sched: wakeup-buddy tasks are cache-hot
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
178 #endif
179
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185 #endif
186
187 struct rcu_head rcu;
188 struct list_head list;
189 };
190
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 #endif
200
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
204
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
207 #endif
208
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
211 */
212 static DEFINE_SPINLOCK(task_group_lock);
213
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
216
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220 #else
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222 #endif
223
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225 #endif
226
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
229 */
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
239 #endif
240 };
241
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
244 {
245 struct task_group *tg;
246
247 #ifdef CONFIG_USER_SCHED
248 tg = p->user->tg;
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
252 #else
253 tg = &init_task_group;
254 #endif
255 return tg;
256 }
257
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
260 {
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
269 #endif
270 }
271
272 static inline void lock_doms_cur(void)
273 {
274 mutex_lock(&doms_cur_mutex);
275 }
276
277 static inline void unlock_doms_cur(void)
278 {
279 mutex_unlock(&doms_cur_mutex);
280 }
281
282 #else
283
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
287
288 #endif /* CONFIG_GROUP_SCHED */
289
290 /* CFS-related fields in a runqueue */
291 struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
295 u64 exec_clock;
296 u64 min_vruntime;
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
304 struct sched_entity *curr, *next;
305
306 unsigned long nr_spread_over;
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
321 #endif
322 };
323
324 /* Real-Time classes' related field in a runqueue: */
325 struct rt_rq {
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
330 #endif
331 #ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 int overloaded;
334 #endif
335 int rt_throttled;
336 u64 rt_time;
337
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
340
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345 #endif
346 };
347
348 #ifdef CONFIG_SMP
349
350 /*
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
357 */
358 struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
362
363 /*
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
368 atomic_t rto_count;
369 };
370
371 /*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
375 static struct root_domain def_root_domain;
376
377 #endif
378
379 /*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
386 struct rq {
387 /* runqueue lock: */
388 spinlock_t lock;
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
398 #ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400 #endif
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
407 struct rt_rq rt;
408 u64 rt_period_expire;
409 int rt_throttled;
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
414 #endif
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
417 #endif
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
430
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
434 unsigned int clock_warps, clock_overflows, clock_underflows;
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
437 u64 tick_timestamp;
438
439 atomic_t nr_iowait;
440
441 #ifdef CONFIG_SMP
442 struct root_domain *rd;
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
448 /* cpu of this runqueue: */
449 int cpu;
450
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
453 #endif
454
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459 #endif
460
461 #ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
470
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
475
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
479
480 /* BKL stats */
481 unsigned int bkl_count;
482 #endif
483 struct lock_class_key rq_lock_key;
484 };
485
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
487
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489 {
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491 }
492
493 static inline int cpu_of(struct rq *rq)
494 {
495 #ifdef CONFIG_SMP
496 return rq->cpu;
497 #else
498 return 0;
499 #endif
500 }
501
502 /*
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
505 */
506 static void __update_rq_clock(struct rq *rq)
507 {
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515 #endif
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
541 }
542
543 static void update_rq_clock(struct rq *rq)
544 {
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
547 }
548
549 /*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
558
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
564 unsigned long rt_needs_cpu(int cpu)
565 {
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579 }
580
581 /*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
586 #else
587 # define const_debug static const
588 #endif
589
590 /*
591 * Debugging: various feature bits
592 */
593 enum {
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
601 };
602
603 const_debug unsigned int sysctl_sched_features =
604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
611
612 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
613
614 /*
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
617 */
618 const_debug unsigned int sysctl_sched_nr_migrate = 32;
619
620 /*
621 * period over which we measure -rt task cpu usage in us.
622 * default: 1s
623 */
624 unsigned int sysctl_sched_rt_period = 1000000;
625
626 static __read_mostly int scheduler_running;
627
628 /*
629 * part of the period that we allow rt tasks to run in us.
630 * default: 0.95s
631 */
632 int sysctl_sched_rt_runtime = 950000;
633
634 /*
635 * single value that denotes runtime == period, ie unlimited time.
636 */
637 #define RUNTIME_INF ((u64)~0ULL)
638
639 /*
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
642 */
643 unsigned long long cpu_clock(int cpu)
644 {
645 unsigned long long now;
646 unsigned long flags;
647 struct rq *rq;
648
649 /*
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
652 */
653 if (unlikely(!scheduler_running))
654 return 0;
655
656 local_irq_save(flags);
657 rq = cpu_rq(cpu);
658 update_rq_clock(rq);
659 now = rq->clock;
660 local_irq_restore(flags);
661
662 return now;
663 }
664 EXPORT_SYMBOL_GPL(cpu_clock);
665
666 #ifndef prepare_arch_switch
667 # define prepare_arch_switch(next) do { } while (0)
668 #endif
669 #ifndef finish_arch_switch
670 # define finish_arch_switch(prev) do { } while (0)
671 #endif
672
673 static inline int task_current(struct rq *rq, struct task_struct *p)
674 {
675 return rq->curr == p;
676 }
677
678 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
679 static inline int task_running(struct rq *rq, struct task_struct *p)
680 {
681 return task_current(rq, p);
682 }
683
684 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
685 {
686 }
687
688 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
689 {
690 #ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
693 #endif
694 /*
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
697 * prev into current:
698 */
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
700
701 spin_unlock_irq(&rq->lock);
702 }
703
704 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
705 static inline int task_running(struct rq *rq, struct task_struct *p)
706 {
707 #ifdef CONFIG_SMP
708 return p->oncpu;
709 #else
710 return task_current(rq, p);
711 #endif
712 }
713
714 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
715 {
716 #ifdef CONFIG_SMP
717 /*
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
720 * here.
721 */
722 next->oncpu = 1;
723 #endif
724 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
726 #else
727 spin_unlock(&rq->lock);
728 #endif
729 }
730
731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 {
733 #ifdef CONFIG_SMP
734 /*
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->oncpu = 0;
741 #endif
742 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 local_irq_enable();
744 #endif
745 }
746 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
747
748 /*
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
751 */
752 static inline struct rq *__task_rq_lock(struct task_struct *p)
753 __acquires(rq->lock)
754 {
755 for (;;) {
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
759 return rq;
760 spin_unlock(&rq->lock);
761 }
762 }
763
764 /*
765 * task_rq_lock - lock the runqueue a given task resides on and disable
766 * interrupts. Note the ordering: we can safely lookup the task_rq without
767 * explicitly disabling preemption.
768 */
769 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
770 __acquires(rq->lock)
771 {
772 struct rq *rq;
773
774 for (;;) {
775 local_irq_save(*flags);
776 rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
780 spin_unlock_irqrestore(&rq->lock, *flags);
781 }
782 }
783
784 static void __task_rq_unlock(struct rq *rq)
785 __releases(rq->lock)
786 {
787 spin_unlock(&rq->lock);
788 }
789
790 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
791 __releases(rq->lock)
792 {
793 spin_unlock_irqrestore(&rq->lock, *flags);
794 }
795
796 /*
797 * this_rq_lock - lock this runqueue and disable interrupts.
798 */
799 static struct rq *this_rq_lock(void)
800 __acquires(rq->lock)
801 {
802 struct rq *rq;
803
804 local_irq_disable();
805 rq = this_rq();
806 spin_lock(&rq->lock);
807
808 return rq;
809 }
810
811 /*
812 * We are going deep-idle (irqs are disabled):
813 */
814 void sched_clock_idle_sleep_event(void)
815 {
816 struct rq *rq = cpu_rq(smp_processor_id());
817
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
822 }
823 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
824
825 /*
826 * We just idled delta nanoseconds (called with irqs disabled):
827 */
828 void sched_clock_idle_wakeup_event(u64 delta_ns)
829 {
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
832
833 rq->idle_clock += delta_ns;
834 /*
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
838 * rq clock:
839 */
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
844 touch_softlockup_watchdog();
845 }
846 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
847
848 static void __resched_task(struct task_struct *p, int tif_bit);
849
850 static inline void resched_task(struct task_struct *p)
851 {
852 __resched_task(p, TIF_NEED_RESCHED);
853 }
854
855 #ifdef CONFIG_SCHED_HRTICK
856 /*
857 * Use HR-timers to deliver accurate preemption points.
858 *
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
861 * reschedule event.
862 *
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
864 * rq->lock.
865 */
866 static inline void resched_hrt(struct task_struct *p)
867 {
868 __resched_task(p, TIF_HRTICK_RESCHED);
869 }
870
871 static inline void resched_rq(struct rq *rq)
872 {
873 unsigned long flags;
874
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
878 }
879
880 enum {
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
883 };
884
885 /*
886 * Use hrtick when:
887 * - enabled by features
888 * - hrtimer is actually high res
889 */
890 static inline int hrtick_enabled(struct rq *rq)
891 {
892 if (!sched_feat(HRTICK))
893 return 0;
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
895 }
896
897 /*
898 * Called to set the hrtick timer state.
899 *
900 * called with rq->lock held and irqs disabled
901 */
902 static void hrtick_start(struct rq *rq, u64 delay, int reset)
903 {
904 assert_spin_locked(&rq->lock);
905
906 /*
907 * preempt at: now + delay
908 */
909 rq->hrtick_expire =
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
911 /*
912 * indicate we need to program the timer
913 */
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
915 if (reset)
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
917
918 /*
919 * New slices are called from the schedule path and don't need a
920 * forced reschedule.
921 */
922 if (reset)
923 resched_hrt(rq->curr);
924 }
925
926 static void hrtick_clear(struct rq *rq)
927 {
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
930 }
931
932 /*
933 * Update the timer from the possible pending state.
934 */
935 static void hrtick_set(struct rq *rq)
936 {
937 ktime_t time;
938 int set, reset;
939 unsigned long flags;
940
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
942
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
949
950 if (set) {
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
953 resched_rq(rq);
954 } else
955 hrtick_clear(rq);
956 }
957
958 /*
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
961 */
962 static enum hrtimer_restart hrtick(struct hrtimer *timer)
963 {
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
965
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
967
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
972
973 return HRTIMER_NORESTART;
974 }
975
976 static inline void init_rq_hrtick(struct rq *rq)
977 {
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
982 }
983
984 void hrtick_resched(void)
985 {
986 struct rq *rq;
987 unsigned long flags;
988
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
990 return;
991
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
994 hrtick_set(rq);
995 local_irq_restore(flags);
996 }
997 #else
998 static inline void hrtick_clear(struct rq *rq)
999 {
1000 }
1001
1002 static inline void hrtick_set(struct rq *rq)
1003 {
1004 }
1005
1006 static inline void init_rq_hrtick(struct rq *rq)
1007 {
1008 }
1009
1010 void hrtick_resched(void)
1011 {
1012 }
1013 #endif
1014
1015 /*
1016 * resched_task - mark a task 'to be rescheduled now'.
1017 *
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1020 * the target CPU.
1021 */
1022 #ifdef CONFIG_SMP
1023
1024 #ifndef tsk_is_polling
1025 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1026 #endif
1027
1028 static void __resched_task(struct task_struct *p, int tif_bit)
1029 {
1030 int cpu;
1031
1032 assert_spin_locked(&task_rq(p)->lock);
1033
1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1035 return;
1036
1037 set_tsk_thread_flag(p, tif_bit);
1038
1039 cpu = task_cpu(p);
1040 if (cpu == smp_processor_id())
1041 return;
1042
1043 /* NEED_RESCHED must be visible before we test polling */
1044 smp_mb();
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1047 }
1048
1049 static void resched_cpu(int cpu)
1050 {
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1053
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1055 return;
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1058 }
1059 #else
1060 static void __resched_task(struct task_struct *p, int tif_bit)
1061 {
1062 assert_spin_locked(&task_rq(p)->lock);
1063 set_tsk_thread_flag(p, tif_bit);
1064 }
1065 #endif
1066
1067 #if BITS_PER_LONG == 32
1068 # define WMULT_CONST (~0UL)
1069 #else
1070 # define WMULT_CONST (1UL << 32)
1071 #endif
1072
1073 #define WMULT_SHIFT 32
1074
1075 /*
1076 * Shift right and round:
1077 */
1078 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1079
1080 static unsigned long
1081 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1083 {
1084 u64 tmp;
1085
1086 if (unlikely(!lw->inv_weight))
1087 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1088
1089 tmp = (u64)delta_exec * weight;
1090 /*
1091 * Check whether we'd overflow the 64-bit multiplication:
1092 */
1093 if (unlikely(tmp > WMULT_CONST))
1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1095 WMULT_SHIFT/2);
1096 else
1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1098
1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1100 }
1101
1102 static inline unsigned long
1103 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1104 {
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1106 }
1107
1108 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1109 {
1110 lw->weight += inc;
1111 lw->inv_weight = 0;
1112 }
1113
1114 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1115 {
1116 lw->weight -= dec;
1117 lw->inv_weight = 0;
1118 }
1119
1120 /*
1121 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1122 * of tasks with abnormal "nice" values across CPUs the contribution that
1123 * each task makes to its run queue's load is weighted according to its
1124 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1125 * scaled version of the new time slice allocation that they receive on time
1126 * slice expiry etc.
1127 */
1128
1129 #define WEIGHT_IDLEPRIO 2
1130 #define WMULT_IDLEPRIO (1 << 31)
1131
1132 /*
1133 * Nice levels are multiplicative, with a gentle 10% change for every
1134 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1135 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1136 * that remained on nice 0.
1137 *
1138 * The "10% effect" is relative and cumulative: from _any_ nice level,
1139 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1140 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1141 * If a task goes up by ~10% and another task goes down by ~10% then
1142 * the relative distance between them is ~25%.)
1143 */
1144 static const int prio_to_weight[40] = {
1145 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1146 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1147 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1148 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1149 /* 0 */ 1024, 820, 655, 526, 423,
1150 /* 5 */ 335, 272, 215, 172, 137,
1151 /* 10 */ 110, 87, 70, 56, 45,
1152 /* 15 */ 36, 29, 23, 18, 15,
1153 };
1154
1155 /*
1156 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1157 *
1158 * In cases where the weight does not change often, we can use the
1159 * precalculated inverse to speed up arithmetics by turning divisions
1160 * into multiplications:
1161 */
1162 static const u32 prio_to_wmult[40] = {
1163 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1164 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1165 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1166 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1167 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1168 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1169 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1170 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1171 };
1172
1173 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1174
1175 /*
1176 * runqueue iterator, to support SMP load-balancing between different
1177 * scheduling classes, without having to expose their internal data
1178 * structures to the load-balancing proper:
1179 */
1180 struct rq_iterator {
1181 void *arg;
1182 struct task_struct *(*start)(void *);
1183 struct task_struct *(*next)(void *);
1184 };
1185
1186 #ifdef CONFIG_SMP
1187 static unsigned long
1188 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1189 unsigned long max_load_move, struct sched_domain *sd,
1190 enum cpu_idle_type idle, int *all_pinned,
1191 int *this_best_prio, struct rq_iterator *iterator);
1192
1193 static int
1194 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1195 struct sched_domain *sd, enum cpu_idle_type idle,
1196 struct rq_iterator *iterator);
1197 #endif
1198
1199 #ifdef CONFIG_CGROUP_CPUACCT
1200 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1201 #else
1202 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1203 #endif
1204
1205 #ifdef CONFIG_SMP
1206 static unsigned long source_load(int cpu, int type);
1207 static unsigned long target_load(int cpu, int type);
1208 static unsigned long cpu_avg_load_per_task(int cpu);
1209 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1210 #endif /* CONFIG_SMP */
1211
1212 #include "sched_stats.h"
1213 #include "sched_idletask.c"
1214 #include "sched_fair.c"
1215 #include "sched_rt.c"
1216 #ifdef CONFIG_SCHED_DEBUG
1217 # include "sched_debug.c"
1218 #endif
1219
1220 #define sched_class_highest (&rt_sched_class)
1221
1222 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1223 {
1224 update_load_add(&rq->load, p->se.load.weight);
1225 }
1226
1227 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1228 {
1229 update_load_sub(&rq->load, p->se.load.weight);
1230 }
1231
1232 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1233 {
1234 rq->nr_running++;
1235 inc_load(rq, p);
1236 }
1237
1238 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1239 {
1240 rq->nr_running--;
1241 dec_load(rq, p);
1242 }
1243
1244 static void set_load_weight(struct task_struct *p)
1245 {
1246 if (task_has_rt_policy(p)) {
1247 p->se.load.weight = prio_to_weight[0] * 2;
1248 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1249 return;
1250 }
1251
1252 /*
1253 * SCHED_IDLE tasks get minimal weight:
1254 */
1255 if (p->policy == SCHED_IDLE) {
1256 p->se.load.weight = WEIGHT_IDLEPRIO;
1257 p->se.load.inv_weight = WMULT_IDLEPRIO;
1258 return;
1259 }
1260
1261 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1262 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1263 }
1264
1265 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1266 {
1267 sched_info_queued(p);
1268 p->sched_class->enqueue_task(rq, p, wakeup);
1269 p->se.on_rq = 1;
1270 }
1271
1272 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1273 {
1274 p->sched_class->dequeue_task(rq, p, sleep);
1275 p->se.on_rq = 0;
1276 }
1277
1278 /*
1279 * __normal_prio - return the priority that is based on the static prio
1280 */
1281 static inline int __normal_prio(struct task_struct *p)
1282 {
1283 return p->static_prio;
1284 }
1285
1286 /*
1287 * Calculate the expected normal priority: i.e. priority
1288 * without taking RT-inheritance into account. Might be
1289 * boosted by interactivity modifiers. Changes upon fork,
1290 * setprio syscalls, and whenever the interactivity
1291 * estimator recalculates.
1292 */
1293 static inline int normal_prio(struct task_struct *p)
1294 {
1295 int prio;
1296
1297 if (task_has_rt_policy(p))
1298 prio = MAX_RT_PRIO-1 - p->rt_priority;
1299 else
1300 prio = __normal_prio(p);
1301 return prio;
1302 }
1303
1304 /*
1305 * Calculate the current priority, i.e. the priority
1306 * taken into account by the scheduler. This value might
1307 * be boosted by RT tasks, or might be boosted by
1308 * interactivity modifiers. Will be RT if the task got
1309 * RT-boosted. If not then it returns p->normal_prio.
1310 */
1311 static int effective_prio(struct task_struct *p)
1312 {
1313 p->normal_prio = normal_prio(p);
1314 /*
1315 * If we are RT tasks or we were boosted to RT priority,
1316 * keep the priority unchanged. Otherwise, update priority
1317 * to the normal priority:
1318 */
1319 if (!rt_prio(p->prio))
1320 return p->normal_prio;
1321 return p->prio;
1322 }
1323
1324 /*
1325 * activate_task - move a task to the runqueue.
1326 */
1327 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1328 {
1329 if (task_contributes_to_load(p))
1330 rq->nr_uninterruptible--;
1331
1332 enqueue_task(rq, p, wakeup);
1333 inc_nr_running(p, rq);
1334 }
1335
1336 /*
1337 * deactivate_task - remove a task from the runqueue.
1338 */
1339 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1340 {
1341 if (task_contributes_to_load(p))
1342 rq->nr_uninterruptible++;
1343
1344 dequeue_task(rq, p, sleep);
1345 dec_nr_running(p, rq);
1346 }
1347
1348 /**
1349 * task_curr - is this task currently executing on a CPU?
1350 * @p: the task in question.
1351 */
1352 inline int task_curr(const struct task_struct *p)
1353 {
1354 return cpu_curr(task_cpu(p)) == p;
1355 }
1356
1357 /* Used instead of source_load when we know the type == 0 */
1358 unsigned long weighted_cpuload(const int cpu)
1359 {
1360 return cpu_rq(cpu)->load.weight;
1361 }
1362
1363 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1364 {
1365 set_task_rq(p, cpu);
1366 #ifdef CONFIG_SMP
1367 /*
1368 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1369 * successfuly executed on another CPU. We must ensure that updates of
1370 * per-task data have been completed by this moment.
1371 */
1372 smp_wmb();
1373 task_thread_info(p)->cpu = cpu;
1374 #endif
1375 }
1376
1377 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1378 const struct sched_class *prev_class,
1379 int oldprio, int running)
1380 {
1381 if (prev_class != p->sched_class) {
1382 if (prev_class->switched_from)
1383 prev_class->switched_from(rq, p, running);
1384 p->sched_class->switched_to(rq, p, running);
1385 } else
1386 p->sched_class->prio_changed(rq, p, oldprio, running);
1387 }
1388
1389 #ifdef CONFIG_SMP
1390
1391 /*
1392 * Is this task likely cache-hot:
1393 */
1394 static int
1395 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1396 {
1397 s64 delta;
1398
1399 /*
1400 * Buddy candidates are cache hot:
1401 */
1402 if (&p->se == cfs_rq_of(&p->se)->next)
1403 return 1;
1404
1405 if (p->sched_class != &fair_sched_class)
1406 return 0;
1407
1408 if (sysctl_sched_migration_cost == -1)
1409 return 1;
1410 if (sysctl_sched_migration_cost == 0)
1411 return 0;
1412
1413 delta = now - p->se.exec_start;
1414
1415 return delta < (s64)sysctl_sched_migration_cost;
1416 }
1417
1418
1419 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1420 {
1421 int old_cpu = task_cpu(p);
1422 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1423 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1424 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1425 u64 clock_offset;
1426
1427 clock_offset = old_rq->clock - new_rq->clock;
1428
1429 #ifdef CONFIG_SCHEDSTATS
1430 if (p->se.wait_start)
1431 p->se.wait_start -= clock_offset;
1432 if (p->se.sleep_start)
1433 p->se.sleep_start -= clock_offset;
1434 if (p->se.block_start)
1435 p->se.block_start -= clock_offset;
1436 if (old_cpu != new_cpu) {
1437 schedstat_inc(p, se.nr_migrations);
1438 if (task_hot(p, old_rq->clock, NULL))
1439 schedstat_inc(p, se.nr_forced2_migrations);
1440 }
1441 #endif
1442 p->se.vruntime -= old_cfsrq->min_vruntime -
1443 new_cfsrq->min_vruntime;
1444
1445 __set_task_cpu(p, new_cpu);
1446 }
1447
1448 struct migration_req {
1449 struct list_head list;
1450
1451 struct task_struct *task;
1452 int dest_cpu;
1453
1454 struct completion done;
1455 };
1456
1457 /*
1458 * The task's runqueue lock must be held.
1459 * Returns true if you have to wait for migration thread.
1460 */
1461 static int
1462 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1463 {
1464 struct rq *rq = task_rq(p);
1465
1466 /*
1467 * If the task is not on a runqueue (and not running), then
1468 * it is sufficient to simply update the task's cpu field.
1469 */
1470 if (!p->se.on_rq && !task_running(rq, p)) {
1471 set_task_cpu(p, dest_cpu);
1472 return 0;
1473 }
1474
1475 init_completion(&req->done);
1476 req->task = p;
1477 req->dest_cpu = dest_cpu;
1478 list_add(&req->list, &rq->migration_queue);
1479
1480 return 1;
1481 }
1482
1483 /*
1484 * wait_task_inactive - wait for a thread to unschedule.
1485 *
1486 * The caller must ensure that the task *will* unschedule sometime soon,
1487 * else this function might spin for a *long* time. This function can't
1488 * be called with interrupts off, or it may introduce deadlock with
1489 * smp_call_function() if an IPI is sent by the same process we are
1490 * waiting to become inactive.
1491 */
1492 void wait_task_inactive(struct task_struct *p)
1493 {
1494 unsigned long flags;
1495 int running, on_rq;
1496 struct rq *rq;
1497
1498 for (;;) {
1499 /*
1500 * We do the initial early heuristics without holding
1501 * any task-queue locks at all. We'll only try to get
1502 * the runqueue lock when things look like they will
1503 * work out!
1504 */
1505 rq = task_rq(p);
1506
1507 /*
1508 * If the task is actively running on another CPU
1509 * still, just relax and busy-wait without holding
1510 * any locks.
1511 *
1512 * NOTE! Since we don't hold any locks, it's not
1513 * even sure that "rq" stays as the right runqueue!
1514 * But we don't care, since "task_running()" will
1515 * return false if the runqueue has changed and p
1516 * is actually now running somewhere else!
1517 */
1518 while (task_running(rq, p))
1519 cpu_relax();
1520
1521 /*
1522 * Ok, time to look more closely! We need the rq
1523 * lock now, to be *sure*. If we're wrong, we'll
1524 * just go back and repeat.
1525 */
1526 rq = task_rq_lock(p, &flags);
1527 running = task_running(rq, p);
1528 on_rq = p->se.on_rq;
1529 task_rq_unlock(rq, &flags);
1530
1531 /*
1532 * Was it really running after all now that we
1533 * checked with the proper locks actually held?
1534 *
1535 * Oops. Go back and try again..
1536 */
1537 if (unlikely(running)) {
1538 cpu_relax();
1539 continue;
1540 }
1541
1542 /*
1543 * It's not enough that it's not actively running,
1544 * it must be off the runqueue _entirely_, and not
1545 * preempted!
1546 *
1547 * So if it wa still runnable (but just not actively
1548 * running right now), it's preempted, and we should
1549 * yield - it could be a while.
1550 */
1551 if (unlikely(on_rq)) {
1552 schedule_timeout_uninterruptible(1);
1553 continue;
1554 }
1555
1556 /*
1557 * Ahh, all good. It wasn't running, and it wasn't
1558 * runnable, which means that it will never become
1559 * running in the future either. We're all done!
1560 */
1561 break;
1562 }
1563 }
1564
1565 /***
1566 * kick_process - kick a running thread to enter/exit the kernel
1567 * @p: the to-be-kicked thread
1568 *
1569 * Cause a process which is running on another CPU to enter
1570 * kernel-mode, without any delay. (to get signals handled.)
1571 *
1572 * NOTE: this function doesnt have to take the runqueue lock,
1573 * because all it wants to ensure is that the remote task enters
1574 * the kernel. If the IPI races and the task has been migrated
1575 * to another CPU then no harm is done and the purpose has been
1576 * achieved as well.
1577 */
1578 void kick_process(struct task_struct *p)
1579 {
1580 int cpu;
1581
1582 preempt_disable();
1583 cpu = task_cpu(p);
1584 if ((cpu != smp_processor_id()) && task_curr(p))
1585 smp_send_reschedule(cpu);
1586 preempt_enable();
1587 }
1588
1589 /*
1590 * Return a low guess at the load of a migration-source cpu weighted
1591 * according to the scheduling class and "nice" value.
1592 *
1593 * We want to under-estimate the load of migration sources, to
1594 * balance conservatively.
1595 */
1596 static unsigned long source_load(int cpu, int type)
1597 {
1598 struct rq *rq = cpu_rq(cpu);
1599 unsigned long total = weighted_cpuload(cpu);
1600
1601 if (type == 0)
1602 return total;
1603
1604 return min(rq->cpu_load[type-1], total);
1605 }
1606
1607 /*
1608 * Return a high guess at the load of a migration-target cpu weighted
1609 * according to the scheduling class and "nice" value.
1610 */
1611 static unsigned long target_load(int cpu, int type)
1612 {
1613 struct rq *rq = cpu_rq(cpu);
1614 unsigned long total = weighted_cpuload(cpu);
1615
1616 if (type == 0)
1617 return total;
1618
1619 return max(rq->cpu_load[type-1], total);
1620 }
1621
1622 /*
1623 * Return the average load per task on the cpu's run queue
1624 */
1625 static unsigned long cpu_avg_load_per_task(int cpu)
1626 {
1627 struct rq *rq = cpu_rq(cpu);
1628 unsigned long total = weighted_cpuload(cpu);
1629 unsigned long n = rq->nr_running;
1630
1631 return n ? total / n : SCHED_LOAD_SCALE;
1632 }
1633
1634 /*
1635 * find_idlest_group finds and returns the least busy CPU group within the
1636 * domain.
1637 */
1638 static struct sched_group *
1639 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1640 {
1641 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1642 unsigned long min_load = ULONG_MAX, this_load = 0;
1643 int load_idx = sd->forkexec_idx;
1644 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1645
1646 do {
1647 unsigned long load, avg_load;
1648 int local_group;
1649 int i;
1650
1651 /* Skip over this group if it has no CPUs allowed */
1652 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1653 continue;
1654
1655 local_group = cpu_isset(this_cpu, group->cpumask);
1656
1657 /* Tally up the load of all CPUs in the group */
1658 avg_load = 0;
1659
1660 for_each_cpu_mask(i, group->cpumask) {
1661 /* Bias balancing toward cpus of our domain */
1662 if (local_group)
1663 load = source_load(i, load_idx);
1664 else
1665 load = target_load(i, load_idx);
1666
1667 avg_load += load;
1668 }
1669
1670 /* Adjust by relative CPU power of the group */
1671 avg_load = sg_div_cpu_power(group,
1672 avg_load * SCHED_LOAD_SCALE);
1673
1674 if (local_group) {
1675 this_load = avg_load;
1676 this = group;
1677 } else if (avg_load < min_load) {
1678 min_load = avg_load;
1679 idlest = group;
1680 }
1681 } while (group = group->next, group != sd->groups);
1682
1683 if (!idlest || 100*this_load < imbalance*min_load)
1684 return NULL;
1685 return idlest;
1686 }
1687
1688 /*
1689 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1690 */
1691 static int
1692 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1693 {
1694 cpumask_t tmp;
1695 unsigned long load, min_load = ULONG_MAX;
1696 int idlest = -1;
1697 int i;
1698
1699 /* Traverse only the allowed CPUs */
1700 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1701
1702 for_each_cpu_mask(i, tmp) {
1703 load = weighted_cpuload(i);
1704
1705 if (load < min_load || (load == min_load && i == this_cpu)) {
1706 min_load = load;
1707 idlest = i;
1708 }
1709 }
1710
1711 return idlest;
1712 }
1713
1714 /*
1715 * sched_balance_self: balance the current task (running on cpu) in domains
1716 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1717 * SD_BALANCE_EXEC.
1718 *
1719 * Balance, ie. select the least loaded group.
1720 *
1721 * Returns the target CPU number, or the same CPU if no balancing is needed.
1722 *
1723 * preempt must be disabled.
1724 */
1725 static int sched_balance_self(int cpu, int flag)
1726 {
1727 struct task_struct *t = current;
1728 struct sched_domain *tmp, *sd = NULL;
1729
1730 for_each_domain(cpu, tmp) {
1731 /*
1732 * If power savings logic is enabled for a domain, stop there.
1733 */
1734 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1735 break;
1736 if (tmp->flags & flag)
1737 sd = tmp;
1738 }
1739
1740 while (sd) {
1741 cpumask_t span;
1742 struct sched_group *group;
1743 int new_cpu, weight;
1744
1745 if (!(sd->flags & flag)) {
1746 sd = sd->child;
1747 continue;
1748 }
1749
1750 span = sd->span;
1751 group = find_idlest_group(sd, t, cpu);
1752 if (!group) {
1753 sd = sd->child;
1754 continue;
1755 }
1756
1757 new_cpu = find_idlest_cpu(group, t, cpu);
1758 if (new_cpu == -1 || new_cpu == cpu) {
1759 /* Now try balancing at a lower domain level of cpu */
1760 sd = sd->child;
1761 continue;
1762 }
1763
1764 /* Now try balancing at a lower domain level of new_cpu */
1765 cpu = new_cpu;
1766 sd = NULL;
1767 weight = cpus_weight(span);
1768 for_each_domain(cpu, tmp) {
1769 if (weight <= cpus_weight(tmp->span))
1770 break;
1771 if (tmp->flags & flag)
1772 sd = tmp;
1773 }
1774 /* while loop will break here if sd == NULL */
1775 }
1776
1777 return cpu;
1778 }
1779
1780 #endif /* CONFIG_SMP */
1781
1782 /***
1783 * try_to_wake_up - wake up a thread
1784 * @p: the to-be-woken-up thread
1785 * @state: the mask of task states that can be woken
1786 * @sync: do a synchronous wakeup?
1787 *
1788 * Put it on the run-queue if it's not already there. The "current"
1789 * thread is always on the run-queue (except when the actual
1790 * re-schedule is in progress), and as such you're allowed to do
1791 * the simpler "current->state = TASK_RUNNING" to mark yourself
1792 * runnable without the overhead of this.
1793 *
1794 * returns failure only if the task is already active.
1795 */
1796 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1797 {
1798 int cpu, orig_cpu, this_cpu, success = 0;
1799 unsigned long flags;
1800 long old_state;
1801 struct rq *rq;
1802
1803 smp_wmb();
1804 rq = task_rq_lock(p, &flags);
1805 old_state = p->state;
1806 if (!(old_state & state))
1807 goto out;
1808
1809 if (p->se.on_rq)
1810 goto out_running;
1811
1812 cpu = task_cpu(p);
1813 orig_cpu = cpu;
1814 this_cpu = smp_processor_id();
1815
1816 #ifdef CONFIG_SMP
1817 if (unlikely(task_running(rq, p)))
1818 goto out_activate;
1819
1820 cpu = p->sched_class->select_task_rq(p, sync);
1821 if (cpu != orig_cpu) {
1822 set_task_cpu(p, cpu);
1823 task_rq_unlock(rq, &flags);
1824 /* might preempt at this point */
1825 rq = task_rq_lock(p, &flags);
1826 old_state = p->state;
1827 if (!(old_state & state))
1828 goto out;
1829 if (p->se.on_rq)
1830 goto out_running;
1831
1832 this_cpu = smp_processor_id();
1833 cpu = task_cpu(p);
1834 }
1835
1836 #ifdef CONFIG_SCHEDSTATS
1837 schedstat_inc(rq, ttwu_count);
1838 if (cpu == this_cpu)
1839 schedstat_inc(rq, ttwu_local);
1840 else {
1841 struct sched_domain *sd;
1842 for_each_domain(this_cpu, sd) {
1843 if (cpu_isset(cpu, sd->span)) {
1844 schedstat_inc(sd, ttwu_wake_remote);
1845 break;
1846 }
1847 }
1848 }
1849 #endif
1850
1851 out_activate:
1852 #endif /* CONFIG_SMP */
1853 schedstat_inc(p, se.nr_wakeups);
1854 if (sync)
1855 schedstat_inc(p, se.nr_wakeups_sync);
1856 if (orig_cpu != cpu)
1857 schedstat_inc(p, se.nr_wakeups_migrate);
1858 if (cpu == this_cpu)
1859 schedstat_inc(p, se.nr_wakeups_local);
1860 else
1861 schedstat_inc(p, se.nr_wakeups_remote);
1862 update_rq_clock(rq);
1863 activate_task(rq, p, 1);
1864 success = 1;
1865
1866 out_running:
1867 check_preempt_curr(rq, p);
1868
1869 p->state = TASK_RUNNING;
1870 #ifdef CONFIG_SMP
1871 if (p->sched_class->task_wake_up)
1872 p->sched_class->task_wake_up(rq, p);
1873 #endif
1874 out:
1875 task_rq_unlock(rq, &flags);
1876
1877 return success;
1878 }
1879
1880 int wake_up_process(struct task_struct *p)
1881 {
1882 return try_to_wake_up(p, TASK_ALL, 0);
1883 }
1884 EXPORT_SYMBOL(wake_up_process);
1885
1886 int wake_up_state(struct task_struct *p, unsigned int state)
1887 {
1888 return try_to_wake_up(p, state, 0);
1889 }
1890
1891 /*
1892 * Perform scheduler related setup for a newly forked process p.
1893 * p is forked by current.
1894 *
1895 * __sched_fork() is basic setup used by init_idle() too:
1896 */
1897 static void __sched_fork(struct task_struct *p)
1898 {
1899 p->se.exec_start = 0;
1900 p->se.sum_exec_runtime = 0;
1901 p->se.prev_sum_exec_runtime = 0;
1902 p->se.last_wakeup = 0;
1903 p->se.avg_overlap = 0;
1904
1905 #ifdef CONFIG_SCHEDSTATS
1906 p->se.wait_start = 0;
1907 p->se.sum_sleep_runtime = 0;
1908 p->se.sleep_start = 0;
1909 p->se.block_start = 0;
1910 p->se.sleep_max = 0;
1911 p->se.block_max = 0;
1912 p->se.exec_max = 0;
1913 p->se.slice_max = 0;
1914 p->se.wait_max = 0;
1915 #endif
1916
1917 INIT_LIST_HEAD(&p->rt.run_list);
1918 p->se.on_rq = 0;
1919
1920 #ifdef CONFIG_PREEMPT_NOTIFIERS
1921 INIT_HLIST_HEAD(&p->preempt_notifiers);
1922 #endif
1923
1924 /*
1925 * We mark the process as running here, but have not actually
1926 * inserted it onto the runqueue yet. This guarantees that
1927 * nobody will actually run it, and a signal or other external
1928 * event cannot wake it up and insert it on the runqueue either.
1929 */
1930 p->state = TASK_RUNNING;
1931 }
1932
1933 /*
1934 * fork()/clone()-time setup:
1935 */
1936 void sched_fork(struct task_struct *p, int clone_flags)
1937 {
1938 int cpu = get_cpu();
1939
1940 __sched_fork(p);
1941
1942 #ifdef CONFIG_SMP
1943 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1944 #endif
1945 set_task_cpu(p, cpu);
1946
1947 /*
1948 * Make sure we do not leak PI boosting priority to the child:
1949 */
1950 p->prio = current->normal_prio;
1951 if (!rt_prio(p->prio))
1952 p->sched_class = &fair_sched_class;
1953
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 if (likely(sched_info_on()))
1956 memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1959 p->oncpu = 0;
1960 #endif
1961 #ifdef CONFIG_PREEMPT
1962 /* Want to start with kernel preemption disabled. */
1963 task_thread_info(p)->preempt_count = 1;
1964 #endif
1965 put_cpu();
1966 }
1967
1968 /*
1969 * wake_up_new_task - wake up a newly created task for the first time.
1970 *
1971 * This function will do some initial scheduler statistics housekeeping
1972 * that must be done for every newly created context, then puts the task
1973 * on the runqueue and wakes it.
1974 */
1975 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1976 {
1977 unsigned long flags;
1978 struct rq *rq;
1979
1980 rq = task_rq_lock(p, &flags);
1981 BUG_ON(p->state != TASK_RUNNING);
1982 update_rq_clock(rq);
1983
1984 p->prio = effective_prio(p);
1985
1986 if (!p->sched_class->task_new || !current->se.on_rq) {
1987 activate_task(rq, p, 0);
1988 } else {
1989 /*
1990 * Let the scheduling class do new task startup
1991 * management (if any):
1992 */
1993 p->sched_class->task_new(rq, p);
1994 inc_nr_running(p, rq);
1995 }
1996 check_preempt_curr(rq, p);
1997 #ifdef CONFIG_SMP
1998 if (p->sched_class->task_wake_up)
1999 p->sched_class->task_wake_up(rq, p);
2000 #endif
2001 task_rq_unlock(rq, &flags);
2002 }
2003
2004 #ifdef CONFIG_PREEMPT_NOTIFIERS
2005
2006 /**
2007 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2008 * @notifier: notifier struct to register
2009 */
2010 void preempt_notifier_register(struct preempt_notifier *notifier)
2011 {
2012 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2013 }
2014 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2015
2016 /**
2017 * preempt_notifier_unregister - no longer interested in preemption notifications
2018 * @notifier: notifier struct to unregister
2019 *
2020 * This is safe to call from within a preemption notifier.
2021 */
2022 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2023 {
2024 hlist_del(&notifier->link);
2025 }
2026 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2027
2028 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2029 {
2030 struct preempt_notifier *notifier;
2031 struct hlist_node *node;
2032
2033 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2034 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2035 }
2036
2037 static void
2038 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2039 struct task_struct *next)
2040 {
2041 struct preempt_notifier *notifier;
2042 struct hlist_node *node;
2043
2044 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2045 notifier->ops->sched_out(notifier, next);
2046 }
2047
2048 #else
2049
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 }
2053
2054 static void
2055 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2056 struct task_struct *next)
2057 {
2058 }
2059
2060 #endif
2061
2062 /**
2063 * prepare_task_switch - prepare to switch tasks
2064 * @rq: the runqueue preparing to switch
2065 * @prev: the current task that is being switched out
2066 * @next: the task we are going to switch to.
2067 *
2068 * This is called with the rq lock held and interrupts off. It must
2069 * be paired with a subsequent finish_task_switch after the context
2070 * switch.
2071 *
2072 * prepare_task_switch sets up locking and calls architecture specific
2073 * hooks.
2074 */
2075 static inline void
2076 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2077 struct task_struct *next)
2078 {
2079 fire_sched_out_preempt_notifiers(prev, next);
2080 prepare_lock_switch(rq, next);
2081 prepare_arch_switch(next);
2082 }
2083
2084 /**
2085 * finish_task_switch - clean up after a task-switch
2086 * @rq: runqueue associated with task-switch
2087 * @prev: the thread we just switched away from.
2088 *
2089 * finish_task_switch must be called after the context switch, paired
2090 * with a prepare_task_switch call before the context switch.
2091 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2092 * and do any other architecture-specific cleanup actions.
2093 *
2094 * Note that we may have delayed dropping an mm in context_switch(). If
2095 * so, we finish that here outside of the runqueue lock. (Doing it
2096 * with the lock held can cause deadlocks; see schedule() for
2097 * details.)
2098 */
2099 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2100 __releases(rq->lock)
2101 {
2102 struct mm_struct *mm = rq->prev_mm;
2103 long prev_state;
2104
2105 rq->prev_mm = NULL;
2106
2107 /*
2108 * A task struct has one reference for the use as "current".
2109 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2110 * schedule one last time. The schedule call will never return, and
2111 * the scheduled task must drop that reference.
2112 * The test for TASK_DEAD must occur while the runqueue locks are
2113 * still held, otherwise prev could be scheduled on another cpu, die
2114 * there before we look at prev->state, and then the reference would
2115 * be dropped twice.
2116 * Manfred Spraul <manfred@colorfullife.com>
2117 */
2118 prev_state = prev->state;
2119 finish_arch_switch(prev);
2120 finish_lock_switch(rq, prev);
2121 #ifdef CONFIG_SMP
2122 if (current->sched_class->post_schedule)
2123 current->sched_class->post_schedule(rq);
2124 #endif
2125
2126 fire_sched_in_preempt_notifiers(current);
2127 if (mm)
2128 mmdrop(mm);
2129 if (unlikely(prev_state == TASK_DEAD)) {
2130 /*
2131 * Remove function-return probe instances associated with this
2132 * task and put them back on the free list.
2133 */
2134 kprobe_flush_task(prev);
2135 put_task_struct(prev);
2136 }
2137 }
2138
2139 /**
2140 * schedule_tail - first thing a freshly forked thread must call.
2141 * @prev: the thread we just switched away from.
2142 */
2143 asmlinkage void schedule_tail(struct task_struct *prev)
2144 __releases(rq->lock)
2145 {
2146 struct rq *rq = this_rq();
2147
2148 finish_task_switch(rq, prev);
2149 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2150 /* In this case, finish_task_switch does not reenable preemption */
2151 preempt_enable();
2152 #endif
2153 if (current->set_child_tid)
2154 put_user(task_pid_vnr(current), current->set_child_tid);
2155 }
2156
2157 /*
2158 * context_switch - switch to the new MM and the new
2159 * thread's register state.
2160 */
2161 static inline void
2162 context_switch(struct rq *rq, struct task_struct *prev,
2163 struct task_struct *next)
2164 {
2165 struct mm_struct *mm, *oldmm;
2166
2167 prepare_task_switch(rq, prev, next);
2168 mm = next->mm;
2169 oldmm = prev->active_mm;
2170 /*
2171 * For paravirt, this is coupled with an exit in switch_to to
2172 * combine the page table reload and the switch backend into
2173 * one hypercall.
2174 */
2175 arch_enter_lazy_cpu_mode();
2176
2177 if (unlikely(!mm)) {
2178 next->active_mm = oldmm;
2179 atomic_inc(&oldmm->mm_count);
2180 enter_lazy_tlb(oldmm, next);
2181 } else
2182 switch_mm(oldmm, mm, next);
2183
2184 if (unlikely(!prev->mm)) {
2185 prev->active_mm = NULL;
2186 rq->prev_mm = oldmm;
2187 }
2188 /*
2189 * Since the runqueue lock will be released by the next
2190 * task (which is an invalid locking op but in the case
2191 * of the scheduler it's an obvious special-case), so we
2192 * do an early lockdep release here:
2193 */
2194 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2195 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2196 #endif
2197
2198 /* Here we just switch the register state and the stack. */
2199 switch_to(prev, next, prev);
2200
2201 barrier();
2202 /*
2203 * this_rq must be evaluated again because prev may have moved
2204 * CPUs since it called schedule(), thus the 'rq' on its stack
2205 * frame will be invalid.
2206 */
2207 finish_task_switch(this_rq(), prev);
2208 }
2209
2210 /*
2211 * nr_running, nr_uninterruptible and nr_context_switches:
2212 *
2213 * externally visible scheduler statistics: current number of runnable
2214 * threads, current number of uninterruptible-sleeping threads, total
2215 * number of context switches performed since bootup.
2216 */
2217 unsigned long nr_running(void)
2218 {
2219 unsigned long i, sum = 0;
2220
2221 for_each_online_cpu(i)
2222 sum += cpu_rq(i)->nr_running;
2223
2224 return sum;
2225 }
2226
2227 unsigned long nr_uninterruptible(void)
2228 {
2229 unsigned long i, sum = 0;
2230
2231 for_each_possible_cpu(i)
2232 sum += cpu_rq(i)->nr_uninterruptible;
2233
2234 /*
2235 * Since we read the counters lockless, it might be slightly
2236 * inaccurate. Do not allow it to go below zero though:
2237 */
2238 if (unlikely((long)sum < 0))
2239 sum = 0;
2240
2241 return sum;
2242 }
2243
2244 unsigned long long nr_context_switches(void)
2245 {
2246 int i;
2247 unsigned long long sum = 0;
2248
2249 for_each_possible_cpu(i)
2250 sum += cpu_rq(i)->nr_switches;
2251
2252 return sum;
2253 }
2254
2255 unsigned long nr_iowait(void)
2256 {
2257 unsigned long i, sum = 0;
2258
2259 for_each_possible_cpu(i)
2260 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2261
2262 return sum;
2263 }
2264
2265 unsigned long nr_active(void)
2266 {
2267 unsigned long i, running = 0, uninterruptible = 0;
2268
2269 for_each_online_cpu(i) {
2270 running += cpu_rq(i)->nr_running;
2271 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2272 }
2273
2274 if (unlikely((long)uninterruptible < 0))
2275 uninterruptible = 0;
2276
2277 return running + uninterruptible;
2278 }
2279
2280 /*
2281 * Update rq->cpu_load[] statistics. This function is usually called every
2282 * scheduler tick (TICK_NSEC).
2283 */
2284 static void update_cpu_load(struct rq *this_rq)
2285 {
2286 unsigned long this_load = this_rq->load.weight;
2287 int i, scale;
2288
2289 this_rq->nr_load_updates++;
2290
2291 /* Update our load: */
2292 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2293 unsigned long old_load, new_load;
2294
2295 /* scale is effectively 1 << i now, and >> i divides by scale */
2296
2297 old_load = this_rq->cpu_load[i];
2298 new_load = this_load;
2299 /*
2300 * Round up the averaging division if load is increasing. This
2301 * prevents us from getting stuck on 9 if the load is 10, for
2302 * example.
2303 */
2304 if (new_load > old_load)
2305 new_load += scale-1;
2306 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2307 }
2308 }
2309
2310 #ifdef CONFIG_SMP
2311
2312 /*
2313 * double_rq_lock - safely lock two runqueues
2314 *
2315 * Note this does not disable interrupts like task_rq_lock,
2316 * you need to do so manually before calling.
2317 */
2318 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2319 __acquires(rq1->lock)
2320 __acquires(rq2->lock)
2321 {
2322 BUG_ON(!irqs_disabled());
2323 if (rq1 == rq2) {
2324 spin_lock(&rq1->lock);
2325 __acquire(rq2->lock); /* Fake it out ;) */
2326 } else {
2327 if (rq1 < rq2) {
2328 spin_lock(&rq1->lock);
2329 spin_lock(&rq2->lock);
2330 } else {
2331 spin_lock(&rq2->lock);
2332 spin_lock(&rq1->lock);
2333 }
2334 }
2335 update_rq_clock(rq1);
2336 update_rq_clock(rq2);
2337 }
2338
2339 /*
2340 * double_rq_unlock - safely unlock two runqueues
2341 *
2342 * Note this does not restore interrupts like task_rq_unlock,
2343 * you need to do so manually after calling.
2344 */
2345 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2346 __releases(rq1->lock)
2347 __releases(rq2->lock)
2348 {
2349 spin_unlock(&rq1->lock);
2350 if (rq1 != rq2)
2351 spin_unlock(&rq2->lock);
2352 else
2353 __release(rq2->lock);
2354 }
2355
2356 /*
2357 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2358 */
2359 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2360 __releases(this_rq->lock)
2361 __acquires(busiest->lock)
2362 __acquires(this_rq->lock)
2363 {
2364 int ret = 0;
2365
2366 if (unlikely(!irqs_disabled())) {
2367 /* printk() doesn't work good under rq->lock */
2368 spin_unlock(&this_rq->lock);
2369 BUG_ON(1);
2370 }
2371 if (unlikely(!spin_trylock(&busiest->lock))) {
2372 if (busiest < this_rq) {
2373 spin_unlock(&this_rq->lock);
2374 spin_lock(&busiest->lock);
2375 spin_lock(&this_rq->lock);
2376 ret = 1;
2377 } else
2378 spin_lock(&busiest->lock);
2379 }
2380 return ret;
2381 }
2382
2383 /*
2384 * If dest_cpu is allowed for this process, migrate the task to it.
2385 * This is accomplished by forcing the cpu_allowed mask to only
2386 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2387 * the cpu_allowed mask is restored.
2388 */
2389 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2390 {
2391 struct migration_req req;
2392 unsigned long flags;
2393 struct rq *rq;
2394
2395 rq = task_rq_lock(p, &flags);
2396 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2397 || unlikely(cpu_is_offline(dest_cpu)))
2398 goto out;
2399
2400 /* force the process onto the specified CPU */
2401 if (migrate_task(p, dest_cpu, &req)) {
2402 /* Need to wait for migration thread (might exit: take ref). */
2403 struct task_struct *mt = rq->migration_thread;
2404
2405 get_task_struct(mt);
2406 task_rq_unlock(rq, &flags);
2407 wake_up_process(mt);
2408 put_task_struct(mt);
2409 wait_for_completion(&req.done);
2410
2411 return;
2412 }
2413 out:
2414 task_rq_unlock(rq, &flags);
2415 }
2416
2417 /*
2418 * sched_exec - execve() is a valuable balancing opportunity, because at
2419 * this point the task has the smallest effective memory and cache footprint.
2420 */
2421 void sched_exec(void)
2422 {
2423 int new_cpu, this_cpu = get_cpu();
2424 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2425 put_cpu();
2426 if (new_cpu != this_cpu)
2427 sched_migrate_task(current, new_cpu);
2428 }
2429
2430 /*
2431 * pull_task - move a task from a remote runqueue to the local runqueue.
2432 * Both runqueues must be locked.
2433 */
2434 static void pull_task(struct rq *src_rq, struct task_struct *p,
2435 struct rq *this_rq, int this_cpu)
2436 {
2437 deactivate_task(src_rq, p, 0);
2438 set_task_cpu(p, this_cpu);
2439 activate_task(this_rq, p, 0);
2440 /*
2441 * Note that idle threads have a prio of MAX_PRIO, for this test
2442 * to be always true for them.
2443 */
2444 check_preempt_curr(this_rq, p);
2445 }
2446
2447 /*
2448 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2449 */
2450 static
2451 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2452 struct sched_domain *sd, enum cpu_idle_type idle,
2453 int *all_pinned)
2454 {
2455 /*
2456 * We do not migrate tasks that are:
2457 * 1) running (obviously), or
2458 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2459 * 3) are cache-hot on their current CPU.
2460 */
2461 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2462 schedstat_inc(p, se.nr_failed_migrations_affine);
2463 return 0;
2464 }
2465 *all_pinned = 0;
2466
2467 if (task_running(rq, p)) {
2468 schedstat_inc(p, se.nr_failed_migrations_running);
2469 return 0;
2470 }
2471
2472 /*
2473 * Aggressive migration if:
2474 * 1) task is cache cold, or
2475 * 2) too many balance attempts have failed.
2476 */
2477
2478 if (!task_hot(p, rq->clock, sd) ||
2479 sd->nr_balance_failed > sd->cache_nice_tries) {
2480 #ifdef CONFIG_SCHEDSTATS
2481 if (task_hot(p, rq->clock, sd)) {
2482 schedstat_inc(sd, lb_hot_gained[idle]);
2483 schedstat_inc(p, se.nr_forced_migrations);
2484 }
2485 #endif
2486 return 1;
2487 }
2488
2489 if (task_hot(p, rq->clock, sd)) {
2490 schedstat_inc(p, se.nr_failed_migrations_hot);
2491 return 0;
2492 }
2493 return 1;
2494 }
2495
2496 static unsigned long
2497 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2498 unsigned long max_load_move, struct sched_domain *sd,
2499 enum cpu_idle_type idle, int *all_pinned,
2500 int *this_best_prio, struct rq_iterator *iterator)
2501 {
2502 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2503 struct task_struct *p;
2504 long rem_load_move = max_load_move;
2505
2506 if (max_load_move == 0)
2507 goto out;
2508
2509 pinned = 1;
2510
2511 /*
2512 * Start the load-balancing iterator:
2513 */
2514 p = iterator->start(iterator->arg);
2515 next:
2516 if (!p || loops++ > sysctl_sched_nr_migrate)
2517 goto out;
2518 /*
2519 * To help distribute high priority tasks across CPUs we don't
2520 * skip a task if it will be the highest priority task (i.e. smallest
2521 * prio value) on its new queue regardless of its load weight
2522 */
2523 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2524 SCHED_LOAD_SCALE_FUZZ;
2525 if ((skip_for_load && p->prio >= *this_best_prio) ||
2526 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2527 p = iterator->next(iterator->arg);
2528 goto next;
2529 }
2530
2531 pull_task(busiest, p, this_rq, this_cpu);
2532 pulled++;
2533 rem_load_move -= p->se.load.weight;
2534
2535 /*
2536 * We only want to steal up to the prescribed amount of weighted load.
2537 */
2538 if (rem_load_move > 0) {
2539 if (p->prio < *this_best_prio)
2540 *this_best_prio = p->prio;
2541 p = iterator->next(iterator->arg);
2542 goto next;
2543 }
2544 out:
2545 /*
2546 * Right now, this is one of only two places pull_task() is called,
2547 * so we can safely collect pull_task() stats here rather than
2548 * inside pull_task().
2549 */
2550 schedstat_add(sd, lb_gained[idle], pulled);
2551
2552 if (all_pinned)
2553 *all_pinned = pinned;
2554
2555 return max_load_move - rem_load_move;
2556 }
2557
2558 /*
2559 * move_tasks tries to move up to max_load_move weighted load from busiest to
2560 * this_rq, as part of a balancing operation within domain "sd".
2561 * Returns 1 if successful and 0 otherwise.
2562 *
2563 * Called with both runqueues locked.
2564 */
2565 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2566 unsigned long max_load_move,
2567 struct sched_domain *sd, enum cpu_idle_type idle,
2568 int *all_pinned)
2569 {
2570 const struct sched_class *class = sched_class_highest;
2571 unsigned long total_load_moved = 0;
2572 int this_best_prio = this_rq->curr->prio;
2573
2574 do {
2575 total_load_moved +=
2576 class->load_balance(this_rq, this_cpu, busiest,
2577 max_load_move - total_load_moved,
2578 sd, idle, all_pinned, &this_best_prio);
2579 class = class->next;
2580 } while (class && max_load_move > total_load_moved);
2581
2582 return total_load_moved > 0;
2583 }
2584
2585 static int
2586 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2587 struct sched_domain *sd, enum cpu_idle_type idle,
2588 struct rq_iterator *iterator)
2589 {
2590 struct task_struct *p = iterator->start(iterator->arg);
2591 int pinned = 0;
2592
2593 while (p) {
2594 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2595 pull_task(busiest, p, this_rq, this_cpu);
2596 /*
2597 * Right now, this is only the second place pull_task()
2598 * is called, so we can safely collect pull_task()
2599 * stats here rather than inside pull_task().
2600 */
2601 schedstat_inc(sd, lb_gained[idle]);
2602
2603 return 1;
2604 }
2605 p = iterator->next(iterator->arg);
2606 }
2607
2608 return 0;
2609 }
2610
2611 /*
2612 * move_one_task tries to move exactly one task from busiest to this_rq, as
2613 * part of active balancing operations within "domain".
2614 * Returns 1 if successful and 0 otherwise.
2615 *
2616 * Called with both runqueues locked.
2617 */
2618 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2619 struct sched_domain *sd, enum cpu_idle_type idle)
2620 {
2621 const struct sched_class *class;
2622
2623 for (class = sched_class_highest; class; class = class->next)
2624 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2625 return 1;
2626
2627 return 0;
2628 }
2629
2630 /*
2631 * find_busiest_group finds and returns the busiest CPU group within the
2632 * domain. It calculates and returns the amount of weighted load which
2633 * should be moved to restore balance via the imbalance parameter.
2634 */
2635 static struct sched_group *
2636 find_busiest_group(struct sched_domain *sd, int this_cpu,
2637 unsigned long *imbalance, enum cpu_idle_type idle,
2638 int *sd_idle, cpumask_t *cpus, int *balance)
2639 {
2640 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2641 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2642 unsigned long max_pull;
2643 unsigned long busiest_load_per_task, busiest_nr_running;
2644 unsigned long this_load_per_task, this_nr_running;
2645 int load_idx, group_imb = 0;
2646 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2647 int power_savings_balance = 1;
2648 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2649 unsigned long min_nr_running = ULONG_MAX;
2650 struct sched_group *group_min = NULL, *group_leader = NULL;
2651 #endif
2652
2653 max_load = this_load = total_load = total_pwr = 0;
2654 busiest_load_per_task = busiest_nr_running = 0;
2655 this_load_per_task = this_nr_running = 0;
2656 if (idle == CPU_NOT_IDLE)
2657 load_idx = sd->busy_idx;
2658 else if (idle == CPU_NEWLY_IDLE)
2659 load_idx = sd->newidle_idx;
2660 else
2661 load_idx = sd->idle_idx;
2662
2663 do {
2664 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2665 int local_group;
2666 int i;
2667 int __group_imb = 0;
2668 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2669 unsigned long sum_nr_running, sum_weighted_load;
2670
2671 local_group = cpu_isset(this_cpu, group->cpumask);
2672
2673 if (local_group)
2674 balance_cpu = first_cpu(group->cpumask);
2675
2676 /* Tally up the load of all CPUs in the group */
2677 sum_weighted_load = sum_nr_running = avg_load = 0;
2678 max_cpu_load = 0;
2679 min_cpu_load = ~0UL;
2680
2681 for_each_cpu_mask(i, group->cpumask) {
2682 struct rq *rq;
2683
2684 if (!cpu_isset(i, *cpus))
2685 continue;
2686
2687 rq = cpu_rq(i);
2688
2689 if (*sd_idle && rq->nr_running)
2690 *sd_idle = 0;
2691
2692 /* Bias balancing toward cpus of our domain */
2693 if (local_group) {
2694 if (idle_cpu(i) && !first_idle_cpu) {
2695 first_idle_cpu = 1;
2696 balance_cpu = i;
2697 }
2698
2699 load = target_load(i, load_idx);
2700 } else {
2701 load = source_load(i, load_idx);
2702 if (load > max_cpu_load)
2703 max_cpu_load = load;
2704 if (min_cpu_load > load)
2705 min_cpu_load = load;
2706 }
2707
2708 avg_load += load;
2709 sum_nr_running += rq->nr_running;
2710 sum_weighted_load += weighted_cpuload(i);
2711 }
2712
2713 /*
2714 * First idle cpu or the first cpu(busiest) in this sched group
2715 * is eligible for doing load balancing at this and above
2716 * domains. In the newly idle case, we will allow all the cpu's
2717 * to do the newly idle load balance.
2718 */
2719 if (idle != CPU_NEWLY_IDLE && local_group &&
2720 balance_cpu != this_cpu && balance) {
2721 *balance = 0;
2722 goto ret;
2723 }
2724
2725 total_load += avg_load;
2726 total_pwr += group->__cpu_power;
2727
2728 /* Adjust by relative CPU power of the group */
2729 avg_load = sg_div_cpu_power(group,
2730 avg_load * SCHED_LOAD_SCALE);
2731
2732 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2733 __group_imb = 1;
2734
2735 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2736
2737 if (local_group) {
2738 this_load = avg_load;
2739 this = group;
2740 this_nr_running = sum_nr_running;
2741 this_load_per_task = sum_weighted_load;
2742 } else if (avg_load > max_load &&
2743 (sum_nr_running > group_capacity || __group_imb)) {
2744 max_load = avg_load;
2745 busiest = group;
2746 busiest_nr_running = sum_nr_running;
2747 busiest_load_per_task = sum_weighted_load;
2748 group_imb = __group_imb;
2749 }
2750
2751 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2752 /*
2753 * Busy processors will not participate in power savings
2754 * balance.
2755 */
2756 if (idle == CPU_NOT_IDLE ||
2757 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2758 goto group_next;
2759
2760 /*
2761 * If the local group is idle or completely loaded
2762 * no need to do power savings balance at this domain
2763 */
2764 if (local_group && (this_nr_running >= group_capacity ||
2765 !this_nr_running))
2766 power_savings_balance = 0;
2767
2768 /*
2769 * If a group is already running at full capacity or idle,
2770 * don't include that group in power savings calculations
2771 */
2772 if (!power_savings_balance || sum_nr_running >= group_capacity
2773 || !sum_nr_running)
2774 goto group_next;
2775
2776 /*
2777 * Calculate the group which has the least non-idle load.
2778 * This is the group from where we need to pick up the load
2779 * for saving power
2780 */
2781 if ((sum_nr_running < min_nr_running) ||
2782 (sum_nr_running == min_nr_running &&
2783 first_cpu(group->cpumask) <
2784 first_cpu(group_min->cpumask))) {
2785 group_min = group;
2786 min_nr_running = sum_nr_running;
2787 min_load_per_task = sum_weighted_load /
2788 sum_nr_running;
2789 }
2790
2791 /*
2792 * Calculate the group which is almost near its
2793 * capacity but still has some space to pick up some load
2794 * from other group and save more power
2795 */
2796 if (sum_nr_running <= group_capacity - 1) {
2797 if (sum_nr_running > leader_nr_running ||
2798 (sum_nr_running == leader_nr_running &&
2799 first_cpu(group->cpumask) >
2800 first_cpu(group_leader->cpumask))) {
2801 group_leader = group;
2802 leader_nr_running = sum_nr_running;
2803 }
2804 }
2805 group_next:
2806 #endif
2807 group = group->next;
2808 } while (group != sd->groups);
2809
2810 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2811 goto out_balanced;
2812
2813 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2814
2815 if (this_load >= avg_load ||
2816 100*max_load <= sd->imbalance_pct*this_load)
2817 goto out_balanced;
2818
2819 busiest_load_per_task /= busiest_nr_running;
2820 if (group_imb)
2821 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2822
2823 /*
2824 * We're trying to get all the cpus to the average_load, so we don't
2825 * want to push ourselves above the average load, nor do we wish to
2826 * reduce the max loaded cpu below the average load, as either of these
2827 * actions would just result in more rebalancing later, and ping-pong
2828 * tasks around. Thus we look for the minimum possible imbalance.
2829 * Negative imbalances (*we* are more loaded than anyone else) will
2830 * be counted as no imbalance for these purposes -- we can't fix that
2831 * by pulling tasks to us. Be careful of negative numbers as they'll
2832 * appear as very large values with unsigned longs.
2833 */
2834 if (max_load <= busiest_load_per_task)
2835 goto out_balanced;
2836
2837 /*
2838 * In the presence of smp nice balancing, certain scenarios can have
2839 * max load less than avg load(as we skip the groups at or below
2840 * its cpu_power, while calculating max_load..)
2841 */
2842 if (max_load < avg_load) {
2843 *imbalance = 0;
2844 goto small_imbalance;
2845 }
2846
2847 /* Don't want to pull so many tasks that a group would go idle */
2848 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2849
2850 /* How much load to actually move to equalise the imbalance */
2851 *imbalance = min(max_pull * busiest->__cpu_power,
2852 (avg_load - this_load) * this->__cpu_power)
2853 / SCHED_LOAD_SCALE;
2854
2855 /*
2856 * if *imbalance is less than the average load per runnable task
2857 * there is no gaurantee that any tasks will be moved so we'll have
2858 * a think about bumping its value to force at least one task to be
2859 * moved
2860 */
2861 if (*imbalance < busiest_load_per_task) {
2862 unsigned long tmp, pwr_now, pwr_move;
2863 unsigned int imbn;
2864
2865 small_imbalance:
2866 pwr_move = pwr_now = 0;
2867 imbn = 2;
2868 if (this_nr_running) {
2869 this_load_per_task /= this_nr_running;
2870 if (busiest_load_per_task > this_load_per_task)
2871 imbn = 1;
2872 } else
2873 this_load_per_task = SCHED_LOAD_SCALE;
2874
2875 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2876 busiest_load_per_task * imbn) {
2877 *imbalance = busiest_load_per_task;
2878 return busiest;
2879 }
2880
2881 /*
2882 * OK, we don't have enough imbalance to justify moving tasks,
2883 * however we may be able to increase total CPU power used by
2884 * moving them.
2885 */
2886
2887 pwr_now += busiest->__cpu_power *
2888 min(busiest_load_per_task, max_load);
2889 pwr_now += this->__cpu_power *
2890 min(this_load_per_task, this_load);
2891 pwr_now /= SCHED_LOAD_SCALE;
2892
2893 /* Amount of load we'd subtract */
2894 tmp = sg_div_cpu_power(busiest,
2895 busiest_load_per_task * SCHED_LOAD_SCALE);
2896 if (max_load > tmp)
2897 pwr_move += busiest->__cpu_power *
2898 min(busiest_load_per_task, max_load - tmp);
2899
2900 /* Amount of load we'd add */
2901 if (max_load * busiest->__cpu_power <
2902 busiest_load_per_task * SCHED_LOAD_SCALE)
2903 tmp = sg_div_cpu_power(this,
2904 max_load * busiest->__cpu_power);
2905 else
2906 tmp = sg_div_cpu_power(this,
2907 busiest_load_per_task * SCHED_LOAD_SCALE);
2908 pwr_move += this->__cpu_power *
2909 min(this_load_per_task, this_load + tmp);
2910 pwr_move /= SCHED_LOAD_SCALE;
2911
2912 /* Move if we gain throughput */
2913 if (pwr_move > pwr_now)
2914 *imbalance = busiest_load_per_task;
2915 }
2916
2917 return busiest;
2918
2919 out_balanced:
2920 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2921 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2922 goto ret;
2923
2924 if (this == group_leader && group_leader != group_min) {
2925 *imbalance = min_load_per_task;
2926 return group_min;
2927 }
2928 #endif
2929 ret:
2930 *imbalance = 0;
2931 return NULL;
2932 }
2933
2934 /*
2935 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2936 */
2937 static struct rq *
2938 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2939 unsigned long imbalance, cpumask_t *cpus)
2940 {
2941 struct rq *busiest = NULL, *rq;
2942 unsigned long max_load = 0;
2943 int i;
2944
2945 for_each_cpu_mask(i, group->cpumask) {
2946 unsigned long wl;
2947
2948 if (!cpu_isset(i, *cpus))
2949 continue;
2950
2951 rq = cpu_rq(i);
2952 wl = weighted_cpuload(i);
2953
2954 if (rq->nr_running == 1 && wl > imbalance)
2955 continue;
2956
2957 if (wl > max_load) {
2958 max_load = wl;
2959 busiest = rq;
2960 }
2961 }
2962
2963 return busiest;
2964 }
2965
2966 /*
2967 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2968 * so long as it is large enough.
2969 */
2970 #define MAX_PINNED_INTERVAL 512
2971
2972 /*
2973 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2974 * tasks if there is an imbalance.
2975 */
2976 static int load_balance(int this_cpu, struct rq *this_rq,
2977 struct sched_domain *sd, enum cpu_idle_type idle,
2978 int *balance)
2979 {
2980 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2981 struct sched_group *group;
2982 unsigned long imbalance;
2983 struct rq *busiest;
2984 cpumask_t cpus = CPU_MASK_ALL;
2985 unsigned long flags;
2986
2987 /*
2988 * When power savings policy is enabled for the parent domain, idle
2989 * sibling can pick up load irrespective of busy siblings. In this case,
2990 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2991 * portraying it as CPU_NOT_IDLE.
2992 */
2993 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2995 sd_idle = 1;
2996
2997 schedstat_inc(sd, lb_count[idle]);
2998
2999 redo:
3000 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3001 &cpus, balance);
3002
3003 if (*balance == 0)
3004 goto out_balanced;
3005
3006 if (!group) {
3007 schedstat_inc(sd, lb_nobusyg[idle]);
3008 goto out_balanced;
3009 }
3010
3011 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3012 if (!busiest) {
3013 schedstat_inc(sd, lb_nobusyq[idle]);
3014 goto out_balanced;
3015 }
3016
3017 BUG_ON(busiest == this_rq);
3018
3019 schedstat_add(sd, lb_imbalance[idle], imbalance);
3020
3021 ld_moved = 0;
3022 if (busiest->nr_running > 1) {
3023 /*
3024 * Attempt to move tasks. If find_busiest_group has found
3025 * an imbalance but busiest->nr_running <= 1, the group is
3026 * still unbalanced. ld_moved simply stays zero, so it is
3027 * correctly treated as an imbalance.
3028 */
3029 local_irq_save(flags);
3030 double_rq_lock(this_rq, busiest);
3031 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3032 imbalance, sd, idle, &all_pinned);
3033 double_rq_unlock(this_rq, busiest);
3034 local_irq_restore(flags);
3035
3036 /*
3037 * some other cpu did the load balance for us.
3038 */
3039 if (ld_moved && this_cpu != smp_processor_id())
3040 resched_cpu(this_cpu);
3041
3042 /* All tasks on this runqueue were pinned by CPU affinity */
3043 if (unlikely(all_pinned)) {
3044 cpu_clear(cpu_of(busiest), cpus);
3045 if (!cpus_empty(cpus))
3046 goto redo;
3047 goto out_balanced;
3048 }
3049 }
3050
3051 if (!ld_moved) {
3052 schedstat_inc(sd, lb_failed[idle]);
3053 sd->nr_balance_failed++;
3054
3055 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3056
3057 spin_lock_irqsave(&busiest->lock, flags);
3058
3059 /* don't kick the migration_thread, if the curr
3060 * task on busiest cpu can't be moved to this_cpu
3061 */
3062 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3063 spin_unlock_irqrestore(&busiest->lock, flags);
3064 all_pinned = 1;
3065 goto out_one_pinned;
3066 }
3067
3068 if (!busiest->active_balance) {
3069 busiest->active_balance = 1;
3070 busiest->push_cpu = this_cpu;
3071 active_balance = 1;
3072 }
3073 spin_unlock_irqrestore(&busiest->lock, flags);
3074 if (active_balance)
3075 wake_up_process(busiest->migration_thread);
3076
3077 /*
3078 * We've kicked active balancing, reset the failure
3079 * counter.
3080 */
3081 sd->nr_balance_failed = sd->cache_nice_tries+1;
3082 }
3083 } else
3084 sd->nr_balance_failed = 0;
3085
3086 if (likely(!active_balance)) {
3087 /* We were unbalanced, so reset the balancing interval */
3088 sd->balance_interval = sd->min_interval;
3089 } else {
3090 /*
3091 * If we've begun active balancing, start to back off. This
3092 * case may not be covered by the all_pinned logic if there
3093 * is only 1 task on the busy runqueue (because we don't call
3094 * move_tasks).
3095 */
3096 if (sd->balance_interval < sd->max_interval)
3097 sd->balance_interval *= 2;
3098 }
3099
3100 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3101 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3102 return -1;
3103 return ld_moved;
3104
3105 out_balanced:
3106 schedstat_inc(sd, lb_balanced[idle]);
3107
3108 sd->nr_balance_failed = 0;
3109
3110 out_one_pinned:
3111 /* tune up the balancing interval */
3112 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3113 (sd->balance_interval < sd->max_interval))
3114 sd->balance_interval *= 2;
3115
3116 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3117 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3118 return -1;
3119 return 0;
3120 }
3121
3122 /*
3123 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3124 * tasks if there is an imbalance.
3125 *
3126 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3127 * this_rq is locked.
3128 */
3129 static int
3130 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3131 {
3132 struct sched_group *group;
3133 struct rq *busiest = NULL;
3134 unsigned long imbalance;
3135 int ld_moved = 0;
3136 int sd_idle = 0;
3137 int all_pinned = 0;
3138 cpumask_t cpus = CPU_MASK_ALL;
3139
3140 /*
3141 * When power savings policy is enabled for the parent domain, idle
3142 * sibling can pick up load irrespective of busy siblings. In this case,
3143 * let the state of idle sibling percolate up as IDLE, instead of
3144 * portraying it as CPU_NOT_IDLE.
3145 */
3146 if (sd->flags & SD_SHARE_CPUPOWER &&
3147 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3148 sd_idle = 1;
3149
3150 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3151 redo:
3152 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3153 &sd_idle, &cpus, NULL);
3154 if (!group) {
3155 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3156 goto out_balanced;
3157 }
3158
3159 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3160 &cpus);
3161 if (!busiest) {
3162 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3163 goto out_balanced;
3164 }
3165
3166 BUG_ON(busiest == this_rq);
3167
3168 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3169
3170 ld_moved = 0;
3171 if (busiest->nr_running > 1) {
3172 /* Attempt to move tasks */
3173 double_lock_balance(this_rq, busiest);
3174 /* this_rq->clock is already updated */
3175 update_rq_clock(busiest);
3176 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3177 imbalance, sd, CPU_NEWLY_IDLE,
3178 &all_pinned);
3179 spin_unlock(&busiest->lock);
3180
3181 if (unlikely(all_pinned)) {
3182 cpu_clear(cpu_of(busiest), cpus);
3183 if (!cpus_empty(cpus))
3184 goto redo;
3185 }
3186 }
3187
3188 if (!ld_moved) {
3189 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3190 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3191 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3192 return -1;
3193 } else
3194 sd->nr_balance_failed = 0;
3195
3196 return ld_moved;
3197
3198 out_balanced:
3199 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3200 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3202 return -1;
3203 sd->nr_balance_failed = 0;
3204
3205 return 0;
3206 }
3207
3208 /*
3209 * idle_balance is called by schedule() if this_cpu is about to become
3210 * idle. Attempts to pull tasks from other CPUs.
3211 */
3212 static void idle_balance(int this_cpu, struct rq *this_rq)
3213 {
3214 struct sched_domain *sd;
3215 int pulled_task = -1;
3216 unsigned long next_balance = jiffies + HZ;
3217
3218 for_each_domain(this_cpu, sd) {
3219 unsigned long interval;
3220
3221 if (!(sd->flags & SD_LOAD_BALANCE))
3222 continue;
3223
3224 if (sd->flags & SD_BALANCE_NEWIDLE)
3225 /* If we've pulled tasks over stop searching: */
3226 pulled_task = load_balance_newidle(this_cpu,
3227 this_rq, sd);
3228
3229 interval = msecs_to_jiffies(sd->balance_interval);
3230 if (time_after(next_balance, sd->last_balance + interval))
3231 next_balance = sd->last_balance + interval;
3232 if (pulled_task)
3233 break;
3234 }
3235 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3236 /*
3237 * We are going idle. next_balance may be set based on
3238 * a busy processor. So reset next_balance.
3239 */
3240 this_rq->next_balance = next_balance;
3241 }
3242 }
3243
3244 /*
3245 * active_load_balance is run by migration threads. It pushes running tasks
3246 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3247 * running on each physical CPU where possible, and avoids physical /
3248 * logical imbalances.
3249 *
3250 * Called with busiest_rq locked.
3251 */
3252 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3253 {
3254 int target_cpu = busiest_rq->push_cpu;
3255 struct sched_domain *sd;
3256 struct rq *target_rq;
3257
3258 /* Is there any task to move? */
3259 if (busiest_rq->nr_running <= 1)
3260 return;
3261
3262 target_rq = cpu_rq(target_cpu);
3263
3264 /*
3265 * This condition is "impossible", if it occurs
3266 * we need to fix it. Originally reported by
3267 * Bjorn Helgaas on a 128-cpu setup.
3268 */
3269 BUG_ON(busiest_rq == target_rq);
3270
3271 /* move a task from busiest_rq to target_rq */
3272 double_lock_balance(busiest_rq, target_rq);
3273 update_rq_clock(busiest_rq);
3274 update_rq_clock(target_rq);
3275
3276 /* Search for an sd spanning us and the target CPU. */
3277 for_each_domain(target_cpu, sd) {
3278 if ((sd->flags & SD_LOAD_BALANCE) &&
3279 cpu_isset(busiest_cpu, sd->span))
3280 break;
3281 }
3282
3283 if (likely(sd)) {
3284 schedstat_inc(sd, alb_count);
3285
3286 if (move_one_task(target_rq, target_cpu, busiest_rq,
3287 sd, CPU_IDLE))
3288 schedstat_inc(sd, alb_pushed);
3289 else
3290 schedstat_inc(sd, alb_failed);
3291 }
3292 spin_unlock(&target_rq->lock);
3293 }
3294
3295 #ifdef CONFIG_NO_HZ
3296 static struct {
3297 atomic_t load_balancer;
3298 cpumask_t cpu_mask;
3299 } nohz ____cacheline_aligned = {
3300 .load_balancer = ATOMIC_INIT(-1),
3301 .cpu_mask = CPU_MASK_NONE,
3302 };
3303
3304 /*
3305 * This routine will try to nominate the ilb (idle load balancing)
3306 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3307 * load balancing on behalf of all those cpus. If all the cpus in the system
3308 * go into this tickless mode, then there will be no ilb owner (as there is
3309 * no need for one) and all the cpus will sleep till the next wakeup event
3310 * arrives...
3311 *
3312 * For the ilb owner, tick is not stopped. And this tick will be used
3313 * for idle load balancing. ilb owner will still be part of
3314 * nohz.cpu_mask..
3315 *
3316 * While stopping the tick, this cpu will become the ilb owner if there
3317 * is no other owner. And will be the owner till that cpu becomes busy
3318 * or if all cpus in the system stop their ticks at which point
3319 * there is no need for ilb owner.
3320 *
3321 * When the ilb owner becomes busy, it nominates another owner, during the
3322 * next busy scheduler_tick()
3323 */
3324 int select_nohz_load_balancer(int stop_tick)
3325 {
3326 int cpu = smp_processor_id();
3327
3328 if (stop_tick) {
3329 cpu_set(cpu, nohz.cpu_mask);
3330 cpu_rq(cpu)->in_nohz_recently = 1;
3331
3332 /*
3333 * If we are going offline and still the leader, give up!
3334 */
3335 if (cpu_is_offline(cpu) &&
3336 atomic_read(&nohz.load_balancer) == cpu) {
3337 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3338 BUG();
3339 return 0;
3340 }
3341
3342 /* time for ilb owner also to sleep */
3343 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3344 if (atomic_read(&nohz.load_balancer) == cpu)
3345 atomic_set(&nohz.load_balancer, -1);
3346 return 0;
3347 }
3348
3349 if (atomic_read(&nohz.load_balancer) == -1) {
3350 /* make me the ilb owner */
3351 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3352 return 1;
3353 } else if (atomic_read(&nohz.load_balancer) == cpu)
3354 return 1;
3355 } else {
3356 if (!cpu_isset(cpu, nohz.cpu_mask))
3357 return 0;
3358
3359 cpu_clear(cpu, nohz.cpu_mask);
3360
3361 if (atomic_read(&nohz.load_balancer) == cpu)
3362 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3363 BUG();
3364 }
3365 return 0;
3366 }
3367 #endif
3368
3369 static DEFINE_SPINLOCK(balancing);
3370
3371 /*
3372 * It checks each scheduling domain to see if it is due to be balanced,
3373 * and initiates a balancing operation if so.
3374 *
3375 * Balancing parameters are set up in arch_init_sched_domains.
3376 */
3377 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3378 {
3379 int balance = 1;
3380 struct rq *rq = cpu_rq(cpu);
3381 unsigned long interval;
3382 struct sched_domain *sd;
3383 /* Earliest time when we have to do rebalance again */
3384 unsigned long next_balance = jiffies + 60*HZ;
3385 int update_next_balance = 0;
3386
3387 for_each_domain(cpu, sd) {
3388 if (!(sd->flags & SD_LOAD_BALANCE))
3389 continue;
3390
3391 interval = sd->balance_interval;
3392 if (idle != CPU_IDLE)
3393 interval *= sd->busy_factor;
3394
3395 /* scale ms to jiffies */
3396 interval = msecs_to_jiffies(interval);
3397 if (unlikely(!interval))
3398 interval = 1;
3399 if (interval > HZ*NR_CPUS/10)
3400 interval = HZ*NR_CPUS/10;
3401
3402
3403 if (sd->flags & SD_SERIALIZE) {
3404 if (!spin_trylock(&balancing))
3405 goto out;
3406 }
3407
3408 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3409 if (load_balance(cpu, rq, sd, idle, &balance)) {
3410 /*
3411 * We've pulled tasks over so either we're no
3412 * longer idle, or one of our SMT siblings is
3413 * not idle.
3414 */
3415 idle = CPU_NOT_IDLE;
3416 }
3417 sd->last_balance = jiffies;
3418 }
3419 if (sd->flags & SD_SERIALIZE)
3420 spin_unlock(&balancing);
3421 out:
3422 if (time_after(next_balance, sd->last_balance + interval)) {
3423 next_balance = sd->last_balance + interval;
3424 update_next_balance = 1;
3425 }
3426
3427 /*
3428 * Stop the load balance at this level. There is another
3429 * CPU in our sched group which is doing load balancing more
3430 * actively.
3431 */
3432 if (!balance)
3433 break;
3434 }
3435
3436 /*
3437 * next_balance will be updated only when there is a need.
3438 * When the cpu is attached to null domain for ex, it will not be
3439 * updated.
3440 */
3441 if (likely(update_next_balance))
3442 rq->next_balance = next_balance;
3443 }
3444
3445 /*
3446 * run_rebalance_domains is triggered when needed from the scheduler tick.
3447 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3448 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3449 */
3450 static void run_rebalance_domains(struct softirq_action *h)
3451 {
3452 int this_cpu = smp_processor_id();
3453 struct rq *this_rq = cpu_rq(this_cpu);
3454 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3455 CPU_IDLE : CPU_NOT_IDLE;
3456
3457 rebalance_domains(this_cpu, idle);
3458
3459 #ifdef CONFIG_NO_HZ
3460 /*
3461 * If this cpu is the owner for idle load balancing, then do the
3462 * balancing on behalf of the other idle cpus whose ticks are
3463 * stopped.
3464 */
3465 if (this_rq->idle_at_tick &&
3466 atomic_read(&nohz.load_balancer) == this_cpu) {
3467 cpumask_t cpus = nohz.cpu_mask;
3468 struct rq *rq;
3469 int balance_cpu;
3470
3471 cpu_clear(this_cpu, cpus);
3472 for_each_cpu_mask(balance_cpu, cpus) {
3473 /*
3474 * If this cpu gets work to do, stop the load balancing
3475 * work being done for other cpus. Next load
3476 * balancing owner will pick it up.
3477 */
3478 if (need_resched())
3479 break;
3480
3481 rebalance_domains(balance_cpu, CPU_IDLE);
3482
3483 rq = cpu_rq(balance_cpu);
3484 if (time_after(this_rq->next_balance, rq->next_balance))
3485 this_rq->next_balance = rq->next_balance;
3486 }
3487 }
3488 #endif
3489 }
3490
3491 /*
3492 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3493 *
3494 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3495 * idle load balancing owner or decide to stop the periodic load balancing,
3496 * if the whole system is idle.
3497 */
3498 static inline void trigger_load_balance(struct rq *rq, int cpu)
3499 {
3500 #ifdef CONFIG_NO_HZ
3501 /*
3502 * If we were in the nohz mode recently and busy at the current
3503 * scheduler tick, then check if we need to nominate new idle
3504 * load balancer.
3505 */
3506 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3507 rq->in_nohz_recently = 0;
3508
3509 if (atomic_read(&nohz.load_balancer) == cpu) {
3510 cpu_clear(cpu, nohz.cpu_mask);
3511 atomic_set(&nohz.load_balancer, -1);
3512 }
3513
3514 if (atomic_read(&nohz.load_balancer) == -1) {
3515 /*
3516 * simple selection for now: Nominate the
3517 * first cpu in the nohz list to be the next
3518 * ilb owner.
3519 *
3520 * TBD: Traverse the sched domains and nominate
3521 * the nearest cpu in the nohz.cpu_mask.
3522 */
3523 int ilb = first_cpu(nohz.cpu_mask);
3524
3525 if (ilb != NR_CPUS)
3526 resched_cpu(ilb);
3527 }
3528 }
3529
3530 /*
3531 * If this cpu is idle and doing idle load balancing for all the
3532 * cpus with ticks stopped, is it time for that to stop?
3533 */
3534 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3535 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3536 resched_cpu(cpu);
3537 return;
3538 }
3539
3540 /*
3541 * If this cpu is idle and the idle load balancing is done by
3542 * someone else, then no need raise the SCHED_SOFTIRQ
3543 */
3544 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3545 cpu_isset(cpu, nohz.cpu_mask))
3546 return;
3547 #endif
3548 if (time_after_eq(jiffies, rq->next_balance))
3549 raise_softirq(SCHED_SOFTIRQ);
3550 }
3551
3552 #else /* CONFIG_SMP */
3553
3554 /*
3555 * on UP we do not need to balance between CPUs:
3556 */
3557 static inline void idle_balance(int cpu, struct rq *rq)
3558 {
3559 }
3560
3561 #endif
3562
3563 DEFINE_PER_CPU(struct kernel_stat, kstat);
3564
3565 EXPORT_PER_CPU_SYMBOL(kstat);
3566
3567 /*
3568 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3569 * that have not yet been banked in case the task is currently running.
3570 */
3571 unsigned long long task_sched_runtime(struct task_struct *p)
3572 {
3573 unsigned long flags;
3574 u64 ns, delta_exec;
3575 struct rq *rq;
3576
3577 rq = task_rq_lock(p, &flags);
3578 ns = p->se.sum_exec_runtime;
3579 if (task_current(rq, p)) {
3580 update_rq_clock(rq);
3581 delta_exec = rq->clock - p->se.exec_start;
3582 if ((s64)delta_exec > 0)
3583 ns += delta_exec;
3584 }
3585 task_rq_unlock(rq, &flags);
3586
3587 return ns;
3588 }
3589
3590 /*
3591 * Account user cpu time to a process.
3592 * @p: the process that the cpu time gets accounted to
3593 * @cputime: the cpu time spent in user space since the last update
3594 */
3595 void account_user_time(struct task_struct *p, cputime_t cputime)
3596 {
3597 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3598 cputime64_t tmp;
3599
3600 p->utime = cputime_add(p->utime, cputime);
3601
3602 /* Add user time to cpustat. */
3603 tmp = cputime_to_cputime64(cputime);
3604 if (TASK_NICE(p) > 0)
3605 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3606 else
3607 cpustat->user = cputime64_add(cpustat->user, tmp);
3608 }
3609
3610 /*
3611 * Account guest cpu time to a process.
3612 * @p: the process that the cpu time gets accounted to
3613 * @cputime: the cpu time spent in virtual machine since the last update
3614 */
3615 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3616 {
3617 cputime64_t tmp;
3618 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3619
3620 tmp = cputime_to_cputime64(cputime);
3621
3622 p->utime = cputime_add(p->utime, cputime);
3623 p->gtime = cputime_add(p->gtime, cputime);
3624
3625 cpustat->user = cputime64_add(cpustat->user, tmp);
3626 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3627 }
3628
3629 /*
3630 * Account scaled user cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @cputime: the cpu time spent in user space since the last update
3633 */
3634 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3635 {
3636 p->utimescaled = cputime_add(p->utimescaled, cputime);
3637 }
3638
3639 /*
3640 * Account system cpu time to a process.
3641 * @p: the process that the cpu time gets accounted to
3642 * @hardirq_offset: the offset to subtract from hardirq_count()
3643 * @cputime: the cpu time spent in kernel space since the last update
3644 */
3645 void account_system_time(struct task_struct *p, int hardirq_offset,
3646 cputime_t cputime)
3647 {
3648 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3649 struct rq *rq = this_rq();
3650 cputime64_t tmp;
3651
3652 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3653 return account_guest_time(p, cputime);
3654
3655 p->stime = cputime_add(p->stime, cputime);
3656
3657 /* Add system time to cpustat. */
3658 tmp = cputime_to_cputime64(cputime);
3659 if (hardirq_count() - hardirq_offset)
3660 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3661 else if (softirq_count())
3662 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3663 else if (p != rq->idle)
3664 cpustat->system = cputime64_add(cpustat->system, tmp);
3665 else if (atomic_read(&rq->nr_iowait) > 0)
3666 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3667 else
3668 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3669 /* Account for system time used */
3670 acct_update_integrals(p);
3671 }
3672
3673 /*
3674 * Account scaled system cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @hardirq_offset: the offset to subtract from hardirq_count()
3677 * @cputime: the cpu time spent in kernel space since the last update
3678 */
3679 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3680 {
3681 p->stimescaled = cputime_add(p->stimescaled, cputime);
3682 }
3683
3684 /*
3685 * Account for involuntary wait time.
3686 * @p: the process from which the cpu time has been stolen
3687 * @steal: the cpu time spent in involuntary wait
3688 */
3689 void account_steal_time(struct task_struct *p, cputime_t steal)
3690 {
3691 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3692 cputime64_t tmp = cputime_to_cputime64(steal);
3693 struct rq *rq = this_rq();
3694
3695 if (p == rq->idle) {
3696 p->stime = cputime_add(p->stime, steal);
3697 if (atomic_read(&rq->nr_iowait) > 0)
3698 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3699 else
3700 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3701 } else
3702 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3703 }
3704
3705 /*
3706 * This function gets called by the timer code, with HZ frequency.
3707 * We call it with interrupts disabled.
3708 *
3709 * It also gets called by the fork code, when changing the parent's
3710 * timeslices.
3711 */
3712 void scheduler_tick(void)
3713 {
3714 int cpu = smp_processor_id();
3715 struct rq *rq = cpu_rq(cpu);
3716 struct task_struct *curr = rq->curr;
3717 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3718
3719 spin_lock(&rq->lock);
3720 __update_rq_clock(rq);
3721 /*
3722 * Let rq->clock advance by at least TICK_NSEC:
3723 */
3724 if (unlikely(rq->clock < next_tick)) {
3725 rq->clock = next_tick;
3726 rq->clock_underflows++;
3727 }
3728 rq->tick_timestamp = rq->clock;
3729 update_cpu_load(rq);
3730 curr->sched_class->task_tick(rq, curr, 0);
3731 update_sched_rt_period(rq);
3732 spin_unlock(&rq->lock);
3733
3734 #ifdef CONFIG_SMP
3735 rq->idle_at_tick = idle_cpu(cpu);
3736 trigger_load_balance(rq, cpu);
3737 #endif
3738 }
3739
3740 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3741
3742 void __kprobes add_preempt_count(int val)
3743 {
3744 /*
3745 * Underflow?
3746 */
3747 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3748 return;
3749 preempt_count() += val;
3750 /*
3751 * Spinlock count overflowing soon?
3752 */
3753 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3754 PREEMPT_MASK - 10);
3755 }
3756 EXPORT_SYMBOL(add_preempt_count);
3757
3758 void __kprobes sub_preempt_count(int val)
3759 {
3760 /*
3761 * Underflow?
3762 */
3763 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3764 return;
3765 /*
3766 * Is the spinlock portion underflowing?
3767 */
3768 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3769 !(preempt_count() & PREEMPT_MASK)))
3770 return;
3771
3772 preempt_count() -= val;
3773 }
3774 EXPORT_SYMBOL(sub_preempt_count);
3775
3776 #endif
3777
3778 /*
3779 * Print scheduling while atomic bug:
3780 */
3781 static noinline void __schedule_bug(struct task_struct *prev)
3782 {
3783 struct pt_regs *regs = get_irq_regs();
3784
3785 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3786 prev->comm, prev->pid, preempt_count());
3787
3788 debug_show_held_locks(prev);
3789 if (irqs_disabled())
3790 print_irqtrace_events(prev);
3791
3792 if (regs)
3793 show_regs(regs);
3794 else
3795 dump_stack();
3796 }
3797
3798 /*
3799 * Various schedule()-time debugging checks and statistics:
3800 */
3801 static inline void schedule_debug(struct task_struct *prev)
3802 {
3803 /*
3804 * Test if we are atomic. Since do_exit() needs to call into
3805 * schedule() atomically, we ignore that path for now.
3806 * Otherwise, whine if we are scheduling when we should not be.
3807 */
3808 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3809 __schedule_bug(prev);
3810
3811 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3812
3813 schedstat_inc(this_rq(), sched_count);
3814 #ifdef CONFIG_SCHEDSTATS
3815 if (unlikely(prev->lock_depth >= 0)) {
3816 schedstat_inc(this_rq(), bkl_count);
3817 schedstat_inc(prev, sched_info.bkl_count);
3818 }
3819 #endif
3820 }
3821
3822 /*
3823 * Pick up the highest-prio task:
3824 */
3825 static inline struct task_struct *
3826 pick_next_task(struct rq *rq, struct task_struct *prev)
3827 {
3828 const struct sched_class *class;
3829 struct task_struct *p;
3830
3831 /*
3832 * Optimization: we know that if all tasks are in
3833 * the fair class we can call that function directly:
3834 */
3835 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3836 p = fair_sched_class.pick_next_task(rq);
3837 if (likely(p))
3838 return p;
3839 }
3840
3841 class = sched_class_highest;
3842 for ( ; ; ) {
3843 p = class->pick_next_task(rq);
3844 if (p)
3845 return p;
3846 /*
3847 * Will never be NULL as the idle class always
3848 * returns a non-NULL p:
3849 */
3850 class = class->next;
3851 }
3852 }
3853
3854 /*
3855 * schedule() is the main scheduler function.
3856 */
3857 asmlinkage void __sched schedule(void)
3858 {
3859 struct task_struct *prev, *next;
3860 unsigned long *switch_count;
3861 struct rq *rq;
3862 int cpu;
3863
3864 need_resched:
3865 preempt_disable();
3866 cpu = smp_processor_id();
3867 rq = cpu_rq(cpu);
3868 rcu_qsctr_inc(cpu);
3869 prev = rq->curr;
3870 switch_count = &prev->nivcsw;
3871
3872 release_kernel_lock(prev);
3873 need_resched_nonpreemptible:
3874
3875 schedule_debug(prev);
3876
3877 hrtick_clear(rq);
3878
3879 /*
3880 * Do the rq-clock update outside the rq lock:
3881 */
3882 local_irq_disable();
3883 __update_rq_clock(rq);
3884 spin_lock(&rq->lock);
3885 clear_tsk_need_resched(prev);
3886
3887 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3888 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3889 unlikely(signal_pending(prev)))) {
3890 prev->state = TASK_RUNNING;
3891 } else {
3892 deactivate_task(rq, prev, 1);
3893 }
3894 switch_count = &prev->nvcsw;
3895 }
3896
3897 #ifdef CONFIG_SMP
3898 if (prev->sched_class->pre_schedule)
3899 prev->sched_class->pre_schedule(rq, prev);
3900 #endif
3901
3902 if (unlikely(!rq->nr_running))
3903 idle_balance(cpu, rq);
3904
3905 prev->sched_class->put_prev_task(rq, prev);
3906 next = pick_next_task(rq, prev);
3907
3908 sched_info_switch(prev, next);
3909
3910 if (likely(prev != next)) {
3911 rq->nr_switches++;
3912 rq->curr = next;
3913 ++*switch_count;
3914
3915 context_switch(rq, prev, next); /* unlocks the rq */
3916 /*
3917 * the context switch might have flipped the stack from under
3918 * us, hence refresh the local variables.
3919 */
3920 cpu = smp_processor_id();
3921 rq = cpu_rq(cpu);
3922 } else
3923 spin_unlock_irq(&rq->lock);
3924
3925 hrtick_set(rq);
3926
3927 if (unlikely(reacquire_kernel_lock(current) < 0))
3928 goto need_resched_nonpreemptible;
3929
3930 preempt_enable_no_resched();
3931 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3932 goto need_resched;
3933 }
3934 EXPORT_SYMBOL(schedule);
3935
3936 #ifdef CONFIG_PREEMPT
3937 /*
3938 * this is the entry point to schedule() from in-kernel preemption
3939 * off of preempt_enable. Kernel preemptions off return from interrupt
3940 * occur there and call schedule directly.
3941 */
3942 asmlinkage void __sched preempt_schedule(void)
3943 {
3944 struct thread_info *ti = current_thread_info();
3945 struct task_struct *task = current;
3946 int saved_lock_depth;
3947
3948 /*
3949 * If there is a non-zero preempt_count or interrupts are disabled,
3950 * we do not want to preempt the current task. Just return..
3951 */
3952 if (likely(ti->preempt_count || irqs_disabled()))
3953 return;
3954
3955 do {
3956 add_preempt_count(PREEMPT_ACTIVE);
3957
3958 /*
3959 * We keep the big kernel semaphore locked, but we
3960 * clear ->lock_depth so that schedule() doesnt
3961 * auto-release the semaphore:
3962 */
3963 saved_lock_depth = task->lock_depth;
3964 task->lock_depth = -1;
3965 schedule();
3966 task->lock_depth = saved_lock_depth;
3967 sub_preempt_count(PREEMPT_ACTIVE);
3968
3969 /*
3970 * Check again in case we missed a preemption opportunity
3971 * between schedule and now.
3972 */
3973 barrier();
3974 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3975 }
3976 EXPORT_SYMBOL(preempt_schedule);
3977
3978 /*
3979 * this is the entry point to schedule() from kernel preemption
3980 * off of irq context.
3981 * Note, that this is called and return with irqs disabled. This will
3982 * protect us against recursive calling from irq.
3983 */
3984 asmlinkage void __sched preempt_schedule_irq(void)
3985 {
3986 struct thread_info *ti = current_thread_info();
3987 struct task_struct *task = current;
3988 int saved_lock_depth;
3989
3990 /* Catch callers which need to be fixed */
3991 BUG_ON(ti->preempt_count || !irqs_disabled());
3992
3993 do {
3994 add_preempt_count(PREEMPT_ACTIVE);
3995
3996 /*
3997 * We keep the big kernel semaphore locked, but we
3998 * clear ->lock_depth so that schedule() doesnt
3999 * auto-release the semaphore:
4000 */
4001 saved_lock_depth = task->lock_depth;
4002 task->lock_depth = -1;
4003 local_irq_enable();
4004 schedule();
4005 local_irq_disable();
4006 task->lock_depth = saved_lock_depth;
4007 sub_preempt_count(PREEMPT_ACTIVE);
4008
4009 /*
4010 * Check again in case we missed a preemption opportunity
4011 * between schedule and now.
4012 */
4013 barrier();
4014 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4015 }
4016
4017 #endif /* CONFIG_PREEMPT */
4018
4019 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4020 void *key)
4021 {
4022 return try_to_wake_up(curr->private, mode, sync);
4023 }
4024 EXPORT_SYMBOL(default_wake_function);
4025
4026 /*
4027 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4028 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4029 * number) then we wake all the non-exclusive tasks and one exclusive task.
4030 *
4031 * There are circumstances in which we can try to wake a task which has already
4032 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4033 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4034 */
4035 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4036 int nr_exclusive, int sync, void *key)
4037 {
4038 wait_queue_t *curr, *next;
4039
4040 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4041 unsigned flags = curr->flags;
4042
4043 if (curr->func(curr, mode, sync, key) &&
4044 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4045 break;
4046 }
4047 }
4048
4049 /**
4050 * __wake_up - wake up threads blocked on a waitqueue.
4051 * @q: the waitqueue
4052 * @mode: which threads
4053 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4054 * @key: is directly passed to the wakeup function
4055 */
4056 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4057 int nr_exclusive, void *key)
4058 {
4059 unsigned long flags;
4060
4061 spin_lock_irqsave(&q->lock, flags);
4062 __wake_up_common(q, mode, nr_exclusive, 0, key);
4063 spin_unlock_irqrestore(&q->lock, flags);
4064 }
4065 EXPORT_SYMBOL(__wake_up);
4066
4067 /*
4068 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4069 */
4070 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4071 {
4072 __wake_up_common(q, mode, 1, 0, NULL);
4073 }
4074
4075 /**
4076 * __wake_up_sync - wake up threads blocked on a waitqueue.
4077 * @q: the waitqueue
4078 * @mode: which threads
4079 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4080 *
4081 * The sync wakeup differs that the waker knows that it will schedule
4082 * away soon, so while the target thread will be woken up, it will not
4083 * be migrated to another CPU - ie. the two threads are 'synchronized'
4084 * with each other. This can prevent needless bouncing between CPUs.
4085 *
4086 * On UP it can prevent extra preemption.
4087 */
4088 void
4089 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4090 {
4091 unsigned long flags;
4092 int sync = 1;
4093
4094 if (unlikely(!q))
4095 return;
4096
4097 if (unlikely(!nr_exclusive))
4098 sync = 0;
4099
4100 spin_lock_irqsave(&q->lock, flags);
4101 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4102 spin_unlock_irqrestore(&q->lock, flags);
4103 }
4104 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4105
4106 void complete(struct completion *x)
4107 {
4108 unsigned long flags;
4109
4110 spin_lock_irqsave(&x->wait.lock, flags);
4111 x->done++;
4112 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4113 spin_unlock_irqrestore(&x->wait.lock, flags);
4114 }
4115 EXPORT_SYMBOL(complete);
4116
4117 void complete_all(struct completion *x)
4118 {
4119 unsigned long flags;
4120
4121 spin_lock_irqsave(&x->wait.lock, flags);
4122 x->done += UINT_MAX/2;
4123 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4124 spin_unlock_irqrestore(&x->wait.lock, flags);
4125 }
4126 EXPORT_SYMBOL(complete_all);
4127
4128 static inline long __sched
4129 do_wait_for_common(struct completion *x, long timeout, int state)
4130 {
4131 if (!x->done) {
4132 DECLARE_WAITQUEUE(wait, current);
4133
4134 wait.flags |= WQ_FLAG_EXCLUSIVE;
4135 __add_wait_queue_tail(&x->wait, &wait);
4136 do {
4137 if ((state == TASK_INTERRUPTIBLE &&
4138 signal_pending(current)) ||
4139 (state == TASK_KILLABLE &&
4140 fatal_signal_pending(current))) {
4141 __remove_wait_queue(&x->wait, &wait);
4142 return -ERESTARTSYS;
4143 }
4144 __set_current_state(state);
4145 spin_unlock_irq(&x->wait.lock);
4146 timeout = schedule_timeout(timeout);
4147 spin_lock_irq(&x->wait.lock);
4148 if (!timeout) {
4149 __remove_wait_queue(&x->wait, &wait);
4150 return timeout;
4151 }
4152 } while (!x->done);
4153 __remove_wait_queue(&x->wait, &wait);
4154 }
4155 x->done--;
4156 return timeout;
4157 }
4158
4159 static long __sched
4160 wait_for_common(struct completion *x, long timeout, int state)
4161 {
4162 might_sleep();
4163
4164 spin_lock_irq(&x->wait.lock);
4165 timeout = do_wait_for_common(x, timeout, state);
4166 spin_unlock_irq(&x->wait.lock);
4167 return timeout;
4168 }
4169
4170 void __sched wait_for_completion(struct completion *x)
4171 {
4172 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4173 }
4174 EXPORT_SYMBOL(wait_for_completion);
4175
4176 unsigned long __sched
4177 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4178 {
4179 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4180 }
4181 EXPORT_SYMBOL(wait_for_completion_timeout);
4182
4183 int __sched wait_for_completion_interruptible(struct completion *x)
4184 {
4185 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4186 if (t == -ERESTARTSYS)
4187 return t;
4188 return 0;
4189 }
4190 EXPORT_SYMBOL(wait_for_completion_interruptible);
4191
4192 unsigned long __sched
4193 wait_for_completion_interruptible_timeout(struct completion *x,
4194 unsigned long timeout)
4195 {
4196 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4197 }
4198 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4199
4200 int __sched wait_for_completion_killable(struct completion *x)
4201 {
4202 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4203 if (t == -ERESTARTSYS)
4204 return t;
4205 return 0;
4206 }
4207 EXPORT_SYMBOL(wait_for_completion_killable);
4208
4209 static long __sched
4210 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4211 {
4212 unsigned long flags;
4213 wait_queue_t wait;
4214
4215 init_waitqueue_entry(&wait, current);
4216
4217 __set_current_state(state);
4218
4219 spin_lock_irqsave(&q->lock, flags);
4220 __add_wait_queue(q, &wait);
4221 spin_unlock(&q->lock);
4222 timeout = schedule_timeout(timeout);
4223 spin_lock_irq(&q->lock);
4224 __remove_wait_queue(q, &wait);
4225 spin_unlock_irqrestore(&q->lock, flags);
4226
4227 return timeout;
4228 }
4229
4230 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4231 {
4232 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4233 }
4234 EXPORT_SYMBOL(interruptible_sleep_on);
4235
4236 long __sched
4237 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4238 {
4239 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4240 }
4241 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4242
4243 void __sched sleep_on(wait_queue_head_t *q)
4244 {
4245 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4246 }
4247 EXPORT_SYMBOL(sleep_on);
4248
4249 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4250 {
4251 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4252 }
4253 EXPORT_SYMBOL(sleep_on_timeout);
4254
4255 #ifdef CONFIG_RT_MUTEXES
4256
4257 /*
4258 * rt_mutex_setprio - set the current priority of a task
4259 * @p: task
4260 * @prio: prio value (kernel-internal form)
4261 *
4262 * This function changes the 'effective' priority of a task. It does
4263 * not touch ->normal_prio like __setscheduler().
4264 *
4265 * Used by the rt_mutex code to implement priority inheritance logic.
4266 */
4267 void rt_mutex_setprio(struct task_struct *p, int prio)
4268 {
4269 unsigned long flags;
4270 int oldprio, on_rq, running;
4271 struct rq *rq;
4272 const struct sched_class *prev_class = p->sched_class;
4273
4274 BUG_ON(prio < 0 || prio > MAX_PRIO);
4275
4276 rq = task_rq_lock(p, &flags);
4277 update_rq_clock(rq);
4278
4279 oldprio = p->prio;
4280 on_rq = p->se.on_rq;
4281 running = task_current(rq, p);
4282 if (on_rq)
4283 dequeue_task(rq, p, 0);
4284 if (running)
4285 p->sched_class->put_prev_task(rq, p);
4286
4287 if (rt_prio(prio))
4288 p->sched_class = &rt_sched_class;
4289 else
4290 p->sched_class = &fair_sched_class;
4291
4292 p->prio = prio;
4293
4294 if (running)
4295 p->sched_class->set_curr_task(rq);
4296 if (on_rq) {
4297 enqueue_task(rq, p, 0);
4298
4299 check_class_changed(rq, p, prev_class, oldprio, running);
4300 }
4301 task_rq_unlock(rq, &flags);
4302 }
4303
4304 #endif
4305
4306 void set_user_nice(struct task_struct *p, long nice)
4307 {
4308 int old_prio, delta, on_rq;
4309 unsigned long flags;
4310 struct rq *rq;
4311
4312 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4313 return;
4314 /*
4315 * We have to be careful, if called from sys_setpriority(),
4316 * the task might be in the middle of scheduling on another CPU.
4317 */
4318 rq = task_rq_lock(p, &flags);
4319 update_rq_clock(rq);
4320 /*
4321 * The RT priorities are set via sched_setscheduler(), but we still
4322 * allow the 'normal' nice value to be set - but as expected
4323 * it wont have any effect on scheduling until the task is
4324 * SCHED_FIFO/SCHED_RR:
4325 */
4326 if (task_has_rt_policy(p)) {
4327 p->static_prio = NICE_TO_PRIO(nice);
4328 goto out_unlock;
4329 }
4330 on_rq = p->se.on_rq;
4331 if (on_rq) {
4332 dequeue_task(rq, p, 0);
4333 dec_load(rq, p);
4334 }
4335
4336 p->static_prio = NICE_TO_PRIO(nice);
4337 set_load_weight(p);
4338 old_prio = p->prio;
4339 p->prio = effective_prio(p);
4340 delta = p->prio - old_prio;
4341
4342 if (on_rq) {
4343 enqueue_task(rq, p, 0);
4344 inc_load(rq, p);
4345 /*
4346 * If the task increased its priority or is running and
4347 * lowered its priority, then reschedule its CPU:
4348 */
4349 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4350 resched_task(rq->curr);
4351 }
4352 out_unlock:
4353 task_rq_unlock(rq, &flags);
4354 }
4355 EXPORT_SYMBOL(set_user_nice);
4356
4357 /*
4358 * can_nice - check if a task can reduce its nice value
4359 * @p: task
4360 * @nice: nice value
4361 */
4362 int can_nice(const struct task_struct *p, const int nice)
4363 {
4364 /* convert nice value [19,-20] to rlimit style value [1,40] */
4365 int nice_rlim = 20 - nice;
4366
4367 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4368 capable(CAP_SYS_NICE));
4369 }
4370
4371 #ifdef __ARCH_WANT_SYS_NICE
4372
4373 /*
4374 * sys_nice - change the priority of the current process.
4375 * @increment: priority increment
4376 *
4377 * sys_setpriority is a more generic, but much slower function that
4378 * does similar things.
4379 */
4380 asmlinkage long sys_nice(int increment)
4381 {
4382 long nice, retval;
4383
4384 /*
4385 * Setpriority might change our priority at the same moment.
4386 * We don't have to worry. Conceptually one call occurs first
4387 * and we have a single winner.
4388 */
4389 if (increment < -40)
4390 increment = -40;
4391 if (increment > 40)
4392 increment = 40;
4393
4394 nice = PRIO_TO_NICE(current->static_prio) + increment;
4395 if (nice < -20)
4396 nice = -20;
4397 if (nice > 19)
4398 nice = 19;
4399
4400 if (increment < 0 && !can_nice(current, nice))
4401 return -EPERM;
4402
4403 retval = security_task_setnice(current, nice);
4404 if (retval)
4405 return retval;
4406
4407 set_user_nice(current, nice);
4408 return 0;
4409 }
4410
4411 #endif
4412
4413 /**
4414 * task_prio - return the priority value of a given task.
4415 * @p: the task in question.
4416 *
4417 * This is the priority value as seen by users in /proc.
4418 * RT tasks are offset by -200. Normal tasks are centered
4419 * around 0, value goes from -16 to +15.
4420 */
4421 int task_prio(const struct task_struct *p)
4422 {
4423 return p->prio - MAX_RT_PRIO;
4424 }
4425
4426 /**
4427 * task_nice - return the nice value of a given task.
4428 * @p: the task in question.
4429 */
4430 int task_nice(const struct task_struct *p)
4431 {
4432 return TASK_NICE(p);
4433 }
4434 EXPORT_SYMBOL(task_nice);
4435
4436 /**
4437 * idle_cpu - is a given cpu idle currently?
4438 * @cpu: the processor in question.
4439 */
4440 int idle_cpu(int cpu)
4441 {
4442 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4443 }
4444
4445 /**
4446 * idle_task - return the idle task for a given cpu.
4447 * @cpu: the processor in question.
4448 */
4449 struct task_struct *idle_task(int cpu)
4450 {
4451 return cpu_rq(cpu)->idle;
4452 }
4453
4454 /**
4455 * find_process_by_pid - find a process with a matching PID value.
4456 * @pid: the pid in question.
4457 */
4458 static struct task_struct *find_process_by_pid(pid_t pid)
4459 {
4460 return pid ? find_task_by_vpid(pid) : current;
4461 }
4462
4463 /* Actually do priority change: must hold rq lock. */
4464 static void
4465 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4466 {
4467 BUG_ON(p->se.on_rq);
4468
4469 p->policy = policy;
4470 switch (p->policy) {
4471 case SCHED_NORMAL:
4472 case SCHED_BATCH:
4473 case SCHED_IDLE:
4474 p->sched_class = &fair_sched_class;
4475 break;
4476 case SCHED_FIFO:
4477 case SCHED_RR:
4478 p->sched_class = &rt_sched_class;
4479 break;
4480 }
4481
4482 p->rt_priority = prio;
4483 p->normal_prio = normal_prio(p);
4484 /* we are holding p->pi_lock already */
4485 p->prio = rt_mutex_getprio(p);
4486 set_load_weight(p);
4487 }
4488
4489 /**
4490 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4491 * @p: the task in question.
4492 * @policy: new policy.
4493 * @param: structure containing the new RT priority.
4494 *
4495 * NOTE that the task may be already dead.
4496 */
4497 int sched_setscheduler(struct task_struct *p, int policy,
4498 struct sched_param *param)
4499 {
4500 int retval, oldprio, oldpolicy = -1, on_rq, running;
4501 unsigned long flags;
4502 const struct sched_class *prev_class = p->sched_class;
4503 struct rq *rq;
4504
4505 /* may grab non-irq protected spin_locks */
4506 BUG_ON(in_interrupt());
4507 recheck:
4508 /* double check policy once rq lock held */
4509 if (policy < 0)
4510 policy = oldpolicy = p->policy;
4511 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4512 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4513 policy != SCHED_IDLE)
4514 return -EINVAL;
4515 /*
4516 * Valid priorities for SCHED_FIFO and SCHED_RR are
4517 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4518 * SCHED_BATCH and SCHED_IDLE is 0.
4519 */
4520 if (param->sched_priority < 0 ||
4521 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4522 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4523 return -EINVAL;
4524 if (rt_policy(policy) != (param->sched_priority != 0))
4525 return -EINVAL;
4526
4527 /*
4528 * Allow unprivileged RT tasks to decrease priority:
4529 */
4530 if (!capable(CAP_SYS_NICE)) {
4531 if (rt_policy(policy)) {
4532 unsigned long rlim_rtprio;
4533
4534 if (!lock_task_sighand(p, &flags))
4535 return -ESRCH;
4536 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4537 unlock_task_sighand(p, &flags);
4538
4539 /* can't set/change the rt policy */
4540 if (policy != p->policy && !rlim_rtprio)
4541 return -EPERM;
4542
4543 /* can't increase priority */
4544 if (param->sched_priority > p->rt_priority &&
4545 param->sched_priority > rlim_rtprio)
4546 return -EPERM;
4547 }
4548 /*
4549 * Like positive nice levels, dont allow tasks to
4550 * move out of SCHED_IDLE either:
4551 */
4552 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4553 return -EPERM;
4554
4555 /* can't change other user's priorities */
4556 if ((current->euid != p->euid) &&
4557 (current->euid != p->uid))
4558 return -EPERM;
4559 }
4560
4561 #ifdef CONFIG_RT_GROUP_SCHED
4562 /*
4563 * Do not allow realtime tasks into groups that have no runtime
4564 * assigned.
4565 */
4566 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4567 return -EPERM;
4568 #endif
4569
4570 retval = security_task_setscheduler(p, policy, param);
4571 if (retval)
4572 return retval;
4573 /*
4574 * make sure no PI-waiters arrive (or leave) while we are
4575 * changing the priority of the task:
4576 */
4577 spin_lock_irqsave(&p->pi_lock, flags);
4578 /*
4579 * To be able to change p->policy safely, the apropriate
4580 * runqueue lock must be held.
4581 */
4582 rq = __task_rq_lock(p);
4583 /* recheck policy now with rq lock held */
4584 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4585 policy = oldpolicy = -1;
4586 __task_rq_unlock(rq);
4587 spin_unlock_irqrestore(&p->pi_lock, flags);
4588 goto recheck;
4589 }
4590 update_rq_clock(rq);
4591 on_rq = p->se.on_rq;
4592 running = task_current(rq, p);
4593 if (on_rq)
4594 deactivate_task(rq, p, 0);
4595 if (running)
4596 p->sched_class->put_prev_task(rq, p);
4597
4598 oldprio = p->prio;
4599 __setscheduler(rq, p, policy, param->sched_priority);
4600
4601 if (running)
4602 p->sched_class->set_curr_task(rq);
4603 if (on_rq) {
4604 activate_task(rq, p, 0);
4605
4606 check_class_changed(rq, p, prev_class, oldprio, running);
4607 }
4608 __task_rq_unlock(rq);
4609 spin_unlock_irqrestore(&p->pi_lock, flags);
4610
4611 rt_mutex_adjust_pi(p);
4612
4613 return 0;
4614 }
4615 EXPORT_SYMBOL_GPL(sched_setscheduler);
4616
4617 static int
4618 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4619 {
4620 struct sched_param lparam;
4621 struct task_struct *p;
4622 int retval;
4623
4624 if (!param || pid < 0)
4625 return -EINVAL;
4626 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4627 return -EFAULT;
4628
4629 rcu_read_lock();
4630 retval = -ESRCH;
4631 p = find_process_by_pid(pid);
4632 if (p != NULL)
4633 retval = sched_setscheduler(p, policy, &lparam);
4634 rcu_read_unlock();
4635
4636 return retval;
4637 }
4638
4639 /**
4640 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4641 * @pid: the pid in question.
4642 * @policy: new policy.
4643 * @param: structure containing the new RT priority.
4644 */
4645 asmlinkage long
4646 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4647 {
4648 /* negative values for policy are not valid */
4649 if (policy < 0)
4650 return -EINVAL;
4651
4652 return do_sched_setscheduler(pid, policy, param);
4653 }
4654
4655 /**
4656 * sys_sched_setparam - set/change the RT priority of a thread
4657 * @pid: the pid in question.
4658 * @param: structure containing the new RT priority.
4659 */
4660 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4661 {
4662 return do_sched_setscheduler(pid, -1, param);
4663 }
4664
4665 /**
4666 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4667 * @pid: the pid in question.
4668 */
4669 asmlinkage long sys_sched_getscheduler(pid_t pid)
4670 {
4671 struct task_struct *p;
4672 int retval;
4673
4674 if (pid < 0)
4675 return -EINVAL;
4676
4677 retval = -ESRCH;
4678 read_lock(&tasklist_lock);
4679 p = find_process_by_pid(pid);
4680 if (p) {
4681 retval = security_task_getscheduler(p);
4682 if (!retval)
4683 retval = p->policy;
4684 }
4685 read_unlock(&tasklist_lock);
4686 return retval;
4687 }
4688
4689 /**
4690 * sys_sched_getscheduler - get the RT priority of a thread
4691 * @pid: the pid in question.
4692 * @param: structure containing the RT priority.
4693 */
4694 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4695 {
4696 struct sched_param lp;
4697 struct task_struct *p;
4698 int retval;
4699
4700 if (!param || pid < 0)
4701 return -EINVAL;
4702
4703 read_lock(&tasklist_lock);
4704 p = find_process_by_pid(pid);
4705 retval = -ESRCH;
4706 if (!p)
4707 goto out_unlock;
4708
4709 retval = security_task_getscheduler(p);
4710 if (retval)
4711 goto out_unlock;
4712
4713 lp.sched_priority = p->rt_priority;
4714 read_unlock(&tasklist_lock);
4715
4716 /*
4717 * This one might sleep, we cannot do it with a spinlock held ...
4718 */
4719 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4720
4721 return retval;
4722
4723 out_unlock:
4724 read_unlock(&tasklist_lock);
4725 return retval;
4726 }
4727
4728 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4729 {
4730 cpumask_t cpus_allowed;
4731 struct task_struct *p;
4732 int retval;
4733
4734 get_online_cpus();
4735 read_lock(&tasklist_lock);
4736
4737 p = find_process_by_pid(pid);
4738 if (!p) {
4739 read_unlock(&tasklist_lock);
4740 put_online_cpus();
4741 return -ESRCH;
4742 }
4743
4744 /*
4745 * It is not safe to call set_cpus_allowed with the
4746 * tasklist_lock held. We will bump the task_struct's
4747 * usage count and then drop tasklist_lock.
4748 */
4749 get_task_struct(p);
4750 read_unlock(&tasklist_lock);
4751
4752 retval = -EPERM;
4753 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4754 !capable(CAP_SYS_NICE))
4755 goto out_unlock;
4756
4757 retval = security_task_setscheduler(p, 0, NULL);
4758 if (retval)
4759 goto out_unlock;
4760
4761 cpus_allowed = cpuset_cpus_allowed(p);
4762 cpus_and(new_mask, new_mask, cpus_allowed);
4763 again:
4764 retval = set_cpus_allowed(p, new_mask);
4765
4766 if (!retval) {
4767 cpus_allowed = cpuset_cpus_allowed(p);
4768 if (!cpus_subset(new_mask, cpus_allowed)) {
4769 /*
4770 * We must have raced with a concurrent cpuset
4771 * update. Just reset the cpus_allowed to the
4772 * cpuset's cpus_allowed
4773 */
4774 new_mask = cpus_allowed;
4775 goto again;
4776 }
4777 }
4778 out_unlock:
4779 put_task_struct(p);
4780 put_online_cpus();
4781 return retval;
4782 }
4783
4784 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4785 cpumask_t *new_mask)
4786 {
4787 if (len < sizeof(cpumask_t)) {
4788 memset(new_mask, 0, sizeof(cpumask_t));
4789 } else if (len > sizeof(cpumask_t)) {
4790 len = sizeof(cpumask_t);
4791 }
4792 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4793 }
4794
4795 /**
4796 * sys_sched_setaffinity - set the cpu affinity of a process
4797 * @pid: pid of the process
4798 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4799 * @user_mask_ptr: user-space pointer to the new cpu mask
4800 */
4801 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4802 unsigned long __user *user_mask_ptr)
4803 {
4804 cpumask_t new_mask;
4805 int retval;
4806
4807 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4808 if (retval)
4809 return retval;
4810
4811 return sched_setaffinity(pid, new_mask);
4812 }
4813
4814 /*
4815 * Represents all cpu's present in the system
4816 * In systems capable of hotplug, this map could dynamically grow
4817 * as new cpu's are detected in the system via any platform specific
4818 * method, such as ACPI for e.g.
4819 */
4820
4821 cpumask_t cpu_present_map __read_mostly;
4822 EXPORT_SYMBOL(cpu_present_map);
4823
4824 #ifndef CONFIG_SMP
4825 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4826 EXPORT_SYMBOL(cpu_online_map);
4827
4828 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4829 EXPORT_SYMBOL(cpu_possible_map);
4830 #endif
4831
4832 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4833 {
4834 struct task_struct *p;
4835 int retval;
4836
4837 get_online_cpus();
4838 read_lock(&tasklist_lock);
4839
4840 retval = -ESRCH;
4841 p = find_process_by_pid(pid);
4842 if (!p)
4843 goto out_unlock;
4844
4845 retval = security_task_getscheduler(p);
4846 if (retval)
4847 goto out_unlock;
4848
4849 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4850
4851 out_unlock:
4852 read_unlock(&tasklist_lock);
4853 put_online_cpus();
4854
4855 return retval;
4856 }
4857
4858 /**
4859 * sys_sched_getaffinity - get the cpu affinity of a process
4860 * @pid: pid of the process
4861 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4862 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4863 */
4864 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4865 unsigned long __user *user_mask_ptr)
4866 {
4867 int ret;
4868 cpumask_t mask;
4869
4870 if (len < sizeof(cpumask_t))
4871 return -EINVAL;
4872
4873 ret = sched_getaffinity(pid, &mask);
4874 if (ret < 0)
4875 return ret;
4876
4877 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4878 return -EFAULT;
4879
4880 return sizeof(cpumask_t);
4881 }
4882
4883 /**
4884 * sys_sched_yield - yield the current processor to other threads.
4885 *
4886 * This function yields the current CPU to other tasks. If there are no
4887 * other threads running on this CPU then this function will return.
4888 */
4889 asmlinkage long sys_sched_yield(void)
4890 {
4891 struct rq *rq = this_rq_lock();
4892
4893 schedstat_inc(rq, yld_count);
4894 current->sched_class->yield_task(rq);
4895
4896 /*
4897 * Since we are going to call schedule() anyway, there's
4898 * no need to preempt or enable interrupts:
4899 */
4900 __release(rq->lock);
4901 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4902 _raw_spin_unlock(&rq->lock);
4903 preempt_enable_no_resched();
4904
4905 schedule();
4906
4907 return 0;
4908 }
4909
4910 static void __cond_resched(void)
4911 {
4912 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4913 __might_sleep(__FILE__, __LINE__);
4914 #endif
4915 /*
4916 * The BKS might be reacquired before we have dropped
4917 * PREEMPT_ACTIVE, which could trigger a second
4918 * cond_resched() call.
4919 */
4920 do {
4921 add_preempt_count(PREEMPT_ACTIVE);
4922 schedule();
4923 sub_preempt_count(PREEMPT_ACTIVE);
4924 } while (need_resched());
4925 }
4926
4927 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4928 int __sched _cond_resched(void)
4929 {
4930 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4931 system_state == SYSTEM_RUNNING) {
4932 __cond_resched();
4933 return 1;
4934 }
4935 return 0;
4936 }
4937 EXPORT_SYMBOL(_cond_resched);
4938 #endif
4939
4940 /*
4941 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4942 * call schedule, and on return reacquire the lock.
4943 *
4944 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4945 * operations here to prevent schedule() from being called twice (once via
4946 * spin_unlock(), once by hand).
4947 */
4948 int cond_resched_lock(spinlock_t *lock)
4949 {
4950 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4951 int ret = 0;
4952
4953 if (spin_needbreak(lock) || resched) {
4954 spin_unlock(lock);
4955 if (resched && need_resched())
4956 __cond_resched();
4957 else
4958 cpu_relax();
4959 ret = 1;
4960 spin_lock(lock);
4961 }
4962 return ret;
4963 }
4964 EXPORT_SYMBOL(cond_resched_lock);
4965
4966 int __sched cond_resched_softirq(void)
4967 {
4968 BUG_ON(!in_softirq());
4969
4970 if (need_resched() && system_state == SYSTEM_RUNNING) {
4971 local_bh_enable();
4972 __cond_resched();
4973 local_bh_disable();
4974 return 1;
4975 }
4976 return 0;
4977 }
4978 EXPORT_SYMBOL(cond_resched_softirq);
4979
4980 /**
4981 * yield - yield the current processor to other threads.
4982 *
4983 * This is a shortcut for kernel-space yielding - it marks the
4984 * thread runnable and calls sys_sched_yield().
4985 */
4986 void __sched yield(void)
4987 {
4988 set_current_state(TASK_RUNNING);
4989 sys_sched_yield();
4990 }
4991 EXPORT_SYMBOL(yield);
4992
4993 /*
4994 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4995 * that process accounting knows that this is a task in IO wait state.
4996 *
4997 * But don't do that if it is a deliberate, throttling IO wait (this task
4998 * has set its backing_dev_info: the queue against which it should throttle)
4999 */
5000 void __sched io_schedule(void)
5001 {
5002 struct rq *rq = &__raw_get_cpu_var(runqueues);
5003
5004 delayacct_blkio_start();
5005 atomic_inc(&rq->nr_iowait);
5006 schedule();
5007 atomic_dec(&rq->nr_iowait);
5008 delayacct_blkio_end();
5009 }
5010 EXPORT_SYMBOL(io_schedule);
5011
5012 long __sched io_schedule_timeout(long timeout)
5013 {
5014 struct rq *rq = &__raw_get_cpu_var(runqueues);
5015 long ret;
5016
5017 delayacct_blkio_start();
5018 atomic_inc(&rq->nr_iowait);
5019 ret = schedule_timeout(timeout);
5020 atomic_dec(&rq->nr_iowait);
5021 delayacct_blkio_end();
5022 return ret;
5023 }
5024
5025 /**
5026 * sys_sched_get_priority_max - return maximum RT priority.
5027 * @policy: scheduling class.
5028 *
5029 * this syscall returns the maximum rt_priority that can be used
5030 * by a given scheduling class.
5031 */
5032 asmlinkage long sys_sched_get_priority_max(int policy)
5033 {
5034 int ret = -EINVAL;
5035
5036 switch (policy) {
5037 case SCHED_FIFO:
5038 case SCHED_RR:
5039 ret = MAX_USER_RT_PRIO-1;
5040 break;
5041 case SCHED_NORMAL:
5042 case SCHED_BATCH:
5043 case SCHED_IDLE:
5044 ret = 0;
5045 break;
5046 }
5047 return ret;
5048 }
5049
5050 /**
5051 * sys_sched_get_priority_min - return minimum RT priority.
5052 * @policy: scheduling class.
5053 *
5054 * this syscall returns the minimum rt_priority that can be used
5055 * by a given scheduling class.
5056 */
5057 asmlinkage long sys_sched_get_priority_min(int policy)
5058 {
5059 int ret = -EINVAL;
5060
5061 switch (policy) {
5062 case SCHED_FIFO:
5063 case SCHED_RR:
5064 ret = 1;
5065 break;
5066 case SCHED_NORMAL:
5067 case SCHED_BATCH:
5068 case SCHED_IDLE:
5069 ret = 0;
5070 }
5071 return ret;
5072 }
5073
5074 /**
5075 * sys_sched_rr_get_interval - return the default timeslice of a process.
5076 * @pid: pid of the process.
5077 * @interval: userspace pointer to the timeslice value.
5078 *
5079 * this syscall writes the default timeslice value of a given process
5080 * into the user-space timespec buffer. A value of '0' means infinity.
5081 */
5082 asmlinkage
5083 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5084 {
5085 struct task_struct *p;
5086 unsigned int time_slice;
5087 int retval;
5088 struct timespec t;
5089
5090 if (pid < 0)
5091 return -EINVAL;
5092
5093 retval = -ESRCH;
5094 read_lock(&tasklist_lock);
5095 p = find_process_by_pid(pid);
5096 if (!p)
5097 goto out_unlock;
5098
5099 retval = security_task_getscheduler(p);
5100 if (retval)
5101 goto out_unlock;
5102
5103 /*
5104 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5105 * tasks that are on an otherwise idle runqueue:
5106 */
5107 time_slice = 0;
5108 if (p->policy == SCHED_RR) {
5109 time_slice = DEF_TIMESLICE;
5110 } else if (p->policy != SCHED_FIFO) {
5111 struct sched_entity *se = &p->se;
5112 unsigned long flags;
5113 struct rq *rq;
5114
5115 rq = task_rq_lock(p, &flags);
5116 if (rq->cfs.load.weight)
5117 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5118 task_rq_unlock(rq, &flags);
5119 }
5120 read_unlock(&tasklist_lock);
5121 jiffies_to_timespec(time_slice, &t);
5122 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5123 return retval;
5124
5125 out_unlock:
5126 read_unlock(&tasklist_lock);
5127 return retval;
5128 }
5129
5130 static const char stat_nam[] = "RSDTtZX";
5131
5132 void sched_show_task(struct task_struct *p)
5133 {
5134 unsigned long free = 0;
5135 unsigned state;
5136
5137 state = p->state ? __ffs(p->state) + 1 : 0;
5138 printk(KERN_INFO "%-13.13s %c", p->comm,
5139 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5140 #if BITS_PER_LONG == 32
5141 if (state == TASK_RUNNING)
5142 printk(KERN_CONT " running ");
5143 else
5144 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5145 #else
5146 if (state == TASK_RUNNING)
5147 printk(KERN_CONT " running task ");
5148 else
5149 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5150 #endif
5151 #ifdef CONFIG_DEBUG_STACK_USAGE
5152 {
5153 unsigned long *n = end_of_stack(p);
5154 while (!*n)
5155 n++;
5156 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5157 }
5158 #endif
5159 printk(KERN_CONT "%5lu %5d %6d\n", free,
5160 task_pid_nr(p), task_pid_nr(p->real_parent));
5161
5162 show_stack(p, NULL);
5163 }
5164
5165 void show_state_filter(unsigned long state_filter)
5166 {
5167 struct task_struct *g, *p;
5168
5169 #if BITS_PER_LONG == 32
5170 printk(KERN_INFO
5171 " task PC stack pid father\n");
5172 #else
5173 printk(KERN_INFO
5174 " task PC stack pid father\n");
5175 #endif
5176 read_lock(&tasklist_lock);
5177 do_each_thread(g, p) {
5178 /*
5179 * reset the NMI-timeout, listing all files on a slow
5180 * console might take alot of time:
5181 */
5182 touch_nmi_watchdog();
5183 if (!state_filter || (p->state & state_filter))
5184 sched_show_task(p);
5185 } while_each_thread(g, p);
5186
5187 touch_all_softlockup_watchdogs();
5188
5189 #ifdef CONFIG_SCHED_DEBUG
5190 sysrq_sched_debug_show();
5191 #endif
5192 read_unlock(&tasklist_lock);
5193 /*
5194 * Only show locks if all tasks are dumped:
5195 */
5196 if (state_filter == -1)
5197 debug_show_all_locks();
5198 }
5199
5200 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5201 {
5202 idle->sched_class = &idle_sched_class;
5203 }
5204
5205 /**
5206 * init_idle - set up an idle thread for a given CPU
5207 * @idle: task in question
5208 * @cpu: cpu the idle task belongs to
5209 *
5210 * NOTE: this function does not set the idle thread's NEED_RESCHED
5211 * flag, to make booting more robust.
5212 */
5213 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5214 {
5215 struct rq *rq = cpu_rq(cpu);
5216 unsigned long flags;
5217
5218 __sched_fork(idle);
5219 idle->se.exec_start = sched_clock();
5220
5221 idle->prio = idle->normal_prio = MAX_PRIO;
5222 idle->cpus_allowed = cpumask_of_cpu(cpu);
5223 __set_task_cpu(idle, cpu);
5224
5225 spin_lock_irqsave(&rq->lock, flags);
5226 rq->curr = rq->idle = idle;
5227 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5228 idle->oncpu = 1;
5229 #endif
5230 spin_unlock_irqrestore(&rq->lock, flags);
5231
5232 /* Set the preempt count _outside_ the spinlocks! */
5233 task_thread_info(idle)->preempt_count = 0;
5234
5235 /*
5236 * The idle tasks have their own, simple scheduling class:
5237 */
5238 idle->sched_class = &idle_sched_class;
5239 }
5240
5241 /*
5242 * In a system that switches off the HZ timer nohz_cpu_mask
5243 * indicates which cpus entered this state. This is used
5244 * in the rcu update to wait only for active cpus. For system
5245 * which do not switch off the HZ timer nohz_cpu_mask should
5246 * always be CPU_MASK_NONE.
5247 */
5248 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5249
5250 /*
5251 * Increase the granularity value when there are more CPUs,
5252 * because with more CPUs the 'effective latency' as visible
5253 * to users decreases. But the relationship is not linear,
5254 * so pick a second-best guess by going with the log2 of the
5255 * number of CPUs.
5256 *
5257 * This idea comes from the SD scheduler of Con Kolivas:
5258 */
5259 static inline void sched_init_granularity(void)
5260 {
5261 unsigned int factor = 1 + ilog2(num_online_cpus());
5262 const unsigned long limit = 200000000;
5263
5264 sysctl_sched_min_granularity *= factor;
5265 if (sysctl_sched_min_granularity > limit)
5266 sysctl_sched_min_granularity = limit;
5267
5268 sysctl_sched_latency *= factor;
5269 if (sysctl_sched_latency > limit)
5270 sysctl_sched_latency = limit;
5271
5272 sysctl_sched_wakeup_granularity *= factor;
5273 sysctl_sched_batch_wakeup_granularity *= factor;
5274 }
5275
5276 #ifdef CONFIG_SMP
5277 /*
5278 * This is how migration works:
5279 *
5280 * 1) we queue a struct migration_req structure in the source CPU's
5281 * runqueue and wake up that CPU's migration thread.
5282 * 2) we down() the locked semaphore => thread blocks.
5283 * 3) migration thread wakes up (implicitly it forces the migrated
5284 * thread off the CPU)
5285 * 4) it gets the migration request and checks whether the migrated
5286 * task is still in the wrong runqueue.
5287 * 5) if it's in the wrong runqueue then the migration thread removes
5288 * it and puts it into the right queue.
5289 * 6) migration thread up()s the semaphore.
5290 * 7) we wake up and the migration is done.
5291 */
5292
5293 /*
5294 * Change a given task's CPU affinity. Migrate the thread to a
5295 * proper CPU and schedule it away if the CPU it's executing on
5296 * is removed from the allowed bitmask.
5297 *
5298 * NOTE: the caller must have a valid reference to the task, the
5299 * task must not exit() & deallocate itself prematurely. The
5300 * call is not atomic; no spinlocks may be held.
5301 */
5302 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5303 {
5304 struct migration_req req;
5305 unsigned long flags;
5306 struct rq *rq;
5307 int ret = 0;
5308
5309 rq = task_rq_lock(p, &flags);
5310 if (!cpus_intersects(new_mask, cpu_online_map)) {
5311 ret = -EINVAL;
5312 goto out;
5313 }
5314
5315 if (p->sched_class->set_cpus_allowed)
5316 p->sched_class->set_cpus_allowed(p, &new_mask);
5317 else {
5318 p->cpus_allowed = new_mask;
5319 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5320 }
5321
5322 /* Can the task run on the task's current CPU? If so, we're done */
5323 if (cpu_isset(task_cpu(p), new_mask))
5324 goto out;
5325
5326 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5327 /* Need help from migration thread: drop lock and wait. */
5328 task_rq_unlock(rq, &flags);
5329 wake_up_process(rq->migration_thread);
5330 wait_for_completion(&req.done);
5331 tlb_migrate_finish(p->mm);
5332 return 0;
5333 }
5334 out:
5335 task_rq_unlock(rq, &flags);
5336
5337 return ret;
5338 }
5339 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5340
5341 /*
5342 * Move (not current) task off this cpu, onto dest cpu. We're doing
5343 * this because either it can't run here any more (set_cpus_allowed()
5344 * away from this CPU, or CPU going down), or because we're
5345 * attempting to rebalance this task on exec (sched_exec).
5346 *
5347 * So we race with normal scheduler movements, but that's OK, as long
5348 * as the task is no longer on this CPU.
5349 *
5350 * Returns non-zero if task was successfully migrated.
5351 */
5352 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5353 {
5354 struct rq *rq_dest, *rq_src;
5355 int ret = 0, on_rq;
5356
5357 if (unlikely(cpu_is_offline(dest_cpu)))
5358 return ret;
5359
5360 rq_src = cpu_rq(src_cpu);
5361 rq_dest = cpu_rq(dest_cpu);
5362
5363 double_rq_lock(rq_src, rq_dest);
5364 /* Already moved. */
5365 if (task_cpu(p) != src_cpu)
5366 goto out;
5367 /* Affinity changed (again). */
5368 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5369 goto out;
5370
5371 on_rq = p->se.on_rq;
5372 if (on_rq)
5373 deactivate_task(rq_src, p, 0);
5374
5375 set_task_cpu(p, dest_cpu);
5376 if (on_rq) {
5377 activate_task(rq_dest, p, 0);
5378 check_preempt_curr(rq_dest, p);
5379 }
5380 ret = 1;
5381 out:
5382 double_rq_unlock(rq_src, rq_dest);
5383 return ret;
5384 }
5385
5386 /*
5387 * migration_thread - this is a highprio system thread that performs
5388 * thread migration by bumping thread off CPU then 'pushing' onto
5389 * another runqueue.
5390 */
5391 static int migration_thread(void *data)
5392 {
5393 int cpu = (long)data;
5394 struct rq *rq;
5395
5396 rq = cpu_rq(cpu);
5397 BUG_ON(rq->migration_thread != current);
5398
5399 set_current_state(TASK_INTERRUPTIBLE);
5400 while (!kthread_should_stop()) {
5401 struct migration_req *req;
5402 struct list_head *head;
5403
5404 spin_lock_irq(&rq->lock);
5405
5406 if (cpu_is_offline(cpu)) {
5407 spin_unlock_irq(&rq->lock);
5408 goto wait_to_die;
5409 }
5410
5411 if (rq->active_balance) {
5412 active_load_balance(rq, cpu);
5413 rq->active_balance = 0;
5414 }
5415
5416 head = &rq->migration_queue;
5417
5418 if (list_empty(head)) {
5419 spin_unlock_irq(&rq->lock);
5420 schedule();
5421 set_current_state(TASK_INTERRUPTIBLE);
5422 continue;
5423 }
5424 req = list_entry(head->next, struct migration_req, list);
5425 list_del_init(head->next);
5426
5427 spin_unlock(&rq->lock);
5428 __migrate_task(req->task, cpu, req->dest_cpu);
5429 local_irq_enable();
5430
5431 complete(&req->done);
5432 }
5433 __set_current_state(TASK_RUNNING);
5434 return 0;
5435
5436 wait_to_die:
5437 /* Wait for kthread_stop */
5438 set_current_state(TASK_INTERRUPTIBLE);
5439 while (!kthread_should_stop()) {
5440 schedule();
5441 set_current_state(TASK_INTERRUPTIBLE);
5442 }
5443 __set_current_state(TASK_RUNNING);
5444 return 0;
5445 }
5446
5447 #ifdef CONFIG_HOTPLUG_CPU
5448
5449 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5450 {
5451 int ret;
5452
5453 local_irq_disable();
5454 ret = __migrate_task(p, src_cpu, dest_cpu);
5455 local_irq_enable();
5456 return ret;
5457 }
5458
5459 /*
5460 * Figure out where task on dead CPU should go, use force if necessary.
5461 * NOTE: interrupts should be disabled by the caller
5462 */
5463 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5464 {
5465 unsigned long flags;
5466 cpumask_t mask;
5467 struct rq *rq;
5468 int dest_cpu;
5469
5470 do {
5471 /* On same node? */
5472 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5473 cpus_and(mask, mask, p->cpus_allowed);
5474 dest_cpu = any_online_cpu(mask);
5475
5476 /* On any allowed CPU? */
5477 if (dest_cpu == NR_CPUS)
5478 dest_cpu = any_online_cpu(p->cpus_allowed);
5479
5480 /* No more Mr. Nice Guy. */
5481 if (dest_cpu == NR_CPUS) {
5482 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5483 /*
5484 * Try to stay on the same cpuset, where the
5485 * current cpuset may be a subset of all cpus.
5486 * The cpuset_cpus_allowed_locked() variant of
5487 * cpuset_cpus_allowed() will not block. It must be
5488 * called within calls to cpuset_lock/cpuset_unlock.
5489 */
5490 rq = task_rq_lock(p, &flags);
5491 p->cpus_allowed = cpus_allowed;
5492 dest_cpu = any_online_cpu(p->cpus_allowed);
5493 task_rq_unlock(rq, &flags);
5494
5495 /*
5496 * Don't tell them about moving exiting tasks or
5497 * kernel threads (both mm NULL), since they never
5498 * leave kernel.
5499 */
5500 if (p->mm && printk_ratelimit()) {
5501 printk(KERN_INFO "process %d (%s) no "
5502 "longer affine to cpu%d\n",
5503 task_pid_nr(p), p->comm, dead_cpu);
5504 }
5505 }
5506 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5507 }
5508
5509 /*
5510 * While a dead CPU has no uninterruptible tasks queued at this point,
5511 * it might still have a nonzero ->nr_uninterruptible counter, because
5512 * for performance reasons the counter is not stricly tracking tasks to
5513 * their home CPUs. So we just add the counter to another CPU's counter,
5514 * to keep the global sum constant after CPU-down:
5515 */
5516 static void migrate_nr_uninterruptible(struct rq *rq_src)
5517 {
5518 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5519 unsigned long flags;
5520
5521 local_irq_save(flags);
5522 double_rq_lock(rq_src, rq_dest);
5523 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5524 rq_src->nr_uninterruptible = 0;
5525 double_rq_unlock(rq_src, rq_dest);
5526 local_irq_restore(flags);
5527 }
5528
5529 /* Run through task list and migrate tasks from the dead cpu. */
5530 static void migrate_live_tasks(int src_cpu)
5531 {
5532 struct task_struct *p, *t;
5533
5534 read_lock(&tasklist_lock);
5535
5536 do_each_thread(t, p) {
5537 if (p == current)
5538 continue;
5539
5540 if (task_cpu(p) == src_cpu)
5541 move_task_off_dead_cpu(src_cpu, p);
5542 } while_each_thread(t, p);
5543
5544 read_unlock(&tasklist_lock);
5545 }
5546
5547 /*
5548 * Schedules idle task to be the next runnable task on current CPU.
5549 * It does so by boosting its priority to highest possible.
5550 * Used by CPU offline code.
5551 */
5552 void sched_idle_next(void)
5553 {
5554 int this_cpu = smp_processor_id();
5555 struct rq *rq = cpu_rq(this_cpu);
5556 struct task_struct *p = rq->idle;
5557 unsigned long flags;
5558
5559 /* cpu has to be offline */
5560 BUG_ON(cpu_online(this_cpu));
5561
5562 /*
5563 * Strictly not necessary since rest of the CPUs are stopped by now
5564 * and interrupts disabled on the current cpu.
5565 */
5566 spin_lock_irqsave(&rq->lock, flags);
5567
5568 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5569
5570 update_rq_clock(rq);
5571 activate_task(rq, p, 0);
5572
5573 spin_unlock_irqrestore(&rq->lock, flags);
5574 }
5575
5576 /*
5577 * Ensures that the idle task is using init_mm right before its cpu goes
5578 * offline.
5579 */
5580 void idle_task_exit(void)
5581 {
5582 struct mm_struct *mm = current->active_mm;
5583
5584 BUG_ON(cpu_online(smp_processor_id()));
5585
5586 if (mm != &init_mm)
5587 switch_mm(mm, &init_mm, current);
5588 mmdrop(mm);
5589 }
5590
5591 /* called under rq->lock with disabled interrupts */
5592 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5593 {
5594 struct rq *rq = cpu_rq(dead_cpu);
5595
5596 /* Must be exiting, otherwise would be on tasklist. */
5597 BUG_ON(!p->exit_state);
5598
5599 /* Cannot have done final schedule yet: would have vanished. */
5600 BUG_ON(p->state == TASK_DEAD);
5601
5602 get_task_struct(p);
5603
5604 /*
5605 * Drop lock around migration; if someone else moves it,
5606 * that's OK. No task can be added to this CPU, so iteration is
5607 * fine.
5608 */
5609 spin_unlock_irq(&rq->lock);
5610 move_task_off_dead_cpu(dead_cpu, p);
5611 spin_lock_irq(&rq->lock);
5612
5613 put_task_struct(p);
5614 }
5615
5616 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5617 static void migrate_dead_tasks(unsigned int dead_cpu)
5618 {
5619 struct rq *rq = cpu_rq(dead_cpu);
5620 struct task_struct *next;
5621
5622 for ( ; ; ) {
5623 if (!rq->nr_running)
5624 break;
5625 update_rq_clock(rq);
5626 next = pick_next_task(rq, rq->curr);
5627 if (!next)
5628 break;
5629 migrate_dead(dead_cpu, next);
5630
5631 }
5632 }
5633 #endif /* CONFIG_HOTPLUG_CPU */
5634
5635 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5636
5637 static struct ctl_table sd_ctl_dir[] = {
5638 {
5639 .procname = "sched_domain",
5640 .mode = 0555,
5641 },
5642 {0, },
5643 };
5644
5645 static struct ctl_table sd_ctl_root[] = {
5646 {
5647 .ctl_name = CTL_KERN,
5648 .procname = "kernel",
5649 .mode = 0555,
5650 .child = sd_ctl_dir,
5651 },
5652 {0, },
5653 };
5654
5655 static struct ctl_table *sd_alloc_ctl_entry(int n)
5656 {
5657 struct ctl_table *entry =
5658 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5659
5660 return entry;
5661 }
5662
5663 static void sd_free_ctl_entry(struct ctl_table **tablep)
5664 {
5665 struct ctl_table *entry;
5666
5667 /*
5668 * In the intermediate directories, both the child directory and
5669 * procname are dynamically allocated and could fail but the mode
5670 * will always be set. In the lowest directory the names are
5671 * static strings and all have proc handlers.
5672 */
5673 for (entry = *tablep; entry->mode; entry++) {
5674 if (entry->child)
5675 sd_free_ctl_entry(&entry->child);
5676 if (entry->proc_handler == NULL)
5677 kfree(entry->procname);
5678 }
5679
5680 kfree(*tablep);
5681 *tablep = NULL;
5682 }
5683
5684 static void
5685 set_table_entry(struct ctl_table *entry,
5686 const char *procname, void *data, int maxlen,
5687 mode_t mode, proc_handler *proc_handler)
5688 {
5689 entry->procname = procname;
5690 entry->data = data;
5691 entry->maxlen = maxlen;
5692 entry->mode = mode;
5693 entry->proc_handler = proc_handler;
5694 }
5695
5696 static struct ctl_table *
5697 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5698 {
5699 struct ctl_table *table = sd_alloc_ctl_entry(12);
5700
5701 if (table == NULL)
5702 return NULL;
5703
5704 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5705 sizeof(long), 0644, proc_doulongvec_minmax);
5706 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5707 sizeof(long), 0644, proc_doulongvec_minmax);
5708 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5709 sizeof(int), 0644, proc_dointvec_minmax);
5710 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5711 sizeof(int), 0644, proc_dointvec_minmax);
5712 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5719 sizeof(int), 0644, proc_dointvec_minmax);
5720 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5721 sizeof(int), 0644, proc_dointvec_minmax);
5722 set_table_entry(&table[9], "cache_nice_tries",
5723 &sd->cache_nice_tries,
5724 sizeof(int), 0644, proc_dointvec_minmax);
5725 set_table_entry(&table[10], "flags", &sd->flags,
5726 sizeof(int), 0644, proc_dointvec_minmax);
5727 /* &table[11] is terminator */
5728
5729 return table;
5730 }
5731
5732 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5733 {
5734 struct ctl_table *entry, *table;
5735 struct sched_domain *sd;
5736 int domain_num = 0, i;
5737 char buf[32];
5738
5739 for_each_domain(cpu, sd)
5740 domain_num++;
5741 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5742 if (table == NULL)
5743 return NULL;
5744
5745 i = 0;
5746 for_each_domain(cpu, sd) {
5747 snprintf(buf, 32, "domain%d", i);
5748 entry->procname = kstrdup(buf, GFP_KERNEL);
5749 entry->mode = 0555;
5750 entry->child = sd_alloc_ctl_domain_table(sd);
5751 entry++;
5752 i++;
5753 }
5754 return table;
5755 }
5756
5757 static struct ctl_table_header *sd_sysctl_header;
5758 static void register_sched_domain_sysctl(void)
5759 {
5760 int i, cpu_num = num_online_cpus();
5761 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5762 char buf[32];
5763
5764 WARN_ON(sd_ctl_dir[0].child);
5765 sd_ctl_dir[0].child = entry;
5766
5767 if (entry == NULL)
5768 return;
5769
5770 for_each_online_cpu(i) {
5771 snprintf(buf, 32, "cpu%d", i);
5772 entry->procname = kstrdup(buf, GFP_KERNEL);
5773 entry->mode = 0555;
5774 entry->child = sd_alloc_ctl_cpu_table(i);
5775 entry++;
5776 }
5777
5778 WARN_ON(sd_sysctl_header);
5779 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5780 }
5781
5782 /* may be called multiple times per register */
5783 static void unregister_sched_domain_sysctl(void)
5784 {
5785 if (sd_sysctl_header)
5786 unregister_sysctl_table(sd_sysctl_header);
5787 sd_sysctl_header = NULL;
5788 if (sd_ctl_dir[0].child)
5789 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5790 }
5791 #else
5792 static void register_sched_domain_sysctl(void)
5793 {
5794 }
5795 static void unregister_sched_domain_sysctl(void)
5796 {
5797 }
5798 #endif
5799
5800 /*
5801 * migration_call - callback that gets triggered when a CPU is added.
5802 * Here we can start up the necessary migration thread for the new CPU.
5803 */
5804 static int __cpuinit
5805 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5806 {
5807 struct task_struct *p;
5808 int cpu = (long)hcpu;
5809 unsigned long flags;
5810 struct rq *rq;
5811
5812 switch (action) {
5813
5814 case CPU_UP_PREPARE:
5815 case CPU_UP_PREPARE_FROZEN:
5816 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5817 if (IS_ERR(p))
5818 return NOTIFY_BAD;
5819 kthread_bind(p, cpu);
5820 /* Must be high prio: stop_machine expects to yield to it. */
5821 rq = task_rq_lock(p, &flags);
5822 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5823 task_rq_unlock(rq, &flags);
5824 cpu_rq(cpu)->migration_thread = p;
5825 break;
5826
5827 case CPU_ONLINE:
5828 case CPU_ONLINE_FROZEN:
5829 /* Strictly unnecessary, as first user will wake it. */
5830 wake_up_process(cpu_rq(cpu)->migration_thread);
5831
5832 /* Update our root-domain */
5833 rq = cpu_rq(cpu);
5834 spin_lock_irqsave(&rq->lock, flags);
5835 if (rq->rd) {
5836 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5837 cpu_set(cpu, rq->rd->online);
5838 }
5839 spin_unlock_irqrestore(&rq->lock, flags);
5840 break;
5841
5842 #ifdef CONFIG_HOTPLUG_CPU
5843 case CPU_UP_CANCELED:
5844 case CPU_UP_CANCELED_FROZEN:
5845 if (!cpu_rq(cpu)->migration_thread)
5846 break;
5847 /* Unbind it from offline cpu so it can run. Fall thru. */
5848 kthread_bind(cpu_rq(cpu)->migration_thread,
5849 any_online_cpu(cpu_online_map));
5850 kthread_stop(cpu_rq(cpu)->migration_thread);
5851 cpu_rq(cpu)->migration_thread = NULL;
5852 break;
5853
5854 case CPU_DEAD:
5855 case CPU_DEAD_FROZEN:
5856 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5857 migrate_live_tasks(cpu);
5858 rq = cpu_rq(cpu);
5859 kthread_stop(rq->migration_thread);
5860 rq->migration_thread = NULL;
5861 /* Idle task back to normal (off runqueue, low prio) */
5862 spin_lock_irq(&rq->lock);
5863 update_rq_clock(rq);
5864 deactivate_task(rq, rq->idle, 0);
5865 rq->idle->static_prio = MAX_PRIO;
5866 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5867 rq->idle->sched_class = &idle_sched_class;
5868 migrate_dead_tasks(cpu);
5869 spin_unlock_irq(&rq->lock);
5870 cpuset_unlock();
5871 migrate_nr_uninterruptible(rq);
5872 BUG_ON(rq->nr_running != 0);
5873
5874 /*
5875 * No need to migrate the tasks: it was best-effort if
5876 * they didn't take sched_hotcpu_mutex. Just wake up
5877 * the requestors.
5878 */
5879 spin_lock_irq(&rq->lock);
5880 while (!list_empty(&rq->migration_queue)) {
5881 struct migration_req *req;
5882
5883 req = list_entry(rq->migration_queue.next,
5884 struct migration_req, list);
5885 list_del_init(&req->list);
5886 complete(&req->done);
5887 }
5888 spin_unlock_irq(&rq->lock);
5889 break;
5890
5891 case CPU_DYING:
5892 case CPU_DYING_FROZEN:
5893 /* Update our root-domain */
5894 rq = cpu_rq(cpu);
5895 spin_lock_irqsave(&rq->lock, flags);
5896 if (rq->rd) {
5897 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5898 cpu_clear(cpu, rq->rd->online);
5899 }
5900 spin_unlock_irqrestore(&rq->lock, flags);
5901 break;
5902 #endif
5903 }
5904 return NOTIFY_OK;
5905 }
5906
5907 /* Register at highest priority so that task migration (migrate_all_tasks)
5908 * happens before everything else.
5909 */
5910 static struct notifier_block __cpuinitdata migration_notifier = {
5911 .notifier_call = migration_call,
5912 .priority = 10
5913 };
5914
5915 void __init migration_init(void)
5916 {
5917 void *cpu = (void *)(long)smp_processor_id();
5918 int err;
5919
5920 /* Start one for the boot CPU: */
5921 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5922 BUG_ON(err == NOTIFY_BAD);
5923 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5924 register_cpu_notifier(&migration_notifier);
5925 }
5926 #endif
5927
5928 #ifdef CONFIG_SMP
5929
5930 /* Number of possible processor ids */
5931 int nr_cpu_ids __read_mostly = NR_CPUS;
5932 EXPORT_SYMBOL(nr_cpu_ids);
5933
5934 #ifdef CONFIG_SCHED_DEBUG
5935
5936 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5937 {
5938 struct sched_group *group = sd->groups;
5939 cpumask_t groupmask;
5940 char str[NR_CPUS];
5941
5942 cpumask_scnprintf(str, NR_CPUS, sd->span);
5943 cpus_clear(groupmask);
5944
5945 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5946
5947 if (!(sd->flags & SD_LOAD_BALANCE)) {
5948 printk("does not load-balance\n");
5949 if (sd->parent)
5950 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5951 " has parent");
5952 return -1;
5953 }
5954
5955 printk(KERN_CONT "span %s\n", str);
5956
5957 if (!cpu_isset(cpu, sd->span)) {
5958 printk(KERN_ERR "ERROR: domain->span does not contain "
5959 "CPU%d\n", cpu);
5960 }
5961 if (!cpu_isset(cpu, group->cpumask)) {
5962 printk(KERN_ERR "ERROR: domain->groups does not contain"
5963 " CPU%d\n", cpu);
5964 }
5965
5966 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5967 do {
5968 if (!group) {
5969 printk("\n");
5970 printk(KERN_ERR "ERROR: group is NULL\n");
5971 break;
5972 }
5973
5974 if (!group->__cpu_power) {
5975 printk(KERN_CONT "\n");
5976 printk(KERN_ERR "ERROR: domain->cpu_power not "
5977 "set\n");
5978 break;
5979 }
5980
5981 if (!cpus_weight(group->cpumask)) {
5982 printk(KERN_CONT "\n");
5983 printk(KERN_ERR "ERROR: empty group\n");
5984 break;
5985 }
5986
5987 if (cpus_intersects(groupmask, group->cpumask)) {
5988 printk(KERN_CONT "\n");
5989 printk(KERN_ERR "ERROR: repeated CPUs\n");
5990 break;
5991 }
5992
5993 cpus_or(groupmask, groupmask, group->cpumask);
5994
5995 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5996 printk(KERN_CONT " %s", str);
5997
5998 group = group->next;
5999 } while (group != sd->groups);
6000 printk(KERN_CONT "\n");
6001
6002 if (!cpus_equal(sd->span, groupmask))
6003 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6004
6005 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6006 printk(KERN_ERR "ERROR: parent span is not a superset "
6007 "of domain->span\n");
6008 return 0;
6009 }
6010
6011 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6012 {
6013 int level = 0;
6014
6015 if (!sd) {
6016 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6017 return;
6018 }
6019
6020 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6021
6022 for (;;) {
6023 if (sched_domain_debug_one(sd, cpu, level))
6024 break;
6025 level++;
6026 sd = sd->parent;
6027 if (!sd)
6028 break;
6029 }
6030 }
6031 #else
6032 # define sched_domain_debug(sd, cpu) do { } while (0)
6033 #endif
6034
6035 static int sd_degenerate(struct sched_domain *sd)
6036 {
6037 if (cpus_weight(sd->span) == 1)
6038 return 1;
6039
6040 /* Following flags need at least 2 groups */
6041 if (sd->flags & (SD_LOAD_BALANCE |
6042 SD_BALANCE_NEWIDLE |
6043 SD_BALANCE_FORK |
6044 SD_BALANCE_EXEC |
6045 SD_SHARE_CPUPOWER |
6046 SD_SHARE_PKG_RESOURCES)) {
6047 if (sd->groups != sd->groups->next)
6048 return 0;
6049 }
6050
6051 /* Following flags don't use groups */
6052 if (sd->flags & (SD_WAKE_IDLE |
6053 SD_WAKE_AFFINE |
6054 SD_WAKE_BALANCE))
6055 return 0;
6056
6057 return 1;
6058 }
6059
6060 static int
6061 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6062 {
6063 unsigned long cflags = sd->flags, pflags = parent->flags;
6064
6065 if (sd_degenerate(parent))
6066 return 1;
6067
6068 if (!cpus_equal(sd->span, parent->span))
6069 return 0;
6070
6071 /* Does parent contain flags not in child? */
6072 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6073 if (cflags & SD_WAKE_AFFINE)
6074 pflags &= ~SD_WAKE_BALANCE;
6075 /* Flags needing groups don't count if only 1 group in parent */
6076 if (parent->groups == parent->groups->next) {
6077 pflags &= ~(SD_LOAD_BALANCE |
6078 SD_BALANCE_NEWIDLE |
6079 SD_BALANCE_FORK |
6080 SD_BALANCE_EXEC |
6081 SD_SHARE_CPUPOWER |
6082 SD_SHARE_PKG_RESOURCES);
6083 }
6084 if (~cflags & pflags)
6085 return 0;
6086
6087 return 1;
6088 }
6089
6090 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6091 {
6092 unsigned long flags;
6093 const struct sched_class *class;
6094
6095 spin_lock_irqsave(&rq->lock, flags);
6096
6097 if (rq->rd) {
6098 struct root_domain *old_rd = rq->rd;
6099
6100 for (class = sched_class_highest; class; class = class->next) {
6101 if (class->leave_domain)
6102 class->leave_domain(rq);
6103 }
6104
6105 cpu_clear(rq->cpu, old_rd->span);
6106 cpu_clear(rq->cpu, old_rd->online);
6107
6108 if (atomic_dec_and_test(&old_rd->refcount))
6109 kfree(old_rd);
6110 }
6111
6112 atomic_inc(&rd->refcount);
6113 rq->rd = rd;
6114
6115 cpu_set(rq->cpu, rd->span);
6116 if (cpu_isset(rq->cpu, cpu_online_map))
6117 cpu_set(rq->cpu, rd->online);
6118
6119 for (class = sched_class_highest; class; class = class->next) {
6120 if (class->join_domain)
6121 class->join_domain(rq);
6122 }
6123
6124 spin_unlock_irqrestore(&rq->lock, flags);
6125 }
6126
6127 static void init_rootdomain(struct root_domain *rd)
6128 {
6129 memset(rd, 0, sizeof(*rd));
6130
6131 cpus_clear(rd->span);
6132 cpus_clear(rd->online);
6133 }
6134
6135 static void init_defrootdomain(void)
6136 {
6137 init_rootdomain(&def_root_domain);
6138 atomic_set(&def_root_domain.refcount, 1);
6139 }
6140
6141 static struct root_domain *alloc_rootdomain(void)
6142 {
6143 struct root_domain *rd;
6144
6145 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6146 if (!rd)
6147 return NULL;
6148
6149 init_rootdomain(rd);
6150
6151 return rd;
6152 }
6153
6154 /*
6155 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6156 * hold the hotplug lock.
6157 */
6158 static void
6159 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6160 {
6161 struct rq *rq = cpu_rq(cpu);
6162 struct sched_domain *tmp;
6163
6164 /* Remove the sched domains which do not contribute to scheduling. */
6165 for (tmp = sd; tmp; tmp = tmp->parent) {
6166 struct sched_domain *parent = tmp->parent;
6167 if (!parent)
6168 break;
6169 if (sd_parent_degenerate(tmp, parent)) {
6170 tmp->parent = parent->parent;
6171 if (parent->parent)
6172 parent->parent->child = tmp;
6173 }
6174 }
6175
6176 if (sd && sd_degenerate(sd)) {
6177 sd = sd->parent;
6178 if (sd)
6179 sd->child = NULL;
6180 }
6181
6182 sched_domain_debug(sd, cpu);
6183
6184 rq_attach_root(rq, rd);
6185 rcu_assign_pointer(rq->sd, sd);
6186 }
6187
6188 /* cpus with isolated domains */
6189 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6190
6191 /* Setup the mask of cpus configured for isolated domains */
6192 static int __init isolated_cpu_setup(char *str)
6193 {
6194 int ints[NR_CPUS], i;
6195
6196 str = get_options(str, ARRAY_SIZE(ints), ints);
6197 cpus_clear(cpu_isolated_map);
6198 for (i = 1; i <= ints[0]; i++)
6199 if (ints[i] < NR_CPUS)
6200 cpu_set(ints[i], cpu_isolated_map);
6201 return 1;
6202 }
6203
6204 __setup("isolcpus=", isolated_cpu_setup);
6205
6206 /*
6207 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6208 * to a function which identifies what group(along with sched group) a CPU
6209 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6210 * (due to the fact that we keep track of groups covered with a cpumask_t).
6211 *
6212 * init_sched_build_groups will build a circular linked list of the groups
6213 * covered by the given span, and will set each group's ->cpumask correctly,
6214 * and ->cpu_power to 0.
6215 */
6216 static void
6217 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6218 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6219 struct sched_group **sg))
6220 {
6221 struct sched_group *first = NULL, *last = NULL;
6222 cpumask_t covered = CPU_MASK_NONE;
6223 int i;
6224
6225 for_each_cpu_mask(i, span) {
6226 struct sched_group *sg;
6227 int group = group_fn(i, cpu_map, &sg);
6228 int j;
6229
6230 if (cpu_isset(i, covered))
6231 continue;
6232
6233 sg->cpumask = CPU_MASK_NONE;
6234 sg->__cpu_power = 0;
6235
6236 for_each_cpu_mask(j, span) {
6237 if (group_fn(j, cpu_map, NULL) != group)
6238 continue;
6239
6240 cpu_set(j, covered);
6241 cpu_set(j, sg->cpumask);
6242 }
6243 if (!first)
6244 first = sg;
6245 if (last)
6246 last->next = sg;
6247 last = sg;
6248 }
6249 last->next = first;
6250 }
6251
6252 #define SD_NODES_PER_DOMAIN 16
6253
6254 #ifdef CONFIG_NUMA
6255
6256 /**
6257 * find_next_best_node - find the next node to include in a sched_domain
6258 * @node: node whose sched_domain we're building
6259 * @used_nodes: nodes already in the sched_domain
6260 *
6261 * Find the next node to include in a given scheduling domain. Simply
6262 * finds the closest node not already in the @used_nodes map.
6263 *
6264 * Should use nodemask_t.
6265 */
6266 static int find_next_best_node(int node, unsigned long *used_nodes)
6267 {
6268 int i, n, val, min_val, best_node = 0;
6269
6270 min_val = INT_MAX;
6271
6272 for (i = 0; i < MAX_NUMNODES; i++) {
6273 /* Start at @node */
6274 n = (node + i) % MAX_NUMNODES;
6275
6276 if (!nr_cpus_node(n))
6277 continue;
6278
6279 /* Skip already used nodes */
6280 if (test_bit(n, used_nodes))
6281 continue;
6282
6283 /* Simple min distance search */
6284 val = node_distance(node, n);
6285
6286 if (val < min_val) {
6287 min_val = val;
6288 best_node = n;
6289 }
6290 }
6291
6292 set_bit(best_node, used_nodes);
6293 return best_node;
6294 }
6295
6296 /**
6297 * sched_domain_node_span - get a cpumask for a node's sched_domain
6298 * @node: node whose cpumask we're constructing
6299 * @size: number of nodes to include in this span
6300 *
6301 * Given a node, construct a good cpumask for its sched_domain to span. It
6302 * should be one that prevents unnecessary balancing, but also spreads tasks
6303 * out optimally.
6304 */
6305 static cpumask_t sched_domain_node_span(int node)
6306 {
6307 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6308 cpumask_t span, nodemask;
6309 int i;
6310
6311 cpus_clear(span);
6312 bitmap_zero(used_nodes, MAX_NUMNODES);
6313
6314 nodemask = node_to_cpumask(node);
6315 cpus_or(span, span, nodemask);
6316 set_bit(node, used_nodes);
6317
6318 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6319 int next_node = find_next_best_node(node, used_nodes);
6320
6321 nodemask = node_to_cpumask(next_node);
6322 cpus_or(span, span, nodemask);
6323 }
6324
6325 return span;
6326 }
6327 #endif
6328
6329 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6330
6331 /*
6332 * SMT sched-domains:
6333 */
6334 #ifdef CONFIG_SCHED_SMT
6335 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6336 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6337
6338 static int
6339 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6340 {
6341 if (sg)
6342 *sg = &per_cpu(sched_group_cpus, cpu);
6343 return cpu;
6344 }
6345 #endif
6346
6347 /*
6348 * multi-core sched-domains:
6349 */
6350 #ifdef CONFIG_SCHED_MC
6351 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6352 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6353 #endif
6354
6355 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6356 static int
6357 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6358 {
6359 int group;
6360 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6361 cpus_and(mask, mask, *cpu_map);
6362 group = first_cpu(mask);
6363 if (sg)
6364 *sg = &per_cpu(sched_group_core, group);
6365 return group;
6366 }
6367 #elif defined(CONFIG_SCHED_MC)
6368 static int
6369 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6370 {
6371 if (sg)
6372 *sg = &per_cpu(sched_group_core, cpu);
6373 return cpu;
6374 }
6375 #endif
6376
6377 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6378 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6379
6380 static int
6381 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6382 {
6383 int group;
6384 #ifdef CONFIG_SCHED_MC
6385 cpumask_t mask = cpu_coregroup_map(cpu);
6386 cpus_and(mask, mask, *cpu_map);
6387 group = first_cpu(mask);
6388 #elif defined(CONFIG_SCHED_SMT)
6389 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6390 cpus_and(mask, mask, *cpu_map);
6391 group = first_cpu(mask);
6392 #else
6393 group = cpu;
6394 #endif
6395 if (sg)
6396 *sg = &per_cpu(sched_group_phys, group);
6397 return group;
6398 }
6399
6400 #ifdef CONFIG_NUMA
6401 /*
6402 * The init_sched_build_groups can't handle what we want to do with node
6403 * groups, so roll our own. Now each node has its own list of groups which
6404 * gets dynamically allocated.
6405 */
6406 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6407 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6408
6409 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6410 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6411
6412 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6413 struct sched_group **sg)
6414 {
6415 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6416 int group;
6417
6418 cpus_and(nodemask, nodemask, *cpu_map);
6419 group = first_cpu(nodemask);
6420
6421 if (sg)
6422 *sg = &per_cpu(sched_group_allnodes, group);
6423 return group;
6424 }
6425
6426 static void init_numa_sched_groups_power(struct sched_group *group_head)
6427 {
6428 struct sched_group *sg = group_head;
6429 int j;
6430
6431 if (!sg)
6432 return;
6433 do {
6434 for_each_cpu_mask(j, sg->cpumask) {
6435 struct sched_domain *sd;
6436
6437 sd = &per_cpu(phys_domains, j);
6438 if (j != first_cpu(sd->groups->cpumask)) {
6439 /*
6440 * Only add "power" once for each
6441 * physical package.
6442 */
6443 continue;
6444 }
6445
6446 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6447 }
6448 sg = sg->next;
6449 } while (sg != group_head);
6450 }
6451 #endif
6452
6453 #ifdef CONFIG_NUMA
6454 /* Free memory allocated for various sched_group structures */
6455 static void free_sched_groups(const cpumask_t *cpu_map)
6456 {
6457 int cpu, i;
6458
6459 for_each_cpu_mask(cpu, *cpu_map) {
6460 struct sched_group **sched_group_nodes
6461 = sched_group_nodes_bycpu[cpu];
6462
6463 if (!sched_group_nodes)
6464 continue;
6465
6466 for (i = 0; i < MAX_NUMNODES; i++) {
6467 cpumask_t nodemask = node_to_cpumask(i);
6468 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6469
6470 cpus_and(nodemask, nodemask, *cpu_map);
6471 if (cpus_empty(nodemask))
6472 continue;
6473
6474 if (sg == NULL)
6475 continue;
6476 sg = sg->next;
6477 next_sg:
6478 oldsg = sg;
6479 sg = sg->next;
6480 kfree(oldsg);
6481 if (oldsg != sched_group_nodes[i])
6482 goto next_sg;
6483 }
6484 kfree(sched_group_nodes);
6485 sched_group_nodes_bycpu[cpu] = NULL;
6486 }
6487 }
6488 #else
6489 static void free_sched_groups(const cpumask_t *cpu_map)
6490 {
6491 }
6492 #endif
6493
6494 /*
6495 * Initialize sched groups cpu_power.
6496 *
6497 * cpu_power indicates the capacity of sched group, which is used while
6498 * distributing the load between different sched groups in a sched domain.
6499 * Typically cpu_power for all the groups in a sched domain will be same unless
6500 * there are asymmetries in the topology. If there are asymmetries, group
6501 * having more cpu_power will pickup more load compared to the group having
6502 * less cpu_power.
6503 *
6504 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6505 * the maximum number of tasks a group can handle in the presence of other idle
6506 * or lightly loaded groups in the same sched domain.
6507 */
6508 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6509 {
6510 struct sched_domain *child;
6511 struct sched_group *group;
6512
6513 WARN_ON(!sd || !sd->groups);
6514
6515 if (cpu != first_cpu(sd->groups->cpumask))
6516 return;
6517
6518 child = sd->child;
6519
6520 sd->groups->__cpu_power = 0;
6521
6522 /*
6523 * For perf policy, if the groups in child domain share resources
6524 * (for example cores sharing some portions of the cache hierarchy
6525 * or SMT), then set this domain groups cpu_power such that each group
6526 * can handle only one task, when there are other idle groups in the
6527 * same sched domain.
6528 */
6529 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6530 (child->flags &
6531 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6532 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6533 return;
6534 }
6535
6536 /*
6537 * add cpu_power of each child group to this groups cpu_power
6538 */
6539 group = child->groups;
6540 do {
6541 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6542 group = group->next;
6543 } while (group != child->groups);
6544 }
6545
6546 /*
6547 * Build sched domains for a given set of cpus and attach the sched domains
6548 * to the individual cpus
6549 */
6550 static int build_sched_domains(const cpumask_t *cpu_map)
6551 {
6552 int i;
6553 struct root_domain *rd;
6554 #ifdef CONFIG_NUMA
6555 struct sched_group **sched_group_nodes = NULL;
6556 int sd_allnodes = 0;
6557
6558 /*
6559 * Allocate the per-node list of sched groups
6560 */
6561 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6562 GFP_KERNEL);
6563 if (!sched_group_nodes) {
6564 printk(KERN_WARNING "Can not alloc sched group node list\n");
6565 return -ENOMEM;
6566 }
6567 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6568 #endif
6569
6570 rd = alloc_rootdomain();
6571 if (!rd) {
6572 printk(KERN_WARNING "Cannot alloc root domain\n");
6573 return -ENOMEM;
6574 }
6575
6576 /*
6577 * Set up domains for cpus specified by the cpu_map.
6578 */
6579 for_each_cpu_mask(i, *cpu_map) {
6580 struct sched_domain *sd = NULL, *p;
6581 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6582
6583 cpus_and(nodemask, nodemask, *cpu_map);
6584
6585 #ifdef CONFIG_NUMA
6586 if (cpus_weight(*cpu_map) >
6587 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6588 sd = &per_cpu(allnodes_domains, i);
6589 *sd = SD_ALLNODES_INIT;
6590 sd->span = *cpu_map;
6591 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6592 p = sd;
6593 sd_allnodes = 1;
6594 } else
6595 p = NULL;
6596
6597 sd = &per_cpu(node_domains, i);
6598 *sd = SD_NODE_INIT;
6599 sd->span = sched_domain_node_span(cpu_to_node(i));
6600 sd->parent = p;
6601 if (p)
6602 p->child = sd;
6603 cpus_and(sd->span, sd->span, *cpu_map);
6604 #endif
6605
6606 p = sd;
6607 sd = &per_cpu(phys_domains, i);
6608 *sd = SD_CPU_INIT;
6609 sd->span = nodemask;
6610 sd->parent = p;
6611 if (p)
6612 p->child = sd;
6613 cpu_to_phys_group(i, cpu_map, &sd->groups);
6614
6615 #ifdef CONFIG_SCHED_MC
6616 p = sd;
6617 sd = &per_cpu(core_domains, i);
6618 *sd = SD_MC_INIT;
6619 sd->span = cpu_coregroup_map(i);
6620 cpus_and(sd->span, sd->span, *cpu_map);
6621 sd->parent = p;
6622 p->child = sd;
6623 cpu_to_core_group(i, cpu_map, &sd->groups);
6624 #endif
6625
6626 #ifdef CONFIG_SCHED_SMT
6627 p = sd;
6628 sd = &per_cpu(cpu_domains, i);
6629 *sd = SD_SIBLING_INIT;
6630 sd->span = per_cpu(cpu_sibling_map, i);
6631 cpus_and(sd->span, sd->span, *cpu_map);
6632 sd->parent = p;
6633 p->child = sd;
6634 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6635 #endif
6636 }
6637
6638 #ifdef CONFIG_SCHED_SMT
6639 /* Set up CPU (sibling) groups */
6640 for_each_cpu_mask(i, *cpu_map) {
6641 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6642 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6643 if (i != first_cpu(this_sibling_map))
6644 continue;
6645
6646 init_sched_build_groups(this_sibling_map, cpu_map,
6647 &cpu_to_cpu_group);
6648 }
6649 #endif
6650
6651 #ifdef CONFIG_SCHED_MC
6652 /* Set up multi-core groups */
6653 for_each_cpu_mask(i, *cpu_map) {
6654 cpumask_t this_core_map = cpu_coregroup_map(i);
6655 cpus_and(this_core_map, this_core_map, *cpu_map);
6656 if (i != first_cpu(this_core_map))
6657 continue;
6658 init_sched_build_groups(this_core_map, cpu_map,
6659 &cpu_to_core_group);
6660 }
6661 #endif
6662
6663 /* Set up physical groups */
6664 for (i = 0; i < MAX_NUMNODES; i++) {
6665 cpumask_t nodemask = node_to_cpumask(i);
6666
6667 cpus_and(nodemask, nodemask, *cpu_map);
6668 if (cpus_empty(nodemask))
6669 continue;
6670
6671 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6672 }
6673
6674 #ifdef CONFIG_NUMA
6675 /* Set up node groups */
6676 if (sd_allnodes)
6677 init_sched_build_groups(*cpu_map, cpu_map,
6678 &cpu_to_allnodes_group);
6679
6680 for (i = 0; i < MAX_NUMNODES; i++) {
6681 /* Set up node groups */
6682 struct sched_group *sg, *prev;
6683 cpumask_t nodemask = node_to_cpumask(i);
6684 cpumask_t domainspan;
6685 cpumask_t covered = CPU_MASK_NONE;
6686 int j;
6687
6688 cpus_and(nodemask, nodemask, *cpu_map);
6689 if (cpus_empty(nodemask)) {
6690 sched_group_nodes[i] = NULL;
6691 continue;
6692 }
6693
6694 domainspan = sched_domain_node_span(i);
6695 cpus_and(domainspan, domainspan, *cpu_map);
6696
6697 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6698 if (!sg) {
6699 printk(KERN_WARNING "Can not alloc domain group for "
6700 "node %d\n", i);
6701 goto error;
6702 }
6703 sched_group_nodes[i] = sg;
6704 for_each_cpu_mask(j, nodemask) {
6705 struct sched_domain *sd;
6706
6707 sd = &per_cpu(node_domains, j);
6708 sd->groups = sg;
6709 }
6710 sg->__cpu_power = 0;
6711 sg->cpumask = nodemask;
6712 sg->next = sg;
6713 cpus_or(covered, covered, nodemask);
6714 prev = sg;
6715
6716 for (j = 0; j < MAX_NUMNODES; j++) {
6717 cpumask_t tmp, notcovered;
6718 int n = (i + j) % MAX_NUMNODES;
6719
6720 cpus_complement(notcovered, covered);
6721 cpus_and(tmp, notcovered, *cpu_map);
6722 cpus_and(tmp, tmp, domainspan);
6723 if (cpus_empty(tmp))
6724 break;
6725
6726 nodemask = node_to_cpumask(n);
6727 cpus_and(tmp, tmp, nodemask);
6728 if (cpus_empty(tmp))
6729 continue;
6730
6731 sg = kmalloc_node(sizeof(struct sched_group),
6732 GFP_KERNEL, i);
6733 if (!sg) {
6734 printk(KERN_WARNING
6735 "Can not alloc domain group for node %d\n", j);
6736 goto error;
6737 }
6738 sg->__cpu_power = 0;
6739 sg->cpumask = tmp;
6740 sg->next = prev->next;
6741 cpus_or(covered, covered, tmp);
6742 prev->next = sg;
6743 prev = sg;
6744 }
6745 }
6746 #endif
6747
6748 /* Calculate CPU power for physical packages and nodes */
6749 #ifdef CONFIG_SCHED_SMT
6750 for_each_cpu_mask(i, *cpu_map) {
6751 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6752
6753 init_sched_groups_power(i, sd);
6754 }
6755 #endif
6756 #ifdef CONFIG_SCHED_MC
6757 for_each_cpu_mask(i, *cpu_map) {
6758 struct sched_domain *sd = &per_cpu(core_domains, i);
6759
6760 init_sched_groups_power(i, sd);
6761 }
6762 #endif
6763
6764 for_each_cpu_mask(i, *cpu_map) {
6765 struct sched_domain *sd = &per_cpu(phys_domains, i);
6766
6767 init_sched_groups_power(i, sd);
6768 }
6769
6770 #ifdef CONFIG_NUMA
6771 for (i = 0; i < MAX_NUMNODES; i++)
6772 init_numa_sched_groups_power(sched_group_nodes[i]);
6773
6774 if (sd_allnodes) {
6775 struct sched_group *sg;
6776
6777 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6778 init_numa_sched_groups_power(sg);
6779 }
6780 #endif
6781
6782 /* Attach the domains */
6783 for_each_cpu_mask(i, *cpu_map) {
6784 struct sched_domain *sd;
6785 #ifdef CONFIG_SCHED_SMT
6786 sd = &per_cpu(cpu_domains, i);
6787 #elif defined(CONFIG_SCHED_MC)
6788 sd = &per_cpu(core_domains, i);
6789 #else
6790 sd = &per_cpu(phys_domains, i);
6791 #endif
6792 cpu_attach_domain(sd, rd, i);
6793 }
6794
6795 return 0;
6796
6797 #ifdef CONFIG_NUMA
6798 error:
6799 free_sched_groups(cpu_map);
6800 return -ENOMEM;
6801 #endif
6802 }
6803
6804 static cpumask_t *doms_cur; /* current sched domains */
6805 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6806
6807 /*
6808 * Special case: If a kmalloc of a doms_cur partition (array of
6809 * cpumask_t) fails, then fallback to a single sched domain,
6810 * as determined by the single cpumask_t fallback_doms.
6811 */
6812 static cpumask_t fallback_doms;
6813
6814 /*
6815 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6816 * For now this just excludes isolated cpus, but could be used to
6817 * exclude other special cases in the future.
6818 */
6819 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6820 {
6821 int err;
6822
6823 ndoms_cur = 1;
6824 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6825 if (!doms_cur)
6826 doms_cur = &fallback_doms;
6827 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6828 err = build_sched_domains(doms_cur);
6829 register_sched_domain_sysctl();
6830
6831 return err;
6832 }
6833
6834 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6835 {
6836 free_sched_groups(cpu_map);
6837 }
6838
6839 /*
6840 * Detach sched domains from a group of cpus specified in cpu_map
6841 * These cpus will now be attached to the NULL domain
6842 */
6843 static void detach_destroy_domains(const cpumask_t *cpu_map)
6844 {
6845 int i;
6846
6847 unregister_sched_domain_sysctl();
6848
6849 for_each_cpu_mask(i, *cpu_map)
6850 cpu_attach_domain(NULL, &def_root_domain, i);
6851 synchronize_sched();
6852 arch_destroy_sched_domains(cpu_map);
6853 }
6854
6855 /*
6856 * Partition sched domains as specified by the 'ndoms_new'
6857 * cpumasks in the array doms_new[] of cpumasks. This compares
6858 * doms_new[] to the current sched domain partitioning, doms_cur[].
6859 * It destroys each deleted domain and builds each new domain.
6860 *
6861 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6862 * The masks don't intersect (don't overlap.) We should setup one
6863 * sched domain for each mask. CPUs not in any of the cpumasks will
6864 * not be load balanced. If the same cpumask appears both in the
6865 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6866 * it as it is.
6867 *
6868 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6869 * ownership of it and will kfree it when done with it. If the caller
6870 * failed the kmalloc call, then it can pass in doms_new == NULL,
6871 * and partition_sched_domains() will fallback to the single partition
6872 * 'fallback_doms'.
6873 *
6874 * Call with hotplug lock held
6875 */
6876 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6877 {
6878 int i, j;
6879
6880 lock_doms_cur();
6881
6882 /* always unregister in case we don't destroy any domains */
6883 unregister_sched_domain_sysctl();
6884
6885 if (doms_new == NULL) {
6886 ndoms_new = 1;
6887 doms_new = &fallback_doms;
6888 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6889 }
6890
6891 /* Destroy deleted domains */
6892 for (i = 0; i < ndoms_cur; i++) {
6893 for (j = 0; j < ndoms_new; j++) {
6894 if (cpus_equal(doms_cur[i], doms_new[j]))
6895 goto match1;
6896 }
6897 /* no match - a current sched domain not in new doms_new[] */
6898 detach_destroy_domains(doms_cur + i);
6899 match1:
6900 ;
6901 }
6902
6903 /* Build new domains */
6904 for (i = 0; i < ndoms_new; i++) {
6905 for (j = 0; j < ndoms_cur; j++) {
6906 if (cpus_equal(doms_new[i], doms_cur[j]))
6907 goto match2;
6908 }
6909 /* no match - add a new doms_new */
6910 build_sched_domains(doms_new + i);
6911 match2:
6912 ;
6913 }
6914
6915 /* Remember the new sched domains */
6916 if (doms_cur != &fallback_doms)
6917 kfree(doms_cur);
6918 doms_cur = doms_new;
6919 ndoms_cur = ndoms_new;
6920
6921 register_sched_domain_sysctl();
6922
6923 unlock_doms_cur();
6924 }
6925
6926 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6927 static int arch_reinit_sched_domains(void)
6928 {
6929 int err;
6930
6931 get_online_cpus();
6932 detach_destroy_domains(&cpu_online_map);
6933 err = arch_init_sched_domains(&cpu_online_map);
6934 put_online_cpus();
6935
6936 return err;
6937 }
6938
6939 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6940 {
6941 int ret;
6942
6943 if (buf[0] != '0' && buf[0] != '1')
6944 return -EINVAL;
6945
6946 if (smt)
6947 sched_smt_power_savings = (buf[0] == '1');
6948 else
6949 sched_mc_power_savings = (buf[0] == '1');
6950
6951 ret = arch_reinit_sched_domains();
6952
6953 return ret ? ret : count;
6954 }
6955
6956 #ifdef CONFIG_SCHED_MC
6957 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6958 {
6959 return sprintf(page, "%u\n", sched_mc_power_savings);
6960 }
6961 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6962 const char *buf, size_t count)
6963 {
6964 return sched_power_savings_store(buf, count, 0);
6965 }
6966 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6967 sched_mc_power_savings_store);
6968 #endif
6969
6970 #ifdef CONFIG_SCHED_SMT
6971 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6972 {
6973 return sprintf(page, "%u\n", sched_smt_power_savings);
6974 }
6975 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6976 const char *buf, size_t count)
6977 {
6978 return sched_power_savings_store(buf, count, 1);
6979 }
6980 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6981 sched_smt_power_savings_store);
6982 #endif
6983
6984 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6985 {
6986 int err = 0;
6987
6988 #ifdef CONFIG_SCHED_SMT
6989 if (smt_capable())
6990 err = sysfs_create_file(&cls->kset.kobj,
6991 &attr_sched_smt_power_savings.attr);
6992 #endif
6993 #ifdef CONFIG_SCHED_MC
6994 if (!err && mc_capable())
6995 err = sysfs_create_file(&cls->kset.kobj,
6996 &attr_sched_mc_power_savings.attr);
6997 #endif
6998 return err;
6999 }
7000 #endif
7001
7002 /*
7003 * Force a reinitialization of the sched domains hierarchy. The domains
7004 * and groups cannot be updated in place without racing with the balancing
7005 * code, so we temporarily attach all running cpus to the NULL domain
7006 * which will prevent rebalancing while the sched domains are recalculated.
7007 */
7008 static int update_sched_domains(struct notifier_block *nfb,
7009 unsigned long action, void *hcpu)
7010 {
7011 switch (action) {
7012 case CPU_UP_PREPARE:
7013 case CPU_UP_PREPARE_FROZEN:
7014 case CPU_DOWN_PREPARE:
7015 case CPU_DOWN_PREPARE_FROZEN:
7016 detach_destroy_domains(&cpu_online_map);
7017 return NOTIFY_OK;
7018
7019 case CPU_UP_CANCELED:
7020 case CPU_UP_CANCELED_FROZEN:
7021 case CPU_DOWN_FAILED:
7022 case CPU_DOWN_FAILED_FROZEN:
7023 case CPU_ONLINE:
7024 case CPU_ONLINE_FROZEN:
7025 case CPU_DEAD:
7026 case CPU_DEAD_FROZEN:
7027 /*
7028 * Fall through and re-initialise the domains.
7029 */
7030 break;
7031 default:
7032 return NOTIFY_DONE;
7033 }
7034
7035 /* The hotplug lock is already held by cpu_up/cpu_down */
7036 arch_init_sched_domains(&cpu_online_map);
7037
7038 return NOTIFY_OK;
7039 }
7040
7041 void __init sched_init_smp(void)
7042 {
7043 cpumask_t non_isolated_cpus;
7044
7045 get_online_cpus();
7046 arch_init_sched_domains(&cpu_online_map);
7047 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7048 if (cpus_empty(non_isolated_cpus))
7049 cpu_set(smp_processor_id(), non_isolated_cpus);
7050 put_online_cpus();
7051 /* XXX: Theoretical race here - CPU may be hotplugged now */
7052 hotcpu_notifier(update_sched_domains, 0);
7053
7054 /* Move init over to a non-isolated CPU */
7055 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7056 BUG();
7057 sched_init_granularity();
7058 }
7059 #else
7060 void __init sched_init_smp(void)
7061 {
7062 sched_init_granularity();
7063 }
7064 #endif /* CONFIG_SMP */
7065
7066 int in_sched_functions(unsigned long addr)
7067 {
7068 return in_lock_functions(addr) ||
7069 (addr >= (unsigned long)__sched_text_start
7070 && addr < (unsigned long)__sched_text_end);
7071 }
7072
7073 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7074 {
7075 cfs_rq->tasks_timeline = RB_ROOT;
7076 #ifdef CONFIG_FAIR_GROUP_SCHED
7077 cfs_rq->rq = rq;
7078 #endif
7079 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7080 }
7081
7082 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7083 {
7084 struct rt_prio_array *array;
7085 int i;
7086
7087 array = &rt_rq->active;
7088 for (i = 0; i < MAX_RT_PRIO; i++) {
7089 INIT_LIST_HEAD(array->queue + i);
7090 __clear_bit(i, array->bitmap);
7091 }
7092 /* delimiter for bitsearch: */
7093 __set_bit(MAX_RT_PRIO, array->bitmap);
7094
7095 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7096 rt_rq->highest_prio = MAX_RT_PRIO;
7097 #endif
7098 #ifdef CONFIG_SMP
7099 rt_rq->rt_nr_migratory = 0;
7100 rt_rq->overloaded = 0;
7101 #endif
7102
7103 rt_rq->rt_time = 0;
7104 rt_rq->rt_throttled = 0;
7105
7106 #ifdef CONFIG_RT_GROUP_SCHED
7107 rt_rq->rt_nr_boosted = 0;
7108 rt_rq->rq = rq;
7109 #endif
7110 }
7111
7112 #ifdef CONFIG_FAIR_GROUP_SCHED
7113 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7114 struct cfs_rq *cfs_rq, struct sched_entity *se,
7115 int cpu, int add)
7116 {
7117 tg->cfs_rq[cpu] = cfs_rq;
7118 init_cfs_rq(cfs_rq, rq);
7119 cfs_rq->tg = tg;
7120 if (add)
7121 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7122
7123 tg->se[cpu] = se;
7124 se->cfs_rq = &rq->cfs;
7125 se->my_q = cfs_rq;
7126 se->load.weight = tg->shares;
7127 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7128 se->parent = NULL;
7129 }
7130 #endif
7131
7132 #ifdef CONFIG_RT_GROUP_SCHED
7133 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7134 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7135 int cpu, int add)
7136 {
7137 tg->rt_rq[cpu] = rt_rq;
7138 init_rt_rq(rt_rq, rq);
7139 rt_rq->tg = tg;
7140 rt_rq->rt_se = rt_se;
7141 if (add)
7142 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7143
7144 tg->rt_se[cpu] = rt_se;
7145 rt_se->rt_rq = &rq->rt;
7146 rt_se->my_q = rt_rq;
7147 rt_se->parent = NULL;
7148 INIT_LIST_HEAD(&rt_se->run_list);
7149 }
7150 #endif
7151
7152 void __init sched_init(void)
7153 {
7154 int highest_cpu = 0;
7155 int i, j;
7156
7157 #ifdef CONFIG_SMP
7158 init_defrootdomain();
7159 #endif
7160
7161 #ifdef CONFIG_GROUP_SCHED
7162 list_add(&init_task_group.list, &task_groups);
7163 #endif
7164
7165 for_each_possible_cpu(i) {
7166 struct rq *rq;
7167
7168 rq = cpu_rq(i);
7169 spin_lock_init(&rq->lock);
7170 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7171 rq->nr_running = 0;
7172 rq->clock = 1;
7173 init_cfs_rq(&rq->cfs, rq);
7174 init_rt_rq(&rq->rt, rq);
7175 #ifdef CONFIG_FAIR_GROUP_SCHED
7176 init_task_group.shares = init_task_group_load;
7177 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7178 init_tg_cfs_entry(rq, &init_task_group,
7179 &per_cpu(init_cfs_rq, i),
7180 &per_cpu(init_sched_entity, i), i, 1);
7181
7182 #endif
7183 #ifdef CONFIG_RT_GROUP_SCHED
7184 init_task_group.rt_runtime =
7185 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7186 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7187 init_tg_rt_entry(rq, &init_task_group,
7188 &per_cpu(init_rt_rq, i),
7189 &per_cpu(init_sched_rt_entity, i), i, 1);
7190 #endif
7191 rq->rt_period_expire = 0;
7192 rq->rt_throttled = 0;
7193
7194 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7195 rq->cpu_load[j] = 0;
7196 #ifdef CONFIG_SMP
7197 rq->sd = NULL;
7198 rq->rd = NULL;
7199 rq->active_balance = 0;
7200 rq->next_balance = jiffies;
7201 rq->push_cpu = 0;
7202 rq->cpu = i;
7203 rq->migration_thread = NULL;
7204 INIT_LIST_HEAD(&rq->migration_queue);
7205 rq_attach_root(rq, &def_root_domain);
7206 #endif
7207 init_rq_hrtick(rq);
7208 atomic_set(&rq->nr_iowait, 0);
7209 highest_cpu = i;
7210 }
7211
7212 set_load_weight(&init_task);
7213
7214 #ifdef CONFIG_PREEMPT_NOTIFIERS
7215 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7216 #endif
7217
7218 #ifdef CONFIG_SMP
7219 nr_cpu_ids = highest_cpu + 1;
7220 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7221 #endif
7222
7223 #ifdef CONFIG_RT_MUTEXES
7224 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7225 #endif
7226
7227 /*
7228 * The boot idle thread does lazy MMU switching as well:
7229 */
7230 atomic_inc(&init_mm.mm_count);
7231 enter_lazy_tlb(&init_mm, current);
7232
7233 /*
7234 * Make us the idle thread. Technically, schedule() should not be
7235 * called from this thread, however somewhere below it might be,
7236 * but because we are the idle thread, we just pick up running again
7237 * when this runqueue becomes "idle".
7238 */
7239 init_idle(current, smp_processor_id());
7240 /*
7241 * During early bootup we pretend to be a normal task:
7242 */
7243 current->sched_class = &fair_sched_class;
7244
7245 scheduler_running = 1;
7246 }
7247
7248 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7249 void __might_sleep(char *file, int line)
7250 {
7251 #ifdef in_atomic
7252 static unsigned long prev_jiffy; /* ratelimiting */
7253
7254 if ((in_atomic() || irqs_disabled()) &&
7255 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7256 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7257 return;
7258 prev_jiffy = jiffies;
7259 printk(KERN_ERR "BUG: sleeping function called from invalid"
7260 " context at %s:%d\n", file, line);
7261 printk("in_atomic():%d, irqs_disabled():%d\n",
7262 in_atomic(), irqs_disabled());
7263 debug_show_held_locks(current);
7264 if (irqs_disabled())
7265 print_irqtrace_events(current);
7266 dump_stack();
7267 }
7268 #endif
7269 }
7270 EXPORT_SYMBOL(__might_sleep);
7271 #endif
7272
7273 #ifdef CONFIG_MAGIC_SYSRQ
7274 static void normalize_task(struct rq *rq, struct task_struct *p)
7275 {
7276 int on_rq;
7277 update_rq_clock(rq);
7278 on_rq = p->se.on_rq;
7279 if (on_rq)
7280 deactivate_task(rq, p, 0);
7281 __setscheduler(rq, p, SCHED_NORMAL, 0);
7282 if (on_rq) {
7283 activate_task(rq, p, 0);
7284 resched_task(rq->curr);
7285 }
7286 }
7287
7288 void normalize_rt_tasks(void)
7289 {
7290 struct task_struct *g, *p;
7291 unsigned long flags;
7292 struct rq *rq;
7293
7294 read_lock_irqsave(&tasklist_lock, flags);
7295 do_each_thread(g, p) {
7296 /*
7297 * Only normalize user tasks:
7298 */
7299 if (!p->mm)
7300 continue;
7301
7302 p->se.exec_start = 0;
7303 #ifdef CONFIG_SCHEDSTATS
7304 p->se.wait_start = 0;
7305 p->se.sleep_start = 0;
7306 p->se.block_start = 0;
7307 #endif
7308 task_rq(p)->clock = 0;
7309
7310 if (!rt_task(p)) {
7311 /*
7312 * Renice negative nice level userspace
7313 * tasks back to 0:
7314 */
7315 if (TASK_NICE(p) < 0 && p->mm)
7316 set_user_nice(p, 0);
7317 continue;
7318 }
7319
7320 spin_lock(&p->pi_lock);
7321 rq = __task_rq_lock(p);
7322
7323 normalize_task(rq, p);
7324
7325 __task_rq_unlock(rq);
7326 spin_unlock(&p->pi_lock);
7327 } while_each_thread(g, p);
7328
7329 read_unlock_irqrestore(&tasklist_lock, flags);
7330 }
7331
7332 #endif /* CONFIG_MAGIC_SYSRQ */
7333
7334 #ifdef CONFIG_IA64
7335 /*
7336 * These functions are only useful for the IA64 MCA handling.
7337 *
7338 * They can only be called when the whole system has been
7339 * stopped - every CPU needs to be quiescent, and no scheduling
7340 * activity can take place. Using them for anything else would
7341 * be a serious bug, and as a result, they aren't even visible
7342 * under any other configuration.
7343 */
7344
7345 /**
7346 * curr_task - return the current task for a given cpu.
7347 * @cpu: the processor in question.
7348 *
7349 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7350 */
7351 struct task_struct *curr_task(int cpu)
7352 {
7353 return cpu_curr(cpu);
7354 }
7355
7356 /**
7357 * set_curr_task - set the current task for a given cpu.
7358 * @cpu: the processor in question.
7359 * @p: the task pointer to set.
7360 *
7361 * Description: This function must only be used when non-maskable interrupts
7362 * are serviced on a separate stack. It allows the architecture to switch the
7363 * notion of the current task on a cpu in a non-blocking manner. This function
7364 * must be called with all CPU's synchronized, and interrupts disabled, the
7365 * and caller must save the original value of the current task (see
7366 * curr_task() above) and restore that value before reenabling interrupts and
7367 * re-starting the system.
7368 *
7369 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7370 */
7371 void set_curr_task(int cpu, struct task_struct *p)
7372 {
7373 cpu_curr(cpu) = p;
7374 }
7375
7376 #endif
7377
7378 #ifdef CONFIG_GROUP_SCHED
7379
7380 #ifdef CONFIG_FAIR_GROUP_SCHED
7381 static void free_fair_sched_group(struct task_group *tg)
7382 {
7383 int i;
7384
7385 for_each_possible_cpu(i) {
7386 if (tg->cfs_rq)
7387 kfree(tg->cfs_rq[i]);
7388 if (tg->se)
7389 kfree(tg->se[i]);
7390 }
7391
7392 kfree(tg->cfs_rq);
7393 kfree(tg->se);
7394 }
7395
7396 static int alloc_fair_sched_group(struct task_group *tg)
7397 {
7398 struct cfs_rq *cfs_rq;
7399 struct sched_entity *se;
7400 struct rq *rq;
7401 int i;
7402
7403 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7404 if (!tg->cfs_rq)
7405 goto err;
7406 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7407 if (!tg->se)
7408 goto err;
7409
7410 tg->shares = NICE_0_LOAD;
7411
7412 for_each_possible_cpu(i) {
7413 rq = cpu_rq(i);
7414
7415 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7416 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7417 if (!cfs_rq)
7418 goto err;
7419
7420 se = kmalloc_node(sizeof(struct sched_entity),
7421 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7422 if (!se)
7423 goto err;
7424
7425 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7426 }
7427
7428 return 1;
7429
7430 err:
7431 return 0;
7432 }
7433
7434 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7435 {
7436 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7437 &cpu_rq(cpu)->leaf_cfs_rq_list);
7438 }
7439
7440 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7441 {
7442 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7443 }
7444 #else
7445 static inline void free_fair_sched_group(struct task_group *tg)
7446 {
7447 }
7448
7449 static inline int alloc_fair_sched_group(struct task_group *tg)
7450 {
7451 return 1;
7452 }
7453
7454 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7455 {
7456 }
7457
7458 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7459 {
7460 }
7461 #endif
7462
7463 #ifdef CONFIG_RT_GROUP_SCHED
7464 static void free_rt_sched_group(struct task_group *tg)
7465 {
7466 int i;
7467
7468 for_each_possible_cpu(i) {
7469 if (tg->rt_rq)
7470 kfree(tg->rt_rq[i]);
7471 if (tg->rt_se)
7472 kfree(tg->rt_se[i]);
7473 }
7474
7475 kfree(tg->rt_rq);
7476 kfree(tg->rt_se);
7477 }
7478
7479 static int alloc_rt_sched_group(struct task_group *tg)
7480 {
7481 struct rt_rq *rt_rq;
7482 struct sched_rt_entity *rt_se;
7483 struct rq *rq;
7484 int i;
7485
7486 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7487 if (!tg->rt_rq)
7488 goto err;
7489 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7490 if (!tg->rt_se)
7491 goto err;
7492
7493 tg->rt_runtime = 0;
7494
7495 for_each_possible_cpu(i) {
7496 rq = cpu_rq(i);
7497
7498 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7499 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7500 if (!rt_rq)
7501 goto err;
7502
7503 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7504 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7505 if (!rt_se)
7506 goto err;
7507
7508 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7509 }
7510
7511 return 1;
7512
7513 err:
7514 return 0;
7515 }
7516
7517 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7518 {
7519 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7520 &cpu_rq(cpu)->leaf_rt_rq_list);
7521 }
7522
7523 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7524 {
7525 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7526 }
7527 #else
7528 static inline void free_rt_sched_group(struct task_group *tg)
7529 {
7530 }
7531
7532 static inline int alloc_rt_sched_group(struct task_group *tg)
7533 {
7534 return 1;
7535 }
7536
7537 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7538 {
7539 }
7540
7541 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7542 {
7543 }
7544 #endif
7545
7546 static void free_sched_group(struct task_group *tg)
7547 {
7548 free_fair_sched_group(tg);
7549 free_rt_sched_group(tg);
7550 kfree(tg);
7551 }
7552
7553 /* allocate runqueue etc for a new task group */
7554 struct task_group *sched_create_group(void)
7555 {
7556 struct task_group *tg;
7557 unsigned long flags;
7558 int i;
7559
7560 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7561 if (!tg)
7562 return ERR_PTR(-ENOMEM);
7563
7564 if (!alloc_fair_sched_group(tg))
7565 goto err;
7566
7567 if (!alloc_rt_sched_group(tg))
7568 goto err;
7569
7570 spin_lock_irqsave(&task_group_lock, flags);
7571 for_each_possible_cpu(i) {
7572 register_fair_sched_group(tg, i);
7573 register_rt_sched_group(tg, i);
7574 }
7575 list_add_rcu(&tg->list, &task_groups);
7576 spin_unlock_irqrestore(&task_group_lock, flags);
7577
7578 return tg;
7579
7580 err:
7581 free_sched_group(tg);
7582 return ERR_PTR(-ENOMEM);
7583 }
7584
7585 /* rcu callback to free various structures associated with a task group */
7586 static void free_sched_group_rcu(struct rcu_head *rhp)
7587 {
7588 /* now it should be safe to free those cfs_rqs */
7589 free_sched_group(container_of(rhp, struct task_group, rcu));
7590 }
7591
7592 /* Destroy runqueue etc associated with a task group */
7593 void sched_destroy_group(struct task_group *tg)
7594 {
7595 unsigned long flags;
7596 int i;
7597
7598 spin_lock_irqsave(&task_group_lock, flags);
7599 for_each_possible_cpu(i) {
7600 unregister_fair_sched_group(tg, i);
7601 unregister_rt_sched_group(tg, i);
7602 }
7603 list_del_rcu(&tg->list);
7604 spin_unlock_irqrestore(&task_group_lock, flags);
7605
7606 /* wait for possible concurrent references to cfs_rqs complete */
7607 call_rcu(&tg->rcu, free_sched_group_rcu);
7608 }
7609
7610 /* change task's runqueue when it moves between groups.
7611 * The caller of this function should have put the task in its new group
7612 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613 * reflect its new group.
7614 */
7615 void sched_move_task(struct task_struct *tsk)
7616 {
7617 int on_rq, running;
7618 unsigned long flags;
7619 struct rq *rq;
7620
7621 rq = task_rq_lock(tsk, &flags);
7622
7623 update_rq_clock(rq);
7624
7625 running = task_current(rq, tsk);
7626 on_rq = tsk->se.on_rq;
7627
7628 if (on_rq)
7629 dequeue_task(rq, tsk, 0);
7630 if (unlikely(running))
7631 tsk->sched_class->put_prev_task(rq, tsk);
7632
7633 set_task_rq(tsk, task_cpu(tsk));
7634
7635 #ifdef CONFIG_FAIR_GROUP_SCHED
7636 if (tsk->sched_class->moved_group)
7637 tsk->sched_class->moved_group(tsk);
7638 #endif
7639
7640 if (unlikely(running))
7641 tsk->sched_class->set_curr_task(rq);
7642 if (on_rq)
7643 enqueue_task(rq, tsk, 0);
7644
7645 task_rq_unlock(rq, &flags);
7646 }
7647
7648 #ifdef CONFIG_FAIR_GROUP_SCHED
7649 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7650 {
7651 struct cfs_rq *cfs_rq = se->cfs_rq;
7652 struct rq *rq = cfs_rq->rq;
7653 int on_rq;
7654
7655 spin_lock_irq(&rq->lock);
7656
7657 on_rq = se->on_rq;
7658 if (on_rq)
7659 dequeue_entity(cfs_rq, se, 0);
7660
7661 se->load.weight = shares;
7662 se->load.inv_weight = div64_64((1ULL<<32), shares);
7663
7664 if (on_rq)
7665 enqueue_entity(cfs_rq, se, 0);
7666
7667 spin_unlock_irq(&rq->lock);
7668 }
7669
7670 static DEFINE_MUTEX(shares_mutex);
7671
7672 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7673 {
7674 int i;
7675 unsigned long flags;
7676
7677 /*
7678 * A weight of 0 or 1 can cause arithmetics problems.
7679 * (The default weight is 1024 - so there's no practical
7680 * limitation from this.)
7681 */
7682 if (shares < 2)
7683 shares = 2;
7684
7685 mutex_lock(&shares_mutex);
7686 if (tg->shares == shares)
7687 goto done;
7688
7689 spin_lock_irqsave(&task_group_lock, flags);
7690 for_each_possible_cpu(i)
7691 unregister_fair_sched_group(tg, i);
7692 spin_unlock_irqrestore(&task_group_lock, flags);
7693
7694 /* wait for any ongoing reference to this group to finish */
7695 synchronize_sched();
7696
7697 /*
7698 * Now we are free to modify the group's share on each cpu
7699 * w/o tripping rebalance_share or load_balance_fair.
7700 */
7701 tg->shares = shares;
7702 for_each_possible_cpu(i)
7703 set_se_shares(tg->se[i], shares);
7704
7705 /*
7706 * Enable load balance activity on this group, by inserting it back on
7707 * each cpu's rq->leaf_cfs_rq_list.
7708 */
7709 spin_lock_irqsave(&task_group_lock, flags);
7710 for_each_possible_cpu(i)
7711 register_fair_sched_group(tg, i);
7712 spin_unlock_irqrestore(&task_group_lock, flags);
7713 done:
7714 mutex_unlock(&shares_mutex);
7715 return 0;
7716 }
7717
7718 unsigned long sched_group_shares(struct task_group *tg)
7719 {
7720 return tg->shares;
7721 }
7722 #endif
7723
7724 #ifdef CONFIG_RT_GROUP_SCHED
7725 /*
7726 * Ensure that the real time constraints are schedulable.
7727 */
7728 static DEFINE_MUTEX(rt_constraints_mutex);
7729
7730 static unsigned long to_ratio(u64 period, u64 runtime)
7731 {
7732 if (runtime == RUNTIME_INF)
7733 return 1ULL << 16;
7734
7735 return div64_64(runtime << 16, period);
7736 }
7737
7738 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7739 {
7740 struct task_group *tgi;
7741 unsigned long total = 0;
7742 unsigned long global_ratio =
7743 to_ratio(sysctl_sched_rt_period,
7744 sysctl_sched_rt_runtime < 0 ?
7745 RUNTIME_INF : sysctl_sched_rt_runtime);
7746
7747 rcu_read_lock();
7748 list_for_each_entry_rcu(tgi, &task_groups, list) {
7749 if (tgi == tg)
7750 continue;
7751
7752 total += to_ratio(period, tgi->rt_runtime);
7753 }
7754 rcu_read_unlock();
7755
7756 return total + to_ratio(period, runtime) < global_ratio;
7757 }
7758
7759 /* Must be called with tasklist_lock held */
7760 static inline int tg_has_rt_tasks(struct task_group *tg)
7761 {
7762 struct task_struct *g, *p;
7763 do_each_thread(g, p) {
7764 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7765 return 1;
7766 } while_each_thread(g, p);
7767 return 0;
7768 }
7769
7770 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7771 {
7772 u64 rt_runtime, rt_period;
7773 int err = 0;
7774
7775 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7776 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7777 if (rt_runtime_us == -1)
7778 rt_runtime = RUNTIME_INF;
7779
7780 mutex_lock(&rt_constraints_mutex);
7781 read_lock(&tasklist_lock);
7782 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7783 err = -EBUSY;
7784 goto unlock;
7785 }
7786 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7787 err = -EINVAL;
7788 goto unlock;
7789 }
7790 tg->rt_runtime = rt_runtime;
7791 unlock:
7792 read_unlock(&tasklist_lock);
7793 mutex_unlock(&rt_constraints_mutex);
7794
7795 return err;
7796 }
7797
7798 long sched_group_rt_runtime(struct task_group *tg)
7799 {
7800 u64 rt_runtime_us;
7801
7802 if (tg->rt_runtime == RUNTIME_INF)
7803 return -1;
7804
7805 rt_runtime_us = tg->rt_runtime;
7806 do_div(rt_runtime_us, NSEC_PER_USEC);
7807 return rt_runtime_us;
7808 }
7809 #endif
7810 #endif /* CONFIG_GROUP_SCHED */
7811
7812 #ifdef CONFIG_CGROUP_SCHED
7813
7814 /* return corresponding task_group object of a cgroup */
7815 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7816 {
7817 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7818 struct task_group, css);
7819 }
7820
7821 static struct cgroup_subsys_state *
7822 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7823 {
7824 struct task_group *tg;
7825
7826 if (!cgrp->parent) {
7827 /* This is early initialization for the top cgroup */
7828 init_task_group.css.cgroup = cgrp;
7829 return &init_task_group.css;
7830 }
7831
7832 /* we support only 1-level deep hierarchical scheduler atm */
7833 if (cgrp->parent->parent)
7834 return ERR_PTR(-EINVAL);
7835
7836 tg = sched_create_group();
7837 if (IS_ERR(tg))
7838 return ERR_PTR(-ENOMEM);
7839
7840 /* Bind the cgroup to task_group object we just created */
7841 tg->css.cgroup = cgrp;
7842
7843 return &tg->css;
7844 }
7845
7846 static void
7847 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7848 {
7849 struct task_group *tg = cgroup_tg(cgrp);
7850
7851 sched_destroy_group(tg);
7852 }
7853
7854 static int
7855 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7856 struct task_struct *tsk)
7857 {
7858 #ifdef CONFIG_RT_GROUP_SCHED
7859 /* Don't accept realtime tasks when there is no way for them to run */
7860 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7861 return -EINVAL;
7862 #else
7863 /* We don't support RT-tasks being in separate groups */
7864 if (tsk->sched_class != &fair_sched_class)
7865 return -EINVAL;
7866 #endif
7867
7868 return 0;
7869 }
7870
7871 static void
7872 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7873 struct cgroup *old_cont, struct task_struct *tsk)
7874 {
7875 sched_move_task(tsk);
7876 }
7877
7878 #ifdef CONFIG_FAIR_GROUP_SCHED
7879 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7880 u64 shareval)
7881 {
7882 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7883 }
7884
7885 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7886 {
7887 struct task_group *tg = cgroup_tg(cgrp);
7888
7889 return (u64) tg->shares;
7890 }
7891 #endif
7892
7893 #ifdef CONFIG_RT_GROUP_SCHED
7894 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7895 struct file *file,
7896 const char __user *userbuf,
7897 size_t nbytes, loff_t *unused_ppos)
7898 {
7899 char buffer[64];
7900 int retval = 0;
7901 s64 val;
7902 char *end;
7903
7904 if (!nbytes)
7905 return -EINVAL;
7906 if (nbytes >= sizeof(buffer))
7907 return -E2BIG;
7908 if (copy_from_user(buffer, userbuf, nbytes))
7909 return -EFAULT;
7910
7911 buffer[nbytes] = 0; /* nul-terminate */
7912
7913 /* strip newline if necessary */
7914 if (nbytes && (buffer[nbytes-1] == '\n'))
7915 buffer[nbytes-1] = 0;
7916 val = simple_strtoll(buffer, &end, 0);
7917 if (*end)
7918 return -EINVAL;
7919
7920 /* Pass to subsystem */
7921 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7922 if (!retval)
7923 retval = nbytes;
7924 return retval;
7925 }
7926
7927 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7928 struct file *file,
7929 char __user *buf, size_t nbytes,
7930 loff_t *ppos)
7931 {
7932 char tmp[64];
7933 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7934 int len = sprintf(tmp, "%ld\n", val);
7935
7936 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7937 }
7938 #endif
7939
7940 static struct cftype cpu_files[] = {
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7942 {
7943 .name = "shares",
7944 .read_uint = cpu_shares_read_uint,
7945 .write_uint = cpu_shares_write_uint,
7946 },
7947 #endif
7948 #ifdef CONFIG_RT_GROUP_SCHED
7949 {
7950 .name = "rt_runtime_us",
7951 .read = cpu_rt_runtime_read,
7952 .write = cpu_rt_runtime_write,
7953 },
7954 #endif
7955 };
7956
7957 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7958 {
7959 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7960 }
7961
7962 struct cgroup_subsys cpu_cgroup_subsys = {
7963 .name = "cpu",
7964 .create = cpu_cgroup_create,
7965 .destroy = cpu_cgroup_destroy,
7966 .can_attach = cpu_cgroup_can_attach,
7967 .attach = cpu_cgroup_attach,
7968 .populate = cpu_cgroup_populate,
7969 .subsys_id = cpu_cgroup_subsys_id,
7970 .early_init = 1,
7971 };
7972
7973 #endif /* CONFIG_CGROUP_SCHED */
7974
7975 #ifdef CONFIG_CGROUP_CPUACCT
7976
7977 /*
7978 * CPU accounting code for task groups.
7979 *
7980 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7981 * (balbir@in.ibm.com).
7982 */
7983
7984 /* track cpu usage of a group of tasks */
7985 struct cpuacct {
7986 struct cgroup_subsys_state css;
7987 /* cpuusage holds pointer to a u64-type object on every cpu */
7988 u64 *cpuusage;
7989 };
7990
7991 struct cgroup_subsys cpuacct_subsys;
7992
7993 /* return cpu accounting group corresponding to this container */
7994 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7995 {
7996 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7997 struct cpuacct, css);
7998 }
7999
8000 /* return cpu accounting group to which this task belongs */
8001 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8002 {
8003 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8004 struct cpuacct, css);
8005 }
8006
8007 /* create a new cpu accounting group */
8008 static struct cgroup_subsys_state *cpuacct_create(
8009 struct cgroup_subsys *ss, struct cgroup *cont)
8010 {
8011 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8012
8013 if (!ca)
8014 return ERR_PTR(-ENOMEM);
8015
8016 ca->cpuusage = alloc_percpu(u64);
8017 if (!ca->cpuusage) {
8018 kfree(ca);
8019 return ERR_PTR(-ENOMEM);
8020 }
8021
8022 return &ca->css;
8023 }
8024
8025 /* destroy an existing cpu accounting group */
8026 static void
8027 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8028 {
8029 struct cpuacct *ca = cgroup_ca(cont);
8030
8031 free_percpu(ca->cpuusage);
8032 kfree(ca);
8033 }
8034
8035 /* return total cpu usage (in nanoseconds) of a group */
8036 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8037 {
8038 struct cpuacct *ca = cgroup_ca(cont);
8039 u64 totalcpuusage = 0;
8040 int i;
8041
8042 for_each_possible_cpu(i) {
8043 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8044
8045 /*
8046 * Take rq->lock to make 64-bit addition safe on 32-bit
8047 * platforms.
8048 */
8049 spin_lock_irq(&cpu_rq(i)->lock);
8050 totalcpuusage += *cpuusage;
8051 spin_unlock_irq(&cpu_rq(i)->lock);
8052 }
8053
8054 return totalcpuusage;
8055 }
8056
8057 static struct cftype files[] = {
8058 {
8059 .name = "usage",
8060 .read_uint = cpuusage_read,
8061 },
8062 };
8063
8064 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8065 {
8066 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8067 }
8068
8069 /*
8070 * charge this task's execution time to its accounting group.
8071 *
8072 * called with rq->lock held.
8073 */
8074 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8075 {
8076 struct cpuacct *ca;
8077
8078 if (!cpuacct_subsys.active)
8079 return;
8080
8081 ca = task_ca(tsk);
8082 if (ca) {
8083 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8084
8085 *cpuusage += cputime;
8086 }
8087 }
8088
8089 struct cgroup_subsys cpuacct_subsys = {
8090 .name = "cpuacct",
8091 .create = cpuacct_create,
8092 .destroy = cpuacct_destroy,
8093 .populate = cpuacct_populate,
8094 .subsys_id = cpuacct_subsys_id,
8095 };
8096 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.320232 seconds and 6 git commands to generate.