sched: introduce se->vruntime
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 struct load_stat {
175 struct load_weight load;
176 };
177
178 /* CFS-related fields in a runqueue */
179 struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 u64 min_vruntime;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
197 #ifdef CONFIG_FAIR_GROUP_SCHED
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
267 u64 tick_timestamp;
268
269 atomic_t nr_iowait;
270
271 #ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
277 int cpu; /* cpu of this runqueue */
278
279 struct task_struct *migration_thread;
280 struct list_head migration_queue;
281 #endif
282
283 #ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301 #endif
302 struct lock_class_key rq_lock_key;
303 };
304
305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306 static DEFINE_MUTEX(sched_hotcpu_mutex);
307
308 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309 {
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311 }
312
313 static inline int cpu_of(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 return rq->cpu;
317 #else
318 return 0;
319 #endif
320 }
321
322 /*
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
325 */
326 static void __update_rq_clock(struct rq *rq)
327 {
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
333 #ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335 #endif
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
361 }
362
363 static void update_rq_clock(struct rq *rq)
364 {
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
367 }
368
369 /*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371 * See detach_destroy_domains: synchronize_sched for details.
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
376 #define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
378
379 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380 #define this_rq() (&__get_cpu_var(runqueues))
381 #define task_rq(p) cpu_rq(task_cpu(p))
382 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
384 /*
385 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
386 * clock constructed from sched_clock():
387 */
388 unsigned long long cpu_clock(int cpu)
389 {
390 unsigned long long now;
391 unsigned long flags;
392 struct rq *rq;
393
394 local_irq_save(flags);
395 rq = cpu_rq(cpu);
396 update_rq_clock(rq);
397 now = rq->clock;
398 local_irq_restore(flags);
399
400 return now;
401 }
402
403 #ifdef CONFIG_FAIR_GROUP_SCHED
404 /* Change a task's ->cfs_rq if it moves across CPUs */
405 static inline void set_task_cfs_rq(struct task_struct *p)
406 {
407 p->se.cfs_rq = &task_rq(p)->cfs;
408 }
409 #else
410 static inline void set_task_cfs_rq(struct task_struct *p)
411 {
412 }
413 #endif
414
415 #ifndef prepare_arch_switch
416 # define prepare_arch_switch(next) do { } while (0)
417 #endif
418 #ifndef finish_arch_switch
419 # define finish_arch_switch(prev) do { } while (0)
420 #endif
421
422 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
423 static inline int task_running(struct rq *rq, struct task_struct *p)
424 {
425 return rq->curr == p;
426 }
427
428 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
429 {
430 }
431
432 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
433 {
434 #ifdef CONFIG_DEBUG_SPINLOCK
435 /* this is a valid case when another task releases the spinlock */
436 rq->lock.owner = current;
437 #endif
438 /*
439 * If we are tracking spinlock dependencies then we have to
440 * fix up the runqueue lock - which gets 'carried over' from
441 * prev into current:
442 */
443 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
444
445 spin_unlock_irq(&rq->lock);
446 }
447
448 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
449 static inline int task_running(struct rq *rq, struct task_struct *p)
450 {
451 #ifdef CONFIG_SMP
452 return p->oncpu;
453 #else
454 return rq->curr == p;
455 #endif
456 }
457
458 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
459 {
460 #ifdef CONFIG_SMP
461 /*
462 * We can optimise this out completely for !SMP, because the
463 * SMP rebalancing from interrupt is the only thing that cares
464 * here.
465 */
466 next->oncpu = 1;
467 #endif
468 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 spin_unlock_irq(&rq->lock);
470 #else
471 spin_unlock(&rq->lock);
472 #endif
473 }
474
475 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
476 {
477 #ifdef CONFIG_SMP
478 /*
479 * After ->oncpu is cleared, the task can be moved to a different CPU.
480 * We must ensure this doesn't happen until the switch is completely
481 * finished.
482 */
483 smp_wmb();
484 prev->oncpu = 0;
485 #endif
486 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
487 local_irq_enable();
488 #endif
489 }
490 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
491
492 /*
493 * __task_rq_lock - lock the runqueue a given task resides on.
494 * Must be called interrupts disabled.
495 */
496 static inline struct rq *__task_rq_lock(struct task_struct *p)
497 __acquires(rq->lock)
498 {
499 struct rq *rq;
500
501 repeat_lock_task:
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock(&rq->lock);
506 goto repeat_lock_task;
507 }
508 return rq;
509 }
510
511 /*
512 * task_rq_lock - lock the runqueue a given task resides on and disable
513 * interrupts. Note the ordering: we can safely lookup the task_rq without
514 * explicitly disabling preemption.
515 */
516 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
517 __acquires(rq->lock)
518 {
519 struct rq *rq;
520
521 repeat_lock_task:
522 local_irq_save(*flags);
523 rq = task_rq(p);
524 spin_lock(&rq->lock);
525 if (unlikely(rq != task_rq(p))) {
526 spin_unlock_irqrestore(&rq->lock, *flags);
527 goto repeat_lock_task;
528 }
529 return rq;
530 }
531
532 static inline void __task_rq_unlock(struct rq *rq)
533 __releases(rq->lock)
534 {
535 spin_unlock(&rq->lock);
536 }
537
538 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
539 __releases(rq->lock)
540 {
541 spin_unlock_irqrestore(&rq->lock, *flags);
542 }
543
544 /*
545 * this_rq_lock - lock this runqueue and disable interrupts.
546 */
547 static inline struct rq *this_rq_lock(void)
548 __acquires(rq->lock)
549 {
550 struct rq *rq;
551
552 local_irq_disable();
553 rq = this_rq();
554 spin_lock(&rq->lock);
555
556 return rq;
557 }
558
559 /*
560 * We are going deep-idle (irqs are disabled):
561 */
562 void sched_clock_idle_sleep_event(void)
563 {
564 struct rq *rq = cpu_rq(smp_processor_id());
565
566 spin_lock(&rq->lock);
567 __update_rq_clock(rq);
568 spin_unlock(&rq->lock);
569 rq->clock_deep_idle_events++;
570 }
571 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
572
573 /*
574 * We just idled delta nanoseconds (called with irqs disabled):
575 */
576 void sched_clock_idle_wakeup_event(u64 delta_ns)
577 {
578 struct rq *rq = cpu_rq(smp_processor_id());
579 u64 now = sched_clock();
580
581 rq->idle_clock += delta_ns;
582 /*
583 * Override the previous timestamp and ignore all
584 * sched_clock() deltas that occured while we idled,
585 * and use the PM-provided delta_ns to advance the
586 * rq clock:
587 */
588 spin_lock(&rq->lock);
589 rq->prev_clock_raw = now;
590 rq->clock += delta_ns;
591 spin_unlock(&rq->lock);
592 }
593 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
594
595 /*
596 * resched_task - mark a task 'to be rescheduled now'.
597 *
598 * On UP this means the setting of the need_resched flag, on SMP it
599 * might also involve a cross-CPU call to trigger the scheduler on
600 * the target CPU.
601 */
602 #ifdef CONFIG_SMP
603
604 #ifndef tsk_is_polling
605 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
606 #endif
607
608 static void resched_task(struct task_struct *p)
609 {
610 int cpu;
611
612 assert_spin_locked(&task_rq(p)->lock);
613
614 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
615 return;
616
617 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
618
619 cpu = task_cpu(p);
620 if (cpu == smp_processor_id())
621 return;
622
623 /* NEED_RESCHED must be visible before we test polling */
624 smp_mb();
625 if (!tsk_is_polling(p))
626 smp_send_reschedule(cpu);
627 }
628
629 static void resched_cpu(int cpu)
630 {
631 struct rq *rq = cpu_rq(cpu);
632 unsigned long flags;
633
634 if (!spin_trylock_irqsave(&rq->lock, flags))
635 return;
636 resched_task(cpu_curr(cpu));
637 spin_unlock_irqrestore(&rq->lock, flags);
638 }
639 #else
640 static inline void resched_task(struct task_struct *p)
641 {
642 assert_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644 }
645 #endif
646
647 static u64 div64_likely32(u64 divident, unsigned long divisor)
648 {
649 #if BITS_PER_LONG == 32
650 if (likely(divident <= 0xffffffffULL))
651 return (u32)divident / divisor;
652 do_div(divident, divisor);
653
654 return divident;
655 #else
656 return divident / divisor;
657 #endif
658 }
659
660 #if BITS_PER_LONG == 32
661 # define WMULT_CONST (~0UL)
662 #else
663 # define WMULT_CONST (1UL << 32)
664 #endif
665
666 #define WMULT_SHIFT 32
667
668 /*
669 * Shift right and round:
670 */
671 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
672
673 static unsigned long
674 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
675 struct load_weight *lw)
676 {
677 u64 tmp;
678
679 if (unlikely(!lw->inv_weight))
680 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
681
682 tmp = (u64)delta_exec * weight;
683 /*
684 * Check whether we'd overflow the 64-bit multiplication:
685 */
686 if (unlikely(tmp > WMULT_CONST))
687 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
688 WMULT_SHIFT/2);
689 else
690 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
691
692 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
693 }
694
695 static inline unsigned long
696 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
697 {
698 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
699 }
700
701 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
702 {
703 lw->weight += inc;
704 lw->inv_weight = WMULT_CONST / lw->weight;
705 }
706
707 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
708 {
709 lw->weight -= dec;
710 if (likely(lw->weight))
711 lw->inv_weight = WMULT_CONST / lw->weight;
712 }
713
714 /*
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
723 #define WEIGHT_IDLEPRIO 2
724 #define WMULT_IDLEPRIO (1 << 31)
725
726 /*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
737 */
738 static const int prio_to_weight[40] = {
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
747 };
748
749 /*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
756 static const u32 prio_to_wmult[40] = {
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
765 };
766
767 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769 /*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774 struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778 };
779
780 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
784 int *this_best_prio, struct rq_iterator *iterator);
785
786 #include "sched_stats.h"
787 #include "sched_rt.c"
788 #include "sched_fair.c"
789 #include "sched_idletask.c"
790 #ifdef CONFIG_SCHED_DEBUG
791 # include "sched_debug.c"
792 #endif
793
794 #define sched_class_highest (&rt_sched_class)
795
796 /*
797 * Update delta_exec, delta_fair fields for rq.
798 *
799 * delta_fair clock advances at a rate inversely proportional to
800 * total load (rq->ls.load.weight) on the runqueue, while
801 * delta_exec advances at the same rate as wall-clock (provided
802 * cpu is not idle).
803 *
804 * delta_exec / delta_fair is a measure of the (smoothened) load on this
805 * runqueue over any given interval. This (smoothened) load is used
806 * during load balance.
807 *
808 * This function is called /before/ updating rq->ls.load
809 * and when switching tasks.
810 */
811 static inline void inc_load(struct rq *rq, const struct task_struct *p)
812 {
813 update_load_add(&rq->ls.load, p->se.load.weight);
814 }
815
816 static inline void dec_load(struct rq *rq, const struct task_struct *p)
817 {
818 update_load_sub(&rq->ls.load, p->se.load.weight);
819 }
820
821 static void inc_nr_running(struct task_struct *p, struct rq *rq)
822 {
823 rq->nr_running++;
824 inc_load(rq, p);
825 }
826
827 static void dec_nr_running(struct task_struct *p, struct rq *rq)
828 {
829 rq->nr_running--;
830 dec_load(rq, p);
831 }
832
833 static void set_load_weight(struct task_struct *p)
834 {
835 p->se.wait_runtime = 0;
836
837 if (task_has_rt_policy(p)) {
838 p->se.load.weight = prio_to_weight[0] * 2;
839 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
840 return;
841 }
842
843 /*
844 * SCHED_IDLE tasks get minimal weight:
845 */
846 if (p->policy == SCHED_IDLE) {
847 p->se.load.weight = WEIGHT_IDLEPRIO;
848 p->se.load.inv_weight = WMULT_IDLEPRIO;
849 return;
850 }
851
852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
854 }
855
856 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
857 {
858 sched_info_queued(p);
859 p->sched_class->enqueue_task(rq, p, wakeup);
860 p->se.on_rq = 1;
861 }
862
863 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
864 {
865 p->sched_class->dequeue_task(rq, p, sleep);
866 p->se.on_rq = 0;
867 }
868
869 /*
870 * __normal_prio - return the priority that is based on the static prio
871 */
872 static inline int __normal_prio(struct task_struct *p)
873 {
874 return p->static_prio;
875 }
876
877 /*
878 * Calculate the expected normal priority: i.e. priority
879 * without taking RT-inheritance into account. Might be
880 * boosted by interactivity modifiers. Changes upon fork,
881 * setprio syscalls, and whenever the interactivity
882 * estimator recalculates.
883 */
884 static inline int normal_prio(struct task_struct *p)
885 {
886 int prio;
887
888 if (task_has_rt_policy(p))
889 prio = MAX_RT_PRIO-1 - p->rt_priority;
890 else
891 prio = __normal_prio(p);
892 return prio;
893 }
894
895 /*
896 * Calculate the current priority, i.e. the priority
897 * taken into account by the scheduler. This value might
898 * be boosted by RT tasks, or might be boosted by
899 * interactivity modifiers. Will be RT if the task got
900 * RT-boosted. If not then it returns p->normal_prio.
901 */
902 static int effective_prio(struct task_struct *p)
903 {
904 p->normal_prio = normal_prio(p);
905 /*
906 * If we are RT tasks or we were boosted to RT priority,
907 * keep the priority unchanged. Otherwise, update priority
908 * to the normal priority:
909 */
910 if (!rt_prio(p->prio))
911 return p->normal_prio;
912 return p->prio;
913 }
914
915 /*
916 * activate_task - move a task to the runqueue.
917 */
918 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
919 {
920 if (p->state == TASK_UNINTERRUPTIBLE)
921 rq->nr_uninterruptible--;
922
923 enqueue_task(rq, p, wakeup);
924 inc_nr_running(p, rq);
925 }
926
927 /*
928 * activate_idle_task - move idle task to the _front_ of runqueue.
929 */
930 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
931 {
932 update_rq_clock(rq);
933
934 if (p->state == TASK_UNINTERRUPTIBLE)
935 rq->nr_uninterruptible--;
936
937 enqueue_task(rq, p, 0);
938 inc_nr_running(p, rq);
939 }
940
941 /*
942 * deactivate_task - remove a task from the runqueue.
943 */
944 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
945 {
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible++;
948
949 dequeue_task(rq, p, sleep);
950 dec_nr_running(p, rq);
951 }
952
953 /**
954 * task_curr - is this task currently executing on a CPU?
955 * @p: the task in question.
956 */
957 inline int task_curr(const struct task_struct *p)
958 {
959 return cpu_curr(task_cpu(p)) == p;
960 }
961
962 /* Used instead of source_load when we know the type == 0 */
963 unsigned long weighted_cpuload(const int cpu)
964 {
965 return cpu_rq(cpu)->ls.load.weight;
966 }
967
968 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
969 {
970 #ifdef CONFIG_SMP
971 task_thread_info(p)->cpu = cpu;
972 set_task_cfs_rq(p);
973 #endif
974 }
975
976 #ifdef CONFIG_SMP
977
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 int old_cpu = task_cpu(p);
981 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
982 u64 clock_offset, fair_clock_offset;
983
984 clock_offset = old_rq->clock - new_rq->clock;
985 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
986
987 if (p->se.wait_start_fair)
988 p->se.wait_start_fair -= fair_clock_offset;
989 if (p->se.sleep_start_fair)
990 p->se.sleep_start_fair -= fair_clock_offset;
991
992 #ifdef CONFIG_SCHEDSTATS
993 if (p->se.wait_start)
994 p->se.wait_start -= clock_offset;
995 if (p->se.sleep_start)
996 p->se.sleep_start -= clock_offset;
997 if (p->se.block_start)
998 p->se.block_start -= clock_offset;
999 #endif
1000
1001 __set_task_cpu(p, new_cpu);
1002 }
1003
1004 struct migration_req {
1005 struct list_head list;
1006
1007 struct task_struct *task;
1008 int dest_cpu;
1009
1010 struct completion done;
1011 };
1012
1013 /*
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1016 */
1017 static int
1018 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1019 {
1020 struct rq *rq = task_rq(p);
1021
1022 /*
1023 * If the task is not on a runqueue (and not running), then
1024 * it is sufficient to simply update the task's cpu field.
1025 */
1026 if (!p->se.on_rq && !task_running(rq, p)) {
1027 set_task_cpu(p, dest_cpu);
1028 return 0;
1029 }
1030
1031 init_completion(&req->done);
1032 req->task = p;
1033 req->dest_cpu = dest_cpu;
1034 list_add(&req->list, &rq->migration_queue);
1035
1036 return 1;
1037 }
1038
1039 /*
1040 * wait_task_inactive - wait for a thread to unschedule.
1041 *
1042 * The caller must ensure that the task *will* unschedule sometime soon,
1043 * else this function might spin for a *long* time. This function can't
1044 * be called with interrupts off, or it may introduce deadlock with
1045 * smp_call_function() if an IPI is sent by the same process we are
1046 * waiting to become inactive.
1047 */
1048 void wait_task_inactive(struct task_struct *p)
1049 {
1050 unsigned long flags;
1051 int running, on_rq;
1052 struct rq *rq;
1053
1054 repeat:
1055 /*
1056 * We do the initial early heuristics without holding
1057 * any task-queue locks at all. We'll only try to get
1058 * the runqueue lock when things look like they will
1059 * work out!
1060 */
1061 rq = task_rq(p);
1062
1063 /*
1064 * If the task is actively running on another CPU
1065 * still, just relax and busy-wait without holding
1066 * any locks.
1067 *
1068 * NOTE! Since we don't hold any locks, it's not
1069 * even sure that "rq" stays as the right runqueue!
1070 * But we don't care, since "task_running()" will
1071 * return false if the runqueue has changed and p
1072 * is actually now running somewhere else!
1073 */
1074 while (task_running(rq, p))
1075 cpu_relax();
1076
1077 /*
1078 * Ok, time to look more closely! We need the rq
1079 * lock now, to be *sure*. If we're wrong, we'll
1080 * just go back and repeat.
1081 */
1082 rq = task_rq_lock(p, &flags);
1083 running = task_running(rq, p);
1084 on_rq = p->se.on_rq;
1085 task_rq_unlock(rq, &flags);
1086
1087 /*
1088 * Was it really running after all now that we
1089 * checked with the proper locks actually held?
1090 *
1091 * Oops. Go back and try again..
1092 */
1093 if (unlikely(running)) {
1094 cpu_relax();
1095 goto repeat;
1096 }
1097
1098 /*
1099 * It's not enough that it's not actively running,
1100 * it must be off the runqueue _entirely_, and not
1101 * preempted!
1102 *
1103 * So if it wa still runnable (but just not actively
1104 * running right now), it's preempted, and we should
1105 * yield - it could be a while.
1106 */
1107 if (unlikely(on_rq)) {
1108 yield();
1109 goto repeat;
1110 }
1111
1112 /*
1113 * Ahh, all good. It wasn't running, and it wasn't
1114 * runnable, which means that it will never become
1115 * running in the future either. We're all done!
1116 */
1117 }
1118
1119 /***
1120 * kick_process - kick a running thread to enter/exit the kernel
1121 * @p: the to-be-kicked thread
1122 *
1123 * Cause a process which is running on another CPU to enter
1124 * kernel-mode, without any delay. (to get signals handled.)
1125 *
1126 * NOTE: this function doesnt have to take the runqueue lock,
1127 * because all it wants to ensure is that the remote task enters
1128 * the kernel. If the IPI races and the task has been migrated
1129 * to another CPU then no harm is done and the purpose has been
1130 * achieved as well.
1131 */
1132 void kick_process(struct task_struct *p)
1133 {
1134 int cpu;
1135
1136 preempt_disable();
1137 cpu = task_cpu(p);
1138 if ((cpu != smp_processor_id()) && task_curr(p))
1139 smp_send_reschedule(cpu);
1140 preempt_enable();
1141 }
1142
1143 /*
1144 * Return a low guess at the load of a migration-source cpu weighted
1145 * according to the scheduling class and "nice" value.
1146 *
1147 * We want to under-estimate the load of migration sources, to
1148 * balance conservatively.
1149 */
1150 static inline unsigned long source_load(int cpu, int type)
1151 {
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long total = weighted_cpuload(cpu);
1154
1155 if (type == 0)
1156 return total;
1157
1158 return min(rq->cpu_load[type-1], total);
1159 }
1160
1161 /*
1162 * Return a high guess at the load of a migration-target cpu weighted
1163 * according to the scheduling class and "nice" value.
1164 */
1165 static inline unsigned long target_load(int cpu, int type)
1166 {
1167 struct rq *rq = cpu_rq(cpu);
1168 unsigned long total = weighted_cpuload(cpu);
1169
1170 if (type == 0)
1171 return total;
1172
1173 return max(rq->cpu_load[type-1], total);
1174 }
1175
1176 /*
1177 * Return the average load per task on the cpu's run queue
1178 */
1179 static inline unsigned long cpu_avg_load_per_task(int cpu)
1180 {
1181 struct rq *rq = cpu_rq(cpu);
1182 unsigned long total = weighted_cpuload(cpu);
1183 unsigned long n = rq->nr_running;
1184
1185 return n ? total / n : SCHED_LOAD_SCALE;
1186 }
1187
1188 /*
1189 * find_idlest_group finds and returns the least busy CPU group within the
1190 * domain.
1191 */
1192 static struct sched_group *
1193 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1194 {
1195 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1196 unsigned long min_load = ULONG_MAX, this_load = 0;
1197 int load_idx = sd->forkexec_idx;
1198 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1199
1200 do {
1201 unsigned long load, avg_load;
1202 int local_group;
1203 int i;
1204
1205 /* Skip over this group if it has no CPUs allowed */
1206 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1207 goto nextgroup;
1208
1209 local_group = cpu_isset(this_cpu, group->cpumask);
1210
1211 /* Tally up the load of all CPUs in the group */
1212 avg_load = 0;
1213
1214 for_each_cpu_mask(i, group->cpumask) {
1215 /* Bias balancing toward cpus of our domain */
1216 if (local_group)
1217 load = source_load(i, load_idx);
1218 else
1219 load = target_load(i, load_idx);
1220
1221 avg_load += load;
1222 }
1223
1224 /* Adjust by relative CPU power of the group */
1225 avg_load = sg_div_cpu_power(group,
1226 avg_load * SCHED_LOAD_SCALE);
1227
1228 if (local_group) {
1229 this_load = avg_load;
1230 this = group;
1231 } else if (avg_load < min_load) {
1232 min_load = avg_load;
1233 idlest = group;
1234 }
1235 nextgroup:
1236 group = group->next;
1237 } while (group != sd->groups);
1238
1239 if (!idlest || 100*this_load < imbalance*min_load)
1240 return NULL;
1241 return idlest;
1242 }
1243
1244 /*
1245 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1246 */
1247 static int
1248 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1249 {
1250 cpumask_t tmp;
1251 unsigned long load, min_load = ULONG_MAX;
1252 int idlest = -1;
1253 int i;
1254
1255 /* Traverse only the allowed CPUs */
1256 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1257
1258 for_each_cpu_mask(i, tmp) {
1259 load = weighted_cpuload(i);
1260
1261 if (load < min_load || (load == min_load && i == this_cpu)) {
1262 min_load = load;
1263 idlest = i;
1264 }
1265 }
1266
1267 return idlest;
1268 }
1269
1270 /*
1271 * sched_balance_self: balance the current task (running on cpu) in domains
1272 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1273 * SD_BALANCE_EXEC.
1274 *
1275 * Balance, ie. select the least loaded group.
1276 *
1277 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 *
1279 * preempt must be disabled.
1280 */
1281 static int sched_balance_self(int cpu, int flag)
1282 {
1283 struct task_struct *t = current;
1284 struct sched_domain *tmp, *sd = NULL;
1285
1286 for_each_domain(cpu, tmp) {
1287 /*
1288 * If power savings logic is enabled for a domain, stop there.
1289 */
1290 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1291 break;
1292 if (tmp->flags & flag)
1293 sd = tmp;
1294 }
1295
1296 while (sd) {
1297 cpumask_t span;
1298 struct sched_group *group;
1299 int new_cpu, weight;
1300
1301 if (!(sd->flags & flag)) {
1302 sd = sd->child;
1303 continue;
1304 }
1305
1306 span = sd->span;
1307 group = find_idlest_group(sd, t, cpu);
1308 if (!group) {
1309 sd = sd->child;
1310 continue;
1311 }
1312
1313 new_cpu = find_idlest_cpu(group, t, cpu);
1314 if (new_cpu == -1 || new_cpu == cpu) {
1315 /* Now try balancing at a lower domain level of cpu */
1316 sd = sd->child;
1317 continue;
1318 }
1319
1320 /* Now try balancing at a lower domain level of new_cpu */
1321 cpu = new_cpu;
1322 sd = NULL;
1323 weight = cpus_weight(span);
1324 for_each_domain(cpu, tmp) {
1325 if (weight <= cpus_weight(tmp->span))
1326 break;
1327 if (tmp->flags & flag)
1328 sd = tmp;
1329 }
1330 /* while loop will break here if sd == NULL */
1331 }
1332
1333 return cpu;
1334 }
1335
1336 #endif /* CONFIG_SMP */
1337
1338 /*
1339 * wake_idle() will wake a task on an idle cpu if task->cpu is
1340 * not idle and an idle cpu is available. The span of cpus to
1341 * search starts with cpus closest then further out as needed,
1342 * so we always favor a closer, idle cpu.
1343 *
1344 * Returns the CPU we should wake onto.
1345 */
1346 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1347 static int wake_idle(int cpu, struct task_struct *p)
1348 {
1349 cpumask_t tmp;
1350 struct sched_domain *sd;
1351 int i;
1352
1353 /*
1354 * If it is idle, then it is the best cpu to run this task.
1355 *
1356 * This cpu is also the best, if it has more than one task already.
1357 * Siblings must be also busy(in most cases) as they didn't already
1358 * pickup the extra load from this cpu and hence we need not check
1359 * sibling runqueue info. This will avoid the checks and cache miss
1360 * penalities associated with that.
1361 */
1362 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1363 return cpu;
1364
1365 for_each_domain(cpu, sd) {
1366 if (sd->flags & SD_WAKE_IDLE) {
1367 cpus_and(tmp, sd->span, p->cpus_allowed);
1368 for_each_cpu_mask(i, tmp) {
1369 if (idle_cpu(i))
1370 return i;
1371 }
1372 } else {
1373 break;
1374 }
1375 }
1376 return cpu;
1377 }
1378 #else
1379 static inline int wake_idle(int cpu, struct task_struct *p)
1380 {
1381 return cpu;
1382 }
1383 #endif
1384
1385 /***
1386 * try_to_wake_up - wake up a thread
1387 * @p: the to-be-woken-up thread
1388 * @state: the mask of task states that can be woken
1389 * @sync: do a synchronous wakeup?
1390 *
1391 * Put it on the run-queue if it's not already there. The "current"
1392 * thread is always on the run-queue (except when the actual
1393 * re-schedule is in progress), and as such you're allowed to do
1394 * the simpler "current->state = TASK_RUNNING" to mark yourself
1395 * runnable without the overhead of this.
1396 *
1397 * returns failure only if the task is already active.
1398 */
1399 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1400 {
1401 int cpu, this_cpu, success = 0;
1402 unsigned long flags;
1403 long old_state;
1404 struct rq *rq;
1405 #ifdef CONFIG_SMP
1406 struct sched_domain *sd, *this_sd = NULL;
1407 unsigned long load, this_load;
1408 int new_cpu;
1409 #endif
1410
1411 rq = task_rq_lock(p, &flags);
1412 old_state = p->state;
1413 if (!(old_state & state))
1414 goto out;
1415
1416 if (p->se.on_rq)
1417 goto out_running;
1418
1419 cpu = task_cpu(p);
1420 this_cpu = smp_processor_id();
1421
1422 #ifdef CONFIG_SMP
1423 if (unlikely(task_running(rq, p)))
1424 goto out_activate;
1425
1426 new_cpu = cpu;
1427
1428 schedstat_inc(rq, ttwu_cnt);
1429 if (cpu == this_cpu) {
1430 schedstat_inc(rq, ttwu_local);
1431 goto out_set_cpu;
1432 }
1433
1434 for_each_domain(this_cpu, sd) {
1435 if (cpu_isset(cpu, sd->span)) {
1436 schedstat_inc(sd, ttwu_wake_remote);
1437 this_sd = sd;
1438 break;
1439 }
1440 }
1441
1442 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1443 goto out_set_cpu;
1444
1445 /*
1446 * Check for affine wakeup and passive balancing possibilities.
1447 */
1448 if (this_sd) {
1449 int idx = this_sd->wake_idx;
1450 unsigned int imbalance;
1451
1452 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453
1454 load = source_load(cpu, idx);
1455 this_load = target_load(this_cpu, idx);
1456
1457 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458
1459 if (this_sd->flags & SD_WAKE_AFFINE) {
1460 unsigned long tl = this_load;
1461 unsigned long tl_per_task;
1462
1463 tl_per_task = cpu_avg_load_per_task(this_cpu);
1464
1465 /*
1466 * If sync wakeup then subtract the (maximum possible)
1467 * effect of the currently running task from the load
1468 * of the current CPU:
1469 */
1470 if (sync)
1471 tl -= current->se.load.weight;
1472
1473 if ((tl <= load &&
1474 tl + target_load(cpu, idx) <= tl_per_task) ||
1475 100*(tl + p->se.load.weight) <= imbalance*load) {
1476 /*
1477 * This domain has SD_WAKE_AFFINE and
1478 * p is cache cold in this domain, and
1479 * there is no bad imbalance.
1480 */
1481 schedstat_inc(this_sd, ttwu_move_affine);
1482 goto out_set_cpu;
1483 }
1484 }
1485
1486 /*
1487 * Start passive balancing when half the imbalance_pct
1488 * limit is reached.
1489 */
1490 if (this_sd->flags & SD_WAKE_BALANCE) {
1491 if (imbalance*this_load <= 100*load) {
1492 schedstat_inc(this_sd, ttwu_move_balance);
1493 goto out_set_cpu;
1494 }
1495 }
1496 }
1497
1498 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1499 out_set_cpu:
1500 new_cpu = wake_idle(new_cpu, p);
1501 if (new_cpu != cpu) {
1502 set_task_cpu(p, new_cpu);
1503 task_rq_unlock(rq, &flags);
1504 /* might preempt at this point */
1505 rq = task_rq_lock(p, &flags);
1506 old_state = p->state;
1507 if (!(old_state & state))
1508 goto out;
1509 if (p->se.on_rq)
1510 goto out_running;
1511
1512 this_cpu = smp_processor_id();
1513 cpu = task_cpu(p);
1514 }
1515
1516 out_activate:
1517 #endif /* CONFIG_SMP */
1518 update_rq_clock(rq);
1519 activate_task(rq, p, 1);
1520 /*
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1527 */
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1530 success = 1;
1531
1532 out_running:
1533 p->state = TASK_RUNNING;
1534 out:
1535 task_rq_unlock(rq, &flags);
1536
1537 return success;
1538 }
1539
1540 int fastcall wake_up_process(struct task_struct *p)
1541 {
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1544 }
1545 EXPORT_SYMBOL(wake_up_process);
1546
1547 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1548 {
1549 return try_to_wake_up(p, state, 0);
1550 }
1551
1552 /*
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
1555 *
1556 * __sched_fork() is basic setup used by init_idle() too:
1557 */
1558 static void __sched_fork(struct task_struct *p)
1559 {
1560 p->se.wait_start_fair = 0;
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.prev_sum_exec_runtime = 0;
1564 p->se.wait_runtime = 0;
1565 p->se.sleep_start_fair = 0;
1566
1567 #ifdef CONFIG_SCHEDSTATS
1568 p->se.wait_start = 0;
1569 p->se.sum_wait_runtime = 0;
1570 p->se.sum_sleep_runtime = 0;
1571 p->se.sleep_start = 0;
1572 p->se.block_start = 0;
1573 p->se.sleep_max = 0;
1574 p->se.block_max = 0;
1575 p->se.exec_max = 0;
1576 p->se.slice_max = 0;
1577 p->se.wait_max = 0;
1578 p->se.wait_runtime_overruns = 0;
1579 p->se.wait_runtime_underruns = 0;
1580 #endif
1581
1582 INIT_LIST_HEAD(&p->run_list);
1583 p->se.on_rq = 0;
1584
1585 #ifdef CONFIG_PREEMPT_NOTIFIERS
1586 INIT_HLIST_HEAD(&p->preempt_notifiers);
1587 #endif
1588
1589 /*
1590 * We mark the process as running here, but have not actually
1591 * inserted it onto the runqueue yet. This guarantees that
1592 * nobody will actually run it, and a signal or other external
1593 * event cannot wake it up and insert it on the runqueue either.
1594 */
1595 p->state = TASK_RUNNING;
1596 }
1597
1598 /*
1599 * fork()/clone()-time setup:
1600 */
1601 void sched_fork(struct task_struct *p, int clone_flags)
1602 {
1603 int cpu = get_cpu();
1604
1605 __sched_fork(p);
1606
1607 #ifdef CONFIG_SMP
1608 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1609 #endif
1610 __set_task_cpu(p, cpu);
1611
1612 /*
1613 * Make sure we do not leak PI boosting priority to the child:
1614 */
1615 p->prio = current->normal_prio;
1616
1617 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1618 if (likely(sched_info_on()))
1619 memset(&p->sched_info, 0, sizeof(p->sched_info));
1620 #endif
1621 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1622 p->oncpu = 0;
1623 #endif
1624 #ifdef CONFIG_PREEMPT
1625 /* Want to start with kernel preemption disabled. */
1626 task_thread_info(p)->preempt_count = 1;
1627 #endif
1628 put_cpu();
1629 }
1630
1631 /*
1632 * wake_up_new_task - wake up a newly created task for the first time.
1633 *
1634 * This function will do some initial scheduler statistics housekeeping
1635 * that must be done for every newly created context, then puts the task
1636 * on the runqueue and wakes it.
1637 */
1638 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1639 {
1640 unsigned long flags;
1641 struct rq *rq;
1642 int this_cpu;
1643
1644 rq = task_rq_lock(p, &flags);
1645 BUG_ON(p->state != TASK_RUNNING);
1646 this_cpu = smp_processor_id(); /* parent's CPU */
1647 update_rq_clock(rq);
1648
1649 p->prio = effective_prio(p);
1650
1651 if (rt_prio(p->prio))
1652 p->sched_class = &rt_sched_class;
1653 else
1654 p->sched_class = &fair_sched_class;
1655
1656 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1657 !current->se.on_rq) {
1658 activate_task(rq, p, 0);
1659 } else {
1660 /*
1661 * Let the scheduling class do new task startup
1662 * management (if any):
1663 */
1664 p->sched_class->task_new(rq, p);
1665 inc_nr_running(p, rq);
1666 }
1667 check_preempt_curr(rq, p);
1668 task_rq_unlock(rq, &flags);
1669 }
1670
1671 #ifdef CONFIG_PREEMPT_NOTIFIERS
1672
1673 /**
1674 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1675 * @notifier: notifier struct to register
1676 */
1677 void preempt_notifier_register(struct preempt_notifier *notifier)
1678 {
1679 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1680 }
1681 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1682
1683 /**
1684 * preempt_notifier_unregister - no longer interested in preemption notifications
1685 * @notifier: notifier struct to unregister
1686 *
1687 * This is safe to call from within a preemption notifier.
1688 */
1689 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1690 {
1691 hlist_del(&notifier->link);
1692 }
1693 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1694
1695 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696 {
1697 struct preempt_notifier *notifier;
1698 struct hlist_node *node;
1699
1700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1701 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1702 }
1703
1704 static void
1705 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1706 struct task_struct *next)
1707 {
1708 struct preempt_notifier *notifier;
1709 struct hlist_node *node;
1710
1711 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1712 notifier->ops->sched_out(notifier, next);
1713 }
1714
1715 #else
1716
1717 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1718 {
1719 }
1720
1721 static void
1722 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1723 struct task_struct *next)
1724 {
1725 }
1726
1727 #endif
1728
1729 /**
1730 * prepare_task_switch - prepare to switch tasks
1731 * @rq: the runqueue preparing to switch
1732 * @prev: the current task that is being switched out
1733 * @next: the task we are going to switch to.
1734 *
1735 * This is called with the rq lock held and interrupts off. It must
1736 * be paired with a subsequent finish_task_switch after the context
1737 * switch.
1738 *
1739 * prepare_task_switch sets up locking and calls architecture specific
1740 * hooks.
1741 */
1742 static inline void
1743 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1744 struct task_struct *next)
1745 {
1746 fire_sched_out_preempt_notifiers(prev, next);
1747 prepare_lock_switch(rq, next);
1748 prepare_arch_switch(next);
1749 }
1750
1751 /**
1752 * finish_task_switch - clean up after a task-switch
1753 * @rq: runqueue associated with task-switch
1754 * @prev: the thread we just switched away from.
1755 *
1756 * finish_task_switch must be called after the context switch, paired
1757 * with a prepare_task_switch call before the context switch.
1758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1759 * and do any other architecture-specific cleanup actions.
1760 *
1761 * Note that we may have delayed dropping an mm in context_switch(). If
1762 * so, we finish that here outside of the runqueue lock. (Doing it
1763 * with the lock held can cause deadlocks; see schedule() for
1764 * details.)
1765 */
1766 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1767 __releases(rq->lock)
1768 {
1769 struct mm_struct *mm = rq->prev_mm;
1770 long prev_state;
1771
1772 rq->prev_mm = NULL;
1773
1774 /*
1775 * A task struct has one reference for the use as "current".
1776 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1777 * schedule one last time. The schedule call will never return, and
1778 * the scheduled task must drop that reference.
1779 * The test for TASK_DEAD must occur while the runqueue locks are
1780 * still held, otherwise prev could be scheduled on another cpu, die
1781 * there before we look at prev->state, and then the reference would
1782 * be dropped twice.
1783 * Manfred Spraul <manfred@colorfullife.com>
1784 */
1785 prev_state = prev->state;
1786 finish_arch_switch(prev);
1787 finish_lock_switch(rq, prev);
1788 fire_sched_in_preempt_notifiers(current);
1789 if (mm)
1790 mmdrop(mm);
1791 if (unlikely(prev_state == TASK_DEAD)) {
1792 /*
1793 * Remove function-return probe instances associated with this
1794 * task and put them back on the free list.
1795 */
1796 kprobe_flush_task(prev);
1797 put_task_struct(prev);
1798 }
1799 }
1800
1801 /**
1802 * schedule_tail - first thing a freshly forked thread must call.
1803 * @prev: the thread we just switched away from.
1804 */
1805 asmlinkage void schedule_tail(struct task_struct *prev)
1806 __releases(rq->lock)
1807 {
1808 struct rq *rq = this_rq();
1809
1810 finish_task_switch(rq, prev);
1811 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1812 /* In this case, finish_task_switch does not reenable preemption */
1813 preempt_enable();
1814 #endif
1815 if (current->set_child_tid)
1816 put_user(current->pid, current->set_child_tid);
1817 }
1818
1819 /*
1820 * context_switch - switch to the new MM and the new
1821 * thread's register state.
1822 */
1823 static inline void
1824 context_switch(struct rq *rq, struct task_struct *prev,
1825 struct task_struct *next)
1826 {
1827 struct mm_struct *mm, *oldmm;
1828
1829 prepare_task_switch(rq, prev, next);
1830 mm = next->mm;
1831 oldmm = prev->active_mm;
1832 /*
1833 * For paravirt, this is coupled with an exit in switch_to to
1834 * combine the page table reload and the switch backend into
1835 * one hypercall.
1836 */
1837 arch_enter_lazy_cpu_mode();
1838
1839 if (unlikely(!mm)) {
1840 next->active_mm = oldmm;
1841 atomic_inc(&oldmm->mm_count);
1842 enter_lazy_tlb(oldmm, next);
1843 } else
1844 switch_mm(oldmm, mm, next);
1845
1846 if (unlikely(!prev->mm)) {
1847 prev->active_mm = NULL;
1848 rq->prev_mm = oldmm;
1849 }
1850 /*
1851 * Since the runqueue lock will be released by the next
1852 * task (which is an invalid locking op but in the case
1853 * of the scheduler it's an obvious special-case), so we
1854 * do an early lockdep release here:
1855 */
1856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1858 #endif
1859
1860 /* Here we just switch the register state and the stack. */
1861 switch_to(prev, next, prev);
1862
1863 barrier();
1864 /*
1865 * this_rq must be evaluated again because prev may have moved
1866 * CPUs since it called schedule(), thus the 'rq' on its stack
1867 * frame will be invalid.
1868 */
1869 finish_task_switch(this_rq(), prev);
1870 }
1871
1872 /*
1873 * nr_running, nr_uninterruptible and nr_context_switches:
1874 *
1875 * externally visible scheduler statistics: current number of runnable
1876 * threads, current number of uninterruptible-sleeping threads, total
1877 * number of context switches performed since bootup.
1878 */
1879 unsigned long nr_running(void)
1880 {
1881 unsigned long i, sum = 0;
1882
1883 for_each_online_cpu(i)
1884 sum += cpu_rq(i)->nr_running;
1885
1886 return sum;
1887 }
1888
1889 unsigned long nr_uninterruptible(void)
1890 {
1891 unsigned long i, sum = 0;
1892
1893 for_each_possible_cpu(i)
1894 sum += cpu_rq(i)->nr_uninterruptible;
1895
1896 /*
1897 * Since we read the counters lockless, it might be slightly
1898 * inaccurate. Do not allow it to go below zero though:
1899 */
1900 if (unlikely((long)sum < 0))
1901 sum = 0;
1902
1903 return sum;
1904 }
1905
1906 unsigned long long nr_context_switches(void)
1907 {
1908 int i;
1909 unsigned long long sum = 0;
1910
1911 for_each_possible_cpu(i)
1912 sum += cpu_rq(i)->nr_switches;
1913
1914 return sum;
1915 }
1916
1917 unsigned long nr_iowait(void)
1918 {
1919 unsigned long i, sum = 0;
1920
1921 for_each_possible_cpu(i)
1922 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1923
1924 return sum;
1925 }
1926
1927 unsigned long nr_active(void)
1928 {
1929 unsigned long i, running = 0, uninterruptible = 0;
1930
1931 for_each_online_cpu(i) {
1932 running += cpu_rq(i)->nr_running;
1933 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1934 }
1935
1936 if (unlikely((long)uninterruptible < 0))
1937 uninterruptible = 0;
1938
1939 return running + uninterruptible;
1940 }
1941
1942 /*
1943 * Update rq->cpu_load[] statistics. This function is usually called every
1944 * scheduler tick (TICK_NSEC).
1945 */
1946 static void update_cpu_load(struct rq *this_rq)
1947 {
1948 unsigned long this_load = this_rq->ls.load.weight;
1949 int i, scale;
1950
1951 this_rq->nr_load_updates++;
1952
1953 /* Update our load: */
1954 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1955 unsigned long old_load, new_load;
1956
1957 /* scale is effectively 1 << i now, and >> i divides by scale */
1958
1959 old_load = this_rq->cpu_load[i];
1960 new_load = this_load;
1961 /*
1962 * Round up the averaging division if load is increasing. This
1963 * prevents us from getting stuck on 9 if the load is 10, for
1964 * example.
1965 */
1966 if (new_load > old_load)
1967 new_load += scale-1;
1968 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1969 }
1970 }
1971
1972 #ifdef CONFIG_SMP
1973
1974 /*
1975 * double_rq_lock - safely lock two runqueues
1976 *
1977 * Note this does not disable interrupts like task_rq_lock,
1978 * you need to do so manually before calling.
1979 */
1980 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1981 __acquires(rq1->lock)
1982 __acquires(rq2->lock)
1983 {
1984 BUG_ON(!irqs_disabled());
1985 if (rq1 == rq2) {
1986 spin_lock(&rq1->lock);
1987 __acquire(rq2->lock); /* Fake it out ;) */
1988 } else {
1989 if (rq1 < rq2) {
1990 spin_lock(&rq1->lock);
1991 spin_lock(&rq2->lock);
1992 } else {
1993 spin_lock(&rq2->lock);
1994 spin_lock(&rq1->lock);
1995 }
1996 }
1997 update_rq_clock(rq1);
1998 update_rq_clock(rq2);
1999 }
2000
2001 /*
2002 * double_rq_unlock - safely unlock two runqueues
2003 *
2004 * Note this does not restore interrupts like task_rq_unlock,
2005 * you need to do so manually after calling.
2006 */
2007 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2008 __releases(rq1->lock)
2009 __releases(rq2->lock)
2010 {
2011 spin_unlock(&rq1->lock);
2012 if (rq1 != rq2)
2013 spin_unlock(&rq2->lock);
2014 else
2015 __release(rq2->lock);
2016 }
2017
2018 /*
2019 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2020 */
2021 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2022 __releases(this_rq->lock)
2023 __acquires(busiest->lock)
2024 __acquires(this_rq->lock)
2025 {
2026 if (unlikely(!irqs_disabled())) {
2027 /* printk() doesn't work good under rq->lock */
2028 spin_unlock(&this_rq->lock);
2029 BUG_ON(1);
2030 }
2031 if (unlikely(!spin_trylock(&busiest->lock))) {
2032 if (busiest < this_rq) {
2033 spin_unlock(&this_rq->lock);
2034 spin_lock(&busiest->lock);
2035 spin_lock(&this_rq->lock);
2036 } else
2037 spin_lock(&busiest->lock);
2038 }
2039 }
2040
2041 /*
2042 * If dest_cpu is allowed for this process, migrate the task to it.
2043 * This is accomplished by forcing the cpu_allowed mask to only
2044 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2045 * the cpu_allowed mask is restored.
2046 */
2047 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2048 {
2049 struct migration_req req;
2050 unsigned long flags;
2051 struct rq *rq;
2052
2053 rq = task_rq_lock(p, &flags);
2054 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2055 || unlikely(cpu_is_offline(dest_cpu)))
2056 goto out;
2057
2058 /* force the process onto the specified CPU */
2059 if (migrate_task(p, dest_cpu, &req)) {
2060 /* Need to wait for migration thread (might exit: take ref). */
2061 struct task_struct *mt = rq->migration_thread;
2062
2063 get_task_struct(mt);
2064 task_rq_unlock(rq, &flags);
2065 wake_up_process(mt);
2066 put_task_struct(mt);
2067 wait_for_completion(&req.done);
2068
2069 return;
2070 }
2071 out:
2072 task_rq_unlock(rq, &flags);
2073 }
2074
2075 /*
2076 * sched_exec - execve() is a valuable balancing opportunity, because at
2077 * this point the task has the smallest effective memory and cache footprint.
2078 */
2079 void sched_exec(void)
2080 {
2081 int new_cpu, this_cpu = get_cpu();
2082 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2083 put_cpu();
2084 if (new_cpu != this_cpu)
2085 sched_migrate_task(current, new_cpu);
2086 }
2087
2088 /*
2089 * pull_task - move a task from a remote runqueue to the local runqueue.
2090 * Both runqueues must be locked.
2091 */
2092 static void pull_task(struct rq *src_rq, struct task_struct *p,
2093 struct rq *this_rq, int this_cpu)
2094 {
2095 deactivate_task(src_rq, p, 0);
2096 set_task_cpu(p, this_cpu);
2097 activate_task(this_rq, p, 0);
2098 /*
2099 * Note that idle threads have a prio of MAX_PRIO, for this test
2100 * to be always true for them.
2101 */
2102 check_preempt_curr(this_rq, p);
2103 }
2104
2105 /*
2106 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2107 */
2108 static
2109 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2110 struct sched_domain *sd, enum cpu_idle_type idle,
2111 int *all_pinned)
2112 {
2113 /*
2114 * We do not migrate tasks that are:
2115 * 1) running (obviously), or
2116 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2117 * 3) are cache-hot on their current CPU.
2118 */
2119 if (!cpu_isset(this_cpu, p->cpus_allowed))
2120 return 0;
2121 *all_pinned = 0;
2122
2123 if (task_running(rq, p))
2124 return 0;
2125
2126 return 1;
2127 }
2128
2129 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2130 unsigned long max_nr_move, unsigned long max_load_move,
2131 struct sched_domain *sd, enum cpu_idle_type idle,
2132 int *all_pinned, unsigned long *load_moved,
2133 int *this_best_prio, struct rq_iterator *iterator)
2134 {
2135 int pulled = 0, pinned = 0, skip_for_load;
2136 struct task_struct *p;
2137 long rem_load_move = max_load_move;
2138
2139 if (max_nr_move == 0 || max_load_move == 0)
2140 goto out;
2141
2142 pinned = 1;
2143
2144 /*
2145 * Start the load-balancing iterator:
2146 */
2147 p = iterator->start(iterator->arg);
2148 next:
2149 if (!p)
2150 goto out;
2151 /*
2152 * To help distribute high priority tasks accross CPUs we don't
2153 * skip a task if it will be the highest priority task (i.e. smallest
2154 * prio value) on its new queue regardless of its load weight
2155 */
2156 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2157 SCHED_LOAD_SCALE_FUZZ;
2158 if ((skip_for_load && p->prio >= *this_best_prio) ||
2159 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2160 p = iterator->next(iterator->arg);
2161 goto next;
2162 }
2163
2164 pull_task(busiest, p, this_rq, this_cpu);
2165 pulled++;
2166 rem_load_move -= p->se.load.weight;
2167
2168 /*
2169 * We only want to steal up to the prescribed number of tasks
2170 * and the prescribed amount of weighted load.
2171 */
2172 if (pulled < max_nr_move && rem_load_move > 0) {
2173 if (p->prio < *this_best_prio)
2174 *this_best_prio = p->prio;
2175 p = iterator->next(iterator->arg);
2176 goto next;
2177 }
2178 out:
2179 /*
2180 * Right now, this is the only place pull_task() is called,
2181 * so we can safely collect pull_task() stats here rather than
2182 * inside pull_task().
2183 */
2184 schedstat_add(sd, lb_gained[idle], pulled);
2185
2186 if (all_pinned)
2187 *all_pinned = pinned;
2188 *load_moved = max_load_move - rem_load_move;
2189 return pulled;
2190 }
2191
2192 /*
2193 * move_tasks tries to move up to max_load_move weighted load from busiest to
2194 * this_rq, as part of a balancing operation within domain "sd".
2195 * Returns 1 if successful and 0 otherwise.
2196 *
2197 * Called with both runqueues locked.
2198 */
2199 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2200 unsigned long max_load_move,
2201 struct sched_domain *sd, enum cpu_idle_type idle,
2202 int *all_pinned)
2203 {
2204 struct sched_class *class = sched_class_highest;
2205 unsigned long total_load_moved = 0;
2206 int this_best_prio = this_rq->curr->prio;
2207
2208 do {
2209 total_load_moved +=
2210 class->load_balance(this_rq, this_cpu, busiest,
2211 ULONG_MAX, max_load_move - total_load_moved,
2212 sd, idle, all_pinned, &this_best_prio);
2213 class = class->next;
2214 } while (class && max_load_move > total_load_moved);
2215
2216 return total_load_moved > 0;
2217 }
2218
2219 /*
2220 * move_one_task tries to move exactly one task from busiest to this_rq, as
2221 * part of active balancing operations within "domain".
2222 * Returns 1 if successful and 0 otherwise.
2223 *
2224 * Called with both runqueues locked.
2225 */
2226 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2227 struct sched_domain *sd, enum cpu_idle_type idle)
2228 {
2229 struct sched_class *class;
2230 int this_best_prio = MAX_PRIO;
2231
2232 for (class = sched_class_highest; class; class = class->next)
2233 if (class->load_balance(this_rq, this_cpu, busiest,
2234 1, ULONG_MAX, sd, idle, NULL,
2235 &this_best_prio))
2236 return 1;
2237
2238 return 0;
2239 }
2240
2241 /*
2242 * find_busiest_group finds and returns the busiest CPU group within the
2243 * domain. It calculates and returns the amount of weighted load which
2244 * should be moved to restore balance via the imbalance parameter.
2245 */
2246 static struct sched_group *
2247 find_busiest_group(struct sched_domain *sd, int this_cpu,
2248 unsigned long *imbalance, enum cpu_idle_type idle,
2249 int *sd_idle, cpumask_t *cpus, int *balance)
2250 {
2251 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2252 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2253 unsigned long max_pull;
2254 unsigned long busiest_load_per_task, busiest_nr_running;
2255 unsigned long this_load_per_task, this_nr_running;
2256 int load_idx;
2257 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2258 int power_savings_balance = 1;
2259 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2260 unsigned long min_nr_running = ULONG_MAX;
2261 struct sched_group *group_min = NULL, *group_leader = NULL;
2262 #endif
2263
2264 max_load = this_load = total_load = total_pwr = 0;
2265 busiest_load_per_task = busiest_nr_running = 0;
2266 this_load_per_task = this_nr_running = 0;
2267 if (idle == CPU_NOT_IDLE)
2268 load_idx = sd->busy_idx;
2269 else if (idle == CPU_NEWLY_IDLE)
2270 load_idx = sd->newidle_idx;
2271 else
2272 load_idx = sd->idle_idx;
2273
2274 do {
2275 unsigned long load, group_capacity;
2276 int local_group;
2277 int i;
2278 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2279 unsigned long sum_nr_running, sum_weighted_load;
2280
2281 local_group = cpu_isset(this_cpu, group->cpumask);
2282
2283 if (local_group)
2284 balance_cpu = first_cpu(group->cpumask);
2285
2286 /* Tally up the load of all CPUs in the group */
2287 sum_weighted_load = sum_nr_running = avg_load = 0;
2288
2289 for_each_cpu_mask(i, group->cpumask) {
2290 struct rq *rq;
2291
2292 if (!cpu_isset(i, *cpus))
2293 continue;
2294
2295 rq = cpu_rq(i);
2296
2297 if (*sd_idle && rq->nr_running)
2298 *sd_idle = 0;
2299
2300 /* Bias balancing toward cpus of our domain */
2301 if (local_group) {
2302 if (idle_cpu(i) && !first_idle_cpu) {
2303 first_idle_cpu = 1;
2304 balance_cpu = i;
2305 }
2306
2307 load = target_load(i, load_idx);
2308 } else
2309 load = source_load(i, load_idx);
2310
2311 avg_load += load;
2312 sum_nr_running += rq->nr_running;
2313 sum_weighted_load += weighted_cpuload(i);
2314 }
2315
2316 /*
2317 * First idle cpu or the first cpu(busiest) in this sched group
2318 * is eligible for doing load balancing at this and above
2319 * domains. In the newly idle case, we will allow all the cpu's
2320 * to do the newly idle load balance.
2321 */
2322 if (idle != CPU_NEWLY_IDLE && local_group &&
2323 balance_cpu != this_cpu && balance) {
2324 *balance = 0;
2325 goto ret;
2326 }
2327
2328 total_load += avg_load;
2329 total_pwr += group->__cpu_power;
2330
2331 /* Adjust by relative CPU power of the group */
2332 avg_load = sg_div_cpu_power(group,
2333 avg_load * SCHED_LOAD_SCALE);
2334
2335 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2336
2337 if (local_group) {
2338 this_load = avg_load;
2339 this = group;
2340 this_nr_running = sum_nr_running;
2341 this_load_per_task = sum_weighted_load;
2342 } else if (avg_load > max_load &&
2343 sum_nr_running > group_capacity) {
2344 max_load = avg_load;
2345 busiest = group;
2346 busiest_nr_running = sum_nr_running;
2347 busiest_load_per_task = sum_weighted_load;
2348 }
2349
2350 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2351 /*
2352 * Busy processors will not participate in power savings
2353 * balance.
2354 */
2355 if (idle == CPU_NOT_IDLE ||
2356 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2357 goto group_next;
2358
2359 /*
2360 * If the local group is idle or completely loaded
2361 * no need to do power savings balance at this domain
2362 */
2363 if (local_group && (this_nr_running >= group_capacity ||
2364 !this_nr_running))
2365 power_savings_balance = 0;
2366
2367 /*
2368 * If a group is already running at full capacity or idle,
2369 * don't include that group in power savings calculations
2370 */
2371 if (!power_savings_balance || sum_nr_running >= group_capacity
2372 || !sum_nr_running)
2373 goto group_next;
2374
2375 /*
2376 * Calculate the group which has the least non-idle load.
2377 * This is the group from where we need to pick up the load
2378 * for saving power
2379 */
2380 if ((sum_nr_running < min_nr_running) ||
2381 (sum_nr_running == min_nr_running &&
2382 first_cpu(group->cpumask) <
2383 first_cpu(group_min->cpumask))) {
2384 group_min = group;
2385 min_nr_running = sum_nr_running;
2386 min_load_per_task = sum_weighted_load /
2387 sum_nr_running;
2388 }
2389
2390 /*
2391 * Calculate the group which is almost near its
2392 * capacity but still has some space to pick up some load
2393 * from other group and save more power
2394 */
2395 if (sum_nr_running <= group_capacity - 1) {
2396 if (sum_nr_running > leader_nr_running ||
2397 (sum_nr_running == leader_nr_running &&
2398 first_cpu(group->cpumask) >
2399 first_cpu(group_leader->cpumask))) {
2400 group_leader = group;
2401 leader_nr_running = sum_nr_running;
2402 }
2403 }
2404 group_next:
2405 #endif
2406 group = group->next;
2407 } while (group != sd->groups);
2408
2409 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2410 goto out_balanced;
2411
2412 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2413
2414 if (this_load >= avg_load ||
2415 100*max_load <= sd->imbalance_pct*this_load)
2416 goto out_balanced;
2417
2418 busiest_load_per_task /= busiest_nr_running;
2419 /*
2420 * We're trying to get all the cpus to the average_load, so we don't
2421 * want to push ourselves above the average load, nor do we wish to
2422 * reduce the max loaded cpu below the average load, as either of these
2423 * actions would just result in more rebalancing later, and ping-pong
2424 * tasks around. Thus we look for the minimum possible imbalance.
2425 * Negative imbalances (*we* are more loaded than anyone else) will
2426 * be counted as no imbalance for these purposes -- we can't fix that
2427 * by pulling tasks to us. Be careful of negative numbers as they'll
2428 * appear as very large values with unsigned longs.
2429 */
2430 if (max_load <= busiest_load_per_task)
2431 goto out_balanced;
2432
2433 /*
2434 * In the presence of smp nice balancing, certain scenarios can have
2435 * max load less than avg load(as we skip the groups at or below
2436 * its cpu_power, while calculating max_load..)
2437 */
2438 if (max_load < avg_load) {
2439 *imbalance = 0;
2440 goto small_imbalance;
2441 }
2442
2443 /* Don't want to pull so many tasks that a group would go idle */
2444 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2445
2446 /* How much load to actually move to equalise the imbalance */
2447 *imbalance = min(max_pull * busiest->__cpu_power,
2448 (avg_load - this_load) * this->__cpu_power)
2449 / SCHED_LOAD_SCALE;
2450
2451 /*
2452 * if *imbalance is less than the average load per runnable task
2453 * there is no gaurantee that any tasks will be moved so we'll have
2454 * a think about bumping its value to force at least one task to be
2455 * moved
2456 */
2457 if (*imbalance < busiest_load_per_task) {
2458 unsigned long tmp, pwr_now, pwr_move;
2459 unsigned int imbn;
2460
2461 small_imbalance:
2462 pwr_move = pwr_now = 0;
2463 imbn = 2;
2464 if (this_nr_running) {
2465 this_load_per_task /= this_nr_running;
2466 if (busiest_load_per_task > this_load_per_task)
2467 imbn = 1;
2468 } else
2469 this_load_per_task = SCHED_LOAD_SCALE;
2470
2471 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2472 busiest_load_per_task * imbn) {
2473 *imbalance = busiest_load_per_task;
2474 return busiest;
2475 }
2476
2477 /*
2478 * OK, we don't have enough imbalance to justify moving tasks,
2479 * however we may be able to increase total CPU power used by
2480 * moving them.
2481 */
2482
2483 pwr_now += busiest->__cpu_power *
2484 min(busiest_load_per_task, max_load);
2485 pwr_now += this->__cpu_power *
2486 min(this_load_per_task, this_load);
2487 pwr_now /= SCHED_LOAD_SCALE;
2488
2489 /* Amount of load we'd subtract */
2490 tmp = sg_div_cpu_power(busiest,
2491 busiest_load_per_task * SCHED_LOAD_SCALE);
2492 if (max_load > tmp)
2493 pwr_move += busiest->__cpu_power *
2494 min(busiest_load_per_task, max_load - tmp);
2495
2496 /* Amount of load we'd add */
2497 if (max_load * busiest->__cpu_power <
2498 busiest_load_per_task * SCHED_LOAD_SCALE)
2499 tmp = sg_div_cpu_power(this,
2500 max_load * busiest->__cpu_power);
2501 else
2502 tmp = sg_div_cpu_power(this,
2503 busiest_load_per_task * SCHED_LOAD_SCALE);
2504 pwr_move += this->__cpu_power *
2505 min(this_load_per_task, this_load + tmp);
2506 pwr_move /= SCHED_LOAD_SCALE;
2507
2508 /* Move if we gain throughput */
2509 if (pwr_move > pwr_now)
2510 *imbalance = busiest_load_per_task;
2511 }
2512
2513 return busiest;
2514
2515 out_balanced:
2516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2517 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2518 goto ret;
2519
2520 if (this == group_leader && group_leader != group_min) {
2521 *imbalance = min_load_per_task;
2522 return group_min;
2523 }
2524 #endif
2525 ret:
2526 *imbalance = 0;
2527 return NULL;
2528 }
2529
2530 /*
2531 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2532 */
2533 static struct rq *
2534 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2535 unsigned long imbalance, cpumask_t *cpus)
2536 {
2537 struct rq *busiest = NULL, *rq;
2538 unsigned long max_load = 0;
2539 int i;
2540
2541 for_each_cpu_mask(i, group->cpumask) {
2542 unsigned long wl;
2543
2544 if (!cpu_isset(i, *cpus))
2545 continue;
2546
2547 rq = cpu_rq(i);
2548 wl = weighted_cpuload(i);
2549
2550 if (rq->nr_running == 1 && wl > imbalance)
2551 continue;
2552
2553 if (wl > max_load) {
2554 max_load = wl;
2555 busiest = rq;
2556 }
2557 }
2558
2559 return busiest;
2560 }
2561
2562 /*
2563 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2564 * so long as it is large enough.
2565 */
2566 #define MAX_PINNED_INTERVAL 512
2567
2568 /*
2569 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2570 * tasks if there is an imbalance.
2571 */
2572 static int load_balance(int this_cpu, struct rq *this_rq,
2573 struct sched_domain *sd, enum cpu_idle_type idle,
2574 int *balance)
2575 {
2576 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2577 struct sched_group *group;
2578 unsigned long imbalance;
2579 struct rq *busiest;
2580 cpumask_t cpus = CPU_MASK_ALL;
2581 unsigned long flags;
2582
2583 /*
2584 * When power savings policy is enabled for the parent domain, idle
2585 * sibling can pick up load irrespective of busy siblings. In this case,
2586 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2587 * portraying it as CPU_NOT_IDLE.
2588 */
2589 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2590 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2591 sd_idle = 1;
2592
2593 schedstat_inc(sd, lb_cnt[idle]);
2594
2595 redo:
2596 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2597 &cpus, balance);
2598
2599 if (*balance == 0)
2600 goto out_balanced;
2601
2602 if (!group) {
2603 schedstat_inc(sd, lb_nobusyg[idle]);
2604 goto out_balanced;
2605 }
2606
2607 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2608 if (!busiest) {
2609 schedstat_inc(sd, lb_nobusyq[idle]);
2610 goto out_balanced;
2611 }
2612
2613 BUG_ON(busiest == this_rq);
2614
2615 schedstat_add(sd, lb_imbalance[idle], imbalance);
2616
2617 ld_moved = 0;
2618 if (busiest->nr_running > 1) {
2619 /*
2620 * Attempt to move tasks. If find_busiest_group has found
2621 * an imbalance but busiest->nr_running <= 1, the group is
2622 * still unbalanced. ld_moved simply stays zero, so it is
2623 * correctly treated as an imbalance.
2624 */
2625 local_irq_save(flags);
2626 double_rq_lock(this_rq, busiest);
2627 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2628 imbalance, sd, idle, &all_pinned);
2629 double_rq_unlock(this_rq, busiest);
2630 local_irq_restore(flags);
2631
2632 /*
2633 * some other cpu did the load balance for us.
2634 */
2635 if (ld_moved && this_cpu != smp_processor_id())
2636 resched_cpu(this_cpu);
2637
2638 /* All tasks on this runqueue were pinned by CPU affinity */
2639 if (unlikely(all_pinned)) {
2640 cpu_clear(cpu_of(busiest), cpus);
2641 if (!cpus_empty(cpus))
2642 goto redo;
2643 goto out_balanced;
2644 }
2645 }
2646
2647 if (!ld_moved) {
2648 schedstat_inc(sd, lb_failed[idle]);
2649 sd->nr_balance_failed++;
2650
2651 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2652
2653 spin_lock_irqsave(&busiest->lock, flags);
2654
2655 /* don't kick the migration_thread, if the curr
2656 * task on busiest cpu can't be moved to this_cpu
2657 */
2658 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2659 spin_unlock_irqrestore(&busiest->lock, flags);
2660 all_pinned = 1;
2661 goto out_one_pinned;
2662 }
2663
2664 if (!busiest->active_balance) {
2665 busiest->active_balance = 1;
2666 busiest->push_cpu = this_cpu;
2667 active_balance = 1;
2668 }
2669 spin_unlock_irqrestore(&busiest->lock, flags);
2670 if (active_balance)
2671 wake_up_process(busiest->migration_thread);
2672
2673 /*
2674 * We've kicked active balancing, reset the failure
2675 * counter.
2676 */
2677 sd->nr_balance_failed = sd->cache_nice_tries+1;
2678 }
2679 } else
2680 sd->nr_balance_failed = 0;
2681
2682 if (likely(!active_balance)) {
2683 /* We were unbalanced, so reset the balancing interval */
2684 sd->balance_interval = sd->min_interval;
2685 } else {
2686 /*
2687 * If we've begun active balancing, start to back off. This
2688 * case may not be covered by the all_pinned logic if there
2689 * is only 1 task on the busy runqueue (because we don't call
2690 * move_tasks).
2691 */
2692 if (sd->balance_interval < sd->max_interval)
2693 sd->balance_interval *= 2;
2694 }
2695
2696 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2697 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2698 return -1;
2699 return ld_moved;
2700
2701 out_balanced:
2702 schedstat_inc(sd, lb_balanced[idle]);
2703
2704 sd->nr_balance_failed = 0;
2705
2706 out_one_pinned:
2707 /* tune up the balancing interval */
2708 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2709 (sd->balance_interval < sd->max_interval))
2710 sd->balance_interval *= 2;
2711
2712 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2713 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2714 return -1;
2715 return 0;
2716 }
2717
2718 /*
2719 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2720 * tasks if there is an imbalance.
2721 *
2722 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2723 * this_rq is locked.
2724 */
2725 static int
2726 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2727 {
2728 struct sched_group *group;
2729 struct rq *busiest = NULL;
2730 unsigned long imbalance;
2731 int ld_moved = 0;
2732 int sd_idle = 0;
2733 int all_pinned = 0;
2734 cpumask_t cpus = CPU_MASK_ALL;
2735
2736 /*
2737 * When power savings policy is enabled for the parent domain, idle
2738 * sibling can pick up load irrespective of busy siblings. In this case,
2739 * let the state of idle sibling percolate up as IDLE, instead of
2740 * portraying it as CPU_NOT_IDLE.
2741 */
2742 if (sd->flags & SD_SHARE_CPUPOWER &&
2743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2744 sd_idle = 1;
2745
2746 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2747 redo:
2748 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2749 &sd_idle, &cpus, NULL);
2750 if (!group) {
2751 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2752 goto out_balanced;
2753 }
2754
2755 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2756 &cpus);
2757 if (!busiest) {
2758 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2759 goto out_balanced;
2760 }
2761
2762 BUG_ON(busiest == this_rq);
2763
2764 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2765
2766 ld_moved = 0;
2767 if (busiest->nr_running > 1) {
2768 /* Attempt to move tasks */
2769 double_lock_balance(this_rq, busiest);
2770 /* this_rq->clock is already updated */
2771 update_rq_clock(busiest);
2772 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2773 imbalance, sd, CPU_NEWLY_IDLE,
2774 &all_pinned);
2775 spin_unlock(&busiest->lock);
2776
2777 if (unlikely(all_pinned)) {
2778 cpu_clear(cpu_of(busiest), cpus);
2779 if (!cpus_empty(cpus))
2780 goto redo;
2781 }
2782 }
2783
2784 if (!ld_moved) {
2785 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2786 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2787 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2788 return -1;
2789 } else
2790 sd->nr_balance_failed = 0;
2791
2792 return ld_moved;
2793
2794 out_balanced:
2795 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2796 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2797 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2798 return -1;
2799 sd->nr_balance_failed = 0;
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * idle_balance is called by schedule() if this_cpu is about to become
2806 * idle. Attempts to pull tasks from other CPUs.
2807 */
2808 static void idle_balance(int this_cpu, struct rq *this_rq)
2809 {
2810 struct sched_domain *sd;
2811 int pulled_task = -1;
2812 unsigned long next_balance = jiffies + HZ;
2813
2814 for_each_domain(this_cpu, sd) {
2815 unsigned long interval;
2816
2817 if (!(sd->flags & SD_LOAD_BALANCE))
2818 continue;
2819
2820 if (sd->flags & SD_BALANCE_NEWIDLE)
2821 /* If we've pulled tasks over stop searching: */
2822 pulled_task = load_balance_newidle(this_cpu,
2823 this_rq, sd);
2824
2825 interval = msecs_to_jiffies(sd->balance_interval);
2826 if (time_after(next_balance, sd->last_balance + interval))
2827 next_balance = sd->last_balance + interval;
2828 if (pulled_task)
2829 break;
2830 }
2831 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2832 /*
2833 * We are going idle. next_balance may be set based on
2834 * a busy processor. So reset next_balance.
2835 */
2836 this_rq->next_balance = next_balance;
2837 }
2838 }
2839
2840 /*
2841 * active_load_balance is run by migration threads. It pushes running tasks
2842 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2843 * running on each physical CPU where possible, and avoids physical /
2844 * logical imbalances.
2845 *
2846 * Called with busiest_rq locked.
2847 */
2848 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2849 {
2850 int target_cpu = busiest_rq->push_cpu;
2851 struct sched_domain *sd;
2852 struct rq *target_rq;
2853
2854 /* Is there any task to move? */
2855 if (busiest_rq->nr_running <= 1)
2856 return;
2857
2858 target_rq = cpu_rq(target_cpu);
2859
2860 /*
2861 * This condition is "impossible", if it occurs
2862 * we need to fix it. Originally reported by
2863 * Bjorn Helgaas on a 128-cpu setup.
2864 */
2865 BUG_ON(busiest_rq == target_rq);
2866
2867 /* move a task from busiest_rq to target_rq */
2868 double_lock_balance(busiest_rq, target_rq);
2869 update_rq_clock(busiest_rq);
2870 update_rq_clock(target_rq);
2871
2872 /* Search for an sd spanning us and the target CPU. */
2873 for_each_domain(target_cpu, sd) {
2874 if ((sd->flags & SD_LOAD_BALANCE) &&
2875 cpu_isset(busiest_cpu, sd->span))
2876 break;
2877 }
2878
2879 if (likely(sd)) {
2880 schedstat_inc(sd, alb_cnt);
2881
2882 if (move_one_task(target_rq, target_cpu, busiest_rq,
2883 sd, CPU_IDLE))
2884 schedstat_inc(sd, alb_pushed);
2885 else
2886 schedstat_inc(sd, alb_failed);
2887 }
2888 spin_unlock(&target_rq->lock);
2889 }
2890
2891 #ifdef CONFIG_NO_HZ
2892 static struct {
2893 atomic_t load_balancer;
2894 cpumask_t cpu_mask;
2895 } nohz ____cacheline_aligned = {
2896 .load_balancer = ATOMIC_INIT(-1),
2897 .cpu_mask = CPU_MASK_NONE,
2898 };
2899
2900 /*
2901 * This routine will try to nominate the ilb (idle load balancing)
2902 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2903 * load balancing on behalf of all those cpus. If all the cpus in the system
2904 * go into this tickless mode, then there will be no ilb owner (as there is
2905 * no need for one) and all the cpus will sleep till the next wakeup event
2906 * arrives...
2907 *
2908 * For the ilb owner, tick is not stopped. And this tick will be used
2909 * for idle load balancing. ilb owner will still be part of
2910 * nohz.cpu_mask..
2911 *
2912 * While stopping the tick, this cpu will become the ilb owner if there
2913 * is no other owner. And will be the owner till that cpu becomes busy
2914 * or if all cpus in the system stop their ticks at which point
2915 * there is no need for ilb owner.
2916 *
2917 * When the ilb owner becomes busy, it nominates another owner, during the
2918 * next busy scheduler_tick()
2919 */
2920 int select_nohz_load_balancer(int stop_tick)
2921 {
2922 int cpu = smp_processor_id();
2923
2924 if (stop_tick) {
2925 cpu_set(cpu, nohz.cpu_mask);
2926 cpu_rq(cpu)->in_nohz_recently = 1;
2927
2928 /*
2929 * If we are going offline and still the leader, give up!
2930 */
2931 if (cpu_is_offline(cpu) &&
2932 atomic_read(&nohz.load_balancer) == cpu) {
2933 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2934 BUG();
2935 return 0;
2936 }
2937
2938 /* time for ilb owner also to sleep */
2939 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2940 if (atomic_read(&nohz.load_balancer) == cpu)
2941 atomic_set(&nohz.load_balancer, -1);
2942 return 0;
2943 }
2944
2945 if (atomic_read(&nohz.load_balancer) == -1) {
2946 /* make me the ilb owner */
2947 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2948 return 1;
2949 } else if (atomic_read(&nohz.load_balancer) == cpu)
2950 return 1;
2951 } else {
2952 if (!cpu_isset(cpu, nohz.cpu_mask))
2953 return 0;
2954
2955 cpu_clear(cpu, nohz.cpu_mask);
2956
2957 if (atomic_read(&nohz.load_balancer) == cpu)
2958 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2959 BUG();
2960 }
2961 return 0;
2962 }
2963 #endif
2964
2965 static DEFINE_SPINLOCK(balancing);
2966
2967 /*
2968 * It checks each scheduling domain to see if it is due to be balanced,
2969 * and initiates a balancing operation if so.
2970 *
2971 * Balancing parameters are set up in arch_init_sched_domains.
2972 */
2973 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2974 {
2975 int balance = 1;
2976 struct rq *rq = cpu_rq(cpu);
2977 unsigned long interval;
2978 struct sched_domain *sd;
2979 /* Earliest time when we have to do rebalance again */
2980 unsigned long next_balance = jiffies + 60*HZ;
2981 int update_next_balance = 0;
2982
2983 for_each_domain(cpu, sd) {
2984 if (!(sd->flags & SD_LOAD_BALANCE))
2985 continue;
2986
2987 interval = sd->balance_interval;
2988 if (idle != CPU_IDLE)
2989 interval *= sd->busy_factor;
2990
2991 /* scale ms to jiffies */
2992 interval = msecs_to_jiffies(interval);
2993 if (unlikely(!interval))
2994 interval = 1;
2995 if (interval > HZ*NR_CPUS/10)
2996 interval = HZ*NR_CPUS/10;
2997
2998
2999 if (sd->flags & SD_SERIALIZE) {
3000 if (!spin_trylock(&balancing))
3001 goto out;
3002 }
3003
3004 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3005 if (load_balance(cpu, rq, sd, idle, &balance)) {
3006 /*
3007 * We've pulled tasks over so either we're no
3008 * longer idle, or one of our SMT siblings is
3009 * not idle.
3010 */
3011 idle = CPU_NOT_IDLE;
3012 }
3013 sd->last_balance = jiffies;
3014 }
3015 if (sd->flags & SD_SERIALIZE)
3016 spin_unlock(&balancing);
3017 out:
3018 if (time_after(next_balance, sd->last_balance + interval)) {
3019 next_balance = sd->last_balance + interval;
3020 update_next_balance = 1;
3021 }
3022
3023 /*
3024 * Stop the load balance at this level. There is another
3025 * CPU in our sched group which is doing load balancing more
3026 * actively.
3027 */
3028 if (!balance)
3029 break;
3030 }
3031
3032 /*
3033 * next_balance will be updated only when there is a need.
3034 * When the cpu is attached to null domain for ex, it will not be
3035 * updated.
3036 */
3037 if (likely(update_next_balance))
3038 rq->next_balance = next_balance;
3039 }
3040
3041 /*
3042 * run_rebalance_domains is triggered when needed from the scheduler tick.
3043 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3044 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3045 */
3046 static void run_rebalance_domains(struct softirq_action *h)
3047 {
3048 int this_cpu = smp_processor_id();
3049 struct rq *this_rq = cpu_rq(this_cpu);
3050 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3051 CPU_IDLE : CPU_NOT_IDLE;
3052
3053 rebalance_domains(this_cpu, idle);
3054
3055 #ifdef CONFIG_NO_HZ
3056 /*
3057 * If this cpu is the owner for idle load balancing, then do the
3058 * balancing on behalf of the other idle cpus whose ticks are
3059 * stopped.
3060 */
3061 if (this_rq->idle_at_tick &&
3062 atomic_read(&nohz.load_balancer) == this_cpu) {
3063 cpumask_t cpus = nohz.cpu_mask;
3064 struct rq *rq;
3065 int balance_cpu;
3066
3067 cpu_clear(this_cpu, cpus);
3068 for_each_cpu_mask(balance_cpu, cpus) {
3069 /*
3070 * If this cpu gets work to do, stop the load balancing
3071 * work being done for other cpus. Next load
3072 * balancing owner will pick it up.
3073 */
3074 if (need_resched())
3075 break;
3076
3077 rebalance_domains(balance_cpu, CPU_IDLE);
3078
3079 rq = cpu_rq(balance_cpu);
3080 if (time_after(this_rq->next_balance, rq->next_balance))
3081 this_rq->next_balance = rq->next_balance;
3082 }
3083 }
3084 #endif
3085 }
3086
3087 /*
3088 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3089 *
3090 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3091 * idle load balancing owner or decide to stop the periodic load balancing,
3092 * if the whole system is idle.
3093 */
3094 static inline void trigger_load_balance(struct rq *rq, int cpu)
3095 {
3096 #ifdef CONFIG_NO_HZ
3097 /*
3098 * If we were in the nohz mode recently and busy at the current
3099 * scheduler tick, then check if we need to nominate new idle
3100 * load balancer.
3101 */
3102 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3103 rq->in_nohz_recently = 0;
3104
3105 if (atomic_read(&nohz.load_balancer) == cpu) {
3106 cpu_clear(cpu, nohz.cpu_mask);
3107 atomic_set(&nohz.load_balancer, -1);
3108 }
3109
3110 if (atomic_read(&nohz.load_balancer) == -1) {
3111 /*
3112 * simple selection for now: Nominate the
3113 * first cpu in the nohz list to be the next
3114 * ilb owner.
3115 *
3116 * TBD: Traverse the sched domains and nominate
3117 * the nearest cpu in the nohz.cpu_mask.
3118 */
3119 int ilb = first_cpu(nohz.cpu_mask);
3120
3121 if (ilb != NR_CPUS)
3122 resched_cpu(ilb);
3123 }
3124 }
3125
3126 /*
3127 * If this cpu is idle and doing idle load balancing for all the
3128 * cpus with ticks stopped, is it time for that to stop?
3129 */
3130 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3131 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3132 resched_cpu(cpu);
3133 return;
3134 }
3135
3136 /*
3137 * If this cpu is idle and the idle load balancing is done by
3138 * someone else, then no need raise the SCHED_SOFTIRQ
3139 */
3140 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3141 cpu_isset(cpu, nohz.cpu_mask))
3142 return;
3143 #endif
3144 if (time_after_eq(jiffies, rq->next_balance))
3145 raise_softirq(SCHED_SOFTIRQ);
3146 }
3147
3148 #else /* CONFIG_SMP */
3149
3150 /*
3151 * on UP we do not need to balance between CPUs:
3152 */
3153 static inline void idle_balance(int cpu, struct rq *rq)
3154 {
3155 }
3156
3157 /* Avoid "used but not defined" warning on UP */
3158 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3159 unsigned long max_nr_move, unsigned long max_load_move,
3160 struct sched_domain *sd, enum cpu_idle_type idle,
3161 int *all_pinned, unsigned long *load_moved,
3162 int *this_best_prio, struct rq_iterator *iterator)
3163 {
3164 *load_moved = 0;
3165
3166 return 0;
3167 }
3168
3169 #endif
3170
3171 DEFINE_PER_CPU(struct kernel_stat, kstat);
3172
3173 EXPORT_PER_CPU_SYMBOL(kstat);
3174
3175 /*
3176 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3177 * that have not yet been banked in case the task is currently running.
3178 */
3179 unsigned long long task_sched_runtime(struct task_struct *p)
3180 {
3181 unsigned long flags;
3182 u64 ns, delta_exec;
3183 struct rq *rq;
3184
3185 rq = task_rq_lock(p, &flags);
3186 ns = p->se.sum_exec_runtime;
3187 if (rq->curr == p) {
3188 update_rq_clock(rq);
3189 delta_exec = rq->clock - p->se.exec_start;
3190 if ((s64)delta_exec > 0)
3191 ns += delta_exec;
3192 }
3193 task_rq_unlock(rq, &flags);
3194
3195 return ns;
3196 }
3197
3198 /*
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
3201 * @hardirq_offset: the offset to subtract from hardirq_count()
3202 * @cputime: the cpu time spent in user space since the last update
3203 */
3204 void account_user_time(struct task_struct *p, cputime_t cputime)
3205 {
3206 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3207 cputime64_t tmp;
3208
3209 p->utime = cputime_add(p->utime, cputime);
3210
3211 /* Add user time to cpustat. */
3212 tmp = cputime_to_cputime64(cputime);
3213 if (TASK_NICE(p) > 0)
3214 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3215 else
3216 cpustat->user = cputime64_add(cpustat->user, tmp);
3217 }
3218
3219 /*
3220 * Account system cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in kernel space since the last update
3224 */
3225 void account_system_time(struct task_struct *p, int hardirq_offset,
3226 cputime_t cputime)
3227 {
3228 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3229 struct rq *rq = this_rq();
3230 cputime64_t tmp;
3231
3232 p->stime = cputime_add(p->stime, cputime);
3233
3234 /* Add system time to cpustat. */
3235 tmp = cputime_to_cputime64(cputime);
3236 if (hardirq_count() - hardirq_offset)
3237 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3238 else if (softirq_count())
3239 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3240 else if (p != rq->idle)
3241 cpustat->system = cputime64_add(cpustat->system, tmp);
3242 else if (atomic_read(&rq->nr_iowait) > 0)
3243 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3244 else
3245 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3246 /* Account for system time used */
3247 acct_update_integrals(p);
3248 }
3249
3250 /*
3251 * Account for involuntary wait time.
3252 * @p: the process from which the cpu time has been stolen
3253 * @steal: the cpu time spent in involuntary wait
3254 */
3255 void account_steal_time(struct task_struct *p, cputime_t steal)
3256 {
3257 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3258 cputime64_t tmp = cputime_to_cputime64(steal);
3259 struct rq *rq = this_rq();
3260
3261 if (p == rq->idle) {
3262 p->stime = cputime_add(p->stime, steal);
3263 if (atomic_read(&rq->nr_iowait) > 0)
3264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3265 else
3266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3267 } else
3268 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3269 }
3270
3271 /*
3272 * This function gets called by the timer code, with HZ frequency.
3273 * We call it with interrupts disabled.
3274 *
3275 * It also gets called by the fork code, when changing the parent's
3276 * timeslices.
3277 */
3278 void scheduler_tick(void)
3279 {
3280 int cpu = smp_processor_id();
3281 struct rq *rq = cpu_rq(cpu);
3282 struct task_struct *curr = rq->curr;
3283 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3284
3285 spin_lock(&rq->lock);
3286 __update_rq_clock(rq);
3287 /*
3288 * Let rq->clock advance by at least TICK_NSEC:
3289 */
3290 if (unlikely(rq->clock < next_tick))
3291 rq->clock = next_tick;
3292 rq->tick_timestamp = rq->clock;
3293 update_cpu_load(rq);
3294 if (curr != rq->idle) /* FIXME: needed? */
3295 curr->sched_class->task_tick(rq, curr);
3296 spin_unlock(&rq->lock);
3297
3298 #ifdef CONFIG_SMP
3299 rq->idle_at_tick = idle_cpu(cpu);
3300 trigger_load_balance(rq, cpu);
3301 #endif
3302 }
3303
3304 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3305
3306 void fastcall add_preempt_count(int val)
3307 {
3308 /*
3309 * Underflow?
3310 */
3311 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3312 return;
3313 preempt_count() += val;
3314 /*
3315 * Spinlock count overflowing soon?
3316 */
3317 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3318 PREEMPT_MASK - 10);
3319 }
3320 EXPORT_SYMBOL(add_preempt_count);
3321
3322 void fastcall sub_preempt_count(int val)
3323 {
3324 /*
3325 * Underflow?
3326 */
3327 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3328 return;
3329 /*
3330 * Is the spinlock portion underflowing?
3331 */
3332 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3333 !(preempt_count() & PREEMPT_MASK)))
3334 return;
3335
3336 preempt_count() -= val;
3337 }
3338 EXPORT_SYMBOL(sub_preempt_count);
3339
3340 #endif
3341
3342 /*
3343 * Print scheduling while atomic bug:
3344 */
3345 static noinline void __schedule_bug(struct task_struct *prev)
3346 {
3347 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3348 prev->comm, preempt_count(), prev->pid);
3349 debug_show_held_locks(prev);
3350 if (irqs_disabled())
3351 print_irqtrace_events(prev);
3352 dump_stack();
3353 }
3354
3355 /*
3356 * Various schedule()-time debugging checks and statistics:
3357 */
3358 static inline void schedule_debug(struct task_struct *prev)
3359 {
3360 /*
3361 * Test if we are atomic. Since do_exit() needs to call into
3362 * schedule() atomically, we ignore that path for now.
3363 * Otherwise, whine if we are scheduling when we should not be.
3364 */
3365 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3366 __schedule_bug(prev);
3367
3368 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3369
3370 schedstat_inc(this_rq(), sched_cnt);
3371 }
3372
3373 /*
3374 * Pick up the highest-prio task:
3375 */
3376 static inline struct task_struct *
3377 pick_next_task(struct rq *rq, struct task_struct *prev)
3378 {
3379 struct sched_class *class;
3380 struct task_struct *p;
3381
3382 /*
3383 * Optimization: we know that if all tasks are in
3384 * the fair class we can call that function directly:
3385 */
3386 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3387 p = fair_sched_class.pick_next_task(rq);
3388 if (likely(p))
3389 return p;
3390 }
3391
3392 class = sched_class_highest;
3393 for ( ; ; ) {
3394 p = class->pick_next_task(rq);
3395 if (p)
3396 return p;
3397 /*
3398 * Will never be NULL as the idle class always
3399 * returns a non-NULL p:
3400 */
3401 class = class->next;
3402 }
3403 }
3404
3405 /*
3406 * schedule() is the main scheduler function.
3407 */
3408 asmlinkage void __sched schedule(void)
3409 {
3410 struct task_struct *prev, *next;
3411 long *switch_count;
3412 struct rq *rq;
3413 int cpu;
3414
3415 need_resched:
3416 preempt_disable();
3417 cpu = smp_processor_id();
3418 rq = cpu_rq(cpu);
3419 rcu_qsctr_inc(cpu);
3420 prev = rq->curr;
3421 switch_count = &prev->nivcsw;
3422
3423 release_kernel_lock(prev);
3424 need_resched_nonpreemptible:
3425
3426 schedule_debug(prev);
3427
3428 spin_lock_irq(&rq->lock);
3429 clear_tsk_need_resched(prev);
3430 __update_rq_clock(rq);
3431
3432 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3433 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3434 unlikely(signal_pending(prev)))) {
3435 prev->state = TASK_RUNNING;
3436 } else {
3437 deactivate_task(rq, prev, 1);
3438 }
3439 switch_count = &prev->nvcsw;
3440 }
3441
3442 if (unlikely(!rq->nr_running))
3443 idle_balance(cpu, rq);
3444
3445 prev->sched_class->put_prev_task(rq, prev);
3446 next = pick_next_task(rq, prev);
3447
3448 sched_info_switch(prev, next);
3449
3450 if (likely(prev != next)) {
3451 rq->nr_switches++;
3452 rq->curr = next;
3453 ++*switch_count;
3454
3455 context_switch(rq, prev, next); /* unlocks the rq */
3456 } else
3457 spin_unlock_irq(&rq->lock);
3458
3459 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3460 cpu = smp_processor_id();
3461 rq = cpu_rq(cpu);
3462 goto need_resched_nonpreemptible;
3463 }
3464 preempt_enable_no_resched();
3465 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3466 goto need_resched;
3467 }
3468 EXPORT_SYMBOL(schedule);
3469
3470 #ifdef CONFIG_PREEMPT
3471 /*
3472 * this is the entry point to schedule() from in-kernel preemption
3473 * off of preempt_enable. Kernel preemptions off return from interrupt
3474 * occur there and call schedule directly.
3475 */
3476 asmlinkage void __sched preempt_schedule(void)
3477 {
3478 struct thread_info *ti = current_thread_info();
3479 #ifdef CONFIG_PREEMPT_BKL
3480 struct task_struct *task = current;
3481 int saved_lock_depth;
3482 #endif
3483 /*
3484 * If there is a non-zero preempt_count or interrupts are disabled,
3485 * we do not want to preempt the current task. Just return..
3486 */
3487 if (likely(ti->preempt_count || irqs_disabled()))
3488 return;
3489
3490 need_resched:
3491 add_preempt_count(PREEMPT_ACTIVE);
3492 /*
3493 * We keep the big kernel semaphore locked, but we
3494 * clear ->lock_depth so that schedule() doesnt
3495 * auto-release the semaphore:
3496 */
3497 #ifdef CONFIG_PREEMPT_BKL
3498 saved_lock_depth = task->lock_depth;
3499 task->lock_depth = -1;
3500 #endif
3501 schedule();
3502 #ifdef CONFIG_PREEMPT_BKL
3503 task->lock_depth = saved_lock_depth;
3504 #endif
3505 sub_preempt_count(PREEMPT_ACTIVE);
3506
3507 /* we could miss a preemption opportunity between schedule and now */
3508 barrier();
3509 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3510 goto need_resched;
3511 }
3512 EXPORT_SYMBOL(preempt_schedule);
3513
3514 /*
3515 * this is the entry point to schedule() from kernel preemption
3516 * off of irq context.
3517 * Note, that this is called and return with irqs disabled. This will
3518 * protect us against recursive calling from irq.
3519 */
3520 asmlinkage void __sched preempt_schedule_irq(void)
3521 {
3522 struct thread_info *ti = current_thread_info();
3523 #ifdef CONFIG_PREEMPT_BKL
3524 struct task_struct *task = current;
3525 int saved_lock_depth;
3526 #endif
3527 /* Catch callers which need to be fixed */
3528 BUG_ON(ti->preempt_count || !irqs_disabled());
3529
3530 need_resched:
3531 add_preempt_count(PREEMPT_ACTIVE);
3532 /*
3533 * We keep the big kernel semaphore locked, but we
3534 * clear ->lock_depth so that schedule() doesnt
3535 * auto-release the semaphore:
3536 */
3537 #ifdef CONFIG_PREEMPT_BKL
3538 saved_lock_depth = task->lock_depth;
3539 task->lock_depth = -1;
3540 #endif
3541 local_irq_enable();
3542 schedule();
3543 local_irq_disable();
3544 #ifdef CONFIG_PREEMPT_BKL
3545 task->lock_depth = saved_lock_depth;
3546 #endif
3547 sub_preempt_count(PREEMPT_ACTIVE);
3548
3549 /* we could miss a preemption opportunity between schedule and now */
3550 barrier();
3551 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3552 goto need_resched;
3553 }
3554
3555 #endif /* CONFIG_PREEMPT */
3556
3557 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3558 void *key)
3559 {
3560 return try_to_wake_up(curr->private, mode, sync);
3561 }
3562 EXPORT_SYMBOL(default_wake_function);
3563
3564 /*
3565 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3566 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3567 * number) then we wake all the non-exclusive tasks and one exclusive task.
3568 *
3569 * There are circumstances in which we can try to wake a task which has already
3570 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3571 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3572 */
3573 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3574 int nr_exclusive, int sync, void *key)
3575 {
3576 wait_queue_t *curr, *next;
3577
3578 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3579 unsigned flags = curr->flags;
3580
3581 if (curr->func(curr, mode, sync, key) &&
3582 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3583 break;
3584 }
3585 }
3586
3587 /**
3588 * __wake_up - wake up threads blocked on a waitqueue.
3589 * @q: the waitqueue
3590 * @mode: which threads
3591 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3592 * @key: is directly passed to the wakeup function
3593 */
3594 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3595 int nr_exclusive, void *key)
3596 {
3597 unsigned long flags;
3598
3599 spin_lock_irqsave(&q->lock, flags);
3600 __wake_up_common(q, mode, nr_exclusive, 0, key);
3601 spin_unlock_irqrestore(&q->lock, flags);
3602 }
3603 EXPORT_SYMBOL(__wake_up);
3604
3605 /*
3606 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3607 */
3608 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3609 {
3610 __wake_up_common(q, mode, 1, 0, NULL);
3611 }
3612
3613 /**
3614 * __wake_up_sync - wake up threads blocked on a waitqueue.
3615 * @q: the waitqueue
3616 * @mode: which threads
3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618 *
3619 * The sync wakeup differs that the waker knows that it will schedule
3620 * away soon, so while the target thread will be woken up, it will not
3621 * be migrated to another CPU - ie. the two threads are 'synchronized'
3622 * with each other. This can prevent needless bouncing between CPUs.
3623 *
3624 * On UP it can prevent extra preemption.
3625 */
3626 void fastcall
3627 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3628 {
3629 unsigned long flags;
3630 int sync = 1;
3631
3632 if (unlikely(!q))
3633 return;
3634
3635 if (unlikely(!nr_exclusive))
3636 sync = 0;
3637
3638 spin_lock_irqsave(&q->lock, flags);
3639 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3640 spin_unlock_irqrestore(&q->lock, flags);
3641 }
3642 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3643
3644 void fastcall complete(struct completion *x)
3645 {
3646 unsigned long flags;
3647
3648 spin_lock_irqsave(&x->wait.lock, flags);
3649 x->done++;
3650 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3651 1, 0, NULL);
3652 spin_unlock_irqrestore(&x->wait.lock, flags);
3653 }
3654 EXPORT_SYMBOL(complete);
3655
3656 void fastcall complete_all(struct completion *x)
3657 {
3658 unsigned long flags;
3659
3660 spin_lock_irqsave(&x->wait.lock, flags);
3661 x->done += UINT_MAX/2;
3662 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3663 0, 0, NULL);
3664 spin_unlock_irqrestore(&x->wait.lock, flags);
3665 }
3666 EXPORT_SYMBOL(complete_all);
3667
3668 void fastcall __sched wait_for_completion(struct completion *x)
3669 {
3670 might_sleep();
3671
3672 spin_lock_irq(&x->wait.lock);
3673 if (!x->done) {
3674 DECLARE_WAITQUEUE(wait, current);
3675
3676 wait.flags |= WQ_FLAG_EXCLUSIVE;
3677 __add_wait_queue_tail(&x->wait, &wait);
3678 do {
3679 __set_current_state(TASK_UNINTERRUPTIBLE);
3680 spin_unlock_irq(&x->wait.lock);
3681 schedule();
3682 spin_lock_irq(&x->wait.lock);
3683 } while (!x->done);
3684 __remove_wait_queue(&x->wait, &wait);
3685 }
3686 x->done--;
3687 spin_unlock_irq(&x->wait.lock);
3688 }
3689 EXPORT_SYMBOL(wait_for_completion);
3690
3691 unsigned long fastcall __sched
3692 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3693 {
3694 might_sleep();
3695
3696 spin_lock_irq(&x->wait.lock);
3697 if (!x->done) {
3698 DECLARE_WAITQUEUE(wait, current);
3699
3700 wait.flags |= WQ_FLAG_EXCLUSIVE;
3701 __add_wait_queue_tail(&x->wait, &wait);
3702 do {
3703 __set_current_state(TASK_UNINTERRUPTIBLE);
3704 spin_unlock_irq(&x->wait.lock);
3705 timeout = schedule_timeout(timeout);
3706 spin_lock_irq(&x->wait.lock);
3707 if (!timeout) {
3708 __remove_wait_queue(&x->wait, &wait);
3709 goto out;
3710 }
3711 } while (!x->done);
3712 __remove_wait_queue(&x->wait, &wait);
3713 }
3714 x->done--;
3715 out:
3716 spin_unlock_irq(&x->wait.lock);
3717 return timeout;
3718 }
3719 EXPORT_SYMBOL(wait_for_completion_timeout);
3720
3721 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3722 {
3723 int ret = 0;
3724
3725 might_sleep();
3726
3727 spin_lock_irq(&x->wait.lock);
3728 if (!x->done) {
3729 DECLARE_WAITQUEUE(wait, current);
3730
3731 wait.flags |= WQ_FLAG_EXCLUSIVE;
3732 __add_wait_queue_tail(&x->wait, &wait);
3733 do {
3734 if (signal_pending(current)) {
3735 ret = -ERESTARTSYS;
3736 __remove_wait_queue(&x->wait, &wait);
3737 goto out;
3738 }
3739 __set_current_state(TASK_INTERRUPTIBLE);
3740 spin_unlock_irq(&x->wait.lock);
3741 schedule();
3742 spin_lock_irq(&x->wait.lock);
3743 } while (!x->done);
3744 __remove_wait_queue(&x->wait, &wait);
3745 }
3746 x->done--;
3747 out:
3748 spin_unlock_irq(&x->wait.lock);
3749
3750 return ret;
3751 }
3752 EXPORT_SYMBOL(wait_for_completion_interruptible);
3753
3754 unsigned long fastcall __sched
3755 wait_for_completion_interruptible_timeout(struct completion *x,
3756 unsigned long timeout)
3757 {
3758 might_sleep();
3759
3760 spin_lock_irq(&x->wait.lock);
3761 if (!x->done) {
3762 DECLARE_WAITQUEUE(wait, current);
3763
3764 wait.flags |= WQ_FLAG_EXCLUSIVE;
3765 __add_wait_queue_tail(&x->wait, &wait);
3766 do {
3767 if (signal_pending(current)) {
3768 timeout = -ERESTARTSYS;
3769 __remove_wait_queue(&x->wait, &wait);
3770 goto out;
3771 }
3772 __set_current_state(TASK_INTERRUPTIBLE);
3773 spin_unlock_irq(&x->wait.lock);
3774 timeout = schedule_timeout(timeout);
3775 spin_lock_irq(&x->wait.lock);
3776 if (!timeout) {
3777 __remove_wait_queue(&x->wait, &wait);
3778 goto out;
3779 }
3780 } while (!x->done);
3781 __remove_wait_queue(&x->wait, &wait);
3782 }
3783 x->done--;
3784 out:
3785 spin_unlock_irq(&x->wait.lock);
3786 return timeout;
3787 }
3788 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3789
3790 static inline void
3791 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3792 {
3793 spin_lock_irqsave(&q->lock, *flags);
3794 __add_wait_queue(q, wait);
3795 spin_unlock(&q->lock);
3796 }
3797
3798 static inline void
3799 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3800 {
3801 spin_lock_irq(&q->lock);
3802 __remove_wait_queue(q, wait);
3803 spin_unlock_irqrestore(&q->lock, *flags);
3804 }
3805
3806 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3807 {
3808 unsigned long flags;
3809 wait_queue_t wait;
3810
3811 init_waitqueue_entry(&wait, current);
3812
3813 current->state = TASK_INTERRUPTIBLE;
3814
3815 sleep_on_head(q, &wait, &flags);
3816 schedule();
3817 sleep_on_tail(q, &wait, &flags);
3818 }
3819 EXPORT_SYMBOL(interruptible_sleep_on);
3820
3821 long __sched
3822 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3823 {
3824 unsigned long flags;
3825 wait_queue_t wait;
3826
3827 init_waitqueue_entry(&wait, current);
3828
3829 current->state = TASK_INTERRUPTIBLE;
3830
3831 sleep_on_head(q, &wait, &flags);
3832 timeout = schedule_timeout(timeout);
3833 sleep_on_tail(q, &wait, &flags);
3834
3835 return timeout;
3836 }
3837 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3838
3839 void __sched sleep_on(wait_queue_head_t *q)
3840 {
3841 unsigned long flags;
3842 wait_queue_t wait;
3843
3844 init_waitqueue_entry(&wait, current);
3845
3846 current->state = TASK_UNINTERRUPTIBLE;
3847
3848 sleep_on_head(q, &wait, &flags);
3849 schedule();
3850 sleep_on_tail(q, &wait, &flags);
3851 }
3852 EXPORT_SYMBOL(sleep_on);
3853
3854 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3855 {
3856 unsigned long flags;
3857 wait_queue_t wait;
3858
3859 init_waitqueue_entry(&wait, current);
3860
3861 current->state = TASK_UNINTERRUPTIBLE;
3862
3863 sleep_on_head(q, &wait, &flags);
3864 timeout = schedule_timeout(timeout);
3865 sleep_on_tail(q, &wait, &flags);
3866
3867 return timeout;
3868 }
3869 EXPORT_SYMBOL(sleep_on_timeout);
3870
3871 #ifdef CONFIG_RT_MUTEXES
3872
3873 /*
3874 * rt_mutex_setprio - set the current priority of a task
3875 * @p: task
3876 * @prio: prio value (kernel-internal form)
3877 *
3878 * This function changes the 'effective' priority of a task. It does
3879 * not touch ->normal_prio like __setscheduler().
3880 *
3881 * Used by the rt_mutex code to implement priority inheritance logic.
3882 */
3883 void rt_mutex_setprio(struct task_struct *p, int prio)
3884 {
3885 unsigned long flags;
3886 int oldprio, on_rq;
3887 struct rq *rq;
3888
3889 BUG_ON(prio < 0 || prio > MAX_PRIO);
3890
3891 rq = task_rq_lock(p, &flags);
3892 update_rq_clock(rq);
3893
3894 oldprio = p->prio;
3895 on_rq = p->se.on_rq;
3896 if (on_rq)
3897 dequeue_task(rq, p, 0);
3898
3899 if (rt_prio(prio))
3900 p->sched_class = &rt_sched_class;
3901 else
3902 p->sched_class = &fair_sched_class;
3903
3904 p->prio = prio;
3905
3906 if (on_rq) {
3907 enqueue_task(rq, p, 0);
3908 /*
3909 * Reschedule if we are currently running on this runqueue and
3910 * our priority decreased, or if we are not currently running on
3911 * this runqueue and our priority is higher than the current's
3912 */
3913 if (task_running(rq, p)) {
3914 if (p->prio > oldprio)
3915 resched_task(rq->curr);
3916 } else {
3917 check_preempt_curr(rq, p);
3918 }
3919 }
3920 task_rq_unlock(rq, &flags);
3921 }
3922
3923 #endif
3924
3925 void set_user_nice(struct task_struct *p, long nice)
3926 {
3927 int old_prio, delta, on_rq;
3928 unsigned long flags;
3929 struct rq *rq;
3930
3931 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3932 return;
3933 /*
3934 * We have to be careful, if called from sys_setpriority(),
3935 * the task might be in the middle of scheduling on another CPU.
3936 */
3937 rq = task_rq_lock(p, &flags);
3938 update_rq_clock(rq);
3939 /*
3940 * The RT priorities are set via sched_setscheduler(), but we still
3941 * allow the 'normal' nice value to be set - but as expected
3942 * it wont have any effect on scheduling until the task is
3943 * SCHED_FIFO/SCHED_RR:
3944 */
3945 if (task_has_rt_policy(p)) {
3946 p->static_prio = NICE_TO_PRIO(nice);
3947 goto out_unlock;
3948 }
3949 on_rq = p->se.on_rq;
3950 if (on_rq) {
3951 dequeue_task(rq, p, 0);
3952 dec_load(rq, p);
3953 }
3954
3955 p->static_prio = NICE_TO_PRIO(nice);
3956 set_load_weight(p);
3957 old_prio = p->prio;
3958 p->prio = effective_prio(p);
3959 delta = p->prio - old_prio;
3960
3961 if (on_rq) {
3962 enqueue_task(rq, p, 0);
3963 inc_load(rq, p);
3964 /*
3965 * If the task increased its priority or is running and
3966 * lowered its priority, then reschedule its CPU:
3967 */
3968 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3969 resched_task(rq->curr);
3970 }
3971 out_unlock:
3972 task_rq_unlock(rq, &flags);
3973 }
3974 EXPORT_SYMBOL(set_user_nice);
3975
3976 /*
3977 * can_nice - check if a task can reduce its nice value
3978 * @p: task
3979 * @nice: nice value
3980 */
3981 int can_nice(const struct task_struct *p, const int nice)
3982 {
3983 /* convert nice value [19,-20] to rlimit style value [1,40] */
3984 int nice_rlim = 20 - nice;
3985
3986 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3987 capable(CAP_SYS_NICE));
3988 }
3989
3990 #ifdef __ARCH_WANT_SYS_NICE
3991
3992 /*
3993 * sys_nice - change the priority of the current process.
3994 * @increment: priority increment
3995 *
3996 * sys_setpriority is a more generic, but much slower function that
3997 * does similar things.
3998 */
3999 asmlinkage long sys_nice(int increment)
4000 {
4001 long nice, retval;
4002
4003 /*
4004 * Setpriority might change our priority at the same moment.
4005 * We don't have to worry. Conceptually one call occurs first
4006 * and we have a single winner.
4007 */
4008 if (increment < -40)
4009 increment = -40;
4010 if (increment > 40)
4011 increment = 40;
4012
4013 nice = PRIO_TO_NICE(current->static_prio) + increment;
4014 if (nice < -20)
4015 nice = -20;
4016 if (nice > 19)
4017 nice = 19;
4018
4019 if (increment < 0 && !can_nice(current, nice))
4020 return -EPERM;
4021
4022 retval = security_task_setnice(current, nice);
4023 if (retval)
4024 return retval;
4025
4026 set_user_nice(current, nice);
4027 return 0;
4028 }
4029
4030 #endif
4031
4032 /**
4033 * task_prio - return the priority value of a given task.
4034 * @p: the task in question.
4035 *
4036 * This is the priority value as seen by users in /proc.
4037 * RT tasks are offset by -200. Normal tasks are centered
4038 * around 0, value goes from -16 to +15.
4039 */
4040 int task_prio(const struct task_struct *p)
4041 {
4042 return p->prio - MAX_RT_PRIO;
4043 }
4044
4045 /**
4046 * task_nice - return the nice value of a given task.
4047 * @p: the task in question.
4048 */
4049 int task_nice(const struct task_struct *p)
4050 {
4051 return TASK_NICE(p);
4052 }
4053 EXPORT_SYMBOL_GPL(task_nice);
4054
4055 /**
4056 * idle_cpu - is a given cpu idle currently?
4057 * @cpu: the processor in question.
4058 */
4059 int idle_cpu(int cpu)
4060 {
4061 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4062 }
4063
4064 /**
4065 * idle_task - return the idle task for a given cpu.
4066 * @cpu: the processor in question.
4067 */
4068 struct task_struct *idle_task(int cpu)
4069 {
4070 return cpu_rq(cpu)->idle;
4071 }
4072
4073 /**
4074 * find_process_by_pid - find a process with a matching PID value.
4075 * @pid: the pid in question.
4076 */
4077 static inline struct task_struct *find_process_by_pid(pid_t pid)
4078 {
4079 return pid ? find_task_by_pid(pid) : current;
4080 }
4081
4082 /* Actually do priority change: must hold rq lock. */
4083 static void
4084 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4085 {
4086 BUG_ON(p->se.on_rq);
4087
4088 p->policy = policy;
4089 switch (p->policy) {
4090 case SCHED_NORMAL:
4091 case SCHED_BATCH:
4092 case SCHED_IDLE:
4093 p->sched_class = &fair_sched_class;
4094 break;
4095 case SCHED_FIFO:
4096 case SCHED_RR:
4097 p->sched_class = &rt_sched_class;
4098 break;
4099 }
4100
4101 p->rt_priority = prio;
4102 p->normal_prio = normal_prio(p);
4103 /* we are holding p->pi_lock already */
4104 p->prio = rt_mutex_getprio(p);
4105 set_load_weight(p);
4106 }
4107
4108 /**
4109 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * NOTE that the task may be already dead.
4115 */
4116 int sched_setscheduler(struct task_struct *p, int policy,
4117 struct sched_param *param)
4118 {
4119 int retval, oldprio, oldpolicy = -1, on_rq;
4120 unsigned long flags;
4121 struct rq *rq;
4122
4123 /* may grab non-irq protected spin_locks */
4124 BUG_ON(in_interrupt());
4125 recheck:
4126 /* double check policy once rq lock held */
4127 if (policy < 0)
4128 policy = oldpolicy = p->policy;
4129 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4130 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4131 policy != SCHED_IDLE)
4132 return -EINVAL;
4133 /*
4134 * Valid priorities for SCHED_FIFO and SCHED_RR are
4135 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4136 * SCHED_BATCH and SCHED_IDLE is 0.
4137 */
4138 if (param->sched_priority < 0 ||
4139 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4140 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4141 return -EINVAL;
4142 if (rt_policy(policy) != (param->sched_priority != 0))
4143 return -EINVAL;
4144
4145 /*
4146 * Allow unprivileged RT tasks to decrease priority:
4147 */
4148 if (!capable(CAP_SYS_NICE)) {
4149 if (rt_policy(policy)) {
4150 unsigned long rlim_rtprio;
4151
4152 if (!lock_task_sighand(p, &flags))
4153 return -ESRCH;
4154 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4155 unlock_task_sighand(p, &flags);
4156
4157 /* can't set/change the rt policy */
4158 if (policy != p->policy && !rlim_rtprio)
4159 return -EPERM;
4160
4161 /* can't increase priority */
4162 if (param->sched_priority > p->rt_priority &&
4163 param->sched_priority > rlim_rtprio)
4164 return -EPERM;
4165 }
4166 /*
4167 * Like positive nice levels, dont allow tasks to
4168 * move out of SCHED_IDLE either:
4169 */
4170 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4171 return -EPERM;
4172
4173 /* can't change other user's priorities */
4174 if ((current->euid != p->euid) &&
4175 (current->euid != p->uid))
4176 return -EPERM;
4177 }
4178
4179 retval = security_task_setscheduler(p, policy, param);
4180 if (retval)
4181 return retval;
4182 /*
4183 * make sure no PI-waiters arrive (or leave) while we are
4184 * changing the priority of the task:
4185 */
4186 spin_lock_irqsave(&p->pi_lock, flags);
4187 /*
4188 * To be able to change p->policy safely, the apropriate
4189 * runqueue lock must be held.
4190 */
4191 rq = __task_rq_lock(p);
4192 /* recheck policy now with rq lock held */
4193 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4194 policy = oldpolicy = -1;
4195 __task_rq_unlock(rq);
4196 spin_unlock_irqrestore(&p->pi_lock, flags);
4197 goto recheck;
4198 }
4199 update_rq_clock(rq);
4200 on_rq = p->se.on_rq;
4201 if (on_rq)
4202 deactivate_task(rq, p, 0);
4203 oldprio = p->prio;
4204 __setscheduler(rq, p, policy, param->sched_priority);
4205 if (on_rq) {
4206 activate_task(rq, p, 0);
4207 /*
4208 * Reschedule if we are currently running on this runqueue and
4209 * our priority decreased, or if we are not currently running on
4210 * this runqueue and our priority is higher than the current's
4211 */
4212 if (task_running(rq, p)) {
4213 if (p->prio > oldprio)
4214 resched_task(rq->curr);
4215 } else {
4216 check_preempt_curr(rq, p);
4217 }
4218 }
4219 __task_rq_unlock(rq);
4220 spin_unlock_irqrestore(&p->pi_lock, flags);
4221
4222 rt_mutex_adjust_pi(p);
4223
4224 return 0;
4225 }
4226 EXPORT_SYMBOL_GPL(sched_setscheduler);
4227
4228 static int
4229 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4230 {
4231 struct sched_param lparam;
4232 struct task_struct *p;
4233 int retval;
4234
4235 if (!param || pid < 0)
4236 return -EINVAL;
4237 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4238 return -EFAULT;
4239
4240 rcu_read_lock();
4241 retval = -ESRCH;
4242 p = find_process_by_pid(pid);
4243 if (p != NULL)
4244 retval = sched_setscheduler(p, policy, &lparam);
4245 rcu_read_unlock();
4246
4247 return retval;
4248 }
4249
4250 /**
4251 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4252 * @pid: the pid in question.
4253 * @policy: new policy.
4254 * @param: structure containing the new RT priority.
4255 */
4256 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4257 struct sched_param __user *param)
4258 {
4259 /* negative values for policy are not valid */
4260 if (policy < 0)
4261 return -EINVAL;
4262
4263 return do_sched_setscheduler(pid, policy, param);
4264 }
4265
4266 /**
4267 * sys_sched_setparam - set/change the RT priority of a thread
4268 * @pid: the pid in question.
4269 * @param: structure containing the new RT priority.
4270 */
4271 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4272 {
4273 return do_sched_setscheduler(pid, -1, param);
4274 }
4275
4276 /**
4277 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4278 * @pid: the pid in question.
4279 */
4280 asmlinkage long sys_sched_getscheduler(pid_t pid)
4281 {
4282 struct task_struct *p;
4283 int retval = -EINVAL;
4284
4285 if (pid < 0)
4286 goto out_nounlock;
4287
4288 retval = -ESRCH;
4289 read_lock(&tasklist_lock);
4290 p = find_process_by_pid(pid);
4291 if (p) {
4292 retval = security_task_getscheduler(p);
4293 if (!retval)
4294 retval = p->policy;
4295 }
4296 read_unlock(&tasklist_lock);
4297
4298 out_nounlock:
4299 return retval;
4300 }
4301
4302 /**
4303 * sys_sched_getscheduler - get the RT priority of a thread
4304 * @pid: the pid in question.
4305 * @param: structure containing the RT priority.
4306 */
4307 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4308 {
4309 struct sched_param lp;
4310 struct task_struct *p;
4311 int retval = -EINVAL;
4312
4313 if (!param || pid < 0)
4314 goto out_nounlock;
4315
4316 read_lock(&tasklist_lock);
4317 p = find_process_by_pid(pid);
4318 retval = -ESRCH;
4319 if (!p)
4320 goto out_unlock;
4321
4322 retval = security_task_getscheduler(p);
4323 if (retval)
4324 goto out_unlock;
4325
4326 lp.sched_priority = p->rt_priority;
4327 read_unlock(&tasklist_lock);
4328
4329 /*
4330 * This one might sleep, we cannot do it with a spinlock held ...
4331 */
4332 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4333
4334 out_nounlock:
4335 return retval;
4336
4337 out_unlock:
4338 read_unlock(&tasklist_lock);
4339 return retval;
4340 }
4341
4342 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4343 {
4344 cpumask_t cpus_allowed;
4345 struct task_struct *p;
4346 int retval;
4347
4348 mutex_lock(&sched_hotcpu_mutex);
4349 read_lock(&tasklist_lock);
4350
4351 p = find_process_by_pid(pid);
4352 if (!p) {
4353 read_unlock(&tasklist_lock);
4354 mutex_unlock(&sched_hotcpu_mutex);
4355 return -ESRCH;
4356 }
4357
4358 /*
4359 * It is not safe to call set_cpus_allowed with the
4360 * tasklist_lock held. We will bump the task_struct's
4361 * usage count and then drop tasklist_lock.
4362 */
4363 get_task_struct(p);
4364 read_unlock(&tasklist_lock);
4365
4366 retval = -EPERM;
4367 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4368 !capable(CAP_SYS_NICE))
4369 goto out_unlock;
4370
4371 retval = security_task_setscheduler(p, 0, NULL);
4372 if (retval)
4373 goto out_unlock;
4374
4375 cpus_allowed = cpuset_cpus_allowed(p);
4376 cpus_and(new_mask, new_mask, cpus_allowed);
4377 retval = set_cpus_allowed(p, new_mask);
4378
4379 out_unlock:
4380 put_task_struct(p);
4381 mutex_unlock(&sched_hotcpu_mutex);
4382 return retval;
4383 }
4384
4385 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4386 cpumask_t *new_mask)
4387 {
4388 if (len < sizeof(cpumask_t)) {
4389 memset(new_mask, 0, sizeof(cpumask_t));
4390 } else if (len > sizeof(cpumask_t)) {
4391 len = sizeof(cpumask_t);
4392 }
4393 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4394 }
4395
4396 /**
4397 * sys_sched_setaffinity - set the cpu affinity of a process
4398 * @pid: pid of the process
4399 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4400 * @user_mask_ptr: user-space pointer to the new cpu mask
4401 */
4402 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4403 unsigned long __user *user_mask_ptr)
4404 {
4405 cpumask_t new_mask;
4406 int retval;
4407
4408 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4409 if (retval)
4410 return retval;
4411
4412 return sched_setaffinity(pid, new_mask);
4413 }
4414
4415 /*
4416 * Represents all cpu's present in the system
4417 * In systems capable of hotplug, this map could dynamically grow
4418 * as new cpu's are detected in the system via any platform specific
4419 * method, such as ACPI for e.g.
4420 */
4421
4422 cpumask_t cpu_present_map __read_mostly;
4423 EXPORT_SYMBOL(cpu_present_map);
4424
4425 #ifndef CONFIG_SMP
4426 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4427 EXPORT_SYMBOL(cpu_online_map);
4428
4429 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4430 EXPORT_SYMBOL(cpu_possible_map);
4431 #endif
4432
4433 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4434 {
4435 struct task_struct *p;
4436 int retval;
4437
4438 mutex_lock(&sched_hotcpu_mutex);
4439 read_lock(&tasklist_lock);
4440
4441 retval = -ESRCH;
4442 p = find_process_by_pid(pid);
4443 if (!p)
4444 goto out_unlock;
4445
4446 retval = security_task_getscheduler(p);
4447 if (retval)
4448 goto out_unlock;
4449
4450 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4451
4452 out_unlock:
4453 read_unlock(&tasklist_lock);
4454 mutex_unlock(&sched_hotcpu_mutex);
4455
4456 return retval;
4457 }
4458
4459 /**
4460 * sys_sched_getaffinity - get the cpu affinity of a process
4461 * @pid: pid of the process
4462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4463 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4464 */
4465 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4466 unsigned long __user *user_mask_ptr)
4467 {
4468 int ret;
4469 cpumask_t mask;
4470
4471 if (len < sizeof(cpumask_t))
4472 return -EINVAL;
4473
4474 ret = sched_getaffinity(pid, &mask);
4475 if (ret < 0)
4476 return ret;
4477
4478 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4479 return -EFAULT;
4480
4481 return sizeof(cpumask_t);
4482 }
4483
4484 /**
4485 * sys_sched_yield - yield the current processor to other threads.
4486 *
4487 * This function yields the current CPU to other tasks. If there are no
4488 * other threads running on this CPU then this function will return.
4489 */
4490 asmlinkage long sys_sched_yield(void)
4491 {
4492 struct rq *rq = this_rq_lock();
4493
4494 schedstat_inc(rq, yld_cnt);
4495 current->sched_class->yield_task(rq, current);
4496
4497 /*
4498 * Since we are going to call schedule() anyway, there's
4499 * no need to preempt or enable interrupts:
4500 */
4501 __release(rq->lock);
4502 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4503 _raw_spin_unlock(&rq->lock);
4504 preempt_enable_no_resched();
4505
4506 schedule();
4507
4508 return 0;
4509 }
4510
4511 static void __cond_resched(void)
4512 {
4513 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4514 __might_sleep(__FILE__, __LINE__);
4515 #endif
4516 /*
4517 * The BKS might be reacquired before we have dropped
4518 * PREEMPT_ACTIVE, which could trigger a second
4519 * cond_resched() call.
4520 */
4521 do {
4522 add_preempt_count(PREEMPT_ACTIVE);
4523 schedule();
4524 sub_preempt_count(PREEMPT_ACTIVE);
4525 } while (need_resched());
4526 }
4527
4528 int __sched cond_resched(void)
4529 {
4530 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4531 system_state == SYSTEM_RUNNING) {
4532 __cond_resched();
4533 return 1;
4534 }
4535 return 0;
4536 }
4537 EXPORT_SYMBOL(cond_resched);
4538
4539 /*
4540 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4541 * call schedule, and on return reacquire the lock.
4542 *
4543 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4544 * operations here to prevent schedule() from being called twice (once via
4545 * spin_unlock(), once by hand).
4546 */
4547 int cond_resched_lock(spinlock_t *lock)
4548 {
4549 int ret = 0;
4550
4551 if (need_lockbreak(lock)) {
4552 spin_unlock(lock);
4553 cpu_relax();
4554 ret = 1;
4555 spin_lock(lock);
4556 }
4557 if (need_resched() && system_state == SYSTEM_RUNNING) {
4558 spin_release(&lock->dep_map, 1, _THIS_IP_);
4559 _raw_spin_unlock(lock);
4560 preempt_enable_no_resched();
4561 __cond_resched();
4562 ret = 1;
4563 spin_lock(lock);
4564 }
4565 return ret;
4566 }
4567 EXPORT_SYMBOL(cond_resched_lock);
4568
4569 int __sched cond_resched_softirq(void)
4570 {
4571 BUG_ON(!in_softirq());
4572
4573 if (need_resched() && system_state == SYSTEM_RUNNING) {
4574 local_bh_enable();
4575 __cond_resched();
4576 local_bh_disable();
4577 return 1;
4578 }
4579 return 0;
4580 }
4581 EXPORT_SYMBOL(cond_resched_softirq);
4582
4583 /**
4584 * yield - yield the current processor to other threads.
4585 *
4586 * This is a shortcut for kernel-space yielding - it marks the
4587 * thread runnable and calls sys_sched_yield().
4588 */
4589 void __sched yield(void)
4590 {
4591 set_current_state(TASK_RUNNING);
4592 sys_sched_yield();
4593 }
4594 EXPORT_SYMBOL(yield);
4595
4596 /*
4597 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4598 * that process accounting knows that this is a task in IO wait state.
4599 *
4600 * But don't do that if it is a deliberate, throttling IO wait (this task
4601 * has set its backing_dev_info: the queue against which it should throttle)
4602 */
4603 void __sched io_schedule(void)
4604 {
4605 struct rq *rq = &__raw_get_cpu_var(runqueues);
4606
4607 delayacct_blkio_start();
4608 atomic_inc(&rq->nr_iowait);
4609 schedule();
4610 atomic_dec(&rq->nr_iowait);
4611 delayacct_blkio_end();
4612 }
4613 EXPORT_SYMBOL(io_schedule);
4614
4615 long __sched io_schedule_timeout(long timeout)
4616 {
4617 struct rq *rq = &__raw_get_cpu_var(runqueues);
4618 long ret;
4619
4620 delayacct_blkio_start();
4621 atomic_inc(&rq->nr_iowait);
4622 ret = schedule_timeout(timeout);
4623 atomic_dec(&rq->nr_iowait);
4624 delayacct_blkio_end();
4625 return ret;
4626 }
4627
4628 /**
4629 * sys_sched_get_priority_max - return maximum RT priority.
4630 * @policy: scheduling class.
4631 *
4632 * this syscall returns the maximum rt_priority that can be used
4633 * by a given scheduling class.
4634 */
4635 asmlinkage long sys_sched_get_priority_max(int policy)
4636 {
4637 int ret = -EINVAL;
4638
4639 switch (policy) {
4640 case SCHED_FIFO:
4641 case SCHED_RR:
4642 ret = MAX_USER_RT_PRIO-1;
4643 break;
4644 case SCHED_NORMAL:
4645 case SCHED_BATCH:
4646 case SCHED_IDLE:
4647 ret = 0;
4648 break;
4649 }
4650 return ret;
4651 }
4652
4653 /**
4654 * sys_sched_get_priority_min - return minimum RT priority.
4655 * @policy: scheduling class.
4656 *
4657 * this syscall returns the minimum rt_priority that can be used
4658 * by a given scheduling class.
4659 */
4660 asmlinkage long sys_sched_get_priority_min(int policy)
4661 {
4662 int ret = -EINVAL;
4663
4664 switch (policy) {
4665 case SCHED_FIFO:
4666 case SCHED_RR:
4667 ret = 1;
4668 break;
4669 case SCHED_NORMAL:
4670 case SCHED_BATCH:
4671 case SCHED_IDLE:
4672 ret = 0;
4673 }
4674 return ret;
4675 }
4676
4677 /**
4678 * sys_sched_rr_get_interval - return the default timeslice of a process.
4679 * @pid: pid of the process.
4680 * @interval: userspace pointer to the timeslice value.
4681 *
4682 * this syscall writes the default timeslice value of a given process
4683 * into the user-space timespec buffer. A value of '0' means infinity.
4684 */
4685 asmlinkage
4686 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4687 {
4688 struct task_struct *p;
4689 int retval = -EINVAL;
4690 struct timespec t;
4691
4692 if (pid < 0)
4693 goto out_nounlock;
4694
4695 retval = -ESRCH;
4696 read_lock(&tasklist_lock);
4697 p = find_process_by_pid(pid);
4698 if (!p)
4699 goto out_unlock;
4700
4701 retval = security_task_getscheduler(p);
4702 if (retval)
4703 goto out_unlock;
4704
4705 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4706 0 : static_prio_timeslice(p->static_prio), &t);
4707 read_unlock(&tasklist_lock);
4708 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4709 out_nounlock:
4710 return retval;
4711 out_unlock:
4712 read_unlock(&tasklist_lock);
4713 return retval;
4714 }
4715
4716 static const char stat_nam[] = "RSDTtZX";
4717
4718 static void show_task(struct task_struct *p)
4719 {
4720 unsigned long free = 0;
4721 unsigned state;
4722
4723 state = p->state ? __ffs(p->state) + 1 : 0;
4724 printk("%-13.13s %c", p->comm,
4725 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4726 #if BITS_PER_LONG == 32
4727 if (state == TASK_RUNNING)
4728 printk(" running ");
4729 else
4730 printk(" %08lx ", thread_saved_pc(p));
4731 #else
4732 if (state == TASK_RUNNING)
4733 printk(" running task ");
4734 else
4735 printk(" %016lx ", thread_saved_pc(p));
4736 #endif
4737 #ifdef CONFIG_DEBUG_STACK_USAGE
4738 {
4739 unsigned long *n = end_of_stack(p);
4740 while (!*n)
4741 n++;
4742 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4743 }
4744 #endif
4745 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4746
4747 if (state != TASK_RUNNING)
4748 show_stack(p, NULL);
4749 }
4750
4751 void show_state_filter(unsigned long state_filter)
4752 {
4753 struct task_struct *g, *p;
4754
4755 #if BITS_PER_LONG == 32
4756 printk(KERN_INFO
4757 " task PC stack pid father\n");
4758 #else
4759 printk(KERN_INFO
4760 " task PC stack pid father\n");
4761 #endif
4762 read_lock(&tasklist_lock);
4763 do_each_thread(g, p) {
4764 /*
4765 * reset the NMI-timeout, listing all files on a slow
4766 * console might take alot of time:
4767 */
4768 touch_nmi_watchdog();
4769 if (!state_filter || (p->state & state_filter))
4770 show_task(p);
4771 } while_each_thread(g, p);
4772
4773 touch_all_softlockup_watchdogs();
4774
4775 #ifdef CONFIG_SCHED_DEBUG
4776 sysrq_sched_debug_show();
4777 #endif
4778 read_unlock(&tasklist_lock);
4779 /*
4780 * Only show locks if all tasks are dumped:
4781 */
4782 if (state_filter == -1)
4783 debug_show_all_locks();
4784 }
4785
4786 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4787 {
4788 idle->sched_class = &idle_sched_class;
4789 }
4790
4791 /**
4792 * init_idle - set up an idle thread for a given CPU
4793 * @idle: task in question
4794 * @cpu: cpu the idle task belongs to
4795 *
4796 * NOTE: this function does not set the idle thread's NEED_RESCHED
4797 * flag, to make booting more robust.
4798 */
4799 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4800 {
4801 struct rq *rq = cpu_rq(cpu);
4802 unsigned long flags;
4803
4804 __sched_fork(idle);
4805 idle->se.exec_start = sched_clock();
4806
4807 idle->prio = idle->normal_prio = MAX_PRIO;
4808 idle->cpus_allowed = cpumask_of_cpu(cpu);
4809 __set_task_cpu(idle, cpu);
4810
4811 spin_lock_irqsave(&rq->lock, flags);
4812 rq->curr = rq->idle = idle;
4813 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4814 idle->oncpu = 1;
4815 #endif
4816 spin_unlock_irqrestore(&rq->lock, flags);
4817
4818 /* Set the preempt count _outside_ the spinlocks! */
4819 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4820 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4821 #else
4822 task_thread_info(idle)->preempt_count = 0;
4823 #endif
4824 /*
4825 * The idle tasks have their own, simple scheduling class:
4826 */
4827 idle->sched_class = &idle_sched_class;
4828 }
4829
4830 /*
4831 * In a system that switches off the HZ timer nohz_cpu_mask
4832 * indicates which cpus entered this state. This is used
4833 * in the rcu update to wait only for active cpus. For system
4834 * which do not switch off the HZ timer nohz_cpu_mask should
4835 * always be CPU_MASK_NONE.
4836 */
4837 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4838
4839 #ifdef CONFIG_SMP
4840 /*
4841 * This is how migration works:
4842 *
4843 * 1) we queue a struct migration_req structure in the source CPU's
4844 * runqueue and wake up that CPU's migration thread.
4845 * 2) we down() the locked semaphore => thread blocks.
4846 * 3) migration thread wakes up (implicitly it forces the migrated
4847 * thread off the CPU)
4848 * 4) it gets the migration request and checks whether the migrated
4849 * task is still in the wrong runqueue.
4850 * 5) if it's in the wrong runqueue then the migration thread removes
4851 * it and puts it into the right queue.
4852 * 6) migration thread up()s the semaphore.
4853 * 7) we wake up and the migration is done.
4854 */
4855
4856 /*
4857 * Change a given task's CPU affinity. Migrate the thread to a
4858 * proper CPU and schedule it away if the CPU it's executing on
4859 * is removed from the allowed bitmask.
4860 *
4861 * NOTE: the caller must have a valid reference to the task, the
4862 * task must not exit() & deallocate itself prematurely. The
4863 * call is not atomic; no spinlocks may be held.
4864 */
4865 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4866 {
4867 struct migration_req req;
4868 unsigned long flags;
4869 struct rq *rq;
4870 int ret = 0;
4871
4872 rq = task_rq_lock(p, &flags);
4873 if (!cpus_intersects(new_mask, cpu_online_map)) {
4874 ret = -EINVAL;
4875 goto out;
4876 }
4877
4878 p->cpus_allowed = new_mask;
4879 /* Can the task run on the task's current CPU? If so, we're done */
4880 if (cpu_isset(task_cpu(p), new_mask))
4881 goto out;
4882
4883 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4884 /* Need help from migration thread: drop lock and wait. */
4885 task_rq_unlock(rq, &flags);
4886 wake_up_process(rq->migration_thread);
4887 wait_for_completion(&req.done);
4888 tlb_migrate_finish(p->mm);
4889 return 0;
4890 }
4891 out:
4892 task_rq_unlock(rq, &flags);
4893
4894 return ret;
4895 }
4896 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4897
4898 /*
4899 * Move (not current) task off this cpu, onto dest cpu. We're doing
4900 * this because either it can't run here any more (set_cpus_allowed()
4901 * away from this CPU, or CPU going down), or because we're
4902 * attempting to rebalance this task on exec (sched_exec).
4903 *
4904 * So we race with normal scheduler movements, but that's OK, as long
4905 * as the task is no longer on this CPU.
4906 *
4907 * Returns non-zero if task was successfully migrated.
4908 */
4909 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4910 {
4911 struct rq *rq_dest, *rq_src;
4912 int ret = 0, on_rq;
4913
4914 if (unlikely(cpu_is_offline(dest_cpu)))
4915 return ret;
4916
4917 rq_src = cpu_rq(src_cpu);
4918 rq_dest = cpu_rq(dest_cpu);
4919
4920 double_rq_lock(rq_src, rq_dest);
4921 /* Already moved. */
4922 if (task_cpu(p) != src_cpu)
4923 goto out;
4924 /* Affinity changed (again). */
4925 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4926 goto out;
4927
4928 on_rq = p->se.on_rq;
4929 if (on_rq)
4930 deactivate_task(rq_src, p, 0);
4931
4932 set_task_cpu(p, dest_cpu);
4933 if (on_rq) {
4934 activate_task(rq_dest, p, 0);
4935 check_preempt_curr(rq_dest, p);
4936 }
4937 ret = 1;
4938 out:
4939 double_rq_unlock(rq_src, rq_dest);
4940 return ret;
4941 }
4942
4943 /*
4944 * migration_thread - this is a highprio system thread that performs
4945 * thread migration by bumping thread off CPU then 'pushing' onto
4946 * another runqueue.
4947 */
4948 static int migration_thread(void *data)
4949 {
4950 int cpu = (long)data;
4951 struct rq *rq;
4952
4953 rq = cpu_rq(cpu);
4954 BUG_ON(rq->migration_thread != current);
4955
4956 set_current_state(TASK_INTERRUPTIBLE);
4957 while (!kthread_should_stop()) {
4958 struct migration_req *req;
4959 struct list_head *head;
4960
4961 spin_lock_irq(&rq->lock);
4962
4963 if (cpu_is_offline(cpu)) {
4964 spin_unlock_irq(&rq->lock);
4965 goto wait_to_die;
4966 }
4967
4968 if (rq->active_balance) {
4969 active_load_balance(rq, cpu);
4970 rq->active_balance = 0;
4971 }
4972
4973 head = &rq->migration_queue;
4974
4975 if (list_empty(head)) {
4976 spin_unlock_irq(&rq->lock);
4977 schedule();
4978 set_current_state(TASK_INTERRUPTIBLE);
4979 continue;
4980 }
4981 req = list_entry(head->next, struct migration_req, list);
4982 list_del_init(head->next);
4983
4984 spin_unlock(&rq->lock);
4985 __migrate_task(req->task, cpu, req->dest_cpu);
4986 local_irq_enable();
4987
4988 complete(&req->done);
4989 }
4990 __set_current_state(TASK_RUNNING);
4991 return 0;
4992
4993 wait_to_die:
4994 /* Wait for kthread_stop */
4995 set_current_state(TASK_INTERRUPTIBLE);
4996 while (!kthread_should_stop()) {
4997 schedule();
4998 set_current_state(TASK_INTERRUPTIBLE);
4999 }
5000 __set_current_state(TASK_RUNNING);
5001 return 0;
5002 }
5003
5004 #ifdef CONFIG_HOTPLUG_CPU
5005 /*
5006 * Figure out where task on dead CPU should go, use force if neccessary.
5007 * NOTE: interrupts should be disabled by the caller
5008 */
5009 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5010 {
5011 unsigned long flags;
5012 cpumask_t mask;
5013 struct rq *rq;
5014 int dest_cpu;
5015
5016 restart:
5017 /* On same node? */
5018 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5019 cpus_and(mask, mask, p->cpus_allowed);
5020 dest_cpu = any_online_cpu(mask);
5021
5022 /* On any allowed CPU? */
5023 if (dest_cpu == NR_CPUS)
5024 dest_cpu = any_online_cpu(p->cpus_allowed);
5025
5026 /* No more Mr. Nice Guy. */
5027 if (dest_cpu == NR_CPUS) {
5028 rq = task_rq_lock(p, &flags);
5029 cpus_setall(p->cpus_allowed);
5030 dest_cpu = any_online_cpu(p->cpus_allowed);
5031 task_rq_unlock(rq, &flags);
5032
5033 /*
5034 * Don't tell them about moving exiting tasks or
5035 * kernel threads (both mm NULL), since they never
5036 * leave kernel.
5037 */
5038 if (p->mm && printk_ratelimit())
5039 printk(KERN_INFO "process %d (%s) no "
5040 "longer affine to cpu%d\n",
5041 p->pid, p->comm, dead_cpu);
5042 }
5043 if (!__migrate_task(p, dead_cpu, dest_cpu))
5044 goto restart;
5045 }
5046
5047 /*
5048 * While a dead CPU has no uninterruptible tasks queued at this point,
5049 * it might still have a nonzero ->nr_uninterruptible counter, because
5050 * for performance reasons the counter is not stricly tracking tasks to
5051 * their home CPUs. So we just add the counter to another CPU's counter,
5052 * to keep the global sum constant after CPU-down:
5053 */
5054 static void migrate_nr_uninterruptible(struct rq *rq_src)
5055 {
5056 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5057 unsigned long flags;
5058
5059 local_irq_save(flags);
5060 double_rq_lock(rq_src, rq_dest);
5061 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5062 rq_src->nr_uninterruptible = 0;
5063 double_rq_unlock(rq_src, rq_dest);
5064 local_irq_restore(flags);
5065 }
5066
5067 /* Run through task list and migrate tasks from the dead cpu. */
5068 static void migrate_live_tasks(int src_cpu)
5069 {
5070 struct task_struct *p, *t;
5071
5072 write_lock_irq(&tasklist_lock);
5073
5074 do_each_thread(t, p) {
5075 if (p == current)
5076 continue;
5077
5078 if (task_cpu(p) == src_cpu)
5079 move_task_off_dead_cpu(src_cpu, p);
5080 } while_each_thread(t, p);
5081
5082 write_unlock_irq(&tasklist_lock);
5083 }
5084
5085 /*
5086 * Schedules idle task to be the next runnable task on current CPU.
5087 * It does so by boosting its priority to highest possible and adding it to
5088 * the _front_ of the runqueue. Used by CPU offline code.
5089 */
5090 void sched_idle_next(void)
5091 {
5092 int this_cpu = smp_processor_id();
5093 struct rq *rq = cpu_rq(this_cpu);
5094 struct task_struct *p = rq->idle;
5095 unsigned long flags;
5096
5097 /* cpu has to be offline */
5098 BUG_ON(cpu_online(this_cpu));
5099
5100 /*
5101 * Strictly not necessary since rest of the CPUs are stopped by now
5102 * and interrupts disabled on the current cpu.
5103 */
5104 spin_lock_irqsave(&rq->lock, flags);
5105
5106 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5107
5108 /* Add idle task to the _front_ of its priority queue: */
5109 activate_idle_task(p, rq);
5110
5111 spin_unlock_irqrestore(&rq->lock, flags);
5112 }
5113
5114 /*
5115 * Ensures that the idle task is using init_mm right before its cpu goes
5116 * offline.
5117 */
5118 void idle_task_exit(void)
5119 {
5120 struct mm_struct *mm = current->active_mm;
5121
5122 BUG_ON(cpu_online(smp_processor_id()));
5123
5124 if (mm != &init_mm)
5125 switch_mm(mm, &init_mm, current);
5126 mmdrop(mm);
5127 }
5128
5129 /* called under rq->lock with disabled interrupts */
5130 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5131 {
5132 struct rq *rq = cpu_rq(dead_cpu);
5133
5134 /* Must be exiting, otherwise would be on tasklist. */
5135 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5136
5137 /* Cannot have done final schedule yet: would have vanished. */
5138 BUG_ON(p->state == TASK_DEAD);
5139
5140 get_task_struct(p);
5141
5142 /*
5143 * Drop lock around migration; if someone else moves it,
5144 * that's OK. No task can be added to this CPU, so iteration is
5145 * fine.
5146 * NOTE: interrupts should be left disabled --dev@
5147 */
5148 spin_unlock(&rq->lock);
5149 move_task_off_dead_cpu(dead_cpu, p);
5150 spin_lock(&rq->lock);
5151
5152 put_task_struct(p);
5153 }
5154
5155 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5156 static void migrate_dead_tasks(unsigned int dead_cpu)
5157 {
5158 struct rq *rq = cpu_rq(dead_cpu);
5159 struct task_struct *next;
5160
5161 for ( ; ; ) {
5162 if (!rq->nr_running)
5163 break;
5164 update_rq_clock(rq);
5165 next = pick_next_task(rq, rq->curr);
5166 if (!next)
5167 break;
5168 migrate_dead(dead_cpu, next);
5169
5170 }
5171 }
5172 #endif /* CONFIG_HOTPLUG_CPU */
5173
5174 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5175
5176 static struct ctl_table sd_ctl_dir[] = {
5177 {
5178 .procname = "sched_domain",
5179 .mode = 0555,
5180 },
5181 {0,},
5182 };
5183
5184 static struct ctl_table sd_ctl_root[] = {
5185 {
5186 .ctl_name = CTL_KERN,
5187 .procname = "kernel",
5188 .mode = 0555,
5189 .child = sd_ctl_dir,
5190 },
5191 {0,},
5192 };
5193
5194 static struct ctl_table *sd_alloc_ctl_entry(int n)
5195 {
5196 struct ctl_table *entry =
5197 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5198
5199 BUG_ON(!entry);
5200 memset(entry, 0, n * sizeof(struct ctl_table));
5201
5202 return entry;
5203 }
5204
5205 static void
5206 set_table_entry(struct ctl_table *entry,
5207 const char *procname, void *data, int maxlen,
5208 mode_t mode, proc_handler *proc_handler)
5209 {
5210 entry->procname = procname;
5211 entry->data = data;
5212 entry->maxlen = maxlen;
5213 entry->mode = mode;
5214 entry->proc_handler = proc_handler;
5215 }
5216
5217 static struct ctl_table *
5218 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5219 {
5220 struct ctl_table *table = sd_alloc_ctl_entry(14);
5221
5222 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5223 sizeof(long), 0644, proc_doulongvec_minmax);
5224 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5225 sizeof(long), 0644, proc_doulongvec_minmax);
5226 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5227 sizeof(int), 0644, proc_dointvec_minmax);
5228 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5229 sizeof(int), 0644, proc_dointvec_minmax);
5230 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5231 sizeof(int), 0644, proc_dointvec_minmax);
5232 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5233 sizeof(int), 0644, proc_dointvec_minmax);
5234 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5235 sizeof(int), 0644, proc_dointvec_minmax);
5236 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5237 sizeof(int), 0644, proc_dointvec_minmax);
5238 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5239 sizeof(int), 0644, proc_dointvec_minmax);
5240 set_table_entry(&table[10], "cache_nice_tries",
5241 &sd->cache_nice_tries,
5242 sizeof(int), 0644, proc_dointvec_minmax);
5243 set_table_entry(&table[12], "flags", &sd->flags,
5244 sizeof(int), 0644, proc_dointvec_minmax);
5245
5246 return table;
5247 }
5248
5249 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5250 {
5251 struct ctl_table *entry, *table;
5252 struct sched_domain *sd;
5253 int domain_num = 0, i;
5254 char buf[32];
5255
5256 for_each_domain(cpu, sd)
5257 domain_num++;
5258 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5259
5260 i = 0;
5261 for_each_domain(cpu, sd) {
5262 snprintf(buf, 32, "domain%d", i);
5263 entry->procname = kstrdup(buf, GFP_KERNEL);
5264 entry->mode = 0555;
5265 entry->child = sd_alloc_ctl_domain_table(sd);
5266 entry++;
5267 i++;
5268 }
5269 return table;
5270 }
5271
5272 static struct ctl_table_header *sd_sysctl_header;
5273 static void init_sched_domain_sysctl(void)
5274 {
5275 int i, cpu_num = num_online_cpus();
5276 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5277 char buf[32];
5278
5279 sd_ctl_dir[0].child = entry;
5280
5281 for (i = 0; i < cpu_num; i++, entry++) {
5282 snprintf(buf, 32, "cpu%d", i);
5283 entry->procname = kstrdup(buf, GFP_KERNEL);
5284 entry->mode = 0555;
5285 entry->child = sd_alloc_ctl_cpu_table(i);
5286 }
5287 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5288 }
5289 #else
5290 static void init_sched_domain_sysctl(void)
5291 {
5292 }
5293 #endif
5294
5295 /*
5296 * migration_call - callback that gets triggered when a CPU is added.
5297 * Here we can start up the necessary migration thread for the new CPU.
5298 */
5299 static int __cpuinit
5300 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5301 {
5302 struct task_struct *p;
5303 int cpu = (long)hcpu;
5304 unsigned long flags;
5305 struct rq *rq;
5306
5307 switch (action) {
5308 case CPU_LOCK_ACQUIRE:
5309 mutex_lock(&sched_hotcpu_mutex);
5310 break;
5311
5312 case CPU_UP_PREPARE:
5313 case CPU_UP_PREPARE_FROZEN:
5314 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5315 if (IS_ERR(p))
5316 return NOTIFY_BAD;
5317 kthread_bind(p, cpu);
5318 /* Must be high prio: stop_machine expects to yield to it. */
5319 rq = task_rq_lock(p, &flags);
5320 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5321 task_rq_unlock(rq, &flags);
5322 cpu_rq(cpu)->migration_thread = p;
5323 break;
5324
5325 case CPU_ONLINE:
5326 case CPU_ONLINE_FROZEN:
5327 /* Strictly unneccessary, as first user will wake it. */
5328 wake_up_process(cpu_rq(cpu)->migration_thread);
5329 break;
5330
5331 #ifdef CONFIG_HOTPLUG_CPU
5332 case CPU_UP_CANCELED:
5333 case CPU_UP_CANCELED_FROZEN:
5334 if (!cpu_rq(cpu)->migration_thread)
5335 break;
5336 /* Unbind it from offline cpu so it can run. Fall thru. */
5337 kthread_bind(cpu_rq(cpu)->migration_thread,
5338 any_online_cpu(cpu_online_map));
5339 kthread_stop(cpu_rq(cpu)->migration_thread);
5340 cpu_rq(cpu)->migration_thread = NULL;
5341 break;
5342
5343 case CPU_DEAD:
5344 case CPU_DEAD_FROZEN:
5345 migrate_live_tasks(cpu);
5346 rq = cpu_rq(cpu);
5347 kthread_stop(rq->migration_thread);
5348 rq->migration_thread = NULL;
5349 /* Idle task back to normal (off runqueue, low prio) */
5350 rq = task_rq_lock(rq->idle, &flags);
5351 update_rq_clock(rq);
5352 deactivate_task(rq, rq->idle, 0);
5353 rq->idle->static_prio = MAX_PRIO;
5354 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5355 rq->idle->sched_class = &idle_sched_class;
5356 migrate_dead_tasks(cpu);
5357 task_rq_unlock(rq, &flags);
5358 migrate_nr_uninterruptible(rq);
5359 BUG_ON(rq->nr_running != 0);
5360
5361 /* No need to migrate the tasks: it was best-effort if
5362 * they didn't take sched_hotcpu_mutex. Just wake up
5363 * the requestors. */
5364 spin_lock_irq(&rq->lock);
5365 while (!list_empty(&rq->migration_queue)) {
5366 struct migration_req *req;
5367
5368 req = list_entry(rq->migration_queue.next,
5369 struct migration_req, list);
5370 list_del_init(&req->list);
5371 complete(&req->done);
5372 }
5373 spin_unlock_irq(&rq->lock);
5374 break;
5375 #endif
5376 case CPU_LOCK_RELEASE:
5377 mutex_unlock(&sched_hotcpu_mutex);
5378 break;
5379 }
5380 return NOTIFY_OK;
5381 }
5382
5383 /* Register at highest priority so that task migration (migrate_all_tasks)
5384 * happens before everything else.
5385 */
5386 static struct notifier_block __cpuinitdata migration_notifier = {
5387 .notifier_call = migration_call,
5388 .priority = 10
5389 };
5390
5391 int __init migration_init(void)
5392 {
5393 void *cpu = (void *)(long)smp_processor_id();
5394 int err;
5395
5396 /* Start one for the boot CPU: */
5397 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5398 BUG_ON(err == NOTIFY_BAD);
5399 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5400 register_cpu_notifier(&migration_notifier);
5401
5402 return 0;
5403 }
5404 #endif
5405
5406 #ifdef CONFIG_SMP
5407
5408 /* Number of possible processor ids */
5409 int nr_cpu_ids __read_mostly = NR_CPUS;
5410 EXPORT_SYMBOL(nr_cpu_ids);
5411
5412 #undef SCHED_DOMAIN_DEBUG
5413 #ifdef SCHED_DOMAIN_DEBUG
5414 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5415 {
5416 int level = 0;
5417
5418 if (!sd) {
5419 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5420 return;
5421 }
5422
5423 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5424
5425 do {
5426 int i;
5427 char str[NR_CPUS];
5428 struct sched_group *group = sd->groups;
5429 cpumask_t groupmask;
5430
5431 cpumask_scnprintf(str, NR_CPUS, sd->span);
5432 cpus_clear(groupmask);
5433
5434 printk(KERN_DEBUG);
5435 for (i = 0; i < level + 1; i++)
5436 printk(" ");
5437 printk("domain %d: ", level);
5438
5439 if (!(sd->flags & SD_LOAD_BALANCE)) {
5440 printk("does not load-balance\n");
5441 if (sd->parent)
5442 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5443 " has parent");
5444 break;
5445 }
5446
5447 printk("span %s\n", str);
5448
5449 if (!cpu_isset(cpu, sd->span))
5450 printk(KERN_ERR "ERROR: domain->span does not contain "
5451 "CPU%d\n", cpu);
5452 if (!cpu_isset(cpu, group->cpumask))
5453 printk(KERN_ERR "ERROR: domain->groups does not contain"
5454 " CPU%d\n", cpu);
5455
5456 printk(KERN_DEBUG);
5457 for (i = 0; i < level + 2; i++)
5458 printk(" ");
5459 printk("groups:");
5460 do {
5461 if (!group) {
5462 printk("\n");
5463 printk(KERN_ERR "ERROR: group is NULL\n");
5464 break;
5465 }
5466
5467 if (!group->__cpu_power) {
5468 printk("\n");
5469 printk(KERN_ERR "ERROR: domain->cpu_power not "
5470 "set\n");
5471 }
5472
5473 if (!cpus_weight(group->cpumask)) {
5474 printk("\n");
5475 printk(KERN_ERR "ERROR: empty group\n");
5476 }
5477
5478 if (cpus_intersects(groupmask, group->cpumask)) {
5479 printk("\n");
5480 printk(KERN_ERR "ERROR: repeated CPUs\n");
5481 }
5482
5483 cpus_or(groupmask, groupmask, group->cpumask);
5484
5485 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5486 printk(" %s", str);
5487
5488 group = group->next;
5489 } while (group != sd->groups);
5490 printk("\n");
5491
5492 if (!cpus_equal(sd->span, groupmask))
5493 printk(KERN_ERR "ERROR: groups don't span "
5494 "domain->span\n");
5495
5496 level++;
5497 sd = sd->parent;
5498 if (!sd)
5499 continue;
5500
5501 if (!cpus_subset(groupmask, sd->span))
5502 printk(KERN_ERR "ERROR: parent span is not a superset "
5503 "of domain->span\n");
5504
5505 } while (sd);
5506 }
5507 #else
5508 # define sched_domain_debug(sd, cpu) do { } while (0)
5509 #endif
5510
5511 static int sd_degenerate(struct sched_domain *sd)
5512 {
5513 if (cpus_weight(sd->span) == 1)
5514 return 1;
5515
5516 /* Following flags need at least 2 groups */
5517 if (sd->flags & (SD_LOAD_BALANCE |
5518 SD_BALANCE_NEWIDLE |
5519 SD_BALANCE_FORK |
5520 SD_BALANCE_EXEC |
5521 SD_SHARE_CPUPOWER |
5522 SD_SHARE_PKG_RESOURCES)) {
5523 if (sd->groups != sd->groups->next)
5524 return 0;
5525 }
5526
5527 /* Following flags don't use groups */
5528 if (sd->flags & (SD_WAKE_IDLE |
5529 SD_WAKE_AFFINE |
5530 SD_WAKE_BALANCE))
5531 return 0;
5532
5533 return 1;
5534 }
5535
5536 static int
5537 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5538 {
5539 unsigned long cflags = sd->flags, pflags = parent->flags;
5540
5541 if (sd_degenerate(parent))
5542 return 1;
5543
5544 if (!cpus_equal(sd->span, parent->span))
5545 return 0;
5546
5547 /* Does parent contain flags not in child? */
5548 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5549 if (cflags & SD_WAKE_AFFINE)
5550 pflags &= ~SD_WAKE_BALANCE;
5551 /* Flags needing groups don't count if only 1 group in parent */
5552 if (parent->groups == parent->groups->next) {
5553 pflags &= ~(SD_LOAD_BALANCE |
5554 SD_BALANCE_NEWIDLE |
5555 SD_BALANCE_FORK |
5556 SD_BALANCE_EXEC |
5557 SD_SHARE_CPUPOWER |
5558 SD_SHARE_PKG_RESOURCES);
5559 }
5560 if (~cflags & pflags)
5561 return 0;
5562
5563 return 1;
5564 }
5565
5566 /*
5567 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5568 * hold the hotplug lock.
5569 */
5570 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5571 {
5572 struct rq *rq = cpu_rq(cpu);
5573 struct sched_domain *tmp;
5574
5575 /* Remove the sched domains which do not contribute to scheduling. */
5576 for (tmp = sd; tmp; tmp = tmp->parent) {
5577 struct sched_domain *parent = tmp->parent;
5578 if (!parent)
5579 break;
5580 if (sd_parent_degenerate(tmp, parent)) {
5581 tmp->parent = parent->parent;
5582 if (parent->parent)
5583 parent->parent->child = tmp;
5584 }
5585 }
5586
5587 if (sd && sd_degenerate(sd)) {
5588 sd = sd->parent;
5589 if (sd)
5590 sd->child = NULL;
5591 }
5592
5593 sched_domain_debug(sd, cpu);
5594
5595 rcu_assign_pointer(rq->sd, sd);
5596 }
5597
5598 /* cpus with isolated domains */
5599 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5600
5601 /* Setup the mask of cpus configured for isolated domains */
5602 static int __init isolated_cpu_setup(char *str)
5603 {
5604 int ints[NR_CPUS], i;
5605
5606 str = get_options(str, ARRAY_SIZE(ints), ints);
5607 cpus_clear(cpu_isolated_map);
5608 for (i = 1; i <= ints[0]; i++)
5609 if (ints[i] < NR_CPUS)
5610 cpu_set(ints[i], cpu_isolated_map);
5611 return 1;
5612 }
5613
5614 __setup ("isolcpus=", isolated_cpu_setup);
5615
5616 /*
5617 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5618 * to a function which identifies what group(along with sched group) a CPU
5619 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5620 * (due to the fact that we keep track of groups covered with a cpumask_t).
5621 *
5622 * init_sched_build_groups will build a circular linked list of the groups
5623 * covered by the given span, and will set each group's ->cpumask correctly,
5624 * and ->cpu_power to 0.
5625 */
5626 static void
5627 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5628 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5629 struct sched_group **sg))
5630 {
5631 struct sched_group *first = NULL, *last = NULL;
5632 cpumask_t covered = CPU_MASK_NONE;
5633 int i;
5634
5635 for_each_cpu_mask(i, span) {
5636 struct sched_group *sg;
5637 int group = group_fn(i, cpu_map, &sg);
5638 int j;
5639
5640 if (cpu_isset(i, covered))
5641 continue;
5642
5643 sg->cpumask = CPU_MASK_NONE;
5644 sg->__cpu_power = 0;
5645
5646 for_each_cpu_mask(j, span) {
5647 if (group_fn(j, cpu_map, NULL) != group)
5648 continue;
5649
5650 cpu_set(j, covered);
5651 cpu_set(j, sg->cpumask);
5652 }
5653 if (!first)
5654 first = sg;
5655 if (last)
5656 last->next = sg;
5657 last = sg;
5658 }
5659 last->next = first;
5660 }
5661
5662 #define SD_NODES_PER_DOMAIN 16
5663
5664 #ifdef CONFIG_NUMA
5665
5666 /**
5667 * find_next_best_node - find the next node to include in a sched_domain
5668 * @node: node whose sched_domain we're building
5669 * @used_nodes: nodes already in the sched_domain
5670 *
5671 * Find the next node to include in a given scheduling domain. Simply
5672 * finds the closest node not already in the @used_nodes map.
5673 *
5674 * Should use nodemask_t.
5675 */
5676 static int find_next_best_node(int node, unsigned long *used_nodes)
5677 {
5678 int i, n, val, min_val, best_node = 0;
5679
5680 min_val = INT_MAX;
5681
5682 for (i = 0; i < MAX_NUMNODES; i++) {
5683 /* Start at @node */
5684 n = (node + i) % MAX_NUMNODES;
5685
5686 if (!nr_cpus_node(n))
5687 continue;
5688
5689 /* Skip already used nodes */
5690 if (test_bit(n, used_nodes))
5691 continue;
5692
5693 /* Simple min distance search */
5694 val = node_distance(node, n);
5695
5696 if (val < min_val) {
5697 min_val = val;
5698 best_node = n;
5699 }
5700 }
5701
5702 set_bit(best_node, used_nodes);
5703 return best_node;
5704 }
5705
5706 /**
5707 * sched_domain_node_span - get a cpumask for a node's sched_domain
5708 * @node: node whose cpumask we're constructing
5709 * @size: number of nodes to include in this span
5710 *
5711 * Given a node, construct a good cpumask for its sched_domain to span. It
5712 * should be one that prevents unnecessary balancing, but also spreads tasks
5713 * out optimally.
5714 */
5715 static cpumask_t sched_domain_node_span(int node)
5716 {
5717 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5718 cpumask_t span, nodemask;
5719 int i;
5720
5721 cpus_clear(span);
5722 bitmap_zero(used_nodes, MAX_NUMNODES);
5723
5724 nodemask = node_to_cpumask(node);
5725 cpus_or(span, span, nodemask);
5726 set_bit(node, used_nodes);
5727
5728 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5729 int next_node = find_next_best_node(node, used_nodes);
5730
5731 nodemask = node_to_cpumask(next_node);
5732 cpus_or(span, span, nodemask);
5733 }
5734
5735 return span;
5736 }
5737 #endif
5738
5739 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5740
5741 /*
5742 * SMT sched-domains:
5743 */
5744 #ifdef CONFIG_SCHED_SMT
5745 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5746 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5747
5748 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5749 struct sched_group **sg)
5750 {
5751 if (sg)
5752 *sg = &per_cpu(sched_group_cpus, cpu);
5753 return cpu;
5754 }
5755 #endif
5756
5757 /*
5758 * multi-core sched-domains:
5759 */
5760 #ifdef CONFIG_SCHED_MC
5761 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5762 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5763 #endif
5764
5765 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5766 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5767 struct sched_group **sg)
5768 {
5769 int group;
5770 cpumask_t mask = cpu_sibling_map[cpu];
5771 cpus_and(mask, mask, *cpu_map);
5772 group = first_cpu(mask);
5773 if (sg)
5774 *sg = &per_cpu(sched_group_core, group);
5775 return group;
5776 }
5777 #elif defined(CONFIG_SCHED_MC)
5778 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5779 struct sched_group **sg)
5780 {
5781 if (sg)
5782 *sg = &per_cpu(sched_group_core, cpu);
5783 return cpu;
5784 }
5785 #endif
5786
5787 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5788 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5789
5790 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5791 struct sched_group **sg)
5792 {
5793 int group;
5794 #ifdef CONFIG_SCHED_MC
5795 cpumask_t mask = cpu_coregroup_map(cpu);
5796 cpus_and(mask, mask, *cpu_map);
5797 group = first_cpu(mask);
5798 #elif defined(CONFIG_SCHED_SMT)
5799 cpumask_t mask = cpu_sibling_map[cpu];
5800 cpus_and(mask, mask, *cpu_map);
5801 group = first_cpu(mask);
5802 #else
5803 group = cpu;
5804 #endif
5805 if (sg)
5806 *sg = &per_cpu(sched_group_phys, group);
5807 return group;
5808 }
5809
5810 #ifdef CONFIG_NUMA
5811 /*
5812 * The init_sched_build_groups can't handle what we want to do with node
5813 * groups, so roll our own. Now each node has its own list of groups which
5814 * gets dynamically allocated.
5815 */
5816 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5817 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5818
5819 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5820 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5821
5822 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5823 struct sched_group **sg)
5824 {
5825 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5826 int group;
5827
5828 cpus_and(nodemask, nodemask, *cpu_map);
5829 group = first_cpu(nodemask);
5830
5831 if (sg)
5832 *sg = &per_cpu(sched_group_allnodes, group);
5833 return group;
5834 }
5835
5836 static void init_numa_sched_groups_power(struct sched_group *group_head)
5837 {
5838 struct sched_group *sg = group_head;
5839 int j;
5840
5841 if (!sg)
5842 return;
5843 next_sg:
5844 for_each_cpu_mask(j, sg->cpumask) {
5845 struct sched_domain *sd;
5846
5847 sd = &per_cpu(phys_domains, j);
5848 if (j != first_cpu(sd->groups->cpumask)) {
5849 /*
5850 * Only add "power" once for each
5851 * physical package.
5852 */
5853 continue;
5854 }
5855
5856 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5857 }
5858 sg = sg->next;
5859 if (sg != group_head)
5860 goto next_sg;
5861 }
5862 #endif
5863
5864 #ifdef CONFIG_NUMA
5865 /* Free memory allocated for various sched_group structures */
5866 static void free_sched_groups(const cpumask_t *cpu_map)
5867 {
5868 int cpu, i;
5869
5870 for_each_cpu_mask(cpu, *cpu_map) {
5871 struct sched_group **sched_group_nodes
5872 = sched_group_nodes_bycpu[cpu];
5873
5874 if (!sched_group_nodes)
5875 continue;
5876
5877 for (i = 0; i < MAX_NUMNODES; i++) {
5878 cpumask_t nodemask = node_to_cpumask(i);
5879 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5880
5881 cpus_and(nodemask, nodemask, *cpu_map);
5882 if (cpus_empty(nodemask))
5883 continue;
5884
5885 if (sg == NULL)
5886 continue;
5887 sg = sg->next;
5888 next_sg:
5889 oldsg = sg;
5890 sg = sg->next;
5891 kfree(oldsg);
5892 if (oldsg != sched_group_nodes[i])
5893 goto next_sg;
5894 }
5895 kfree(sched_group_nodes);
5896 sched_group_nodes_bycpu[cpu] = NULL;
5897 }
5898 }
5899 #else
5900 static void free_sched_groups(const cpumask_t *cpu_map)
5901 {
5902 }
5903 #endif
5904
5905 /*
5906 * Initialize sched groups cpu_power.
5907 *
5908 * cpu_power indicates the capacity of sched group, which is used while
5909 * distributing the load between different sched groups in a sched domain.
5910 * Typically cpu_power for all the groups in a sched domain will be same unless
5911 * there are asymmetries in the topology. If there are asymmetries, group
5912 * having more cpu_power will pickup more load compared to the group having
5913 * less cpu_power.
5914 *
5915 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5916 * the maximum number of tasks a group can handle in the presence of other idle
5917 * or lightly loaded groups in the same sched domain.
5918 */
5919 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5920 {
5921 struct sched_domain *child;
5922 struct sched_group *group;
5923
5924 WARN_ON(!sd || !sd->groups);
5925
5926 if (cpu != first_cpu(sd->groups->cpumask))
5927 return;
5928
5929 child = sd->child;
5930
5931 sd->groups->__cpu_power = 0;
5932
5933 /*
5934 * For perf policy, if the groups in child domain share resources
5935 * (for example cores sharing some portions of the cache hierarchy
5936 * or SMT), then set this domain groups cpu_power such that each group
5937 * can handle only one task, when there are other idle groups in the
5938 * same sched domain.
5939 */
5940 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5941 (child->flags &
5942 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5943 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5944 return;
5945 }
5946
5947 /*
5948 * add cpu_power of each child group to this groups cpu_power
5949 */
5950 group = child->groups;
5951 do {
5952 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5953 group = group->next;
5954 } while (group != child->groups);
5955 }
5956
5957 /*
5958 * Build sched domains for a given set of cpus and attach the sched domains
5959 * to the individual cpus
5960 */
5961 static int build_sched_domains(const cpumask_t *cpu_map)
5962 {
5963 int i;
5964 #ifdef CONFIG_NUMA
5965 struct sched_group **sched_group_nodes = NULL;
5966 int sd_allnodes = 0;
5967
5968 /*
5969 * Allocate the per-node list of sched groups
5970 */
5971 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5972 GFP_KERNEL);
5973 if (!sched_group_nodes) {
5974 printk(KERN_WARNING "Can not alloc sched group node list\n");
5975 return -ENOMEM;
5976 }
5977 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5978 #endif
5979
5980 /*
5981 * Set up domains for cpus specified by the cpu_map.
5982 */
5983 for_each_cpu_mask(i, *cpu_map) {
5984 struct sched_domain *sd = NULL, *p;
5985 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5986
5987 cpus_and(nodemask, nodemask, *cpu_map);
5988
5989 #ifdef CONFIG_NUMA
5990 if (cpus_weight(*cpu_map) >
5991 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5992 sd = &per_cpu(allnodes_domains, i);
5993 *sd = SD_ALLNODES_INIT;
5994 sd->span = *cpu_map;
5995 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5996 p = sd;
5997 sd_allnodes = 1;
5998 } else
5999 p = NULL;
6000
6001 sd = &per_cpu(node_domains, i);
6002 *sd = SD_NODE_INIT;
6003 sd->span = sched_domain_node_span(cpu_to_node(i));
6004 sd->parent = p;
6005 if (p)
6006 p->child = sd;
6007 cpus_and(sd->span, sd->span, *cpu_map);
6008 #endif
6009
6010 p = sd;
6011 sd = &per_cpu(phys_domains, i);
6012 *sd = SD_CPU_INIT;
6013 sd->span = nodemask;
6014 sd->parent = p;
6015 if (p)
6016 p->child = sd;
6017 cpu_to_phys_group(i, cpu_map, &sd->groups);
6018
6019 #ifdef CONFIG_SCHED_MC
6020 p = sd;
6021 sd = &per_cpu(core_domains, i);
6022 *sd = SD_MC_INIT;
6023 sd->span = cpu_coregroup_map(i);
6024 cpus_and(sd->span, sd->span, *cpu_map);
6025 sd->parent = p;
6026 p->child = sd;
6027 cpu_to_core_group(i, cpu_map, &sd->groups);
6028 #endif
6029
6030 #ifdef CONFIG_SCHED_SMT
6031 p = sd;
6032 sd = &per_cpu(cpu_domains, i);
6033 *sd = SD_SIBLING_INIT;
6034 sd->span = cpu_sibling_map[i];
6035 cpus_and(sd->span, sd->span, *cpu_map);
6036 sd->parent = p;
6037 p->child = sd;
6038 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6039 #endif
6040 }
6041
6042 #ifdef CONFIG_SCHED_SMT
6043 /* Set up CPU (sibling) groups */
6044 for_each_cpu_mask(i, *cpu_map) {
6045 cpumask_t this_sibling_map = cpu_sibling_map[i];
6046 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6047 if (i != first_cpu(this_sibling_map))
6048 continue;
6049
6050 init_sched_build_groups(this_sibling_map, cpu_map,
6051 &cpu_to_cpu_group);
6052 }
6053 #endif
6054
6055 #ifdef CONFIG_SCHED_MC
6056 /* Set up multi-core groups */
6057 for_each_cpu_mask(i, *cpu_map) {
6058 cpumask_t this_core_map = cpu_coregroup_map(i);
6059 cpus_and(this_core_map, this_core_map, *cpu_map);
6060 if (i != first_cpu(this_core_map))
6061 continue;
6062 init_sched_build_groups(this_core_map, cpu_map,
6063 &cpu_to_core_group);
6064 }
6065 #endif
6066
6067 /* Set up physical groups */
6068 for (i = 0; i < MAX_NUMNODES; i++) {
6069 cpumask_t nodemask = node_to_cpumask(i);
6070
6071 cpus_and(nodemask, nodemask, *cpu_map);
6072 if (cpus_empty(nodemask))
6073 continue;
6074
6075 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6076 }
6077
6078 #ifdef CONFIG_NUMA
6079 /* Set up node groups */
6080 if (sd_allnodes)
6081 init_sched_build_groups(*cpu_map, cpu_map,
6082 &cpu_to_allnodes_group);
6083
6084 for (i = 0; i < MAX_NUMNODES; i++) {
6085 /* Set up node groups */
6086 struct sched_group *sg, *prev;
6087 cpumask_t nodemask = node_to_cpumask(i);
6088 cpumask_t domainspan;
6089 cpumask_t covered = CPU_MASK_NONE;
6090 int j;
6091
6092 cpus_and(nodemask, nodemask, *cpu_map);
6093 if (cpus_empty(nodemask)) {
6094 sched_group_nodes[i] = NULL;
6095 continue;
6096 }
6097
6098 domainspan = sched_domain_node_span(i);
6099 cpus_and(domainspan, domainspan, *cpu_map);
6100
6101 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6102 if (!sg) {
6103 printk(KERN_WARNING "Can not alloc domain group for "
6104 "node %d\n", i);
6105 goto error;
6106 }
6107 sched_group_nodes[i] = sg;
6108 for_each_cpu_mask(j, nodemask) {
6109 struct sched_domain *sd;
6110
6111 sd = &per_cpu(node_domains, j);
6112 sd->groups = sg;
6113 }
6114 sg->__cpu_power = 0;
6115 sg->cpumask = nodemask;
6116 sg->next = sg;
6117 cpus_or(covered, covered, nodemask);
6118 prev = sg;
6119
6120 for (j = 0; j < MAX_NUMNODES; j++) {
6121 cpumask_t tmp, notcovered;
6122 int n = (i + j) % MAX_NUMNODES;
6123
6124 cpus_complement(notcovered, covered);
6125 cpus_and(tmp, notcovered, *cpu_map);
6126 cpus_and(tmp, tmp, domainspan);
6127 if (cpus_empty(tmp))
6128 break;
6129
6130 nodemask = node_to_cpumask(n);
6131 cpus_and(tmp, tmp, nodemask);
6132 if (cpus_empty(tmp))
6133 continue;
6134
6135 sg = kmalloc_node(sizeof(struct sched_group),
6136 GFP_KERNEL, i);
6137 if (!sg) {
6138 printk(KERN_WARNING
6139 "Can not alloc domain group for node %d\n", j);
6140 goto error;
6141 }
6142 sg->__cpu_power = 0;
6143 sg->cpumask = tmp;
6144 sg->next = prev->next;
6145 cpus_or(covered, covered, tmp);
6146 prev->next = sg;
6147 prev = sg;
6148 }
6149 }
6150 #endif
6151
6152 /* Calculate CPU power for physical packages and nodes */
6153 #ifdef CONFIG_SCHED_SMT
6154 for_each_cpu_mask(i, *cpu_map) {
6155 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6156
6157 init_sched_groups_power(i, sd);
6158 }
6159 #endif
6160 #ifdef CONFIG_SCHED_MC
6161 for_each_cpu_mask(i, *cpu_map) {
6162 struct sched_domain *sd = &per_cpu(core_domains, i);
6163
6164 init_sched_groups_power(i, sd);
6165 }
6166 #endif
6167
6168 for_each_cpu_mask(i, *cpu_map) {
6169 struct sched_domain *sd = &per_cpu(phys_domains, i);
6170
6171 init_sched_groups_power(i, sd);
6172 }
6173
6174 #ifdef CONFIG_NUMA
6175 for (i = 0; i < MAX_NUMNODES; i++)
6176 init_numa_sched_groups_power(sched_group_nodes[i]);
6177
6178 if (sd_allnodes) {
6179 struct sched_group *sg;
6180
6181 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6182 init_numa_sched_groups_power(sg);
6183 }
6184 #endif
6185
6186 /* Attach the domains */
6187 for_each_cpu_mask(i, *cpu_map) {
6188 struct sched_domain *sd;
6189 #ifdef CONFIG_SCHED_SMT
6190 sd = &per_cpu(cpu_domains, i);
6191 #elif defined(CONFIG_SCHED_MC)
6192 sd = &per_cpu(core_domains, i);
6193 #else
6194 sd = &per_cpu(phys_domains, i);
6195 #endif
6196 cpu_attach_domain(sd, i);
6197 }
6198
6199 return 0;
6200
6201 #ifdef CONFIG_NUMA
6202 error:
6203 free_sched_groups(cpu_map);
6204 return -ENOMEM;
6205 #endif
6206 }
6207 /*
6208 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6209 */
6210 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6211 {
6212 cpumask_t cpu_default_map;
6213 int err;
6214
6215 /*
6216 * Setup mask for cpus without special case scheduling requirements.
6217 * For now this just excludes isolated cpus, but could be used to
6218 * exclude other special cases in the future.
6219 */
6220 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6221
6222 err = build_sched_domains(&cpu_default_map);
6223
6224 return err;
6225 }
6226
6227 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6228 {
6229 free_sched_groups(cpu_map);
6230 }
6231
6232 /*
6233 * Detach sched domains from a group of cpus specified in cpu_map
6234 * These cpus will now be attached to the NULL domain
6235 */
6236 static void detach_destroy_domains(const cpumask_t *cpu_map)
6237 {
6238 int i;
6239
6240 for_each_cpu_mask(i, *cpu_map)
6241 cpu_attach_domain(NULL, i);
6242 synchronize_sched();
6243 arch_destroy_sched_domains(cpu_map);
6244 }
6245
6246 /*
6247 * Partition sched domains as specified by the cpumasks below.
6248 * This attaches all cpus from the cpumasks to the NULL domain,
6249 * waits for a RCU quiescent period, recalculates sched
6250 * domain information and then attaches them back to the
6251 * correct sched domains
6252 * Call with hotplug lock held
6253 */
6254 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6255 {
6256 cpumask_t change_map;
6257 int err = 0;
6258
6259 cpus_and(*partition1, *partition1, cpu_online_map);
6260 cpus_and(*partition2, *partition2, cpu_online_map);
6261 cpus_or(change_map, *partition1, *partition2);
6262
6263 /* Detach sched domains from all of the affected cpus */
6264 detach_destroy_domains(&change_map);
6265 if (!cpus_empty(*partition1))
6266 err = build_sched_domains(partition1);
6267 if (!err && !cpus_empty(*partition2))
6268 err = build_sched_domains(partition2);
6269
6270 return err;
6271 }
6272
6273 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6274 static int arch_reinit_sched_domains(void)
6275 {
6276 int err;
6277
6278 mutex_lock(&sched_hotcpu_mutex);
6279 detach_destroy_domains(&cpu_online_map);
6280 err = arch_init_sched_domains(&cpu_online_map);
6281 mutex_unlock(&sched_hotcpu_mutex);
6282
6283 return err;
6284 }
6285
6286 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6287 {
6288 int ret;
6289
6290 if (buf[0] != '0' && buf[0] != '1')
6291 return -EINVAL;
6292
6293 if (smt)
6294 sched_smt_power_savings = (buf[0] == '1');
6295 else
6296 sched_mc_power_savings = (buf[0] == '1');
6297
6298 ret = arch_reinit_sched_domains();
6299
6300 return ret ? ret : count;
6301 }
6302
6303 #ifdef CONFIG_SCHED_MC
6304 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6305 {
6306 return sprintf(page, "%u\n", sched_mc_power_savings);
6307 }
6308 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6309 const char *buf, size_t count)
6310 {
6311 return sched_power_savings_store(buf, count, 0);
6312 }
6313 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6314 sched_mc_power_savings_store);
6315 #endif
6316
6317 #ifdef CONFIG_SCHED_SMT
6318 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6319 {
6320 return sprintf(page, "%u\n", sched_smt_power_savings);
6321 }
6322 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6323 const char *buf, size_t count)
6324 {
6325 return sched_power_savings_store(buf, count, 1);
6326 }
6327 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6328 sched_smt_power_savings_store);
6329 #endif
6330
6331 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6332 {
6333 int err = 0;
6334
6335 #ifdef CONFIG_SCHED_SMT
6336 if (smt_capable())
6337 err = sysfs_create_file(&cls->kset.kobj,
6338 &attr_sched_smt_power_savings.attr);
6339 #endif
6340 #ifdef CONFIG_SCHED_MC
6341 if (!err && mc_capable())
6342 err = sysfs_create_file(&cls->kset.kobj,
6343 &attr_sched_mc_power_savings.attr);
6344 #endif
6345 return err;
6346 }
6347 #endif
6348
6349 /*
6350 * Force a reinitialization of the sched domains hierarchy. The domains
6351 * and groups cannot be updated in place without racing with the balancing
6352 * code, so we temporarily attach all running cpus to the NULL domain
6353 * which will prevent rebalancing while the sched domains are recalculated.
6354 */
6355 static int update_sched_domains(struct notifier_block *nfb,
6356 unsigned long action, void *hcpu)
6357 {
6358 switch (action) {
6359 case CPU_UP_PREPARE:
6360 case CPU_UP_PREPARE_FROZEN:
6361 case CPU_DOWN_PREPARE:
6362 case CPU_DOWN_PREPARE_FROZEN:
6363 detach_destroy_domains(&cpu_online_map);
6364 return NOTIFY_OK;
6365
6366 case CPU_UP_CANCELED:
6367 case CPU_UP_CANCELED_FROZEN:
6368 case CPU_DOWN_FAILED:
6369 case CPU_DOWN_FAILED_FROZEN:
6370 case CPU_ONLINE:
6371 case CPU_ONLINE_FROZEN:
6372 case CPU_DEAD:
6373 case CPU_DEAD_FROZEN:
6374 /*
6375 * Fall through and re-initialise the domains.
6376 */
6377 break;
6378 default:
6379 return NOTIFY_DONE;
6380 }
6381
6382 /* The hotplug lock is already held by cpu_up/cpu_down */
6383 arch_init_sched_domains(&cpu_online_map);
6384
6385 return NOTIFY_OK;
6386 }
6387
6388 void __init sched_init_smp(void)
6389 {
6390 cpumask_t non_isolated_cpus;
6391
6392 mutex_lock(&sched_hotcpu_mutex);
6393 arch_init_sched_domains(&cpu_online_map);
6394 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6395 if (cpus_empty(non_isolated_cpus))
6396 cpu_set(smp_processor_id(), non_isolated_cpus);
6397 mutex_unlock(&sched_hotcpu_mutex);
6398 /* XXX: Theoretical race here - CPU may be hotplugged now */
6399 hotcpu_notifier(update_sched_domains, 0);
6400
6401 init_sched_domain_sysctl();
6402
6403 /* Move init over to a non-isolated CPU */
6404 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6405 BUG();
6406 }
6407 #else
6408 void __init sched_init_smp(void)
6409 {
6410 }
6411 #endif /* CONFIG_SMP */
6412
6413 int in_sched_functions(unsigned long addr)
6414 {
6415 /* Linker adds these: start and end of __sched functions */
6416 extern char __sched_text_start[], __sched_text_end[];
6417
6418 return in_lock_functions(addr) ||
6419 (addr >= (unsigned long)__sched_text_start
6420 && addr < (unsigned long)__sched_text_end);
6421 }
6422
6423 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6424 {
6425 cfs_rq->tasks_timeline = RB_ROOT;
6426 cfs_rq->fair_clock = 1;
6427 #ifdef CONFIG_FAIR_GROUP_SCHED
6428 cfs_rq->rq = rq;
6429 #endif
6430 }
6431
6432 void __init sched_init(void)
6433 {
6434 int highest_cpu = 0;
6435 int i, j;
6436
6437 /*
6438 * Link up the scheduling class hierarchy:
6439 */
6440 rt_sched_class.next = &fair_sched_class;
6441 fair_sched_class.next = &idle_sched_class;
6442 idle_sched_class.next = NULL;
6443
6444 for_each_possible_cpu(i) {
6445 struct rt_prio_array *array;
6446 struct rq *rq;
6447
6448 rq = cpu_rq(i);
6449 spin_lock_init(&rq->lock);
6450 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6451 rq->nr_running = 0;
6452 rq->clock = 1;
6453 init_cfs_rq(&rq->cfs, rq);
6454 #ifdef CONFIG_FAIR_GROUP_SCHED
6455 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6456 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6457 #endif
6458
6459 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6460 rq->cpu_load[j] = 0;
6461 #ifdef CONFIG_SMP
6462 rq->sd = NULL;
6463 rq->active_balance = 0;
6464 rq->next_balance = jiffies;
6465 rq->push_cpu = 0;
6466 rq->cpu = i;
6467 rq->migration_thread = NULL;
6468 INIT_LIST_HEAD(&rq->migration_queue);
6469 #endif
6470 atomic_set(&rq->nr_iowait, 0);
6471
6472 array = &rq->rt.active;
6473 for (j = 0; j < MAX_RT_PRIO; j++) {
6474 INIT_LIST_HEAD(array->queue + j);
6475 __clear_bit(j, array->bitmap);
6476 }
6477 highest_cpu = i;
6478 /* delimiter for bitsearch: */
6479 __set_bit(MAX_RT_PRIO, array->bitmap);
6480 }
6481
6482 set_load_weight(&init_task);
6483
6484 #ifdef CONFIG_PREEMPT_NOTIFIERS
6485 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6486 #endif
6487
6488 #ifdef CONFIG_SMP
6489 nr_cpu_ids = highest_cpu + 1;
6490 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6491 #endif
6492
6493 #ifdef CONFIG_RT_MUTEXES
6494 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6495 #endif
6496
6497 /*
6498 * The boot idle thread does lazy MMU switching as well:
6499 */
6500 atomic_inc(&init_mm.mm_count);
6501 enter_lazy_tlb(&init_mm, current);
6502
6503 /*
6504 * Make us the idle thread. Technically, schedule() should not be
6505 * called from this thread, however somewhere below it might be,
6506 * but because we are the idle thread, we just pick up running again
6507 * when this runqueue becomes "idle".
6508 */
6509 init_idle(current, smp_processor_id());
6510 /*
6511 * During early bootup we pretend to be a normal task:
6512 */
6513 current->sched_class = &fair_sched_class;
6514 }
6515
6516 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6517 void __might_sleep(char *file, int line)
6518 {
6519 #ifdef in_atomic
6520 static unsigned long prev_jiffy; /* ratelimiting */
6521
6522 if ((in_atomic() || irqs_disabled()) &&
6523 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6524 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6525 return;
6526 prev_jiffy = jiffies;
6527 printk(KERN_ERR "BUG: sleeping function called from invalid"
6528 " context at %s:%d\n", file, line);
6529 printk("in_atomic():%d, irqs_disabled():%d\n",
6530 in_atomic(), irqs_disabled());
6531 debug_show_held_locks(current);
6532 if (irqs_disabled())
6533 print_irqtrace_events(current);
6534 dump_stack();
6535 }
6536 #endif
6537 }
6538 EXPORT_SYMBOL(__might_sleep);
6539 #endif
6540
6541 #ifdef CONFIG_MAGIC_SYSRQ
6542 void normalize_rt_tasks(void)
6543 {
6544 struct task_struct *g, *p;
6545 unsigned long flags;
6546 struct rq *rq;
6547 int on_rq;
6548
6549 read_lock_irq(&tasklist_lock);
6550 do_each_thread(g, p) {
6551 p->se.fair_key = 0;
6552 p->se.wait_runtime = 0;
6553 p->se.exec_start = 0;
6554 p->se.wait_start_fair = 0;
6555 p->se.sleep_start_fair = 0;
6556 #ifdef CONFIG_SCHEDSTATS
6557 p->se.wait_start = 0;
6558 p->se.sleep_start = 0;
6559 p->se.block_start = 0;
6560 #endif
6561 task_rq(p)->cfs.fair_clock = 0;
6562 task_rq(p)->clock = 0;
6563
6564 if (!rt_task(p)) {
6565 /*
6566 * Renice negative nice level userspace
6567 * tasks back to 0:
6568 */
6569 if (TASK_NICE(p) < 0 && p->mm)
6570 set_user_nice(p, 0);
6571 continue;
6572 }
6573
6574 spin_lock_irqsave(&p->pi_lock, flags);
6575 rq = __task_rq_lock(p);
6576 #ifdef CONFIG_SMP
6577 /*
6578 * Do not touch the migration thread:
6579 */
6580 if (p == rq->migration_thread)
6581 goto out_unlock;
6582 #endif
6583
6584 update_rq_clock(rq);
6585 on_rq = p->se.on_rq;
6586 if (on_rq)
6587 deactivate_task(rq, p, 0);
6588 __setscheduler(rq, p, SCHED_NORMAL, 0);
6589 if (on_rq) {
6590 activate_task(rq, p, 0);
6591 resched_task(rq->curr);
6592 }
6593 #ifdef CONFIG_SMP
6594 out_unlock:
6595 #endif
6596 __task_rq_unlock(rq);
6597 spin_unlock_irqrestore(&p->pi_lock, flags);
6598 } while_each_thread(g, p);
6599
6600 read_unlock_irq(&tasklist_lock);
6601 }
6602
6603 #endif /* CONFIG_MAGIC_SYSRQ */
6604
6605 #ifdef CONFIG_IA64
6606 /*
6607 * These functions are only useful for the IA64 MCA handling.
6608 *
6609 * They can only be called when the whole system has been
6610 * stopped - every CPU needs to be quiescent, and no scheduling
6611 * activity can take place. Using them for anything else would
6612 * be a serious bug, and as a result, they aren't even visible
6613 * under any other configuration.
6614 */
6615
6616 /**
6617 * curr_task - return the current task for a given cpu.
6618 * @cpu: the processor in question.
6619 *
6620 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6621 */
6622 struct task_struct *curr_task(int cpu)
6623 {
6624 return cpu_curr(cpu);
6625 }
6626
6627 /**
6628 * set_curr_task - set the current task for a given cpu.
6629 * @cpu: the processor in question.
6630 * @p: the task pointer to set.
6631 *
6632 * Description: This function must only be used when non-maskable interrupts
6633 * are serviced on a separate stack. It allows the architecture to switch the
6634 * notion of the current task on a cpu in a non-blocking manner. This function
6635 * must be called with all CPU's synchronized, and interrupts disabled, the
6636 * and caller must save the original value of the current task (see
6637 * curr_task() above) and restore that value before reenabling interrupts and
6638 * re-starting the system.
6639 *
6640 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6641 */
6642 void set_curr_task(int cpu, struct task_struct *p)
6643 {
6644 cpu_curr(cpu) = p;
6645 }
6646
6647 #endif
This page took 0.231782 seconds and 6 git commands to generate.