[PATCH] sched: consider migration thread with smp nice
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
211 #endif
212 unsigned long long nr_switches;
213
214 /*
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
219 */
220 unsigned long nr_uninterruptible;
221
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231 struct sched_domain *sd;
232
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
236
237 task_t *migration_thread;
238 struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
244
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
250
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
255
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
267 *
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
270 */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289 return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301 #endif
302 spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309 return p->oncpu;
310 #else
311 return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318 /*
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
322 */
323 next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327 #else
328 spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335 /*
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
339 */
340 smp_wmb();
341 prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
353 */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
356 {
357 struct runqueue *rq;
358
359 repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
366 }
367 return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
372 {
373 spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
380 */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385 int cpu;
386
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394 #endif
395
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409 /* domain-specific stats */
410 preempt_disable();
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
414
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
428 }
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434 }
435 preempt_enable();
436 #endif
437 }
438 return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
447
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
472 #endif
473
474 /*
475 * rq_lock - lock a given runqueue and disable interrupts.
476 */
477 static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
479 {
480 runqueue_t *rq;
481
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
485
486 return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
498 *
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
504 */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507 t->sched_info.last_queued = 0;
508 }
509
510 /*
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
514 */
515 static inline void sched_info_arrive(task_t *t)
516 {
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
519
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
526
527 if (!rq)
528 return;
529
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
544 *
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
548 */
549 static inline void sched_info_queued(task_t *t)
550 {
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
558 */
559 static inline void sched_info_depart(task_t *t)
560 {
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564 t->sched_info.cpu_time += diff;
565
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
574 */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577 struct runqueue *rq = task_rq(prev);
578
579 /*
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
583 */
584 if (prev != rq->idle)
585 sched_info_depart(prev);
586
587 if (next != rq->idle)
588 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596 * Adding/removing a task to/from a priority array:
597 */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
613 }
614
615 /*
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
618 */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621 list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
630 }
631
632 /*
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
635 *
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
638 *
639 * We use 25% of the full 0...39 priority range so that:
640 *
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643 *
644 * Both properties are important to certain workloads.
645 */
646 static int effective_prio(task_t *p)
647 {
648 int bonus, prio;
649
650 if (rt_task(p))
651 return p->prio;
652
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666 rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671 rq->prio_bias -= MAX_PRIO - prio;
672 }
673
674 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
675 {
676 rq->nr_running++;
677 if (rt_task(p)) {
678 if (p != rq->migration_thread)
679 /*
680 * The migration thread does the actual balancing. Do
681 * not bias by its priority as the ultra high priority
682 * will skew balancing adversely.
683 */
684 inc_prio_bias(rq, p->prio);
685 } else
686 inc_prio_bias(rq, p->static_prio);
687 }
688
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690 {
691 rq->nr_running--;
692 if (rt_task(p)) {
693 if (p != rq->migration_thread)
694 dec_prio_bias(rq, p->prio);
695 } else
696 dec_prio_bias(rq, p->static_prio);
697 }
698 #else
699 static inline void inc_prio_bias(runqueue_t *rq, int prio)
700 {
701 }
702
703 static inline void dec_prio_bias(runqueue_t *rq, int prio)
704 {
705 }
706
707 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
708 {
709 rq->nr_running++;
710 }
711
712 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
713 {
714 rq->nr_running--;
715 }
716 #endif
717
718 /*
719 * __activate_task - move a task to the runqueue.
720 */
721 static inline void __activate_task(task_t *p, runqueue_t *rq)
722 {
723 enqueue_task(p, rq->active);
724 inc_nr_running(p, rq);
725 }
726
727 /*
728 * __activate_idle_task - move idle task to the _front_ of runqueue.
729 */
730 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
731 {
732 enqueue_task_head(p, rq->active);
733 inc_nr_running(p, rq);
734 }
735
736 static int recalc_task_prio(task_t *p, unsigned long long now)
737 {
738 /* Caller must always ensure 'now >= p->timestamp' */
739 unsigned long long __sleep_time = now - p->timestamp;
740 unsigned long sleep_time;
741
742 if (__sleep_time > NS_MAX_SLEEP_AVG)
743 sleep_time = NS_MAX_SLEEP_AVG;
744 else
745 sleep_time = (unsigned long)__sleep_time;
746
747 if (likely(sleep_time > 0)) {
748 /*
749 * User tasks that sleep a long time are categorised as
750 * idle and will get just interactive status to stay active &
751 * prevent them suddenly becoming cpu hogs and starving
752 * other processes.
753 */
754 if (p->mm && p->activated != -1 &&
755 sleep_time > INTERACTIVE_SLEEP(p)) {
756 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
757 DEF_TIMESLICE);
758 } else {
759 /*
760 * The lower the sleep avg a task has the more
761 * rapidly it will rise with sleep time.
762 */
763 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
764
765 /*
766 * Tasks waking from uninterruptible sleep are
767 * limited in their sleep_avg rise as they
768 * are likely to be waiting on I/O
769 */
770 if (p->activated == -1 && p->mm) {
771 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
772 sleep_time = 0;
773 else if (p->sleep_avg + sleep_time >=
774 INTERACTIVE_SLEEP(p)) {
775 p->sleep_avg = INTERACTIVE_SLEEP(p);
776 sleep_time = 0;
777 }
778 }
779
780 /*
781 * This code gives a bonus to interactive tasks.
782 *
783 * The boost works by updating the 'average sleep time'
784 * value here, based on ->timestamp. The more time a
785 * task spends sleeping, the higher the average gets -
786 * and the higher the priority boost gets as well.
787 */
788 p->sleep_avg += sleep_time;
789
790 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791 p->sleep_avg = NS_MAX_SLEEP_AVG;
792 }
793 }
794
795 return effective_prio(p);
796 }
797
798 /*
799 * activate_task - move a task to the runqueue and do priority recalculation
800 *
801 * Update all the scheduling statistics stuff. (sleep average
802 * calculation, priority modifiers, etc.)
803 */
804 static void activate_task(task_t *p, runqueue_t *rq, int local)
805 {
806 unsigned long long now;
807
808 now = sched_clock();
809 #ifdef CONFIG_SMP
810 if (!local) {
811 /* Compensate for drifting sched_clock */
812 runqueue_t *this_rq = this_rq();
813 now = (now - this_rq->timestamp_last_tick)
814 + rq->timestamp_last_tick;
815 }
816 #endif
817
818 p->prio = recalc_task_prio(p, now);
819
820 /*
821 * This checks to make sure it's not an uninterruptible task
822 * that is now waking up.
823 */
824 if (!p->activated) {
825 /*
826 * Tasks which were woken up by interrupts (ie. hw events)
827 * are most likely of interactive nature. So we give them
828 * the credit of extending their sleep time to the period
829 * of time they spend on the runqueue, waiting for execution
830 * on a CPU, first time around:
831 */
832 if (in_interrupt())
833 p->activated = 2;
834 else {
835 /*
836 * Normal first-time wakeups get a credit too for
837 * on-runqueue time, but it will be weighted down:
838 */
839 p->activated = 1;
840 }
841 }
842 p->timestamp = now;
843
844 __activate_task(p, rq);
845 }
846
847 /*
848 * deactivate_task - remove a task from the runqueue.
849 */
850 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
851 {
852 dec_nr_running(p, rq);
853 dequeue_task(p, p->array);
854 p->array = NULL;
855 }
856
857 /*
858 * resched_task - mark a task 'to be rescheduled now'.
859 *
860 * On UP this means the setting of the need_resched flag, on SMP it
861 * might also involve a cross-CPU call to trigger the scheduler on
862 * the target CPU.
863 */
864 #ifdef CONFIG_SMP
865 static void resched_task(task_t *p)
866 {
867 int need_resched, nrpolling;
868
869 assert_spin_locked(&task_rq(p)->lock);
870
871 /* minimise the chance of sending an interrupt to poll_idle() */
872 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
873 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
874 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
875
876 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
877 smp_send_reschedule(task_cpu(p));
878 }
879 #else
880 static inline void resched_task(task_t *p)
881 {
882 set_tsk_need_resched(p);
883 }
884 #endif
885
886 /**
887 * task_curr - is this task currently executing on a CPU?
888 * @p: the task in question.
889 */
890 inline int task_curr(const task_t *p)
891 {
892 return cpu_curr(task_cpu(p)) == p;
893 }
894
895 #ifdef CONFIG_SMP
896 typedef struct {
897 struct list_head list;
898
899 task_t *task;
900 int dest_cpu;
901
902 struct completion done;
903 } migration_req_t;
904
905 /*
906 * The task's runqueue lock must be held.
907 * Returns true if you have to wait for migration thread.
908 */
909 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
910 {
911 runqueue_t *rq = task_rq(p);
912
913 /*
914 * If the task is not on a runqueue (and not running), then
915 * it is sufficient to simply update the task's cpu field.
916 */
917 if (!p->array && !task_running(rq, p)) {
918 set_task_cpu(p, dest_cpu);
919 return 0;
920 }
921
922 init_completion(&req->done);
923 req->task = p;
924 req->dest_cpu = dest_cpu;
925 list_add(&req->list, &rq->migration_queue);
926 return 1;
927 }
928
929 /*
930 * wait_task_inactive - wait for a thread to unschedule.
931 *
932 * The caller must ensure that the task *will* unschedule sometime soon,
933 * else this function might spin for a *long* time. This function can't
934 * be called with interrupts off, or it may introduce deadlock with
935 * smp_call_function() if an IPI is sent by the same process we are
936 * waiting to become inactive.
937 */
938 void wait_task_inactive(task_t *p)
939 {
940 unsigned long flags;
941 runqueue_t *rq;
942 int preempted;
943
944 repeat:
945 rq = task_rq_lock(p, &flags);
946 /* Must be off runqueue entirely, not preempted. */
947 if (unlikely(p->array || task_running(rq, p))) {
948 /* If it's preempted, we yield. It could be a while. */
949 preempted = !task_running(rq, p);
950 task_rq_unlock(rq, &flags);
951 cpu_relax();
952 if (preempted)
953 yield();
954 goto repeat;
955 }
956 task_rq_unlock(rq, &flags);
957 }
958
959 /***
960 * kick_process - kick a running thread to enter/exit the kernel
961 * @p: the to-be-kicked thread
962 *
963 * Cause a process which is running on another CPU to enter
964 * kernel-mode, without any delay. (to get signals handled.)
965 *
966 * NOTE: this function doesnt have to take the runqueue lock,
967 * because all it wants to ensure is that the remote task enters
968 * the kernel. If the IPI races and the task has been migrated
969 * to another CPU then no harm is done and the purpose has been
970 * achieved as well.
971 */
972 void kick_process(task_t *p)
973 {
974 int cpu;
975
976 preempt_disable();
977 cpu = task_cpu(p);
978 if ((cpu != smp_processor_id()) && task_curr(p))
979 smp_send_reschedule(cpu);
980 preempt_enable();
981 }
982
983 /*
984 * Return a low guess at the load of a migration-source cpu.
985 *
986 * We want to under-estimate the load of migration sources, to
987 * balance conservatively.
988 */
989 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
990 {
991 runqueue_t *rq = cpu_rq(cpu);
992 unsigned long running = rq->nr_running;
993 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
994 load_now = running * SCHED_LOAD_SCALE;
995
996 if (type == 0)
997 source_load = load_now;
998 else
999 source_load = min(cpu_load, load_now);
1000
1001 if (running > 1 || (idle == NOT_IDLE && running))
1002 /*
1003 * If we are busy rebalancing the load is biased by
1004 * priority to create 'nice' support across cpus. When
1005 * idle rebalancing we should only bias the source_load if
1006 * there is more than one task running on that queue to
1007 * prevent idle rebalance from trying to pull tasks from a
1008 * queue with only one running task.
1009 */
1010 source_load = source_load * rq->prio_bias / running;
1011
1012 return source_load;
1013 }
1014
1015 static inline unsigned long source_load(int cpu, int type)
1016 {
1017 return __source_load(cpu, type, NOT_IDLE);
1018 }
1019
1020 /*
1021 * Return a high guess at the load of a migration-target cpu
1022 */
1023 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1024 {
1025 runqueue_t *rq = cpu_rq(cpu);
1026 unsigned long running = rq->nr_running;
1027 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1028 load_now = running * SCHED_LOAD_SCALE;
1029
1030 if (type == 0)
1031 target_load = load_now;
1032 else
1033 target_load = max(cpu_load, load_now);
1034
1035 if (running > 1 || (idle == NOT_IDLE && running))
1036 target_load = target_load * rq->prio_bias / running;
1037
1038 return target_load;
1039 }
1040
1041 static inline unsigned long target_load(int cpu, int type)
1042 {
1043 return __target_load(cpu, type, NOT_IDLE);
1044 }
1045
1046 /*
1047 * find_idlest_group finds and returns the least busy CPU group within the
1048 * domain.
1049 */
1050 static struct sched_group *
1051 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1052 {
1053 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1054 unsigned long min_load = ULONG_MAX, this_load = 0;
1055 int load_idx = sd->forkexec_idx;
1056 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1057
1058 do {
1059 unsigned long load, avg_load;
1060 int local_group;
1061 int i;
1062
1063 /* Skip over this group if it has no CPUs allowed */
1064 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1065 goto nextgroup;
1066
1067 local_group = cpu_isset(this_cpu, group->cpumask);
1068
1069 /* Tally up the load of all CPUs in the group */
1070 avg_load = 0;
1071
1072 for_each_cpu_mask(i, group->cpumask) {
1073 /* Bias balancing toward cpus of our domain */
1074 if (local_group)
1075 load = source_load(i, load_idx);
1076 else
1077 load = target_load(i, load_idx);
1078
1079 avg_load += load;
1080 }
1081
1082 /* Adjust by relative CPU power of the group */
1083 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1084
1085 if (local_group) {
1086 this_load = avg_load;
1087 this = group;
1088 } else if (avg_load < min_load) {
1089 min_load = avg_load;
1090 idlest = group;
1091 }
1092 nextgroup:
1093 group = group->next;
1094 } while (group != sd->groups);
1095
1096 if (!idlest || 100*this_load < imbalance*min_load)
1097 return NULL;
1098 return idlest;
1099 }
1100
1101 /*
1102 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1103 */
1104 static int
1105 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1106 {
1107 cpumask_t tmp;
1108 unsigned long load, min_load = ULONG_MAX;
1109 int idlest = -1;
1110 int i;
1111
1112 /* Traverse only the allowed CPUs */
1113 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1114
1115 for_each_cpu_mask(i, tmp) {
1116 load = source_load(i, 0);
1117
1118 if (load < min_load || (load == min_load && i == this_cpu)) {
1119 min_load = load;
1120 idlest = i;
1121 }
1122 }
1123
1124 return idlest;
1125 }
1126
1127 /*
1128 * sched_balance_self: balance the current task (running on cpu) in domains
1129 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1130 * SD_BALANCE_EXEC.
1131 *
1132 * Balance, ie. select the least loaded group.
1133 *
1134 * Returns the target CPU number, or the same CPU if no balancing is needed.
1135 *
1136 * preempt must be disabled.
1137 */
1138 static int sched_balance_self(int cpu, int flag)
1139 {
1140 struct task_struct *t = current;
1141 struct sched_domain *tmp, *sd = NULL;
1142
1143 for_each_domain(cpu, tmp)
1144 if (tmp->flags & flag)
1145 sd = tmp;
1146
1147 while (sd) {
1148 cpumask_t span;
1149 struct sched_group *group;
1150 int new_cpu;
1151 int weight;
1152
1153 span = sd->span;
1154 group = find_idlest_group(sd, t, cpu);
1155 if (!group)
1156 goto nextlevel;
1157
1158 new_cpu = find_idlest_cpu(group, t, cpu);
1159 if (new_cpu == -1 || new_cpu == cpu)
1160 goto nextlevel;
1161
1162 /* Now try balancing at a lower domain level */
1163 cpu = new_cpu;
1164 nextlevel:
1165 sd = NULL;
1166 weight = cpus_weight(span);
1167 for_each_domain(cpu, tmp) {
1168 if (weight <= cpus_weight(tmp->span))
1169 break;
1170 if (tmp->flags & flag)
1171 sd = tmp;
1172 }
1173 /* while loop will break here if sd == NULL */
1174 }
1175
1176 return cpu;
1177 }
1178
1179 #endif /* CONFIG_SMP */
1180
1181 /*
1182 * wake_idle() will wake a task on an idle cpu if task->cpu is
1183 * not idle and an idle cpu is available. The span of cpus to
1184 * search starts with cpus closest then further out as needed,
1185 * so we always favor a closer, idle cpu.
1186 *
1187 * Returns the CPU we should wake onto.
1188 */
1189 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1190 static int wake_idle(int cpu, task_t *p)
1191 {
1192 cpumask_t tmp;
1193 struct sched_domain *sd;
1194 int i;
1195
1196 if (idle_cpu(cpu))
1197 return cpu;
1198
1199 for_each_domain(cpu, sd) {
1200 if (sd->flags & SD_WAKE_IDLE) {
1201 cpus_and(tmp, sd->span, p->cpus_allowed);
1202 for_each_cpu_mask(i, tmp) {
1203 if (idle_cpu(i))
1204 return i;
1205 }
1206 }
1207 else
1208 break;
1209 }
1210 return cpu;
1211 }
1212 #else
1213 static inline int wake_idle(int cpu, task_t *p)
1214 {
1215 return cpu;
1216 }
1217 #endif
1218
1219 /***
1220 * try_to_wake_up - wake up a thread
1221 * @p: the to-be-woken-up thread
1222 * @state: the mask of task states that can be woken
1223 * @sync: do a synchronous wakeup?
1224 *
1225 * Put it on the run-queue if it's not already there. The "current"
1226 * thread is always on the run-queue (except when the actual
1227 * re-schedule is in progress), and as such you're allowed to do
1228 * the simpler "current->state = TASK_RUNNING" to mark yourself
1229 * runnable without the overhead of this.
1230 *
1231 * returns failure only if the task is already active.
1232 */
1233 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1234 {
1235 int cpu, this_cpu, success = 0;
1236 unsigned long flags;
1237 long old_state;
1238 runqueue_t *rq;
1239 #ifdef CONFIG_SMP
1240 unsigned long load, this_load;
1241 struct sched_domain *sd, *this_sd = NULL;
1242 int new_cpu;
1243 #endif
1244
1245 rq = task_rq_lock(p, &flags);
1246 old_state = p->state;
1247 if (!(old_state & state))
1248 goto out;
1249
1250 if (p->array)
1251 goto out_running;
1252
1253 cpu = task_cpu(p);
1254 this_cpu = smp_processor_id();
1255
1256 #ifdef CONFIG_SMP
1257 if (unlikely(task_running(rq, p)))
1258 goto out_activate;
1259
1260 new_cpu = cpu;
1261
1262 schedstat_inc(rq, ttwu_cnt);
1263 if (cpu == this_cpu) {
1264 schedstat_inc(rq, ttwu_local);
1265 goto out_set_cpu;
1266 }
1267
1268 for_each_domain(this_cpu, sd) {
1269 if (cpu_isset(cpu, sd->span)) {
1270 schedstat_inc(sd, ttwu_wake_remote);
1271 this_sd = sd;
1272 break;
1273 }
1274 }
1275
1276 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1277 goto out_set_cpu;
1278
1279 /*
1280 * Check for affine wakeup and passive balancing possibilities.
1281 */
1282 if (this_sd) {
1283 int idx = this_sd->wake_idx;
1284 unsigned int imbalance;
1285
1286 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1287
1288 load = source_load(cpu, idx);
1289 this_load = target_load(this_cpu, idx);
1290
1291 new_cpu = this_cpu; /* Wake to this CPU if we can */
1292
1293 if (this_sd->flags & SD_WAKE_AFFINE) {
1294 unsigned long tl = this_load;
1295 /*
1296 * If sync wakeup then subtract the (maximum possible)
1297 * effect of the currently running task from the load
1298 * of the current CPU:
1299 */
1300 if (sync)
1301 tl -= SCHED_LOAD_SCALE;
1302
1303 if ((tl <= load &&
1304 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1305 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1306 /*
1307 * This domain has SD_WAKE_AFFINE and
1308 * p is cache cold in this domain, and
1309 * there is no bad imbalance.
1310 */
1311 schedstat_inc(this_sd, ttwu_move_affine);
1312 goto out_set_cpu;
1313 }
1314 }
1315
1316 /*
1317 * Start passive balancing when half the imbalance_pct
1318 * limit is reached.
1319 */
1320 if (this_sd->flags & SD_WAKE_BALANCE) {
1321 if (imbalance*this_load <= 100*load) {
1322 schedstat_inc(this_sd, ttwu_move_balance);
1323 goto out_set_cpu;
1324 }
1325 }
1326 }
1327
1328 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1329 out_set_cpu:
1330 new_cpu = wake_idle(new_cpu, p);
1331 if (new_cpu != cpu) {
1332 set_task_cpu(p, new_cpu);
1333 task_rq_unlock(rq, &flags);
1334 /* might preempt at this point */
1335 rq = task_rq_lock(p, &flags);
1336 old_state = p->state;
1337 if (!(old_state & state))
1338 goto out;
1339 if (p->array)
1340 goto out_running;
1341
1342 this_cpu = smp_processor_id();
1343 cpu = task_cpu(p);
1344 }
1345
1346 out_activate:
1347 #endif /* CONFIG_SMP */
1348 if (old_state == TASK_UNINTERRUPTIBLE) {
1349 rq->nr_uninterruptible--;
1350 /*
1351 * Tasks on involuntary sleep don't earn
1352 * sleep_avg beyond just interactive state.
1353 */
1354 p->activated = -1;
1355 }
1356
1357 /*
1358 * Tasks that have marked their sleep as noninteractive get
1359 * woken up without updating their sleep average. (i.e. their
1360 * sleep is handled in a priority-neutral manner, no priority
1361 * boost and no penalty.)
1362 */
1363 if (old_state & TASK_NONINTERACTIVE)
1364 __activate_task(p, rq);
1365 else
1366 activate_task(p, rq, cpu == this_cpu);
1367 /*
1368 * Sync wakeups (i.e. those types of wakeups where the waker
1369 * has indicated that it will leave the CPU in short order)
1370 * don't trigger a preemption, if the woken up task will run on
1371 * this cpu. (in this case the 'I will reschedule' promise of
1372 * the waker guarantees that the freshly woken up task is going
1373 * to be considered on this CPU.)
1374 */
1375 if (!sync || cpu != this_cpu) {
1376 if (TASK_PREEMPTS_CURR(p, rq))
1377 resched_task(rq->curr);
1378 }
1379 success = 1;
1380
1381 out_running:
1382 p->state = TASK_RUNNING;
1383 out:
1384 task_rq_unlock(rq, &flags);
1385
1386 return success;
1387 }
1388
1389 int fastcall wake_up_process(task_t *p)
1390 {
1391 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1392 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1393 }
1394
1395 EXPORT_SYMBOL(wake_up_process);
1396
1397 int fastcall wake_up_state(task_t *p, unsigned int state)
1398 {
1399 return try_to_wake_up(p, state, 0);
1400 }
1401
1402 /*
1403 * Perform scheduler related setup for a newly forked process p.
1404 * p is forked by current.
1405 */
1406 void fastcall sched_fork(task_t *p, int clone_flags)
1407 {
1408 int cpu = get_cpu();
1409
1410 #ifdef CONFIG_SMP
1411 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1412 #endif
1413 set_task_cpu(p, cpu);
1414
1415 /*
1416 * We mark the process as running here, but have not actually
1417 * inserted it onto the runqueue yet. This guarantees that
1418 * nobody will actually run it, and a signal or other external
1419 * event cannot wake it up and insert it on the runqueue either.
1420 */
1421 p->state = TASK_RUNNING;
1422 INIT_LIST_HEAD(&p->run_list);
1423 p->array = NULL;
1424 #ifdef CONFIG_SCHEDSTATS
1425 memset(&p->sched_info, 0, sizeof(p->sched_info));
1426 #endif
1427 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1428 p->oncpu = 0;
1429 #endif
1430 #ifdef CONFIG_PREEMPT
1431 /* Want to start with kernel preemption disabled. */
1432 p->thread_info->preempt_count = 1;
1433 #endif
1434 /*
1435 * Share the timeslice between parent and child, thus the
1436 * total amount of pending timeslices in the system doesn't change,
1437 * resulting in more scheduling fairness.
1438 */
1439 local_irq_disable();
1440 p->time_slice = (current->time_slice + 1) >> 1;
1441 /*
1442 * The remainder of the first timeslice might be recovered by
1443 * the parent if the child exits early enough.
1444 */
1445 p->first_time_slice = 1;
1446 current->time_slice >>= 1;
1447 p->timestamp = sched_clock();
1448 if (unlikely(!current->time_slice)) {
1449 /*
1450 * This case is rare, it happens when the parent has only
1451 * a single jiffy left from its timeslice. Taking the
1452 * runqueue lock is not a problem.
1453 */
1454 current->time_slice = 1;
1455 scheduler_tick();
1456 }
1457 local_irq_enable();
1458 put_cpu();
1459 }
1460
1461 /*
1462 * wake_up_new_task - wake up a newly created task for the first time.
1463 *
1464 * This function will do some initial scheduler statistics housekeeping
1465 * that must be done for every newly created context, then puts the task
1466 * on the runqueue and wakes it.
1467 */
1468 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1469 {
1470 unsigned long flags;
1471 int this_cpu, cpu;
1472 runqueue_t *rq, *this_rq;
1473
1474 rq = task_rq_lock(p, &flags);
1475 BUG_ON(p->state != TASK_RUNNING);
1476 this_cpu = smp_processor_id();
1477 cpu = task_cpu(p);
1478
1479 /*
1480 * We decrease the sleep average of forking parents
1481 * and children as well, to keep max-interactive tasks
1482 * from forking tasks that are max-interactive. The parent
1483 * (current) is done further down, under its lock.
1484 */
1485 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1486 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1487
1488 p->prio = effective_prio(p);
1489
1490 if (likely(cpu == this_cpu)) {
1491 if (!(clone_flags & CLONE_VM)) {
1492 /*
1493 * The VM isn't cloned, so we're in a good position to
1494 * do child-runs-first in anticipation of an exec. This
1495 * usually avoids a lot of COW overhead.
1496 */
1497 if (unlikely(!current->array))
1498 __activate_task(p, rq);
1499 else {
1500 p->prio = current->prio;
1501 list_add_tail(&p->run_list, &current->run_list);
1502 p->array = current->array;
1503 p->array->nr_active++;
1504 inc_nr_running(p, rq);
1505 }
1506 set_need_resched();
1507 } else
1508 /* Run child last */
1509 __activate_task(p, rq);
1510 /*
1511 * We skip the following code due to cpu == this_cpu
1512 *
1513 * task_rq_unlock(rq, &flags);
1514 * this_rq = task_rq_lock(current, &flags);
1515 */
1516 this_rq = rq;
1517 } else {
1518 this_rq = cpu_rq(this_cpu);
1519
1520 /*
1521 * Not the local CPU - must adjust timestamp. This should
1522 * get optimised away in the !CONFIG_SMP case.
1523 */
1524 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1525 + rq->timestamp_last_tick;
1526 __activate_task(p, rq);
1527 if (TASK_PREEMPTS_CURR(p, rq))
1528 resched_task(rq->curr);
1529
1530 /*
1531 * Parent and child are on different CPUs, now get the
1532 * parent runqueue to update the parent's ->sleep_avg:
1533 */
1534 task_rq_unlock(rq, &flags);
1535 this_rq = task_rq_lock(current, &flags);
1536 }
1537 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1538 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1539 task_rq_unlock(this_rq, &flags);
1540 }
1541
1542 /*
1543 * Potentially available exiting-child timeslices are
1544 * retrieved here - this way the parent does not get
1545 * penalized for creating too many threads.
1546 *
1547 * (this cannot be used to 'generate' timeslices
1548 * artificially, because any timeslice recovered here
1549 * was given away by the parent in the first place.)
1550 */
1551 void fastcall sched_exit(task_t *p)
1552 {
1553 unsigned long flags;
1554 runqueue_t *rq;
1555
1556 /*
1557 * If the child was a (relative-) CPU hog then decrease
1558 * the sleep_avg of the parent as well.
1559 */
1560 rq = task_rq_lock(p->parent, &flags);
1561 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1562 p->parent->time_slice += p->time_slice;
1563 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1564 p->parent->time_slice = task_timeslice(p);
1565 }
1566 if (p->sleep_avg < p->parent->sleep_avg)
1567 p->parent->sleep_avg = p->parent->sleep_avg /
1568 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1569 (EXIT_WEIGHT + 1);
1570 task_rq_unlock(rq, &flags);
1571 }
1572
1573 /**
1574 * prepare_task_switch - prepare to switch tasks
1575 * @rq: the runqueue preparing to switch
1576 * @next: the task we are going to switch to.
1577 *
1578 * This is called with the rq lock held and interrupts off. It must
1579 * be paired with a subsequent finish_task_switch after the context
1580 * switch.
1581 *
1582 * prepare_task_switch sets up locking and calls architecture specific
1583 * hooks.
1584 */
1585 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1586 {
1587 prepare_lock_switch(rq, next);
1588 prepare_arch_switch(next);
1589 }
1590
1591 /**
1592 * finish_task_switch - clean up after a task-switch
1593 * @rq: runqueue associated with task-switch
1594 * @prev: the thread we just switched away from.
1595 *
1596 * finish_task_switch must be called after the context switch, paired
1597 * with a prepare_task_switch call before the context switch.
1598 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1599 * and do any other architecture-specific cleanup actions.
1600 *
1601 * Note that we may have delayed dropping an mm in context_switch(). If
1602 * so, we finish that here outside of the runqueue lock. (Doing it
1603 * with the lock held can cause deadlocks; see schedule() for
1604 * details.)
1605 */
1606 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1607 __releases(rq->lock)
1608 {
1609 struct mm_struct *mm = rq->prev_mm;
1610 unsigned long prev_task_flags;
1611
1612 rq->prev_mm = NULL;
1613
1614 /*
1615 * A task struct has one reference for the use as "current".
1616 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1617 * calls schedule one last time. The schedule call will never return,
1618 * and the scheduled task must drop that reference.
1619 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1620 * still held, otherwise prev could be scheduled on another cpu, die
1621 * there before we look at prev->state, and then the reference would
1622 * be dropped twice.
1623 * Manfred Spraul <manfred@colorfullife.com>
1624 */
1625 prev_task_flags = prev->flags;
1626 finish_arch_switch(prev);
1627 finish_lock_switch(rq, prev);
1628 if (mm)
1629 mmdrop(mm);
1630 if (unlikely(prev_task_flags & PF_DEAD))
1631 put_task_struct(prev);
1632 }
1633
1634 /**
1635 * schedule_tail - first thing a freshly forked thread must call.
1636 * @prev: the thread we just switched away from.
1637 */
1638 asmlinkage void schedule_tail(task_t *prev)
1639 __releases(rq->lock)
1640 {
1641 runqueue_t *rq = this_rq();
1642 finish_task_switch(rq, prev);
1643 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1644 /* In this case, finish_task_switch does not reenable preemption */
1645 preempt_enable();
1646 #endif
1647 if (current->set_child_tid)
1648 put_user(current->pid, current->set_child_tid);
1649 }
1650
1651 /*
1652 * context_switch - switch to the new MM and the new
1653 * thread's register state.
1654 */
1655 static inline
1656 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1657 {
1658 struct mm_struct *mm = next->mm;
1659 struct mm_struct *oldmm = prev->active_mm;
1660
1661 if (unlikely(!mm)) {
1662 next->active_mm = oldmm;
1663 atomic_inc(&oldmm->mm_count);
1664 enter_lazy_tlb(oldmm, next);
1665 } else
1666 switch_mm(oldmm, mm, next);
1667
1668 if (unlikely(!prev->mm)) {
1669 prev->active_mm = NULL;
1670 WARN_ON(rq->prev_mm);
1671 rq->prev_mm = oldmm;
1672 }
1673
1674 /* Here we just switch the register state and the stack. */
1675 switch_to(prev, next, prev);
1676
1677 return prev;
1678 }
1679
1680 /*
1681 * nr_running, nr_uninterruptible and nr_context_switches:
1682 *
1683 * externally visible scheduler statistics: current number of runnable
1684 * threads, current number of uninterruptible-sleeping threads, total
1685 * number of context switches performed since bootup.
1686 */
1687 unsigned long nr_running(void)
1688 {
1689 unsigned long i, sum = 0;
1690
1691 for_each_online_cpu(i)
1692 sum += cpu_rq(i)->nr_running;
1693
1694 return sum;
1695 }
1696
1697 unsigned long nr_uninterruptible(void)
1698 {
1699 unsigned long i, sum = 0;
1700
1701 for_each_cpu(i)
1702 sum += cpu_rq(i)->nr_uninterruptible;
1703
1704 /*
1705 * Since we read the counters lockless, it might be slightly
1706 * inaccurate. Do not allow it to go below zero though:
1707 */
1708 if (unlikely((long)sum < 0))
1709 sum = 0;
1710
1711 return sum;
1712 }
1713
1714 unsigned long long nr_context_switches(void)
1715 {
1716 unsigned long long i, sum = 0;
1717
1718 for_each_cpu(i)
1719 sum += cpu_rq(i)->nr_switches;
1720
1721 return sum;
1722 }
1723
1724 unsigned long nr_iowait(void)
1725 {
1726 unsigned long i, sum = 0;
1727
1728 for_each_cpu(i)
1729 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1730
1731 return sum;
1732 }
1733
1734 #ifdef CONFIG_SMP
1735
1736 /*
1737 * double_rq_lock - safely lock two runqueues
1738 *
1739 * Note this does not disable interrupts like task_rq_lock,
1740 * you need to do so manually before calling.
1741 */
1742 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1743 __acquires(rq1->lock)
1744 __acquires(rq2->lock)
1745 {
1746 if (rq1 == rq2) {
1747 spin_lock(&rq1->lock);
1748 __acquire(rq2->lock); /* Fake it out ;) */
1749 } else {
1750 if (rq1 < rq2) {
1751 spin_lock(&rq1->lock);
1752 spin_lock(&rq2->lock);
1753 } else {
1754 spin_lock(&rq2->lock);
1755 spin_lock(&rq1->lock);
1756 }
1757 }
1758 }
1759
1760 /*
1761 * double_rq_unlock - safely unlock two runqueues
1762 *
1763 * Note this does not restore interrupts like task_rq_unlock,
1764 * you need to do so manually after calling.
1765 */
1766 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1767 __releases(rq1->lock)
1768 __releases(rq2->lock)
1769 {
1770 spin_unlock(&rq1->lock);
1771 if (rq1 != rq2)
1772 spin_unlock(&rq2->lock);
1773 else
1774 __release(rq2->lock);
1775 }
1776
1777 /*
1778 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1779 */
1780 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1781 __releases(this_rq->lock)
1782 __acquires(busiest->lock)
1783 __acquires(this_rq->lock)
1784 {
1785 if (unlikely(!spin_trylock(&busiest->lock))) {
1786 if (busiest < this_rq) {
1787 spin_unlock(&this_rq->lock);
1788 spin_lock(&busiest->lock);
1789 spin_lock(&this_rq->lock);
1790 } else
1791 spin_lock(&busiest->lock);
1792 }
1793 }
1794
1795 /*
1796 * If dest_cpu is allowed for this process, migrate the task to it.
1797 * This is accomplished by forcing the cpu_allowed mask to only
1798 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1799 * the cpu_allowed mask is restored.
1800 */
1801 static void sched_migrate_task(task_t *p, int dest_cpu)
1802 {
1803 migration_req_t req;
1804 runqueue_t *rq;
1805 unsigned long flags;
1806
1807 rq = task_rq_lock(p, &flags);
1808 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1809 || unlikely(cpu_is_offline(dest_cpu)))
1810 goto out;
1811
1812 /* force the process onto the specified CPU */
1813 if (migrate_task(p, dest_cpu, &req)) {
1814 /* Need to wait for migration thread (might exit: take ref). */
1815 struct task_struct *mt = rq->migration_thread;
1816 get_task_struct(mt);
1817 task_rq_unlock(rq, &flags);
1818 wake_up_process(mt);
1819 put_task_struct(mt);
1820 wait_for_completion(&req.done);
1821 return;
1822 }
1823 out:
1824 task_rq_unlock(rq, &flags);
1825 }
1826
1827 /*
1828 * sched_exec - execve() is a valuable balancing opportunity, because at
1829 * this point the task has the smallest effective memory and cache footprint.
1830 */
1831 void sched_exec(void)
1832 {
1833 int new_cpu, this_cpu = get_cpu();
1834 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1835 put_cpu();
1836 if (new_cpu != this_cpu)
1837 sched_migrate_task(current, new_cpu);
1838 }
1839
1840 /*
1841 * pull_task - move a task from a remote runqueue to the local runqueue.
1842 * Both runqueues must be locked.
1843 */
1844 static inline
1845 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1846 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1847 {
1848 dequeue_task(p, src_array);
1849 dec_nr_running(p, src_rq);
1850 set_task_cpu(p, this_cpu);
1851 inc_nr_running(p, this_rq);
1852 enqueue_task(p, this_array);
1853 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1854 + this_rq->timestamp_last_tick;
1855 /*
1856 * Note that idle threads have a prio of MAX_PRIO, for this test
1857 * to be always true for them.
1858 */
1859 if (TASK_PREEMPTS_CURR(p, this_rq))
1860 resched_task(this_rq->curr);
1861 }
1862
1863 /*
1864 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1865 */
1866 static inline
1867 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1868 struct sched_domain *sd, enum idle_type idle,
1869 int *all_pinned)
1870 {
1871 /*
1872 * We do not migrate tasks that are:
1873 * 1) running (obviously), or
1874 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1875 * 3) are cache-hot on their current CPU.
1876 */
1877 if (!cpu_isset(this_cpu, p->cpus_allowed))
1878 return 0;
1879 *all_pinned = 0;
1880
1881 if (task_running(rq, p))
1882 return 0;
1883
1884 /*
1885 * Aggressive migration if:
1886 * 1) task is cache cold, or
1887 * 2) too many balance attempts have failed.
1888 */
1889
1890 if (sd->nr_balance_failed > sd->cache_nice_tries)
1891 return 1;
1892
1893 if (task_hot(p, rq->timestamp_last_tick, sd))
1894 return 0;
1895 return 1;
1896 }
1897
1898 /*
1899 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1900 * as part of a balancing operation within "domain". Returns the number of
1901 * tasks moved.
1902 *
1903 * Called with both runqueues locked.
1904 */
1905 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1906 unsigned long max_nr_move, struct sched_domain *sd,
1907 enum idle_type idle, int *all_pinned)
1908 {
1909 prio_array_t *array, *dst_array;
1910 struct list_head *head, *curr;
1911 int idx, pulled = 0, pinned = 0;
1912 task_t *tmp;
1913
1914 if (max_nr_move == 0)
1915 goto out;
1916
1917 pinned = 1;
1918
1919 /*
1920 * We first consider expired tasks. Those will likely not be
1921 * executed in the near future, and they are most likely to
1922 * be cache-cold, thus switching CPUs has the least effect
1923 * on them.
1924 */
1925 if (busiest->expired->nr_active) {
1926 array = busiest->expired;
1927 dst_array = this_rq->expired;
1928 } else {
1929 array = busiest->active;
1930 dst_array = this_rq->active;
1931 }
1932
1933 new_array:
1934 /* Start searching at priority 0: */
1935 idx = 0;
1936 skip_bitmap:
1937 if (!idx)
1938 idx = sched_find_first_bit(array->bitmap);
1939 else
1940 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1941 if (idx >= MAX_PRIO) {
1942 if (array == busiest->expired && busiest->active->nr_active) {
1943 array = busiest->active;
1944 dst_array = this_rq->active;
1945 goto new_array;
1946 }
1947 goto out;
1948 }
1949
1950 head = array->queue + idx;
1951 curr = head->prev;
1952 skip_queue:
1953 tmp = list_entry(curr, task_t, run_list);
1954
1955 curr = curr->prev;
1956
1957 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1958 if (curr != head)
1959 goto skip_queue;
1960 idx++;
1961 goto skip_bitmap;
1962 }
1963
1964 #ifdef CONFIG_SCHEDSTATS
1965 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1966 schedstat_inc(sd, lb_hot_gained[idle]);
1967 #endif
1968
1969 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1970 pulled++;
1971
1972 /* We only want to steal up to the prescribed number of tasks. */
1973 if (pulled < max_nr_move) {
1974 if (curr != head)
1975 goto skip_queue;
1976 idx++;
1977 goto skip_bitmap;
1978 }
1979 out:
1980 /*
1981 * Right now, this is the only place pull_task() is called,
1982 * so we can safely collect pull_task() stats here rather than
1983 * inside pull_task().
1984 */
1985 schedstat_add(sd, lb_gained[idle], pulled);
1986
1987 if (all_pinned)
1988 *all_pinned = pinned;
1989 return pulled;
1990 }
1991
1992 /*
1993 * find_busiest_group finds and returns the busiest CPU group within the
1994 * domain. It calculates and returns the number of tasks which should be
1995 * moved to restore balance via the imbalance parameter.
1996 */
1997 static struct sched_group *
1998 find_busiest_group(struct sched_domain *sd, int this_cpu,
1999 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2000 {
2001 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2002 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2003 unsigned long max_pull;
2004 int load_idx;
2005
2006 max_load = this_load = total_load = total_pwr = 0;
2007 if (idle == NOT_IDLE)
2008 load_idx = sd->busy_idx;
2009 else if (idle == NEWLY_IDLE)
2010 load_idx = sd->newidle_idx;
2011 else
2012 load_idx = sd->idle_idx;
2013
2014 do {
2015 unsigned long load;
2016 int local_group;
2017 int i;
2018
2019 local_group = cpu_isset(this_cpu, group->cpumask);
2020
2021 /* Tally up the load of all CPUs in the group */
2022 avg_load = 0;
2023
2024 for_each_cpu_mask(i, group->cpumask) {
2025 if (*sd_idle && !idle_cpu(i))
2026 *sd_idle = 0;
2027
2028 /* Bias balancing toward cpus of our domain */
2029 if (local_group)
2030 load = __target_load(i, load_idx, idle);
2031 else
2032 load = __source_load(i, load_idx, idle);
2033
2034 avg_load += load;
2035 }
2036
2037 total_load += avg_load;
2038 total_pwr += group->cpu_power;
2039
2040 /* Adjust by relative CPU power of the group */
2041 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2042
2043 if (local_group) {
2044 this_load = avg_load;
2045 this = group;
2046 } else if (avg_load > max_load) {
2047 max_load = avg_load;
2048 busiest = group;
2049 }
2050 group = group->next;
2051 } while (group != sd->groups);
2052
2053 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2054 goto out_balanced;
2055
2056 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2057
2058 if (this_load >= avg_load ||
2059 100*max_load <= sd->imbalance_pct*this_load)
2060 goto out_balanced;
2061
2062 /*
2063 * We're trying to get all the cpus to the average_load, so we don't
2064 * want to push ourselves above the average load, nor do we wish to
2065 * reduce the max loaded cpu below the average load, as either of these
2066 * actions would just result in more rebalancing later, and ping-pong
2067 * tasks around. Thus we look for the minimum possible imbalance.
2068 * Negative imbalances (*we* are more loaded than anyone else) will
2069 * be counted as no imbalance for these purposes -- we can't fix that
2070 * by pulling tasks to us. Be careful of negative numbers as they'll
2071 * appear as very large values with unsigned longs.
2072 */
2073
2074 /* Don't want to pull so many tasks that a group would go idle */
2075 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2076
2077 /* How much load to actually move to equalise the imbalance */
2078 *imbalance = min(max_pull * busiest->cpu_power,
2079 (avg_load - this_load) * this->cpu_power)
2080 / SCHED_LOAD_SCALE;
2081
2082 if (*imbalance < SCHED_LOAD_SCALE) {
2083 unsigned long pwr_now = 0, pwr_move = 0;
2084 unsigned long tmp;
2085
2086 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2087 *imbalance = 1;
2088 return busiest;
2089 }
2090
2091 /*
2092 * OK, we don't have enough imbalance to justify moving tasks,
2093 * however we may be able to increase total CPU power used by
2094 * moving them.
2095 */
2096
2097 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2098 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2099 pwr_now /= SCHED_LOAD_SCALE;
2100
2101 /* Amount of load we'd subtract */
2102 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2103 if (max_load > tmp)
2104 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2105 max_load - tmp);
2106
2107 /* Amount of load we'd add */
2108 if (max_load*busiest->cpu_power <
2109 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2110 tmp = max_load*busiest->cpu_power/this->cpu_power;
2111 else
2112 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2113 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2114 pwr_move /= SCHED_LOAD_SCALE;
2115
2116 /* Move if we gain throughput */
2117 if (pwr_move <= pwr_now)
2118 goto out_balanced;
2119
2120 *imbalance = 1;
2121 return busiest;
2122 }
2123
2124 /* Get rid of the scaling factor, rounding down as we divide */
2125 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2126 return busiest;
2127
2128 out_balanced:
2129
2130 *imbalance = 0;
2131 return NULL;
2132 }
2133
2134 /*
2135 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2136 */
2137 static runqueue_t *find_busiest_queue(struct sched_group *group,
2138 enum idle_type idle)
2139 {
2140 unsigned long load, max_load = 0;
2141 runqueue_t *busiest = NULL;
2142 int i;
2143
2144 for_each_cpu_mask(i, group->cpumask) {
2145 load = __source_load(i, 0, idle);
2146
2147 if (load > max_load) {
2148 max_load = load;
2149 busiest = cpu_rq(i);
2150 }
2151 }
2152
2153 return busiest;
2154 }
2155
2156 /*
2157 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2158 * so long as it is large enough.
2159 */
2160 #define MAX_PINNED_INTERVAL 512
2161
2162 /*
2163 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2164 * tasks if there is an imbalance.
2165 *
2166 * Called with this_rq unlocked.
2167 */
2168 static int load_balance(int this_cpu, runqueue_t *this_rq,
2169 struct sched_domain *sd, enum idle_type idle)
2170 {
2171 struct sched_group *group;
2172 runqueue_t *busiest;
2173 unsigned long imbalance;
2174 int nr_moved, all_pinned = 0;
2175 int active_balance = 0;
2176 int sd_idle = 0;
2177
2178 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2179 sd_idle = 1;
2180
2181 schedstat_inc(sd, lb_cnt[idle]);
2182
2183 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2184 if (!group) {
2185 schedstat_inc(sd, lb_nobusyg[idle]);
2186 goto out_balanced;
2187 }
2188
2189 busiest = find_busiest_queue(group, idle);
2190 if (!busiest) {
2191 schedstat_inc(sd, lb_nobusyq[idle]);
2192 goto out_balanced;
2193 }
2194
2195 BUG_ON(busiest == this_rq);
2196
2197 schedstat_add(sd, lb_imbalance[idle], imbalance);
2198
2199 nr_moved = 0;
2200 if (busiest->nr_running > 1) {
2201 /*
2202 * Attempt to move tasks. If find_busiest_group has found
2203 * an imbalance but busiest->nr_running <= 1, the group is
2204 * still unbalanced. nr_moved simply stays zero, so it is
2205 * correctly treated as an imbalance.
2206 */
2207 double_rq_lock(this_rq, busiest);
2208 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2209 imbalance, sd, idle, &all_pinned);
2210 double_rq_unlock(this_rq, busiest);
2211
2212 /* All tasks on this runqueue were pinned by CPU affinity */
2213 if (unlikely(all_pinned))
2214 goto out_balanced;
2215 }
2216
2217 if (!nr_moved) {
2218 schedstat_inc(sd, lb_failed[idle]);
2219 sd->nr_balance_failed++;
2220
2221 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2222
2223 spin_lock(&busiest->lock);
2224
2225 /* don't kick the migration_thread, if the curr
2226 * task on busiest cpu can't be moved to this_cpu
2227 */
2228 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2229 spin_unlock(&busiest->lock);
2230 all_pinned = 1;
2231 goto out_one_pinned;
2232 }
2233
2234 if (!busiest->active_balance) {
2235 busiest->active_balance = 1;
2236 busiest->push_cpu = this_cpu;
2237 active_balance = 1;
2238 }
2239 spin_unlock(&busiest->lock);
2240 if (active_balance)
2241 wake_up_process(busiest->migration_thread);
2242
2243 /*
2244 * We've kicked active balancing, reset the failure
2245 * counter.
2246 */
2247 sd->nr_balance_failed = sd->cache_nice_tries+1;
2248 }
2249 } else
2250 sd->nr_balance_failed = 0;
2251
2252 if (likely(!active_balance)) {
2253 /* We were unbalanced, so reset the balancing interval */
2254 sd->balance_interval = sd->min_interval;
2255 } else {
2256 /*
2257 * If we've begun active balancing, start to back off. This
2258 * case may not be covered by the all_pinned logic if there
2259 * is only 1 task on the busy runqueue (because we don't call
2260 * move_tasks).
2261 */
2262 if (sd->balance_interval < sd->max_interval)
2263 sd->balance_interval *= 2;
2264 }
2265
2266 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2267 return -1;
2268 return nr_moved;
2269
2270 out_balanced:
2271 schedstat_inc(sd, lb_balanced[idle]);
2272
2273 sd->nr_balance_failed = 0;
2274
2275 out_one_pinned:
2276 /* tune up the balancing interval */
2277 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2278 (sd->balance_interval < sd->max_interval))
2279 sd->balance_interval *= 2;
2280
2281 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2282 return -1;
2283 return 0;
2284 }
2285
2286 /*
2287 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2288 * tasks if there is an imbalance.
2289 *
2290 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2291 * this_rq is locked.
2292 */
2293 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2294 struct sched_domain *sd)
2295 {
2296 struct sched_group *group;
2297 runqueue_t *busiest = NULL;
2298 unsigned long imbalance;
2299 int nr_moved = 0;
2300 int sd_idle = 0;
2301
2302 if (sd->flags & SD_SHARE_CPUPOWER)
2303 sd_idle = 1;
2304
2305 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2306 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2307 if (!group) {
2308 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2309 goto out_balanced;
2310 }
2311
2312 busiest = find_busiest_queue(group, NEWLY_IDLE);
2313 if (!busiest) {
2314 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2315 goto out_balanced;
2316 }
2317
2318 BUG_ON(busiest == this_rq);
2319
2320 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2321
2322 nr_moved = 0;
2323 if (busiest->nr_running > 1) {
2324 /* Attempt to move tasks */
2325 double_lock_balance(this_rq, busiest);
2326 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2327 imbalance, sd, NEWLY_IDLE, NULL);
2328 spin_unlock(&busiest->lock);
2329 }
2330
2331 if (!nr_moved) {
2332 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2333 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2334 return -1;
2335 } else
2336 sd->nr_balance_failed = 0;
2337
2338 return nr_moved;
2339
2340 out_balanced:
2341 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2342 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2343 return -1;
2344 sd->nr_balance_failed = 0;
2345 return 0;
2346 }
2347
2348 /*
2349 * idle_balance is called by schedule() if this_cpu is about to become
2350 * idle. Attempts to pull tasks from other CPUs.
2351 */
2352 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2353 {
2354 struct sched_domain *sd;
2355
2356 for_each_domain(this_cpu, sd) {
2357 if (sd->flags & SD_BALANCE_NEWIDLE) {
2358 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2359 /* We've pulled tasks over so stop searching */
2360 break;
2361 }
2362 }
2363 }
2364 }
2365
2366 /*
2367 * active_load_balance is run by migration threads. It pushes running tasks
2368 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2369 * running on each physical CPU where possible, and avoids physical /
2370 * logical imbalances.
2371 *
2372 * Called with busiest_rq locked.
2373 */
2374 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2375 {
2376 struct sched_domain *sd;
2377 runqueue_t *target_rq;
2378 int target_cpu = busiest_rq->push_cpu;
2379
2380 if (busiest_rq->nr_running <= 1)
2381 /* no task to move */
2382 return;
2383
2384 target_rq = cpu_rq(target_cpu);
2385
2386 /*
2387 * This condition is "impossible", if it occurs
2388 * we need to fix it. Originally reported by
2389 * Bjorn Helgaas on a 128-cpu setup.
2390 */
2391 BUG_ON(busiest_rq == target_rq);
2392
2393 /* move a task from busiest_rq to target_rq */
2394 double_lock_balance(busiest_rq, target_rq);
2395
2396 /* Search for an sd spanning us and the target CPU. */
2397 for_each_domain(target_cpu, sd)
2398 if ((sd->flags & SD_LOAD_BALANCE) &&
2399 cpu_isset(busiest_cpu, sd->span))
2400 break;
2401
2402 if (unlikely(sd == NULL))
2403 goto out;
2404
2405 schedstat_inc(sd, alb_cnt);
2406
2407 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2408 schedstat_inc(sd, alb_pushed);
2409 else
2410 schedstat_inc(sd, alb_failed);
2411 out:
2412 spin_unlock(&target_rq->lock);
2413 }
2414
2415 /*
2416 * rebalance_tick will get called every timer tick, on every CPU.
2417 *
2418 * It checks each scheduling domain to see if it is due to be balanced,
2419 * and initiates a balancing operation if so.
2420 *
2421 * Balancing parameters are set up in arch_init_sched_domains.
2422 */
2423
2424 /* Don't have all balancing operations going off at once */
2425 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2426
2427 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2428 enum idle_type idle)
2429 {
2430 unsigned long old_load, this_load;
2431 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2432 struct sched_domain *sd;
2433 int i;
2434
2435 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2436 /* Update our load */
2437 for (i = 0; i < 3; i++) {
2438 unsigned long new_load = this_load;
2439 int scale = 1 << i;
2440 old_load = this_rq->cpu_load[i];
2441 /*
2442 * Round up the averaging division if load is increasing. This
2443 * prevents us from getting stuck on 9 if the load is 10, for
2444 * example.
2445 */
2446 if (new_load > old_load)
2447 new_load += scale-1;
2448 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2449 }
2450
2451 for_each_domain(this_cpu, sd) {
2452 unsigned long interval;
2453
2454 if (!(sd->flags & SD_LOAD_BALANCE))
2455 continue;
2456
2457 interval = sd->balance_interval;
2458 if (idle != SCHED_IDLE)
2459 interval *= sd->busy_factor;
2460
2461 /* scale ms to jiffies */
2462 interval = msecs_to_jiffies(interval);
2463 if (unlikely(!interval))
2464 interval = 1;
2465
2466 if (j - sd->last_balance >= interval) {
2467 if (load_balance(this_cpu, this_rq, sd, idle)) {
2468 /*
2469 * We've pulled tasks over so either we're no
2470 * longer idle, or one of our SMT siblings is
2471 * not idle.
2472 */
2473 idle = NOT_IDLE;
2474 }
2475 sd->last_balance += interval;
2476 }
2477 }
2478 }
2479 #else
2480 /*
2481 * on UP we do not need to balance between CPUs:
2482 */
2483 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2484 {
2485 }
2486 static inline void idle_balance(int cpu, runqueue_t *rq)
2487 {
2488 }
2489 #endif
2490
2491 static inline int wake_priority_sleeper(runqueue_t *rq)
2492 {
2493 int ret = 0;
2494 #ifdef CONFIG_SCHED_SMT
2495 spin_lock(&rq->lock);
2496 /*
2497 * If an SMT sibling task has been put to sleep for priority
2498 * reasons reschedule the idle task to see if it can now run.
2499 */
2500 if (rq->nr_running) {
2501 resched_task(rq->idle);
2502 ret = 1;
2503 }
2504 spin_unlock(&rq->lock);
2505 #endif
2506 return ret;
2507 }
2508
2509 DEFINE_PER_CPU(struct kernel_stat, kstat);
2510
2511 EXPORT_PER_CPU_SYMBOL(kstat);
2512
2513 /*
2514 * This is called on clock ticks and on context switches.
2515 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2516 */
2517 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2518 unsigned long long now)
2519 {
2520 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2521 p->sched_time += now - last;
2522 }
2523
2524 /*
2525 * Return current->sched_time plus any more ns on the sched_clock
2526 * that have not yet been banked.
2527 */
2528 unsigned long long current_sched_time(const task_t *tsk)
2529 {
2530 unsigned long long ns;
2531 unsigned long flags;
2532 local_irq_save(flags);
2533 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2534 ns = tsk->sched_time + (sched_clock() - ns);
2535 local_irq_restore(flags);
2536 return ns;
2537 }
2538
2539 /*
2540 * We place interactive tasks back into the active array, if possible.
2541 *
2542 * To guarantee that this does not starve expired tasks we ignore the
2543 * interactivity of a task if the first expired task had to wait more
2544 * than a 'reasonable' amount of time. This deadline timeout is
2545 * load-dependent, as the frequency of array switched decreases with
2546 * increasing number of running tasks. We also ignore the interactivity
2547 * if a better static_prio task has expired:
2548 */
2549 #define EXPIRED_STARVING(rq) \
2550 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2551 (jiffies - (rq)->expired_timestamp >= \
2552 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2553 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2554
2555 /*
2556 * Account user cpu time to a process.
2557 * @p: the process that the cpu time gets accounted to
2558 * @hardirq_offset: the offset to subtract from hardirq_count()
2559 * @cputime: the cpu time spent in user space since the last update
2560 */
2561 void account_user_time(struct task_struct *p, cputime_t cputime)
2562 {
2563 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2564 cputime64_t tmp;
2565
2566 p->utime = cputime_add(p->utime, cputime);
2567
2568 /* Add user time to cpustat. */
2569 tmp = cputime_to_cputime64(cputime);
2570 if (TASK_NICE(p) > 0)
2571 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2572 else
2573 cpustat->user = cputime64_add(cpustat->user, tmp);
2574 }
2575
2576 /*
2577 * Account system cpu time to a process.
2578 * @p: the process that the cpu time gets accounted to
2579 * @hardirq_offset: the offset to subtract from hardirq_count()
2580 * @cputime: the cpu time spent in kernel space since the last update
2581 */
2582 void account_system_time(struct task_struct *p, int hardirq_offset,
2583 cputime_t cputime)
2584 {
2585 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2586 runqueue_t *rq = this_rq();
2587 cputime64_t tmp;
2588
2589 p->stime = cputime_add(p->stime, cputime);
2590
2591 /* Add system time to cpustat. */
2592 tmp = cputime_to_cputime64(cputime);
2593 if (hardirq_count() - hardirq_offset)
2594 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2595 else if (softirq_count())
2596 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2597 else if (p != rq->idle)
2598 cpustat->system = cputime64_add(cpustat->system, tmp);
2599 else if (atomic_read(&rq->nr_iowait) > 0)
2600 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2601 else
2602 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2603 /* Account for system time used */
2604 acct_update_integrals(p);
2605 }
2606
2607 /*
2608 * Account for involuntary wait time.
2609 * @p: the process from which the cpu time has been stolen
2610 * @steal: the cpu time spent in involuntary wait
2611 */
2612 void account_steal_time(struct task_struct *p, cputime_t steal)
2613 {
2614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2615 cputime64_t tmp = cputime_to_cputime64(steal);
2616 runqueue_t *rq = this_rq();
2617
2618 if (p == rq->idle) {
2619 p->stime = cputime_add(p->stime, steal);
2620 if (atomic_read(&rq->nr_iowait) > 0)
2621 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2622 else
2623 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2624 } else
2625 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2626 }
2627
2628 /*
2629 * This function gets called by the timer code, with HZ frequency.
2630 * We call it with interrupts disabled.
2631 *
2632 * It also gets called by the fork code, when changing the parent's
2633 * timeslices.
2634 */
2635 void scheduler_tick(void)
2636 {
2637 int cpu = smp_processor_id();
2638 runqueue_t *rq = this_rq();
2639 task_t *p = current;
2640 unsigned long long now = sched_clock();
2641
2642 update_cpu_clock(p, rq, now);
2643
2644 rq->timestamp_last_tick = now;
2645
2646 if (p == rq->idle) {
2647 if (wake_priority_sleeper(rq))
2648 goto out;
2649 rebalance_tick(cpu, rq, SCHED_IDLE);
2650 return;
2651 }
2652
2653 /* Task might have expired already, but not scheduled off yet */
2654 if (p->array != rq->active) {
2655 set_tsk_need_resched(p);
2656 goto out;
2657 }
2658 spin_lock(&rq->lock);
2659 /*
2660 * The task was running during this tick - update the
2661 * time slice counter. Note: we do not update a thread's
2662 * priority until it either goes to sleep or uses up its
2663 * timeslice. This makes it possible for interactive tasks
2664 * to use up their timeslices at their highest priority levels.
2665 */
2666 if (rt_task(p)) {
2667 /*
2668 * RR tasks need a special form of timeslice management.
2669 * FIFO tasks have no timeslices.
2670 */
2671 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2672 p->time_slice = task_timeslice(p);
2673 p->first_time_slice = 0;
2674 set_tsk_need_resched(p);
2675
2676 /* put it at the end of the queue: */
2677 requeue_task(p, rq->active);
2678 }
2679 goto out_unlock;
2680 }
2681 if (!--p->time_slice) {
2682 dequeue_task(p, rq->active);
2683 set_tsk_need_resched(p);
2684 p->prio = effective_prio(p);
2685 p->time_slice = task_timeslice(p);
2686 p->first_time_slice = 0;
2687
2688 if (!rq->expired_timestamp)
2689 rq->expired_timestamp = jiffies;
2690 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2691 enqueue_task(p, rq->expired);
2692 if (p->static_prio < rq->best_expired_prio)
2693 rq->best_expired_prio = p->static_prio;
2694 } else
2695 enqueue_task(p, rq->active);
2696 } else {
2697 /*
2698 * Prevent a too long timeslice allowing a task to monopolize
2699 * the CPU. We do this by splitting up the timeslice into
2700 * smaller pieces.
2701 *
2702 * Note: this does not mean the task's timeslices expire or
2703 * get lost in any way, they just might be preempted by
2704 * another task of equal priority. (one with higher
2705 * priority would have preempted this task already.) We
2706 * requeue this task to the end of the list on this priority
2707 * level, which is in essence a round-robin of tasks with
2708 * equal priority.
2709 *
2710 * This only applies to tasks in the interactive
2711 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2712 */
2713 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2714 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2715 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2716 (p->array == rq->active)) {
2717
2718 requeue_task(p, rq->active);
2719 set_tsk_need_resched(p);
2720 }
2721 }
2722 out_unlock:
2723 spin_unlock(&rq->lock);
2724 out:
2725 rebalance_tick(cpu, rq, NOT_IDLE);
2726 }
2727
2728 #ifdef CONFIG_SCHED_SMT
2729 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2730 {
2731 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2732 if (rq->curr == rq->idle && rq->nr_running)
2733 resched_task(rq->idle);
2734 }
2735
2736 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2737 {
2738 struct sched_domain *tmp, *sd = NULL;
2739 cpumask_t sibling_map;
2740 int i;
2741
2742 for_each_domain(this_cpu, tmp)
2743 if (tmp->flags & SD_SHARE_CPUPOWER)
2744 sd = tmp;
2745
2746 if (!sd)
2747 return;
2748
2749 /*
2750 * Unlock the current runqueue because we have to lock in
2751 * CPU order to avoid deadlocks. Caller knows that we might
2752 * unlock. We keep IRQs disabled.
2753 */
2754 spin_unlock(&this_rq->lock);
2755
2756 sibling_map = sd->span;
2757
2758 for_each_cpu_mask(i, sibling_map)
2759 spin_lock(&cpu_rq(i)->lock);
2760 /*
2761 * We clear this CPU from the mask. This both simplifies the
2762 * inner loop and keps this_rq locked when we exit:
2763 */
2764 cpu_clear(this_cpu, sibling_map);
2765
2766 for_each_cpu_mask(i, sibling_map) {
2767 runqueue_t *smt_rq = cpu_rq(i);
2768
2769 wakeup_busy_runqueue(smt_rq);
2770 }
2771
2772 for_each_cpu_mask(i, sibling_map)
2773 spin_unlock(&cpu_rq(i)->lock);
2774 /*
2775 * We exit with this_cpu's rq still held and IRQs
2776 * still disabled:
2777 */
2778 }
2779
2780 /*
2781 * number of 'lost' timeslices this task wont be able to fully
2782 * utilize, if another task runs on a sibling. This models the
2783 * slowdown effect of other tasks running on siblings:
2784 */
2785 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2786 {
2787 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2788 }
2789
2790 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2791 {
2792 struct sched_domain *tmp, *sd = NULL;
2793 cpumask_t sibling_map;
2794 prio_array_t *array;
2795 int ret = 0, i;
2796 task_t *p;
2797
2798 for_each_domain(this_cpu, tmp)
2799 if (tmp->flags & SD_SHARE_CPUPOWER)
2800 sd = tmp;
2801
2802 if (!sd)
2803 return 0;
2804
2805 /*
2806 * The same locking rules and details apply as for
2807 * wake_sleeping_dependent():
2808 */
2809 spin_unlock(&this_rq->lock);
2810 sibling_map = sd->span;
2811 for_each_cpu_mask(i, sibling_map)
2812 spin_lock(&cpu_rq(i)->lock);
2813 cpu_clear(this_cpu, sibling_map);
2814
2815 /*
2816 * Establish next task to be run - it might have gone away because
2817 * we released the runqueue lock above:
2818 */
2819 if (!this_rq->nr_running)
2820 goto out_unlock;
2821 array = this_rq->active;
2822 if (!array->nr_active)
2823 array = this_rq->expired;
2824 BUG_ON(!array->nr_active);
2825
2826 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2827 task_t, run_list);
2828
2829 for_each_cpu_mask(i, sibling_map) {
2830 runqueue_t *smt_rq = cpu_rq(i);
2831 task_t *smt_curr = smt_rq->curr;
2832
2833 /* Kernel threads do not participate in dependent sleeping */
2834 if (!p->mm || !smt_curr->mm || rt_task(p))
2835 goto check_smt_task;
2836
2837 /*
2838 * If a user task with lower static priority than the
2839 * running task on the SMT sibling is trying to schedule,
2840 * delay it till there is proportionately less timeslice
2841 * left of the sibling task to prevent a lower priority
2842 * task from using an unfair proportion of the
2843 * physical cpu's resources. -ck
2844 */
2845 if (rt_task(smt_curr)) {
2846 /*
2847 * With real time tasks we run non-rt tasks only
2848 * per_cpu_gain% of the time.
2849 */
2850 if ((jiffies % DEF_TIMESLICE) >
2851 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2852 ret = 1;
2853 } else
2854 if (smt_curr->static_prio < p->static_prio &&
2855 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2856 smt_slice(smt_curr, sd) > task_timeslice(p))
2857 ret = 1;
2858
2859 check_smt_task:
2860 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2861 rt_task(smt_curr))
2862 continue;
2863 if (!p->mm) {
2864 wakeup_busy_runqueue(smt_rq);
2865 continue;
2866 }
2867
2868 /*
2869 * Reschedule a lower priority task on the SMT sibling for
2870 * it to be put to sleep, or wake it up if it has been put to
2871 * sleep for priority reasons to see if it should run now.
2872 */
2873 if (rt_task(p)) {
2874 if ((jiffies % DEF_TIMESLICE) >
2875 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2876 resched_task(smt_curr);
2877 } else {
2878 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2879 smt_slice(p, sd) > task_timeslice(smt_curr))
2880 resched_task(smt_curr);
2881 else
2882 wakeup_busy_runqueue(smt_rq);
2883 }
2884 }
2885 out_unlock:
2886 for_each_cpu_mask(i, sibling_map)
2887 spin_unlock(&cpu_rq(i)->lock);
2888 return ret;
2889 }
2890 #else
2891 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2892 {
2893 }
2894
2895 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2896 {
2897 return 0;
2898 }
2899 #endif
2900
2901 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2902
2903 void fastcall add_preempt_count(int val)
2904 {
2905 /*
2906 * Underflow?
2907 */
2908 BUG_ON((preempt_count() < 0));
2909 preempt_count() += val;
2910 /*
2911 * Spinlock count overflowing soon?
2912 */
2913 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2914 }
2915 EXPORT_SYMBOL(add_preempt_count);
2916
2917 void fastcall sub_preempt_count(int val)
2918 {
2919 /*
2920 * Underflow?
2921 */
2922 BUG_ON(val > preempt_count());
2923 /*
2924 * Is the spinlock portion underflowing?
2925 */
2926 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2927 preempt_count() -= val;
2928 }
2929 EXPORT_SYMBOL(sub_preempt_count);
2930
2931 #endif
2932
2933 /*
2934 * schedule() is the main scheduler function.
2935 */
2936 asmlinkage void __sched schedule(void)
2937 {
2938 long *switch_count;
2939 task_t *prev, *next;
2940 runqueue_t *rq;
2941 prio_array_t *array;
2942 struct list_head *queue;
2943 unsigned long long now;
2944 unsigned long run_time;
2945 int cpu, idx, new_prio;
2946
2947 /*
2948 * Test if we are atomic. Since do_exit() needs to call into
2949 * schedule() atomically, we ignore that path for now.
2950 * Otherwise, whine if we are scheduling when we should not be.
2951 */
2952 if (likely(!current->exit_state)) {
2953 if (unlikely(in_atomic())) {
2954 printk(KERN_ERR "scheduling while atomic: "
2955 "%s/0x%08x/%d\n",
2956 current->comm, preempt_count(), current->pid);
2957 dump_stack();
2958 }
2959 }
2960 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2961
2962 need_resched:
2963 preempt_disable();
2964 prev = current;
2965 release_kernel_lock(prev);
2966 need_resched_nonpreemptible:
2967 rq = this_rq();
2968
2969 /*
2970 * The idle thread is not allowed to schedule!
2971 * Remove this check after it has been exercised a bit.
2972 */
2973 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2974 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2975 dump_stack();
2976 }
2977
2978 schedstat_inc(rq, sched_cnt);
2979 now = sched_clock();
2980 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2981 run_time = now - prev->timestamp;
2982 if (unlikely((long long)(now - prev->timestamp) < 0))
2983 run_time = 0;
2984 } else
2985 run_time = NS_MAX_SLEEP_AVG;
2986
2987 /*
2988 * Tasks charged proportionately less run_time at high sleep_avg to
2989 * delay them losing their interactive status
2990 */
2991 run_time /= (CURRENT_BONUS(prev) ? : 1);
2992
2993 spin_lock_irq(&rq->lock);
2994
2995 if (unlikely(prev->flags & PF_DEAD))
2996 prev->state = EXIT_DEAD;
2997
2998 switch_count = &prev->nivcsw;
2999 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3000 switch_count = &prev->nvcsw;
3001 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3002 unlikely(signal_pending(prev))))
3003 prev->state = TASK_RUNNING;
3004 else {
3005 if (prev->state == TASK_UNINTERRUPTIBLE)
3006 rq->nr_uninterruptible++;
3007 deactivate_task(prev, rq);
3008 }
3009 }
3010
3011 cpu = smp_processor_id();
3012 if (unlikely(!rq->nr_running)) {
3013 go_idle:
3014 idle_balance(cpu, rq);
3015 if (!rq->nr_running) {
3016 next = rq->idle;
3017 rq->expired_timestamp = 0;
3018 wake_sleeping_dependent(cpu, rq);
3019 /*
3020 * wake_sleeping_dependent() might have released
3021 * the runqueue, so break out if we got new
3022 * tasks meanwhile:
3023 */
3024 if (!rq->nr_running)
3025 goto switch_tasks;
3026 }
3027 } else {
3028 if (dependent_sleeper(cpu, rq)) {
3029 next = rq->idle;
3030 goto switch_tasks;
3031 }
3032 /*
3033 * dependent_sleeper() releases and reacquires the runqueue
3034 * lock, hence go into the idle loop if the rq went
3035 * empty meanwhile:
3036 */
3037 if (unlikely(!rq->nr_running))
3038 goto go_idle;
3039 }
3040
3041 array = rq->active;
3042 if (unlikely(!array->nr_active)) {
3043 /*
3044 * Switch the active and expired arrays.
3045 */
3046 schedstat_inc(rq, sched_switch);
3047 rq->active = rq->expired;
3048 rq->expired = array;
3049 array = rq->active;
3050 rq->expired_timestamp = 0;
3051 rq->best_expired_prio = MAX_PRIO;
3052 }
3053
3054 idx = sched_find_first_bit(array->bitmap);
3055 queue = array->queue + idx;
3056 next = list_entry(queue->next, task_t, run_list);
3057
3058 if (!rt_task(next) && next->activated > 0) {
3059 unsigned long long delta = now - next->timestamp;
3060 if (unlikely((long long)(now - next->timestamp) < 0))
3061 delta = 0;
3062
3063 if (next->activated == 1)
3064 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3065
3066 array = next->array;
3067 new_prio = recalc_task_prio(next, next->timestamp + delta);
3068
3069 if (unlikely(next->prio != new_prio)) {
3070 dequeue_task(next, array);
3071 next->prio = new_prio;
3072 enqueue_task(next, array);
3073 } else
3074 requeue_task(next, array);
3075 }
3076 next->activated = 0;
3077 switch_tasks:
3078 if (next == rq->idle)
3079 schedstat_inc(rq, sched_goidle);
3080 prefetch(next);
3081 prefetch_stack(next);
3082 clear_tsk_need_resched(prev);
3083 rcu_qsctr_inc(task_cpu(prev));
3084
3085 update_cpu_clock(prev, rq, now);
3086
3087 prev->sleep_avg -= run_time;
3088 if ((long)prev->sleep_avg <= 0)
3089 prev->sleep_avg = 0;
3090 prev->timestamp = prev->last_ran = now;
3091
3092 sched_info_switch(prev, next);
3093 if (likely(prev != next)) {
3094 next->timestamp = now;
3095 rq->nr_switches++;
3096 rq->curr = next;
3097 ++*switch_count;
3098
3099 prepare_task_switch(rq, next);
3100 prev = context_switch(rq, prev, next);
3101 barrier();
3102 /*
3103 * this_rq must be evaluated again because prev may have moved
3104 * CPUs since it called schedule(), thus the 'rq' on its stack
3105 * frame will be invalid.
3106 */
3107 finish_task_switch(this_rq(), prev);
3108 } else
3109 spin_unlock_irq(&rq->lock);
3110
3111 prev = current;
3112 if (unlikely(reacquire_kernel_lock(prev) < 0))
3113 goto need_resched_nonpreemptible;
3114 preempt_enable_no_resched();
3115 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3116 goto need_resched;
3117 }
3118
3119 EXPORT_SYMBOL(schedule);
3120
3121 #ifdef CONFIG_PREEMPT
3122 /*
3123 * this is is the entry point to schedule() from in-kernel preemption
3124 * off of preempt_enable. Kernel preemptions off return from interrupt
3125 * occur there and call schedule directly.
3126 */
3127 asmlinkage void __sched preempt_schedule(void)
3128 {
3129 struct thread_info *ti = current_thread_info();
3130 #ifdef CONFIG_PREEMPT_BKL
3131 struct task_struct *task = current;
3132 int saved_lock_depth;
3133 #endif
3134 /*
3135 * If there is a non-zero preempt_count or interrupts are disabled,
3136 * we do not want to preempt the current task. Just return..
3137 */
3138 if (unlikely(ti->preempt_count || irqs_disabled()))
3139 return;
3140
3141 need_resched:
3142 add_preempt_count(PREEMPT_ACTIVE);
3143 /*
3144 * We keep the big kernel semaphore locked, but we
3145 * clear ->lock_depth so that schedule() doesnt
3146 * auto-release the semaphore:
3147 */
3148 #ifdef CONFIG_PREEMPT_BKL
3149 saved_lock_depth = task->lock_depth;
3150 task->lock_depth = -1;
3151 #endif
3152 schedule();
3153 #ifdef CONFIG_PREEMPT_BKL
3154 task->lock_depth = saved_lock_depth;
3155 #endif
3156 sub_preempt_count(PREEMPT_ACTIVE);
3157
3158 /* we could miss a preemption opportunity between schedule and now */
3159 barrier();
3160 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3161 goto need_resched;
3162 }
3163
3164 EXPORT_SYMBOL(preempt_schedule);
3165
3166 /*
3167 * this is is the entry point to schedule() from kernel preemption
3168 * off of irq context.
3169 * Note, that this is called and return with irqs disabled. This will
3170 * protect us against recursive calling from irq.
3171 */
3172 asmlinkage void __sched preempt_schedule_irq(void)
3173 {
3174 struct thread_info *ti = current_thread_info();
3175 #ifdef CONFIG_PREEMPT_BKL
3176 struct task_struct *task = current;
3177 int saved_lock_depth;
3178 #endif
3179 /* Catch callers which need to be fixed*/
3180 BUG_ON(ti->preempt_count || !irqs_disabled());
3181
3182 need_resched:
3183 add_preempt_count(PREEMPT_ACTIVE);
3184 /*
3185 * We keep the big kernel semaphore locked, but we
3186 * clear ->lock_depth so that schedule() doesnt
3187 * auto-release the semaphore:
3188 */
3189 #ifdef CONFIG_PREEMPT_BKL
3190 saved_lock_depth = task->lock_depth;
3191 task->lock_depth = -1;
3192 #endif
3193 local_irq_enable();
3194 schedule();
3195 local_irq_disable();
3196 #ifdef CONFIG_PREEMPT_BKL
3197 task->lock_depth = saved_lock_depth;
3198 #endif
3199 sub_preempt_count(PREEMPT_ACTIVE);
3200
3201 /* we could miss a preemption opportunity between schedule and now */
3202 barrier();
3203 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3204 goto need_resched;
3205 }
3206
3207 #endif /* CONFIG_PREEMPT */
3208
3209 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3210 void *key)
3211 {
3212 task_t *p = curr->private;
3213 return try_to_wake_up(p, mode, sync);
3214 }
3215
3216 EXPORT_SYMBOL(default_wake_function);
3217
3218 /*
3219 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3220 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3221 * number) then we wake all the non-exclusive tasks and one exclusive task.
3222 *
3223 * There are circumstances in which we can try to wake a task which has already
3224 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3225 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3226 */
3227 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3228 int nr_exclusive, int sync, void *key)
3229 {
3230 struct list_head *tmp, *next;
3231
3232 list_for_each_safe(tmp, next, &q->task_list) {
3233 wait_queue_t *curr;
3234 unsigned flags;
3235 curr = list_entry(tmp, wait_queue_t, task_list);
3236 flags = curr->flags;
3237 if (curr->func(curr, mode, sync, key) &&
3238 (flags & WQ_FLAG_EXCLUSIVE) &&
3239 !--nr_exclusive)
3240 break;
3241 }
3242 }
3243
3244 /**
3245 * __wake_up - wake up threads blocked on a waitqueue.
3246 * @q: the waitqueue
3247 * @mode: which threads
3248 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3249 * @key: is directly passed to the wakeup function
3250 */
3251 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3252 int nr_exclusive, void *key)
3253 {
3254 unsigned long flags;
3255
3256 spin_lock_irqsave(&q->lock, flags);
3257 __wake_up_common(q, mode, nr_exclusive, 0, key);
3258 spin_unlock_irqrestore(&q->lock, flags);
3259 }
3260
3261 EXPORT_SYMBOL(__wake_up);
3262
3263 /*
3264 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3265 */
3266 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3267 {
3268 __wake_up_common(q, mode, 1, 0, NULL);
3269 }
3270
3271 /**
3272 * __wake_up_sync - wake up threads blocked on a waitqueue.
3273 * @q: the waitqueue
3274 * @mode: which threads
3275 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3276 *
3277 * The sync wakeup differs that the waker knows that it will schedule
3278 * away soon, so while the target thread will be woken up, it will not
3279 * be migrated to another CPU - ie. the two threads are 'synchronized'
3280 * with each other. This can prevent needless bouncing between CPUs.
3281 *
3282 * On UP it can prevent extra preemption.
3283 */
3284 void fastcall
3285 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3286 {
3287 unsigned long flags;
3288 int sync = 1;
3289
3290 if (unlikely(!q))
3291 return;
3292
3293 if (unlikely(!nr_exclusive))
3294 sync = 0;
3295
3296 spin_lock_irqsave(&q->lock, flags);
3297 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3298 spin_unlock_irqrestore(&q->lock, flags);
3299 }
3300 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3301
3302 void fastcall complete(struct completion *x)
3303 {
3304 unsigned long flags;
3305
3306 spin_lock_irqsave(&x->wait.lock, flags);
3307 x->done++;
3308 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3309 1, 0, NULL);
3310 spin_unlock_irqrestore(&x->wait.lock, flags);
3311 }
3312 EXPORT_SYMBOL(complete);
3313
3314 void fastcall complete_all(struct completion *x)
3315 {
3316 unsigned long flags;
3317
3318 spin_lock_irqsave(&x->wait.lock, flags);
3319 x->done += UINT_MAX/2;
3320 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3321 0, 0, NULL);
3322 spin_unlock_irqrestore(&x->wait.lock, flags);
3323 }
3324 EXPORT_SYMBOL(complete_all);
3325
3326 void fastcall __sched wait_for_completion(struct completion *x)
3327 {
3328 might_sleep();
3329 spin_lock_irq(&x->wait.lock);
3330 if (!x->done) {
3331 DECLARE_WAITQUEUE(wait, current);
3332
3333 wait.flags |= WQ_FLAG_EXCLUSIVE;
3334 __add_wait_queue_tail(&x->wait, &wait);
3335 do {
3336 __set_current_state(TASK_UNINTERRUPTIBLE);
3337 spin_unlock_irq(&x->wait.lock);
3338 schedule();
3339 spin_lock_irq(&x->wait.lock);
3340 } while (!x->done);
3341 __remove_wait_queue(&x->wait, &wait);
3342 }
3343 x->done--;
3344 spin_unlock_irq(&x->wait.lock);
3345 }
3346 EXPORT_SYMBOL(wait_for_completion);
3347
3348 unsigned long fastcall __sched
3349 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3350 {
3351 might_sleep();
3352
3353 spin_lock_irq(&x->wait.lock);
3354 if (!x->done) {
3355 DECLARE_WAITQUEUE(wait, current);
3356
3357 wait.flags |= WQ_FLAG_EXCLUSIVE;
3358 __add_wait_queue_tail(&x->wait, &wait);
3359 do {
3360 __set_current_state(TASK_UNINTERRUPTIBLE);
3361 spin_unlock_irq(&x->wait.lock);
3362 timeout = schedule_timeout(timeout);
3363 spin_lock_irq(&x->wait.lock);
3364 if (!timeout) {
3365 __remove_wait_queue(&x->wait, &wait);
3366 goto out;
3367 }
3368 } while (!x->done);
3369 __remove_wait_queue(&x->wait, &wait);
3370 }
3371 x->done--;
3372 out:
3373 spin_unlock_irq(&x->wait.lock);
3374 return timeout;
3375 }
3376 EXPORT_SYMBOL(wait_for_completion_timeout);
3377
3378 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3379 {
3380 int ret = 0;
3381
3382 might_sleep();
3383
3384 spin_lock_irq(&x->wait.lock);
3385 if (!x->done) {
3386 DECLARE_WAITQUEUE(wait, current);
3387
3388 wait.flags |= WQ_FLAG_EXCLUSIVE;
3389 __add_wait_queue_tail(&x->wait, &wait);
3390 do {
3391 if (signal_pending(current)) {
3392 ret = -ERESTARTSYS;
3393 __remove_wait_queue(&x->wait, &wait);
3394 goto out;
3395 }
3396 __set_current_state(TASK_INTERRUPTIBLE);
3397 spin_unlock_irq(&x->wait.lock);
3398 schedule();
3399 spin_lock_irq(&x->wait.lock);
3400 } while (!x->done);
3401 __remove_wait_queue(&x->wait, &wait);
3402 }
3403 x->done--;
3404 out:
3405 spin_unlock_irq(&x->wait.lock);
3406
3407 return ret;
3408 }
3409 EXPORT_SYMBOL(wait_for_completion_interruptible);
3410
3411 unsigned long fastcall __sched
3412 wait_for_completion_interruptible_timeout(struct completion *x,
3413 unsigned long timeout)
3414 {
3415 might_sleep();
3416
3417 spin_lock_irq(&x->wait.lock);
3418 if (!x->done) {
3419 DECLARE_WAITQUEUE(wait, current);
3420
3421 wait.flags |= WQ_FLAG_EXCLUSIVE;
3422 __add_wait_queue_tail(&x->wait, &wait);
3423 do {
3424 if (signal_pending(current)) {
3425 timeout = -ERESTARTSYS;
3426 __remove_wait_queue(&x->wait, &wait);
3427 goto out;
3428 }
3429 __set_current_state(TASK_INTERRUPTIBLE);
3430 spin_unlock_irq(&x->wait.lock);
3431 timeout = schedule_timeout(timeout);
3432 spin_lock_irq(&x->wait.lock);
3433 if (!timeout) {
3434 __remove_wait_queue(&x->wait, &wait);
3435 goto out;
3436 }
3437 } while (!x->done);
3438 __remove_wait_queue(&x->wait, &wait);
3439 }
3440 x->done--;
3441 out:
3442 spin_unlock_irq(&x->wait.lock);
3443 return timeout;
3444 }
3445 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3446
3447
3448 #define SLEEP_ON_VAR \
3449 unsigned long flags; \
3450 wait_queue_t wait; \
3451 init_waitqueue_entry(&wait, current);
3452
3453 #define SLEEP_ON_HEAD \
3454 spin_lock_irqsave(&q->lock,flags); \
3455 __add_wait_queue(q, &wait); \
3456 spin_unlock(&q->lock);
3457
3458 #define SLEEP_ON_TAIL \
3459 spin_lock_irq(&q->lock); \
3460 __remove_wait_queue(q, &wait); \
3461 spin_unlock_irqrestore(&q->lock, flags);
3462
3463 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3464 {
3465 SLEEP_ON_VAR
3466
3467 current->state = TASK_INTERRUPTIBLE;
3468
3469 SLEEP_ON_HEAD
3470 schedule();
3471 SLEEP_ON_TAIL
3472 }
3473
3474 EXPORT_SYMBOL(interruptible_sleep_on);
3475
3476 long fastcall __sched
3477 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3478 {
3479 SLEEP_ON_VAR
3480
3481 current->state = TASK_INTERRUPTIBLE;
3482
3483 SLEEP_ON_HEAD
3484 timeout = schedule_timeout(timeout);
3485 SLEEP_ON_TAIL
3486
3487 return timeout;
3488 }
3489
3490 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3491
3492 void fastcall __sched sleep_on(wait_queue_head_t *q)
3493 {
3494 SLEEP_ON_VAR
3495
3496 current->state = TASK_UNINTERRUPTIBLE;
3497
3498 SLEEP_ON_HEAD
3499 schedule();
3500 SLEEP_ON_TAIL
3501 }
3502
3503 EXPORT_SYMBOL(sleep_on);
3504
3505 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3506 {
3507 SLEEP_ON_VAR
3508
3509 current->state = TASK_UNINTERRUPTIBLE;
3510
3511 SLEEP_ON_HEAD
3512 timeout = schedule_timeout(timeout);
3513 SLEEP_ON_TAIL
3514
3515 return timeout;
3516 }
3517
3518 EXPORT_SYMBOL(sleep_on_timeout);
3519
3520 void set_user_nice(task_t *p, long nice)
3521 {
3522 unsigned long flags;
3523 prio_array_t *array;
3524 runqueue_t *rq;
3525 int old_prio, new_prio, delta;
3526
3527 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3528 return;
3529 /*
3530 * We have to be careful, if called from sys_setpriority(),
3531 * the task might be in the middle of scheduling on another CPU.
3532 */
3533 rq = task_rq_lock(p, &flags);
3534 /*
3535 * The RT priorities are set via sched_setscheduler(), but we still
3536 * allow the 'normal' nice value to be set - but as expected
3537 * it wont have any effect on scheduling until the task is
3538 * not SCHED_NORMAL:
3539 */
3540 if (rt_task(p)) {
3541 p->static_prio = NICE_TO_PRIO(nice);
3542 goto out_unlock;
3543 }
3544 array = p->array;
3545 if (array) {
3546 dequeue_task(p, array);
3547 dec_prio_bias(rq, p->static_prio);
3548 }
3549
3550 old_prio = p->prio;
3551 new_prio = NICE_TO_PRIO(nice);
3552 delta = new_prio - old_prio;
3553 p->static_prio = NICE_TO_PRIO(nice);
3554 p->prio += delta;
3555
3556 if (array) {
3557 enqueue_task(p, array);
3558 inc_prio_bias(rq, p->static_prio);
3559 /*
3560 * If the task increased its priority or is running and
3561 * lowered its priority, then reschedule its CPU:
3562 */
3563 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3564 resched_task(rq->curr);
3565 }
3566 out_unlock:
3567 task_rq_unlock(rq, &flags);
3568 }
3569
3570 EXPORT_SYMBOL(set_user_nice);
3571
3572 /*
3573 * can_nice - check if a task can reduce its nice value
3574 * @p: task
3575 * @nice: nice value
3576 */
3577 int can_nice(const task_t *p, const int nice)
3578 {
3579 /* convert nice value [19,-20] to rlimit style value [1,40] */
3580 int nice_rlim = 20 - nice;
3581 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3582 capable(CAP_SYS_NICE));
3583 }
3584
3585 #ifdef __ARCH_WANT_SYS_NICE
3586
3587 /*
3588 * sys_nice - change the priority of the current process.
3589 * @increment: priority increment
3590 *
3591 * sys_setpriority is a more generic, but much slower function that
3592 * does similar things.
3593 */
3594 asmlinkage long sys_nice(int increment)
3595 {
3596 int retval;
3597 long nice;
3598
3599 /*
3600 * Setpriority might change our priority at the same moment.
3601 * We don't have to worry. Conceptually one call occurs first
3602 * and we have a single winner.
3603 */
3604 if (increment < -40)
3605 increment = -40;
3606 if (increment > 40)
3607 increment = 40;
3608
3609 nice = PRIO_TO_NICE(current->static_prio) + increment;
3610 if (nice < -20)
3611 nice = -20;
3612 if (nice > 19)
3613 nice = 19;
3614
3615 if (increment < 0 && !can_nice(current, nice))
3616 return -EPERM;
3617
3618 retval = security_task_setnice(current, nice);
3619 if (retval)
3620 return retval;
3621
3622 set_user_nice(current, nice);
3623 return 0;
3624 }
3625
3626 #endif
3627
3628 /**
3629 * task_prio - return the priority value of a given task.
3630 * @p: the task in question.
3631 *
3632 * This is the priority value as seen by users in /proc.
3633 * RT tasks are offset by -200. Normal tasks are centered
3634 * around 0, value goes from -16 to +15.
3635 */
3636 int task_prio(const task_t *p)
3637 {
3638 return p->prio - MAX_RT_PRIO;
3639 }
3640
3641 /**
3642 * task_nice - return the nice value of a given task.
3643 * @p: the task in question.
3644 */
3645 int task_nice(const task_t *p)
3646 {
3647 return TASK_NICE(p);
3648 }
3649 EXPORT_SYMBOL_GPL(task_nice);
3650
3651 /**
3652 * idle_cpu - is a given cpu idle currently?
3653 * @cpu: the processor in question.
3654 */
3655 int idle_cpu(int cpu)
3656 {
3657 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3658 }
3659
3660 /**
3661 * idle_task - return the idle task for a given cpu.
3662 * @cpu: the processor in question.
3663 */
3664 task_t *idle_task(int cpu)
3665 {
3666 return cpu_rq(cpu)->idle;
3667 }
3668
3669 /**
3670 * find_process_by_pid - find a process with a matching PID value.
3671 * @pid: the pid in question.
3672 */
3673 static inline task_t *find_process_by_pid(pid_t pid)
3674 {
3675 return pid ? find_task_by_pid(pid) : current;
3676 }
3677
3678 /* Actually do priority change: must hold rq lock. */
3679 static void __setscheduler(struct task_struct *p, int policy, int prio)
3680 {
3681 BUG_ON(p->array);
3682 p->policy = policy;
3683 p->rt_priority = prio;
3684 if (policy != SCHED_NORMAL)
3685 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3686 else
3687 p->prio = p->static_prio;
3688 }
3689
3690 /**
3691 * sched_setscheduler - change the scheduling policy and/or RT priority of
3692 * a thread.
3693 * @p: the task in question.
3694 * @policy: new policy.
3695 * @param: structure containing the new RT priority.
3696 */
3697 int sched_setscheduler(struct task_struct *p, int policy,
3698 struct sched_param *param)
3699 {
3700 int retval;
3701 int oldprio, oldpolicy = -1;
3702 prio_array_t *array;
3703 unsigned long flags;
3704 runqueue_t *rq;
3705
3706 recheck:
3707 /* double check policy once rq lock held */
3708 if (policy < 0)
3709 policy = oldpolicy = p->policy;
3710 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3711 policy != SCHED_NORMAL)
3712 return -EINVAL;
3713 /*
3714 * Valid priorities for SCHED_FIFO and SCHED_RR are
3715 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3716 */
3717 if (param->sched_priority < 0 ||
3718 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3719 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3720 return -EINVAL;
3721 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3722 return -EINVAL;
3723
3724 /*
3725 * Allow unprivileged RT tasks to decrease priority:
3726 */
3727 if (!capable(CAP_SYS_NICE)) {
3728 /* can't change policy */
3729 if (policy != p->policy &&
3730 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3731 return -EPERM;
3732 /* can't increase priority */
3733 if (policy != SCHED_NORMAL &&
3734 param->sched_priority > p->rt_priority &&
3735 param->sched_priority >
3736 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3737 return -EPERM;
3738 /* can't change other user's priorities */
3739 if ((current->euid != p->euid) &&
3740 (current->euid != p->uid))
3741 return -EPERM;
3742 }
3743
3744 retval = security_task_setscheduler(p, policy, param);
3745 if (retval)
3746 return retval;
3747 /*
3748 * To be able to change p->policy safely, the apropriate
3749 * runqueue lock must be held.
3750 */
3751 rq = task_rq_lock(p, &flags);
3752 /* recheck policy now with rq lock held */
3753 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3754 policy = oldpolicy = -1;
3755 task_rq_unlock(rq, &flags);
3756 goto recheck;
3757 }
3758 array = p->array;
3759 if (array)
3760 deactivate_task(p, rq);
3761 oldprio = p->prio;
3762 __setscheduler(p, policy, param->sched_priority);
3763 if (array) {
3764 __activate_task(p, rq);
3765 /*
3766 * Reschedule if we are currently running on this runqueue and
3767 * our priority decreased, or if we are not currently running on
3768 * this runqueue and our priority is higher than the current's
3769 */
3770 if (task_running(rq, p)) {
3771 if (p->prio > oldprio)
3772 resched_task(rq->curr);
3773 } else if (TASK_PREEMPTS_CURR(p, rq))
3774 resched_task(rq->curr);
3775 }
3776 task_rq_unlock(rq, &flags);
3777 return 0;
3778 }
3779 EXPORT_SYMBOL_GPL(sched_setscheduler);
3780
3781 static int
3782 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3783 {
3784 int retval;
3785 struct sched_param lparam;
3786 struct task_struct *p;
3787
3788 if (!param || pid < 0)
3789 return -EINVAL;
3790 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3791 return -EFAULT;
3792 read_lock_irq(&tasklist_lock);
3793 p = find_process_by_pid(pid);
3794 if (!p) {
3795 read_unlock_irq(&tasklist_lock);
3796 return -ESRCH;
3797 }
3798 retval = sched_setscheduler(p, policy, &lparam);
3799 read_unlock_irq(&tasklist_lock);
3800 return retval;
3801 }
3802
3803 /**
3804 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3805 * @pid: the pid in question.
3806 * @policy: new policy.
3807 * @param: structure containing the new RT priority.
3808 */
3809 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3810 struct sched_param __user *param)
3811 {
3812 return do_sched_setscheduler(pid, policy, param);
3813 }
3814
3815 /**
3816 * sys_sched_setparam - set/change the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the new RT priority.
3819 */
3820 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3821 {
3822 return do_sched_setscheduler(pid, -1, param);
3823 }
3824
3825 /**
3826 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3827 * @pid: the pid in question.
3828 */
3829 asmlinkage long sys_sched_getscheduler(pid_t pid)
3830 {
3831 int retval = -EINVAL;
3832 task_t *p;
3833
3834 if (pid < 0)
3835 goto out_nounlock;
3836
3837 retval = -ESRCH;
3838 read_lock(&tasklist_lock);
3839 p = find_process_by_pid(pid);
3840 if (p) {
3841 retval = security_task_getscheduler(p);
3842 if (!retval)
3843 retval = p->policy;
3844 }
3845 read_unlock(&tasklist_lock);
3846
3847 out_nounlock:
3848 return retval;
3849 }
3850
3851 /**
3852 * sys_sched_getscheduler - get the RT priority of a thread
3853 * @pid: the pid in question.
3854 * @param: structure containing the RT priority.
3855 */
3856 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3857 {
3858 struct sched_param lp;
3859 int retval = -EINVAL;
3860 task_t *p;
3861
3862 if (!param || pid < 0)
3863 goto out_nounlock;
3864
3865 read_lock(&tasklist_lock);
3866 p = find_process_by_pid(pid);
3867 retval = -ESRCH;
3868 if (!p)
3869 goto out_unlock;
3870
3871 retval = security_task_getscheduler(p);
3872 if (retval)
3873 goto out_unlock;
3874
3875 lp.sched_priority = p->rt_priority;
3876 read_unlock(&tasklist_lock);
3877
3878 /*
3879 * This one might sleep, we cannot do it with a spinlock held ...
3880 */
3881 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3882
3883 out_nounlock:
3884 return retval;
3885
3886 out_unlock:
3887 read_unlock(&tasklist_lock);
3888 return retval;
3889 }
3890
3891 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3892 {
3893 task_t *p;
3894 int retval;
3895 cpumask_t cpus_allowed;
3896
3897 lock_cpu_hotplug();
3898 read_lock(&tasklist_lock);
3899
3900 p = find_process_by_pid(pid);
3901 if (!p) {
3902 read_unlock(&tasklist_lock);
3903 unlock_cpu_hotplug();
3904 return -ESRCH;
3905 }
3906
3907 /*
3908 * It is not safe to call set_cpus_allowed with the
3909 * tasklist_lock held. We will bump the task_struct's
3910 * usage count and then drop tasklist_lock.
3911 */
3912 get_task_struct(p);
3913 read_unlock(&tasklist_lock);
3914
3915 retval = -EPERM;
3916 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3917 !capable(CAP_SYS_NICE))
3918 goto out_unlock;
3919
3920 cpus_allowed = cpuset_cpus_allowed(p);
3921 cpus_and(new_mask, new_mask, cpus_allowed);
3922 retval = set_cpus_allowed(p, new_mask);
3923
3924 out_unlock:
3925 put_task_struct(p);
3926 unlock_cpu_hotplug();
3927 return retval;
3928 }
3929
3930 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3931 cpumask_t *new_mask)
3932 {
3933 if (len < sizeof(cpumask_t)) {
3934 memset(new_mask, 0, sizeof(cpumask_t));
3935 } else if (len > sizeof(cpumask_t)) {
3936 len = sizeof(cpumask_t);
3937 }
3938 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3939 }
3940
3941 /**
3942 * sys_sched_setaffinity - set the cpu affinity of a process
3943 * @pid: pid of the process
3944 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3945 * @user_mask_ptr: user-space pointer to the new cpu mask
3946 */
3947 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3948 unsigned long __user *user_mask_ptr)
3949 {
3950 cpumask_t new_mask;
3951 int retval;
3952
3953 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3954 if (retval)
3955 return retval;
3956
3957 return sched_setaffinity(pid, new_mask);
3958 }
3959
3960 /*
3961 * Represents all cpu's present in the system
3962 * In systems capable of hotplug, this map could dynamically grow
3963 * as new cpu's are detected in the system via any platform specific
3964 * method, such as ACPI for e.g.
3965 */
3966
3967 cpumask_t cpu_present_map;
3968 EXPORT_SYMBOL(cpu_present_map);
3969
3970 #ifndef CONFIG_SMP
3971 cpumask_t cpu_online_map = CPU_MASK_ALL;
3972 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3973 #endif
3974
3975 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3976 {
3977 int retval;
3978 task_t *p;
3979
3980 lock_cpu_hotplug();
3981 read_lock(&tasklist_lock);
3982
3983 retval = -ESRCH;
3984 p = find_process_by_pid(pid);
3985 if (!p)
3986 goto out_unlock;
3987
3988 retval = 0;
3989 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3990
3991 out_unlock:
3992 read_unlock(&tasklist_lock);
3993 unlock_cpu_hotplug();
3994 if (retval)
3995 return retval;
3996
3997 return 0;
3998 }
3999
4000 /**
4001 * sys_sched_getaffinity - get the cpu affinity of a process
4002 * @pid: pid of the process
4003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4004 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4005 */
4006 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4007 unsigned long __user *user_mask_ptr)
4008 {
4009 int ret;
4010 cpumask_t mask;
4011
4012 if (len < sizeof(cpumask_t))
4013 return -EINVAL;
4014
4015 ret = sched_getaffinity(pid, &mask);
4016 if (ret < 0)
4017 return ret;
4018
4019 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4020 return -EFAULT;
4021
4022 return sizeof(cpumask_t);
4023 }
4024
4025 /**
4026 * sys_sched_yield - yield the current processor to other threads.
4027 *
4028 * this function yields the current CPU by moving the calling thread
4029 * to the expired array. If there are no other threads running on this
4030 * CPU then this function will return.
4031 */
4032 asmlinkage long sys_sched_yield(void)
4033 {
4034 runqueue_t *rq = this_rq_lock();
4035 prio_array_t *array = current->array;
4036 prio_array_t *target = rq->expired;
4037
4038 schedstat_inc(rq, yld_cnt);
4039 /*
4040 * We implement yielding by moving the task into the expired
4041 * queue.
4042 *
4043 * (special rule: RT tasks will just roundrobin in the active
4044 * array.)
4045 */
4046 if (rt_task(current))
4047 target = rq->active;
4048
4049 if (array->nr_active == 1) {
4050 schedstat_inc(rq, yld_act_empty);
4051 if (!rq->expired->nr_active)
4052 schedstat_inc(rq, yld_both_empty);
4053 } else if (!rq->expired->nr_active)
4054 schedstat_inc(rq, yld_exp_empty);
4055
4056 if (array != target) {
4057 dequeue_task(current, array);
4058 enqueue_task(current, target);
4059 } else
4060 /*
4061 * requeue_task is cheaper so perform that if possible.
4062 */
4063 requeue_task(current, array);
4064
4065 /*
4066 * Since we are going to call schedule() anyway, there's
4067 * no need to preempt or enable interrupts:
4068 */
4069 __release(rq->lock);
4070 _raw_spin_unlock(&rq->lock);
4071 preempt_enable_no_resched();
4072
4073 schedule();
4074
4075 return 0;
4076 }
4077
4078 static inline void __cond_resched(void)
4079 {
4080 /*
4081 * The BKS might be reacquired before we have dropped
4082 * PREEMPT_ACTIVE, which could trigger a second
4083 * cond_resched() call.
4084 */
4085 if (unlikely(preempt_count()))
4086 return;
4087 do {
4088 add_preempt_count(PREEMPT_ACTIVE);
4089 schedule();
4090 sub_preempt_count(PREEMPT_ACTIVE);
4091 } while (need_resched());
4092 }
4093
4094 int __sched cond_resched(void)
4095 {
4096 if (need_resched()) {
4097 __cond_resched();
4098 return 1;
4099 }
4100 return 0;
4101 }
4102
4103 EXPORT_SYMBOL(cond_resched);
4104
4105 /*
4106 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4107 * call schedule, and on return reacquire the lock.
4108 *
4109 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4110 * operations here to prevent schedule() from being called twice (once via
4111 * spin_unlock(), once by hand).
4112 */
4113 int cond_resched_lock(spinlock_t *lock)
4114 {
4115 int ret = 0;
4116
4117 if (need_lockbreak(lock)) {
4118 spin_unlock(lock);
4119 cpu_relax();
4120 ret = 1;
4121 spin_lock(lock);
4122 }
4123 if (need_resched()) {
4124 _raw_spin_unlock(lock);
4125 preempt_enable_no_resched();
4126 __cond_resched();
4127 ret = 1;
4128 spin_lock(lock);
4129 }
4130 return ret;
4131 }
4132
4133 EXPORT_SYMBOL(cond_resched_lock);
4134
4135 int __sched cond_resched_softirq(void)
4136 {
4137 BUG_ON(!in_softirq());
4138
4139 if (need_resched()) {
4140 __local_bh_enable();
4141 __cond_resched();
4142 local_bh_disable();
4143 return 1;
4144 }
4145 return 0;
4146 }
4147
4148 EXPORT_SYMBOL(cond_resched_softirq);
4149
4150
4151 /**
4152 * yield - yield the current processor to other threads.
4153 *
4154 * this is a shortcut for kernel-space yielding - it marks the
4155 * thread runnable and calls sys_sched_yield().
4156 */
4157 void __sched yield(void)
4158 {
4159 set_current_state(TASK_RUNNING);
4160 sys_sched_yield();
4161 }
4162
4163 EXPORT_SYMBOL(yield);
4164
4165 /*
4166 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4167 * that process accounting knows that this is a task in IO wait state.
4168 *
4169 * But don't do that if it is a deliberate, throttling IO wait (this task
4170 * has set its backing_dev_info: the queue against which it should throttle)
4171 */
4172 void __sched io_schedule(void)
4173 {
4174 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4175
4176 atomic_inc(&rq->nr_iowait);
4177 schedule();
4178 atomic_dec(&rq->nr_iowait);
4179 }
4180
4181 EXPORT_SYMBOL(io_schedule);
4182
4183 long __sched io_schedule_timeout(long timeout)
4184 {
4185 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4186 long ret;
4187
4188 atomic_inc(&rq->nr_iowait);
4189 ret = schedule_timeout(timeout);
4190 atomic_dec(&rq->nr_iowait);
4191 return ret;
4192 }
4193
4194 /**
4195 * sys_sched_get_priority_max - return maximum RT priority.
4196 * @policy: scheduling class.
4197 *
4198 * this syscall returns the maximum rt_priority that can be used
4199 * by a given scheduling class.
4200 */
4201 asmlinkage long sys_sched_get_priority_max(int policy)
4202 {
4203 int ret = -EINVAL;
4204
4205 switch (policy) {
4206 case SCHED_FIFO:
4207 case SCHED_RR:
4208 ret = MAX_USER_RT_PRIO-1;
4209 break;
4210 case SCHED_NORMAL:
4211 ret = 0;
4212 break;
4213 }
4214 return ret;
4215 }
4216
4217 /**
4218 * sys_sched_get_priority_min - return minimum RT priority.
4219 * @policy: scheduling class.
4220 *
4221 * this syscall returns the minimum rt_priority that can be used
4222 * by a given scheduling class.
4223 */
4224 asmlinkage long sys_sched_get_priority_min(int policy)
4225 {
4226 int ret = -EINVAL;
4227
4228 switch (policy) {
4229 case SCHED_FIFO:
4230 case SCHED_RR:
4231 ret = 1;
4232 break;
4233 case SCHED_NORMAL:
4234 ret = 0;
4235 }
4236 return ret;
4237 }
4238
4239 /**
4240 * sys_sched_rr_get_interval - return the default timeslice of a process.
4241 * @pid: pid of the process.
4242 * @interval: userspace pointer to the timeslice value.
4243 *
4244 * this syscall writes the default timeslice value of a given process
4245 * into the user-space timespec buffer. A value of '0' means infinity.
4246 */
4247 asmlinkage
4248 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4249 {
4250 int retval = -EINVAL;
4251 struct timespec t;
4252 task_t *p;
4253
4254 if (pid < 0)
4255 goto out_nounlock;
4256
4257 retval = -ESRCH;
4258 read_lock(&tasklist_lock);
4259 p = find_process_by_pid(pid);
4260 if (!p)
4261 goto out_unlock;
4262
4263 retval = security_task_getscheduler(p);
4264 if (retval)
4265 goto out_unlock;
4266
4267 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4268 0 : task_timeslice(p), &t);
4269 read_unlock(&tasklist_lock);
4270 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4271 out_nounlock:
4272 return retval;
4273 out_unlock:
4274 read_unlock(&tasklist_lock);
4275 return retval;
4276 }
4277
4278 static inline struct task_struct *eldest_child(struct task_struct *p)
4279 {
4280 if (list_empty(&p->children)) return NULL;
4281 return list_entry(p->children.next,struct task_struct,sibling);
4282 }
4283
4284 static inline struct task_struct *older_sibling(struct task_struct *p)
4285 {
4286 if (p->sibling.prev==&p->parent->children) return NULL;
4287 return list_entry(p->sibling.prev,struct task_struct,sibling);
4288 }
4289
4290 static inline struct task_struct *younger_sibling(struct task_struct *p)
4291 {
4292 if (p->sibling.next==&p->parent->children) return NULL;
4293 return list_entry(p->sibling.next,struct task_struct,sibling);
4294 }
4295
4296 static void show_task(task_t *p)
4297 {
4298 task_t *relative;
4299 unsigned state;
4300 unsigned long free = 0;
4301 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4302
4303 printk("%-13.13s ", p->comm);
4304 state = p->state ? __ffs(p->state) + 1 : 0;
4305 if (state < ARRAY_SIZE(stat_nam))
4306 printk(stat_nam[state]);
4307 else
4308 printk("?");
4309 #if (BITS_PER_LONG == 32)
4310 if (state == TASK_RUNNING)
4311 printk(" running ");
4312 else
4313 printk(" %08lX ", thread_saved_pc(p));
4314 #else
4315 if (state == TASK_RUNNING)
4316 printk(" running task ");
4317 else
4318 printk(" %016lx ", thread_saved_pc(p));
4319 #endif
4320 #ifdef CONFIG_DEBUG_STACK_USAGE
4321 {
4322 unsigned long *n = (unsigned long *) (p->thread_info+1);
4323 while (!*n)
4324 n++;
4325 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4326 }
4327 #endif
4328 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4329 if ((relative = eldest_child(p)))
4330 printk("%5d ", relative->pid);
4331 else
4332 printk(" ");
4333 if ((relative = younger_sibling(p)))
4334 printk("%7d", relative->pid);
4335 else
4336 printk(" ");
4337 if ((relative = older_sibling(p)))
4338 printk(" %5d", relative->pid);
4339 else
4340 printk(" ");
4341 if (!p->mm)
4342 printk(" (L-TLB)\n");
4343 else
4344 printk(" (NOTLB)\n");
4345
4346 if (state != TASK_RUNNING)
4347 show_stack(p, NULL);
4348 }
4349
4350 void show_state(void)
4351 {
4352 task_t *g, *p;
4353
4354 #if (BITS_PER_LONG == 32)
4355 printk("\n"
4356 " sibling\n");
4357 printk(" task PC pid father child younger older\n");
4358 #else
4359 printk("\n"
4360 " sibling\n");
4361 printk(" task PC pid father child younger older\n");
4362 #endif
4363 read_lock(&tasklist_lock);
4364 do_each_thread(g, p) {
4365 /*
4366 * reset the NMI-timeout, listing all files on a slow
4367 * console might take alot of time:
4368 */
4369 touch_nmi_watchdog();
4370 show_task(p);
4371 } while_each_thread(g, p);
4372
4373 read_unlock(&tasklist_lock);
4374 }
4375
4376 /**
4377 * init_idle - set up an idle thread for a given CPU
4378 * @idle: task in question
4379 * @cpu: cpu the idle task belongs to
4380 *
4381 * NOTE: this function does not set the idle thread's NEED_RESCHED
4382 * flag, to make booting more robust.
4383 */
4384 void __devinit init_idle(task_t *idle, int cpu)
4385 {
4386 runqueue_t *rq = cpu_rq(cpu);
4387 unsigned long flags;
4388
4389 idle->sleep_avg = 0;
4390 idle->array = NULL;
4391 idle->prio = MAX_PRIO;
4392 idle->state = TASK_RUNNING;
4393 idle->cpus_allowed = cpumask_of_cpu(cpu);
4394 set_task_cpu(idle, cpu);
4395
4396 spin_lock_irqsave(&rq->lock, flags);
4397 rq->curr = rq->idle = idle;
4398 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4399 idle->oncpu = 1;
4400 #endif
4401 spin_unlock_irqrestore(&rq->lock, flags);
4402
4403 /* Set the preempt count _outside_ the spinlocks! */
4404 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4405 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4406 #else
4407 idle->thread_info->preempt_count = 0;
4408 #endif
4409 }
4410
4411 /*
4412 * In a system that switches off the HZ timer nohz_cpu_mask
4413 * indicates which cpus entered this state. This is used
4414 * in the rcu update to wait only for active cpus. For system
4415 * which do not switch off the HZ timer nohz_cpu_mask should
4416 * always be CPU_MASK_NONE.
4417 */
4418 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4419
4420 #ifdef CONFIG_SMP
4421 /*
4422 * This is how migration works:
4423 *
4424 * 1) we queue a migration_req_t structure in the source CPU's
4425 * runqueue and wake up that CPU's migration thread.
4426 * 2) we down() the locked semaphore => thread blocks.
4427 * 3) migration thread wakes up (implicitly it forces the migrated
4428 * thread off the CPU)
4429 * 4) it gets the migration request and checks whether the migrated
4430 * task is still in the wrong runqueue.
4431 * 5) if it's in the wrong runqueue then the migration thread removes
4432 * it and puts it into the right queue.
4433 * 6) migration thread up()s the semaphore.
4434 * 7) we wake up and the migration is done.
4435 */
4436
4437 /*
4438 * Change a given task's CPU affinity. Migrate the thread to a
4439 * proper CPU and schedule it away if the CPU it's executing on
4440 * is removed from the allowed bitmask.
4441 *
4442 * NOTE: the caller must have a valid reference to the task, the
4443 * task must not exit() & deallocate itself prematurely. The
4444 * call is not atomic; no spinlocks may be held.
4445 */
4446 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4447 {
4448 unsigned long flags;
4449 int ret = 0;
4450 migration_req_t req;
4451 runqueue_t *rq;
4452
4453 rq = task_rq_lock(p, &flags);
4454 if (!cpus_intersects(new_mask, cpu_online_map)) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 p->cpus_allowed = new_mask;
4460 /* Can the task run on the task's current CPU? If so, we're done */
4461 if (cpu_isset(task_cpu(p), new_mask))
4462 goto out;
4463
4464 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4465 /* Need help from migration thread: drop lock and wait. */
4466 task_rq_unlock(rq, &flags);
4467 wake_up_process(rq->migration_thread);
4468 wait_for_completion(&req.done);
4469 tlb_migrate_finish(p->mm);
4470 return 0;
4471 }
4472 out:
4473 task_rq_unlock(rq, &flags);
4474 return ret;
4475 }
4476
4477 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4478
4479 /*
4480 * Move (not current) task off this cpu, onto dest cpu. We're doing
4481 * this because either it can't run here any more (set_cpus_allowed()
4482 * away from this CPU, or CPU going down), or because we're
4483 * attempting to rebalance this task on exec (sched_exec).
4484 *
4485 * So we race with normal scheduler movements, but that's OK, as long
4486 * as the task is no longer on this CPU.
4487 */
4488 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4489 {
4490 runqueue_t *rq_dest, *rq_src;
4491
4492 if (unlikely(cpu_is_offline(dest_cpu)))
4493 return;
4494
4495 rq_src = cpu_rq(src_cpu);
4496 rq_dest = cpu_rq(dest_cpu);
4497
4498 double_rq_lock(rq_src, rq_dest);
4499 /* Already moved. */
4500 if (task_cpu(p) != src_cpu)
4501 goto out;
4502 /* Affinity changed (again). */
4503 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4504 goto out;
4505
4506 set_task_cpu(p, dest_cpu);
4507 if (p->array) {
4508 /*
4509 * Sync timestamp with rq_dest's before activating.
4510 * The same thing could be achieved by doing this step
4511 * afterwards, and pretending it was a local activate.
4512 * This way is cleaner and logically correct.
4513 */
4514 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4515 + rq_dest->timestamp_last_tick;
4516 deactivate_task(p, rq_src);
4517 activate_task(p, rq_dest, 0);
4518 if (TASK_PREEMPTS_CURR(p, rq_dest))
4519 resched_task(rq_dest->curr);
4520 }
4521
4522 out:
4523 double_rq_unlock(rq_src, rq_dest);
4524 }
4525
4526 /*
4527 * migration_thread - this is a highprio system thread that performs
4528 * thread migration by bumping thread off CPU then 'pushing' onto
4529 * another runqueue.
4530 */
4531 static int migration_thread(void *data)
4532 {
4533 runqueue_t *rq;
4534 int cpu = (long)data;
4535
4536 rq = cpu_rq(cpu);
4537 BUG_ON(rq->migration_thread != current);
4538
4539 set_current_state(TASK_INTERRUPTIBLE);
4540 while (!kthread_should_stop()) {
4541 struct list_head *head;
4542 migration_req_t *req;
4543
4544 try_to_freeze();
4545
4546 spin_lock_irq(&rq->lock);
4547
4548 if (cpu_is_offline(cpu)) {
4549 spin_unlock_irq(&rq->lock);
4550 goto wait_to_die;
4551 }
4552
4553 if (rq->active_balance) {
4554 active_load_balance(rq, cpu);
4555 rq->active_balance = 0;
4556 }
4557
4558 head = &rq->migration_queue;
4559
4560 if (list_empty(head)) {
4561 spin_unlock_irq(&rq->lock);
4562 schedule();
4563 set_current_state(TASK_INTERRUPTIBLE);
4564 continue;
4565 }
4566 req = list_entry(head->next, migration_req_t, list);
4567 list_del_init(head->next);
4568
4569 spin_unlock(&rq->lock);
4570 __migrate_task(req->task, cpu, req->dest_cpu);
4571 local_irq_enable();
4572
4573 complete(&req->done);
4574 }
4575 __set_current_state(TASK_RUNNING);
4576 return 0;
4577
4578 wait_to_die:
4579 /* Wait for kthread_stop */
4580 set_current_state(TASK_INTERRUPTIBLE);
4581 while (!kthread_should_stop()) {
4582 schedule();
4583 set_current_state(TASK_INTERRUPTIBLE);
4584 }
4585 __set_current_state(TASK_RUNNING);
4586 return 0;
4587 }
4588
4589 #ifdef CONFIG_HOTPLUG_CPU
4590 /* Figure out where task on dead CPU should go, use force if neccessary. */
4591 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4592 {
4593 int dest_cpu;
4594 cpumask_t mask;
4595
4596 /* On same node? */
4597 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4598 cpus_and(mask, mask, tsk->cpus_allowed);
4599 dest_cpu = any_online_cpu(mask);
4600
4601 /* On any allowed CPU? */
4602 if (dest_cpu == NR_CPUS)
4603 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4604
4605 /* No more Mr. Nice Guy. */
4606 if (dest_cpu == NR_CPUS) {
4607 cpus_setall(tsk->cpus_allowed);
4608 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4609
4610 /*
4611 * Don't tell them about moving exiting tasks or
4612 * kernel threads (both mm NULL), since they never
4613 * leave kernel.
4614 */
4615 if (tsk->mm && printk_ratelimit())
4616 printk(KERN_INFO "process %d (%s) no "
4617 "longer affine to cpu%d\n",
4618 tsk->pid, tsk->comm, dead_cpu);
4619 }
4620 __migrate_task(tsk, dead_cpu, dest_cpu);
4621 }
4622
4623 /*
4624 * While a dead CPU has no uninterruptible tasks queued at this point,
4625 * it might still have a nonzero ->nr_uninterruptible counter, because
4626 * for performance reasons the counter is not stricly tracking tasks to
4627 * their home CPUs. So we just add the counter to another CPU's counter,
4628 * to keep the global sum constant after CPU-down:
4629 */
4630 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4631 {
4632 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4633 unsigned long flags;
4634
4635 local_irq_save(flags);
4636 double_rq_lock(rq_src, rq_dest);
4637 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4638 rq_src->nr_uninterruptible = 0;
4639 double_rq_unlock(rq_src, rq_dest);
4640 local_irq_restore(flags);
4641 }
4642
4643 /* Run through task list and migrate tasks from the dead cpu. */
4644 static void migrate_live_tasks(int src_cpu)
4645 {
4646 struct task_struct *tsk, *t;
4647
4648 write_lock_irq(&tasklist_lock);
4649
4650 do_each_thread(t, tsk) {
4651 if (tsk == current)
4652 continue;
4653
4654 if (task_cpu(tsk) == src_cpu)
4655 move_task_off_dead_cpu(src_cpu, tsk);
4656 } while_each_thread(t, tsk);
4657
4658 write_unlock_irq(&tasklist_lock);
4659 }
4660
4661 /* Schedules idle task to be the next runnable task on current CPU.
4662 * It does so by boosting its priority to highest possible and adding it to
4663 * the _front_ of runqueue. Used by CPU offline code.
4664 */
4665 void sched_idle_next(void)
4666 {
4667 int cpu = smp_processor_id();
4668 runqueue_t *rq = this_rq();
4669 struct task_struct *p = rq->idle;
4670 unsigned long flags;
4671
4672 /* cpu has to be offline */
4673 BUG_ON(cpu_online(cpu));
4674
4675 /* Strictly not necessary since rest of the CPUs are stopped by now
4676 * and interrupts disabled on current cpu.
4677 */
4678 spin_lock_irqsave(&rq->lock, flags);
4679
4680 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4681 /* Add idle task to _front_ of it's priority queue */
4682 __activate_idle_task(p, rq);
4683
4684 spin_unlock_irqrestore(&rq->lock, flags);
4685 }
4686
4687 /* Ensures that the idle task is using init_mm right before its cpu goes
4688 * offline.
4689 */
4690 void idle_task_exit(void)
4691 {
4692 struct mm_struct *mm = current->active_mm;
4693
4694 BUG_ON(cpu_online(smp_processor_id()));
4695
4696 if (mm != &init_mm)
4697 switch_mm(mm, &init_mm, current);
4698 mmdrop(mm);
4699 }
4700
4701 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4702 {
4703 struct runqueue *rq = cpu_rq(dead_cpu);
4704
4705 /* Must be exiting, otherwise would be on tasklist. */
4706 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4707
4708 /* Cannot have done final schedule yet: would have vanished. */
4709 BUG_ON(tsk->flags & PF_DEAD);
4710
4711 get_task_struct(tsk);
4712
4713 /*
4714 * Drop lock around migration; if someone else moves it,
4715 * that's OK. No task can be added to this CPU, so iteration is
4716 * fine.
4717 */
4718 spin_unlock_irq(&rq->lock);
4719 move_task_off_dead_cpu(dead_cpu, tsk);
4720 spin_lock_irq(&rq->lock);
4721
4722 put_task_struct(tsk);
4723 }
4724
4725 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4726 static void migrate_dead_tasks(unsigned int dead_cpu)
4727 {
4728 unsigned arr, i;
4729 struct runqueue *rq = cpu_rq(dead_cpu);
4730
4731 for (arr = 0; arr < 2; arr++) {
4732 for (i = 0; i < MAX_PRIO; i++) {
4733 struct list_head *list = &rq->arrays[arr].queue[i];
4734 while (!list_empty(list))
4735 migrate_dead(dead_cpu,
4736 list_entry(list->next, task_t,
4737 run_list));
4738 }
4739 }
4740 }
4741 #endif /* CONFIG_HOTPLUG_CPU */
4742
4743 /*
4744 * migration_call - callback that gets triggered when a CPU is added.
4745 * Here we can start up the necessary migration thread for the new CPU.
4746 */
4747 static int migration_call(struct notifier_block *nfb, unsigned long action,
4748 void *hcpu)
4749 {
4750 int cpu = (long)hcpu;
4751 struct task_struct *p;
4752 struct runqueue *rq;
4753 unsigned long flags;
4754
4755 switch (action) {
4756 case CPU_UP_PREPARE:
4757 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4758 if (IS_ERR(p))
4759 return NOTIFY_BAD;
4760 p->flags |= PF_NOFREEZE;
4761 kthread_bind(p, cpu);
4762 /* Must be high prio: stop_machine expects to yield to it. */
4763 rq = task_rq_lock(p, &flags);
4764 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4765 task_rq_unlock(rq, &flags);
4766 cpu_rq(cpu)->migration_thread = p;
4767 break;
4768 case CPU_ONLINE:
4769 /* Strictly unneccessary, as first user will wake it. */
4770 wake_up_process(cpu_rq(cpu)->migration_thread);
4771 break;
4772 #ifdef CONFIG_HOTPLUG_CPU
4773 case CPU_UP_CANCELED:
4774 /* Unbind it from offline cpu so it can run. Fall thru. */
4775 kthread_bind(cpu_rq(cpu)->migration_thread,
4776 any_online_cpu(cpu_online_map));
4777 kthread_stop(cpu_rq(cpu)->migration_thread);
4778 cpu_rq(cpu)->migration_thread = NULL;
4779 break;
4780 case CPU_DEAD:
4781 migrate_live_tasks(cpu);
4782 rq = cpu_rq(cpu);
4783 kthread_stop(rq->migration_thread);
4784 rq->migration_thread = NULL;
4785 /* Idle task back to normal (off runqueue, low prio) */
4786 rq = task_rq_lock(rq->idle, &flags);
4787 deactivate_task(rq->idle, rq);
4788 rq->idle->static_prio = MAX_PRIO;
4789 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4790 migrate_dead_tasks(cpu);
4791 task_rq_unlock(rq, &flags);
4792 migrate_nr_uninterruptible(rq);
4793 BUG_ON(rq->nr_running != 0);
4794
4795 /* No need to migrate the tasks: it was best-effort if
4796 * they didn't do lock_cpu_hotplug(). Just wake up
4797 * the requestors. */
4798 spin_lock_irq(&rq->lock);
4799 while (!list_empty(&rq->migration_queue)) {
4800 migration_req_t *req;
4801 req = list_entry(rq->migration_queue.next,
4802 migration_req_t, list);
4803 list_del_init(&req->list);
4804 complete(&req->done);
4805 }
4806 spin_unlock_irq(&rq->lock);
4807 break;
4808 #endif
4809 }
4810 return NOTIFY_OK;
4811 }
4812
4813 /* Register at highest priority so that task migration (migrate_all_tasks)
4814 * happens before everything else.
4815 */
4816 static struct notifier_block __devinitdata migration_notifier = {
4817 .notifier_call = migration_call,
4818 .priority = 10
4819 };
4820
4821 int __init migration_init(void)
4822 {
4823 void *cpu = (void *)(long)smp_processor_id();
4824 /* Start one for boot CPU. */
4825 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4826 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4827 register_cpu_notifier(&migration_notifier);
4828 return 0;
4829 }
4830 #endif
4831
4832 #ifdef CONFIG_SMP
4833 #undef SCHED_DOMAIN_DEBUG
4834 #ifdef SCHED_DOMAIN_DEBUG
4835 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4836 {
4837 int level = 0;
4838
4839 if (!sd) {
4840 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4841 return;
4842 }
4843
4844 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4845
4846 do {
4847 int i;
4848 char str[NR_CPUS];
4849 struct sched_group *group = sd->groups;
4850 cpumask_t groupmask;
4851
4852 cpumask_scnprintf(str, NR_CPUS, sd->span);
4853 cpus_clear(groupmask);
4854
4855 printk(KERN_DEBUG);
4856 for (i = 0; i < level + 1; i++)
4857 printk(" ");
4858 printk("domain %d: ", level);
4859
4860 if (!(sd->flags & SD_LOAD_BALANCE)) {
4861 printk("does not load-balance\n");
4862 if (sd->parent)
4863 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4864 break;
4865 }
4866
4867 printk("span %s\n", str);
4868
4869 if (!cpu_isset(cpu, sd->span))
4870 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4871 if (!cpu_isset(cpu, group->cpumask))
4872 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4873
4874 printk(KERN_DEBUG);
4875 for (i = 0; i < level + 2; i++)
4876 printk(" ");
4877 printk("groups:");
4878 do {
4879 if (!group) {
4880 printk("\n");
4881 printk(KERN_ERR "ERROR: group is NULL\n");
4882 break;
4883 }
4884
4885 if (!group->cpu_power) {
4886 printk("\n");
4887 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4888 }
4889
4890 if (!cpus_weight(group->cpumask)) {
4891 printk("\n");
4892 printk(KERN_ERR "ERROR: empty group\n");
4893 }
4894
4895 if (cpus_intersects(groupmask, group->cpumask)) {
4896 printk("\n");
4897 printk(KERN_ERR "ERROR: repeated CPUs\n");
4898 }
4899
4900 cpus_or(groupmask, groupmask, group->cpumask);
4901
4902 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4903 printk(" %s", str);
4904
4905 group = group->next;
4906 } while (group != sd->groups);
4907 printk("\n");
4908
4909 if (!cpus_equal(sd->span, groupmask))
4910 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4911
4912 level++;
4913 sd = sd->parent;
4914
4915 if (sd) {
4916 if (!cpus_subset(groupmask, sd->span))
4917 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4918 }
4919
4920 } while (sd);
4921 }
4922 #else
4923 #define sched_domain_debug(sd, cpu) {}
4924 #endif
4925
4926 static int sd_degenerate(struct sched_domain *sd)
4927 {
4928 if (cpus_weight(sd->span) == 1)
4929 return 1;
4930
4931 /* Following flags need at least 2 groups */
4932 if (sd->flags & (SD_LOAD_BALANCE |
4933 SD_BALANCE_NEWIDLE |
4934 SD_BALANCE_FORK |
4935 SD_BALANCE_EXEC)) {
4936 if (sd->groups != sd->groups->next)
4937 return 0;
4938 }
4939
4940 /* Following flags don't use groups */
4941 if (sd->flags & (SD_WAKE_IDLE |
4942 SD_WAKE_AFFINE |
4943 SD_WAKE_BALANCE))
4944 return 0;
4945
4946 return 1;
4947 }
4948
4949 static int sd_parent_degenerate(struct sched_domain *sd,
4950 struct sched_domain *parent)
4951 {
4952 unsigned long cflags = sd->flags, pflags = parent->flags;
4953
4954 if (sd_degenerate(parent))
4955 return 1;
4956
4957 if (!cpus_equal(sd->span, parent->span))
4958 return 0;
4959
4960 /* Does parent contain flags not in child? */
4961 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4962 if (cflags & SD_WAKE_AFFINE)
4963 pflags &= ~SD_WAKE_BALANCE;
4964 /* Flags needing groups don't count if only 1 group in parent */
4965 if (parent->groups == parent->groups->next) {
4966 pflags &= ~(SD_LOAD_BALANCE |
4967 SD_BALANCE_NEWIDLE |
4968 SD_BALANCE_FORK |
4969 SD_BALANCE_EXEC);
4970 }
4971 if (~cflags & pflags)
4972 return 0;
4973
4974 return 1;
4975 }
4976
4977 /*
4978 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4979 * hold the hotplug lock.
4980 */
4981 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4982 {
4983 runqueue_t *rq = cpu_rq(cpu);
4984 struct sched_domain *tmp;
4985
4986 /* Remove the sched domains which do not contribute to scheduling. */
4987 for (tmp = sd; tmp; tmp = tmp->parent) {
4988 struct sched_domain *parent = tmp->parent;
4989 if (!parent)
4990 break;
4991 if (sd_parent_degenerate(tmp, parent))
4992 tmp->parent = parent->parent;
4993 }
4994
4995 if (sd && sd_degenerate(sd))
4996 sd = sd->parent;
4997
4998 sched_domain_debug(sd, cpu);
4999
5000 rcu_assign_pointer(rq->sd, sd);
5001 }
5002
5003 /* cpus with isolated domains */
5004 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5005
5006 /* Setup the mask of cpus configured for isolated domains */
5007 static int __init isolated_cpu_setup(char *str)
5008 {
5009 int ints[NR_CPUS], i;
5010
5011 str = get_options(str, ARRAY_SIZE(ints), ints);
5012 cpus_clear(cpu_isolated_map);
5013 for (i = 1; i <= ints[0]; i++)
5014 if (ints[i] < NR_CPUS)
5015 cpu_set(ints[i], cpu_isolated_map);
5016 return 1;
5017 }
5018
5019 __setup ("isolcpus=", isolated_cpu_setup);
5020
5021 /*
5022 * init_sched_build_groups takes an array of groups, the cpumask we wish
5023 * to span, and a pointer to a function which identifies what group a CPU
5024 * belongs to. The return value of group_fn must be a valid index into the
5025 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5026 * keep track of groups covered with a cpumask_t).
5027 *
5028 * init_sched_build_groups will build a circular linked list of the groups
5029 * covered by the given span, and will set each group's ->cpumask correctly,
5030 * and ->cpu_power to 0.
5031 */
5032 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5033 int (*group_fn)(int cpu))
5034 {
5035 struct sched_group *first = NULL, *last = NULL;
5036 cpumask_t covered = CPU_MASK_NONE;
5037 int i;
5038
5039 for_each_cpu_mask(i, span) {
5040 int group = group_fn(i);
5041 struct sched_group *sg = &groups[group];
5042 int j;
5043
5044 if (cpu_isset(i, covered))
5045 continue;
5046
5047 sg->cpumask = CPU_MASK_NONE;
5048 sg->cpu_power = 0;
5049
5050 for_each_cpu_mask(j, span) {
5051 if (group_fn(j) != group)
5052 continue;
5053
5054 cpu_set(j, covered);
5055 cpu_set(j, sg->cpumask);
5056 }
5057 if (!first)
5058 first = sg;
5059 if (last)
5060 last->next = sg;
5061 last = sg;
5062 }
5063 last->next = first;
5064 }
5065
5066 #define SD_NODES_PER_DOMAIN 16
5067
5068 #ifdef CONFIG_NUMA
5069 /**
5070 * find_next_best_node - find the next node to include in a sched_domain
5071 * @node: node whose sched_domain we're building
5072 * @used_nodes: nodes already in the sched_domain
5073 *
5074 * Find the next node to include in a given scheduling domain. Simply
5075 * finds the closest node not already in the @used_nodes map.
5076 *
5077 * Should use nodemask_t.
5078 */
5079 static int find_next_best_node(int node, unsigned long *used_nodes)
5080 {
5081 int i, n, val, min_val, best_node = 0;
5082
5083 min_val = INT_MAX;
5084
5085 for (i = 0; i < MAX_NUMNODES; i++) {
5086 /* Start at @node */
5087 n = (node + i) % MAX_NUMNODES;
5088
5089 if (!nr_cpus_node(n))
5090 continue;
5091
5092 /* Skip already used nodes */
5093 if (test_bit(n, used_nodes))
5094 continue;
5095
5096 /* Simple min distance search */
5097 val = node_distance(node, n);
5098
5099 if (val < min_val) {
5100 min_val = val;
5101 best_node = n;
5102 }
5103 }
5104
5105 set_bit(best_node, used_nodes);
5106 return best_node;
5107 }
5108
5109 /**
5110 * sched_domain_node_span - get a cpumask for a node's sched_domain
5111 * @node: node whose cpumask we're constructing
5112 * @size: number of nodes to include in this span
5113 *
5114 * Given a node, construct a good cpumask for its sched_domain to span. It
5115 * should be one that prevents unnecessary balancing, but also spreads tasks
5116 * out optimally.
5117 */
5118 static cpumask_t sched_domain_node_span(int node)
5119 {
5120 int i;
5121 cpumask_t span, nodemask;
5122 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5123
5124 cpus_clear(span);
5125 bitmap_zero(used_nodes, MAX_NUMNODES);
5126
5127 nodemask = node_to_cpumask(node);
5128 cpus_or(span, span, nodemask);
5129 set_bit(node, used_nodes);
5130
5131 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5132 int next_node = find_next_best_node(node, used_nodes);
5133 nodemask = node_to_cpumask(next_node);
5134 cpus_or(span, span, nodemask);
5135 }
5136
5137 return span;
5138 }
5139 #endif
5140
5141 /*
5142 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5143 * can switch it on easily if needed.
5144 */
5145 #ifdef CONFIG_SCHED_SMT
5146 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5147 static struct sched_group sched_group_cpus[NR_CPUS];
5148 static int cpu_to_cpu_group(int cpu)
5149 {
5150 return cpu;
5151 }
5152 #endif
5153
5154 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5155 static struct sched_group sched_group_phys[NR_CPUS];
5156 static int cpu_to_phys_group(int cpu)
5157 {
5158 #ifdef CONFIG_SCHED_SMT
5159 return first_cpu(cpu_sibling_map[cpu]);
5160 #else
5161 return cpu;
5162 #endif
5163 }
5164
5165 #ifdef CONFIG_NUMA
5166 /*
5167 * The init_sched_build_groups can't handle what we want to do with node
5168 * groups, so roll our own. Now each node has its own list of groups which
5169 * gets dynamically allocated.
5170 */
5171 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5172 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5173
5174 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5175 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5176
5177 static int cpu_to_allnodes_group(int cpu)
5178 {
5179 return cpu_to_node(cpu);
5180 }
5181 #endif
5182
5183 /*
5184 * Build sched domains for a given set of cpus and attach the sched domains
5185 * to the individual cpus
5186 */
5187 void build_sched_domains(const cpumask_t *cpu_map)
5188 {
5189 int i;
5190 #ifdef CONFIG_NUMA
5191 struct sched_group **sched_group_nodes = NULL;
5192 struct sched_group *sched_group_allnodes = NULL;
5193
5194 /*
5195 * Allocate the per-node list of sched groups
5196 */
5197 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5198 GFP_ATOMIC);
5199 if (!sched_group_nodes) {
5200 printk(KERN_WARNING "Can not alloc sched group node list\n");
5201 return;
5202 }
5203 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5204 #endif
5205
5206 /*
5207 * Set up domains for cpus specified by the cpu_map.
5208 */
5209 for_each_cpu_mask(i, *cpu_map) {
5210 int group;
5211 struct sched_domain *sd = NULL, *p;
5212 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5213
5214 cpus_and(nodemask, nodemask, *cpu_map);
5215
5216 #ifdef CONFIG_NUMA
5217 if (cpus_weight(*cpu_map)
5218 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5219 if (!sched_group_allnodes) {
5220 sched_group_allnodes
5221 = kmalloc(sizeof(struct sched_group)
5222 * MAX_NUMNODES,
5223 GFP_KERNEL);
5224 if (!sched_group_allnodes) {
5225 printk(KERN_WARNING
5226 "Can not alloc allnodes sched group\n");
5227 break;
5228 }
5229 sched_group_allnodes_bycpu[i]
5230 = sched_group_allnodes;
5231 }
5232 sd = &per_cpu(allnodes_domains, i);
5233 *sd = SD_ALLNODES_INIT;
5234 sd->span = *cpu_map;
5235 group = cpu_to_allnodes_group(i);
5236 sd->groups = &sched_group_allnodes[group];
5237 p = sd;
5238 } else
5239 p = NULL;
5240
5241 sd = &per_cpu(node_domains, i);
5242 *sd = SD_NODE_INIT;
5243 sd->span = sched_domain_node_span(cpu_to_node(i));
5244 sd->parent = p;
5245 cpus_and(sd->span, sd->span, *cpu_map);
5246 #endif
5247
5248 p = sd;
5249 sd = &per_cpu(phys_domains, i);
5250 group = cpu_to_phys_group(i);
5251 *sd = SD_CPU_INIT;
5252 sd->span = nodemask;
5253 sd->parent = p;
5254 sd->groups = &sched_group_phys[group];
5255
5256 #ifdef CONFIG_SCHED_SMT
5257 p = sd;
5258 sd = &per_cpu(cpu_domains, i);
5259 group = cpu_to_cpu_group(i);
5260 *sd = SD_SIBLING_INIT;
5261 sd->span = cpu_sibling_map[i];
5262 cpus_and(sd->span, sd->span, *cpu_map);
5263 sd->parent = p;
5264 sd->groups = &sched_group_cpus[group];
5265 #endif
5266 }
5267
5268 #ifdef CONFIG_SCHED_SMT
5269 /* Set up CPU (sibling) groups */
5270 for_each_cpu_mask(i, *cpu_map) {
5271 cpumask_t this_sibling_map = cpu_sibling_map[i];
5272 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5273 if (i != first_cpu(this_sibling_map))
5274 continue;
5275
5276 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5277 &cpu_to_cpu_group);
5278 }
5279 #endif
5280
5281 /* Set up physical groups */
5282 for (i = 0; i < MAX_NUMNODES; i++) {
5283 cpumask_t nodemask = node_to_cpumask(i);
5284
5285 cpus_and(nodemask, nodemask, *cpu_map);
5286 if (cpus_empty(nodemask))
5287 continue;
5288
5289 init_sched_build_groups(sched_group_phys, nodemask,
5290 &cpu_to_phys_group);
5291 }
5292
5293 #ifdef CONFIG_NUMA
5294 /* Set up node groups */
5295 if (sched_group_allnodes)
5296 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5297 &cpu_to_allnodes_group);
5298
5299 for (i = 0; i < MAX_NUMNODES; i++) {
5300 /* Set up node groups */
5301 struct sched_group *sg, *prev;
5302 cpumask_t nodemask = node_to_cpumask(i);
5303 cpumask_t domainspan;
5304 cpumask_t covered = CPU_MASK_NONE;
5305 int j;
5306
5307 cpus_and(nodemask, nodemask, *cpu_map);
5308 if (cpus_empty(nodemask)) {
5309 sched_group_nodes[i] = NULL;
5310 continue;
5311 }
5312
5313 domainspan = sched_domain_node_span(i);
5314 cpus_and(domainspan, domainspan, *cpu_map);
5315
5316 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5317 sched_group_nodes[i] = sg;
5318 for_each_cpu_mask(j, nodemask) {
5319 struct sched_domain *sd;
5320 sd = &per_cpu(node_domains, j);
5321 sd->groups = sg;
5322 if (sd->groups == NULL) {
5323 /* Turn off balancing if we have no groups */
5324 sd->flags = 0;
5325 }
5326 }
5327 if (!sg) {
5328 printk(KERN_WARNING
5329 "Can not alloc domain group for node %d\n", i);
5330 continue;
5331 }
5332 sg->cpu_power = 0;
5333 sg->cpumask = nodemask;
5334 cpus_or(covered, covered, nodemask);
5335 prev = sg;
5336
5337 for (j = 0; j < MAX_NUMNODES; j++) {
5338 cpumask_t tmp, notcovered;
5339 int n = (i + j) % MAX_NUMNODES;
5340
5341 cpus_complement(notcovered, covered);
5342 cpus_and(tmp, notcovered, *cpu_map);
5343 cpus_and(tmp, tmp, domainspan);
5344 if (cpus_empty(tmp))
5345 break;
5346
5347 nodemask = node_to_cpumask(n);
5348 cpus_and(tmp, tmp, nodemask);
5349 if (cpus_empty(tmp))
5350 continue;
5351
5352 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5353 if (!sg) {
5354 printk(KERN_WARNING
5355 "Can not alloc domain group for node %d\n", j);
5356 break;
5357 }
5358 sg->cpu_power = 0;
5359 sg->cpumask = tmp;
5360 cpus_or(covered, covered, tmp);
5361 prev->next = sg;
5362 prev = sg;
5363 }
5364 prev->next = sched_group_nodes[i];
5365 }
5366 #endif
5367
5368 /* Calculate CPU power for physical packages and nodes */
5369 for_each_cpu_mask(i, *cpu_map) {
5370 int power;
5371 struct sched_domain *sd;
5372 #ifdef CONFIG_SCHED_SMT
5373 sd = &per_cpu(cpu_domains, i);
5374 power = SCHED_LOAD_SCALE;
5375 sd->groups->cpu_power = power;
5376 #endif
5377
5378 sd = &per_cpu(phys_domains, i);
5379 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5380 (cpus_weight(sd->groups->cpumask)-1) / 10;
5381 sd->groups->cpu_power = power;
5382
5383 #ifdef CONFIG_NUMA
5384 sd = &per_cpu(allnodes_domains, i);
5385 if (sd->groups) {
5386 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5387 (cpus_weight(sd->groups->cpumask)-1) / 10;
5388 sd->groups->cpu_power = power;
5389 }
5390 #endif
5391 }
5392
5393 #ifdef CONFIG_NUMA
5394 for (i = 0; i < MAX_NUMNODES; i++) {
5395 struct sched_group *sg = sched_group_nodes[i];
5396 int j;
5397
5398 if (sg == NULL)
5399 continue;
5400 next_sg:
5401 for_each_cpu_mask(j, sg->cpumask) {
5402 struct sched_domain *sd;
5403 int power;
5404
5405 sd = &per_cpu(phys_domains, j);
5406 if (j != first_cpu(sd->groups->cpumask)) {
5407 /*
5408 * Only add "power" once for each
5409 * physical package.
5410 */
5411 continue;
5412 }
5413 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5414 (cpus_weight(sd->groups->cpumask)-1) / 10;
5415
5416 sg->cpu_power += power;
5417 }
5418 sg = sg->next;
5419 if (sg != sched_group_nodes[i])
5420 goto next_sg;
5421 }
5422 #endif
5423
5424 /* Attach the domains */
5425 for_each_cpu_mask(i, *cpu_map) {
5426 struct sched_domain *sd;
5427 #ifdef CONFIG_SCHED_SMT
5428 sd = &per_cpu(cpu_domains, i);
5429 #else
5430 sd = &per_cpu(phys_domains, i);
5431 #endif
5432 cpu_attach_domain(sd, i);
5433 }
5434 }
5435 /*
5436 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5437 */
5438 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5439 {
5440 cpumask_t cpu_default_map;
5441
5442 /*
5443 * Setup mask for cpus without special case scheduling requirements.
5444 * For now this just excludes isolated cpus, but could be used to
5445 * exclude other special cases in the future.
5446 */
5447 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5448
5449 build_sched_domains(&cpu_default_map);
5450 }
5451
5452 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5453 {
5454 #ifdef CONFIG_NUMA
5455 int i;
5456 int cpu;
5457
5458 for_each_cpu_mask(cpu, *cpu_map) {
5459 struct sched_group *sched_group_allnodes
5460 = sched_group_allnodes_bycpu[cpu];
5461 struct sched_group **sched_group_nodes
5462 = sched_group_nodes_bycpu[cpu];
5463
5464 if (sched_group_allnodes) {
5465 kfree(sched_group_allnodes);
5466 sched_group_allnodes_bycpu[cpu] = NULL;
5467 }
5468
5469 if (!sched_group_nodes)
5470 continue;
5471
5472 for (i = 0; i < MAX_NUMNODES; i++) {
5473 cpumask_t nodemask = node_to_cpumask(i);
5474 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5475
5476 cpus_and(nodemask, nodemask, *cpu_map);
5477 if (cpus_empty(nodemask))
5478 continue;
5479
5480 if (sg == NULL)
5481 continue;
5482 sg = sg->next;
5483 next_sg:
5484 oldsg = sg;
5485 sg = sg->next;
5486 kfree(oldsg);
5487 if (oldsg != sched_group_nodes[i])
5488 goto next_sg;
5489 }
5490 kfree(sched_group_nodes);
5491 sched_group_nodes_bycpu[cpu] = NULL;
5492 }
5493 #endif
5494 }
5495
5496 /*
5497 * Detach sched domains from a group of cpus specified in cpu_map
5498 * These cpus will now be attached to the NULL domain
5499 */
5500 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5501 {
5502 int i;
5503
5504 for_each_cpu_mask(i, *cpu_map)
5505 cpu_attach_domain(NULL, i);
5506 synchronize_sched();
5507 arch_destroy_sched_domains(cpu_map);
5508 }
5509
5510 /*
5511 * Partition sched domains as specified by the cpumasks below.
5512 * This attaches all cpus from the cpumasks to the NULL domain,
5513 * waits for a RCU quiescent period, recalculates sched
5514 * domain information and then attaches them back to the
5515 * correct sched domains
5516 * Call with hotplug lock held
5517 */
5518 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5519 {
5520 cpumask_t change_map;
5521
5522 cpus_and(*partition1, *partition1, cpu_online_map);
5523 cpus_and(*partition2, *partition2, cpu_online_map);
5524 cpus_or(change_map, *partition1, *partition2);
5525
5526 /* Detach sched domains from all of the affected cpus */
5527 detach_destroy_domains(&change_map);
5528 if (!cpus_empty(*partition1))
5529 build_sched_domains(partition1);
5530 if (!cpus_empty(*partition2))
5531 build_sched_domains(partition2);
5532 }
5533
5534 #ifdef CONFIG_HOTPLUG_CPU
5535 /*
5536 * Force a reinitialization of the sched domains hierarchy. The domains
5537 * and groups cannot be updated in place without racing with the balancing
5538 * code, so we temporarily attach all running cpus to the NULL domain
5539 * which will prevent rebalancing while the sched domains are recalculated.
5540 */
5541 static int update_sched_domains(struct notifier_block *nfb,
5542 unsigned long action, void *hcpu)
5543 {
5544 switch (action) {
5545 case CPU_UP_PREPARE:
5546 case CPU_DOWN_PREPARE:
5547 detach_destroy_domains(&cpu_online_map);
5548 return NOTIFY_OK;
5549
5550 case CPU_UP_CANCELED:
5551 case CPU_DOWN_FAILED:
5552 case CPU_ONLINE:
5553 case CPU_DEAD:
5554 /*
5555 * Fall through and re-initialise the domains.
5556 */
5557 break;
5558 default:
5559 return NOTIFY_DONE;
5560 }
5561
5562 /* The hotplug lock is already held by cpu_up/cpu_down */
5563 arch_init_sched_domains(&cpu_online_map);
5564
5565 return NOTIFY_OK;
5566 }
5567 #endif
5568
5569 void __init sched_init_smp(void)
5570 {
5571 lock_cpu_hotplug();
5572 arch_init_sched_domains(&cpu_online_map);
5573 unlock_cpu_hotplug();
5574 /* XXX: Theoretical race here - CPU may be hotplugged now */
5575 hotcpu_notifier(update_sched_domains, 0);
5576 }
5577 #else
5578 void __init sched_init_smp(void)
5579 {
5580 }
5581 #endif /* CONFIG_SMP */
5582
5583 int in_sched_functions(unsigned long addr)
5584 {
5585 /* Linker adds these: start and end of __sched functions */
5586 extern char __sched_text_start[], __sched_text_end[];
5587 return in_lock_functions(addr) ||
5588 (addr >= (unsigned long)__sched_text_start
5589 && addr < (unsigned long)__sched_text_end);
5590 }
5591
5592 void __init sched_init(void)
5593 {
5594 runqueue_t *rq;
5595 int i, j, k;
5596
5597 for (i = 0; i < NR_CPUS; i++) {
5598 prio_array_t *array;
5599
5600 rq = cpu_rq(i);
5601 spin_lock_init(&rq->lock);
5602 rq->nr_running = 0;
5603 rq->active = rq->arrays;
5604 rq->expired = rq->arrays + 1;
5605 rq->best_expired_prio = MAX_PRIO;
5606
5607 #ifdef CONFIG_SMP
5608 rq->sd = NULL;
5609 for (j = 1; j < 3; j++)
5610 rq->cpu_load[j] = 0;
5611 rq->active_balance = 0;
5612 rq->push_cpu = 0;
5613 rq->migration_thread = NULL;
5614 INIT_LIST_HEAD(&rq->migration_queue);
5615 #endif
5616 atomic_set(&rq->nr_iowait, 0);
5617
5618 for (j = 0; j < 2; j++) {
5619 array = rq->arrays + j;
5620 for (k = 0; k < MAX_PRIO; k++) {
5621 INIT_LIST_HEAD(array->queue + k);
5622 __clear_bit(k, array->bitmap);
5623 }
5624 // delimiter for bitsearch
5625 __set_bit(MAX_PRIO, array->bitmap);
5626 }
5627 }
5628
5629 /*
5630 * The boot idle thread does lazy MMU switching as well:
5631 */
5632 atomic_inc(&init_mm.mm_count);
5633 enter_lazy_tlb(&init_mm, current);
5634
5635 /*
5636 * Make us the idle thread. Technically, schedule() should not be
5637 * called from this thread, however somewhere below it might be,
5638 * but because we are the idle thread, we just pick up running again
5639 * when this runqueue becomes "idle".
5640 */
5641 init_idle(current, smp_processor_id());
5642 }
5643
5644 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5645 void __might_sleep(char *file, int line)
5646 {
5647 #if defined(in_atomic)
5648 static unsigned long prev_jiffy; /* ratelimiting */
5649
5650 if ((in_atomic() || irqs_disabled()) &&
5651 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5652 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5653 return;
5654 prev_jiffy = jiffies;
5655 printk(KERN_ERR "Debug: sleeping function called from invalid"
5656 " context at %s:%d\n", file, line);
5657 printk("in_atomic():%d, irqs_disabled():%d\n",
5658 in_atomic(), irqs_disabled());
5659 dump_stack();
5660 }
5661 #endif
5662 }
5663 EXPORT_SYMBOL(__might_sleep);
5664 #endif
5665
5666 #ifdef CONFIG_MAGIC_SYSRQ
5667 void normalize_rt_tasks(void)
5668 {
5669 struct task_struct *p;
5670 prio_array_t *array;
5671 unsigned long flags;
5672 runqueue_t *rq;
5673
5674 read_lock_irq(&tasklist_lock);
5675 for_each_process (p) {
5676 if (!rt_task(p))
5677 continue;
5678
5679 rq = task_rq_lock(p, &flags);
5680
5681 array = p->array;
5682 if (array)
5683 deactivate_task(p, task_rq(p));
5684 __setscheduler(p, SCHED_NORMAL, 0);
5685 if (array) {
5686 __activate_task(p, task_rq(p));
5687 resched_task(rq->curr);
5688 }
5689
5690 task_rq_unlock(rq, &flags);
5691 }
5692 read_unlock_irq(&tasklist_lock);
5693 }
5694
5695 #endif /* CONFIG_MAGIC_SYSRQ */
5696
5697 #ifdef CONFIG_IA64
5698 /*
5699 * These functions are only useful for the IA64 MCA handling.
5700 *
5701 * They can only be called when the whole system has been
5702 * stopped - every CPU needs to be quiescent, and no scheduling
5703 * activity can take place. Using them for anything else would
5704 * be a serious bug, and as a result, they aren't even visible
5705 * under any other configuration.
5706 */
5707
5708 /**
5709 * curr_task - return the current task for a given cpu.
5710 * @cpu: the processor in question.
5711 *
5712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5713 */
5714 task_t *curr_task(int cpu)
5715 {
5716 return cpu_curr(cpu);
5717 }
5718
5719 /**
5720 * set_curr_task - set the current task for a given cpu.
5721 * @cpu: the processor in question.
5722 * @p: the task pointer to set.
5723 *
5724 * Description: This function must only be used when non-maskable interrupts
5725 * are serviced on a separate stack. It allows the architecture to switch the
5726 * notion of the current task on a cpu in a non-blocking manner. This function
5727 * must be called with all CPU's synchronized, and interrupts disabled, the
5728 * and caller must save the original value of the current task (see
5729 * curr_task() above) and restore that value before reenabling interrupts and
5730 * re-starting the system.
5731 *
5732 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5733 */
5734 void set_curr_task(int cpu, task_t *p)
5735 {
5736 cpu_curr(cpu) = p;
5737 }
5738
5739 #endif
This page took 0.208337 seconds and 6 git commands to generate.