sched: remove last_min_vruntime effect
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 extern struct sched_class fair_sched_class;
80
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
83 */
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 #else /* CONFIG_FAIR_GROUP_SCHED */
97
98 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
99 {
100 return container_of(cfs_rq, struct rq, cfs);
101 }
102
103 #define entity_is_task(se) 1
104
105 #endif /* CONFIG_FAIR_GROUP_SCHED */
106
107 static inline struct task_struct *task_of(struct sched_entity *se)
108 {
109 return container_of(se, struct task_struct, se);
110 }
111
112
113 /**************************************************************
114 * Scheduling class tree data structure manipulation methods:
115 */
116
117 static inline u64
118 max_vruntime(u64 min_vruntime, u64 vruntime)
119 {
120 if ((vruntime > min_vruntime) ||
121 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
122 min_vruntime = vruntime;
123
124 return min_vruntime;
125 }
126
127 static inline void
128 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
129 {
130 struct sched_entity *se;
131
132 cfs_rq->rb_leftmost = leftmost;
133 if (leftmost)
134 se = rb_entry(leftmost, struct sched_entity, run_node);
135 }
136
137 static inline s64
138 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void
147 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148 {
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
152 s64 key = entity_key(cfs_rq, se);
153 int leftmost = 1;
154
155 /*
156 * Find the right place in the rbtree:
157 */
158 while (*link) {
159 parent = *link;
160 entry = rb_entry(parent, struct sched_entity, run_node);
161 /*
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
164 */
165 if (key < entity_key(cfs_rq, entry)) {
166 link = &parent->rb_left;
167 } else {
168 link = &parent->rb_right;
169 leftmost = 0;
170 }
171 }
172
173 /*
174 * Maintain a cache of leftmost tree entries (it is frequently
175 * used):
176 */
177 if (leftmost)
178 set_leftmost(cfs_rq, &se->run_node);
179
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
182 }
183
184 static void
185 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 {
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 set_leftmost(cfs_rq, rb_next(&se->run_node));
189
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 }
192
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194 {
195 return cfs_rq->rb_leftmost;
196 }
197
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199 {
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 }
202
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204 {
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216 }
217
218 /**************************************************************
219 * Scheduling class statistics methods:
220 */
221
222 static u64 __sched_period(unsigned long nr_running)
223 {
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency =
226 sysctl_sched_latency / sysctl_sched_min_granularity;
227
228 if (unlikely(nr_running > nr_latency)) {
229 period *= nr_running;
230 do_div(period, nr_latency);
231 }
232
233 return period;
234 }
235
236 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
237 {
238 u64 period = __sched_period(cfs_rq->nr_running);
239
240 period *= se->load.weight;
241 do_div(period, cfs_rq->load.weight);
242
243 return period;
244 }
245
246 static u64 __sched_vslice(unsigned long nr_running)
247 {
248 u64 period = __sched_period(nr_running);
249
250 do_div(period, nr_running);
251
252 return period;
253 }
254
255 /*
256 * Update the current task's runtime statistics. Skip current tasks that
257 * are not in our scheduling class.
258 */
259 static inline void
260 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
261 unsigned long delta_exec)
262 {
263 unsigned long delta_exec_weighted;
264 u64 next_vruntime, min_vruntime;
265
266 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
267
268 curr->sum_exec_runtime += delta_exec;
269 schedstat_add(cfs_rq, exec_clock, delta_exec);
270 delta_exec_weighted = delta_exec;
271 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
272 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
273 &curr->load);
274 }
275 curr->vruntime += delta_exec_weighted;
276
277 /*
278 * maintain cfs_rq->min_vruntime to be a monotonic increasing
279 * value tracking the leftmost vruntime in the tree.
280 */
281 if (first_fair(cfs_rq)) {
282 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
283
284 /* min_vruntime() := !max_vruntime() */
285 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
286 if (min_vruntime == next_vruntime)
287 min_vruntime = curr->vruntime;
288 else
289 min_vruntime = next_vruntime;
290 } else
291 min_vruntime = curr->vruntime;
292
293 cfs_rq->min_vruntime =
294 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
295 }
296
297 static void update_curr(struct cfs_rq *cfs_rq)
298 {
299 struct sched_entity *curr = cfs_rq->curr;
300 u64 now = rq_of(cfs_rq)->clock;
301 unsigned long delta_exec;
302
303 if (unlikely(!curr))
304 return;
305
306 /*
307 * Get the amount of time the current task was running
308 * since the last time we changed load (this cannot
309 * overflow on 32 bits):
310 */
311 delta_exec = (unsigned long)(now - curr->exec_start);
312
313 __update_curr(cfs_rq, curr, delta_exec);
314 curr->exec_start = now;
315 }
316
317 static inline void
318 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
319 {
320 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
321 }
322
323 static inline unsigned long
324 calc_weighted(unsigned long delta, struct sched_entity *se)
325 {
326 unsigned long weight = se->load.weight;
327
328 if (unlikely(weight != NICE_0_LOAD))
329 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
330 else
331 return delta;
332 }
333
334 /*
335 * Task is being enqueued - update stats:
336 */
337 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
338 {
339 /*
340 * Are we enqueueing a waiting task? (for current tasks
341 * a dequeue/enqueue event is a NOP)
342 */
343 if (se != cfs_rq->curr)
344 update_stats_wait_start(cfs_rq, se);
345 }
346
347 static void
348 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 schedstat_set(se->wait_max, max(se->wait_max,
351 rq_of(cfs_rq)->clock - se->wait_start));
352 schedstat_set(se->wait_start, 0);
353 }
354
355 static inline void
356 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
357 {
358 update_curr(cfs_rq);
359 /*
360 * Mark the end of the wait period if dequeueing a
361 * waiting task:
362 */
363 if (se != cfs_rq->curr)
364 update_stats_wait_end(cfs_rq, se);
365 }
366
367 /*
368 * We are picking a new current task - update its stats:
369 */
370 static inline void
371 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 {
373 /*
374 * We are starting a new run period:
375 */
376 se->exec_start = rq_of(cfs_rq)->clock;
377 }
378
379 /*
380 * We are descheduling a task - update its stats:
381 */
382 static inline void
383 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 {
385 se->exec_start = 0;
386 }
387
388 /**************************************************
389 * Scheduling class queueing methods:
390 */
391
392 static void
393 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
394 {
395 update_load_add(&cfs_rq->load, se->load.weight);
396 cfs_rq->nr_running++;
397 se->on_rq = 1;
398 }
399
400 static void
401 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 update_load_sub(&cfs_rq->load, se->load.weight);
404 cfs_rq->nr_running--;
405 se->on_rq = 0;
406 }
407
408 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 {
410 #ifdef CONFIG_SCHEDSTATS
411 if (se->sleep_start) {
412 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
413
414 if ((s64)delta < 0)
415 delta = 0;
416
417 if (unlikely(delta > se->sleep_max))
418 se->sleep_max = delta;
419
420 se->sleep_start = 0;
421 se->sum_sleep_runtime += delta;
422 }
423 if (se->block_start) {
424 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
425
426 if ((s64)delta < 0)
427 delta = 0;
428
429 if (unlikely(delta > se->block_max))
430 se->block_max = delta;
431
432 se->block_start = 0;
433 se->sum_sleep_runtime += delta;
434
435 /*
436 * Blocking time is in units of nanosecs, so shift by 20 to
437 * get a milliseconds-range estimation of the amount of
438 * time that the task spent sleeping:
439 */
440 if (unlikely(prof_on == SLEEP_PROFILING)) {
441 struct task_struct *tsk = task_of(se);
442
443 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
444 delta >> 20);
445 }
446 }
447 #endif
448 }
449
450 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
451 {
452 #ifdef CONFIG_SCHED_DEBUG
453 s64 d = se->vruntime - cfs_rq->min_vruntime;
454
455 if (d < 0)
456 d = -d;
457
458 if (d > 3*sysctl_sched_latency)
459 schedstat_inc(cfs_rq, nr_spread_over);
460 #endif
461 }
462
463 static void
464 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
465 {
466 u64 vruntime;
467
468 vruntime = cfs_rq->min_vruntime;
469
470 if (sched_feat(USE_TREE_AVG)) {
471 struct sched_entity *last = __pick_last_entity(cfs_rq);
472 if (last) {
473 vruntime += last->vruntime;
474 vruntime >>= 1;
475 }
476 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
477 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
478
479 if (initial && sched_feat(START_DEBIT))
480 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
481
482 if (!initial) {
483 if (sched_feat(NEW_FAIR_SLEEPERS)) {
484 s64 latency = cfs_rq->min_vruntime - se->vruntime;
485 if (latency < 0 || !cfs_rq->nr_running)
486 latency = 0;
487 else
488 latency = min_t(s64, latency, sysctl_sched_latency);
489 vruntime -= latency;
490 }
491 vruntime = max(vruntime, se->vruntime);
492 }
493
494 se->vruntime = vruntime;
495
496 }
497
498 static void
499 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
500 {
501 /*
502 * Update the fair clock.
503 */
504 update_curr(cfs_rq);
505
506 if (wakeup) {
507 /* se->vruntime += cfs_rq->min_vruntime; */
508 place_entity(cfs_rq, se, 0);
509 enqueue_sleeper(cfs_rq, se);
510 }
511
512 update_stats_enqueue(cfs_rq, se);
513 check_spread(cfs_rq, se);
514 if (se != cfs_rq->curr)
515 __enqueue_entity(cfs_rq, se);
516 account_entity_enqueue(cfs_rq, se);
517 }
518
519 static void
520 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
521 {
522 update_stats_dequeue(cfs_rq, se);
523 if (sleep) {
524 #ifdef CONFIG_SCHEDSTATS
525 if (entity_is_task(se)) {
526 struct task_struct *tsk = task_of(se);
527
528 if (tsk->state & TASK_INTERRUPTIBLE)
529 se->sleep_start = rq_of(cfs_rq)->clock;
530 if (tsk->state & TASK_UNINTERRUPTIBLE)
531 se->block_start = rq_of(cfs_rq)->clock;
532 }
533 #endif
534 /* se->vruntime = entity_key(cfs_rq, se); */
535 se->last_min_vruntime = cfs_rq->min_vruntime;
536 }
537
538 if (se != cfs_rq->curr)
539 __dequeue_entity(cfs_rq, se);
540 account_entity_dequeue(cfs_rq, se);
541 }
542
543 /*
544 * Preempt the current task with a newly woken task if needed:
545 */
546 static void
547 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
548 {
549 unsigned long ideal_runtime, delta_exec;
550
551 ideal_runtime = sched_slice(cfs_rq, curr);
552 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
553 if (delta_exec > ideal_runtime)
554 resched_task(rq_of(cfs_rq)->curr);
555 }
556
557 static void
558 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /* 'current' is not kept within the tree. */
561 if (se->on_rq) {
562 /*
563 * Any task has to be enqueued before it get to execute on
564 * a CPU. So account for the time it spent waiting on the
565 * runqueue.
566 */
567 update_stats_wait_end(cfs_rq, se);
568 __dequeue_entity(cfs_rq, se);
569 }
570
571 update_stats_curr_start(cfs_rq, se);
572 cfs_rq->curr = se;
573 #ifdef CONFIG_SCHEDSTATS
574 /*
575 * Track our maximum slice length, if the CPU's load is at
576 * least twice that of our own weight (i.e. dont track it
577 * when there are only lesser-weight tasks around):
578 */
579 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
580 se->slice_max = max(se->slice_max,
581 se->sum_exec_runtime - se->prev_sum_exec_runtime);
582 }
583 #endif
584 se->prev_sum_exec_runtime = se->sum_exec_runtime;
585 }
586
587 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
588 {
589 struct sched_entity *se = __pick_next_entity(cfs_rq);
590
591 set_next_entity(cfs_rq, se);
592
593 return se;
594 }
595
596 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
597 {
598 /*
599 * If still on the runqueue then deactivate_task()
600 * was not called and update_curr() has to be done:
601 */
602 if (prev->on_rq)
603 update_curr(cfs_rq);
604
605 update_stats_curr_end(cfs_rq, prev);
606
607 check_spread(cfs_rq, prev);
608 if (prev->on_rq) {
609 update_stats_wait_start(cfs_rq, prev);
610 /* Put 'current' back into the tree. */
611 __enqueue_entity(cfs_rq, prev);
612 }
613 cfs_rq->curr = NULL;
614 }
615
616 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
617 {
618 /*
619 * Update run-time statistics of the 'current'.
620 */
621 update_curr(cfs_rq);
622
623 if (cfs_rq->nr_running > 1)
624 check_preempt_tick(cfs_rq, curr);
625 }
626
627 /**************************************************
628 * CFS operations on tasks:
629 */
630
631 #ifdef CONFIG_FAIR_GROUP_SCHED
632
633 /* Walk up scheduling entities hierarchy */
634 #define for_each_sched_entity(se) \
635 for (; se; se = se->parent)
636
637 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
638 {
639 return p->se.cfs_rq;
640 }
641
642 /* runqueue on which this entity is (to be) queued */
643 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
644 {
645 return se->cfs_rq;
646 }
647
648 /* runqueue "owned" by this group */
649 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
650 {
651 return grp->my_q;
652 }
653
654 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
655 * another cpu ('this_cpu')
656 */
657 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
658 {
659 return cfs_rq->tg->cfs_rq[this_cpu];
660 }
661
662 /* Iterate thr' all leaf cfs_rq's on a runqueue */
663 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
664 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
665
666 /* Do the two (enqueued) tasks belong to the same group ? */
667 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
668 {
669 if (curr->se.cfs_rq == p->se.cfs_rq)
670 return 1;
671
672 return 0;
673 }
674
675 #else /* CONFIG_FAIR_GROUP_SCHED */
676
677 #define for_each_sched_entity(se) \
678 for (; se; se = NULL)
679
680 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
681 {
682 return &task_rq(p)->cfs;
683 }
684
685 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
686 {
687 struct task_struct *p = task_of(se);
688 struct rq *rq = task_rq(p);
689
690 return &rq->cfs;
691 }
692
693 /* runqueue "owned" by this group */
694 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
695 {
696 return NULL;
697 }
698
699 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
700 {
701 return &cpu_rq(this_cpu)->cfs;
702 }
703
704 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
705 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
706
707 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
708 {
709 return 1;
710 }
711
712 #endif /* CONFIG_FAIR_GROUP_SCHED */
713
714 /*
715 * The enqueue_task method is called before nr_running is
716 * increased. Here we update the fair scheduling stats and
717 * then put the task into the rbtree:
718 */
719 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
720 {
721 struct cfs_rq *cfs_rq;
722 struct sched_entity *se = &p->se;
723
724 for_each_sched_entity(se) {
725 if (se->on_rq)
726 break;
727 cfs_rq = cfs_rq_of(se);
728 enqueue_entity(cfs_rq, se, wakeup);
729 }
730 }
731
732 /*
733 * The dequeue_task method is called before nr_running is
734 * decreased. We remove the task from the rbtree and
735 * update the fair scheduling stats:
736 */
737 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
738 {
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
741
742 for_each_sched_entity(se) {
743 cfs_rq = cfs_rq_of(se);
744 dequeue_entity(cfs_rq, se, sleep);
745 /* Don't dequeue parent if it has other entities besides us */
746 if (cfs_rq->load.weight)
747 break;
748 }
749 }
750
751 /*
752 * sched_yield() support is very simple - we dequeue and enqueue.
753 *
754 * If compat_yield is turned on then we requeue to the end of the tree.
755 */
756 static void yield_task_fair(struct rq *rq)
757 {
758 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
759 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
760 struct sched_entity *rightmost, *se = &rq->curr->se;
761 struct rb_node *parent;
762
763 /*
764 * Are we the only task in the tree?
765 */
766 if (unlikely(cfs_rq->nr_running == 1))
767 return;
768
769 if (likely(!sysctl_sched_compat_yield)) {
770 __update_rq_clock(rq);
771 /*
772 * Dequeue and enqueue the task to update its
773 * position within the tree:
774 */
775 dequeue_entity(cfs_rq, se, 0);
776 enqueue_entity(cfs_rq, se, 0);
777
778 return;
779 }
780 /*
781 * Find the rightmost entry in the rbtree:
782 */
783 do {
784 parent = *link;
785 link = &parent->rb_right;
786 } while (*link);
787
788 rightmost = rb_entry(parent, struct sched_entity, run_node);
789 /*
790 * Already in the rightmost position?
791 */
792 if (unlikely(rightmost == se))
793 return;
794
795 /*
796 * Minimally necessary key value to be last in the tree:
797 */
798 se->vruntime = rightmost->vruntime + 1;
799
800 if (cfs_rq->rb_leftmost == &se->run_node)
801 cfs_rq->rb_leftmost = rb_next(&se->run_node);
802 /*
803 * Relink the task to the rightmost position:
804 */
805 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
806 rb_link_node(&se->run_node, parent, link);
807 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
808 }
809
810 /*
811 * Preempt the current task with a newly woken task if needed:
812 */
813 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
814 {
815 struct task_struct *curr = rq->curr;
816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
817
818 if (unlikely(rt_prio(p->prio))) {
819 update_rq_clock(rq);
820 update_curr(cfs_rq);
821 resched_task(curr);
822 return;
823 }
824 if (is_same_group(curr, p)) {
825 s64 delta = curr->se.vruntime - p->se.vruntime;
826
827 if (delta > (s64)sysctl_sched_wakeup_granularity)
828 resched_task(curr);
829 }
830 }
831
832 static struct task_struct *pick_next_task_fair(struct rq *rq)
833 {
834 struct cfs_rq *cfs_rq = &rq->cfs;
835 struct sched_entity *se;
836
837 if (unlikely(!cfs_rq->nr_running))
838 return NULL;
839
840 do {
841 se = pick_next_entity(cfs_rq);
842 cfs_rq = group_cfs_rq(se);
843 } while (cfs_rq);
844
845 return task_of(se);
846 }
847
848 /*
849 * Account for a descheduled task:
850 */
851 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
852 {
853 struct sched_entity *se = &prev->se;
854 struct cfs_rq *cfs_rq;
855
856 for_each_sched_entity(se) {
857 cfs_rq = cfs_rq_of(se);
858 put_prev_entity(cfs_rq, se);
859 }
860 }
861
862 /**************************************************
863 * Fair scheduling class load-balancing methods:
864 */
865
866 /*
867 * Load-balancing iterator. Note: while the runqueue stays locked
868 * during the whole iteration, the current task might be
869 * dequeued so the iterator has to be dequeue-safe. Here we
870 * achieve that by always pre-iterating before returning
871 * the current task:
872 */
873 static inline struct task_struct *
874 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
875 {
876 struct task_struct *p;
877
878 if (!curr)
879 return NULL;
880
881 p = rb_entry(curr, struct task_struct, se.run_node);
882 cfs_rq->rb_load_balance_curr = rb_next(curr);
883
884 return p;
885 }
886
887 static struct task_struct *load_balance_start_fair(void *arg)
888 {
889 struct cfs_rq *cfs_rq = arg;
890
891 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
892 }
893
894 static struct task_struct *load_balance_next_fair(void *arg)
895 {
896 struct cfs_rq *cfs_rq = arg;
897
898 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
899 }
900
901 #ifdef CONFIG_FAIR_GROUP_SCHED
902 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
903 {
904 struct sched_entity *curr;
905 struct task_struct *p;
906
907 if (!cfs_rq->nr_running)
908 return MAX_PRIO;
909
910 curr = cfs_rq->curr;
911 if (!curr)
912 curr = __pick_next_entity(cfs_rq);
913
914 p = task_of(curr);
915
916 return p->prio;
917 }
918 #endif
919
920 static unsigned long
921 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
922 unsigned long max_nr_move, unsigned long max_load_move,
923 struct sched_domain *sd, enum cpu_idle_type idle,
924 int *all_pinned, int *this_best_prio)
925 {
926 struct cfs_rq *busy_cfs_rq;
927 unsigned long load_moved, total_nr_moved = 0, nr_moved;
928 long rem_load_move = max_load_move;
929 struct rq_iterator cfs_rq_iterator;
930
931 cfs_rq_iterator.start = load_balance_start_fair;
932 cfs_rq_iterator.next = load_balance_next_fair;
933
934 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
935 #ifdef CONFIG_FAIR_GROUP_SCHED
936 struct cfs_rq *this_cfs_rq;
937 long imbalance;
938 unsigned long maxload;
939
940 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
941
942 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
943 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
944 if (imbalance <= 0)
945 continue;
946
947 /* Don't pull more than imbalance/2 */
948 imbalance /= 2;
949 maxload = min(rem_load_move, imbalance);
950
951 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
952 #else
953 # define maxload rem_load_move
954 #endif
955 /* pass busy_cfs_rq argument into
956 * load_balance_[start|next]_fair iterators
957 */
958 cfs_rq_iterator.arg = busy_cfs_rq;
959 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
960 max_nr_move, maxload, sd, idle, all_pinned,
961 &load_moved, this_best_prio, &cfs_rq_iterator);
962
963 total_nr_moved += nr_moved;
964 max_nr_move -= nr_moved;
965 rem_load_move -= load_moved;
966
967 if (max_nr_move <= 0 || rem_load_move <= 0)
968 break;
969 }
970
971 return max_load_move - rem_load_move;
972 }
973
974 /*
975 * scheduler tick hitting a task of our scheduling class:
976 */
977 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
978 {
979 struct cfs_rq *cfs_rq;
980 struct sched_entity *se = &curr->se;
981
982 for_each_sched_entity(se) {
983 cfs_rq = cfs_rq_of(se);
984 entity_tick(cfs_rq, se);
985 }
986 }
987
988 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
989
990 /*
991 * Share the fairness runtime between parent and child, thus the
992 * total amount of pressure for CPU stays equal - new tasks
993 * get a chance to run but frequent forkers are not allowed to
994 * monopolize the CPU. Note: the parent runqueue is locked,
995 * the child is not running yet.
996 */
997 static void task_new_fair(struct rq *rq, struct task_struct *p)
998 {
999 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1000 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1001
1002 sched_info_queued(p);
1003
1004 update_curr(cfs_rq);
1005 place_entity(cfs_rq, se, 1);
1006
1007 if (sysctl_sched_child_runs_first &&
1008 curr->vruntime < se->vruntime) {
1009 /*
1010 * Upon rescheduling, sched_class::put_prev_task() will place
1011 * 'current' within the tree based on its new key value.
1012 */
1013 swap(curr->vruntime, se->vruntime);
1014 }
1015
1016 update_stats_enqueue(cfs_rq, se);
1017 check_spread(cfs_rq, se);
1018 check_spread(cfs_rq, curr);
1019 __enqueue_entity(cfs_rq, se);
1020 account_entity_enqueue(cfs_rq, se);
1021 resched_task(rq->curr);
1022 }
1023
1024 /* Account for a task changing its policy or group.
1025 *
1026 * This routine is mostly called to set cfs_rq->curr field when a task
1027 * migrates between groups/classes.
1028 */
1029 static void set_curr_task_fair(struct rq *rq)
1030 {
1031 struct sched_entity *se = &rq->curr->se;
1032
1033 for_each_sched_entity(se)
1034 set_next_entity(cfs_rq_of(se), se);
1035 }
1036
1037 /*
1038 * All the scheduling class methods:
1039 */
1040 struct sched_class fair_sched_class __read_mostly = {
1041 .enqueue_task = enqueue_task_fair,
1042 .dequeue_task = dequeue_task_fair,
1043 .yield_task = yield_task_fair,
1044
1045 .check_preempt_curr = check_preempt_wakeup,
1046
1047 .pick_next_task = pick_next_task_fair,
1048 .put_prev_task = put_prev_task_fair,
1049
1050 .load_balance = load_balance_fair,
1051
1052 .set_curr_task = set_curr_task_fair,
1053 .task_tick = task_tick_fair,
1054 .task_new = task_new_fair,
1055 };
1056
1057 #ifdef CONFIG_SCHED_DEBUG
1058 static void print_cfs_stats(struct seq_file *m, int cpu)
1059 {
1060 struct cfs_rq *cfs_rq;
1061
1062 #ifdef CONFIG_FAIR_GROUP_SCHED
1063 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1064 #endif
1065 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1066 print_cfs_rq(m, cpu, cfs_rq);
1067 }
1068 #endif
This page took 0.068353 seconds and 5 git commands to generate.