Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
339
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
345 }
346
347 #else
348
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
351 {
352 return NULL;
353 }
354
355 #endif /* CONFIG_CGROUP_SCHED */
356
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
362 u64 exec_clock;
363 u64 min_vruntime;
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
375 struct sched_entity *curr, *next, *last;
376
377 unsigned int nr_spread_over;
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
392
393 #ifdef CONFIG_SMP
394 /*
395 * the part of load.weight contributed by tasks
396 */
397 unsigned long task_weight;
398
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
416 #endif
417 #endif
418 };
419
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
446
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
451 };
452
453 #ifdef CONFIG_SMP
454
455 /*
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
462 */
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
467
468 /*
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
477 };
478
479 /*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
483 static struct root_domain def_root_domain;
484
485 #endif
486
487 /*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
510
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
517 struct rt_rq rt;
518
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
538
539 u64 clock;
540
541 atomic_t nr_iowait;
542
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
546
547 unsigned long cpu_power;
548
549 unsigned char idle_at_tick;
550 /* For active balancing */
551 int post_schedule;
552 int active_balance;
553 int push_cpu;
554 struct cpu_stop_work active_balance_work;
555 /* cpu of this runqueue: */
556 int cpu;
557 int online;
558
559 unsigned long avg_load_per_task;
560
561 u64 rt_avg;
562 u64 age_stamp;
563 u64 idle_stamp;
564 u64 avg_idle;
565 #endif
566
567 /* calc_load related fields */
568 unsigned long calc_load_update;
569 long calc_load_active;
570
571 #ifdef CONFIG_SCHED_HRTICK
572 #ifdef CONFIG_SMP
573 int hrtick_csd_pending;
574 struct call_single_data hrtick_csd;
575 #endif
576 struct hrtimer hrtick_timer;
577 #endif
578
579 #ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
582 unsigned long long rq_cpu_time;
583 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
584
585 /* sys_sched_yield() stats */
586 unsigned int yld_count;
587
588 /* schedule() stats */
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
592
593 /* try_to_wake_up() stats */
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
596
597 /* BKL stats */
598 unsigned int bkl_count;
599 #endif
600 };
601
602 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
603
604 static inline
605 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
606 {
607 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
608
609 /*
610 * A queue event has occurred, and we're going to schedule. In
611 * this case, we can save a useless back to back clock update.
612 */
613 if (test_tsk_need_resched(p))
614 rq->skip_clock_update = 1;
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 #define rcu_dereference_check_sched_domain(p) \
627 rcu_dereference_check((p), \
628 rcu_read_lock_sched_held() || \
629 lockdep_is_held(&sched_domains_mutex))
630
631 /*
632 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
633 * See detach_destroy_domains: synchronize_sched for details.
634 *
635 * The domain tree of any CPU may only be accessed from within
636 * preempt-disabled sections.
637 */
638 #define for_each_domain(cpu, __sd) \
639 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
640
641 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
642 #define this_rq() (&__get_cpu_var(runqueues))
643 #define task_rq(p) cpu_rq(task_cpu(p))
644 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
645 #define raw_rq() (&__raw_get_cpu_var(runqueues))
646
647 inline void update_rq_clock(struct rq *rq)
648 {
649 if (!rq->skip_clock_update)
650 rq->clock = sched_clock_cpu(cpu_of(rq));
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked
664 * @cpu: the processor in question.
665 *
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
670 int runqueue_is_locked(int cpu)
671 {
672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
673 }
674
675 /*
676 * Debugging: various feature bits
677 */
678
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
682 enum {
683 #include "sched_features.h"
684 };
685
686 #undef SCHED_FEAT
687
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
693 0;
694
695 #undef SCHED_FEAT
696
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
699 #name ,
700
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
703 NULL
704 };
705
706 #undef SCHED_FEAT
707
708 static int sched_feat_show(struct seq_file *m, void *v)
709 {
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
716 }
717 seq_puts(m, "\n");
718
719 return 0;
720 }
721
722 static ssize_t
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725 {
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
739 if (strncmp(buf, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 *ppos += cnt;
760
761 return cnt;
762 }
763
764 static int sched_feat_open(struct inode *inode, struct file *filp)
765 {
766 return single_open(filp, sched_feat_show, NULL);
767 }
768
769 static const struct file_operations sched_feat_fops = {
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
775 };
776
777 static __init int sched_init_debug(void)
778 {
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783 }
784 late_initcall(sched_init_debug);
785
786 #endif
787
788 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789
790 /*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
796 /*
797 * ratelimit for updating the group shares.
798 * default: 0.25ms
799 */
800 unsigned int sysctl_sched_shares_ratelimit = 250000;
801 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802
803 /*
804 * Inject some fuzzyness into changing the per-cpu group shares
805 * this avoids remote rq-locks at the expense of fairness.
806 * default: 4
807 */
808 unsigned int sysctl_sched_shares_thresh = 4;
809
810 /*
811 * period over which we average the RT time consumption, measured
812 * in ms.
813 *
814 * default: 1s
815 */
816 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817
818 /*
819 * period over which we measure -rt task cpu usage in us.
820 * default: 1s
821 */
822 unsigned int sysctl_sched_rt_period = 1000000;
823
824 static __read_mostly int scheduler_running;
825
826 /*
827 * part of the period that we allow rt tasks to run in us.
828 * default: 0.95s
829 */
830 int sysctl_sched_rt_runtime = 950000;
831
832 static inline u64 global_rt_period(void)
833 {
834 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 }
836
837 static inline u64 global_rt_runtime(void)
838 {
839 if (sysctl_sched_rt_runtime < 0)
840 return RUNTIME_INF;
841
842 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 }
844
845 #ifndef prepare_arch_switch
846 # define prepare_arch_switch(next) do { } while (0)
847 #endif
848 #ifndef finish_arch_switch
849 # define finish_arch_switch(prev) do { } while (0)
850 #endif
851
852 static inline int task_current(struct rq *rq, struct task_struct *p)
853 {
854 return rq->curr == p;
855 }
856
857 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
858 static inline int task_running(struct rq *rq, struct task_struct *p)
859 {
860 return task_current(rq, p);
861 }
862
863 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 {
865 }
866
867 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
868 {
869 #ifdef CONFIG_DEBUG_SPINLOCK
870 /* this is a valid case when another task releases the spinlock */
871 rq->lock.owner = current;
872 #endif
873 /*
874 * If we are tracking spinlock dependencies then we have to
875 * fix up the runqueue lock - which gets 'carried over' from
876 * prev into current:
877 */
878 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879
880 raw_spin_unlock_irq(&rq->lock);
881 }
882
883 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
884 static inline int task_running(struct rq *rq, struct task_struct *p)
885 {
886 #ifdef CONFIG_SMP
887 return p->oncpu;
888 #else
889 return task_current(rq, p);
890 #endif
891 }
892
893 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
894 {
895 #ifdef CONFIG_SMP
896 /*
897 * We can optimise this out completely for !SMP, because the
898 * SMP rebalancing from interrupt is the only thing that cares
899 * here.
900 */
901 next->oncpu = 1;
902 #endif
903 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
904 raw_spin_unlock_irq(&rq->lock);
905 #else
906 raw_spin_unlock(&rq->lock);
907 #endif
908 }
909
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 {
912 #ifdef CONFIG_SMP
913 /*
914 * After ->oncpu is cleared, the task can be moved to a different CPU.
915 * We must ensure this doesn't happen until the switch is completely
916 * finished.
917 */
918 smp_wmb();
919 prev->oncpu = 0;
920 #endif
921 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 local_irq_enable();
923 #endif
924 }
925 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926
927 /*
928 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 * against ttwu().
930 */
931 static inline int task_is_waking(struct task_struct *p)
932 {
933 return unlikely(p->state == TASK_WAKING);
934 }
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 struct rq *rq;
944
945 for (;;) {
946 rq = task_rq(p);
947 raw_spin_lock(&rq->lock);
948 if (likely(rq == task_rq(p)))
949 return rq;
950 raw_spin_unlock(&rq->lock);
951 }
952 }
953
954 /*
955 * task_rq_lock - lock the runqueue a given task resides on and disable
956 * interrupts. Note the ordering: we can safely lookup the task_rq without
957 * explicitly disabling preemption.
958 */
959 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
960 __acquires(rq->lock)
961 {
962 struct rq *rq;
963
964 for (;;) {
965 local_irq_save(*flags);
966 rq = task_rq(p);
967 raw_spin_lock(&rq->lock);
968 if (likely(rq == task_rq(p)))
969 return rq;
970 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 }
972 }
973
974 static void __task_rq_unlock(struct rq *rq)
975 __releases(rq->lock)
976 {
977 raw_spin_unlock(&rq->lock);
978 }
979
980 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
981 __releases(rq->lock)
982 {
983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
984 }
985
986 /*
987 * this_rq_lock - lock this runqueue and disable interrupts.
988 */
989 static struct rq *this_rq_lock(void)
990 __acquires(rq->lock)
991 {
992 struct rq *rq;
993
994 local_irq_disable();
995 rq = this_rq();
996 raw_spin_lock(&rq->lock);
997
998 return rq;
999 }
1000
1001 #ifdef CONFIG_SCHED_HRTICK
1002 /*
1003 * Use HR-timers to deliver accurate preemption points.
1004 *
1005 * Its all a bit involved since we cannot program an hrt while holding the
1006 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * reschedule event.
1008 *
1009 * When we get rescheduled we reprogram the hrtick_timer outside of the
1010 * rq->lock.
1011 */
1012
1013 /*
1014 * Use hrtick when:
1015 * - enabled by features
1016 * - hrtimer is actually high res
1017 */
1018 static inline int hrtick_enabled(struct rq *rq)
1019 {
1020 if (!sched_feat(HRTICK))
1021 return 0;
1022 if (!cpu_active(cpu_of(rq)))
1023 return 0;
1024 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 }
1026
1027 static void hrtick_clear(struct rq *rq)
1028 {
1029 if (hrtimer_active(&rq->hrtick_timer))
1030 hrtimer_cancel(&rq->hrtick_timer);
1031 }
1032
1033 /*
1034 * High-resolution timer tick.
1035 * Runs from hardirq context with interrupts disabled.
1036 */
1037 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 {
1039 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
1043 raw_spin_lock(&rq->lock);
1044 update_rq_clock(rq);
1045 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1046 raw_spin_unlock(&rq->lock);
1047
1048 return HRTIMER_NORESTART;
1049 }
1050
1051 #ifdef CONFIG_SMP
1052 /*
1053 * called from hardirq (IPI) context
1054 */
1055 static void __hrtick_start(void *arg)
1056 {
1057 struct rq *rq = arg;
1058
1059 raw_spin_lock(&rq->lock);
1060 hrtimer_restart(&rq->hrtick_timer);
1061 rq->hrtick_csd_pending = 0;
1062 raw_spin_unlock(&rq->lock);
1063 }
1064
1065 /*
1066 * Called to set the hrtick timer state.
1067 *
1068 * called with rq->lock held and irqs disabled
1069 */
1070 static void hrtick_start(struct rq *rq, u64 delay)
1071 {
1072 struct hrtimer *timer = &rq->hrtick_timer;
1073 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074
1075 hrtimer_set_expires(timer, time);
1076
1077 if (rq == this_rq()) {
1078 hrtimer_restart(timer);
1079 } else if (!rq->hrtick_csd_pending) {
1080 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1081 rq->hrtick_csd_pending = 1;
1082 }
1083 }
1084
1085 static int
1086 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 {
1088 int cpu = (int)(long)hcpu;
1089
1090 switch (action) {
1091 case CPU_UP_CANCELED:
1092 case CPU_UP_CANCELED_FROZEN:
1093 case CPU_DOWN_PREPARE:
1094 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD:
1096 case CPU_DEAD_FROZEN:
1097 hrtick_clear(cpu_rq(cpu));
1098 return NOTIFY_OK;
1099 }
1100
1101 return NOTIFY_DONE;
1102 }
1103
1104 static __init void init_hrtick(void)
1105 {
1106 hotcpu_notifier(hotplug_hrtick, 0);
1107 }
1108 #else
1109 /*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1117 HRTIMER_MODE_REL_PINNED, 0);
1118 }
1119
1120 static inline void init_hrtick(void)
1121 {
1122 }
1123 #endif /* CONFIG_SMP */
1124
1125 static void init_rq_hrtick(struct rq *rq)
1126 {
1127 #ifdef CONFIG_SMP
1128 rq->hrtick_csd_pending = 0;
1129
1130 rq->hrtick_csd.flags = 0;
1131 rq->hrtick_csd.func = __hrtick_start;
1132 rq->hrtick_csd.info = rq;
1133 #endif
1134
1135 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 rq->hrtick_timer.function = hrtick;
1137 }
1138 #else /* CONFIG_SCHED_HRTICK */
1139 static inline void hrtick_clear(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_rq_hrtick(struct rq *rq)
1144 {
1145 }
1146
1147 static inline void init_hrtick(void)
1148 {
1149 }
1150 #endif /* CONFIG_SCHED_HRTICK */
1151
1152 /*
1153 * resched_task - mark a task 'to be rescheduled now'.
1154 *
1155 * On UP this means the setting of the need_resched flag, on SMP it
1156 * might also involve a cross-CPU call to trigger the scheduler on
1157 * the target CPU.
1158 */
1159 #ifdef CONFIG_SMP
1160
1161 #ifndef tsk_is_polling
1162 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 #endif
1164
1165 static void resched_task(struct task_struct *p)
1166 {
1167 int cpu;
1168
1169 assert_raw_spin_locked(&task_rq(p)->lock);
1170
1171 if (test_tsk_need_resched(p))
1172 return;
1173
1174 set_tsk_need_resched(p);
1175
1176 cpu = task_cpu(p);
1177 if (cpu == smp_processor_id())
1178 return;
1179
1180 /* NEED_RESCHED must be visible before we test polling */
1181 smp_mb();
1182 if (!tsk_is_polling(p))
1183 smp_send_reschedule(cpu);
1184 }
1185
1186 static void resched_cpu(int cpu)
1187 {
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long flags;
1190
1191 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1192 return;
1193 resched_task(cpu_curr(cpu));
1194 raw_spin_unlock_irqrestore(&rq->lock, flags);
1195 }
1196
1197 #ifdef CONFIG_NO_HZ
1198 /*
1199 * When add_timer_on() enqueues a timer into the timer wheel of an
1200 * idle CPU then this timer might expire before the next timer event
1201 * which is scheduled to wake up that CPU. In case of a completely
1202 * idle system the next event might even be infinite time into the
1203 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1204 * leaves the inner idle loop so the newly added timer is taken into
1205 * account when the CPU goes back to idle and evaluates the timer
1206 * wheel for the next timer event.
1207 */
1208 void wake_up_idle_cpu(int cpu)
1209 {
1210 struct rq *rq = cpu_rq(cpu);
1211
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /*
1216 * This is safe, as this function is called with the timer
1217 * wheel base lock of (cpu) held. When the CPU is on the way
1218 * to idle and has not yet set rq->curr to idle then it will
1219 * be serialized on the timer wheel base lock and take the new
1220 * timer into account automatically.
1221 */
1222 if (rq->curr != rq->idle)
1223 return;
1224
1225 /*
1226 * We can set TIF_RESCHED on the idle task of the other CPU
1227 * lockless. The worst case is that the other CPU runs the
1228 * idle task through an additional NOOP schedule()
1229 */
1230 set_tsk_need_resched(rq->idle);
1231
1232 /* NEED_RESCHED must be visible before we test polling */
1233 smp_mb();
1234 if (!tsk_is_polling(rq->idle))
1235 smp_send_reschedule(cpu);
1236 }
1237
1238 int nohz_ratelimit(int cpu)
1239 {
1240 struct rq *rq = cpu_rq(cpu);
1241 u64 diff = rq->clock - rq->nohz_stamp;
1242
1243 rq->nohz_stamp = rq->clock;
1244
1245 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246 }
1247
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263 }
1264
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266 {
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269 }
1270
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1273 {
1274 assert_raw_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 /* Time spent by the tasks of the cpu accounting group executing in ... */
1392 enum cpuacct_stat_index {
1393 CPUACCT_STAT_USER, /* ... user mode */
1394 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1395
1396 CPUACCT_STAT_NSTATS,
1397 };
1398
1399 #ifdef CONFIG_CGROUP_CPUACCT
1400 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1401 static void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val);
1403 #else
1404 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1405 static inline void cpuacct_update_stats(struct task_struct *tsk,
1406 enum cpuacct_stat_index idx, cputime_t val) {}
1407 #endif
1408
1409 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1410 {
1411 update_load_add(&rq->load, load);
1412 }
1413
1414 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1415 {
1416 update_load_sub(&rq->load, load);
1417 }
1418
1419 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1420 typedef int (*tg_visitor)(struct task_group *, void *);
1421
1422 /*
1423 * Iterate the full tree, calling @down when first entering a node and @up when
1424 * leaving it for the final time.
1425 */
1426 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1427 {
1428 struct task_group *parent, *child;
1429 int ret;
1430
1431 rcu_read_lock();
1432 parent = &root_task_group;
1433 down:
1434 ret = (*down)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437 list_for_each_entry_rcu(child, &parent->children, siblings) {
1438 parent = child;
1439 goto down;
1440
1441 up:
1442 continue;
1443 }
1444 ret = (*up)(parent, data);
1445 if (ret)
1446 goto out_unlock;
1447
1448 child = parent;
1449 parent = parent->parent;
1450 if (parent)
1451 goto up;
1452 out_unlock:
1453 rcu_read_unlock();
1454
1455 return ret;
1456 }
1457
1458 static int tg_nop(struct task_group *tg, void *data)
1459 {
1460 return 0;
1461 }
1462 #endif
1463
1464 #ifdef CONFIG_SMP
1465 /* Used instead of source_load when we know the type == 0 */
1466 static unsigned long weighted_cpuload(const int cpu)
1467 {
1468 return cpu_rq(cpu)->load.weight;
1469 }
1470
1471 /*
1472 * Return a low guess at the load of a migration-source cpu weighted
1473 * according to the scheduling class and "nice" value.
1474 *
1475 * We want to under-estimate the load of migration sources, to
1476 * balance conservatively.
1477 */
1478 static unsigned long source_load(int cpu, int type)
1479 {
1480 struct rq *rq = cpu_rq(cpu);
1481 unsigned long total = weighted_cpuload(cpu);
1482
1483 if (type == 0 || !sched_feat(LB_BIAS))
1484 return total;
1485
1486 return min(rq->cpu_load[type-1], total);
1487 }
1488
1489 /*
1490 * Return a high guess at the load of a migration-target cpu weighted
1491 * according to the scheduling class and "nice" value.
1492 */
1493 static unsigned long target_load(int cpu, int type)
1494 {
1495 struct rq *rq = cpu_rq(cpu);
1496 unsigned long total = weighted_cpuload(cpu);
1497
1498 if (type == 0 || !sched_feat(LB_BIAS))
1499 return total;
1500
1501 return max(rq->cpu_load[type-1], total);
1502 }
1503
1504 static unsigned long power_of(int cpu)
1505 {
1506 return cpu_rq(cpu)->cpu_power;
1507 }
1508
1509 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1510
1511 static unsigned long cpu_avg_load_per_task(int cpu)
1512 {
1513 struct rq *rq = cpu_rq(cpu);
1514 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1515
1516 if (nr_running)
1517 rq->avg_load_per_task = rq->load.weight / nr_running;
1518 else
1519 rq->avg_load_per_task = 0;
1520
1521 return rq->avg_load_per_task;
1522 }
1523
1524 #ifdef CONFIG_FAIR_GROUP_SCHED
1525
1526 static __read_mostly unsigned long __percpu *update_shares_data;
1527
1528 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1529
1530 /*
1531 * Calculate and set the cpu's group shares.
1532 */
1533 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1534 unsigned long sd_shares,
1535 unsigned long sd_rq_weight,
1536 unsigned long *usd_rq_weight)
1537 {
1538 unsigned long shares, rq_weight;
1539 int boost = 0;
1540
1541 rq_weight = usd_rq_weight[cpu];
1542 if (!rq_weight) {
1543 boost = 1;
1544 rq_weight = NICE_0_LOAD;
1545 }
1546
1547 /*
1548 * \Sum_j shares_j * rq_weight_i
1549 * shares_i = -----------------------------
1550 * \Sum_j rq_weight_j
1551 */
1552 shares = (sd_shares * rq_weight) / sd_rq_weight;
1553 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1554
1555 if (abs(shares - tg->se[cpu]->load.weight) >
1556 sysctl_sched_shares_thresh) {
1557 struct rq *rq = cpu_rq(cpu);
1558 unsigned long flags;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
1561 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1562 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1563 __set_se_shares(tg->se[cpu], shares);
1564 raw_spin_unlock_irqrestore(&rq->lock, flags);
1565 }
1566 }
1567
1568 /*
1569 * Re-compute the task group their per cpu shares over the given domain.
1570 * This needs to be done in a bottom-up fashion because the rq weight of a
1571 * parent group depends on the shares of its child groups.
1572 */
1573 static int tg_shares_up(struct task_group *tg, void *data)
1574 {
1575 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1576 unsigned long *usd_rq_weight;
1577 struct sched_domain *sd = data;
1578 unsigned long flags;
1579 int i;
1580
1581 if (!tg->se[0])
1582 return 0;
1583
1584 local_irq_save(flags);
1585 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1586
1587 for_each_cpu(i, sched_domain_span(sd)) {
1588 weight = tg->cfs_rq[i]->load.weight;
1589 usd_rq_weight[i] = weight;
1590
1591 rq_weight += weight;
1592 /*
1593 * If there are currently no tasks on the cpu pretend there
1594 * is one of average load so that when a new task gets to
1595 * run here it will not get delayed by group starvation.
1596 */
1597 if (!weight)
1598 weight = NICE_0_LOAD;
1599
1600 sum_weight += weight;
1601 shares += tg->cfs_rq[i]->shares;
1602 }
1603
1604 if (!rq_weight)
1605 rq_weight = sum_weight;
1606
1607 if ((!shares && rq_weight) || shares > tg->shares)
1608 shares = tg->shares;
1609
1610 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1611 shares = tg->shares;
1612
1613 for_each_cpu(i, sched_domain_span(sd))
1614 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1615
1616 local_irq_restore(flags);
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * Compute the cpu's hierarchical load factor for each task group.
1623 * This needs to be done in a top-down fashion because the load of a child
1624 * group is a fraction of its parents load.
1625 */
1626 static int tg_load_down(struct task_group *tg, void *data)
1627 {
1628 unsigned long load;
1629 long cpu = (long)data;
1630
1631 if (!tg->parent) {
1632 load = cpu_rq(cpu)->load.weight;
1633 } else {
1634 load = tg->parent->cfs_rq[cpu]->h_load;
1635 load *= tg->cfs_rq[cpu]->shares;
1636 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1637 }
1638
1639 tg->cfs_rq[cpu]->h_load = load;
1640
1641 return 0;
1642 }
1643
1644 static void update_shares(struct sched_domain *sd)
1645 {
1646 s64 elapsed;
1647 u64 now;
1648
1649 if (root_task_group_empty())
1650 return;
1651
1652 now = cpu_clock(raw_smp_processor_id());
1653 elapsed = now - sd->last_update;
1654
1655 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1656 sd->last_update = now;
1657 walk_tg_tree(tg_nop, tg_shares_up, sd);
1658 }
1659 }
1660
1661 static void update_h_load(long cpu)
1662 {
1663 if (root_task_group_empty())
1664 return;
1665
1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1667 }
1668
1669 #else
1670
1671 static inline void update_shares(struct sched_domain *sd)
1672 {
1673 }
1674
1675 #endif
1676
1677 #ifdef CONFIG_PREEMPT
1678
1679 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
1681 /*
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
1688 */
1689 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693 {
1694 raw_spin_unlock(&this_rq->lock);
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698 }
1699
1700 #else
1701 /*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712 {
1713 int ret = 0;
1714
1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1716 if (busiest < this_rq) {
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
1721 ret = 1;
1722 } else
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
1725 }
1726 return ret;
1727 }
1728
1729 #endif /* CONFIG_PREEMPT */
1730
1731 /*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735 {
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
1738 raw_spin_unlock(&this_rq->lock);
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743 }
1744
1745 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747 {
1748 raw_spin_unlock(&busiest->lock);
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750 }
1751
1752 /*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761 {
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1775 }
1776
1777 /*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786 {
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792 }
1793
1794 #endif
1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 {
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1802 }
1803 #endif
1804
1805 static void calc_load_account_idle(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 {
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1821 }
1822
1823 static const struct sched_class rt_sched_class;
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 #include "sched_stats.h"
1830
1831 static void inc_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running++;
1834 }
1835
1836 static void dec_nr_running(struct rq *rq)
1837 {
1838 rq->nr_running--;
1839 }
1840
1841 static void set_load_weight(struct task_struct *p)
1842 {
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
1846 return;
1847 }
1848
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 }
1861
1862 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1863 {
1864 update_rq_clock(rq);
1865 sched_info_queued(p);
1866 p->sched_class->enqueue_task(rq, p, flags);
1867 p->se.on_rq = 1;
1868 }
1869
1870 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1871 {
1872 update_rq_clock(rq);
1873 sched_info_dequeued(p);
1874 p->sched_class->dequeue_task(rq, p, flags);
1875 p->se.on_rq = 0;
1876 }
1877
1878 /*
1879 * activate_task - move a task to the runqueue.
1880 */
1881 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1882 {
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
1886 enqueue_task(rq, p, flags);
1887 inc_nr_running(rq);
1888 }
1889
1890 /*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
1893 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1894 {
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
1898 dequeue_task(rq, p, flags);
1899 dec_nr_running(rq);
1900 }
1901
1902 #include "sched_idletask.c"
1903 #include "sched_fair.c"
1904 #include "sched_rt.c"
1905 #ifdef CONFIG_SCHED_DEBUG
1906 # include "sched_debug.c"
1907 #endif
1908
1909 /*
1910 * __normal_prio - return the priority that is based on the static prio
1911 */
1912 static inline int __normal_prio(struct task_struct *p)
1913 {
1914 return p->static_prio;
1915 }
1916
1917 /*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
1924 static inline int normal_prio(struct task_struct *p)
1925 {
1926 int prio;
1927
1928 if (task_has_rt_policy(p))
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933 }
1934
1935 /*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
1942 static int effective_prio(struct task_struct *p)
1943 {
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953 }
1954
1955 /**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
1959 inline int task_curr(const struct task_struct *p)
1960 {
1961 return cpu_curr(task_cpu(p)) == p;
1962 }
1963
1964 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967 {
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974 }
1975
1976 #ifdef CONFIG_SMP
1977 /*
1978 * Is this task likely cache-hot:
1979 */
1980 static int
1981 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982 {
1983 s64 delta;
1984
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
1994 return 1;
1995
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004 }
2005
2006 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2007 {
2008 #ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2015 #endif
2016
2017 trace_sched_migrate_task(p, new_cpu);
2018
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
2023
2024 __set_task_cpu(p, new_cpu);
2025 }
2026
2027 struct migration_arg {
2028 struct task_struct *task;
2029 int dest_cpu;
2030 };
2031
2032 static int migration_cpu_stop(void *data);
2033
2034 /*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
2038 static bool migrate_task(struct task_struct *p, int dest_cpu)
2039 {
2040 struct rq *rq = task_rq(p);
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
2044 * the next wake-up will properly place the task.
2045 */
2046 return p->se.on_rq || task_running(rq, p);
2047 }
2048
2049 /*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
2065 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2066 {
2067 unsigned long flags;
2068 int running, on_rq;
2069 unsigned long ncsw;
2070 struct rq *rq;
2071
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
2080
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
2095 cpu_relax();
2096 }
2097
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
2104 trace_sched_wait_task(p);
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
2107 ncsw = 0;
2108 if (!match_state || p->state == match_state)
2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2110 task_rq_unlock(rq, &flags);
2111
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
2128
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
2134 * So if it was still runnable (but just not actively
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
2142
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
2150
2151 return ncsw;
2152 }
2153
2154 /***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
2167 void kick_process(struct task_struct *p)
2168 {
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176 }
2177 EXPORT_SYMBOL_GPL(kick_process);
2178 #endif /* CONFIG_SMP */
2179
2180 /**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189 void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191 {
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199 }
2200
2201 #ifdef CONFIG_SMP
2202 /*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
2205 static int select_fallback_rq(int cpu, struct task_struct *p)
2206 {
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236 }
2237
2238 /*
2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2240 */
2241 static inline
2242 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2243 {
2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2257 !cpu_online(cpu)))
2258 cpu = select_fallback_rq(task_cpu(p), p);
2259
2260 return cpu;
2261 }
2262
2263 static void update_avg(u64 *avg, u64 sample)
2264 {
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267 }
2268 #endif
2269
2270 /***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
2284 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
2286 {
2287 int cpu, orig_cpu, this_cpu, success = 0;
2288 unsigned long flags;
2289 unsigned long en_flags = ENQUEUE_WAKEUP;
2290 struct rq *rq;
2291
2292 this_cpu = get_cpu();
2293
2294 smp_wmb();
2295 rq = task_rq_lock(p, &flags);
2296 if (!(p->state & state))
2297 goto out;
2298
2299 if (p->se.on_rq)
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
2303 orig_cpu = cpu;
2304
2305 #ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
2312 *
2313 * First fix up the nr_uninterruptible count:
2314 */
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
2321 p->state = TASK_WAKING;
2322
2323 if (p->sched_class->task_waking) {
2324 p->sched_class->task_waking(rq, p);
2325 en_flags |= ENQUEUE_WAKING;
2326 }
2327
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
2330 set_task_cpu(p, cpu);
2331 __task_rq_unlock(rq);
2332
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
2335
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
2343 WARN_ON(p->state != TASK_WAKING);
2344
2345 #ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
2358 #endif /* CONFIG_SCHEDSTATS */
2359
2360 out_activate:
2361 #endif /* CONFIG_SMP */
2362 schedstat_inc(p, se.statistics.nr_wakeups);
2363 if (wake_flags & WF_SYNC)
2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2365 if (orig_cpu != cpu)
2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2367 if (cpu == this_cpu)
2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
2369 else
2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2371 activate_task(rq, p, en_flags);
2372 success = 1;
2373
2374 out_running:
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2377
2378 p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
2393 #endif
2394 out:
2395 task_rq_unlock(rq, &flags);
2396 put_cpu();
2397
2398 return success;
2399 }
2400
2401 /**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
2412 int wake_up_process(struct task_struct *p)
2413 {
2414 return try_to_wake_up(p, TASK_ALL, 0);
2415 }
2416 EXPORT_SYMBOL(wake_up_process);
2417
2418 int wake_up_state(struct task_struct *p, unsigned int state)
2419 {
2420 return try_to_wake_up(p, state, 0);
2421 }
2422
2423 /*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429 static void __sched_fork(struct task_struct *p)
2430 {
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
2433 p->se.prev_sum_exec_runtime = 0;
2434 p->se.nr_migrations = 0;
2435
2436 #ifdef CONFIG_SCHEDSTATS
2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2438 #endif
2439
2440 INIT_LIST_HEAD(&p->rt.run_list);
2441 p->se.on_rq = 0;
2442 INIT_LIST_HEAD(&p->se.group_node);
2443
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446 #endif
2447 }
2448
2449 /*
2450 * fork()/clone()-time setup:
2451 */
2452 void sched_fork(struct task_struct *p, int clone_flags)
2453 {
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
2457 /*
2458 * We mark the process as running here. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
2462 p->state = TASK_RUNNING;
2463
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2469 p->policy = SCHED_NORMAL;
2470 p->normal_prio = p->static_prio;
2471 }
2472
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
2475 p->normal_prio = p->static_prio;
2476 set_load_weight(p);
2477 }
2478
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
2485
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
2493
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
2497 /*
2498 * The child is not yet in the pid-hash so no cgroup attach races,
2499 * and the cgroup is pinned to this child due to cgroup_fork()
2500 * is ran before sched_fork().
2501 *
2502 * Silence PROVE_RCU.
2503 */
2504 rcu_read_lock();
2505 set_task_cpu(p, cpu);
2506 rcu_read_unlock();
2507
2508 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2509 if (likely(sched_info_on()))
2510 memset(&p->sched_info, 0, sizeof(p->sched_info));
2511 #endif
2512 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2513 p->oncpu = 0;
2514 #endif
2515 #ifdef CONFIG_PREEMPT
2516 /* Want to start with kernel preemption disabled. */
2517 task_thread_info(p)->preempt_count = 1;
2518 #endif
2519 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2520
2521 put_cpu();
2522 }
2523
2524 /*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
2531 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2532 {
2533 unsigned long flags;
2534 struct rq *rq;
2535 int cpu __maybe_unused = get_cpu();
2536
2537 #ifdef CONFIG_SMP
2538 rq = task_rq_lock(p, &flags);
2539 p->state = TASK_WAKING;
2540
2541 /*
2542 * Fork balancing, do it here and not earlier because:
2543 * - cpus_allowed can change in the fork path
2544 * - any previously selected cpu might disappear through hotplug
2545 *
2546 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2547 * without people poking at ->cpus_allowed.
2548 */
2549 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2550 set_task_cpu(p, cpu);
2551
2552 p->state = TASK_RUNNING;
2553 task_rq_unlock(rq, &flags);
2554 #endif
2555
2556 rq = task_rq_lock(p, &flags);
2557 activate_task(rq, p, 0);
2558 trace_sched_wakeup_new(p, 1);
2559 check_preempt_curr(rq, p, WF_FORK);
2560 #ifdef CONFIG_SMP
2561 if (p->sched_class->task_woken)
2562 p->sched_class->task_woken(rq, p);
2563 #endif
2564 task_rq_unlock(rq, &flags);
2565 put_cpu();
2566 }
2567
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2569
2570 /**
2571 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2572 * @notifier: notifier struct to register
2573 */
2574 void preempt_notifier_register(struct preempt_notifier *notifier)
2575 {
2576 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2577 }
2578 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2579
2580 /**
2581 * preempt_notifier_unregister - no longer interested in preemption notifications
2582 * @notifier: notifier struct to unregister
2583 *
2584 * This is safe to call from within a preemption notifier.
2585 */
2586 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2587 {
2588 hlist_del(&notifier->link);
2589 }
2590 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2591
2592 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2593 {
2594 struct preempt_notifier *notifier;
2595 struct hlist_node *node;
2596
2597 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2598 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2599 }
2600
2601 static void
2602 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2604 {
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2607
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_out(notifier, next);
2610 }
2611
2612 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2613
2614 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2615 {
2616 }
2617
2618 static void
2619 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2620 struct task_struct *next)
2621 {
2622 }
2623
2624 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2625
2626 /**
2627 * prepare_task_switch - prepare to switch tasks
2628 * @rq: the runqueue preparing to switch
2629 * @prev: the current task that is being switched out
2630 * @next: the task we are going to switch to.
2631 *
2632 * This is called with the rq lock held and interrupts off. It must
2633 * be paired with a subsequent finish_task_switch after the context
2634 * switch.
2635 *
2636 * prepare_task_switch sets up locking and calls architecture specific
2637 * hooks.
2638 */
2639 static inline void
2640 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2641 struct task_struct *next)
2642 {
2643 fire_sched_out_preempt_notifiers(prev, next);
2644 prepare_lock_switch(rq, next);
2645 prepare_arch_switch(next);
2646 }
2647
2648 /**
2649 * finish_task_switch - clean up after a task-switch
2650 * @rq: runqueue associated with task-switch
2651 * @prev: the thread we just switched away from.
2652 *
2653 * finish_task_switch must be called after the context switch, paired
2654 * with a prepare_task_switch call before the context switch.
2655 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2656 * and do any other architecture-specific cleanup actions.
2657 *
2658 * Note that we may have delayed dropping an mm in context_switch(). If
2659 * so, we finish that here outside of the runqueue lock. (Doing it
2660 * with the lock held can cause deadlocks; see schedule() for
2661 * details.)
2662 */
2663 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2664 __releases(rq->lock)
2665 {
2666 struct mm_struct *mm = rq->prev_mm;
2667 long prev_state;
2668
2669 rq->prev_mm = NULL;
2670
2671 /*
2672 * A task struct has one reference for the use as "current".
2673 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2674 * schedule one last time. The schedule call will never return, and
2675 * the scheduled task must drop that reference.
2676 * The test for TASK_DEAD must occur while the runqueue locks are
2677 * still held, otherwise prev could be scheduled on another cpu, die
2678 * there before we look at prev->state, and then the reference would
2679 * be dropped twice.
2680 * Manfred Spraul <manfred@colorfullife.com>
2681 */
2682 prev_state = prev->state;
2683 finish_arch_switch(prev);
2684 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2685 local_irq_disable();
2686 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2687 perf_event_task_sched_in(current);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_enable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 finish_lock_switch(rq, prev);
2692
2693 fire_sched_in_preempt_notifiers(current);
2694 if (mm)
2695 mmdrop(mm);
2696 if (unlikely(prev_state == TASK_DEAD)) {
2697 /*
2698 * Remove function-return probe instances associated with this
2699 * task and put them back on the free list.
2700 */
2701 kprobe_flush_task(prev);
2702 put_task_struct(prev);
2703 }
2704 }
2705
2706 #ifdef CONFIG_SMP
2707
2708 /* assumes rq->lock is held */
2709 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2710 {
2711 if (prev->sched_class->pre_schedule)
2712 prev->sched_class->pre_schedule(rq, prev);
2713 }
2714
2715 /* rq->lock is NOT held, but preemption is disabled */
2716 static inline void post_schedule(struct rq *rq)
2717 {
2718 if (rq->post_schedule) {
2719 unsigned long flags;
2720
2721 raw_spin_lock_irqsave(&rq->lock, flags);
2722 if (rq->curr->sched_class->post_schedule)
2723 rq->curr->sched_class->post_schedule(rq);
2724 raw_spin_unlock_irqrestore(&rq->lock, flags);
2725
2726 rq->post_schedule = 0;
2727 }
2728 }
2729
2730 #else
2731
2732 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2733 {
2734 }
2735
2736 static inline void post_schedule(struct rq *rq)
2737 {
2738 }
2739
2740 #endif
2741
2742 /**
2743 * schedule_tail - first thing a freshly forked thread must call.
2744 * @prev: the thread we just switched away from.
2745 */
2746 asmlinkage void schedule_tail(struct task_struct *prev)
2747 __releases(rq->lock)
2748 {
2749 struct rq *rq = this_rq();
2750
2751 finish_task_switch(rq, prev);
2752
2753 /*
2754 * FIXME: do we need to worry about rq being invalidated by the
2755 * task_switch?
2756 */
2757 post_schedule(rq);
2758
2759 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2761 preempt_enable();
2762 #endif
2763 if (current->set_child_tid)
2764 put_user(task_pid_vnr(current), current->set_child_tid);
2765 }
2766
2767 /*
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2770 */
2771 static inline void
2772 context_switch(struct rq *rq, struct task_struct *prev,
2773 struct task_struct *next)
2774 {
2775 struct mm_struct *mm, *oldmm;
2776
2777 prepare_task_switch(rq, prev, next);
2778 trace_sched_switch(prev, next);
2779 mm = next->mm;
2780 oldmm = prev->active_mm;
2781 /*
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2784 * one hypercall.
2785 */
2786 arch_start_context_switch(prev);
2787
2788 if (likely(!mm)) {
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2792 } else
2793 switch_mm(oldmm, mm, next);
2794
2795 if (likely(!prev->mm)) {
2796 prev->active_mm = NULL;
2797 rq->prev_mm = oldmm;
2798 }
2799 /*
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2804 */
2805 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2807 #endif
2808
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2811
2812 barrier();
2813 /*
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2817 */
2818 finish_task_switch(this_rq(), prev);
2819 }
2820
2821 /*
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2823 *
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2827 */
2828 unsigned long nr_running(void)
2829 {
2830 unsigned long i, sum = 0;
2831
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2834
2835 return sum;
2836 }
2837
2838 unsigned long nr_uninterruptible(void)
2839 {
2840 unsigned long i, sum = 0;
2841
2842 for_each_possible_cpu(i)
2843 sum += cpu_rq(i)->nr_uninterruptible;
2844
2845 /*
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
2848 */
2849 if (unlikely((long)sum < 0))
2850 sum = 0;
2851
2852 return sum;
2853 }
2854
2855 unsigned long long nr_context_switches(void)
2856 {
2857 int i;
2858 unsigned long long sum = 0;
2859
2860 for_each_possible_cpu(i)
2861 sum += cpu_rq(i)->nr_switches;
2862
2863 return sum;
2864 }
2865
2866 unsigned long nr_iowait(void)
2867 {
2868 unsigned long i, sum = 0;
2869
2870 for_each_possible_cpu(i)
2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2872
2873 return sum;
2874 }
2875
2876 unsigned long nr_iowait_cpu(void)
2877 {
2878 struct rq *this = this_rq();
2879 return atomic_read(&this->nr_iowait);
2880 }
2881
2882 unsigned long this_cpu_load(void)
2883 {
2884 struct rq *this = this_rq();
2885 return this->cpu_load[0];
2886 }
2887
2888
2889 /* Variables and functions for calc_load */
2890 static atomic_long_t calc_load_tasks;
2891 static unsigned long calc_load_update;
2892 unsigned long avenrun[3];
2893 EXPORT_SYMBOL(avenrun);
2894
2895 static long calc_load_fold_active(struct rq *this_rq)
2896 {
2897 long nr_active, delta = 0;
2898
2899 nr_active = this_rq->nr_running;
2900 nr_active += (long) this_rq->nr_uninterruptible;
2901
2902 if (nr_active != this_rq->calc_load_active) {
2903 delta = nr_active - this_rq->calc_load_active;
2904 this_rq->calc_load_active = nr_active;
2905 }
2906
2907 return delta;
2908 }
2909
2910 #ifdef CONFIG_NO_HZ
2911 /*
2912 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2913 *
2914 * When making the ILB scale, we should try to pull this in as well.
2915 */
2916 static atomic_long_t calc_load_tasks_idle;
2917
2918 static void calc_load_account_idle(struct rq *this_rq)
2919 {
2920 long delta;
2921
2922 delta = calc_load_fold_active(this_rq);
2923 if (delta)
2924 atomic_long_add(delta, &calc_load_tasks_idle);
2925 }
2926
2927 static long calc_load_fold_idle(void)
2928 {
2929 long delta = 0;
2930
2931 /*
2932 * Its got a race, we don't care...
2933 */
2934 if (atomic_long_read(&calc_load_tasks_idle))
2935 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2936
2937 return delta;
2938 }
2939 #else
2940 static void calc_load_account_idle(struct rq *this_rq)
2941 {
2942 }
2943
2944 static inline long calc_load_fold_idle(void)
2945 {
2946 return 0;
2947 }
2948 #endif
2949
2950 /**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959 {
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2963 }
2964
2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967 {
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971 }
2972
2973 /*
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2976 */
2977 void calc_global_load(void)
2978 {
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2981
2982 if (time_before(jiffies, upd))
2983 return;
2984
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
2987
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2991
2992 calc_load_update += LOAD_FREQ;
2993 }
2994
2995 /*
2996 * Called from update_cpu_load() to periodically update this CPU's
2997 * active count.
2998 */
2999 static void calc_load_account_active(struct rq *this_rq)
3000 {
3001 long delta;
3002
3003 if (time_before(jiffies, this_rq->calc_load_update))
3004 return;
3005
3006 delta = calc_load_fold_active(this_rq);
3007 delta += calc_load_fold_idle();
3008 if (delta)
3009 atomic_long_add(delta, &calc_load_tasks);
3010
3011 this_rq->calc_load_update += LOAD_FREQ;
3012 }
3013
3014 /*
3015 * Update rq->cpu_load[] statistics. This function is usually called every
3016 * scheduler tick (TICK_NSEC).
3017 */
3018 static void update_cpu_load(struct rq *this_rq)
3019 {
3020 unsigned long this_load = this_rq->load.weight;
3021 int i, scale;
3022
3023 this_rq->nr_load_updates++;
3024
3025 /* Update our load: */
3026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3027 unsigned long old_load, new_load;
3028
3029 /* scale is effectively 1 << i now, and >> i divides by scale */
3030
3031 old_load = this_rq->cpu_load[i];
3032 new_load = this_load;
3033 /*
3034 * Round up the averaging division if load is increasing. This
3035 * prevents us from getting stuck on 9 if the load is 10, for
3036 * example.
3037 */
3038 if (new_load > old_load)
3039 new_load += scale-1;
3040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3041 }
3042
3043 calc_load_account_active(this_rq);
3044 }
3045
3046 #ifdef CONFIG_SMP
3047
3048 /*
3049 * sched_exec - execve() is a valuable balancing opportunity, because at
3050 * this point the task has the smallest effective memory and cache footprint.
3051 */
3052 void sched_exec(void)
3053 {
3054 struct task_struct *p = current;
3055 unsigned long flags;
3056 struct rq *rq;
3057 int dest_cpu;
3058
3059 rq = task_rq_lock(p, &flags);
3060 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3061 if (dest_cpu == smp_processor_id())
3062 goto unlock;
3063
3064 /*
3065 * select_task_rq() can race against ->cpus_allowed
3066 */
3067 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3068 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3069 struct migration_arg arg = { p, dest_cpu };
3070
3071 task_rq_unlock(rq, &flags);
3072 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3073 return;
3074 }
3075 unlock:
3076 task_rq_unlock(rq, &flags);
3077 }
3078
3079 #endif
3080
3081 DEFINE_PER_CPU(struct kernel_stat, kstat);
3082
3083 EXPORT_PER_CPU_SYMBOL(kstat);
3084
3085 /*
3086 * Return any ns on the sched_clock that have not yet been accounted in
3087 * @p in case that task is currently running.
3088 *
3089 * Called with task_rq_lock() held on @rq.
3090 */
3091 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3092 {
3093 u64 ns = 0;
3094
3095 if (task_current(rq, p)) {
3096 update_rq_clock(rq);
3097 ns = rq->clock - p->se.exec_start;
3098 if ((s64)ns < 0)
3099 ns = 0;
3100 }
3101
3102 return ns;
3103 }
3104
3105 unsigned long long task_delta_exec(struct task_struct *p)
3106 {
3107 unsigned long flags;
3108 struct rq *rq;
3109 u64 ns = 0;
3110
3111 rq = task_rq_lock(p, &flags);
3112 ns = do_task_delta_exec(p, rq);
3113 task_rq_unlock(rq, &flags);
3114
3115 return ns;
3116 }
3117
3118 /*
3119 * Return accounted runtime for the task.
3120 * In case the task is currently running, return the runtime plus current's
3121 * pending runtime that have not been accounted yet.
3122 */
3123 unsigned long long task_sched_runtime(struct task_struct *p)
3124 {
3125 unsigned long flags;
3126 struct rq *rq;
3127 u64 ns = 0;
3128
3129 rq = task_rq_lock(p, &flags);
3130 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3131 task_rq_unlock(rq, &flags);
3132
3133 return ns;
3134 }
3135
3136 /*
3137 * Return sum_exec_runtime for the thread group.
3138 * In case the task is currently running, return the sum plus current's
3139 * pending runtime that have not been accounted yet.
3140 *
3141 * Note that the thread group might have other running tasks as well,
3142 * so the return value not includes other pending runtime that other
3143 * running tasks might have.
3144 */
3145 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3146 {
3147 struct task_cputime totals;
3148 unsigned long flags;
3149 struct rq *rq;
3150 u64 ns;
3151
3152 rq = task_rq_lock(p, &flags);
3153 thread_group_cputime(p, &totals);
3154 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3155 task_rq_unlock(rq, &flags);
3156
3157 return ns;
3158 }
3159
3160 /*
3161 * Account user cpu time to a process.
3162 * @p: the process that the cpu time gets accounted to
3163 * @cputime: the cpu time spent in user space since the last update
3164 * @cputime_scaled: cputime scaled by cpu frequency
3165 */
3166 void account_user_time(struct task_struct *p, cputime_t cputime,
3167 cputime_t cputime_scaled)
3168 {
3169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3170 cputime64_t tmp;
3171
3172 /* Add user time to process. */
3173 p->utime = cputime_add(p->utime, cputime);
3174 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3175 account_group_user_time(p, cputime);
3176
3177 /* Add user time to cpustat. */
3178 tmp = cputime_to_cputime64(cputime);
3179 if (TASK_NICE(p) > 0)
3180 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3181 else
3182 cpustat->user = cputime64_add(cpustat->user, tmp);
3183
3184 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3185 /* Account for user time used */
3186 acct_update_integrals(p);
3187 }
3188
3189 /*
3190 * Account guest cpu time to a process.
3191 * @p: the process that the cpu time gets accounted to
3192 * @cputime: the cpu time spent in virtual machine since the last update
3193 * @cputime_scaled: cputime scaled by cpu frequency
3194 */
3195 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3196 cputime_t cputime_scaled)
3197 {
3198 cputime64_t tmp;
3199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3200
3201 tmp = cputime_to_cputime64(cputime);
3202
3203 /* Add guest time to process. */
3204 p->utime = cputime_add(p->utime, cputime);
3205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3206 account_group_user_time(p, cputime);
3207 p->gtime = cputime_add(p->gtime, cputime);
3208
3209 /* Add guest time to cpustat. */
3210 if (TASK_NICE(p) > 0) {
3211 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3212 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3213 } else {
3214 cpustat->user = cputime64_add(cpustat->user, tmp);
3215 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3216 }
3217 }
3218
3219 /*
3220 * Account system cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in kernel space since the last update
3224 * @cputime_scaled: cputime scaled by cpu frequency
3225 */
3226 void account_system_time(struct task_struct *p, int hardirq_offset,
3227 cputime_t cputime, cputime_t cputime_scaled)
3228 {
3229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3230 cputime64_t tmp;
3231
3232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3233 account_guest_time(p, cputime, cputime_scaled);
3234 return;
3235 }
3236
3237 /* Add system time to process. */
3238 p->stime = cputime_add(p->stime, cputime);
3239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3240 account_group_system_time(p, cputime);
3241
3242 /* Add system time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (hardirq_count() - hardirq_offset)
3245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3246 else if (softirq_count())
3247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3248 else
3249 cpustat->system = cputime64_add(cpustat->system, tmp);
3250
3251 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3252
3253 /* Account for system time used */
3254 acct_update_integrals(p);
3255 }
3256
3257 /*
3258 * Account for involuntary wait time.
3259 * @steal: the cpu time spent in involuntary wait
3260 */
3261 void account_steal_time(cputime_t cputime)
3262 {
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3265
3266 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3267 }
3268
3269 /*
3270 * Account for idle time.
3271 * @cputime: the cpu time spent in idle wait
3272 */
3273 void account_idle_time(cputime_t cputime)
3274 {
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3277 struct rq *rq = this_rq();
3278
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3283 }
3284
3285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3286
3287 /*
3288 * Account a single tick of cpu time.
3289 * @p: the process that the cpu time gets accounted to
3290 * @user_tick: indicates if the tick is a user or a system tick
3291 */
3292 void account_process_tick(struct task_struct *p, int user_tick)
3293 {
3294 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3295 struct rq *rq = this_rq();
3296
3297 if (user_tick)
3298 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3299 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3300 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3301 one_jiffy_scaled);
3302 else
3303 account_idle_time(cputime_one_jiffy);
3304 }
3305
3306 /*
3307 * Account multiple ticks of steal time.
3308 * @p: the process from which the cpu time has been stolen
3309 * @ticks: number of stolen ticks
3310 */
3311 void account_steal_ticks(unsigned long ticks)
3312 {
3313 account_steal_time(jiffies_to_cputime(ticks));
3314 }
3315
3316 /*
3317 * Account multiple ticks of idle time.
3318 * @ticks: number of stolen ticks
3319 */
3320 void account_idle_ticks(unsigned long ticks)
3321 {
3322 account_idle_time(jiffies_to_cputime(ticks));
3323 }
3324
3325 #endif
3326
3327 /*
3328 * Use precise platform statistics if available:
3329 */
3330 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3331 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3332 {
3333 *ut = p->utime;
3334 *st = p->stime;
3335 }
3336
3337 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3338 {
3339 struct task_cputime cputime;
3340
3341 thread_group_cputime(p, &cputime);
3342
3343 *ut = cputime.utime;
3344 *st = cputime.stime;
3345 }
3346 #else
3347
3348 #ifndef nsecs_to_cputime
3349 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3350 #endif
3351
3352 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3353 {
3354 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3355
3356 /*
3357 * Use CFS's precise accounting:
3358 */
3359 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3360
3361 if (total) {
3362 u64 temp;
3363
3364 temp = (u64)(rtime * utime);
3365 do_div(temp, total);
3366 utime = (cputime_t)temp;
3367 } else
3368 utime = rtime;
3369
3370 /*
3371 * Compare with previous values, to keep monotonicity:
3372 */
3373 p->prev_utime = max(p->prev_utime, utime);
3374 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3375
3376 *ut = p->prev_utime;
3377 *st = p->prev_stime;
3378 }
3379
3380 /*
3381 * Must be called with siglock held.
3382 */
3383 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3384 {
3385 struct signal_struct *sig = p->signal;
3386 struct task_cputime cputime;
3387 cputime_t rtime, utime, total;
3388
3389 thread_group_cputime(p, &cputime);
3390
3391 total = cputime_add(cputime.utime, cputime.stime);
3392 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3393
3394 if (total) {
3395 u64 temp;
3396
3397 temp = (u64)(rtime * cputime.utime);
3398 do_div(temp, total);
3399 utime = (cputime_t)temp;
3400 } else
3401 utime = rtime;
3402
3403 sig->prev_utime = max(sig->prev_utime, utime);
3404 sig->prev_stime = max(sig->prev_stime,
3405 cputime_sub(rtime, sig->prev_utime));
3406
3407 *ut = sig->prev_utime;
3408 *st = sig->prev_stime;
3409 }
3410 #endif
3411
3412 /*
3413 * This function gets called by the timer code, with HZ frequency.
3414 * We call it with interrupts disabled.
3415 *
3416 * It also gets called by the fork code, when changing the parent's
3417 * timeslices.
3418 */
3419 void scheduler_tick(void)
3420 {
3421 int cpu = smp_processor_id();
3422 struct rq *rq = cpu_rq(cpu);
3423 struct task_struct *curr = rq->curr;
3424
3425 sched_clock_tick();
3426
3427 raw_spin_lock(&rq->lock);
3428 update_rq_clock(rq);
3429 update_cpu_load(rq);
3430 curr->sched_class->task_tick(rq, curr, 0);
3431 raw_spin_unlock(&rq->lock);
3432
3433 perf_event_task_tick(curr);
3434
3435 #ifdef CONFIG_SMP
3436 rq->idle_at_tick = idle_cpu(cpu);
3437 trigger_load_balance(rq, cpu);
3438 #endif
3439 }
3440
3441 notrace unsigned long get_parent_ip(unsigned long addr)
3442 {
3443 if (in_lock_functions(addr)) {
3444 addr = CALLER_ADDR2;
3445 if (in_lock_functions(addr))
3446 addr = CALLER_ADDR3;
3447 }
3448 return addr;
3449 }
3450
3451 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3452 defined(CONFIG_PREEMPT_TRACER))
3453
3454 void __kprobes add_preempt_count(int val)
3455 {
3456 #ifdef CONFIG_DEBUG_PREEMPT
3457 /*
3458 * Underflow?
3459 */
3460 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3461 return;
3462 #endif
3463 preempt_count() += val;
3464 #ifdef CONFIG_DEBUG_PREEMPT
3465 /*
3466 * Spinlock count overflowing soon?
3467 */
3468 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3469 PREEMPT_MASK - 10);
3470 #endif
3471 if (preempt_count() == val)
3472 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3473 }
3474 EXPORT_SYMBOL(add_preempt_count);
3475
3476 void __kprobes sub_preempt_count(int val)
3477 {
3478 #ifdef CONFIG_DEBUG_PREEMPT
3479 /*
3480 * Underflow?
3481 */
3482 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3483 return;
3484 /*
3485 * Is the spinlock portion underflowing?
3486 */
3487 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3488 !(preempt_count() & PREEMPT_MASK)))
3489 return;
3490 #endif
3491
3492 if (preempt_count() == val)
3493 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3494 preempt_count() -= val;
3495 }
3496 EXPORT_SYMBOL(sub_preempt_count);
3497
3498 #endif
3499
3500 /*
3501 * Print scheduling while atomic bug:
3502 */
3503 static noinline void __schedule_bug(struct task_struct *prev)
3504 {
3505 struct pt_regs *regs = get_irq_regs();
3506
3507 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3508 prev->comm, prev->pid, preempt_count());
3509
3510 debug_show_held_locks(prev);
3511 print_modules();
3512 if (irqs_disabled())
3513 print_irqtrace_events(prev);
3514
3515 if (regs)
3516 show_regs(regs);
3517 else
3518 dump_stack();
3519 }
3520
3521 /*
3522 * Various schedule()-time debugging checks and statistics:
3523 */
3524 static inline void schedule_debug(struct task_struct *prev)
3525 {
3526 /*
3527 * Test if we are atomic. Since do_exit() needs to call into
3528 * schedule() atomically, we ignore that path for now.
3529 * Otherwise, whine if we are scheduling when we should not be.
3530 */
3531 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3532 __schedule_bug(prev);
3533
3534 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3535
3536 schedstat_inc(this_rq(), sched_count);
3537 #ifdef CONFIG_SCHEDSTATS
3538 if (unlikely(prev->lock_depth >= 0)) {
3539 schedstat_inc(this_rq(), bkl_count);
3540 schedstat_inc(prev, sched_info.bkl_count);
3541 }
3542 #endif
3543 }
3544
3545 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3546 {
3547 if (prev->se.on_rq)
3548 update_rq_clock(rq);
3549 rq->skip_clock_update = 0;
3550 prev->sched_class->put_prev_task(rq, prev);
3551 }
3552
3553 /*
3554 * Pick up the highest-prio task:
3555 */
3556 static inline struct task_struct *
3557 pick_next_task(struct rq *rq)
3558 {
3559 const struct sched_class *class;
3560 struct task_struct *p;
3561
3562 /*
3563 * Optimization: we know that if all tasks are in
3564 * the fair class we can call that function directly:
3565 */
3566 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3567 p = fair_sched_class.pick_next_task(rq);
3568 if (likely(p))
3569 return p;
3570 }
3571
3572 class = sched_class_highest;
3573 for ( ; ; ) {
3574 p = class->pick_next_task(rq);
3575 if (p)
3576 return p;
3577 /*
3578 * Will never be NULL as the idle class always
3579 * returns a non-NULL p:
3580 */
3581 class = class->next;
3582 }
3583 }
3584
3585 /*
3586 * schedule() is the main scheduler function.
3587 */
3588 asmlinkage void __sched schedule(void)
3589 {
3590 struct task_struct *prev, *next;
3591 unsigned long *switch_count;
3592 struct rq *rq;
3593 int cpu;
3594
3595 need_resched:
3596 preempt_disable();
3597 cpu = smp_processor_id();
3598 rq = cpu_rq(cpu);
3599 rcu_note_context_switch(cpu);
3600 prev = rq->curr;
3601 switch_count = &prev->nivcsw;
3602
3603 release_kernel_lock(prev);
3604 need_resched_nonpreemptible:
3605
3606 schedule_debug(prev);
3607
3608 if (sched_feat(HRTICK))
3609 hrtick_clear(rq);
3610
3611 raw_spin_lock_irq(&rq->lock);
3612 clear_tsk_need_resched(prev);
3613
3614 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3615 if (unlikely(signal_pending_state(prev->state, prev)))
3616 prev->state = TASK_RUNNING;
3617 else
3618 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3619 switch_count = &prev->nvcsw;
3620 }
3621
3622 pre_schedule(rq, prev);
3623
3624 if (unlikely(!rq->nr_running))
3625 idle_balance(cpu, rq);
3626
3627 put_prev_task(rq, prev);
3628 next = pick_next_task(rq);
3629
3630 if (likely(prev != next)) {
3631 sched_info_switch(prev, next);
3632 perf_event_task_sched_out(prev, next);
3633
3634 rq->nr_switches++;
3635 rq->curr = next;
3636 ++*switch_count;
3637
3638 context_switch(rq, prev, next); /* unlocks the rq */
3639 /*
3640 * the context switch might have flipped the stack from under
3641 * us, hence refresh the local variables.
3642 */
3643 cpu = smp_processor_id();
3644 rq = cpu_rq(cpu);
3645 } else
3646 raw_spin_unlock_irq(&rq->lock);
3647
3648 post_schedule(rq);
3649
3650 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3651 prev = rq->curr;
3652 switch_count = &prev->nivcsw;
3653 goto need_resched_nonpreemptible;
3654 }
3655
3656 preempt_enable_no_resched();
3657 if (need_resched())
3658 goto need_resched;
3659 }
3660 EXPORT_SYMBOL(schedule);
3661
3662 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3663 /*
3664 * Look out! "owner" is an entirely speculative pointer
3665 * access and not reliable.
3666 */
3667 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3668 {
3669 unsigned int cpu;
3670 struct rq *rq;
3671
3672 if (!sched_feat(OWNER_SPIN))
3673 return 0;
3674
3675 #ifdef CONFIG_DEBUG_PAGEALLOC
3676 /*
3677 * Need to access the cpu field knowing that
3678 * DEBUG_PAGEALLOC could have unmapped it if
3679 * the mutex owner just released it and exited.
3680 */
3681 if (probe_kernel_address(&owner->cpu, cpu))
3682 return 0;
3683 #else
3684 cpu = owner->cpu;
3685 #endif
3686
3687 /*
3688 * Even if the access succeeded (likely case),
3689 * the cpu field may no longer be valid.
3690 */
3691 if (cpu >= nr_cpumask_bits)
3692 return 0;
3693
3694 /*
3695 * We need to validate that we can do a
3696 * get_cpu() and that we have the percpu area.
3697 */
3698 if (!cpu_online(cpu))
3699 return 0;
3700
3701 rq = cpu_rq(cpu);
3702
3703 for (;;) {
3704 /*
3705 * Owner changed, break to re-assess state.
3706 */
3707 if (lock->owner != owner)
3708 break;
3709
3710 /*
3711 * Is that owner really running on that cpu?
3712 */
3713 if (task_thread_info(rq->curr) != owner || need_resched())
3714 return 0;
3715
3716 cpu_relax();
3717 }
3718
3719 return 1;
3720 }
3721 #endif
3722
3723 #ifdef CONFIG_PREEMPT
3724 /*
3725 * this is the entry point to schedule() from in-kernel preemption
3726 * off of preempt_enable. Kernel preemptions off return from interrupt
3727 * occur there and call schedule directly.
3728 */
3729 asmlinkage void __sched preempt_schedule(void)
3730 {
3731 struct thread_info *ti = current_thread_info();
3732
3733 /*
3734 * If there is a non-zero preempt_count or interrupts are disabled,
3735 * we do not want to preempt the current task. Just return..
3736 */
3737 if (likely(ti->preempt_count || irqs_disabled()))
3738 return;
3739
3740 do {
3741 add_preempt_count(PREEMPT_ACTIVE);
3742 schedule();
3743 sub_preempt_count(PREEMPT_ACTIVE);
3744
3745 /*
3746 * Check again in case we missed a preemption opportunity
3747 * between schedule and now.
3748 */
3749 barrier();
3750 } while (need_resched());
3751 }
3752 EXPORT_SYMBOL(preempt_schedule);
3753
3754 /*
3755 * this is the entry point to schedule() from kernel preemption
3756 * off of irq context.
3757 * Note, that this is called and return with irqs disabled. This will
3758 * protect us against recursive calling from irq.
3759 */
3760 asmlinkage void __sched preempt_schedule_irq(void)
3761 {
3762 struct thread_info *ti = current_thread_info();
3763
3764 /* Catch callers which need to be fixed */
3765 BUG_ON(ti->preempt_count || !irqs_disabled());
3766
3767 do {
3768 add_preempt_count(PREEMPT_ACTIVE);
3769 local_irq_enable();
3770 schedule();
3771 local_irq_disable();
3772 sub_preempt_count(PREEMPT_ACTIVE);
3773
3774 /*
3775 * Check again in case we missed a preemption opportunity
3776 * between schedule and now.
3777 */
3778 barrier();
3779 } while (need_resched());
3780 }
3781
3782 #endif /* CONFIG_PREEMPT */
3783
3784 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3785 void *key)
3786 {
3787 return try_to_wake_up(curr->private, mode, wake_flags);
3788 }
3789 EXPORT_SYMBOL(default_wake_function);
3790
3791 /*
3792 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3793 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3794 * number) then we wake all the non-exclusive tasks and one exclusive task.
3795 *
3796 * There are circumstances in which we can try to wake a task which has already
3797 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3798 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3799 */
3800 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3801 int nr_exclusive, int wake_flags, void *key)
3802 {
3803 wait_queue_t *curr, *next;
3804
3805 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3806 unsigned flags = curr->flags;
3807
3808 if (curr->func(curr, mode, wake_flags, key) &&
3809 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3810 break;
3811 }
3812 }
3813
3814 /**
3815 * __wake_up - wake up threads blocked on a waitqueue.
3816 * @q: the waitqueue
3817 * @mode: which threads
3818 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3819 * @key: is directly passed to the wakeup function
3820 *
3821 * It may be assumed that this function implies a write memory barrier before
3822 * changing the task state if and only if any tasks are woken up.
3823 */
3824 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3825 int nr_exclusive, void *key)
3826 {
3827 unsigned long flags;
3828
3829 spin_lock_irqsave(&q->lock, flags);
3830 __wake_up_common(q, mode, nr_exclusive, 0, key);
3831 spin_unlock_irqrestore(&q->lock, flags);
3832 }
3833 EXPORT_SYMBOL(__wake_up);
3834
3835 /*
3836 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3837 */
3838 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3839 {
3840 __wake_up_common(q, mode, 1, 0, NULL);
3841 }
3842 EXPORT_SYMBOL_GPL(__wake_up_locked);
3843
3844 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3845 {
3846 __wake_up_common(q, mode, 1, 0, key);
3847 }
3848
3849 /**
3850 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3851 * @q: the waitqueue
3852 * @mode: which threads
3853 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3854 * @key: opaque value to be passed to wakeup targets
3855 *
3856 * The sync wakeup differs that the waker knows that it will schedule
3857 * away soon, so while the target thread will be woken up, it will not
3858 * be migrated to another CPU - ie. the two threads are 'synchronized'
3859 * with each other. This can prevent needless bouncing between CPUs.
3860 *
3861 * On UP it can prevent extra preemption.
3862 *
3863 * It may be assumed that this function implies a write memory barrier before
3864 * changing the task state if and only if any tasks are woken up.
3865 */
3866 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3867 int nr_exclusive, void *key)
3868 {
3869 unsigned long flags;
3870 int wake_flags = WF_SYNC;
3871
3872 if (unlikely(!q))
3873 return;
3874
3875 if (unlikely(!nr_exclusive))
3876 wake_flags = 0;
3877
3878 spin_lock_irqsave(&q->lock, flags);
3879 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3880 spin_unlock_irqrestore(&q->lock, flags);
3881 }
3882 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3883
3884 /*
3885 * __wake_up_sync - see __wake_up_sync_key()
3886 */
3887 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3888 {
3889 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3890 }
3891 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3892
3893 /**
3894 * complete: - signals a single thread waiting on this completion
3895 * @x: holds the state of this particular completion
3896 *
3897 * This will wake up a single thread waiting on this completion. Threads will be
3898 * awakened in the same order in which they were queued.
3899 *
3900 * See also complete_all(), wait_for_completion() and related routines.
3901 *
3902 * It may be assumed that this function implies a write memory barrier before
3903 * changing the task state if and only if any tasks are woken up.
3904 */
3905 void complete(struct completion *x)
3906 {
3907 unsigned long flags;
3908
3909 spin_lock_irqsave(&x->wait.lock, flags);
3910 x->done++;
3911 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3912 spin_unlock_irqrestore(&x->wait.lock, flags);
3913 }
3914 EXPORT_SYMBOL(complete);
3915
3916 /**
3917 * complete_all: - signals all threads waiting on this completion
3918 * @x: holds the state of this particular completion
3919 *
3920 * This will wake up all threads waiting on this particular completion event.
3921 *
3922 * It may be assumed that this function implies a write memory barrier before
3923 * changing the task state if and only if any tasks are woken up.
3924 */
3925 void complete_all(struct completion *x)
3926 {
3927 unsigned long flags;
3928
3929 spin_lock_irqsave(&x->wait.lock, flags);
3930 x->done += UINT_MAX/2;
3931 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3932 spin_unlock_irqrestore(&x->wait.lock, flags);
3933 }
3934 EXPORT_SYMBOL(complete_all);
3935
3936 static inline long __sched
3937 do_wait_for_common(struct completion *x, long timeout, int state)
3938 {
3939 if (!x->done) {
3940 DECLARE_WAITQUEUE(wait, current);
3941
3942 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3943 do {
3944 if (signal_pending_state(state, current)) {
3945 timeout = -ERESTARTSYS;
3946 break;
3947 }
3948 __set_current_state(state);
3949 spin_unlock_irq(&x->wait.lock);
3950 timeout = schedule_timeout(timeout);
3951 spin_lock_irq(&x->wait.lock);
3952 } while (!x->done && timeout);
3953 __remove_wait_queue(&x->wait, &wait);
3954 if (!x->done)
3955 return timeout;
3956 }
3957 x->done--;
3958 return timeout ?: 1;
3959 }
3960
3961 static long __sched
3962 wait_for_common(struct completion *x, long timeout, int state)
3963 {
3964 might_sleep();
3965
3966 spin_lock_irq(&x->wait.lock);
3967 timeout = do_wait_for_common(x, timeout, state);
3968 spin_unlock_irq(&x->wait.lock);
3969 return timeout;
3970 }
3971
3972 /**
3973 * wait_for_completion: - waits for completion of a task
3974 * @x: holds the state of this particular completion
3975 *
3976 * This waits to be signaled for completion of a specific task. It is NOT
3977 * interruptible and there is no timeout.
3978 *
3979 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3980 * and interrupt capability. Also see complete().
3981 */
3982 void __sched wait_for_completion(struct completion *x)
3983 {
3984 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3985 }
3986 EXPORT_SYMBOL(wait_for_completion);
3987
3988 /**
3989 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3990 * @x: holds the state of this particular completion
3991 * @timeout: timeout value in jiffies
3992 *
3993 * This waits for either a completion of a specific task to be signaled or for a
3994 * specified timeout to expire. The timeout is in jiffies. It is not
3995 * interruptible.
3996 */
3997 unsigned long __sched
3998 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3999 {
4000 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4001 }
4002 EXPORT_SYMBOL(wait_for_completion_timeout);
4003
4004 /**
4005 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4006 * @x: holds the state of this particular completion
4007 *
4008 * This waits for completion of a specific task to be signaled. It is
4009 * interruptible.
4010 */
4011 int __sched wait_for_completion_interruptible(struct completion *x)
4012 {
4013 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4014 if (t == -ERESTARTSYS)
4015 return t;
4016 return 0;
4017 }
4018 EXPORT_SYMBOL(wait_for_completion_interruptible);
4019
4020 /**
4021 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4022 * @x: holds the state of this particular completion
4023 * @timeout: timeout value in jiffies
4024 *
4025 * This waits for either a completion of a specific task to be signaled or for a
4026 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4027 */
4028 unsigned long __sched
4029 wait_for_completion_interruptible_timeout(struct completion *x,
4030 unsigned long timeout)
4031 {
4032 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4033 }
4034 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4035
4036 /**
4037 * wait_for_completion_killable: - waits for completion of a task (killable)
4038 * @x: holds the state of this particular completion
4039 *
4040 * This waits to be signaled for completion of a specific task. It can be
4041 * interrupted by a kill signal.
4042 */
4043 int __sched wait_for_completion_killable(struct completion *x)
4044 {
4045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4046 if (t == -ERESTARTSYS)
4047 return t;
4048 return 0;
4049 }
4050 EXPORT_SYMBOL(wait_for_completion_killable);
4051
4052 /**
4053 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4054 * @x: holds the state of this particular completion
4055 * @timeout: timeout value in jiffies
4056 *
4057 * This waits for either a completion of a specific task to be
4058 * signaled or for a specified timeout to expire. It can be
4059 * interrupted by a kill signal. The timeout is in jiffies.
4060 */
4061 unsigned long __sched
4062 wait_for_completion_killable_timeout(struct completion *x,
4063 unsigned long timeout)
4064 {
4065 return wait_for_common(x, timeout, TASK_KILLABLE);
4066 }
4067 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4068
4069 /**
4070 * try_wait_for_completion - try to decrement a completion without blocking
4071 * @x: completion structure
4072 *
4073 * Returns: 0 if a decrement cannot be done without blocking
4074 * 1 if a decrement succeeded.
4075 *
4076 * If a completion is being used as a counting completion,
4077 * attempt to decrement the counter without blocking. This
4078 * enables us to avoid waiting if the resource the completion
4079 * is protecting is not available.
4080 */
4081 bool try_wait_for_completion(struct completion *x)
4082 {
4083 unsigned long flags;
4084 int ret = 1;
4085
4086 spin_lock_irqsave(&x->wait.lock, flags);
4087 if (!x->done)
4088 ret = 0;
4089 else
4090 x->done--;
4091 spin_unlock_irqrestore(&x->wait.lock, flags);
4092 return ret;
4093 }
4094 EXPORT_SYMBOL(try_wait_for_completion);
4095
4096 /**
4097 * completion_done - Test to see if a completion has any waiters
4098 * @x: completion structure
4099 *
4100 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4101 * 1 if there are no waiters.
4102 *
4103 */
4104 bool completion_done(struct completion *x)
4105 {
4106 unsigned long flags;
4107 int ret = 1;
4108
4109 spin_lock_irqsave(&x->wait.lock, flags);
4110 if (!x->done)
4111 ret = 0;
4112 spin_unlock_irqrestore(&x->wait.lock, flags);
4113 return ret;
4114 }
4115 EXPORT_SYMBOL(completion_done);
4116
4117 static long __sched
4118 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4119 {
4120 unsigned long flags;
4121 wait_queue_t wait;
4122
4123 init_waitqueue_entry(&wait, current);
4124
4125 __set_current_state(state);
4126
4127 spin_lock_irqsave(&q->lock, flags);
4128 __add_wait_queue(q, &wait);
4129 spin_unlock(&q->lock);
4130 timeout = schedule_timeout(timeout);
4131 spin_lock_irq(&q->lock);
4132 __remove_wait_queue(q, &wait);
4133 spin_unlock_irqrestore(&q->lock, flags);
4134
4135 return timeout;
4136 }
4137
4138 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4139 {
4140 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4141 }
4142 EXPORT_SYMBOL(interruptible_sleep_on);
4143
4144 long __sched
4145 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4146 {
4147 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4148 }
4149 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4150
4151 void __sched sleep_on(wait_queue_head_t *q)
4152 {
4153 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4154 }
4155 EXPORT_SYMBOL(sleep_on);
4156
4157 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4158 {
4159 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4160 }
4161 EXPORT_SYMBOL(sleep_on_timeout);
4162
4163 #ifdef CONFIG_RT_MUTEXES
4164
4165 /*
4166 * rt_mutex_setprio - set the current priority of a task
4167 * @p: task
4168 * @prio: prio value (kernel-internal form)
4169 *
4170 * This function changes the 'effective' priority of a task. It does
4171 * not touch ->normal_prio like __setscheduler().
4172 *
4173 * Used by the rt_mutex code to implement priority inheritance logic.
4174 */
4175 void rt_mutex_setprio(struct task_struct *p, int prio)
4176 {
4177 unsigned long flags;
4178 int oldprio, on_rq, running;
4179 struct rq *rq;
4180 const struct sched_class *prev_class;
4181
4182 BUG_ON(prio < 0 || prio > MAX_PRIO);
4183
4184 rq = task_rq_lock(p, &flags);
4185
4186 oldprio = p->prio;
4187 prev_class = p->sched_class;
4188 on_rq = p->se.on_rq;
4189 running = task_current(rq, p);
4190 if (on_rq)
4191 dequeue_task(rq, p, 0);
4192 if (running)
4193 p->sched_class->put_prev_task(rq, p);
4194
4195 if (rt_prio(prio))
4196 p->sched_class = &rt_sched_class;
4197 else
4198 p->sched_class = &fair_sched_class;
4199
4200 p->prio = prio;
4201
4202 if (running)
4203 p->sched_class->set_curr_task(rq);
4204 if (on_rq) {
4205 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4206
4207 check_class_changed(rq, p, prev_class, oldprio, running);
4208 }
4209 task_rq_unlock(rq, &flags);
4210 }
4211
4212 #endif
4213
4214 void set_user_nice(struct task_struct *p, long nice)
4215 {
4216 int old_prio, delta, on_rq;
4217 unsigned long flags;
4218 struct rq *rq;
4219
4220 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4221 return;
4222 /*
4223 * We have to be careful, if called from sys_setpriority(),
4224 * the task might be in the middle of scheduling on another CPU.
4225 */
4226 rq = task_rq_lock(p, &flags);
4227 /*
4228 * The RT priorities are set via sched_setscheduler(), but we still
4229 * allow the 'normal' nice value to be set - but as expected
4230 * it wont have any effect on scheduling until the task is
4231 * SCHED_FIFO/SCHED_RR:
4232 */
4233 if (task_has_rt_policy(p)) {
4234 p->static_prio = NICE_TO_PRIO(nice);
4235 goto out_unlock;
4236 }
4237 on_rq = p->se.on_rq;
4238 if (on_rq)
4239 dequeue_task(rq, p, 0);
4240
4241 p->static_prio = NICE_TO_PRIO(nice);
4242 set_load_weight(p);
4243 old_prio = p->prio;
4244 p->prio = effective_prio(p);
4245 delta = p->prio - old_prio;
4246
4247 if (on_rq) {
4248 enqueue_task(rq, p, 0);
4249 /*
4250 * If the task increased its priority or is running and
4251 * lowered its priority, then reschedule its CPU:
4252 */
4253 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4254 resched_task(rq->curr);
4255 }
4256 out_unlock:
4257 task_rq_unlock(rq, &flags);
4258 }
4259 EXPORT_SYMBOL(set_user_nice);
4260
4261 /*
4262 * can_nice - check if a task can reduce its nice value
4263 * @p: task
4264 * @nice: nice value
4265 */
4266 int can_nice(const struct task_struct *p, const int nice)
4267 {
4268 /* convert nice value [19,-20] to rlimit style value [1,40] */
4269 int nice_rlim = 20 - nice;
4270
4271 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4272 capable(CAP_SYS_NICE));
4273 }
4274
4275 #ifdef __ARCH_WANT_SYS_NICE
4276
4277 /*
4278 * sys_nice - change the priority of the current process.
4279 * @increment: priority increment
4280 *
4281 * sys_setpriority is a more generic, but much slower function that
4282 * does similar things.
4283 */
4284 SYSCALL_DEFINE1(nice, int, increment)
4285 {
4286 long nice, retval;
4287
4288 /*
4289 * Setpriority might change our priority at the same moment.
4290 * We don't have to worry. Conceptually one call occurs first
4291 * and we have a single winner.
4292 */
4293 if (increment < -40)
4294 increment = -40;
4295 if (increment > 40)
4296 increment = 40;
4297
4298 nice = TASK_NICE(current) + increment;
4299 if (nice < -20)
4300 nice = -20;
4301 if (nice > 19)
4302 nice = 19;
4303
4304 if (increment < 0 && !can_nice(current, nice))
4305 return -EPERM;
4306
4307 retval = security_task_setnice(current, nice);
4308 if (retval)
4309 return retval;
4310
4311 set_user_nice(current, nice);
4312 return 0;
4313 }
4314
4315 #endif
4316
4317 /**
4318 * task_prio - return the priority value of a given task.
4319 * @p: the task in question.
4320 *
4321 * This is the priority value as seen by users in /proc.
4322 * RT tasks are offset by -200. Normal tasks are centered
4323 * around 0, value goes from -16 to +15.
4324 */
4325 int task_prio(const struct task_struct *p)
4326 {
4327 return p->prio - MAX_RT_PRIO;
4328 }
4329
4330 /**
4331 * task_nice - return the nice value of a given task.
4332 * @p: the task in question.
4333 */
4334 int task_nice(const struct task_struct *p)
4335 {
4336 return TASK_NICE(p);
4337 }
4338 EXPORT_SYMBOL(task_nice);
4339
4340 /**
4341 * idle_cpu - is a given cpu idle currently?
4342 * @cpu: the processor in question.
4343 */
4344 int idle_cpu(int cpu)
4345 {
4346 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4347 }
4348
4349 /**
4350 * idle_task - return the idle task for a given cpu.
4351 * @cpu: the processor in question.
4352 */
4353 struct task_struct *idle_task(int cpu)
4354 {
4355 return cpu_rq(cpu)->idle;
4356 }
4357
4358 /**
4359 * find_process_by_pid - find a process with a matching PID value.
4360 * @pid: the pid in question.
4361 */
4362 static struct task_struct *find_process_by_pid(pid_t pid)
4363 {
4364 return pid ? find_task_by_vpid(pid) : current;
4365 }
4366
4367 /* Actually do priority change: must hold rq lock. */
4368 static void
4369 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4370 {
4371 BUG_ON(p->se.on_rq);
4372
4373 p->policy = policy;
4374 p->rt_priority = prio;
4375 p->normal_prio = normal_prio(p);
4376 /* we are holding p->pi_lock already */
4377 p->prio = rt_mutex_getprio(p);
4378 if (rt_prio(p->prio))
4379 p->sched_class = &rt_sched_class;
4380 else
4381 p->sched_class = &fair_sched_class;
4382 set_load_weight(p);
4383 }
4384
4385 /*
4386 * check the target process has a UID that matches the current process's
4387 */
4388 static bool check_same_owner(struct task_struct *p)
4389 {
4390 const struct cred *cred = current_cred(), *pcred;
4391 bool match;
4392
4393 rcu_read_lock();
4394 pcred = __task_cred(p);
4395 match = (cred->euid == pcred->euid ||
4396 cred->euid == pcred->uid);
4397 rcu_read_unlock();
4398 return match;
4399 }
4400
4401 static int __sched_setscheduler(struct task_struct *p, int policy,
4402 struct sched_param *param, bool user)
4403 {
4404 int retval, oldprio, oldpolicy = -1, on_rq, running;
4405 unsigned long flags;
4406 const struct sched_class *prev_class;
4407 struct rq *rq;
4408 int reset_on_fork;
4409
4410 /* may grab non-irq protected spin_locks */
4411 BUG_ON(in_interrupt());
4412 recheck:
4413 /* double check policy once rq lock held */
4414 if (policy < 0) {
4415 reset_on_fork = p->sched_reset_on_fork;
4416 policy = oldpolicy = p->policy;
4417 } else {
4418 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4419 policy &= ~SCHED_RESET_ON_FORK;
4420
4421 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4422 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4423 policy != SCHED_IDLE)
4424 return -EINVAL;
4425 }
4426
4427 /*
4428 * Valid priorities for SCHED_FIFO and SCHED_RR are
4429 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4430 * SCHED_BATCH and SCHED_IDLE is 0.
4431 */
4432 if (param->sched_priority < 0 ||
4433 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4434 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4435 return -EINVAL;
4436 if (rt_policy(policy) != (param->sched_priority != 0))
4437 return -EINVAL;
4438
4439 /*
4440 * Allow unprivileged RT tasks to decrease priority:
4441 */
4442 if (user && !capable(CAP_SYS_NICE)) {
4443 if (rt_policy(policy)) {
4444 unsigned long rlim_rtprio;
4445
4446 if (!lock_task_sighand(p, &flags))
4447 return -ESRCH;
4448 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4449 unlock_task_sighand(p, &flags);
4450
4451 /* can't set/change the rt policy */
4452 if (policy != p->policy && !rlim_rtprio)
4453 return -EPERM;
4454
4455 /* can't increase priority */
4456 if (param->sched_priority > p->rt_priority &&
4457 param->sched_priority > rlim_rtprio)
4458 return -EPERM;
4459 }
4460 /*
4461 * Like positive nice levels, dont allow tasks to
4462 * move out of SCHED_IDLE either:
4463 */
4464 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4465 return -EPERM;
4466
4467 /* can't change other user's priorities */
4468 if (!check_same_owner(p))
4469 return -EPERM;
4470
4471 /* Normal users shall not reset the sched_reset_on_fork flag */
4472 if (p->sched_reset_on_fork && !reset_on_fork)
4473 return -EPERM;
4474 }
4475
4476 if (user) {
4477 #ifdef CONFIG_RT_GROUP_SCHED
4478 /*
4479 * Do not allow realtime tasks into groups that have no runtime
4480 * assigned.
4481 */
4482 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4483 task_group(p)->rt_bandwidth.rt_runtime == 0)
4484 return -EPERM;
4485 #endif
4486
4487 retval = security_task_setscheduler(p, policy, param);
4488 if (retval)
4489 return retval;
4490 }
4491
4492 /*
4493 * make sure no PI-waiters arrive (or leave) while we are
4494 * changing the priority of the task:
4495 */
4496 raw_spin_lock_irqsave(&p->pi_lock, flags);
4497 /*
4498 * To be able to change p->policy safely, the apropriate
4499 * runqueue lock must be held.
4500 */
4501 rq = __task_rq_lock(p);
4502 /* recheck policy now with rq lock held */
4503 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4504 policy = oldpolicy = -1;
4505 __task_rq_unlock(rq);
4506 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4507 goto recheck;
4508 }
4509 on_rq = p->se.on_rq;
4510 running = task_current(rq, p);
4511 if (on_rq)
4512 deactivate_task(rq, p, 0);
4513 if (running)
4514 p->sched_class->put_prev_task(rq, p);
4515
4516 p->sched_reset_on_fork = reset_on_fork;
4517
4518 oldprio = p->prio;
4519 prev_class = p->sched_class;
4520 __setscheduler(rq, p, policy, param->sched_priority);
4521
4522 if (running)
4523 p->sched_class->set_curr_task(rq);
4524 if (on_rq) {
4525 activate_task(rq, p, 0);
4526
4527 check_class_changed(rq, p, prev_class, oldprio, running);
4528 }
4529 __task_rq_unlock(rq);
4530 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4531
4532 rt_mutex_adjust_pi(p);
4533
4534 return 0;
4535 }
4536
4537 /**
4538 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4539 * @p: the task in question.
4540 * @policy: new policy.
4541 * @param: structure containing the new RT priority.
4542 *
4543 * NOTE that the task may be already dead.
4544 */
4545 int sched_setscheduler(struct task_struct *p, int policy,
4546 struct sched_param *param)
4547 {
4548 return __sched_setscheduler(p, policy, param, true);
4549 }
4550 EXPORT_SYMBOL_GPL(sched_setscheduler);
4551
4552 /**
4553 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4554 * @p: the task in question.
4555 * @policy: new policy.
4556 * @param: structure containing the new RT priority.
4557 *
4558 * Just like sched_setscheduler, only don't bother checking if the
4559 * current context has permission. For example, this is needed in
4560 * stop_machine(): we create temporary high priority worker threads,
4561 * but our caller might not have that capability.
4562 */
4563 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4564 struct sched_param *param)
4565 {
4566 return __sched_setscheduler(p, policy, param, false);
4567 }
4568
4569 static int
4570 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4571 {
4572 struct sched_param lparam;
4573 struct task_struct *p;
4574 int retval;
4575
4576 if (!param || pid < 0)
4577 return -EINVAL;
4578 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4579 return -EFAULT;
4580
4581 rcu_read_lock();
4582 retval = -ESRCH;
4583 p = find_process_by_pid(pid);
4584 if (p != NULL)
4585 retval = sched_setscheduler(p, policy, &lparam);
4586 rcu_read_unlock();
4587
4588 return retval;
4589 }
4590
4591 /**
4592 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4593 * @pid: the pid in question.
4594 * @policy: new policy.
4595 * @param: structure containing the new RT priority.
4596 */
4597 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4598 struct sched_param __user *, param)
4599 {
4600 /* negative values for policy are not valid */
4601 if (policy < 0)
4602 return -EINVAL;
4603
4604 return do_sched_setscheduler(pid, policy, param);
4605 }
4606
4607 /**
4608 * sys_sched_setparam - set/change the RT priority of a thread
4609 * @pid: the pid in question.
4610 * @param: structure containing the new RT priority.
4611 */
4612 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4613 {
4614 return do_sched_setscheduler(pid, -1, param);
4615 }
4616
4617 /**
4618 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4619 * @pid: the pid in question.
4620 */
4621 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4622 {
4623 struct task_struct *p;
4624 int retval;
4625
4626 if (pid < 0)
4627 return -EINVAL;
4628
4629 retval = -ESRCH;
4630 rcu_read_lock();
4631 p = find_process_by_pid(pid);
4632 if (p) {
4633 retval = security_task_getscheduler(p);
4634 if (!retval)
4635 retval = p->policy
4636 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4637 }
4638 rcu_read_unlock();
4639 return retval;
4640 }
4641
4642 /**
4643 * sys_sched_getparam - get the RT priority of a thread
4644 * @pid: the pid in question.
4645 * @param: structure containing the RT priority.
4646 */
4647 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4648 {
4649 struct sched_param lp;
4650 struct task_struct *p;
4651 int retval;
4652
4653 if (!param || pid < 0)
4654 return -EINVAL;
4655
4656 rcu_read_lock();
4657 p = find_process_by_pid(pid);
4658 retval = -ESRCH;
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 lp.sched_priority = p->rt_priority;
4667 rcu_read_unlock();
4668
4669 /*
4670 * This one might sleep, we cannot do it with a spinlock held ...
4671 */
4672 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4673
4674 return retval;
4675
4676 out_unlock:
4677 rcu_read_unlock();
4678 return retval;
4679 }
4680
4681 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4682 {
4683 cpumask_var_t cpus_allowed, new_mask;
4684 struct task_struct *p;
4685 int retval;
4686
4687 get_online_cpus();
4688 rcu_read_lock();
4689
4690 p = find_process_by_pid(pid);
4691 if (!p) {
4692 rcu_read_unlock();
4693 put_online_cpus();
4694 return -ESRCH;
4695 }
4696
4697 /* Prevent p going away */
4698 get_task_struct(p);
4699 rcu_read_unlock();
4700
4701 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4702 retval = -ENOMEM;
4703 goto out_put_task;
4704 }
4705 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4706 retval = -ENOMEM;
4707 goto out_free_cpus_allowed;
4708 }
4709 retval = -EPERM;
4710 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4711 goto out_unlock;
4712
4713 retval = security_task_setscheduler(p, 0, NULL);
4714 if (retval)
4715 goto out_unlock;
4716
4717 cpuset_cpus_allowed(p, cpus_allowed);
4718 cpumask_and(new_mask, in_mask, cpus_allowed);
4719 again:
4720 retval = set_cpus_allowed_ptr(p, new_mask);
4721
4722 if (!retval) {
4723 cpuset_cpus_allowed(p, cpus_allowed);
4724 if (!cpumask_subset(new_mask, cpus_allowed)) {
4725 /*
4726 * We must have raced with a concurrent cpuset
4727 * update. Just reset the cpus_allowed to the
4728 * cpuset's cpus_allowed
4729 */
4730 cpumask_copy(new_mask, cpus_allowed);
4731 goto again;
4732 }
4733 }
4734 out_unlock:
4735 free_cpumask_var(new_mask);
4736 out_free_cpus_allowed:
4737 free_cpumask_var(cpus_allowed);
4738 out_put_task:
4739 put_task_struct(p);
4740 put_online_cpus();
4741 return retval;
4742 }
4743
4744 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4745 struct cpumask *new_mask)
4746 {
4747 if (len < cpumask_size())
4748 cpumask_clear(new_mask);
4749 else if (len > cpumask_size())
4750 len = cpumask_size();
4751
4752 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4753 }
4754
4755 /**
4756 * sys_sched_setaffinity - set the cpu affinity of a process
4757 * @pid: pid of the process
4758 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4759 * @user_mask_ptr: user-space pointer to the new cpu mask
4760 */
4761 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4762 unsigned long __user *, user_mask_ptr)
4763 {
4764 cpumask_var_t new_mask;
4765 int retval;
4766
4767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4768 return -ENOMEM;
4769
4770 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4771 if (retval == 0)
4772 retval = sched_setaffinity(pid, new_mask);
4773 free_cpumask_var(new_mask);
4774 return retval;
4775 }
4776
4777 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4778 {
4779 struct task_struct *p;
4780 unsigned long flags;
4781 struct rq *rq;
4782 int retval;
4783
4784 get_online_cpus();
4785 rcu_read_lock();
4786
4787 retval = -ESRCH;
4788 p = find_process_by_pid(pid);
4789 if (!p)
4790 goto out_unlock;
4791
4792 retval = security_task_getscheduler(p);
4793 if (retval)
4794 goto out_unlock;
4795
4796 rq = task_rq_lock(p, &flags);
4797 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4798 task_rq_unlock(rq, &flags);
4799
4800 out_unlock:
4801 rcu_read_unlock();
4802 put_online_cpus();
4803
4804 return retval;
4805 }
4806
4807 /**
4808 * sys_sched_getaffinity - get the cpu affinity of a process
4809 * @pid: pid of the process
4810 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4811 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4812 */
4813 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4814 unsigned long __user *, user_mask_ptr)
4815 {
4816 int ret;
4817 cpumask_var_t mask;
4818
4819 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4820 return -EINVAL;
4821 if (len & (sizeof(unsigned long)-1))
4822 return -EINVAL;
4823
4824 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4825 return -ENOMEM;
4826
4827 ret = sched_getaffinity(pid, mask);
4828 if (ret == 0) {
4829 size_t retlen = min_t(size_t, len, cpumask_size());
4830
4831 if (copy_to_user(user_mask_ptr, mask, retlen))
4832 ret = -EFAULT;
4833 else
4834 ret = retlen;
4835 }
4836 free_cpumask_var(mask);
4837
4838 return ret;
4839 }
4840
4841 /**
4842 * sys_sched_yield - yield the current processor to other threads.
4843 *
4844 * This function yields the current CPU to other tasks. If there are no
4845 * other threads running on this CPU then this function will return.
4846 */
4847 SYSCALL_DEFINE0(sched_yield)
4848 {
4849 struct rq *rq = this_rq_lock();
4850
4851 schedstat_inc(rq, yld_count);
4852 current->sched_class->yield_task(rq);
4853
4854 /*
4855 * Since we are going to call schedule() anyway, there's
4856 * no need to preempt or enable interrupts:
4857 */
4858 __release(rq->lock);
4859 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4860 do_raw_spin_unlock(&rq->lock);
4861 preempt_enable_no_resched();
4862
4863 schedule();
4864
4865 return 0;
4866 }
4867
4868 static inline int should_resched(void)
4869 {
4870 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4871 }
4872
4873 static void __cond_resched(void)
4874 {
4875 add_preempt_count(PREEMPT_ACTIVE);
4876 schedule();
4877 sub_preempt_count(PREEMPT_ACTIVE);
4878 }
4879
4880 int __sched _cond_resched(void)
4881 {
4882 if (should_resched()) {
4883 __cond_resched();
4884 return 1;
4885 }
4886 return 0;
4887 }
4888 EXPORT_SYMBOL(_cond_resched);
4889
4890 /*
4891 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4892 * call schedule, and on return reacquire the lock.
4893 *
4894 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4895 * operations here to prevent schedule() from being called twice (once via
4896 * spin_unlock(), once by hand).
4897 */
4898 int __cond_resched_lock(spinlock_t *lock)
4899 {
4900 int resched = should_resched();
4901 int ret = 0;
4902
4903 lockdep_assert_held(lock);
4904
4905 if (spin_needbreak(lock) || resched) {
4906 spin_unlock(lock);
4907 if (resched)
4908 __cond_resched();
4909 else
4910 cpu_relax();
4911 ret = 1;
4912 spin_lock(lock);
4913 }
4914 return ret;
4915 }
4916 EXPORT_SYMBOL(__cond_resched_lock);
4917
4918 int __sched __cond_resched_softirq(void)
4919 {
4920 BUG_ON(!in_softirq());
4921
4922 if (should_resched()) {
4923 local_bh_enable();
4924 __cond_resched();
4925 local_bh_disable();
4926 return 1;
4927 }
4928 return 0;
4929 }
4930 EXPORT_SYMBOL(__cond_resched_softirq);
4931
4932 /**
4933 * yield - yield the current processor to other threads.
4934 *
4935 * This is a shortcut for kernel-space yielding - it marks the
4936 * thread runnable and calls sys_sched_yield().
4937 */
4938 void __sched yield(void)
4939 {
4940 set_current_state(TASK_RUNNING);
4941 sys_sched_yield();
4942 }
4943 EXPORT_SYMBOL(yield);
4944
4945 /*
4946 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4947 * that process accounting knows that this is a task in IO wait state.
4948 */
4949 void __sched io_schedule(void)
4950 {
4951 struct rq *rq = raw_rq();
4952
4953 delayacct_blkio_start();
4954 atomic_inc(&rq->nr_iowait);
4955 current->in_iowait = 1;
4956 schedule();
4957 current->in_iowait = 0;
4958 atomic_dec(&rq->nr_iowait);
4959 delayacct_blkio_end();
4960 }
4961 EXPORT_SYMBOL(io_schedule);
4962
4963 long __sched io_schedule_timeout(long timeout)
4964 {
4965 struct rq *rq = raw_rq();
4966 long ret;
4967
4968 delayacct_blkio_start();
4969 atomic_inc(&rq->nr_iowait);
4970 current->in_iowait = 1;
4971 ret = schedule_timeout(timeout);
4972 current->in_iowait = 0;
4973 atomic_dec(&rq->nr_iowait);
4974 delayacct_blkio_end();
4975 return ret;
4976 }
4977
4978 /**
4979 * sys_sched_get_priority_max - return maximum RT priority.
4980 * @policy: scheduling class.
4981 *
4982 * this syscall returns the maximum rt_priority that can be used
4983 * by a given scheduling class.
4984 */
4985 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4986 {
4987 int ret = -EINVAL;
4988
4989 switch (policy) {
4990 case SCHED_FIFO:
4991 case SCHED_RR:
4992 ret = MAX_USER_RT_PRIO-1;
4993 break;
4994 case SCHED_NORMAL:
4995 case SCHED_BATCH:
4996 case SCHED_IDLE:
4997 ret = 0;
4998 break;
4999 }
5000 return ret;
5001 }
5002
5003 /**
5004 * sys_sched_get_priority_min - return minimum RT priority.
5005 * @policy: scheduling class.
5006 *
5007 * this syscall returns the minimum rt_priority that can be used
5008 * by a given scheduling class.
5009 */
5010 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5011 {
5012 int ret = -EINVAL;
5013
5014 switch (policy) {
5015 case SCHED_FIFO:
5016 case SCHED_RR:
5017 ret = 1;
5018 break;
5019 case SCHED_NORMAL:
5020 case SCHED_BATCH:
5021 case SCHED_IDLE:
5022 ret = 0;
5023 }
5024 return ret;
5025 }
5026
5027 /**
5028 * sys_sched_rr_get_interval - return the default timeslice of a process.
5029 * @pid: pid of the process.
5030 * @interval: userspace pointer to the timeslice value.
5031 *
5032 * this syscall writes the default timeslice value of a given process
5033 * into the user-space timespec buffer. A value of '0' means infinity.
5034 */
5035 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5036 struct timespec __user *, interval)
5037 {
5038 struct task_struct *p;
5039 unsigned int time_slice;
5040 unsigned long flags;
5041 struct rq *rq;
5042 int retval;
5043 struct timespec t;
5044
5045 if (pid < 0)
5046 return -EINVAL;
5047
5048 retval = -ESRCH;
5049 rcu_read_lock();
5050 p = find_process_by_pid(pid);
5051 if (!p)
5052 goto out_unlock;
5053
5054 retval = security_task_getscheduler(p);
5055 if (retval)
5056 goto out_unlock;
5057
5058 rq = task_rq_lock(p, &flags);
5059 time_slice = p->sched_class->get_rr_interval(rq, p);
5060 task_rq_unlock(rq, &flags);
5061
5062 rcu_read_unlock();
5063 jiffies_to_timespec(time_slice, &t);
5064 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5065 return retval;
5066
5067 out_unlock:
5068 rcu_read_unlock();
5069 return retval;
5070 }
5071
5072 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5073
5074 void sched_show_task(struct task_struct *p)
5075 {
5076 unsigned long free = 0;
5077 unsigned state;
5078
5079 state = p->state ? __ffs(p->state) + 1 : 0;
5080 printk(KERN_INFO "%-13.13s %c", p->comm,
5081 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5082 #if BITS_PER_LONG == 32
5083 if (state == TASK_RUNNING)
5084 printk(KERN_CONT " running ");
5085 else
5086 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5087 #else
5088 if (state == TASK_RUNNING)
5089 printk(KERN_CONT " running task ");
5090 else
5091 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5092 #endif
5093 #ifdef CONFIG_DEBUG_STACK_USAGE
5094 free = stack_not_used(p);
5095 #endif
5096 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5097 task_pid_nr(p), task_pid_nr(p->real_parent),
5098 (unsigned long)task_thread_info(p)->flags);
5099
5100 show_stack(p, NULL);
5101 }
5102
5103 void show_state_filter(unsigned long state_filter)
5104 {
5105 struct task_struct *g, *p;
5106
5107 #if BITS_PER_LONG == 32
5108 printk(KERN_INFO
5109 " task PC stack pid father\n");
5110 #else
5111 printk(KERN_INFO
5112 " task PC stack pid father\n");
5113 #endif
5114 read_lock(&tasklist_lock);
5115 do_each_thread(g, p) {
5116 /*
5117 * reset the NMI-timeout, listing all files on a slow
5118 * console might take alot of time:
5119 */
5120 touch_nmi_watchdog();
5121 if (!state_filter || (p->state & state_filter))
5122 sched_show_task(p);
5123 } while_each_thread(g, p);
5124
5125 touch_all_softlockup_watchdogs();
5126
5127 #ifdef CONFIG_SCHED_DEBUG
5128 sysrq_sched_debug_show();
5129 #endif
5130 read_unlock(&tasklist_lock);
5131 /*
5132 * Only show locks if all tasks are dumped:
5133 */
5134 if (!state_filter)
5135 debug_show_all_locks();
5136 }
5137
5138 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5139 {
5140 idle->sched_class = &idle_sched_class;
5141 }
5142
5143 /**
5144 * init_idle - set up an idle thread for a given CPU
5145 * @idle: task in question
5146 * @cpu: cpu the idle task belongs to
5147 *
5148 * NOTE: this function does not set the idle thread's NEED_RESCHED
5149 * flag, to make booting more robust.
5150 */
5151 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5152 {
5153 struct rq *rq = cpu_rq(cpu);
5154 unsigned long flags;
5155
5156 raw_spin_lock_irqsave(&rq->lock, flags);
5157
5158 __sched_fork(idle);
5159 idle->state = TASK_RUNNING;
5160 idle->se.exec_start = sched_clock();
5161
5162 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5163 __set_task_cpu(idle, cpu);
5164
5165 rq->curr = rq->idle = idle;
5166 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5167 idle->oncpu = 1;
5168 #endif
5169 raw_spin_unlock_irqrestore(&rq->lock, flags);
5170
5171 /* Set the preempt count _outside_ the spinlocks! */
5172 #if defined(CONFIG_PREEMPT)
5173 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5174 #else
5175 task_thread_info(idle)->preempt_count = 0;
5176 #endif
5177 /*
5178 * The idle tasks have their own, simple scheduling class:
5179 */
5180 idle->sched_class = &idle_sched_class;
5181 ftrace_graph_init_task(idle);
5182 }
5183
5184 /*
5185 * In a system that switches off the HZ timer nohz_cpu_mask
5186 * indicates which cpus entered this state. This is used
5187 * in the rcu update to wait only for active cpus. For system
5188 * which do not switch off the HZ timer nohz_cpu_mask should
5189 * always be CPU_BITS_NONE.
5190 */
5191 cpumask_var_t nohz_cpu_mask;
5192
5193 /*
5194 * Increase the granularity value when there are more CPUs,
5195 * because with more CPUs the 'effective latency' as visible
5196 * to users decreases. But the relationship is not linear,
5197 * so pick a second-best guess by going with the log2 of the
5198 * number of CPUs.
5199 *
5200 * This idea comes from the SD scheduler of Con Kolivas:
5201 */
5202 static int get_update_sysctl_factor(void)
5203 {
5204 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5205 unsigned int factor;
5206
5207 switch (sysctl_sched_tunable_scaling) {
5208 case SCHED_TUNABLESCALING_NONE:
5209 factor = 1;
5210 break;
5211 case SCHED_TUNABLESCALING_LINEAR:
5212 factor = cpus;
5213 break;
5214 case SCHED_TUNABLESCALING_LOG:
5215 default:
5216 factor = 1 + ilog2(cpus);
5217 break;
5218 }
5219
5220 return factor;
5221 }
5222
5223 static void update_sysctl(void)
5224 {
5225 unsigned int factor = get_update_sysctl_factor();
5226
5227 #define SET_SYSCTL(name) \
5228 (sysctl_##name = (factor) * normalized_sysctl_##name)
5229 SET_SYSCTL(sched_min_granularity);
5230 SET_SYSCTL(sched_latency);
5231 SET_SYSCTL(sched_wakeup_granularity);
5232 SET_SYSCTL(sched_shares_ratelimit);
5233 #undef SET_SYSCTL
5234 }
5235
5236 static inline void sched_init_granularity(void)
5237 {
5238 update_sysctl();
5239 }
5240
5241 #ifdef CONFIG_SMP
5242 /*
5243 * This is how migration works:
5244 *
5245 * 1) we invoke migration_cpu_stop() on the target CPU using
5246 * stop_one_cpu().
5247 * 2) stopper starts to run (implicitly forcing the migrated thread
5248 * off the CPU)
5249 * 3) it checks whether the migrated task is still in the wrong runqueue.
5250 * 4) if it's in the wrong runqueue then the migration thread removes
5251 * it and puts it into the right queue.
5252 * 5) stopper completes and stop_one_cpu() returns and the migration
5253 * is done.
5254 */
5255
5256 /*
5257 * Change a given task's CPU affinity. Migrate the thread to a
5258 * proper CPU and schedule it away if the CPU it's executing on
5259 * is removed from the allowed bitmask.
5260 *
5261 * NOTE: the caller must have a valid reference to the task, the
5262 * task must not exit() & deallocate itself prematurely. The
5263 * call is not atomic; no spinlocks may be held.
5264 */
5265 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5266 {
5267 unsigned long flags;
5268 struct rq *rq;
5269 unsigned int dest_cpu;
5270 int ret = 0;
5271
5272 /*
5273 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5274 * drop the rq->lock and still rely on ->cpus_allowed.
5275 */
5276 again:
5277 while (task_is_waking(p))
5278 cpu_relax();
5279 rq = task_rq_lock(p, &flags);
5280 if (task_is_waking(p)) {
5281 task_rq_unlock(rq, &flags);
5282 goto again;
5283 }
5284
5285 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5286 ret = -EINVAL;
5287 goto out;
5288 }
5289
5290 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5291 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
5296 if (p->sched_class->set_cpus_allowed)
5297 p->sched_class->set_cpus_allowed(p, new_mask);
5298 else {
5299 cpumask_copy(&p->cpus_allowed, new_mask);
5300 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5301 }
5302
5303 /* Can the task run on the task's current CPU? If so, we're done */
5304 if (cpumask_test_cpu(task_cpu(p), new_mask))
5305 goto out;
5306
5307 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5308 if (migrate_task(p, dest_cpu)) {
5309 struct migration_arg arg = { p, dest_cpu };
5310 /* Need help from migration thread: drop lock and wait. */
5311 task_rq_unlock(rq, &flags);
5312 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5313 tlb_migrate_finish(p->mm);
5314 return 0;
5315 }
5316 out:
5317 task_rq_unlock(rq, &flags);
5318
5319 return ret;
5320 }
5321 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5322
5323 /*
5324 * Move (not current) task off this cpu, onto dest cpu. We're doing
5325 * this because either it can't run here any more (set_cpus_allowed()
5326 * away from this CPU, or CPU going down), or because we're
5327 * attempting to rebalance this task on exec (sched_exec).
5328 *
5329 * So we race with normal scheduler movements, but that's OK, as long
5330 * as the task is no longer on this CPU.
5331 *
5332 * Returns non-zero if task was successfully migrated.
5333 */
5334 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5335 {
5336 struct rq *rq_dest, *rq_src;
5337 int ret = 0;
5338
5339 if (unlikely(!cpu_active(dest_cpu)))
5340 return ret;
5341
5342 rq_src = cpu_rq(src_cpu);
5343 rq_dest = cpu_rq(dest_cpu);
5344
5345 double_rq_lock(rq_src, rq_dest);
5346 /* Already moved. */
5347 if (task_cpu(p) != src_cpu)
5348 goto done;
5349 /* Affinity changed (again). */
5350 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5351 goto fail;
5352
5353 /*
5354 * If we're not on a rq, the next wake-up will ensure we're
5355 * placed properly.
5356 */
5357 if (p->se.on_rq) {
5358 deactivate_task(rq_src, p, 0);
5359 set_task_cpu(p, dest_cpu);
5360 activate_task(rq_dest, p, 0);
5361 check_preempt_curr(rq_dest, p, 0);
5362 }
5363 done:
5364 ret = 1;
5365 fail:
5366 double_rq_unlock(rq_src, rq_dest);
5367 return ret;
5368 }
5369
5370 /*
5371 * migration_cpu_stop - this will be executed by a highprio stopper thread
5372 * and performs thread migration by bumping thread off CPU then
5373 * 'pushing' onto another runqueue.
5374 */
5375 static int migration_cpu_stop(void *data)
5376 {
5377 struct migration_arg *arg = data;
5378
5379 /*
5380 * The original target cpu might have gone down and we might
5381 * be on another cpu but it doesn't matter.
5382 */
5383 local_irq_disable();
5384 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5385 local_irq_enable();
5386 return 0;
5387 }
5388
5389 #ifdef CONFIG_HOTPLUG_CPU
5390 /*
5391 * Figure out where task on dead CPU should go, use force if necessary.
5392 */
5393 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5394 {
5395 struct rq *rq = cpu_rq(dead_cpu);
5396 int needs_cpu, uninitialized_var(dest_cpu);
5397 unsigned long flags;
5398
5399 local_irq_save(flags);
5400
5401 raw_spin_lock(&rq->lock);
5402 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5403 if (needs_cpu)
5404 dest_cpu = select_fallback_rq(dead_cpu, p);
5405 raw_spin_unlock(&rq->lock);
5406 /*
5407 * It can only fail if we race with set_cpus_allowed(),
5408 * in the racer should migrate the task anyway.
5409 */
5410 if (needs_cpu)
5411 __migrate_task(p, dead_cpu, dest_cpu);
5412 local_irq_restore(flags);
5413 }
5414
5415 /*
5416 * While a dead CPU has no uninterruptible tasks queued at this point,
5417 * it might still have a nonzero ->nr_uninterruptible counter, because
5418 * for performance reasons the counter is not stricly tracking tasks to
5419 * their home CPUs. So we just add the counter to another CPU's counter,
5420 * to keep the global sum constant after CPU-down:
5421 */
5422 static void migrate_nr_uninterruptible(struct rq *rq_src)
5423 {
5424 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5425 unsigned long flags;
5426
5427 local_irq_save(flags);
5428 double_rq_lock(rq_src, rq_dest);
5429 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5430 rq_src->nr_uninterruptible = 0;
5431 double_rq_unlock(rq_src, rq_dest);
5432 local_irq_restore(flags);
5433 }
5434
5435 /* Run through task list and migrate tasks from the dead cpu. */
5436 static void migrate_live_tasks(int src_cpu)
5437 {
5438 struct task_struct *p, *t;
5439
5440 read_lock(&tasklist_lock);
5441
5442 do_each_thread(t, p) {
5443 if (p == current)
5444 continue;
5445
5446 if (task_cpu(p) == src_cpu)
5447 move_task_off_dead_cpu(src_cpu, p);
5448 } while_each_thread(t, p);
5449
5450 read_unlock(&tasklist_lock);
5451 }
5452
5453 /*
5454 * Schedules idle task to be the next runnable task on current CPU.
5455 * It does so by boosting its priority to highest possible.
5456 * Used by CPU offline code.
5457 */
5458 void sched_idle_next(void)
5459 {
5460 int this_cpu = smp_processor_id();
5461 struct rq *rq = cpu_rq(this_cpu);
5462 struct task_struct *p = rq->idle;
5463 unsigned long flags;
5464
5465 /* cpu has to be offline */
5466 BUG_ON(cpu_online(this_cpu));
5467
5468 /*
5469 * Strictly not necessary since rest of the CPUs are stopped by now
5470 * and interrupts disabled on the current cpu.
5471 */
5472 raw_spin_lock_irqsave(&rq->lock, flags);
5473
5474 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5475
5476 activate_task(rq, p, 0);
5477
5478 raw_spin_unlock_irqrestore(&rq->lock, flags);
5479 }
5480
5481 /*
5482 * Ensures that the idle task is using init_mm right before its cpu goes
5483 * offline.
5484 */
5485 void idle_task_exit(void)
5486 {
5487 struct mm_struct *mm = current->active_mm;
5488
5489 BUG_ON(cpu_online(smp_processor_id()));
5490
5491 if (mm != &init_mm)
5492 switch_mm(mm, &init_mm, current);
5493 mmdrop(mm);
5494 }
5495
5496 /* called under rq->lock with disabled interrupts */
5497 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5498 {
5499 struct rq *rq = cpu_rq(dead_cpu);
5500
5501 /* Must be exiting, otherwise would be on tasklist. */
5502 BUG_ON(!p->exit_state);
5503
5504 /* Cannot have done final schedule yet: would have vanished. */
5505 BUG_ON(p->state == TASK_DEAD);
5506
5507 get_task_struct(p);
5508
5509 /*
5510 * Drop lock around migration; if someone else moves it,
5511 * that's OK. No task can be added to this CPU, so iteration is
5512 * fine.
5513 */
5514 raw_spin_unlock_irq(&rq->lock);
5515 move_task_off_dead_cpu(dead_cpu, p);
5516 raw_spin_lock_irq(&rq->lock);
5517
5518 put_task_struct(p);
5519 }
5520
5521 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5522 static void migrate_dead_tasks(unsigned int dead_cpu)
5523 {
5524 struct rq *rq = cpu_rq(dead_cpu);
5525 struct task_struct *next;
5526
5527 for ( ; ; ) {
5528 if (!rq->nr_running)
5529 break;
5530 next = pick_next_task(rq);
5531 if (!next)
5532 break;
5533 next->sched_class->put_prev_task(rq, next);
5534 migrate_dead(dead_cpu, next);
5535
5536 }
5537 }
5538
5539 /*
5540 * remove the tasks which were accounted by rq from calc_load_tasks.
5541 */
5542 static void calc_global_load_remove(struct rq *rq)
5543 {
5544 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5545 rq->calc_load_active = 0;
5546 }
5547 #endif /* CONFIG_HOTPLUG_CPU */
5548
5549 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5550
5551 static struct ctl_table sd_ctl_dir[] = {
5552 {
5553 .procname = "sched_domain",
5554 .mode = 0555,
5555 },
5556 {}
5557 };
5558
5559 static struct ctl_table sd_ctl_root[] = {
5560 {
5561 .procname = "kernel",
5562 .mode = 0555,
5563 .child = sd_ctl_dir,
5564 },
5565 {}
5566 };
5567
5568 static struct ctl_table *sd_alloc_ctl_entry(int n)
5569 {
5570 struct ctl_table *entry =
5571 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5572
5573 return entry;
5574 }
5575
5576 static void sd_free_ctl_entry(struct ctl_table **tablep)
5577 {
5578 struct ctl_table *entry;
5579
5580 /*
5581 * In the intermediate directories, both the child directory and
5582 * procname are dynamically allocated and could fail but the mode
5583 * will always be set. In the lowest directory the names are
5584 * static strings and all have proc handlers.
5585 */
5586 for (entry = *tablep; entry->mode; entry++) {
5587 if (entry->child)
5588 sd_free_ctl_entry(&entry->child);
5589 if (entry->proc_handler == NULL)
5590 kfree(entry->procname);
5591 }
5592
5593 kfree(*tablep);
5594 *tablep = NULL;
5595 }
5596
5597 static void
5598 set_table_entry(struct ctl_table *entry,
5599 const char *procname, void *data, int maxlen,
5600 mode_t mode, proc_handler *proc_handler)
5601 {
5602 entry->procname = procname;
5603 entry->data = data;
5604 entry->maxlen = maxlen;
5605 entry->mode = mode;
5606 entry->proc_handler = proc_handler;
5607 }
5608
5609 static struct ctl_table *
5610 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5611 {
5612 struct ctl_table *table = sd_alloc_ctl_entry(13);
5613
5614 if (table == NULL)
5615 return NULL;
5616
5617 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5618 sizeof(long), 0644, proc_doulongvec_minmax);
5619 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5620 sizeof(long), 0644, proc_doulongvec_minmax);
5621 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5622 sizeof(int), 0644, proc_dointvec_minmax);
5623 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5624 sizeof(int), 0644, proc_dointvec_minmax);
5625 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5626 sizeof(int), 0644, proc_dointvec_minmax);
5627 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5630 sizeof(int), 0644, proc_dointvec_minmax);
5631 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5632 sizeof(int), 0644, proc_dointvec_minmax);
5633 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5634 sizeof(int), 0644, proc_dointvec_minmax);
5635 set_table_entry(&table[9], "cache_nice_tries",
5636 &sd->cache_nice_tries,
5637 sizeof(int), 0644, proc_dointvec_minmax);
5638 set_table_entry(&table[10], "flags", &sd->flags,
5639 sizeof(int), 0644, proc_dointvec_minmax);
5640 set_table_entry(&table[11], "name", sd->name,
5641 CORENAME_MAX_SIZE, 0444, proc_dostring);
5642 /* &table[12] is terminator */
5643
5644 return table;
5645 }
5646
5647 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5648 {
5649 struct ctl_table *entry, *table;
5650 struct sched_domain *sd;
5651 int domain_num = 0, i;
5652 char buf[32];
5653
5654 for_each_domain(cpu, sd)
5655 domain_num++;
5656 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5657 if (table == NULL)
5658 return NULL;
5659
5660 i = 0;
5661 for_each_domain(cpu, sd) {
5662 snprintf(buf, 32, "domain%d", i);
5663 entry->procname = kstrdup(buf, GFP_KERNEL);
5664 entry->mode = 0555;
5665 entry->child = sd_alloc_ctl_domain_table(sd);
5666 entry++;
5667 i++;
5668 }
5669 return table;
5670 }
5671
5672 static struct ctl_table_header *sd_sysctl_header;
5673 static void register_sched_domain_sysctl(void)
5674 {
5675 int i, cpu_num = num_possible_cpus();
5676 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5677 char buf[32];
5678
5679 WARN_ON(sd_ctl_dir[0].child);
5680 sd_ctl_dir[0].child = entry;
5681
5682 if (entry == NULL)
5683 return;
5684
5685 for_each_possible_cpu(i) {
5686 snprintf(buf, 32, "cpu%d", i);
5687 entry->procname = kstrdup(buf, GFP_KERNEL);
5688 entry->mode = 0555;
5689 entry->child = sd_alloc_ctl_cpu_table(i);
5690 entry++;
5691 }
5692
5693 WARN_ON(sd_sysctl_header);
5694 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5695 }
5696
5697 /* may be called multiple times per register */
5698 static void unregister_sched_domain_sysctl(void)
5699 {
5700 if (sd_sysctl_header)
5701 unregister_sysctl_table(sd_sysctl_header);
5702 sd_sysctl_header = NULL;
5703 if (sd_ctl_dir[0].child)
5704 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5705 }
5706 #else
5707 static void register_sched_domain_sysctl(void)
5708 {
5709 }
5710 static void unregister_sched_domain_sysctl(void)
5711 {
5712 }
5713 #endif
5714
5715 static void set_rq_online(struct rq *rq)
5716 {
5717 if (!rq->online) {
5718 const struct sched_class *class;
5719
5720 cpumask_set_cpu(rq->cpu, rq->rd->online);
5721 rq->online = 1;
5722
5723 for_each_class(class) {
5724 if (class->rq_online)
5725 class->rq_online(rq);
5726 }
5727 }
5728 }
5729
5730 static void set_rq_offline(struct rq *rq)
5731 {
5732 if (rq->online) {
5733 const struct sched_class *class;
5734
5735 for_each_class(class) {
5736 if (class->rq_offline)
5737 class->rq_offline(rq);
5738 }
5739
5740 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5741 rq->online = 0;
5742 }
5743 }
5744
5745 /*
5746 * migration_call - callback that gets triggered when a CPU is added.
5747 * Here we can start up the necessary migration thread for the new CPU.
5748 */
5749 static int __cpuinit
5750 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5751 {
5752 int cpu = (long)hcpu;
5753 unsigned long flags;
5754 struct rq *rq = cpu_rq(cpu);
5755
5756 switch (action) {
5757
5758 case CPU_UP_PREPARE:
5759 case CPU_UP_PREPARE_FROZEN:
5760 rq->calc_load_update = calc_load_update;
5761 break;
5762
5763 case CPU_ONLINE:
5764 case CPU_ONLINE_FROZEN:
5765 /* Update our root-domain */
5766 raw_spin_lock_irqsave(&rq->lock, flags);
5767 if (rq->rd) {
5768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5769
5770 set_rq_online(rq);
5771 }
5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
5773 break;
5774
5775 #ifdef CONFIG_HOTPLUG_CPU
5776 case CPU_DEAD:
5777 case CPU_DEAD_FROZEN:
5778 migrate_live_tasks(cpu);
5779 /* Idle task back to normal (off runqueue, low prio) */
5780 raw_spin_lock_irq(&rq->lock);
5781 deactivate_task(rq, rq->idle, 0);
5782 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5783 rq->idle->sched_class = &idle_sched_class;
5784 migrate_dead_tasks(cpu);
5785 raw_spin_unlock_irq(&rq->lock);
5786 migrate_nr_uninterruptible(rq);
5787 BUG_ON(rq->nr_running != 0);
5788 calc_global_load_remove(rq);
5789 break;
5790
5791 case CPU_DYING:
5792 case CPU_DYING_FROZEN:
5793 /* Update our root-domain */
5794 raw_spin_lock_irqsave(&rq->lock, flags);
5795 if (rq->rd) {
5796 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5797 set_rq_offline(rq);
5798 }
5799 raw_spin_unlock_irqrestore(&rq->lock, flags);
5800 break;
5801 #endif
5802 }
5803 return NOTIFY_OK;
5804 }
5805
5806 /*
5807 * Register at high priority so that task migration (migrate_all_tasks)
5808 * happens before everything else. This has to be lower priority than
5809 * the notifier in the perf_event subsystem, though.
5810 */
5811 static struct notifier_block __cpuinitdata migration_notifier = {
5812 .notifier_call = migration_call,
5813 .priority = 10
5814 };
5815
5816 static int __init migration_init(void)
5817 {
5818 void *cpu = (void *)(long)smp_processor_id();
5819 int err;
5820
5821 /* Start one for the boot CPU: */
5822 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5823 BUG_ON(err == NOTIFY_BAD);
5824 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5825 register_cpu_notifier(&migration_notifier);
5826
5827 return 0;
5828 }
5829 early_initcall(migration_init);
5830 #endif
5831
5832 #ifdef CONFIG_SMP
5833
5834 #ifdef CONFIG_SCHED_DEBUG
5835
5836 static __read_mostly int sched_domain_debug_enabled;
5837
5838 static int __init sched_domain_debug_setup(char *str)
5839 {
5840 sched_domain_debug_enabled = 1;
5841
5842 return 0;
5843 }
5844 early_param("sched_debug", sched_domain_debug_setup);
5845
5846 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5847 struct cpumask *groupmask)
5848 {
5849 struct sched_group *group = sd->groups;
5850 char str[256];
5851
5852 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5853 cpumask_clear(groupmask);
5854
5855 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5856
5857 if (!(sd->flags & SD_LOAD_BALANCE)) {
5858 printk("does not load-balance\n");
5859 if (sd->parent)
5860 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5861 " has parent");
5862 return -1;
5863 }
5864
5865 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5866
5867 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5868 printk(KERN_ERR "ERROR: domain->span does not contain "
5869 "CPU%d\n", cpu);
5870 }
5871 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5872 printk(KERN_ERR "ERROR: domain->groups does not contain"
5873 " CPU%d\n", cpu);
5874 }
5875
5876 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5877 do {
5878 if (!group) {
5879 printk("\n");
5880 printk(KERN_ERR "ERROR: group is NULL\n");
5881 break;
5882 }
5883
5884 if (!group->cpu_power) {
5885 printk(KERN_CONT "\n");
5886 printk(KERN_ERR "ERROR: domain->cpu_power not "
5887 "set\n");
5888 break;
5889 }
5890
5891 if (!cpumask_weight(sched_group_cpus(group))) {
5892 printk(KERN_CONT "\n");
5893 printk(KERN_ERR "ERROR: empty group\n");
5894 break;
5895 }
5896
5897 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5898 printk(KERN_CONT "\n");
5899 printk(KERN_ERR "ERROR: repeated CPUs\n");
5900 break;
5901 }
5902
5903 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5904
5905 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5906
5907 printk(KERN_CONT " %s", str);
5908 if (group->cpu_power != SCHED_LOAD_SCALE) {
5909 printk(KERN_CONT " (cpu_power = %d)",
5910 group->cpu_power);
5911 }
5912
5913 group = group->next;
5914 } while (group != sd->groups);
5915 printk(KERN_CONT "\n");
5916
5917 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5918 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5919
5920 if (sd->parent &&
5921 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5922 printk(KERN_ERR "ERROR: parent span is not a superset "
5923 "of domain->span\n");
5924 return 0;
5925 }
5926
5927 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5928 {
5929 cpumask_var_t groupmask;
5930 int level = 0;
5931
5932 if (!sched_domain_debug_enabled)
5933 return;
5934
5935 if (!sd) {
5936 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5937 return;
5938 }
5939
5940 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5941
5942 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5943 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5944 return;
5945 }
5946
5947 for (;;) {
5948 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5949 break;
5950 level++;
5951 sd = sd->parent;
5952 if (!sd)
5953 break;
5954 }
5955 free_cpumask_var(groupmask);
5956 }
5957 #else /* !CONFIG_SCHED_DEBUG */
5958 # define sched_domain_debug(sd, cpu) do { } while (0)
5959 #endif /* CONFIG_SCHED_DEBUG */
5960
5961 static int sd_degenerate(struct sched_domain *sd)
5962 {
5963 if (cpumask_weight(sched_domain_span(sd)) == 1)
5964 return 1;
5965
5966 /* Following flags need at least 2 groups */
5967 if (sd->flags & (SD_LOAD_BALANCE |
5968 SD_BALANCE_NEWIDLE |
5969 SD_BALANCE_FORK |
5970 SD_BALANCE_EXEC |
5971 SD_SHARE_CPUPOWER |
5972 SD_SHARE_PKG_RESOURCES)) {
5973 if (sd->groups != sd->groups->next)
5974 return 0;
5975 }
5976
5977 /* Following flags don't use groups */
5978 if (sd->flags & (SD_WAKE_AFFINE))
5979 return 0;
5980
5981 return 1;
5982 }
5983
5984 static int
5985 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5986 {
5987 unsigned long cflags = sd->flags, pflags = parent->flags;
5988
5989 if (sd_degenerate(parent))
5990 return 1;
5991
5992 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5993 return 0;
5994
5995 /* Flags needing groups don't count if only 1 group in parent */
5996 if (parent->groups == parent->groups->next) {
5997 pflags &= ~(SD_LOAD_BALANCE |
5998 SD_BALANCE_NEWIDLE |
5999 SD_BALANCE_FORK |
6000 SD_BALANCE_EXEC |
6001 SD_SHARE_CPUPOWER |
6002 SD_SHARE_PKG_RESOURCES);
6003 if (nr_node_ids == 1)
6004 pflags &= ~SD_SERIALIZE;
6005 }
6006 if (~cflags & pflags)
6007 return 0;
6008
6009 return 1;
6010 }
6011
6012 static void free_rootdomain(struct root_domain *rd)
6013 {
6014 synchronize_sched();
6015
6016 cpupri_cleanup(&rd->cpupri);
6017
6018 free_cpumask_var(rd->rto_mask);
6019 free_cpumask_var(rd->online);
6020 free_cpumask_var(rd->span);
6021 kfree(rd);
6022 }
6023
6024 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6025 {
6026 struct root_domain *old_rd = NULL;
6027 unsigned long flags;
6028
6029 raw_spin_lock_irqsave(&rq->lock, flags);
6030
6031 if (rq->rd) {
6032 old_rd = rq->rd;
6033
6034 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6035 set_rq_offline(rq);
6036
6037 cpumask_clear_cpu(rq->cpu, old_rd->span);
6038
6039 /*
6040 * If we dont want to free the old_rt yet then
6041 * set old_rd to NULL to skip the freeing later
6042 * in this function:
6043 */
6044 if (!atomic_dec_and_test(&old_rd->refcount))
6045 old_rd = NULL;
6046 }
6047
6048 atomic_inc(&rd->refcount);
6049 rq->rd = rd;
6050
6051 cpumask_set_cpu(rq->cpu, rd->span);
6052 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6053 set_rq_online(rq);
6054
6055 raw_spin_unlock_irqrestore(&rq->lock, flags);
6056
6057 if (old_rd)
6058 free_rootdomain(old_rd);
6059 }
6060
6061 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6062 {
6063 gfp_t gfp = GFP_KERNEL;
6064
6065 memset(rd, 0, sizeof(*rd));
6066
6067 if (bootmem)
6068 gfp = GFP_NOWAIT;
6069
6070 if (!alloc_cpumask_var(&rd->span, gfp))
6071 goto out;
6072 if (!alloc_cpumask_var(&rd->online, gfp))
6073 goto free_span;
6074 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6075 goto free_online;
6076
6077 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6078 goto free_rto_mask;
6079 return 0;
6080
6081 free_rto_mask:
6082 free_cpumask_var(rd->rto_mask);
6083 free_online:
6084 free_cpumask_var(rd->online);
6085 free_span:
6086 free_cpumask_var(rd->span);
6087 out:
6088 return -ENOMEM;
6089 }
6090
6091 static void init_defrootdomain(void)
6092 {
6093 init_rootdomain(&def_root_domain, true);
6094
6095 atomic_set(&def_root_domain.refcount, 1);
6096 }
6097
6098 static struct root_domain *alloc_rootdomain(void)
6099 {
6100 struct root_domain *rd;
6101
6102 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6103 if (!rd)
6104 return NULL;
6105
6106 if (init_rootdomain(rd, false) != 0) {
6107 kfree(rd);
6108 return NULL;
6109 }
6110
6111 return rd;
6112 }
6113
6114 /*
6115 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6116 * hold the hotplug lock.
6117 */
6118 static void
6119 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6120 {
6121 struct rq *rq = cpu_rq(cpu);
6122 struct sched_domain *tmp;
6123
6124 for (tmp = sd; tmp; tmp = tmp->parent)
6125 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6126
6127 /* Remove the sched domains which do not contribute to scheduling. */
6128 for (tmp = sd; tmp; ) {
6129 struct sched_domain *parent = tmp->parent;
6130 if (!parent)
6131 break;
6132
6133 if (sd_parent_degenerate(tmp, parent)) {
6134 tmp->parent = parent->parent;
6135 if (parent->parent)
6136 parent->parent->child = tmp;
6137 } else
6138 tmp = tmp->parent;
6139 }
6140
6141 if (sd && sd_degenerate(sd)) {
6142 sd = sd->parent;
6143 if (sd)
6144 sd->child = NULL;
6145 }
6146
6147 sched_domain_debug(sd, cpu);
6148
6149 rq_attach_root(rq, rd);
6150 rcu_assign_pointer(rq->sd, sd);
6151 }
6152
6153 /* cpus with isolated domains */
6154 static cpumask_var_t cpu_isolated_map;
6155
6156 /* Setup the mask of cpus configured for isolated domains */
6157 static int __init isolated_cpu_setup(char *str)
6158 {
6159 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6160 cpulist_parse(str, cpu_isolated_map);
6161 return 1;
6162 }
6163
6164 __setup("isolcpus=", isolated_cpu_setup);
6165
6166 /*
6167 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6168 * to a function which identifies what group(along with sched group) a CPU
6169 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6170 * (due to the fact that we keep track of groups covered with a struct cpumask).
6171 *
6172 * init_sched_build_groups will build a circular linked list of the groups
6173 * covered by the given span, and will set each group's ->cpumask correctly,
6174 * and ->cpu_power to 0.
6175 */
6176 static void
6177 init_sched_build_groups(const struct cpumask *span,
6178 const struct cpumask *cpu_map,
6179 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6180 struct sched_group **sg,
6181 struct cpumask *tmpmask),
6182 struct cpumask *covered, struct cpumask *tmpmask)
6183 {
6184 struct sched_group *first = NULL, *last = NULL;
6185 int i;
6186
6187 cpumask_clear(covered);
6188
6189 for_each_cpu(i, span) {
6190 struct sched_group *sg;
6191 int group = group_fn(i, cpu_map, &sg, tmpmask);
6192 int j;
6193
6194 if (cpumask_test_cpu(i, covered))
6195 continue;
6196
6197 cpumask_clear(sched_group_cpus(sg));
6198 sg->cpu_power = 0;
6199
6200 for_each_cpu(j, span) {
6201 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6202 continue;
6203
6204 cpumask_set_cpu(j, covered);
6205 cpumask_set_cpu(j, sched_group_cpus(sg));
6206 }
6207 if (!first)
6208 first = sg;
6209 if (last)
6210 last->next = sg;
6211 last = sg;
6212 }
6213 last->next = first;
6214 }
6215
6216 #define SD_NODES_PER_DOMAIN 16
6217
6218 #ifdef CONFIG_NUMA
6219
6220 /**
6221 * find_next_best_node - find the next node to include in a sched_domain
6222 * @node: node whose sched_domain we're building
6223 * @used_nodes: nodes already in the sched_domain
6224 *
6225 * Find the next node to include in a given scheduling domain. Simply
6226 * finds the closest node not already in the @used_nodes map.
6227 *
6228 * Should use nodemask_t.
6229 */
6230 static int find_next_best_node(int node, nodemask_t *used_nodes)
6231 {
6232 int i, n, val, min_val, best_node = 0;
6233
6234 min_val = INT_MAX;
6235
6236 for (i = 0; i < nr_node_ids; i++) {
6237 /* Start at @node */
6238 n = (node + i) % nr_node_ids;
6239
6240 if (!nr_cpus_node(n))
6241 continue;
6242
6243 /* Skip already used nodes */
6244 if (node_isset(n, *used_nodes))
6245 continue;
6246
6247 /* Simple min distance search */
6248 val = node_distance(node, n);
6249
6250 if (val < min_val) {
6251 min_val = val;
6252 best_node = n;
6253 }
6254 }
6255
6256 node_set(best_node, *used_nodes);
6257 return best_node;
6258 }
6259
6260 /**
6261 * sched_domain_node_span - get a cpumask for a node's sched_domain
6262 * @node: node whose cpumask we're constructing
6263 * @span: resulting cpumask
6264 *
6265 * Given a node, construct a good cpumask for its sched_domain to span. It
6266 * should be one that prevents unnecessary balancing, but also spreads tasks
6267 * out optimally.
6268 */
6269 static void sched_domain_node_span(int node, struct cpumask *span)
6270 {
6271 nodemask_t used_nodes;
6272 int i;
6273
6274 cpumask_clear(span);
6275 nodes_clear(used_nodes);
6276
6277 cpumask_or(span, span, cpumask_of_node(node));
6278 node_set(node, used_nodes);
6279
6280 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6281 int next_node = find_next_best_node(node, &used_nodes);
6282
6283 cpumask_or(span, span, cpumask_of_node(next_node));
6284 }
6285 }
6286 #endif /* CONFIG_NUMA */
6287
6288 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6289
6290 /*
6291 * The cpus mask in sched_group and sched_domain hangs off the end.
6292 *
6293 * ( See the the comments in include/linux/sched.h:struct sched_group
6294 * and struct sched_domain. )
6295 */
6296 struct static_sched_group {
6297 struct sched_group sg;
6298 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6299 };
6300
6301 struct static_sched_domain {
6302 struct sched_domain sd;
6303 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6304 };
6305
6306 struct s_data {
6307 #ifdef CONFIG_NUMA
6308 int sd_allnodes;
6309 cpumask_var_t domainspan;
6310 cpumask_var_t covered;
6311 cpumask_var_t notcovered;
6312 #endif
6313 cpumask_var_t nodemask;
6314 cpumask_var_t this_sibling_map;
6315 cpumask_var_t this_core_map;
6316 cpumask_var_t send_covered;
6317 cpumask_var_t tmpmask;
6318 struct sched_group **sched_group_nodes;
6319 struct root_domain *rd;
6320 };
6321
6322 enum s_alloc {
6323 sa_sched_groups = 0,
6324 sa_rootdomain,
6325 sa_tmpmask,
6326 sa_send_covered,
6327 sa_this_core_map,
6328 sa_this_sibling_map,
6329 sa_nodemask,
6330 sa_sched_group_nodes,
6331 #ifdef CONFIG_NUMA
6332 sa_notcovered,
6333 sa_covered,
6334 sa_domainspan,
6335 #endif
6336 sa_none,
6337 };
6338
6339 /*
6340 * SMT sched-domains:
6341 */
6342 #ifdef CONFIG_SCHED_SMT
6343 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6344 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6345
6346 static int
6347 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6348 struct sched_group **sg, struct cpumask *unused)
6349 {
6350 if (sg)
6351 *sg = &per_cpu(sched_groups, cpu).sg;
6352 return cpu;
6353 }
6354 #endif /* CONFIG_SCHED_SMT */
6355
6356 /*
6357 * multi-core sched-domains:
6358 */
6359 #ifdef CONFIG_SCHED_MC
6360 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6361 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6362 #endif /* CONFIG_SCHED_MC */
6363
6364 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6365 static int
6366 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6367 struct sched_group **sg, struct cpumask *mask)
6368 {
6369 int group;
6370
6371 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6372 group = cpumask_first(mask);
6373 if (sg)
6374 *sg = &per_cpu(sched_group_core, group).sg;
6375 return group;
6376 }
6377 #elif defined(CONFIG_SCHED_MC)
6378 static int
6379 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6380 struct sched_group **sg, struct cpumask *unused)
6381 {
6382 if (sg)
6383 *sg = &per_cpu(sched_group_core, cpu).sg;
6384 return cpu;
6385 }
6386 #endif
6387
6388 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6389 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6390
6391 static int
6392 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6393 struct sched_group **sg, struct cpumask *mask)
6394 {
6395 int group;
6396 #ifdef CONFIG_SCHED_MC
6397 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6398 group = cpumask_first(mask);
6399 #elif defined(CONFIG_SCHED_SMT)
6400 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6401 group = cpumask_first(mask);
6402 #else
6403 group = cpu;
6404 #endif
6405 if (sg)
6406 *sg = &per_cpu(sched_group_phys, group).sg;
6407 return group;
6408 }
6409
6410 #ifdef CONFIG_NUMA
6411 /*
6412 * The init_sched_build_groups can't handle what we want to do with node
6413 * groups, so roll our own. Now each node has its own list of groups which
6414 * gets dynamically allocated.
6415 */
6416 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6417 static struct sched_group ***sched_group_nodes_bycpu;
6418
6419 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6420 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6421
6422 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6423 struct sched_group **sg,
6424 struct cpumask *nodemask)
6425 {
6426 int group;
6427
6428 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6429 group = cpumask_first(nodemask);
6430
6431 if (sg)
6432 *sg = &per_cpu(sched_group_allnodes, group).sg;
6433 return group;
6434 }
6435
6436 static void init_numa_sched_groups_power(struct sched_group *group_head)
6437 {
6438 struct sched_group *sg = group_head;
6439 int j;
6440
6441 if (!sg)
6442 return;
6443 do {
6444 for_each_cpu(j, sched_group_cpus(sg)) {
6445 struct sched_domain *sd;
6446
6447 sd = &per_cpu(phys_domains, j).sd;
6448 if (j != group_first_cpu(sd->groups)) {
6449 /*
6450 * Only add "power" once for each
6451 * physical package.
6452 */
6453 continue;
6454 }
6455
6456 sg->cpu_power += sd->groups->cpu_power;
6457 }
6458 sg = sg->next;
6459 } while (sg != group_head);
6460 }
6461
6462 static int build_numa_sched_groups(struct s_data *d,
6463 const struct cpumask *cpu_map, int num)
6464 {
6465 struct sched_domain *sd;
6466 struct sched_group *sg, *prev;
6467 int n, j;
6468
6469 cpumask_clear(d->covered);
6470 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6471 if (cpumask_empty(d->nodemask)) {
6472 d->sched_group_nodes[num] = NULL;
6473 goto out;
6474 }
6475
6476 sched_domain_node_span(num, d->domainspan);
6477 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6478
6479 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6480 GFP_KERNEL, num);
6481 if (!sg) {
6482 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6483 num);
6484 return -ENOMEM;
6485 }
6486 d->sched_group_nodes[num] = sg;
6487
6488 for_each_cpu(j, d->nodemask) {
6489 sd = &per_cpu(node_domains, j).sd;
6490 sd->groups = sg;
6491 }
6492
6493 sg->cpu_power = 0;
6494 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6495 sg->next = sg;
6496 cpumask_or(d->covered, d->covered, d->nodemask);
6497
6498 prev = sg;
6499 for (j = 0; j < nr_node_ids; j++) {
6500 n = (num + j) % nr_node_ids;
6501 cpumask_complement(d->notcovered, d->covered);
6502 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6503 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6504 if (cpumask_empty(d->tmpmask))
6505 break;
6506 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6507 if (cpumask_empty(d->tmpmask))
6508 continue;
6509 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6510 GFP_KERNEL, num);
6511 if (!sg) {
6512 printk(KERN_WARNING
6513 "Can not alloc domain group for node %d\n", j);
6514 return -ENOMEM;
6515 }
6516 sg->cpu_power = 0;
6517 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6518 sg->next = prev->next;
6519 cpumask_or(d->covered, d->covered, d->tmpmask);
6520 prev->next = sg;
6521 prev = sg;
6522 }
6523 out:
6524 return 0;
6525 }
6526 #endif /* CONFIG_NUMA */
6527
6528 #ifdef CONFIG_NUMA
6529 /* Free memory allocated for various sched_group structures */
6530 static void free_sched_groups(const struct cpumask *cpu_map,
6531 struct cpumask *nodemask)
6532 {
6533 int cpu, i;
6534
6535 for_each_cpu(cpu, cpu_map) {
6536 struct sched_group **sched_group_nodes
6537 = sched_group_nodes_bycpu[cpu];
6538
6539 if (!sched_group_nodes)
6540 continue;
6541
6542 for (i = 0; i < nr_node_ids; i++) {
6543 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6544
6545 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6546 if (cpumask_empty(nodemask))
6547 continue;
6548
6549 if (sg == NULL)
6550 continue;
6551 sg = sg->next;
6552 next_sg:
6553 oldsg = sg;
6554 sg = sg->next;
6555 kfree(oldsg);
6556 if (oldsg != sched_group_nodes[i])
6557 goto next_sg;
6558 }
6559 kfree(sched_group_nodes);
6560 sched_group_nodes_bycpu[cpu] = NULL;
6561 }
6562 }
6563 #else /* !CONFIG_NUMA */
6564 static void free_sched_groups(const struct cpumask *cpu_map,
6565 struct cpumask *nodemask)
6566 {
6567 }
6568 #endif /* CONFIG_NUMA */
6569
6570 /*
6571 * Initialize sched groups cpu_power.
6572 *
6573 * cpu_power indicates the capacity of sched group, which is used while
6574 * distributing the load between different sched groups in a sched domain.
6575 * Typically cpu_power for all the groups in a sched domain will be same unless
6576 * there are asymmetries in the topology. If there are asymmetries, group
6577 * having more cpu_power will pickup more load compared to the group having
6578 * less cpu_power.
6579 */
6580 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6581 {
6582 struct sched_domain *child;
6583 struct sched_group *group;
6584 long power;
6585 int weight;
6586
6587 WARN_ON(!sd || !sd->groups);
6588
6589 if (cpu != group_first_cpu(sd->groups))
6590 return;
6591
6592 child = sd->child;
6593
6594 sd->groups->cpu_power = 0;
6595
6596 if (!child) {
6597 power = SCHED_LOAD_SCALE;
6598 weight = cpumask_weight(sched_domain_span(sd));
6599 /*
6600 * SMT siblings share the power of a single core.
6601 * Usually multiple threads get a better yield out of
6602 * that one core than a single thread would have,
6603 * reflect that in sd->smt_gain.
6604 */
6605 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6606 power *= sd->smt_gain;
6607 power /= weight;
6608 power >>= SCHED_LOAD_SHIFT;
6609 }
6610 sd->groups->cpu_power += power;
6611 return;
6612 }
6613
6614 /*
6615 * Add cpu_power of each child group to this groups cpu_power.
6616 */
6617 group = child->groups;
6618 do {
6619 sd->groups->cpu_power += group->cpu_power;
6620 group = group->next;
6621 } while (group != child->groups);
6622 }
6623
6624 /*
6625 * Initializers for schedule domains
6626 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6627 */
6628
6629 #ifdef CONFIG_SCHED_DEBUG
6630 # define SD_INIT_NAME(sd, type) sd->name = #type
6631 #else
6632 # define SD_INIT_NAME(sd, type) do { } while (0)
6633 #endif
6634
6635 #define SD_INIT(sd, type) sd_init_##type(sd)
6636
6637 #define SD_INIT_FUNC(type) \
6638 static noinline void sd_init_##type(struct sched_domain *sd) \
6639 { \
6640 memset(sd, 0, sizeof(*sd)); \
6641 *sd = SD_##type##_INIT; \
6642 sd->level = SD_LV_##type; \
6643 SD_INIT_NAME(sd, type); \
6644 }
6645
6646 SD_INIT_FUNC(CPU)
6647 #ifdef CONFIG_NUMA
6648 SD_INIT_FUNC(ALLNODES)
6649 SD_INIT_FUNC(NODE)
6650 #endif
6651 #ifdef CONFIG_SCHED_SMT
6652 SD_INIT_FUNC(SIBLING)
6653 #endif
6654 #ifdef CONFIG_SCHED_MC
6655 SD_INIT_FUNC(MC)
6656 #endif
6657
6658 static int default_relax_domain_level = -1;
6659
6660 static int __init setup_relax_domain_level(char *str)
6661 {
6662 unsigned long val;
6663
6664 val = simple_strtoul(str, NULL, 0);
6665 if (val < SD_LV_MAX)
6666 default_relax_domain_level = val;
6667
6668 return 1;
6669 }
6670 __setup("relax_domain_level=", setup_relax_domain_level);
6671
6672 static void set_domain_attribute(struct sched_domain *sd,
6673 struct sched_domain_attr *attr)
6674 {
6675 int request;
6676
6677 if (!attr || attr->relax_domain_level < 0) {
6678 if (default_relax_domain_level < 0)
6679 return;
6680 else
6681 request = default_relax_domain_level;
6682 } else
6683 request = attr->relax_domain_level;
6684 if (request < sd->level) {
6685 /* turn off idle balance on this domain */
6686 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6687 } else {
6688 /* turn on idle balance on this domain */
6689 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6690 }
6691 }
6692
6693 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6694 const struct cpumask *cpu_map)
6695 {
6696 switch (what) {
6697 case sa_sched_groups:
6698 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6699 d->sched_group_nodes = NULL;
6700 case sa_rootdomain:
6701 free_rootdomain(d->rd); /* fall through */
6702 case sa_tmpmask:
6703 free_cpumask_var(d->tmpmask); /* fall through */
6704 case sa_send_covered:
6705 free_cpumask_var(d->send_covered); /* fall through */
6706 case sa_this_core_map:
6707 free_cpumask_var(d->this_core_map); /* fall through */
6708 case sa_this_sibling_map:
6709 free_cpumask_var(d->this_sibling_map); /* fall through */
6710 case sa_nodemask:
6711 free_cpumask_var(d->nodemask); /* fall through */
6712 case sa_sched_group_nodes:
6713 #ifdef CONFIG_NUMA
6714 kfree(d->sched_group_nodes); /* fall through */
6715 case sa_notcovered:
6716 free_cpumask_var(d->notcovered); /* fall through */
6717 case sa_covered:
6718 free_cpumask_var(d->covered); /* fall through */
6719 case sa_domainspan:
6720 free_cpumask_var(d->domainspan); /* fall through */
6721 #endif
6722 case sa_none:
6723 break;
6724 }
6725 }
6726
6727 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6728 const struct cpumask *cpu_map)
6729 {
6730 #ifdef CONFIG_NUMA
6731 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6732 return sa_none;
6733 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6734 return sa_domainspan;
6735 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6736 return sa_covered;
6737 /* Allocate the per-node list of sched groups */
6738 d->sched_group_nodes = kcalloc(nr_node_ids,
6739 sizeof(struct sched_group *), GFP_KERNEL);
6740 if (!d->sched_group_nodes) {
6741 printk(KERN_WARNING "Can not alloc sched group node list\n");
6742 return sa_notcovered;
6743 }
6744 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6745 #endif
6746 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6747 return sa_sched_group_nodes;
6748 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6749 return sa_nodemask;
6750 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6751 return sa_this_sibling_map;
6752 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6753 return sa_this_core_map;
6754 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6755 return sa_send_covered;
6756 d->rd = alloc_rootdomain();
6757 if (!d->rd) {
6758 printk(KERN_WARNING "Cannot alloc root domain\n");
6759 return sa_tmpmask;
6760 }
6761 return sa_rootdomain;
6762 }
6763
6764 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6765 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6766 {
6767 struct sched_domain *sd = NULL;
6768 #ifdef CONFIG_NUMA
6769 struct sched_domain *parent;
6770
6771 d->sd_allnodes = 0;
6772 if (cpumask_weight(cpu_map) >
6773 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6774 sd = &per_cpu(allnodes_domains, i).sd;
6775 SD_INIT(sd, ALLNODES);
6776 set_domain_attribute(sd, attr);
6777 cpumask_copy(sched_domain_span(sd), cpu_map);
6778 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6779 d->sd_allnodes = 1;
6780 }
6781 parent = sd;
6782
6783 sd = &per_cpu(node_domains, i).sd;
6784 SD_INIT(sd, NODE);
6785 set_domain_attribute(sd, attr);
6786 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6787 sd->parent = parent;
6788 if (parent)
6789 parent->child = sd;
6790 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6791 #endif
6792 return sd;
6793 }
6794
6795 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6796 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6797 struct sched_domain *parent, int i)
6798 {
6799 struct sched_domain *sd;
6800 sd = &per_cpu(phys_domains, i).sd;
6801 SD_INIT(sd, CPU);
6802 set_domain_attribute(sd, attr);
6803 cpumask_copy(sched_domain_span(sd), d->nodemask);
6804 sd->parent = parent;
6805 if (parent)
6806 parent->child = sd;
6807 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6808 return sd;
6809 }
6810
6811 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6812 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6813 struct sched_domain *parent, int i)
6814 {
6815 struct sched_domain *sd = parent;
6816 #ifdef CONFIG_SCHED_MC
6817 sd = &per_cpu(core_domains, i).sd;
6818 SD_INIT(sd, MC);
6819 set_domain_attribute(sd, attr);
6820 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6821 sd->parent = parent;
6822 parent->child = sd;
6823 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6824 #endif
6825 return sd;
6826 }
6827
6828 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6829 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6830 struct sched_domain *parent, int i)
6831 {
6832 struct sched_domain *sd = parent;
6833 #ifdef CONFIG_SCHED_SMT
6834 sd = &per_cpu(cpu_domains, i).sd;
6835 SD_INIT(sd, SIBLING);
6836 set_domain_attribute(sd, attr);
6837 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6838 sd->parent = parent;
6839 parent->child = sd;
6840 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6841 #endif
6842 return sd;
6843 }
6844
6845 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6846 const struct cpumask *cpu_map, int cpu)
6847 {
6848 switch (l) {
6849 #ifdef CONFIG_SCHED_SMT
6850 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6851 cpumask_and(d->this_sibling_map, cpu_map,
6852 topology_thread_cpumask(cpu));
6853 if (cpu == cpumask_first(d->this_sibling_map))
6854 init_sched_build_groups(d->this_sibling_map, cpu_map,
6855 &cpu_to_cpu_group,
6856 d->send_covered, d->tmpmask);
6857 break;
6858 #endif
6859 #ifdef CONFIG_SCHED_MC
6860 case SD_LV_MC: /* set up multi-core groups */
6861 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6862 if (cpu == cpumask_first(d->this_core_map))
6863 init_sched_build_groups(d->this_core_map, cpu_map,
6864 &cpu_to_core_group,
6865 d->send_covered, d->tmpmask);
6866 break;
6867 #endif
6868 case SD_LV_CPU: /* set up physical groups */
6869 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6870 if (!cpumask_empty(d->nodemask))
6871 init_sched_build_groups(d->nodemask, cpu_map,
6872 &cpu_to_phys_group,
6873 d->send_covered, d->tmpmask);
6874 break;
6875 #ifdef CONFIG_NUMA
6876 case SD_LV_ALLNODES:
6877 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6878 d->send_covered, d->tmpmask);
6879 break;
6880 #endif
6881 default:
6882 break;
6883 }
6884 }
6885
6886 /*
6887 * Build sched domains for a given set of cpus and attach the sched domains
6888 * to the individual cpus
6889 */
6890 static int __build_sched_domains(const struct cpumask *cpu_map,
6891 struct sched_domain_attr *attr)
6892 {
6893 enum s_alloc alloc_state = sa_none;
6894 struct s_data d;
6895 struct sched_domain *sd;
6896 int i;
6897 #ifdef CONFIG_NUMA
6898 d.sd_allnodes = 0;
6899 #endif
6900
6901 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6902 if (alloc_state != sa_rootdomain)
6903 goto error;
6904 alloc_state = sa_sched_groups;
6905
6906 /*
6907 * Set up domains for cpus specified by the cpu_map.
6908 */
6909 for_each_cpu(i, cpu_map) {
6910 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6911 cpu_map);
6912
6913 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6914 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6915 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6916 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6917 }
6918
6919 for_each_cpu(i, cpu_map) {
6920 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6921 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6922 }
6923
6924 /* Set up physical groups */
6925 for (i = 0; i < nr_node_ids; i++)
6926 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6927
6928 #ifdef CONFIG_NUMA
6929 /* Set up node groups */
6930 if (d.sd_allnodes)
6931 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6932
6933 for (i = 0; i < nr_node_ids; i++)
6934 if (build_numa_sched_groups(&d, cpu_map, i))
6935 goto error;
6936 #endif
6937
6938 /* Calculate CPU power for physical packages and nodes */
6939 #ifdef CONFIG_SCHED_SMT
6940 for_each_cpu(i, cpu_map) {
6941 sd = &per_cpu(cpu_domains, i).sd;
6942 init_sched_groups_power(i, sd);
6943 }
6944 #endif
6945 #ifdef CONFIG_SCHED_MC
6946 for_each_cpu(i, cpu_map) {
6947 sd = &per_cpu(core_domains, i).sd;
6948 init_sched_groups_power(i, sd);
6949 }
6950 #endif
6951
6952 for_each_cpu(i, cpu_map) {
6953 sd = &per_cpu(phys_domains, i).sd;
6954 init_sched_groups_power(i, sd);
6955 }
6956
6957 #ifdef CONFIG_NUMA
6958 for (i = 0; i < nr_node_ids; i++)
6959 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6960
6961 if (d.sd_allnodes) {
6962 struct sched_group *sg;
6963
6964 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6965 d.tmpmask);
6966 init_numa_sched_groups_power(sg);
6967 }
6968 #endif
6969
6970 /* Attach the domains */
6971 for_each_cpu(i, cpu_map) {
6972 #ifdef CONFIG_SCHED_SMT
6973 sd = &per_cpu(cpu_domains, i).sd;
6974 #elif defined(CONFIG_SCHED_MC)
6975 sd = &per_cpu(core_domains, i).sd;
6976 #else
6977 sd = &per_cpu(phys_domains, i).sd;
6978 #endif
6979 cpu_attach_domain(sd, d.rd, i);
6980 }
6981
6982 d.sched_group_nodes = NULL; /* don't free this we still need it */
6983 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6984 return 0;
6985
6986 error:
6987 __free_domain_allocs(&d, alloc_state, cpu_map);
6988 return -ENOMEM;
6989 }
6990
6991 static int build_sched_domains(const struct cpumask *cpu_map)
6992 {
6993 return __build_sched_domains(cpu_map, NULL);
6994 }
6995
6996 static cpumask_var_t *doms_cur; /* current sched domains */
6997 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6998 static struct sched_domain_attr *dattr_cur;
6999 /* attribues of custom domains in 'doms_cur' */
7000
7001 /*
7002 * Special case: If a kmalloc of a doms_cur partition (array of
7003 * cpumask) fails, then fallback to a single sched domain,
7004 * as determined by the single cpumask fallback_doms.
7005 */
7006 static cpumask_var_t fallback_doms;
7007
7008 /*
7009 * arch_update_cpu_topology lets virtualized architectures update the
7010 * cpu core maps. It is supposed to return 1 if the topology changed
7011 * or 0 if it stayed the same.
7012 */
7013 int __attribute__((weak)) arch_update_cpu_topology(void)
7014 {
7015 return 0;
7016 }
7017
7018 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7019 {
7020 int i;
7021 cpumask_var_t *doms;
7022
7023 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7024 if (!doms)
7025 return NULL;
7026 for (i = 0; i < ndoms; i++) {
7027 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7028 free_sched_domains(doms, i);
7029 return NULL;
7030 }
7031 }
7032 return doms;
7033 }
7034
7035 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7036 {
7037 unsigned int i;
7038 for (i = 0; i < ndoms; i++)
7039 free_cpumask_var(doms[i]);
7040 kfree(doms);
7041 }
7042
7043 /*
7044 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7045 * For now this just excludes isolated cpus, but could be used to
7046 * exclude other special cases in the future.
7047 */
7048 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7049 {
7050 int err;
7051
7052 arch_update_cpu_topology();
7053 ndoms_cur = 1;
7054 doms_cur = alloc_sched_domains(ndoms_cur);
7055 if (!doms_cur)
7056 doms_cur = &fallback_doms;
7057 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7058 dattr_cur = NULL;
7059 err = build_sched_domains(doms_cur[0]);
7060 register_sched_domain_sysctl();
7061
7062 return err;
7063 }
7064
7065 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7066 struct cpumask *tmpmask)
7067 {
7068 free_sched_groups(cpu_map, tmpmask);
7069 }
7070
7071 /*
7072 * Detach sched domains from a group of cpus specified in cpu_map
7073 * These cpus will now be attached to the NULL domain
7074 */
7075 static void detach_destroy_domains(const struct cpumask *cpu_map)
7076 {
7077 /* Save because hotplug lock held. */
7078 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7079 int i;
7080
7081 for_each_cpu(i, cpu_map)
7082 cpu_attach_domain(NULL, &def_root_domain, i);
7083 synchronize_sched();
7084 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7085 }
7086
7087 /* handle null as "default" */
7088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7089 struct sched_domain_attr *new, int idx_new)
7090 {
7091 struct sched_domain_attr tmp;
7092
7093 /* fast path */
7094 if (!new && !cur)
7095 return 1;
7096
7097 tmp = SD_ATTR_INIT;
7098 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7099 new ? (new + idx_new) : &tmp,
7100 sizeof(struct sched_domain_attr));
7101 }
7102
7103 /*
7104 * Partition sched domains as specified by the 'ndoms_new'
7105 * cpumasks in the array doms_new[] of cpumasks. This compares
7106 * doms_new[] to the current sched domain partitioning, doms_cur[].
7107 * It destroys each deleted domain and builds each new domain.
7108 *
7109 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7110 * The masks don't intersect (don't overlap.) We should setup one
7111 * sched domain for each mask. CPUs not in any of the cpumasks will
7112 * not be load balanced. If the same cpumask appears both in the
7113 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7114 * it as it is.
7115 *
7116 * The passed in 'doms_new' should be allocated using
7117 * alloc_sched_domains. This routine takes ownership of it and will
7118 * free_sched_domains it when done with it. If the caller failed the
7119 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7120 * and partition_sched_domains() will fallback to the single partition
7121 * 'fallback_doms', it also forces the domains to be rebuilt.
7122 *
7123 * If doms_new == NULL it will be replaced with cpu_online_mask.
7124 * ndoms_new == 0 is a special case for destroying existing domains,
7125 * and it will not create the default domain.
7126 *
7127 * Call with hotplug lock held
7128 */
7129 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7130 struct sched_domain_attr *dattr_new)
7131 {
7132 int i, j, n;
7133 int new_topology;
7134
7135 mutex_lock(&sched_domains_mutex);
7136
7137 /* always unregister in case we don't destroy any domains */
7138 unregister_sched_domain_sysctl();
7139
7140 /* Let architecture update cpu core mappings. */
7141 new_topology = arch_update_cpu_topology();
7142
7143 n = doms_new ? ndoms_new : 0;
7144
7145 /* Destroy deleted domains */
7146 for (i = 0; i < ndoms_cur; i++) {
7147 for (j = 0; j < n && !new_topology; j++) {
7148 if (cpumask_equal(doms_cur[i], doms_new[j])
7149 && dattrs_equal(dattr_cur, i, dattr_new, j))
7150 goto match1;
7151 }
7152 /* no match - a current sched domain not in new doms_new[] */
7153 detach_destroy_domains(doms_cur[i]);
7154 match1:
7155 ;
7156 }
7157
7158 if (doms_new == NULL) {
7159 ndoms_cur = 0;
7160 doms_new = &fallback_doms;
7161 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7162 WARN_ON_ONCE(dattr_new);
7163 }
7164
7165 /* Build new domains */
7166 for (i = 0; i < ndoms_new; i++) {
7167 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7168 if (cpumask_equal(doms_new[i], doms_cur[j])
7169 && dattrs_equal(dattr_new, i, dattr_cur, j))
7170 goto match2;
7171 }
7172 /* no match - add a new doms_new */
7173 __build_sched_domains(doms_new[i],
7174 dattr_new ? dattr_new + i : NULL);
7175 match2:
7176 ;
7177 }
7178
7179 /* Remember the new sched domains */
7180 if (doms_cur != &fallback_doms)
7181 free_sched_domains(doms_cur, ndoms_cur);
7182 kfree(dattr_cur); /* kfree(NULL) is safe */
7183 doms_cur = doms_new;
7184 dattr_cur = dattr_new;
7185 ndoms_cur = ndoms_new;
7186
7187 register_sched_domain_sysctl();
7188
7189 mutex_unlock(&sched_domains_mutex);
7190 }
7191
7192 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7193 static void arch_reinit_sched_domains(void)
7194 {
7195 get_online_cpus();
7196
7197 /* Destroy domains first to force the rebuild */
7198 partition_sched_domains(0, NULL, NULL);
7199
7200 rebuild_sched_domains();
7201 put_online_cpus();
7202 }
7203
7204 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7205 {
7206 unsigned int level = 0;
7207
7208 if (sscanf(buf, "%u", &level) != 1)
7209 return -EINVAL;
7210
7211 /*
7212 * level is always be positive so don't check for
7213 * level < POWERSAVINGS_BALANCE_NONE which is 0
7214 * What happens on 0 or 1 byte write,
7215 * need to check for count as well?
7216 */
7217
7218 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7219 return -EINVAL;
7220
7221 if (smt)
7222 sched_smt_power_savings = level;
7223 else
7224 sched_mc_power_savings = level;
7225
7226 arch_reinit_sched_domains();
7227
7228 return count;
7229 }
7230
7231 #ifdef CONFIG_SCHED_MC
7232 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7233 struct sysdev_class_attribute *attr,
7234 char *page)
7235 {
7236 return sprintf(page, "%u\n", sched_mc_power_savings);
7237 }
7238 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7239 struct sysdev_class_attribute *attr,
7240 const char *buf, size_t count)
7241 {
7242 return sched_power_savings_store(buf, count, 0);
7243 }
7244 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7245 sched_mc_power_savings_show,
7246 sched_mc_power_savings_store);
7247 #endif
7248
7249 #ifdef CONFIG_SCHED_SMT
7250 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7251 struct sysdev_class_attribute *attr,
7252 char *page)
7253 {
7254 return sprintf(page, "%u\n", sched_smt_power_savings);
7255 }
7256 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7257 struct sysdev_class_attribute *attr,
7258 const char *buf, size_t count)
7259 {
7260 return sched_power_savings_store(buf, count, 1);
7261 }
7262 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7263 sched_smt_power_savings_show,
7264 sched_smt_power_savings_store);
7265 #endif
7266
7267 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7268 {
7269 int err = 0;
7270
7271 #ifdef CONFIG_SCHED_SMT
7272 if (smt_capable())
7273 err = sysfs_create_file(&cls->kset.kobj,
7274 &attr_sched_smt_power_savings.attr);
7275 #endif
7276 #ifdef CONFIG_SCHED_MC
7277 if (!err && mc_capable())
7278 err = sysfs_create_file(&cls->kset.kobj,
7279 &attr_sched_mc_power_savings.attr);
7280 #endif
7281 return err;
7282 }
7283 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7284
7285 #ifndef CONFIG_CPUSETS
7286 /*
7287 * Add online and remove offline CPUs from the scheduler domains.
7288 * When cpusets are enabled they take over this function.
7289 */
7290 static int update_sched_domains(struct notifier_block *nfb,
7291 unsigned long action, void *hcpu)
7292 {
7293 switch (action) {
7294 case CPU_ONLINE:
7295 case CPU_ONLINE_FROZEN:
7296 case CPU_DOWN_PREPARE:
7297 case CPU_DOWN_PREPARE_FROZEN:
7298 case CPU_DOWN_FAILED:
7299 case CPU_DOWN_FAILED_FROZEN:
7300 partition_sched_domains(1, NULL, NULL);
7301 return NOTIFY_OK;
7302
7303 default:
7304 return NOTIFY_DONE;
7305 }
7306 }
7307 #endif
7308
7309 static int update_runtime(struct notifier_block *nfb,
7310 unsigned long action, void *hcpu)
7311 {
7312 int cpu = (int)(long)hcpu;
7313
7314 switch (action) {
7315 case CPU_DOWN_PREPARE:
7316 case CPU_DOWN_PREPARE_FROZEN:
7317 disable_runtime(cpu_rq(cpu));
7318 return NOTIFY_OK;
7319
7320 case CPU_DOWN_FAILED:
7321 case CPU_DOWN_FAILED_FROZEN:
7322 case CPU_ONLINE:
7323 case CPU_ONLINE_FROZEN:
7324 enable_runtime(cpu_rq(cpu));
7325 return NOTIFY_OK;
7326
7327 default:
7328 return NOTIFY_DONE;
7329 }
7330 }
7331
7332 void __init sched_init_smp(void)
7333 {
7334 cpumask_var_t non_isolated_cpus;
7335
7336 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7337 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7338
7339 #if defined(CONFIG_NUMA)
7340 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7341 GFP_KERNEL);
7342 BUG_ON(sched_group_nodes_bycpu == NULL);
7343 #endif
7344 get_online_cpus();
7345 mutex_lock(&sched_domains_mutex);
7346 arch_init_sched_domains(cpu_active_mask);
7347 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7348 if (cpumask_empty(non_isolated_cpus))
7349 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7350 mutex_unlock(&sched_domains_mutex);
7351 put_online_cpus();
7352
7353 #ifndef CONFIG_CPUSETS
7354 /* XXX: Theoretical race here - CPU may be hotplugged now */
7355 hotcpu_notifier(update_sched_domains, 0);
7356 #endif
7357
7358 /* RT runtime code needs to handle some hotplug events */
7359 hotcpu_notifier(update_runtime, 0);
7360
7361 init_hrtick();
7362
7363 /* Move init over to a non-isolated CPU */
7364 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7365 BUG();
7366 sched_init_granularity();
7367 free_cpumask_var(non_isolated_cpus);
7368
7369 init_sched_rt_class();
7370 }
7371 #else
7372 void __init sched_init_smp(void)
7373 {
7374 sched_init_granularity();
7375 }
7376 #endif /* CONFIG_SMP */
7377
7378 const_debug unsigned int sysctl_timer_migration = 1;
7379
7380 int in_sched_functions(unsigned long addr)
7381 {
7382 return in_lock_functions(addr) ||
7383 (addr >= (unsigned long)__sched_text_start
7384 && addr < (unsigned long)__sched_text_end);
7385 }
7386
7387 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7388 {
7389 cfs_rq->tasks_timeline = RB_ROOT;
7390 INIT_LIST_HEAD(&cfs_rq->tasks);
7391 #ifdef CONFIG_FAIR_GROUP_SCHED
7392 cfs_rq->rq = rq;
7393 #endif
7394 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7395 }
7396
7397 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7398 {
7399 struct rt_prio_array *array;
7400 int i;
7401
7402 array = &rt_rq->active;
7403 for (i = 0; i < MAX_RT_PRIO; i++) {
7404 INIT_LIST_HEAD(array->queue + i);
7405 __clear_bit(i, array->bitmap);
7406 }
7407 /* delimiter for bitsearch: */
7408 __set_bit(MAX_RT_PRIO, array->bitmap);
7409
7410 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7411 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7412 #ifdef CONFIG_SMP
7413 rt_rq->highest_prio.next = MAX_RT_PRIO;
7414 #endif
7415 #endif
7416 #ifdef CONFIG_SMP
7417 rt_rq->rt_nr_migratory = 0;
7418 rt_rq->overloaded = 0;
7419 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7420 #endif
7421
7422 rt_rq->rt_time = 0;
7423 rt_rq->rt_throttled = 0;
7424 rt_rq->rt_runtime = 0;
7425 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7426
7427 #ifdef CONFIG_RT_GROUP_SCHED
7428 rt_rq->rt_nr_boosted = 0;
7429 rt_rq->rq = rq;
7430 #endif
7431 }
7432
7433 #ifdef CONFIG_FAIR_GROUP_SCHED
7434 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7435 struct sched_entity *se, int cpu, int add,
7436 struct sched_entity *parent)
7437 {
7438 struct rq *rq = cpu_rq(cpu);
7439 tg->cfs_rq[cpu] = cfs_rq;
7440 init_cfs_rq(cfs_rq, rq);
7441 cfs_rq->tg = tg;
7442 if (add)
7443 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7444
7445 tg->se[cpu] = se;
7446 /* se could be NULL for init_task_group */
7447 if (!se)
7448 return;
7449
7450 if (!parent)
7451 se->cfs_rq = &rq->cfs;
7452 else
7453 se->cfs_rq = parent->my_q;
7454
7455 se->my_q = cfs_rq;
7456 se->load.weight = tg->shares;
7457 se->load.inv_weight = 0;
7458 se->parent = parent;
7459 }
7460 #endif
7461
7462 #ifdef CONFIG_RT_GROUP_SCHED
7463 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7464 struct sched_rt_entity *rt_se, int cpu, int add,
7465 struct sched_rt_entity *parent)
7466 {
7467 struct rq *rq = cpu_rq(cpu);
7468
7469 tg->rt_rq[cpu] = rt_rq;
7470 init_rt_rq(rt_rq, rq);
7471 rt_rq->tg = tg;
7472 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7473 if (add)
7474 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7475
7476 tg->rt_se[cpu] = rt_se;
7477 if (!rt_se)
7478 return;
7479
7480 if (!parent)
7481 rt_se->rt_rq = &rq->rt;
7482 else
7483 rt_se->rt_rq = parent->my_q;
7484
7485 rt_se->my_q = rt_rq;
7486 rt_se->parent = parent;
7487 INIT_LIST_HEAD(&rt_se->run_list);
7488 }
7489 #endif
7490
7491 void __init sched_init(void)
7492 {
7493 int i, j;
7494 unsigned long alloc_size = 0, ptr;
7495
7496 #ifdef CONFIG_FAIR_GROUP_SCHED
7497 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7498 #endif
7499 #ifdef CONFIG_RT_GROUP_SCHED
7500 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7501 #endif
7502 #ifdef CONFIG_CPUMASK_OFFSTACK
7503 alloc_size += num_possible_cpus() * cpumask_size();
7504 #endif
7505 if (alloc_size) {
7506 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7507
7508 #ifdef CONFIG_FAIR_GROUP_SCHED
7509 init_task_group.se = (struct sched_entity **)ptr;
7510 ptr += nr_cpu_ids * sizeof(void **);
7511
7512 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7513 ptr += nr_cpu_ids * sizeof(void **);
7514
7515 #endif /* CONFIG_FAIR_GROUP_SCHED */
7516 #ifdef CONFIG_RT_GROUP_SCHED
7517 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7518 ptr += nr_cpu_ids * sizeof(void **);
7519
7520 init_task_group.rt_rq = (struct rt_rq **)ptr;
7521 ptr += nr_cpu_ids * sizeof(void **);
7522
7523 #endif /* CONFIG_RT_GROUP_SCHED */
7524 #ifdef CONFIG_CPUMASK_OFFSTACK
7525 for_each_possible_cpu(i) {
7526 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7527 ptr += cpumask_size();
7528 }
7529 #endif /* CONFIG_CPUMASK_OFFSTACK */
7530 }
7531
7532 #ifdef CONFIG_SMP
7533 init_defrootdomain();
7534 #endif
7535
7536 init_rt_bandwidth(&def_rt_bandwidth,
7537 global_rt_period(), global_rt_runtime());
7538
7539 #ifdef CONFIG_RT_GROUP_SCHED
7540 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7541 global_rt_period(), global_rt_runtime());
7542 #endif /* CONFIG_RT_GROUP_SCHED */
7543
7544 #ifdef CONFIG_CGROUP_SCHED
7545 list_add(&init_task_group.list, &task_groups);
7546 INIT_LIST_HEAD(&init_task_group.children);
7547
7548 #endif /* CONFIG_CGROUP_SCHED */
7549
7550 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7551 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7552 __alignof__(unsigned long));
7553 #endif
7554 for_each_possible_cpu(i) {
7555 struct rq *rq;
7556
7557 rq = cpu_rq(i);
7558 raw_spin_lock_init(&rq->lock);
7559 rq->nr_running = 0;
7560 rq->calc_load_active = 0;
7561 rq->calc_load_update = jiffies + LOAD_FREQ;
7562 init_cfs_rq(&rq->cfs, rq);
7563 init_rt_rq(&rq->rt, rq);
7564 #ifdef CONFIG_FAIR_GROUP_SCHED
7565 init_task_group.shares = init_task_group_load;
7566 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7567 #ifdef CONFIG_CGROUP_SCHED
7568 /*
7569 * How much cpu bandwidth does init_task_group get?
7570 *
7571 * In case of task-groups formed thr' the cgroup filesystem, it
7572 * gets 100% of the cpu resources in the system. This overall
7573 * system cpu resource is divided among the tasks of
7574 * init_task_group and its child task-groups in a fair manner,
7575 * based on each entity's (task or task-group's) weight
7576 * (se->load.weight).
7577 *
7578 * In other words, if init_task_group has 10 tasks of weight
7579 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7580 * then A0's share of the cpu resource is:
7581 *
7582 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7583 *
7584 * We achieve this by letting init_task_group's tasks sit
7585 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7586 */
7587 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7588 #endif
7589 #endif /* CONFIG_FAIR_GROUP_SCHED */
7590
7591 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7592 #ifdef CONFIG_RT_GROUP_SCHED
7593 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7594 #ifdef CONFIG_CGROUP_SCHED
7595 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7596 #endif
7597 #endif
7598
7599 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7600 rq->cpu_load[j] = 0;
7601 #ifdef CONFIG_SMP
7602 rq->sd = NULL;
7603 rq->rd = NULL;
7604 rq->cpu_power = SCHED_LOAD_SCALE;
7605 rq->post_schedule = 0;
7606 rq->active_balance = 0;
7607 rq->next_balance = jiffies;
7608 rq->push_cpu = 0;
7609 rq->cpu = i;
7610 rq->online = 0;
7611 rq->idle_stamp = 0;
7612 rq->avg_idle = 2*sysctl_sched_migration_cost;
7613 rq_attach_root(rq, &def_root_domain);
7614 #endif
7615 init_rq_hrtick(rq);
7616 atomic_set(&rq->nr_iowait, 0);
7617 }
7618
7619 set_load_weight(&init_task);
7620
7621 #ifdef CONFIG_PREEMPT_NOTIFIERS
7622 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7623 #endif
7624
7625 #ifdef CONFIG_SMP
7626 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7627 #endif
7628
7629 #ifdef CONFIG_RT_MUTEXES
7630 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7631 #endif
7632
7633 /*
7634 * The boot idle thread does lazy MMU switching as well:
7635 */
7636 atomic_inc(&init_mm.mm_count);
7637 enter_lazy_tlb(&init_mm, current);
7638
7639 /*
7640 * Make us the idle thread. Technically, schedule() should not be
7641 * called from this thread, however somewhere below it might be,
7642 * but because we are the idle thread, we just pick up running again
7643 * when this runqueue becomes "idle".
7644 */
7645 init_idle(current, smp_processor_id());
7646
7647 calc_load_update = jiffies + LOAD_FREQ;
7648
7649 /*
7650 * During early bootup we pretend to be a normal task:
7651 */
7652 current->sched_class = &fair_sched_class;
7653
7654 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7655 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7656 #ifdef CONFIG_SMP
7657 #ifdef CONFIG_NO_HZ
7658 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7659 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7660 #endif
7661 /* May be allocated at isolcpus cmdline parse time */
7662 if (cpu_isolated_map == NULL)
7663 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7664 #endif /* SMP */
7665
7666 perf_event_init();
7667
7668 scheduler_running = 1;
7669 }
7670
7671 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7672 static inline int preempt_count_equals(int preempt_offset)
7673 {
7674 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7675
7676 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7677 }
7678
7679 void __might_sleep(const char *file, int line, int preempt_offset)
7680 {
7681 #ifdef in_atomic
7682 static unsigned long prev_jiffy; /* ratelimiting */
7683
7684 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7685 system_state != SYSTEM_RUNNING || oops_in_progress)
7686 return;
7687 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7688 return;
7689 prev_jiffy = jiffies;
7690
7691 printk(KERN_ERR
7692 "BUG: sleeping function called from invalid context at %s:%d\n",
7693 file, line);
7694 printk(KERN_ERR
7695 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7696 in_atomic(), irqs_disabled(),
7697 current->pid, current->comm);
7698
7699 debug_show_held_locks(current);
7700 if (irqs_disabled())
7701 print_irqtrace_events(current);
7702 dump_stack();
7703 #endif
7704 }
7705 EXPORT_SYMBOL(__might_sleep);
7706 #endif
7707
7708 #ifdef CONFIG_MAGIC_SYSRQ
7709 static void normalize_task(struct rq *rq, struct task_struct *p)
7710 {
7711 int on_rq;
7712
7713 on_rq = p->se.on_rq;
7714 if (on_rq)
7715 deactivate_task(rq, p, 0);
7716 __setscheduler(rq, p, SCHED_NORMAL, 0);
7717 if (on_rq) {
7718 activate_task(rq, p, 0);
7719 resched_task(rq->curr);
7720 }
7721 }
7722
7723 void normalize_rt_tasks(void)
7724 {
7725 struct task_struct *g, *p;
7726 unsigned long flags;
7727 struct rq *rq;
7728
7729 read_lock_irqsave(&tasklist_lock, flags);
7730 do_each_thread(g, p) {
7731 /*
7732 * Only normalize user tasks:
7733 */
7734 if (!p->mm)
7735 continue;
7736
7737 p->se.exec_start = 0;
7738 #ifdef CONFIG_SCHEDSTATS
7739 p->se.statistics.wait_start = 0;
7740 p->se.statistics.sleep_start = 0;
7741 p->se.statistics.block_start = 0;
7742 #endif
7743
7744 if (!rt_task(p)) {
7745 /*
7746 * Renice negative nice level userspace
7747 * tasks back to 0:
7748 */
7749 if (TASK_NICE(p) < 0 && p->mm)
7750 set_user_nice(p, 0);
7751 continue;
7752 }
7753
7754 raw_spin_lock(&p->pi_lock);
7755 rq = __task_rq_lock(p);
7756
7757 normalize_task(rq, p);
7758
7759 __task_rq_unlock(rq);
7760 raw_spin_unlock(&p->pi_lock);
7761 } while_each_thread(g, p);
7762
7763 read_unlock_irqrestore(&tasklist_lock, flags);
7764 }
7765
7766 #endif /* CONFIG_MAGIC_SYSRQ */
7767
7768 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7769 /*
7770 * These functions are only useful for the IA64 MCA handling, or kdb.
7771 *
7772 * They can only be called when the whole system has been
7773 * stopped - every CPU needs to be quiescent, and no scheduling
7774 * activity can take place. Using them for anything else would
7775 * be a serious bug, and as a result, they aren't even visible
7776 * under any other configuration.
7777 */
7778
7779 /**
7780 * curr_task - return the current task for a given cpu.
7781 * @cpu: the processor in question.
7782 *
7783 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7784 */
7785 struct task_struct *curr_task(int cpu)
7786 {
7787 return cpu_curr(cpu);
7788 }
7789
7790 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7791
7792 #ifdef CONFIG_IA64
7793 /**
7794 * set_curr_task - set the current task for a given cpu.
7795 * @cpu: the processor in question.
7796 * @p: the task pointer to set.
7797 *
7798 * Description: This function must only be used when non-maskable interrupts
7799 * are serviced on a separate stack. It allows the architecture to switch the
7800 * notion of the current task on a cpu in a non-blocking manner. This function
7801 * must be called with all CPU's synchronized, and interrupts disabled, the
7802 * and caller must save the original value of the current task (see
7803 * curr_task() above) and restore that value before reenabling interrupts and
7804 * re-starting the system.
7805 *
7806 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7807 */
7808 void set_curr_task(int cpu, struct task_struct *p)
7809 {
7810 cpu_curr(cpu) = p;
7811 }
7812
7813 #endif
7814
7815 #ifdef CONFIG_FAIR_GROUP_SCHED
7816 static void free_fair_sched_group(struct task_group *tg)
7817 {
7818 int i;
7819
7820 for_each_possible_cpu(i) {
7821 if (tg->cfs_rq)
7822 kfree(tg->cfs_rq[i]);
7823 if (tg->se)
7824 kfree(tg->se[i]);
7825 }
7826
7827 kfree(tg->cfs_rq);
7828 kfree(tg->se);
7829 }
7830
7831 static
7832 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7833 {
7834 struct cfs_rq *cfs_rq;
7835 struct sched_entity *se;
7836 struct rq *rq;
7837 int i;
7838
7839 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7840 if (!tg->cfs_rq)
7841 goto err;
7842 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7843 if (!tg->se)
7844 goto err;
7845
7846 tg->shares = NICE_0_LOAD;
7847
7848 for_each_possible_cpu(i) {
7849 rq = cpu_rq(i);
7850
7851 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7852 GFP_KERNEL, cpu_to_node(i));
7853 if (!cfs_rq)
7854 goto err;
7855
7856 se = kzalloc_node(sizeof(struct sched_entity),
7857 GFP_KERNEL, cpu_to_node(i));
7858 if (!se)
7859 goto err_free_rq;
7860
7861 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7862 }
7863
7864 return 1;
7865
7866 err_free_rq:
7867 kfree(cfs_rq);
7868 err:
7869 return 0;
7870 }
7871
7872 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7873 {
7874 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7875 &cpu_rq(cpu)->leaf_cfs_rq_list);
7876 }
7877
7878 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7879 {
7880 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7881 }
7882 #else /* !CONFG_FAIR_GROUP_SCHED */
7883 static inline void free_fair_sched_group(struct task_group *tg)
7884 {
7885 }
7886
7887 static inline
7888 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7889 {
7890 return 1;
7891 }
7892
7893 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7894 {
7895 }
7896
7897 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7898 {
7899 }
7900 #endif /* CONFIG_FAIR_GROUP_SCHED */
7901
7902 #ifdef CONFIG_RT_GROUP_SCHED
7903 static void free_rt_sched_group(struct task_group *tg)
7904 {
7905 int i;
7906
7907 destroy_rt_bandwidth(&tg->rt_bandwidth);
7908
7909 for_each_possible_cpu(i) {
7910 if (tg->rt_rq)
7911 kfree(tg->rt_rq[i]);
7912 if (tg->rt_se)
7913 kfree(tg->rt_se[i]);
7914 }
7915
7916 kfree(tg->rt_rq);
7917 kfree(tg->rt_se);
7918 }
7919
7920 static
7921 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7922 {
7923 struct rt_rq *rt_rq;
7924 struct sched_rt_entity *rt_se;
7925 struct rq *rq;
7926 int i;
7927
7928 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7929 if (!tg->rt_rq)
7930 goto err;
7931 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7932 if (!tg->rt_se)
7933 goto err;
7934
7935 init_rt_bandwidth(&tg->rt_bandwidth,
7936 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7937
7938 for_each_possible_cpu(i) {
7939 rq = cpu_rq(i);
7940
7941 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7942 GFP_KERNEL, cpu_to_node(i));
7943 if (!rt_rq)
7944 goto err;
7945
7946 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7947 GFP_KERNEL, cpu_to_node(i));
7948 if (!rt_se)
7949 goto err_free_rq;
7950
7951 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7952 }
7953
7954 return 1;
7955
7956 err_free_rq:
7957 kfree(rt_rq);
7958 err:
7959 return 0;
7960 }
7961
7962 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7963 {
7964 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7965 &cpu_rq(cpu)->leaf_rt_rq_list);
7966 }
7967
7968 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7969 {
7970 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7971 }
7972 #else /* !CONFIG_RT_GROUP_SCHED */
7973 static inline void free_rt_sched_group(struct task_group *tg)
7974 {
7975 }
7976
7977 static inline
7978 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7979 {
7980 return 1;
7981 }
7982
7983 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7984 {
7985 }
7986
7987 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7988 {
7989 }
7990 #endif /* CONFIG_RT_GROUP_SCHED */
7991
7992 #ifdef CONFIG_CGROUP_SCHED
7993 static void free_sched_group(struct task_group *tg)
7994 {
7995 free_fair_sched_group(tg);
7996 free_rt_sched_group(tg);
7997 kfree(tg);
7998 }
7999
8000 /* allocate runqueue etc for a new task group */
8001 struct task_group *sched_create_group(struct task_group *parent)
8002 {
8003 struct task_group *tg;
8004 unsigned long flags;
8005 int i;
8006
8007 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8008 if (!tg)
8009 return ERR_PTR(-ENOMEM);
8010
8011 if (!alloc_fair_sched_group(tg, parent))
8012 goto err;
8013
8014 if (!alloc_rt_sched_group(tg, parent))
8015 goto err;
8016
8017 spin_lock_irqsave(&task_group_lock, flags);
8018 for_each_possible_cpu(i) {
8019 register_fair_sched_group(tg, i);
8020 register_rt_sched_group(tg, i);
8021 }
8022 list_add_rcu(&tg->list, &task_groups);
8023
8024 WARN_ON(!parent); /* root should already exist */
8025
8026 tg->parent = parent;
8027 INIT_LIST_HEAD(&tg->children);
8028 list_add_rcu(&tg->siblings, &parent->children);
8029 spin_unlock_irqrestore(&task_group_lock, flags);
8030
8031 return tg;
8032
8033 err:
8034 free_sched_group(tg);
8035 return ERR_PTR(-ENOMEM);
8036 }
8037
8038 /* rcu callback to free various structures associated with a task group */
8039 static void free_sched_group_rcu(struct rcu_head *rhp)
8040 {
8041 /* now it should be safe to free those cfs_rqs */
8042 free_sched_group(container_of(rhp, struct task_group, rcu));
8043 }
8044
8045 /* Destroy runqueue etc associated with a task group */
8046 void sched_destroy_group(struct task_group *tg)
8047 {
8048 unsigned long flags;
8049 int i;
8050
8051 spin_lock_irqsave(&task_group_lock, flags);
8052 for_each_possible_cpu(i) {
8053 unregister_fair_sched_group(tg, i);
8054 unregister_rt_sched_group(tg, i);
8055 }
8056 list_del_rcu(&tg->list);
8057 list_del_rcu(&tg->siblings);
8058 spin_unlock_irqrestore(&task_group_lock, flags);
8059
8060 /* wait for possible concurrent references to cfs_rqs complete */
8061 call_rcu(&tg->rcu, free_sched_group_rcu);
8062 }
8063
8064 /* change task's runqueue when it moves between groups.
8065 * The caller of this function should have put the task in its new group
8066 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8067 * reflect its new group.
8068 */
8069 void sched_move_task(struct task_struct *tsk)
8070 {
8071 int on_rq, running;
8072 unsigned long flags;
8073 struct rq *rq;
8074
8075 rq = task_rq_lock(tsk, &flags);
8076
8077 running = task_current(rq, tsk);
8078 on_rq = tsk->se.on_rq;
8079
8080 if (on_rq)
8081 dequeue_task(rq, tsk, 0);
8082 if (unlikely(running))
8083 tsk->sched_class->put_prev_task(rq, tsk);
8084
8085 set_task_rq(tsk, task_cpu(tsk));
8086
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 if (tsk->sched_class->moved_group)
8089 tsk->sched_class->moved_group(tsk, on_rq);
8090 #endif
8091
8092 if (unlikely(running))
8093 tsk->sched_class->set_curr_task(rq);
8094 if (on_rq)
8095 enqueue_task(rq, tsk, 0);
8096
8097 task_rq_unlock(rq, &flags);
8098 }
8099 #endif /* CONFIG_CGROUP_SCHED */
8100
8101 #ifdef CONFIG_FAIR_GROUP_SCHED
8102 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8103 {
8104 struct cfs_rq *cfs_rq = se->cfs_rq;
8105 int on_rq;
8106
8107 on_rq = se->on_rq;
8108 if (on_rq)
8109 dequeue_entity(cfs_rq, se, 0);
8110
8111 se->load.weight = shares;
8112 se->load.inv_weight = 0;
8113
8114 if (on_rq)
8115 enqueue_entity(cfs_rq, se, 0);
8116 }
8117
8118 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8119 {
8120 struct cfs_rq *cfs_rq = se->cfs_rq;
8121 struct rq *rq = cfs_rq->rq;
8122 unsigned long flags;
8123
8124 raw_spin_lock_irqsave(&rq->lock, flags);
8125 __set_se_shares(se, shares);
8126 raw_spin_unlock_irqrestore(&rq->lock, flags);
8127 }
8128
8129 static DEFINE_MUTEX(shares_mutex);
8130
8131 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8132 {
8133 int i;
8134 unsigned long flags;
8135
8136 /*
8137 * We can't change the weight of the root cgroup.
8138 */
8139 if (!tg->se[0])
8140 return -EINVAL;
8141
8142 if (shares < MIN_SHARES)
8143 shares = MIN_SHARES;
8144 else if (shares > MAX_SHARES)
8145 shares = MAX_SHARES;
8146
8147 mutex_lock(&shares_mutex);
8148 if (tg->shares == shares)
8149 goto done;
8150
8151 spin_lock_irqsave(&task_group_lock, flags);
8152 for_each_possible_cpu(i)
8153 unregister_fair_sched_group(tg, i);
8154 list_del_rcu(&tg->siblings);
8155 spin_unlock_irqrestore(&task_group_lock, flags);
8156
8157 /* wait for any ongoing reference to this group to finish */
8158 synchronize_sched();
8159
8160 /*
8161 * Now we are free to modify the group's share on each cpu
8162 * w/o tripping rebalance_share or load_balance_fair.
8163 */
8164 tg->shares = shares;
8165 for_each_possible_cpu(i) {
8166 /*
8167 * force a rebalance
8168 */
8169 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8170 set_se_shares(tg->se[i], shares);
8171 }
8172
8173 /*
8174 * Enable load balance activity on this group, by inserting it back on
8175 * each cpu's rq->leaf_cfs_rq_list.
8176 */
8177 spin_lock_irqsave(&task_group_lock, flags);
8178 for_each_possible_cpu(i)
8179 register_fair_sched_group(tg, i);
8180 list_add_rcu(&tg->siblings, &tg->parent->children);
8181 spin_unlock_irqrestore(&task_group_lock, flags);
8182 done:
8183 mutex_unlock(&shares_mutex);
8184 return 0;
8185 }
8186
8187 unsigned long sched_group_shares(struct task_group *tg)
8188 {
8189 return tg->shares;
8190 }
8191 #endif
8192
8193 #ifdef CONFIG_RT_GROUP_SCHED
8194 /*
8195 * Ensure that the real time constraints are schedulable.
8196 */
8197 static DEFINE_MUTEX(rt_constraints_mutex);
8198
8199 static unsigned long to_ratio(u64 period, u64 runtime)
8200 {
8201 if (runtime == RUNTIME_INF)
8202 return 1ULL << 20;
8203
8204 return div64_u64(runtime << 20, period);
8205 }
8206
8207 /* Must be called with tasklist_lock held */
8208 static inline int tg_has_rt_tasks(struct task_group *tg)
8209 {
8210 struct task_struct *g, *p;
8211
8212 do_each_thread(g, p) {
8213 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8214 return 1;
8215 } while_each_thread(g, p);
8216
8217 return 0;
8218 }
8219
8220 struct rt_schedulable_data {
8221 struct task_group *tg;
8222 u64 rt_period;
8223 u64 rt_runtime;
8224 };
8225
8226 static int tg_schedulable(struct task_group *tg, void *data)
8227 {
8228 struct rt_schedulable_data *d = data;
8229 struct task_group *child;
8230 unsigned long total, sum = 0;
8231 u64 period, runtime;
8232
8233 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8234 runtime = tg->rt_bandwidth.rt_runtime;
8235
8236 if (tg == d->tg) {
8237 period = d->rt_period;
8238 runtime = d->rt_runtime;
8239 }
8240
8241 /*
8242 * Cannot have more runtime than the period.
8243 */
8244 if (runtime > period && runtime != RUNTIME_INF)
8245 return -EINVAL;
8246
8247 /*
8248 * Ensure we don't starve existing RT tasks.
8249 */
8250 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8251 return -EBUSY;
8252
8253 total = to_ratio(period, runtime);
8254
8255 /*
8256 * Nobody can have more than the global setting allows.
8257 */
8258 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8259 return -EINVAL;
8260
8261 /*
8262 * The sum of our children's runtime should not exceed our own.
8263 */
8264 list_for_each_entry_rcu(child, &tg->children, siblings) {
8265 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8266 runtime = child->rt_bandwidth.rt_runtime;
8267
8268 if (child == d->tg) {
8269 period = d->rt_period;
8270 runtime = d->rt_runtime;
8271 }
8272
8273 sum += to_ratio(period, runtime);
8274 }
8275
8276 if (sum > total)
8277 return -EINVAL;
8278
8279 return 0;
8280 }
8281
8282 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8283 {
8284 struct rt_schedulable_data data = {
8285 .tg = tg,
8286 .rt_period = period,
8287 .rt_runtime = runtime,
8288 };
8289
8290 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8291 }
8292
8293 static int tg_set_bandwidth(struct task_group *tg,
8294 u64 rt_period, u64 rt_runtime)
8295 {
8296 int i, err = 0;
8297
8298 mutex_lock(&rt_constraints_mutex);
8299 read_lock(&tasklist_lock);
8300 err = __rt_schedulable(tg, rt_period, rt_runtime);
8301 if (err)
8302 goto unlock;
8303
8304 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8305 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8306 tg->rt_bandwidth.rt_runtime = rt_runtime;
8307
8308 for_each_possible_cpu(i) {
8309 struct rt_rq *rt_rq = tg->rt_rq[i];
8310
8311 raw_spin_lock(&rt_rq->rt_runtime_lock);
8312 rt_rq->rt_runtime = rt_runtime;
8313 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8314 }
8315 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8316 unlock:
8317 read_unlock(&tasklist_lock);
8318 mutex_unlock(&rt_constraints_mutex);
8319
8320 return err;
8321 }
8322
8323 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8324 {
8325 u64 rt_runtime, rt_period;
8326
8327 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8328 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8329 if (rt_runtime_us < 0)
8330 rt_runtime = RUNTIME_INF;
8331
8332 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8333 }
8334
8335 long sched_group_rt_runtime(struct task_group *tg)
8336 {
8337 u64 rt_runtime_us;
8338
8339 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8340 return -1;
8341
8342 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8343 do_div(rt_runtime_us, NSEC_PER_USEC);
8344 return rt_runtime_us;
8345 }
8346
8347 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8348 {
8349 u64 rt_runtime, rt_period;
8350
8351 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8352 rt_runtime = tg->rt_bandwidth.rt_runtime;
8353
8354 if (rt_period == 0)
8355 return -EINVAL;
8356
8357 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8358 }
8359
8360 long sched_group_rt_period(struct task_group *tg)
8361 {
8362 u64 rt_period_us;
8363
8364 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8365 do_div(rt_period_us, NSEC_PER_USEC);
8366 return rt_period_us;
8367 }
8368
8369 static int sched_rt_global_constraints(void)
8370 {
8371 u64 runtime, period;
8372 int ret = 0;
8373
8374 if (sysctl_sched_rt_period <= 0)
8375 return -EINVAL;
8376
8377 runtime = global_rt_runtime();
8378 period = global_rt_period();
8379
8380 /*
8381 * Sanity check on the sysctl variables.
8382 */
8383 if (runtime > period && runtime != RUNTIME_INF)
8384 return -EINVAL;
8385
8386 mutex_lock(&rt_constraints_mutex);
8387 read_lock(&tasklist_lock);
8388 ret = __rt_schedulable(NULL, 0, 0);
8389 read_unlock(&tasklist_lock);
8390 mutex_unlock(&rt_constraints_mutex);
8391
8392 return ret;
8393 }
8394
8395 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8396 {
8397 /* Don't accept realtime tasks when there is no way for them to run */
8398 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8399 return 0;
8400
8401 return 1;
8402 }
8403
8404 #else /* !CONFIG_RT_GROUP_SCHED */
8405 static int sched_rt_global_constraints(void)
8406 {
8407 unsigned long flags;
8408 int i;
8409
8410 if (sysctl_sched_rt_period <= 0)
8411 return -EINVAL;
8412
8413 /*
8414 * There's always some RT tasks in the root group
8415 * -- migration, kstopmachine etc..
8416 */
8417 if (sysctl_sched_rt_runtime == 0)
8418 return -EBUSY;
8419
8420 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8421 for_each_possible_cpu(i) {
8422 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8423
8424 raw_spin_lock(&rt_rq->rt_runtime_lock);
8425 rt_rq->rt_runtime = global_rt_runtime();
8426 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8427 }
8428 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8429
8430 return 0;
8431 }
8432 #endif /* CONFIG_RT_GROUP_SCHED */
8433
8434 int sched_rt_handler(struct ctl_table *table, int write,
8435 void __user *buffer, size_t *lenp,
8436 loff_t *ppos)
8437 {
8438 int ret;
8439 int old_period, old_runtime;
8440 static DEFINE_MUTEX(mutex);
8441
8442 mutex_lock(&mutex);
8443 old_period = sysctl_sched_rt_period;
8444 old_runtime = sysctl_sched_rt_runtime;
8445
8446 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8447
8448 if (!ret && write) {
8449 ret = sched_rt_global_constraints();
8450 if (ret) {
8451 sysctl_sched_rt_period = old_period;
8452 sysctl_sched_rt_runtime = old_runtime;
8453 } else {
8454 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8455 def_rt_bandwidth.rt_period =
8456 ns_to_ktime(global_rt_period());
8457 }
8458 }
8459 mutex_unlock(&mutex);
8460
8461 return ret;
8462 }
8463
8464 #ifdef CONFIG_CGROUP_SCHED
8465
8466 /* return corresponding task_group object of a cgroup */
8467 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8468 {
8469 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8470 struct task_group, css);
8471 }
8472
8473 static struct cgroup_subsys_state *
8474 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8475 {
8476 struct task_group *tg, *parent;
8477
8478 if (!cgrp->parent) {
8479 /* This is early initialization for the top cgroup */
8480 return &init_task_group.css;
8481 }
8482
8483 parent = cgroup_tg(cgrp->parent);
8484 tg = sched_create_group(parent);
8485 if (IS_ERR(tg))
8486 return ERR_PTR(-ENOMEM);
8487
8488 return &tg->css;
8489 }
8490
8491 static void
8492 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8493 {
8494 struct task_group *tg = cgroup_tg(cgrp);
8495
8496 sched_destroy_group(tg);
8497 }
8498
8499 static int
8500 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8501 {
8502 #ifdef CONFIG_RT_GROUP_SCHED
8503 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8504 return -EINVAL;
8505 #else
8506 /* We don't support RT-tasks being in separate groups */
8507 if (tsk->sched_class != &fair_sched_class)
8508 return -EINVAL;
8509 #endif
8510 return 0;
8511 }
8512
8513 static int
8514 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8515 struct task_struct *tsk, bool threadgroup)
8516 {
8517 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8518 if (retval)
8519 return retval;
8520 if (threadgroup) {
8521 struct task_struct *c;
8522 rcu_read_lock();
8523 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8524 retval = cpu_cgroup_can_attach_task(cgrp, c);
8525 if (retval) {
8526 rcu_read_unlock();
8527 return retval;
8528 }
8529 }
8530 rcu_read_unlock();
8531 }
8532 return 0;
8533 }
8534
8535 static void
8536 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8537 struct cgroup *old_cont, struct task_struct *tsk,
8538 bool threadgroup)
8539 {
8540 sched_move_task(tsk);
8541 if (threadgroup) {
8542 struct task_struct *c;
8543 rcu_read_lock();
8544 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8545 sched_move_task(c);
8546 }
8547 rcu_read_unlock();
8548 }
8549 }
8550
8551 #ifdef CONFIG_FAIR_GROUP_SCHED
8552 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8553 u64 shareval)
8554 {
8555 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8556 }
8557
8558 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8559 {
8560 struct task_group *tg = cgroup_tg(cgrp);
8561
8562 return (u64) tg->shares;
8563 }
8564 #endif /* CONFIG_FAIR_GROUP_SCHED */
8565
8566 #ifdef CONFIG_RT_GROUP_SCHED
8567 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8568 s64 val)
8569 {
8570 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8571 }
8572
8573 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8574 {
8575 return sched_group_rt_runtime(cgroup_tg(cgrp));
8576 }
8577
8578 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8579 u64 rt_period_us)
8580 {
8581 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8582 }
8583
8584 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8585 {
8586 return sched_group_rt_period(cgroup_tg(cgrp));
8587 }
8588 #endif /* CONFIG_RT_GROUP_SCHED */
8589
8590 static struct cftype cpu_files[] = {
8591 #ifdef CONFIG_FAIR_GROUP_SCHED
8592 {
8593 .name = "shares",
8594 .read_u64 = cpu_shares_read_u64,
8595 .write_u64 = cpu_shares_write_u64,
8596 },
8597 #endif
8598 #ifdef CONFIG_RT_GROUP_SCHED
8599 {
8600 .name = "rt_runtime_us",
8601 .read_s64 = cpu_rt_runtime_read,
8602 .write_s64 = cpu_rt_runtime_write,
8603 },
8604 {
8605 .name = "rt_period_us",
8606 .read_u64 = cpu_rt_period_read_uint,
8607 .write_u64 = cpu_rt_period_write_uint,
8608 },
8609 #endif
8610 };
8611
8612 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8613 {
8614 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8615 }
8616
8617 struct cgroup_subsys cpu_cgroup_subsys = {
8618 .name = "cpu",
8619 .create = cpu_cgroup_create,
8620 .destroy = cpu_cgroup_destroy,
8621 .can_attach = cpu_cgroup_can_attach,
8622 .attach = cpu_cgroup_attach,
8623 .populate = cpu_cgroup_populate,
8624 .subsys_id = cpu_cgroup_subsys_id,
8625 .early_init = 1,
8626 };
8627
8628 #endif /* CONFIG_CGROUP_SCHED */
8629
8630 #ifdef CONFIG_CGROUP_CPUACCT
8631
8632 /*
8633 * CPU accounting code for task groups.
8634 *
8635 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8636 * (balbir@in.ibm.com).
8637 */
8638
8639 /* track cpu usage of a group of tasks and its child groups */
8640 struct cpuacct {
8641 struct cgroup_subsys_state css;
8642 /* cpuusage holds pointer to a u64-type object on every cpu */
8643 u64 __percpu *cpuusage;
8644 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8645 struct cpuacct *parent;
8646 };
8647
8648 struct cgroup_subsys cpuacct_subsys;
8649
8650 /* return cpu accounting group corresponding to this container */
8651 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8652 {
8653 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8654 struct cpuacct, css);
8655 }
8656
8657 /* return cpu accounting group to which this task belongs */
8658 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8659 {
8660 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8661 struct cpuacct, css);
8662 }
8663
8664 /* create a new cpu accounting group */
8665 static struct cgroup_subsys_state *cpuacct_create(
8666 struct cgroup_subsys *ss, struct cgroup *cgrp)
8667 {
8668 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8669 int i;
8670
8671 if (!ca)
8672 goto out;
8673
8674 ca->cpuusage = alloc_percpu(u64);
8675 if (!ca->cpuusage)
8676 goto out_free_ca;
8677
8678 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8679 if (percpu_counter_init(&ca->cpustat[i], 0))
8680 goto out_free_counters;
8681
8682 if (cgrp->parent)
8683 ca->parent = cgroup_ca(cgrp->parent);
8684
8685 return &ca->css;
8686
8687 out_free_counters:
8688 while (--i >= 0)
8689 percpu_counter_destroy(&ca->cpustat[i]);
8690 free_percpu(ca->cpuusage);
8691 out_free_ca:
8692 kfree(ca);
8693 out:
8694 return ERR_PTR(-ENOMEM);
8695 }
8696
8697 /* destroy an existing cpu accounting group */
8698 static void
8699 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8700 {
8701 struct cpuacct *ca = cgroup_ca(cgrp);
8702 int i;
8703
8704 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8705 percpu_counter_destroy(&ca->cpustat[i]);
8706 free_percpu(ca->cpuusage);
8707 kfree(ca);
8708 }
8709
8710 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8711 {
8712 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8713 u64 data;
8714
8715 #ifndef CONFIG_64BIT
8716 /*
8717 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8718 */
8719 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8720 data = *cpuusage;
8721 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8722 #else
8723 data = *cpuusage;
8724 #endif
8725
8726 return data;
8727 }
8728
8729 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8730 {
8731 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8732
8733 #ifndef CONFIG_64BIT
8734 /*
8735 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8736 */
8737 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8738 *cpuusage = val;
8739 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8740 #else
8741 *cpuusage = val;
8742 #endif
8743 }
8744
8745 /* return total cpu usage (in nanoseconds) of a group */
8746 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8747 {
8748 struct cpuacct *ca = cgroup_ca(cgrp);
8749 u64 totalcpuusage = 0;
8750 int i;
8751
8752 for_each_present_cpu(i)
8753 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8754
8755 return totalcpuusage;
8756 }
8757
8758 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8759 u64 reset)
8760 {
8761 struct cpuacct *ca = cgroup_ca(cgrp);
8762 int err = 0;
8763 int i;
8764
8765 if (reset) {
8766 err = -EINVAL;
8767 goto out;
8768 }
8769
8770 for_each_present_cpu(i)
8771 cpuacct_cpuusage_write(ca, i, 0);
8772
8773 out:
8774 return err;
8775 }
8776
8777 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8778 struct seq_file *m)
8779 {
8780 struct cpuacct *ca = cgroup_ca(cgroup);
8781 u64 percpu;
8782 int i;
8783
8784 for_each_present_cpu(i) {
8785 percpu = cpuacct_cpuusage_read(ca, i);
8786 seq_printf(m, "%llu ", (unsigned long long) percpu);
8787 }
8788 seq_printf(m, "\n");
8789 return 0;
8790 }
8791
8792 static const char *cpuacct_stat_desc[] = {
8793 [CPUACCT_STAT_USER] = "user",
8794 [CPUACCT_STAT_SYSTEM] = "system",
8795 };
8796
8797 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8798 struct cgroup_map_cb *cb)
8799 {
8800 struct cpuacct *ca = cgroup_ca(cgrp);
8801 int i;
8802
8803 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8804 s64 val = percpu_counter_read(&ca->cpustat[i]);
8805 val = cputime64_to_clock_t(val);
8806 cb->fill(cb, cpuacct_stat_desc[i], val);
8807 }
8808 return 0;
8809 }
8810
8811 static struct cftype files[] = {
8812 {
8813 .name = "usage",
8814 .read_u64 = cpuusage_read,
8815 .write_u64 = cpuusage_write,
8816 },
8817 {
8818 .name = "usage_percpu",
8819 .read_seq_string = cpuacct_percpu_seq_read,
8820 },
8821 {
8822 .name = "stat",
8823 .read_map = cpuacct_stats_show,
8824 },
8825 };
8826
8827 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8828 {
8829 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8830 }
8831
8832 /*
8833 * charge this task's execution time to its accounting group.
8834 *
8835 * called with rq->lock held.
8836 */
8837 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8838 {
8839 struct cpuacct *ca;
8840 int cpu;
8841
8842 if (unlikely(!cpuacct_subsys.active))
8843 return;
8844
8845 cpu = task_cpu(tsk);
8846
8847 rcu_read_lock();
8848
8849 ca = task_ca(tsk);
8850
8851 for (; ca; ca = ca->parent) {
8852 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8853 *cpuusage += cputime;
8854 }
8855
8856 rcu_read_unlock();
8857 }
8858
8859 /*
8860 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8861 * in cputime_t units. As a result, cpuacct_update_stats calls
8862 * percpu_counter_add with values large enough to always overflow the
8863 * per cpu batch limit causing bad SMP scalability.
8864 *
8865 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8866 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8867 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8868 */
8869 #ifdef CONFIG_SMP
8870 #define CPUACCT_BATCH \
8871 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8872 #else
8873 #define CPUACCT_BATCH 0
8874 #endif
8875
8876 /*
8877 * Charge the system/user time to the task's accounting group.
8878 */
8879 static void cpuacct_update_stats(struct task_struct *tsk,
8880 enum cpuacct_stat_index idx, cputime_t val)
8881 {
8882 struct cpuacct *ca;
8883 int batch = CPUACCT_BATCH;
8884
8885 if (unlikely(!cpuacct_subsys.active))
8886 return;
8887
8888 rcu_read_lock();
8889 ca = task_ca(tsk);
8890
8891 do {
8892 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8893 ca = ca->parent;
8894 } while (ca);
8895 rcu_read_unlock();
8896 }
8897
8898 struct cgroup_subsys cpuacct_subsys = {
8899 .name = "cpuacct",
8900 .create = cpuacct_create,
8901 .destroy = cpuacct_destroy,
8902 .populate = cpuacct_populate,
8903 .subsys_id = cpuacct_subsys_id,
8904 };
8905 #endif /* CONFIG_CGROUP_CPUACCT */
8906
8907 #ifndef CONFIG_SMP
8908
8909 void synchronize_sched_expedited(void)
8910 {
8911 barrier();
8912 }
8913 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8914
8915 #else /* #ifndef CONFIG_SMP */
8916
8917 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8918
8919 static int synchronize_sched_expedited_cpu_stop(void *data)
8920 {
8921 /*
8922 * There must be a full memory barrier on each affected CPU
8923 * between the time that try_stop_cpus() is called and the
8924 * time that it returns.
8925 *
8926 * In the current initial implementation of cpu_stop, the
8927 * above condition is already met when the control reaches
8928 * this point and the following smp_mb() is not strictly
8929 * necessary. Do smp_mb() anyway for documentation and
8930 * robustness against future implementation changes.
8931 */
8932 smp_mb(); /* See above comment block. */
8933 return 0;
8934 }
8935
8936 /*
8937 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8938 * approach to force grace period to end quickly. This consumes
8939 * significant time on all CPUs, and is thus not recommended for
8940 * any sort of common-case code.
8941 *
8942 * Note that it is illegal to call this function while holding any
8943 * lock that is acquired by a CPU-hotplug notifier. Failing to
8944 * observe this restriction will result in deadlock.
8945 */
8946 void synchronize_sched_expedited(void)
8947 {
8948 int snap, trycount = 0;
8949
8950 smp_mb(); /* ensure prior mod happens before capturing snap. */
8951 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8952 get_online_cpus();
8953 while (try_stop_cpus(cpu_online_mask,
8954 synchronize_sched_expedited_cpu_stop,
8955 NULL) == -EAGAIN) {
8956 put_online_cpus();
8957 if (trycount++ < 10)
8958 udelay(trycount * num_online_cpus());
8959 else {
8960 synchronize_sched();
8961 return;
8962 }
8963 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8964 smp_mb(); /* ensure test happens before caller kfree */
8965 return;
8966 }
8967 get_online_cpus();
8968 }
8969 atomic_inc(&synchronize_sched_expedited_count);
8970 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8971 put_online_cpus();
8972 }
8973 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8974
8975 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.301783 seconds and 6 git commands to generate.