14a9b9b997ce706f963f69325c1b16232ef9a5ef
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 10 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 10 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
78
79 /**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
83 #ifdef CONFIG_FAIR_GROUP_SCHED
84
85 /* cpu runqueue to which this cfs_rq is attached */
86 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87 {
88 return cfs_rq->rq;
89 }
90
91 /* An entity is a task if it doesn't "own" a runqueue */
92 #define entity_is_task(se) (!se->my_q)
93
94 #else /* CONFIG_FAIR_GROUP_SCHED */
95
96 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97 {
98 return container_of(cfs_rq, struct rq, cfs);
99 }
100
101 #define entity_is_task(se) 1
102
103 #endif /* CONFIG_FAIR_GROUP_SCHED */
104
105 static inline struct task_struct *task_of(struct sched_entity *se)
106 {
107 return container_of(se, struct task_struct, se);
108 }
109
110
111 /**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
115 static inline u64
116 max_vruntime(u64 min_vruntime, u64 vruntime)
117 {
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
120 min_vruntime = vruntime;
121
122 return min_vruntime;
123 }
124
125 static inline u64
126 min_vruntime(u64 min_vruntime, u64 vruntime)
127 {
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
131
132 return min_vruntime;
133 }
134
135 static inline s64
136 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
137 {
138 return se->vruntime - cfs_rq->min_vruntime;
139 }
140
141 /*
142 * Enqueue an entity into the rb-tree:
143 */
144 static void
145 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
146 {
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
150 s64 key = entity_key(cfs_rq, se);
151 int leftmost = 1;
152
153 /*
154 * Find the right place in the rbtree:
155 */
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
159 /*
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
162 */
163 if (key < entity_key(cfs_rq, entry)) {
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
168 }
169 }
170
171 /*
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
174 */
175 if (leftmost)
176 cfs_rq->rb_leftmost = &se->run_node;
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
180 }
181
182 static void
183 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 {
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
187
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
189 }
190
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192 {
193 return cfs_rq->rb_leftmost;
194 }
195
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197 {
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199 }
200
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202 {
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214 }
215
216 /**************************************************************
217 * Scheduling class statistics methods:
218 */
219
220
221 /*
222 * The idea is to set a period in which each task runs once.
223 *
224 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
225 * this period because otherwise the slices get too small.
226 *
227 * p = (nr <= nl) ? l : l*nr/nl
228 */
229 static u64 __sched_period(unsigned long nr_running)
230 {
231 u64 period = sysctl_sched_latency;
232 unsigned long nr_latency = sysctl_sched_nr_latency;
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240 }
241
242 /*
243 * We calculate the wall-time slice from the period by taking a part
244 * proportional to the weight.
245 *
246 * s = p*w/rw
247 */
248 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
249 {
250 u64 slice = __sched_period(cfs_rq->nr_running);
251
252 slice *= se->load.weight;
253 do_div(slice, cfs_rq->load.weight);
254
255 return slice;
256 }
257
258 /*
259 * We calculate the vruntime slice.
260 *
261 * vs = s/w = p/rw
262 */
263 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
264 {
265 u64 vslice = __sched_period(nr_running);
266
267 do_div(vslice, rq_weight);
268
269 return vslice;
270 }
271
272 static u64 sched_vslice(struct cfs_rq *cfs_rq)
273 {
274 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
275 }
276
277 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
278 {
279 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
280 cfs_rq->nr_running + 1);
281 }
282
283 /*
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
286 */
287 static inline void
288 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
289 unsigned long delta_exec)
290 {
291 unsigned long delta_exec_weighted;
292 u64 vruntime;
293
294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295
296 curr->sum_exec_runtime += delta_exec;
297 schedstat_add(cfs_rq, exec_clock, delta_exec);
298 delta_exec_weighted = delta_exec;
299 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
300 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
301 &curr->load);
302 }
303 curr->vruntime += delta_exec_weighted;
304
305 /*
306 * maintain cfs_rq->min_vruntime to be a monotonic increasing
307 * value tracking the leftmost vruntime in the tree.
308 */
309 if (first_fair(cfs_rq)) {
310 vruntime = min_vruntime(curr->vruntime,
311 __pick_next_entity(cfs_rq)->vruntime);
312 } else
313 vruntime = curr->vruntime;
314
315 cfs_rq->min_vruntime =
316 max_vruntime(cfs_rq->min_vruntime, vruntime);
317 }
318
319 static void update_curr(struct cfs_rq *cfs_rq)
320 {
321 struct sched_entity *curr = cfs_rq->curr;
322 u64 now = rq_of(cfs_rq)->clock;
323 unsigned long delta_exec;
324
325 if (unlikely(!curr))
326 return;
327
328 /*
329 * Get the amount of time the current task was running
330 * since the last time we changed load (this cannot
331 * overflow on 32 bits):
332 */
333 delta_exec = (unsigned long)(now - curr->exec_start);
334
335 __update_curr(cfs_rq, curr, delta_exec);
336 curr->exec_start = now;
337 }
338
339 static inline void
340 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
341 {
342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
343 }
344
345 /*
346 * Task is being enqueued - update stats:
347 */
348 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 /*
351 * Are we enqueueing a waiting task? (for current tasks
352 * a dequeue/enqueue event is a NOP)
353 */
354 if (se != cfs_rq->curr)
355 update_stats_wait_start(cfs_rq, se);
356 }
357
358 static void
359 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
360 {
361 schedstat_set(se->wait_max, max(se->wait_max,
362 rq_of(cfs_rq)->clock - se->wait_start));
363 schedstat_set(se->wait_start, 0);
364 }
365
366 static inline void
367 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
368 {
369 /*
370 * Mark the end of the wait period if dequeueing a
371 * waiting task:
372 */
373 if (se != cfs_rq->curr)
374 update_stats_wait_end(cfs_rq, se);
375 }
376
377 /*
378 * We are picking a new current task - update its stats:
379 */
380 static inline void
381 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
382 {
383 /*
384 * We are starting a new run period:
385 */
386 se->exec_start = rq_of(cfs_rq)->clock;
387 }
388
389 /*
390 * We are descheduling a task - update its stats:
391 */
392 static inline void
393 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
394 {
395 se->exec_start = 0;
396 }
397
398 /**************************************************
399 * Scheduling class queueing methods:
400 */
401
402 static void
403 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
404 {
405 update_load_add(&cfs_rq->load, se->load.weight);
406 cfs_rq->nr_running++;
407 se->on_rq = 1;
408 }
409
410 static void
411 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 {
413 update_load_sub(&cfs_rq->load, se->load.weight);
414 cfs_rq->nr_running--;
415 se->on_rq = 0;
416 }
417
418 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
419 {
420 #ifdef CONFIG_SCHEDSTATS
421 if (se->sleep_start) {
422 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
423
424 if ((s64)delta < 0)
425 delta = 0;
426
427 if (unlikely(delta > se->sleep_max))
428 se->sleep_max = delta;
429
430 se->sleep_start = 0;
431 se->sum_sleep_runtime += delta;
432 }
433 if (se->block_start) {
434 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
435
436 if ((s64)delta < 0)
437 delta = 0;
438
439 if (unlikely(delta > se->block_max))
440 se->block_max = delta;
441
442 se->block_start = 0;
443 se->sum_sleep_runtime += delta;
444
445 /*
446 * Blocking time is in units of nanosecs, so shift by 20 to
447 * get a milliseconds-range estimation of the amount of
448 * time that the task spent sleeping:
449 */
450 if (unlikely(prof_on == SLEEP_PROFILING)) {
451 struct task_struct *tsk = task_of(se);
452
453 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
454 delta >> 20);
455 }
456 }
457 #endif
458 }
459
460 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
461 {
462 #ifdef CONFIG_SCHED_DEBUG
463 s64 d = se->vruntime - cfs_rq->min_vruntime;
464
465 if (d < 0)
466 d = -d;
467
468 if (d > 3*sysctl_sched_latency)
469 schedstat_inc(cfs_rq, nr_spread_over);
470 #endif
471 }
472
473 static void
474 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
475 {
476 u64 vruntime;
477
478 vruntime = cfs_rq->min_vruntime;
479
480 if (sched_feat(TREE_AVG)) {
481 struct sched_entity *last = __pick_last_entity(cfs_rq);
482 if (last) {
483 vruntime += last->vruntime;
484 vruntime >>= 1;
485 }
486 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
487 vruntime += sched_vslice(cfs_rq)/2;
488
489 if (initial && sched_feat(START_DEBIT))
490 vruntime += sched_vslice_add(cfs_rq, se);
491
492 if (!initial) {
493 if (sched_feat(NEW_FAIR_SLEEPERS))
494 vruntime -= sysctl_sched_latency;
495
496 vruntime = max_t(s64, vruntime, se->vruntime);
497 }
498
499 se->vruntime = vruntime;
500
501 }
502
503 static void
504 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
505 {
506 /*
507 * Update run-time statistics of the 'current'.
508 */
509 update_curr(cfs_rq);
510
511 if (wakeup) {
512 place_entity(cfs_rq, se, 0);
513 enqueue_sleeper(cfs_rq, se);
514 }
515
516 update_stats_enqueue(cfs_rq, se);
517 check_spread(cfs_rq, se);
518 if (se != cfs_rq->curr)
519 __enqueue_entity(cfs_rq, se);
520 account_entity_enqueue(cfs_rq, se);
521 }
522
523 static void
524 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
525 {
526 /*
527 * Update run-time statistics of the 'current'.
528 */
529 update_curr(cfs_rq);
530
531 update_stats_dequeue(cfs_rq, se);
532 if (sleep) {
533 #ifdef CONFIG_SCHEDSTATS
534 if (entity_is_task(se)) {
535 struct task_struct *tsk = task_of(se);
536
537 if (tsk->state & TASK_INTERRUPTIBLE)
538 se->sleep_start = rq_of(cfs_rq)->clock;
539 if (tsk->state & TASK_UNINTERRUPTIBLE)
540 se->block_start = rq_of(cfs_rq)->clock;
541 }
542 #endif
543 }
544
545 if (se != cfs_rq->curr)
546 __dequeue_entity(cfs_rq, se);
547 account_entity_dequeue(cfs_rq, se);
548 }
549
550 /*
551 * Preempt the current task with a newly woken task if needed:
552 */
553 static void
554 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
555 {
556 unsigned long ideal_runtime, delta_exec;
557
558 ideal_runtime = sched_slice(cfs_rq, curr);
559 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
560 if (delta_exec > ideal_runtime)
561 resched_task(rq_of(cfs_rq)->curr);
562 }
563
564 static void
565 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 /* 'current' is not kept within the tree. */
568 if (se->on_rq) {
569 /*
570 * Any task has to be enqueued before it get to execute on
571 * a CPU. So account for the time it spent waiting on the
572 * runqueue.
573 */
574 update_stats_wait_end(cfs_rq, se);
575 __dequeue_entity(cfs_rq, se);
576 }
577
578 update_stats_curr_start(cfs_rq, se);
579 cfs_rq->curr = se;
580 #ifdef CONFIG_SCHEDSTATS
581 /*
582 * Track our maximum slice length, if the CPU's load is at
583 * least twice that of our own weight (i.e. dont track it
584 * when there are only lesser-weight tasks around):
585 */
586 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
587 se->slice_max = max(se->slice_max,
588 se->sum_exec_runtime - se->prev_sum_exec_runtime);
589 }
590 #endif
591 se->prev_sum_exec_runtime = se->sum_exec_runtime;
592 }
593
594 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
595 {
596 struct sched_entity *se = NULL;
597
598 if (first_fair(cfs_rq)) {
599 se = __pick_next_entity(cfs_rq);
600 set_next_entity(cfs_rq, se);
601 }
602
603 return se;
604 }
605
606 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
607 {
608 /*
609 * If still on the runqueue then deactivate_task()
610 * was not called and update_curr() has to be done:
611 */
612 if (prev->on_rq)
613 update_curr(cfs_rq);
614
615 update_stats_curr_end(cfs_rq, prev);
616
617 check_spread(cfs_rq, prev);
618 if (prev->on_rq) {
619 update_stats_wait_start(cfs_rq, prev);
620 /* Put 'current' back into the tree. */
621 __enqueue_entity(cfs_rq, prev);
622 }
623 cfs_rq->curr = NULL;
624 }
625
626 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
627 {
628 /*
629 * Update run-time statistics of the 'current'.
630 */
631 update_curr(cfs_rq);
632
633 if (cfs_rq->nr_running > 1)
634 check_preempt_tick(cfs_rq, curr);
635 }
636
637 /**************************************************
638 * CFS operations on tasks:
639 */
640
641 #ifdef CONFIG_FAIR_GROUP_SCHED
642
643 /* Walk up scheduling entities hierarchy */
644 #define for_each_sched_entity(se) \
645 for (; se; se = se->parent)
646
647 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
648 {
649 return p->se.cfs_rq;
650 }
651
652 /* runqueue on which this entity is (to be) queued */
653 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
654 {
655 return se->cfs_rq;
656 }
657
658 /* runqueue "owned" by this group */
659 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
660 {
661 return grp->my_q;
662 }
663
664 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
665 * another cpu ('this_cpu')
666 */
667 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
668 {
669 return cfs_rq->tg->cfs_rq[this_cpu];
670 }
671
672 /* Iterate thr' all leaf cfs_rq's on a runqueue */
673 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
674 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
675
676 /* Do the two (enqueued) entities belong to the same group ? */
677 static inline int
678 is_same_group(struct sched_entity *se, struct sched_entity *pse)
679 {
680 if (se->cfs_rq == pse->cfs_rq)
681 return 1;
682
683 return 0;
684 }
685
686 static inline struct sched_entity *parent_entity(struct sched_entity *se)
687 {
688 return se->parent;
689 }
690
691 #else /* CONFIG_FAIR_GROUP_SCHED */
692
693 #define for_each_sched_entity(se) \
694 for (; se; se = NULL)
695
696 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
697 {
698 return &task_rq(p)->cfs;
699 }
700
701 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
702 {
703 struct task_struct *p = task_of(se);
704 struct rq *rq = task_rq(p);
705
706 return &rq->cfs;
707 }
708
709 /* runqueue "owned" by this group */
710 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
711 {
712 return NULL;
713 }
714
715 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
716 {
717 return &cpu_rq(this_cpu)->cfs;
718 }
719
720 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
721 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
722
723 static inline int
724 is_same_group(struct sched_entity *se, struct sched_entity *pse)
725 {
726 return 1;
727 }
728
729 static inline struct sched_entity *parent_entity(struct sched_entity *se)
730 {
731 return NULL;
732 }
733
734 #endif /* CONFIG_FAIR_GROUP_SCHED */
735
736 /*
737 * The enqueue_task method is called before nr_running is
738 * increased. Here we update the fair scheduling stats and
739 * then put the task into the rbtree:
740 */
741 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
742 {
743 struct cfs_rq *cfs_rq;
744 struct sched_entity *se = &p->se;
745
746 for_each_sched_entity(se) {
747 if (se->on_rq)
748 break;
749 cfs_rq = cfs_rq_of(se);
750 enqueue_entity(cfs_rq, se, wakeup);
751 wakeup = 1;
752 }
753 }
754
755 /*
756 * The dequeue_task method is called before nr_running is
757 * decreased. We remove the task from the rbtree and
758 * update the fair scheduling stats:
759 */
760 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
761 {
762 struct cfs_rq *cfs_rq;
763 struct sched_entity *se = &p->se;
764
765 for_each_sched_entity(se) {
766 cfs_rq = cfs_rq_of(se);
767 dequeue_entity(cfs_rq, se, sleep);
768 /* Don't dequeue parent if it has other entities besides us */
769 if (cfs_rq->load.weight)
770 break;
771 sleep = 1;
772 }
773 }
774
775 /*
776 * sched_yield() support is very simple - we dequeue and enqueue.
777 *
778 * If compat_yield is turned on then we requeue to the end of the tree.
779 */
780 static void yield_task_fair(struct rq *rq)
781 {
782 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
783 struct sched_entity *rightmost, *se = &rq->curr->se;
784
785 /*
786 * Are we the only task in the tree?
787 */
788 if (unlikely(cfs_rq->nr_running == 1))
789 return;
790
791 if (likely(!sysctl_sched_compat_yield)) {
792 __update_rq_clock(rq);
793 /*
794 * Update run-time statistics of the 'current'.
795 */
796 update_curr(cfs_rq);
797
798 return;
799 }
800 /*
801 * Find the rightmost entry in the rbtree:
802 */
803 rightmost = __pick_last_entity(cfs_rq);
804 /*
805 * Already in the rightmost position?
806 */
807 if (unlikely(rightmost->vruntime < se->vruntime))
808 return;
809
810 /*
811 * Minimally necessary key value to be last in the tree:
812 * Upon rescheduling, sched_class::put_prev_task() will place
813 * 'current' within the tree based on its new key value.
814 */
815 se->vruntime = rightmost->vruntime + 1;
816 }
817
818 /*
819 * Preempt the current task with a newly woken task if needed:
820 */
821 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
822 {
823 struct task_struct *curr = rq->curr;
824 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
825 struct sched_entity *se = &curr->se, *pse = &p->se;
826 s64 delta;
827
828 if (unlikely(rt_prio(p->prio))) {
829 update_rq_clock(rq);
830 update_curr(cfs_rq);
831 resched_task(curr);
832 return;
833 }
834
835 while (!is_same_group(se, pse)) {
836 se = parent_entity(se);
837 pse = parent_entity(pse);
838 }
839
840 delta = se->vruntime - pse->vruntime;
841
842 if (delta > (s64)sysctl_sched_wakeup_granularity)
843 resched_task(curr);
844 }
845
846 static struct task_struct *pick_next_task_fair(struct rq *rq)
847 {
848 struct cfs_rq *cfs_rq = &rq->cfs;
849 struct sched_entity *se;
850
851 if (unlikely(!cfs_rq->nr_running))
852 return NULL;
853
854 do {
855 se = pick_next_entity(cfs_rq);
856 cfs_rq = group_cfs_rq(se);
857 } while (cfs_rq);
858
859 return task_of(se);
860 }
861
862 /*
863 * Account for a descheduled task:
864 */
865 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
866 {
867 struct sched_entity *se = &prev->se;
868 struct cfs_rq *cfs_rq;
869
870 for_each_sched_entity(se) {
871 cfs_rq = cfs_rq_of(se);
872 put_prev_entity(cfs_rq, se);
873 }
874 }
875
876 /**************************************************
877 * Fair scheduling class load-balancing methods:
878 */
879
880 /*
881 * Load-balancing iterator. Note: while the runqueue stays locked
882 * during the whole iteration, the current task might be
883 * dequeued so the iterator has to be dequeue-safe. Here we
884 * achieve that by always pre-iterating before returning
885 * the current task:
886 */
887 static struct task_struct *
888 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
889 {
890 struct task_struct *p;
891
892 if (!curr)
893 return NULL;
894
895 p = rb_entry(curr, struct task_struct, se.run_node);
896 cfs_rq->rb_load_balance_curr = rb_next(curr);
897
898 return p;
899 }
900
901 static struct task_struct *load_balance_start_fair(void *arg)
902 {
903 struct cfs_rq *cfs_rq = arg;
904
905 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
906 }
907
908 static struct task_struct *load_balance_next_fair(void *arg)
909 {
910 struct cfs_rq *cfs_rq = arg;
911
912 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
913 }
914
915 #ifdef CONFIG_FAIR_GROUP_SCHED
916 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
917 {
918 struct sched_entity *curr;
919 struct task_struct *p;
920
921 if (!cfs_rq->nr_running)
922 return MAX_PRIO;
923
924 curr = cfs_rq->curr;
925 if (!curr)
926 curr = __pick_next_entity(cfs_rq);
927
928 p = task_of(curr);
929
930 return p->prio;
931 }
932 #endif
933
934 static unsigned long
935 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_nr_move, unsigned long max_load_move,
937 struct sched_domain *sd, enum cpu_idle_type idle,
938 int *all_pinned, int *this_best_prio)
939 {
940 struct cfs_rq *busy_cfs_rq;
941 unsigned long load_moved, total_nr_moved = 0, nr_moved;
942 long rem_load_move = max_load_move;
943 struct rq_iterator cfs_rq_iterator;
944
945 cfs_rq_iterator.start = load_balance_start_fair;
946 cfs_rq_iterator.next = load_balance_next_fair;
947
948 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
949 #ifdef CONFIG_FAIR_GROUP_SCHED
950 struct cfs_rq *this_cfs_rq;
951 long imbalance;
952 unsigned long maxload;
953
954 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
955
956 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
957 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
958 if (imbalance <= 0)
959 continue;
960
961 /* Don't pull more than imbalance/2 */
962 imbalance /= 2;
963 maxload = min(rem_load_move, imbalance);
964
965 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
966 #else
967 # define maxload rem_load_move
968 #endif
969 /* pass busy_cfs_rq argument into
970 * load_balance_[start|next]_fair iterators
971 */
972 cfs_rq_iterator.arg = busy_cfs_rq;
973 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
974 max_nr_move, maxload, sd, idle, all_pinned,
975 &load_moved, this_best_prio, &cfs_rq_iterator);
976
977 total_nr_moved += nr_moved;
978 max_nr_move -= nr_moved;
979 rem_load_move -= load_moved;
980
981 if (max_nr_move <= 0 || rem_load_move <= 0)
982 break;
983 }
984
985 return max_load_move - rem_load_move;
986 }
987
988 /*
989 * scheduler tick hitting a task of our scheduling class:
990 */
991 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
992 {
993 struct cfs_rq *cfs_rq;
994 struct sched_entity *se = &curr->se;
995
996 for_each_sched_entity(se) {
997 cfs_rq = cfs_rq_of(se);
998 entity_tick(cfs_rq, se);
999 }
1000 }
1001
1002 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1003
1004 /*
1005 * Share the fairness runtime between parent and child, thus the
1006 * total amount of pressure for CPU stays equal - new tasks
1007 * get a chance to run but frequent forkers are not allowed to
1008 * monopolize the CPU. Note: the parent runqueue is locked,
1009 * the child is not running yet.
1010 */
1011 static void task_new_fair(struct rq *rq, struct task_struct *p)
1012 {
1013 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1014 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1015
1016 sched_info_queued(p);
1017
1018 update_curr(cfs_rq);
1019 place_entity(cfs_rq, se, 1);
1020
1021 if (sysctl_sched_child_runs_first &&
1022 curr->vruntime < se->vruntime) {
1023 /*
1024 * Upon rescheduling, sched_class::put_prev_task() will place
1025 * 'current' within the tree based on its new key value.
1026 */
1027 swap(curr->vruntime, se->vruntime);
1028 }
1029
1030 update_stats_enqueue(cfs_rq, se);
1031 check_spread(cfs_rq, se);
1032 check_spread(cfs_rq, curr);
1033 __enqueue_entity(cfs_rq, se);
1034 account_entity_enqueue(cfs_rq, se);
1035 resched_task(rq->curr);
1036 }
1037
1038 /* Account for a task changing its policy or group.
1039 *
1040 * This routine is mostly called to set cfs_rq->curr field when a task
1041 * migrates between groups/classes.
1042 */
1043 static void set_curr_task_fair(struct rq *rq)
1044 {
1045 struct sched_entity *se = &rq->curr->se;
1046
1047 for_each_sched_entity(se)
1048 set_next_entity(cfs_rq_of(se), se);
1049 }
1050
1051 /*
1052 * All the scheduling class methods:
1053 */
1054 static const struct sched_class fair_sched_class = {
1055 .next = &idle_sched_class,
1056 .enqueue_task = enqueue_task_fair,
1057 .dequeue_task = dequeue_task_fair,
1058 .yield_task = yield_task_fair,
1059
1060 .check_preempt_curr = check_preempt_wakeup,
1061
1062 .pick_next_task = pick_next_task_fair,
1063 .put_prev_task = put_prev_task_fair,
1064
1065 .load_balance = load_balance_fair,
1066
1067 .set_curr_task = set_curr_task_fair,
1068 .task_tick = task_tick_fair,
1069 .task_new = task_new_fair,
1070 };
1071
1072 #ifdef CONFIG_SCHED_DEBUG
1073 static void print_cfs_stats(struct seq_file *m, int cpu)
1074 {
1075 struct cfs_rq *cfs_rq;
1076
1077 #ifdef CONFIG_FAIR_GROUP_SCHED
1078 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1079 #endif
1080 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1081 print_cfs_rq(m, cpu, cfs_rq);
1082 }
1083 #endif
This page took 0.072033 seconds and 4 git commands to generate.