RR:
6137 p->sched_class = &rt_sched_class;
6138 break;
6139 }
6140
6141 p->rt_priority = prio;
6142 p->normal_prio = normal_prio(p);
6143 /* we are holding p->pi_lock already */
6144 p->prio = rt_mutex_getprio(p);
6145 set_load_weight(p);
6146 }
6147
6148 /*
6149 * check the target process has a UID that matches the current process's
6150 */
6151 static bool check_same_owner(struct task_struct *p)
6152 {
6153 const struct cred *cred = current_cred(), *pcred;
6154 bool match;
6155
6156 rcu_read_lock();
6157 pcred = __task_cred(p);
6158 match = (cred->euid == pcred->euid ||
6159 cred->euid == pcred->uid);
6160 rcu_read_unlock();
6161 return match;
6162 }
6163
6164 static int __sched_setscheduler(struct task_struct *p, int policy,
6165 struct sched_param *param, bool user)
6166 {
6167 int retval, oldprio, oldpolicy = -1, on_rq, running;
6168 unsigned long flags;
6169 const struct sched_class *prev_class = p->sched_class;
6170 struct rq *rq;
6171 int reset_on_fork;
6172
6173 /* may grab non-irq protected spin_locks */
6174 BUG_ON(in_interrupt());
6175 recheck:
6176 /* double check policy once rq lock held */
6177 if (policy < 0) {
6178 reset_on_fork = p->sched_reset_on_fork;
6179 policy = oldpolicy = p->policy;
6180 } else {
6181 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6182 policy &= ~SCHED_RESET_ON_FORK;
6183
6184 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6185 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6186 policy != SCHED_IDLE)
6187 return -EINVAL;
6188 }
6189
6190 /*
6191 * Valid priorities for SCHED_FIFO and SCHED_RR are
6192 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6193 * SCHED_BATCH and SCHED_IDLE is 0.
6194 */
6195 if (param->sched_priority < 0 ||
6196 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6197 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6198 return -EINVAL;
6199 if (rt_policy(policy) != (param->sched_priority != 0))
6200 return -EINVAL;
6201
6202 /*
6203 * Allow unprivileged RT tasks to decrease priority:
6204 */
6205 if (user && !capable(CAP_SYS_NICE)) {
6206 if (rt_policy(policy)) {
6207 unsigned long rlim_rtprio;
6208
6209 if (!lock_task_sighand(p, &flags))
6210 return -ESRCH;
6211 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6212 unlock_task_sighand(p, &flags);
6213
6214 /* can't set/change the rt policy */
6215 if (policy != p->policy && !rlim_rtprio)
6216 return -EPERM;
6217
6218 /* can't increase priority */
6219 if (param->sched_priority > p->rt_priority &&
6220 param->sched_priority > rlim_rtprio)
6221 return -EPERM;
6222 }
6223 /*
6224 * Like positive nice levels, dont allow tasks to
6225 * move out of SCHED_IDLE either:
6226 */
6227 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6228 return -EPERM;
6229
6230 /* can't change other user's priorities */
6231 if (!check_same_owner(p))
6232 return -EPERM;
6233
6234 /* Normal users shall not reset the sched_reset_on_fork flag */
6235 if (p->sched_reset_on_fork && !reset_on_fork)
6236 return -EPERM;
6237 }
6238
6239 if (user) {
6240 #ifdef CONFIG_RT_GROUP_SCHED
6241 /*
6242 * Do not allow realtime tasks into groups that have no runtime
6243 * assigned.
6244 */
6245 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6246 task_group(p)->rt_bandwidth.rt_runtime == 0)
6247 return -EPERM;
6248 #endif
6249
6250 retval = security_task_setscheduler(p, policy, param);
6251 if (retval)
6252 return retval;
6253 }
6254
6255 /*
6256 * make sure no PI-waiters arrive (or leave) while we are
6257 * changing the priority of the task:
6258 */
6259 spin_lock_irqsave(&p->pi_lock, flags);
6260 /*
6261 * To be able to change p->policy safely, the apropriate
6262 * runqueue lock must be held.
6263 */
6264 rq = __task_rq_lock(p);
6265 /* recheck policy now with rq lock held */
6266 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6267 policy = oldpolicy = -1;
6268 __task_rq_unlock(rq);
6269 spin_unlock_irqrestore(&p->pi_lock, flags);
6270 goto recheck;
6271 }
6272 update_rq_clock(rq);
6273 on_rq = p->se.on_rq;
6274 running = task_current(rq, p);
6275 if (on_rq)
6276 deactivate_task(rq, p, 0);
6277 if (running)
6278 p->sched_class->put_prev_task(rq, p);
6279
6280 p->sched_reset_on_fork = reset_on_fork;
6281
6282 oldprio = p->prio;
6283 __setscheduler(rq, p, policy, param->sched_priority);
6284
6285 if (running)
6286 p->sched_class->set_curr_task(rq);
6287 if (on_rq) {
6288 activate_task(rq, p, 0);
6289
6290 check_class_changed(rq, p, prev_class, oldprio, running);
6291 }
6292 __task_rq_unlock(rq);
6293 spin_unlock_irqrestore(&p->pi_lock, flags);
6294
6295 rt_mutex_adjust_pi(p);
6296
6297 return 0;
6298 }
6299
6300 /**
6301 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6302 * @p: the task in question.
6303 * @policy: new policy.
6304 * @param: structure containing the new RT priority.
6305 *
6306 * NOTE that the task may be already dead.
6307 */
6308 int sched_setscheduler(struct task_struct *p, int policy,
6309 struct sched_param *param)
6310 {
6311 return __sched_setscheduler(p, policy, param, true);
6312 }
6313 EXPORT_SYMBOL_GPL(sched_setscheduler);
6314
6315 /**
6316 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6317 * @p: the task in question.
6318 * @policy: new policy.
6319 * @param: structure containing the new RT priority.
6320 *
6321 * Just like sched_setscheduler, only don't bother checking if the
6322 * current context has permission. For example, this is needed in
6323 * stop_machine(): we create temporary high priority worker threads,
6324 * but our caller might not have that capability.
6325 */
6326 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6327 struct sched_param *param)
6328 {
6329 return __sched_setscheduler(p, policy, param, false);
6330 }
6331
6332 static int
6333 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6334 {
6335 struct sched_param lparam;
6336 struct task_struct *p;
6337 int retval;
6338
6339 if (!param || pid < 0)
6340 return -EINVAL;
6341 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6342 return -EFAULT;
6343
6344 rcu_read_lock();
6345 retval = -ESRCH;
6346 p = find_process_by_pid(pid);
6347 if (p != NULL)
6348 retval = sched_setscheduler(p, policy, &lparam);
6349 rcu_read_unlock();
6350
6351 return retval;
6352 }
6353
6354 /**
6355 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6356 * @pid: the pid in question.
6357 * @policy: new policy.
6358 * @param: structure containing the new RT priority.
6359 */
6360 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6361 struct sched_param __user *, param)
6362 {
6363 /* negative values for policy are not valid */
6364 if (policy < 0)
6365 return -EINVAL;
6366
6367 return do_sched_setscheduler(pid, policy, param);
6368 }
6369
6370 /**
6371 * sys_sched_setparam - set/change the RT priority of a thread
6372 * @pid: the pid in question.
6373 * @param: structure containing the new RT priority.
6374 */
6375 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6376 {
6377 return do_sched_setscheduler(pid, -1, param);
6378 }
6379
6380 /**
6381 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6382 * @pid: the pid in question.
6383 */
6384 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6385 {
6386 struct task_struct *p;
6387 int retval;
6388
6389 if (pid < 0)
6390 return -EINVAL;
6391
6392 retval = -ESRCH;
6393 read_lock(&tasklist_lock);
6394 p = find_process_by_pid(pid);
6395 if (p) {
6396 retval = security_task_getscheduler(p);
6397 if (!retval)
6398 retval = p->policy
6399 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6400 }
6401 read_unlock(&tasklist_lock);
6402 return retval;
6403 }
6404
6405 /**
6406 * sys_sched_getparam - get the RT priority of a thread
6407 * @pid: the pid in question.
6408 * @param: structure containing the RT priority.
6409 */
6410 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6411 {
6412 struct sched_param lp;
6413 struct task_struct *p;
6414 int retval;
6415
6416 if (!param || pid < 0)
6417 return -EINVAL;
6418
6419 read_lock(&tasklist_lock);
6420 p = find_process_by_pid(pid);
6421 retval = -ESRCH;
6422 if (!p)
6423 goto out_unlock;
6424
6425 retval = security_task_getscheduler(p);
6426 if (retval)
6427 goto out_unlock;
6428
6429 lp.sched_priority = p->rt_priority;
6430 read_unlock(&tasklist_lock);
6431
6432 /*
6433 * This one might sleep, we cannot do it with a spinlock held ...
6434 */
6435 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6436
6437 return retval;
6438
6439 out_unlock:
6440 read_unlock(&tasklist_lock);
6441 return retval;
6442 }
6443
6444 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6445 {
6446 cpumask_var_t cpus_allowed, new_mask;
6447 struct task_struct *p;
6448 int retval;
6449
6450 get_online_cpus();
6451 read_lock(&tasklist_lock);
6452
6453 p = find_process_by_pid(pid);
6454 if (!p) {
6455 read_unlock(&tasklist_lock);
6456 put_online_cpus();
6457 return -ESRCH;
6458 }
6459
6460 /*
6461 * It is not safe to call set_cpus_allowed with the
6462 * tasklist_lock held. We will bump the task_struct's
6463 * usage count and then drop tasklist_lock.
6464 */
6465 get_task_struct(p);
6466 read_unlock(&tasklist_lock);
6467
6468 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6469 retval = -ENOMEM;
6470 goto out_put_task;
6471 }
6472 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6473 retval = -ENOMEM;
6474 goto out_free_cpus_allowed;
6475 }
6476 retval = -EPERM;
6477 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6478 goto out_unlock;
6479
6480 retval = security_task_setscheduler(p, 0, NULL);
6481 if (retval)
6482 goto out_unlock;
6483
6484 cpuset_cpus_allowed(p, cpus_allowed);
6485 cpumask_and(new_mask, in_mask, cpus_allowed);
6486 again:
6487 retval = set_cpus_allowed_ptr(p, new_mask);
6488
6489 if (!retval) {
6490 cpuset_cpus_allowed(p, cpus_allowed);
6491 if (!cpumask_subset(new_mask, cpus_allowed)) {
6492 /*
6493 * We must have raced with a concurrent cpuset
6494 * update. Just reset the cpus_allowed to the
6495 * cpuset's cpus_allowed
6496 */
6497 cpumask_copy(new_mask, cpus_allowed);
6498 goto again;
6499 }
6500 }
6501 out_unlock:
6502 free_cpumask_var(new_mask);
6503 out_free_cpus_allowed:
6504 free_cpumask_var(cpus_allowed);
6505 out_put_task:
6506 put_task_struct(p);
6507 put_online_cpus();
6508 return retval;
6509 }
6510
6511 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6512 struct cpumask *new_mask)
6513 {
6514 if (len < cpumask_size())
6515 cpumask_clear(new_mask);
6516 else if (len > cpumask_size())
6517 len = cpumask_size();
6518
6519 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6520 }
6521
6522 /**
6523 * sys_sched_setaffinity - set the cpu affinity of a process
6524 * @pid: pid of the process
6525 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6526 * @user_mask_ptr: user-space pointer to the new cpu mask
6527 */
6528 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6529 unsigned long __user *, user_mask_ptr)
6530 {
6531 cpumask_var_t new_mask;
6532 int retval;
6533
6534 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6535 return -ENOMEM;
6536
6537 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6538 if (retval == 0)
6539 retval = sched_setaffinity(pid, new_mask);
6540 free_cpumask_var(new_mask);
6541 return retval;
6542 }
6543
6544 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6545 {
6546 struct task_struct *p;
6547 int retval;
6548
6549 get_online_cpus();
6550 read_lock(&tasklist_lock);
6551
6552 retval = -ESRCH;
6553 p = find_process_by_pid(pid);
6554 if (!p)
6555 goto out_unlock;
6556
6557 retval = security_task_getscheduler(p);
6558 if (retval)
6559 goto out_unlock;
6560
6561 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6562
6563 out_unlock:
6564 read_unlock(&tasklist_lock);
6565 put_online_cpus();
6566
6567 return retval;
6568 }
6569
6570 /**
6571 * sys_sched_getaffinity - get the cpu affinity of a process
6572 * @pid: pid of the process
6573 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6574 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6575 */
6576 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6577 unsigned long __user *, user_mask_ptr)
6578 {
6579 int ret;
6580 cpumask_var_t mask;
6581
6582 if (len < cpumask_size())
6583 return -EINVAL;
6584
6585 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6586 return -ENOMEM;
6587
6588 ret = sched_getaffinity(pid, mask);
6589 if (ret == 0) {
6590 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6591 ret = -EFAULT;
6592 else
6593 ret = cpumask_size();
6594 }
6595 free_cpumask_var(mask);
6596
6597 return ret;
6598 }
6599
6600 /**
6601 * sys_sched_yield - yield the current processor to other threads.
6602 *
6603 * This function yields the current CPU to other tasks. If there are no
6604 * other threads running on this CPU then this function will return.
6605 */
6606 SYSCALL_DEFINE0(sched_yield)
6607 {
6608 struct rq *rq = this_rq_lock();
6609
6610 schedstat_inc(rq, yld_count);
6611 current->sched_class->yield_task(rq);
6612
6613 /*
6614 * Since we are going to call schedule() anyway, there's
6615 * no need to preempt or enable interrupts:
6616 */
6617 __release(rq->lock);
6618 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6619 _raw_spin_unlock(&rq->lock);
6620 preempt_enable_no_resched();
6621
6622 schedule();
6623
6624 return 0;
6625 }
6626
6627 static inline int should_resched(void)
6628 {
6629 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6630 }
6631
6632 static void __cond_resched(void)
6633 {
6634 add_preempt_count(PREEMPT_ACTIVE);
6635 schedule();
6636 sub_preempt_count(PREEMPT_ACTIVE);
6637 }
6638
6639 int __sched _cond_resched(void)
6640 {
6641 if (should_resched()) {
6642 __cond_resched();
6643 return 1;
6644 }
6645 return 0;
6646 }
6647 EXPORT_SYMBOL(_cond_resched);
6648
6649 /*
6650 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6651 * call schedule, and on return reacquire the lock.
6652 *
6653 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6654 * operations here to prevent schedule() from being called twice (once via
6655 * spin_unlock(), once by hand).
6656 */
6657 int __cond_resched_lock(spinlock_t *lock)
6658 {
6659 int resched = should_resched();
6660 int ret = 0;
6661
6662 lockdep_assert_held(lock);
6663
6664 if (spin_needbreak(lock) || resched) {
6665 spin_unlock(lock);
6666 if (resched)
6667 __cond_resched();
6668 else
6669 cpu_relax();
6670 ret = 1;
6671 spin_lock(lock);
6672 }
6673 return ret;
6674 }
6675 EXPORT_SYMBOL(__cond_resched_lock);
6676
6677 int __sched __cond_resched_softirq(void)
6678 {
6679 BUG_ON(!in_softirq());
6680
6681 if (should_resched()) {
6682 local_bh_enable();
6683 __cond_resched();
6684 local_bh_disable();
6685 return 1;
6686 }
6687 return 0;
6688 }
6689 EXPORT_SYMBOL(__cond_resched_softirq);
6690
6691 /**
6692 * yield - yield the current processor to other threads.
6693 *
6694 * This is a shortcut for kernel-space yielding - it marks the
6695 * thread runnable and calls sys_sched_yield().
6696 */
6697 void __sched yield(void)
6698 {
6699 set_current_state(TASK_RUNNING);
6700 sys_sched_yield();
6701 }
6702 EXPORT_SYMBOL(yield);
6703
6704 /*
6705 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6706 * that process accounting knows that this is a task in IO wait state.
6707 *
6708 * But don't do that if it is a deliberate, throttling IO wait (this task
6709 * has set its backing_dev_info: the queue against which it should throttle)
6710 */
6711 void __sched io_schedule(void)
6712 {
6713 struct rq *rq = raw_rq();
6714
6715 delayacct_blkio_start();
6716 atomic_inc(&rq->nr_iowait);
6717 current->in_iowait = 1;
6718 schedule();
6719 current->in_iowait = 0;
6720 atomic_dec(&rq->nr_iowait);
6721 delayacct_blkio_end();
6722 }
6723 EXPORT_SYMBOL(io_schedule);
6724
6725 long __sched io_schedule_timeout(long timeout)
6726 {
6727 struct rq *rq = raw_rq();
6728 long ret;
6729
6730 delayacct_blkio_start();
6731 atomic_inc(&rq->nr_iowait);
6732 current->in_iowait = 1;
6733 ret = schedule_timeout(timeout);
6734 current->in_iowait = 0;
6735 atomic_dec(&rq->nr_iowait);
6736 delayacct_blkio_end();
6737 return ret;
6738 }
6739
6740 /**
6741 * sys_sched_get_priority_max - return maximum RT priority.
6742 * @policy: scheduling class.
6743 *
6744 * this syscall returns the maximum rt_priority that can be used
6745 * by a given scheduling class.
6746 */
6747 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6748 {
6749 int ret = -EINVAL;
6750
6751 switch (policy) {
6752 case SCHED_FIFO:
6753 case SCHED_RR:
6754 ret = MAX_USER_RT_PRIO-1;
6755 break;
6756 case SCHED_NORMAL:
6757 case SCHED_BATCH:
6758 case SCHED_IDLE:
6759 ret = 0;
6760 break;
6761 }
6762 return ret;
6763 }
6764
6765 /**
6766 * sys_sched_get_priority_min - return minimum RT priority.
6767 * @policy: scheduling class.
6768 *
6769 * this syscall returns the minimum rt_priority that can be used
6770 * by a given scheduling class.
6771 */
6772 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6773 {
6774 int ret = -EINVAL;
6775
6776 switch (policy) {
6777 case SCHED_FIFO:
6778 case SCHED_RR:
6779 ret = 1;
6780 break;
6781 case SCHED_NORMAL:
6782 case SCHED_BATCH:
6783 case SCHED_IDLE:
6784 ret = 0;
6785 }
6786 return ret;
6787 }
6788
6789 /**
6790 * sys_sched_rr_get_interval - return the default timeslice of a process.
6791 * @pid: pid of the process.
6792 * @interval: userspace pointer to the timeslice value.
6793 *
6794 * this syscall writes the default timeslice value of a given process
6795 * into the user-space timespec buffer. A value of '0' means infinity.
6796 */
6797 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6798 struct timespec __user *, interval)
6799 {
6800 struct task_struct *p;
6801 unsigned int time_slice;
6802 int retval;
6803 struct timespec t;
6804
6805 if (pid < 0)
6806 return -EINVAL;
6807
6808 retval = -ESRCH;
6809 read_lock(&tasklist_lock);
6810 p = find_process_by_pid(pid);
6811 if (!p)
6812 goto out_unlock;
6813
6814 retval = security_task_getscheduler(p);
6815 if (retval)
6816 goto out_unlock;
6817
6818 /*
6819 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6820 * tasks that are on an otherwise idle runqueue:
6821 */
6822 time_slice = 0;
6823 if (p->policy == SCHED_RR) {
6824 time_slice = DEF_TIMESLICE;
6825 } else if (p->policy != SCHED_FIFO) {
6826 struct sched_entity *se = &p->se;
6827 unsigned long flags;
6828 struct rq *rq;
6829
6830 rq = task_rq_lock(p, &flags);
6831 if (rq->cfs.load.weight)
6832 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6833 task_rq_unlock(rq, &flags);
6834 }
6835 read_unlock(&tasklist_lock);
6836 jiffies_to_timespec(time_slice, &t);
6837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6838 return retval;
6839
6840 out_unlock:
6841 read_unlock(&tasklist_lock);
6842 return retval;
6843 }
6844
6845 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6846
6847 void sched_show_task(struct task_struct *p)
6848 {
6849 unsigned long free = 0;
6850 unsigned state;
6851
6852 state = p->state ? __ffs(p->state) + 1 : 0;
6853 printk(KERN_INFO "%-13.13s %c", p->comm,
6854 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6855 #if BITS_PER_LONG == 32
6856 if (state == TASK_RUNNING)
6857 printk(KERN_CONT " running ");
6858 else
6859 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6860 #else
6861 if (state == TASK_RUNNING)
6862 printk(KERN_CONT " running task ");
6863 else
6864 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6865 #endif
6866 #ifdef CONFIG_DEBUG_STACK_USAGE
6867 free = stack_not_used(p);
6868 #endif
6869 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6870 task_pid_nr(p), task_pid_nr(p->real_parent),
6871 (unsigned long)task_thread_info(p)->flags);
6872
6873 show_stack(p, NULL);
6874 }
6875
6876 void show_state_filter(unsigned long state_filter)
6877 {
6878 struct task_struct *g, *p;
6879
6880 #if BITS_PER_LONG == 32
6881 printk(KERN_INFO
6882 " task PC stack pid father\n");
6883 #else
6884 printk(KERN_INFO
6885 " task PC stack pid father\n");
6886 #endif
6887 read_lock(&tasklist_lock);
6888 do_each_thread(g, p) {
6889 /*
6890 * reset the NMI-timeout, listing all files on a slow
6891 * console might take alot of time:
6892 */
6893 touch_nmi_watchdog();
6894 if (!state_filter || (p->state & state_filter))
6895 sched_show_task(p);
6896 } while_each_thread(g, p);
6897
6898 touch_all_softlockup_watchdogs();
6899
6900 #ifdef CONFIG_SCHED_DEBUG
6901 sysrq_sched_debug_show();
6902 #endif
6903 read_unlock(&tasklist_lock);
6904 /*
6905 * Only show locks if all tasks are dumped:
6906 */
6907 if (state_filter == -1)
6908 debug_show_all_locks();
6909 }
6910
6911 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6912 {
6913 idle->sched_class = &idle_sched_class;
6914 }
6915
6916 /**
6917 * init_idle - set up an idle thread for a given CPU
6918 * @idle: task in question
6919 * @cpu: cpu the idle task belongs to
6920 *
6921 * NOTE: this function does not set the idle thread's NEED_RESCHED
6922 * flag, to make booting more robust.
6923 */
6924 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6925 {
6926 struct rq *rq = cpu_rq(cpu);
6927 unsigned long flags;
6928
6929 spin_lock_irqsave(&rq->lock, flags);
6930
6931 __sched_fork(idle);
6932 idle->se.exec_start = sched_clock();
6933
6934 idle->prio = idle->normal_prio = MAX_PRIO;
6935 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6936 __set_task_cpu(idle, cpu);
6937
6938 rq->curr = rq->idle = idle;
6939 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6940 idle->oncpu = 1;
6941 #endif
6942 spin_unlock_irqrestore(&rq->lock, flags);
6943
6944 /* Set the preempt count _outside_ the spinlocks! */
6945 #if defined(CONFIG_PREEMPT)
6946 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6947 #else
6948 task_thread_info(idle)->preempt_count = 0;
6949 #endif
6950 /*
6951 * The idle tasks have their own, simple scheduling class:
6952 */
6953 idle->sched_class = &idle_sched_class;
6954 ftrace_graph_init_task(idle);
6955 }
6956
6957 /*
6958 * In a system that switches off the HZ timer nohz_cpu_mask
6959 * indicates which cpus entered this state. This is used
6960 * in the rcu update to wait only for active cpus. For system
6961 * which do not switch off the HZ timer nohz_cpu_mask should
6962 * always be CPU_BITS_NONE.
6963 */
6964 cpumask_var_t nohz_cpu_mask;
6965
6966 /*
6967 * Increase the granularity value when there are more CPUs,
6968 * because with more CPUs the 'effective latency' as visible
6969 * to users decreases. But the relationship is not linear,
6970 * so pick a second-best guess by going with the log2 of the
6971 * number of CPUs.
6972 *
6973 * This idea comes from the SD scheduler of Con Kolivas:
6974 */
6975 static inline void sched_init_granularity(void)
6976 {
6977 unsigned int factor = 1 + ilog2(num_online_cpus());
6978 const unsigned long limit = 200000000;
6979
6980 sysctl_sched_min_granularity *= factor;
6981 if (sysctl_sched_min_granularity > limit)
6982 sysctl_sched_min_granularity = limit;
6983
6984 sysctl_sched_latency *= factor;
6985 if (sysctl_sched_latency > limit)
6986 sysctl_sched_latency = limit;
6987
6988 sysctl_sched_wakeup_granularity *= factor;
6989
6990 sysctl_sched_shares_ratelimit *= factor;
6991 }
6992
6993 #ifdef CONFIG_SMP
6994 /*
6995 * This is how migration works:
6996 *
6997 * 1) we queue a struct migration_req structure in the source CPU's
6998 * runqueue and wake up that CPU's migration thread.
6999 * 2) we down() the locked semaphore => thread blocks.
7000 * 3) migration thread wakes up (implicitly it forces the migrated
7001 * thread off the CPU)
7002 * 4) it gets the migration request and checks whether the migrated
7003 * task is still in the wrong runqueue.
7004 * 5) if it's in the wrong runqueue then the migration thread removes
7005 * it and puts it into the right queue.
7006 * 6) migration thread up()s the semaphore.
7007 * 7) we wake up and the migration is done.
7008 */
7009
7010 /*
7011 * Change a given task's CPU affinity. Migrate the thread to a
7012 * proper CPU and schedule it away if the CPU it's executing on
7013 * is removed from the allowed bitmask.
7014 *
7015 * NOTE: the caller must have a valid reference to the task, the
7016 * task must not exit() & deallocate itself prematurely. The
7017 * call is not atomic; no spinlocks may be held.
7018 */
7019 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7020 {
7021 struct migration_req req;
7022 unsigned long flags;
7023 struct rq *rq;
7024 int ret = 0;
7025
7026 rq = task_rq_lock(p, &flags);
7027 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7028 ret = -EINVAL;
7029 goto out;
7030 }
7031
7032 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7033 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7034 ret = -EINVAL;
7035 goto out;
7036 }
7037
7038 if (p->sched_class->set_cpus_allowed)
7039 p->sched_class->set_cpus_allowed(p, new_mask);
7040 else {
7041 cpumask_copy(&p->cpus_allowed, new_mask);
7042 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7043 }
7044
7045 /* Can the task run on the task's current CPU? If so, we're done */
7046 if (cpumask_test_cpu(task_cpu(p), new_mask))
7047 goto out;
7048
7049 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7050 /* Need help from migration thread: drop lock and wait. */
7051 struct task_struct *mt = rq->migration_thread;
7052
7053 get_task_struct(mt);
7054 task_rq_unlock(rq, &flags);
7055 wake_up_process(rq->migration_thread);
7056 put_task_struct(mt);
7057 wait_for_completion(&req.done);
7058 tlb_migrate_finish(p->mm);
7059 return 0;
7060 }
7061 out:
7062 task_rq_unlock(rq, &flags);
7063
7064 return ret;
7065 }
7066 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7067
7068 /*
7069 * Move (not current) task off this cpu, onto dest cpu. We're doing
7070 * this because either it can't run here any more (set_cpus_allowed()
7071 * away from this CPU, or CPU going down), or because we're
7072 * attempting to rebalance this task on exec (sched_exec).
7073 *
7074 * So we race with normal scheduler movements, but that's OK, as long
7075 * as the task is no longer on this CPU.
7076 *
7077 * Returns non-zero if task was successfully migrated.
7078 */
7079 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7080 {
7081 struct rq *rq_dest, *rq_src;
7082 int ret = 0, on_rq;
7083
7084 if (unlikely(!cpu_active(dest_cpu)))
7085 return ret;
7086
7087 rq_src = cpu_rq(src_cpu);
7088 rq_dest = cpu_rq(dest_cpu);
7089
7090 double_rq_lock(rq_src, rq_dest);
7091 /* Already moved. */
7092 if (task_cpu(p) != src_cpu)
7093 goto done;
7094 /* Affinity changed (again). */
7095 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7096 goto fail;
7097
7098 on_rq = p->se.on_rq;
7099 if (on_rq)
7100 deactivate_task(rq_src, p, 0);
7101
7102 set_task_cpu(p, dest_cpu);
7103 if (on_rq) {
7104 activate_task(rq_dest, p, 0);
7105 check_preempt_curr(rq_dest, p, 0);
7106 }
7107 done:
7108 ret = 1;
7109 fail:
7110 double_rq_unlock(rq_src, rq_dest);
7111 return ret;
7112 }
7113
7114 #define RCU_MIGRATION_IDLE 0
7115 #define RCU_MIGRATION_NEED_QS 1
7116 #define RCU_MIGRATION_GOT_QS 2
7117 #define RCU_MIGRATION_MUST_SYNC 3
7118
7119 /*
7120 * migration_thread - this is a highprio system thread that performs
7121 * thread migration by bumping thread off CPU then 'pushing' onto
7122 * another runqueue.
7123 */
7124 static int migration_thread(void *data)
7125 {
7126 int badcpu;
7127 int cpu = (long)data;
7128 struct rq *rq;
7129
7130 rq = cpu_rq(cpu);
7131 BUG_ON(rq->migration_thread != current);
7132
7133 set_current_state(TASK_INTERRUPTIBLE);
7134 while (!kthread_should_stop()) {
7135 struct migration_req *req;
7136 struct list_head *head;
7137
7138 spin_lock_irq(&rq->lock);
7139
7140 if (cpu_is_offline(cpu)) {
7141 spin_unlock_irq(&rq->lock);
7142 break;
7143 }
7144
7145 if (rq->active_balance) {
7146 active_load_balance(rq, cpu);
7147 rq->active_balance = 0;
7148 }
7149
7150 head = &rq->migration_queue;
7151
7152 if (list_empty(head)) {
7153 spin_unlock_irq(&rq->lock);
7154 schedule();
7155 set_current_state(TASK_INTERRUPTIBLE);
7156 continue;
7157 }
7158 req = list_entry(head->next, struct migration_req, list);
7159 list_del_init(head->next);
7160
7161 if (req->task != NULL) {
7162 spin_unlock(&rq->lock);
7163 __migrate_task(req->task, cpu, req->dest_cpu);
7164 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7165 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7166 spin_unlock(&rq->lock);
7167 } else {
7168 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7169 spin_unlock(&rq->lock);
7170 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7171 }
7172 local_irq_enable();
7173
7174 complete(&req->done);
7175 }
7176 __set_current_state(TASK_RUNNING);
7177
7178 return 0;
7179 }
7180
7181 #ifdef CONFIG_HOTPLUG_CPU
7182
7183 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7184 {
7185 int ret;
7186
7187 local_irq_disable();
7188 ret = __migrate_task(p, src_cpu, dest_cpu);
7189 local_irq_enable();
7190 return ret;
7191 }
7192
7193 /*
7194 * Figure out where task on dead CPU should go, use force if necessary.
7195 */
7196 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7197 {
7198 int dest_cpu;
7199 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7200
7201 again:
7202 /* Look for allowed, online CPU in same node. */
7203 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7204 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7205 goto move;
7206
7207 /* Any allowed, online CPU? */
7208 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7209 if (dest_cpu < nr_cpu_ids)
7210 goto move;
7211
7212 /* No more Mr. Nice Guy. */
7213 if (dest_cpu >= nr_cpu_ids) {
7214 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7215 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7216
7217 /*
7218 * Don't tell them about moving exiting tasks or
7219 * kernel threads (both mm NULL), since they never
7220 * leave kernel.
7221 */
7222 if (p->mm && printk_ratelimit()) {
7223 printk(KERN_INFO "process %d (%s) no "
7224 "longer affine to cpu%d\n",
7225 task_pid_nr(p), p->comm, dead_cpu);
7226 }
7227 }
7228
7229 move:
7230 /* It can have affinity changed while we were choosing. */
7231 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7232 goto again;
7233 }
7234
7235 /*
7236 * While a dead CPU has no uninterruptible tasks queued at this point,
7237 * it might still have a nonzero ->nr_uninterruptible counter, because
7238 * for performance reasons the counter is not stricly tracking tasks to
7239 * their home CPUs. So we just add the counter to another CPU's counter,
7240 * to keep the global sum constant after CPU-down:
7241 */
7242 static void migrate_nr_uninterruptible(struct rq *rq_src)
7243 {
7244 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7245 unsigned long flags;
7246
7247 local_irq_save(flags);
7248 double_rq_lock(rq_src, rq_dest);
7249 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7250 rq_src->nr_uninterruptible = 0;
7251 double_rq_unlock(rq_src, rq_dest);
7252 local_irq_restore(flags);
7253 }
7254
7255 /* Run through task list and migrate tasks from the dead cpu. */
7256 static void migrate_live_tasks(int src_cpu)
7257 {
7258 struct task_struct *p, *t;
7259
7260 read_lock(&tasklist_lock);
7261
7262 do_each_thread(t, p) {
7263 if (p == current)
7264 continue;
7265
7266 if (task_cpu(p) == src_cpu)
7267 move_task_off_dead_cpu(src_cpu, p);
7268 } while_each_thread(t, p);
7269
7270 read_unlock(&tasklist_lock);
7271 }
7272
7273 /*
7274 * Schedules idle task to be the next runnable task on current CPU.
7275 * It does so by boosting its priority to highest possible.
7276 * Used by CPU offline code.
7277 */
7278 void sched_idle_next(void)
7279 {
7280 int this_cpu = smp_processor_id();
7281 struct rq *rq = cpu_rq(this_cpu);
7282 struct task_struct *p = rq->idle;
7283 unsigned long flags;
7284
7285 /* cpu has to be offline */
7286 BUG_ON(cpu_online(this_cpu));
7287
7288 /*
7289 * Strictly not necessary since rest of the CPUs are stopped by now
7290 * and interrupts disabled on the current cpu.
7291 */
7292 spin_lock_irqsave(&rq->lock, flags);
7293
7294 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7295
7296 update_rq_clock(rq);
7297 activate_task(rq, p, 0);
7298
7299 spin_unlock_irqrestore(&rq->lock, flags);
7300 }
7301
7302 /*
7303 * Ensures that the idle task is using init_mm right before its cpu goes
7304 * offline.
7305 */
7306 void idle_task_exit(void)
7307 {
7308 struct mm_struct *mm = current->active_mm;
7309
7310 BUG_ON(cpu_online(smp_processor_id()));
7311
7312 if (mm != &init_mm)
7313 switch_mm(mm, &init_mm, current);
7314 mmdrop(mm);
7315 }
7316
7317 /* called under rq->lock with disabled interrupts */
7318 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7319 {
7320 struct rq *rq = cpu_rq(dead_cpu);
7321
7322 /* Must be exiting, otherwise would be on tasklist. */
7323 BUG_ON(!p->exit_state);
7324
7325 /* Cannot have done final schedule yet: would have vanished. */
7326 BUG_ON(p->state == TASK_DEAD);
7327
7328 get_task_struct(p);
7329
7330 /*
7331 * Drop lock around migration; if someone else moves it,
7332 * that's OK. No task can be added to this CPU, so iteration is
7333 * fine.
7334 */
7335 spin_unlock_irq(&rq->lock);
7336 move_task_off_dead_cpu(dead_cpu, p);
7337 spin_lock_irq(&rq->lock);
7338
7339 put_task_struct(p);
7340 }
7341
7342 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7343 static void migrate_dead_tasks(unsigned int dead_cpu)
7344 {
7345 struct rq *rq = cpu_rq(dead_cpu);
7346 struct task_struct *next;
7347
7348 for ( ; ; ) {
7349 if (!rq->nr_running)
7350 break;
7351 update_rq_clock(rq);
7352 next = pick_next_task(rq);
7353 if (!next)
7354 break;
7355 next->sched_class->put_prev_task(rq, next);
7356 migrate_dead(dead_cpu, next);
7357
7358 }
7359 }
7360
7361 /*
7362 * remove the tasks which were accounted by rq from calc_load_tasks.
7363 */
7364 static void calc_global_load_remove(struct rq *rq)
7365 {
7366 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7367 rq->calc_load_active = 0;
7368 }
7369 #endif /* CONFIG_HOTPLUG_CPU */
7370
7371 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7372
7373 static struct ctl_table sd_ctl_dir[] = {
7374 {
7375 .procname = "sched_domain",
7376 .mode = 0555,
7377 },
7378 {0, },
7379 };
7380
7381 static struct ctl_table sd_ctl_root[] = {
7382 {
7383 .ctl_name = CTL_KERN,
7384 .procname = "kernel",
7385 .mode = 0555,
7386 .child = sd_ctl_dir,
7387 },
7388 {0, },
7389 };
7390
7391 static struct ctl_table *sd_alloc_ctl_entry(int n)
7392 {
7393 struct ctl_table *entry =
7394 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7395
7396 return entry;
7397 }
7398
7399 static void sd_free_ctl_entry(struct ctl_table **tablep)
7400 {
7401 struct ctl_table *entry;
7402
7403 /*
7404 * In the intermediate directories, both the child directory and
7405 * procname are dynamically allocated and could fail but the mode
7406 * will always be set. In the lowest directory the names are
7407 * static strings and all have proc handlers.
7408 */
7409 for (entry = *tablep; entry->mode; entry++) {
7410 if (entry->child)
7411 sd_free_ctl_entry(&entry->child);
7412 if (entry->proc_handler == NULL)
7413 kfree(entry->procname);
7414 }
7415
7416 kfree(*tablep);
7417 *tablep = NULL;
7418 }
7419
7420 static void
7421 set_table_entry(struct ctl_table *entry,
7422 const char *procname, void *data, int maxlen,
7423 mode_t mode, proc_handler *proc_handler)
7424 {
7425 entry->procname = procname;
7426 entry->data = data;
7427 entry->maxlen = maxlen;
7428 entry->mode = mode;
7429 entry->proc_handler = proc_handler;
7430 }
7431
7432 static struct ctl_table *
7433 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7434 {
7435 struct ctl_table *table = sd_alloc_ctl_entry(13);
7436
7437 if (table == NULL)
7438 return NULL;
7439
7440 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7441 sizeof(long), 0644, proc_doulongvec_minmax);
7442 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7443 sizeof(long), 0644, proc_doulongvec_minmax);
7444 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7445 sizeof(int), 0644, proc_dointvec_minmax);
7446 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7447 sizeof(int), 0644, proc_dointvec_minmax);
7448 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[9], "cache_nice_tries",
7459 &sd->cache_nice_tries,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[10], "flags", &sd->flags,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[11], "name", sd->name,
7464 CORENAME_MAX_SIZE, 0444, proc_dostring);
7465 /* &table[12] is terminator */
7466
7467 return table;
7468 }
7469
7470 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7471 {
7472 struct ctl_table *entry, *table;
7473 struct sched_domain *sd;
7474 int domain_num = 0, i;
7475 char buf[32];
7476
7477 for_each_domain(cpu, sd)
7478 domain_num++;
7479 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7480 if (table == NULL)
7481 return NULL;
7482
7483 i = 0;
7484 for_each_domain(cpu, sd) {
7485 snprintf(buf, 32, "domain%d", i);
7486 entry->procname = kstrdup(buf, GFP_KERNEL);
7487 entry->mode = 0555;
7488 entry->child = sd_alloc_ctl_domain_table(sd);
7489 entry++;
7490 i++;
7491 }
7492 return table;
7493 }
7494
7495 static struct ctl_table_header *sd_sysctl_header;
7496 static void register_sched_domain_sysctl(void)
7497 {
7498 int i, cpu_num = num_online_cpus();
7499 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7500 char buf[32];
7501
7502 WARN_ON(sd_ctl_dir[0].child);
7503 sd_ctl_dir[0].child = entry;
7504
7505 if (entry == NULL)
7506 return;
7507
7508 for_each_online_cpu(i) {
7509 snprintf(buf, 32, "cpu%d", i);
7510 entry->procname = kstrdup(buf, GFP_KERNEL);
7511 entry->mode = 0555;
7512 entry->child = sd_alloc_ctl_cpu_table(i);
7513 entry++;
7514 }
7515
7516 WARN_ON(sd_sysctl_header);
7517 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7518 }
7519
7520 /* may be called multiple times per register */
7521 static void unregister_sched_domain_sysctl(void)
7522 {
7523 if (sd_sysctl_header)
7524 unregister_sysctl_table(sd_sysctl_header);
7525 sd_sysctl_header = NULL;
7526 if (sd_ctl_dir[0].child)
7527 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7528 }
7529 #else
7530 static void register_sched_domain_sysctl(void)
7531 {
7532 }
7533 static void unregister_sched_domain_sysctl(void)
7534 {
7535 }
7536 #endif
7537
7538 static void set_rq_online(struct rq *rq)
7539 {
7540 if (!rq->online) {
7541 const struct sched_class *class;
7542
7543 cpumask_set_cpu(rq->cpu, rq->rd->online);
7544 rq->online = 1;
7545
7546 for_each_class(class) {
7547 if (class->rq_online)
7548 class->rq_online(rq);
7549 }
7550 }
7551 }
7552
7553 static void set_rq_offline(struct rq *rq)
7554 {
7555 if (rq->online) {
7556 const struct sched_class *class;
7557
7558 for_each_class(class) {
7559 if (class->rq_offline)
7560 class->rq_offline(rq);
7561 }
7562
7563 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7564 rq->online = 0;
7565 }
7566 }
7567
7568 /*
7569 * migration_call - callback that gets triggered when a CPU is added.
7570 * Here we can start up the necessary migration thread for the new CPU.
7571 */
7572 static int __cpuinit
7573 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7574 {
7575 struct task_struct *p;
7576 int cpu = (long)hcpu;
7577 unsigned long flags;
7578 struct rq *rq;
7579
7580 switch (action) {
7581
7582 case CPU_UP_PREPARE:
7583 case CPU_UP_PREPARE_FROZEN:
7584 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7585 if (IS_ERR(p))
7586 return NOTIFY_BAD;
7587 kthread_bind(p, cpu);
7588 /* Must be high prio: stop_machine expects to yield to it. */
7589 rq = task_rq_lock(p, &flags);
7590 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7591 task_rq_unlock(rq, &flags);
7592 get_task_struct(p);
7593 cpu_rq(cpu)->migration_thread = p;
7594 rq->calc_load_update = calc_load_update;
7595 break;
7596
7597 case CPU_ONLINE:
7598 case CPU_ONLINE_FROZEN:
7599 /* Strictly unnecessary, as first user will wake it. */
7600 wake_up_process(cpu_rq(cpu)->migration_thread);
7601
7602 /* Update our root-domain */
7603 rq = cpu_rq(cpu);
7604 spin_lock_irqsave(&rq->lock, flags);
7605 if (rq->rd) {
7606 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7607
7608 set_rq_online(rq);
7609 }
7610 spin_unlock_irqrestore(&rq->lock, flags);
7611 break;
7612
7613 #ifdef CONFIG_HOTPLUG_CPU
7614 case CPU_UP_CANCELED:
7615 case CPU_UP_CANCELED_FROZEN:
7616 if (!cpu_rq(cpu)->migration_thread)
7617 break;
7618 /* Unbind it from offline cpu so it can run. Fall thru. */
7619 kthread_bind(cpu_rq(cpu)->migration_thread,
7620 cpumask_any(cpu_online_mask));
7621 kthread_stop(cpu_rq(cpu)->migration_thread);
7622 put_task_struct(cpu_rq(cpu)->migration_thread);
7623 cpu_rq(cpu)->migration_thread = NULL;
7624 break;
7625
7626 case CPU_DEAD:
7627 case CPU_DEAD_FROZEN:
7628 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7629 migrate_live_tasks(cpu);
7630 rq = cpu_rq(cpu);
7631 kthread_stop(rq->migration_thread);
7632 put_task_struct(rq->migration_thread);
7633 rq->migration_thread = NULL;
7634 /* Idle task back to normal (off runqueue, low prio) */
7635 spin_lock_irq(&rq->lock);
7636 update_rq_clock(rq);
7637 deactivate_task(rq, rq->idle, 0);
7638 rq->idle->static_prio = MAX_PRIO;
7639 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7640 rq->idle->sched_class = &idle_sched_class;
7641 migrate_dead_tasks(cpu);
7642 spin_unlock_irq(&rq->lock);
7643 cpuset_unlock();
7644 migrate_nr_uninterruptible(rq);
7645 BUG_ON(rq->nr_running != 0);
7646 calc_global_load_remove(rq);
7647 /*
7648 * No need to migrate the tasks: it was best-effort if
7649 * they didn't take sched_hotcpu_mutex. Just wake up
7650 * the requestors.
7651 */
7652 spin_lock_irq(&rq->lock);
7653 while (!list_empty(&rq->migration_queue)) {
7654 struct migration_req *req;
7655
7656 req = list_entry(rq->migration_queue.next,
7657 struct migration_req, list);
7658 list_del_init(&req->list);
7659 spin_unlock_irq(&rq->lock);
7660 complete(&req->done);
7661 spin_lock_irq(&rq->lock);
7662 }
7663 spin_unlock_irq(&rq->lock);
7664 break;
7665
7666 case CPU_DYING:
7667 case CPU_DYING_FROZEN:
7668 /* Update our root-domain */
7669 rq = cpu_rq(cpu);
7670 spin_lock_irqsave(&rq->lock, flags);
7671 if (rq->rd) {
7672 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7673 set_rq_offline(rq);
7674 }
7675 spin_unlock_irqrestore(&rq->lock, flags);
7676 break;
7677 #endif
7678 }
7679 return NOTIFY_OK;
7680 }
7681
7682 /*
7683 * Register at high priority so that task migration (migrate_all_tasks)
7684 * happens before everything else. This has to be lower priority than
7685 * the notifier in the perf_counter subsystem, though.
7686 */
7687 static struct notifier_block __cpuinitdata migration_notifier = {
7688 .notifier_call = migration_call,
7689 .priority = 10
7690 };
7691
7692 static int __init migration_init(void)
7693 {
7694 void *cpu = (void *)(long)smp_processor_id();
7695 int err;
7696
7697 /* Start one for the boot CPU: */
7698 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7699 BUG_ON(err == NOTIFY_BAD);
7700 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7701 register_cpu_notifier(&migration_notifier);
7702
7703 return 0;
7704 }
7705 early_initcall(migration_init);
7706 #endif
7707
7708 #ifdef CONFIG_SMP
7709
7710 #ifdef CONFIG_SCHED_DEBUG
7711
7712 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7713 struct cpumask *groupmask)
7714 {
7715 struct sched_group *group = sd->groups;
7716 char str[256];
7717
7718 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7719 cpumask_clear(groupmask);
7720
7721 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7722
7723 if (!(sd->flags & SD_LOAD_BALANCE)) {
7724 printk("does not load-balance\n");
7725 if (sd->parent)
7726 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7727 " has parent");
7728 return -1;
7729 }
7730
7731 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7732
7733 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7734 printk(KERN_ERR "ERROR: domain->span does not contain "
7735 "CPU%d\n", cpu);
7736 }
7737 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7738 printk(KERN_ERR "ERROR: domain->groups does not contain"
7739 " CPU%d\n", cpu);
7740 }
7741
7742 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7743 do {
7744 if (!group) {
7745 printk("\n");
7746 printk(KERN_ERR "ERROR: group is NULL\n");
7747 break;
7748 }
7749
7750 if (!group->cpu_power) {
7751 printk(KERN_CONT "\n");
7752 printk(KERN_ERR "ERROR: domain->cpu_power not "
7753 "set\n");
7754 break;
7755 }
7756
7757 if (!cpumask_weight(sched_group_cpus(group))) {
7758 printk(KERN_CONT "\n");
7759 printk(KERN_ERR "ERROR: empty group\n");
7760 break;
7761 }
7762
7763 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7764 printk(KERN_CONT "\n");
7765 printk(KERN_ERR "ERROR: repeated CPUs\n");
7766 break;
7767 }
7768
7769 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7770
7771 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7772
7773 printk(KERN_CONT " %s", str);
7774 if (group->cpu_power != SCHED_LOAD_SCALE) {
7775 printk(KERN_CONT " (cpu_power = %d)",
7776 group->cpu_power);
7777 }
7778
7779 group = group->next;
7780 } while (group != sd->groups);
7781 printk(KERN_CONT "\n");
7782
7783 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7784 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7785
7786 if (sd->parent &&
7787 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7788 printk(KERN_ERR "ERROR: parent span is not a superset "
7789 "of domain->span\n");
7790 return 0;
7791 }
7792
7793 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7794 {
7795 cpumask_var_t groupmask;
7796 int level = 0;
7797
7798 if (!sd) {
7799 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7800 return;
7801 }
7802
7803 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7804
7805 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7806 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7807 return;
7808 }
7809
7810 for (;;) {
7811 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7812 break;
7813 level++;
7814 sd = sd->parent;
7815 if (!sd)
7816 break;
7817 }
7818 free_cpumask_var(groupmask);
7819 }
7820 #else /* !CONFIG_SCHED_DEBUG */
7821 # define sched_domain_debug(sd, cpu) do { } while (0)
7822 #endif /* CONFIG_SCHED_DEBUG */
7823
7824 static int sd_degenerate(struct sched_domain *sd)
7825 {
7826 if (cpumask_weight(sched_domain_span(sd)) == 1)
7827 return 1;
7828
7829 /* Following flags need at least 2 groups */
7830 if (sd->flags & (SD_LOAD_BALANCE |
7831 SD_BALANCE_NEWIDLE |
7832 SD_BALANCE_FORK |
7833 SD_BALANCE_EXEC |
7834 SD_SHARE_CPUPOWER |
7835 SD_SHARE_PKG_RESOURCES)) {
7836 if (sd->groups != sd->groups->next)
7837 return 0;
7838 }
7839
7840 /* Following flags don't use groups */
7841 if (sd->flags & (SD_WAKE_AFFINE))
7842 return 0;
7843
7844 return 1;
7845 }
7846
7847 static int
7848 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7849 {
7850 unsigned long cflags = sd->flags, pflags = parent->flags;
7851
7852 if (sd_degenerate(parent))
7853 return 1;
7854
7855 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7856 return 0;
7857
7858 /* Flags needing groups don't count if only 1 group in parent */
7859 if (parent->groups == parent->groups->next) {
7860 pflags &= ~(SD_LOAD_BALANCE |
7861 SD_BALANCE_NEWIDLE |
7862 SD_BALANCE_FORK |
7863 SD_BALANCE_EXEC |
7864 SD_SHARE_CPUPOWER |
7865 SD_SHARE_PKG_RESOURCES);
7866 if (nr_node_ids == 1)
7867 pflags &= ~SD_SERIALIZE;
7868 }
7869 if (~cflags & pflags)
7870 return 0;
7871
7872 return 1;
7873 }
7874
7875 static void free_rootdomain(struct root_domain *rd)
7876 {
7877 cpupri_cleanup(&rd->cpupri);
7878
7879 free_cpumask_var(rd->rto_mask);
7880 free_cpumask_var(rd->online);
7881 free_cpumask_var(rd->span);
7882 kfree(rd);
7883 }
7884
7885 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7886 {
7887 struct root_domain *old_rd = NULL;
7888 unsigned long flags;
7889
7890 spin_lock_irqsave(&rq->lock, flags);
7891
7892 if (rq->rd) {
7893 old_rd = rq->rd;
7894
7895 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7896 set_rq_offline(rq);
7897
7898 cpumask_clear_cpu(rq->cpu, old_rd->span);
7899
7900 /*
7901 * If we dont want to free the old_rt yet then
7902 * set old_rd to NULL to skip the freeing later
7903 * in this function:
7904 */
7905 if (!atomic_dec_and_test(&old_rd->refcount))
7906 old_rd = NULL;
7907 }
7908
7909 atomic_inc(&rd->refcount);
7910 rq->rd = rd;
7911
7912 cpumask_set_cpu(rq->cpu, rd->span);
7913 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7914 set_rq_online(rq);
7915
7916 spin_unlock_irqrestore(&rq->lock, flags);
7917
7918 if (old_rd)
7919 free_rootdomain(old_rd);
7920 }
7921
7922 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7923 {
7924 gfp_t gfp = GFP_KERNEL;
7925
7926 memset(rd, 0, sizeof(*rd));
7927
7928 if (bootmem)
7929 gfp = GFP_NOWAIT;
7930
7931 if (!alloc_cpumask_var(&rd->span, gfp))
7932 goto out;
7933 if (!alloc_cpumask_var(&rd->online, gfp))
7934 goto free_span;
7935 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7936 goto free_online;
7937
7938 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7939 goto free_rto_mask;
7940 return 0;
7941
7942 free_rto_mask:
7943 free_cpumask_var(rd->rto_mask);
7944 free_online:
7945 free_cpumask_var(rd->online);
7946 free_span:
7947 free_cpumask_var(rd->span);
7948 out:
7949 return -ENOMEM;
7950 }
7951
7952 static void init_defrootdomain(void)
7953 {
7954 init_rootdomain(&def_root_domain, true);
7955
7956 atomic_set(&def_root_domain.refcount, 1);
7957 }
7958
7959 static struct root_domain *alloc_rootdomain(void)
7960 {
7961 struct root_domain *rd;
7962
7963 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7964 if (!rd)
7965 return NULL;
7966
7967 if (init_rootdomain(rd, false) != 0) {
7968 kfree(rd);
7969 return NULL;
7970 }
7971
7972 return rd;
7973 }
7974
7975 /*
7976 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7977 * hold the hotplug lock.
7978 */
7979 static void
7980 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7981 {
7982 struct rq *rq = cpu_rq(cpu);
7983 struct sched_domain *tmp;
7984
7985 /* Remove the sched domains which do not contribute to scheduling. */
7986 for (tmp = sd; tmp; ) {
7987 struct sched_domain *parent = tmp->parent;
7988 if (!parent)
7989 break;
7990
7991 if (sd_parent_degenerate(tmp, parent)) {
7992 tmp->parent = parent->parent;
7993 if (parent->parent)
7994 parent->parent->child = tmp;
7995 } else
7996 tmp = tmp->parent;
7997 }
7998
7999 if (sd && sd_degenerate(sd)) {
8000 sd = sd->parent;
8001 if (sd)
8002 sd->child = NULL;
8003 }
8004
8005 sched_domain_debug(sd, cpu);
8006
8007 rq_attach_root(rq, rd);
8008 rcu_assign_pointer(rq->sd, sd);
8009 }
8010
8011 /* cpus with isolated domains */
8012 static cpumask_var_t cpu_isolated_map;
8013
8014 /* Setup the mask of cpus configured for isolated domains */
8015 static int __init isolated_cpu_setup(char *str)
8016 {
8017 cpulist_parse(str, cpu_isolated_map);
8018 return 1;
8019 }
8020
8021 __setup("isolcpus=", isolated_cpu_setup);
8022
8023 /*
8024 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8025 * to a function which identifies what group(along with sched group) a CPU
8026 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8027 * (due to the fact that we keep track of groups covered with a struct cpumask).
8028 *
8029 * init_sched_build_groups will build a circular linked list of the groups
8030 * covered by the given span, and will set each group's ->cpumask correctly,
8031 * and ->cpu_power to 0.
8032 */
8033 static void
8034 init_sched_build_groups(const struct cpumask *span,
8035 const struct cpumask *cpu_map,
8036 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8037 struct sched_group **sg,
8038 struct cpumask *tmpmask),
8039 struct cpumask *covered, struct cpumask *tmpmask)
8040 {
8041 struct sched_group *first = NULL, *last = NULL;
8042 int i;
8043
8044 cpumask_clear(covered);
8045
8046 for_each_cpu(i, span) {
8047 struct sched_group *sg;
8048 int group = group_fn(i, cpu_map, &sg, tmpmask);
8049 int j;
8050
8051 if (cpumask_test_cpu(i, covered))
8052 continue;
8053
8054 cpumask_clear(sched_group_cpus(sg));
8055 sg->cpu_power = 0;
8056
8057 for_each_cpu(j, span) {
8058 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8059 continue;
8060
8061 cpumask_set_cpu(j, covered);
8062 cpumask_set_cpu(j, sched_group_cpus(sg));
8063 }
8064 if (!first)
8065 first = sg;
8066 if (last)
8067 last->next = sg;
8068 last = sg;
8069 }
8070 last->next = first;
8071 }
8072
8073 #define SD_NODES_PER_DOMAIN 16
8074
8075 #ifdef CONFIG_NUMA
8076
8077 /**
8078 * find_next_best_node - find the next node to include in a sched_domain
8079 * @node: node whose sched_domain we're building
8080 * @used_nodes: nodes already in the sched_domain
8081 *
8082 * Find the next node to include in a given scheduling domain. Simply
8083 * finds the closest node not already in the @used_nodes map.
8084 *
8085 * Should use nodemask_t.
8086 */
8087 static int find_next_best_node(int node, nodemask_t *used_nodes)
8088 {
8089 int i, n, val, min_val, best_node = 0;
8090
8091 min_val = INT_MAX;
8092
8093 for (i = 0; i < nr_node_ids; i++) {
8094 /* Start at @node */
8095 n = (node + i) % nr_node_ids;
8096
8097 if (!nr_cpus_node(n))
8098 continue;
8099
8100 /* Skip already used nodes */
8101 if (node_isset(n, *used_nodes))
8102 continue;
8103
8104 /* Simple min distance search */
8105 val = node_distance(node, n);
8106
8107 if (val < min_val) {
8108 min_val = val;
8109 best_node = n;
8110 }
8111 }
8112
8113 node_set(best_node, *used_nodes);
8114 return best_node;
8115 }
8116
8117 /**
8118 * sched_domain_node_span - get a cpumask for a node's sched_domain
8119 * @node: node whose cpumask we're constructing
8120 * @span: resulting cpumask
8121 *
8122 * Given a node, construct a good cpumask for its sched_domain to span. It
8123 * should be one that prevents unnecessary balancing, but also spreads tasks
8124 * out optimally.
8125 */
8126 static void sched_domain_node_span(int node, struct cpumask *span)
8127 {
8128 nodemask_t used_nodes;
8129 int i;
8130
8131 cpumask_clear(span);
8132 nodes_clear(used_nodes);
8133
8134 cpumask_or(span, span, cpumask_of_node(node));
8135 node_set(node, used_nodes);
8136
8137 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8138 int next_node = find_next_best_node(node, &used_nodes);
8139
8140 cpumask_or(span, span, cpumask_of_node(next_node));
8141 }
8142 }
8143 #endif /* CONFIG_NUMA */
8144
8145 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8146
8147 /*
8148 * The cpus mask in sched_group and sched_domain hangs off the end.
8149 *
8150 * ( See the the comments in include/linux/sched.h:struct sched_group
8151 * and struct sched_domain. )
8152 */
8153 struct static_sched_group {
8154 struct sched_group sg;
8155 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8156 };
8157
8158 struct static_sched_domain {
8159 struct sched_domain sd;
8160 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8161 };
8162
8163 struct s_data {
8164 #ifdef CONFIG_NUMA
8165 int sd_allnodes;
8166 cpumask_var_t domainspan;
8167 cpumask_var_t covered;
8168 cpumask_var_t notcovered;
8169 #endif
8170 cpumask_var_t nodemask;
8171 cpumask_var_t this_sibling_map;
8172 cpumask_var_t this_core_map;
8173 cpumask_var_t send_covered;
8174 cpumask_var_t tmpmask;
8175 struct sched_group **sched_group_nodes;
8176 struct root_domain *rd;
8177 };
8178
8179 enum s_alloc {
8180 sa_sched_groups = 0,
8181 sa_rootdomain,
8182 sa_tmpmask,
8183 sa_send_covered,
8184 sa_this_core_map,
8185 sa_this_sibling_map,
8186 sa_nodemask,
8187 sa_sched_group_nodes,
8188 #ifdef CONFIG_NUMA
8189 sa_notcovered,
8190 sa_covered,
8191 sa_domainspan,
8192 #endif
8193 sa_none,
8194 };
8195
8196 /*
8197 * SMT sched-domains:
8198 */
8199 #ifdef CONFIG_SCHED_SMT
8200 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8201 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8202
8203 static int
8204 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8205 struct sched_group **sg, struct cpumask *unused)
8206 {
8207 if (sg)
8208 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8209 return cpu;
8210 }
8211 #endif /* CONFIG_SCHED_SMT */
8212
8213 /*
8214 * multi-core sched-domains:
8215 */
8216 #ifdef CONFIG_SCHED_MC
8217 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8218 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8219 #endif /* CONFIG_SCHED_MC */
8220
8221 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8222 static int
8223 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8224 struct sched_group **sg, struct cpumask *mask)
8225 {
8226 int group;
8227
8228 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8229 group = cpumask_first(mask);
8230 if (sg)
8231 *sg = &per_cpu(sched_group_core, group).sg;
8232 return group;
8233 }
8234 #elif defined(CONFIG_SCHED_MC)
8235 static int
8236 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8237 struct sched_group **sg, struct cpumask *unused)
8238 {
8239 if (sg)
8240 *sg = &per_cpu(sched_group_core, cpu).sg;
8241 return cpu;
8242 }
8243 #endif
8244
8245 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8246 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8247
8248 static int
8249 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8250 struct sched_group **sg, struct cpumask *mask)
8251 {
8252 int group;
8253 #ifdef CONFIG_SCHED_MC
8254 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8255 group = cpumask_first(mask);
8256 #elif defined(CONFIG_SCHED_SMT)
8257 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8258 group = cpumask_first(mask);
8259 #else
8260 group = cpu;
8261 #endif
8262 if (sg)
8263 *sg = &per_cpu(sched_group_phys, group).sg;
8264 return group;
8265 }
8266
8267 #ifdef CONFIG_NUMA
8268 /*
8269 * The init_sched_build_groups can't handle what we want to do with node
8270 * groups, so roll our own. Now each node has its own list of groups which
8271 * gets dynamically allocated.
8272 */
8273 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8274 static struct sched_group ***sched_group_nodes_bycpu;
8275
8276 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8277 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8278
8279 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8280 struct sched_group **sg,
8281 struct cpumask *nodemask)
8282 {
8283 int group;
8284
8285 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8286 group = cpumask_first(nodemask);
8287
8288 if (sg)
8289 *sg = &per_cpu(sched_group_allnodes, group).sg;
8290 return group;
8291 }
8292
8293 static void init_numa_sched_groups_power(struct sched_group *group_head)
8294 {
8295 struct sched_group *sg = group_head;
8296 int j;
8297
8298 if (!sg)
8299 return;
8300 do {
8301 for_each_cpu(j, sched_group_cpus(sg)) {
8302 struct sched_domain *sd;
8303
8304 sd = &per_cpu(phys_domains, j).sd;
8305 if (j != group_first_cpu(sd->groups)) {
8306 /*
8307 * Only add "power" once for each
8308 * physical package.
8309 */
8310 continue;
8311 }
8312
8313 sg->cpu_power += sd->groups->cpu_power;
8314 }
8315 sg = sg->next;
8316 } while (sg != group_head);
8317 }
8318
8319 static int build_numa_sched_groups(struct s_data *d,
8320 const struct cpumask *cpu_map, int num)
8321 {
8322 struct sched_domain *sd;
8323 struct sched_group *sg, *prev;
8324 int n, j;
8325
8326 cpumask_clear(d->covered);
8327 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8328 if (cpumask_empty(d->nodemask)) {
8329 d->sched_group_nodes[num] = NULL;
8330 goto out;
8331 }
8332
8333 sched_domain_node_span(num, d->domainspan);
8334 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8335
8336 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8337 GFP_KERNEL, num);
8338 if (!sg) {
8339 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8340 num);
8341 return -ENOMEM;
8342 }
8343 d->sched_group_nodes[num] = sg;
8344
8345 for_each_cpu(j, d->nodemask) {
8346 sd = &per_cpu(node_domains, j).sd;
8347 sd->groups = sg;
8348 }
8349
8350 sg->cpu_power = 0;
8351 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8352 sg->next = sg;
8353 cpumask_or(d->covered, d->covered, d->nodemask);
8354
8355 prev = sg;
8356 for (j = 0; j < nr_node_ids; j++) {
8357 n = (num + j) % nr_node_ids;
8358 cpumask_complement(d->notcovered, d->covered);
8359 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8360 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8361 if (cpumask_empty(d->tmpmask))
8362 break;
8363 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8364 if (cpumask_empty(d->tmpmask))
8365 continue;
8366 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8367 GFP_KERNEL, num);
8368 if (!sg) {
8369 printk(KERN_WARNING
8370 "Can not alloc domain group for node %d\n", j);
8371 return -ENOMEM;
8372 }
8373 sg->cpu_power = 0;
8374 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8375 sg->next = prev->next;
8376 cpumask_or(d->covered, d->covered, d->tmpmask);
8377 prev->next = sg;
8378 prev = sg;
8379 }
8380 out:
8381 return 0;
8382 }
8383 #endif /* CONFIG_NUMA */
8384
8385 #ifdef CONFIG_NUMA
8386 /* Free memory allocated for various sched_group structures */
8387 static void free_sched_groups(const struct cpumask *cpu_map,
8388 struct cpumask *nodemask)
8389 {
8390 int cpu, i;
8391
8392 for_each_cpu(cpu, cpu_map) {
8393 struct sched_group **sched_group_nodes
8394 = sched_group_nodes_bycpu[cpu];
8395
8396 if (!sched_group_nodes)
8397 continue;
8398
8399 for (i = 0; i < nr_node_ids; i++) {
8400 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8401
8402 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8403 if (cpumask_empty(nodemask))
8404 continue;
8405
8406 if (sg == NULL)
8407 continue;
8408 sg = sg->next;
8409 next_sg:
8410 oldsg = sg;
8411 sg = sg->next;
8412 kfree(oldsg);
8413 if (oldsg != sched_group_nodes[i])
8414 goto next_sg;
8415 }
8416 kfree(sched_group_nodes);
8417 sched_group_nodes_bycpu[cpu] = NULL;
8418 }
8419 }
8420 #else /* !CONFIG_NUMA */
8421 static void free_sched_groups(const struct cpumask *cpu_map,
8422 struct cpumask *nodemask)
8423 {
8424 }
8425 #endif /* CONFIG_NUMA */
8426
8427 /*
8428 * Initialize sched groups cpu_power.
8429 *
8430 * cpu_power indicates the capacity of sched group, which is used while
8431 * distributing the load between different sched groups in a sched domain.
8432 * Typically cpu_power for all the groups in a sched domain will be same unless
8433 * there are asymmetries in the topology. If there are asymmetries, group
8434 * having more cpu_power will pickup more load compared to the group having
8435 * less cpu_power.
8436 */
8437 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8438 {
8439 struct sched_domain *child;
8440 struct sched_group *group;
8441 long power;
8442 int weight;
8443
8444 WARN_ON(!sd || !sd->groups);
8445
8446 if (cpu != group_first_cpu(sd->groups))
8447 return;
8448
8449 child = sd->child;
8450
8451 sd->groups->cpu_power = 0;
8452
8453 if (!child) {
8454 power = SCHED_LOAD_SCALE;
8455 weight = cpumask_weight(sched_domain_span(sd));
8456 /*
8457 * SMT siblings share the power of a single core.
8458 * Usually multiple threads get a better yield out of
8459 * that one core than a single thread would have,
8460 * reflect that in sd->smt_gain.
8461 */
8462 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8463 power *= sd->smt_gain;
8464 power /= weight;
8465 power >>= SCHED_LOAD_SHIFT;
8466 }
8467 sd->groups->cpu_power += power;
8468 return;
8469 }
8470
8471 /*
8472 * Add cpu_power of each child group to this groups cpu_power.
8473 */
8474 group = child->groups;
8475 do {
8476 sd->groups->cpu_power += group->cpu_power;
8477 group = group->next;
8478 } while (group != child->groups);
8479 }
8480
8481 /*
8482 * Initializers for schedule domains
8483 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8484 */
8485
8486 #ifdef CONFIG_SCHED_DEBUG
8487 # define SD_INIT_NAME(sd, type) sd->name = #type
8488 #else
8489 # define SD_INIT_NAME(sd, type) do { } while (0)
8490 #endif
8491
8492 #define SD_INIT(sd, type) sd_init_##type(sd)
8493
8494 #define SD_INIT_FUNC(type) \
8495 static noinline void sd_init_##type(struct sched_domain *sd) \
8496 { \
8497 memset(sd, 0, sizeof(*sd)); \
8498 *sd = SD_##type##_INIT; \
8499 sd->level = SD_LV_##type; \
8500 SD_INIT_NAME(sd, type); \
8501 }
8502
8503 SD_INIT_FUNC(CPU)
8504 #ifdef CONFIG_NUMA
8505 SD_INIT_FUNC(ALLNODES)
8506 SD_INIT_FUNC(NODE)
8507 #endif
8508 #ifdef CONFIG_SCHED_SMT
8509 SD_INIT_FUNC(SIBLING)
8510 #endif
8511 #ifdef CONFIG_SCHED_MC
8512 SD_INIT_FUNC(MC)
8513 #endif
8514
8515 static int default_relax_domain_level = -1;
8516
8517 static int __init setup_relax_domain_level(char *str)
8518 {
8519 unsigned long val;
8520
8521 val = simple_strtoul(str, NULL, 0);
8522 if (val < SD_LV_MAX)
8523 default_relax_domain_level = val;
8524
8525 return 1;
8526 }
8527 __setup("relax_domain_level=", setup_relax_domain_level);
8528
8529 static void set_domain_attribute(struct sched_domain *sd,
8530 struct sched_domain_attr *attr)
8531 {
8532 int request;
8533
8534 if (!attr || attr->relax_domain_level < 0) {
8535 if (default_relax_domain_level < 0)
8536 return;
8537 else
8538 request = default_relax_domain_level;
8539 } else
8540 request = attr->relax_domain_level;
8541 if (request < sd->level) {
8542 /* turn off idle balance on this domain */
8543 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8544 } else {
8545 /* turn on idle balance on this domain */
8546 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8547 }
8548 }
8549
8550 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8551 const struct cpumask *cpu_map)
8552 {
8553 switch (what) {
8554 case sa_sched_groups:
8555 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8556 d->sched_group_nodes = NULL;
8557 case sa_rootdomain:
8558 free_rootdomain(d->rd); /* fall through */
8559 case sa_tmpmask:
8560 free_cpumask_var(d->tmpmask); /* fall through */
8561 case sa_send_covered:
8562 free_cpumask_var(d->send_covered); /* fall through */
8563 case sa_this_core_map:
8564 free_cpumask_var(d->this_core_map); /* fall through */
8565 case sa_this_sibling_map:
8566 free_cpumask_var(d->this_sibling_map); /* fall through */
8567 case sa_nodemask:
8568 free_cpumask_var(d->nodemask); /* fall through */
8569 case sa_sched_group_nodes:
8570 #ifdef CONFIG_NUMA
8571 kfree(d->sched_group_nodes); /* fall through */
8572 case sa_notcovered:
8573 free_cpumask_var(d->notcovered); /* fall through */
8574 case sa_covered:
8575 free_cpumask_var(d->covered); /* fall through */
8576 case sa_domainspan:
8577 free_cpumask_var(d->domainspan); /* fall through */
8578 #endif
8579 case sa_none:
8580 break;
8581 }
8582 }
8583
8584 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8585 const struct cpumask *cpu_map)
8586 {
8587 #ifdef CONFIG_NUMA
8588 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8589 return sa_none;
8590 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8591 return sa_domainspan;
8592 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8593 return sa_covered;
8594 /* Allocate the per-node list of sched groups */
8595 d->sched_group_nodes = kcalloc(nr_node_ids,
8596 sizeof(struct sched_group *), GFP_KERNEL);
8597 if (!d->sched_group_nodes) {
8598 printk(KERN_WARNING "Can not alloc sched group node list\n");
8599 return sa_notcovered;
8600 }
8601 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8602 #endif
8603 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8604 return sa_sched_group_nodes;
8605 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8606 return sa_nodemask;
8607 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8608 return sa_this_sibling_map;
8609 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8610 return sa_this_core_map;
8611 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8612 return sa_send_covered;
8613 d->rd = alloc_rootdomain();
8614 if (!d->rd) {
8615 printk(KERN_WARNING "Cannot alloc root domain\n");
8616 return sa_tmpmask;
8617 }
8618 return sa_rootdomain;
8619 }
8620
8621 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8622 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8623 {
8624 struct sched_domain *sd = NULL;
8625 #ifdef CONFIG_NUMA
8626 struct sched_domain *parent;
8627
8628 d->sd_allnodes = 0;
8629 if (cpumask_weight(cpu_map) >
8630 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8631 sd = &per_cpu(allnodes_domains, i).sd;
8632 SD_INIT(sd, ALLNODES);
8633 set_domain_attribute(sd, attr);
8634 cpumask_copy(sched_domain_span(sd), cpu_map);
8635 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8636 d->sd_allnodes = 1;
8637 }
8638 parent = sd;
8639
8640 sd = &per_cpu(node_domains, i).sd;
8641 SD_INIT(sd, NODE);
8642 set_domain_attribute(sd, attr);
8643 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8644 sd->parent = parent;
8645 if (parent)
8646 parent->child = sd;
8647 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8648 #endif
8649 return sd;
8650 }
8651
8652 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8653 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8654 struct sched_domain *parent, int i)
8655 {
8656 struct sched_domain *sd;
8657 sd = &per_cpu(phys_domains, i).sd;
8658 SD_INIT(sd, CPU);
8659 set_domain_attribute(sd, attr);
8660 cpumask_copy(sched_domain_span(sd), d->nodemask);
8661 sd->parent = parent;
8662 if (parent)
8663 parent->child = sd;
8664 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8665 return sd;
8666 }
8667
8668 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8669 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8670 struct sched_domain *parent, int i)
8671 {
8672 struct sched_domain *sd = parent;
8673 #ifdef CONFIG_SCHED_MC
8674 sd = &per_cpu(core_domains, i).sd;
8675 SD_INIT(sd, MC);
8676 set_domain_attribute(sd, attr);
8677 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8678 sd->parent = parent;
8679 parent->child = sd;
8680 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8681 #endif
8682 return sd;
8683 }
8684
8685 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8686 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8687 struct sched_domain *parent, int i)
8688 {
8689 struct sched_domain *sd = parent;
8690 #ifdef CONFIG_SCHED_SMT
8691 sd = &per_cpu(cpu_domains, i).sd;
8692 SD_INIT(sd, SIBLING);
8693 set_domain_attribute(sd, attr);
8694 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8695 sd->parent = parent;
8696 parent->child = sd;
8697 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8698 #endif
8699 return sd;
8700 }
8701
8702 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8703 const struct cpumask *cpu_map, int cpu)
8704 {
8705 switch (l) {
8706 #ifdef CONFIG_SCHED_SMT
8707 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8708 cpumask_and(d->this_sibling_map, cpu_map,
8709 topology_thread_cpumask(cpu));
8710 if (cpu == cpumask_first(d->this_sibling_map))
8711 init_sched_build_groups(d->this_sibling_map, cpu_map,
8712 &cpu_to_cpu_group,
8713 d->send_covered, d->tmpmask);
8714 break;
8715 #endif
8716 #ifdef CONFIG_SCHED_MC
8717 case SD_LV_MC: /* set up multi-core groups */
8718 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8719 if (cpu == cpumask_first(d->this_core_map))
8720 init_sched_build_groups(d->this_core_map, cpu_map,
8721 &cpu_to_core_group,
8722 d->send_covered, d->tmpmask);
8723 break;
8724 #endif
8725 case SD_LV_CPU: /* set up physical groups */
8726 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8727 if (!cpumask_empty(d->nodemask))
8728 init_sched_build_groups(d->nodemask, cpu_map,
8729 &cpu_to_phys_group,
8730 d->send_covered, d->tmpmask);
8731 break;
8732 #ifdef CONFIG_NUMA
8733 case SD_LV_ALLNODES:
8734 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8735 d->send_covered, d->tmpmask);
8736 break;
8737 #endif
8738 default:
8739 break;
8740 }
8741 }
8742
8743 /*
8744 * Build sched domains for a given set of cpus and attach the sched domains
8745 * to the individual cpus
8746 */
8747 static int __build_sched_domains(const struct cpumask *cpu_map,
8748 struct sched_domain_attr *attr)
8749 {
8750 enum s_alloc alloc_state = sa_none;
8751 struct s_data d;
8752 struct sched_domain *sd;
8753 int i;
8754 #ifdef CONFIG_NUMA
8755 d.sd_allnodes = 0;
8756 #endif
8757
8758 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8759 if (alloc_state != sa_rootdomain)
8760 goto error;
8761 alloc_state = sa_sched_groups;
8762
8763 /*
8764 * Set up domains for cpus specified by the cpu_map.
8765 */
8766 for_each_cpu(i, cpu_map) {
8767 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8768 cpu_map);
8769
8770 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8771 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8772 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8773 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8774 }
8775
8776 for_each_cpu(i, cpu_map) {
8777 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8778 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8779 }
8780
8781 /* Set up physical groups */
8782 for (i = 0; i < nr_node_ids; i++)
8783 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8784
8785 #ifdef CONFIG_NUMA
8786 /* Set up node groups */
8787 if (d.sd_allnodes)
8788 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8789
8790 for (i = 0; i < nr_node_ids; i++)
8791 if (build_numa_sched_groups(&d, cpu_map, i))
8792 goto error;
8793 #endif
8794
8795 /* Calculate CPU power for physical packages and nodes */
8796 #ifdef CONFIG_SCHED_SMT
8797 for_each_cpu(i, cpu_map) {
8798 sd = &per_cpu(cpu_domains, i).sd;
8799 init_sched_groups_power(i, sd);
8800 }
8801 #endif
8802 #ifdef CONFIG_SCHED_MC
8803 for_each_cpu(i, cpu_map) {
8804 sd = &per_cpu(core_domains, i).sd;
8805 init_sched_groups_power(i, sd);
8806 }
8807 #endif
8808
8809 for_each_cpu(i, cpu_map) {
8810 sd = &per_cpu(phys_domains, i).sd;
8811 init_sched_groups_power(i, sd);
8812 }
8813
8814 #ifdef CONFIG_NUMA
8815 for (i = 0; i < nr_node_ids; i++)
8816 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8817
8818 if (d.sd_allnodes) {
8819 struct sched_group *sg;
8820
8821 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8822 d.tmpmask);
8823 init_numa_sched_groups_power(sg);
8824 }
8825 #endif
8826
8827 /* Attach the domains */
8828 for_each_cpu(i, cpu_map) {
8829 #ifdef CONFIG_SCHED_SMT
8830 sd = &per_cpu(cpu_domains, i).sd;
8831 #elif defined(CONFIG_SCHED_MC)
8832 sd = &per_cpu(core_domains, i).sd;
8833 #else
8834 sd = &per_cpu(phys_domains, i).sd;
8835 #endif
8836 cpu_attach_domain(sd, d.rd, i);
8837 }
8838
8839 d.sched_group_nodes = NULL; /* don't free this we still need it */
8840 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8841 return 0;
8842
8843 error:
8844 __free_domain_allocs(&d, alloc_state, cpu_map);
8845 return -ENOMEM;
8846 }
8847
8848 static int build_sched_domains(const struct cpumask *cpu_map)
8849 {
8850 return __build_sched_domains(cpu_map, NULL);
8851 }
8852
8853 static struct cpumask *doms_cur; /* current sched domains */
8854 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8855 static struct sched_domain_attr *dattr_cur;
8856 /* attribues of custom domains in 'doms_cur' */
8857
8858 /*
8859 * Special case: If a kmalloc of a doms_cur partition (array of
8860 * cpumask) fails, then fallback to a single sched domain,
8861 * as determined by the single cpumask fallback_doms.
8862 */
8863 static cpumask_var_t fallback_doms;
8864
8865 /*
8866 * arch_update_cpu_topology lets virtualized architectures update the
8867 * cpu core maps. It is supposed to return 1 if the topology changed
8868 * or 0 if it stayed the same.
8869 */
8870 int __attribute__((weak)) arch_update_cpu_topology(void)
8871 {
8872 return 0;
8873 }
8874
8875 /*
8876 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8877 * For now this just excludes isolated cpus, but could be used to
8878 * exclude other special cases in the future.
8879 */
8880 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8881 {
8882 int err;
8883
8884 arch_update_cpu_topology();
8885 ndoms_cur = 1;
8886 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8887 if (!doms_cur)
8888 doms_cur = fallback_doms;
8889 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8890 dattr_cur = NULL;
8891 err = build_sched_domains(doms_cur);
8892 register_sched_domain_sysctl();
8893
8894 return err;
8895 }
8896
8897 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8898 struct cpumask *tmpmask)
8899 {
8900 free_sched_groups(cpu_map, tmpmask);
8901 }
8902
8903 /*
8904 * Detach sched domains from a group of cpus specified in cpu_map
8905 * These cpus will now be attached to the NULL domain
8906 */
8907 static void detach_destroy_domains(const struct cpumask *cpu_map)
8908 {
8909 /* Save because hotplug lock held. */
8910 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8911 int i;
8912
8913 for_each_cpu(i, cpu_map)
8914 cpu_attach_domain(NULL, &def_root_domain, i);
8915 synchronize_sched();
8916 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8917 }
8918
8919 /* handle null as "default" */
8920 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8921 struct sched_domain_attr *new, int idx_new)
8922 {
8923 struct sched_domain_attr tmp;
8924
8925 /* fast path */
8926 if (!new && !cur)
8927 return 1;
8928
8929 tmp = SD_ATTR_INIT;
8930 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8931 new ? (new + idx_new) : &tmp,
8932 sizeof(struct sched_domain_attr));
8933 }
8934
8935 /*
8936 * Partition sched domains as specified by the 'ndoms_new'
8937 * cpumasks in the array doms_new[] of cpumasks. This compares
8938 * doms_new[] to the current sched domain partitioning, doms_cur[].
8939 * It destroys each deleted domain and builds each new domain.
8940 *
8941 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8942 * The masks don't intersect (don't overlap.) We should setup one
8943 * sched domain for each mask. CPUs not in any of the cpumasks will
8944 * not be load balanced. If the same cpumask appears both in the
8945 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8946 * it as it is.
8947 *
8948 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8949 * ownership of it and will kfree it when done with it. If the caller
8950 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8951 * ndoms_new == 1, and partition_sched_domains() will fallback to
8952 * the single partition 'fallback_doms', it also forces the domains
8953 * to be rebuilt.
8954 *
8955 * If doms_new == NULL it will be replaced with cpu_online_mask.
8956 * ndoms_new == 0 is a special case for destroying existing domains,
8957 * and it will not create the default domain.
8958 *
8959 * Call with hotplug lock held
8960 */
8961 /* FIXME: Change to struct cpumask *doms_new[] */
8962 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8963 struct sched_domain_attr *dattr_new)
8964 {
8965 int i, j, n;
8966 int new_topology;
8967
8968 mutex_lock(&sched_domains_mutex);
8969
8970 /* always unregister in case we don't destroy any domains */
8971 unregister_sched_domain_sysctl();
8972
8973 /* Let architecture update cpu core mappings. */
8974 new_topology = arch_update_cpu_topology();
8975
8976 n = doms_new ? ndoms_new : 0;
8977
8978 /* Destroy deleted domains */
8979 for (i = 0; i < ndoms_cur; i++) {
8980 for (j = 0; j < n && !new_topology; j++) {
8981 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8982 && dattrs_equal(dattr_cur, i, dattr_new, j))
8983 goto match1;
8984 }
8985 /* no match - a current sched domain not in new doms_new[] */
8986 detach_destroy_domains(doms_cur + i);
8987 match1:
8988 ;
8989 }
8990
8991 if (doms_new == NULL) {
8992 ndoms_cur = 0;
8993 doms_new = fallback_doms;
8994 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8995 WARN_ON_ONCE(dattr_new);
8996 }
8997
8998 /* Build new domains */
8999 for (i = 0; i < ndoms_new; i++) {
9000 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9001 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9002 && dattrs_equal(dattr_new, i, dattr_cur, j))
9003 goto match2;
9004 }
9005 /* no match - add a new doms_new */
9006 __build_sched_domains(doms_new + i,
9007 dattr_new ? dattr_new + i : NULL);
9008 match2:
9009 ;
9010 }
9011
9012 /* Remember the new sched domains */
9013 if (doms_cur != fallback_doms)
9014 kfree(doms_cur);
9015 kfree(dattr_cur); /* kfree(NULL) is safe */
9016 doms_cur = doms_new;
9017 dattr_cur = dattr_new;
9018 ndoms_cur = ndoms_new;
9019
9020 register_sched_domain_sysctl();
9021
9022 mutex_unlock(&sched_domains_mutex);
9023 }
9024
9025 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9026 static void arch_reinit_sched_domains(void)
9027 {
9028 get_online_cpus();
9029
9030 /* Destroy domains first to force the rebuild */
9031 partition_sched_domains(0, NULL, NULL);
9032
9033 rebuild_sched_domains();
9034 put_online_cpus();
9035 }
9036
9037 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9038 {
9039 unsigned int level = 0;
9040
9041 if (sscanf(buf, "%u", &level) != 1)
9042 return -EINVAL;
9043
9044 /*
9045 * level is always be positive so don't check for
9046 * level < POWERSAVINGS_BALANCE_NONE which is 0
9047 * What happens on 0 or 1 byte write,
9048 * need to check for count as well?
9049 */
9050
9051 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9052 return -EINVAL;
9053
9054 if (smt)
9055 sched_smt_power_savings = level;
9056 else
9057 sched_mc_power_savings = level;
9058
9059 arch_reinit_sched_domains();
9060
9061 return count;
9062 }
9063
9064 #ifdef CONFIG_SCHED_MC
9065 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9066 char *page)
9067 {
9068 return sprintf(page, "%u\n", sched_mc_power_savings);
9069 }
9070 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9071 const char *buf, size_t count)
9072 {
9073 return sched_power_savings_store(buf, count, 0);
9074 }
9075 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9076 sched_mc_power_savings_show,
9077 sched_mc_power_savings_store);
9078 #endif
9079
9080 #ifdef CONFIG_SCHED_SMT
9081 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9082 char *page)
9083 {
9084 return sprintf(page, "%u\n", sched_smt_power_savings);
9085 }
9086 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9087 const char *buf, size_t count)
9088 {
9089 return sched_power_savings_store(buf, count, 1);
9090 }
9091 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9092 sched_smt_power_savings_show,
9093 sched_smt_power_savings_store);
9094 #endif
9095
9096 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9097 {
9098 int err = 0;
9099
9100 #ifdef CONFIG_SCHED_SMT
9101 if (smt_capable())
9102 err = sysfs_create_file(&cls->kset.kobj,
9103 &attr_sched_smt_power_savings.attr);
9104 #endif
9105 #ifdef CONFIG_SCHED_MC
9106 if (!err && mc_capable())
9107 err = sysfs_create_file(&cls->kset.kobj,
9108 &attr_sched_mc_power_savings.attr);
9109 #endif
9110 return err;
9111 }
9112 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9113
9114 #ifndef CONFIG_CPUSETS
9115 /*
9116 * Add online and remove offline CPUs from the scheduler domains.
9117 * When cpusets are enabled they take over this function.
9118 */
9119 static int update_sched_domains(struct notifier_block *nfb,
9120 unsigned long action, void *hcpu)
9121 {
9122 switch (action) {
9123 case CPU_ONLINE:
9124 case CPU_ONLINE_FROZEN:
9125 case CPU_DEAD:
9126 case CPU_DEAD_FROZEN:
9127 partition_sched_domains(1, NULL, NULL);
9128 return NOTIFY_OK;
9129
9130 default:
9131 return NOTIFY_DONE;
9132 }
9133 }
9134 #endif
9135
9136 static int update_runtime(struct notifier_block *nfb,
9137 unsigned long action, void *hcpu)
9138 {
9139 int cpu = (int)(long)hcpu;
9140
9141 switch (action) {
9142 case CPU_DOWN_PREPARE:
9143 case CPU_DOWN_PREPARE_FROZEN:
9144 disable_runtime(cpu_rq(cpu));
9145 return NOTIFY_OK;
9146
9147 case CPU_DOWN_FAILED:
9148 case CPU_DOWN_FAILED_FROZEN:
9149 case CPU_ONLINE:
9150 case CPU_ONLINE_FROZEN:
9151 enable_runtime(cpu_rq(cpu));
9152 return NOTIFY_OK;
9153
9154 default:
9155 return NOTIFY_DONE;
9156 }
9157 }
9158
9159 void __init sched_init_smp(void)
9160 {
9161 cpumask_var_t non_isolated_cpus;
9162
9163 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9164
9165 #if defined(CONFIG_NUMA)
9166 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9167 GFP_KERNEL);
9168 BUG_ON(sched_group_nodes_bycpu == NULL);
9169 #endif
9170 get_online_cpus();
9171 mutex_lock(&sched_domains_mutex);
9172 arch_init_sched_domains(cpu_online_mask);
9173 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9174 if (cpumask_empty(non_isolated_cpus))
9175 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9176 mutex_unlock(&sched_domains_mutex);
9177 put_online_cpus();
9178
9179 #ifndef CONFIG_CPUSETS
9180 /* XXX: Theoretical race here - CPU may be hotplugged now */
9181 hotcpu_notifier(update_sched_domains, 0);
9182 #endif
9183
9184 /* RT runtime code needs to handle some hotplug events */
9185 hotcpu_notifier(update_runtime, 0);
9186
9187 init_hrtick();
9188
9189 /* Move init over to a non-isolated CPU */
9190 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9191 BUG();
9192 sched_init_granularity();
9193 free_cpumask_var(non_isolated_cpus);
9194
9195 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9196 init_sched_rt_class();
9197 }
9198 #else
9199 void __init sched_init_smp(void)
9200 {
9201 sched_init_granularity();
9202 }
9203 #endif /* CONFIG_SMP */
9204
9205 const_debug unsigned int sysctl_timer_migration = 1;
9206
9207 int in_sched_functions(unsigned long addr)
9208 {
9209 return in_lock_functions(addr) ||
9210 (addr >= (unsigned long)__sched_text_start
9211 && addr < (unsigned long)__sched_text_end);
9212 }
9213
9214 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9215 {
9216 cfs_rq->tasks_timeline = RB_ROOT;
9217 INIT_LIST_HEAD(&cfs_rq->tasks);
9218 #ifdef CONFIG_FAIR_GROUP_SCHED
9219 cfs_rq->rq = rq;
9220 #endif
9221 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9222 }
9223
9224 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9225 {
9226 struct rt_prio_array *array;
9227 int i;
9228
9229 array = &rt_rq->active;
9230 for (i = 0; i < MAX_RT_PRIO; i++) {
9231 INIT_LIST_HEAD(array->queue + i);
9232 __clear_bit(i, array->bitmap);
9233 }
9234 /* delimiter for bitsearch: */
9235 __set_bit(MAX_RT_PRIO, array->bitmap);
9236
9237 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9238 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9239 #ifdef CONFIG_SMP
9240 rt_rq->highest_prio.next = MAX_RT_PRIO;
9241 #endif
9242 #endif
9243 #ifdef CONFIG_SMP
9244 rt_rq->rt_nr_migratory = 0;
9245 rt_rq->overloaded = 0;
9246 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9247 #endif
9248
9249 rt_rq->rt_time = 0;
9250 rt_rq->rt_throttled = 0;
9251 rt_rq->rt_runtime = 0;
9252 spin_lock_init(&rt_rq->rt_runtime_lock);
9253
9254 #ifdef CONFIG_RT_GROUP_SCHED
9255 rt_rq->rt_nr_boosted = 0;
9256 rt_rq->rq = rq;
9257 #endif
9258 }
9259
9260 #ifdef CONFIG_FAIR_GROUP_SCHED
9261 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9262 struct sched_entity *se, int cpu, int add,
9263 struct sched_entity *parent)
9264 {
9265 struct rq *rq = cpu_rq(cpu);
9266 tg->cfs_rq[cpu] = cfs_rq;
9267 init_cfs_rq(cfs_rq, rq);
9268 cfs_rq->tg = tg;
9269 if (add)
9270 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9271
9272 tg->se[cpu] = se;
9273 /* se could be NULL for init_task_group */
9274 if (!se)
9275 return;
9276
9277 if (!parent)
9278 se->cfs_rq = &rq->cfs;
9279 else
9280 se->cfs_rq = parent->my_q;
9281
9282 se->my_q = cfs_rq;
9283 se->load.weight = tg->shares;
9284 se->load.inv_weight = 0;
9285 se->parent = parent;
9286 }
9287 #endif
9288
9289 #ifdef CONFIG_RT_GROUP_SCHED
9290 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9291 struct sched_rt_entity *rt_se, int cpu, int add,
9292 struct sched_rt_entity *parent)
9293 {
9294 struct rq *rq = cpu_rq(cpu);
9295
9296 tg->rt_rq[cpu] = rt_rq;
9297 init_rt_rq(rt_rq, rq);
9298 rt_rq->tg = tg;
9299 rt_rq->rt_se = rt_se;
9300 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9301 if (add)
9302 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9303
9304 tg->rt_se[cpu] = rt_se;
9305 if (!rt_se)
9306 return;
9307
9308 if (!parent)
9309 rt_se->rt_rq = &rq->rt;
9310 else
9311 rt_se->rt_rq = parent->my_q;
9312
9313 rt_se->my_q = rt_rq;
9314 rt_se->parent = parent;
9315 INIT_LIST_HEAD(&rt_se->run_list);
9316 }
9317 #endif
9318
9319 void __init sched_init(void)
9320 {
9321 int i, j;
9322 unsigned long alloc_size = 0, ptr;
9323
9324 #ifdef CONFIG_FAIR_GROUP_SCHED
9325 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9326 #endif
9327 #ifdef CONFIG_RT_GROUP_SCHED
9328 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9329 #endif
9330 #ifdef CONFIG_USER_SCHED
9331 alloc_size *= 2;
9332 #endif
9333 #ifdef CONFIG_CPUMASK_OFFSTACK
9334 alloc_size += num_possible_cpus() * cpumask_size();
9335 #endif
9336 /*
9337 * As sched_init() is called before page_alloc is setup,
9338 * we use alloc_bootmem().
9339 */
9340 if (alloc_size) {
9341 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9342
9343 #ifdef CONFIG_FAIR_GROUP_SCHED
9344 init_task_group.se = (struct sched_entity **)ptr;
9345 ptr += nr_cpu_ids * sizeof(void **);
9346
9347 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9348 ptr += nr_cpu_ids * sizeof(void **);
9349
9350 #ifdef CONFIG_USER_SCHED
9351 root_task_group.se = (struct sched_entity **)ptr;
9352 ptr += nr_cpu_ids * sizeof(void **);
9353
9354 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356 #endif /* CONFIG_USER_SCHED */
9357 #endif /* CONFIG_FAIR_GROUP_SCHED */
9358 #ifdef CONFIG_RT_GROUP_SCHED
9359 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9360 ptr += nr_cpu_ids * sizeof(void **);
9361
9362 init_task_group.rt_rq = (struct rt_rq **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9364
9365 #ifdef CONFIG_USER_SCHED
9366 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9367 ptr += nr_cpu_ids * sizeof(void **);
9368
9369 root_task_group.rt_rq = (struct rt_rq **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371 #endif /* CONFIG_USER_SCHED */
9372 #endif /* CONFIG_RT_GROUP_SCHED */
9373 #ifdef CONFIG_CPUMASK_OFFSTACK
9374 for_each_possible_cpu(i) {
9375 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9376 ptr += cpumask_size();
9377 }
9378 #endif /* CONFIG_CPUMASK_OFFSTACK */
9379 }
9380
9381 #ifdef CONFIG_SMP
9382 init_defrootdomain();
9383 #endif
9384
9385 init_rt_bandwidth(&def_rt_bandwidth,
9386 global_rt_period(), global_rt_runtime());
9387
9388 #ifdef CONFIG_RT_GROUP_SCHED
9389 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9390 global_rt_period(), global_rt_runtime());
9391 #ifdef CONFIG_USER_SCHED
9392 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9393 global_rt_period(), RUNTIME_INF);
9394 #endif /* CONFIG_USER_SCHED */
9395 #endif /* CONFIG_RT_GROUP_SCHED */
9396
9397 #ifdef CONFIG_GROUP_SCHED
9398 list_add(&init_task_group.list, &task_groups);
9399 INIT_LIST_HEAD(&init_task_group.children);
9400
9401 #ifdef CONFIG_USER_SCHED
9402 INIT_LIST_HEAD(&root_task_group.children);
9403 init_task_group.parent = &root_task_group;
9404 list_add(&init_task_group.siblings, &root_task_group.children);
9405 #endif /* CONFIG_USER_SCHED */
9406 #endif /* CONFIG_GROUP_SCHED */
9407
9408 for_each_possible_cpu(i) {
9409 struct rq *rq;
9410
9411 rq = cpu_rq(i);
9412 spin_lock_init(&rq->lock);
9413 rq->nr_running = 0;
9414 rq->calc_load_active = 0;
9415 rq->calc_load_update = jiffies + LOAD_FREQ;
9416 init_cfs_rq(&rq->cfs, rq);
9417 init_rt_rq(&rq->rt, rq);
9418 #ifdef CONFIG_FAIR_GROUP_SCHED
9419 init_task_group.shares = init_task_group_load;
9420 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9421 #ifdef CONFIG_CGROUP_SCHED
9422 /*
9423 * How much cpu bandwidth does init_task_group get?
9424 *
9425 * In case of task-groups formed thr' the cgroup filesystem, it
9426 * gets 100% of the cpu resources in the system. This overall
9427 * system cpu resource is divided among the tasks of
9428 * init_task_group and its child task-groups in a fair manner,
9429 * based on each entity's (task or task-group's) weight
9430 * (se->load.weight).
9431 *
9432 * In other words, if init_task_group has 10 tasks of weight
9433 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9434 * then A0's share of the cpu resource is:
9435 *
9436 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9437 *
9438 * We achieve this by letting init_task_group's tasks sit
9439 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9440 */
9441 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9442 #elif defined CONFIG_USER_SCHED
9443 root_task_group.shares = NICE_0_LOAD;
9444 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9445 /*
9446 * In case of task-groups formed thr' the user id of tasks,
9447 * init_task_group represents tasks belonging to root user.
9448 * Hence it forms a sibling of all subsequent groups formed.
9449 * In this case, init_task_group gets only a fraction of overall
9450 * system cpu resource, based on the weight assigned to root
9451 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9452 * by letting tasks of init_task_group sit in a separate cfs_rq
9453 * (init_tg_cfs_rq) and having one entity represent this group of
9454 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9455 */
9456 init_tg_cfs_entry(&init_task_group,
9457 &per_cpu(init_tg_cfs_rq, i),
9458 &per_cpu(init_sched_entity, i), i, 1,
9459 root_task_group.se[i]);
9460
9461 #endif
9462 #endif /* CONFIG_FAIR_GROUP_SCHED */
9463
9464 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9465 #ifdef CONFIG_RT_GROUP_SCHED
9466 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9467 #ifdef CONFIG_CGROUP_SCHED
9468 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9469 #elif defined CONFIG_USER_SCHED
9470 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9471 init_tg_rt_entry(&init_task_group,
9472 &per_cpu(init_rt_rq, i),
9473 &per_cpu(init_sched_rt_entity, i), i, 1,
9474 root_task_group.rt_se[i]);
9475 #endif
9476 #endif
9477
9478 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9479 rq->cpu_load[j] = 0;
9480 #ifdef CONFIG_SMP
9481 rq->sd = NULL;
9482 rq->rd = NULL;
9483 rq->post_schedule = 0;
9484 rq->active_balance = 0;
9485 rq->next_balance = jiffies;
9486 rq->push_cpu = 0;
9487 rq->cpu = i;
9488 rq->online = 0;
9489 rq->migration_thread = NULL;
9490 INIT_LIST_HEAD(&rq->migration_queue);
9491 rq_attach_root(rq, &def_root_domain);
9492 #endif
9493 init_rq_hrtick(rq);
9494 atomic_set(&rq->nr_iowait, 0);
9495 }
9496
9497 set_load_weight(&init_task);
9498
9499 #ifdef CONFIG_PREEMPT_NOTIFIERS
9500 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9501 #endif
9502
9503 #ifdef CONFIG_SMP
9504 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9505 #endif
9506
9507 #ifdef CONFIG_RT_MUTEXES
9508 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9509 #endif
9510
9511 /*
9512 * The boot idle thread does lazy MMU switching as well:
9513 */
9514 atomic_inc(&init_mm.mm_count);
9515 enter_lazy_tlb(&init_mm, current);
9516
9517 /*
9518 * Make us the idle thread. Technically, schedule() should not be
9519 * called from this thread, however somewhere below it might be,
9520 * but because we are the idle thread, we just pick up running again
9521 * when this runqueue becomes "idle".
9522 */
9523 init_idle(current, smp_processor_id());
9524
9525 calc_load_update = jiffies + LOAD_FREQ;
9526
9527 /*
9528 * During early bootup we pretend to be a normal task:
9529 */
9530 current->sched_class = &fair_sched_class;
9531
9532 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9533 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9534 #ifdef CONFIG_SMP
9535 #ifdef CONFIG_NO_HZ
9536 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9537 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9538 #endif
9539 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9540 #endif /* SMP */
9541
9542 perf_counter_init();
9543
9544 scheduler_running = 1;
9545 }
9546
9547 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9548 static inline int preempt_count_equals(int preempt_offset)
9549 {
9550 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9551
9552 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9553 }
9554
9555 void __might_sleep(char *file, int line, int preempt_offset)
9556 {
9557 #ifdef in_atomic
9558 static unsigned long prev_jiffy; /* ratelimiting */
9559
9560 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9561 system_state != SYSTEM_RUNNING || oops_in_progress)
9562 return;
9563 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9564 return;
9565 prev_jiffy = jiffies;
9566
9567 printk(KERN_ERR
9568 "BUG: sleeping function called from invalid context at %s:%d\n",
9569 file, line);
9570 printk(KERN_ERR
9571 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9572 in_atomic(), irqs_disabled(),
9573 current->pid, current->comm);
9574
9575 debug_show_held_locks(current);
9576 if (irqs_disabled())
9577 print_irqtrace_events(current);
9578 dump_stack();
9579 #endif
9580 }
9581 EXPORT_SYMBOL(__might_sleep);
9582 #endif
9583
9584 #ifdef CONFIG_MAGIC_SYSRQ
9585 static void normalize_task(struct rq *rq, struct task_struct *p)
9586 {
9587 int on_rq;
9588
9589 update_rq_clock(rq);
9590 on_rq = p->se.on_rq;
9591 if (on_rq)
9592 deactivate_task(rq, p, 0);
9593 __setscheduler(rq, p, SCHED_NORMAL, 0);
9594 if (on_rq) {
9595 activate_task(rq, p, 0);
9596 resched_task(rq->curr);
9597 }
9598 }
9599
9600 void normalize_rt_tasks(void)
9601 {
9602 struct task_struct *g, *p;
9603 unsigned long flags;
9604 struct rq *rq;
9605
9606 read_lock_irqsave(&tasklist_lock, flags);
9607 do_each_thread(g, p) {
9608 /*
9609 * Only normalize user tasks:
9610 */
9611 if (!p->mm)
9612 continue;
9613
9614 p->se.exec_start = 0;
9615 #ifdef CONFIG_SCHEDSTATS
9616 p->se.wait_start = 0;
9617 p->se.sleep_start = 0;
9618 p->se.block_start = 0;
9619 #endif
9620
9621 if (!rt_task(p)) {
9622 /*
9623 * Renice negative nice level userspace
9624 * tasks back to 0:
9625 */
9626 if (TASK_NICE(p) < 0 && p->mm)
9627 set_user_nice(p, 0);
9628 continue;
9629 }
9630
9631 spin_lock(&p->pi_lock);
9632 rq = __task_rq_lock(p);
9633
9634 normalize_task(rq, p);
9635
9636 __task_rq_unlock(rq);
9637 spin_unlock(&p->pi_lock);
9638 } while_each_thread(g, p);
9639
9640 read_unlock_irqrestore(&tasklist_lock, flags);
9641 }
9642
9643 #endif /* CONFIG_MAGIC_SYSRQ */
9644
9645 #ifdef CONFIG_IA64
9646 /*
9647 * These functions are only useful for the IA64 MCA handling.
9648 *
9649 * They can only be called when the whole system has been
9650 * stopped - every CPU needs to be quiescent, and no scheduling
9651 * activity can take place. Using them for anything else would
9652 * be a serious bug, and as a result, they aren't even visible
9653 * under any other configuration.
9654 */
9655
9656 /**
9657 * curr_task - return the current task for a given cpu.
9658 * @cpu: the processor in question.
9659 *
9660 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9661 */
9662 struct task_struct *curr_task(int cpu)
9663 {
9664 return cpu_curr(cpu);
9665 }
9666
9667 /**
9668 * set_curr_task - set the current task for a given cpu.
9669 * @cpu: the processor in question.
9670 * @p: the task pointer to set.
9671 *
9672 * Description: This function must only be used when non-maskable interrupts
9673 * are serviced on a separate stack. It allows the architecture to switch the
9674 * notion of the current task on a cpu in a non-blocking manner. This function
9675 * must be called with all CPU's synchronized, and interrupts disabled, the
9676 * and caller must save the original value of the current task (see
9677 * curr_task() above) and restore that value before reenabling interrupts and
9678 * re-starting the system.
9679 *
9680 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9681 */
9682 void set_curr_task(int cpu, struct task_struct *p)
9683 {
9684 cpu_curr(cpu) = p;
9685 }
9686
9687 #endif
9688
9689 #ifdef CONFIG_FAIR_GROUP_SCHED
9690 static void free_fair_sched_group(struct task_group *tg)
9691 {
9692 int i;
9693
9694 for_each_possible_cpu(i) {
9695 if (tg->cfs_rq)
9696 kfree(tg->cfs_rq[i]);
9697 if (tg->se)
9698 kfree(tg->se[i]);
9699 }
9700
9701 kfree(tg->cfs_rq);
9702 kfree(tg->se);
9703 }
9704
9705 static
9706 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9707 {
9708 struct cfs_rq *cfs_rq;
9709 struct sched_entity *se;
9710 struct rq *rq;
9711 int i;
9712
9713 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9714 if (!tg->cfs_rq)
9715 goto err;
9716 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9717 if (!tg->se)
9718 goto err;
9719
9720 tg->shares = NICE_0_LOAD;
9721
9722 for_each_possible_cpu(i) {
9723 rq = cpu_rq(i);
9724
9725 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9726 GFP_KERNEL, cpu_to_node(i));
9727 if (!cfs_rq)
9728 goto err;
9729
9730 se = kzalloc_node(sizeof(struct sched_entity),
9731 GFP_KERNEL, cpu_to_node(i));
9732 if (!se)
9733 goto err;
9734
9735 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9736 }
9737
9738 return 1;
9739
9740 err:
9741 return 0;
9742 }
9743
9744 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9745 {
9746 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9747 &cpu_rq(cpu)->leaf_cfs_rq_list);
9748 }
9749
9750 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9751 {
9752 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9753 }
9754 #else /* !CONFG_FAIR_GROUP_SCHED */
9755 static inline void free_fair_sched_group(struct task_group *tg)
9756 {
9757 }
9758
9759 static inline
9760 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9761 {
9762 return 1;
9763 }
9764
9765 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9766 {
9767 }
9768
9769 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9770 {
9771 }
9772 #endif /* CONFIG_FAIR_GROUP_SCHED */
9773
9774 #ifdef CONFIG_RT_GROUP_SCHED
9775 static void free_rt_sched_group(struct task_group *tg)
9776 {
9777 int i;
9778
9779 destroy_rt_bandwidth(&tg->rt_bandwidth);
9780
9781 for_each_possible_cpu(i) {
9782 if (tg->rt_rq)
9783 kfree(tg->rt_rq[i]);
9784 if (tg->rt_se)
9785 kfree(tg->rt_se[i]);
9786 }
9787
9788 kfree(tg->rt_rq);
9789 kfree(tg->rt_se);
9790 }
9791
9792 static
9793 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9794 {
9795 struct rt_rq *rt_rq;
9796 struct sched_rt_entity *rt_se;
9797 struct rq *rq;
9798 int i;
9799
9800 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9801 if (!tg->rt_rq)
9802 goto err;
9803 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9804 if (!tg->rt_se)
9805 goto err;
9806
9807 init_rt_bandwidth(&tg->rt_bandwidth,
9808 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9809
9810 for_each_possible_cpu(i) {
9811 rq = cpu_rq(i);
9812
9813 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9814 GFP_KERNEL, cpu_to_node(i));
9815 if (!rt_rq)
9816 goto err;
9817
9818 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9819 GFP_KERNEL, cpu_to_node(i));
9820 if (!rt_se)
9821 goto err;
9822
9823 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9824 }
9825
9826 return 1;
9827
9828 err:
9829 return 0;
9830 }
9831
9832 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9833 {
9834 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9835 &cpu_rq(cpu)->leaf_rt_rq_list);
9836 }
9837
9838 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9839 {
9840 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9841 }
9842 #else /* !CONFIG_RT_GROUP_SCHED */
9843 static inline void free_rt_sched_group(struct task_group *tg)
9844 {
9845 }
9846
9847 static inline
9848 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9849 {
9850 return 1;
9851 }
9852
9853 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9854 {
9855 }
9856
9857 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9858 {
9859 }
9860 #endif /* CONFIG_RT_GROUP_SCHED */
9861
9862 #ifdef CONFIG_GROUP_SCHED
9863 static void free_sched_group(struct task_group *tg)
9864 {
9865 free_fair_sched_group(tg);
9866 free_rt_sched_group(tg);
9867 kfree(tg);
9868 }
9869
9870 /* allocate runqueue etc for a new task group */
9871 struct task_group *sched_create_group(struct task_group *parent)
9872 {
9873 struct task_group *tg;
9874 unsigned long flags;
9875 int i;
9876
9877 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9878 if (!tg)
9879 return ERR_PTR(-ENOMEM);
9880
9881 if (!alloc_fair_sched_group(tg, parent))
9882 goto err;
9883
9884 if (!alloc_rt_sched_group(tg, parent))
9885 goto err;
9886
9887 spin_lock_irqsave(&task_group_lock, flags);
9888 for_each_possible_cpu(i) {
9889 register_fair_sched_group(tg, i);
9890 register_rt_sched_group(tg, i);
9891 }
9892 list_add_rcu(&tg->list, &task_groups);
9893
9894 WARN_ON(!parent); /* root should already exist */
9895
9896 tg->parent = parent;
9897 INIT_LIST_HEAD(&tg->children);
9898 list_add_rcu(&tg->siblings, &parent->children);
9899 spin_unlock_irqrestore(&task_group_lock, flags);
9900
9901 return tg;
9902
9903 err:
9904 free_sched_group(tg);
9905 return ERR_PTR(-ENOMEM);
9906 }
9907
9908 /* rcu callback to free various structures associated with a task group */
9909 static void free_sched_group_rcu(struct rcu_head *rhp)
9910 {
9911 /* now it should be safe to free those cfs_rqs */
9912 free_sched_group(container_of(rhp, struct task_group, rcu));
9913 }
9914
9915 /* Destroy runqueue etc associated with a task group */
9916 void sched_destroy_group(struct task_group *tg)
9917 {
9918 unsigned long flags;
9919 int i;
9920
9921 spin_lock_irqsave(&task_group_lock, flags);
9922 for_each_possible_cpu(i) {
9923 unregister_fair_sched_group(tg, i);
9924 unregister_rt_sched_group(tg, i);
9925 }
9926 list_del_rcu(&tg->list);
9927 list_del_rcu(&tg->siblings);
9928 spin_unlock_irqrestore(&task_group_lock, flags);
9929
9930 /* wait for possible concurrent references to cfs_rqs complete */
9931 call_rcu(&tg->rcu, free_sched_group_rcu);
9932 }
9933
9934 /* change task's runqueue when it moves between groups.
9935 * The caller of this function should have put the task in its new group
9936 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9937 * reflect its new group.
9938 */
9939 void sched_move_task(struct task_struct *tsk)
9940 {
9941 int on_rq, running;
9942 unsigned long flags;
9943 struct rq *rq;
9944
9945 rq = task_rq_lock(tsk, &flags);
9946
9947 update_rq_clock(rq);
9948
9949 running = task_current(rq, tsk);
9950 on_rq = tsk->se.on_rq;
9951
9952 if (on_rq)
9953 dequeue_task(rq, tsk, 0);
9954 if (unlikely(running))
9955 tsk->sched_class->put_prev_task(rq, tsk);
9956
9957 set_task_rq(tsk, task_cpu(tsk));
9958
9959 #ifdef CONFIG_FAIR_GROUP_SCHED
9960 if (tsk->sched_class->moved_group)
9961 tsk->sched_class->moved_group(tsk);
9962 #endif
9963
9964 if (unlikely(running))
9965 tsk->sched_class->set_curr_task(rq);
9966 if (on_rq)
9967 enqueue_task(rq, tsk, 0);
9968
9969 task_rq_unlock(rq, &flags);
9970 }
9971 #endif /* CONFIG_GROUP_SCHED */
9972
9973 #ifdef CONFIG_FAIR_GROUP_SCHED
9974 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9975 {
9976 struct cfs_rq *cfs_rq = se->cfs_rq;
9977 int on_rq;
9978
9979 on_rq = se->on_rq;
9980 if (on_rq)
9981 dequeue_entity(cfs_rq, se, 0);
9982
9983 se->load.weight = shares;
9984 se->load.inv_weight = 0;
9985
9986 if (on_rq)
9987 enqueue_entity(cfs_rq, se, 0);
9988 }
9989
9990 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9991 {
9992 struct cfs_rq *cfs_rq = se->cfs_rq;
9993 struct rq *rq = cfs_rq->rq;
9994 unsigned long flags;
9995
9996 spin_lock_irqsave(&rq->lock, flags);
9997 __set_se_shares(se, shares);
9998 spin_unlock_irqrestore(&rq->lock, flags);
9999 }
10000
10001 static DEFINE_MUTEX(shares_mutex);
10002
10003 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10004 {
10005 int i;
10006 unsigned long flags;
10007
10008 /*
10009 * We can't change the weight of the root cgroup.
10010 */
10011 if (!tg->se[0])
10012 return -EINVAL;
10013
10014 if (shares < MIN_SHARES)
10015 shares = MIN_SHARES;
10016 else if (shares > MAX_SHARES)
10017 shares = MAX_SHARES;
10018
10019 mutex_lock(&shares_mutex);
10020 if (tg->shares == shares)
10021 goto done;
10022
10023 spin_lock_irqsave(&task_group_lock, flags);
10024 for_each_possible_cpu(i)
10025 unregister_fair_sched_group(tg, i);
10026 list_del_rcu(&tg->siblings);
10027 spin_unlock_irqrestore(&task_group_lock, flags);
10028
10029 /* wait for any ongoing reference to this group to finish */
10030 synchronize_sched();
10031
10032 /*
10033 * Now we are free to modify the group's share on each cpu
10034 * w/o tripping rebalance_share or load_balance_fair.
10035 */
10036 tg->shares = shares;
10037 for_each_possible_cpu(i) {
10038 /*
10039 * force a rebalance
10040 */
10041 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10042 set_se_shares(tg->se[i], shares);
10043 }
10044
10045 /*
10046 * Enable load balance activity on this group, by inserting it back on
10047 * each cpu's rq->leaf_cfs_rq_list.
10048 */
10049 spin_lock_irqsave(&task_group_lock, flags);
10050 for_each_possible_cpu(i)
10051 register_fair_sched_group(tg, i);
10052 list_add_rcu(&tg->siblings, &tg->parent->children);
10053 spin_unlock_irqrestore(&task_group_lock, flags);
10054 done:
10055 mutex_unlock(&shares_mutex);
10056 return 0;
10057 }
10058
10059 unsigned long sched_group_shares(struct task_group *tg)
10060 {
10061 return tg->shares;
10062 }
10063 #endif
10064
10065 #ifdef CONFIG_RT_GROUP_SCHED
10066 /*
10067 * Ensure that the real time constraints are schedulable.
10068 */
10069 static DEFINE_MUTEX(rt_constraints_mutex);
10070
10071 static unsigned long to_ratio(u64 period, u64 runtime)
10072 {
10073 if (runtime == RUNTIME_INF)
10074 return 1ULL << 20;
10075
10076 return div64_u64(runtime << 20, period);
10077 }
10078
10079 /* Must be called with tasklist_lock held */
10080 static inline int tg_has_rt_tasks(struct task_group *tg)
10081 {
10082 struct task_struct *g, *p;
10083
10084 do_each_thread(g, p) {
10085 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10086 return 1;
10087 } while_each_thread(g, p);
10088
10089 return 0;
10090 }
10091
10092 struct rt_schedulable_data {
10093 struct task_group *tg;
10094 u64 rt_period;
10095 u64 rt_runtime;
10096 };
10097
10098 static int tg_schedulable(struct task_group *tg, void *data)
10099 {
10100 struct rt_schedulable_data *d = data;
10101 struct task_group *child;
10102 unsigned long total, sum = 0;
10103 u64 period, runtime;
10104
10105 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10106 runtime = tg->rt_bandwidth.rt_runtime;
10107
10108 if (tg == d->tg) {
10109 period = d->rt_period;
10110 runtime = d->rt_runtime;
10111 }
10112
10113 #ifdef CONFIG_USER_SCHED
10114 if (tg == &root_task_group) {
10115 period = global_rt_period();
10116 runtime = global_rt_runtime();
10117 }
10118 #endif
10119
10120 /*
10121 * Cannot have more runtime than the period.
10122 */
10123 if (runtime > period && runtime != RUNTIME_INF)
10124 return -EINVAL;
10125
10126 /*
10127 * Ensure we don't starve existing RT tasks.
10128 */
10129 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10130 return -EBUSY;
10131
10132 total = to_ratio(period, runtime);
10133
10134 /*
10135 * Nobody can have more than the global setting allows.
10136 */
10137 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10138 return -EINVAL;
10139
10140 /*
10141 * The sum of our children's runtime should not exceed our own.
10142 */
10143 list_for_each_entry_rcu(child, &tg->children, siblings) {
10144 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10145 runtime = child->rt_bandwidth.rt_runtime;
10146
10147 if (child == d->tg) {
10148 period = d->rt_period;
10149 runtime = d->rt_runtime;
10150 }
10151
10152 sum += to_ratio(period, runtime);
10153 }
10154
10155 if (sum > total)
10156 return -EINVAL;
10157
10158 return 0;
10159 }
10160
10161 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10162 {
10163 struct rt_schedulable_data data = {
10164 .tg = tg,
10165 .rt_period = period,
10166 .rt_runtime = runtime,
10167 };
10168
10169 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10170 }
10171
10172 static int tg_set_bandwidth(struct task_group *tg,
10173 u64 rt_period, u64 rt_runtime)
10174 {
10175 int i, err = 0;
10176
10177 mutex_lock(&rt_constraints_mutex);
10178 read_lock(&tasklist_lock);
10179 err = __rt_schedulable(tg, rt_period, rt_runtime);
10180 if (err)
10181 goto unlock;
10182
10183 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10184 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10185 tg->rt_bandwidth.rt_runtime = rt_runtime;
10186
10187 for_each_possible_cpu(i) {
10188 struct rt_rq *rt_rq = tg->rt_rq[i];
10189
10190 spin_lock(&rt_rq->rt_runtime_lock);
10191 rt_rq->rt_runtime = rt_runtime;
10192 spin_unlock(&rt_rq->rt_runtime_lock);
10193 }
10194 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10195 unlock:
10196 read_unlock(&tasklist_lock);
10197 mutex_unlock(&rt_constraints_mutex);
10198
10199 return err;
10200 }
10201
10202 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10203 {
10204 u64 rt_runtime, rt_period;
10205
10206 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10207 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10208 if (rt_runtime_us < 0)
10209 rt_runtime = RUNTIME_INF;
10210
10211 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10212 }
10213
10214 long sched_group_rt_runtime(struct task_group *tg)
10215 {
10216 u64 rt_runtime_us;
10217
10218 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10219 return -1;
10220
10221 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10222 do_div(rt_runtime_us, NSEC_PER_USEC);
10223 return rt_runtime_us;
10224 }
10225
10226 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10227 {
10228 u64 rt_runtime, rt_period;
10229
10230 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10231 rt_runtime = tg->rt_bandwidth.rt_runtime;
10232
10233 if (rt_period == 0)
10234 return -EINVAL;
10235
10236 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10237 }
10238
10239 long sched_group_rt_period(struct task_group *tg)
10240 {
10241 u64 rt_period_us;
10242
10243 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10244 do_div(rt_period_us, NSEC_PER_USEC);
10245 return rt_period_us;
10246 }
10247
10248 static int sched_rt_global_constraints(void)
10249 {
10250 u64 runtime, period;
10251 int ret = 0;
10252
10253 if (sysctl_sched_rt_period <= 0)
10254 return -EINVAL;
10255
10256 runtime = global_rt_runtime();
10257 period = global_rt_period();
10258
10259 /*
10260 * Sanity check on the sysctl variables.
10261 */
10262 if (runtime > period && runtime != RUNTIME_INF)
10263 return -EINVAL;
10264
10265 mutex_lock(&rt_constraints_mutex);
10266 read_lock(&tasklist_lock);
10267 ret = __rt_schedulable(NULL, 0, 0);
10268 read_unlock(&tasklist_lock);
10269 mutex_unlock(&rt_constraints_mutex);
10270
10271 return ret;
10272 }
10273
10274 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10275 {
10276 /* Don't accept realtime tasks when there is no way for them to run */
10277 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10278 return 0;
10279
10280 return 1;
10281 }
10282
10283 #else /* !CONFIG_RT_GROUP_SCHED */
10284 static int sched_rt_global_constraints(void)
10285 {
10286 unsigned long flags;
10287 int i;
10288
10289 if (sysctl_sched_rt_period <= 0)
10290 return -EINVAL;
10291
10292 /*
10293 * There's always some RT tasks in the root group
10294 * -- migration, kstopmachine etc..
10295 */
10296 if (sysctl_sched_rt_runtime == 0)
10297 return -EBUSY;
10298
10299 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10300 for_each_possible_cpu(i) {
10301 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10302
10303 spin_lock(&rt_rq->rt_runtime_lock);
10304 rt_rq->rt_runtime = global_rt_runtime();
10305 spin_unlock(&rt_rq->rt_runtime_lock);
10306 }
10307 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10308
10309 return 0;
10310 }
10311 #endif /* CONFIG_RT_GROUP_SCHED */
10312
10313 int sched_rt_handler(struct ctl_table *table, int write,
10314 struct file *filp, void __user *buffer, size_t *lenp,
10315 loff_t *ppos)
10316 {
10317 int ret;
10318 int old_period, old_runtime;
10319 static DEFINE_MUTEX(mutex);
10320
10321 mutex_lock(&mutex);
10322 old_period = sysctl_sched_rt_period;
10323 old_runtime = sysctl_sched_rt_runtime;
10324
10325 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10326
10327 if (!ret && write) {
10328 ret = sched_rt_global_constraints();
10329 if (ret) {
10330 sysctl_sched_rt_period = old_period;
10331 sysctl_sched_rt_runtime = old_runtime;
10332 } else {
10333 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10334 def_rt_bandwidth.rt_period =
10335 ns_to_ktime(global_rt_period());
10336 }
10337 }
10338 mutex_unlock(&mutex);
10339
10340 return ret;
10341 }
10342
10343 #ifdef CONFIG_CGROUP_SCHED
10344
10345 /* return corresponding task_group object of a cgroup */
10346 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10347 {
10348 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10349 struct task_group, css);
10350 }
10351
10352 static struct cgroup_subsys_state *
10353 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10354 {
10355 struct task_group *tg, *parent;
10356
10357 if (!cgrp->parent) {
10358 /* This is early initialization for the top cgroup */
10359 return &init_task_group.css;
10360 }
10361
10362 parent = cgroup_tg(cgrp->parent);
10363 tg = sched_create_group(parent);
10364 if (IS_ERR(tg))
10365 return ERR_PTR(-ENOMEM);
10366
10367 return &tg->css;
10368 }
10369
10370 static void
10371 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10372 {
10373 struct task_group *tg = cgroup_tg(cgrp);
10374
10375 sched_destroy_group(tg);
10376 }
10377
10378 static int
10379 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10380 struct task_struct *tsk)
10381 {
10382 #ifdef CONFIG_RT_GROUP_SCHED
10383 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10384 return -EINVAL;
10385 #else
10386 /* We don't support RT-tasks being in separate groups */
10387 if (tsk->sched_class != &fair_sched_class)
10388 return -EINVAL;
10389 #endif
10390
10391 return 0;
10392 }
10393
10394 static void
10395 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10396 struct cgroup *old_cont, struct task_struct *tsk)
10397 {
10398 sched_move_task(tsk);
10399 }
10400
10401 #ifdef CONFIG_FAIR_GROUP_SCHED
10402 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10403 u64 shareval)
10404 {
10405 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10406 }
10407
10408 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10409 {
10410 struct task_group *tg = cgroup_tg(cgrp);
10411
10412 return (u64) tg->shares;
10413 }
10414 #endif /* CONFIG_FAIR_GROUP_SCHED */
10415
10416 #ifdef CONFIG_RT_GROUP_SCHED
10417 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10418 s64 val)
10419 {
10420 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10421 }
10422
10423 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10424 {
10425 return sched_group_rt_runtime(cgroup_tg(cgrp));
10426 }
10427
10428 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10429 u64 rt_period_us)
10430 {
10431 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10432 }
10433
10434 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10435 {
10436 return sched_group_rt_period(cgroup_tg(cgrp));
10437 }
10438 #endif /* CONFIG_RT_GROUP_SCHED */
10439
10440 static struct cftype cpu_files[] = {
10441 #ifdef CONFIG_FAIR_GROUP_SCHED
10442 {
10443 .name = "shares",
10444 .read_u64 = cpu_shares_read_u64,
10445 .write_u64 = cpu_shares_write_u64,
10446 },
10447 #endif
10448 #ifdef CONFIG_RT_GROUP_SCHED
10449 {
10450 .name = "rt_runtime_us",
10451 .read_s64 = cpu_rt_runtime_read,
10452 .write_s64 = cpu_rt_runtime_write,
10453 },
10454 {
10455 .name = "rt_period_us",
10456 .read_u64 = cpu_rt_period_read_uint,
10457 .write_u64 = cpu_rt_period_write_uint,
10458 },
10459 #endif
10460 };
10461
10462 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10463 {
10464 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10465 }
10466
10467 struct cgroup_subsys cpu_cgroup_subsys = {
10468 .name = "cpu",
10469 .create = cpu_cgroup_create,
10470 .destroy = cpu_cgroup_destroy,
10471 .can_attach = cpu_cgroup_can_attach,
10472 .attach = cpu_cgroup_attach,
10473 .populate = cpu_cgroup_populate,
10474 .subsys_id = cpu_cgroup_subsys_id,
10475 .early_init = 1,
10476 };
10477
10478 #endif /* CONFIG_CGROUP_SCHED */
10479
10480 #ifdef CONFIG_CGROUP_CPUACCT
10481
10482 /*
10483 * CPU accounting code for task groups.
10484 *
10485 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10486 * (balbir@in.ibm.com).
10487 */
10488
10489 /* track cpu usage of a group of tasks and its child groups */
10490 struct cpuacct {
10491 struct cgroup_subsys_state css;
10492 /* cpuusage holds pointer to a u64-type object on every cpu */
10493 u64 *cpuusage;
10494 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10495 struct cpuacct *parent;
10496 };
10497
10498 struct cgroup_subsys cpuacct_subsys;
10499
10500 /* return cpu accounting group corresponding to this container */
10501 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10502 {
10503 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10504 struct cpuacct, css);
10505 }
10506
10507 /* return cpu accounting group to which this task belongs */
10508 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10509 {
10510 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10511 struct cpuacct, css);
10512 }
10513
10514 /* create a new cpu accounting group */
10515 static struct cgroup_subsys_state *cpuacct_create(
10516 struct cgroup_subsys *ss, struct cgroup *cgrp)
10517 {
10518 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10519 int i;
10520
10521 if (!ca)
10522 goto out;
10523
10524 ca->cpuusage = alloc_percpu(u64);
10525 if (!ca->cpuusage)
10526 goto out_free_ca;
10527
10528 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10529 if (percpu_counter_init(&ca->cpustat[i], 0))
10530 goto out_free_counters;
10531
10532 if (cgrp->parent)
10533 ca->parent = cgroup_ca(cgrp->parent);
10534
10535 return &ca->css;
10536
10537 out_free_counters:
10538 while (--i >= 0)
10539 percpu_counter_destroy(&ca->cpustat[i]);
10540 free_percpu(ca->cpuusage);
10541 out_free_ca:
10542 kfree(ca);
10543 out:
10544 return ERR_PTR(-ENOMEM);
10545 }
10546
10547 /* destroy an existing cpu accounting group */
10548 static void
10549 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10550 {
10551 struct cpuacct *ca = cgroup_ca(cgrp);
10552 int i;
10553
10554 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10555 percpu_counter_destroy(&ca->cpustat[i]);
10556 free_percpu(ca->cpuusage);
10557 kfree(ca);
10558 }
10559
10560 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10561 {
10562 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10563 u64 data;
10564
10565 #ifndef CONFIG_64BIT
10566 /*
10567 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10568 */
10569 spin_lock_irq(&cpu_rq(cpu)->lock);
10570 data = *cpuusage;
10571 spin_unlock_irq(&cpu_rq(cpu)->lock);
10572 #else
10573 data = *cpuusage;
10574 #endif
10575
10576 return data;
10577 }
10578
10579 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10580 {
10581 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10582
10583 #ifndef CONFIG_64BIT
10584 /*
10585 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10586 */
10587 spin_lock_irq(&cpu_rq(cpu)->lock);
10588 *cpuusage = val;
10589 spin_unlock_irq(&cpu_rq(cpu)->lock);
10590 #else
10591 *cpuusage = val;
10592 #endif
10593 }
10594
10595 /* return total cpu usage (in nanoseconds) of a group */
10596 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10597 {
10598 struct cpuacct *ca = cgroup_ca(cgrp);
10599 u64 totalcpuusage = 0;
10600 int i;
10601
10602 for_each_present_cpu(i)
10603 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10604
10605 return totalcpuusage;
10606 }
10607
10608 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10609 u64 reset)
10610 {
10611 struct cpuacct *ca = cgroup_ca(cgrp);
10612 int err = 0;
10613 int i;
10614
10615 if (reset) {
10616 err = -EINVAL;
10617 goto out;
10618 }
10619
10620 for_each_present_cpu(i)
10621 cpuacct_cpuusage_write(ca, i, 0);
10622
10623 out:
10624 return err;
10625 }
10626
10627 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10628 struct seq_file *m)
10629 {
10630 struct cpuacct *ca = cgroup_ca(cgroup);
10631 u64 percpu;
10632 int i;
10633
10634 for_each_present_cpu(i) {
10635 percpu = cpuacct_cpuusage_read(ca, i);
10636 seq_printf(m, "%llu ", (unsigned long long) percpu);
10637 }
10638 seq_printf(m, "\n");
10639 return 0;
10640 }
10641
10642 static const char *cpuacct_stat_desc[] = {
10643 [CPUACCT_STAT_USER] = "user",
10644 [CPUACCT_STAT_SYSTEM] = "system",
10645 };
10646
10647 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10648 struct cgroup_map_cb *cb)
10649 {
10650 struct cpuacct *ca = cgroup_ca(cgrp);
10651 int i;
10652
10653 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10654 s64 val = percpu_counter_read(&ca->cpustat[i]);
10655 val = cputime64_to_clock_t(val);
10656 cb->fill(cb, cpuacct_stat_desc[i], val);
10657 }
10658 return 0;
10659 }
10660
10661 static struct cftype files[] = {
10662 {
10663 .name = "usage",
10664 .read_u64 = cpuusage_read,
10665 .write_u64 = cpuusage_write,
10666 },
10667 {
10668 .name = "usage_percpu",
10669 .read_seq_string = cpuacct_percpu_seq_read,
10670 },
10671 {
10672 .name = "stat",
10673 .read_map = cpuacct_stats_show,
10674 },
10675 };
10676
10677 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10678 {
10679 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10680 }
10681
10682 /*
10683 * charge this task's execution time to its accounting group.
10684 *
10685 * called with rq->lock held.
10686 */
10687 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10688 {
10689 struct cpuacct *ca;
10690 int cpu;
10691
10692 if (unlikely(!cpuacct_subsys.active))
10693 return;
10694
10695 cpu = task_cpu(tsk);
10696
10697 rcu_read_lock();
10698
10699 ca = task_ca(tsk);
10700
10701 for (; ca; ca = ca->parent) {
10702 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10703 *cpuusage += cputime;
10704 }
10705
10706 rcu_read_unlock();
10707 }
10708
10709 /*
10710 * Charge the system/user time to the task's accounting group.
10711 */
10712 static void cpuacct_update_stats(struct task_struct *tsk,
10713 enum cpuacct_stat_index idx, cputime_t val)
10714 {
10715 struct cpuacct *ca;
10716
10717 if (unlikely(!cpuacct_subsys.active))
10718 return;
10719
10720 rcu_read_lock();
10721 ca = task_ca(tsk);
10722
10723 do {
10724 percpu_counter_add(&ca->cpustat[idx], val);
10725 ca = ca->parent;
10726 } while (ca);
10727 rcu_read_unlock();
10728 }
10729
10730 struct cgroup_subsys cpuacct_subsys = {
10731 .name = "cpuacct",
10732 .create = cpuacct_create,
10733 .destroy = cpuacct_destroy,
10734 .populate = cpuacct_populate,
10735 .subsys_id = cpuacct_subsys_id,
10736 };
10737 #endif /* CONFIG_CGROUP_CPUACCT */
10738
10739 #ifndef CONFIG_SMP
10740
10741 int rcu_expedited_torture_stats(char *page)
10742 {
10743 return 0;
10744 }
10745 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10746
10747 void synchronize_sched_expedited(void)
10748 {
10749 }
10750 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10751
10752 #else /* #ifndef CONFIG_SMP */
10753
10754 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10755 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10756
10757 #define RCU_EXPEDITED_STATE_POST -2
10758 #define RCU_EXPEDITED_STATE_IDLE -1
10759
10760 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10761
10762 int rcu_expedited_torture_stats(char *page)
10763 {
10764 int cnt = 0;
10765 int cpu;
10766
10767 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10768 for_each_online_cpu(cpu) {
10769 cnt += sprintf(&page[cnt], " %d:%d",
10770 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10771 }
10772 cnt += sprintf(&page[cnt], "\n");
10773 return cnt;
10774 }
10775 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10776
10777 static long synchronize_sched_expedited_count;
10778
10779 /*
10780 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10781 * approach to force grace period to end quickly. This consumes
10782 * significant time on all CPUs, and is thus not recommended for
10783 * any sort of common-case code.
10784 *
10785 * Note that it is illegal to call this function while holding any
10786 * lock that is acquired by a CPU-hotplug notifier. Failing to
10787 * observe this restriction will result in deadlock.
10788 */
10789 void synchronize_sched_expedited(void)
10790 {
10791 int cpu;
10792 unsigned long flags;
10793 bool need_full_sync = 0;
10794 struct rq *rq;
10795 struct migration_req *req;
10796 long snap;
10797 int trycount = 0;
10798
10799 smp_mb(); /* ensure prior mod happens before capturing snap. */
10800 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10801 get_online_cpus();
10802 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10803 put_online_cpus();
10804 if (trycount++ < 10)
10805 udelay(trycount * num_online_cpus());
10806 else {
10807 synchronize_sched();
10808 return;
10809 }
10810 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10811 smp_mb(); /* ensure test happens before caller kfree */
10812 return;
10813 }
10814 get_online_cpus();
10815 }
10816 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10817 for_each_online_cpu(cpu) {
10818 rq = cpu_rq(cpu);
10819 req = &per_cpu(rcu_migration_req, cpu);
10820 init_completion(&req->done);
10821 req->task = NULL;
10822 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10823 spin_lock_irqsave(&rq->lock, flags);
10824 list_add(&req->list, &rq->migration_queue);
10825 spin_unlock_irqrestore(&rq->lock, flags);
10826 wake_up_process(rq->migration_thread);
10827 }
10828 for_each_online_cpu(cpu) {
10829 rcu_expedited_state = cpu;
10830 req = &per_cpu(rcu_migration_req, cpu);
10831 rq = cpu_rq(cpu);
10832 wait_for_completion(&req->done);
10833 spin_lock_irqsave(&rq->lock, flags);
10834 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10835 need_full_sync = 1;
10836 req->dest_cpu = RCU_MIGRATION_IDLE;
10837 spin_unlock_irqrestore(&rq->lock, flags);
10838 }
10839 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10840 mutex_unlock(&rcu_sched_expedited_mutex);
10841 put_online_cpus();
10842 if (need_full_sync)
10843 synchronize_sched();
10844 }
10845 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10846
10847 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.41508 seconds and 6 git commands to generate.