Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135 return rt_policy(p->policy);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194 return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199 ktime_t now;
200
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
223 }
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230 hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
258
259 atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
279 };
280
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock);
283
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
287
288 /*
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
296 #define MIN_SHARES 2
297 #define MAX_SHARES (1UL << 18)
298
299 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 #endif
301
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
304 */
305 struct task_group root_task_group;
306
307 #endif /* CONFIG_CGROUP_SCHED */
308
309 /* CFS-related fields in a runqueue */
310 struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
314 u64 exec_clock;
315 u64 min_vruntime;
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
327 struct sched_entity *curr, *next, *last, *skip;
328
329 unsigned int nr_spread_over;
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
342 int on_list;
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
345
346 #ifdef CONFIG_SMP
347 /*
348 * the part of load.weight contributed by tasks
349 */
350 unsigned long task_weight;
351
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
359
360 /*
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
366 */
367 u64 load_avg;
368 u64 load_period;
369 u64 load_stamp, load_last, load_unacc_exec_time;
370
371 unsigned long load_contribution;
372 #endif
373 #endif
374 };
375
376 /* Real-Time classes' related field in a runqueue: */
377 struct rt_rq {
378 struct rt_prio_array active;
379 unsigned long rt_nr_running;
380 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 struct {
382 int curr; /* highest queued rt task prio */
383 #ifdef CONFIG_SMP
384 int next; /* next highest */
385 #endif
386 } highest_prio;
387 #endif
388 #ifdef CONFIG_SMP
389 unsigned long rt_nr_migratory;
390 unsigned long rt_nr_total;
391 int overloaded;
392 struct plist_head pushable_tasks;
393 #endif
394 int rt_throttled;
395 u64 rt_time;
396 u64 rt_runtime;
397 /* Nests inside the rq lock: */
398 raw_spinlock_t rt_runtime_lock;
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 unsigned long rt_nr_boosted;
402
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
406 #endif
407 };
408
409 #ifdef CONFIG_SMP
410
411 /*
412 * We add the notion of a root-domain which will be used to define per-domain
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
418 */
419 struct root_domain {
420 atomic_t refcount;
421 cpumask_var_t span;
422 cpumask_var_t online;
423
424 /*
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
428 cpumask_var_t rto_mask;
429 atomic_t rto_count;
430 struct cpupri cpupri;
431 };
432
433 /*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
437 static struct root_domain def_root_domain;
438
439 #endif /* CONFIG_SMP */
440
441 /*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 unsigned long last_load_update_tick;
460 #ifdef CONFIG_NO_HZ
461 u64 nohz_stamp;
462 unsigned char nohz_balance_kick;
463 #endif
464 unsigned int skip_clock_update;
465
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
472 struct rt_rq rt;
473
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
477 #endif
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list;
480 #endif
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
490 struct task_struct *curr, *idle, *stop;
491 unsigned long next_balance;
492 struct mm_struct *prev_mm;
493
494 u64 clock;
495 u64 clock_task;
496
497 atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
502
503 unsigned long cpu_power;
504
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
514
515 unsigned long avg_load_per_task;
516
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
522
523 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525 #endif
526
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
531 #ifdef CONFIG_SCHED_HRTICK
532 #ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535 #endif
536 struct hrtimer hrtick_timer;
537 #endif
538
539 #ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544
545 /* sys_sched_yield() stats */
546 unsigned int yld_count;
547
548 /* schedule() stats */
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
552
553 /* try_to_wake_up() stats */
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
556 #endif
557 };
558
559 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
560
561
562 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
563
564 static inline int cpu_of(struct rq *rq)
565 {
566 #ifdef CONFIG_SMP
567 return rq->cpu;
568 #else
569 return 0;
570 #endif
571 }
572
573 #define rcu_dereference_check_sched_domain(p) \
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
578 /*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
585 #define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
587
588 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589 #define this_rq() (&__get_cpu_var(runqueues))
590 #define task_rq(p) cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
592 #define raw_rq() (&__raw_get_cpu_var(runqueues))
593
594 #ifdef CONFIG_CGROUP_SCHED
595
596 /*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604 static inline struct task_group *task_group(struct task_struct *p)
605 {
606 struct task_group *tg;
607 struct cgroup_subsys_state *css;
608
609 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
610 lockdep_is_held(&task_rq(p)->lock));
611 tg = container_of(css, struct task_group, css);
612
613 return autogroup_task_group(p, tg);
614 }
615
616 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
617 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618 {
619 #ifdef CONFIG_FAIR_GROUP_SCHED
620 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
621 p->se.parent = task_group(p)->se[cpu];
622 #endif
623
624 #ifdef CONFIG_RT_GROUP_SCHED
625 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
626 p->rt.parent = task_group(p)->rt_se[cpu];
627 #endif
628 }
629
630 #else /* CONFIG_CGROUP_SCHED */
631
632 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
633 static inline struct task_group *task_group(struct task_struct *p)
634 {
635 return NULL;
636 }
637
638 #endif /* CONFIG_CGROUP_SCHED */
639
640 static void update_rq_clock_task(struct rq *rq, s64 delta);
641
642 static void update_rq_clock(struct rq *rq)
643 {
644 s64 delta;
645
646 if (rq->skip_clock_update)
647 return;
648
649 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
650 rq->clock += delta;
651 update_rq_clock_task(rq, delta);
652 }
653
654 /*
655 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 */
657 #ifdef CONFIG_SCHED_DEBUG
658 # define const_debug __read_mostly
659 #else
660 # define const_debug static const
661 #endif
662
663 /**
664 * runqueue_is_locked
665 * @cpu: the processor in question.
666 *
667 * Returns true if the current cpu runqueue is locked.
668 * This interface allows printk to be called with the runqueue lock
669 * held and know whether or not it is OK to wake up the klogd.
670 */
671 int runqueue_is_locked(int cpu)
672 {
673 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
674 }
675
676 /*
677 * Debugging: various feature bits
678 */
679
680 #define SCHED_FEAT(name, enabled) \
681 __SCHED_FEAT_##name ,
682
683 enum {
684 #include "sched_features.h"
685 };
686
687 #undef SCHED_FEAT
688
689 #define SCHED_FEAT(name, enabled) \
690 (1UL << __SCHED_FEAT_##name) * enabled |
691
692 const_debug unsigned int sysctl_sched_features =
693 #include "sched_features.h"
694 0;
695
696 #undef SCHED_FEAT
697
698 #ifdef CONFIG_SCHED_DEBUG
699 #define SCHED_FEAT(name, enabled) \
700 #name ,
701
702 static __read_mostly char *sched_feat_names[] = {
703 #include "sched_features.h"
704 NULL
705 };
706
707 #undef SCHED_FEAT
708
709 static int sched_feat_show(struct seq_file *m, void *v)
710 {
711 int i;
712
713 for (i = 0; sched_feat_names[i]; i++) {
714 if (!(sysctl_sched_features & (1UL << i)))
715 seq_puts(m, "NO_");
716 seq_printf(m, "%s ", sched_feat_names[i]);
717 }
718 seq_puts(m, "\n");
719
720 return 0;
721 }
722
723 static ssize_t
724 sched_feat_write(struct file *filp, const char __user *ubuf,
725 size_t cnt, loff_t *ppos)
726 {
727 char buf[64];
728 char *cmp;
729 int neg = 0;
730 int i;
731
732 if (cnt > 63)
733 cnt = 63;
734
735 if (copy_from_user(&buf, ubuf, cnt))
736 return -EFAULT;
737
738 buf[cnt] = 0;
739 cmp = strstrip(buf);
740
741 if (strncmp(cmp, "NO_", 3) == 0) {
742 neg = 1;
743 cmp += 3;
744 }
745
746 for (i = 0; sched_feat_names[i]; i++) {
747 if (strcmp(cmp, sched_feat_names[i]) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 *ppos += cnt;
760
761 return cnt;
762 }
763
764 static int sched_feat_open(struct inode *inode, struct file *filp)
765 {
766 return single_open(filp, sched_feat_show, NULL);
767 }
768
769 static const struct file_operations sched_feat_fops = {
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
775 };
776
777 static __init int sched_init_debug(void)
778 {
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783 }
784 late_initcall(sched_init_debug);
785
786 #endif
787
788 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789
790 /*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
796 /*
797 * period over which we average the RT time consumption, measured
798 * in ms.
799 *
800 * default: 1s
801 */
802 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
803
804 /*
805 * period over which we measure -rt task cpu usage in us.
806 * default: 1s
807 */
808 unsigned int sysctl_sched_rt_period = 1000000;
809
810 static __read_mostly int scheduler_running;
811
812 /*
813 * part of the period that we allow rt tasks to run in us.
814 * default: 0.95s
815 */
816 int sysctl_sched_rt_runtime = 950000;
817
818 static inline u64 global_rt_period(void)
819 {
820 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
821 }
822
823 static inline u64 global_rt_runtime(void)
824 {
825 if (sysctl_sched_rt_runtime < 0)
826 return RUNTIME_INF;
827
828 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
829 }
830
831 #ifndef prepare_arch_switch
832 # define prepare_arch_switch(next) do { } while (0)
833 #endif
834 #ifndef finish_arch_switch
835 # define finish_arch_switch(prev) do { } while (0)
836 #endif
837
838 static inline int task_current(struct rq *rq, struct task_struct *p)
839 {
840 return rq->curr == p;
841 }
842
843 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
844 static inline int task_running(struct rq *rq, struct task_struct *p)
845 {
846 return task_current(rq, p);
847 }
848
849 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
850 {
851 }
852
853 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
854 {
855 #ifdef CONFIG_DEBUG_SPINLOCK
856 /* this is a valid case when another task releases the spinlock */
857 rq->lock.owner = current;
858 #endif
859 /*
860 * If we are tracking spinlock dependencies then we have to
861 * fix up the runqueue lock - which gets 'carried over' from
862 * prev into current:
863 */
864 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
865
866 raw_spin_unlock_irq(&rq->lock);
867 }
868
869 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
870 static inline int task_running(struct rq *rq, struct task_struct *p)
871 {
872 #ifdef CONFIG_SMP
873 return p->oncpu;
874 #else
875 return task_current(rq, p);
876 #endif
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 #ifdef CONFIG_SMP
882 /*
883 * We can optimise this out completely for !SMP, because the
884 * SMP rebalancing from interrupt is the only thing that cares
885 * here.
886 */
887 next->oncpu = 1;
888 #endif
889 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
890 raw_spin_unlock_irq(&rq->lock);
891 #else
892 raw_spin_unlock(&rq->lock);
893 #endif
894 }
895
896 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
897 {
898 #ifdef CONFIG_SMP
899 /*
900 * After ->oncpu is cleared, the task can be moved to a different CPU.
901 * We must ensure this doesn't happen until the switch is completely
902 * finished.
903 */
904 smp_wmb();
905 prev->oncpu = 0;
906 #endif
907 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
908 local_irq_enable();
909 #endif
910 }
911 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
912
913 /*
914 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
915 * against ttwu().
916 */
917 static inline int task_is_waking(struct task_struct *p)
918 {
919 return unlikely(p->state == TASK_WAKING);
920 }
921
922 /*
923 * __task_rq_lock - lock the runqueue a given task resides on.
924 * Must be called interrupts disabled.
925 */
926 static inline struct rq *__task_rq_lock(struct task_struct *p)
927 __acquires(rq->lock)
928 {
929 struct rq *rq;
930
931 for (;;) {
932 rq = task_rq(p);
933 raw_spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
936 raw_spin_unlock(&rq->lock);
937 }
938 }
939
940 /*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
942 * interrupts. Note the ordering: we can safely lookup the task_rq without
943 * explicitly disabling preemption.
944 */
945 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
946 __acquires(rq->lock)
947 {
948 struct rq *rq;
949
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 raw_spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
957 }
958 }
959
960 static void __task_rq_unlock(struct rq *rq)
961 __releases(rq->lock)
962 {
963 raw_spin_unlock(&rq->lock);
964 }
965
966 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
967 __releases(rq->lock)
968 {
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971
972 /*
973 * this_rq_lock - lock this runqueue and disable interrupts.
974 */
975 static struct rq *this_rq_lock(void)
976 __acquires(rq->lock)
977 {
978 struct rq *rq;
979
980 local_irq_disable();
981 rq = this_rq();
982 raw_spin_lock(&rq->lock);
983
984 return rq;
985 }
986
987 #ifdef CONFIG_SCHED_HRTICK
988 /*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
998
999 /*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004 static inline int hrtick_enabled(struct rq *rq)
1005 {
1006 if (!sched_feat(HRTICK))
1007 return 0;
1008 if (!cpu_active(cpu_of(rq)))
1009 return 0;
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011 }
1012
1013 static void hrtick_clear(struct rq *rq)
1014 {
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017 }
1018
1019 /*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024 {
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 raw_spin_lock(&rq->lock);
1030 update_rq_clock(rq);
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 raw_spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035 }
1036
1037 #ifdef CONFIG_SMP
1038 /*
1039 * called from hardirq (IPI) context
1040 */
1041 static void __hrtick_start(void *arg)
1042 {
1043 struct rq *rq = arg;
1044
1045 raw_spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 raw_spin_unlock(&rq->lock);
1049 }
1050
1051 /*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056 static void hrtick_start(struct rq *rq, u64 delay)
1057 {
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060
1061 hrtimer_set_expires(timer, time);
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1067 rq->hrtick_csd_pending = 1;
1068 }
1069 }
1070
1071 static int
1072 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073 {
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
1083 hrtick_clear(cpu_rq(cpu));
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088 }
1089
1090 static __init void init_hrtick(void)
1091 {
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093 }
1094 #else
1095 /*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100 static void hrtick_start(struct rq *rq, u64 delay)
1101 {
1102 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1103 HRTIMER_MODE_REL_PINNED, 0);
1104 }
1105
1106 static inline void init_hrtick(void)
1107 {
1108 }
1109 #endif /* CONFIG_SMP */
1110
1111 static void init_rq_hrtick(struct rq *rq)
1112 {
1113 #ifdef CONFIG_SMP
1114 rq->hrtick_csd_pending = 0;
1115
1116 rq->hrtick_csd.flags = 0;
1117 rq->hrtick_csd.func = __hrtick_start;
1118 rq->hrtick_csd.info = rq;
1119 #endif
1120
1121 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1122 rq->hrtick_timer.function = hrtick;
1123 }
1124 #else /* CONFIG_SCHED_HRTICK */
1125 static inline void hrtick_clear(struct rq *rq)
1126 {
1127 }
1128
1129 static inline void init_rq_hrtick(struct rq *rq)
1130 {
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SCHED_HRTICK */
1137
1138 /*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145 #ifdef CONFIG_SMP
1146
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 #endif
1150
1151 static void resched_task(struct task_struct *p)
1152 {
1153 int cpu;
1154
1155 assert_raw_spin_locked(&task_rq(p)->lock);
1156
1157 if (test_tsk_need_resched(p))
1158 return;
1159
1160 set_tsk_need_resched(p);
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170 }
1171
1172 static void resched_cpu(int cpu)
1173 {
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 raw_spin_unlock_irqrestore(&rq->lock, flags);
1181 }
1182
1183 #ifdef CONFIG_NO_HZ
1184 /*
1185 * In the semi idle case, use the nearest busy cpu for migrating timers
1186 * from an idle cpu. This is good for power-savings.
1187 *
1188 * We don't do similar optimization for completely idle system, as
1189 * selecting an idle cpu will add more delays to the timers than intended
1190 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1191 */
1192 int get_nohz_timer_target(void)
1193 {
1194 int cpu = smp_processor_id();
1195 int i;
1196 struct sched_domain *sd;
1197
1198 for_each_domain(cpu, sd) {
1199 for_each_cpu(i, sched_domain_span(sd))
1200 if (!idle_cpu(i))
1201 return i;
1202 }
1203 return cpu;
1204 }
1205 /*
1206 * When add_timer_on() enqueues a timer into the timer wheel of an
1207 * idle CPU then this timer might expire before the next timer event
1208 * which is scheduled to wake up that CPU. In case of a completely
1209 * idle system the next event might even be infinite time into the
1210 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1211 * leaves the inner idle loop so the newly added timer is taken into
1212 * account when the CPU goes back to idle and evaluates the timer
1213 * wheel for the next timer event.
1214 */
1215 void wake_up_idle_cpu(int cpu)
1216 {
1217 struct rq *rq = cpu_rq(cpu);
1218
1219 if (cpu == smp_processor_id())
1220 return;
1221
1222 /*
1223 * This is safe, as this function is called with the timer
1224 * wheel base lock of (cpu) held. When the CPU is on the way
1225 * to idle and has not yet set rq->curr to idle then it will
1226 * be serialized on the timer wheel base lock and take the new
1227 * timer into account automatically.
1228 */
1229 if (rq->curr != rq->idle)
1230 return;
1231
1232 /*
1233 * We can set TIF_RESCHED on the idle task of the other CPU
1234 * lockless. The worst case is that the other CPU runs the
1235 * idle task through an additional NOOP schedule()
1236 */
1237 set_tsk_need_resched(rq->idle);
1238
1239 /* NEED_RESCHED must be visible before we test polling */
1240 smp_mb();
1241 if (!tsk_is_polling(rq->idle))
1242 smp_send_reschedule(cpu);
1243 }
1244
1245 #endif /* CONFIG_NO_HZ */
1246
1247 static u64 sched_avg_period(void)
1248 {
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250 }
1251
1252 static void sched_avg_update(struct rq *rq)
1253 {
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 /*
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1261 */
1262 asm("" : "+rm" (rq->age_stamp));
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1265 }
1266 }
1267
1268 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269 {
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1272 }
1273
1274 #else /* !CONFIG_SMP */
1275 static void resched_task(struct task_struct *p)
1276 {
1277 assert_raw_spin_locked(&task_rq(p)->lock);
1278 set_tsk_need_resched(p);
1279 }
1280
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282 {
1283 }
1284
1285 static void sched_avg_update(struct rq *rq)
1286 {
1287 }
1288 #endif /* CONFIG_SMP */
1289
1290 #if BITS_PER_LONG == 32
1291 # define WMULT_CONST (~0UL)
1292 #else
1293 # define WMULT_CONST (1UL << 32)
1294 #endif
1295
1296 #define WMULT_SHIFT 32
1297
1298 /*
1299 * Shift right and round:
1300 */
1301 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302
1303 /*
1304 * delta *= weight / lw
1305 */
1306 static unsigned long
1307 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309 {
1310 u64 tmp;
1311
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
1324 if (unlikely(tmp > WMULT_CONST))
1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1326 WMULT_SHIFT/2);
1327 else
1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329
1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 }
1332
1333 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 {
1335 lw->weight += inc;
1336 lw->inv_weight = 0;
1337 }
1338
1339 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 {
1341 lw->weight -= dec;
1342 lw->inv_weight = 0;
1343 }
1344
1345 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1346 {
1347 lw->weight = w;
1348 lw->inv_weight = 0;
1349 }
1350
1351 /*
1352 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1353 * of tasks with abnormal "nice" values across CPUs the contribution that
1354 * each task makes to its run queue's load is weighted according to its
1355 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1356 * scaled version of the new time slice allocation that they receive on time
1357 * slice expiry etc.
1358 */
1359
1360 #define WEIGHT_IDLEPRIO 3
1361 #define WMULT_IDLEPRIO 1431655765
1362
1363 /*
1364 * Nice levels are multiplicative, with a gentle 10% change for every
1365 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1366 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1367 * that remained on nice 0.
1368 *
1369 * The "10% effect" is relative and cumulative: from _any_ nice level,
1370 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1371 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1372 * If a task goes up by ~10% and another task goes down by ~10% then
1373 * the relative distance between them is ~25%.)
1374 */
1375 static const int prio_to_weight[40] = {
1376 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1377 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1378 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1379 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1380 /* 0 */ 1024, 820, 655, 526, 423,
1381 /* 5 */ 335, 272, 215, 172, 137,
1382 /* 10 */ 110, 87, 70, 56, 45,
1383 /* 15 */ 36, 29, 23, 18, 15,
1384 };
1385
1386 /*
1387 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1388 *
1389 * In cases where the weight does not change often, we can use the
1390 * precalculated inverse to speed up arithmetics by turning divisions
1391 * into multiplications:
1392 */
1393 static const u32 prio_to_wmult[40] = {
1394 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1395 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1396 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1397 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1398 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1399 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1400 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1401 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1402 };
1403
1404 /* Time spent by the tasks of the cpu accounting group executing in ... */
1405 enum cpuacct_stat_index {
1406 CPUACCT_STAT_USER, /* ... user mode */
1407 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1408
1409 CPUACCT_STAT_NSTATS,
1410 };
1411
1412 #ifdef CONFIG_CGROUP_CPUACCT
1413 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1414 static void cpuacct_update_stats(struct task_struct *tsk,
1415 enum cpuacct_stat_index idx, cputime_t val);
1416 #else
1417 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1418 static inline void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val) {}
1420 #endif
1421
1422 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423 {
1424 update_load_add(&rq->load, load);
1425 }
1426
1427 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428 {
1429 update_load_sub(&rq->load, load);
1430 }
1431
1432 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1433 typedef int (*tg_visitor)(struct task_group *, void *);
1434
1435 /*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
1439 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1440 {
1441 struct task_group *parent, *child;
1442 int ret;
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446 down:
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454 up:
1455 continue;
1456 }
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
1465 out_unlock:
1466 rcu_read_unlock();
1467
1468 return ret;
1469 }
1470
1471 static int tg_nop(struct task_group *tg, void *data)
1472 {
1473 return 0;
1474 }
1475 #endif
1476
1477 #ifdef CONFIG_SMP
1478 /* Used instead of source_load when we know the type == 0 */
1479 static unsigned long weighted_cpuload(const int cpu)
1480 {
1481 return cpu_rq(cpu)->load.weight;
1482 }
1483
1484 /*
1485 * Return a low guess at the load of a migration-source cpu weighted
1486 * according to the scheduling class and "nice" value.
1487 *
1488 * We want to under-estimate the load of migration sources, to
1489 * balance conservatively.
1490 */
1491 static unsigned long source_load(int cpu, int type)
1492 {
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return min(rq->cpu_load[type-1], total);
1500 }
1501
1502 /*
1503 * Return a high guess at the load of a migration-target cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 */
1506 static unsigned long target_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return max(rq->cpu_load[type-1], total);
1515 }
1516
1517 static unsigned long power_of(int cpu)
1518 {
1519 return cpu_rq(cpu)->cpu_power;
1520 }
1521
1522 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1523
1524 static unsigned long cpu_avg_load_per_task(int cpu)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1528
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
1531 else
1532 rq->avg_load_per_task = 0;
1533
1534 return rq->avg_load_per_task;
1535 }
1536
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1538
1539 /*
1540 * Compute the cpu's hierarchical load factor for each task group.
1541 * This needs to be done in a top-down fashion because the load of a child
1542 * group is a fraction of its parents load.
1543 */
1544 static int tg_load_down(struct task_group *tg, void *data)
1545 {
1546 unsigned long load;
1547 long cpu = (long)data;
1548
1549 if (!tg->parent) {
1550 load = cpu_rq(cpu)->load.weight;
1551 } else {
1552 load = tg->parent->cfs_rq[cpu]->h_load;
1553 load *= tg->se[cpu]->load.weight;
1554 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1555 }
1556
1557 tg->cfs_rq[cpu]->h_load = load;
1558
1559 return 0;
1560 }
1561
1562 static void update_h_load(long cpu)
1563 {
1564 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1565 }
1566
1567 #endif
1568
1569 #ifdef CONFIG_PREEMPT
1570
1571 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1572
1573 /*
1574 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1575 * way at the expense of forcing extra atomic operations in all
1576 * invocations. This assures that the double_lock is acquired using the
1577 * same underlying policy as the spinlock_t on this architecture, which
1578 * reduces latency compared to the unfair variant below. However, it
1579 * also adds more overhead and therefore may reduce throughput.
1580 */
1581 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1582 __releases(this_rq->lock)
1583 __acquires(busiest->lock)
1584 __acquires(this_rq->lock)
1585 {
1586 raw_spin_unlock(&this_rq->lock);
1587 double_rq_lock(this_rq, busiest);
1588
1589 return 1;
1590 }
1591
1592 #else
1593 /*
1594 * Unfair double_lock_balance: Optimizes throughput at the expense of
1595 * latency by eliminating extra atomic operations when the locks are
1596 * already in proper order on entry. This favors lower cpu-ids and will
1597 * grant the double lock to lower cpus over higher ids under contention,
1598 * regardless of entry order into the function.
1599 */
1600 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1601 __releases(this_rq->lock)
1602 __acquires(busiest->lock)
1603 __acquires(this_rq->lock)
1604 {
1605 int ret = 0;
1606
1607 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1608 if (busiest < this_rq) {
1609 raw_spin_unlock(&this_rq->lock);
1610 raw_spin_lock(&busiest->lock);
1611 raw_spin_lock_nested(&this_rq->lock,
1612 SINGLE_DEPTH_NESTING);
1613 ret = 1;
1614 } else
1615 raw_spin_lock_nested(&busiest->lock,
1616 SINGLE_DEPTH_NESTING);
1617 }
1618 return ret;
1619 }
1620
1621 #endif /* CONFIG_PREEMPT */
1622
1623 /*
1624 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1625 */
1626 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1627 {
1628 if (unlikely(!irqs_disabled())) {
1629 /* printk() doesn't work good under rq->lock */
1630 raw_spin_unlock(&this_rq->lock);
1631 BUG_ON(1);
1632 }
1633
1634 return _double_lock_balance(this_rq, busiest);
1635 }
1636
1637 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639 {
1640 raw_spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642 }
1643
1644 /*
1645 * double_rq_lock - safely lock two runqueues
1646 *
1647 * Note this does not disable interrupts like task_rq_lock,
1648 * you need to do so manually before calling.
1649 */
1650 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1651 __acquires(rq1->lock)
1652 __acquires(rq2->lock)
1653 {
1654 BUG_ON(!irqs_disabled());
1655 if (rq1 == rq2) {
1656 raw_spin_lock(&rq1->lock);
1657 __acquire(rq2->lock); /* Fake it out ;) */
1658 } else {
1659 if (rq1 < rq2) {
1660 raw_spin_lock(&rq1->lock);
1661 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1662 } else {
1663 raw_spin_lock(&rq2->lock);
1664 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1665 }
1666 }
1667 }
1668
1669 /*
1670 * double_rq_unlock - safely unlock two runqueues
1671 *
1672 * Note this does not restore interrupts like task_rq_unlock,
1673 * you need to do so manually after calling.
1674 */
1675 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1676 __releases(rq1->lock)
1677 __releases(rq2->lock)
1678 {
1679 raw_spin_unlock(&rq1->lock);
1680 if (rq1 != rq2)
1681 raw_spin_unlock(&rq2->lock);
1682 else
1683 __release(rq2->lock);
1684 }
1685
1686 #else /* CONFIG_SMP */
1687
1688 /*
1689 * double_rq_lock - safely lock two runqueues
1690 *
1691 * Note this does not disable interrupts like task_rq_lock,
1692 * you need to do so manually before calling.
1693 */
1694 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1695 __acquires(rq1->lock)
1696 __acquires(rq2->lock)
1697 {
1698 BUG_ON(!irqs_disabled());
1699 BUG_ON(rq1 != rq2);
1700 raw_spin_lock(&rq1->lock);
1701 __acquire(rq2->lock); /* Fake it out ;) */
1702 }
1703
1704 /*
1705 * double_rq_unlock - safely unlock two runqueues
1706 *
1707 * Note this does not restore interrupts like task_rq_unlock,
1708 * you need to do so manually after calling.
1709 */
1710 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1711 __releases(rq1->lock)
1712 __releases(rq2->lock)
1713 {
1714 BUG_ON(rq1 != rq2);
1715 raw_spin_unlock(&rq1->lock);
1716 __release(rq2->lock);
1717 }
1718
1719 #endif
1720
1721 static void calc_load_account_idle(struct rq *this_rq);
1722 static void update_sysctl(void);
1723 static int get_update_sysctl_factor(void);
1724 static void update_cpu_load(struct rq *this_rq);
1725
1726 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1727 {
1728 set_task_rq(p, cpu);
1729 #ifdef CONFIG_SMP
1730 /*
1731 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1732 * successfuly executed on another CPU. We must ensure that updates of
1733 * per-task data have been completed by this moment.
1734 */
1735 smp_wmb();
1736 task_thread_info(p)->cpu = cpu;
1737 #endif
1738 }
1739
1740 static const struct sched_class rt_sched_class;
1741
1742 #define sched_class_highest (&stop_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1745
1746 #include "sched_stats.h"
1747
1748 static void inc_nr_running(struct rq *rq)
1749 {
1750 rq->nr_running++;
1751 }
1752
1753 static void dec_nr_running(struct rq *rq)
1754 {
1755 rq->nr_running--;
1756 }
1757
1758 static void set_load_weight(struct task_struct *p)
1759 {
1760 /*
1761 * SCHED_IDLE tasks get minimal weight:
1762 */
1763 if (p->policy == SCHED_IDLE) {
1764 p->se.load.weight = WEIGHT_IDLEPRIO;
1765 p->se.load.inv_weight = WMULT_IDLEPRIO;
1766 return;
1767 }
1768
1769 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1770 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1771 }
1772
1773 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1774 {
1775 update_rq_clock(rq);
1776 sched_info_queued(p);
1777 p->sched_class->enqueue_task(rq, p, flags);
1778 p->se.on_rq = 1;
1779 }
1780
1781 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1782 {
1783 update_rq_clock(rq);
1784 sched_info_dequeued(p);
1785 p->sched_class->dequeue_task(rq, p, flags);
1786 p->se.on_rq = 0;
1787 }
1788
1789 /*
1790 * activate_task - move a task to the runqueue.
1791 */
1792 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1793 {
1794 if (task_contributes_to_load(p))
1795 rq->nr_uninterruptible--;
1796
1797 enqueue_task(rq, p, flags);
1798 inc_nr_running(rq);
1799 }
1800
1801 /*
1802 * deactivate_task - remove a task from the runqueue.
1803 */
1804 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1805 {
1806 if (task_contributes_to_load(p))
1807 rq->nr_uninterruptible++;
1808
1809 dequeue_task(rq, p, flags);
1810 dec_nr_running(rq);
1811 }
1812
1813 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1814
1815 /*
1816 * There are no locks covering percpu hardirq/softirq time.
1817 * They are only modified in account_system_vtime, on corresponding CPU
1818 * with interrupts disabled. So, writes are safe.
1819 * They are read and saved off onto struct rq in update_rq_clock().
1820 * This may result in other CPU reading this CPU's irq time and can
1821 * race with irq/account_system_vtime on this CPU. We would either get old
1822 * or new value with a side effect of accounting a slice of irq time to wrong
1823 * task when irq is in progress while we read rq->clock. That is a worthy
1824 * compromise in place of having locks on each irq in account_system_time.
1825 */
1826 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1827 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1828
1829 static DEFINE_PER_CPU(u64, irq_start_time);
1830 static int sched_clock_irqtime;
1831
1832 void enable_sched_clock_irqtime(void)
1833 {
1834 sched_clock_irqtime = 1;
1835 }
1836
1837 void disable_sched_clock_irqtime(void)
1838 {
1839 sched_clock_irqtime = 0;
1840 }
1841
1842 #ifndef CONFIG_64BIT
1843 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1844
1845 static inline void irq_time_write_begin(void)
1846 {
1847 __this_cpu_inc(irq_time_seq.sequence);
1848 smp_wmb();
1849 }
1850
1851 static inline void irq_time_write_end(void)
1852 {
1853 smp_wmb();
1854 __this_cpu_inc(irq_time_seq.sequence);
1855 }
1856
1857 static inline u64 irq_time_read(int cpu)
1858 {
1859 u64 irq_time;
1860 unsigned seq;
1861
1862 do {
1863 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1864 irq_time = per_cpu(cpu_softirq_time, cpu) +
1865 per_cpu(cpu_hardirq_time, cpu);
1866 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1867
1868 return irq_time;
1869 }
1870 #else /* CONFIG_64BIT */
1871 static inline void irq_time_write_begin(void)
1872 {
1873 }
1874
1875 static inline void irq_time_write_end(void)
1876 {
1877 }
1878
1879 static inline u64 irq_time_read(int cpu)
1880 {
1881 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1882 }
1883 #endif /* CONFIG_64BIT */
1884
1885 /*
1886 * Called before incrementing preempt_count on {soft,}irq_enter
1887 * and before decrementing preempt_count on {soft,}irq_exit.
1888 */
1889 void account_system_vtime(struct task_struct *curr)
1890 {
1891 unsigned long flags;
1892 s64 delta;
1893 int cpu;
1894
1895 if (!sched_clock_irqtime)
1896 return;
1897
1898 local_irq_save(flags);
1899
1900 cpu = smp_processor_id();
1901 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1902 __this_cpu_add(irq_start_time, delta);
1903
1904 irq_time_write_begin();
1905 /*
1906 * We do not account for softirq time from ksoftirqd here.
1907 * We want to continue accounting softirq time to ksoftirqd thread
1908 * in that case, so as not to confuse scheduler with a special task
1909 * that do not consume any time, but still wants to run.
1910 */
1911 if (hardirq_count())
1912 __this_cpu_add(cpu_hardirq_time, delta);
1913 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1914 __this_cpu_add(cpu_softirq_time, delta);
1915
1916 irq_time_write_end();
1917 local_irq_restore(flags);
1918 }
1919 EXPORT_SYMBOL_GPL(account_system_vtime);
1920
1921 static void update_rq_clock_task(struct rq *rq, s64 delta)
1922 {
1923 s64 irq_delta;
1924
1925 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1926
1927 /*
1928 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1929 * this case when a previous update_rq_clock() happened inside a
1930 * {soft,}irq region.
1931 *
1932 * When this happens, we stop ->clock_task and only update the
1933 * prev_irq_time stamp to account for the part that fit, so that a next
1934 * update will consume the rest. This ensures ->clock_task is
1935 * monotonic.
1936 *
1937 * It does however cause some slight miss-attribution of {soft,}irq
1938 * time, a more accurate solution would be to update the irq_time using
1939 * the current rq->clock timestamp, except that would require using
1940 * atomic ops.
1941 */
1942 if (irq_delta > delta)
1943 irq_delta = delta;
1944
1945 rq->prev_irq_time += irq_delta;
1946 delta -= irq_delta;
1947 rq->clock_task += delta;
1948
1949 if (irq_delta && sched_feat(NONIRQ_POWER))
1950 sched_rt_avg_update(rq, irq_delta);
1951 }
1952
1953 static int irqtime_account_hi_update(void)
1954 {
1955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1956 unsigned long flags;
1957 u64 latest_ns;
1958 int ret = 0;
1959
1960 local_irq_save(flags);
1961 latest_ns = this_cpu_read(cpu_hardirq_time);
1962 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1963 ret = 1;
1964 local_irq_restore(flags);
1965 return ret;
1966 }
1967
1968 static int irqtime_account_si_update(void)
1969 {
1970 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1971 unsigned long flags;
1972 u64 latest_ns;
1973 int ret = 0;
1974
1975 local_irq_save(flags);
1976 latest_ns = this_cpu_read(cpu_softirq_time);
1977 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1978 ret = 1;
1979 local_irq_restore(flags);
1980 return ret;
1981 }
1982
1983 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1984
1985 #define sched_clock_irqtime (0)
1986
1987 static void update_rq_clock_task(struct rq *rq, s64 delta)
1988 {
1989 rq->clock_task += delta;
1990 }
1991
1992 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1993
1994 #include "sched_idletask.c"
1995 #include "sched_fair.c"
1996 #include "sched_rt.c"
1997 #include "sched_autogroup.c"
1998 #include "sched_stoptask.c"
1999 #ifdef CONFIG_SCHED_DEBUG
2000 # include "sched_debug.c"
2001 #endif
2002
2003 void sched_set_stop_task(int cpu, struct task_struct *stop)
2004 {
2005 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2006 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2007
2008 if (stop) {
2009 /*
2010 * Make it appear like a SCHED_FIFO task, its something
2011 * userspace knows about and won't get confused about.
2012 *
2013 * Also, it will make PI more or less work without too
2014 * much confusion -- but then, stop work should not
2015 * rely on PI working anyway.
2016 */
2017 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2018
2019 stop->sched_class = &stop_sched_class;
2020 }
2021
2022 cpu_rq(cpu)->stop = stop;
2023
2024 if (old_stop) {
2025 /*
2026 * Reset it back to a normal scheduling class so that
2027 * it can die in pieces.
2028 */
2029 old_stop->sched_class = &rt_sched_class;
2030 }
2031 }
2032
2033 /*
2034 * __normal_prio - return the priority that is based on the static prio
2035 */
2036 static inline int __normal_prio(struct task_struct *p)
2037 {
2038 return p->static_prio;
2039 }
2040
2041 /*
2042 * Calculate the expected normal priority: i.e. priority
2043 * without taking RT-inheritance into account. Might be
2044 * boosted by interactivity modifiers. Changes upon fork,
2045 * setprio syscalls, and whenever the interactivity
2046 * estimator recalculates.
2047 */
2048 static inline int normal_prio(struct task_struct *p)
2049 {
2050 int prio;
2051
2052 if (task_has_rt_policy(p))
2053 prio = MAX_RT_PRIO-1 - p->rt_priority;
2054 else
2055 prio = __normal_prio(p);
2056 return prio;
2057 }
2058
2059 /*
2060 * Calculate the current priority, i.e. the priority
2061 * taken into account by the scheduler. This value might
2062 * be boosted by RT tasks, or might be boosted by
2063 * interactivity modifiers. Will be RT if the task got
2064 * RT-boosted. If not then it returns p->normal_prio.
2065 */
2066 static int effective_prio(struct task_struct *p)
2067 {
2068 p->normal_prio = normal_prio(p);
2069 /*
2070 * If we are RT tasks or we were boosted to RT priority,
2071 * keep the priority unchanged. Otherwise, update priority
2072 * to the normal priority:
2073 */
2074 if (!rt_prio(p->prio))
2075 return p->normal_prio;
2076 return p->prio;
2077 }
2078
2079 /**
2080 * task_curr - is this task currently executing on a CPU?
2081 * @p: the task in question.
2082 */
2083 inline int task_curr(const struct task_struct *p)
2084 {
2085 return cpu_curr(task_cpu(p)) == p;
2086 }
2087
2088 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2089 const struct sched_class *prev_class,
2090 int oldprio)
2091 {
2092 if (prev_class != p->sched_class) {
2093 if (prev_class->switched_from)
2094 prev_class->switched_from(rq, p);
2095 p->sched_class->switched_to(rq, p);
2096 } else if (oldprio != p->prio)
2097 p->sched_class->prio_changed(rq, p, oldprio);
2098 }
2099
2100 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2101 {
2102 const struct sched_class *class;
2103
2104 if (p->sched_class == rq->curr->sched_class) {
2105 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2106 } else {
2107 for_each_class(class) {
2108 if (class == rq->curr->sched_class)
2109 break;
2110 if (class == p->sched_class) {
2111 resched_task(rq->curr);
2112 break;
2113 }
2114 }
2115 }
2116
2117 /*
2118 * A queue event has occurred, and we're going to schedule. In
2119 * this case, we can save a useless back to back clock update.
2120 */
2121 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2122 rq->skip_clock_update = 1;
2123 }
2124
2125 #ifdef CONFIG_SMP
2126 /*
2127 * Is this task likely cache-hot:
2128 */
2129 static int
2130 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2131 {
2132 s64 delta;
2133
2134 if (p->sched_class != &fair_sched_class)
2135 return 0;
2136
2137 if (unlikely(p->policy == SCHED_IDLE))
2138 return 0;
2139
2140 /*
2141 * Buddy candidates are cache hot:
2142 */
2143 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2144 (&p->se == cfs_rq_of(&p->se)->next ||
2145 &p->se == cfs_rq_of(&p->se)->last))
2146 return 1;
2147
2148 if (sysctl_sched_migration_cost == -1)
2149 return 1;
2150 if (sysctl_sched_migration_cost == 0)
2151 return 0;
2152
2153 delta = now - p->se.exec_start;
2154
2155 return delta < (s64)sysctl_sched_migration_cost;
2156 }
2157
2158 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2159 {
2160 #ifdef CONFIG_SCHED_DEBUG
2161 /*
2162 * We should never call set_task_cpu() on a blocked task,
2163 * ttwu() will sort out the placement.
2164 */
2165 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2166 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2167 #endif
2168
2169 trace_sched_migrate_task(p, new_cpu);
2170
2171 if (task_cpu(p) != new_cpu) {
2172 p->se.nr_migrations++;
2173 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2174 }
2175
2176 __set_task_cpu(p, new_cpu);
2177 }
2178
2179 struct migration_arg {
2180 struct task_struct *task;
2181 int dest_cpu;
2182 };
2183
2184 static int migration_cpu_stop(void *data);
2185
2186 /*
2187 * The task's runqueue lock must be held.
2188 * Returns true if you have to wait for migration thread.
2189 */
2190 static bool migrate_task(struct task_struct *p, struct rq *rq)
2191 {
2192 /*
2193 * If the task is not on a runqueue (and not running), then
2194 * the next wake-up will properly place the task.
2195 */
2196 return p->se.on_rq || task_running(rq, p);
2197 }
2198
2199 /*
2200 * wait_task_inactive - wait for a thread to unschedule.
2201 *
2202 * If @match_state is nonzero, it's the @p->state value just checked and
2203 * not expected to change. If it changes, i.e. @p might have woken up,
2204 * then return zero. When we succeed in waiting for @p to be off its CPU,
2205 * we return a positive number (its total switch count). If a second call
2206 * a short while later returns the same number, the caller can be sure that
2207 * @p has remained unscheduled the whole time.
2208 *
2209 * The caller must ensure that the task *will* unschedule sometime soon,
2210 * else this function might spin for a *long* time. This function can't
2211 * be called with interrupts off, or it may introduce deadlock with
2212 * smp_call_function() if an IPI is sent by the same process we are
2213 * waiting to become inactive.
2214 */
2215 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2216 {
2217 unsigned long flags;
2218 int running, on_rq;
2219 unsigned long ncsw;
2220 struct rq *rq;
2221
2222 for (;;) {
2223 /*
2224 * We do the initial early heuristics without holding
2225 * any task-queue locks at all. We'll only try to get
2226 * the runqueue lock when things look like they will
2227 * work out!
2228 */
2229 rq = task_rq(p);
2230
2231 /*
2232 * If the task is actively running on another CPU
2233 * still, just relax and busy-wait without holding
2234 * any locks.
2235 *
2236 * NOTE! Since we don't hold any locks, it's not
2237 * even sure that "rq" stays as the right runqueue!
2238 * But we don't care, since "task_running()" will
2239 * return false if the runqueue has changed and p
2240 * is actually now running somewhere else!
2241 */
2242 while (task_running(rq, p)) {
2243 if (match_state && unlikely(p->state != match_state))
2244 return 0;
2245 cpu_relax();
2246 }
2247
2248 /*
2249 * Ok, time to look more closely! We need the rq
2250 * lock now, to be *sure*. If we're wrong, we'll
2251 * just go back and repeat.
2252 */
2253 rq = task_rq_lock(p, &flags);
2254 trace_sched_wait_task(p);
2255 running = task_running(rq, p);
2256 on_rq = p->se.on_rq;
2257 ncsw = 0;
2258 if (!match_state || p->state == match_state)
2259 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2260 task_rq_unlock(rq, &flags);
2261
2262 /*
2263 * If it changed from the expected state, bail out now.
2264 */
2265 if (unlikely(!ncsw))
2266 break;
2267
2268 /*
2269 * Was it really running after all now that we
2270 * checked with the proper locks actually held?
2271 *
2272 * Oops. Go back and try again..
2273 */
2274 if (unlikely(running)) {
2275 cpu_relax();
2276 continue;
2277 }
2278
2279 /*
2280 * It's not enough that it's not actively running,
2281 * it must be off the runqueue _entirely_, and not
2282 * preempted!
2283 *
2284 * So if it was still runnable (but just not actively
2285 * running right now), it's preempted, and we should
2286 * yield - it could be a while.
2287 */
2288 if (unlikely(on_rq)) {
2289 schedule_timeout_uninterruptible(1);
2290 continue;
2291 }
2292
2293 /*
2294 * Ahh, all good. It wasn't running, and it wasn't
2295 * runnable, which means that it will never become
2296 * running in the future either. We're all done!
2297 */
2298 break;
2299 }
2300
2301 return ncsw;
2302 }
2303
2304 /***
2305 * kick_process - kick a running thread to enter/exit the kernel
2306 * @p: the to-be-kicked thread
2307 *
2308 * Cause a process which is running on another CPU to enter
2309 * kernel-mode, without any delay. (to get signals handled.)
2310 *
2311 * NOTE: this function doesnt have to take the runqueue lock,
2312 * because all it wants to ensure is that the remote task enters
2313 * the kernel. If the IPI races and the task has been migrated
2314 * to another CPU then no harm is done and the purpose has been
2315 * achieved as well.
2316 */
2317 void kick_process(struct task_struct *p)
2318 {
2319 int cpu;
2320
2321 preempt_disable();
2322 cpu = task_cpu(p);
2323 if ((cpu != smp_processor_id()) && task_curr(p))
2324 smp_send_reschedule(cpu);
2325 preempt_enable();
2326 }
2327 EXPORT_SYMBOL_GPL(kick_process);
2328 #endif /* CONFIG_SMP */
2329
2330 #ifdef CONFIG_SMP
2331 /*
2332 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2333 */
2334 static int select_fallback_rq(int cpu, struct task_struct *p)
2335 {
2336 int dest_cpu;
2337 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2338
2339 /* Look for allowed, online CPU in same node. */
2340 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2341 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2342 return dest_cpu;
2343
2344 /* Any allowed, online CPU? */
2345 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2346 if (dest_cpu < nr_cpu_ids)
2347 return dest_cpu;
2348
2349 /* No more Mr. Nice Guy. */
2350 dest_cpu = cpuset_cpus_allowed_fallback(p);
2351 /*
2352 * Don't tell them about moving exiting tasks or
2353 * kernel threads (both mm NULL), since they never
2354 * leave kernel.
2355 */
2356 if (p->mm && printk_ratelimit()) {
2357 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2358 task_pid_nr(p), p->comm, cpu);
2359 }
2360
2361 return dest_cpu;
2362 }
2363
2364 /*
2365 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2366 */
2367 static inline
2368 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2369 {
2370 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2371
2372 /*
2373 * In order not to call set_task_cpu() on a blocking task we need
2374 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2375 * cpu.
2376 *
2377 * Since this is common to all placement strategies, this lives here.
2378 *
2379 * [ this allows ->select_task() to simply return task_cpu(p) and
2380 * not worry about this generic constraint ]
2381 */
2382 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2383 !cpu_online(cpu)))
2384 cpu = select_fallback_rq(task_cpu(p), p);
2385
2386 return cpu;
2387 }
2388
2389 static void update_avg(u64 *avg, u64 sample)
2390 {
2391 s64 diff = sample - *avg;
2392 *avg += diff >> 3;
2393 }
2394 #endif
2395
2396 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2397 bool is_sync, bool is_migrate, bool is_local,
2398 unsigned long en_flags)
2399 {
2400 schedstat_inc(p, se.statistics.nr_wakeups);
2401 if (is_sync)
2402 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2403 if (is_migrate)
2404 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2405 if (is_local)
2406 schedstat_inc(p, se.statistics.nr_wakeups_local);
2407 else
2408 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2409
2410 activate_task(rq, p, en_flags);
2411 }
2412
2413 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2414 int wake_flags, bool success)
2415 {
2416 trace_sched_wakeup(p, success);
2417 check_preempt_curr(rq, p, wake_flags);
2418
2419 p->state = TASK_RUNNING;
2420 #ifdef CONFIG_SMP
2421 if (p->sched_class->task_woken)
2422 p->sched_class->task_woken(rq, p);
2423
2424 if (unlikely(rq->idle_stamp)) {
2425 u64 delta = rq->clock - rq->idle_stamp;
2426 u64 max = 2*sysctl_sched_migration_cost;
2427
2428 if (delta > max)
2429 rq->avg_idle = max;
2430 else
2431 update_avg(&rq->avg_idle, delta);
2432 rq->idle_stamp = 0;
2433 }
2434 #endif
2435 /* if a worker is waking up, notify workqueue */
2436 if ((p->flags & PF_WQ_WORKER) && success)
2437 wq_worker_waking_up(p, cpu_of(rq));
2438 }
2439
2440 /**
2441 * try_to_wake_up - wake up a thread
2442 * @p: the thread to be awakened
2443 * @state: the mask of task states that can be woken
2444 * @wake_flags: wake modifier flags (WF_*)
2445 *
2446 * Put it on the run-queue if it's not already there. The "current"
2447 * thread is always on the run-queue (except when the actual
2448 * re-schedule is in progress), and as such you're allowed to do
2449 * the simpler "current->state = TASK_RUNNING" to mark yourself
2450 * runnable without the overhead of this.
2451 *
2452 * Returns %true if @p was woken up, %false if it was already running
2453 * or @state didn't match @p's state.
2454 */
2455 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2456 int wake_flags)
2457 {
2458 int cpu, orig_cpu, this_cpu, success = 0;
2459 unsigned long flags;
2460 unsigned long en_flags = ENQUEUE_WAKEUP;
2461 struct rq *rq;
2462
2463 this_cpu = get_cpu();
2464
2465 smp_wmb();
2466 rq = task_rq_lock(p, &flags);
2467 if (!(p->state & state))
2468 goto out;
2469
2470 if (p->se.on_rq)
2471 goto out_running;
2472
2473 cpu = task_cpu(p);
2474 orig_cpu = cpu;
2475
2476 #ifdef CONFIG_SMP
2477 if (unlikely(task_running(rq, p)))
2478 goto out_activate;
2479
2480 /*
2481 * In order to handle concurrent wakeups and release the rq->lock
2482 * we put the task in TASK_WAKING state.
2483 *
2484 * First fix up the nr_uninterruptible count:
2485 */
2486 if (task_contributes_to_load(p)) {
2487 if (likely(cpu_online(orig_cpu)))
2488 rq->nr_uninterruptible--;
2489 else
2490 this_rq()->nr_uninterruptible--;
2491 }
2492 p->state = TASK_WAKING;
2493
2494 if (p->sched_class->task_waking) {
2495 p->sched_class->task_waking(rq, p);
2496 en_flags |= ENQUEUE_WAKING;
2497 }
2498
2499 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2500 if (cpu != orig_cpu)
2501 set_task_cpu(p, cpu);
2502 __task_rq_unlock(rq);
2503
2504 rq = cpu_rq(cpu);
2505 raw_spin_lock(&rq->lock);
2506
2507 /*
2508 * We migrated the task without holding either rq->lock, however
2509 * since the task is not on the task list itself, nobody else
2510 * will try and migrate the task, hence the rq should match the
2511 * cpu we just moved it to.
2512 */
2513 WARN_ON(task_cpu(p) != cpu);
2514 WARN_ON(p->state != TASK_WAKING);
2515
2516 #ifdef CONFIG_SCHEDSTATS
2517 schedstat_inc(rq, ttwu_count);
2518 if (cpu == this_cpu)
2519 schedstat_inc(rq, ttwu_local);
2520 else {
2521 struct sched_domain *sd;
2522 for_each_domain(this_cpu, sd) {
2523 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2524 schedstat_inc(sd, ttwu_wake_remote);
2525 break;
2526 }
2527 }
2528 }
2529 #endif /* CONFIG_SCHEDSTATS */
2530
2531 out_activate:
2532 #endif /* CONFIG_SMP */
2533 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2534 cpu == this_cpu, en_flags);
2535 success = 1;
2536 out_running:
2537 ttwu_post_activation(p, rq, wake_flags, success);
2538 out:
2539 task_rq_unlock(rq, &flags);
2540 put_cpu();
2541
2542 return success;
2543 }
2544
2545 /**
2546 * try_to_wake_up_local - try to wake up a local task with rq lock held
2547 * @p: the thread to be awakened
2548 *
2549 * Put @p on the run-queue if it's not already there. The caller must
2550 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2551 * the current task. this_rq() stays locked over invocation.
2552 */
2553 static void try_to_wake_up_local(struct task_struct *p)
2554 {
2555 struct rq *rq = task_rq(p);
2556 bool success = false;
2557
2558 BUG_ON(rq != this_rq());
2559 BUG_ON(p == current);
2560 lockdep_assert_held(&rq->lock);
2561
2562 if (!(p->state & TASK_NORMAL))
2563 return;
2564
2565 if (!p->se.on_rq) {
2566 if (likely(!task_running(rq, p))) {
2567 schedstat_inc(rq, ttwu_count);
2568 schedstat_inc(rq, ttwu_local);
2569 }
2570 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2571 success = true;
2572 }
2573 ttwu_post_activation(p, rq, 0, success);
2574 }
2575
2576 /**
2577 * wake_up_process - Wake up a specific process
2578 * @p: The process to be woken up.
2579 *
2580 * Attempt to wake up the nominated process and move it to the set of runnable
2581 * processes. Returns 1 if the process was woken up, 0 if it was already
2582 * running.
2583 *
2584 * It may be assumed that this function implies a write memory barrier before
2585 * changing the task state if and only if any tasks are woken up.
2586 */
2587 int wake_up_process(struct task_struct *p)
2588 {
2589 return try_to_wake_up(p, TASK_ALL, 0);
2590 }
2591 EXPORT_SYMBOL(wake_up_process);
2592
2593 int wake_up_state(struct task_struct *p, unsigned int state)
2594 {
2595 return try_to_wake_up(p, state, 0);
2596 }
2597
2598 /*
2599 * Perform scheduler related setup for a newly forked process p.
2600 * p is forked by current.
2601 *
2602 * __sched_fork() is basic setup used by init_idle() too:
2603 */
2604 static void __sched_fork(struct task_struct *p)
2605 {
2606 p->se.exec_start = 0;
2607 p->se.sum_exec_runtime = 0;
2608 p->se.prev_sum_exec_runtime = 0;
2609 p->se.nr_migrations = 0;
2610 p->se.vruntime = 0;
2611
2612 #ifdef CONFIG_SCHEDSTATS
2613 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2614 #endif
2615
2616 INIT_LIST_HEAD(&p->rt.run_list);
2617 p->se.on_rq = 0;
2618 INIT_LIST_HEAD(&p->se.group_node);
2619
2620 #ifdef CONFIG_PREEMPT_NOTIFIERS
2621 INIT_HLIST_HEAD(&p->preempt_notifiers);
2622 #endif
2623 }
2624
2625 /*
2626 * fork()/clone()-time setup:
2627 */
2628 void sched_fork(struct task_struct *p, int clone_flags)
2629 {
2630 int cpu = get_cpu();
2631
2632 __sched_fork(p);
2633 /*
2634 * We mark the process as running here. This guarantees that
2635 * nobody will actually run it, and a signal or other external
2636 * event cannot wake it up and insert it on the runqueue either.
2637 */
2638 p->state = TASK_RUNNING;
2639
2640 /*
2641 * Revert to default priority/policy on fork if requested.
2642 */
2643 if (unlikely(p->sched_reset_on_fork)) {
2644 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2645 p->policy = SCHED_NORMAL;
2646 p->normal_prio = p->static_prio;
2647 }
2648
2649 if (PRIO_TO_NICE(p->static_prio) < 0) {
2650 p->static_prio = NICE_TO_PRIO(0);
2651 p->normal_prio = p->static_prio;
2652 set_load_weight(p);
2653 }
2654
2655 /*
2656 * We don't need the reset flag anymore after the fork. It has
2657 * fulfilled its duty:
2658 */
2659 p->sched_reset_on_fork = 0;
2660 }
2661
2662 /*
2663 * Make sure we do not leak PI boosting priority to the child.
2664 */
2665 p->prio = current->normal_prio;
2666
2667 if (!rt_prio(p->prio))
2668 p->sched_class = &fair_sched_class;
2669
2670 if (p->sched_class->task_fork)
2671 p->sched_class->task_fork(p);
2672
2673 /*
2674 * The child is not yet in the pid-hash so no cgroup attach races,
2675 * and the cgroup is pinned to this child due to cgroup_fork()
2676 * is ran before sched_fork().
2677 *
2678 * Silence PROVE_RCU.
2679 */
2680 rcu_read_lock();
2681 set_task_cpu(p, cpu);
2682 rcu_read_unlock();
2683
2684 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2685 if (likely(sched_info_on()))
2686 memset(&p->sched_info, 0, sizeof(p->sched_info));
2687 #endif
2688 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2689 p->oncpu = 0;
2690 #endif
2691 #ifdef CONFIG_PREEMPT
2692 /* Want to start with kernel preemption disabled. */
2693 task_thread_info(p)->preempt_count = 1;
2694 #endif
2695 #ifdef CONFIG_SMP
2696 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2697 #endif
2698
2699 put_cpu();
2700 }
2701
2702 /*
2703 * wake_up_new_task - wake up a newly created task for the first time.
2704 *
2705 * This function will do some initial scheduler statistics housekeeping
2706 * that must be done for every newly created context, then puts the task
2707 * on the runqueue and wakes it.
2708 */
2709 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2710 {
2711 unsigned long flags;
2712 struct rq *rq;
2713 int cpu __maybe_unused = get_cpu();
2714
2715 #ifdef CONFIG_SMP
2716 rq = task_rq_lock(p, &flags);
2717 p->state = TASK_WAKING;
2718
2719 /*
2720 * Fork balancing, do it here and not earlier because:
2721 * - cpus_allowed can change in the fork path
2722 * - any previously selected cpu might disappear through hotplug
2723 *
2724 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2725 * without people poking at ->cpus_allowed.
2726 */
2727 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2728 set_task_cpu(p, cpu);
2729
2730 p->state = TASK_RUNNING;
2731 task_rq_unlock(rq, &flags);
2732 #endif
2733
2734 rq = task_rq_lock(p, &flags);
2735 activate_task(rq, p, 0);
2736 trace_sched_wakeup_new(p, 1);
2737 check_preempt_curr(rq, p, WF_FORK);
2738 #ifdef CONFIG_SMP
2739 if (p->sched_class->task_woken)
2740 p->sched_class->task_woken(rq, p);
2741 #endif
2742 task_rq_unlock(rq, &flags);
2743 put_cpu();
2744 }
2745
2746 #ifdef CONFIG_PREEMPT_NOTIFIERS
2747
2748 /**
2749 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2750 * @notifier: notifier struct to register
2751 */
2752 void preempt_notifier_register(struct preempt_notifier *notifier)
2753 {
2754 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2755 }
2756 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2757
2758 /**
2759 * preempt_notifier_unregister - no longer interested in preemption notifications
2760 * @notifier: notifier struct to unregister
2761 *
2762 * This is safe to call from within a preemption notifier.
2763 */
2764 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2765 {
2766 hlist_del(&notifier->link);
2767 }
2768 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2769
2770 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2771 {
2772 struct preempt_notifier *notifier;
2773 struct hlist_node *node;
2774
2775 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2776 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2777 }
2778
2779 static void
2780 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2781 struct task_struct *next)
2782 {
2783 struct preempt_notifier *notifier;
2784 struct hlist_node *node;
2785
2786 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2787 notifier->ops->sched_out(notifier, next);
2788 }
2789
2790 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2791
2792 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2793 {
2794 }
2795
2796 static void
2797 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2798 struct task_struct *next)
2799 {
2800 }
2801
2802 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2803
2804 /**
2805 * prepare_task_switch - prepare to switch tasks
2806 * @rq: the runqueue preparing to switch
2807 * @prev: the current task that is being switched out
2808 * @next: the task we are going to switch to.
2809 *
2810 * This is called with the rq lock held and interrupts off. It must
2811 * be paired with a subsequent finish_task_switch after the context
2812 * switch.
2813 *
2814 * prepare_task_switch sets up locking and calls architecture specific
2815 * hooks.
2816 */
2817 static inline void
2818 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2819 struct task_struct *next)
2820 {
2821 sched_info_switch(prev, next);
2822 perf_event_task_sched_out(prev, next);
2823 fire_sched_out_preempt_notifiers(prev, next);
2824 prepare_lock_switch(rq, next);
2825 prepare_arch_switch(next);
2826 trace_sched_switch(prev, next);
2827 }
2828
2829 /**
2830 * finish_task_switch - clean up after a task-switch
2831 * @rq: runqueue associated with task-switch
2832 * @prev: the thread we just switched away from.
2833 *
2834 * finish_task_switch must be called after the context switch, paired
2835 * with a prepare_task_switch call before the context switch.
2836 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2837 * and do any other architecture-specific cleanup actions.
2838 *
2839 * Note that we may have delayed dropping an mm in context_switch(). If
2840 * so, we finish that here outside of the runqueue lock. (Doing it
2841 * with the lock held can cause deadlocks; see schedule() for
2842 * details.)
2843 */
2844 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2845 __releases(rq->lock)
2846 {
2847 struct mm_struct *mm = rq->prev_mm;
2848 long prev_state;
2849
2850 rq->prev_mm = NULL;
2851
2852 /*
2853 * A task struct has one reference for the use as "current".
2854 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2855 * schedule one last time. The schedule call will never return, and
2856 * the scheduled task must drop that reference.
2857 * The test for TASK_DEAD must occur while the runqueue locks are
2858 * still held, otherwise prev could be scheduled on another cpu, die
2859 * there before we look at prev->state, and then the reference would
2860 * be dropped twice.
2861 * Manfred Spraul <manfred@colorfullife.com>
2862 */
2863 prev_state = prev->state;
2864 finish_arch_switch(prev);
2865 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2866 local_irq_disable();
2867 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2868 perf_event_task_sched_in(current);
2869 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2870 local_irq_enable();
2871 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2872 finish_lock_switch(rq, prev);
2873
2874 fire_sched_in_preempt_notifiers(current);
2875 if (mm)
2876 mmdrop(mm);
2877 if (unlikely(prev_state == TASK_DEAD)) {
2878 /*
2879 * Remove function-return probe instances associated with this
2880 * task and put them back on the free list.
2881 */
2882 kprobe_flush_task(prev);
2883 put_task_struct(prev);
2884 }
2885 }
2886
2887 #ifdef CONFIG_SMP
2888
2889 /* assumes rq->lock is held */
2890 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2891 {
2892 if (prev->sched_class->pre_schedule)
2893 prev->sched_class->pre_schedule(rq, prev);
2894 }
2895
2896 /* rq->lock is NOT held, but preemption is disabled */
2897 static inline void post_schedule(struct rq *rq)
2898 {
2899 if (rq->post_schedule) {
2900 unsigned long flags;
2901
2902 raw_spin_lock_irqsave(&rq->lock, flags);
2903 if (rq->curr->sched_class->post_schedule)
2904 rq->curr->sched_class->post_schedule(rq);
2905 raw_spin_unlock_irqrestore(&rq->lock, flags);
2906
2907 rq->post_schedule = 0;
2908 }
2909 }
2910
2911 #else
2912
2913 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2914 {
2915 }
2916
2917 static inline void post_schedule(struct rq *rq)
2918 {
2919 }
2920
2921 #endif
2922
2923 /**
2924 * schedule_tail - first thing a freshly forked thread must call.
2925 * @prev: the thread we just switched away from.
2926 */
2927 asmlinkage void schedule_tail(struct task_struct *prev)
2928 __releases(rq->lock)
2929 {
2930 struct rq *rq = this_rq();
2931
2932 finish_task_switch(rq, prev);
2933
2934 /*
2935 * FIXME: do we need to worry about rq being invalidated by the
2936 * task_switch?
2937 */
2938 post_schedule(rq);
2939
2940 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2941 /* In this case, finish_task_switch does not reenable preemption */
2942 preempt_enable();
2943 #endif
2944 if (current->set_child_tid)
2945 put_user(task_pid_vnr(current), current->set_child_tid);
2946 }
2947
2948 /*
2949 * context_switch - switch to the new MM and the new
2950 * thread's register state.
2951 */
2952 static inline void
2953 context_switch(struct rq *rq, struct task_struct *prev,
2954 struct task_struct *next)
2955 {
2956 struct mm_struct *mm, *oldmm;
2957
2958 prepare_task_switch(rq, prev, next);
2959
2960 mm = next->mm;
2961 oldmm = prev->active_mm;
2962 /*
2963 * For paravirt, this is coupled with an exit in switch_to to
2964 * combine the page table reload and the switch backend into
2965 * one hypercall.
2966 */
2967 arch_start_context_switch(prev);
2968
2969 if (!mm) {
2970 next->active_mm = oldmm;
2971 atomic_inc(&oldmm->mm_count);
2972 enter_lazy_tlb(oldmm, next);
2973 } else
2974 switch_mm(oldmm, mm, next);
2975
2976 if (!prev->mm) {
2977 prev->active_mm = NULL;
2978 rq->prev_mm = oldmm;
2979 }
2980 /*
2981 * Since the runqueue lock will be released by the next
2982 * task (which is an invalid locking op but in the case
2983 * of the scheduler it's an obvious special-case), so we
2984 * do an early lockdep release here:
2985 */
2986 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2987 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2988 #endif
2989
2990 /* Here we just switch the register state and the stack. */
2991 switch_to(prev, next, prev);
2992
2993 barrier();
2994 /*
2995 * this_rq must be evaluated again because prev may have moved
2996 * CPUs since it called schedule(), thus the 'rq' on its stack
2997 * frame will be invalid.
2998 */
2999 finish_task_switch(this_rq(), prev);
3000 }
3001
3002 /*
3003 * nr_running, nr_uninterruptible and nr_context_switches:
3004 *
3005 * externally visible scheduler statistics: current number of runnable
3006 * threads, current number of uninterruptible-sleeping threads, total
3007 * number of context switches performed since bootup.
3008 */
3009 unsigned long nr_running(void)
3010 {
3011 unsigned long i, sum = 0;
3012
3013 for_each_online_cpu(i)
3014 sum += cpu_rq(i)->nr_running;
3015
3016 return sum;
3017 }
3018
3019 unsigned long nr_uninterruptible(void)
3020 {
3021 unsigned long i, sum = 0;
3022
3023 for_each_possible_cpu(i)
3024 sum += cpu_rq(i)->nr_uninterruptible;
3025
3026 /*
3027 * Since we read the counters lockless, it might be slightly
3028 * inaccurate. Do not allow it to go below zero though:
3029 */
3030 if (unlikely((long)sum < 0))
3031 sum = 0;
3032
3033 return sum;
3034 }
3035
3036 unsigned long long nr_context_switches(void)
3037 {
3038 int i;
3039 unsigned long long sum = 0;
3040
3041 for_each_possible_cpu(i)
3042 sum += cpu_rq(i)->nr_switches;
3043
3044 return sum;
3045 }
3046
3047 unsigned long nr_iowait(void)
3048 {
3049 unsigned long i, sum = 0;
3050
3051 for_each_possible_cpu(i)
3052 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3053
3054 return sum;
3055 }
3056
3057 unsigned long nr_iowait_cpu(int cpu)
3058 {
3059 struct rq *this = cpu_rq(cpu);
3060 return atomic_read(&this->nr_iowait);
3061 }
3062
3063 unsigned long this_cpu_load(void)
3064 {
3065 struct rq *this = this_rq();
3066 return this->cpu_load[0];
3067 }
3068
3069
3070 /* Variables and functions for calc_load */
3071 static atomic_long_t calc_load_tasks;
3072 static unsigned long calc_load_update;
3073 unsigned long avenrun[3];
3074 EXPORT_SYMBOL(avenrun);
3075
3076 static long calc_load_fold_active(struct rq *this_rq)
3077 {
3078 long nr_active, delta = 0;
3079
3080 nr_active = this_rq->nr_running;
3081 nr_active += (long) this_rq->nr_uninterruptible;
3082
3083 if (nr_active != this_rq->calc_load_active) {
3084 delta = nr_active - this_rq->calc_load_active;
3085 this_rq->calc_load_active = nr_active;
3086 }
3087
3088 return delta;
3089 }
3090
3091 static unsigned long
3092 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3093 {
3094 load *= exp;
3095 load += active * (FIXED_1 - exp);
3096 load += 1UL << (FSHIFT - 1);
3097 return load >> FSHIFT;
3098 }
3099
3100 #ifdef CONFIG_NO_HZ
3101 /*
3102 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3103 *
3104 * When making the ILB scale, we should try to pull this in as well.
3105 */
3106 static atomic_long_t calc_load_tasks_idle;
3107
3108 static void calc_load_account_idle(struct rq *this_rq)
3109 {
3110 long delta;
3111
3112 delta = calc_load_fold_active(this_rq);
3113 if (delta)
3114 atomic_long_add(delta, &calc_load_tasks_idle);
3115 }
3116
3117 static long calc_load_fold_idle(void)
3118 {
3119 long delta = 0;
3120
3121 /*
3122 * Its got a race, we don't care...
3123 */
3124 if (atomic_long_read(&calc_load_tasks_idle))
3125 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3126
3127 return delta;
3128 }
3129
3130 /**
3131 * fixed_power_int - compute: x^n, in O(log n) time
3132 *
3133 * @x: base of the power
3134 * @frac_bits: fractional bits of @x
3135 * @n: power to raise @x to.
3136 *
3137 * By exploiting the relation between the definition of the natural power
3138 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3139 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3140 * (where: n_i \elem {0, 1}, the binary vector representing n),
3141 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3142 * of course trivially computable in O(log_2 n), the length of our binary
3143 * vector.
3144 */
3145 static unsigned long
3146 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3147 {
3148 unsigned long result = 1UL << frac_bits;
3149
3150 if (n) for (;;) {
3151 if (n & 1) {
3152 result *= x;
3153 result += 1UL << (frac_bits - 1);
3154 result >>= frac_bits;
3155 }
3156 n >>= 1;
3157 if (!n)
3158 break;
3159 x *= x;
3160 x += 1UL << (frac_bits - 1);
3161 x >>= frac_bits;
3162 }
3163
3164 return result;
3165 }
3166
3167 /*
3168 * a1 = a0 * e + a * (1 - e)
3169 *
3170 * a2 = a1 * e + a * (1 - e)
3171 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3172 * = a0 * e^2 + a * (1 - e) * (1 + e)
3173 *
3174 * a3 = a2 * e + a * (1 - e)
3175 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3176 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3177 *
3178 * ...
3179 *
3180 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3181 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3182 * = a0 * e^n + a * (1 - e^n)
3183 *
3184 * [1] application of the geometric series:
3185 *
3186 * n 1 - x^(n+1)
3187 * S_n := \Sum x^i = -------------
3188 * i=0 1 - x
3189 */
3190 static unsigned long
3191 calc_load_n(unsigned long load, unsigned long exp,
3192 unsigned long active, unsigned int n)
3193 {
3194
3195 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3196 }
3197
3198 /*
3199 * NO_HZ can leave us missing all per-cpu ticks calling
3200 * calc_load_account_active(), but since an idle CPU folds its delta into
3201 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3202 * in the pending idle delta if our idle period crossed a load cycle boundary.
3203 *
3204 * Once we've updated the global active value, we need to apply the exponential
3205 * weights adjusted to the number of cycles missed.
3206 */
3207 static void calc_global_nohz(unsigned long ticks)
3208 {
3209 long delta, active, n;
3210
3211 if (time_before(jiffies, calc_load_update))
3212 return;
3213
3214 /*
3215 * If we crossed a calc_load_update boundary, make sure to fold
3216 * any pending idle changes, the respective CPUs might have
3217 * missed the tick driven calc_load_account_active() update
3218 * due to NO_HZ.
3219 */
3220 delta = calc_load_fold_idle();
3221 if (delta)
3222 atomic_long_add(delta, &calc_load_tasks);
3223
3224 /*
3225 * If we were idle for multiple load cycles, apply them.
3226 */
3227 if (ticks >= LOAD_FREQ) {
3228 n = ticks / LOAD_FREQ;
3229
3230 active = atomic_long_read(&calc_load_tasks);
3231 active = active > 0 ? active * FIXED_1 : 0;
3232
3233 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3234 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3235 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3236
3237 calc_load_update += n * LOAD_FREQ;
3238 }
3239
3240 /*
3241 * Its possible the remainder of the above division also crosses
3242 * a LOAD_FREQ period, the regular check in calc_global_load()
3243 * which comes after this will take care of that.
3244 *
3245 * Consider us being 11 ticks before a cycle completion, and us
3246 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3247 * age us 4 cycles, and the test in calc_global_load() will
3248 * pick up the final one.
3249 */
3250 }
3251 #else
3252 static void calc_load_account_idle(struct rq *this_rq)
3253 {
3254 }
3255
3256 static inline long calc_load_fold_idle(void)
3257 {
3258 return 0;
3259 }
3260
3261 static void calc_global_nohz(unsigned long ticks)
3262 {
3263 }
3264 #endif
3265
3266 /**
3267 * get_avenrun - get the load average array
3268 * @loads: pointer to dest load array
3269 * @offset: offset to add
3270 * @shift: shift count to shift the result left
3271 *
3272 * These values are estimates at best, so no need for locking.
3273 */
3274 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3275 {
3276 loads[0] = (avenrun[0] + offset) << shift;
3277 loads[1] = (avenrun[1] + offset) << shift;
3278 loads[2] = (avenrun[2] + offset) << shift;
3279 }
3280
3281 /*
3282 * calc_load - update the avenrun load estimates 10 ticks after the
3283 * CPUs have updated calc_load_tasks.
3284 */
3285 void calc_global_load(unsigned long ticks)
3286 {
3287 long active;
3288
3289 calc_global_nohz(ticks);
3290
3291 if (time_before(jiffies, calc_load_update + 10))
3292 return;
3293
3294 active = atomic_long_read(&calc_load_tasks);
3295 active = active > 0 ? active * FIXED_1 : 0;
3296
3297 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3298 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3299 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3300
3301 calc_load_update += LOAD_FREQ;
3302 }
3303
3304 /*
3305 * Called from update_cpu_load() to periodically update this CPU's
3306 * active count.
3307 */
3308 static void calc_load_account_active(struct rq *this_rq)
3309 {
3310 long delta;
3311
3312 if (time_before(jiffies, this_rq->calc_load_update))
3313 return;
3314
3315 delta = calc_load_fold_active(this_rq);
3316 delta += calc_load_fold_idle();
3317 if (delta)
3318 atomic_long_add(delta, &calc_load_tasks);
3319
3320 this_rq->calc_load_update += LOAD_FREQ;
3321 }
3322
3323 /*
3324 * The exact cpuload at various idx values, calculated at every tick would be
3325 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3326 *
3327 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3328 * on nth tick when cpu may be busy, then we have:
3329 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3330 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3331 *
3332 * decay_load_missed() below does efficient calculation of
3333 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3334 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3335 *
3336 * The calculation is approximated on a 128 point scale.
3337 * degrade_zero_ticks is the number of ticks after which load at any
3338 * particular idx is approximated to be zero.
3339 * degrade_factor is a precomputed table, a row for each load idx.
3340 * Each column corresponds to degradation factor for a power of two ticks,
3341 * based on 128 point scale.
3342 * Example:
3343 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3344 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3345 *
3346 * With this power of 2 load factors, we can degrade the load n times
3347 * by looking at 1 bits in n and doing as many mult/shift instead of
3348 * n mult/shifts needed by the exact degradation.
3349 */
3350 #define DEGRADE_SHIFT 7
3351 static const unsigned char
3352 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3353 static const unsigned char
3354 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3355 {0, 0, 0, 0, 0, 0, 0, 0},
3356 {64, 32, 8, 0, 0, 0, 0, 0},
3357 {96, 72, 40, 12, 1, 0, 0},
3358 {112, 98, 75, 43, 15, 1, 0},
3359 {120, 112, 98, 76, 45, 16, 2} };
3360
3361 /*
3362 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3363 * would be when CPU is idle and so we just decay the old load without
3364 * adding any new load.
3365 */
3366 static unsigned long
3367 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3368 {
3369 int j = 0;
3370
3371 if (!missed_updates)
3372 return load;
3373
3374 if (missed_updates >= degrade_zero_ticks[idx])
3375 return 0;
3376
3377 if (idx == 1)
3378 return load >> missed_updates;
3379
3380 while (missed_updates) {
3381 if (missed_updates % 2)
3382 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3383
3384 missed_updates >>= 1;
3385 j++;
3386 }
3387 return load;
3388 }
3389
3390 /*
3391 * Update rq->cpu_load[] statistics. This function is usually called every
3392 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3393 * every tick. We fix it up based on jiffies.
3394 */
3395 static void update_cpu_load(struct rq *this_rq)
3396 {
3397 unsigned long this_load = this_rq->load.weight;
3398 unsigned long curr_jiffies = jiffies;
3399 unsigned long pending_updates;
3400 int i, scale;
3401
3402 this_rq->nr_load_updates++;
3403
3404 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3405 if (curr_jiffies == this_rq->last_load_update_tick)
3406 return;
3407
3408 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3409 this_rq->last_load_update_tick = curr_jiffies;
3410
3411 /* Update our load: */
3412 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3413 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3414 unsigned long old_load, new_load;
3415
3416 /* scale is effectively 1 << i now, and >> i divides by scale */
3417
3418 old_load = this_rq->cpu_load[i];
3419 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3420 new_load = this_load;
3421 /*
3422 * Round up the averaging division if load is increasing. This
3423 * prevents us from getting stuck on 9 if the load is 10, for
3424 * example.
3425 */
3426 if (new_load > old_load)
3427 new_load += scale - 1;
3428
3429 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3430 }
3431
3432 sched_avg_update(this_rq);
3433 }
3434
3435 static void update_cpu_load_active(struct rq *this_rq)
3436 {
3437 update_cpu_load(this_rq);
3438
3439 calc_load_account_active(this_rq);
3440 }
3441
3442 #ifdef CONFIG_SMP
3443
3444 /*
3445 * sched_exec - execve() is a valuable balancing opportunity, because at
3446 * this point the task has the smallest effective memory and cache footprint.
3447 */
3448 void sched_exec(void)
3449 {
3450 struct task_struct *p = current;
3451 unsigned long flags;
3452 struct rq *rq;
3453 int dest_cpu;
3454
3455 rq = task_rq_lock(p, &flags);
3456 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3457 if (dest_cpu == smp_processor_id())
3458 goto unlock;
3459
3460 /*
3461 * select_task_rq() can race against ->cpus_allowed
3462 */
3463 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3464 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3465 struct migration_arg arg = { p, dest_cpu };
3466
3467 task_rq_unlock(rq, &flags);
3468 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3469 return;
3470 }
3471 unlock:
3472 task_rq_unlock(rq, &flags);
3473 }
3474
3475 #endif
3476
3477 DEFINE_PER_CPU(struct kernel_stat, kstat);
3478
3479 EXPORT_PER_CPU_SYMBOL(kstat);
3480
3481 /*
3482 * Return any ns on the sched_clock that have not yet been accounted in
3483 * @p in case that task is currently running.
3484 *
3485 * Called with task_rq_lock() held on @rq.
3486 */
3487 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3488 {
3489 u64 ns = 0;
3490
3491 if (task_current(rq, p)) {
3492 update_rq_clock(rq);
3493 ns = rq->clock_task - p->se.exec_start;
3494 if ((s64)ns < 0)
3495 ns = 0;
3496 }
3497
3498 return ns;
3499 }
3500
3501 unsigned long long task_delta_exec(struct task_struct *p)
3502 {
3503 unsigned long flags;
3504 struct rq *rq;
3505 u64 ns = 0;
3506
3507 rq = task_rq_lock(p, &flags);
3508 ns = do_task_delta_exec(p, rq);
3509 task_rq_unlock(rq, &flags);
3510
3511 return ns;
3512 }
3513
3514 /*
3515 * Return accounted runtime for the task.
3516 * In case the task is currently running, return the runtime plus current's
3517 * pending runtime that have not been accounted yet.
3518 */
3519 unsigned long long task_sched_runtime(struct task_struct *p)
3520 {
3521 unsigned long flags;
3522 struct rq *rq;
3523 u64 ns = 0;
3524
3525 rq = task_rq_lock(p, &flags);
3526 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3527 task_rq_unlock(rq, &flags);
3528
3529 return ns;
3530 }
3531
3532 /*
3533 * Return sum_exec_runtime for the thread group.
3534 * In case the task is currently running, return the sum plus current's
3535 * pending runtime that have not been accounted yet.
3536 *
3537 * Note that the thread group might have other running tasks as well,
3538 * so the return value not includes other pending runtime that other
3539 * running tasks might have.
3540 */
3541 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3542 {
3543 struct task_cputime totals;
3544 unsigned long flags;
3545 struct rq *rq;
3546 u64 ns;
3547
3548 rq = task_rq_lock(p, &flags);
3549 thread_group_cputime(p, &totals);
3550 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3551 task_rq_unlock(rq, &flags);
3552
3553 return ns;
3554 }
3555
3556 /*
3557 * Account user cpu time to a process.
3558 * @p: the process that the cpu time gets accounted to
3559 * @cputime: the cpu time spent in user space since the last update
3560 * @cputime_scaled: cputime scaled by cpu frequency
3561 */
3562 void account_user_time(struct task_struct *p, cputime_t cputime,
3563 cputime_t cputime_scaled)
3564 {
3565 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3566 cputime64_t tmp;
3567
3568 /* Add user time to process. */
3569 p->utime = cputime_add(p->utime, cputime);
3570 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3571 account_group_user_time(p, cputime);
3572
3573 /* Add user time to cpustat. */
3574 tmp = cputime_to_cputime64(cputime);
3575 if (TASK_NICE(p) > 0)
3576 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3577 else
3578 cpustat->user = cputime64_add(cpustat->user, tmp);
3579
3580 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3581 /* Account for user time used */
3582 acct_update_integrals(p);
3583 }
3584
3585 /*
3586 * Account guest cpu time to a process.
3587 * @p: the process that the cpu time gets accounted to
3588 * @cputime: the cpu time spent in virtual machine since the last update
3589 * @cputime_scaled: cputime scaled by cpu frequency
3590 */
3591 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3592 cputime_t cputime_scaled)
3593 {
3594 cputime64_t tmp;
3595 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3596
3597 tmp = cputime_to_cputime64(cputime);
3598
3599 /* Add guest time to process. */
3600 p->utime = cputime_add(p->utime, cputime);
3601 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3602 account_group_user_time(p, cputime);
3603 p->gtime = cputime_add(p->gtime, cputime);
3604
3605 /* Add guest time to cpustat. */
3606 if (TASK_NICE(p) > 0) {
3607 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3608 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3609 } else {
3610 cpustat->user = cputime64_add(cpustat->user, tmp);
3611 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3612 }
3613 }
3614
3615 /*
3616 * Account system cpu time to a process and desired cpustat field
3617 * @p: the process that the cpu time gets accounted to
3618 * @cputime: the cpu time spent in kernel space since the last update
3619 * @cputime_scaled: cputime scaled by cpu frequency
3620 * @target_cputime64: pointer to cpustat field that has to be updated
3621 */
3622 static inline
3623 void __account_system_time(struct task_struct *p, cputime_t cputime,
3624 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3625 {
3626 cputime64_t tmp = cputime_to_cputime64(cputime);
3627
3628 /* Add system time to process. */
3629 p->stime = cputime_add(p->stime, cputime);
3630 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3631 account_group_system_time(p, cputime);
3632
3633 /* Add system time to cpustat. */
3634 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3635 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3636
3637 /* Account for system time used */
3638 acct_update_integrals(p);
3639 }
3640
3641 /*
3642 * Account system cpu time to a process.
3643 * @p: the process that the cpu time gets accounted to
3644 * @hardirq_offset: the offset to subtract from hardirq_count()
3645 * @cputime: the cpu time spent in kernel space since the last update
3646 * @cputime_scaled: cputime scaled by cpu frequency
3647 */
3648 void account_system_time(struct task_struct *p, int hardirq_offset,
3649 cputime_t cputime, cputime_t cputime_scaled)
3650 {
3651 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3652 cputime64_t *target_cputime64;
3653
3654 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3655 account_guest_time(p, cputime, cputime_scaled);
3656 return;
3657 }
3658
3659 if (hardirq_count() - hardirq_offset)
3660 target_cputime64 = &cpustat->irq;
3661 else if (in_serving_softirq())
3662 target_cputime64 = &cpustat->softirq;
3663 else
3664 target_cputime64 = &cpustat->system;
3665
3666 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3667 }
3668
3669 /*
3670 * Account for involuntary wait time.
3671 * @cputime: the cpu time spent in involuntary wait
3672 */
3673 void account_steal_time(cputime_t cputime)
3674 {
3675 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3676 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3677
3678 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3679 }
3680
3681 /*
3682 * Account for idle time.
3683 * @cputime: the cpu time spent in idle wait
3684 */
3685 void account_idle_time(cputime_t cputime)
3686 {
3687 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3688 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3689 struct rq *rq = this_rq();
3690
3691 if (atomic_read(&rq->nr_iowait) > 0)
3692 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3693 else
3694 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3695 }
3696
3697 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3698
3699 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3700 /*
3701 * Account a tick to a process and cpustat
3702 * @p: the process that the cpu time gets accounted to
3703 * @user_tick: is the tick from userspace
3704 * @rq: the pointer to rq
3705 *
3706 * Tick demultiplexing follows the order
3707 * - pending hardirq update
3708 * - pending softirq update
3709 * - user_time
3710 * - idle_time
3711 * - system time
3712 * - check for guest_time
3713 * - else account as system_time
3714 *
3715 * Check for hardirq is done both for system and user time as there is
3716 * no timer going off while we are on hardirq and hence we may never get an
3717 * opportunity to update it solely in system time.
3718 * p->stime and friends are only updated on system time and not on irq
3719 * softirq as those do not count in task exec_runtime any more.
3720 */
3721 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3722 struct rq *rq)
3723 {
3724 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3725 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3726 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3727
3728 if (irqtime_account_hi_update()) {
3729 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3730 } else if (irqtime_account_si_update()) {
3731 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3732 } else if (this_cpu_ksoftirqd() == p) {
3733 /*
3734 * ksoftirqd time do not get accounted in cpu_softirq_time.
3735 * So, we have to handle it separately here.
3736 * Also, p->stime needs to be updated for ksoftirqd.
3737 */
3738 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3739 &cpustat->softirq);
3740 } else if (user_tick) {
3741 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3742 } else if (p == rq->idle) {
3743 account_idle_time(cputime_one_jiffy);
3744 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3745 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3746 } else {
3747 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3748 &cpustat->system);
3749 }
3750 }
3751
3752 static void irqtime_account_idle_ticks(int ticks)
3753 {
3754 int i;
3755 struct rq *rq = this_rq();
3756
3757 for (i = 0; i < ticks; i++)
3758 irqtime_account_process_tick(current, 0, rq);
3759 }
3760 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3761 static void irqtime_account_idle_ticks(int ticks) {}
3762 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3763 struct rq *rq) {}
3764 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3765
3766 /*
3767 * Account a single tick of cpu time.
3768 * @p: the process that the cpu time gets accounted to
3769 * @user_tick: indicates if the tick is a user or a system tick
3770 */
3771 void account_process_tick(struct task_struct *p, int user_tick)
3772 {
3773 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3774 struct rq *rq = this_rq();
3775
3776 if (sched_clock_irqtime) {
3777 irqtime_account_process_tick(p, user_tick, rq);
3778 return;
3779 }
3780
3781 if (user_tick)
3782 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3783 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3784 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3785 one_jiffy_scaled);
3786 else
3787 account_idle_time(cputime_one_jiffy);
3788 }
3789
3790 /*
3791 * Account multiple ticks of steal time.
3792 * @p: the process from which the cpu time has been stolen
3793 * @ticks: number of stolen ticks
3794 */
3795 void account_steal_ticks(unsigned long ticks)
3796 {
3797 account_steal_time(jiffies_to_cputime(ticks));
3798 }
3799
3800 /*
3801 * Account multiple ticks of idle time.
3802 * @ticks: number of stolen ticks
3803 */
3804 void account_idle_ticks(unsigned long ticks)
3805 {
3806
3807 if (sched_clock_irqtime) {
3808 irqtime_account_idle_ticks(ticks);
3809 return;
3810 }
3811
3812 account_idle_time(jiffies_to_cputime(ticks));
3813 }
3814
3815 #endif
3816
3817 /*
3818 * Use precise platform statistics if available:
3819 */
3820 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3821 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3822 {
3823 *ut = p->utime;
3824 *st = p->stime;
3825 }
3826
3827 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3828 {
3829 struct task_cputime cputime;
3830
3831 thread_group_cputime(p, &cputime);
3832
3833 *ut = cputime.utime;
3834 *st = cputime.stime;
3835 }
3836 #else
3837
3838 #ifndef nsecs_to_cputime
3839 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3840 #endif
3841
3842 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3843 {
3844 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3845
3846 /*
3847 * Use CFS's precise accounting:
3848 */
3849 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3850
3851 if (total) {
3852 u64 temp = rtime;
3853
3854 temp *= utime;
3855 do_div(temp, total);
3856 utime = (cputime_t)temp;
3857 } else
3858 utime = rtime;
3859
3860 /*
3861 * Compare with previous values, to keep monotonicity:
3862 */
3863 p->prev_utime = max(p->prev_utime, utime);
3864 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3865
3866 *ut = p->prev_utime;
3867 *st = p->prev_stime;
3868 }
3869
3870 /*
3871 * Must be called with siglock held.
3872 */
3873 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3874 {
3875 struct signal_struct *sig = p->signal;
3876 struct task_cputime cputime;
3877 cputime_t rtime, utime, total;
3878
3879 thread_group_cputime(p, &cputime);
3880
3881 total = cputime_add(cputime.utime, cputime.stime);
3882 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3883
3884 if (total) {
3885 u64 temp = rtime;
3886
3887 temp *= cputime.utime;
3888 do_div(temp, total);
3889 utime = (cputime_t)temp;
3890 } else
3891 utime = rtime;
3892
3893 sig->prev_utime = max(sig->prev_utime, utime);
3894 sig->prev_stime = max(sig->prev_stime,
3895 cputime_sub(rtime, sig->prev_utime));
3896
3897 *ut = sig->prev_utime;
3898 *st = sig->prev_stime;
3899 }
3900 #endif
3901
3902 /*
3903 * This function gets called by the timer code, with HZ frequency.
3904 * We call it with interrupts disabled.
3905 *
3906 * It also gets called by the fork code, when changing the parent's
3907 * timeslices.
3908 */
3909 void scheduler_tick(void)
3910 {
3911 int cpu = smp_processor_id();
3912 struct rq *rq = cpu_rq(cpu);
3913 struct task_struct *curr = rq->curr;
3914
3915 sched_clock_tick();
3916
3917 raw_spin_lock(&rq->lock);
3918 update_rq_clock(rq);
3919 update_cpu_load_active(rq);
3920 curr->sched_class->task_tick(rq, curr, 0);
3921 raw_spin_unlock(&rq->lock);
3922
3923 perf_event_task_tick();
3924
3925 #ifdef CONFIG_SMP
3926 rq->idle_at_tick = idle_cpu(cpu);
3927 trigger_load_balance(rq, cpu);
3928 #endif
3929 }
3930
3931 notrace unsigned long get_parent_ip(unsigned long addr)
3932 {
3933 if (in_lock_functions(addr)) {
3934 addr = CALLER_ADDR2;
3935 if (in_lock_functions(addr))
3936 addr = CALLER_ADDR3;
3937 }
3938 return addr;
3939 }
3940
3941 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3942 defined(CONFIG_PREEMPT_TRACER))
3943
3944 void __kprobes add_preempt_count(int val)
3945 {
3946 #ifdef CONFIG_DEBUG_PREEMPT
3947 /*
3948 * Underflow?
3949 */
3950 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3951 return;
3952 #endif
3953 preempt_count() += val;
3954 #ifdef CONFIG_DEBUG_PREEMPT
3955 /*
3956 * Spinlock count overflowing soon?
3957 */
3958 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3959 PREEMPT_MASK - 10);
3960 #endif
3961 if (preempt_count() == val)
3962 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3963 }
3964 EXPORT_SYMBOL(add_preempt_count);
3965
3966 void __kprobes sub_preempt_count(int val)
3967 {
3968 #ifdef CONFIG_DEBUG_PREEMPT
3969 /*
3970 * Underflow?
3971 */
3972 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3973 return;
3974 /*
3975 * Is the spinlock portion underflowing?
3976 */
3977 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3978 !(preempt_count() & PREEMPT_MASK)))
3979 return;
3980 #endif
3981
3982 if (preempt_count() == val)
3983 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3984 preempt_count() -= val;
3985 }
3986 EXPORT_SYMBOL(sub_preempt_count);
3987
3988 #endif
3989
3990 /*
3991 * Print scheduling while atomic bug:
3992 */
3993 static noinline void __schedule_bug(struct task_struct *prev)
3994 {
3995 struct pt_regs *regs = get_irq_regs();
3996
3997 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3998 prev->comm, prev->pid, preempt_count());
3999
4000 debug_show_held_locks(prev);
4001 print_modules();
4002 if (irqs_disabled())
4003 print_irqtrace_events(prev);
4004
4005 if (regs)
4006 show_regs(regs);
4007 else
4008 dump_stack();
4009 }
4010
4011 /*
4012 * Various schedule()-time debugging checks and statistics:
4013 */
4014 static inline void schedule_debug(struct task_struct *prev)
4015 {
4016 /*
4017 * Test if we are atomic. Since do_exit() needs to call into
4018 * schedule() atomically, we ignore that path for now.
4019 * Otherwise, whine if we are scheduling when we should not be.
4020 */
4021 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4022 __schedule_bug(prev);
4023
4024 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4025
4026 schedstat_inc(this_rq(), sched_count);
4027 #ifdef CONFIG_SCHEDSTATS
4028 if (unlikely(prev->lock_depth >= 0)) {
4029 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4030 schedstat_inc(prev, sched_info.bkl_count);
4031 }
4032 #endif
4033 }
4034
4035 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4036 {
4037 if (prev->se.on_rq)
4038 update_rq_clock(rq);
4039 prev->sched_class->put_prev_task(rq, prev);
4040 }
4041
4042 /*
4043 * Pick up the highest-prio task:
4044 */
4045 static inline struct task_struct *
4046 pick_next_task(struct rq *rq)
4047 {
4048 const struct sched_class *class;
4049 struct task_struct *p;
4050
4051 /*
4052 * Optimization: we know that if all tasks are in
4053 * the fair class we can call that function directly:
4054 */
4055 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4056 p = fair_sched_class.pick_next_task(rq);
4057 if (likely(p))
4058 return p;
4059 }
4060
4061 for_each_class(class) {
4062 p = class->pick_next_task(rq);
4063 if (p)
4064 return p;
4065 }
4066
4067 BUG(); /* the idle class will always have a runnable task */
4068 }
4069
4070 /*
4071 * schedule() is the main scheduler function.
4072 */
4073 asmlinkage void __sched schedule(void)
4074 {
4075 struct task_struct *prev, *next;
4076 unsigned long *switch_count;
4077 struct rq *rq;
4078 int cpu;
4079
4080 need_resched:
4081 preempt_disable();
4082 cpu = smp_processor_id();
4083 rq = cpu_rq(cpu);
4084 rcu_note_context_switch(cpu);
4085 prev = rq->curr;
4086
4087 release_kernel_lock(prev);
4088 need_resched_nonpreemptible:
4089
4090 schedule_debug(prev);
4091
4092 if (sched_feat(HRTICK))
4093 hrtick_clear(rq);
4094
4095 raw_spin_lock_irq(&rq->lock);
4096
4097 switch_count = &prev->nivcsw;
4098 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4099 if (unlikely(signal_pending_state(prev->state, prev))) {
4100 prev->state = TASK_RUNNING;
4101 } else {
4102 /*
4103 * If a worker is going to sleep, notify and
4104 * ask workqueue whether it wants to wake up a
4105 * task to maintain concurrency. If so, wake
4106 * up the task.
4107 */
4108 if (prev->flags & PF_WQ_WORKER) {
4109 struct task_struct *to_wakeup;
4110
4111 to_wakeup = wq_worker_sleeping(prev, cpu);
4112 if (to_wakeup)
4113 try_to_wake_up_local(to_wakeup);
4114 }
4115 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4116 }
4117 switch_count = &prev->nvcsw;
4118 }
4119
4120 pre_schedule(rq, prev);
4121
4122 if (unlikely(!rq->nr_running))
4123 idle_balance(cpu, rq);
4124
4125 put_prev_task(rq, prev);
4126 next = pick_next_task(rq);
4127 clear_tsk_need_resched(prev);
4128 rq->skip_clock_update = 0;
4129
4130 if (likely(prev != next)) {
4131 rq->nr_switches++;
4132 rq->curr = next;
4133 ++*switch_count;
4134
4135 context_switch(rq, prev, next); /* unlocks the rq */
4136 /*
4137 * The context switch have flipped the stack from under us
4138 * and restored the local variables which were saved when
4139 * this task called schedule() in the past. prev == current
4140 * is still correct, but it can be moved to another cpu/rq.
4141 */
4142 cpu = smp_processor_id();
4143 rq = cpu_rq(cpu);
4144 } else
4145 raw_spin_unlock_irq(&rq->lock);
4146
4147 post_schedule(rq);
4148
4149 if (unlikely(reacquire_kernel_lock(prev)))
4150 goto need_resched_nonpreemptible;
4151
4152 preempt_enable_no_resched();
4153 if (need_resched())
4154 goto need_resched;
4155 }
4156 EXPORT_SYMBOL(schedule);
4157
4158 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4159 /*
4160 * Look out! "owner" is an entirely speculative pointer
4161 * access and not reliable.
4162 */
4163 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4164 {
4165 unsigned int cpu;
4166 struct rq *rq;
4167
4168 if (!sched_feat(OWNER_SPIN))
4169 return 0;
4170
4171 #ifdef CONFIG_DEBUG_PAGEALLOC
4172 /*
4173 * Need to access the cpu field knowing that
4174 * DEBUG_PAGEALLOC could have unmapped it if
4175 * the mutex owner just released it and exited.
4176 */
4177 if (probe_kernel_address(&owner->cpu, cpu))
4178 return 0;
4179 #else
4180 cpu = owner->cpu;
4181 #endif
4182
4183 /*
4184 * Even if the access succeeded (likely case),
4185 * the cpu field may no longer be valid.
4186 */
4187 if (cpu >= nr_cpumask_bits)
4188 return 0;
4189
4190 /*
4191 * We need to validate that we can do a
4192 * get_cpu() and that we have the percpu area.
4193 */
4194 if (!cpu_online(cpu))
4195 return 0;
4196
4197 rq = cpu_rq(cpu);
4198
4199 for (;;) {
4200 /*
4201 * Owner changed, break to re-assess state.
4202 */
4203 if (lock->owner != owner) {
4204 /*
4205 * If the lock has switched to a different owner,
4206 * we likely have heavy contention. Return 0 to quit
4207 * optimistic spinning and not contend further:
4208 */
4209 if (lock->owner)
4210 return 0;
4211 break;
4212 }
4213
4214 /*
4215 * Is that owner really running on that cpu?
4216 */
4217 if (task_thread_info(rq->curr) != owner || need_resched())
4218 return 0;
4219
4220 arch_mutex_cpu_relax();
4221 }
4222
4223 return 1;
4224 }
4225 #endif
4226
4227 #ifdef CONFIG_PREEMPT
4228 /*
4229 * this is the entry point to schedule() from in-kernel preemption
4230 * off of preempt_enable. Kernel preemptions off return from interrupt
4231 * occur there and call schedule directly.
4232 */
4233 asmlinkage void __sched notrace preempt_schedule(void)
4234 {
4235 struct thread_info *ti = current_thread_info();
4236
4237 /*
4238 * If there is a non-zero preempt_count or interrupts are disabled,
4239 * we do not want to preempt the current task. Just return..
4240 */
4241 if (likely(ti->preempt_count || irqs_disabled()))
4242 return;
4243
4244 do {
4245 add_preempt_count_notrace(PREEMPT_ACTIVE);
4246 schedule();
4247 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4248
4249 /*
4250 * Check again in case we missed a preemption opportunity
4251 * between schedule and now.
4252 */
4253 barrier();
4254 } while (need_resched());
4255 }
4256 EXPORT_SYMBOL(preempt_schedule);
4257
4258 /*
4259 * this is the entry point to schedule() from kernel preemption
4260 * off of irq context.
4261 * Note, that this is called and return with irqs disabled. This will
4262 * protect us against recursive calling from irq.
4263 */
4264 asmlinkage void __sched preempt_schedule_irq(void)
4265 {
4266 struct thread_info *ti = current_thread_info();
4267
4268 /* Catch callers which need to be fixed */
4269 BUG_ON(ti->preempt_count || !irqs_disabled());
4270
4271 do {
4272 add_preempt_count(PREEMPT_ACTIVE);
4273 local_irq_enable();
4274 schedule();
4275 local_irq_disable();
4276 sub_preempt_count(PREEMPT_ACTIVE);
4277
4278 /*
4279 * Check again in case we missed a preemption opportunity
4280 * between schedule and now.
4281 */
4282 barrier();
4283 } while (need_resched());
4284 }
4285
4286 #endif /* CONFIG_PREEMPT */
4287
4288 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4289 void *key)
4290 {
4291 return try_to_wake_up(curr->private, mode, wake_flags);
4292 }
4293 EXPORT_SYMBOL(default_wake_function);
4294
4295 /*
4296 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4297 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4298 * number) then we wake all the non-exclusive tasks and one exclusive task.
4299 *
4300 * There are circumstances in which we can try to wake a task which has already
4301 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4302 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4303 */
4304 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4305 int nr_exclusive, int wake_flags, void *key)
4306 {
4307 wait_queue_t *curr, *next;
4308
4309 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4310 unsigned flags = curr->flags;
4311
4312 if (curr->func(curr, mode, wake_flags, key) &&
4313 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4314 break;
4315 }
4316 }
4317
4318 /**
4319 * __wake_up - wake up threads blocked on a waitqueue.
4320 * @q: the waitqueue
4321 * @mode: which threads
4322 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4323 * @key: is directly passed to the wakeup function
4324 *
4325 * It may be assumed that this function implies a write memory barrier before
4326 * changing the task state if and only if any tasks are woken up.
4327 */
4328 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4329 int nr_exclusive, void *key)
4330 {
4331 unsigned long flags;
4332
4333 spin_lock_irqsave(&q->lock, flags);
4334 __wake_up_common(q, mode, nr_exclusive, 0, key);
4335 spin_unlock_irqrestore(&q->lock, flags);
4336 }
4337 EXPORT_SYMBOL(__wake_up);
4338
4339 /*
4340 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4341 */
4342 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4343 {
4344 __wake_up_common(q, mode, 1, 0, NULL);
4345 }
4346 EXPORT_SYMBOL_GPL(__wake_up_locked);
4347
4348 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4349 {
4350 __wake_up_common(q, mode, 1, 0, key);
4351 }
4352 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4353
4354 /**
4355 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4356 * @q: the waitqueue
4357 * @mode: which threads
4358 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4359 * @key: opaque value to be passed to wakeup targets
4360 *
4361 * The sync wakeup differs that the waker knows that it will schedule
4362 * away soon, so while the target thread will be woken up, it will not
4363 * be migrated to another CPU - ie. the two threads are 'synchronized'
4364 * with each other. This can prevent needless bouncing between CPUs.
4365 *
4366 * On UP it can prevent extra preemption.
4367 *
4368 * It may be assumed that this function implies a write memory barrier before
4369 * changing the task state if and only if any tasks are woken up.
4370 */
4371 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4372 int nr_exclusive, void *key)
4373 {
4374 unsigned long flags;
4375 int wake_flags = WF_SYNC;
4376
4377 if (unlikely(!q))
4378 return;
4379
4380 if (unlikely(!nr_exclusive))
4381 wake_flags = 0;
4382
4383 spin_lock_irqsave(&q->lock, flags);
4384 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4385 spin_unlock_irqrestore(&q->lock, flags);
4386 }
4387 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4388
4389 /*
4390 * __wake_up_sync - see __wake_up_sync_key()
4391 */
4392 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4393 {
4394 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4395 }
4396 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4397
4398 /**
4399 * complete: - signals a single thread waiting on this completion
4400 * @x: holds the state of this particular completion
4401 *
4402 * This will wake up a single thread waiting on this completion. Threads will be
4403 * awakened in the same order in which they were queued.
4404 *
4405 * See also complete_all(), wait_for_completion() and related routines.
4406 *
4407 * It may be assumed that this function implies a write memory barrier before
4408 * changing the task state if and only if any tasks are woken up.
4409 */
4410 void complete(struct completion *x)
4411 {
4412 unsigned long flags;
4413
4414 spin_lock_irqsave(&x->wait.lock, flags);
4415 x->done++;
4416 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4417 spin_unlock_irqrestore(&x->wait.lock, flags);
4418 }
4419 EXPORT_SYMBOL(complete);
4420
4421 /**
4422 * complete_all: - signals all threads waiting on this completion
4423 * @x: holds the state of this particular completion
4424 *
4425 * This will wake up all threads waiting on this particular completion event.
4426 *
4427 * It may be assumed that this function implies a write memory barrier before
4428 * changing the task state if and only if any tasks are woken up.
4429 */
4430 void complete_all(struct completion *x)
4431 {
4432 unsigned long flags;
4433
4434 spin_lock_irqsave(&x->wait.lock, flags);
4435 x->done += UINT_MAX/2;
4436 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4437 spin_unlock_irqrestore(&x->wait.lock, flags);
4438 }
4439 EXPORT_SYMBOL(complete_all);
4440
4441 static inline long __sched
4442 do_wait_for_common(struct completion *x, long timeout, int state)
4443 {
4444 if (!x->done) {
4445 DECLARE_WAITQUEUE(wait, current);
4446
4447 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4448 do {
4449 if (signal_pending_state(state, current)) {
4450 timeout = -ERESTARTSYS;
4451 break;
4452 }
4453 __set_current_state(state);
4454 spin_unlock_irq(&x->wait.lock);
4455 timeout = schedule_timeout(timeout);
4456 spin_lock_irq(&x->wait.lock);
4457 } while (!x->done && timeout);
4458 __remove_wait_queue(&x->wait, &wait);
4459 if (!x->done)
4460 return timeout;
4461 }
4462 x->done--;
4463 return timeout ?: 1;
4464 }
4465
4466 static long __sched
4467 wait_for_common(struct completion *x, long timeout, int state)
4468 {
4469 might_sleep();
4470
4471 spin_lock_irq(&x->wait.lock);
4472 timeout = do_wait_for_common(x, timeout, state);
4473 spin_unlock_irq(&x->wait.lock);
4474 return timeout;
4475 }
4476
4477 /**
4478 * wait_for_completion: - waits for completion of a task
4479 * @x: holds the state of this particular completion
4480 *
4481 * This waits to be signaled for completion of a specific task. It is NOT
4482 * interruptible and there is no timeout.
4483 *
4484 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4485 * and interrupt capability. Also see complete().
4486 */
4487 void __sched wait_for_completion(struct completion *x)
4488 {
4489 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4490 }
4491 EXPORT_SYMBOL(wait_for_completion);
4492
4493 /**
4494 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4495 * @x: holds the state of this particular completion
4496 * @timeout: timeout value in jiffies
4497 *
4498 * This waits for either a completion of a specific task to be signaled or for a
4499 * specified timeout to expire. The timeout is in jiffies. It is not
4500 * interruptible.
4501 */
4502 unsigned long __sched
4503 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4504 {
4505 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4506 }
4507 EXPORT_SYMBOL(wait_for_completion_timeout);
4508
4509 /**
4510 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4511 * @x: holds the state of this particular completion
4512 *
4513 * This waits for completion of a specific task to be signaled. It is
4514 * interruptible.
4515 */
4516 int __sched wait_for_completion_interruptible(struct completion *x)
4517 {
4518 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4519 if (t == -ERESTARTSYS)
4520 return t;
4521 return 0;
4522 }
4523 EXPORT_SYMBOL(wait_for_completion_interruptible);
4524
4525 /**
4526 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4527 * @x: holds the state of this particular completion
4528 * @timeout: timeout value in jiffies
4529 *
4530 * This waits for either a completion of a specific task to be signaled or for a
4531 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4532 */
4533 long __sched
4534 wait_for_completion_interruptible_timeout(struct completion *x,
4535 unsigned long timeout)
4536 {
4537 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4538 }
4539 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4540
4541 /**
4542 * wait_for_completion_killable: - waits for completion of a task (killable)
4543 * @x: holds the state of this particular completion
4544 *
4545 * This waits to be signaled for completion of a specific task. It can be
4546 * interrupted by a kill signal.
4547 */
4548 int __sched wait_for_completion_killable(struct completion *x)
4549 {
4550 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4551 if (t == -ERESTARTSYS)
4552 return t;
4553 return 0;
4554 }
4555 EXPORT_SYMBOL(wait_for_completion_killable);
4556
4557 /**
4558 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4559 * @x: holds the state of this particular completion
4560 * @timeout: timeout value in jiffies
4561 *
4562 * This waits for either a completion of a specific task to be
4563 * signaled or for a specified timeout to expire. It can be
4564 * interrupted by a kill signal. The timeout is in jiffies.
4565 */
4566 long __sched
4567 wait_for_completion_killable_timeout(struct completion *x,
4568 unsigned long timeout)
4569 {
4570 return wait_for_common(x, timeout, TASK_KILLABLE);
4571 }
4572 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4573
4574 /**
4575 * try_wait_for_completion - try to decrement a completion without blocking
4576 * @x: completion structure
4577 *
4578 * Returns: 0 if a decrement cannot be done without blocking
4579 * 1 if a decrement succeeded.
4580 *
4581 * If a completion is being used as a counting completion,
4582 * attempt to decrement the counter without blocking. This
4583 * enables us to avoid waiting if the resource the completion
4584 * is protecting is not available.
4585 */
4586 bool try_wait_for_completion(struct completion *x)
4587 {
4588 unsigned long flags;
4589 int ret = 1;
4590
4591 spin_lock_irqsave(&x->wait.lock, flags);
4592 if (!x->done)
4593 ret = 0;
4594 else
4595 x->done--;
4596 spin_unlock_irqrestore(&x->wait.lock, flags);
4597 return ret;
4598 }
4599 EXPORT_SYMBOL(try_wait_for_completion);
4600
4601 /**
4602 * completion_done - Test to see if a completion has any waiters
4603 * @x: completion structure
4604 *
4605 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4606 * 1 if there are no waiters.
4607 *
4608 */
4609 bool completion_done(struct completion *x)
4610 {
4611 unsigned long flags;
4612 int ret = 1;
4613
4614 spin_lock_irqsave(&x->wait.lock, flags);
4615 if (!x->done)
4616 ret = 0;
4617 spin_unlock_irqrestore(&x->wait.lock, flags);
4618 return ret;
4619 }
4620 EXPORT_SYMBOL(completion_done);
4621
4622 static long __sched
4623 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4624 {
4625 unsigned long flags;
4626 wait_queue_t wait;
4627
4628 init_waitqueue_entry(&wait, current);
4629
4630 __set_current_state(state);
4631
4632 spin_lock_irqsave(&q->lock, flags);
4633 __add_wait_queue(q, &wait);
4634 spin_unlock(&q->lock);
4635 timeout = schedule_timeout(timeout);
4636 spin_lock_irq(&q->lock);
4637 __remove_wait_queue(q, &wait);
4638 spin_unlock_irqrestore(&q->lock, flags);
4639
4640 return timeout;
4641 }
4642
4643 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4644 {
4645 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4646 }
4647 EXPORT_SYMBOL(interruptible_sleep_on);
4648
4649 long __sched
4650 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4651 {
4652 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4653 }
4654 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4655
4656 void __sched sleep_on(wait_queue_head_t *q)
4657 {
4658 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4659 }
4660 EXPORT_SYMBOL(sleep_on);
4661
4662 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4663 {
4664 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4665 }
4666 EXPORT_SYMBOL(sleep_on_timeout);
4667
4668 #ifdef CONFIG_RT_MUTEXES
4669
4670 /*
4671 * rt_mutex_setprio - set the current priority of a task
4672 * @p: task
4673 * @prio: prio value (kernel-internal form)
4674 *
4675 * This function changes the 'effective' priority of a task. It does
4676 * not touch ->normal_prio like __setscheduler().
4677 *
4678 * Used by the rt_mutex code to implement priority inheritance logic.
4679 */
4680 void rt_mutex_setprio(struct task_struct *p, int prio)
4681 {
4682 unsigned long flags;
4683 int oldprio, on_rq, running;
4684 struct rq *rq;
4685 const struct sched_class *prev_class;
4686
4687 BUG_ON(prio < 0 || prio > MAX_PRIO);
4688
4689 rq = task_rq_lock(p, &flags);
4690
4691 trace_sched_pi_setprio(p, prio);
4692 oldprio = p->prio;
4693 prev_class = p->sched_class;
4694 on_rq = p->se.on_rq;
4695 running = task_current(rq, p);
4696 if (on_rq)
4697 dequeue_task(rq, p, 0);
4698 if (running)
4699 p->sched_class->put_prev_task(rq, p);
4700
4701 if (rt_prio(prio))
4702 p->sched_class = &rt_sched_class;
4703 else
4704 p->sched_class = &fair_sched_class;
4705
4706 p->prio = prio;
4707
4708 if (running)
4709 p->sched_class->set_curr_task(rq);
4710 if (on_rq)
4711 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4712
4713 check_class_changed(rq, p, prev_class, oldprio);
4714 task_rq_unlock(rq, &flags);
4715 }
4716
4717 #endif
4718
4719 void set_user_nice(struct task_struct *p, long nice)
4720 {
4721 int old_prio, delta, on_rq;
4722 unsigned long flags;
4723 struct rq *rq;
4724
4725 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4726 return;
4727 /*
4728 * We have to be careful, if called from sys_setpriority(),
4729 * the task might be in the middle of scheduling on another CPU.
4730 */
4731 rq = task_rq_lock(p, &flags);
4732 /*
4733 * The RT priorities are set via sched_setscheduler(), but we still
4734 * allow the 'normal' nice value to be set - but as expected
4735 * it wont have any effect on scheduling until the task is
4736 * SCHED_FIFO/SCHED_RR:
4737 */
4738 if (task_has_rt_policy(p)) {
4739 p->static_prio = NICE_TO_PRIO(nice);
4740 goto out_unlock;
4741 }
4742 on_rq = p->se.on_rq;
4743 if (on_rq)
4744 dequeue_task(rq, p, 0);
4745
4746 p->static_prio = NICE_TO_PRIO(nice);
4747 set_load_weight(p);
4748 old_prio = p->prio;
4749 p->prio = effective_prio(p);
4750 delta = p->prio - old_prio;
4751
4752 if (on_rq) {
4753 enqueue_task(rq, p, 0);
4754 /*
4755 * If the task increased its priority or is running and
4756 * lowered its priority, then reschedule its CPU:
4757 */
4758 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4759 resched_task(rq->curr);
4760 }
4761 out_unlock:
4762 task_rq_unlock(rq, &flags);
4763 }
4764 EXPORT_SYMBOL(set_user_nice);
4765
4766 /*
4767 * can_nice - check if a task can reduce its nice value
4768 * @p: task
4769 * @nice: nice value
4770 */
4771 int can_nice(const struct task_struct *p, const int nice)
4772 {
4773 /* convert nice value [19,-20] to rlimit style value [1,40] */
4774 int nice_rlim = 20 - nice;
4775
4776 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4777 capable(CAP_SYS_NICE));
4778 }
4779
4780 #ifdef __ARCH_WANT_SYS_NICE
4781
4782 /*
4783 * sys_nice - change the priority of the current process.
4784 * @increment: priority increment
4785 *
4786 * sys_setpriority is a more generic, but much slower function that
4787 * does similar things.
4788 */
4789 SYSCALL_DEFINE1(nice, int, increment)
4790 {
4791 long nice, retval;
4792
4793 /*
4794 * Setpriority might change our priority at the same moment.
4795 * We don't have to worry. Conceptually one call occurs first
4796 * and we have a single winner.
4797 */
4798 if (increment < -40)
4799 increment = -40;
4800 if (increment > 40)
4801 increment = 40;
4802
4803 nice = TASK_NICE(current) + increment;
4804 if (nice < -20)
4805 nice = -20;
4806 if (nice > 19)
4807 nice = 19;
4808
4809 if (increment < 0 && !can_nice(current, nice))
4810 return -EPERM;
4811
4812 retval = security_task_setnice(current, nice);
4813 if (retval)
4814 return retval;
4815
4816 set_user_nice(current, nice);
4817 return 0;
4818 }
4819
4820 #endif
4821
4822 /**
4823 * task_prio - return the priority value of a given task.
4824 * @p: the task in question.
4825 *
4826 * This is the priority value as seen by users in /proc.
4827 * RT tasks are offset by -200. Normal tasks are centered
4828 * around 0, value goes from -16 to +15.
4829 */
4830 int task_prio(const struct task_struct *p)
4831 {
4832 return p->prio - MAX_RT_PRIO;
4833 }
4834
4835 /**
4836 * task_nice - return the nice value of a given task.
4837 * @p: the task in question.
4838 */
4839 int task_nice(const struct task_struct *p)
4840 {
4841 return TASK_NICE(p);
4842 }
4843 EXPORT_SYMBOL(task_nice);
4844
4845 /**
4846 * idle_cpu - is a given cpu idle currently?
4847 * @cpu: the processor in question.
4848 */
4849 int idle_cpu(int cpu)
4850 {
4851 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4852 }
4853
4854 /**
4855 * idle_task - return the idle task for a given cpu.
4856 * @cpu: the processor in question.
4857 */
4858 struct task_struct *idle_task(int cpu)
4859 {
4860 return cpu_rq(cpu)->idle;
4861 }
4862
4863 /**
4864 * find_process_by_pid - find a process with a matching PID value.
4865 * @pid: the pid in question.
4866 */
4867 static struct task_struct *find_process_by_pid(pid_t pid)
4868 {
4869 return pid ? find_task_by_vpid(pid) : current;
4870 }
4871
4872 /* Actually do priority change: must hold rq lock. */
4873 static void
4874 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4875 {
4876 BUG_ON(p->se.on_rq);
4877
4878 p->policy = policy;
4879 p->rt_priority = prio;
4880 p->normal_prio = normal_prio(p);
4881 /* we are holding p->pi_lock already */
4882 p->prio = rt_mutex_getprio(p);
4883 if (rt_prio(p->prio))
4884 p->sched_class = &rt_sched_class;
4885 else
4886 p->sched_class = &fair_sched_class;
4887 set_load_weight(p);
4888 }
4889
4890 /*
4891 * check the target process has a UID that matches the current process's
4892 */
4893 static bool check_same_owner(struct task_struct *p)
4894 {
4895 const struct cred *cred = current_cred(), *pcred;
4896 bool match;
4897
4898 rcu_read_lock();
4899 pcred = __task_cred(p);
4900 match = (cred->euid == pcred->euid ||
4901 cred->euid == pcred->uid);
4902 rcu_read_unlock();
4903 return match;
4904 }
4905
4906 static int __sched_setscheduler(struct task_struct *p, int policy,
4907 const struct sched_param *param, bool user)
4908 {
4909 int retval, oldprio, oldpolicy = -1, on_rq, running;
4910 unsigned long flags;
4911 const struct sched_class *prev_class;
4912 struct rq *rq;
4913 int reset_on_fork;
4914
4915 /* may grab non-irq protected spin_locks */
4916 BUG_ON(in_interrupt());
4917 recheck:
4918 /* double check policy once rq lock held */
4919 if (policy < 0) {
4920 reset_on_fork = p->sched_reset_on_fork;
4921 policy = oldpolicy = p->policy;
4922 } else {
4923 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4924 policy &= ~SCHED_RESET_ON_FORK;
4925
4926 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4927 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4928 policy != SCHED_IDLE)
4929 return -EINVAL;
4930 }
4931
4932 /*
4933 * Valid priorities for SCHED_FIFO and SCHED_RR are
4934 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4935 * SCHED_BATCH and SCHED_IDLE is 0.
4936 */
4937 if (param->sched_priority < 0 ||
4938 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4939 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4940 return -EINVAL;
4941 if (rt_policy(policy) != (param->sched_priority != 0))
4942 return -EINVAL;
4943
4944 /*
4945 * Allow unprivileged RT tasks to decrease priority:
4946 */
4947 if (user && !capable(CAP_SYS_NICE)) {
4948 if (rt_policy(policy)) {
4949 unsigned long rlim_rtprio =
4950 task_rlimit(p, RLIMIT_RTPRIO);
4951
4952 /* can't set/change the rt policy */
4953 if (policy != p->policy && !rlim_rtprio)
4954 return -EPERM;
4955
4956 /* can't increase priority */
4957 if (param->sched_priority > p->rt_priority &&
4958 param->sched_priority > rlim_rtprio)
4959 return -EPERM;
4960 }
4961
4962 /*
4963 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4964 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4965 */
4966 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4967 if (!can_nice(p, TASK_NICE(p)))
4968 return -EPERM;
4969 }
4970
4971 /* can't change other user's priorities */
4972 if (!check_same_owner(p))
4973 return -EPERM;
4974
4975 /* Normal users shall not reset the sched_reset_on_fork flag */
4976 if (p->sched_reset_on_fork && !reset_on_fork)
4977 return -EPERM;
4978 }
4979
4980 if (user) {
4981 retval = security_task_setscheduler(p);
4982 if (retval)
4983 return retval;
4984 }
4985
4986 /*
4987 * make sure no PI-waiters arrive (or leave) while we are
4988 * changing the priority of the task:
4989 */
4990 raw_spin_lock_irqsave(&p->pi_lock, flags);
4991 /*
4992 * To be able to change p->policy safely, the apropriate
4993 * runqueue lock must be held.
4994 */
4995 rq = __task_rq_lock(p);
4996
4997 /*
4998 * Changing the policy of the stop threads its a very bad idea
4999 */
5000 if (p == rq->stop) {
5001 __task_rq_unlock(rq);
5002 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5003 return -EINVAL;
5004 }
5005
5006 #ifdef CONFIG_RT_GROUP_SCHED
5007 if (user) {
5008 /*
5009 * Do not allow realtime tasks into groups that have no runtime
5010 * assigned.
5011 */
5012 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5013 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5014 !task_group_is_autogroup(task_group(p))) {
5015 __task_rq_unlock(rq);
5016 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5017 return -EPERM;
5018 }
5019 }
5020 #endif
5021
5022 /* recheck policy now with rq lock held */
5023 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5024 policy = oldpolicy = -1;
5025 __task_rq_unlock(rq);
5026 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5027 goto recheck;
5028 }
5029 on_rq = p->se.on_rq;
5030 running = task_current(rq, p);
5031 if (on_rq)
5032 deactivate_task(rq, p, 0);
5033 if (running)
5034 p->sched_class->put_prev_task(rq, p);
5035
5036 p->sched_reset_on_fork = reset_on_fork;
5037
5038 oldprio = p->prio;
5039 prev_class = p->sched_class;
5040 __setscheduler(rq, p, policy, param->sched_priority);
5041
5042 if (running)
5043 p->sched_class->set_curr_task(rq);
5044 if (on_rq)
5045 activate_task(rq, p, 0);
5046
5047 check_class_changed(rq, p, prev_class, oldprio);
5048 __task_rq_unlock(rq);
5049 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5050
5051 rt_mutex_adjust_pi(p);
5052
5053 return 0;
5054 }
5055
5056 /**
5057 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5058 * @p: the task in question.
5059 * @policy: new policy.
5060 * @param: structure containing the new RT priority.
5061 *
5062 * NOTE that the task may be already dead.
5063 */
5064 int sched_setscheduler(struct task_struct *p, int policy,
5065 const struct sched_param *param)
5066 {
5067 return __sched_setscheduler(p, policy, param, true);
5068 }
5069 EXPORT_SYMBOL_GPL(sched_setscheduler);
5070
5071 /**
5072 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5073 * @p: the task in question.
5074 * @policy: new policy.
5075 * @param: structure containing the new RT priority.
5076 *
5077 * Just like sched_setscheduler, only don't bother checking if the
5078 * current context has permission. For example, this is needed in
5079 * stop_machine(): we create temporary high priority worker threads,
5080 * but our caller might not have that capability.
5081 */
5082 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5083 const struct sched_param *param)
5084 {
5085 return __sched_setscheduler(p, policy, param, false);
5086 }
5087
5088 static int
5089 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5090 {
5091 struct sched_param lparam;
5092 struct task_struct *p;
5093 int retval;
5094
5095 if (!param || pid < 0)
5096 return -EINVAL;
5097 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5098 return -EFAULT;
5099
5100 rcu_read_lock();
5101 retval = -ESRCH;
5102 p = find_process_by_pid(pid);
5103 if (p != NULL)
5104 retval = sched_setscheduler(p, policy, &lparam);
5105 rcu_read_unlock();
5106
5107 return retval;
5108 }
5109
5110 /**
5111 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5112 * @pid: the pid in question.
5113 * @policy: new policy.
5114 * @param: structure containing the new RT priority.
5115 */
5116 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5117 struct sched_param __user *, param)
5118 {
5119 /* negative values for policy are not valid */
5120 if (policy < 0)
5121 return -EINVAL;
5122
5123 return do_sched_setscheduler(pid, policy, param);
5124 }
5125
5126 /**
5127 * sys_sched_setparam - set/change the RT priority of a thread
5128 * @pid: the pid in question.
5129 * @param: structure containing the new RT priority.
5130 */
5131 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5132 {
5133 return do_sched_setscheduler(pid, -1, param);
5134 }
5135
5136 /**
5137 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5138 * @pid: the pid in question.
5139 */
5140 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5141 {
5142 struct task_struct *p;
5143 int retval;
5144
5145 if (pid < 0)
5146 return -EINVAL;
5147
5148 retval = -ESRCH;
5149 rcu_read_lock();
5150 p = find_process_by_pid(pid);
5151 if (p) {
5152 retval = security_task_getscheduler(p);
5153 if (!retval)
5154 retval = p->policy
5155 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5156 }
5157 rcu_read_unlock();
5158 return retval;
5159 }
5160
5161 /**
5162 * sys_sched_getparam - get the RT priority of a thread
5163 * @pid: the pid in question.
5164 * @param: structure containing the RT priority.
5165 */
5166 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5167 {
5168 struct sched_param lp;
5169 struct task_struct *p;
5170 int retval;
5171
5172 if (!param || pid < 0)
5173 return -EINVAL;
5174
5175 rcu_read_lock();
5176 p = find_process_by_pid(pid);
5177 retval = -ESRCH;
5178 if (!p)
5179 goto out_unlock;
5180
5181 retval = security_task_getscheduler(p);
5182 if (retval)
5183 goto out_unlock;
5184
5185 lp.sched_priority = p->rt_priority;
5186 rcu_read_unlock();
5187
5188 /*
5189 * This one might sleep, we cannot do it with a spinlock held ...
5190 */
5191 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5192
5193 return retval;
5194
5195 out_unlock:
5196 rcu_read_unlock();
5197 return retval;
5198 }
5199
5200 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5201 {
5202 cpumask_var_t cpus_allowed, new_mask;
5203 struct task_struct *p;
5204 int retval;
5205
5206 get_online_cpus();
5207 rcu_read_lock();
5208
5209 p = find_process_by_pid(pid);
5210 if (!p) {
5211 rcu_read_unlock();
5212 put_online_cpus();
5213 return -ESRCH;
5214 }
5215
5216 /* Prevent p going away */
5217 get_task_struct(p);
5218 rcu_read_unlock();
5219
5220 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5221 retval = -ENOMEM;
5222 goto out_put_task;
5223 }
5224 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5225 retval = -ENOMEM;
5226 goto out_free_cpus_allowed;
5227 }
5228 retval = -EPERM;
5229 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5230 goto out_unlock;
5231
5232 retval = security_task_setscheduler(p);
5233 if (retval)
5234 goto out_unlock;
5235
5236 cpuset_cpus_allowed(p, cpus_allowed);
5237 cpumask_and(new_mask, in_mask, cpus_allowed);
5238 again:
5239 retval = set_cpus_allowed_ptr(p, new_mask);
5240
5241 if (!retval) {
5242 cpuset_cpus_allowed(p, cpus_allowed);
5243 if (!cpumask_subset(new_mask, cpus_allowed)) {
5244 /*
5245 * We must have raced with a concurrent cpuset
5246 * update. Just reset the cpus_allowed to the
5247 * cpuset's cpus_allowed
5248 */
5249 cpumask_copy(new_mask, cpus_allowed);
5250 goto again;
5251 }
5252 }
5253 out_unlock:
5254 free_cpumask_var(new_mask);
5255 out_free_cpus_allowed:
5256 free_cpumask_var(cpus_allowed);
5257 out_put_task:
5258 put_task_struct(p);
5259 put_online_cpus();
5260 return retval;
5261 }
5262
5263 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5264 struct cpumask *new_mask)
5265 {
5266 if (len < cpumask_size())
5267 cpumask_clear(new_mask);
5268 else if (len > cpumask_size())
5269 len = cpumask_size();
5270
5271 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5272 }
5273
5274 /**
5275 * sys_sched_setaffinity - set the cpu affinity of a process
5276 * @pid: pid of the process
5277 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5278 * @user_mask_ptr: user-space pointer to the new cpu mask
5279 */
5280 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5281 unsigned long __user *, user_mask_ptr)
5282 {
5283 cpumask_var_t new_mask;
5284 int retval;
5285
5286 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5287 return -ENOMEM;
5288
5289 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5290 if (retval == 0)
5291 retval = sched_setaffinity(pid, new_mask);
5292 free_cpumask_var(new_mask);
5293 return retval;
5294 }
5295
5296 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5297 {
5298 struct task_struct *p;
5299 unsigned long flags;
5300 struct rq *rq;
5301 int retval;
5302
5303 get_online_cpus();
5304 rcu_read_lock();
5305
5306 retval = -ESRCH;
5307 p = find_process_by_pid(pid);
5308 if (!p)
5309 goto out_unlock;
5310
5311 retval = security_task_getscheduler(p);
5312 if (retval)
5313 goto out_unlock;
5314
5315 rq = task_rq_lock(p, &flags);
5316 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5317 task_rq_unlock(rq, &flags);
5318
5319 out_unlock:
5320 rcu_read_unlock();
5321 put_online_cpus();
5322
5323 return retval;
5324 }
5325
5326 /**
5327 * sys_sched_getaffinity - get the cpu affinity of a process
5328 * @pid: pid of the process
5329 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5330 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5331 */
5332 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5333 unsigned long __user *, user_mask_ptr)
5334 {
5335 int ret;
5336 cpumask_var_t mask;
5337
5338 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5339 return -EINVAL;
5340 if (len & (sizeof(unsigned long)-1))
5341 return -EINVAL;
5342
5343 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5344 return -ENOMEM;
5345
5346 ret = sched_getaffinity(pid, mask);
5347 if (ret == 0) {
5348 size_t retlen = min_t(size_t, len, cpumask_size());
5349
5350 if (copy_to_user(user_mask_ptr, mask, retlen))
5351 ret = -EFAULT;
5352 else
5353 ret = retlen;
5354 }
5355 free_cpumask_var(mask);
5356
5357 return ret;
5358 }
5359
5360 /**
5361 * sys_sched_yield - yield the current processor to other threads.
5362 *
5363 * This function yields the current CPU to other tasks. If there are no
5364 * other threads running on this CPU then this function will return.
5365 */
5366 SYSCALL_DEFINE0(sched_yield)
5367 {
5368 struct rq *rq = this_rq_lock();
5369
5370 schedstat_inc(rq, yld_count);
5371 current->sched_class->yield_task(rq);
5372
5373 /*
5374 * Since we are going to call schedule() anyway, there's
5375 * no need to preempt or enable interrupts:
5376 */
5377 __release(rq->lock);
5378 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5379 do_raw_spin_unlock(&rq->lock);
5380 preempt_enable_no_resched();
5381
5382 schedule();
5383
5384 return 0;
5385 }
5386
5387 static inline int should_resched(void)
5388 {
5389 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5390 }
5391
5392 static void __cond_resched(void)
5393 {
5394 add_preempt_count(PREEMPT_ACTIVE);
5395 schedule();
5396 sub_preempt_count(PREEMPT_ACTIVE);
5397 }
5398
5399 int __sched _cond_resched(void)
5400 {
5401 if (should_resched()) {
5402 __cond_resched();
5403 return 1;
5404 }
5405 return 0;
5406 }
5407 EXPORT_SYMBOL(_cond_resched);
5408
5409 /*
5410 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5411 * call schedule, and on return reacquire the lock.
5412 *
5413 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5414 * operations here to prevent schedule() from being called twice (once via
5415 * spin_unlock(), once by hand).
5416 */
5417 int __cond_resched_lock(spinlock_t *lock)
5418 {
5419 int resched = should_resched();
5420 int ret = 0;
5421
5422 lockdep_assert_held(lock);
5423
5424 if (spin_needbreak(lock) || resched) {
5425 spin_unlock(lock);
5426 if (resched)
5427 __cond_resched();
5428 else
5429 cpu_relax();
5430 ret = 1;
5431 spin_lock(lock);
5432 }
5433 return ret;
5434 }
5435 EXPORT_SYMBOL(__cond_resched_lock);
5436
5437 int __sched __cond_resched_softirq(void)
5438 {
5439 BUG_ON(!in_softirq());
5440
5441 if (should_resched()) {
5442 local_bh_enable();
5443 __cond_resched();
5444 local_bh_disable();
5445 return 1;
5446 }
5447 return 0;
5448 }
5449 EXPORT_SYMBOL(__cond_resched_softirq);
5450
5451 /**
5452 * yield - yield the current processor to other threads.
5453 *
5454 * This is a shortcut for kernel-space yielding - it marks the
5455 * thread runnable and calls sys_sched_yield().
5456 */
5457 void __sched yield(void)
5458 {
5459 set_current_state(TASK_RUNNING);
5460 sys_sched_yield();
5461 }
5462 EXPORT_SYMBOL(yield);
5463
5464 /**
5465 * yield_to - yield the current processor to another thread in
5466 * your thread group, or accelerate that thread toward the
5467 * processor it's on.
5468 *
5469 * It's the caller's job to ensure that the target task struct
5470 * can't go away on us before we can do any checks.
5471 *
5472 * Returns true if we indeed boosted the target task.
5473 */
5474 bool __sched yield_to(struct task_struct *p, bool preempt)
5475 {
5476 struct task_struct *curr = current;
5477 struct rq *rq, *p_rq;
5478 unsigned long flags;
5479 bool yielded = 0;
5480
5481 local_irq_save(flags);
5482 rq = this_rq();
5483
5484 again:
5485 p_rq = task_rq(p);
5486 double_rq_lock(rq, p_rq);
5487 while (task_rq(p) != p_rq) {
5488 double_rq_unlock(rq, p_rq);
5489 goto again;
5490 }
5491
5492 if (!curr->sched_class->yield_to_task)
5493 goto out;
5494
5495 if (curr->sched_class != p->sched_class)
5496 goto out;
5497
5498 if (task_running(p_rq, p) || p->state)
5499 goto out;
5500
5501 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5502 if (yielded) {
5503 schedstat_inc(rq, yld_count);
5504 /*
5505 * Make p's CPU reschedule; pick_next_entity takes care of
5506 * fairness.
5507 */
5508 if (preempt && rq != p_rq)
5509 resched_task(p_rq->curr);
5510 }
5511
5512 out:
5513 double_rq_unlock(rq, p_rq);
5514 local_irq_restore(flags);
5515
5516 if (yielded)
5517 schedule();
5518
5519 return yielded;
5520 }
5521 EXPORT_SYMBOL_GPL(yield_to);
5522
5523 /*
5524 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5525 * that process accounting knows that this is a task in IO wait state.
5526 */
5527 void __sched io_schedule(void)
5528 {
5529 struct rq *rq = raw_rq();
5530
5531 delayacct_blkio_start();
5532 atomic_inc(&rq->nr_iowait);
5533 current->in_iowait = 1;
5534 schedule();
5535 current->in_iowait = 0;
5536 atomic_dec(&rq->nr_iowait);
5537 delayacct_blkio_end();
5538 }
5539 EXPORT_SYMBOL(io_schedule);
5540
5541 long __sched io_schedule_timeout(long timeout)
5542 {
5543 struct rq *rq = raw_rq();
5544 long ret;
5545
5546 delayacct_blkio_start();
5547 atomic_inc(&rq->nr_iowait);
5548 current->in_iowait = 1;
5549 ret = schedule_timeout(timeout);
5550 current->in_iowait = 0;
5551 atomic_dec(&rq->nr_iowait);
5552 delayacct_blkio_end();
5553 return ret;
5554 }
5555
5556 /**
5557 * sys_sched_get_priority_max - return maximum RT priority.
5558 * @policy: scheduling class.
5559 *
5560 * this syscall returns the maximum rt_priority that can be used
5561 * by a given scheduling class.
5562 */
5563 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5564 {
5565 int ret = -EINVAL;
5566
5567 switch (policy) {
5568 case SCHED_FIFO:
5569 case SCHED_RR:
5570 ret = MAX_USER_RT_PRIO-1;
5571 break;
5572 case SCHED_NORMAL:
5573 case SCHED_BATCH:
5574 case SCHED_IDLE:
5575 ret = 0;
5576 break;
5577 }
5578 return ret;
5579 }
5580
5581 /**
5582 * sys_sched_get_priority_min - return minimum RT priority.
5583 * @policy: scheduling class.
5584 *
5585 * this syscall returns the minimum rt_priority that can be used
5586 * by a given scheduling class.
5587 */
5588 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5589 {
5590 int ret = -EINVAL;
5591
5592 switch (policy) {
5593 case SCHED_FIFO:
5594 case SCHED_RR:
5595 ret = 1;
5596 break;
5597 case SCHED_NORMAL:
5598 case SCHED_BATCH:
5599 case SCHED_IDLE:
5600 ret = 0;
5601 }
5602 return ret;
5603 }
5604
5605 /**
5606 * sys_sched_rr_get_interval - return the default timeslice of a process.
5607 * @pid: pid of the process.
5608 * @interval: userspace pointer to the timeslice value.
5609 *
5610 * this syscall writes the default timeslice value of a given process
5611 * into the user-space timespec buffer. A value of '0' means infinity.
5612 */
5613 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5614 struct timespec __user *, interval)
5615 {
5616 struct task_struct *p;
5617 unsigned int time_slice;
5618 unsigned long flags;
5619 struct rq *rq;
5620 int retval;
5621 struct timespec t;
5622
5623 if (pid < 0)
5624 return -EINVAL;
5625
5626 retval = -ESRCH;
5627 rcu_read_lock();
5628 p = find_process_by_pid(pid);
5629 if (!p)
5630 goto out_unlock;
5631
5632 retval = security_task_getscheduler(p);
5633 if (retval)
5634 goto out_unlock;
5635
5636 rq = task_rq_lock(p, &flags);
5637 time_slice = p->sched_class->get_rr_interval(rq, p);
5638 task_rq_unlock(rq, &flags);
5639
5640 rcu_read_unlock();
5641 jiffies_to_timespec(time_slice, &t);
5642 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5643 return retval;
5644
5645 out_unlock:
5646 rcu_read_unlock();
5647 return retval;
5648 }
5649
5650 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5651
5652 void sched_show_task(struct task_struct *p)
5653 {
5654 unsigned long free = 0;
5655 unsigned state;
5656
5657 state = p->state ? __ffs(p->state) + 1 : 0;
5658 printk(KERN_INFO "%-15.15s %c", p->comm,
5659 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5660 #if BITS_PER_LONG == 32
5661 if (state == TASK_RUNNING)
5662 printk(KERN_CONT " running ");
5663 else
5664 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5665 #else
5666 if (state == TASK_RUNNING)
5667 printk(KERN_CONT " running task ");
5668 else
5669 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5670 #endif
5671 #ifdef CONFIG_DEBUG_STACK_USAGE
5672 free = stack_not_used(p);
5673 #endif
5674 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5675 task_pid_nr(p), task_pid_nr(p->real_parent),
5676 (unsigned long)task_thread_info(p)->flags);
5677
5678 show_stack(p, NULL);
5679 }
5680
5681 void show_state_filter(unsigned long state_filter)
5682 {
5683 struct task_struct *g, *p;
5684
5685 #if BITS_PER_LONG == 32
5686 printk(KERN_INFO
5687 " task PC stack pid father\n");
5688 #else
5689 printk(KERN_INFO
5690 " task PC stack pid father\n");
5691 #endif
5692 read_lock(&tasklist_lock);
5693 do_each_thread(g, p) {
5694 /*
5695 * reset the NMI-timeout, listing all files on a slow
5696 * console might take alot of time:
5697 */
5698 touch_nmi_watchdog();
5699 if (!state_filter || (p->state & state_filter))
5700 sched_show_task(p);
5701 } while_each_thread(g, p);
5702
5703 touch_all_softlockup_watchdogs();
5704
5705 #ifdef CONFIG_SCHED_DEBUG
5706 sysrq_sched_debug_show();
5707 #endif
5708 read_unlock(&tasklist_lock);
5709 /*
5710 * Only show locks if all tasks are dumped:
5711 */
5712 if (!state_filter)
5713 debug_show_all_locks();
5714 }
5715
5716 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5717 {
5718 idle->sched_class = &idle_sched_class;
5719 }
5720
5721 /**
5722 * init_idle - set up an idle thread for a given CPU
5723 * @idle: task in question
5724 * @cpu: cpu the idle task belongs to
5725 *
5726 * NOTE: this function does not set the idle thread's NEED_RESCHED
5727 * flag, to make booting more robust.
5728 */
5729 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5730 {
5731 struct rq *rq = cpu_rq(cpu);
5732 unsigned long flags;
5733
5734 raw_spin_lock_irqsave(&rq->lock, flags);
5735
5736 __sched_fork(idle);
5737 idle->state = TASK_RUNNING;
5738 idle->se.exec_start = sched_clock();
5739
5740 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5741 /*
5742 * We're having a chicken and egg problem, even though we are
5743 * holding rq->lock, the cpu isn't yet set to this cpu so the
5744 * lockdep check in task_group() will fail.
5745 *
5746 * Similar case to sched_fork(). / Alternatively we could
5747 * use task_rq_lock() here and obtain the other rq->lock.
5748 *
5749 * Silence PROVE_RCU
5750 */
5751 rcu_read_lock();
5752 __set_task_cpu(idle, cpu);
5753 rcu_read_unlock();
5754
5755 rq->curr = rq->idle = idle;
5756 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5757 idle->oncpu = 1;
5758 #endif
5759 raw_spin_unlock_irqrestore(&rq->lock, flags);
5760
5761 /* Set the preempt count _outside_ the spinlocks! */
5762 #if defined(CONFIG_PREEMPT)
5763 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5764 #else
5765 task_thread_info(idle)->preempt_count = 0;
5766 #endif
5767 /*
5768 * The idle tasks have their own, simple scheduling class:
5769 */
5770 idle->sched_class = &idle_sched_class;
5771 ftrace_graph_init_idle_task(idle, cpu);
5772 }
5773
5774 /*
5775 * In a system that switches off the HZ timer nohz_cpu_mask
5776 * indicates which cpus entered this state. This is used
5777 * in the rcu update to wait only for active cpus. For system
5778 * which do not switch off the HZ timer nohz_cpu_mask should
5779 * always be CPU_BITS_NONE.
5780 */
5781 cpumask_var_t nohz_cpu_mask;
5782
5783 /*
5784 * Increase the granularity value when there are more CPUs,
5785 * because with more CPUs the 'effective latency' as visible
5786 * to users decreases. But the relationship is not linear,
5787 * so pick a second-best guess by going with the log2 of the
5788 * number of CPUs.
5789 *
5790 * This idea comes from the SD scheduler of Con Kolivas:
5791 */
5792 static int get_update_sysctl_factor(void)
5793 {
5794 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5795 unsigned int factor;
5796
5797 switch (sysctl_sched_tunable_scaling) {
5798 case SCHED_TUNABLESCALING_NONE:
5799 factor = 1;
5800 break;
5801 case SCHED_TUNABLESCALING_LINEAR:
5802 factor = cpus;
5803 break;
5804 case SCHED_TUNABLESCALING_LOG:
5805 default:
5806 factor = 1 + ilog2(cpus);
5807 break;
5808 }
5809
5810 return factor;
5811 }
5812
5813 static void update_sysctl(void)
5814 {
5815 unsigned int factor = get_update_sysctl_factor();
5816
5817 #define SET_SYSCTL(name) \
5818 (sysctl_##name = (factor) * normalized_sysctl_##name)
5819 SET_SYSCTL(sched_min_granularity);
5820 SET_SYSCTL(sched_latency);
5821 SET_SYSCTL(sched_wakeup_granularity);
5822 #undef SET_SYSCTL
5823 }
5824
5825 static inline void sched_init_granularity(void)
5826 {
5827 update_sysctl();
5828 }
5829
5830 #ifdef CONFIG_SMP
5831 /*
5832 * This is how migration works:
5833 *
5834 * 1) we invoke migration_cpu_stop() on the target CPU using
5835 * stop_one_cpu().
5836 * 2) stopper starts to run (implicitly forcing the migrated thread
5837 * off the CPU)
5838 * 3) it checks whether the migrated task is still in the wrong runqueue.
5839 * 4) if it's in the wrong runqueue then the migration thread removes
5840 * it and puts it into the right queue.
5841 * 5) stopper completes and stop_one_cpu() returns and the migration
5842 * is done.
5843 */
5844
5845 /*
5846 * Change a given task's CPU affinity. Migrate the thread to a
5847 * proper CPU and schedule it away if the CPU it's executing on
5848 * is removed from the allowed bitmask.
5849 *
5850 * NOTE: the caller must have a valid reference to the task, the
5851 * task must not exit() & deallocate itself prematurely. The
5852 * call is not atomic; no spinlocks may be held.
5853 */
5854 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5855 {
5856 unsigned long flags;
5857 struct rq *rq;
5858 unsigned int dest_cpu;
5859 int ret = 0;
5860
5861 /*
5862 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5863 * drop the rq->lock and still rely on ->cpus_allowed.
5864 */
5865 again:
5866 while (task_is_waking(p))
5867 cpu_relax();
5868 rq = task_rq_lock(p, &flags);
5869 if (task_is_waking(p)) {
5870 task_rq_unlock(rq, &flags);
5871 goto again;
5872 }
5873
5874 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5875 ret = -EINVAL;
5876 goto out;
5877 }
5878
5879 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5880 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5881 ret = -EINVAL;
5882 goto out;
5883 }
5884
5885 if (p->sched_class->set_cpus_allowed)
5886 p->sched_class->set_cpus_allowed(p, new_mask);
5887 else {
5888 cpumask_copy(&p->cpus_allowed, new_mask);
5889 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5890 }
5891
5892 /* Can the task run on the task's current CPU? If so, we're done */
5893 if (cpumask_test_cpu(task_cpu(p), new_mask))
5894 goto out;
5895
5896 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5897 if (migrate_task(p, rq)) {
5898 struct migration_arg arg = { p, dest_cpu };
5899 /* Need help from migration thread: drop lock and wait. */
5900 task_rq_unlock(rq, &flags);
5901 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5902 tlb_migrate_finish(p->mm);
5903 return 0;
5904 }
5905 out:
5906 task_rq_unlock(rq, &flags);
5907
5908 return ret;
5909 }
5910 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5911
5912 /*
5913 * Move (not current) task off this cpu, onto dest cpu. We're doing
5914 * this because either it can't run here any more (set_cpus_allowed()
5915 * away from this CPU, or CPU going down), or because we're
5916 * attempting to rebalance this task on exec (sched_exec).
5917 *
5918 * So we race with normal scheduler movements, but that's OK, as long
5919 * as the task is no longer on this CPU.
5920 *
5921 * Returns non-zero if task was successfully migrated.
5922 */
5923 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5924 {
5925 struct rq *rq_dest, *rq_src;
5926 int ret = 0;
5927
5928 if (unlikely(!cpu_active(dest_cpu)))
5929 return ret;
5930
5931 rq_src = cpu_rq(src_cpu);
5932 rq_dest = cpu_rq(dest_cpu);
5933
5934 double_rq_lock(rq_src, rq_dest);
5935 /* Already moved. */
5936 if (task_cpu(p) != src_cpu)
5937 goto done;
5938 /* Affinity changed (again). */
5939 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5940 goto fail;
5941
5942 /*
5943 * If we're not on a rq, the next wake-up will ensure we're
5944 * placed properly.
5945 */
5946 if (p->se.on_rq) {
5947 deactivate_task(rq_src, p, 0);
5948 set_task_cpu(p, dest_cpu);
5949 activate_task(rq_dest, p, 0);
5950 check_preempt_curr(rq_dest, p, 0);
5951 }
5952 done:
5953 ret = 1;
5954 fail:
5955 double_rq_unlock(rq_src, rq_dest);
5956 return ret;
5957 }
5958
5959 /*
5960 * migration_cpu_stop - this will be executed by a highprio stopper thread
5961 * and performs thread migration by bumping thread off CPU then
5962 * 'pushing' onto another runqueue.
5963 */
5964 static int migration_cpu_stop(void *data)
5965 {
5966 struct migration_arg *arg = data;
5967
5968 /*
5969 * The original target cpu might have gone down and we might
5970 * be on another cpu but it doesn't matter.
5971 */
5972 local_irq_disable();
5973 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5974 local_irq_enable();
5975 return 0;
5976 }
5977
5978 #ifdef CONFIG_HOTPLUG_CPU
5979
5980 /*
5981 * Ensures that the idle task is using init_mm right before its cpu goes
5982 * offline.
5983 */
5984 void idle_task_exit(void)
5985 {
5986 struct mm_struct *mm = current->active_mm;
5987
5988 BUG_ON(cpu_online(smp_processor_id()));
5989
5990 if (mm != &init_mm)
5991 switch_mm(mm, &init_mm, current);
5992 mmdrop(mm);
5993 }
5994
5995 /*
5996 * While a dead CPU has no uninterruptible tasks queued at this point,
5997 * it might still have a nonzero ->nr_uninterruptible counter, because
5998 * for performance reasons the counter is not stricly tracking tasks to
5999 * their home CPUs. So we just add the counter to another CPU's counter,
6000 * to keep the global sum constant after CPU-down:
6001 */
6002 static void migrate_nr_uninterruptible(struct rq *rq_src)
6003 {
6004 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6005
6006 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6007 rq_src->nr_uninterruptible = 0;
6008 }
6009
6010 /*
6011 * remove the tasks which were accounted by rq from calc_load_tasks.
6012 */
6013 static void calc_global_load_remove(struct rq *rq)
6014 {
6015 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6016 rq->calc_load_active = 0;
6017 }
6018
6019 /*
6020 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6021 * try_to_wake_up()->select_task_rq().
6022 *
6023 * Called with rq->lock held even though we'er in stop_machine() and
6024 * there's no concurrency possible, we hold the required locks anyway
6025 * because of lock validation efforts.
6026 */
6027 static void migrate_tasks(unsigned int dead_cpu)
6028 {
6029 struct rq *rq = cpu_rq(dead_cpu);
6030 struct task_struct *next, *stop = rq->stop;
6031 int dest_cpu;
6032
6033 /*
6034 * Fudge the rq selection such that the below task selection loop
6035 * doesn't get stuck on the currently eligible stop task.
6036 *
6037 * We're currently inside stop_machine() and the rq is either stuck
6038 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6039 * either way we should never end up calling schedule() until we're
6040 * done here.
6041 */
6042 rq->stop = NULL;
6043
6044 for ( ; ; ) {
6045 /*
6046 * There's this thread running, bail when that's the only
6047 * remaining thread.
6048 */
6049 if (rq->nr_running == 1)
6050 break;
6051
6052 next = pick_next_task(rq);
6053 BUG_ON(!next);
6054 next->sched_class->put_prev_task(rq, next);
6055
6056 /* Find suitable destination for @next, with force if needed. */
6057 dest_cpu = select_fallback_rq(dead_cpu, next);
6058 raw_spin_unlock(&rq->lock);
6059
6060 __migrate_task(next, dead_cpu, dest_cpu);
6061
6062 raw_spin_lock(&rq->lock);
6063 }
6064
6065 rq->stop = stop;
6066 }
6067
6068 #endif /* CONFIG_HOTPLUG_CPU */
6069
6070 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6071
6072 static struct ctl_table sd_ctl_dir[] = {
6073 {
6074 .procname = "sched_domain",
6075 .mode = 0555,
6076 },
6077 {}
6078 };
6079
6080 static struct ctl_table sd_ctl_root[] = {
6081 {
6082 .procname = "kernel",
6083 .mode = 0555,
6084 .child = sd_ctl_dir,
6085 },
6086 {}
6087 };
6088
6089 static struct ctl_table *sd_alloc_ctl_entry(int n)
6090 {
6091 struct ctl_table *entry =
6092 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6093
6094 return entry;
6095 }
6096
6097 static void sd_free_ctl_entry(struct ctl_table **tablep)
6098 {
6099 struct ctl_table *entry;
6100
6101 /*
6102 * In the intermediate directories, both the child directory and
6103 * procname are dynamically allocated and could fail but the mode
6104 * will always be set. In the lowest directory the names are
6105 * static strings and all have proc handlers.
6106 */
6107 for (entry = *tablep; entry->mode; entry++) {
6108 if (entry->child)
6109 sd_free_ctl_entry(&entry->child);
6110 if (entry->proc_handler == NULL)
6111 kfree(entry->procname);
6112 }
6113
6114 kfree(*tablep);
6115 *tablep = NULL;
6116 }
6117
6118 static void
6119 set_table_entry(struct ctl_table *entry,
6120 const char *procname, void *data, int maxlen,
6121 mode_t mode, proc_handler *proc_handler)
6122 {
6123 entry->procname = procname;
6124 entry->data = data;
6125 entry->maxlen = maxlen;
6126 entry->mode = mode;
6127 entry->proc_handler = proc_handler;
6128 }
6129
6130 static struct ctl_table *
6131 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6132 {
6133 struct ctl_table *table = sd_alloc_ctl_entry(13);
6134
6135 if (table == NULL)
6136 return NULL;
6137
6138 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6139 sizeof(long), 0644, proc_doulongvec_minmax);
6140 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6141 sizeof(long), 0644, proc_doulongvec_minmax);
6142 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6143 sizeof(int), 0644, proc_dointvec_minmax);
6144 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6145 sizeof(int), 0644, proc_dointvec_minmax);
6146 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6147 sizeof(int), 0644, proc_dointvec_minmax);
6148 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6149 sizeof(int), 0644, proc_dointvec_minmax);
6150 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6151 sizeof(int), 0644, proc_dointvec_minmax);
6152 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6153 sizeof(int), 0644, proc_dointvec_minmax);
6154 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6155 sizeof(int), 0644, proc_dointvec_minmax);
6156 set_table_entry(&table[9], "cache_nice_tries",
6157 &sd->cache_nice_tries,
6158 sizeof(int), 0644, proc_dointvec_minmax);
6159 set_table_entry(&table[10], "flags", &sd->flags,
6160 sizeof(int), 0644, proc_dointvec_minmax);
6161 set_table_entry(&table[11], "name", sd->name,
6162 CORENAME_MAX_SIZE, 0444, proc_dostring);
6163 /* &table[12] is terminator */
6164
6165 return table;
6166 }
6167
6168 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6169 {
6170 struct ctl_table *entry, *table;
6171 struct sched_domain *sd;
6172 int domain_num = 0, i;
6173 char buf[32];
6174
6175 for_each_domain(cpu, sd)
6176 domain_num++;
6177 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6178 if (table == NULL)
6179 return NULL;
6180
6181 i = 0;
6182 for_each_domain(cpu, sd) {
6183 snprintf(buf, 32, "domain%d", i);
6184 entry->procname = kstrdup(buf, GFP_KERNEL);
6185 entry->mode = 0555;
6186 entry->child = sd_alloc_ctl_domain_table(sd);
6187 entry++;
6188 i++;
6189 }
6190 return table;
6191 }
6192
6193 static struct ctl_table_header *sd_sysctl_header;
6194 static void register_sched_domain_sysctl(void)
6195 {
6196 int i, cpu_num = num_possible_cpus();
6197 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6198 char buf[32];
6199
6200 WARN_ON(sd_ctl_dir[0].child);
6201 sd_ctl_dir[0].child = entry;
6202
6203 if (entry == NULL)
6204 return;
6205
6206 for_each_possible_cpu(i) {
6207 snprintf(buf, 32, "cpu%d", i);
6208 entry->procname = kstrdup(buf, GFP_KERNEL);
6209 entry->mode = 0555;
6210 entry->child = sd_alloc_ctl_cpu_table(i);
6211 entry++;
6212 }
6213
6214 WARN_ON(sd_sysctl_header);
6215 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6216 }
6217
6218 /* may be called multiple times per register */
6219 static void unregister_sched_domain_sysctl(void)
6220 {
6221 if (sd_sysctl_header)
6222 unregister_sysctl_table(sd_sysctl_header);
6223 sd_sysctl_header = NULL;
6224 if (sd_ctl_dir[0].child)
6225 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6226 }
6227 #else
6228 static void register_sched_domain_sysctl(void)
6229 {
6230 }
6231 static void unregister_sched_domain_sysctl(void)
6232 {
6233 }
6234 #endif
6235
6236 static void set_rq_online(struct rq *rq)
6237 {
6238 if (!rq->online) {
6239 const struct sched_class *class;
6240
6241 cpumask_set_cpu(rq->cpu, rq->rd->online);
6242 rq->online = 1;
6243
6244 for_each_class(class) {
6245 if (class->rq_online)
6246 class->rq_online(rq);
6247 }
6248 }
6249 }
6250
6251 static void set_rq_offline(struct rq *rq)
6252 {
6253 if (rq->online) {
6254 const struct sched_class *class;
6255
6256 for_each_class(class) {
6257 if (class->rq_offline)
6258 class->rq_offline(rq);
6259 }
6260
6261 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6262 rq->online = 0;
6263 }
6264 }
6265
6266 /*
6267 * migration_call - callback that gets triggered when a CPU is added.
6268 * Here we can start up the necessary migration thread for the new CPU.
6269 */
6270 static int __cpuinit
6271 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6272 {
6273 int cpu = (long)hcpu;
6274 unsigned long flags;
6275 struct rq *rq = cpu_rq(cpu);
6276
6277 switch (action & ~CPU_TASKS_FROZEN) {
6278
6279 case CPU_UP_PREPARE:
6280 rq->calc_load_update = calc_load_update;
6281 break;
6282
6283 case CPU_ONLINE:
6284 /* Update our root-domain */
6285 raw_spin_lock_irqsave(&rq->lock, flags);
6286 if (rq->rd) {
6287 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6288
6289 set_rq_online(rq);
6290 }
6291 raw_spin_unlock_irqrestore(&rq->lock, flags);
6292 break;
6293
6294 #ifdef CONFIG_HOTPLUG_CPU
6295 case CPU_DYING:
6296 /* Update our root-domain */
6297 raw_spin_lock_irqsave(&rq->lock, flags);
6298 if (rq->rd) {
6299 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6300 set_rq_offline(rq);
6301 }
6302 migrate_tasks(cpu);
6303 BUG_ON(rq->nr_running != 1); /* the migration thread */
6304 raw_spin_unlock_irqrestore(&rq->lock, flags);
6305
6306 migrate_nr_uninterruptible(rq);
6307 calc_global_load_remove(rq);
6308 break;
6309 #endif
6310 }
6311 return NOTIFY_OK;
6312 }
6313
6314 /*
6315 * Register at high priority so that task migration (migrate_all_tasks)
6316 * happens before everything else. This has to be lower priority than
6317 * the notifier in the perf_event subsystem, though.
6318 */
6319 static struct notifier_block __cpuinitdata migration_notifier = {
6320 .notifier_call = migration_call,
6321 .priority = CPU_PRI_MIGRATION,
6322 };
6323
6324 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6325 unsigned long action, void *hcpu)
6326 {
6327 switch (action & ~CPU_TASKS_FROZEN) {
6328 case CPU_ONLINE:
6329 case CPU_DOWN_FAILED:
6330 set_cpu_active((long)hcpu, true);
6331 return NOTIFY_OK;
6332 default:
6333 return NOTIFY_DONE;
6334 }
6335 }
6336
6337 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6338 unsigned long action, void *hcpu)
6339 {
6340 switch (action & ~CPU_TASKS_FROZEN) {
6341 case CPU_DOWN_PREPARE:
6342 set_cpu_active((long)hcpu, false);
6343 return NOTIFY_OK;
6344 default:
6345 return NOTIFY_DONE;
6346 }
6347 }
6348
6349 static int __init migration_init(void)
6350 {
6351 void *cpu = (void *)(long)smp_processor_id();
6352 int err;
6353
6354 /* Initialize migration for the boot CPU */
6355 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6356 BUG_ON(err == NOTIFY_BAD);
6357 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6358 register_cpu_notifier(&migration_notifier);
6359
6360 /* Register cpu active notifiers */
6361 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6362 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6363
6364 return 0;
6365 }
6366 early_initcall(migration_init);
6367 #endif
6368
6369 #ifdef CONFIG_SMP
6370
6371 #ifdef CONFIG_SCHED_DEBUG
6372
6373 static __read_mostly int sched_domain_debug_enabled;
6374
6375 static int __init sched_domain_debug_setup(char *str)
6376 {
6377 sched_domain_debug_enabled = 1;
6378
6379 return 0;
6380 }
6381 early_param("sched_debug", sched_domain_debug_setup);
6382
6383 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6384 struct cpumask *groupmask)
6385 {
6386 struct sched_group *group = sd->groups;
6387 char str[256];
6388
6389 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6390 cpumask_clear(groupmask);
6391
6392 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6393
6394 if (!(sd->flags & SD_LOAD_BALANCE)) {
6395 printk("does not load-balance\n");
6396 if (sd->parent)
6397 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6398 " has parent");
6399 return -1;
6400 }
6401
6402 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6403
6404 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6405 printk(KERN_ERR "ERROR: domain->span does not contain "
6406 "CPU%d\n", cpu);
6407 }
6408 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6409 printk(KERN_ERR "ERROR: domain->groups does not contain"
6410 " CPU%d\n", cpu);
6411 }
6412
6413 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6414 do {
6415 if (!group) {
6416 printk("\n");
6417 printk(KERN_ERR "ERROR: group is NULL\n");
6418 break;
6419 }
6420
6421 if (!group->cpu_power) {
6422 printk(KERN_CONT "\n");
6423 printk(KERN_ERR "ERROR: domain->cpu_power not "
6424 "set\n");
6425 break;
6426 }
6427
6428 if (!cpumask_weight(sched_group_cpus(group))) {
6429 printk(KERN_CONT "\n");
6430 printk(KERN_ERR "ERROR: empty group\n");
6431 break;
6432 }
6433
6434 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6435 printk(KERN_CONT "\n");
6436 printk(KERN_ERR "ERROR: repeated CPUs\n");
6437 break;
6438 }
6439
6440 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6441
6442 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6443
6444 printk(KERN_CONT " %s", str);
6445 if (group->cpu_power != SCHED_LOAD_SCALE) {
6446 printk(KERN_CONT " (cpu_power = %d)",
6447 group->cpu_power);
6448 }
6449
6450 group = group->next;
6451 } while (group != sd->groups);
6452 printk(KERN_CONT "\n");
6453
6454 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6455 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6456
6457 if (sd->parent &&
6458 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6459 printk(KERN_ERR "ERROR: parent span is not a superset "
6460 "of domain->span\n");
6461 return 0;
6462 }
6463
6464 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6465 {
6466 cpumask_var_t groupmask;
6467 int level = 0;
6468
6469 if (!sched_domain_debug_enabled)
6470 return;
6471
6472 if (!sd) {
6473 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6474 return;
6475 }
6476
6477 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6478
6479 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6480 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6481 return;
6482 }
6483
6484 for (;;) {
6485 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6486 break;
6487 level++;
6488 sd = sd->parent;
6489 if (!sd)
6490 break;
6491 }
6492 free_cpumask_var(groupmask);
6493 }
6494 #else /* !CONFIG_SCHED_DEBUG */
6495 # define sched_domain_debug(sd, cpu) do { } while (0)
6496 #endif /* CONFIG_SCHED_DEBUG */
6497
6498 static int sd_degenerate(struct sched_domain *sd)
6499 {
6500 if (cpumask_weight(sched_domain_span(sd)) == 1)
6501 return 1;
6502
6503 /* Following flags need at least 2 groups */
6504 if (sd->flags & (SD_LOAD_BALANCE |
6505 SD_BALANCE_NEWIDLE |
6506 SD_BALANCE_FORK |
6507 SD_BALANCE_EXEC |
6508 SD_SHARE_CPUPOWER |
6509 SD_SHARE_PKG_RESOURCES)) {
6510 if (sd->groups != sd->groups->next)
6511 return 0;
6512 }
6513
6514 /* Following flags don't use groups */
6515 if (sd->flags & (SD_WAKE_AFFINE))
6516 return 0;
6517
6518 return 1;
6519 }
6520
6521 static int
6522 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6523 {
6524 unsigned long cflags = sd->flags, pflags = parent->flags;
6525
6526 if (sd_degenerate(parent))
6527 return 1;
6528
6529 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6530 return 0;
6531
6532 /* Flags needing groups don't count if only 1 group in parent */
6533 if (parent->groups == parent->groups->next) {
6534 pflags &= ~(SD_LOAD_BALANCE |
6535 SD_BALANCE_NEWIDLE |
6536 SD_BALANCE_FORK |
6537 SD_BALANCE_EXEC |
6538 SD_SHARE_CPUPOWER |
6539 SD_SHARE_PKG_RESOURCES);
6540 if (nr_node_ids == 1)
6541 pflags &= ~SD_SERIALIZE;
6542 }
6543 if (~cflags & pflags)
6544 return 0;
6545
6546 return 1;
6547 }
6548
6549 static void free_rootdomain(struct root_domain *rd)
6550 {
6551 synchronize_sched();
6552
6553 cpupri_cleanup(&rd->cpupri);
6554
6555 free_cpumask_var(rd->rto_mask);
6556 free_cpumask_var(rd->online);
6557 free_cpumask_var(rd->span);
6558 kfree(rd);
6559 }
6560
6561 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6562 {
6563 struct root_domain *old_rd = NULL;
6564 unsigned long flags;
6565
6566 raw_spin_lock_irqsave(&rq->lock, flags);
6567
6568 if (rq->rd) {
6569 old_rd = rq->rd;
6570
6571 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6572 set_rq_offline(rq);
6573
6574 cpumask_clear_cpu(rq->cpu, old_rd->span);
6575
6576 /*
6577 * If we dont want to free the old_rt yet then
6578 * set old_rd to NULL to skip the freeing later
6579 * in this function:
6580 */
6581 if (!atomic_dec_and_test(&old_rd->refcount))
6582 old_rd = NULL;
6583 }
6584
6585 atomic_inc(&rd->refcount);
6586 rq->rd = rd;
6587
6588 cpumask_set_cpu(rq->cpu, rd->span);
6589 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6590 set_rq_online(rq);
6591
6592 raw_spin_unlock_irqrestore(&rq->lock, flags);
6593
6594 if (old_rd)
6595 free_rootdomain(old_rd);
6596 }
6597
6598 static int init_rootdomain(struct root_domain *rd)
6599 {
6600 memset(rd, 0, sizeof(*rd));
6601
6602 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6603 goto out;
6604 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6605 goto free_span;
6606 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6607 goto free_online;
6608
6609 if (cpupri_init(&rd->cpupri) != 0)
6610 goto free_rto_mask;
6611 return 0;
6612
6613 free_rto_mask:
6614 free_cpumask_var(rd->rto_mask);
6615 free_online:
6616 free_cpumask_var(rd->online);
6617 free_span:
6618 free_cpumask_var(rd->span);
6619 out:
6620 return -ENOMEM;
6621 }
6622
6623 static void init_defrootdomain(void)
6624 {
6625 init_rootdomain(&def_root_domain);
6626
6627 atomic_set(&def_root_domain.refcount, 1);
6628 }
6629
6630 static struct root_domain *alloc_rootdomain(void)
6631 {
6632 struct root_domain *rd;
6633
6634 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6635 if (!rd)
6636 return NULL;
6637
6638 if (init_rootdomain(rd) != 0) {
6639 kfree(rd);
6640 return NULL;
6641 }
6642
6643 return rd;
6644 }
6645
6646 /*
6647 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6648 * hold the hotplug lock.
6649 */
6650 static void
6651 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6652 {
6653 struct rq *rq = cpu_rq(cpu);
6654 struct sched_domain *tmp;
6655
6656 for (tmp = sd; tmp; tmp = tmp->parent)
6657 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6658
6659 /* Remove the sched domains which do not contribute to scheduling. */
6660 for (tmp = sd; tmp; ) {
6661 struct sched_domain *parent = tmp->parent;
6662 if (!parent)
6663 break;
6664
6665 if (sd_parent_degenerate(tmp, parent)) {
6666 tmp->parent = parent->parent;
6667 if (parent->parent)
6668 parent->parent->child = tmp;
6669 } else
6670 tmp = tmp->parent;
6671 }
6672
6673 if (sd && sd_degenerate(sd)) {
6674 sd = sd->parent;
6675 if (sd)
6676 sd->child = NULL;
6677 }
6678
6679 sched_domain_debug(sd, cpu);
6680
6681 rq_attach_root(rq, rd);
6682 rcu_assign_pointer(rq->sd, sd);
6683 }
6684
6685 /* cpus with isolated domains */
6686 static cpumask_var_t cpu_isolated_map;
6687
6688 /* Setup the mask of cpus configured for isolated domains */
6689 static int __init isolated_cpu_setup(char *str)
6690 {
6691 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6692 cpulist_parse(str, cpu_isolated_map);
6693 return 1;
6694 }
6695
6696 __setup("isolcpus=", isolated_cpu_setup);
6697
6698 /*
6699 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6700 * to a function which identifies what group(along with sched group) a CPU
6701 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6702 * (due to the fact that we keep track of groups covered with a struct cpumask).
6703 *
6704 * init_sched_build_groups will build a circular linked list of the groups
6705 * covered by the given span, and will set each group's ->cpumask correctly,
6706 * and ->cpu_power to 0.
6707 */
6708 static void
6709 init_sched_build_groups(const struct cpumask *span,
6710 const struct cpumask *cpu_map,
6711 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6712 struct sched_group **sg,
6713 struct cpumask *tmpmask),
6714 struct cpumask *covered, struct cpumask *tmpmask)
6715 {
6716 struct sched_group *first = NULL, *last = NULL;
6717 int i;
6718
6719 cpumask_clear(covered);
6720
6721 for_each_cpu(i, span) {
6722 struct sched_group *sg;
6723 int group = group_fn(i, cpu_map, &sg, tmpmask);
6724 int j;
6725
6726 if (cpumask_test_cpu(i, covered))
6727 continue;
6728
6729 cpumask_clear(sched_group_cpus(sg));
6730 sg->cpu_power = 0;
6731
6732 for_each_cpu(j, span) {
6733 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6734 continue;
6735
6736 cpumask_set_cpu(j, covered);
6737 cpumask_set_cpu(j, sched_group_cpus(sg));
6738 }
6739 if (!first)
6740 first = sg;
6741 if (last)
6742 last->next = sg;
6743 last = sg;
6744 }
6745 last->next = first;
6746 }
6747
6748 #define SD_NODES_PER_DOMAIN 16
6749
6750 #ifdef CONFIG_NUMA
6751
6752 /**
6753 * find_next_best_node - find the next node to include in a sched_domain
6754 * @node: node whose sched_domain we're building
6755 * @used_nodes: nodes already in the sched_domain
6756 *
6757 * Find the next node to include in a given scheduling domain. Simply
6758 * finds the closest node not already in the @used_nodes map.
6759 *
6760 * Should use nodemask_t.
6761 */
6762 static int find_next_best_node(int node, nodemask_t *used_nodes)
6763 {
6764 int i, n, val, min_val, best_node = 0;
6765
6766 min_val = INT_MAX;
6767
6768 for (i = 0; i < nr_node_ids; i++) {
6769 /* Start at @node */
6770 n = (node + i) % nr_node_ids;
6771
6772 if (!nr_cpus_node(n))
6773 continue;
6774
6775 /* Skip already used nodes */
6776 if (node_isset(n, *used_nodes))
6777 continue;
6778
6779 /* Simple min distance search */
6780 val = node_distance(node, n);
6781
6782 if (val < min_val) {
6783 min_val = val;
6784 best_node = n;
6785 }
6786 }
6787
6788 node_set(best_node, *used_nodes);
6789 return best_node;
6790 }
6791
6792 /**
6793 * sched_domain_node_span - get a cpumask for a node's sched_domain
6794 * @node: node whose cpumask we're constructing
6795 * @span: resulting cpumask
6796 *
6797 * Given a node, construct a good cpumask for its sched_domain to span. It
6798 * should be one that prevents unnecessary balancing, but also spreads tasks
6799 * out optimally.
6800 */
6801 static void sched_domain_node_span(int node, struct cpumask *span)
6802 {
6803 nodemask_t used_nodes;
6804 int i;
6805
6806 cpumask_clear(span);
6807 nodes_clear(used_nodes);
6808
6809 cpumask_or(span, span, cpumask_of_node(node));
6810 node_set(node, used_nodes);
6811
6812 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6813 int next_node = find_next_best_node(node, &used_nodes);
6814
6815 cpumask_or(span, span, cpumask_of_node(next_node));
6816 }
6817 }
6818 #endif /* CONFIG_NUMA */
6819
6820 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6821
6822 /*
6823 * The cpus mask in sched_group and sched_domain hangs off the end.
6824 *
6825 * ( See the the comments in include/linux/sched.h:struct sched_group
6826 * and struct sched_domain. )
6827 */
6828 struct static_sched_group {
6829 struct sched_group sg;
6830 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6831 };
6832
6833 struct static_sched_domain {
6834 struct sched_domain sd;
6835 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6836 };
6837
6838 struct s_data {
6839 #ifdef CONFIG_NUMA
6840 int sd_allnodes;
6841 cpumask_var_t domainspan;
6842 cpumask_var_t covered;
6843 cpumask_var_t notcovered;
6844 #endif
6845 cpumask_var_t nodemask;
6846 cpumask_var_t this_sibling_map;
6847 cpumask_var_t this_core_map;
6848 cpumask_var_t this_book_map;
6849 cpumask_var_t send_covered;
6850 cpumask_var_t tmpmask;
6851 struct sched_group **sched_group_nodes;
6852 struct root_domain *rd;
6853 };
6854
6855 enum s_alloc {
6856 sa_sched_groups = 0,
6857 sa_rootdomain,
6858 sa_tmpmask,
6859 sa_send_covered,
6860 sa_this_book_map,
6861 sa_this_core_map,
6862 sa_this_sibling_map,
6863 sa_nodemask,
6864 sa_sched_group_nodes,
6865 #ifdef CONFIG_NUMA
6866 sa_notcovered,
6867 sa_covered,
6868 sa_domainspan,
6869 #endif
6870 sa_none,
6871 };
6872
6873 /*
6874 * SMT sched-domains:
6875 */
6876 #ifdef CONFIG_SCHED_SMT
6877 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6878 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6879
6880 static int
6881 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6882 struct sched_group **sg, struct cpumask *unused)
6883 {
6884 if (sg)
6885 *sg = &per_cpu(sched_groups, cpu).sg;
6886 return cpu;
6887 }
6888 #endif /* CONFIG_SCHED_SMT */
6889
6890 /*
6891 * multi-core sched-domains:
6892 */
6893 #ifdef CONFIG_SCHED_MC
6894 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6895 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6896
6897 static int
6898 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6899 struct sched_group **sg, struct cpumask *mask)
6900 {
6901 int group;
6902 #ifdef CONFIG_SCHED_SMT
6903 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6904 group = cpumask_first(mask);
6905 #else
6906 group = cpu;
6907 #endif
6908 if (sg)
6909 *sg = &per_cpu(sched_group_core, group).sg;
6910 return group;
6911 }
6912 #endif /* CONFIG_SCHED_MC */
6913
6914 /*
6915 * book sched-domains:
6916 */
6917 #ifdef CONFIG_SCHED_BOOK
6918 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6919 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6920
6921 static int
6922 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6923 struct sched_group **sg, struct cpumask *mask)
6924 {
6925 int group = cpu;
6926 #ifdef CONFIG_SCHED_MC
6927 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6928 group = cpumask_first(mask);
6929 #elif defined(CONFIG_SCHED_SMT)
6930 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6931 group = cpumask_first(mask);
6932 #endif
6933 if (sg)
6934 *sg = &per_cpu(sched_group_book, group).sg;
6935 return group;
6936 }
6937 #endif /* CONFIG_SCHED_BOOK */
6938
6939 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6940 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6941
6942 static int
6943 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6944 struct sched_group **sg, struct cpumask *mask)
6945 {
6946 int group;
6947 #ifdef CONFIG_SCHED_BOOK
6948 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6949 group = cpumask_first(mask);
6950 #elif defined(CONFIG_SCHED_MC)
6951 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6952 group = cpumask_first(mask);
6953 #elif defined(CONFIG_SCHED_SMT)
6954 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956 #else
6957 group = cpu;
6958 #endif
6959 if (sg)
6960 *sg = &per_cpu(sched_group_phys, group).sg;
6961 return group;
6962 }
6963
6964 #ifdef CONFIG_NUMA
6965 /*
6966 * The init_sched_build_groups can't handle what we want to do with node
6967 * groups, so roll our own. Now each node has its own list of groups which
6968 * gets dynamically allocated.
6969 */
6970 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6971 static struct sched_group ***sched_group_nodes_bycpu;
6972
6973 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6974 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6975
6976 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6977 struct sched_group **sg,
6978 struct cpumask *nodemask)
6979 {
6980 int group;
6981
6982 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6983 group = cpumask_first(nodemask);
6984
6985 if (sg)
6986 *sg = &per_cpu(sched_group_allnodes, group).sg;
6987 return group;
6988 }
6989
6990 static void init_numa_sched_groups_power(struct sched_group *group_head)
6991 {
6992 struct sched_group *sg = group_head;
6993 int j;
6994
6995 if (!sg)
6996 return;
6997 do {
6998 for_each_cpu(j, sched_group_cpus(sg)) {
6999 struct sched_domain *sd;
7000
7001 sd = &per_cpu(phys_domains, j).sd;
7002 if (j != group_first_cpu(sd->groups)) {
7003 /*
7004 * Only add "power" once for each
7005 * physical package.
7006 */
7007 continue;
7008 }
7009
7010 sg->cpu_power += sd->groups->cpu_power;
7011 }
7012 sg = sg->next;
7013 } while (sg != group_head);
7014 }
7015
7016 static int build_numa_sched_groups(struct s_data *d,
7017 const struct cpumask *cpu_map, int num)
7018 {
7019 struct sched_domain *sd;
7020 struct sched_group *sg, *prev;
7021 int n, j;
7022
7023 cpumask_clear(d->covered);
7024 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7025 if (cpumask_empty(d->nodemask)) {
7026 d->sched_group_nodes[num] = NULL;
7027 goto out;
7028 }
7029
7030 sched_domain_node_span(num, d->domainspan);
7031 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7032
7033 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7034 GFP_KERNEL, num);
7035 if (!sg) {
7036 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7037 num);
7038 return -ENOMEM;
7039 }
7040 d->sched_group_nodes[num] = sg;
7041
7042 for_each_cpu(j, d->nodemask) {
7043 sd = &per_cpu(node_domains, j).sd;
7044 sd->groups = sg;
7045 }
7046
7047 sg->cpu_power = 0;
7048 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7049 sg->next = sg;
7050 cpumask_or(d->covered, d->covered, d->nodemask);
7051
7052 prev = sg;
7053 for (j = 0; j < nr_node_ids; j++) {
7054 n = (num + j) % nr_node_ids;
7055 cpumask_complement(d->notcovered, d->covered);
7056 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7057 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7058 if (cpumask_empty(d->tmpmask))
7059 break;
7060 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7061 if (cpumask_empty(d->tmpmask))
7062 continue;
7063 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7064 GFP_KERNEL, num);
7065 if (!sg) {
7066 printk(KERN_WARNING
7067 "Can not alloc domain group for node %d\n", j);
7068 return -ENOMEM;
7069 }
7070 sg->cpu_power = 0;
7071 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7072 sg->next = prev->next;
7073 cpumask_or(d->covered, d->covered, d->tmpmask);
7074 prev->next = sg;
7075 prev = sg;
7076 }
7077 out:
7078 return 0;
7079 }
7080 #endif /* CONFIG_NUMA */
7081
7082 #ifdef CONFIG_NUMA
7083 /* Free memory allocated for various sched_group structures */
7084 static void free_sched_groups(const struct cpumask *cpu_map,
7085 struct cpumask *nodemask)
7086 {
7087 int cpu, i;
7088
7089 for_each_cpu(cpu, cpu_map) {
7090 struct sched_group **sched_group_nodes
7091 = sched_group_nodes_bycpu[cpu];
7092
7093 if (!sched_group_nodes)
7094 continue;
7095
7096 for (i = 0; i < nr_node_ids; i++) {
7097 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7098
7099 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7100 if (cpumask_empty(nodemask))
7101 continue;
7102
7103 if (sg == NULL)
7104 continue;
7105 sg = sg->next;
7106 next_sg:
7107 oldsg = sg;
7108 sg = sg->next;
7109 kfree(oldsg);
7110 if (oldsg != sched_group_nodes[i])
7111 goto next_sg;
7112 }
7113 kfree(sched_group_nodes);
7114 sched_group_nodes_bycpu[cpu] = NULL;
7115 }
7116 }
7117 #else /* !CONFIG_NUMA */
7118 static void free_sched_groups(const struct cpumask *cpu_map,
7119 struct cpumask *nodemask)
7120 {
7121 }
7122 #endif /* CONFIG_NUMA */
7123
7124 /*
7125 * Initialize sched groups cpu_power.
7126 *
7127 * cpu_power indicates the capacity of sched group, which is used while
7128 * distributing the load between different sched groups in a sched domain.
7129 * Typically cpu_power for all the groups in a sched domain will be same unless
7130 * there are asymmetries in the topology. If there are asymmetries, group
7131 * having more cpu_power will pickup more load compared to the group having
7132 * less cpu_power.
7133 */
7134 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7135 {
7136 struct sched_domain *child;
7137 struct sched_group *group;
7138 long power;
7139 int weight;
7140
7141 WARN_ON(!sd || !sd->groups);
7142
7143 if (cpu != group_first_cpu(sd->groups))
7144 return;
7145
7146 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7147
7148 child = sd->child;
7149
7150 sd->groups->cpu_power = 0;
7151
7152 if (!child) {
7153 power = SCHED_LOAD_SCALE;
7154 weight = cpumask_weight(sched_domain_span(sd));
7155 /*
7156 * SMT siblings share the power of a single core.
7157 * Usually multiple threads get a better yield out of
7158 * that one core than a single thread would have,
7159 * reflect that in sd->smt_gain.
7160 */
7161 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7162 power *= sd->smt_gain;
7163 power /= weight;
7164 power >>= SCHED_LOAD_SHIFT;
7165 }
7166 sd->groups->cpu_power += power;
7167 return;
7168 }
7169
7170 /*
7171 * Add cpu_power of each child group to this groups cpu_power.
7172 */
7173 group = child->groups;
7174 do {
7175 sd->groups->cpu_power += group->cpu_power;
7176 group = group->next;
7177 } while (group != child->groups);
7178 }
7179
7180 /*
7181 * Initializers for schedule domains
7182 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7183 */
7184
7185 #ifdef CONFIG_SCHED_DEBUG
7186 # define SD_INIT_NAME(sd, type) sd->name = #type
7187 #else
7188 # define SD_INIT_NAME(sd, type) do { } while (0)
7189 #endif
7190
7191 #define SD_INIT(sd, type) sd_init_##type(sd)
7192
7193 #define SD_INIT_FUNC(type) \
7194 static noinline void sd_init_##type(struct sched_domain *sd) \
7195 { \
7196 memset(sd, 0, sizeof(*sd)); \
7197 *sd = SD_##type##_INIT; \
7198 sd->level = SD_LV_##type; \
7199 SD_INIT_NAME(sd, type); \
7200 }
7201
7202 SD_INIT_FUNC(CPU)
7203 #ifdef CONFIG_NUMA
7204 SD_INIT_FUNC(ALLNODES)
7205 SD_INIT_FUNC(NODE)
7206 #endif
7207 #ifdef CONFIG_SCHED_SMT
7208 SD_INIT_FUNC(SIBLING)
7209 #endif
7210 #ifdef CONFIG_SCHED_MC
7211 SD_INIT_FUNC(MC)
7212 #endif
7213 #ifdef CONFIG_SCHED_BOOK
7214 SD_INIT_FUNC(BOOK)
7215 #endif
7216
7217 static int default_relax_domain_level = -1;
7218
7219 static int __init setup_relax_domain_level(char *str)
7220 {
7221 unsigned long val;
7222
7223 val = simple_strtoul(str, NULL, 0);
7224 if (val < SD_LV_MAX)
7225 default_relax_domain_level = val;
7226
7227 return 1;
7228 }
7229 __setup("relax_domain_level=", setup_relax_domain_level);
7230
7231 static void set_domain_attribute(struct sched_domain *sd,
7232 struct sched_domain_attr *attr)
7233 {
7234 int request;
7235
7236 if (!attr || attr->relax_domain_level < 0) {
7237 if (default_relax_domain_level < 0)
7238 return;
7239 else
7240 request = default_relax_domain_level;
7241 } else
7242 request = attr->relax_domain_level;
7243 if (request < sd->level) {
7244 /* turn off idle balance on this domain */
7245 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7246 } else {
7247 /* turn on idle balance on this domain */
7248 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7249 }
7250 }
7251
7252 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7253 const struct cpumask *cpu_map)
7254 {
7255 switch (what) {
7256 case sa_sched_groups:
7257 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7258 d->sched_group_nodes = NULL;
7259 case sa_rootdomain:
7260 free_rootdomain(d->rd); /* fall through */
7261 case sa_tmpmask:
7262 free_cpumask_var(d->tmpmask); /* fall through */
7263 case sa_send_covered:
7264 free_cpumask_var(d->send_covered); /* fall through */
7265 case sa_this_book_map:
7266 free_cpumask_var(d->this_book_map); /* fall through */
7267 case sa_this_core_map:
7268 free_cpumask_var(d->this_core_map); /* fall through */
7269 case sa_this_sibling_map:
7270 free_cpumask_var(d->this_sibling_map); /* fall through */
7271 case sa_nodemask:
7272 free_cpumask_var(d->nodemask); /* fall through */
7273 case sa_sched_group_nodes:
7274 #ifdef CONFIG_NUMA
7275 kfree(d->sched_group_nodes); /* fall through */
7276 case sa_notcovered:
7277 free_cpumask_var(d->notcovered); /* fall through */
7278 case sa_covered:
7279 free_cpumask_var(d->covered); /* fall through */
7280 case sa_domainspan:
7281 free_cpumask_var(d->domainspan); /* fall through */
7282 #endif
7283 case sa_none:
7284 break;
7285 }
7286 }
7287
7288 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7289 const struct cpumask *cpu_map)
7290 {
7291 #ifdef CONFIG_NUMA
7292 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7293 return sa_none;
7294 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7295 return sa_domainspan;
7296 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7297 return sa_covered;
7298 /* Allocate the per-node list of sched groups */
7299 d->sched_group_nodes = kcalloc(nr_node_ids,
7300 sizeof(struct sched_group *), GFP_KERNEL);
7301 if (!d->sched_group_nodes) {
7302 printk(KERN_WARNING "Can not alloc sched group node list\n");
7303 return sa_notcovered;
7304 }
7305 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7306 #endif
7307 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7308 return sa_sched_group_nodes;
7309 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7310 return sa_nodemask;
7311 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7312 return sa_this_sibling_map;
7313 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7314 return sa_this_core_map;
7315 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7316 return sa_this_book_map;
7317 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7318 return sa_send_covered;
7319 d->rd = alloc_rootdomain();
7320 if (!d->rd) {
7321 printk(KERN_WARNING "Cannot alloc root domain\n");
7322 return sa_tmpmask;
7323 }
7324 return sa_rootdomain;
7325 }
7326
7327 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7328 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7329 {
7330 struct sched_domain *sd = NULL;
7331 #ifdef CONFIG_NUMA
7332 struct sched_domain *parent;
7333
7334 d->sd_allnodes = 0;
7335 if (cpumask_weight(cpu_map) >
7336 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7337 sd = &per_cpu(allnodes_domains, i).sd;
7338 SD_INIT(sd, ALLNODES);
7339 set_domain_attribute(sd, attr);
7340 cpumask_copy(sched_domain_span(sd), cpu_map);
7341 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7342 d->sd_allnodes = 1;
7343 }
7344 parent = sd;
7345
7346 sd = &per_cpu(node_domains, i).sd;
7347 SD_INIT(sd, NODE);
7348 set_domain_attribute(sd, attr);
7349 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7350 sd->parent = parent;
7351 if (parent)
7352 parent->child = sd;
7353 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7354 #endif
7355 return sd;
7356 }
7357
7358 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7359 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7360 struct sched_domain *parent, int i)
7361 {
7362 struct sched_domain *sd;
7363 sd = &per_cpu(phys_domains, i).sd;
7364 SD_INIT(sd, CPU);
7365 set_domain_attribute(sd, attr);
7366 cpumask_copy(sched_domain_span(sd), d->nodemask);
7367 sd->parent = parent;
7368 if (parent)
7369 parent->child = sd;
7370 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7371 return sd;
7372 }
7373
7374 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7375 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7376 struct sched_domain *parent, int i)
7377 {
7378 struct sched_domain *sd = parent;
7379 #ifdef CONFIG_SCHED_BOOK
7380 sd = &per_cpu(book_domains, i).sd;
7381 SD_INIT(sd, BOOK);
7382 set_domain_attribute(sd, attr);
7383 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7384 sd->parent = parent;
7385 parent->child = sd;
7386 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7387 #endif
7388 return sd;
7389 }
7390
7391 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7392 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7393 struct sched_domain *parent, int i)
7394 {
7395 struct sched_domain *sd = parent;
7396 #ifdef CONFIG_SCHED_MC
7397 sd = &per_cpu(core_domains, i).sd;
7398 SD_INIT(sd, MC);
7399 set_domain_attribute(sd, attr);
7400 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7401 sd->parent = parent;
7402 parent->child = sd;
7403 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7404 #endif
7405 return sd;
7406 }
7407
7408 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7410 struct sched_domain *parent, int i)
7411 {
7412 struct sched_domain *sd = parent;
7413 #ifdef CONFIG_SCHED_SMT
7414 sd = &per_cpu(cpu_domains, i).sd;
7415 SD_INIT(sd, SIBLING);
7416 set_domain_attribute(sd, attr);
7417 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7418 sd->parent = parent;
7419 parent->child = sd;
7420 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7421 #endif
7422 return sd;
7423 }
7424
7425 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7426 const struct cpumask *cpu_map, int cpu)
7427 {
7428 switch (l) {
7429 #ifdef CONFIG_SCHED_SMT
7430 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7431 cpumask_and(d->this_sibling_map, cpu_map,
7432 topology_thread_cpumask(cpu));
7433 if (cpu == cpumask_first(d->this_sibling_map))
7434 init_sched_build_groups(d->this_sibling_map, cpu_map,
7435 &cpu_to_cpu_group,
7436 d->send_covered, d->tmpmask);
7437 break;
7438 #endif
7439 #ifdef CONFIG_SCHED_MC
7440 case SD_LV_MC: /* set up multi-core groups */
7441 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7442 if (cpu == cpumask_first(d->this_core_map))
7443 init_sched_build_groups(d->this_core_map, cpu_map,
7444 &cpu_to_core_group,
7445 d->send_covered, d->tmpmask);
7446 break;
7447 #endif
7448 #ifdef CONFIG_SCHED_BOOK
7449 case SD_LV_BOOK: /* set up book groups */
7450 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7451 if (cpu == cpumask_first(d->this_book_map))
7452 init_sched_build_groups(d->this_book_map, cpu_map,
7453 &cpu_to_book_group,
7454 d->send_covered, d->tmpmask);
7455 break;
7456 #endif
7457 case SD_LV_CPU: /* set up physical groups */
7458 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7459 if (!cpumask_empty(d->nodemask))
7460 init_sched_build_groups(d->nodemask, cpu_map,
7461 &cpu_to_phys_group,
7462 d->send_covered, d->tmpmask);
7463 break;
7464 #ifdef CONFIG_NUMA
7465 case SD_LV_ALLNODES:
7466 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7467 d->send_covered, d->tmpmask);
7468 break;
7469 #endif
7470 default:
7471 break;
7472 }
7473 }
7474
7475 /*
7476 * Build sched domains for a given set of cpus and attach the sched domains
7477 * to the individual cpus
7478 */
7479 static int __build_sched_domains(const struct cpumask *cpu_map,
7480 struct sched_domain_attr *attr)
7481 {
7482 enum s_alloc alloc_state = sa_none;
7483 struct s_data d;
7484 struct sched_domain *sd;
7485 int i;
7486 #ifdef CONFIG_NUMA
7487 d.sd_allnodes = 0;
7488 #endif
7489
7490 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7491 if (alloc_state != sa_rootdomain)
7492 goto error;
7493 alloc_state = sa_sched_groups;
7494
7495 /*
7496 * Set up domains for cpus specified by the cpu_map.
7497 */
7498 for_each_cpu(i, cpu_map) {
7499 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7500 cpu_map);
7501
7502 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7503 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7504 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7505 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7506 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7507 }
7508
7509 for_each_cpu(i, cpu_map) {
7510 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7511 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7512 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7513 }
7514
7515 /* Set up physical groups */
7516 for (i = 0; i < nr_node_ids; i++)
7517 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7518
7519 #ifdef CONFIG_NUMA
7520 /* Set up node groups */
7521 if (d.sd_allnodes)
7522 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7523
7524 for (i = 0; i < nr_node_ids; i++)
7525 if (build_numa_sched_groups(&d, cpu_map, i))
7526 goto error;
7527 #endif
7528
7529 /* Calculate CPU power for physical packages and nodes */
7530 #ifdef CONFIG_SCHED_SMT
7531 for_each_cpu(i, cpu_map) {
7532 sd = &per_cpu(cpu_domains, i).sd;
7533 init_sched_groups_power(i, sd);
7534 }
7535 #endif
7536 #ifdef CONFIG_SCHED_MC
7537 for_each_cpu(i, cpu_map) {
7538 sd = &per_cpu(core_domains, i).sd;
7539 init_sched_groups_power(i, sd);
7540 }
7541 #endif
7542 #ifdef CONFIG_SCHED_BOOK
7543 for_each_cpu(i, cpu_map) {
7544 sd = &per_cpu(book_domains, i).sd;
7545 init_sched_groups_power(i, sd);
7546 }
7547 #endif
7548
7549 for_each_cpu(i, cpu_map) {
7550 sd = &per_cpu(phys_domains, i).sd;
7551 init_sched_groups_power(i, sd);
7552 }
7553
7554 #ifdef CONFIG_NUMA
7555 for (i = 0; i < nr_node_ids; i++)
7556 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7557
7558 if (d.sd_allnodes) {
7559 struct sched_group *sg;
7560
7561 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7562 d.tmpmask);
7563 init_numa_sched_groups_power(sg);
7564 }
7565 #endif
7566
7567 /* Attach the domains */
7568 for_each_cpu(i, cpu_map) {
7569 #ifdef CONFIG_SCHED_SMT
7570 sd = &per_cpu(cpu_domains, i).sd;
7571 #elif defined(CONFIG_SCHED_MC)
7572 sd = &per_cpu(core_domains, i).sd;
7573 #elif defined(CONFIG_SCHED_BOOK)
7574 sd = &per_cpu(book_domains, i).sd;
7575 #else
7576 sd = &per_cpu(phys_domains, i).sd;
7577 #endif
7578 cpu_attach_domain(sd, d.rd, i);
7579 }
7580
7581 d.sched_group_nodes = NULL; /* don't free this we still need it */
7582 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7583 return 0;
7584
7585 error:
7586 __free_domain_allocs(&d, alloc_state, cpu_map);
7587 return -ENOMEM;
7588 }
7589
7590 static int build_sched_domains(const struct cpumask *cpu_map)
7591 {
7592 return __build_sched_domains(cpu_map, NULL);
7593 }
7594
7595 static cpumask_var_t *doms_cur; /* current sched domains */
7596 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7597 static struct sched_domain_attr *dattr_cur;
7598 /* attribues of custom domains in 'doms_cur' */
7599
7600 /*
7601 * Special case: If a kmalloc of a doms_cur partition (array of
7602 * cpumask) fails, then fallback to a single sched domain,
7603 * as determined by the single cpumask fallback_doms.
7604 */
7605 static cpumask_var_t fallback_doms;
7606
7607 /*
7608 * arch_update_cpu_topology lets virtualized architectures update the
7609 * cpu core maps. It is supposed to return 1 if the topology changed
7610 * or 0 if it stayed the same.
7611 */
7612 int __attribute__((weak)) arch_update_cpu_topology(void)
7613 {
7614 return 0;
7615 }
7616
7617 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7618 {
7619 int i;
7620 cpumask_var_t *doms;
7621
7622 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7623 if (!doms)
7624 return NULL;
7625 for (i = 0; i < ndoms; i++) {
7626 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7627 free_sched_domains(doms, i);
7628 return NULL;
7629 }
7630 }
7631 return doms;
7632 }
7633
7634 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7635 {
7636 unsigned int i;
7637 for (i = 0; i < ndoms; i++)
7638 free_cpumask_var(doms[i]);
7639 kfree(doms);
7640 }
7641
7642 /*
7643 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7644 * For now this just excludes isolated cpus, but could be used to
7645 * exclude other special cases in the future.
7646 */
7647 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7648 {
7649 int err;
7650
7651 arch_update_cpu_topology();
7652 ndoms_cur = 1;
7653 doms_cur = alloc_sched_domains(ndoms_cur);
7654 if (!doms_cur)
7655 doms_cur = &fallback_doms;
7656 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7657 dattr_cur = NULL;
7658 err = build_sched_domains(doms_cur[0]);
7659 register_sched_domain_sysctl();
7660
7661 return err;
7662 }
7663
7664 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7665 struct cpumask *tmpmask)
7666 {
7667 free_sched_groups(cpu_map, tmpmask);
7668 }
7669
7670 /*
7671 * Detach sched domains from a group of cpus specified in cpu_map
7672 * These cpus will now be attached to the NULL domain
7673 */
7674 static void detach_destroy_domains(const struct cpumask *cpu_map)
7675 {
7676 /* Save because hotplug lock held. */
7677 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7678 int i;
7679
7680 for_each_cpu(i, cpu_map)
7681 cpu_attach_domain(NULL, &def_root_domain, i);
7682 synchronize_sched();
7683 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7684 }
7685
7686 /* handle null as "default" */
7687 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7688 struct sched_domain_attr *new, int idx_new)
7689 {
7690 struct sched_domain_attr tmp;
7691
7692 /* fast path */
7693 if (!new && !cur)
7694 return 1;
7695
7696 tmp = SD_ATTR_INIT;
7697 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7698 new ? (new + idx_new) : &tmp,
7699 sizeof(struct sched_domain_attr));
7700 }
7701
7702 /*
7703 * Partition sched domains as specified by the 'ndoms_new'
7704 * cpumasks in the array doms_new[] of cpumasks. This compares
7705 * doms_new[] to the current sched domain partitioning, doms_cur[].
7706 * It destroys each deleted domain and builds each new domain.
7707 *
7708 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7709 * The masks don't intersect (don't overlap.) We should setup one
7710 * sched domain for each mask. CPUs not in any of the cpumasks will
7711 * not be load balanced. If the same cpumask appears both in the
7712 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7713 * it as it is.
7714 *
7715 * The passed in 'doms_new' should be allocated using
7716 * alloc_sched_domains. This routine takes ownership of it and will
7717 * free_sched_domains it when done with it. If the caller failed the
7718 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7719 * and partition_sched_domains() will fallback to the single partition
7720 * 'fallback_doms', it also forces the domains to be rebuilt.
7721 *
7722 * If doms_new == NULL it will be replaced with cpu_online_mask.
7723 * ndoms_new == 0 is a special case for destroying existing domains,
7724 * and it will not create the default domain.
7725 *
7726 * Call with hotplug lock held
7727 */
7728 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7729 struct sched_domain_attr *dattr_new)
7730 {
7731 int i, j, n;
7732 int new_topology;
7733
7734 mutex_lock(&sched_domains_mutex);
7735
7736 /* always unregister in case we don't destroy any domains */
7737 unregister_sched_domain_sysctl();
7738
7739 /* Let architecture update cpu core mappings. */
7740 new_topology = arch_update_cpu_topology();
7741
7742 n = doms_new ? ndoms_new : 0;
7743
7744 /* Destroy deleted domains */
7745 for (i = 0; i < ndoms_cur; i++) {
7746 for (j = 0; j < n && !new_topology; j++) {
7747 if (cpumask_equal(doms_cur[i], doms_new[j])
7748 && dattrs_equal(dattr_cur, i, dattr_new, j))
7749 goto match1;
7750 }
7751 /* no match - a current sched domain not in new doms_new[] */
7752 detach_destroy_domains(doms_cur[i]);
7753 match1:
7754 ;
7755 }
7756
7757 if (doms_new == NULL) {
7758 ndoms_cur = 0;
7759 doms_new = &fallback_doms;
7760 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7761 WARN_ON_ONCE(dattr_new);
7762 }
7763
7764 /* Build new domains */
7765 for (i = 0; i < ndoms_new; i++) {
7766 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7767 if (cpumask_equal(doms_new[i], doms_cur[j])
7768 && dattrs_equal(dattr_new, i, dattr_cur, j))
7769 goto match2;
7770 }
7771 /* no match - add a new doms_new */
7772 __build_sched_domains(doms_new[i],
7773 dattr_new ? dattr_new + i : NULL);
7774 match2:
7775 ;
7776 }
7777
7778 /* Remember the new sched domains */
7779 if (doms_cur != &fallback_doms)
7780 free_sched_domains(doms_cur, ndoms_cur);
7781 kfree(dattr_cur); /* kfree(NULL) is safe */
7782 doms_cur = doms_new;
7783 dattr_cur = dattr_new;
7784 ndoms_cur = ndoms_new;
7785
7786 register_sched_domain_sysctl();
7787
7788 mutex_unlock(&sched_domains_mutex);
7789 }
7790
7791 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7792 static void arch_reinit_sched_domains(void)
7793 {
7794 get_online_cpus();
7795
7796 /* Destroy domains first to force the rebuild */
7797 partition_sched_domains(0, NULL, NULL);
7798
7799 rebuild_sched_domains();
7800 put_online_cpus();
7801 }
7802
7803 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7804 {
7805 unsigned int level = 0;
7806
7807 if (sscanf(buf, "%u", &level) != 1)
7808 return -EINVAL;
7809
7810 /*
7811 * level is always be positive so don't check for
7812 * level < POWERSAVINGS_BALANCE_NONE which is 0
7813 * What happens on 0 or 1 byte write,
7814 * need to check for count as well?
7815 */
7816
7817 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7818 return -EINVAL;
7819
7820 if (smt)
7821 sched_smt_power_savings = level;
7822 else
7823 sched_mc_power_savings = level;
7824
7825 arch_reinit_sched_domains();
7826
7827 return count;
7828 }
7829
7830 #ifdef CONFIG_SCHED_MC
7831 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7832 struct sysdev_class_attribute *attr,
7833 char *page)
7834 {
7835 return sprintf(page, "%u\n", sched_mc_power_savings);
7836 }
7837 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7838 struct sysdev_class_attribute *attr,
7839 const char *buf, size_t count)
7840 {
7841 return sched_power_savings_store(buf, count, 0);
7842 }
7843 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7844 sched_mc_power_savings_show,
7845 sched_mc_power_savings_store);
7846 #endif
7847
7848 #ifdef CONFIG_SCHED_SMT
7849 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7850 struct sysdev_class_attribute *attr,
7851 char *page)
7852 {
7853 return sprintf(page, "%u\n", sched_smt_power_savings);
7854 }
7855 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7856 struct sysdev_class_attribute *attr,
7857 const char *buf, size_t count)
7858 {
7859 return sched_power_savings_store(buf, count, 1);
7860 }
7861 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7862 sched_smt_power_savings_show,
7863 sched_smt_power_savings_store);
7864 #endif
7865
7866 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7867 {
7868 int err = 0;
7869
7870 #ifdef CONFIG_SCHED_SMT
7871 if (smt_capable())
7872 err = sysfs_create_file(&cls->kset.kobj,
7873 &attr_sched_smt_power_savings.attr);
7874 #endif
7875 #ifdef CONFIG_SCHED_MC
7876 if (!err && mc_capable())
7877 err = sysfs_create_file(&cls->kset.kobj,
7878 &attr_sched_mc_power_savings.attr);
7879 #endif
7880 return err;
7881 }
7882 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7883
7884 /*
7885 * Update cpusets according to cpu_active mask. If cpusets are
7886 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7887 * around partition_sched_domains().
7888 */
7889 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7890 void *hcpu)
7891 {
7892 switch (action & ~CPU_TASKS_FROZEN) {
7893 case CPU_ONLINE:
7894 case CPU_DOWN_FAILED:
7895 cpuset_update_active_cpus();
7896 return NOTIFY_OK;
7897 default:
7898 return NOTIFY_DONE;
7899 }
7900 }
7901
7902 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7903 void *hcpu)
7904 {
7905 switch (action & ~CPU_TASKS_FROZEN) {
7906 case CPU_DOWN_PREPARE:
7907 cpuset_update_active_cpus();
7908 return NOTIFY_OK;
7909 default:
7910 return NOTIFY_DONE;
7911 }
7912 }
7913
7914 static int update_runtime(struct notifier_block *nfb,
7915 unsigned long action, void *hcpu)
7916 {
7917 int cpu = (int)(long)hcpu;
7918
7919 switch (action) {
7920 case CPU_DOWN_PREPARE:
7921 case CPU_DOWN_PREPARE_FROZEN:
7922 disable_runtime(cpu_rq(cpu));
7923 return NOTIFY_OK;
7924
7925 case CPU_DOWN_FAILED:
7926 case CPU_DOWN_FAILED_FROZEN:
7927 case CPU_ONLINE:
7928 case CPU_ONLINE_FROZEN:
7929 enable_runtime(cpu_rq(cpu));
7930 return NOTIFY_OK;
7931
7932 default:
7933 return NOTIFY_DONE;
7934 }
7935 }
7936
7937 void __init sched_init_smp(void)
7938 {
7939 cpumask_var_t non_isolated_cpus;
7940
7941 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7942 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7943
7944 #if defined(CONFIG_NUMA)
7945 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7946 GFP_KERNEL);
7947 BUG_ON(sched_group_nodes_bycpu == NULL);
7948 #endif
7949 get_online_cpus();
7950 mutex_lock(&sched_domains_mutex);
7951 arch_init_sched_domains(cpu_active_mask);
7952 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7953 if (cpumask_empty(non_isolated_cpus))
7954 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7955 mutex_unlock(&sched_domains_mutex);
7956 put_online_cpus();
7957
7958 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7959 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7960
7961 /* RT runtime code needs to handle some hotplug events */
7962 hotcpu_notifier(update_runtime, 0);
7963
7964 init_hrtick();
7965
7966 /* Move init over to a non-isolated CPU */
7967 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7968 BUG();
7969 sched_init_granularity();
7970 free_cpumask_var(non_isolated_cpus);
7971
7972 init_sched_rt_class();
7973 }
7974 #else
7975 void __init sched_init_smp(void)
7976 {
7977 sched_init_granularity();
7978 }
7979 #endif /* CONFIG_SMP */
7980
7981 const_debug unsigned int sysctl_timer_migration = 1;
7982
7983 int in_sched_functions(unsigned long addr)
7984 {
7985 return in_lock_functions(addr) ||
7986 (addr >= (unsigned long)__sched_text_start
7987 && addr < (unsigned long)__sched_text_end);
7988 }
7989
7990 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7991 {
7992 cfs_rq->tasks_timeline = RB_ROOT;
7993 INIT_LIST_HEAD(&cfs_rq->tasks);
7994 #ifdef CONFIG_FAIR_GROUP_SCHED
7995 cfs_rq->rq = rq;
7996 /* allow initial update_cfs_load() to truncate */
7997 #ifdef CONFIG_SMP
7998 cfs_rq->load_stamp = 1;
7999 #endif
8000 #endif
8001 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8002 }
8003
8004 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8005 {
8006 struct rt_prio_array *array;
8007 int i;
8008
8009 array = &rt_rq->active;
8010 for (i = 0; i < MAX_RT_PRIO; i++) {
8011 INIT_LIST_HEAD(array->queue + i);
8012 __clear_bit(i, array->bitmap);
8013 }
8014 /* delimiter for bitsearch: */
8015 __set_bit(MAX_RT_PRIO, array->bitmap);
8016
8017 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8018 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8019 #ifdef CONFIG_SMP
8020 rt_rq->highest_prio.next = MAX_RT_PRIO;
8021 #endif
8022 #endif
8023 #ifdef CONFIG_SMP
8024 rt_rq->rt_nr_migratory = 0;
8025 rt_rq->overloaded = 0;
8026 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8027 #endif
8028
8029 rt_rq->rt_time = 0;
8030 rt_rq->rt_throttled = 0;
8031 rt_rq->rt_runtime = 0;
8032 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8033
8034 #ifdef CONFIG_RT_GROUP_SCHED
8035 rt_rq->rt_nr_boosted = 0;
8036 rt_rq->rq = rq;
8037 #endif
8038 }
8039
8040 #ifdef CONFIG_FAIR_GROUP_SCHED
8041 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8042 struct sched_entity *se, int cpu,
8043 struct sched_entity *parent)
8044 {
8045 struct rq *rq = cpu_rq(cpu);
8046 tg->cfs_rq[cpu] = cfs_rq;
8047 init_cfs_rq(cfs_rq, rq);
8048 cfs_rq->tg = tg;
8049
8050 tg->se[cpu] = se;
8051 /* se could be NULL for root_task_group */
8052 if (!se)
8053 return;
8054
8055 if (!parent)
8056 se->cfs_rq = &rq->cfs;
8057 else
8058 se->cfs_rq = parent->my_q;
8059
8060 se->my_q = cfs_rq;
8061 update_load_set(&se->load, 0);
8062 se->parent = parent;
8063 }
8064 #endif
8065
8066 #ifdef CONFIG_RT_GROUP_SCHED
8067 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8068 struct sched_rt_entity *rt_se, int cpu,
8069 struct sched_rt_entity *parent)
8070 {
8071 struct rq *rq = cpu_rq(cpu);
8072
8073 tg->rt_rq[cpu] = rt_rq;
8074 init_rt_rq(rt_rq, rq);
8075 rt_rq->tg = tg;
8076 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8077
8078 tg->rt_se[cpu] = rt_se;
8079 if (!rt_se)
8080 return;
8081
8082 if (!parent)
8083 rt_se->rt_rq = &rq->rt;
8084 else
8085 rt_se->rt_rq = parent->my_q;
8086
8087 rt_se->my_q = rt_rq;
8088 rt_se->parent = parent;
8089 INIT_LIST_HEAD(&rt_se->run_list);
8090 }
8091 #endif
8092
8093 void __init sched_init(void)
8094 {
8095 int i, j;
8096 unsigned long alloc_size = 0, ptr;
8097
8098 #ifdef CONFIG_FAIR_GROUP_SCHED
8099 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8100 #endif
8101 #ifdef CONFIG_RT_GROUP_SCHED
8102 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8103 #endif
8104 #ifdef CONFIG_CPUMASK_OFFSTACK
8105 alloc_size += num_possible_cpus() * cpumask_size();
8106 #endif
8107 if (alloc_size) {
8108 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8109
8110 #ifdef CONFIG_FAIR_GROUP_SCHED
8111 root_task_group.se = (struct sched_entity **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
8113
8114 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8115 ptr += nr_cpu_ids * sizeof(void **);
8116
8117 #endif /* CONFIG_FAIR_GROUP_SCHED */
8118 #ifdef CONFIG_RT_GROUP_SCHED
8119 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8120 ptr += nr_cpu_ids * sizeof(void **);
8121
8122 root_task_group.rt_rq = (struct rt_rq **)ptr;
8123 ptr += nr_cpu_ids * sizeof(void **);
8124
8125 #endif /* CONFIG_RT_GROUP_SCHED */
8126 #ifdef CONFIG_CPUMASK_OFFSTACK
8127 for_each_possible_cpu(i) {
8128 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8129 ptr += cpumask_size();
8130 }
8131 #endif /* CONFIG_CPUMASK_OFFSTACK */
8132 }
8133
8134 #ifdef CONFIG_SMP
8135 init_defrootdomain();
8136 #endif
8137
8138 init_rt_bandwidth(&def_rt_bandwidth,
8139 global_rt_period(), global_rt_runtime());
8140
8141 #ifdef CONFIG_RT_GROUP_SCHED
8142 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8143 global_rt_period(), global_rt_runtime());
8144 #endif /* CONFIG_RT_GROUP_SCHED */
8145
8146 #ifdef CONFIG_CGROUP_SCHED
8147 list_add(&root_task_group.list, &task_groups);
8148 INIT_LIST_HEAD(&root_task_group.children);
8149 autogroup_init(&init_task);
8150 #endif /* CONFIG_CGROUP_SCHED */
8151
8152 for_each_possible_cpu(i) {
8153 struct rq *rq;
8154
8155 rq = cpu_rq(i);
8156 raw_spin_lock_init(&rq->lock);
8157 rq->nr_running = 0;
8158 rq->calc_load_active = 0;
8159 rq->calc_load_update = jiffies + LOAD_FREQ;
8160 init_cfs_rq(&rq->cfs, rq);
8161 init_rt_rq(&rq->rt, rq);
8162 #ifdef CONFIG_FAIR_GROUP_SCHED
8163 root_task_group.shares = root_task_group_load;
8164 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8165 /*
8166 * How much cpu bandwidth does root_task_group get?
8167 *
8168 * In case of task-groups formed thr' the cgroup filesystem, it
8169 * gets 100% of the cpu resources in the system. This overall
8170 * system cpu resource is divided among the tasks of
8171 * root_task_group and its child task-groups in a fair manner,
8172 * based on each entity's (task or task-group's) weight
8173 * (se->load.weight).
8174 *
8175 * In other words, if root_task_group has 10 tasks of weight
8176 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8177 * then A0's share of the cpu resource is:
8178 *
8179 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8180 *
8181 * We achieve this by letting root_task_group's tasks sit
8182 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8183 */
8184 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8185 #endif /* CONFIG_FAIR_GROUP_SCHED */
8186
8187 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8188 #ifdef CONFIG_RT_GROUP_SCHED
8189 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8190 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8191 #endif
8192
8193 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8194 rq->cpu_load[j] = 0;
8195
8196 rq->last_load_update_tick = jiffies;
8197
8198 #ifdef CONFIG_SMP
8199 rq->sd = NULL;
8200 rq->rd = NULL;
8201 rq->cpu_power = SCHED_LOAD_SCALE;
8202 rq->post_schedule = 0;
8203 rq->active_balance = 0;
8204 rq->next_balance = jiffies;
8205 rq->push_cpu = 0;
8206 rq->cpu = i;
8207 rq->online = 0;
8208 rq->idle_stamp = 0;
8209 rq->avg_idle = 2*sysctl_sched_migration_cost;
8210 rq_attach_root(rq, &def_root_domain);
8211 #ifdef CONFIG_NO_HZ
8212 rq->nohz_balance_kick = 0;
8213 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8214 #endif
8215 #endif
8216 init_rq_hrtick(rq);
8217 atomic_set(&rq->nr_iowait, 0);
8218 }
8219
8220 set_load_weight(&init_task);
8221
8222 #ifdef CONFIG_PREEMPT_NOTIFIERS
8223 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8224 #endif
8225
8226 #ifdef CONFIG_SMP
8227 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8228 #endif
8229
8230 #ifdef CONFIG_RT_MUTEXES
8231 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8232 #endif
8233
8234 /*
8235 * The boot idle thread does lazy MMU switching as well:
8236 */
8237 atomic_inc(&init_mm.mm_count);
8238 enter_lazy_tlb(&init_mm, current);
8239
8240 /*
8241 * Make us the idle thread. Technically, schedule() should not be
8242 * called from this thread, however somewhere below it might be,
8243 * but because we are the idle thread, we just pick up running again
8244 * when this runqueue becomes "idle".
8245 */
8246 init_idle(current, smp_processor_id());
8247
8248 calc_load_update = jiffies + LOAD_FREQ;
8249
8250 /*
8251 * During early bootup we pretend to be a normal task:
8252 */
8253 current->sched_class = &fair_sched_class;
8254
8255 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8256 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8257 #ifdef CONFIG_SMP
8258 #ifdef CONFIG_NO_HZ
8259 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8260 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8261 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8262 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8263 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8264 #endif
8265 /* May be allocated at isolcpus cmdline parse time */
8266 if (cpu_isolated_map == NULL)
8267 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8268 #endif /* SMP */
8269
8270 scheduler_running = 1;
8271 }
8272
8273 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8274 static inline int preempt_count_equals(int preempt_offset)
8275 {
8276 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8277
8278 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8279 }
8280
8281 void __might_sleep(const char *file, int line, int preempt_offset)
8282 {
8283 #ifdef in_atomic
8284 static unsigned long prev_jiffy; /* ratelimiting */
8285
8286 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8287 system_state != SYSTEM_RUNNING || oops_in_progress)
8288 return;
8289 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8290 return;
8291 prev_jiffy = jiffies;
8292
8293 printk(KERN_ERR
8294 "BUG: sleeping function called from invalid context at %s:%d\n",
8295 file, line);
8296 printk(KERN_ERR
8297 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8298 in_atomic(), irqs_disabled(),
8299 current->pid, current->comm);
8300
8301 debug_show_held_locks(current);
8302 if (irqs_disabled())
8303 print_irqtrace_events(current);
8304 dump_stack();
8305 #endif
8306 }
8307 EXPORT_SYMBOL(__might_sleep);
8308 #endif
8309
8310 #ifdef CONFIG_MAGIC_SYSRQ
8311 static void normalize_task(struct rq *rq, struct task_struct *p)
8312 {
8313 const struct sched_class *prev_class = p->sched_class;
8314 int old_prio = p->prio;
8315 int on_rq;
8316
8317 on_rq = p->se.on_rq;
8318 if (on_rq)
8319 deactivate_task(rq, p, 0);
8320 __setscheduler(rq, p, SCHED_NORMAL, 0);
8321 if (on_rq) {
8322 activate_task(rq, p, 0);
8323 resched_task(rq->curr);
8324 }
8325
8326 check_class_changed(rq, p, prev_class, old_prio);
8327 }
8328
8329 void normalize_rt_tasks(void)
8330 {
8331 struct task_struct *g, *p;
8332 unsigned long flags;
8333 struct rq *rq;
8334
8335 read_lock_irqsave(&tasklist_lock, flags);
8336 do_each_thread(g, p) {
8337 /*
8338 * Only normalize user tasks:
8339 */
8340 if (!p->mm)
8341 continue;
8342
8343 p->se.exec_start = 0;
8344 #ifdef CONFIG_SCHEDSTATS
8345 p->se.statistics.wait_start = 0;
8346 p->se.statistics.sleep_start = 0;
8347 p->se.statistics.block_start = 0;
8348 #endif
8349
8350 if (!rt_task(p)) {
8351 /*
8352 * Renice negative nice level userspace
8353 * tasks back to 0:
8354 */
8355 if (TASK_NICE(p) < 0 && p->mm)
8356 set_user_nice(p, 0);
8357 continue;
8358 }
8359
8360 raw_spin_lock(&p->pi_lock);
8361 rq = __task_rq_lock(p);
8362
8363 normalize_task(rq, p);
8364
8365 __task_rq_unlock(rq);
8366 raw_spin_unlock(&p->pi_lock);
8367 } while_each_thread(g, p);
8368
8369 read_unlock_irqrestore(&tasklist_lock, flags);
8370 }
8371
8372 #endif /* CONFIG_MAGIC_SYSRQ */
8373
8374 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8375 /*
8376 * These functions are only useful for the IA64 MCA handling, or kdb.
8377 *
8378 * They can only be called when the whole system has been
8379 * stopped - every CPU needs to be quiescent, and no scheduling
8380 * activity can take place. Using them for anything else would
8381 * be a serious bug, and as a result, they aren't even visible
8382 * under any other configuration.
8383 */
8384
8385 /**
8386 * curr_task - return the current task for a given cpu.
8387 * @cpu: the processor in question.
8388 *
8389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8390 */
8391 struct task_struct *curr_task(int cpu)
8392 {
8393 return cpu_curr(cpu);
8394 }
8395
8396 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8397
8398 #ifdef CONFIG_IA64
8399 /**
8400 * set_curr_task - set the current task for a given cpu.
8401 * @cpu: the processor in question.
8402 * @p: the task pointer to set.
8403 *
8404 * Description: This function must only be used when non-maskable interrupts
8405 * are serviced on a separate stack. It allows the architecture to switch the
8406 * notion of the current task on a cpu in a non-blocking manner. This function
8407 * must be called with all CPU's synchronized, and interrupts disabled, the
8408 * and caller must save the original value of the current task (see
8409 * curr_task() above) and restore that value before reenabling interrupts and
8410 * re-starting the system.
8411 *
8412 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8413 */
8414 void set_curr_task(int cpu, struct task_struct *p)
8415 {
8416 cpu_curr(cpu) = p;
8417 }
8418
8419 #endif
8420
8421 #ifdef CONFIG_FAIR_GROUP_SCHED
8422 static void free_fair_sched_group(struct task_group *tg)
8423 {
8424 int i;
8425
8426 for_each_possible_cpu(i) {
8427 if (tg->cfs_rq)
8428 kfree(tg->cfs_rq[i]);
8429 if (tg->se)
8430 kfree(tg->se[i]);
8431 }
8432
8433 kfree(tg->cfs_rq);
8434 kfree(tg->se);
8435 }
8436
8437 static
8438 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8439 {
8440 struct cfs_rq *cfs_rq;
8441 struct sched_entity *se;
8442 struct rq *rq;
8443 int i;
8444
8445 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8446 if (!tg->cfs_rq)
8447 goto err;
8448 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8449 if (!tg->se)
8450 goto err;
8451
8452 tg->shares = NICE_0_LOAD;
8453
8454 for_each_possible_cpu(i) {
8455 rq = cpu_rq(i);
8456
8457 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8458 GFP_KERNEL, cpu_to_node(i));
8459 if (!cfs_rq)
8460 goto err;
8461
8462 se = kzalloc_node(sizeof(struct sched_entity),
8463 GFP_KERNEL, cpu_to_node(i));
8464 if (!se)
8465 goto err_free_rq;
8466
8467 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8468 }
8469
8470 return 1;
8471
8472 err_free_rq:
8473 kfree(cfs_rq);
8474 err:
8475 return 0;
8476 }
8477
8478 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8479 {
8480 struct rq *rq = cpu_rq(cpu);
8481 unsigned long flags;
8482
8483 /*
8484 * Only empty task groups can be destroyed; so we can speculatively
8485 * check on_list without danger of it being re-added.
8486 */
8487 if (!tg->cfs_rq[cpu]->on_list)
8488 return;
8489
8490 raw_spin_lock_irqsave(&rq->lock, flags);
8491 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8492 raw_spin_unlock_irqrestore(&rq->lock, flags);
8493 }
8494 #else /* !CONFG_FAIR_GROUP_SCHED */
8495 static inline void free_fair_sched_group(struct task_group *tg)
8496 {
8497 }
8498
8499 static inline
8500 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8501 {
8502 return 1;
8503 }
8504
8505 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8506 {
8507 }
8508 #endif /* CONFIG_FAIR_GROUP_SCHED */
8509
8510 #ifdef CONFIG_RT_GROUP_SCHED
8511 static void free_rt_sched_group(struct task_group *tg)
8512 {
8513 int i;
8514
8515 destroy_rt_bandwidth(&tg->rt_bandwidth);
8516
8517 for_each_possible_cpu(i) {
8518 if (tg->rt_rq)
8519 kfree(tg->rt_rq[i]);
8520 if (tg->rt_se)
8521 kfree(tg->rt_se[i]);
8522 }
8523
8524 kfree(tg->rt_rq);
8525 kfree(tg->rt_se);
8526 }
8527
8528 static
8529 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8530 {
8531 struct rt_rq *rt_rq;
8532 struct sched_rt_entity *rt_se;
8533 struct rq *rq;
8534 int i;
8535
8536 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8537 if (!tg->rt_rq)
8538 goto err;
8539 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8540 if (!tg->rt_se)
8541 goto err;
8542
8543 init_rt_bandwidth(&tg->rt_bandwidth,
8544 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8545
8546 for_each_possible_cpu(i) {
8547 rq = cpu_rq(i);
8548
8549 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8550 GFP_KERNEL, cpu_to_node(i));
8551 if (!rt_rq)
8552 goto err;
8553
8554 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8555 GFP_KERNEL, cpu_to_node(i));
8556 if (!rt_se)
8557 goto err_free_rq;
8558
8559 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8560 }
8561
8562 return 1;
8563
8564 err_free_rq:
8565 kfree(rt_rq);
8566 err:
8567 return 0;
8568 }
8569 #else /* !CONFIG_RT_GROUP_SCHED */
8570 static inline void free_rt_sched_group(struct task_group *tg)
8571 {
8572 }
8573
8574 static inline
8575 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8576 {
8577 return 1;
8578 }
8579 #endif /* CONFIG_RT_GROUP_SCHED */
8580
8581 #ifdef CONFIG_CGROUP_SCHED
8582 static void free_sched_group(struct task_group *tg)
8583 {
8584 free_fair_sched_group(tg);
8585 free_rt_sched_group(tg);
8586 autogroup_free(tg);
8587 kfree(tg);
8588 }
8589
8590 /* allocate runqueue etc for a new task group */
8591 struct task_group *sched_create_group(struct task_group *parent)
8592 {
8593 struct task_group *tg;
8594 unsigned long flags;
8595
8596 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8597 if (!tg)
8598 return ERR_PTR(-ENOMEM);
8599
8600 if (!alloc_fair_sched_group(tg, parent))
8601 goto err;
8602
8603 if (!alloc_rt_sched_group(tg, parent))
8604 goto err;
8605
8606 spin_lock_irqsave(&task_group_lock, flags);
8607 list_add_rcu(&tg->list, &task_groups);
8608
8609 WARN_ON(!parent); /* root should already exist */
8610
8611 tg->parent = parent;
8612 INIT_LIST_HEAD(&tg->children);
8613 list_add_rcu(&tg->siblings, &parent->children);
8614 spin_unlock_irqrestore(&task_group_lock, flags);
8615
8616 return tg;
8617
8618 err:
8619 free_sched_group(tg);
8620 return ERR_PTR(-ENOMEM);
8621 }
8622
8623 /* rcu callback to free various structures associated with a task group */
8624 static void free_sched_group_rcu(struct rcu_head *rhp)
8625 {
8626 /* now it should be safe to free those cfs_rqs */
8627 free_sched_group(container_of(rhp, struct task_group, rcu));
8628 }
8629
8630 /* Destroy runqueue etc associated with a task group */
8631 void sched_destroy_group(struct task_group *tg)
8632 {
8633 unsigned long flags;
8634 int i;
8635
8636 /* end participation in shares distribution */
8637 for_each_possible_cpu(i)
8638 unregister_fair_sched_group(tg, i);
8639
8640 spin_lock_irqsave(&task_group_lock, flags);
8641 list_del_rcu(&tg->list);
8642 list_del_rcu(&tg->siblings);
8643 spin_unlock_irqrestore(&task_group_lock, flags);
8644
8645 /* wait for possible concurrent references to cfs_rqs complete */
8646 call_rcu(&tg->rcu, free_sched_group_rcu);
8647 }
8648
8649 /* change task's runqueue when it moves between groups.
8650 * The caller of this function should have put the task in its new group
8651 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8652 * reflect its new group.
8653 */
8654 void sched_move_task(struct task_struct *tsk)
8655 {
8656 int on_rq, running;
8657 unsigned long flags;
8658 struct rq *rq;
8659
8660 rq = task_rq_lock(tsk, &flags);
8661
8662 running = task_current(rq, tsk);
8663 on_rq = tsk->se.on_rq;
8664
8665 if (on_rq)
8666 dequeue_task(rq, tsk, 0);
8667 if (unlikely(running))
8668 tsk->sched_class->put_prev_task(rq, tsk);
8669
8670 #ifdef CONFIG_FAIR_GROUP_SCHED
8671 if (tsk->sched_class->task_move_group)
8672 tsk->sched_class->task_move_group(tsk, on_rq);
8673 else
8674 #endif
8675 set_task_rq(tsk, task_cpu(tsk));
8676
8677 if (unlikely(running))
8678 tsk->sched_class->set_curr_task(rq);
8679 if (on_rq)
8680 enqueue_task(rq, tsk, 0);
8681
8682 task_rq_unlock(rq, &flags);
8683 }
8684 #endif /* CONFIG_CGROUP_SCHED */
8685
8686 #ifdef CONFIG_FAIR_GROUP_SCHED
8687 static DEFINE_MUTEX(shares_mutex);
8688
8689 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8690 {
8691 int i;
8692 unsigned long flags;
8693
8694 /*
8695 * We can't change the weight of the root cgroup.
8696 */
8697 if (!tg->se[0])
8698 return -EINVAL;
8699
8700 if (shares < MIN_SHARES)
8701 shares = MIN_SHARES;
8702 else if (shares > MAX_SHARES)
8703 shares = MAX_SHARES;
8704
8705 mutex_lock(&shares_mutex);
8706 if (tg->shares == shares)
8707 goto done;
8708
8709 tg->shares = shares;
8710 for_each_possible_cpu(i) {
8711 struct rq *rq = cpu_rq(i);
8712 struct sched_entity *se;
8713
8714 se = tg->se[i];
8715 /* Propagate contribution to hierarchy */
8716 raw_spin_lock_irqsave(&rq->lock, flags);
8717 for_each_sched_entity(se)
8718 update_cfs_shares(group_cfs_rq(se));
8719 raw_spin_unlock_irqrestore(&rq->lock, flags);
8720 }
8721
8722 done:
8723 mutex_unlock(&shares_mutex);
8724 return 0;
8725 }
8726
8727 unsigned long sched_group_shares(struct task_group *tg)
8728 {
8729 return tg->shares;
8730 }
8731 #endif
8732
8733 #ifdef CONFIG_RT_GROUP_SCHED
8734 /*
8735 * Ensure that the real time constraints are schedulable.
8736 */
8737 static DEFINE_MUTEX(rt_constraints_mutex);
8738
8739 static unsigned long to_ratio(u64 period, u64 runtime)
8740 {
8741 if (runtime == RUNTIME_INF)
8742 return 1ULL << 20;
8743
8744 return div64_u64(runtime << 20, period);
8745 }
8746
8747 /* Must be called with tasklist_lock held */
8748 static inline int tg_has_rt_tasks(struct task_group *tg)
8749 {
8750 struct task_struct *g, *p;
8751
8752 do_each_thread(g, p) {
8753 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8754 return 1;
8755 } while_each_thread(g, p);
8756
8757 return 0;
8758 }
8759
8760 struct rt_schedulable_data {
8761 struct task_group *tg;
8762 u64 rt_period;
8763 u64 rt_runtime;
8764 };
8765
8766 static int tg_schedulable(struct task_group *tg, void *data)
8767 {
8768 struct rt_schedulable_data *d = data;
8769 struct task_group *child;
8770 unsigned long total, sum = 0;
8771 u64 period, runtime;
8772
8773 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8774 runtime = tg->rt_bandwidth.rt_runtime;
8775
8776 if (tg == d->tg) {
8777 period = d->rt_period;
8778 runtime = d->rt_runtime;
8779 }
8780
8781 /*
8782 * Cannot have more runtime than the period.
8783 */
8784 if (runtime > period && runtime != RUNTIME_INF)
8785 return -EINVAL;
8786
8787 /*
8788 * Ensure we don't starve existing RT tasks.
8789 */
8790 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8791 return -EBUSY;
8792
8793 total = to_ratio(period, runtime);
8794
8795 /*
8796 * Nobody can have more than the global setting allows.
8797 */
8798 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8799 return -EINVAL;
8800
8801 /*
8802 * The sum of our children's runtime should not exceed our own.
8803 */
8804 list_for_each_entry_rcu(child, &tg->children, siblings) {
8805 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8806 runtime = child->rt_bandwidth.rt_runtime;
8807
8808 if (child == d->tg) {
8809 period = d->rt_period;
8810 runtime = d->rt_runtime;
8811 }
8812
8813 sum += to_ratio(period, runtime);
8814 }
8815
8816 if (sum > total)
8817 return -EINVAL;
8818
8819 return 0;
8820 }
8821
8822 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8823 {
8824 struct rt_schedulable_data data = {
8825 .tg = tg,
8826 .rt_period = period,
8827 .rt_runtime = runtime,
8828 };
8829
8830 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8831 }
8832
8833 static int tg_set_bandwidth(struct task_group *tg,
8834 u64 rt_period, u64 rt_runtime)
8835 {
8836 int i, err = 0;
8837
8838 mutex_lock(&rt_constraints_mutex);
8839 read_lock(&tasklist_lock);
8840 err = __rt_schedulable(tg, rt_period, rt_runtime);
8841 if (err)
8842 goto unlock;
8843
8844 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8845 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8846 tg->rt_bandwidth.rt_runtime = rt_runtime;
8847
8848 for_each_possible_cpu(i) {
8849 struct rt_rq *rt_rq = tg->rt_rq[i];
8850
8851 raw_spin_lock(&rt_rq->rt_runtime_lock);
8852 rt_rq->rt_runtime = rt_runtime;
8853 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8854 }
8855 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8856 unlock:
8857 read_unlock(&tasklist_lock);
8858 mutex_unlock(&rt_constraints_mutex);
8859
8860 return err;
8861 }
8862
8863 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8864 {
8865 u64 rt_runtime, rt_period;
8866
8867 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8868 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8869 if (rt_runtime_us < 0)
8870 rt_runtime = RUNTIME_INF;
8871
8872 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8873 }
8874
8875 long sched_group_rt_runtime(struct task_group *tg)
8876 {
8877 u64 rt_runtime_us;
8878
8879 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8880 return -1;
8881
8882 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8883 do_div(rt_runtime_us, NSEC_PER_USEC);
8884 return rt_runtime_us;
8885 }
8886
8887 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8888 {
8889 u64 rt_runtime, rt_period;
8890
8891 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8892 rt_runtime = tg->rt_bandwidth.rt_runtime;
8893
8894 if (rt_period == 0)
8895 return -EINVAL;
8896
8897 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8898 }
8899
8900 long sched_group_rt_period(struct task_group *tg)
8901 {
8902 u64 rt_period_us;
8903
8904 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8905 do_div(rt_period_us, NSEC_PER_USEC);
8906 return rt_period_us;
8907 }
8908
8909 static int sched_rt_global_constraints(void)
8910 {
8911 u64 runtime, period;
8912 int ret = 0;
8913
8914 if (sysctl_sched_rt_period <= 0)
8915 return -EINVAL;
8916
8917 runtime = global_rt_runtime();
8918 period = global_rt_period();
8919
8920 /*
8921 * Sanity check on the sysctl variables.
8922 */
8923 if (runtime > period && runtime != RUNTIME_INF)
8924 return -EINVAL;
8925
8926 mutex_lock(&rt_constraints_mutex);
8927 read_lock(&tasklist_lock);
8928 ret = __rt_schedulable(NULL, 0, 0);
8929 read_unlock(&tasklist_lock);
8930 mutex_unlock(&rt_constraints_mutex);
8931
8932 return ret;
8933 }
8934
8935 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8936 {
8937 /* Don't accept realtime tasks when there is no way for them to run */
8938 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8939 return 0;
8940
8941 return 1;
8942 }
8943
8944 #else /* !CONFIG_RT_GROUP_SCHED */
8945 static int sched_rt_global_constraints(void)
8946 {
8947 unsigned long flags;
8948 int i;
8949
8950 if (sysctl_sched_rt_period <= 0)
8951 return -EINVAL;
8952
8953 /*
8954 * There's always some RT tasks in the root group
8955 * -- migration, kstopmachine etc..
8956 */
8957 if (sysctl_sched_rt_runtime == 0)
8958 return -EBUSY;
8959
8960 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8961 for_each_possible_cpu(i) {
8962 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8963
8964 raw_spin_lock(&rt_rq->rt_runtime_lock);
8965 rt_rq->rt_runtime = global_rt_runtime();
8966 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8967 }
8968 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8969
8970 return 0;
8971 }
8972 #endif /* CONFIG_RT_GROUP_SCHED */
8973
8974 int sched_rt_handler(struct ctl_table *table, int write,
8975 void __user *buffer, size_t *lenp,
8976 loff_t *ppos)
8977 {
8978 int ret;
8979 int old_period, old_runtime;
8980 static DEFINE_MUTEX(mutex);
8981
8982 mutex_lock(&mutex);
8983 old_period = sysctl_sched_rt_period;
8984 old_runtime = sysctl_sched_rt_runtime;
8985
8986 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8987
8988 if (!ret && write) {
8989 ret = sched_rt_global_constraints();
8990 if (ret) {
8991 sysctl_sched_rt_period = old_period;
8992 sysctl_sched_rt_runtime = old_runtime;
8993 } else {
8994 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8995 def_rt_bandwidth.rt_period =
8996 ns_to_ktime(global_rt_period());
8997 }
8998 }
8999 mutex_unlock(&mutex);
9000
9001 return ret;
9002 }
9003
9004 #ifdef CONFIG_CGROUP_SCHED
9005
9006 /* return corresponding task_group object of a cgroup */
9007 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9008 {
9009 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9010 struct task_group, css);
9011 }
9012
9013 static struct cgroup_subsys_state *
9014 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9015 {
9016 struct task_group *tg, *parent;
9017
9018 if (!cgrp->parent) {
9019 /* This is early initialization for the top cgroup */
9020 return &root_task_group.css;
9021 }
9022
9023 parent = cgroup_tg(cgrp->parent);
9024 tg = sched_create_group(parent);
9025 if (IS_ERR(tg))
9026 return ERR_PTR(-ENOMEM);
9027
9028 return &tg->css;
9029 }
9030
9031 static void
9032 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9033 {
9034 struct task_group *tg = cgroup_tg(cgrp);
9035
9036 sched_destroy_group(tg);
9037 }
9038
9039 static int
9040 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9041 {
9042 #ifdef CONFIG_RT_GROUP_SCHED
9043 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9044 return -EINVAL;
9045 #else
9046 /* We don't support RT-tasks being in separate groups */
9047 if (tsk->sched_class != &fair_sched_class)
9048 return -EINVAL;
9049 #endif
9050 return 0;
9051 }
9052
9053 static int
9054 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9055 struct task_struct *tsk, bool threadgroup)
9056 {
9057 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9058 if (retval)
9059 return retval;
9060 if (threadgroup) {
9061 struct task_struct *c;
9062 rcu_read_lock();
9063 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9064 retval = cpu_cgroup_can_attach_task(cgrp, c);
9065 if (retval) {
9066 rcu_read_unlock();
9067 return retval;
9068 }
9069 }
9070 rcu_read_unlock();
9071 }
9072 return 0;
9073 }
9074
9075 static void
9076 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9077 struct cgroup *old_cont, struct task_struct *tsk,
9078 bool threadgroup)
9079 {
9080 sched_move_task(tsk);
9081 if (threadgroup) {
9082 struct task_struct *c;
9083 rcu_read_lock();
9084 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9085 sched_move_task(c);
9086 }
9087 rcu_read_unlock();
9088 }
9089 }
9090
9091 static void
9092 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9093 struct cgroup *old_cgrp, struct task_struct *task)
9094 {
9095 /*
9096 * cgroup_exit() is called in the copy_process() failure path.
9097 * Ignore this case since the task hasn't ran yet, this avoids
9098 * trying to poke a half freed task state from generic code.
9099 */
9100 if (!(task->flags & PF_EXITING))
9101 return;
9102
9103 sched_move_task(task);
9104 }
9105
9106 #ifdef CONFIG_FAIR_GROUP_SCHED
9107 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9108 u64 shareval)
9109 {
9110 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9111 }
9112
9113 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9114 {
9115 struct task_group *tg = cgroup_tg(cgrp);
9116
9117 return (u64) tg->shares;
9118 }
9119 #endif /* CONFIG_FAIR_GROUP_SCHED */
9120
9121 #ifdef CONFIG_RT_GROUP_SCHED
9122 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9123 s64 val)
9124 {
9125 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9126 }
9127
9128 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9129 {
9130 return sched_group_rt_runtime(cgroup_tg(cgrp));
9131 }
9132
9133 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9134 u64 rt_period_us)
9135 {
9136 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9137 }
9138
9139 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9140 {
9141 return sched_group_rt_period(cgroup_tg(cgrp));
9142 }
9143 #endif /* CONFIG_RT_GROUP_SCHED */
9144
9145 static struct cftype cpu_files[] = {
9146 #ifdef CONFIG_FAIR_GROUP_SCHED
9147 {
9148 .name = "shares",
9149 .read_u64 = cpu_shares_read_u64,
9150 .write_u64 = cpu_shares_write_u64,
9151 },
9152 #endif
9153 #ifdef CONFIG_RT_GROUP_SCHED
9154 {
9155 .name = "rt_runtime_us",
9156 .read_s64 = cpu_rt_runtime_read,
9157 .write_s64 = cpu_rt_runtime_write,
9158 },
9159 {
9160 .name = "rt_period_us",
9161 .read_u64 = cpu_rt_period_read_uint,
9162 .write_u64 = cpu_rt_period_write_uint,
9163 },
9164 #endif
9165 };
9166
9167 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9168 {
9169 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9170 }
9171
9172 struct cgroup_subsys cpu_cgroup_subsys = {
9173 .name = "cpu",
9174 .create = cpu_cgroup_create,
9175 .destroy = cpu_cgroup_destroy,
9176 .can_attach = cpu_cgroup_can_attach,
9177 .attach = cpu_cgroup_attach,
9178 .exit = cpu_cgroup_exit,
9179 .populate = cpu_cgroup_populate,
9180 .subsys_id = cpu_cgroup_subsys_id,
9181 .early_init = 1,
9182 };
9183
9184 #endif /* CONFIG_CGROUP_SCHED */
9185
9186 #ifdef CONFIG_CGROUP_CPUACCT
9187
9188 /*
9189 * CPU accounting code for task groups.
9190 *
9191 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9192 * (balbir@in.ibm.com).
9193 */
9194
9195 /* track cpu usage of a group of tasks and its child groups */
9196 struct cpuacct {
9197 struct cgroup_subsys_state css;
9198 /* cpuusage holds pointer to a u64-type object on every cpu */
9199 u64 __percpu *cpuusage;
9200 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9201 struct cpuacct *parent;
9202 };
9203
9204 struct cgroup_subsys cpuacct_subsys;
9205
9206 /* return cpu accounting group corresponding to this container */
9207 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9208 {
9209 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9210 struct cpuacct, css);
9211 }
9212
9213 /* return cpu accounting group to which this task belongs */
9214 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9215 {
9216 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9217 struct cpuacct, css);
9218 }
9219
9220 /* create a new cpu accounting group */
9221 static struct cgroup_subsys_state *cpuacct_create(
9222 struct cgroup_subsys *ss, struct cgroup *cgrp)
9223 {
9224 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9225 int i;
9226
9227 if (!ca)
9228 goto out;
9229
9230 ca->cpuusage = alloc_percpu(u64);
9231 if (!ca->cpuusage)
9232 goto out_free_ca;
9233
9234 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9235 if (percpu_counter_init(&ca->cpustat[i], 0))
9236 goto out_free_counters;
9237
9238 if (cgrp->parent)
9239 ca->parent = cgroup_ca(cgrp->parent);
9240
9241 return &ca->css;
9242
9243 out_free_counters:
9244 while (--i >= 0)
9245 percpu_counter_destroy(&ca->cpustat[i]);
9246 free_percpu(ca->cpuusage);
9247 out_free_ca:
9248 kfree(ca);
9249 out:
9250 return ERR_PTR(-ENOMEM);
9251 }
9252
9253 /* destroy an existing cpu accounting group */
9254 static void
9255 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9256 {
9257 struct cpuacct *ca = cgroup_ca(cgrp);
9258 int i;
9259
9260 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9261 percpu_counter_destroy(&ca->cpustat[i]);
9262 free_percpu(ca->cpuusage);
9263 kfree(ca);
9264 }
9265
9266 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9267 {
9268 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9269 u64 data;
9270
9271 #ifndef CONFIG_64BIT
9272 /*
9273 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9274 */
9275 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9276 data = *cpuusage;
9277 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9278 #else
9279 data = *cpuusage;
9280 #endif
9281
9282 return data;
9283 }
9284
9285 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9286 {
9287 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9288
9289 #ifndef CONFIG_64BIT
9290 /*
9291 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9292 */
9293 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9294 *cpuusage = val;
9295 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9296 #else
9297 *cpuusage = val;
9298 #endif
9299 }
9300
9301 /* return total cpu usage (in nanoseconds) of a group */
9302 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9303 {
9304 struct cpuacct *ca = cgroup_ca(cgrp);
9305 u64 totalcpuusage = 0;
9306 int i;
9307
9308 for_each_present_cpu(i)
9309 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9310
9311 return totalcpuusage;
9312 }
9313
9314 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9315 u64 reset)
9316 {
9317 struct cpuacct *ca = cgroup_ca(cgrp);
9318 int err = 0;
9319 int i;
9320
9321 if (reset) {
9322 err = -EINVAL;
9323 goto out;
9324 }
9325
9326 for_each_present_cpu(i)
9327 cpuacct_cpuusage_write(ca, i, 0);
9328
9329 out:
9330 return err;
9331 }
9332
9333 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9334 struct seq_file *m)
9335 {
9336 struct cpuacct *ca = cgroup_ca(cgroup);
9337 u64 percpu;
9338 int i;
9339
9340 for_each_present_cpu(i) {
9341 percpu = cpuacct_cpuusage_read(ca, i);
9342 seq_printf(m, "%llu ", (unsigned long long) percpu);
9343 }
9344 seq_printf(m, "\n");
9345 return 0;
9346 }
9347
9348 static const char *cpuacct_stat_desc[] = {
9349 [CPUACCT_STAT_USER] = "user",
9350 [CPUACCT_STAT_SYSTEM] = "system",
9351 };
9352
9353 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9354 struct cgroup_map_cb *cb)
9355 {
9356 struct cpuacct *ca = cgroup_ca(cgrp);
9357 int i;
9358
9359 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9360 s64 val = percpu_counter_read(&ca->cpustat[i]);
9361 val = cputime64_to_clock_t(val);
9362 cb->fill(cb, cpuacct_stat_desc[i], val);
9363 }
9364 return 0;
9365 }
9366
9367 static struct cftype files[] = {
9368 {
9369 .name = "usage",
9370 .read_u64 = cpuusage_read,
9371 .write_u64 = cpuusage_write,
9372 },
9373 {
9374 .name = "usage_percpu",
9375 .read_seq_string = cpuacct_percpu_seq_read,
9376 },
9377 {
9378 .name = "stat",
9379 .read_map = cpuacct_stats_show,
9380 },
9381 };
9382
9383 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9384 {
9385 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9386 }
9387
9388 /*
9389 * charge this task's execution time to its accounting group.
9390 *
9391 * called with rq->lock held.
9392 */
9393 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9394 {
9395 struct cpuacct *ca;
9396 int cpu;
9397
9398 if (unlikely(!cpuacct_subsys.active))
9399 return;
9400
9401 cpu = task_cpu(tsk);
9402
9403 rcu_read_lock();
9404
9405 ca = task_ca(tsk);
9406
9407 for (; ca; ca = ca->parent) {
9408 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9409 *cpuusage += cputime;
9410 }
9411
9412 rcu_read_unlock();
9413 }
9414
9415 /*
9416 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9417 * in cputime_t units. As a result, cpuacct_update_stats calls
9418 * percpu_counter_add with values large enough to always overflow the
9419 * per cpu batch limit causing bad SMP scalability.
9420 *
9421 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9422 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9423 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9424 */
9425 #ifdef CONFIG_SMP
9426 #define CPUACCT_BATCH \
9427 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9428 #else
9429 #define CPUACCT_BATCH 0
9430 #endif
9431
9432 /*
9433 * Charge the system/user time to the task's accounting group.
9434 */
9435 static void cpuacct_update_stats(struct task_struct *tsk,
9436 enum cpuacct_stat_index idx, cputime_t val)
9437 {
9438 struct cpuacct *ca;
9439 int batch = CPUACCT_BATCH;
9440
9441 if (unlikely(!cpuacct_subsys.active))
9442 return;
9443
9444 rcu_read_lock();
9445 ca = task_ca(tsk);
9446
9447 do {
9448 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9449 ca = ca->parent;
9450 } while (ca);
9451 rcu_read_unlock();
9452 }
9453
9454 struct cgroup_subsys cpuacct_subsys = {
9455 .name = "cpuacct",
9456 .create = cpuacct_create,
9457 .destroy = cpuacct_destroy,
9458 .populate = cpuacct_populate,
9459 .subsys_id = cpuacct_subsys_id,
9460 };
9461 #endif /* CONFIG_CGROUP_CPUACCT */
9462
This page took 0.215588 seconds and 6 git commands to generate.