sched_clock: only update deltas with local reads.
[deliverable/linux.git] / kernel / sched_clock.c
1 /*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
6 * Based on code by:
7 * Ingo Molnar <mingo@redhat.com>
8 * Guillaume Chazarain <guichaz@gmail.com>
9 *
10 * Create a semi stable clock from a mixture of other events, including:
11 * - gtod
12 * - jiffies
13 * - sched_clock()
14 * - explicit idle events
15 *
16 * We use gtod as base and the unstable clock deltas. The deltas are filtered,
17 * making it monotonic and keeping it within an expected window. This window
18 * is set up using jiffies.
19 *
20 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
21 * that is otherwise invisible (TSC gets stopped).
22 *
23 * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
24 * consistent between cpus (never more than 1 jiffies difference).
25 */
26 #include <linux/sched.h>
27 #include <linux/percpu.h>
28 #include <linux/spinlock.h>
29 #include <linux/ktime.h>
30 #include <linux/module.h>
31
32
33 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
34
35 struct sched_clock_data {
36 /*
37 * Raw spinlock - this is a special case: this might be called
38 * from within instrumentation code so we dont want to do any
39 * instrumentation ourselves.
40 */
41 raw_spinlock_t lock;
42
43 unsigned long tick_jiffies;
44 u64 prev_raw;
45 u64 tick_raw;
46 u64 tick_gtod;
47 u64 clock;
48 #ifdef CONFIG_NO_HZ
49 int check_max;
50 #endif
51 };
52
53 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
54
55 static inline struct sched_clock_data *this_scd(void)
56 {
57 return &__get_cpu_var(sched_clock_data);
58 }
59
60 static inline struct sched_clock_data *cpu_sdc(int cpu)
61 {
62 return &per_cpu(sched_clock_data, cpu);
63 }
64
65 static __read_mostly int sched_clock_running;
66
67 void sched_clock_init(void)
68 {
69 u64 ktime_now = ktime_to_ns(ktime_get());
70 unsigned long now_jiffies = jiffies;
71 int cpu;
72
73 for_each_possible_cpu(cpu) {
74 struct sched_clock_data *scd = cpu_sdc(cpu);
75
76 scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
77 scd->tick_jiffies = now_jiffies;
78 scd->prev_raw = 0;
79 scd->tick_raw = 0;
80 scd->tick_gtod = ktime_now;
81 scd->clock = ktime_now;
82 #ifdef CONFIG_NO_HZ
83 scd->check_max = 1;
84 #endif
85 }
86
87 sched_clock_running = 1;
88 }
89
90 #ifdef CONFIG_NO_HZ
91 /*
92 * The dynamic ticks makes the delta jiffies inaccurate. This
93 * prevents us from checking the maximum time update.
94 * Disable the maximum check during stopped ticks.
95 */
96 void sched_clock_tick_stop(int cpu)
97 {
98 struct sched_clock_data *scd = cpu_sdc(cpu);
99
100 scd->check_max = 0;
101 }
102
103 void sched_clock_tick_start(int cpu)
104 {
105 struct sched_clock_data *scd = cpu_sdc(cpu);
106
107 scd->check_max = 1;
108 }
109
110 static int check_max(struct sched_clock_data *scd)
111 {
112 return scd->check_max;
113 }
114 #else
115 static int check_max(struct sched_clock_data *scd)
116 {
117 return 1;
118 }
119 #endif /* CONFIG_NO_HZ */
120
121 /*
122 * update the percpu scd from the raw @now value
123 *
124 * - filter out backward motion
125 * - use jiffies to generate a min,max window to clip the raw values
126 */
127 static void __update_sched_clock(struct sched_clock_data *scd, u64 now, u64 *time)
128 {
129 unsigned long now_jiffies = jiffies;
130 long delta_jiffies = now_jiffies - scd->tick_jiffies;
131 u64 clock = scd->clock;
132 u64 min_clock, max_clock;
133 s64 delta = now - scd->prev_raw;
134
135 WARN_ON_ONCE(!irqs_disabled());
136
137 min_clock = scd->tick_gtod +
138 (delta_jiffies ? delta_jiffies - 1 : 0) * TICK_NSEC;
139
140 if (unlikely(delta < 0)) {
141 clock++;
142 goto out;
143 }
144
145 /*
146 * The clock must stay within a jiffie of the gtod.
147 * But since we may be at the start of a jiffy or the end of one
148 * we add another jiffy buffer.
149 */
150 max_clock = scd->tick_gtod + (2 + delta_jiffies) * TICK_NSEC;
151
152 if (unlikely(clock + delta > max_clock) && check_max(scd)) {
153 if (clock < max_clock)
154 clock = max_clock;
155 else
156 clock++;
157 } else {
158 clock += delta;
159 }
160
161 out:
162 if (unlikely(clock < min_clock))
163 clock = min_clock;
164
165 if (time)
166 *time = clock;
167 else {
168 scd->prev_raw = now;
169 scd->clock = clock;
170 }
171 }
172
173 static void lock_double_clock(struct sched_clock_data *data1,
174 struct sched_clock_data *data2)
175 {
176 if (data1 < data2) {
177 __raw_spin_lock(&data1->lock);
178 __raw_spin_lock(&data2->lock);
179 } else {
180 __raw_spin_lock(&data2->lock);
181 __raw_spin_lock(&data1->lock);
182 }
183 }
184
185 u64 sched_clock_cpu(int cpu)
186 {
187 struct sched_clock_data *scd = cpu_sdc(cpu);
188 u64 now, clock;
189
190 if (unlikely(!sched_clock_running))
191 return 0ull;
192
193 WARN_ON_ONCE(!irqs_disabled());
194 now = sched_clock();
195
196 if (cpu != raw_smp_processor_id()) {
197 /*
198 * in order to update a remote cpu's clock based on our
199 * unstable raw time rebase it against:
200 * tick_raw (offset between raw counters)
201 * tick_gotd (tick offset between cpus)
202 */
203 struct sched_clock_data *my_scd = this_scd();
204
205 lock_double_clock(scd, my_scd);
206
207 now -= my_scd->tick_raw;
208 now += scd->tick_raw;
209
210 now += my_scd->tick_gtod;
211 now -= scd->tick_gtod;
212
213 __raw_spin_unlock(&my_scd->lock);
214
215 __update_sched_clock(scd, now, &clock);
216
217 __raw_spin_unlock(&scd->lock);
218
219 } else {
220 __raw_spin_lock(&scd->lock);
221 __update_sched_clock(scd, now, NULL);
222 clock = scd->clock;
223 __raw_spin_unlock(&scd->lock);
224 }
225
226 return clock;
227 }
228
229 void sched_clock_tick(void)
230 {
231 struct sched_clock_data *scd = this_scd();
232 unsigned long now_jiffies = jiffies;
233 u64 now, now_gtod;
234
235 if (unlikely(!sched_clock_running))
236 return;
237
238 WARN_ON_ONCE(!irqs_disabled());
239
240 now = sched_clock();
241 now_gtod = ktime_to_ns(ktime_get());
242
243 __raw_spin_lock(&scd->lock);
244 __update_sched_clock(scd, now, NULL);
245 /*
246 * update tick_gtod after __update_sched_clock() because that will
247 * already observe 1 new jiffy; adding a new tick_gtod to that would
248 * increase the clock 2 jiffies.
249 */
250 scd->tick_jiffies = now_jiffies;
251 scd->tick_raw = now;
252 scd->tick_gtod = now_gtod;
253 __raw_spin_unlock(&scd->lock);
254 }
255
256 /*
257 * We are going deep-idle (irqs are disabled):
258 */
259 void sched_clock_idle_sleep_event(void)
260 {
261 sched_clock_cpu(smp_processor_id());
262 }
263 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
264
265 /*
266 * We just idled delta nanoseconds (called with irqs disabled):
267 */
268 void sched_clock_idle_wakeup_event(u64 delta_ns)
269 {
270 struct sched_clock_data *scd = this_scd();
271 u64 now = sched_clock();
272
273 /*
274 * Override the previous timestamp and ignore all
275 * sched_clock() deltas that occured while we idled,
276 * and use the PM-provided delta_ns to advance the
277 * rq clock:
278 */
279 __raw_spin_lock(&scd->lock);
280 scd->prev_raw = now;
281 scd->clock += delta_ns;
282 __raw_spin_unlock(&scd->lock);
283
284 touch_softlockup_watchdog();
285 }
286 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
287
288 #endif
289
290 /*
291 * Scheduler clock - returns current time in nanosec units.
292 * This is default implementation.
293 * Architectures and sub-architectures can override this.
294 */
295 unsigned long long __attribute__((weak)) sched_clock(void)
296 {
297 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
298 }
This page took 0.038466 seconds and 5 git commands to generate.