sched: Fix TASK_WAKING & loadaverage breakage
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
545
546 struct cfs_rq cfs;
547 struct rt_rq rt;
548
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
568
569 u64 clock;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
585
586 unsigned long avg_load_per_task;
587
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
590
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(void)
685 {
686 int cpu = get_cpu();
687 struct rq *rq = cpu_rq(cpu);
688 int ret;
689
690 ret = spin_is_locked(&rq->lock);
691 put_cpu();
692 return ret;
693 }
694
695 /*
696 * Debugging: various feature bits
697 */
698
699 #define SCHED_FEAT(name, enabled) \
700 __SCHED_FEAT_##name ,
701
702 enum {
703 #include "sched_features.h"
704 };
705
706 #undef SCHED_FEAT
707
708 #define SCHED_FEAT(name, enabled) \
709 (1UL << __SCHED_FEAT_##name) * enabled |
710
711 const_debug unsigned int sysctl_sched_features =
712 #include "sched_features.h"
713 0;
714
715 #undef SCHED_FEAT
716
717 #ifdef CONFIG_SCHED_DEBUG
718 #define SCHED_FEAT(name, enabled) \
719 #name ,
720
721 static __read_mostly char *sched_feat_names[] = {
722 #include "sched_features.h"
723 NULL
724 };
725
726 #undef SCHED_FEAT
727
728 static int sched_feat_show(struct seq_file *m, void *v)
729 {
730 int i;
731
732 for (i = 0; sched_feat_names[i]; i++) {
733 if (!(sysctl_sched_features & (1UL << i)))
734 seq_puts(m, "NO_");
735 seq_printf(m, "%s ", sched_feat_names[i]);
736 }
737 seq_puts(m, "\n");
738
739 return 0;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745 {
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
759 if (strncmp(buf, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782 }
783
784 static int sched_feat_open(struct inode *inode, struct file *filp)
785 {
786 return single_open(filp, sched_feat_show, NULL);
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .write = sched_feat_write,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
795 };
796
797 static __init int sched_init_debug(void)
798 {
799 debugfs_create_file("sched_features", 0644, NULL, NULL,
800 &sched_feat_fops);
801
802 return 0;
803 }
804 late_initcall(sched_init_debug);
805
806 #endif
807
808 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809
810 /*
811 * Number of tasks to iterate in a single balance run.
812 * Limited because this is done with IRQs disabled.
813 */
814 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815
816 /*
817 * ratelimit for updating the group shares.
818 * default: 0.25ms
819 */
820 unsigned int sysctl_sched_shares_ratelimit = 250000;
821
822 /*
823 * Inject some fuzzyness into changing the per-cpu group shares
824 * this avoids remote rq-locks at the expense of fairness.
825 * default: 4
826 */
827 unsigned int sysctl_sched_shares_thresh = 4;
828
829 /*
830 * period over which we average the RT time consumption, measured
831 * in ms.
832 *
833 * default: 1s
834 */
835 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
836
837 /*
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
840 */
841 unsigned int sysctl_sched_rt_period = 1000000;
842
843 static __read_mostly int scheduler_running;
844
845 /*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849 int sysctl_sched_rt_runtime = 950000;
850
851 static inline u64 global_rt_period(void)
852 {
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 }
855
856 static inline u64 global_rt_runtime(void)
857 {
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 }
863
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
870
871 static inline int task_current(struct rq *rq, struct task_struct *p)
872 {
873 return rq->curr == p;
874 }
875
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
878 {
879 return task_current(rq, p);
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 }
885
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 {
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
899 spin_unlock_irq(&rq->lock);
900 }
901
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
904 {
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
910 }
911
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
927 }
928
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 {
931 #ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
943 }
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945
946 /*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
952 {
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
959 }
960 }
961
962 /*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
966 */
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
969 {
970 struct rq *rq;
971
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980 }
981
982 void task_rq_unlock_wait(struct task_struct *p)
983 {
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988 }
989
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
992 {
993 spin_unlock(&rq->lock);
994 }
995
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
998 {
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000 }
1001
1002 /*
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1004 */
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1007 {
1008 struct rq *rq;
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015 }
1016
1017 #ifdef CONFIG_SCHED_HRTICK
1018 /*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
1028
1029 /*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034 static inline int hrtick_enabled(struct rq *rq)
1035 {
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041 }
1042
1043 static void hrtick_clear(struct rq *rq)
1044 {
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047 }
1048
1049 /*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 {
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065 }
1066
1067 #ifdef CONFIG_SMP
1068 /*
1069 * called from hardirq (IPI) context
1070 */
1071 static void __hrtick_start(void *arg)
1072 {
1073 struct rq *rq = arg;
1074
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1079 }
1080
1081 /*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086 static void hrtick_start(struct rq *rq, u64 delay)
1087 {
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090
1091 hrtimer_set_expires(timer, time);
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1097 rq->hrtick_csd_pending = 1;
1098 }
1099 }
1100
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 {
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118 }
1119
1120 static __init void init_hrtick(void)
1121 {
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123 }
1124 #else
1125 /*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130 static void hrtick_start(struct rq *rq, u64 delay)
1131 {
1132 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1133 HRTIMER_MODE_REL_PINNED, 0);
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif /* CONFIG_SMP */
1140
1141 static void init_rq_hrtick(struct rq *rq)
1142 {
1143 #ifdef CONFIG_SMP
1144 rq->hrtick_csd_pending = 0;
1145
1146 rq->hrtick_csd.flags = 0;
1147 rq->hrtick_csd.func = __hrtick_start;
1148 rq->hrtick_csd.info = rq;
1149 #endif
1150
1151 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1152 rq->hrtick_timer.function = hrtick;
1153 }
1154 #else /* CONFIG_SCHED_HRTICK */
1155 static inline void hrtick_clear(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_rq_hrtick(struct rq *rq)
1160 {
1161 }
1162
1163 static inline void init_hrtick(void)
1164 {
1165 }
1166 #endif /* CONFIG_SCHED_HRTICK */
1167
1168 /*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175 #ifdef CONFIG_SMP
1176
1177 #ifndef tsk_is_polling
1178 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179 #endif
1180
1181 static void resched_task(struct task_struct *p)
1182 {
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
1187 if (test_tsk_need_resched(p))
1188 return;
1189
1190 set_tsk_need_resched(p);
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200 }
1201
1202 static void resched_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211 }
1212
1213 #ifdef CONFIG_NO_HZ
1214 /*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224 void wake_up_idle_cpu(int cpu)
1225 {
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_need_resched(rq->idle);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252 }
1253 #endif /* CONFIG_NO_HZ */
1254
1255 static u64 sched_avg_period(void)
1256 {
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258 }
1259
1260 static void sched_avg_update(struct rq *rq)
1261 {
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268 }
1269
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 {
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274 }
1275
1276 #else /* !CONFIG_SMP */
1277 static void resched_task(struct task_struct *p)
1278 {
1279 assert_spin_locked(&task_rq(p)->lock);
1280 set_tsk_need_resched(p);
1281 }
1282
1283 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 /* Used instead of source_load when we know the type == 0 */
1497 static unsigned long weighted_cpuload(const int cpu)
1498 {
1499 return cpu_rq(cpu)->load.weight;
1500 }
1501
1502 /*
1503 * Return a low guess at the load of a migration-source cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 *
1506 * We want to under-estimate the load of migration sources, to
1507 * balance conservatively.
1508 */
1509 static unsigned long source_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return min(rq->cpu_load[type-1], total);
1518 }
1519
1520 /*
1521 * Return a high guess at the load of a migration-target cpu weighted
1522 * according to the scheduling class and "nice" value.
1523 */
1524 static unsigned long target_load(int cpu, int type)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return max(rq->cpu_load[type-1], total);
1533 }
1534
1535 static struct sched_group *group_of(int cpu)
1536 {
1537 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538
1539 if (!sd)
1540 return NULL;
1541
1542 return sd->groups;
1543 }
1544
1545 static unsigned long power_of(int cpu)
1546 {
1547 struct sched_group *group = group_of(cpu);
1548
1549 if (!group)
1550 return SCHED_LOAD_SCALE;
1551
1552 return group->cpu_power;
1553 }
1554
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1558 {
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1564 else
1565 rq->avg_load_per_task = 0;
1566
1567 return rq->avg_load_per_task;
1568 }
1569
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1571
1572 struct update_shares_data {
1573 unsigned long rq_weight[NR_CPUS];
1574 };
1575
1576 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1577
1578 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1579
1580 /*
1581 * Calculate and set the cpu's group shares.
1582 */
1583 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1584 unsigned long sd_shares,
1585 unsigned long sd_rq_weight,
1586 struct update_shares_data *usd)
1587 {
1588 unsigned long shares, rq_weight;
1589 int boost = 0;
1590
1591 rq_weight = usd->rq_weight[cpu];
1592 if (!rq_weight) {
1593 boost = 1;
1594 rq_weight = NICE_0_LOAD;
1595 }
1596
1597 /*
1598 * \Sum_j shares_j * rq_weight_i
1599 * shares_i = -----------------------------
1600 * \Sum_j rq_weight_j
1601 */
1602 shares = (sd_shares * rq_weight) / sd_rq_weight;
1603 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1604
1605 if (abs(shares - tg->se[cpu]->load.weight) >
1606 sysctl_sched_shares_thresh) {
1607 struct rq *rq = cpu_rq(cpu);
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&rq->lock, flags);
1611 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1612 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1613 __set_se_shares(tg->se[cpu], shares);
1614 spin_unlock_irqrestore(&rq->lock, flags);
1615 }
1616 }
1617
1618 /*
1619 * Re-compute the task group their per cpu shares over the given domain.
1620 * This needs to be done in a bottom-up fashion because the rq weight of a
1621 * parent group depends on the shares of its child groups.
1622 */
1623 static int tg_shares_up(struct task_group *tg, void *data)
1624 {
1625 unsigned long weight, rq_weight = 0, shares = 0;
1626 struct update_shares_data *usd;
1627 struct sched_domain *sd = data;
1628 unsigned long flags;
1629 int i;
1630
1631 if (!tg->se[0])
1632 return 0;
1633
1634 local_irq_save(flags);
1635 usd = &__get_cpu_var(update_shares_data);
1636
1637 for_each_cpu(i, sched_domain_span(sd)) {
1638 weight = tg->cfs_rq[i]->load.weight;
1639 usd->rq_weight[i] = weight;
1640
1641 /*
1642 * If there are currently no tasks on the cpu pretend there
1643 * is one of average load so that when a new task gets to
1644 * run here it will not get delayed by group starvation.
1645 */
1646 if (!weight)
1647 weight = NICE_0_LOAD;
1648
1649 rq_weight += weight;
1650 shares += tg->cfs_rq[i]->shares;
1651 }
1652
1653 if ((!shares && rq_weight) || shares > tg->shares)
1654 shares = tg->shares;
1655
1656 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1657 shares = tg->shares;
1658
1659 for_each_cpu(i, sched_domain_span(sd))
1660 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1661
1662 local_irq_restore(flags);
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Compute the cpu's hierarchical load factor for each task group.
1669 * This needs to be done in a top-down fashion because the load of a child
1670 * group is a fraction of its parents load.
1671 */
1672 static int tg_load_down(struct task_group *tg, void *data)
1673 {
1674 unsigned long load;
1675 long cpu = (long)data;
1676
1677 if (!tg->parent) {
1678 load = cpu_rq(cpu)->load.weight;
1679 } else {
1680 load = tg->parent->cfs_rq[cpu]->h_load;
1681 load *= tg->cfs_rq[cpu]->shares;
1682 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1683 }
1684
1685 tg->cfs_rq[cpu]->h_load = load;
1686
1687 return 0;
1688 }
1689
1690 static void update_shares(struct sched_domain *sd)
1691 {
1692 s64 elapsed;
1693 u64 now;
1694
1695 if (root_task_group_empty())
1696 return;
1697
1698 now = cpu_clock(raw_smp_processor_id());
1699 elapsed = now - sd->last_update;
1700
1701 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1702 sd->last_update = now;
1703 walk_tg_tree(tg_nop, tg_shares_up, sd);
1704 }
1705 }
1706
1707 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1708 {
1709 if (root_task_group_empty())
1710 return;
1711
1712 spin_unlock(&rq->lock);
1713 update_shares(sd);
1714 spin_lock(&rq->lock);
1715 }
1716
1717 static void update_h_load(long cpu)
1718 {
1719 if (root_task_group_empty())
1720 return;
1721
1722 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1723 }
1724
1725 #else
1726
1727 static inline void update_shares(struct sched_domain *sd)
1728 {
1729 }
1730
1731 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1732 {
1733 }
1734
1735 #endif
1736
1737 #ifdef CONFIG_PREEMPT
1738
1739 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1740
1741 /*
1742 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1743 * way at the expense of forcing extra atomic operations in all
1744 * invocations. This assures that the double_lock is acquired using the
1745 * same underlying policy as the spinlock_t on this architecture, which
1746 * reduces latency compared to the unfair variant below. However, it
1747 * also adds more overhead and therefore may reduce throughput.
1748 */
1749 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1750 __releases(this_rq->lock)
1751 __acquires(busiest->lock)
1752 __acquires(this_rq->lock)
1753 {
1754 spin_unlock(&this_rq->lock);
1755 double_rq_lock(this_rq, busiest);
1756
1757 return 1;
1758 }
1759
1760 #else
1761 /*
1762 * Unfair double_lock_balance: Optimizes throughput at the expense of
1763 * latency by eliminating extra atomic operations when the locks are
1764 * already in proper order on entry. This favors lower cpu-ids and will
1765 * grant the double lock to lower cpus over higher ids under contention,
1766 * regardless of entry order into the function.
1767 */
1768 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1769 __releases(this_rq->lock)
1770 __acquires(busiest->lock)
1771 __acquires(this_rq->lock)
1772 {
1773 int ret = 0;
1774
1775 if (unlikely(!spin_trylock(&busiest->lock))) {
1776 if (busiest < this_rq) {
1777 spin_unlock(&this_rq->lock);
1778 spin_lock(&busiest->lock);
1779 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809 #endif
1810
1811 #ifdef CONFIG_FAIR_GROUP_SCHED
1812 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813 {
1814 #ifdef CONFIG_SMP
1815 cfs_rq->shares = shares;
1816 #endif
1817 }
1818 #endif
1819
1820 static void calc_load_account_active(struct rq *this_rq);
1821
1822 #include "sched_stats.h"
1823 #include "sched_idletask.c"
1824 #include "sched_fair.c"
1825 #include "sched_rt.c"
1826 #ifdef CONFIG_SCHED_DEBUG
1827 # include "sched_debug.c"
1828 #endif
1829
1830 #define sched_class_highest (&rt_sched_class)
1831 #define for_each_class(class) \
1832 for (class = sched_class_highest; class; class = class->next)
1833
1834 static void inc_nr_running(struct rq *rq)
1835 {
1836 rq->nr_running++;
1837 }
1838
1839 static void dec_nr_running(struct rq *rq)
1840 {
1841 rq->nr_running--;
1842 }
1843
1844 static void set_load_weight(struct task_struct *p)
1845 {
1846 if (task_has_rt_policy(p)) {
1847 p->se.load.weight = prio_to_weight[0] * 2;
1848 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1849 return;
1850 }
1851
1852 /*
1853 * SCHED_IDLE tasks get minimal weight:
1854 */
1855 if (p->policy == SCHED_IDLE) {
1856 p->se.load.weight = WEIGHT_IDLEPRIO;
1857 p->se.load.inv_weight = WMULT_IDLEPRIO;
1858 return;
1859 }
1860
1861 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1862 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1863 }
1864
1865 static void update_avg(u64 *avg, u64 sample)
1866 {
1867 s64 diff = sample - *avg;
1868 *avg += diff >> 3;
1869 }
1870
1871 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1872 {
1873 if (wakeup)
1874 p->se.start_runtime = p->se.sum_exec_runtime;
1875
1876 sched_info_queued(p);
1877 p->sched_class->enqueue_task(rq, p, wakeup);
1878 p->se.on_rq = 1;
1879 }
1880
1881 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1882 {
1883 if (sleep) {
1884 if (p->se.last_wakeup) {
1885 update_avg(&p->se.avg_overlap,
1886 p->se.sum_exec_runtime - p->se.last_wakeup);
1887 p->se.last_wakeup = 0;
1888 } else {
1889 update_avg(&p->se.avg_wakeup,
1890 sysctl_sched_wakeup_granularity);
1891 }
1892 }
1893
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, sleep);
1896 p->se.on_rq = 0;
1897 }
1898
1899 /*
1900 * __normal_prio - return the priority that is based on the static prio
1901 */
1902 static inline int __normal_prio(struct task_struct *p)
1903 {
1904 return p->static_prio;
1905 }
1906
1907 /*
1908 * Calculate the expected normal priority: i.e. priority
1909 * without taking RT-inheritance into account. Might be
1910 * boosted by interactivity modifiers. Changes upon fork,
1911 * setprio syscalls, and whenever the interactivity
1912 * estimator recalculates.
1913 */
1914 static inline int normal_prio(struct task_struct *p)
1915 {
1916 int prio;
1917
1918 if (task_has_rt_policy(p))
1919 prio = MAX_RT_PRIO-1 - p->rt_priority;
1920 else
1921 prio = __normal_prio(p);
1922 return prio;
1923 }
1924
1925 /*
1926 * Calculate the current priority, i.e. the priority
1927 * taken into account by the scheduler. This value might
1928 * be boosted by RT tasks, or might be boosted by
1929 * interactivity modifiers. Will be RT if the task got
1930 * RT-boosted. If not then it returns p->normal_prio.
1931 */
1932 static int effective_prio(struct task_struct *p)
1933 {
1934 p->normal_prio = normal_prio(p);
1935 /*
1936 * If we are RT tasks or we were boosted to RT priority,
1937 * keep the priority unchanged. Otherwise, update priority
1938 * to the normal priority:
1939 */
1940 if (!rt_prio(p->prio))
1941 return p->normal_prio;
1942 return p->prio;
1943 }
1944
1945 /*
1946 * activate_task - move a task to the runqueue.
1947 */
1948 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1949 {
1950 if (task_contributes_to_load(p))
1951 rq->nr_uninterruptible--;
1952
1953 enqueue_task(rq, p, wakeup);
1954 inc_nr_running(rq);
1955 }
1956
1957 /*
1958 * deactivate_task - remove a task from the runqueue.
1959 */
1960 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1961 {
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible++;
1964
1965 dequeue_task(rq, p, sleep);
1966 dec_nr_running(rq);
1967 }
1968
1969 /**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
1973 inline int task_curr(const struct task_struct *p)
1974 {
1975 return cpu_curr(task_cpu(p)) == p;
1976 }
1977
1978 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1979 {
1980 set_task_rq(p, cpu);
1981 #ifdef CONFIG_SMP
1982 /*
1983 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1984 * successfuly executed on another CPU. We must ensure that updates of
1985 * per-task data have been completed by this moment.
1986 */
1987 smp_wmb();
1988 task_thread_info(p)->cpu = cpu;
1989 #endif
1990 }
1991
1992 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1993 const struct sched_class *prev_class,
1994 int oldprio, int running)
1995 {
1996 if (prev_class != p->sched_class) {
1997 if (prev_class->switched_from)
1998 prev_class->switched_from(rq, p, running);
1999 p->sched_class->switched_to(rq, p, running);
2000 } else
2001 p->sched_class->prio_changed(rq, p, oldprio, running);
2002 }
2003
2004 #ifdef CONFIG_SMP
2005 /*
2006 * Is this task likely cache-hot:
2007 */
2008 static int
2009 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010 {
2011 s64 delta;
2012
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
2016 if (sched_feat(CACHE_HOT_BUDDY) &&
2017 (&p->se == cfs_rq_of(&p->se)->next ||
2018 &p->se == cfs_rq_of(&p->se)->last))
2019 return 1;
2020
2021 if (p->sched_class != &fair_sched_class)
2022 return 0;
2023
2024 if (sysctl_sched_migration_cost == -1)
2025 return 1;
2026 if (sysctl_sched_migration_cost == 0)
2027 return 0;
2028
2029 delta = now - p->se.exec_start;
2030
2031 return delta < (s64)sysctl_sched_migration_cost;
2032 }
2033
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 int old_cpu = task_cpu(p);
2038 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2039 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2040 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2041 u64 clock_offset;
2042
2043 clock_offset = old_rq->clock - new_rq->clock;
2044
2045 trace_sched_migrate_task(p, new_cpu);
2046
2047 #ifdef CONFIG_SCHEDSTATS
2048 if (p->se.wait_start)
2049 p->se.wait_start -= clock_offset;
2050 if (p->se.sleep_start)
2051 p->se.sleep_start -= clock_offset;
2052 if (p->se.block_start)
2053 p->se.block_start -= clock_offset;
2054 #endif
2055 if (old_cpu != new_cpu) {
2056 p->se.nr_migrations++;
2057 new_rq->nr_migrations_in++;
2058 #ifdef CONFIG_SCHEDSTATS
2059 if (task_hot(p, old_rq->clock, NULL))
2060 schedstat_inc(p, se.nr_forced2_migrations);
2061 #endif
2062 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2063 1, 1, NULL, 0);
2064 }
2065 p->se.vruntime -= old_cfsrq->min_vruntime -
2066 new_cfsrq->min_vruntime;
2067
2068 __set_task_cpu(p, new_cpu);
2069 }
2070
2071 struct migration_req {
2072 struct list_head list;
2073
2074 struct task_struct *task;
2075 int dest_cpu;
2076
2077 struct completion done;
2078 };
2079
2080 /*
2081 * The task's runqueue lock must be held.
2082 * Returns true if you have to wait for migration thread.
2083 */
2084 static int
2085 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2086 {
2087 struct rq *rq = task_rq(p);
2088
2089 /*
2090 * If the task is not on a runqueue (and not running), then
2091 * it is sufficient to simply update the task's cpu field.
2092 */
2093 if (!p->se.on_rq && !task_running(rq, p)) {
2094 set_task_cpu(p, dest_cpu);
2095 return 0;
2096 }
2097
2098 init_completion(&req->done);
2099 req->task = p;
2100 req->dest_cpu = dest_cpu;
2101 list_add(&req->list, &rq->migration_queue);
2102
2103 return 1;
2104 }
2105
2106 /*
2107 * wait_task_context_switch - wait for a thread to complete at least one
2108 * context switch.
2109 *
2110 * @p must not be current.
2111 */
2112 void wait_task_context_switch(struct task_struct *p)
2113 {
2114 unsigned long nvcsw, nivcsw, flags;
2115 int running;
2116 struct rq *rq;
2117
2118 nvcsw = p->nvcsw;
2119 nivcsw = p->nivcsw;
2120 for (;;) {
2121 /*
2122 * The runqueue is assigned before the actual context
2123 * switch. We need to take the runqueue lock.
2124 *
2125 * We could check initially without the lock but it is
2126 * very likely that we need to take the lock in every
2127 * iteration.
2128 */
2129 rq = task_rq_lock(p, &flags);
2130 running = task_running(rq, p);
2131 task_rq_unlock(rq, &flags);
2132
2133 if (likely(!running))
2134 break;
2135 /*
2136 * The switch count is incremented before the actual
2137 * context switch. We thus wait for two switches to be
2138 * sure at least one completed.
2139 */
2140 if ((p->nvcsw - nvcsw) > 1)
2141 break;
2142 if ((p->nivcsw - nivcsw) > 1)
2143 break;
2144
2145 cpu_relax();
2146 }
2147 }
2148
2149 /*
2150 * wait_task_inactive - wait for a thread to unschedule.
2151 *
2152 * If @match_state is nonzero, it's the @p->state value just checked and
2153 * not expected to change. If it changes, i.e. @p might have woken up,
2154 * then return zero. When we succeed in waiting for @p to be off its CPU,
2155 * we return a positive number (its total switch count). If a second call
2156 * a short while later returns the same number, the caller can be sure that
2157 * @p has remained unscheduled the whole time.
2158 *
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2164 */
2165 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2166 {
2167 unsigned long flags;
2168 int running, on_rq;
2169 unsigned long ncsw;
2170 struct rq *rq;
2171
2172 for (;;) {
2173 /*
2174 * We do the initial early heuristics without holding
2175 * any task-queue locks at all. We'll only try to get
2176 * the runqueue lock when things look like they will
2177 * work out!
2178 */
2179 rq = task_rq(p);
2180
2181 /*
2182 * If the task is actively running on another CPU
2183 * still, just relax and busy-wait without holding
2184 * any locks.
2185 *
2186 * NOTE! Since we don't hold any locks, it's not
2187 * even sure that "rq" stays as the right runqueue!
2188 * But we don't care, since "task_running()" will
2189 * return false if the runqueue has changed and p
2190 * is actually now running somewhere else!
2191 */
2192 while (task_running(rq, p)) {
2193 if (match_state && unlikely(p->state != match_state))
2194 return 0;
2195 cpu_relax();
2196 }
2197
2198 /*
2199 * Ok, time to look more closely! We need the rq
2200 * lock now, to be *sure*. If we're wrong, we'll
2201 * just go back and repeat.
2202 */
2203 rq = task_rq_lock(p, &flags);
2204 trace_sched_wait_task(rq, p);
2205 running = task_running(rq, p);
2206 on_rq = p->se.on_rq;
2207 ncsw = 0;
2208 if (!match_state || p->state == match_state)
2209 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2210 task_rq_unlock(rq, &flags);
2211
2212 /*
2213 * If it changed from the expected state, bail out now.
2214 */
2215 if (unlikely(!ncsw))
2216 break;
2217
2218 /*
2219 * Was it really running after all now that we
2220 * checked with the proper locks actually held?
2221 *
2222 * Oops. Go back and try again..
2223 */
2224 if (unlikely(running)) {
2225 cpu_relax();
2226 continue;
2227 }
2228
2229 /*
2230 * It's not enough that it's not actively running,
2231 * it must be off the runqueue _entirely_, and not
2232 * preempted!
2233 *
2234 * So if it was still runnable (but just not actively
2235 * running right now), it's preempted, and we should
2236 * yield - it could be a while.
2237 */
2238 if (unlikely(on_rq)) {
2239 schedule_timeout_uninterruptible(1);
2240 continue;
2241 }
2242
2243 /*
2244 * Ahh, all good. It wasn't running, and it wasn't
2245 * runnable, which means that it will never become
2246 * running in the future either. We're all done!
2247 */
2248 break;
2249 }
2250
2251 return ncsw;
2252 }
2253
2254 /***
2255 * kick_process - kick a running thread to enter/exit the kernel
2256 * @p: the to-be-kicked thread
2257 *
2258 * Cause a process which is running on another CPU to enter
2259 * kernel-mode, without any delay. (to get signals handled.)
2260 *
2261 * NOTE: this function doesnt have to take the runqueue lock,
2262 * because all it wants to ensure is that the remote task enters
2263 * the kernel. If the IPI races and the task has been migrated
2264 * to another CPU then no harm is done and the purpose has been
2265 * achieved as well.
2266 */
2267 void kick_process(struct task_struct *p)
2268 {
2269 int cpu;
2270
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if ((cpu != smp_processor_id()) && task_curr(p))
2274 smp_send_reschedule(cpu);
2275 preempt_enable();
2276 }
2277 EXPORT_SYMBOL_GPL(kick_process);
2278 #endif /* CONFIG_SMP */
2279
2280 /**
2281 * task_oncpu_function_call - call a function on the cpu on which a task runs
2282 * @p: the task to evaluate
2283 * @func: the function to be called
2284 * @info: the function call argument
2285 *
2286 * Calls the function @func when the task is currently running. This might
2287 * be on the current CPU, which just calls the function directly
2288 */
2289 void task_oncpu_function_call(struct task_struct *p,
2290 void (*func) (void *info), void *info)
2291 {
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if (task_curr(p))
2297 smp_call_function_single(cpu, func, info, 1);
2298 preempt_enable();
2299 }
2300
2301 /***
2302 * try_to_wake_up - wake up a thread
2303 * @p: the to-be-woken-up thread
2304 * @state: the mask of task states that can be woken
2305 * @sync: do a synchronous wakeup?
2306 *
2307 * Put it on the run-queue if it's not already there. The "current"
2308 * thread is always on the run-queue (except when the actual
2309 * re-schedule is in progress), and as such you're allowed to do
2310 * the simpler "current->state = TASK_RUNNING" to mark yourself
2311 * runnable without the overhead of this.
2312 *
2313 * returns failure only if the task is already active.
2314 */
2315 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2316 int wake_flags)
2317 {
2318 int cpu, orig_cpu, this_cpu, success = 0;
2319 unsigned long flags;
2320 struct rq *rq;
2321
2322 if (!sched_feat(SYNC_WAKEUPS))
2323 wake_flags &= ~WF_SYNC;
2324
2325 this_cpu = get_cpu();
2326
2327 smp_wmb();
2328 rq = task_rq_lock(p, &flags);
2329 update_rq_clock(rq);
2330 if (!(p->state & state))
2331 goto out;
2332
2333 if (p->se.on_rq)
2334 goto out_running;
2335
2336 cpu = task_cpu(p);
2337 orig_cpu = cpu;
2338
2339 #ifdef CONFIG_SMP
2340 if (unlikely(task_running(rq, p)))
2341 goto out_activate;
2342
2343 /*
2344 * In order to handle concurrent wakeups and release the rq->lock
2345 * we put the task in TASK_WAKING state.
2346 *
2347 * First fix up the nr_uninterruptible count:
2348 */
2349 if (task_contributes_to_load(p))
2350 rq->nr_uninterruptible--;
2351 p->state = TASK_WAKING;
2352 task_rq_unlock(rq, &flags);
2353
2354 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2355 if (cpu != orig_cpu)
2356 set_task_cpu(p, cpu);
2357
2358 rq = task_rq_lock(p, &flags);
2359 WARN_ON(p->state != TASK_WAKING);
2360 cpu = task_cpu(p);
2361
2362 #ifdef CONFIG_SCHEDSTATS
2363 schedstat_inc(rq, ttwu_count);
2364 if (cpu == this_cpu)
2365 schedstat_inc(rq, ttwu_local);
2366 else {
2367 struct sched_domain *sd;
2368 for_each_domain(this_cpu, sd) {
2369 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2370 schedstat_inc(sd, ttwu_wake_remote);
2371 break;
2372 }
2373 }
2374 }
2375 #endif /* CONFIG_SCHEDSTATS */
2376
2377 out_activate:
2378 #endif /* CONFIG_SMP */
2379 schedstat_inc(p, se.nr_wakeups);
2380 if (wake_flags & WF_SYNC)
2381 schedstat_inc(p, se.nr_wakeups_sync);
2382 if (orig_cpu != cpu)
2383 schedstat_inc(p, se.nr_wakeups_migrate);
2384 if (cpu == this_cpu)
2385 schedstat_inc(p, se.nr_wakeups_local);
2386 else
2387 schedstat_inc(p, se.nr_wakeups_remote);
2388 activate_task(rq, p, 1);
2389 success = 1;
2390
2391 /*
2392 * Only attribute actual wakeups done by this task.
2393 */
2394 if (!in_interrupt()) {
2395 struct sched_entity *se = &current->se;
2396 u64 sample = se->sum_exec_runtime;
2397
2398 if (se->last_wakeup)
2399 sample -= se->last_wakeup;
2400 else
2401 sample -= se->start_runtime;
2402 update_avg(&se->avg_wakeup, sample);
2403
2404 se->last_wakeup = se->sum_exec_runtime;
2405 }
2406
2407 out_running:
2408 trace_sched_wakeup(rq, p, success);
2409 check_preempt_curr(rq, p, wake_flags);
2410
2411 p->state = TASK_RUNNING;
2412 #ifdef CONFIG_SMP
2413 if (p->sched_class->task_wake_up)
2414 p->sched_class->task_wake_up(rq, p);
2415 #endif
2416 out:
2417 task_rq_unlock(rq, &flags);
2418 put_cpu();
2419
2420 return success;
2421 }
2422
2423 /**
2424 * wake_up_process - Wake up a specific process
2425 * @p: The process to be woken up.
2426 *
2427 * Attempt to wake up the nominated process and move it to the set of runnable
2428 * processes. Returns 1 if the process was woken up, 0 if it was already
2429 * running.
2430 *
2431 * It may be assumed that this function implies a write memory barrier before
2432 * changing the task state if and only if any tasks are woken up.
2433 */
2434 int wake_up_process(struct task_struct *p)
2435 {
2436 return try_to_wake_up(p, TASK_ALL, 0);
2437 }
2438 EXPORT_SYMBOL(wake_up_process);
2439
2440 int wake_up_state(struct task_struct *p, unsigned int state)
2441 {
2442 return try_to_wake_up(p, state, 0);
2443 }
2444
2445 /*
2446 * Perform scheduler related setup for a newly forked process p.
2447 * p is forked by current.
2448 *
2449 * __sched_fork() is basic setup used by init_idle() too:
2450 */
2451 static void __sched_fork(struct task_struct *p)
2452 {
2453 p->se.exec_start = 0;
2454 p->se.sum_exec_runtime = 0;
2455 p->se.prev_sum_exec_runtime = 0;
2456 p->se.nr_migrations = 0;
2457 p->se.last_wakeup = 0;
2458 p->se.avg_overlap = 0;
2459 p->se.start_runtime = 0;
2460 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2461
2462 #ifdef CONFIG_SCHEDSTATS
2463 p->se.wait_start = 0;
2464 p->se.wait_max = 0;
2465 p->se.wait_count = 0;
2466 p->se.wait_sum = 0;
2467
2468 p->se.sleep_start = 0;
2469 p->se.sleep_max = 0;
2470 p->se.sum_sleep_runtime = 0;
2471
2472 p->se.block_start = 0;
2473 p->se.block_max = 0;
2474 p->se.exec_max = 0;
2475 p->se.slice_max = 0;
2476
2477 p->se.nr_migrations_cold = 0;
2478 p->se.nr_failed_migrations_affine = 0;
2479 p->se.nr_failed_migrations_running = 0;
2480 p->se.nr_failed_migrations_hot = 0;
2481 p->se.nr_forced_migrations = 0;
2482 p->se.nr_forced2_migrations = 0;
2483
2484 p->se.nr_wakeups = 0;
2485 p->se.nr_wakeups_sync = 0;
2486 p->se.nr_wakeups_migrate = 0;
2487 p->se.nr_wakeups_local = 0;
2488 p->se.nr_wakeups_remote = 0;
2489 p->se.nr_wakeups_affine = 0;
2490 p->se.nr_wakeups_affine_attempts = 0;
2491 p->se.nr_wakeups_passive = 0;
2492 p->se.nr_wakeups_idle = 0;
2493
2494 #endif
2495
2496 INIT_LIST_HEAD(&p->rt.run_list);
2497 p->se.on_rq = 0;
2498 INIT_LIST_HEAD(&p->se.group_node);
2499
2500 #ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502 #endif
2503
2504 /*
2505 * We mark the process as running here, but have not actually
2506 * inserted it onto the runqueue yet. This guarantees that
2507 * nobody will actually run it, and a signal or other external
2508 * event cannot wake it up and insert it on the runqueue either.
2509 */
2510 p->state = TASK_RUNNING;
2511 }
2512
2513 /*
2514 * fork()/clone()-time setup:
2515 */
2516 void sched_fork(struct task_struct *p, int clone_flags)
2517 {
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
2521
2522 /*
2523 * Make sure we do not leak PI boosting priority to the child.
2524 */
2525 p->prio = current->normal_prio;
2526
2527 /*
2528 * Revert to default priority/policy on fork if requested.
2529 */
2530 if (unlikely(p->sched_reset_on_fork)) {
2531 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2532 p->policy = SCHED_NORMAL;
2533
2534 if (p->normal_prio < DEFAULT_PRIO)
2535 p->prio = DEFAULT_PRIO;
2536
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
2539 set_load_weight(p);
2540 }
2541
2542 /*
2543 * We don't need the reset flag anymore after the fork. It has
2544 * fulfilled its duty:
2545 */
2546 p->sched_reset_on_fork = 0;
2547 }
2548
2549 if (!rt_prio(p->prio))
2550 p->sched_class = &fair_sched_class;
2551
2552 #ifdef CONFIG_SMP
2553 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2554 #endif
2555 set_task_cpu(p, cpu);
2556
2557 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2558 if (likely(sched_info_on()))
2559 memset(&p->sched_info, 0, sizeof(p->sched_info));
2560 #endif
2561 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2562 p->oncpu = 0;
2563 #endif
2564 #ifdef CONFIG_PREEMPT
2565 /* Want to start with kernel preemption disabled. */
2566 task_thread_info(p)->preempt_count = 1;
2567 #endif
2568 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2569
2570 put_cpu();
2571 }
2572
2573 /*
2574 * wake_up_new_task - wake up a newly created task for the first time.
2575 *
2576 * This function will do some initial scheduler statistics housekeeping
2577 * that must be done for every newly created context, then puts the task
2578 * on the runqueue and wakes it.
2579 */
2580 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2581 {
2582 unsigned long flags;
2583 struct rq *rq;
2584
2585 rq = task_rq_lock(p, &flags);
2586 BUG_ON(p->state != TASK_RUNNING);
2587 update_rq_clock(rq);
2588
2589 p->prio = effective_prio(p);
2590
2591 if (!p->sched_class->task_new || !current->se.on_rq) {
2592 activate_task(rq, p, 0);
2593 } else {
2594 /*
2595 * Let the scheduling class do new task startup
2596 * management (if any):
2597 */
2598 p->sched_class->task_new(rq, p);
2599 inc_nr_running(rq);
2600 }
2601 trace_sched_wakeup_new(rq, p, 1);
2602 check_preempt_curr(rq, p, WF_FORK);
2603 #ifdef CONFIG_SMP
2604 if (p->sched_class->task_wake_up)
2605 p->sched_class->task_wake_up(rq, p);
2606 #endif
2607 task_rq_unlock(rq, &flags);
2608 }
2609
2610 #ifdef CONFIG_PREEMPT_NOTIFIERS
2611
2612 /**
2613 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2614 * @notifier: notifier struct to register
2615 */
2616 void preempt_notifier_register(struct preempt_notifier *notifier)
2617 {
2618 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2619 }
2620 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2621
2622 /**
2623 * preempt_notifier_unregister - no longer interested in preemption notifications
2624 * @notifier: notifier struct to unregister
2625 *
2626 * This is safe to call from within a preemption notifier.
2627 */
2628 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2629 {
2630 hlist_del(&notifier->link);
2631 }
2632 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2633
2634 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2635 {
2636 struct preempt_notifier *notifier;
2637 struct hlist_node *node;
2638
2639 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2640 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2641 }
2642
2643 static void
2644 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2645 struct task_struct *next)
2646 {
2647 struct preempt_notifier *notifier;
2648 struct hlist_node *node;
2649
2650 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2651 notifier->ops->sched_out(notifier, next);
2652 }
2653
2654 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2655
2656 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2657 {
2658 }
2659
2660 static void
2661 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2662 struct task_struct *next)
2663 {
2664 }
2665
2666 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2667
2668 /**
2669 * prepare_task_switch - prepare to switch tasks
2670 * @rq: the runqueue preparing to switch
2671 * @prev: the current task that is being switched out
2672 * @next: the task we are going to switch to.
2673 *
2674 * This is called with the rq lock held and interrupts off. It must
2675 * be paired with a subsequent finish_task_switch after the context
2676 * switch.
2677 *
2678 * prepare_task_switch sets up locking and calls architecture specific
2679 * hooks.
2680 */
2681 static inline void
2682 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2683 struct task_struct *next)
2684 {
2685 fire_sched_out_preempt_notifiers(prev, next);
2686 prepare_lock_switch(rq, next);
2687 prepare_arch_switch(next);
2688 }
2689
2690 /**
2691 * finish_task_switch - clean up after a task-switch
2692 * @rq: runqueue associated with task-switch
2693 * @prev: the thread we just switched away from.
2694 *
2695 * finish_task_switch must be called after the context switch, paired
2696 * with a prepare_task_switch call before the context switch.
2697 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2698 * and do any other architecture-specific cleanup actions.
2699 *
2700 * Note that we may have delayed dropping an mm in context_switch(). If
2701 * so, we finish that here outside of the runqueue lock. (Doing it
2702 * with the lock held can cause deadlocks; see schedule() for
2703 * details.)
2704 */
2705 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2706 __releases(rq->lock)
2707 {
2708 struct mm_struct *mm = rq->prev_mm;
2709 long prev_state;
2710
2711 rq->prev_mm = NULL;
2712
2713 /*
2714 * A task struct has one reference for the use as "current".
2715 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2716 * schedule one last time. The schedule call will never return, and
2717 * the scheduled task must drop that reference.
2718 * The test for TASK_DEAD must occur while the runqueue locks are
2719 * still held, otherwise prev could be scheduled on another cpu, die
2720 * there before we look at prev->state, and then the reference would
2721 * be dropped twice.
2722 * Manfred Spraul <manfred@colorfullife.com>
2723 */
2724 prev_state = prev->state;
2725 finish_arch_switch(prev);
2726 perf_counter_task_sched_in(current, cpu_of(rq));
2727 finish_lock_switch(rq, prev);
2728
2729 fire_sched_in_preempt_notifiers(current);
2730 if (mm)
2731 mmdrop(mm);
2732 if (unlikely(prev_state == TASK_DEAD)) {
2733 /*
2734 * Remove function-return probe instances associated with this
2735 * task and put them back on the free list.
2736 */
2737 kprobe_flush_task(prev);
2738 put_task_struct(prev);
2739 }
2740 }
2741
2742 #ifdef CONFIG_SMP
2743
2744 /* assumes rq->lock is held */
2745 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2746 {
2747 if (prev->sched_class->pre_schedule)
2748 prev->sched_class->pre_schedule(rq, prev);
2749 }
2750
2751 /* rq->lock is NOT held, but preemption is disabled */
2752 static inline void post_schedule(struct rq *rq)
2753 {
2754 if (rq->post_schedule) {
2755 unsigned long flags;
2756
2757 spin_lock_irqsave(&rq->lock, flags);
2758 if (rq->curr->sched_class->post_schedule)
2759 rq->curr->sched_class->post_schedule(rq);
2760 spin_unlock_irqrestore(&rq->lock, flags);
2761
2762 rq->post_schedule = 0;
2763 }
2764 }
2765
2766 #else
2767
2768 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2769 {
2770 }
2771
2772 static inline void post_schedule(struct rq *rq)
2773 {
2774 }
2775
2776 #endif
2777
2778 /**
2779 * schedule_tail - first thing a freshly forked thread must call.
2780 * @prev: the thread we just switched away from.
2781 */
2782 asmlinkage void schedule_tail(struct task_struct *prev)
2783 __releases(rq->lock)
2784 {
2785 struct rq *rq = this_rq();
2786
2787 finish_task_switch(rq, prev);
2788
2789 /*
2790 * FIXME: do we need to worry about rq being invalidated by the
2791 * task_switch?
2792 */
2793 post_schedule(rq);
2794
2795 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2796 /* In this case, finish_task_switch does not reenable preemption */
2797 preempt_enable();
2798 #endif
2799 if (current->set_child_tid)
2800 put_user(task_pid_vnr(current), current->set_child_tid);
2801 }
2802
2803 /*
2804 * context_switch - switch to the new MM and the new
2805 * thread's register state.
2806 */
2807 static inline void
2808 context_switch(struct rq *rq, struct task_struct *prev,
2809 struct task_struct *next)
2810 {
2811 struct mm_struct *mm, *oldmm;
2812
2813 prepare_task_switch(rq, prev, next);
2814 trace_sched_switch(rq, prev, next);
2815 mm = next->mm;
2816 oldmm = prev->active_mm;
2817 /*
2818 * For paravirt, this is coupled with an exit in switch_to to
2819 * combine the page table reload and the switch backend into
2820 * one hypercall.
2821 */
2822 arch_start_context_switch(prev);
2823
2824 if (unlikely(!mm)) {
2825 next->active_mm = oldmm;
2826 atomic_inc(&oldmm->mm_count);
2827 enter_lazy_tlb(oldmm, next);
2828 } else
2829 switch_mm(oldmm, mm, next);
2830
2831 if (unlikely(!prev->mm)) {
2832 prev->active_mm = NULL;
2833 rq->prev_mm = oldmm;
2834 }
2835 /*
2836 * Since the runqueue lock will be released by the next
2837 * task (which is an invalid locking op but in the case
2838 * of the scheduler it's an obvious special-case), so we
2839 * do an early lockdep release here:
2840 */
2841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2842 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2843 #endif
2844
2845 /* Here we just switch the register state and the stack. */
2846 switch_to(prev, next, prev);
2847
2848 barrier();
2849 /*
2850 * this_rq must be evaluated again because prev may have moved
2851 * CPUs since it called schedule(), thus the 'rq' on its stack
2852 * frame will be invalid.
2853 */
2854 finish_task_switch(this_rq(), prev);
2855 }
2856
2857 /*
2858 * nr_running, nr_uninterruptible and nr_context_switches:
2859 *
2860 * externally visible scheduler statistics: current number of runnable
2861 * threads, current number of uninterruptible-sleeping threads, total
2862 * number of context switches performed since bootup.
2863 */
2864 unsigned long nr_running(void)
2865 {
2866 unsigned long i, sum = 0;
2867
2868 for_each_online_cpu(i)
2869 sum += cpu_rq(i)->nr_running;
2870
2871 return sum;
2872 }
2873
2874 unsigned long nr_uninterruptible(void)
2875 {
2876 unsigned long i, sum = 0;
2877
2878 for_each_possible_cpu(i)
2879 sum += cpu_rq(i)->nr_uninterruptible;
2880
2881 /*
2882 * Since we read the counters lockless, it might be slightly
2883 * inaccurate. Do not allow it to go below zero though:
2884 */
2885 if (unlikely((long)sum < 0))
2886 sum = 0;
2887
2888 return sum;
2889 }
2890
2891 unsigned long long nr_context_switches(void)
2892 {
2893 int i;
2894 unsigned long long sum = 0;
2895
2896 for_each_possible_cpu(i)
2897 sum += cpu_rq(i)->nr_switches;
2898
2899 return sum;
2900 }
2901
2902 unsigned long nr_iowait(void)
2903 {
2904 unsigned long i, sum = 0;
2905
2906 for_each_possible_cpu(i)
2907 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2908
2909 return sum;
2910 }
2911
2912 /* Variables and functions for calc_load */
2913 static atomic_long_t calc_load_tasks;
2914 static unsigned long calc_load_update;
2915 unsigned long avenrun[3];
2916 EXPORT_SYMBOL(avenrun);
2917
2918 /**
2919 * get_avenrun - get the load average array
2920 * @loads: pointer to dest load array
2921 * @offset: offset to add
2922 * @shift: shift count to shift the result left
2923 *
2924 * These values are estimates at best, so no need for locking.
2925 */
2926 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2927 {
2928 loads[0] = (avenrun[0] + offset) << shift;
2929 loads[1] = (avenrun[1] + offset) << shift;
2930 loads[2] = (avenrun[2] + offset) << shift;
2931 }
2932
2933 static unsigned long
2934 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2935 {
2936 load *= exp;
2937 load += active * (FIXED_1 - exp);
2938 return load >> FSHIFT;
2939 }
2940
2941 /*
2942 * calc_load - update the avenrun load estimates 10 ticks after the
2943 * CPUs have updated calc_load_tasks.
2944 */
2945 void calc_global_load(void)
2946 {
2947 unsigned long upd = calc_load_update + 10;
2948 long active;
2949
2950 if (time_before(jiffies, upd))
2951 return;
2952
2953 active = atomic_long_read(&calc_load_tasks);
2954 active = active > 0 ? active * FIXED_1 : 0;
2955
2956 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2957 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2958 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2959
2960 calc_load_update += LOAD_FREQ;
2961 }
2962
2963 /*
2964 * Either called from update_cpu_load() or from a cpu going idle
2965 */
2966 static void calc_load_account_active(struct rq *this_rq)
2967 {
2968 long nr_active, delta;
2969
2970 nr_active = this_rq->nr_running;
2971 nr_active += (long) this_rq->nr_uninterruptible;
2972
2973 if (nr_active != this_rq->calc_load_active) {
2974 delta = nr_active - this_rq->calc_load_active;
2975 this_rq->calc_load_active = nr_active;
2976 atomic_long_add(delta, &calc_load_tasks);
2977 }
2978 }
2979
2980 /*
2981 * Externally visible per-cpu scheduler statistics:
2982 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2983 */
2984 u64 cpu_nr_migrations(int cpu)
2985 {
2986 return cpu_rq(cpu)->nr_migrations_in;
2987 }
2988
2989 /*
2990 * Update rq->cpu_load[] statistics. This function is usually called every
2991 * scheduler tick (TICK_NSEC).
2992 */
2993 static void update_cpu_load(struct rq *this_rq)
2994 {
2995 unsigned long this_load = this_rq->load.weight;
2996 int i, scale;
2997
2998 this_rq->nr_load_updates++;
2999
3000 /* Update our load: */
3001 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3002 unsigned long old_load, new_load;
3003
3004 /* scale is effectively 1 << i now, and >> i divides by scale */
3005
3006 old_load = this_rq->cpu_load[i];
3007 new_load = this_load;
3008 /*
3009 * Round up the averaging division if load is increasing. This
3010 * prevents us from getting stuck on 9 if the load is 10, for
3011 * example.
3012 */
3013 if (new_load > old_load)
3014 new_load += scale-1;
3015 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3016 }
3017
3018 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3019 this_rq->calc_load_update += LOAD_FREQ;
3020 calc_load_account_active(this_rq);
3021 }
3022 }
3023
3024 #ifdef CONFIG_SMP
3025
3026 /*
3027 * double_rq_lock - safely lock two runqueues
3028 *
3029 * Note this does not disable interrupts like task_rq_lock,
3030 * you need to do so manually before calling.
3031 */
3032 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3033 __acquires(rq1->lock)
3034 __acquires(rq2->lock)
3035 {
3036 BUG_ON(!irqs_disabled());
3037 if (rq1 == rq2) {
3038 spin_lock(&rq1->lock);
3039 __acquire(rq2->lock); /* Fake it out ;) */
3040 } else {
3041 if (rq1 < rq2) {
3042 spin_lock(&rq1->lock);
3043 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3044 } else {
3045 spin_lock(&rq2->lock);
3046 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3047 }
3048 }
3049 update_rq_clock(rq1);
3050 update_rq_clock(rq2);
3051 }
3052
3053 /*
3054 * double_rq_unlock - safely unlock two runqueues
3055 *
3056 * Note this does not restore interrupts like task_rq_unlock,
3057 * you need to do so manually after calling.
3058 */
3059 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3060 __releases(rq1->lock)
3061 __releases(rq2->lock)
3062 {
3063 spin_unlock(&rq1->lock);
3064 if (rq1 != rq2)
3065 spin_unlock(&rq2->lock);
3066 else
3067 __release(rq2->lock);
3068 }
3069
3070 /*
3071 * If dest_cpu is allowed for this process, migrate the task to it.
3072 * This is accomplished by forcing the cpu_allowed mask to only
3073 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3074 * the cpu_allowed mask is restored.
3075 */
3076 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3077 {
3078 struct migration_req req;
3079 unsigned long flags;
3080 struct rq *rq;
3081
3082 rq = task_rq_lock(p, &flags);
3083 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3084 || unlikely(!cpu_active(dest_cpu)))
3085 goto out;
3086
3087 /* force the process onto the specified CPU */
3088 if (migrate_task(p, dest_cpu, &req)) {
3089 /* Need to wait for migration thread (might exit: take ref). */
3090 struct task_struct *mt = rq->migration_thread;
3091
3092 get_task_struct(mt);
3093 task_rq_unlock(rq, &flags);
3094 wake_up_process(mt);
3095 put_task_struct(mt);
3096 wait_for_completion(&req.done);
3097
3098 return;
3099 }
3100 out:
3101 task_rq_unlock(rq, &flags);
3102 }
3103
3104 /*
3105 * sched_exec - execve() is a valuable balancing opportunity, because at
3106 * this point the task has the smallest effective memory and cache footprint.
3107 */
3108 void sched_exec(void)
3109 {
3110 int new_cpu, this_cpu = get_cpu();
3111 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3112 put_cpu();
3113 if (new_cpu != this_cpu)
3114 sched_migrate_task(current, new_cpu);
3115 }
3116
3117 /*
3118 * pull_task - move a task from a remote runqueue to the local runqueue.
3119 * Both runqueues must be locked.
3120 */
3121 static void pull_task(struct rq *src_rq, struct task_struct *p,
3122 struct rq *this_rq, int this_cpu)
3123 {
3124 deactivate_task(src_rq, p, 0);
3125 set_task_cpu(p, this_cpu);
3126 activate_task(this_rq, p, 0);
3127 /*
3128 * Note that idle threads have a prio of MAX_PRIO, for this test
3129 * to be always true for them.
3130 */
3131 check_preempt_curr(this_rq, p, 0);
3132 }
3133
3134 /*
3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3136 */
3137 static
3138 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3139 struct sched_domain *sd, enum cpu_idle_type idle,
3140 int *all_pinned)
3141 {
3142 int tsk_cache_hot = 0;
3143 /*
3144 * We do not migrate tasks that are:
3145 * 1) running (obviously), or
3146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3147 * 3) are cache-hot on their current CPU.
3148 */
3149 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3150 schedstat_inc(p, se.nr_failed_migrations_affine);
3151 return 0;
3152 }
3153 *all_pinned = 0;
3154
3155 if (task_running(rq, p)) {
3156 schedstat_inc(p, se.nr_failed_migrations_running);
3157 return 0;
3158 }
3159
3160 /*
3161 * Aggressive migration if:
3162 * 1) task is cache cold, or
3163 * 2) too many balance attempts have failed.
3164 */
3165
3166 tsk_cache_hot = task_hot(p, rq->clock, sd);
3167 if (!tsk_cache_hot ||
3168 sd->nr_balance_failed > sd->cache_nice_tries) {
3169 #ifdef CONFIG_SCHEDSTATS
3170 if (tsk_cache_hot) {
3171 schedstat_inc(sd, lb_hot_gained[idle]);
3172 schedstat_inc(p, se.nr_forced_migrations);
3173 }
3174 #endif
3175 return 1;
3176 }
3177
3178 if (tsk_cache_hot) {
3179 schedstat_inc(p, se.nr_failed_migrations_hot);
3180 return 0;
3181 }
3182 return 1;
3183 }
3184
3185 static unsigned long
3186 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3187 unsigned long max_load_move, struct sched_domain *sd,
3188 enum cpu_idle_type idle, int *all_pinned,
3189 int *this_best_prio, struct rq_iterator *iterator)
3190 {
3191 int loops = 0, pulled = 0, pinned = 0;
3192 struct task_struct *p;
3193 long rem_load_move = max_load_move;
3194
3195 if (max_load_move == 0)
3196 goto out;
3197
3198 pinned = 1;
3199
3200 /*
3201 * Start the load-balancing iterator:
3202 */
3203 p = iterator->start(iterator->arg);
3204 next:
3205 if (!p || loops++ > sysctl_sched_nr_migrate)
3206 goto out;
3207
3208 if ((p->se.load.weight >> 1) > rem_load_move ||
3209 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3210 p = iterator->next(iterator->arg);
3211 goto next;
3212 }
3213
3214 pull_task(busiest, p, this_rq, this_cpu);
3215 pulled++;
3216 rem_load_move -= p->se.load.weight;
3217
3218 #ifdef CONFIG_PREEMPT
3219 /*
3220 * NEWIDLE balancing is a source of latency, so preemptible kernels
3221 * will stop after the first task is pulled to minimize the critical
3222 * section.
3223 */
3224 if (idle == CPU_NEWLY_IDLE)
3225 goto out;
3226 #endif
3227
3228 /*
3229 * We only want to steal up to the prescribed amount of weighted load.
3230 */
3231 if (rem_load_move > 0) {
3232 if (p->prio < *this_best_prio)
3233 *this_best_prio = p->prio;
3234 p = iterator->next(iterator->arg);
3235 goto next;
3236 }
3237 out:
3238 /*
3239 * Right now, this is one of only two places pull_task() is called,
3240 * so we can safely collect pull_task() stats here rather than
3241 * inside pull_task().
3242 */
3243 schedstat_add(sd, lb_gained[idle], pulled);
3244
3245 if (all_pinned)
3246 *all_pinned = pinned;
3247
3248 return max_load_move - rem_load_move;
3249 }
3250
3251 /*
3252 * move_tasks tries to move up to max_load_move weighted load from busiest to
3253 * this_rq, as part of a balancing operation within domain "sd".
3254 * Returns 1 if successful and 0 otherwise.
3255 *
3256 * Called with both runqueues locked.
3257 */
3258 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move,
3260 struct sched_domain *sd, enum cpu_idle_type idle,
3261 int *all_pinned)
3262 {
3263 const struct sched_class *class = sched_class_highest;
3264 unsigned long total_load_moved = 0;
3265 int this_best_prio = this_rq->curr->prio;
3266
3267 do {
3268 total_load_moved +=
3269 class->load_balance(this_rq, this_cpu, busiest,
3270 max_load_move - total_load_moved,
3271 sd, idle, all_pinned, &this_best_prio);
3272 class = class->next;
3273
3274 #ifdef CONFIG_PREEMPT
3275 /*
3276 * NEWIDLE balancing is a source of latency, so preemptible
3277 * kernels will stop after the first task is pulled to minimize
3278 * the critical section.
3279 */
3280 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3281 break;
3282 #endif
3283 } while (class && max_load_move > total_load_moved);
3284
3285 return total_load_moved > 0;
3286 }
3287
3288 static int
3289 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3290 struct sched_domain *sd, enum cpu_idle_type idle,
3291 struct rq_iterator *iterator)
3292 {
3293 struct task_struct *p = iterator->start(iterator->arg);
3294 int pinned = 0;
3295
3296 while (p) {
3297 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3298 pull_task(busiest, p, this_rq, this_cpu);
3299 /*
3300 * Right now, this is only the second place pull_task()
3301 * is called, so we can safely collect pull_task()
3302 * stats here rather than inside pull_task().
3303 */
3304 schedstat_inc(sd, lb_gained[idle]);
3305
3306 return 1;
3307 }
3308 p = iterator->next(iterator->arg);
3309 }
3310
3311 return 0;
3312 }
3313
3314 /*
3315 * move_one_task tries to move exactly one task from busiest to this_rq, as
3316 * part of active balancing operations within "domain".
3317 * Returns 1 if successful and 0 otherwise.
3318 *
3319 * Called with both runqueues locked.
3320 */
3321 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle)
3323 {
3324 const struct sched_class *class;
3325
3326 for_each_class(class) {
3327 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3328 return 1;
3329 }
3330
3331 return 0;
3332 }
3333 /********** Helpers for find_busiest_group ************************/
3334 /*
3335 * sd_lb_stats - Structure to store the statistics of a sched_domain
3336 * during load balancing.
3337 */
3338 struct sd_lb_stats {
3339 struct sched_group *busiest; /* Busiest group in this sd */
3340 struct sched_group *this; /* Local group in this sd */
3341 unsigned long total_load; /* Total load of all groups in sd */
3342 unsigned long total_pwr; /* Total power of all groups in sd */
3343 unsigned long avg_load; /* Average load across all groups in sd */
3344
3345 /** Statistics of this group */
3346 unsigned long this_load;
3347 unsigned long this_load_per_task;
3348 unsigned long this_nr_running;
3349
3350 /* Statistics of the busiest group */
3351 unsigned long max_load;
3352 unsigned long busiest_load_per_task;
3353 unsigned long busiest_nr_running;
3354
3355 int group_imb; /* Is there imbalance in this sd */
3356 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3357 int power_savings_balance; /* Is powersave balance needed for this sd */
3358 struct sched_group *group_min; /* Least loaded group in sd */
3359 struct sched_group *group_leader; /* Group which relieves group_min */
3360 unsigned long min_load_per_task; /* load_per_task in group_min */
3361 unsigned long leader_nr_running; /* Nr running of group_leader */
3362 unsigned long min_nr_running; /* Nr running of group_min */
3363 #endif
3364 };
3365
3366 /*
3367 * sg_lb_stats - stats of a sched_group required for load_balancing
3368 */
3369 struct sg_lb_stats {
3370 unsigned long avg_load; /*Avg load across the CPUs of the group */
3371 unsigned long group_load; /* Total load over the CPUs of the group */
3372 unsigned long sum_nr_running; /* Nr tasks running in the group */
3373 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3374 unsigned long group_capacity;
3375 int group_imb; /* Is there an imbalance in the group ? */
3376 };
3377
3378 /**
3379 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3380 * @group: The group whose first cpu is to be returned.
3381 */
3382 static inline unsigned int group_first_cpu(struct sched_group *group)
3383 {
3384 return cpumask_first(sched_group_cpus(group));
3385 }
3386
3387 /**
3388 * get_sd_load_idx - Obtain the load index for a given sched domain.
3389 * @sd: The sched_domain whose load_idx is to be obtained.
3390 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3391 */
3392 static inline int get_sd_load_idx(struct sched_domain *sd,
3393 enum cpu_idle_type idle)
3394 {
3395 int load_idx;
3396
3397 switch (idle) {
3398 case CPU_NOT_IDLE:
3399 load_idx = sd->busy_idx;
3400 break;
3401
3402 case CPU_NEWLY_IDLE:
3403 load_idx = sd->newidle_idx;
3404 break;
3405 default:
3406 load_idx = sd->idle_idx;
3407 break;
3408 }
3409
3410 return load_idx;
3411 }
3412
3413
3414 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3415 /**
3416 * init_sd_power_savings_stats - Initialize power savings statistics for
3417 * the given sched_domain, during load balancing.
3418 *
3419 * @sd: Sched domain whose power-savings statistics are to be initialized.
3420 * @sds: Variable containing the statistics for sd.
3421 * @idle: Idle status of the CPU at which we're performing load-balancing.
3422 */
3423 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3424 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3425 {
3426 /*
3427 * Busy processors will not participate in power savings
3428 * balance.
3429 */
3430 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3431 sds->power_savings_balance = 0;
3432 else {
3433 sds->power_savings_balance = 1;
3434 sds->min_nr_running = ULONG_MAX;
3435 sds->leader_nr_running = 0;
3436 }
3437 }
3438
3439 /**
3440 * update_sd_power_savings_stats - Update the power saving stats for a
3441 * sched_domain while performing load balancing.
3442 *
3443 * @group: sched_group belonging to the sched_domain under consideration.
3444 * @sds: Variable containing the statistics of the sched_domain
3445 * @local_group: Does group contain the CPU for which we're performing
3446 * load balancing ?
3447 * @sgs: Variable containing the statistics of the group.
3448 */
3449 static inline void update_sd_power_savings_stats(struct sched_group *group,
3450 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3451 {
3452
3453 if (!sds->power_savings_balance)
3454 return;
3455
3456 /*
3457 * If the local group is idle or completely loaded
3458 * no need to do power savings balance at this domain
3459 */
3460 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3461 !sds->this_nr_running))
3462 sds->power_savings_balance = 0;
3463
3464 /*
3465 * If a group is already running at full capacity or idle,
3466 * don't include that group in power savings calculations
3467 */
3468 if (!sds->power_savings_balance ||
3469 sgs->sum_nr_running >= sgs->group_capacity ||
3470 !sgs->sum_nr_running)
3471 return;
3472
3473 /*
3474 * Calculate the group which has the least non-idle load.
3475 * This is the group from where we need to pick up the load
3476 * for saving power
3477 */
3478 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3479 (sgs->sum_nr_running == sds->min_nr_running &&
3480 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3481 sds->group_min = group;
3482 sds->min_nr_running = sgs->sum_nr_running;
3483 sds->min_load_per_task = sgs->sum_weighted_load /
3484 sgs->sum_nr_running;
3485 }
3486
3487 /*
3488 * Calculate the group which is almost near its
3489 * capacity but still has some space to pick up some load
3490 * from other group and save more power
3491 */
3492 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3493 return;
3494
3495 if (sgs->sum_nr_running > sds->leader_nr_running ||
3496 (sgs->sum_nr_running == sds->leader_nr_running &&
3497 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3498 sds->group_leader = group;
3499 sds->leader_nr_running = sgs->sum_nr_running;
3500 }
3501 }
3502
3503 /**
3504 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3505 * @sds: Variable containing the statistics of the sched_domain
3506 * under consideration.
3507 * @this_cpu: Cpu at which we're currently performing load-balancing.
3508 * @imbalance: Variable to store the imbalance.
3509 *
3510 * Description:
3511 * Check if we have potential to perform some power-savings balance.
3512 * If yes, set the busiest group to be the least loaded group in the
3513 * sched_domain, so that it's CPUs can be put to idle.
3514 *
3515 * Returns 1 if there is potential to perform power-savings balance.
3516 * Else returns 0.
3517 */
3518 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3519 int this_cpu, unsigned long *imbalance)
3520 {
3521 if (!sds->power_savings_balance)
3522 return 0;
3523
3524 if (sds->this != sds->group_leader ||
3525 sds->group_leader == sds->group_min)
3526 return 0;
3527
3528 *imbalance = sds->min_load_per_task;
3529 sds->busiest = sds->group_min;
3530
3531 return 1;
3532
3533 }
3534 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3535 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3536 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3537 {
3538 return;
3539 }
3540
3541 static inline void update_sd_power_savings_stats(struct sched_group *group,
3542 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3543 {
3544 return;
3545 }
3546
3547 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3548 int this_cpu, unsigned long *imbalance)
3549 {
3550 return 0;
3551 }
3552 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3553
3554
3555 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3556 {
3557 return SCHED_LOAD_SCALE;
3558 }
3559
3560 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3561 {
3562 return default_scale_freq_power(sd, cpu);
3563 }
3564
3565 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3566 {
3567 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3568 unsigned long smt_gain = sd->smt_gain;
3569
3570 smt_gain /= weight;
3571
3572 return smt_gain;
3573 }
3574
3575 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3576 {
3577 return default_scale_smt_power(sd, cpu);
3578 }
3579
3580 unsigned long scale_rt_power(int cpu)
3581 {
3582 struct rq *rq = cpu_rq(cpu);
3583 u64 total, available;
3584
3585 sched_avg_update(rq);
3586
3587 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3588 available = total - rq->rt_avg;
3589
3590 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3591 total = SCHED_LOAD_SCALE;
3592
3593 total >>= SCHED_LOAD_SHIFT;
3594
3595 return div_u64(available, total);
3596 }
3597
3598 static void update_cpu_power(struct sched_domain *sd, int cpu)
3599 {
3600 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3601 unsigned long power = SCHED_LOAD_SCALE;
3602 struct sched_group *sdg = sd->groups;
3603
3604 if (sched_feat(ARCH_POWER))
3605 power *= arch_scale_freq_power(sd, cpu);
3606 else
3607 power *= default_scale_freq_power(sd, cpu);
3608
3609 power >>= SCHED_LOAD_SHIFT;
3610
3611 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3612 if (sched_feat(ARCH_POWER))
3613 power *= arch_scale_smt_power(sd, cpu);
3614 else
3615 power *= default_scale_smt_power(sd, cpu);
3616
3617 power >>= SCHED_LOAD_SHIFT;
3618 }
3619
3620 power *= scale_rt_power(cpu);
3621 power >>= SCHED_LOAD_SHIFT;
3622
3623 if (!power)
3624 power = 1;
3625
3626 sdg->cpu_power = power;
3627 }
3628
3629 static void update_group_power(struct sched_domain *sd, int cpu)
3630 {
3631 struct sched_domain *child = sd->child;
3632 struct sched_group *group, *sdg = sd->groups;
3633 unsigned long power;
3634
3635 if (!child) {
3636 update_cpu_power(sd, cpu);
3637 return;
3638 }
3639
3640 power = 0;
3641
3642 group = child->groups;
3643 do {
3644 power += group->cpu_power;
3645 group = group->next;
3646 } while (group != child->groups);
3647
3648 sdg->cpu_power = power;
3649 }
3650
3651 /**
3652 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3653 * @group: sched_group whose statistics are to be updated.
3654 * @this_cpu: Cpu for which load balance is currently performed.
3655 * @idle: Idle status of this_cpu
3656 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3657 * @sd_idle: Idle status of the sched_domain containing group.
3658 * @local_group: Does group contain this_cpu.
3659 * @cpus: Set of cpus considered for load balancing.
3660 * @balance: Should we balance.
3661 * @sgs: variable to hold the statistics for this group.
3662 */
3663 static inline void update_sg_lb_stats(struct sched_domain *sd,
3664 struct sched_group *group, int this_cpu,
3665 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3666 int local_group, const struct cpumask *cpus,
3667 int *balance, struct sg_lb_stats *sgs)
3668 {
3669 unsigned long load, max_cpu_load, min_cpu_load;
3670 int i;
3671 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3672 unsigned long sum_avg_load_per_task;
3673 unsigned long avg_load_per_task;
3674
3675 if (local_group) {
3676 balance_cpu = group_first_cpu(group);
3677 if (balance_cpu == this_cpu)
3678 update_group_power(sd, this_cpu);
3679 }
3680
3681 /* Tally up the load of all CPUs in the group */
3682 sum_avg_load_per_task = avg_load_per_task = 0;
3683 max_cpu_load = 0;
3684 min_cpu_load = ~0UL;
3685
3686 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3687 struct rq *rq = cpu_rq(i);
3688
3689 if (*sd_idle && rq->nr_running)
3690 *sd_idle = 0;
3691
3692 /* Bias balancing toward cpus of our domain */
3693 if (local_group) {
3694 if (idle_cpu(i) && !first_idle_cpu) {
3695 first_idle_cpu = 1;
3696 balance_cpu = i;
3697 }
3698
3699 load = target_load(i, load_idx);
3700 } else {
3701 load = source_load(i, load_idx);
3702 if (load > max_cpu_load)
3703 max_cpu_load = load;
3704 if (min_cpu_load > load)
3705 min_cpu_load = load;
3706 }
3707
3708 sgs->group_load += load;
3709 sgs->sum_nr_running += rq->nr_running;
3710 sgs->sum_weighted_load += weighted_cpuload(i);
3711
3712 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3713 }
3714
3715 /*
3716 * First idle cpu or the first cpu(busiest) in this sched group
3717 * is eligible for doing load balancing at this and above
3718 * domains. In the newly idle case, we will allow all the cpu's
3719 * to do the newly idle load balance.
3720 */
3721 if (idle != CPU_NEWLY_IDLE && local_group &&
3722 balance_cpu != this_cpu && balance) {
3723 *balance = 0;
3724 return;
3725 }
3726
3727 /* Adjust by relative CPU power of the group */
3728 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3729
3730
3731 /*
3732 * Consider the group unbalanced when the imbalance is larger
3733 * than the average weight of two tasks.
3734 *
3735 * APZ: with cgroup the avg task weight can vary wildly and
3736 * might not be a suitable number - should we keep a
3737 * normalized nr_running number somewhere that negates
3738 * the hierarchy?
3739 */
3740 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3741 group->cpu_power;
3742
3743 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3744 sgs->group_imb = 1;
3745
3746 sgs->group_capacity =
3747 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3748 }
3749
3750 /**
3751 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3752 * @sd: sched_domain whose statistics are to be updated.
3753 * @this_cpu: Cpu for which load balance is currently performed.
3754 * @idle: Idle status of this_cpu
3755 * @sd_idle: Idle status of the sched_domain containing group.
3756 * @cpus: Set of cpus considered for load balancing.
3757 * @balance: Should we balance.
3758 * @sds: variable to hold the statistics for this sched_domain.
3759 */
3760 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3761 enum cpu_idle_type idle, int *sd_idle,
3762 const struct cpumask *cpus, int *balance,
3763 struct sd_lb_stats *sds)
3764 {
3765 struct sched_domain *child = sd->child;
3766 struct sched_group *group = sd->groups;
3767 struct sg_lb_stats sgs;
3768 int load_idx, prefer_sibling = 0;
3769
3770 if (child && child->flags & SD_PREFER_SIBLING)
3771 prefer_sibling = 1;
3772
3773 init_sd_power_savings_stats(sd, sds, idle);
3774 load_idx = get_sd_load_idx(sd, idle);
3775
3776 do {
3777 int local_group;
3778
3779 local_group = cpumask_test_cpu(this_cpu,
3780 sched_group_cpus(group));
3781 memset(&sgs, 0, sizeof(sgs));
3782 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3783 local_group, cpus, balance, &sgs);
3784
3785 if (local_group && balance && !(*balance))
3786 return;
3787
3788 sds->total_load += sgs.group_load;
3789 sds->total_pwr += group->cpu_power;
3790
3791 /*
3792 * In case the child domain prefers tasks go to siblings
3793 * first, lower the group capacity to one so that we'll try
3794 * and move all the excess tasks away.
3795 */
3796 if (prefer_sibling)
3797 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3798
3799 if (local_group) {
3800 sds->this_load = sgs.avg_load;
3801 sds->this = group;
3802 sds->this_nr_running = sgs.sum_nr_running;
3803 sds->this_load_per_task = sgs.sum_weighted_load;
3804 } else if (sgs.avg_load > sds->max_load &&
3805 (sgs.sum_nr_running > sgs.group_capacity ||
3806 sgs.group_imb)) {
3807 sds->max_load = sgs.avg_load;
3808 sds->busiest = group;
3809 sds->busiest_nr_running = sgs.sum_nr_running;
3810 sds->busiest_load_per_task = sgs.sum_weighted_load;
3811 sds->group_imb = sgs.group_imb;
3812 }
3813
3814 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3815 group = group->next;
3816 } while (group != sd->groups);
3817 }
3818
3819 /**
3820 * fix_small_imbalance - Calculate the minor imbalance that exists
3821 * amongst the groups of a sched_domain, during
3822 * load balancing.
3823 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3824 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3825 * @imbalance: Variable to store the imbalance.
3826 */
3827 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3828 int this_cpu, unsigned long *imbalance)
3829 {
3830 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3831 unsigned int imbn = 2;
3832
3833 if (sds->this_nr_running) {
3834 sds->this_load_per_task /= sds->this_nr_running;
3835 if (sds->busiest_load_per_task >
3836 sds->this_load_per_task)
3837 imbn = 1;
3838 } else
3839 sds->this_load_per_task =
3840 cpu_avg_load_per_task(this_cpu);
3841
3842 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3843 sds->busiest_load_per_task * imbn) {
3844 *imbalance = sds->busiest_load_per_task;
3845 return;
3846 }
3847
3848 /*
3849 * OK, we don't have enough imbalance to justify moving tasks,
3850 * however we may be able to increase total CPU power used by
3851 * moving them.
3852 */
3853
3854 pwr_now += sds->busiest->cpu_power *
3855 min(sds->busiest_load_per_task, sds->max_load);
3856 pwr_now += sds->this->cpu_power *
3857 min(sds->this_load_per_task, sds->this_load);
3858 pwr_now /= SCHED_LOAD_SCALE;
3859
3860 /* Amount of load we'd subtract */
3861 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3862 sds->busiest->cpu_power;
3863 if (sds->max_load > tmp)
3864 pwr_move += sds->busiest->cpu_power *
3865 min(sds->busiest_load_per_task, sds->max_load - tmp);
3866
3867 /* Amount of load we'd add */
3868 if (sds->max_load * sds->busiest->cpu_power <
3869 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3870 tmp = (sds->max_load * sds->busiest->cpu_power) /
3871 sds->this->cpu_power;
3872 else
3873 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3874 sds->this->cpu_power;
3875 pwr_move += sds->this->cpu_power *
3876 min(sds->this_load_per_task, sds->this_load + tmp);
3877 pwr_move /= SCHED_LOAD_SCALE;
3878
3879 /* Move if we gain throughput */
3880 if (pwr_move > pwr_now)
3881 *imbalance = sds->busiest_load_per_task;
3882 }
3883
3884 /**
3885 * calculate_imbalance - Calculate the amount of imbalance present within the
3886 * groups of a given sched_domain during load balance.
3887 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3888 * @this_cpu: Cpu for which currently load balance is being performed.
3889 * @imbalance: The variable to store the imbalance.
3890 */
3891 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3892 unsigned long *imbalance)
3893 {
3894 unsigned long max_pull;
3895 /*
3896 * In the presence of smp nice balancing, certain scenarios can have
3897 * max load less than avg load(as we skip the groups at or below
3898 * its cpu_power, while calculating max_load..)
3899 */
3900 if (sds->max_load < sds->avg_load) {
3901 *imbalance = 0;
3902 return fix_small_imbalance(sds, this_cpu, imbalance);
3903 }
3904
3905 /* Don't want to pull so many tasks that a group would go idle */
3906 max_pull = min(sds->max_load - sds->avg_load,
3907 sds->max_load - sds->busiest_load_per_task);
3908
3909 /* How much load to actually move to equalise the imbalance */
3910 *imbalance = min(max_pull * sds->busiest->cpu_power,
3911 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3912 / SCHED_LOAD_SCALE;
3913
3914 /*
3915 * if *imbalance is less than the average load per runnable task
3916 * there is no gaurantee that any tasks will be moved so we'll have
3917 * a think about bumping its value to force at least one task to be
3918 * moved
3919 */
3920 if (*imbalance < sds->busiest_load_per_task)
3921 return fix_small_imbalance(sds, this_cpu, imbalance);
3922
3923 }
3924 /******* find_busiest_group() helpers end here *********************/
3925
3926 /**
3927 * find_busiest_group - Returns the busiest group within the sched_domain
3928 * if there is an imbalance. If there isn't an imbalance, and
3929 * the user has opted for power-savings, it returns a group whose
3930 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3931 * such a group exists.
3932 *
3933 * Also calculates the amount of weighted load which should be moved
3934 * to restore balance.
3935 *
3936 * @sd: The sched_domain whose busiest group is to be returned.
3937 * @this_cpu: The cpu for which load balancing is currently being performed.
3938 * @imbalance: Variable which stores amount of weighted load which should
3939 * be moved to restore balance/put a group to idle.
3940 * @idle: The idle status of this_cpu.
3941 * @sd_idle: The idleness of sd
3942 * @cpus: The set of CPUs under consideration for load-balancing.
3943 * @balance: Pointer to a variable indicating if this_cpu
3944 * is the appropriate cpu to perform load balancing at this_level.
3945 *
3946 * Returns: - the busiest group if imbalance exists.
3947 * - If no imbalance and user has opted for power-savings balance,
3948 * return the least loaded group whose CPUs can be
3949 * put to idle by rebalancing its tasks onto our group.
3950 */
3951 static struct sched_group *
3952 find_busiest_group(struct sched_domain *sd, int this_cpu,
3953 unsigned long *imbalance, enum cpu_idle_type idle,
3954 int *sd_idle, const struct cpumask *cpus, int *balance)
3955 {
3956 struct sd_lb_stats sds;
3957
3958 memset(&sds, 0, sizeof(sds));
3959
3960 /*
3961 * Compute the various statistics relavent for load balancing at
3962 * this level.
3963 */
3964 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3965 balance, &sds);
3966
3967 /* Cases where imbalance does not exist from POV of this_cpu */
3968 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3969 * at this level.
3970 * 2) There is no busy sibling group to pull from.
3971 * 3) This group is the busiest group.
3972 * 4) This group is more busy than the avg busieness at this
3973 * sched_domain.
3974 * 5) The imbalance is within the specified limit.
3975 * 6) Any rebalance would lead to ping-pong
3976 */
3977 if (balance && !(*balance))
3978 goto ret;
3979
3980 if (!sds.busiest || sds.busiest_nr_running == 0)
3981 goto out_balanced;
3982
3983 if (sds.this_load >= sds.max_load)
3984 goto out_balanced;
3985
3986 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3987
3988 if (sds.this_load >= sds.avg_load)
3989 goto out_balanced;
3990
3991 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3992 goto out_balanced;
3993
3994 sds.busiest_load_per_task /= sds.busiest_nr_running;
3995 if (sds.group_imb)
3996 sds.busiest_load_per_task =
3997 min(sds.busiest_load_per_task, sds.avg_load);
3998
3999 /*
4000 * We're trying to get all the cpus to the average_load, so we don't
4001 * want to push ourselves above the average load, nor do we wish to
4002 * reduce the max loaded cpu below the average load, as either of these
4003 * actions would just result in more rebalancing later, and ping-pong
4004 * tasks around. Thus we look for the minimum possible imbalance.
4005 * Negative imbalances (*we* are more loaded than anyone else) will
4006 * be counted as no imbalance for these purposes -- we can't fix that
4007 * by pulling tasks to us. Be careful of negative numbers as they'll
4008 * appear as very large values with unsigned longs.
4009 */
4010 if (sds.max_load <= sds.busiest_load_per_task)
4011 goto out_balanced;
4012
4013 /* Looks like there is an imbalance. Compute it */
4014 calculate_imbalance(&sds, this_cpu, imbalance);
4015 return sds.busiest;
4016
4017 out_balanced:
4018 /*
4019 * There is no obvious imbalance. But check if we can do some balancing
4020 * to save power.
4021 */
4022 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4023 return sds.busiest;
4024 ret:
4025 *imbalance = 0;
4026 return NULL;
4027 }
4028
4029 /*
4030 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4031 */
4032 static struct rq *
4033 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4034 unsigned long imbalance, const struct cpumask *cpus)
4035 {
4036 struct rq *busiest = NULL, *rq;
4037 unsigned long max_load = 0;
4038 int i;
4039
4040 for_each_cpu(i, sched_group_cpus(group)) {
4041 unsigned long power = power_of(i);
4042 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4043 unsigned long wl;
4044
4045 if (!cpumask_test_cpu(i, cpus))
4046 continue;
4047
4048 rq = cpu_rq(i);
4049 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4050 wl /= power;
4051
4052 if (capacity && rq->nr_running == 1 && wl > imbalance)
4053 continue;
4054
4055 if (wl > max_load) {
4056 max_load = wl;
4057 busiest = rq;
4058 }
4059 }
4060
4061 return busiest;
4062 }
4063
4064 /*
4065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4066 * so long as it is large enough.
4067 */
4068 #define MAX_PINNED_INTERVAL 512
4069
4070 /* Working cpumask for load_balance and load_balance_newidle. */
4071 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4072
4073 /*
4074 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4075 * tasks if there is an imbalance.
4076 */
4077 static int load_balance(int this_cpu, struct rq *this_rq,
4078 struct sched_domain *sd, enum cpu_idle_type idle,
4079 int *balance)
4080 {
4081 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4082 struct sched_group *group;
4083 unsigned long imbalance;
4084 struct rq *busiest;
4085 unsigned long flags;
4086 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4087
4088 cpumask_setall(cpus);
4089
4090 /*
4091 * When power savings policy is enabled for the parent domain, idle
4092 * sibling can pick up load irrespective of busy siblings. In this case,
4093 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4094 * portraying it as CPU_NOT_IDLE.
4095 */
4096 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4097 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4098 sd_idle = 1;
4099
4100 schedstat_inc(sd, lb_count[idle]);
4101
4102 redo:
4103 update_shares(sd);
4104 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4105 cpus, balance);
4106
4107 if (*balance == 0)
4108 goto out_balanced;
4109
4110 if (!group) {
4111 schedstat_inc(sd, lb_nobusyg[idle]);
4112 goto out_balanced;
4113 }
4114
4115 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4116 if (!busiest) {
4117 schedstat_inc(sd, lb_nobusyq[idle]);
4118 goto out_balanced;
4119 }
4120
4121 BUG_ON(busiest == this_rq);
4122
4123 schedstat_add(sd, lb_imbalance[idle], imbalance);
4124
4125 ld_moved = 0;
4126 if (busiest->nr_running > 1) {
4127 /*
4128 * Attempt to move tasks. If find_busiest_group has found
4129 * an imbalance but busiest->nr_running <= 1, the group is
4130 * still unbalanced. ld_moved simply stays zero, so it is
4131 * correctly treated as an imbalance.
4132 */
4133 local_irq_save(flags);
4134 double_rq_lock(this_rq, busiest);
4135 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4136 imbalance, sd, idle, &all_pinned);
4137 double_rq_unlock(this_rq, busiest);
4138 local_irq_restore(flags);
4139
4140 /*
4141 * some other cpu did the load balance for us.
4142 */
4143 if (ld_moved && this_cpu != smp_processor_id())
4144 resched_cpu(this_cpu);
4145
4146 /* All tasks on this runqueue were pinned by CPU affinity */
4147 if (unlikely(all_pinned)) {
4148 cpumask_clear_cpu(cpu_of(busiest), cpus);
4149 if (!cpumask_empty(cpus))
4150 goto redo;
4151 goto out_balanced;
4152 }
4153 }
4154
4155 if (!ld_moved) {
4156 schedstat_inc(sd, lb_failed[idle]);
4157 sd->nr_balance_failed++;
4158
4159 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4160
4161 spin_lock_irqsave(&busiest->lock, flags);
4162
4163 /* don't kick the migration_thread, if the curr
4164 * task on busiest cpu can't be moved to this_cpu
4165 */
4166 if (!cpumask_test_cpu(this_cpu,
4167 &busiest->curr->cpus_allowed)) {
4168 spin_unlock_irqrestore(&busiest->lock, flags);
4169 all_pinned = 1;
4170 goto out_one_pinned;
4171 }
4172
4173 if (!busiest->active_balance) {
4174 busiest->active_balance = 1;
4175 busiest->push_cpu = this_cpu;
4176 active_balance = 1;
4177 }
4178 spin_unlock_irqrestore(&busiest->lock, flags);
4179 if (active_balance)
4180 wake_up_process(busiest->migration_thread);
4181
4182 /*
4183 * We've kicked active balancing, reset the failure
4184 * counter.
4185 */
4186 sd->nr_balance_failed = sd->cache_nice_tries+1;
4187 }
4188 } else
4189 sd->nr_balance_failed = 0;
4190
4191 if (likely(!active_balance)) {
4192 /* We were unbalanced, so reset the balancing interval */
4193 sd->balance_interval = sd->min_interval;
4194 } else {
4195 /*
4196 * If we've begun active balancing, start to back off. This
4197 * case may not be covered by the all_pinned logic if there
4198 * is only 1 task on the busy runqueue (because we don't call
4199 * move_tasks).
4200 */
4201 if (sd->balance_interval < sd->max_interval)
4202 sd->balance_interval *= 2;
4203 }
4204
4205 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4206 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4207 ld_moved = -1;
4208
4209 goto out;
4210
4211 out_balanced:
4212 schedstat_inc(sd, lb_balanced[idle]);
4213
4214 sd->nr_balance_failed = 0;
4215
4216 out_one_pinned:
4217 /* tune up the balancing interval */
4218 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4219 (sd->balance_interval < sd->max_interval))
4220 sd->balance_interval *= 2;
4221
4222 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4223 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4224 ld_moved = -1;
4225 else
4226 ld_moved = 0;
4227 out:
4228 if (ld_moved)
4229 update_shares(sd);
4230 return ld_moved;
4231 }
4232
4233 /*
4234 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4235 * tasks if there is an imbalance.
4236 *
4237 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4238 * this_rq is locked.
4239 */
4240 static int
4241 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4242 {
4243 struct sched_group *group;
4244 struct rq *busiest = NULL;
4245 unsigned long imbalance;
4246 int ld_moved = 0;
4247 int sd_idle = 0;
4248 int all_pinned = 0;
4249 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4250
4251 cpumask_setall(cpus);
4252
4253 /*
4254 * When power savings policy is enabled for the parent domain, idle
4255 * sibling can pick up load irrespective of busy siblings. In this case,
4256 * let the state of idle sibling percolate up as IDLE, instead of
4257 * portraying it as CPU_NOT_IDLE.
4258 */
4259 if (sd->flags & SD_SHARE_CPUPOWER &&
4260 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4261 sd_idle = 1;
4262
4263 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4264 redo:
4265 update_shares_locked(this_rq, sd);
4266 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4267 &sd_idle, cpus, NULL);
4268 if (!group) {
4269 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4270 goto out_balanced;
4271 }
4272
4273 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4274 if (!busiest) {
4275 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4276 goto out_balanced;
4277 }
4278
4279 BUG_ON(busiest == this_rq);
4280
4281 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4282
4283 ld_moved = 0;
4284 if (busiest->nr_running > 1) {
4285 /* Attempt to move tasks */
4286 double_lock_balance(this_rq, busiest);
4287 /* this_rq->clock is already updated */
4288 update_rq_clock(busiest);
4289 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4290 imbalance, sd, CPU_NEWLY_IDLE,
4291 &all_pinned);
4292 double_unlock_balance(this_rq, busiest);
4293
4294 if (unlikely(all_pinned)) {
4295 cpumask_clear_cpu(cpu_of(busiest), cpus);
4296 if (!cpumask_empty(cpus))
4297 goto redo;
4298 }
4299 }
4300
4301 if (!ld_moved) {
4302 int active_balance = 0;
4303
4304 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4305 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4306 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4307 return -1;
4308
4309 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4310 return -1;
4311
4312 if (sd->nr_balance_failed++ < 2)
4313 return -1;
4314
4315 /*
4316 * The only task running in a non-idle cpu can be moved to this
4317 * cpu in an attempt to completely freeup the other CPU
4318 * package. The same method used to move task in load_balance()
4319 * have been extended for load_balance_newidle() to speedup
4320 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4321 *
4322 * The package power saving logic comes from
4323 * find_busiest_group(). If there are no imbalance, then
4324 * f_b_g() will return NULL. However when sched_mc={1,2} then
4325 * f_b_g() will select a group from which a running task may be
4326 * pulled to this cpu in order to make the other package idle.
4327 * If there is no opportunity to make a package idle and if
4328 * there are no imbalance, then f_b_g() will return NULL and no
4329 * action will be taken in load_balance_newidle().
4330 *
4331 * Under normal task pull operation due to imbalance, there
4332 * will be more than one task in the source run queue and
4333 * move_tasks() will succeed. ld_moved will be true and this
4334 * active balance code will not be triggered.
4335 */
4336
4337 /* Lock busiest in correct order while this_rq is held */
4338 double_lock_balance(this_rq, busiest);
4339
4340 /*
4341 * don't kick the migration_thread, if the curr
4342 * task on busiest cpu can't be moved to this_cpu
4343 */
4344 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4345 double_unlock_balance(this_rq, busiest);
4346 all_pinned = 1;
4347 return ld_moved;
4348 }
4349
4350 if (!busiest->active_balance) {
4351 busiest->active_balance = 1;
4352 busiest->push_cpu = this_cpu;
4353 active_balance = 1;
4354 }
4355
4356 double_unlock_balance(this_rq, busiest);
4357 /*
4358 * Should not call ttwu while holding a rq->lock
4359 */
4360 spin_unlock(&this_rq->lock);
4361 if (active_balance)
4362 wake_up_process(busiest->migration_thread);
4363 spin_lock(&this_rq->lock);
4364
4365 } else
4366 sd->nr_balance_failed = 0;
4367
4368 update_shares_locked(this_rq, sd);
4369 return ld_moved;
4370
4371 out_balanced:
4372 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4373 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4374 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4375 return -1;
4376 sd->nr_balance_failed = 0;
4377
4378 return 0;
4379 }
4380
4381 /*
4382 * idle_balance is called by schedule() if this_cpu is about to become
4383 * idle. Attempts to pull tasks from other CPUs.
4384 */
4385 static void idle_balance(int this_cpu, struct rq *this_rq)
4386 {
4387 struct sched_domain *sd;
4388 int pulled_task = 0;
4389 unsigned long next_balance = jiffies + HZ;
4390
4391 for_each_domain(this_cpu, sd) {
4392 unsigned long interval;
4393
4394 if (!(sd->flags & SD_LOAD_BALANCE))
4395 continue;
4396
4397 if (sd->flags & SD_BALANCE_NEWIDLE)
4398 /* If we've pulled tasks over stop searching: */
4399 pulled_task = load_balance_newidle(this_cpu, this_rq,
4400 sd);
4401
4402 interval = msecs_to_jiffies(sd->balance_interval);
4403 if (time_after(next_balance, sd->last_balance + interval))
4404 next_balance = sd->last_balance + interval;
4405 if (pulled_task)
4406 break;
4407 }
4408 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4409 /*
4410 * We are going idle. next_balance may be set based on
4411 * a busy processor. So reset next_balance.
4412 */
4413 this_rq->next_balance = next_balance;
4414 }
4415 }
4416
4417 /*
4418 * active_load_balance is run by migration threads. It pushes running tasks
4419 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4420 * running on each physical CPU where possible, and avoids physical /
4421 * logical imbalances.
4422 *
4423 * Called with busiest_rq locked.
4424 */
4425 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4426 {
4427 int target_cpu = busiest_rq->push_cpu;
4428 struct sched_domain *sd;
4429 struct rq *target_rq;
4430
4431 /* Is there any task to move? */
4432 if (busiest_rq->nr_running <= 1)
4433 return;
4434
4435 target_rq = cpu_rq(target_cpu);
4436
4437 /*
4438 * This condition is "impossible", if it occurs
4439 * we need to fix it. Originally reported by
4440 * Bjorn Helgaas on a 128-cpu setup.
4441 */
4442 BUG_ON(busiest_rq == target_rq);
4443
4444 /* move a task from busiest_rq to target_rq */
4445 double_lock_balance(busiest_rq, target_rq);
4446 update_rq_clock(busiest_rq);
4447 update_rq_clock(target_rq);
4448
4449 /* Search for an sd spanning us and the target CPU. */
4450 for_each_domain(target_cpu, sd) {
4451 if ((sd->flags & SD_LOAD_BALANCE) &&
4452 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4453 break;
4454 }
4455
4456 if (likely(sd)) {
4457 schedstat_inc(sd, alb_count);
4458
4459 if (move_one_task(target_rq, target_cpu, busiest_rq,
4460 sd, CPU_IDLE))
4461 schedstat_inc(sd, alb_pushed);
4462 else
4463 schedstat_inc(sd, alb_failed);
4464 }
4465 double_unlock_balance(busiest_rq, target_rq);
4466 }
4467
4468 #ifdef CONFIG_NO_HZ
4469 static struct {
4470 atomic_t load_balancer;
4471 cpumask_var_t cpu_mask;
4472 cpumask_var_t ilb_grp_nohz_mask;
4473 } nohz ____cacheline_aligned = {
4474 .load_balancer = ATOMIC_INIT(-1),
4475 };
4476
4477 int get_nohz_load_balancer(void)
4478 {
4479 return atomic_read(&nohz.load_balancer);
4480 }
4481
4482 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4483 /**
4484 * lowest_flag_domain - Return lowest sched_domain containing flag.
4485 * @cpu: The cpu whose lowest level of sched domain is to
4486 * be returned.
4487 * @flag: The flag to check for the lowest sched_domain
4488 * for the given cpu.
4489 *
4490 * Returns the lowest sched_domain of a cpu which contains the given flag.
4491 */
4492 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4493 {
4494 struct sched_domain *sd;
4495
4496 for_each_domain(cpu, sd)
4497 if (sd && (sd->flags & flag))
4498 break;
4499
4500 return sd;
4501 }
4502
4503 /**
4504 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4505 * @cpu: The cpu whose domains we're iterating over.
4506 * @sd: variable holding the value of the power_savings_sd
4507 * for cpu.
4508 * @flag: The flag to filter the sched_domains to be iterated.
4509 *
4510 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4511 * set, starting from the lowest sched_domain to the highest.
4512 */
4513 #define for_each_flag_domain(cpu, sd, flag) \
4514 for (sd = lowest_flag_domain(cpu, flag); \
4515 (sd && (sd->flags & flag)); sd = sd->parent)
4516
4517 /**
4518 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4519 * @ilb_group: group to be checked for semi-idleness
4520 *
4521 * Returns: 1 if the group is semi-idle. 0 otherwise.
4522 *
4523 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4524 * and atleast one non-idle CPU. This helper function checks if the given
4525 * sched_group is semi-idle or not.
4526 */
4527 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4528 {
4529 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4530 sched_group_cpus(ilb_group));
4531
4532 /*
4533 * A sched_group is semi-idle when it has atleast one busy cpu
4534 * and atleast one idle cpu.
4535 */
4536 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4537 return 0;
4538
4539 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4540 return 0;
4541
4542 return 1;
4543 }
4544 /**
4545 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4546 * @cpu: The cpu which is nominating a new idle_load_balancer.
4547 *
4548 * Returns: Returns the id of the idle load balancer if it exists,
4549 * Else, returns >= nr_cpu_ids.
4550 *
4551 * This algorithm picks the idle load balancer such that it belongs to a
4552 * semi-idle powersavings sched_domain. The idea is to try and avoid
4553 * completely idle packages/cores just for the purpose of idle load balancing
4554 * when there are other idle cpu's which are better suited for that job.
4555 */
4556 static int find_new_ilb(int cpu)
4557 {
4558 struct sched_domain *sd;
4559 struct sched_group *ilb_group;
4560
4561 /*
4562 * Have idle load balancer selection from semi-idle packages only
4563 * when power-aware load balancing is enabled
4564 */
4565 if (!(sched_smt_power_savings || sched_mc_power_savings))
4566 goto out_done;
4567
4568 /*
4569 * Optimize for the case when we have no idle CPUs or only one
4570 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4571 */
4572 if (cpumask_weight(nohz.cpu_mask) < 2)
4573 goto out_done;
4574
4575 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4576 ilb_group = sd->groups;
4577
4578 do {
4579 if (is_semi_idle_group(ilb_group))
4580 return cpumask_first(nohz.ilb_grp_nohz_mask);
4581
4582 ilb_group = ilb_group->next;
4583
4584 } while (ilb_group != sd->groups);
4585 }
4586
4587 out_done:
4588 return cpumask_first(nohz.cpu_mask);
4589 }
4590 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4591 static inline int find_new_ilb(int call_cpu)
4592 {
4593 return cpumask_first(nohz.cpu_mask);
4594 }
4595 #endif
4596
4597 /*
4598 * This routine will try to nominate the ilb (idle load balancing)
4599 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4600 * load balancing on behalf of all those cpus. If all the cpus in the system
4601 * go into this tickless mode, then there will be no ilb owner (as there is
4602 * no need for one) and all the cpus will sleep till the next wakeup event
4603 * arrives...
4604 *
4605 * For the ilb owner, tick is not stopped. And this tick will be used
4606 * for idle load balancing. ilb owner will still be part of
4607 * nohz.cpu_mask..
4608 *
4609 * While stopping the tick, this cpu will become the ilb owner if there
4610 * is no other owner. And will be the owner till that cpu becomes busy
4611 * or if all cpus in the system stop their ticks at which point
4612 * there is no need for ilb owner.
4613 *
4614 * When the ilb owner becomes busy, it nominates another owner, during the
4615 * next busy scheduler_tick()
4616 */
4617 int select_nohz_load_balancer(int stop_tick)
4618 {
4619 int cpu = smp_processor_id();
4620
4621 if (stop_tick) {
4622 cpu_rq(cpu)->in_nohz_recently = 1;
4623
4624 if (!cpu_active(cpu)) {
4625 if (atomic_read(&nohz.load_balancer) != cpu)
4626 return 0;
4627
4628 /*
4629 * If we are going offline and still the leader,
4630 * give up!
4631 */
4632 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4633 BUG();
4634
4635 return 0;
4636 }
4637
4638 cpumask_set_cpu(cpu, nohz.cpu_mask);
4639
4640 /* time for ilb owner also to sleep */
4641 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4642 if (atomic_read(&nohz.load_balancer) == cpu)
4643 atomic_set(&nohz.load_balancer, -1);
4644 return 0;
4645 }
4646
4647 if (atomic_read(&nohz.load_balancer) == -1) {
4648 /* make me the ilb owner */
4649 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4650 return 1;
4651 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4652 int new_ilb;
4653
4654 if (!(sched_smt_power_savings ||
4655 sched_mc_power_savings))
4656 return 1;
4657 /*
4658 * Check to see if there is a more power-efficient
4659 * ilb.
4660 */
4661 new_ilb = find_new_ilb(cpu);
4662 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4663 atomic_set(&nohz.load_balancer, -1);
4664 resched_cpu(new_ilb);
4665 return 0;
4666 }
4667 return 1;
4668 }
4669 } else {
4670 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4671 return 0;
4672
4673 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4674
4675 if (atomic_read(&nohz.load_balancer) == cpu)
4676 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4677 BUG();
4678 }
4679 return 0;
4680 }
4681 #endif
4682
4683 static DEFINE_SPINLOCK(balancing);
4684
4685 /*
4686 * It checks each scheduling domain to see if it is due to be balanced,
4687 * and initiates a balancing operation if so.
4688 *
4689 * Balancing parameters are set up in arch_init_sched_domains.
4690 */
4691 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4692 {
4693 int balance = 1;
4694 struct rq *rq = cpu_rq(cpu);
4695 unsigned long interval;
4696 struct sched_domain *sd;
4697 /* Earliest time when we have to do rebalance again */
4698 unsigned long next_balance = jiffies + 60*HZ;
4699 int update_next_balance = 0;
4700 int need_serialize;
4701
4702 for_each_domain(cpu, sd) {
4703 if (!(sd->flags & SD_LOAD_BALANCE))
4704 continue;
4705
4706 interval = sd->balance_interval;
4707 if (idle != CPU_IDLE)
4708 interval *= sd->busy_factor;
4709
4710 /* scale ms to jiffies */
4711 interval = msecs_to_jiffies(interval);
4712 if (unlikely(!interval))
4713 interval = 1;
4714 if (interval > HZ*NR_CPUS/10)
4715 interval = HZ*NR_CPUS/10;
4716
4717 need_serialize = sd->flags & SD_SERIALIZE;
4718
4719 if (need_serialize) {
4720 if (!spin_trylock(&balancing))
4721 goto out;
4722 }
4723
4724 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4725 if (load_balance(cpu, rq, sd, idle, &balance)) {
4726 /*
4727 * We've pulled tasks over so either we're no
4728 * longer idle, or one of our SMT siblings is
4729 * not idle.
4730 */
4731 idle = CPU_NOT_IDLE;
4732 }
4733 sd->last_balance = jiffies;
4734 }
4735 if (need_serialize)
4736 spin_unlock(&balancing);
4737 out:
4738 if (time_after(next_balance, sd->last_balance + interval)) {
4739 next_balance = sd->last_balance + interval;
4740 update_next_balance = 1;
4741 }
4742
4743 /*
4744 * Stop the load balance at this level. There is another
4745 * CPU in our sched group which is doing load balancing more
4746 * actively.
4747 */
4748 if (!balance)
4749 break;
4750 }
4751
4752 /*
4753 * next_balance will be updated only when there is a need.
4754 * When the cpu is attached to null domain for ex, it will not be
4755 * updated.
4756 */
4757 if (likely(update_next_balance))
4758 rq->next_balance = next_balance;
4759 }
4760
4761 /*
4762 * run_rebalance_domains is triggered when needed from the scheduler tick.
4763 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4764 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4765 */
4766 static void run_rebalance_domains(struct softirq_action *h)
4767 {
4768 int this_cpu = smp_processor_id();
4769 struct rq *this_rq = cpu_rq(this_cpu);
4770 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4771 CPU_IDLE : CPU_NOT_IDLE;
4772
4773 rebalance_domains(this_cpu, idle);
4774
4775 #ifdef CONFIG_NO_HZ
4776 /*
4777 * If this cpu is the owner for idle load balancing, then do the
4778 * balancing on behalf of the other idle cpus whose ticks are
4779 * stopped.
4780 */
4781 if (this_rq->idle_at_tick &&
4782 atomic_read(&nohz.load_balancer) == this_cpu) {
4783 struct rq *rq;
4784 int balance_cpu;
4785
4786 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4787 if (balance_cpu == this_cpu)
4788 continue;
4789
4790 /*
4791 * If this cpu gets work to do, stop the load balancing
4792 * work being done for other cpus. Next load
4793 * balancing owner will pick it up.
4794 */
4795 if (need_resched())
4796 break;
4797
4798 rebalance_domains(balance_cpu, CPU_IDLE);
4799
4800 rq = cpu_rq(balance_cpu);
4801 if (time_after(this_rq->next_balance, rq->next_balance))
4802 this_rq->next_balance = rq->next_balance;
4803 }
4804 }
4805 #endif
4806 }
4807
4808 static inline int on_null_domain(int cpu)
4809 {
4810 return !rcu_dereference(cpu_rq(cpu)->sd);
4811 }
4812
4813 /*
4814 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4815 *
4816 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4817 * idle load balancing owner or decide to stop the periodic load balancing,
4818 * if the whole system is idle.
4819 */
4820 static inline void trigger_load_balance(struct rq *rq, int cpu)
4821 {
4822 #ifdef CONFIG_NO_HZ
4823 /*
4824 * If we were in the nohz mode recently and busy at the current
4825 * scheduler tick, then check if we need to nominate new idle
4826 * load balancer.
4827 */
4828 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4829 rq->in_nohz_recently = 0;
4830
4831 if (atomic_read(&nohz.load_balancer) == cpu) {
4832 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4833 atomic_set(&nohz.load_balancer, -1);
4834 }
4835
4836 if (atomic_read(&nohz.load_balancer) == -1) {
4837 int ilb = find_new_ilb(cpu);
4838
4839 if (ilb < nr_cpu_ids)
4840 resched_cpu(ilb);
4841 }
4842 }
4843
4844 /*
4845 * If this cpu is idle and doing idle load balancing for all the
4846 * cpus with ticks stopped, is it time for that to stop?
4847 */
4848 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4849 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4850 resched_cpu(cpu);
4851 return;
4852 }
4853
4854 /*
4855 * If this cpu is idle and the idle load balancing is done by
4856 * someone else, then no need raise the SCHED_SOFTIRQ
4857 */
4858 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4859 cpumask_test_cpu(cpu, nohz.cpu_mask))
4860 return;
4861 #endif
4862 /* Don't need to rebalance while attached to NULL domain */
4863 if (time_after_eq(jiffies, rq->next_balance) &&
4864 likely(!on_null_domain(cpu)))
4865 raise_softirq(SCHED_SOFTIRQ);
4866 }
4867
4868 #else /* CONFIG_SMP */
4869
4870 /*
4871 * on UP we do not need to balance between CPUs:
4872 */
4873 static inline void idle_balance(int cpu, struct rq *rq)
4874 {
4875 }
4876
4877 #endif
4878
4879 DEFINE_PER_CPU(struct kernel_stat, kstat);
4880
4881 EXPORT_PER_CPU_SYMBOL(kstat);
4882
4883 /*
4884 * Return any ns on the sched_clock that have not yet been accounted in
4885 * @p in case that task is currently running.
4886 *
4887 * Called with task_rq_lock() held on @rq.
4888 */
4889 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4890 {
4891 u64 ns = 0;
4892
4893 if (task_current(rq, p)) {
4894 update_rq_clock(rq);
4895 ns = rq->clock - p->se.exec_start;
4896 if ((s64)ns < 0)
4897 ns = 0;
4898 }
4899
4900 return ns;
4901 }
4902
4903 unsigned long long task_delta_exec(struct task_struct *p)
4904 {
4905 unsigned long flags;
4906 struct rq *rq;
4907 u64 ns = 0;
4908
4909 rq = task_rq_lock(p, &flags);
4910 ns = do_task_delta_exec(p, rq);
4911 task_rq_unlock(rq, &flags);
4912
4913 return ns;
4914 }
4915
4916 /*
4917 * Return accounted runtime for the task.
4918 * In case the task is currently running, return the runtime plus current's
4919 * pending runtime that have not been accounted yet.
4920 */
4921 unsigned long long task_sched_runtime(struct task_struct *p)
4922 {
4923 unsigned long flags;
4924 struct rq *rq;
4925 u64 ns = 0;
4926
4927 rq = task_rq_lock(p, &flags);
4928 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4929 task_rq_unlock(rq, &flags);
4930
4931 return ns;
4932 }
4933
4934 /*
4935 * Return sum_exec_runtime for the thread group.
4936 * In case the task is currently running, return the sum plus current's
4937 * pending runtime that have not been accounted yet.
4938 *
4939 * Note that the thread group might have other running tasks as well,
4940 * so the return value not includes other pending runtime that other
4941 * running tasks might have.
4942 */
4943 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4944 {
4945 struct task_cputime totals;
4946 unsigned long flags;
4947 struct rq *rq;
4948 u64 ns;
4949
4950 rq = task_rq_lock(p, &flags);
4951 thread_group_cputime(p, &totals);
4952 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4953 task_rq_unlock(rq, &flags);
4954
4955 return ns;
4956 }
4957
4958 /*
4959 * Account user cpu time to a process.
4960 * @p: the process that the cpu time gets accounted to
4961 * @cputime: the cpu time spent in user space since the last update
4962 * @cputime_scaled: cputime scaled by cpu frequency
4963 */
4964 void account_user_time(struct task_struct *p, cputime_t cputime,
4965 cputime_t cputime_scaled)
4966 {
4967 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4968 cputime64_t tmp;
4969
4970 /* Add user time to process. */
4971 p->utime = cputime_add(p->utime, cputime);
4972 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4973 account_group_user_time(p, cputime);
4974
4975 /* Add user time to cpustat. */
4976 tmp = cputime_to_cputime64(cputime);
4977 if (TASK_NICE(p) > 0)
4978 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4979 else
4980 cpustat->user = cputime64_add(cpustat->user, tmp);
4981
4982 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4983 /* Account for user time used */
4984 acct_update_integrals(p);
4985 }
4986
4987 /*
4988 * Account guest cpu time to a process.
4989 * @p: the process that the cpu time gets accounted to
4990 * @cputime: the cpu time spent in virtual machine since the last update
4991 * @cputime_scaled: cputime scaled by cpu frequency
4992 */
4993 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4994 cputime_t cputime_scaled)
4995 {
4996 cputime64_t tmp;
4997 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4998
4999 tmp = cputime_to_cputime64(cputime);
5000
5001 /* Add guest time to process. */
5002 p->utime = cputime_add(p->utime, cputime);
5003 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5004 account_group_user_time(p, cputime);
5005 p->gtime = cputime_add(p->gtime, cputime);
5006
5007 /* Add guest time to cpustat. */
5008 cpustat->user = cputime64_add(cpustat->user, tmp);
5009 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5010 }
5011
5012 /*
5013 * Account system cpu time to a process.
5014 * @p: the process that the cpu time gets accounted to
5015 * @hardirq_offset: the offset to subtract from hardirq_count()
5016 * @cputime: the cpu time spent in kernel space since the last update
5017 * @cputime_scaled: cputime scaled by cpu frequency
5018 */
5019 void account_system_time(struct task_struct *p, int hardirq_offset,
5020 cputime_t cputime, cputime_t cputime_scaled)
5021 {
5022 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5023 cputime64_t tmp;
5024
5025 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5026 account_guest_time(p, cputime, cputime_scaled);
5027 return;
5028 }
5029
5030 /* Add system time to process. */
5031 p->stime = cputime_add(p->stime, cputime);
5032 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5033 account_group_system_time(p, cputime);
5034
5035 /* Add system time to cpustat. */
5036 tmp = cputime_to_cputime64(cputime);
5037 if (hardirq_count() - hardirq_offset)
5038 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5039 else if (softirq_count())
5040 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5041 else
5042 cpustat->system = cputime64_add(cpustat->system, tmp);
5043
5044 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5045
5046 /* Account for system time used */
5047 acct_update_integrals(p);
5048 }
5049
5050 /*
5051 * Account for involuntary wait time.
5052 * @steal: the cpu time spent in involuntary wait
5053 */
5054 void account_steal_time(cputime_t cputime)
5055 {
5056 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5057 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5058
5059 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5060 }
5061
5062 /*
5063 * Account for idle time.
5064 * @cputime: the cpu time spent in idle wait
5065 */
5066 void account_idle_time(cputime_t cputime)
5067 {
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5069 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5070 struct rq *rq = this_rq();
5071
5072 if (atomic_read(&rq->nr_iowait) > 0)
5073 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5074 else
5075 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5076 }
5077
5078 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5079
5080 /*
5081 * Account a single tick of cpu time.
5082 * @p: the process that the cpu time gets accounted to
5083 * @user_tick: indicates if the tick is a user or a system tick
5084 */
5085 void account_process_tick(struct task_struct *p, int user_tick)
5086 {
5087 cputime_t one_jiffy = jiffies_to_cputime(1);
5088 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5089 struct rq *rq = this_rq();
5090
5091 if (user_tick)
5092 account_user_time(p, one_jiffy, one_jiffy_scaled);
5093 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5094 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5095 one_jiffy_scaled);
5096 else
5097 account_idle_time(one_jiffy);
5098 }
5099
5100 /*
5101 * Account multiple ticks of steal time.
5102 * @p: the process from which the cpu time has been stolen
5103 * @ticks: number of stolen ticks
5104 */
5105 void account_steal_ticks(unsigned long ticks)
5106 {
5107 account_steal_time(jiffies_to_cputime(ticks));
5108 }
5109
5110 /*
5111 * Account multiple ticks of idle time.
5112 * @ticks: number of stolen ticks
5113 */
5114 void account_idle_ticks(unsigned long ticks)
5115 {
5116 account_idle_time(jiffies_to_cputime(ticks));
5117 }
5118
5119 #endif
5120
5121 /*
5122 * Use precise platform statistics if available:
5123 */
5124 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5125 cputime_t task_utime(struct task_struct *p)
5126 {
5127 return p->utime;
5128 }
5129
5130 cputime_t task_stime(struct task_struct *p)
5131 {
5132 return p->stime;
5133 }
5134 #else
5135 cputime_t task_utime(struct task_struct *p)
5136 {
5137 clock_t utime = cputime_to_clock_t(p->utime),
5138 total = utime + cputime_to_clock_t(p->stime);
5139 u64 temp;
5140
5141 /*
5142 * Use CFS's precise accounting:
5143 */
5144 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5145
5146 if (total) {
5147 temp *= utime;
5148 do_div(temp, total);
5149 }
5150 utime = (clock_t)temp;
5151
5152 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5153 return p->prev_utime;
5154 }
5155
5156 cputime_t task_stime(struct task_struct *p)
5157 {
5158 clock_t stime;
5159
5160 /*
5161 * Use CFS's precise accounting. (we subtract utime from
5162 * the total, to make sure the total observed by userspace
5163 * grows monotonically - apps rely on that):
5164 */
5165 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5166 cputime_to_clock_t(task_utime(p));
5167
5168 if (stime >= 0)
5169 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5170
5171 return p->prev_stime;
5172 }
5173 #endif
5174
5175 inline cputime_t task_gtime(struct task_struct *p)
5176 {
5177 return p->gtime;
5178 }
5179
5180 /*
5181 * This function gets called by the timer code, with HZ frequency.
5182 * We call it with interrupts disabled.
5183 *
5184 * It also gets called by the fork code, when changing the parent's
5185 * timeslices.
5186 */
5187 void scheduler_tick(void)
5188 {
5189 int cpu = smp_processor_id();
5190 struct rq *rq = cpu_rq(cpu);
5191 struct task_struct *curr = rq->curr;
5192
5193 sched_clock_tick();
5194
5195 spin_lock(&rq->lock);
5196 update_rq_clock(rq);
5197 update_cpu_load(rq);
5198 curr->sched_class->task_tick(rq, curr, 0);
5199 spin_unlock(&rq->lock);
5200
5201 perf_counter_task_tick(curr, cpu);
5202
5203 #ifdef CONFIG_SMP
5204 rq->idle_at_tick = idle_cpu(cpu);
5205 trigger_load_balance(rq, cpu);
5206 #endif
5207 }
5208
5209 notrace unsigned long get_parent_ip(unsigned long addr)
5210 {
5211 if (in_lock_functions(addr)) {
5212 addr = CALLER_ADDR2;
5213 if (in_lock_functions(addr))
5214 addr = CALLER_ADDR3;
5215 }
5216 return addr;
5217 }
5218
5219 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5220 defined(CONFIG_PREEMPT_TRACER))
5221
5222 void __kprobes add_preempt_count(int val)
5223 {
5224 #ifdef CONFIG_DEBUG_PREEMPT
5225 /*
5226 * Underflow?
5227 */
5228 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5229 return;
5230 #endif
5231 preempt_count() += val;
5232 #ifdef CONFIG_DEBUG_PREEMPT
5233 /*
5234 * Spinlock count overflowing soon?
5235 */
5236 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5237 PREEMPT_MASK - 10);
5238 #endif
5239 if (preempt_count() == val)
5240 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5241 }
5242 EXPORT_SYMBOL(add_preempt_count);
5243
5244 void __kprobes sub_preempt_count(int val)
5245 {
5246 #ifdef CONFIG_DEBUG_PREEMPT
5247 /*
5248 * Underflow?
5249 */
5250 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5251 return;
5252 /*
5253 * Is the spinlock portion underflowing?
5254 */
5255 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5256 !(preempt_count() & PREEMPT_MASK)))
5257 return;
5258 #endif
5259
5260 if (preempt_count() == val)
5261 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5262 preempt_count() -= val;
5263 }
5264 EXPORT_SYMBOL(sub_preempt_count);
5265
5266 #endif
5267
5268 /*
5269 * Print scheduling while atomic bug:
5270 */
5271 static noinline void __schedule_bug(struct task_struct *prev)
5272 {
5273 struct pt_regs *regs = get_irq_regs();
5274
5275 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5276 prev->comm, prev->pid, preempt_count());
5277
5278 debug_show_held_locks(prev);
5279 print_modules();
5280 if (irqs_disabled())
5281 print_irqtrace_events(prev);
5282
5283 if (regs)
5284 show_regs(regs);
5285 else
5286 dump_stack();
5287 }
5288
5289 /*
5290 * Various schedule()-time debugging checks and statistics:
5291 */
5292 static inline void schedule_debug(struct task_struct *prev)
5293 {
5294 /*
5295 * Test if we are atomic. Since do_exit() needs to call into
5296 * schedule() atomically, we ignore that path for now.
5297 * Otherwise, whine if we are scheduling when we should not be.
5298 */
5299 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5300 __schedule_bug(prev);
5301
5302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5303
5304 schedstat_inc(this_rq(), sched_count);
5305 #ifdef CONFIG_SCHEDSTATS
5306 if (unlikely(prev->lock_depth >= 0)) {
5307 schedstat_inc(this_rq(), bkl_count);
5308 schedstat_inc(prev, sched_info.bkl_count);
5309 }
5310 #endif
5311 }
5312
5313 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5314 {
5315 if (prev->state == TASK_RUNNING) {
5316 u64 runtime = prev->se.sum_exec_runtime;
5317
5318 runtime -= prev->se.prev_sum_exec_runtime;
5319 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5320
5321 /*
5322 * In order to avoid avg_overlap growing stale when we are
5323 * indeed overlapping and hence not getting put to sleep, grow
5324 * the avg_overlap on preemption.
5325 *
5326 * We use the average preemption runtime because that
5327 * correlates to the amount of cache footprint a task can
5328 * build up.
5329 */
5330 update_avg(&prev->se.avg_overlap, runtime);
5331 }
5332 prev->sched_class->put_prev_task(rq, prev);
5333 }
5334
5335 /*
5336 * Pick up the highest-prio task:
5337 */
5338 static inline struct task_struct *
5339 pick_next_task(struct rq *rq)
5340 {
5341 const struct sched_class *class;
5342 struct task_struct *p;
5343
5344 /*
5345 * Optimization: we know that if all tasks are in
5346 * the fair class we can call that function directly:
5347 */
5348 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5349 p = fair_sched_class.pick_next_task(rq);
5350 if (likely(p))
5351 return p;
5352 }
5353
5354 class = sched_class_highest;
5355 for ( ; ; ) {
5356 p = class->pick_next_task(rq);
5357 if (p)
5358 return p;
5359 /*
5360 * Will never be NULL as the idle class always
5361 * returns a non-NULL p:
5362 */
5363 class = class->next;
5364 }
5365 }
5366
5367 /*
5368 * schedule() is the main scheduler function.
5369 */
5370 asmlinkage void __sched schedule(void)
5371 {
5372 struct task_struct *prev, *next;
5373 unsigned long *switch_count;
5374 struct rq *rq;
5375 int cpu;
5376
5377 need_resched:
5378 preempt_disable();
5379 cpu = smp_processor_id();
5380 rq = cpu_rq(cpu);
5381 rcu_sched_qs(cpu);
5382 prev = rq->curr;
5383 switch_count = &prev->nivcsw;
5384
5385 release_kernel_lock(prev);
5386 need_resched_nonpreemptible:
5387
5388 schedule_debug(prev);
5389
5390 if (sched_feat(HRTICK))
5391 hrtick_clear(rq);
5392
5393 spin_lock_irq(&rq->lock);
5394 update_rq_clock(rq);
5395 clear_tsk_need_resched(prev);
5396
5397 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5398 if (unlikely(signal_pending_state(prev->state, prev)))
5399 prev->state = TASK_RUNNING;
5400 else
5401 deactivate_task(rq, prev, 1);
5402 switch_count = &prev->nvcsw;
5403 }
5404
5405 pre_schedule(rq, prev);
5406
5407 if (unlikely(!rq->nr_running))
5408 idle_balance(cpu, rq);
5409
5410 put_prev_task(rq, prev);
5411 next = pick_next_task(rq);
5412
5413 if (likely(prev != next)) {
5414 sched_info_switch(prev, next);
5415 perf_counter_task_sched_out(prev, next, cpu);
5416
5417 rq->nr_switches++;
5418 rq->curr = next;
5419 ++*switch_count;
5420
5421 context_switch(rq, prev, next); /* unlocks the rq */
5422 /*
5423 * the context switch might have flipped the stack from under
5424 * us, hence refresh the local variables.
5425 */
5426 cpu = smp_processor_id();
5427 rq = cpu_rq(cpu);
5428 } else
5429 spin_unlock_irq(&rq->lock);
5430
5431 post_schedule(rq);
5432
5433 if (unlikely(reacquire_kernel_lock(current) < 0))
5434 goto need_resched_nonpreemptible;
5435
5436 preempt_enable_no_resched();
5437 if (need_resched())
5438 goto need_resched;
5439 }
5440 EXPORT_SYMBOL(schedule);
5441
5442 #ifdef CONFIG_SMP
5443 /*
5444 * Look out! "owner" is an entirely speculative pointer
5445 * access and not reliable.
5446 */
5447 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5448 {
5449 unsigned int cpu;
5450 struct rq *rq;
5451
5452 if (!sched_feat(OWNER_SPIN))
5453 return 0;
5454
5455 #ifdef CONFIG_DEBUG_PAGEALLOC
5456 /*
5457 * Need to access the cpu field knowing that
5458 * DEBUG_PAGEALLOC could have unmapped it if
5459 * the mutex owner just released it and exited.
5460 */
5461 if (probe_kernel_address(&owner->cpu, cpu))
5462 goto out;
5463 #else
5464 cpu = owner->cpu;
5465 #endif
5466
5467 /*
5468 * Even if the access succeeded (likely case),
5469 * the cpu field may no longer be valid.
5470 */
5471 if (cpu >= nr_cpumask_bits)
5472 goto out;
5473
5474 /*
5475 * We need to validate that we can do a
5476 * get_cpu() and that we have the percpu area.
5477 */
5478 if (!cpu_online(cpu))
5479 goto out;
5480
5481 rq = cpu_rq(cpu);
5482
5483 for (;;) {
5484 /*
5485 * Owner changed, break to re-assess state.
5486 */
5487 if (lock->owner != owner)
5488 break;
5489
5490 /*
5491 * Is that owner really running on that cpu?
5492 */
5493 if (task_thread_info(rq->curr) != owner || need_resched())
5494 return 0;
5495
5496 cpu_relax();
5497 }
5498 out:
5499 return 1;
5500 }
5501 #endif
5502
5503 #ifdef CONFIG_PREEMPT
5504 /*
5505 * this is the entry point to schedule() from in-kernel preemption
5506 * off of preempt_enable. Kernel preemptions off return from interrupt
5507 * occur there and call schedule directly.
5508 */
5509 asmlinkage void __sched preempt_schedule(void)
5510 {
5511 struct thread_info *ti = current_thread_info();
5512
5513 /*
5514 * If there is a non-zero preempt_count or interrupts are disabled,
5515 * we do not want to preempt the current task. Just return..
5516 */
5517 if (likely(ti->preempt_count || irqs_disabled()))
5518 return;
5519
5520 do {
5521 add_preempt_count(PREEMPT_ACTIVE);
5522 schedule();
5523 sub_preempt_count(PREEMPT_ACTIVE);
5524
5525 /*
5526 * Check again in case we missed a preemption opportunity
5527 * between schedule and now.
5528 */
5529 barrier();
5530 } while (need_resched());
5531 }
5532 EXPORT_SYMBOL(preempt_schedule);
5533
5534 /*
5535 * this is the entry point to schedule() from kernel preemption
5536 * off of irq context.
5537 * Note, that this is called and return with irqs disabled. This will
5538 * protect us against recursive calling from irq.
5539 */
5540 asmlinkage void __sched preempt_schedule_irq(void)
5541 {
5542 struct thread_info *ti = current_thread_info();
5543
5544 /* Catch callers which need to be fixed */
5545 BUG_ON(ti->preempt_count || !irqs_disabled());
5546
5547 do {
5548 add_preempt_count(PREEMPT_ACTIVE);
5549 local_irq_enable();
5550 schedule();
5551 local_irq_disable();
5552 sub_preempt_count(PREEMPT_ACTIVE);
5553
5554 /*
5555 * Check again in case we missed a preemption opportunity
5556 * between schedule and now.
5557 */
5558 barrier();
5559 } while (need_resched());
5560 }
5561
5562 #endif /* CONFIG_PREEMPT */
5563
5564 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5565 void *key)
5566 {
5567 return try_to_wake_up(curr->private, mode, wake_flags);
5568 }
5569 EXPORT_SYMBOL(default_wake_function);
5570
5571 /*
5572 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5573 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5574 * number) then we wake all the non-exclusive tasks and one exclusive task.
5575 *
5576 * There are circumstances in which we can try to wake a task which has already
5577 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5578 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5579 */
5580 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5581 int nr_exclusive, int wake_flags, void *key)
5582 {
5583 wait_queue_t *curr, *next;
5584
5585 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5586 unsigned flags = curr->flags;
5587
5588 if (curr->func(curr, mode, wake_flags, key) &&
5589 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5590 break;
5591 }
5592 }
5593
5594 /**
5595 * __wake_up - wake up threads blocked on a waitqueue.
5596 * @q: the waitqueue
5597 * @mode: which threads
5598 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5599 * @key: is directly passed to the wakeup function
5600 *
5601 * It may be assumed that this function implies a write memory barrier before
5602 * changing the task state if and only if any tasks are woken up.
5603 */
5604 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5605 int nr_exclusive, void *key)
5606 {
5607 unsigned long flags;
5608
5609 spin_lock_irqsave(&q->lock, flags);
5610 __wake_up_common(q, mode, nr_exclusive, 0, key);
5611 spin_unlock_irqrestore(&q->lock, flags);
5612 }
5613 EXPORT_SYMBOL(__wake_up);
5614
5615 /*
5616 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5617 */
5618 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5619 {
5620 __wake_up_common(q, mode, 1, 0, NULL);
5621 }
5622
5623 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5624 {
5625 __wake_up_common(q, mode, 1, 0, key);
5626 }
5627
5628 /**
5629 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5630 * @q: the waitqueue
5631 * @mode: which threads
5632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5633 * @key: opaque value to be passed to wakeup targets
5634 *
5635 * The sync wakeup differs that the waker knows that it will schedule
5636 * away soon, so while the target thread will be woken up, it will not
5637 * be migrated to another CPU - ie. the two threads are 'synchronized'
5638 * with each other. This can prevent needless bouncing between CPUs.
5639 *
5640 * On UP it can prevent extra preemption.
5641 *
5642 * It may be assumed that this function implies a write memory barrier before
5643 * changing the task state if and only if any tasks are woken up.
5644 */
5645 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5646 int nr_exclusive, void *key)
5647 {
5648 unsigned long flags;
5649 int wake_flags = WF_SYNC;
5650
5651 if (unlikely(!q))
5652 return;
5653
5654 if (unlikely(!nr_exclusive))
5655 wake_flags = 0;
5656
5657 spin_lock_irqsave(&q->lock, flags);
5658 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5659 spin_unlock_irqrestore(&q->lock, flags);
5660 }
5661 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5662
5663 /*
5664 * __wake_up_sync - see __wake_up_sync_key()
5665 */
5666 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5667 {
5668 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5669 }
5670 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5671
5672 /**
5673 * complete: - signals a single thread waiting on this completion
5674 * @x: holds the state of this particular completion
5675 *
5676 * This will wake up a single thread waiting on this completion. Threads will be
5677 * awakened in the same order in which they were queued.
5678 *
5679 * See also complete_all(), wait_for_completion() and related routines.
5680 *
5681 * It may be assumed that this function implies a write memory barrier before
5682 * changing the task state if and only if any tasks are woken up.
5683 */
5684 void complete(struct completion *x)
5685 {
5686 unsigned long flags;
5687
5688 spin_lock_irqsave(&x->wait.lock, flags);
5689 x->done++;
5690 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5691 spin_unlock_irqrestore(&x->wait.lock, flags);
5692 }
5693 EXPORT_SYMBOL(complete);
5694
5695 /**
5696 * complete_all: - signals all threads waiting on this completion
5697 * @x: holds the state of this particular completion
5698 *
5699 * This will wake up all threads waiting on this particular completion event.
5700 *
5701 * It may be assumed that this function implies a write memory barrier before
5702 * changing the task state if and only if any tasks are woken up.
5703 */
5704 void complete_all(struct completion *x)
5705 {
5706 unsigned long flags;
5707
5708 spin_lock_irqsave(&x->wait.lock, flags);
5709 x->done += UINT_MAX/2;
5710 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5711 spin_unlock_irqrestore(&x->wait.lock, flags);
5712 }
5713 EXPORT_SYMBOL(complete_all);
5714
5715 static inline long __sched
5716 do_wait_for_common(struct completion *x, long timeout, int state)
5717 {
5718 if (!x->done) {
5719 DECLARE_WAITQUEUE(wait, current);
5720
5721 wait.flags |= WQ_FLAG_EXCLUSIVE;
5722 __add_wait_queue_tail(&x->wait, &wait);
5723 do {
5724 if (signal_pending_state(state, current)) {
5725 timeout = -ERESTARTSYS;
5726 break;
5727 }
5728 __set_current_state(state);
5729 spin_unlock_irq(&x->wait.lock);
5730 timeout = schedule_timeout(timeout);
5731 spin_lock_irq(&x->wait.lock);
5732 } while (!x->done && timeout);
5733 __remove_wait_queue(&x->wait, &wait);
5734 if (!x->done)
5735 return timeout;
5736 }
5737 x->done--;
5738 return timeout ?: 1;
5739 }
5740
5741 static long __sched
5742 wait_for_common(struct completion *x, long timeout, int state)
5743 {
5744 might_sleep();
5745
5746 spin_lock_irq(&x->wait.lock);
5747 timeout = do_wait_for_common(x, timeout, state);
5748 spin_unlock_irq(&x->wait.lock);
5749 return timeout;
5750 }
5751
5752 /**
5753 * wait_for_completion: - waits for completion of a task
5754 * @x: holds the state of this particular completion
5755 *
5756 * This waits to be signaled for completion of a specific task. It is NOT
5757 * interruptible and there is no timeout.
5758 *
5759 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5760 * and interrupt capability. Also see complete().
5761 */
5762 void __sched wait_for_completion(struct completion *x)
5763 {
5764 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5765 }
5766 EXPORT_SYMBOL(wait_for_completion);
5767
5768 /**
5769 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5770 * @x: holds the state of this particular completion
5771 * @timeout: timeout value in jiffies
5772 *
5773 * This waits for either a completion of a specific task to be signaled or for a
5774 * specified timeout to expire. The timeout is in jiffies. It is not
5775 * interruptible.
5776 */
5777 unsigned long __sched
5778 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5779 {
5780 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5781 }
5782 EXPORT_SYMBOL(wait_for_completion_timeout);
5783
5784 /**
5785 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5786 * @x: holds the state of this particular completion
5787 *
5788 * This waits for completion of a specific task to be signaled. It is
5789 * interruptible.
5790 */
5791 int __sched wait_for_completion_interruptible(struct completion *x)
5792 {
5793 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5794 if (t == -ERESTARTSYS)
5795 return t;
5796 return 0;
5797 }
5798 EXPORT_SYMBOL(wait_for_completion_interruptible);
5799
5800 /**
5801 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5802 * @x: holds the state of this particular completion
5803 * @timeout: timeout value in jiffies
5804 *
5805 * This waits for either a completion of a specific task to be signaled or for a
5806 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5807 */
5808 unsigned long __sched
5809 wait_for_completion_interruptible_timeout(struct completion *x,
5810 unsigned long timeout)
5811 {
5812 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5813 }
5814 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5815
5816 /**
5817 * wait_for_completion_killable: - waits for completion of a task (killable)
5818 * @x: holds the state of this particular completion
5819 *
5820 * This waits to be signaled for completion of a specific task. It can be
5821 * interrupted by a kill signal.
5822 */
5823 int __sched wait_for_completion_killable(struct completion *x)
5824 {
5825 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5826 if (t == -ERESTARTSYS)
5827 return t;
5828 return 0;
5829 }
5830 EXPORT_SYMBOL(wait_for_completion_killable);
5831
5832 /**
5833 * try_wait_for_completion - try to decrement a completion without blocking
5834 * @x: completion structure
5835 *
5836 * Returns: 0 if a decrement cannot be done without blocking
5837 * 1 if a decrement succeeded.
5838 *
5839 * If a completion is being used as a counting completion,
5840 * attempt to decrement the counter without blocking. This
5841 * enables us to avoid waiting if the resource the completion
5842 * is protecting is not available.
5843 */
5844 bool try_wait_for_completion(struct completion *x)
5845 {
5846 int ret = 1;
5847
5848 spin_lock_irq(&x->wait.lock);
5849 if (!x->done)
5850 ret = 0;
5851 else
5852 x->done--;
5853 spin_unlock_irq(&x->wait.lock);
5854 return ret;
5855 }
5856 EXPORT_SYMBOL(try_wait_for_completion);
5857
5858 /**
5859 * completion_done - Test to see if a completion has any waiters
5860 * @x: completion structure
5861 *
5862 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5863 * 1 if there are no waiters.
5864 *
5865 */
5866 bool completion_done(struct completion *x)
5867 {
5868 int ret = 1;
5869
5870 spin_lock_irq(&x->wait.lock);
5871 if (!x->done)
5872 ret = 0;
5873 spin_unlock_irq(&x->wait.lock);
5874 return ret;
5875 }
5876 EXPORT_SYMBOL(completion_done);
5877
5878 static long __sched
5879 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5880 {
5881 unsigned long flags;
5882 wait_queue_t wait;
5883
5884 init_waitqueue_entry(&wait, current);
5885
5886 __set_current_state(state);
5887
5888 spin_lock_irqsave(&q->lock, flags);
5889 __add_wait_queue(q, &wait);
5890 spin_unlock(&q->lock);
5891 timeout = schedule_timeout(timeout);
5892 spin_lock_irq(&q->lock);
5893 __remove_wait_queue(q, &wait);
5894 spin_unlock_irqrestore(&q->lock, flags);
5895
5896 return timeout;
5897 }
5898
5899 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5900 {
5901 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5902 }
5903 EXPORT_SYMBOL(interruptible_sleep_on);
5904
5905 long __sched
5906 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5907 {
5908 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5909 }
5910 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5911
5912 void __sched sleep_on(wait_queue_head_t *q)
5913 {
5914 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5915 }
5916 EXPORT_SYMBOL(sleep_on);
5917
5918 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5919 {
5920 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5921 }
5922 EXPORT_SYMBOL(sleep_on_timeout);
5923
5924 #ifdef CONFIG_RT_MUTEXES
5925
5926 /*
5927 * rt_mutex_setprio - set the current priority of a task
5928 * @p: task
5929 * @prio: prio value (kernel-internal form)
5930 *
5931 * This function changes the 'effective' priority of a task. It does
5932 * not touch ->normal_prio like __setscheduler().
5933 *
5934 * Used by the rt_mutex code to implement priority inheritance logic.
5935 */
5936 void rt_mutex_setprio(struct task_struct *p, int prio)
5937 {
5938 unsigned long flags;
5939 int oldprio, on_rq, running;
5940 struct rq *rq;
5941 const struct sched_class *prev_class = p->sched_class;
5942
5943 BUG_ON(prio < 0 || prio > MAX_PRIO);
5944
5945 rq = task_rq_lock(p, &flags);
5946 update_rq_clock(rq);
5947
5948 oldprio = p->prio;
5949 on_rq = p->se.on_rq;
5950 running = task_current(rq, p);
5951 if (on_rq)
5952 dequeue_task(rq, p, 0);
5953 if (running)
5954 p->sched_class->put_prev_task(rq, p);
5955
5956 if (rt_prio(prio))
5957 p->sched_class = &rt_sched_class;
5958 else
5959 p->sched_class = &fair_sched_class;
5960
5961 p->prio = prio;
5962
5963 if (running)
5964 p->sched_class->set_curr_task(rq);
5965 if (on_rq) {
5966 enqueue_task(rq, p, 0);
5967
5968 check_class_changed(rq, p, prev_class, oldprio, running);
5969 }
5970 task_rq_unlock(rq, &flags);
5971 }
5972
5973 #endif
5974
5975 void set_user_nice(struct task_struct *p, long nice)
5976 {
5977 int old_prio, delta, on_rq;
5978 unsigned long flags;
5979 struct rq *rq;
5980
5981 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5982 return;
5983 /*
5984 * We have to be careful, if called from sys_setpriority(),
5985 * the task might be in the middle of scheduling on another CPU.
5986 */
5987 rq = task_rq_lock(p, &flags);
5988 update_rq_clock(rq);
5989 /*
5990 * The RT priorities are set via sched_setscheduler(), but we still
5991 * allow the 'normal' nice value to be set - but as expected
5992 * it wont have any effect on scheduling until the task is
5993 * SCHED_FIFO/SCHED_RR:
5994 */
5995 if (task_has_rt_policy(p)) {
5996 p->static_prio = NICE_TO_PRIO(nice);
5997 goto out_unlock;
5998 }
5999 on_rq = p->se.on_rq;
6000 if (on_rq)
6001 dequeue_task(rq, p, 0);
6002
6003 p->static_prio = NICE_TO_PRIO(nice);
6004 set_load_weight(p);
6005 old_prio = p->prio;
6006 p->prio = effective_prio(p);
6007 delta = p->prio - old_prio;
6008
6009 if (on_rq) {
6010 enqueue_task(rq, p, 0);
6011 /*
6012 * If the task increased its priority or is running and
6013 * lowered its priority, then reschedule its CPU:
6014 */
6015 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6016 resched_task(rq->curr);
6017 }
6018 out_unlock:
6019 task_rq_unlock(rq, &flags);
6020 }
6021 EXPORT_SYMBOL(set_user_nice);
6022
6023 /*
6024 * can_nice - check if a task can reduce its nice value
6025 * @p: task
6026 * @nice: nice value
6027 */
6028 int can_nice(const struct task_struct *p, const int nice)
6029 {
6030 /* convert nice value [19,-20] to rlimit style value [1,40] */
6031 int nice_rlim = 20 - nice;
6032
6033 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6034 capable(CAP_SYS_NICE));
6035 }
6036
6037 #ifdef __ARCH_WANT_SYS_NICE
6038
6039 /*
6040 * sys_nice - change the priority of the current process.
6041 * @increment: priority increment
6042 *
6043 * sys_setpriority is a more generic, but much slower function that
6044 * does similar things.
6045 */
6046 SYSCALL_DEFINE1(nice, int, increment)
6047 {
6048 long nice, retval;
6049
6050 /*
6051 * Setpriority might change our priority at the same moment.
6052 * We don't have to worry. Conceptually one call occurs first
6053 * and we have a single winner.
6054 */
6055 if (increment < -40)
6056 increment = -40;
6057 if (increment > 40)
6058 increment = 40;
6059
6060 nice = TASK_NICE(current) + increment;
6061 if (nice < -20)
6062 nice = -20;
6063 if (nice > 19)
6064 nice = 19;
6065
6066 if (increment < 0 && !can_nice(current, nice))
6067 return -EPERM;
6068
6069 retval = security_task_setnice(current, nice);
6070 if (retval)
6071 return retval;
6072
6073 set_user_nice(current, nice);
6074 return 0;
6075 }
6076
6077 #endif
6078
6079 /**
6080 * task_prio - return the priority value of a given task.
6081 * @p: the task in question.
6082 *
6083 * This is the priority value as seen by users in /proc.
6084 * RT tasks are offset by -200. Normal tasks are centered
6085 * around 0, value goes from -16 to +15.
6086 */
6087 int task_prio(const struct task_struct *p)
6088 {
6089 return p->prio - MAX_RT_PRIO;
6090 }
6091
6092 /**
6093 * task_nice - return the nice value of a given task.
6094 * @p: the task in question.
6095 */
6096 int task_nice(const struct task_struct *p)
6097 {
6098 return TASK_NICE(p);
6099 }
6100 EXPORT_SYMBOL(task_nice);
6101
6102 /**
6103 * idle_cpu - is a given cpu idle currently?
6104 * @cpu: the processor in question.
6105 */
6106 int idle_cpu(int cpu)
6107 {
6108 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6109 }
6110
6111 /**
6112 * idle_task - return the idle task for a given cpu.
6113 * @cpu: the processor in question.
6114 */
6115 struct task_struct *idle_task(int cpu)
6116 {
6117 return cpu_rq(cpu)->idle;
6118 }
6119
6120 /**
6121 * find_process_by_pid - find a process with a matching PID value.
6122 * @pid: the pid in question.
6123 */
6124 static struct task_struct *find_process_by_pid(pid_t pid)
6125 {
6126 return pid ? find_task_by_vpid(pid) : current;
6127 }
6128
6129 /* Actually do priority change: must hold rq lock. */
6130 static void
6131 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6132 {
6133 BUG_ON(p->se.on_rq);
6134
6135 p->policy = policy;
6136 switch (p->policy) {
6137 case SCHED_NORMAL:
6138 case SCHED_BATCH:
6139 case SCHED_IDLE:
6140 p->sched_class = &fair_sched_class;
6141 break;
6142 case SCHED_FIFO:
6143 case SCHED_RR:
6144 p->sched_class = &rt_sched_class;
6145 break;
6146 }
6147
6148 p->rt_priority = prio;
6149 p->normal_prio = normal_prio(p);
6150 /* we are holding p->pi_lock already */
6151 p->prio = rt_mutex_getprio(p);
6152 set_load_weight(p);
6153 }
6154
6155 /*
6156 * check the target process has a UID that matches the current process's
6157 */
6158 static bool check_same_owner(struct task_struct *p)
6159 {
6160 const struct cred *cred = current_cred(), *pcred;
6161 bool match;
6162
6163 rcu_read_lock();
6164 pcred = __task_cred(p);
6165 match = (cred->euid == pcred->euid ||
6166 cred->euid == pcred->uid);
6167 rcu_read_unlock();
6168 return match;
6169 }
6170
6171 static int __sched_setscheduler(struct task_struct *p, int policy,
6172 struct sched_param *param, bool user)
6173 {
6174 int retval, oldprio, oldpolicy = -1, on_rq, running;
6175 unsigned long flags;
6176 const struct sched_class *prev_class = p->sched_class;
6177 struct rq *rq;
6178 int reset_on_fork;
6179
6180 /* may grab non-irq protected spin_locks */
6181 BUG_ON(in_interrupt());
6182 recheck:
6183 /* double check policy once rq lock held */
6184 if (policy < 0) {
6185 reset_on_fork = p->sched_reset_on_fork;
6186 policy = oldpolicy = p->policy;
6187 } else {
6188 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6189 policy &= ~SCHED_RESET_ON_FORK;
6190
6191 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6192 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6193 policy != SCHED_IDLE)
6194 return -EINVAL;
6195 }
6196
6197 /*
6198 * Valid priorities for SCHED_FIFO and SCHED_RR are
6199 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6200 * SCHED_BATCH and SCHED_IDLE is 0.
6201 */
6202 if (param->sched_priority < 0 ||
6203 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6204 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6205 return -EINVAL;
6206 if (rt_policy(policy) != (param->sched_priority != 0))
6207 return -EINVAL;
6208
6209 /*
6210 * Allow unprivileged RT tasks to decrease priority:
6211 */
6212 if (user && !capable(CAP_SYS_NICE)) {
6213 if (rt_policy(policy)) {
6214 unsigned long rlim_rtprio;
6215
6216 if (!lock_task_sighand(p, &flags))
6217 return -ESRCH;
6218 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6219 unlock_task_sighand(p, &flags);
6220
6221 /* can't set/change the rt policy */
6222 if (policy != p->policy && !rlim_rtprio)
6223 return -EPERM;
6224
6225 /* can't increase priority */
6226 if (param->sched_priority > p->rt_priority &&
6227 param->sched_priority > rlim_rtprio)
6228 return -EPERM;
6229 }
6230 /*
6231 * Like positive nice levels, dont allow tasks to
6232 * move out of SCHED_IDLE either:
6233 */
6234 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6235 return -EPERM;
6236
6237 /* can't change other user's priorities */
6238 if (!check_same_owner(p))
6239 return -EPERM;
6240
6241 /* Normal users shall not reset the sched_reset_on_fork flag */
6242 if (p->sched_reset_on_fork && !reset_on_fork)
6243 return -EPERM;
6244 }
6245
6246 if (user) {
6247 #ifdef CONFIG_RT_GROUP_SCHED
6248 /*
6249 * Do not allow realtime tasks into groups that have no runtime
6250 * assigned.
6251 */
6252 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6253 task_group(p)->rt_bandwidth.rt_runtime == 0)
6254 return -EPERM;
6255 #endif
6256
6257 retval = security_task_setscheduler(p, policy, param);
6258 if (retval)
6259 return retval;
6260 }
6261
6262 /*
6263 * make sure no PI-waiters arrive (or leave) while we are
6264 * changing the priority of the task:
6265 */
6266 spin_lock_irqsave(&p->pi_lock, flags);
6267 /*
6268 * To be able to change p->policy safely, the apropriate
6269 * runqueue lock must be held.
6270 */
6271 rq = __task_rq_lock(p);
6272 /* recheck policy now with rq lock held */
6273 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6274 policy = oldpolicy = -1;
6275 __task_rq_unlock(rq);
6276 spin_unlock_irqrestore(&p->pi_lock, flags);
6277 goto recheck;
6278 }
6279 update_rq_clock(rq);
6280 on_rq = p->se.on_rq;
6281 running = task_current(rq, p);
6282 if (on_rq)
6283 deactivate_task(rq, p, 0);
6284 if (running)
6285 p->sched_class->put_prev_task(rq, p);
6286
6287 p->sched_reset_on_fork = reset_on_fork;
6288
6289 oldprio = p->prio;
6290 __setscheduler(rq, p, policy, param->sched_priority);
6291
6292 if (running)
6293 p->sched_class->set_curr_task(rq);
6294 if (on_rq) {
6295 activate_task(rq, p, 0);
6296
6297 check_class_changed(rq, p, prev_class, oldprio, running);
6298 }
6299 __task_rq_unlock(rq);
6300 spin_unlock_irqrestore(&p->pi_lock, flags);
6301
6302 rt_mutex_adjust_pi(p);
6303
6304 return 0;
6305 }
6306
6307 /**
6308 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6309 * @p: the task in question.
6310 * @policy: new policy.
6311 * @param: structure containing the new RT priority.
6312 *
6313 * NOTE that the task may be already dead.
6314 */
6315 int sched_setscheduler(struct task_struct *p, int policy,
6316 struct sched_param *param)
6317 {
6318 return __sched_setscheduler(p, policy, param, true);
6319 }
6320 EXPORT_SYMBOL_GPL(sched_setscheduler);
6321
6322 /**
6323 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6324 * @p: the task in question.
6325 * @policy: new policy.
6326 * @param: structure containing the new RT priority.
6327 *
6328 * Just like sched_setscheduler, only don't bother checking if the
6329 * current context has permission. For example, this is needed in
6330 * stop_machine(): we create temporary high priority worker threads,
6331 * but our caller might not have that capability.
6332 */
6333 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6334 struct sched_param *param)
6335 {
6336 return __sched_setscheduler(p, policy, param, false);
6337 }
6338
6339 static int
6340 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6341 {
6342 struct sched_param lparam;
6343 struct task_struct *p;
6344 int retval;
6345
6346 if (!param || pid < 0)
6347 return -EINVAL;
6348 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6349 return -EFAULT;
6350
6351 rcu_read_lock();
6352 retval = -ESRCH;
6353 p = find_process_by_pid(pid);
6354 if (p != NULL)
6355 retval = sched_setscheduler(p, policy, &lparam);
6356 rcu_read_unlock();
6357
6358 return retval;
6359 }
6360
6361 /**
6362 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6363 * @pid: the pid in question.
6364 * @policy: new policy.
6365 * @param: structure containing the new RT priority.
6366 */
6367 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6368 struct sched_param __user *, param)
6369 {
6370 /* negative values for policy are not valid */
6371 if (policy < 0)
6372 return -EINVAL;
6373
6374 return do_sched_setscheduler(pid, policy, param);
6375 }
6376
6377 /**
6378 * sys_sched_setparam - set/change the RT priority of a thread
6379 * @pid: the pid in question.
6380 * @param: structure containing the new RT priority.
6381 */
6382 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6383 {
6384 return do_sched_setscheduler(pid, -1, param);
6385 }
6386
6387 /**
6388 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6389 * @pid: the pid in question.
6390 */
6391 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6392 {
6393 struct task_struct *p;
6394 int retval;
6395
6396 if (pid < 0)
6397 return -EINVAL;
6398
6399 retval = -ESRCH;
6400 read_lock(&tasklist_lock);
6401 p = find_process_by_pid(pid);
6402 if (p) {
6403 retval = security_task_getscheduler(p);
6404 if (!retval)
6405 retval = p->policy
6406 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6407 }
6408 read_unlock(&tasklist_lock);
6409 return retval;
6410 }
6411
6412 /**
6413 * sys_sched_getparam - get the RT priority of a thread
6414 * @pid: the pid in question.
6415 * @param: structure containing the RT priority.
6416 */
6417 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6418 {
6419 struct sched_param lp;
6420 struct task_struct *p;
6421 int retval;
6422
6423 if (!param || pid < 0)
6424 return -EINVAL;
6425
6426 read_lock(&tasklist_lock);
6427 p = find_process_by_pid(pid);
6428 retval = -ESRCH;
6429 if (!p)
6430 goto out_unlock;
6431
6432 retval = security_task_getscheduler(p);
6433 if (retval)
6434 goto out_unlock;
6435
6436 lp.sched_priority = p->rt_priority;
6437 read_unlock(&tasklist_lock);
6438
6439 /*
6440 * This one might sleep, we cannot do it with a spinlock held ...
6441 */
6442 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6443
6444 return retval;
6445
6446 out_unlock:
6447 read_unlock(&tasklist_lock);
6448 return retval;
6449 }
6450
6451 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6452 {
6453 cpumask_var_t cpus_allowed, new_mask;
6454 struct task_struct *p;
6455 int retval;
6456
6457 get_online_cpus();
6458 read_lock(&tasklist_lock);
6459
6460 p = find_process_by_pid(pid);
6461 if (!p) {
6462 read_unlock(&tasklist_lock);
6463 put_online_cpus();
6464 return -ESRCH;
6465 }
6466
6467 /*
6468 * It is not safe to call set_cpus_allowed with the
6469 * tasklist_lock held. We will bump the task_struct's
6470 * usage count and then drop tasklist_lock.
6471 */
6472 get_task_struct(p);
6473 read_unlock(&tasklist_lock);
6474
6475 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6476 retval = -ENOMEM;
6477 goto out_put_task;
6478 }
6479 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6480 retval = -ENOMEM;
6481 goto out_free_cpus_allowed;
6482 }
6483 retval = -EPERM;
6484 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6485 goto out_unlock;
6486
6487 retval = security_task_setscheduler(p, 0, NULL);
6488 if (retval)
6489 goto out_unlock;
6490
6491 cpuset_cpus_allowed(p, cpus_allowed);
6492 cpumask_and(new_mask, in_mask, cpus_allowed);
6493 again:
6494 retval = set_cpus_allowed_ptr(p, new_mask);
6495
6496 if (!retval) {
6497 cpuset_cpus_allowed(p, cpus_allowed);
6498 if (!cpumask_subset(new_mask, cpus_allowed)) {
6499 /*
6500 * We must have raced with a concurrent cpuset
6501 * update. Just reset the cpus_allowed to the
6502 * cpuset's cpus_allowed
6503 */
6504 cpumask_copy(new_mask, cpus_allowed);
6505 goto again;
6506 }
6507 }
6508 out_unlock:
6509 free_cpumask_var(new_mask);
6510 out_free_cpus_allowed:
6511 free_cpumask_var(cpus_allowed);
6512 out_put_task:
6513 put_task_struct(p);
6514 put_online_cpus();
6515 return retval;
6516 }
6517
6518 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6519 struct cpumask *new_mask)
6520 {
6521 if (len < cpumask_size())
6522 cpumask_clear(new_mask);
6523 else if (len > cpumask_size())
6524 len = cpumask_size();
6525
6526 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6527 }
6528
6529 /**
6530 * sys_sched_setaffinity - set the cpu affinity of a process
6531 * @pid: pid of the process
6532 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6533 * @user_mask_ptr: user-space pointer to the new cpu mask
6534 */
6535 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6536 unsigned long __user *, user_mask_ptr)
6537 {
6538 cpumask_var_t new_mask;
6539 int retval;
6540
6541 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6542 return -ENOMEM;
6543
6544 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6545 if (retval == 0)
6546 retval = sched_setaffinity(pid, new_mask);
6547 free_cpumask_var(new_mask);
6548 return retval;
6549 }
6550
6551 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6552 {
6553 struct task_struct *p;
6554 int retval;
6555
6556 get_online_cpus();
6557 read_lock(&tasklist_lock);
6558
6559 retval = -ESRCH;
6560 p = find_process_by_pid(pid);
6561 if (!p)
6562 goto out_unlock;
6563
6564 retval = security_task_getscheduler(p);
6565 if (retval)
6566 goto out_unlock;
6567
6568 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6569
6570 out_unlock:
6571 read_unlock(&tasklist_lock);
6572 put_online_cpus();
6573
6574 return retval;
6575 }
6576
6577 /**
6578 * sys_sched_getaffinity - get the cpu affinity of a process
6579 * @pid: pid of the process
6580 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6581 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6582 */
6583 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6584 unsigned long __user *, user_mask_ptr)
6585 {
6586 int ret;
6587 cpumask_var_t mask;
6588
6589 if (len < cpumask_size())
6590 return -EINVAL;
6591
6592 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6593 return -ENOMEM;
6594
6595 ret = sched_getaffinity(pid, mask);
6596 if (ret == 0) {
6597 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6598 ret = -EFAULT;
6599 else
6600 ret = cpumask_size();
6601 }
6602 free_cpumask_var(mask);
6603
6604 return ret;
6605 }
6606
6607 /**
6608 * sys_sched_yield - yield the current processor to other threads.
6609 *
6610 * This function yields the current CPU to other tasks. If there are no
6611 * other threads running on this CPU then this function will return.
6612 */
6613 SYSCALL_DEFINE0(sched_yield)
6614 {
6615 struct rq *rq = this_rq_lock();
6616
6617 schedstat_inc(rq, yld_count);
6618 current->sched_class->yield_task(rq);
6619
6620 /*
6621 * Since we are going to call schedule() anyway, there's
6622 * no need to preempt or enable interrupts:
6623 */
6624 __release(rq->lock);
6625 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6626 _raw_spin_unlock(&rq->lock);
6627 preempt_enable_no_resched();
6628
6629 schedule();
6630
6631 return 0;
6632 }
6633
6634 static inline int should_resched(void)
6635 {
6636 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6637 }
6638
6639 static void __cond_resched(void)
6640 {
6641 add_preempt_count(PREEMPT_ACTIVE);
6642 schedule();
6643 sub_preempt_count(PREEMPT_ACTIVE);
6644 }
6645
6646 int __sched _cond_resched(void)
6647 {
6648 if (should_resched()) {
6649 __cond_resched();
6650 return 1;
6651 }
6652 return 0;
6653 }
6654 EXPORT_SYMBOL(_cond_resched);
6655
6656 /*
6657 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6658 * call schedule, and on return reacquire the lock.
6659 *
6660 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6661 * operations here to prevent schedule() from being called twice (once via
6662 * spin_unlock(), once by hand).
6663 */
6664 int __cond_resched_lock(spinlock_t *lock)
6665 {
6666 int resched = should_resched();
6667 int ret = 0;
6668
6669 lockdep_assert_held(lock);
6670
6671 if (spin_needbreak(lock) || resched) {
6672 spin_unlock(lock);
6673 if (resched)
6674 __cond_resched();
6675 else
6676 cpu_relax();
6677 ret = 1;
6678 spin_lock(lock);
6679 }
6680 return ret;
6681 }
6682 EXPORT_SYMBOL(__cond_resched_lock);
6683
6684 int __sched __cond_resched_softirq(void)
6685 {
6686 BUG_ON(!in_softirq());
6687
6688 if (should_resched()) {
6689 local_bh_enable();
6690 __cond_resched();
6691 local_bh_disable();
6692 return 1;
6693 }
6694 return 0;
6695 }
6696 EXPORT_SYMBOL(__cond_resched_softirq);
6697
6698 /**
6699 * yield - yield the current processor to other threads.
6700 *
6701 * This is a shortcut for kernel-space yielding - it marks the
6702 * thread runnable and calls sys_sched_yield().
6703 */
6704 void __sched yield(void)
6705 {
6706 set_current_state(TASK_RUNNING);
6707 sys_sched_yield();
6708 }
6709 EXPORT_SYMBOL(yield);
6710
6711 /*
6712 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6713 * that process accounting knows that this is a task in IO wait state.
6714 *
6715 * But don't do that if it is a deliberate, throttling IO wait (this task
6716 * has set its backing_dev_info: the queue against which it should throttle)
6717 */
6718 void __sched io_schedule(void)
6719 {
6720 struct rq *rq = raw_rq();
6721
6722 delayacct_blkio_start();
6723 atomic_inc(&rq->nr_iowait);
6724 current->in_iowait = 1;
6725 schedule();
6726 current->in_iowait = 0;
6727 atomic_dec(&rq->nr_iowait);
6728 delayacct_blkio_end();
6729 }
6730 EXPORT_SYMBOL(io_schedule);
6731
6732 long __sched io_schedule_timeout(long timeout)
6733 {
6734 struct rq *rq = raw_rq();
6735 long ret;
6736
6737 delayacct_blkio_start();
6738 atomic_inc(&rq->nr_iowait);
6739 current->in_iowait = 1;
6740 ret = schedule_timeout(timeout);
6741 current->in_iowait = 0;
6742 atomic_dec(&rq->nr_iowait);
6743 delayacct_blkio_end();
6744 return ret;
6745 }
6746
6747 /**
6748 * sys_sched_get_priority_max - return maximum RT priority.
6749 * @policy: scheduling class.
6750 *
6751 * this syscall returns the maximum rt_priority that can be used
6752 * by a given scheduling class.
6753 */
6754 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6755 {
6756 int ret = -EINVAL;
6757
6758 switch (policy) {
6759 case SCHED_FIFO:
6760 case SCHED_RR:
6761 ret = MAX_USER_RT_PRIO-1;
6762 break;
6763 case SCHED_NORMAL:
6764 case SCHED_BATCH:
6765 case SCHED_IDLE:
6766 ret = 0;
6767 break;
6768 }
6769 return ret;
6770 }
6771
6772 /**
6773 * sys_sched_get_priority_min - return minimum RT priority.
6774 * @policy: scheduling class.
6775 *
6776 * this syscall returns the minimum rt_priority that can be used
6777 * by a given scheduling class.
6778 */
6779 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6780 {
6781 int ret = -EINVAL;
6782
6783 switch (policy) {
6784 case SCHED_FIFO:
6785 case SCHED_RR:
6786 ret = 1;
6787 break;
6788 case SCHED_NORMAL:
6789 case SCHED_BATCH:
6790 case SCHED_IDLE:
6791 ret = 0;
6792 }
6793 return ret;
6794 }
6795
6796 /**
6797 * sys_sched_rr_get_interval - return the default timeslice of a process.
6798 * @pid: pid of the process.
6799 * @interval: userspace pointer to the timeslice value.
6800 *
6801 * this syscall writes the default timeslice value of a given process
6802 * into the user-space timespec buffer. A value of '0' means infinity.
6803 */
6804 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6805 struct timespec __user *, interval)
6806 {
6807 struct task_struct *p;
6808 unsigned int time_slice;
6809 int retval;
6810 struct timespec t;
6811
6812 if (pid < 0)
6813 return -EINVAL;
6814
6815 retval = -ESRCH;
6816 read_lock(&tasklist_lock);
6817 p = find_process_by_pid(pid);
6818 if (!p)
6819 goto out_unlock;
6820
6821 retval = security_task_getscheduler(p);
6822 if (retval)
6823 goto out_unlock;
6824
6825 /*
6826 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6827 * tasks that are on an otherwise idle runqueue:
6828 */
6829 time_slice = 0;
6830 if (p->policy == SCHED_RR) {
6831 time_slice = DEF_TIMESLICE;
6832 } else if (p->policy != SCHED_FIFO) {
6833 struct sched_entity *se = &p->se;
6834 unsigned long flags;
6835 struct rq *rq;
6836
6837 rq = task_rq_lock(p, &flags);
6838 if (rq->cfs.load.weight)
6839 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6840 task_rq_unlock(rq, &flags);
6841 }
6842 read_unlock(&tasklist_lock);
6843 jiffies_to_timespec(time_slice, &t);
6844 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6845 return retval;
6846
6847 out_unlock:
6848 read_unlock(&tasklist_lock);
6849 return retval;
6850 }
6851
6852 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6853
6854 void sched_show_task(struct task_struct *p)
6855 {
6856 unsigned long free = 0;
6857 unsigned state;
6858
6859 state = p->state ? __ffs(p->state) + 1 : 0;
6860 printk(KERN_INFO "%-13.13s %c", p->comm,
6861 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6862 #if BITS_PER_LONG == 32
6863 if (state == TASK_RUNNING)
6864 printk(KERN_CONT " running ");
6865 else
6866 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6867 #else
6868 if (state == TASK_RUNNING)
6869 printk(KERN_CONT " running task ");
6870 else
6871 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6872 #endif
6873 #ifdef CONFIG_DEBUG_STACK_USAGE
6874 free = stack_not_used(p);
6875 #endif
6876 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6877 task_pid_nr(p), task_pid_nr(p->real_parent),
6878 (unsigned long)task_thread_info(p)->flags);
6879
6880 show_stack(p, NULL);
6881 }
6882
6883 void show_state_filter(unsigned long state_filter)
6884 {
6885 struct task_struct *g, *p;
6886
6887 #if BITS_PER_LONG == 32
6888 printk(KERN_INFO
6889 " task PC stack pid father\n");
6890 #else
6891 printk(KERN_INFO
6892 " task PC stack pid father\n");
6893 #endif
6894 read_lock(&tasklist_lock);
6895 do_each_thread(g, p) {
6896 /*
6897 * reset the NMI-timeout, listing all files on a slow
6898 * console might take alot of time:
6899 */
6900 touch_nmi_watchdog();
6901 if (!state_filter || (p->state & state_filter))
6902 sched_show_task(p);
6903 } while_each_thread(g, p);
6904
6905 touch_all_softlockup_watchdogs();
6906
6907 #ifdef CONFIG_SCHED_DEBUG
6908 sysrq_sched_debug_show();
6909 #endif
6910 read_unlock(&tasklist_lock);
6911 /*
6912 * Only show locks if all tasks are dumped:
6913 */
6914 if (state_filter == -1)
6915 debug_show_all_locks();
6916 }
6917
6918 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6919 {
6920 idle->sched_class = &idle_sched_class;
6921 }
6922
6923 /**
6924 * init_idle - set up an idle thread for a given CPU
6925 * @idle: task in question
6926 * @cpu: cpu the idle task belongs to
6927 *
6928 * NOTE: this function does not set the idle thread's NEED_RESCHED
6929 * flag, to make booting more robust.
6930 */
6931 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6932 {
6933 struct rq *rq = cpu_rq(cpu);
6934 unsigned long flags;
6935
6936 spin_lock_irqsave(&rq->lock, flags);
6937
6938 __sched_fork(idle);
6939 idle->se.exec_start = sched_clock();
6940
6941 idle->prio = idle->normal_prio = MAX_PRIO;
6942 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6943 __set_task_cpu(idle, cpu);
6944
6945 rq->curr = rq->idle = idle;
6946 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6947 idle->oncpu = 1;
6948 #endif
6949 spin_unlock_irqrestore(&rq->lock, flags);
6950
6951 /* Set the preempt count _outside_ the spinlocks! */
6952 #if defined(CONFIG_PREEMPT)
6953 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6954 #else
6955 task_thread_info(idle)->preempt_count = 0;
6956 #endif
6957 /*
6958 * The idle tasks have their own, simple scheduling class:
6959 */
6960 idle->sched_class = &idle_sched_class;
6961 ftrace_graph_init_task(idle);
6962 }
6963
6964 /*
6965 * In a system that switches off the HZ timer nohz_cpu_mask
6966 * indicates which cpus entered this state. This is used
6967 * in the rcu update to wait only for active cpus. For system
6968 * which do not switch off the HZ timer nohz_cpu_mask should
6969 * always be CPU_BITS_NONE.
6970 */
6971 cpumask_var_t nohz_cpu_mask;
6972
6973 /*
6974 * Increase the granularity value when there are more CPUs,
6975 * because with more CPUs the 'effective latency' as visible
6976 * to users decreases. But the relationship is not linear,
6977 * so pick a second-best guess by going with the log2 of the
6978 * number of CPUs.
6979 *
6980 * This idea comes from the SD scheduler of Con Kolivas:
6981 */
6982 static inline void sched_init_granularity(void)
6983 {
6984 unsigned int factor = 1 + ilog2(num_online_cpus());
6985 const unsigned long limit = 200000000;
6986
6987 sysctl_sched_min_granularity *= factor;
6988 if (sysctl_sched_min_granularity > limit)
6989 sysctl_sched_min_granularity = limit;
6990
6991 sysctl_sched_latency *= factor;
6992 if (sysctl_sched_latency > limit)
6993 sysctl_sched_latency = limit;
6994
6995 sysctl_sched_wakeup_granularity *= factor;
6996
6997 sysctl_sched_shares_ratelimit *= factor;
6998 }
6999
7000 #ifdef CONFIG_SMP
7001 /*
7002 * This is how migration works:
7003 *
7004 * 1) we queue a struct migration_req structure in the source CPU's
7005 * runqueue and wake up that CPU's migration thread.
7006 * 2) we down() the locked semaphore => thread blocks.
7007 * 3) migration thread wakes up (implicitly it forces the migrated
7008 * thread off the CPU)
7009 * 4) it gets the migration request and checks whether the migrated
7010 * task is still in the wrong runqueue.
7011 * 5) if it's in the wrong runqueue then the migration thread removes
7012 * it and puts it into the right queue.
7013 * 6) migration thread up()s the semaphore.
7014 * 7) we wake up and the migration is done.
7015 */
7016
7017 /*
7018 * Change a given task's CPU affinity. Migrate the thread to a
7019 * proper CPU and schedule it away if the CPU it's executing on
7020 * is removed from the allowed bitmask.
7021 *
7022 * NOTE: the caller must have a valid reference to the task, the
7023 * task must not exit() & deallocate itself prematurely. The
7024 * call is not atomic; no spinlocks may be held.
7025 */
7026 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7027 {
7028 struct migration_req req;
7029 unsigned long flags;
7030 struct rq *rq;
7031 int ret = 0;
7032
7033 rq = task_rq_lock(p, &flags);
7034 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7035 ret = -EINVAL;
7036 goto out;
7037 }
7038
7039 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7040 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7041 ret = -EINVAL;
7042 goto out;
7043 }
7044
7045 if (p->sched_class->set_cpus_allowed)
7046 p->sched_class->set_cpus_allowed(p, new_mask);
7047 else {
7048 cpumask_copy(&p->cpus_allowed, new_mask);
7049 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7050 }
7051
7052 /* Can the task run on the task's current CPU? If so, we're done */
7053 if (cpumask_test_cpu(task_cpu(p), new_mask))
7054 goto out;
7055
7056 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7057 /* Need help from migration thread: drop lock and wait. */
7058 struct task_struct *mt = rq->migration_thread;
7059
7060 get_task_struct(mt);
7061 task_rq_unlock(rq, &flags);
7062 wake_up_process(rq->migration_thread);
7063 put_task_struct(mt);
7064 wait_for_completion(&req.done);
7065 tlb_migrate_finish(p->mm);
7066 return 0;
7067 }
7068 out:
7069 task_rq_unlock(rq, &flags);
7070
7071 return ret;
7072 }
7073 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7074
7075 /*
7076 * Move (not current) task off this cpu, onto dest cpu. We're doing
7077 * this because either it can't run here any more (set_cpus_allowed()
7078 * away from this CPU, or CPU going down), or because we're
7079 * attempting to rebalance this task on exec (sched_exec).
7080 *
7081 * So we race with normal scheduler movements, but that's OK, as long
7082 * as the task is no longer on this CPU.
7083 *
7084 * Returns non-zero if task was successfully migrated.
7085 */
7086 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7087 {
7088 struct rq *rq_dest, *rq_src;
7089 int ret = 0, on_rq;
7090
7091 if (unlikely(!cpu_active(dest_cpu)))
7092 return ret;
7093
7094 rq_src = cpu_rq(src_cpu);
7095 rq_dest = cpu_rq(dest_cpu);
7096
7097 double_rq_lock(rq_src, rq_dest);
7098 /* Already moved. */
7099 if (task_cpu(p) != src_cpu)
7100 goto done;
7101 /* Affinity changed (again). */
7102 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7103 goto fail;
7104
7105 on_rq = p->se.on_rq;
7106 if (on_rq)
7107 deactivate_task(rq_src, p, 0);
7108
7109 set_task_cpu(p, dest_cpu);
7110 if (on_rq) {
7111 activate_task(rq_dest, p, 0);
7112 check_preempt_curr(rq_dest, p, 0);
7113 }
7114 done:
7115 ret = 1;
7116 fail:
7117 double_rq_unlock(rq_src, rq_dest);
7118 return ret;
7119 }
7120
7121 #define RCU_MIGRATION_IDLE 0
7122 #define RCU_MIGRATION_NEED_QS 1
7123 #define RCU_MIGRATION_GOT_QS 2
7124 #define RCU_MIGRATION_MUST_SYNC 3
7125
7126 /*
7127 * migration_thread - this is a highprio system thread that performs
7128 * thread migration by bumping thread off CPU then 'pushing' onto
7129 * another runqueue.
7130 */
7131 static int migration_thread(void *data)
7132 {
7133 int badcpu;
7134 int cpu = (long)data;
7135 struct rq *rq;
7136
7137 rq = cpu_rq(cpu);
7138 BUG_ON(rq->migration_thread != current);
7139
7140 set_current_state(TASK_INTERRUPTIBLE);
7141 while (!kthread_should_stop()) {
7142 struct migration_req *req;
7143 struct list_head *head;
7144
7145 spin_lock_irq(&rq->lock);
7146
7147 if (cpu_is_offline(cpu)) {
7148 spin_unlock_irq(&rq->lock);
7149 break;
7150 }
7151
7152 if (rq->active_balance) {
7153 active_load_balance(rq, cpu);
7154 rq->active_balance = 0;
7155 }
7156
7157 head = &rq->migration_queue;
7158
7159 if (list_empty(head)) {
7160 spin_unlock_irq(&rq->lock);
7161 schedule();
7162 set_current_state(TASK_INTERRUPTIBLE);
7163 continue;
7164 }
7165 req = list_entry(head->next, struct migration_req, list);
7166 list_del_init(head->next);
7167
7168 if (req->task != NULL) {
7169 spin_unlock(&rq->lock);
7170 __migrate_task(req->task, cpu, req->dest_cpu);
7171 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7172 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7173 spin_unlock(&rq->lock);
7174 } else {
7175 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7176 spin_unlock(&rq->lock);
7177 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7178 }
7179 local_irq_enable();
7180
7181 complete(&req->done);
7182 }
7183 __set_current_state(TASK_RUNNING);
7184
7185 return 0;
7186 }
7187
7188 #ifdef CONFIG_HOTPLUG_CPU
7189
7190 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7191 {
7192 int ret;
7193
7194 local_irq_disable();
7195 ret = __migrate_task(p, src_cpu, dest_cpu);
7196 local_irq_enable();
7197 return ret;
7198 }
7199
7200 /*
7201 * Figure out where task on dead CPU should go, use force if necessary.
7202 */
7203 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7204 {
7205 int dest_cpu;
7206 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7207
7208 again:
7209 /* Look for allowed, online CPU in same node. */
7210 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7211 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7212 goto move;
7213
7214 /* Any allowed, online CPU? */
7215 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7216 if (dest_cpu < nr_cpu_ids)
7217 goto move;
7218
7219 /* No more Mr. Nice Guy. */
7220 if (dest_cpu >= nr_cpu_ids) {
7221 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7222 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7223
7224 /*
7225 * Don't tell them about moving exiting tasks or
7226 * kernel threads (both mm NULL), since they never
7227 * leave kernel.
7228 */
7229 if (p->mm && printk_ratelimit()) {
7230 printk(KERN_INFO "process %d (%s) no "
7231 "longer affine to cpu%d\n",
7232 task_pid_nr(p), p->comm, dead_cpu);
7233 }
7234 }
7235
7236 move:
7237 /* It can have affinity changed while we were choosing. */
7238 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7239 goto again;
7240 }
7241
7242 /*
7243 * While a dead CPU has no uninterruptible tasks queued at this point,
7244 * it might still have a nonzero ->nr_uninterruptible counter, because
7245 * for performance reasons the counter is not stricly tracking tasks to
7246 * their home CPUs. So we just add the counter to another CPU's counter,
7247 * to keep the global sum constant after CPU-down:
7248 */
7249 static void migrate_nr_uninterruptible(struct rq *rq_src)
7250 {
7251 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7252 unsigned long flags;
7253
7254 local_irq_save(flags);
7255 double_rq_lock(rq_src, rq_dest);
7256 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7257 rq_src->nr_uninterruptible = 0;
7258 double_rq_unlock(rq_src, rq_dest);
7259 local_irq_restore(flags);
7260 }
7261
7262 /* Run through task list and migrate tasks from the dead cpu. */
7263 static void migrate_live_tasks(int src_cpu)
7264 {
7265 struct task_struct *p, *t;
7266
7267 read_lock(&tasklist_lock);
7268
7269 do_each_thread(t, p) {
7270 if (p == current)
7271 continue;
7272
7273 if (task_cpu(p) == src_cpu)
7274 move_task_off_dead_cpu(src_cpu, p);
7275 } while_each_thread(t, p);
7276
7277 read_unlock(&tasklist_lock);
7278 }
7279
7280 /*
7281 * Schedules idle task to be the next runnable task on current CPU.
7282 * It does so by boosting its priority to highest possible.
7283 * Used by CPU offline code.
7284 */
7285 void sched_idle_next(void)
7286 {
7287 int this_cpu = smp_processor_id();
7288 struct rq *rq = cpu_rq(this_cpu);
7289 struct task_struct *p = rq->idle;
7290 unsigned long flags;
7291
7292 /* cpu has to be offline */
7293 BUG_ON(cpu_online(this_cpu));
7294
7295 /*
7296 * Strictly not necessary since rest of the CPUs are stopped by now
7297 * and interrupts disabled on the current cpu.
7298 */
7299 spin_lock_irqsave(&rq->lock, flags);
7300
7301 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7302
7303 update_rq_clock(rq);
7304 activate_task(rq, p, 0);
7305
7306 spin_unlock_irqrestore(&rq->lock, flags);
7307 }
7308
7309 /*
7310 * Ensures that the idle task is using init_mm right before its cpu goes
7311 * offline.
7312 */
7313 void idle_task_exit(void)
7314 {
7315 struct mm_struct *mm = current->active_mm;
7316
7317 BUG_ON(cpu_online(smp_processor_id()));
7318
7319 if (mm != &init_mm)
7320 switch_mm(mm, &init_mm, current);
7321 mmdrop(mm);
7322 }
7323
7324 /* called under rq->lock with disabled interrupts */
7325 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7326 {
7327 struct rq *rq = cpu_rq(dead_cpu);
7328
7329 /* Must be exiting, otherwise would be on tasklist. */
7330 BUG_ON(!p->exit_state);
7331
7332 /* Cannot have done final schedule yet: would have vanished. */
7333 BUG_ON(p->state == TASK_DEAD);
7334
7335 get_task_struct(p);
7336
7337 /*
7338 * Drop lock around migration; if someone else moves it,
7339 * that's OK. No task can be added to this CPU, so iteration is
7340 * fine.
7341 */
7342 spin_unlock_irq(&rq->lock);
7343 move_task_off_dead_cpu(dead_cpu, p);
7344 spin_lock_irq(&rq->lock);
7345
7346 put_task_struct(p);
7347 }
7348
7349 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7350 static void migrate_dead_tasks(unsigned int dead_cpu)
7351 {
7352 struct rq *rq = cpu_rq(dead_cpu);
7353 struct task_struct *next;
7354
7355 for ( ; ; ) {
7356 if (!rq->nr_running)
7357 break;
7358 update_rq_clock(rq);
7359 next = pick_next_task(rq);
7360 if (!next)
7361 break;
7362 next->sched_class->put_prev_task(rq, next);
7363 migrate_dead(dead_cpu, next);
7364
7365 }
7366 }
7367
7368 /*
7369 * remove the tasks which were accounted by rq from calc_load_tasks.
7370 */
7371 static void calc_global_load_remove(struct rq *rq)
7372 {
7373 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7374 rq->calc_load_active = 0;
7375 }
7376 #endif /* CONFIG_HOTPLUG_CPU */
7377
7378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7379
7380 static struct ctl_table sd_ctl_dir[] = {
7381 {
7382 .procname = "sched_domain",
7383 .mode = 0555,
7384 },
7385 {0, },
7386 };
7387
7388 static struct ctl_table sd_ctl_root[] = {
7389 {
7390 .ctl_name = CTL_KERN,
7391 .procname = "kernel",
7392 .mode = 0555,
7393 .child = sd_ctl_dir,
7394 },
7395 {0, },
7396 };
7397
7398 static struct ctl_table *sd_alloc_ctl_entry(int n)
7399 {
7400 struct ctl_table *entry =
7401 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7402
7403 return entry;
7404 }
7405
7406 static void sd_free_ctl_entry(struct ctl_table **tablep)
7407 {
7408 struct ctl_table *entry;
7409
7410 /*
7411 * In the intermediate directories, both the child directory and
7412 * procname are dynamically allocated and could fail but the mode
7413 * will always be set. In the lowest directory the names are
7414 * static strings and all have proc handlers.
7415 */
7416 for (entry = *tablep; entry->mode; entry++) {
7417 if (entry->child)
7418 sd_free_ctl_entry(&entry->child);
7419 if (entry->proc_handler == NULL)
7420 kfree(entry->procname);
7421 }
7422
7423 kfree(*tablep);
7424 *tablep = NULL;
7425 }
7426
7427 static void
7428 set_table_entry(struct ctl_table *entry,
7429 const char *procname, void *data, int maxlen,
7430 mode_t mode, proc_handler *proc_handler)
7431 {
7432 entry->procname = procname;
7433 entry->data = data;
7434 entry->maxlen = maxlen;
7435 entry->mode = mode;
7436 entry->proc_handler = proc_handler;
7437 }
7438
7439 static struct ctl_table *
7440 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7441 {
7442 struct ctl_table *table = sd_alloc_ctl_entry(13);
7443
7444 if (table == NULL)
7445 return NULL;
7446
7447 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7448 sizeof(long), 0644, proc_doulongvec_minmax);
7449 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7450 sizeof(long), 0644, proc_doulongvec_minmax);
7451 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7452 sizeof(int), 0644, proc_dointvec_minmax);
7453 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7454 sizeof(int), 0644, proc_dointvec_minmax);
7455 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7456 sizeof(int), 0644, proc_dointvec_minmax);
7457 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[9], "cache_nice_tries",
7466 &sd->cache_nice_tries,
7467 sizeof(int), 0644, proc_dointvec_minmax);
7468 set_table_entry(&table[10], "flags", &sd->flags,
7469 sizeof(int), 0644, proc_dointvec_minmax);
7470 set_table_entry(&table[11], "name", sd->name,
7471 CORENAME_MAX_SIZE, 0444, proc_dostring);
7472 /* &table[12] is terminator */
7473
7474 return table;
7475 }
7476
7477 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7478 {
7479 struct ctl_table *entry, *table;
7480 struct sched_domain *sd;
7481 int domain_num = 0, i;
7482 char buf[32];
7483
7484 for_each_domain(cpu, sd)
7485 domain_num++;
7486 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7487 if (table == NULL)
7488 return NULL;
7489
7490 i = 0;
7491 for_each_domain(cpu, sd) {
7492 snprintf(buf, 32, "domain%d", i);
7493 entry->procname = kstrdup(buf, GFP_KERNEL);
7494 entry->mode = 0555;
7495 entry->child = sd_alloc_ctl_domain_table(sd);
7496 entry++;
7497 i++;
7498 }
7499 return table;
7500 }
7501
7502 static struct ctl_table_header *sd_sysctl_header;
7503 static void register_sched_domain_sysctl(void)
7504 {
7505 int i, cpu_num = num_online_cpus();
7506 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7507 char buf[32];
7508
7509 WARN_ON(sd_ctl_dir[0].child);
7510 sd_ctl_dir[0].child = entry;
7511
7512 if (entry == NULL)
7513 return;
7514
7515 for_each_online_cpu(i) {
7516 snprintf(buf, 32, "cpu%d", i);
7517 entry->procname = kstrdup(buf, GFP_KERNEL);
7518 entry->mode = 0555;
7519 entry->child = sd_alloc_ctl_cpu_table(i);
7520 entry++;
7521 }
7522
7523 WARN_ON(sd_sysctl_header);
7524 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7525 }
7526
7527 /* may be called multiple times per register */
7528 static void unregister_sched_domain_sysctl(void)
7529 {
7530 if (sd_sysctl_header)
7531 unregister_sysctl_table(sd_sysctl_header);
7532 sd_sysctl_header = NULL;
7533 if (sd_ctl_dir[0].child)
7534 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7535 }
7536 #else
7537 static void register_sched_domain_sysctl(void)
7538 {
7539 }
7540 static void unregister_sched_domain_sysctl(void)
7541 {
7542 }
7543 #endif
7544
7545 static void set_rq_online(struct rq *rq)
7546 {
7547 if (!rq->online) {
7548 const struct sched_class *class;
7549
7550 cpumask_set_cpu(rq->cpu, rq->rd->online);
7551 rq->online = 1;
7552
7553 for_each_class(class) {
7554 if (class->rq_online)
7555 class->rq_online(rq);
7556 }
7557 }
7558 }
7559
7560 static void set_rq_offline(struct rq *rq)
7561 {
7562 if (rq->online) {
7563 const struct sched_class *class;
7564
7565 for_each_class(class) {
7566 if (class->rq_offline)
7567 class->rq_offline(rq);
7568 }
7569
7570 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7571 rq->online = 0;
7572 }
7573 }
7574
7575 /*
7576 * migration_call - callback that gets triggered when a CPU is added.
7577 * Here we can start up the necessary migration thread for the new CPU.
7578 */
7579 static int __cpuinit
7580 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7581 {
7582 struct task_struct *p;
7583 int cpu = (long)hcpu;
7584 unsigned long flags;
7585 struct rq *rq;
7586
7587 switch (action) {
7588
7589 case CPU_UP_PREPARE:
7590 case CPU_UP_PREPARE_FROZEN:
7591 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7592 if (IS_ERR(p))
7593 return NOTIFY_BAD;
7594 kthread_bind(p, cpu);
7595 /* Must be high prio: stop_machine expects to yield to it. */
7596 rq = task_rq_lock(p, &flags);
7597 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7598 task_rq_unlock(rq, &flags);
7599 get_task_struct(p);
7600 cpu_rq(cpu)->migration_thread = p;
7601 rq->calc_load_update = calc_load_update;
7602 break;
7603
7604 case CPU_ONLINE:
7605 case CPU_ONLINE_FROZEN:
7606 /* Strictly unnecessary, as first user will wake it. */
7607 wake_up_process(cpu_rq(cpu)->migration_thread);
7608
7609 /* Update our root-domain */
7610 rq = cpu_rq(cpu);
7611 spin_lock_irqsave(&rq->lock, flags);
7612 if (rq->rd) {
7613 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7614
7615 set_rq_online(rq);
7616 }
7617 spin_unlock_irqrestore(&rq->lock, flags);
7618 break;
7619
7620 #ifdef CONFIG_HOTPLUG_CPU
7621 case CPU_UP_CANCELED:
7622 case CPU_UP_CANCELED_FROZEN:
7623 if (!cpu_rq(cpu)->migration_thread)
7624 break;
7625 /* Unbind it from offline cpu so it can run. Fall thru. */
7626 kthread_bind(cpu_rq(cpu)->migration_thread,
7627 cpumask_any(cpu_online_mask));
7628 kthread_stop(cpu_rq(cpu)->migration_thread);
7629 put_task_struct(cpu_rq(cpu)->migration_thread);
7630 cpu_rq(cpu)->migration_thread = NULL;
7631 break;
7632
7633 case CPU_DEAD:
7634 case CPU_DEAD_FROZEN:
7635 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7636 migrate_live_tasks(cpu);
7637 rq = cpu_rq(cpu);
7638 kthread_stop(rq->migration_thread);
7639 put_task_struct(rq->migration_thread);
7640 rq->migration_thread = NULL;
7641 /* Idle task back to normal (off runqueue, low prio) */
7642 spin_lock_irq(&rq->lock);
7643 update_rq_clock(rq);
7644 deactivate_task(rq, rq->idle, 0);
7645 rq->idle->static_prio = MAX_PRIO;
7646 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7647 rq->idle->sched_class = &idle_sched_class;
7648 migrate_dead_tasks(cpu);
7649 spin_unlock_irq(&rq->lock);
7650 cpuset_unlock();
7651 migrate_nr_uninterruptible(rq);
7652 BUG_ON(rq->nr_running != 0);
7653 calc_global_load_remove(rq);
7654 /*
7655 * No need to migrate the tasks: it was best-effort if
7656 * they didn't take sched_hotcpu_mutex. Just wake up
7657 * the requestors.
7658 */
7659 spin_lock_irq(&rq->lock);
7660 while (!list_empty(&rq->migration_queue)) {
7661 struct migration_req *req;
7662
7663 req = list_entry(rq->migration_queue.next,
7664 struct migration_req, list);
7665 list_del_init(&req->list);
7666 spin_unlock_irq(&rq->lock);
7667 complete(&req->done);
7668 spin_lock_irq(&rq->lock);
7669 }
7670 spin_unlock_irq(&rq->lock);
7671 break;
7672
7673 case CPU_DYING:
7674 case CPU_DYING_FROZEN:
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
7677 spin_lock_irqsave(&rq->lock, flags);
7678 if (rq->rd) {
7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7680 set_rq_offline(rq);
7681 }
7682 spin_unlock_irqrestore(&rq->lock, flags);
7683 break;
7684 #endif
7685 }
7686 return NOTIFY_OK;
7687 }
7688
7689 /*
7690 * Register at high priority so that task migration (migrate_all_tasks)
7691 * happens before everything else. This has to be lower priority than
7692 * the notifier in the perf_counter subsystem, though.
7693 */
7694 static struct notifier_block __cpuinitdata migration_notifier = {
7695 .notifier_call = migration_call,
7696 .priority = 10
7697 };
7698
7699 static int __init migration_init(void)
7700 {
7701 void *cpu = (void *)(long)smp_processor_id();
7702 int err;
7703
7704 /* Start one for the boot CPU: */
7705 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7706 BUG_ON(err == NOTIFY_BAD);
7707 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7708 register_cpu_notifier(&migration_notifier);
7709
7710 return 0;
7711 }
7712 early_initcall(migration_init);
7713 #endif
7714
7715 #ifdef CONFIG_SMP
7716
7717 #ifdef CONFIG_SCHED_DEBUG
7718
7719 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7720 struct cpumask *groupmask)
7721 {
7722 struct sched_group *group = sd->groups;
7723 char str[256];
7724
7725 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7726 cpumask_clear(groupmask);
7727
7728 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7729
7730 if (!(sd->flags & SD_LOAD_BALANCE)) {
7731 printk("does not load-balance\n");
7732 if (sd->parent)
7733 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7734 " has parent");
7735 return -1;
7736 }
7737
7738 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7739
7740 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7741 printk(KERN_ERR "ERROR: domain->span does not contain "
7742 "CPU%d\n", cpu);
7743 }
7744 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7745 printk(KERN_ERR "ERROR: domain->groups does not contain"
7746 " CPU%d\n", cpu);
7747 }
7748
7749 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7750 do {
7751 if (!group) {
7752 printk("\n");
7753 printk(KERN_ERR "ERROR: group is NULL\n");
7754 break;
7755 }
7756
7757 if (!group->cpu_power) {
7758 printk(KERN_CONT "\n");
7759 printk(KERN_ERR "ERROR: domain->cpu_power not "
7760 "set\n");
7761 break;
7762 }
7763
7764 if (!cpumask_weight(sched_group_cpus(group))) {
7765 printk(KERN_CONT "\n");
7766 printk(KERN_ERR "ERROR: empty group\n");
7767 break;
7768 }
7769
7770 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7771 printk(KERN_CONT "\n");
7772 printk(KERN_ERR "ERROR: repeated CPUs\n");
7773 break;
7774 }
7775
7776 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7777
7778 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7779
7780 printk(KERN_CONT " %s", str);
7781 if (group->cpu_power != SCHED_LOAD_SCALE) {
7782 printk(KERN_CONT " (cpu_power = %d)",
7783 group->cpu_power);
7784 }
7785
7786 group = group->next;
7787 } while (group != sd->groups);
7788 printk(KERN_CONT "\n");
7789
7790 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7791 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7792
7793 if (sd->parent &&
7794 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7795 printk(KERN_ERR "ERROR: parent span is not a superset "
7796 "of domain->span\n");
7797 return 0;
7798 }
7799
7800 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7801 {
7802 cpumask_var_t groupmask;
7803 int level = 0;
7804
7805 if (!sd) {
7806 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7807 return;
7808 }
7809
7810 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7811
7812 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7813 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7814 return;
7815 }
7816
7817 for (;;) {
7818 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7819 break;
7820 level++;
7821 sd = sd->parent;
7822 if (!sd)
7823 break;
7824 }
7825 free_cpumask_var(groupmask);
7826 }
7827 #else /* !CONFIG_SCHED_DEBUG */
7828 # define sched_domain_debug(sd, cpu) do { } while (0)
7829 #endif /* CONFIG_SCHED_DEBUG */
7830
7831 static int sd_degenerate(struct sched_domain *sd)
7832 {
7833 if (cpumask_weight(sched_domain_span(sd)) == 1)
7834 return 1;
7835
7836 /* Following flags need at least 2 groups */
7837 if (sd->flags & (SD_LOAD_BALANCE |
7838 SD_BALANCE_NEWIDLE |
7839 SD_BALANCE_FORK |
7840 SD_BALANCE_EXEC |
7841 SD_SHARE_CPUPOWER |
7842 SD_SHARE_PKG_RESOURCES)) {
7843 if (sd->groups != sd->groups->next)
7844 return 0;
7845 }
7846
7847 /* Following flags don't use groups */
7848 if (sd->flags & (SD_WAKE_AFFINE))
7849 return 0;
7850
7851 return 1;
7852 }
7853
7854 static int
7855 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7856 {
7857 unsigned long cflags = sd->flags, pflags = parent->flags;
7858
7859 if (sd_degenerate(parent))
7860 return 1;
7861
7862 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7863 return 0;
7864
7865 /* Flags needing groups don't count if only 1 group in parent */
7866 if (parent->groups == parent->groups->next) {
7867 pflags &= ~(SD_LOAD_BALANCE |
7868 SD_BALANCE_NEWIDLE |
7869 SD_BALANCE_FORK |
7870 SD_BALANCE_EXEC |
7871 SD_SHARE_CPUPOWER |
7872 SD_SHARE_PKG_RESOURCES);
7873 if (nr_node_ids == 1)
7874 pflags &= ~SD_SERIALIZE;
7875 }
7876 if (~cflags & pflags)
7877 return 0;
7878
7879 return 1;
7880 }
7881
7882 static void free_rootdomain(struct root_domain *rd)
7883 {
7884 cpupri_cleanup(&rd->cpupri);
7885
7886 free_cpumask_var(rd->rto_mask);
7887 free_cpumask_var(rd->online);
7888 free_cpumask_var(rd->span);
7889 kfree(rd);
7890 }
7891
7892 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7893 {
7894 struct root_domain *old_rd = NULL;
7895 unsigned long flags;
7896
7897 spin_lock_irqsave(&rq->lock, flags);
7898
7899 if (rq->rd) {
7900 old_rd = rq->rd;
7901
7902 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7903 set_rq_offline(rq);
7904
7905 cpumask_clear_cpu(rq->cpu, old_rd->span);
7906
7907 /*
7908 * If we dont want to free the old_rt yet then
7909 * set old_rd to NULL to skip the freeing later
7910 * in this function:
7911 */
7912 if (!atomic_dec_and_test(&old_rd->refcount))
7913 old_rd = NULL;
7914 }
7915
7916 atomic_inc(&rd->refcount);
7917 rq->rd = rd;
7918
7919 cpumask_set_cpu(rq->cpu, rd->span);
7920 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7921 set_rq_online(rq);
7922
7923 spin_unlock_irqrestore(&rq->lock, flags);
7924
7925 if (old_rd)
7926 free_rootdomain(old_rd);
7927 }
7928
7929 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7930 {
7931 gfp_t gfp = GFP_KERNEL;
7932
7933 memset(rd, 0, sizeof(*rd));
7934
7935 if (bootmem)
7936 gfp = GFP_NOWAIT;
7937
7938 if (!alloc_cpumask_var(&rd->span, gfp))
7939 goto out;
7940 if (!alloc_cpumask_var(&rd->online, gfp))
7941 goto free_span;
7942 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7943 goto free_online;
7944
7945 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7946 goto free_rto_mask;
7947 return 0;
7948
7949 free_rto_mask:
7950 free_cpumask_var(rd->rto_mask);
7951 free_online:
7952 free_cpumask_var(rd->online);
7953 free_span:
7954 free_cpumask_var(rd->span);
7955 out:
7956 return -ENOMEM;
7957 }
7958
7959 static void init_defrootdomain(void)
7960 {
7961 init_rootdomain(&def_root_domain, true);
7962
7963 atomic_set(&def_root_domain.refcount, 1);
7964 }
7965
7966 static struct root_domain *alloc_rootdomain(void)
7967 {
7968 struct root_domain *rd;
7969
7970 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7971 if (!rd)
7972 return NULL;
7973
7974 if (init_rootdomain(rd, false) != 0) {
7975 kfree(rd);
7976 return NULL;
7977 }
7978
7979 return rd;
7980 }
7981
7982 /*
7983 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7984 * hold the hotplug lock.
7985 */
7986 static void
7987 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7988 {
7989 struct rq *rq = cpu_rq(cpu);
7990 struct sched_domain *tmp;
7991
7992 /* Remove the sched domains which do not contribute to scheduling. */
7993 for (tmp = sd; tmp; ) {
7994 struct sched_domain *parent = tmp->parent;
7995 if (!parent)
7996 break;
7997
7998 if (sd_parent_degenerate(tmp, parent)) {
7999 tmp->parent = parent->parent;
8000 if (parent->parent)
8001 parent->parent->child = tmp;
8002 } else
8003 tmp = tmp->parent;
8004 }
8005
8006 if (sd && sd_degenerate(sd)) {
8007 sd = sd->parent;
8008 if (sd)
8009 sd->child = NULL;
8010 }
8011
8012 sched_domain_debug(sd, cpu);
8013
8014 rq_attach_root(rq, rd);
8015 rcu_assign_pointer(rq->sd, sd);
8016 }
8017
8018 /* cpus with isolated domains */
8019 static cpumask_var_t cpu_isolated_map;
8020
8021 /* Setup the mask of cpus configured for isolated domains */
8022 static int __init isolated_cpu_setup(char *str)
8023 {
8024 cpulist_parse(str, cpu_isolated_map);
8025 return 1;
8026 }
8027
8028 __setup("isolcpus=", isolated_cpu_setup);
8029
8030 /*
8031 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8032 * to a function which identifies what group(along with sched group) a CPU
8033 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8034 * (due to the fact that we keep track of groups covered with a struct cpumask).
8035 *
8036 * init_sched_build_groups will build a circular linked list of the groups
8037 * covered by the given span, and will set each group's ->cpumask correctly,
8038 * and ->cpu_power to 0.
8039 */
8040 static void
8041 init_sched_build_groups(const struct cpumask *span,
8042 const struct cpumask *cpu_map,
8043 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8044 struct sched_group **sg,
8045 struct cpumask *tmpmask),
8046 struct cpumask *covered, struct cpumask *tmpmask)
8047 {
8048 struct sched_group *first = NULL, *last = NULL;
8049 int i;
8050
8051 cpumask_clear(covered);
8052
8053 for_each_cpu(i, span) {
8054 struct sched_group *sg;
8055 int group = group_fn(i, cpu_map, &sg, tmpmask);
8056 int j;
8057
8058 if (cpumask_test_cpu(i, covered))
8059 continue;
8060
8061 cpumask_clear(sched_group_cpus(sg));
8062 sg->cpu_power = 0;
8063
8064 for_each_cpu(j, span) {
8065 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8066 continue;
8067
8068 cpumask_set_cpu(j, covered);
8069 cpumask_set_cpu(j, sched_group_cpus(sg));
8070 }
8071 if (!first)
8072 first = sg;
8073 if (last)
8074 last->next = sg;
8075 last = sg;
8076 }
8077 last->next = first;
8078 }
8079
8080 #define SD_NODES_PER_DOMAIN 16
8081
8082 #ifdef CONFIG_NUMA
8083
8084 /**
8085 * find_next_best_node - find the next node to include in a sched_domain
8086 * @node: node whose sched_domain we're building
8087 * @used_nodes: nodes already in the sched_domain
8088 *
8089 * Find the next node to include in a given scheduling domain. Simply
8090 * finds the closest node not already in the @used_nodes map.
8091 *
8092 * Should use nodemask_t.
8093 */
8094 static int find_next_best_node(int node, nodemask_t *used_nodes)
8095 {
8096 int i, n, val, min_val, best_node = 0;
8097
8098 min_val = INT_MAX;
8099
8100 for (i = 0; i < nr_node_ids; i++) {
8101 /* Start at @node */
8102 n = (node + i) % nr_node_ids;
8103
8104 if (!nr_cpus_node(n))
8105 continue;
8106
8107 /* Skip already used nodes */
8108 if (node_isset(n, *used_nodes))
8109 continue;
8110
8111 /* Simple min distance search */
8112 val = node_distance(node, n);
8113
8114 if (val < min_val) {
8115 min_val = val;
8116 best_node = n;
8117 }
8118 }
8119
8120 node_set(best_node, *used_nodes);
8121 return best_node;
8122 }
8123
8124 /**
8125 * sched_domain_node_span - get a cpumask for a node's sched_domain
8126 * @node: node whose cpumask we're constructing
8127 * @span: resulting cpumask
8128 *
8129 * Given a node, construct a good cpumask for its sched_domain to span. It
8130 * should be one that prevents unnecessary balancing, but also spreads tasks
8131 * out optimally.
8132 */
8133 static void sched_domain_node_span(int node, struct cpumask *span)
8134 {
8135 nodemask_t used_nodes;
8136 int i;
8137
8138 cpumask_clear(span);
8139 nodes_clear(used_nodes);
8140
8141 cpumask_or(span, span, cpumask_of_node(node));
8142 node_set(node, used_nodes);
8143
8144 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8145 int next_node = find_next_best_node(node, &used_nodes);
8146
8147 cpumask_or(span, span, cpumask_of_node(next_node));
8148 }
8149 }
8150 #endif /* CONFIG_NUMA */
8151
8152 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8153
8154 /*
8155 * The cpus mask in sched_group and sched_domain hangs off the end.
8156 *
8157 * ( See the the comments in include/linux/sched.h:struct sched_group
8158 * and struct sched_domain. )
8159 */
8160 struct static_sched_group {
8161 struct sched_group sg;
8162 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8163 };
8164
8165 struct static_sched_domain {
8166 struct sched_domain sd;
8167 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8168 };
8169
8170 struct s_data {
8171 #ifdef CONFIG_NUMA
8172 int sd_allnodes;
8173 cpumask_var_t domainspan;
8174 cpumask_var_t covered;
8175 cpumask_var_t notcovered;
8176 #endif
8177 cpumask_var_t nodemask;
8178 cpumask_var_t this_sibling_map;
8179 cpumask_var_t this_core_map;
8180 cpumask_var_t send_covered;
8181 cpumask_var_t tmpmask;
8182 struct sched_group **sched_group_nodes;
8183 struct root_domain *rd;
8184 };
8185
8186 enum s_alloc {
8187 sa_sched_groups = 0,
8188 sa_rootdomain,
8189 sa_tmpmask,
8190 sa_send_covered,
8191 sa_this_core_map,
8192 sa_this_sibling_map,
8193 sa_nodemask,
8194 sa_sched_group_nodes,
8195 #ifdef CONFIG_NUMA
8196 sa_notcovered,
8197 sa_covered,
8198 sa_domainspan,
8199 #endif
8200 sa_none,
8201 };
8202
8203 /*
8204 * SMT sched-domains:
8205 */
8206 #ifdef CONFIG_SCHED_SMT
8207 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8208 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8209
8210 static int
8211 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8212 struct sched_group **sg, struct cpumask *unused)
8213 {
8214 if (sg)
8215 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8216 return cpu;
8217 }
8218 #endif /* CONFIG_SCHED_SMT */
8219
8220 /*
8221 * multi-core sched-domains:
8222 */
8223 #ifdef CONFIG_SCHED_MC
8224 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8225 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8226 #endif /* CONFIG_SCHED_MC */
8227
8228 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8229 static int
8230 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8231 struct sched_group **sg, struct cpumask *mask)
8232 {
8233 int group;
8234
8235 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8236 group = cpumask_first(mask);
8237 if (sg)
8238 *sg = &per_cpu(sched_group_core, group).sg;
8239 return group;
8240 }
8241 #elif defined(CONFIG_SCHED_MC)
8242 static int
8243 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8244 struct sched_group **sg, struct cpumask *unused)
8245 {
8246 if (sg)
8247 *sg = &per_cpu(sched_group_core, cpu).sg;
8248 return cpu;
8249 }
8250 #endif
8251
8252 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8253 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8254
8255 static int
8256 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8257 struct sched_group **sg, struct cpumask *mask)
8258 {
8259 int group;
8260 #ifdef CONFIG_SCHED_MC
8261 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8262 group = cpumask_first(mask);
8263 #elif defined(CONFIG_SCHED_SMT)
8264 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8265 group = cpumask_first(mask);
8266 #else
8267 group = cpu;
8268 #endif
8269 if (sg)
8270 *sg = &per_cpu(sched_group_phys, group).sg;
8271 return group;
8272 }
8273
8274 #ifdef CONFIG_NUMA
8275 /*
8276 * The init_sched_build_groups can't handle what we want to do with node
8277 * groups, so roll our own. Now each node has its own list of groups which
8278 * gets dynamically allocated.
8279 */
8280 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8281 static struct sched_group ***sched_group_nodes_bycpu;
8282
8283 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8284 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8285
8286 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8287 struct sched_group **sg,
8288 struct cpumask *nodemask)
8289 {
8290 int group;
8291
8292 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8293 group = cpumask_first(nodemask);
8294
8295 if (sg)
8296 *sg = &per_cpu(sched_group_allnodes, group).sg;
8297 return group;
8298 }
8299
8300 static void init_numa_sched_groups_power(struct sched_group *group_head)
8301 {
8302 struct sched_group *sg = group_head;
8303 int j;
8304
8305 if (!sg)
8306 return;
8307 do {
8308 for_each_cpu(j, sched_group_cpus(sg)) {
8309 struct sched_domain *sd;
8310
8311 sd = &per_cpu(phys_domains, j).sd;
8312 if (j != group_first_cpu(sd->groups)) {
8313 /*
8314 * Only add "power" once for each
8315 * physical package.
8316 */
8317 continue;
8318 }
8319
8320 sg->cpu_power += sd->groups->cpu_power;
8321 }
8322 sg = sg->next;
8323 } while (sg != group_head);
8324 }
8325
8326 static int build_numa_sched_groups(struct s_data *d,
8327 const struct cpumask *cpu_map, int num)
8328 {
8329 struct sched_domain *sd;
8330 struct sched_group *sg, *prev;
8331 int n, j;
8332
8333 cpumask_clear(d->covered);
8334 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8335 if (cpumask_empty(d->nodemask)) {
8336 d->sched_group_nodes[num] = NULL;
8337 goto out;
8338 }
8339
8340 sched_domain_node_span(num, d->domainspan);
8341 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8342
8343 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8344 GFP_KERNEL, num);
8345 if (!sg) {
8346 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8347 num);
8348 return -ENOMEM;
8349 }
8350 d->sched_group_nodes[num] = sg;
8351
8352 for_each_cpu(j, d->nodemask) {
8353 sd = &per_cpu(node_domains, j).sd;
8354 sd->groups = sg;
8355 }
8356
8357 sg->cpu_power = 0;
8358 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8359 sg->next = sg;
8360 cpumask_or(d->covered, d->covered, d->nodemask);
8361
8362 prev = sg;
8363 for (j = 0; j < nr_node_ids; j++) {
8364 n = (num + j) % nr_node_ids;
8365 cpumask_complement(d->notcovered, d->covered);
8366 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8367 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8368 if (cpumask_empty(d->tmpmask))
8369 break;
8370 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8371 if (cpumask_empty(d->tmpmask))
8372 continue;
8373 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8374 GFP_KERNEL, num);
8375 if (!sg) {
8376 printk(KERN_WARNING
8377 "Can not alloc domain group for node %d\n", j);
8378 return -ENOMEM;
8379 }
8380 sg->cpu_power = 0;
8381 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8382 sg->next = prev->next;
8383 cpumask_or(d->covered, d->covered, d->tmpmask);
8384 prev->next = sg;
8385 prev = sg;
8386 }
8387 out:
8388 return 0;
8389 }
8390 #endif /* CONFIG_NUMA */
8391
8392 #ifdef CONFIG_NUMA
8393 /* Free memory allocated for various sched_group structures */
8394 static void free_sched_groups(const struct cpumask *cpu_map,
8395 struct cpumask *nodemask)
8396 {
8397 int cpu, i;
8398
8399 for_each_cpu(cpu, cpu_map) {
8400 struct sched_group **sched_group_nodes
8401 = sched_group_nodes_bycpu[cpu];
8402
8403 if (!sched_group_nodes)
8404 continue;
8405
8406 for (i = 0; i < nr_node_ids; i++) {
8407 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8408
8409 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8410 if (cpumask_empty(nodemask))
8411 continue;
8412
8413 if (sg == NULL)
8414 continue;
8415 sg = sg->next;
8416 next_sg:
8417 oldsg = sg;
8418 sg = sg->next;
8419 kfree(oldsg);
8420 if (oldsg != sched_group_nodes[i])
8421 goto next_sg;
8422 }
8423 kfree(sched_group_nodes);
8424 sched_group_nodes_bycpu[cpu] = NULL;
8425 }
8426 }
8427 #else /* !CONFIG_NUMA */
8428 static void free_sched_groups(const struct cpumask *cpu_map,
8429 struct cpumask *nodemask)
8430 {
8431 }
8432 #endif /* CONFIG_NUMA */
8433
8434 /*
8435 * Initialize sched groups cpu_power.
8436 *
8437 * cpu_power indicates the capacity of sched group, which is used while
8438 * distributing the load between different sched groups in a sched domain.
8439 * Typically cpu_power for all the groups in a sched domain will be same unless
8440 * there are asymmetries in the topology. If there are asymmetries, group
8441 * having more cpu_power will pickup more load compared to the group having
8442 * less cpu_power.
8443 */
8444 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8445 {
8446 struct sched_domain *child;
8447 struct sched_group *group;
8448 long power;
8449 int weight;
8450
8451 WARN_ON(!sd || !sd->groups);
8452
8453 if (cpu != group_first_cpu(sd->groups))
8454 return;
8455
8456 child = sd->child;
8457
8458 sd->groups->cpu_power = 0;
8459
8460 if (!child) {
8461 power = SCHED_LOAD_SCALE;
8462 weight = cpumask_weight(sched_domain_span(sd));
8463 /*
8464 * SMT siblings share the power of a single core.
8465 * Usually multiple threads get a better yield out of
8466 * that one core than a single thread would have,
8467 * reflect that in sd->smt_gain.
8468 */
8469 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8470 power *= sd->smt_gain;
8471 power /= weight;
8472 power >>= SCHED_LOAD_SHIFT;
8473 }
8474 sd->groups->cpu_power += power;
8475 return;
8476 }
8477
8478 /*
8479 * Add cpu_power of each child group to this groups cpu_power.
8480 */
8481 group = child->groups;
8482 do {
8483 sd->groups->cpu_power += group->cpu_power;
8484 group = group->next;
8485 } while (group != child->groups);
8486 }
8487
8488 /*
8489 * Initializers for schedule domains
8490 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8491 */
8492
8493 #ifdef CONFIG_SCHED_DEBUG
8494 # define SD_INIT_NAME(sd, type) sd->name = #type
8495 #else
8496 # define SD_INIT_NAME(sd, type) do { } while (0)
8497 #endif
8498
8499 #define SD_INIT(sd, type) sd_init_##type(sd)
8500
8501 #define SD_INIT_FUNC(type) \
8502 static noinline void sd_init_##type(struct sched_domain *sd) \
8503 { \
8504 memset(sd, 0, sizeof(*sd)); \
8505 *sd = SD_##type##_INIT; \
8506 sd->level = SD_LV_##type; \
8507 SD_INIT_NAME(sd, type); \
8508 }
8509
8510 SD_INIT_FUNC(CPU)
8511 #ifdef CONFIG_NUMA
8512 SD_INIT_FUNC(ALLNODES)
8513 SD_INIT_FUNC(NODE)
8514 #endif
8515 #ifdef CONFIG_SCHED_SMT
8516 SD_INIT_FUNC(SIBLING)
8517 #endif
8518 #ifdef CONFIG_SCHED_MC
8519 SD_INIT_FUNC(MC)
8520 #endif
8521
8522 static int default_relax_domain_level = -1;
8523
8524 static int __init setup_relax_domain_level(char *str)
8525 {
8526 unsigned long val;
8527
8528 val = simple_strtoul(str, NULL, 0);
8529 if (val < SD_LV_MAX)
8530 default_relax_domain_level = val;
8531
8532 return 1;
8533 }
8534 __setup("relax_domain_level=", setup_relax_domain_level);
8535
8536 static void set_domain_attribute(struct sched_domain *sd,
8537 struct sched_domain_attr *attr)
8538 {
8539 int request;
8540
8541 if (!attr || attr->relax_domain_level < 0) {
8542 if (default_relax_domain_level < 0)
8543 return;
8544 else
8545 request = default_relax_domain_level;
8546 } else
8547 request = attr->relax_domain_level;
8548 if (request < sd->level) {
8549 /* turn off idle balance on this domain */
8550 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8551 } else {
8552 /* turn on idle balance on this domain */
8553 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8554 }
8555 }
8556
8557 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8558 const struct cpumask *cpu_map)
8559 {
8560 switch (what) {
8561 case sa_sched_groups:
8562 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8563 d->sched_group_nodes = NULL;
8564 case sa_rootdomain:
8565 free_rootdomain(d->rd); /* fall through */
8566 case sa_tmpmask:
8567 free_cpumask_var(d->tmpmask); /* fall through */
8568 case sa_send_covered:
8569 free_cpumask_var(d->send_covered); /* fall through */
8570 case sa_this_core_map:
8571 free_cpumask_var(d->this_core_map); /* fall through */
8572 case sa_this_sibling_map:
8573 free_cpumask_var(d->this_sibling_map); /* fall through */
8574 case sa_nodemask:
8575 free_cpumask_var(d->nodemask); /* fall through */
8576 case sa_sched_group_nodes:
8577 #ifdef CONFIG_NUMA
8578 kfree(d->sched_group_nodes); /* fall through */
8579 case sa_notcovered:
8580 free_cpumask_var(d->notcovered); /* fall through */
8581 case sa_covered:
8582 free_cpumask_var(d->covered); /* fall through */
8583 case sa_domainspan:
8584 free_cpumask_var(d->domainspan); /* fall through */
8585 #endif
8586 case sa_none:
8587 break;
8588 }
8589 }
8590
8591 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8592 const struct cpumask *cpu_map)
8593 {
8594 #ifdef CONFIG_NUMA
8595 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8596 return sa_none;
8597 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8598 return sa_domainspan;
8599 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8600 return sa_covered;
8601 /* Allocate the per-node list of sched groups */
8602 d->sched_group_nodes = kcalloc(nr_node_ids,
8603 sizeof(struct sched_group *), GFP_KERNEL);
8604 if (!d->sched_group_nodes) {
8605 printk(KERN_WARNING "Can not alloc sched group node list\n");
8606 return sa_notcovered;
8607 }
8608 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8609 #endif
8610 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8611 return sa_sched_group_nodes;
8612 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8613 return sa_nodemask;
8614 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8615 return sa_this_sibling_map;
8616 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8617 return sa_this_core_map;
8618 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8619 return sa_send_covered;
8620 d->rd = alloc_rootdomain();
8621 if (!d->rd) {
8622 printk(KERN_WARNING "Cannot alloc root domain\n");
8623 return sa_tmpmask;
8624 }
8625 return sa_rootdomain;
8626 }
8627
8628 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8629 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8630 {
8631 struct sched_domain *sd = NULL;
8632 #ifdef CONFIG_NUMA
8633 struct sched_domain *parent;
8634
8635 d->sd_allnodes = 0;
8636 if (cpumask_weight(cpu_map) >
8637 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8638 sd = &per_cpu(allnodes_domains, i).sd;
8639 SD_INIT(sd, ALLNODES);
8640 set_domain_attribute(sd, attr);
8641 cpumask_copy(sched_domain_span(sd), cpu_map);
8642 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8643 d->sd_allnodes = 1;
8644 }
8645 parent = sd;
8646
8647 sd = &per_cpu(node_domains, i).sd;
8648 SD_INIT(sd, NODE);
8649 set_domain_attribute(sd, attr);
8650 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8651 sd->parent = parent;
8652 if (parent)
8653 parent->child = sd;
8654 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8655 #endif
8656 return sd;
8657 }
8658
8659 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8660 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8661 struct sched_domain *parent, int i)
8662 {
8663 struct sched_domain *sd;
8664 sd = &per_cpu(phys_domains, i).sd;
8665 SD_INIT(sd, CPU);
8666 set_domain_attribute(sd, attr);
8667 cpumask_copy(sched_domain_span(sd), d->nodemask);
8668 sd->parent = parent;
8669 if (parent)
8670 parent->child = sd;
8671 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8672 return sd;
8673 }
8674
8675 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8676 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8677 struct sched_domain *parent, int i)
8678 {
8679 struct sched_domain *sd = parent;
8680 #ifdef CONFIG_SCHED_MC
8681 sd = &per_cpu(core_domains, i).sd;
8682 SD_INIT(sd, MC);
8683 set_domain_attribute(sd, attr);
8684 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8685 sd->parent = parent;
8686 parent->child = sd;
8687 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8688 #endif
8689 return sd;
8690 }
8691
8692 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8693 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8694 struct sched_domain *parent, int i)
8695 {
8696 struct sched_domain *sd = parent;
8697 #ifdef CONFIG_SCHED_SMT
8698 sd = &per_cpu(cpu_domains, i).sd;
8699 SD_INIT(sd, SIBLING);
8700 set_domain_attribute(sd, attr);
8701 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8702 sd->parent = parent;
8703 parent->child = sd;
8704 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8705 #endif
8706 return sd;
8707 }
8708
8709 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8710 const struct cpumask *cpu_map, int cpu)
8711 {
8712 switch (l) {
8713 #ifdef CONFIG_SCHED_SMT
8714 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8715 cpumask_and(d->this_sibling_map, cpu_map,
8716 topology_thread_cpumask(cpu));
8717 if (cpu == cpumask_first(d->this_sibling_map))
8718 init_sched_build_groups(d->this_sibling_map, cpu_map,
8719 &cpu_to_cpu_group,
8720 d->send_covered, d->tmpmask);
8721 break;
8722 #endif
8723 #ifdef CONFIG_SCHED_MC
8724 case SD_LV_MC: /* set up multi-core groups */
8725 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8726 if (cpu == cpumask_first(d->this_core_map))
8727 init_sched_build_groups(d->this_core_map, cpu_map,
8728 &cpu_to_core_group,
8729 d->send_covered, d->tmpmask);
8730 break;
8731 #endif
8732 case SD_LV_CPU: /* set up physical groups */
8733 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8734 if (!cpumask_empty(d->nodemask))
8735 init_sched_build_groups(d->nodemask, cpu_map,
8736 &cpu_to_phys_group,
8737 d->send_covered, d->tmpmask);
8738 break;
8739 #ifdef CONFIG_NUMA
8740 case SD_LV_ALLNODES:
8741 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8742 d->send_covered, d->tmpmask);
8743 break;
8744 #endif
8745 default:
8746 break;
8747 }
8748 }
8749
8750 /*
8751 * Build sched domains for a given set of cpus and attach the sched domains
8752 * to the individual cpus
8753 */
8754 static int __build_sched_domains(const struct cpumask *cpu_map,
8755 struct sched_domain_attr *attr)
8756 {
8757 enum s_alloc alloc_state = sa_none;
8758 struct s_data d;
8759 struct sched_domain *sd;
8760 int i;
8761 #ifdef CONFIG_NUMA
8762 d.sd_allnodes = 0;
8763 #endif
8764
8765 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8766 if (alloc_state != sa_rootdomain)
8767 goto error;
8768 alloc_state = sa_sched_groups;
8769
8770 /*
8771 * Set up domains for cpus specified by the cpu_map.
8772 */
8773 for_each_cpu(i, cpu_map) {
8774 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8775 cpu_map);
8776
8777 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8778 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8779 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8780 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8781 }
8782
8783 for_each_cpu(i, cpu_map) {
8784 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8785 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8786 }
8787
8788 /* Set up physical groups */
8789 for (i = 0; i < nr_node_ids; i++)
8790 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8791
8792 #ifdef CONFIG_NUMA
8793 /* Set up node groups */
8794 if (d.sd_allnodes)
8795 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8796
8797 for (i = 0; i < nr_node_ids; i++)
8798 if (build_numa_sched_groups(&d, cpu_map, i))
8799 goto error;
8800 #endif
8801
8802 /* Calculate CPU power for physical packages and nodes */
8803 #ifdef CONFIG_SCHED_SMT
8804 for_each_cpu(i, cpu_map) {
8805 sd = &per_cpu(cpu_domains, i).sd;
8806 init_sched_groups_power(i, sd);
8807 }
8808 #endif
8809 #ifdef CONFIG_SCHED_MC
8810 for_each_cpu(i, cpu_map) {
8811 sd = &per_cpu(core_domains, i).sd;
8812 init_sched_groups_power(i, sd);
8813 }
8814 #endif
8815
8816 for_each_cpu(i, cpu_map) {
8817 sd = &per_cpu(phys_domains, i).sd;
8818 init_sched_groups_power(i, sd);
8819 }
8820
8821 #ifdef CONFIG_NUMA
8822 for (i = 0; i < nr_node_ids; i++)
8823 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8824
8825 if (d.sd_allnodes) {
8826 struct sched_group *sg;
8827
8828 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8829 d.tmpmask);
8830 init_numa_sched_groups_power(sg);
8831 }
8832 #endif
8833
8834 /* Attach the domains */
8835 for_each_cpu(i, cpu_map) {
8836 #ifdef CONFIG_SCHED_SMT
8837 sd = &per_cpu(cpu_domains, i).sd;
8838 #elif defined(CONFIG_SCHED_MC)
8839 sd = &per_cpu(core_domains, i).sd;
8840 #else
8841 sd = &per_cpu(phys_domains, i).sd;
8842 #endif
8843 cpu_attach_domain(sd, d.rd, i);
8844 }
8845
8846 d.sched_group_nodes = NULL; /* don't free this we still need it */
8847 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8848 return 0;
8849
8850 error:
8851 __free_domain_allocs(&d, alloc_state, cpu_map);
8852 return -ENOMEM;
8853 }
8854
8855 static int build_sched_domains(const struct cpumask *cpu_map)
8856 {
8857 return __build_sched_domains(cpu_map, NULL);
8858 }
8859
8860 static struct cpumask *doms_cur; /* current sched domains */
8861 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8862 static struct sched_domain_attr *dattr_cur;
8863 /* attribues of custom domains in 'doms_cur' */
8864
8865 /*
8866 * Special case: If a kmalloc of a doms_cur partition (array of
8867 * cpumask) fails, then fallback to a single sched domain,
8868 * as determined by the single cpumask fallback_doms.
8869 */
8870 static cpumask_var_t fallback_doms;
8871
8872 /*
8873 * arch_update_cpu_topology lets virtualized architectures update the
8874 * cpu core maps. It is supposed to return 1 if the topology changed
8875 * or 0 if it stayed the same.
8876 */
8877 int __attribute__((weak)) arch_update_cpu_topology(void)
8878 {
8879 return 0;
8880 }
8881
8882 /*
8883 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8884 * For now this just excludes isolated cpus, but could be used to
8885 * exclude other special cases in the future.
8886 */
8887 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8888 {
8889 int err;
8890
8891 arch_update_cpu_topology();
8892 ndoms_cur = 1;
8893 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8894 if (!doms_cur)
8895 doms_cur = fallback_doms;
8896 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8897 dattr_cur = NULL;
8898 err = build_sched_domains(doms_cur);
8899 register_sched_domain_sysctl();
8900
8901 return err;
8902 }
8903
8904 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8905 struct cpumask *tmpmask)
8906 {
8907 free_sched_groups(cpu_map, tmpmask);
8908 }
8909
8910 /*
8911 * Detach sched domains from a group of cpus specified in cpu_map
8912 * These cpus will now be attached to the NULL domain
8913 */
8914 static void detach_destroy_domains(const struct cpumask *cpu_map)
8915 {
8916 /* Save because hotplug lock held. */
8917 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8918 int i;
8919
8920 for_each_cpu(i, cpu_map)
8921 cpu_attach_domain(NULL, &def_root_domain, i);
8922 synchronize_sched();
8923 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8924 }
8925
8926 /* handle null as "default" */
8927 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8928 struct sched_domain_attr *new, int idx_new)
8929 {
8930 struct sched_domain_attr tmp;
8931
8932 /* fast path */
8933 if (!new && !cur)
8934 return 1;
8935
8936 tmp = SD_ATTR_INIT;
8937 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8938 new ? (new + idx_new) : &tmp,
8939 sizeof(struct sched_domain_attr));
8940 }
8941
8942 /*
8943 * Partition sched domains as specified by the 'ndoms_new'
8944 * cpumasks in the array doms_new[] of cpumasks. This compares
8945 * doms_new[] to the current sched domain partitioning, doms_cur[].
8946 * It destroys each deleted domain and builds each new domain.
8947 *
8948 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8949 * The masks don't intersect (don't overlap.) We should setup one
8950 * sched domain for each mask. CPUs not in any of the cpumasks will
8951 * not be load balanced. If the same cpumask appears both in the
8952 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8953 * it as it is.
8954 *
8955 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8956 * ownership of it and will kfree it when done with it. If the caller
8957 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8958 * ndoms_new == 1, and partition_sched_domains() will fallback to
8959 * the single partition 'fallback_doms', it also forces the domains
8960 * to be rebuilt.
8961 *
8962 * If doms_new == NULL it will be replaced with cpu_online_mask.
8963 * ndoms_new == 0 is a special case for destroying existing domains,
8964 * and it will not create the default domain.
8965 *
8966 * Call with hotplug lock held
8967 */
8968 /* FIXME: Change to struct cpumask *doms_new[] */
8969 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8970 struct sched_domain_attr *dattr_new)
8971 {
8972 int i, j, n;
8973 int new_topology;
8974
8975 mutex_lock(&sched_domains_mutex);
8976
8977 /* always unregister in case we don't destroy any domains */
8978 unregister_sched_domain_sysctl();
8979
8980 /* Let architecture update cpu core mappings. */
8981 new_topology = arch_update_cpu_topology();
8982
8983 n = doms_new ? ndoms_new : 0;
8984
8985 /* Destroy deleted domains */
8986 for (i = 0; i < ndoms_cur; i++) {
8987 for (j = 0; j < n && !new_topology; j++) {
8988 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8989 && dattrs_equal(dattr_cur, i, dattr_new, j))
8990 goto match1;
8991 }
8992 /* no match - a current sched domain not in new doms_new[] */
8993 detach_destroy_domains(doms_cur + i);
8994 match1:
8995 ;
8996 }
8997
8998 if (doms_new == NULL) {
8999 ndoms_cur = 0;
9000 doms_new = fallback_doms;
9001 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9002 WARN_ON_ONCE(dattr_new);
9003 }
9004
9005 /* Build new domains */
9006 for (i = 0; i < ndoms_new; i++) {
9007 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9008 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9009 && dattrs_equal(dattr_new, i, dattr_cur, j))
9010 goto match2;
9011 }
9012 /* no match - add a new doms_new */
9013 __build_sched_domains(doms_new + i,
9014 dattr_new ? dattr_new + i : NULL);
9015 match2:
9016 ;
9017 }
9018
9019 /* Remember the new sched domains */
9020 if (doms_cur != fallback_doms)
9021 kfree(doms_cur);
9022 kfree(dattr_cur); /* kfree(NULL) is safe */
9023 doms_cur = doms_new;
9024 dattr_cur = dattr_new;
9025 ndoms_cur = ndoms_new;
9026
9027 register_sched_domain_sysctl();
9028
9029 mutex_unlock(&sched_domains_mutex);
9030 }
9031
9032 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9033 static void arch_reinit_sched_domains(void)
9034 {
9035 get_online_cpus();
9036
9037 /* Destroy domains first to force the rebuild */
9038 partition_sched_domains(0, NULL, NULL);
9039
9040 rebuild_sched_domains();
9041 put_online_cpus();
9042 }
9043
9044 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9045 {
9046 unsigned int level = 0;
9047
9048 if (sscanf(buf, "%u", &level) != 1)
9049 return -EINVAL;
9050
9051 /*
9052 * level is always be positive so don't check for
9053 * level < POWERSAVINGS_BALANCE_NONE which is 0
9054 * What happens on 0 or 1 byte write,
9055 * need to check for count as well?
9056 */
9057
9058 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9059 return -EINVAL;
9060
9061 if (smt)
9062 sched_smt_power_savings = level;
9063 else
9064 sched_mc_power_savings = level;
9065
9066 arch_reinit_sched_domains();
9067
9068 return count;
9069 }
9070
9071 #ifdef CONFIG_SCHED_MC
9072 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9073 char *page)
9074 {
9075 return sprintf(page, "%u\n", sched_mc_power_savings);
9076 }
9077 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9078 const char *buf, size_t count)
9079 {
9080 return sched_power_savings_store(buf, count, 0);
9081 }
9082 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9083 sched_mc_power_savings_show,
9084 sched_mc_power_savings_store);
9085 #endif
9086
9087 #ifdef CONFIG_SCHED_SMT
9088 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9089 char *page)
9090 {
9091 return sprintf(page, "%u\n", sched_smt_power_savings);
9092 }
9093 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9094 const char *buf, size_t count)
9095 {
9096 return sched_power_savings_store(buf, count, 1);
9097 }
9098 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9099 sched_smt_power_savings_show,
9100 sched_smt_power_savings_store);
9101 #endif
9102
9103 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9104 {
9105 int err = 0;
9106
9107 #ifdef CONFIG_SCHED_SMT
9108 if (smt_capable())
9109 err = sysfs_create_file(&cls->kset.kobj,
9110 &attr_sched_smt_power_savings.attr);
9111 #endif
9112 #ifdef CONFIG_SCHED_MC
9113 if (!err && mc_capable())
9114 err = sysfs_create_file(&cls->kset.kobj,
9115 &attr_sched_mc_power_savings.attr);
9116 #endif
9117 return err;
9118 }
9119 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9120
9121 #ifndef CONFIG_CPUSETS
9122 /*
9123 * Add online and remove offline CPUs from the scheduler domains.
9124 * When cpusets are enabled they take over this function.
9125 */
9126 static int update_sched_domains(struct notifier_block *nfb,
9127 unsigned long action, void *hcpu)
9128 {
9129 switch (action) {
9130 case CPU_ONLINE:
9131 case CPU_ONLINE_FROZEN:
9132 case CPU_DEAD:
9133 case CPU_DEAD_FROZEN:
9134 partition_sched_domains(1, NULL, NULL);
9135 return NOTIFY_OK;
9136
9137 default:
9138 return NOTIFY_DONE;
9139 }
9140 }
9141 #endif
9142
9143 static int update_runtime(struct notifier_block *nfb,
9144 unsigned long action, void *hcpu)
9145 {
9146 int cpu = (int)(long)hcpu;
9147
9148 switch (action) {
9149 case CPU_DOWN_PREPARE:
9150 case CPU_DOWN_PREPARE_FROZEN:
9151 disable_runtime(cpu_rq(cpu));
9152 return NOTIFY_OK;
9153
9154 case CPU_DOWN_FAILED:
9155 case CPU_DOWN_FAILED_FROZEN:
9156 case CPU_ONLINE:
9157 case CPU_ONLINE_FROZEN:
9158 enable_runtime(cpu_rq(cpu));
9159 return NOTIFY_OK;
9160
9161 default:
9162 return NOTIFY_DONE;
9163 }
9164 }
9165
9166 void __init sched_init_smp(void)
9167 {
9168 cpumask_var_t non_isolated_cpus;
9169
9170 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9171
9172 #if defined(CONFIG_NUMA)
9173 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9174 GFP_KERNEL);
9175 BUG_ON(sched_group_nodes_bycpu == NULL);
9176 #endif
9177 get_online_cpus();
9178 mutex_lock(&sched_domains_mutex);
9179 arch_init_sched_domains(cpu_online_mask);
9180 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9181 if (cpumask_empty(non_isolated_cpus))
9182 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9183 mutex_unlock(&sched_domains_mutex);
9184 put_online_cpus();
9185
9186 #ifndef CONFIG_CPUSETS
9187 /* XXX: Theoretical race here - CPU may be hotplugged now */
9188 hotcpu_notifier(update_sched_domains, 0);
9189 #endif
9190
9191 /* RT runtime code needs to handle some hotplug events */
9192 hotcpu_notifier(update_runtime, 0);
9193
9194 init_hrtick();
9195
9196 /* Move init over to a non-isolated CPU */
9197 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9198 BUG();
9199 sched_init_granularity();
9200 free_cpumask_var(non_isolated_cpus);
9201
9202 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9203 init_sched_rt_class();
9204 }
9205 #else
9206 void __init sched_init_smp(void)
9207 {
9208 sched_init_granularity();
9209 }
9210 #endif /* CONFIG_SMP */
9211
9212 const_debug unsigned int sysctl_timer_migration = 1;
9213
9214 int in_sched_functions(unsigned long addr)
9215 {
9216 return in_lock_functions(addr) ||
9217 (addr >= (unsigned long)__sched_text_start
9218 && addr < (unsigned long)__sched_text_end);
9219 }
9220
9221 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9222 {
9223 cfs_rq->tasks_timeline = RB_ROOT;
9224 INIT_LIST_HEAD(&cfs_rq->tasks);
9225 #ifdef CONFIG_FAIR_GROUP_SCHED
9226 cfs_rq->rq = rq;
9227 #endif
9228 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9229 }
9230
9231 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9232 {
9233 struct rt_prio_array *array;
9234 int i;
9235
9236 array = &rt_rq->active;
9237 for (i = 0; i < MAX_RT_PRIO; i++) {
9238 INIT_LIST_HEAD(array->queue + i);
9239 __clear_bit(i, array->bitmap);
9240 }
9241 /* delimiter for bitsearch: */
9242 __set_bit(MAX_RT_PRIO, array->bitmap);
9243
9244 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9245 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9246 #ifdef CONFIG_SMP
9247 rt_rq->highest_prio.next = MAX_RT_PRIO;
9248 #endif
9249 #endif
9250 #ifdef CONFIG_SMP
9251 rt_rq->rt_nr_migratory = 0;
9252 rt_rq->overloaded = 0;
9253 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9254 #endif
9255
9256 rt_rq->rt_time = 0;
9257 rt_rq->rt_throttled = 0;
9258 rt_rq->rt_runtime = 0;
9259 spin_lock_init(&rt_rq->rt_runtime_lock);
9260
9261 #ifdef CONFIG_RT_GROUP_SCHED
9262 rt_rq->rt_nr_boosted = 0;
9263 rt_rq->rq = rq;
9264 #endif
9265 }
9266
9267 #ifdef CONFIG_FAIR_GROUP_SCHED
9268 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9269 struct sched_entity *se, int cpu, int add,
9270 struct sched_entity *parent)
9271 {
9272 struct rq *rq = cpu_rq(cpu);
9273 tg->cfs_rq[cpu] = cfs_rq;
9274 init_cfs_rq(cfs_rq, rq);
9275 cfs_rq->tg = tg;
9276 if (add)
9277 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9278
9279 tg->se[cpu] = se;
9280 /* se could be NULL for init_task_group */
9281 if (!se)
9282 return;
9283
9284 if (!parent)
9285 se->cfs_rq = &rq->cfs;
9286 else
9287 se->cfs_rq = parent->my_q;
9288
9289 se->my_q = cfs_rq;
9290 se->load.weight = tg->shares;
9291 se->load.inv_weight = 0;
9292 se->parent = parent;
9293 }
9294 #endif
9295
9296 #ifdef CONFIG_RT_GROUP_SCHED
9297 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9298 struct sched_rt_entity *rt_se, int cpu, int add,
9299 struct sched_rt_entity *parent)
9300 {
9301 struct rq *rq = cpu_rq(cpu);
9302
9303 tg->rt_rq[cpu] = rt_rq;
9304 init_rt_rq(rt_rq, rq);
9305 rt_rq->tg = tg;
9306 rt_rq->rt_se = rt_se;
9307 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9308 if (add)
9309 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9310
9311 tg->rt_se[cpu] = rt_se;
9312 if (!rt_se)
9313 return;
9314
9315 if (!parent)
9316 rt_se->rt_rq = &rq->rt;
9317 else
9318 rt_se->rt_rq = parent->my_q;
9319
9320 rt_se->my_q = rt_rq;
9321 rt_se->parent = parent;
9322 INIT_LIST_HEAD(&rt_se->run_list);
9323 }
9324 #endif
9325
9326 void __init sched_init(void)
9327 {
9328 int i, j;
9329 unsigned long alloc_size = 0, ptr;
9330
9331 #ifdef CONFIG_FAIR_GROUP_SCHED
9332 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9333 #endif
9334 #ifdef CONFIG_RT_GROUP_SCHED
9335 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9336 #endif
9337 #ifdef CONFIG_USER_SCHED
9338 alloc_size *= 2;
9339 #endif
9340 #ifdef CONFIG_CPUMASK_OFFSTACK
9341 alloc_size += num_possible_cpus() * cpumask_size();
9342 #endif
9343 /*
9344 * As sched_init() is called before page_alloc is setup,
9345 * we use alloc_bootmem().
9346 */
9347 if (alloc_size) {
9348 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9349
9350 #ifdef CONFIG_FAIR_GROUP_SCHED
9351 init_task_group.se = (struct sched_entity **)ptr;
9352 ptr += nr_cpu_ids * sizeof(void **);
9353
9354 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357 #ifdef CONFIG_USER_SCHED
9358 root_task_group.se = (struct sched_entity **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
9360
9361 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
9363 #endif /* CONFIG_USER_SCHED */
9364 #endif /* CONFIG_FAIR_GROUP_SCHED */
9365 #ifdef CONFIG_RT_GROUP_SCHED
9366 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9367 ptr += nr_cpu_ids * sizeof(void **);
9368
9369 init_task_group.rt_rq = (struct rt_rq **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 #ifdef CONFIG_USER_SCHED
9373 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9374 ptr += nr_cpu_ids * sizeof(void **);
9375
9376 root_task_group.rt_rq = (struct rt_rq **)ptr;
9377 ptr += nr_cpu_ids * sizeof(void **);
9378 #endif /* CONFIG_USER_SCHED */
9379 #endif /* CONFIG_RT_GROUP_SCHED */
9380 #ifdef CONFIG_CPUMASK_OFFSTACK
9381 for_each_possible_cpu(i) {
9382 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9383 ptr += cpumask_size();
9384 }
9385 #endif /* CONFIG_CPUMASK_OFFSTACK */
9386 }
9387
9388 #ifdef CONFIG_SMP
9389 init_defrootdomain();
9390 #endif
9391
9392 init_rt_bandwidth(&def_rt_bandwidth,
9393 global_rt_period(), global_rt_runtime());
9394
9395 #ifdef CONFIG_RT_GROUP_SCHED
9396 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9397 global_rt_period(), global_rt_runtime());
9398 #ifdef CONFIG_USER_SCHED
9399 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9400 global_rt_period(), RUNTIME_INF);
9401 #endif /* CONFIG_USER_SCHED */
9402 #endif /* CONFIG_RT_GROUP_SCHED */
9403
9404 #ifdef CONFIG_GROUP_SCHED
9405 list_add(&init_task_group.list, &task_groups);
9406 INIT_LIST_HEAD(&init_task_group.children);
9407
9408 #ifdef CONFIG_USER_SCHED
9409 INIT_LIST_HEAD(&root_task_group.children);
9410 init_task_group.parent = &root_task_group;
9411 list_add(&init_task_group.siblings, &root_task_group.children);
9412 #endif /* CONFIG_USER_SCHED */
9413 #endif /* CONFIG_GROUP_SCHED */
9414
9415 for_each_possible_cpu(i) {
9416 struct rq *rq;
9417
9418 rq = cpu_rq(i);
9419 spin_lock_init(&rq->lock);
9420 rq->nr_running = 0;
9421 rq->calc_load_active = 0;
9422 rq->calc_load_update = jiffies + LOAD_FREQ;
9423 init_cfs_rq(&rq->cfs, rq);
9424 init_rt_rq(&rq->rt, rq);
9425 #ifdef CONFIG_FAIR_GROUP_SCHED
9426 init_task_group.shares = init_task_group_load;
9427 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9428 #ifdef CONFIG_CGROUP_SCHED
9429 /*
9430 * How much cpu bandwidth does init_task_group get?
9431 *
9432 * In case of task-groups formed thr' the cgroup filesystem, it
9433 * gets 100% of the cpu resources in the system. This overall
9434 * system cpu resource is divided among the tasks of
9435 * init_task_group and its child task-groups in a fair manner,
9436 * based on each entity's (task or task-group's) weight
9437 * (se->load.weight).
9438 *
9439 * In other words, if init_task_group has 10 tasks of weight
9440 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9441 * then A0's share of the cpu resource is:
9442 *
9443 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9444 *
9445 * We achieve this by letting init_task_group's tasks sit
9446 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9447 */
9448 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9449 #elif defined CONFIG_USER_SCHED
9450 root_task_group.shares = NICE_0_LOAD;
9451 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9452 /*
9453 * In case of task-groups formed thr' the user id of tasks,
9454 * init_task_group represents tasks belonging to root user.
9455 * Hence it forms a sibling of all subsequent groups formed.
9456 * In this case, init_task_group gets only a fraction of overall
9457 * system cpu resource, based on the weight assigned to root
9458 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9459 * by letting tasks of init_task_group sit in a separate cfs_rq
9460 * (init_tg_cfs_rq) and having one entity represent this group of
9461 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9462 */
9463 init_tg_cfs_entry(&init_task_group,
9464 &per_cpu(init_tg_cfs_rq, i),
9465 &per_cpu(init_sched_entity, i), i, 1,
9466 root_task_group.se[i]);
9467
9468 #endif
9469 #endif /* CONFIG_FAIR_GROUP_SCHED */
9470
9471 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9472 #ifdef CONFIG_RT_GROUP_SCHED
9473 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9474 #ifdef CONFIG_CGROUP_SCHED
9475 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9476 #elif defined CONFIG_USER_SCHED
9477 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9478 init_tg_rt_entry(&init_task_group,
9479 &per_cpu(init_rt_rq, i),
9480 &per_cpu(init_sched_rt_entity, i), i, 1,
9481 root_task_group.rt_se[i]);
9482 #endif
9483 #endif
9484
9485 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9486 rq->cpu_load[j] = 0;
9487 #ifdef CONFIG_SMP
9488 rq->sd = NULL;
9489 rq->rd = NULL;
9490 rq->post_schedule = 0;
9491 rq->active_balance = 0;
9492 rq->next_balance = jiffies;
9493 rq->push_cpu = 0;
9494 rq->cpu = i;
9495 rq->online = 0;
9496 rq->migration_thread = NULL;
9497 INIT_LIST_HEAD(&rq->migration_queue);
9498 rq_attach_root(rq, &def_root_domain);
9499 #endif
9500 init_rq_hrtick(rq);
9501 atomic_set(&rq->nr_iowait, 0);
9502 }
9503
9504 set_load_weight(&init_task);
9505
9506 #ifdef CONFIG_PREEMPT_NOTIFIERS
9507 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9508 #endif
9509
9510 #ifdef CONFIG_SMP
9511 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9512 #endif
9513
9514 #ifdef CONFIG_RT_MUTEXES
9515 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9516 #endif
9517
9518 /*
9519 * The boot idle thread does lazy MMU switching as well:
9520 */
9521 atomic_inc(&init_mm.mm_count);
9522 enter_lazy_tlb(&init_mm, current);
9523
9524 /*
9525 * Make us the idle thread. Technically, schedule() should not be
9526 * called from this thread, however somewhere below it might be,
9527 * but because we are the idle thread, we just pick up running again
9528 * when this runqueue becomes "idle".
9529 */
9530 init_idle(current, smp_processor_id());
9531
9532 calc_load_update = jiffies + LOAD_FREQ;
9533
9534 /*
9535 * During early bootup we pretend to be a normal task:
9536 */
9537 current->sched_class = &fair_sched_class;
9538
9539 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9540 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9541 #ifdef CONFIG_SMP
9542 #ifdef CONFIG_NO_HZ
9543 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9544 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9545 #endif
9546 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9547 #endif /* SMP */
9548
9549 perf_counter_init();
9550
9551 scheduler_running = 1;
9552 }
9553
9554 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9555 static inline int preempt_count_equals(int preempt_offset)
9556 {
9557 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9558
9559 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9560 }
9561
9562 void __might_sleep(char *file, int line, int preempt_offset)
9563 {
9564 #ifdef in_atomic
9565 static unsigned long prev_jiffy; /* ratelimiting */
9566
9567 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9568 system_state != SYSTEM_RUNNING || oops_in_progress)
9569 return;
9570 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9571 return;
9572 prev_jiffy = jiffies;
9573
9574 printk(KERN_ERR
9575 "BUG: sleeping function called from invalid context at %s:%d\n",
9576 file, line);
9577 printk(KERN_ERR
9578 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9579 in_atomic(), irqs_disabled(),
9580 current->pid, current->comm);
9581
9582 debug_show_held_locks(current);
9583 if (irqs_disabled())
9584 print_irqtrace_events(current);
9585 dump_stack();
9586 #endif
9587 }
9588 EXPORT_SYMBOL(__might_sleep);
9589 #endif
9590
9591 #ifdef CONFIG_MAGIC_SYSRQ
9592 static void normalize_task(struct rq *rq, struct task_struct *p)
9593 {
9594 int on_rq;
9595
9596 update_rq_clock(rq);
9597 on_rq = p->se.on_rq;
9598 if (on_rq)
9599 deactivate_task(rq, p, 0);
9600 __setscheduler(rq, p, SCHED_NORMAL, 0);
9601 if (on_rq) {
9602 activate_task(rq, p, 0);
9603 resched_task(rq->curr);
9604 }
9605 }
9606
9607 void normalize_rt_tasks(void)
9608 {
9609 struct task_struct *g, *p;
9610 unsigned long flags;
9611 struct rq *rq;
9612
9613 read_lock_irqsave(&tasklist_lock, flags);
9614 do_each_thread(g, p) {
9615 /*
9616 * Only normalize user tasks:
9617 */
9618 if (!p->mm)
9619 continue;
9620
9621 p->se.exec_start = 0;
9622 #ifdef CONFIG_SCHEDSTATS
9623 p->se.wait_start = 0;
9624 p->se.sleep_start = 0;
9625 p->se.block_start = 0;
9626 #endif
9627
9628 if (!rt_task(p)) {
9629 /*
9630 * Renice negative nice level userspace
9631 * tasks back to 0:
9632 */
9633 if (TASK_NICE(p) < 0 && p->mm)
9634 set_user_nice(p, 0);
9635 continue;
9636 }
9637
9638 spin_lock(&p->pi_lock);
9639 rq = __task_rq_lock(p);
9640
9641 normalize_task(rq, p);
9642
9643 __task_rq_unlock(rq);
9644 spin_unlock(&p->pi_lock);
9645 } while_each_thread(g, p);
9646
9647 read_unlock_irqrestore(&tasklist_lock, flags);
9648 }
9649
9650 #endif /* CONFIG_MAGIC_SYSRQ */
9651
9652 #ifdef CONFIG_IA64
9653 /*
9654 * These functions are only useful for the IA64 MCA handling.
9655 *
9656 * They can only be called when the whole system has been
9657 * stopped - every CPU needs to be quiescent, and no scheduling
9658 * activity can take place. Using them for anything else would
9659 * be a serious bug, and as a result, they aren't even visible
9660 * under any other configuration.
9661 */
9662
9663 /**
9664 * curr_task - return the current task for a given cpu.
9665 * @cpu: the processor in question.
9666 *
9667 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9668 */
9669 struct task_struct *curr_task(int cpu)
9670 {
9671 return cpu_curr(cpu);
9672 }
9673
9674 /**
9675 * set_curr_task - set the current task for a given cpu.
9676 * @cpu: the processor in question.
9677 * @p: the task pointer to set.
9678 *
9679 * Description: This function must only be used when non-maskable interrupts
9680 * are serviced on a separate stack. It allows the architecture to switch the
9681 * notion of the current task on a cpu in a non-blocking manner. This function
9682 * must be called with all CPU's synchronized, and interrupts disabled, the
9683 * and caller must save the original value of the current task (see
9684 * curr_task() above) and restore that value before reenabling interrupts and
9685 * re-starting the system.
9686 *
9687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9688 */
9689 void set_curr_task(int cpu, struct task_struct *p)
9690 {
9691 cpu_curr(cpu) = p;
9692 }
9693
9694 #endif
9695
9696 #ifdef CONFIG_FAIR_GROUP_SCHED
9697 static void free_fair_sched_group(struct task_group *tg)
9698 {
9699 int i;
9700
9701 for_each_possible_cpu(i) {
9702 if (tg->cfs_rq)
9703 kfree(tg->cfs_rq[i]);
9704 if (tg->se)
9705 kfree(tg->se[i]);
9706 }
9707
9708 kfree(tg->cfs_rq);
9709 kfree(tg->se);
9710 }
9711
9712 static
9713 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9714 {
9715 struct cfs_rq *cfs_rq;
9716 struct sched_entity *se;
9717 struct rq *rq;
9718 int i;
9719
9720 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9721 if (!tg->cfs_rq)
9722 goto err;
9723 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9724 if (!tg->se)
9725 goto err;
9726
9727 tg->shares = NICE_0_LOAD;
9728
9729 for_each_possible_cpu(i) {
9730 rq = cpu_rq(i);
9731
9732 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9733 GFP_KERNEL, cpu_to_node(i));
9734 if (!cfs_rq)
9735 goto err;
9736
9737 se = kzalloc_node(sizeof(struct sched_entity),
9738 GFP_KERNEL, cpu_to_node(i));
9739 if (!se)
9740 goto err;
9741
9742 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9743 }
9744
9745 return 1;
9746
9747 err:
9748 return 0;
9749 }
9750
9751 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9752 {
9753 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9754 &cpu_rq(cpu)->leaf_cfs_rq_list);
9755 }
9756
9757 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9758 {
9759 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9760 }
9761 #else /* !CONFG_FAIR_GROUP_SCHED */
9762 static inline void free_fair_sched_group(struct task_group *tg)
9763 {
9764 }
9765
9766 static inline
9767 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9768 {
9769 return 1;
9770 }
9771
9772 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9773 {
9774 }
9775
9776 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9777 {
9778 }
9779 #endif /* CONFIG_FAIR_GROUP_SCHED */
9780
9781 #ifdef CONFIG_RT_GROUP_SCHED
9782 static void free_rt_sched_group(struct task_group *tg)
9783 {
9784 int i;
9785
9786 destroy_rt_bandwidth(&tg->rt_bandwidth);
9787
9788 for_each_possible_cpu(i) {
9789 if (tg->rt_rq)
9790 kfree(tg->rt_rq[i]);
9791 if (tg->rt_se)
9792 kfree(tg->rt_se[i]);
9793 }
9794
9795 kfree(tg->rt_rq);
9796 kfree(tg->rt_se);
9797 }
9798
9799 static
9800 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9801 {
9802 struct rt_rq *rt_rq;
9803 struct sched_rt_entity *rt_se;
9804 struct rq *rq;
9805 int i;
9806
9807 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9808 if (!tg->rt_rq)
9809 goto err;
9810 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9811 if (!tg->rt_se)
9812 goto err;
9813
9814 init_rt_bandwidth(&tg->rt_bandwidth,
9815 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9816
9817 for_each_possible_cpu(i) {
9818 rq = cpu_rq(i);
9819
9820 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9821 GFP_KERNEL, cpu_to_node(i));
9822 if (!rt_rq)
9823 goto err;
9824
9825 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9826 GFP_KERNEL, cpu_to_node(i));
9827 if (!rt_se)
9828 goto err;
9829
9830 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9831 }
9832
9833 return 1;
9834
9835 err:
9836 return 0;
9837 }
9838
9839 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9840 {
9841 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9842 &cpu_rq(cpu)->leaf_rt_rq_list);
9843 }
9844
9845 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9846 {
9847 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9848 }
9849 #else /* !CONFIG_RT_GROUP_SCHED */
9850 static inline void free_rt_sched_group(struct task_group *tg)
9851 {
9852 }
9853
9854 static inline
9855 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9856 {
9857 return 1;
9858 }
9859
9860 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9861 {
9862 }
9863
9864 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9865 {
9866 }
9867 #endif /* CONFIG_RT_GROUP_SCHED */
9868
9869 #ifdef CONFIG_GROUP_SCHED
9870 static void free_sched_group(struct task_group *tg)
9871 {
9872 free_fair_sched_group(tg);
9873 free_rt_sched_group(tg);
9874 kfree(tg);
9875 }
9876
9877 /* allocate runqueue etc for a new task group */
9878 struct task_group *sched_create_group(struct task_group *parent)
9879 {
9880 struct task_group *tg;
9881 unsigned long flags;
9882 int i;
9883
9884 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9885 if (!tg)
9886 return ERR_PTR(-ENOMEM);
9887
9888 if (!alloc_fair_sched_group(tg, parent))
9889 goto err;
9890
9891 if (!alloc_rt_sched_group(tg, parent))
9892 goto err;
9893
9894 spin_lock_irqsave(&task_group_lock, flags);
9895 for_each_possible_cpu(i) {
9896 register_fair_sched_group(tg, i);
9897 register_rt_sched_group(tg, i);
9898 }
9899 list_add_rcu(&tg->list, &task_groups);
9900
9901 WARN_ON(!parent); /* root should already exist */
9902
9903 tg->parent = parent;
9904 INIT_LIST_HEAD(&tg->children);
9905 list_add_rcu(&tg->siblings, &parent->children);
9906 spin_unlock_irqrestore(&task_group_lock, flags);
9907
9908 return tg;
9909
9910 err:
9911 free_sched_group(tg);
9912 return ERR_PTR(-ENOMEM);
9913 }
9914
9915 /* rcu callback to free various structures associated with a task group */
9916 static void free_sched_group_rcu(struct rcu_head *rhp)
9917 {
9918 /* now it should be safe to free those cfs_rqs */
9919 free_sched_group(container_of(rhp, struct task_group, rcu));
9920 }
9921
9922 /* Destroy runqueue etc associated with a task group */
9923 void sched_destroy_group(struct task_group *tg)
9924 {
9925 unsigned long flags;
9926 int i;
9927
9928 spin_lock_irqsave(&task_group_lock, flags);
9929 for_each_possible_cpu(i) {
9930 unregister_fair_sched_group(tg, i);
9931 unregister_rt_sched_group(tg, i);
9932 }
9933 list_del_rcu(&tg->list);
9934 list_del_rcu(&tg->siblings);
9935 spin_unlock_irqrestore(&task_group_lock, flags);
9936
9937 /* wait for possible concurrent references to cfs_rqs complete */
9938 call_rcu(&tg->rcu, free_sched_group_rcu);
9939 }
9940
9941 /* change task's runqueue when it moves between groups.
9942 * The caller of this function should have put the task in its new group
9943 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9944 * reflect its new group.
9945 */
9946 void sched_move_task(struct task_struct *tsk)
9947 {
9948 int on_rq, running;
9949 unsigned long flags;
9950 struct rq *rq;
9951
9952 rq = task_rq_lock(tsk, &flags);
9953
9954 update_rq_clock(rq);
9955
9956 running = task_current(rq, tsk);
9957 on_rq = tsk->se.on_rq;
9958
9959 if (on_rq)
9960 dequeue_task(rq, tsk, 0);
9961 if (unlikely(running))
9962 tsk->sched_class->put_prev_task(rq, tsk);
9963
9964 set_task_rq(tsk, task_cpu(tsk));
9965
9966 #ifdef CONFIG_FAIR_GROUP_SCHED
9967 if (tsk->sched_class->moved_group)
9968 tsk->sched_class->moved_group(tsk);
9969 #endif
9970
9971 if (unlikely(running))
9972 tsk->sched_class->set_curr_task(rq);
9973 if (on_rq)
9974 enqueue_task(rq, tsk, 0);
9975
9976 task_rq_unlock(rq, &flags);
9977 }
9978 #endif /* CONFIG_GROUP_SCHED */
9979
9980 #ifdef CONFIG_FAIR_GROUP_SCHED
9981 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9982 {
9983 struct cfs_rq *cfs_rq = se->cfs_rq;
9984 int on_rq;
9985
9986 on_rq = se->on_rq;
9987 if (on_rq)
9988 dequeue_entity(cfs_rq, se, 0);
9989
9990 se->load.weight = shares;
9991 se->load.inv_weight = 0;
9992
9993 if (on_rq)
9994 enqueue_entity(cfs_rq, se, 0);
9995 }
9996
9997 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9998 {
9999 struct cfs_rq *cfs_rq = se->cfs_rq;
10000 struct rq *rq = cfs_rq->rq;
10001 unsigned long flags;
10002
10003 spin_lock_irqsave(&rq->lock, flags);
10004 __set_se_shares(se, shares);
10005 spin_unlock_irqrestore(&rq->lock, flags);
10006 }
10007
10008 static DEFINE_MUTEX(shares_mutex);
10009
10010 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10011 {
10012 int i;
10013 unsigned long flags;
10014
10015 /*
10016 * We can't change the weight of the root cgroup.
10017 */
10018 if (!tg->se[0])
10019 return -EINVAL;
10020
10021 if (shares < MIN_SHARES)
10022 shares = MIN_SHARES;
10023 else if (shares > MAX_SHARES)
10024 shares = MAX_SHARES;
10025
10026 mutex_lock(&shares_mutex);
10027 if (tg->shares == shares)
10028 goto done;
10029
10030 spin_lock_irqsave(&task_group_lock, flags);
10031 for_each_possible_cpu(i)
10032 unregister_fair_sched_group(tg, i);
10033 list_del_rcu(&tg->siblings);
10034 spin_unlock_irqrestore(&task_group_lock, flags);
10035
10036 /* wait for any ongoing reference to this group to finish */
10037 synchronize_sched();
10038
10039 /*
10040 * Now we are free to modify the group's share on each cpu
10041 * w/o tripping rebalance_share or load_balance_fair.
10042 */
10043 tg->shares = shares;
10044 for_each_possible_cpu(i) {
10045 /*
10046 * force a rebalance
10047 */
10048 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10049 set_se_shares(tg->se[i], shares);
10050 }
10051
10052 /*
10053 * Enable load balance activity on this group, by inserting it back on
10054 * each cpu's rq->leaf_cfs_rq_list.
10055 */
10056 spin_lock_irqsave(&task_group_lock, flags);
10057 for_each_possible_cpu(i)
10058 register_fair_sched_group(tg, i);
10059 list_add_rcu(&tg->siblings, &tg->parent->children);
10060 spin_unlock_irqrestore(&task_group_lock, flags);
10061 done:
10062 mutex_unlock(&shares_mutex);
10063 return 0;
10064 }
10065
10066 unsigned long sched_group_shares(struct task_group *tg)
10067 {
10068 return tg->shares;
10069 }
10070 #endif
10071
10072 #ifdef CONFIG_RT_GROUP_SCHED
10073 /*
10074 * Ensure that the real time constraints are schedulable.
10075 */
10076 static DEFINE_MUTEX(rt_constraints_mutex);
10077
10078 static unsigned long to_ratio(u64 period, u64 runtime)
10079 {
10080 if (runtime == RUNTIME_INF)
10081 return 1ULL << 20;
10082
10083 return div64_u64(runtime << 20, period);
10084 }
10085
10086 /* Must be called with tasklist_lock held */
10087 static inline int tg_has_rt_tasks(struct task_group *tg)
10088 {
10089 struct task_struct *g, *p;
10090
10091 do_each_thread(g, p) {
10092 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10093 return 1;
10094 } while_each_thread(g, p);
10095
10096 return 0;
10097 }
10098
10099 struct rt_schedulable_data {
10100 struct task_group *tg;
10101 u64 rt_period;
10102 u64 rt_runtime;
10103 };
10104
10105 static int tg_schedulable(struct task_group *tg, void *data)
10106 {
10107 struct rt_schedulable_data *d = data;
10108 struct task_group *child;
10109 unsigned long total, sum = 0;
10110 u64 period, runtime;
10111
10112 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10113 runtime = tg->rt_bandwidth.rt_runtime;
10114
10115 if (tg == d->tg) {
10116 period = d->rt_period;
10117 runtime = d->rt_runtime;
10118 }
10119
10120 #ifdef CONFIG_USER_SCHED
10121 if (tg == &root_task_group) {
10122 period = global_rt_period();
10123 runtime = global_rt_runtime();
10124 }
10125 #endif
10126
10127 /*
10128 * Cannot have more runtime than the period.
10129 */
10130 if (runtime > period && runtime != RUNTIME_INF)
10131 return -EINVAL;
10132
10133 /*
10134 * Ensure we don't starve existing RT tasks.
10135 */
10136 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10137 return -EBUSY;
10138
10139 total = to_ratio(period, runtime);
10140
10141 /*
10142 * Nobody can have more than the global setting allows.
10143 */
10144 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10145 return -EINVAL;
10146
10147 /*
10148 * The sum of our children's runtime should not exceed our own.
10149 */
10150 list_for_each_entry_rcu(child, &tg->children, siblings) {
10151 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10152 runtime = child->rt_bandwidth.rt_runtime;
10153
10154 if (child == d->tg) {
10155 period = d->rt_period;
10156 runtime = d->rt_runtime;
10157 }
10158
10159 sum += to_ratio(period, runtime);
10160 }
10161
10162 if (sum > total)
10163 return -EINVAL;
10164
10165 return 0;
10166 }
10167
10168 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10169 {
10170 struct rt_schedulable_data data = {
10171 .tg = tg,
10172 .rt_period = period,
10173 .rt_runtime = runtime,
10174 };
10175
10176 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10177 }
10178
10179 static int tg_set_bandwidth(struct task_group *tg,
10180 u64 rt_period, u64 rt_runtime)
10181 {
10182 int i, err = 0;
10183
10184 mutex_lock(&rt_constraints_mutex);
10185 read_lock(&tasklist_lock);
10186 err = __rt_schedulable(tg, rt_period, rt_runtime);
10187 if (err)
10188 goto unlock;
10189
10190 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10191 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10192 tg->rt_bandwidth.rt_runtime = rt_runtime;
10193
10194 for_each_possible_cpu(i) {
10195 struct rt_rq *rt_rq = tg->rt_rq[i];
10196
10197 spin_lock(&rt_rq->rt_runtime_lock);
10198 rt_rq->rt_runtime = rt_runtime;
10199 spin_unlock(&rt_rq->rt_runtime_lock);
10200 }
10201 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10202 unlock:
10203 read_unlock(&tasklist_lock);
10204 mutex_unlock(&rt_constraints_mutex);
10205
10206 return err;
10207 }
10208
10209 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10210 {
10211 u64 rt_runtime, rt_period;
10212
10213 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10214 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10215 if (rt_runtime_us < 0)
10216 rt_runtime = RUNTIME_INF;
10217
10218 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10219 }
10220
10221 long sched_group_rt_runtime(struct task_group *tg)
10222 {
10223 u64 rt_runtime_us;
10224
10225 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10226 return -1;
10227
10228 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10229 do_div(rt_runtime_us, NSEC_PER_USEC);
10230 return rt_runtime_us;
10231 }
10232
10233 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10234 {
10235 u64 rt_runtime, rt_period;
10236
10237 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10238 rt_runtime = tg->rt_bandwidth.rt_runtime;
10239
10240 if (rt_period == 0)
10241 return -EINVAL;
10242
10243 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10244 }
10245
10246 long sched_group_rt_period(struct task_group *tg)
10247 {
10248 u64 rt_period_us;
10249
10250 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10251 do_div(rt_period_us, NSEC_PER_USEC);
10252 return rt_period_us;
10253 }
10254
10255 static int sched_rt_global_constraints(void)
10256 {
10257 u64 runtime, period;
10258 int ret = 0;
10259
10260 if (sysctl_sched_rt_period <= 0)
10261 return -EINVAL;
10262
10263 runtime = global_rt_runtime();
10264 period = global_rt_period();
10265
10266 /*
10267 * Sanity check on the sysctl variables.
10268 */
10269 if (runtime > period && runtime != RUNTIME_INF)
10270 return -EINVAL;
10271
10272 mutex_lock(&rt_constraints_mutex);
10273 read_lock(&tasklist_lock);
10274 ret = __rt_schedulable(NULL, 0, 0);
10275 read_unlock(&tasklist_lock);
10276 mutex_unlock(&rt_constraints_mutex);
10277
10278 return ret;
10279 }
10280
10281 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10282 {
10283 /* Don't accept realtime tasks when there is no way for them to run */
10284 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10285 return 0;
10286
10287 return 1;
10288 }
10289
10290 #else /* !CONFIG_RT_GROUP_SCHED */
10291 static int sched_rt_global_constraints(void)
10292 {
10293 unsigned long flags;
10294 int i;
10295
10296 if (sysctl_sched_rt_period <= 0)
10297 return -EINVAL;
10298
10299 /*
10300 * There's always some RT tasks in the root group
10301 * -- migration, kstopmachine etc..
10302 */
10303 if (sysctl_sched_rt_runtime == 0)
10304 return -EBUSY;
10305
10306 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10307 for_each_possible_cpu(i) {
10308 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10309
10310 spin_lock(&rt_rq->rt_runtime_lock);
10311 rt_rq->rt_runtime = global_rt_runtime();
10312 spin_unlock(&rt_rq->rt_runtime_lock);
10313 }
10314 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10315
10316 return 0;
10317 }
10318 #endif /* CONFIG_RT_GROUP_SCHED */
10319
10320 int sched_rt_handler(struct ctl_table *table, int write,
10321 struct file *filp, void __user *buffer, size_t *lenp,
10322 loff_t *ppos)
10323 {
10324 int ret;
10325 int old_period, old_runtime;
10326 static DEFINE_MUTEX(mutex);
10327
10328 mutex_lock(&mutex);
10329 old_period = sysctl_sched_rt_period;
10330 old_runtime = sysctl_sched_rt_runtime;
10331
10332 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10333
10334 if (!ret && write) {
10335 ret = sched_rt_global_constraints();
10336 if (ret) {
10337 sysctl_sched_rt_period = old_period;
10338 sysctl_sched_rt_runtime = old_runtime;
10339 } else {
10340 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10341 def_rt_bandwidth.rt_period =
10342 ns_to_ktime(global_rt_period());
10343 }
10344 }
10345 mutex_unlock(&mutex);
10346
10347 return ret;
10348 }
10349
10350 #ifdef CONFIG_CGROUP_SCHED
10351
10352 /* return corresponding task_group object of a cgroup */
10353 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10354 {
10355 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10356 struct task_group, css);
10357 }
10358
10359 static struct cgroup_subsys_state *
10360 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10361 {
10362 struct task_group *tg, *parent;
10363
10364 if (!cgrp->parent) {
10365 /* This is early initialization for the top cgroup */
10366 return &init_task_group.css;
10367 }
10368
10369 parent = cgroup_tg(cgrp->parent);
10370 tg = sched_create_group(parent);
10371 if (IS_ERR(tg))
10372 return ERR_PTR(-ENOMEM);
10373
10374 return &tg->css;
10375 }
10376
10377 static void
10378 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10379 {
10380 struct task_group *tg = cgroup_tg(cgrp);
10381
10382 sched_destroy_group(tg);
10383 }
10384
10385 static int
10386 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10387 struct task_struct *tsk)
10388 {
10389 #ifdef CONFIG_RT_GROUP_SCHED
10390 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10391 return -EINVAL;
10392 #else
10393 /* We don't support RT-tasks being in separate groups */
10394 if (tsk->sched_class != &fair_sched_class)
10395 return -EINVAL;
10396 #endif
10397
10398 return 0;
10399 }
10400
10401 static void
10402 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10403 struct cgroup *old_cont, struct task_struct *tsk)
10404 {
10405 sched_move_task(tsk);
10406 }
10407
10408 #ifdef CONFIG_FAIR_GROUP_SCHED
10409 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10410 u64 shareval)
10411 {
10412 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10413 }
10414
10415 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10416 {
10417 struct task_group *tg = cgroup_tg(cgrp);
10418
10419 return (u64) tg->shares;
10420 }
10421 #endif /* CONFIG_FAIR_GROUP_SCHED */
10422
10423 #ifdef CONFIG_RT_GROUP_SCHED
10424 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10425 s64 val)
10426 {
10427 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10428 }
10429
10430 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10431 {
10432 return sched_group_rt_runtime(cgroup_tg(cgrp));
10433 }
10434
10435 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10436 u64 rt_period_us)
10437 {
10438 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10439 }
10440
10441 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10442 {
10443 return sched_group_rt_period(cgroup_tg(cgrp));
10444 }
10445 #endif /* CONFIG_RT_GROUP_SCHED */
10446
10447 static struct cftype cpu_files[] = {
10448 #ifdef CONFIG_FAIR_GROUP_SCHED
10449 {
10450 .name = "shares",
10451 .read_u64 = cpu_shares_read_u64,
10452 .write_u64 = cpu_shares_write_u64,
10453 },
10454 #endif
10455 #ifdef CONFIG_RT_GROUP_SCHED
10456 {
10457 .name = "rt_runtime_us",
10458 .read_s64 = cpu_rt_runtime_read,
10459 .write_s64 = cpu_rt_runtime_write,
10460 },
10461 {
10462 .name = "rt_period_us",
10463 .read_u64 = cpu_rt_period_read_uint,
10464 .write_u64 = cpu_rt_period_write_uint,
10465 },
10466 #endif
10467 };
10468
10469 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10470 {
10471 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10472 }
10473
10474 struct cgroup_subsys cpu_cgroup_subsys = {
10475 .name = "cpu",
10476 .create = cpu_cgroup_create,
10477 .destroy = cpu_cgroup_destroy,
10478 .can_attach = cpu_cgroup_can_attach,
10479 .attach = cpu_cgroup_attach,
10480 .populate = cpu_cgroup_populate,
10481 .subsys_id = cpu_cgroup_subsys_id,
10482 .early_init = 1,
10483 };
10484
10485 #endif /* CONFIG_CGROUP_SCHED */
10486
10487 #ifdef CONFIG_CGROUP_CPUACCT
10488
10489 /*
10490 * CPU accounting code for task groups.
10491 *
10492 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10493 * (balbir@in.ibm.com).
10494 */
10495
10496 /* track cpu usage of a group of tasks and its child groups */
10497 struct cpuacct {
10498 struct cgroup_subsys_state css;
10499 /* cpuusage holds pointer to a u64-type object on every cpu */
10500 u64 *cpuusage;
10501 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10502 struct cpuacct *parent;
10503 };
10504
10505 struct cgroup_subsys cpuacct_subsys;
10506
10507 /* return cpu accounting group corresponding to this container */
10508 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10509 {
10510 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10511 struct cpuacct, css);
10512 }
10513
10514 /* return cpu accounting group to which this task belongs */
10515 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10516 {
10517 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10518 struct cpuacct, css);
10519 }
10520
10521 /* create a new cpu accounting group */
10522 static struct cgroup_subsys_state *cpuacct_create(
10523 struct cgroup_subsys *ss, struct cgroup *cgrp)
10524 {
10525 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10526 int i;
10527
10528 if (!ca)
10529 goto out;
10530
10531 ca->cpuusage = alloc_percpu(u64);
10532 if (!ca->cpuusage)
10533 goto out_free_ca;
10534
10535 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10536 if (percpu_counter_init(&ca->cpustat[i], 0))
10537 goto out_free_counters;
10538
10539 if (cgrp->parent)
10540 ca->parent = cgroup_ca(cgrp->parent);
10541
10542 return &ca->css;
10543
10544 out_free_counters:
10545 while (--i >= 0)
10546 percpu_counter_destroy(&ca->cpustat[i]);
10547 free_percpu(ca->cpuusage);
10548 out_free_ca:
10549 kfree(ca);
10550 out:
10551 return ERR_PTR(-ENOMEM);
10552 }
10553
10554 /* destroy an existing cpu accounting group */
10555 static void
10556 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10557 {
10558 struct cpuacct *ca = cgroup_ca(cgrp);
10559 int i;
10560
10561 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10562 percpu_counter_destroy(&ca->cpustat[i]);
10563 free_percpu(ca->cpuusage);
10564 kfree(ca);
10565 }
10566
10567 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10568 {
10569 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10570 u64 data;
10571
10572 #ifndef CONFIG_64BIT
10573 /*
10574 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10575 */
10576 spin_lock_irq(&cpu_rq(cpu)->lock);
10577 data = *cpuusage;
10578 spin_unlock_irq(&cpu_rq(cpu)->lock);
10579 #else
10580 data = *cpuusage;
10581 #endif
10582
10583 return data;
10584 }
10585
10586 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10587 {
10588 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10589
10590 #ifndef CONFIG_64BIT
10591 /*
10592 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10593 */
10594 spin_lock_irq(&cpu_rq(cpu)->lock);
10595 *cpuusage = val;
10596 spin_unlock_irq(&cpu_rq(cpu)->lock);
10597 #else
10598 *cpuusage = val;
10599 #endif
10600 }
10601
10602 /* return total cpu usage (in nanoseconds) of a group */
10603 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10604 {
10605 struct cpuacct *ca = cgroup_ca(cgrp);
10606 u64 totalcpuusage = 0;
10607 int i;
10608
10609 for_each_present_cpu(i)
10610 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10611
10612 return totalcpuusage;
10613 }
10614
10615 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10616 u64 reset)
10617 {
10618 struct cpuacct *ca = cgroup_ca(cgrp);
10619 int err = 0;
10620 int i;
10621
10622 if (reset) {
10623 err = -EINVAL;
10624 goto out;
10625 }
10626
10627 for_each_present_cpu(i)
10628 cpuacct_cpuusage_write(ca, i, 0);
10629
10630 out:
10631 return err;
10632 }
10633
10634 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10635 struct seq_file *m)
10636 {
10637 struct cpuacct *ca = cgroup_ca(cgroup);
10638 u64 percpu;
10639 int i;
10640
10641 for_each_present_cpu(i) {
10642 percpu = cpuacct_cpuusage_read(ca, i);
10643 seq_printf(m, "%llu ", (unsigned long long) percpu);
10644 }
10645 seq_printf(m, "\n");
10646 return 0;
10647 }
10648
10649 static const char *cpuacct_stat_desc[] = {
10650 [CPUACCT_STAT_USER] = "user",
10651 [CPUACCT_STAT_SYSTEM] = "system",
10652 };
10653
10654 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10655 struct cgroup_map_cb *cb)
10656 {
10657 struct cpuacct *ca = cgroup_ca(cgrp);
10658 int i;
10659
10660 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10661 s64 val = percpu_counter_read(&ca->cpustat[i]);
10662 val = cputime64_to_clock_t(val);
10663 cb->fill(cb, cpuacct_stat_desc[i], val);
10664 }
10665 return 0;
10666 }
10667
10668 static struct cftype files[] = {
10669 {
10670 .name = "usage",
10671 .read_u64 = cpuusage_read,
10672 .write_u64 = cpuusage_write,
10673 },
10674 {
10675 .name = "usage_percpu",
10676 .read_seq_string = cpuacct_percpu_seq_read,
10677 },
10678 {
10679 .name = "stat",
10680 .read_map = cpuacct_stats_show,
10681 },
10682 };
10683
10684 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10685 {
10686 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10687 }
10688
10689 /*
10690 * charge this task's execution time to its accounting group.
10691 *
10692 * called with rq->lock held.
10693 */
10694 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10695 {
10696 struct cpuacct *ca;
10697 int cpu;
10698
10699 if (unlikely(!cpuacct_subsys.active))
10700 return;
10701
10702 cpu = task_cpu(tsk);
10703
10704 rcu_read_lock();
10705
10706 ca = task_ca(tsk);
10707
10708 for (; ca; ca = ca->parent) {
10709 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10710 *cpuusage += cputime;
10711 }
10712
10713 rcu_read_unlock();
10714 }
10715
10716 /*
10717 * Charge the system/user time to the task's accounting group.
10718 */
10719 static void cpuacct_update_stats(struct task_struct *tsk,
10720 enum cpuacct_stat_index idx, cputime_t val)
10721 {
10722 struct cpuacct *ca;
10723
10724 if (unlikely(!cpuacct_subsys.active))
10725 return;
10726
10727 rcu_read_lock();
10728 ca = task_ca(tsk);
10729
10730 do {
10731 percpu_counter_add(&ca->cpustat[idx], val);
10732 ca = ca->parent;
10733 } while (ca);
10734 rcu_read_unlock();
10735 }
10736
10737 struct cgroup_subsys cpuacct_subsys = {
10738 .name = "cpuacct",
10739 .create = cpuacct_create,
10740 .destroy = cpuacct_destroy,
10741 .populate = cpuacct_populate,
10742 .subsys_id = cpuacct_subsys_id,
10743 };
10744 #endif /* CONFIG_CGROUP_CPUACCT */
10745
10746 #ifndef CONFIG_SMP
10747
10748 int rcu_expedited_torture_stats(char *page)
10749 {
10750 return 0;
10751 }
10752 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10753
10754 void synchronize_sched_expedited(void)
10755 {
10756 }
10757 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10758
10759 #else /* #ifndef CONFIG_SMP */
10760
10761 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10762 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10763
10764 #define RCU_EXPEDITED_STATE_POST -2
10765 #define RCU_EXPEDITED_STATE_IDLE -1
10766
10767 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10768
10769 int rcu_expedited_torture_stats(char *page)
10770 {
10771 int cnt = 0;
10772 int cpu;
10773
10774 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10775 for_each_online_cpu(cpu) {
10776 cnt += sprintf(&page[cnt], " %d:%d",
10777 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10778 }
10779 cnt += sprintf(&page[cnt], "\n");
10780 return cnt;
10781 }
10782 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10783
10784 static long synchronize_sched_expedited_count;
10785
10786 /*
10787 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10788 * approach to force grace period to end quickly. This consumes
10789 * significant time on all CPUs, and is thus not recommended for
10790 * any sort of common-case code.
10791 *
10792 * Note that it is illegal to call this function while holding any
10793 * lock that is acquired by a CPU-hotplug notifier. Failing to
10794 * observe this restriction will result in deadlock.
10795 */
10796 void synchronize_sched_expedited(void)
10797 {
10798 int cpu;
10799 unsigned long flags;
10800 bool need_full_sync = 0;
10801 struct rq *rq;
10802 struct migration_req *req;
10803 long snap;
10804 int trycount = 0;
10805
10806 smp_mb(); /* ensure prior mod happens before capturing snap. */
10807 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10808 get_online_cpus();
10809 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10810 put_online_cpus();
10811 if (trycount++ < 10)
10812 udelay(trycount * num_online_cpus());
10813 else {
10814 synchronize_sched();
10815 return;
10816 }
10817 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10818 smp_mb(); /* ensure test happens before caller kfree */
10819 return;
10820 }
10821 get_online_cpus();
10822 }
10823 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10824 for_each_online_cpu(cpu) {
10825 rq = cpu_rq(cpu);
10826 req = &per_cpu(rcu_migration_req, cpu);
10827 init_completion(&req->done);
10828 req->task = NULL;
10829 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10830 spin_lock_irqsave(&rq->lock, flags);
10831 list_add(&req->list, &rq->migration_queue);
10832 spin_unlock_irqrestore(&rq->lock, flags);
10833 wake_up_process(rq->migration_thread);
10834 }
10835 for_each_online_cpu(cpu) {
10836 rcu_expedited_state = cpu;
10837 req = &per_cpu(rcu_migration_req, cpu);
10838 rq = cpu_rq(cpu);
10839 wait_for_completion(&req->done);
10840 spin_lock_irqsave(&rq->lock, flags);
10841 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10842 need_full_sync = 1;
10843 req->dest_cpu = RCU_MIGRATION_IDLE;
10844 spin_unlock_irqrestore(&rq->lock, flags);
10845 }
10846 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10847 mutex_unlock(&rcu_sched_expedited_mutex);
10848 put_online_cpus();
10849 if (need_full_sync)
10850 synchronize_sched();
10851 }
10852 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10853
10854 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.249659 seconds and 6 git commands to generate.