sched: uninline scheduler
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 10 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 10 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
78
79 /**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
83 #ifdef CONFIG_FAIR_GROUP_SCHED
84
85 /* cpu runqueue to which this cfs_rq is attached */
86 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87 {
88 return cfs_rq->rq;
89 }
90
91 /* An entity is a task if it doesn't "own" a runqueue */
92 #define entity_is_task(se) (!se->my_q)
93
94 #else /* CONFIG_FAIR_GROUP_SCHED */
95
96 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97 {
98 return container_of(cfs_rq, struct rq, cfs);
99 }
100
101 #define entity_is_task(se) 1
102
103 #endif /* CONFIG_FAIR_GROUP_SCHED */
104
105 static inline struct task_struct *task_of(struct sched_entity *se)
106 {
107 return container_of(se, struct task_struct, se);
108 }
109
110
111 /**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
115 static inline u64
116 max_vruntime(u64 min_vruntime, u64 vruntime)
117 {
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
120 min_vruntime = vruntime;
121
122 return min_vruntime;
123 }
124
125 static inline u64
126 min_vruntime(u64 min_vruntime, u64 vruntime)
127 {
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
131
132 return min_vruntime;
133 }
134
135 static inline s64
136 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
137 {
138 return se->vruntime - cfs_rq->min_vruntime;
139 }
140
141 /*
142 * Enqueue an entity into the rb-tree:
143 */
144 static void
145 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
146 {
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
150 s64 key = entity_key(cfs_rq, se);
151 int leftmost = 1;
152
153 /*
154 * Find the right place in the rbtree:
155 */
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
159 /*
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
162 */
163 if (key < entity_key(cfs_rq, entry)) {
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
168 }
169 }
170
171 /*
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
174 */
175 if (leftmost)
176 cfs_rq->rb_leftmost = &se->run_node;
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
180 }
181
182 static void
183 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 {
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
187
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
189 }
190
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192 {
193 return cfs_rq->rb_leftmost;
194 }
195
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197 {
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199 }
200
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202 {
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214 }
215
216 /**************************************************************
217 * Scheduling class statistics methods:
218 */
219
220
221 /*
222 * The idea is to set a period in which each task runs once.
223 *
224 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
225 * this period because otherwise the slices get too small.
226 *
227 * p = (nr <= nl) ? l : l*nr/nl
228 */
229 static u64 __sched_period(unsigned long nr_running)
230 {
231 u64 period = sysctl_sched_latency;
232 unsigned long nr_latency = sysctl_sched_nr_latency;
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240 }
241
242 /*
243 * We calculate the wall-time slice from the period by taking a part
244 * proportional to the weight.
245 *
246 * s = p*w/rw
247 */
248 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
249 {
250 u64 slice = __sched_period(cfs_rq->nr_running);
251
252 slice *= se->load.weight;
253 do_div(slice, cfs_rq->load.weight);
254
255 return slice;
256 }
257
258 /*
259 * We calculate the vruntime slice.
260 *
261 * vs = s/w = p/rw
262 */
263 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
264 {
265 u64 vslice = __sched_period(nr_running);
266
267 do_div(vslice, rq_weight);
268
269 return vslice;
270 }
271
272 static u64 sched_vslice(struct cfs_rq *cfs_rq)
273 {
274 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
275 }
276
277 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
278 {
279 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
280 cfs_rq->nr_running + 1);
281 }
282
283 /*
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
286 */
287 static inline void
288 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
289 unsigned long delta_exec)
290 {
291 unsigned long delta_exec_weighted;
292 u64 vruntime;
293
294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295
296 curr->sum_exec_runtime += delta_exec;
297 schedstat_add(cfs_rq, exec_clock, delta_exec);
298 delta_exec_weighted = delta_exec;
299 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
300 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
301 &curr->load);
302 }
303 curr->vruntime += delta_exec_weighted;
304
305 /*
306 * maintain cfs_rq->min_vruntime to be a monotonic increasing
307 * value tracking the leftmost vruntime in the tree.
308 */
309 if (first_fair(cfs_rq)) {
310 vruntime = min_vruntime(curr->vruntime,
311 __pick_next_entity(cfs_rq)->vruntime);
312 } else
313 vruntime = curr->vruntime;
314
315 cfs_rq->min_vruntime =
316 max_vruntime(cfs_rq->min_vruntime, vruntime);
317 }
318
319 static void update_curr(struct cfs_rq *cfs_rq)
320 {
321 struct sched_entity *curr = cfs_rq->curr;
322 u64 now = rq_of(cfs_rq)->clock;
323 unsigned long delta_exec;
324
325 if (unlikely(!curr))
326 return;
327
328 /*
329 * Get the amount of time the current task was running
330 * since the last time we changed load (this cannot
331 * overflow on 32 bits):
332 */
333 delta_exec = (unsigned long)(now - curr->exec_start);
334
335 __update_curr(cfs_rq, curr, delta_exec);
336 curr->exec_start = now;
337 }
338
339 static inline void
340 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
341 {
342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
343 }
344
345 static inline unsigned long
346 calc_weighted(unsigned long delta, struct sched_entity *se)
347 {
348 unsigned long weight = se->load.weight;
349
350 if (unlikely(weight != NICE_0_LOAD))
351 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
352 else
353 return delta;
354 }
355
356 /*
357 * Task is being enqueued - update stats:
358 */
359 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
360 {
361 /*
362 * Are we enqueueing a waiting task? (for current tasks
363 * a dequeue/enqueue event is a NOP)
364 */
365 if (se != cfs_rq->curr)
366 update_stats_wait_start(cfs_rq, se);
367 }
368
369 static void
370 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
371 {
372 schedstat_set(se->wait_max, max(se->wait_max,
373 rq_of(cfs_rq)->clock - se->wait_start));
374 schedstat_set(se->wait_start, 0);
375 }
376
377 static inline void
378 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
379 {
380 update_curr(cfs_rq);
381 /*
382 * Mark the end of the wait period if dequeueing a
383 * waiting task:
384 */
385 if (se != cfs_rq->curr)
386 update_stats_wait_end(cfs_rq, se);
387 }
388
389 /*
390 * We are picking a new current task - update its stats:
391 */
392 static inline void
393 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
394 {
395 /*
396 * We are starting a new run period:
397 */
398 se->exec_start = rq_of(cfs_rq)->clock;
399 }
400
401 /*
402 * We are descheduling a task - update its stats:
403 */
404 static inline void
405 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
406 {
407 se->exec_start = 0;
408 }
409
410 /**************************************************
411 * Scheduling class queueing methods:
412 */
413
414 static void
415 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
416 {
417 update_load_add(&cfs_rq->load, se->load.weight);
418 cfs_rq->nr_running++;
419 se->on_rq = 1;
420 }
421
422 static void
423 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
424 {
425 update_load_sub(&cfs_rq->load, se->load.weight);
426 cfs_rq->nr_running--;
427 se->on_rq = 0;
428 }
429
430 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
431 {
432 #ifdef CONFIG_SCHEDSTATS
433 if (se->sleep_start) {
434 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
435
436 if ((s64)delta < 0)
437 delta = 0;
438
439 if (unlikely(delta > se->sleep_max))
440 se->sleep_max = delta;
441
442 se->sleep_start = 0;
443 se->sum_sleep_runtime += delta;
444 }
445 if (se->block_start) {
446 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
447
448 if ((s64)delta < 0)
449 delta = 0;
450
451 if (unlikely(delta > se->block_max))
452 se->block_max = delta;
453
454 se->block_start = 0;
455 se->sum_sleep_runtime += delta;
456
457 /*
458 * Blocking time is in units of nanosecs, so shift by 20 to
459 * get a milliseconds-range estimation of the amount of
460 * time that the task spent sleeping:
461 */
462 if (unlikely(prof_on == SLEEP_PROFILING)) {
463 struct task_struct *tsk = task_of(se);
464
465 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
466 delta >> 20);
467 }
468 }
469 #endif
470 }
471
472 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
473 {
474 #ifdef CONFIG_SCHED_DEBUG
475 s64 d = se->vruntime - cfs_rq->min_vruntime;
476
477 if (d < 0)
478 d = -d;
479
480 if (d > 3*sysctl_sched_latency)
481 schedstat_inc(cfs_rq, nr_spread_over);
482 #endif
483 }
484
485 static void
486 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
487 {
488 u64 vruntime;
489
490 vruntime = cfs_rq->min_vruntime;
491
492 if (sched_feat(USE_TREE_AVG)) {
493 struct sched_entity *last = __pick_last_entity(cfs_rq);
494 if (last) {
495 vruntime += last->vruntime;
496 vruntime >>= 1;
497 }
498 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
499 vruntime += sched_vslice(cfs_rq)/2;
500
501 if (initial && sched_feat(START_DEBIT))
502 vruntime += sched_vslice_add(cfs_rq, se);
503
504 if (!initial) {
505 if (sched_feat(NEW_FAIR_SLEEPERS))
506 vruntime -= sysctl_sched_latency;
507
508 vruntime = max_t(s64, vruntime, se->vruntime);
509 }
510
511 se->vruntime = vruntime;
512
513 }
514
515 static void
516 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
517 {
518 /*
519 * Update the fair clock.
520 */
521 update_curr(cfs_rq);
522
523 if (wakeup) {
524 place_entity(cfs_rq, se, 0);
525 enqueue_sleeper(cfs_rq, se);
526 }
527
528 update_stats_enqueue(cfs_rq, se);
529 check_spread(cfs_rq, se);
530 if (se != cfs_rq->curr)
531 __enqueue_entity(cfs_rq, se);
532 account_entity_enqueue(cfs_rq, se);
533 }
534
535 static void
536 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
537 {
538 update_stats_dequeue(cfs_rq, se);
539 if (sleep) {
540 #ifdef CONFIG_SCHEDSTATS
541 if (entity_is_task(se)) {
542 struct task_struct *tsk = task_of(se);
543
544 if (tsk->state & TASK_INTERRUPTIBLE)
545 se->sleep_start = rq_of(cfs_rq)->clock;
546 if (tsk->state & TASK_UNINTERRUPTIBLE)
547 se->block_start = rq_of(cfs_rq)->clock;
548 }
549 #endif
550 }
551
552 if (se != cfs_rq->curr)
553 __dequeue_entity(cfs_rq, se);
554 account_entity_dequeue(cfs_rq, se);
555 }
556
557 /*
558 * Preempt the current task with a newly woken task if needed:
559 */
560 static void
561 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
562 {
563 unsigned long ideal_runtime, delta_exec;
564
565 ideal_runtime = sched_slice(cfs_rq, curr);
566 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
567 if (delta_exec > ideal_runtime)
568 resched_task(rq_of(cfs_rq)->curr);
569 }
570
571 static void
572 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 /* 'current' is not kept within the tree. */
575 if (se->on_rq) {
576 /*
577 * Any task has to be enqueued before it get to execute on
578 * a CPU. So account for the time it spent waiting on the
579 * runqueue.
580 */
581 update_stats_wait_end(cfs_rq, se);
582 __dequeue_entity(cfs_rq, se);
583 }
584
585 update_stats_curr_start(cfs_rq, se);
586 cfs_rq->curr = se;
587 #ifdef CONFIG_SCHEDSTATS
588 /*
589 * Track our maximum slice length, if the CPU's load is at
590 * least twice that of our own weight (i.e. dont track it
591 * when there are only lesser-weight tasks around):
592 */
593 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
594 se->slice_max = max(se->slice_max,
595 se->sum_exec_runtime - se->prev_sum_exec_runtime);
596 }
597 #endif
598 se->prev_sum_exec_runtime = se->sum_exec_runtime;
599 }
600
601 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
602 {
603 struct sched_entity *se = NULL;
604
605 if (first_fair(cfs_rq)) {
606 se = __pick_next_entity(cfs_rq);
607 set_next_entity(cfs_rq, se);
608 }
609
610 return se;
611 }
612
613 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
614 {
615 /*
616 * If still on the runqueue then deactivate_task()
617 * was not called and update_curr() has to be done:
618 */
619 if (prev->on_rq)
620 update_curr(cfs_rq);
621
622 update_stats_curr_end(cfs_rq, prev);
623
624 check_spread(cfs_rq, prev);
625 if (prev->on_rq) {
626 update_stats_wait_start(cfs_rq, prev);
627 /* Put 'current' back into the tree. */
628 __enqueue_entity(cfs_rq, prev);
629 }
630 cfs_rq->curr = NULL;
631 }
632
633 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
634 {
635 /*
636 * Update run-time statistics of the 'current'.
637 */
638 update_curr(cfs_rq);
639
640 if (cfs_rq->nr_running > 1)
641 check_preempt_tick(cfs_rq, curr);
642 }
643
644 /**************************************************
645 * CFS operations on tasks:
646 */
647
648 #ifdef CONFIG_FAIR_GROUP_SCHED
649
650 /* Walk up scheduling entities hierarchy */
651 #define for_each_sched_entity(se) \
652 for (; se; se = se->parent)
653
654 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
655 {
656 return p->se.cfs_rq;
657 }
658
659 /* runqueue on which this entity is (to be) queued */
660 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
661 {
662 return se->cfs_rq;
663 }
664
665 /* runqueue "owned" by this group */
666 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
667 {
668 return grp->my_q;
669 }
670
671 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
672 * another cpu ('this_cpu')
673 */
674 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
675 {
676 return cfs_rq->tg->cfs_rq[this_cpu];
677 }
678
679 /* Iterate thr' all leaf cfs_rq's on a runqueue */
680 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
681 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
682
683 /* Do the two (enqueued) entities belong to the same group ? */
684 static inline int
685 is_same_group(struct sched_entity *se, struct sched_entity *pse)
686 {
687 if (se->cfs_rq == pse->cfs_rq)
688 return 1;
689
690 return 0;
691 }
692
693 static inline struct sched_entity *parent_entity(struct sched_entity *se)
694 {
695 return se->parent;
696 }
697
698 #else /* CONFIG_FAIR_GROUP_SCHED */
699
700 #define for_each_sched_entity(se) \
701 for (; se; se = NULL)
702
703 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
704 {
705 return &task_rq(p)->cfs;
706 }
707
708 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
709 {
710 struct task_struct *p = task_of(se);
711 struct rq *rq = task_rq(p);
712
713 return &rq->cfs;
714 }
715
716 /* runqueue "owned" by this group */
717 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
718 {
719 return NULL;
720 }
721
722 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
723 {
724 return &cpu_rq(this_cpu)->cfs;
725 }
726
727 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
728 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
729
730 static inline int
731 is_same_group(struct sched_entity *se, struct sched_entity *pse)
732 {
733 return 1;
734 }
735
736 static inline struct sched_entity *parent_entity(struct sched_entity *se)
737 {
738 return NULL;
739 }
740
741 #endif /* CONFIG_FAIR_GROUP_SCHED */
742
743 /*
744 * The enqueue_task method is called before nr_running is
745 * increased. Here we update the fair scheduling stats and
746 * then put the task into the rbtree:
747 */
748 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
749 {
750 struct cfs_rq *cfs_rq;
751 struct sched_entity *se = &p->se;
752
753 for_each_sched_entity(se) {
754 if (se->on_rq)
755 break;
756 cfs_rq = cfs_rq_of(se);
757 enqueue_entity(cfs_rq, se, wakeup);
758 wakeup = 1;
759 }
760 }
761
762 /*
763 * The dequeue_task method is called before nr_running is
764 * decreased. We remove the task from the rbtree and
765 * update the fair scheduling stats:
766 */
767 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
768 {
769 struct cfs_rq *cfs_rq;
770 struct sched_entity *se = &p->se;
771
772 for_each_sched_entity(se) {
773 cfs_rq = cfs_rq_of(se);
774 dequeue_entity(cfs_rq, se, sleep);
775 /* Don't dequeue parent if it has other entities besides us */
776 if (cfs_rq->load.weight)
777 break;
778 sleep = 1;
779 }
780 }
781
782 /*
783 * sched_yield() support is very simple - we dequeue and enqueue.
784 *
785 * If compat_yield is turned on then we requeue to the end of the tree.
786 */
787 static void yield_task_fair(struct rq *rq)
788 {
789 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
790 struct sched_entity *rightmost, *se = &rq->curr->se;
791
792 /*
793 * Are we the only task in the tree?
794 */
795 if (unlikely(cfs_rq->nr_running == 1))
796 return;
797
798 if (likely(!sysctl_sched_compat_yield)) {
799 __update_rq_clock(rq);
800 /*
801 * Dequeue and enqueue the task to update its
802 * position within the tree:
803 */
804 update_curr(cfs_rq);
805
806 return;
807 }
808 /*
809 * Find the rightmost entry in the rbtree:
810 */
811 rightmost = __pick_last_entity(cfs_rq);
812 /*
813 * Already in the rightmost position?
814 */
815 if (unlikely(rightmost->vruntime < se->vruntime))
816 return;
817
818 /*
819 * Minimally necessary key value to be last in the tree:
820 * Upon rescheduling, sched_class::put_prev_task() will place
821 * 'current' within the tree based on its new key value.
822 */
823 se->vruntime = rightmost->vruntime + 1;
824 }
825
826 /*
827 * Preempt the current task with a newly woken task if needed:
828 */
829 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
830 {
831 struct task_struct *curr = rq->curr;
832 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
833 struct sched_entity *se = &curr->se, *pse = &p->se;
834 s64 delta;
835
836 if (unlikely(rt_prio(p->prio))) {
837 update_rq_clock(rq);
838 update_curr(cfs_rq);
839 resched_task(curr);
840 return;
841 }
842
843 while (!is_same_group(se, pse)) {
844 se = parent_entity(se);
845 pse = parent_entity(pse);
846 }
847
848 delta = se->vruntime - pse->vruntime;
849
850 if (delta > (s64)sysctl_sched_wakeup_granularity)
851 resched_task(curr);
852 }
853
854 static struct task_struct *pick_next_task_fair(struct rq *rq)
855 {
856 struct cfs_rq *cfs_rq = &rq->cfs;
857 struct sched_entity *se;
858
859 if (unlikely(!cfs_rq->nr_running))
860 return NULL;
861
862 do {
863 se = pick_next_entity(cfs_rq);
864 cfs_rq = group_cfs_rq(se);
865 } while (cfs_rq);
866
867 return task_of(se);
868 }
869
870 /*
871 * Account for a descheduled task:
872 */
873 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
874 {
875 struct sched_entity *se = &prev->se;
876 struct cfs_rq *cfs_rq;
877
878 for_each_sched_entity(se) {
879 cfs_rq = cfs_rq_of(se);
880 put_prev_entity(cfs_rq, se);
881 }
882 }
883
884 /**************************************************
885 * Fair scheduling class load-balancing methods:
886 */
887
888 /*
889 * Load-balancing iterator. Note: while the runqueue stays locked
890 * during the whole iteration, the current task might be
891 * dequeued so the iterator has to be dequeue-safe. Here we
892 * achieve that by always pre-iterating before returning
893 * the current task:
894 */
895 static struct task_struct *
896 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
897 {
898 struct task_struct *p;
899
900 if (!curr)
901 return NULL;
902
903 p = rb_entry(curr, struct task_struct, se.run_node);
904 cfs_rq->rb_load_balance_curr = rb_next(curr);
905
906 return p;
907 }
908
909 static struct task_struct *load_balance_start_fair(void *arg)
910 {
911 struct cfs_rq *cfs_rq = arg;
912
913 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
914 }
915
916 static struct task_struct *load_balance_next_fair(void *arg)
917 {
918 struct cfs_rq *cfs_rq = arg;
919
920 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
921 }
922
923 #ifdef CONFIG_FAIR_GROUP_SCHED
924 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
925 {
926 struct sched_entity *curr;
927 struct task_struct *p;
928
929 if (!cfs_rq->nr_running)
930 return MAX_PRIO;
931
932 curr = cfs_rq->curr;
933 if (!curr)
934 curr = __pick_next_entity(cfs_rq);
935
936 p = task_of(curr);
937
938 return p->prio;
939 }
940 #endif
941
942 static unsigned long
943 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
944 unsigned long max_nr_move, unsigned long max_load_move,
945 struct sched_domain *sd, enum cpu_idle_type idle,
946 int *all_pinned, int *this_best_prio)
947 {
948 struct cfs_rq *busy_cfs_rq;
949 unsigned long load_moved, total_nr_moved = 0, nr_moved;
950 long rem_load_move = max_load_move;
951 struct rq_iterator cfs_rq_iterator;
952
953 cfs_rq_iterator.start = load_balance_start_fair;
954 cfs_rq_iterator.next = load_balance_next_fair;
955
956 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
957 #ifdef CONFIG_FAIR_GROUP_SCHED
958 struct cfs_rq *this_cfs_rq;
959 long imbalance;
960 unsigned long maxload;
961
962 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
963
964 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
965 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
966 if (imbalance <= 0)
967 continue;
968
969 /* Don't pull more than imbalance/2 */
970 imbalance /= 2;
971 maxload = min(rem_load_move, imbalance);
972
973 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
974 #else
975 # define maxload rem_load_move
976 #endif
977 /* pass busy_cfs_rq argument into
978 * load_balance_[start|next]_fair iterators
979 */
980 cfs_rq_iterator.arg = busy_cfs_rq;
981 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
982 max_nr_move, maxload, sd, idle, all_pinned,
983 &load_moved, this_best_prio, &cfs_rq_iterator);
984
985 total_nr_moved += nr_moved;
986 max_nr_move -= nr_moved;
987 rem_load_move -= load_moved;
988
989 if (max_nr_move <= 0 || rem_load_move <= 0)
990 break;
991 }
992
993 return max_load_move - rem_load_move;
994 }
995
996 /*
997 * scheduler tick hitting a task of our scheduling class:
998 */
999 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1000 {
1001 struct cfs_rq *cfs_rq;
1002 struct sched_entity *se = &curr->se;
1003
1004 for_each_sched_entity(se) {
1005 cfs_rq = cfs_rq_of(se);
1006 entity_tick(cfs_rq, se);
1007 }
1008 }
1009
1010 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1011
1012 /*
1013 * Share the fairness runtime between parent and child, thus the
1014 * total amount of pressure for CPU stays equal - new tasks
1015 * get a chance to run but frequent forkers are not allowed to
1016 * monopolize the CPU. Note: the parent runqueue is locked,
1017 * the child is not running yet.
1018 */
1019 static void task_new_fair(struct rq *rq, struct task_struct *p)
1020 {
1021 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1022 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1023
1024 sched_info_queued(p);
1025
1026 update_curr(cfs_rq);
1027 place_entity(cfs_rq, se, 1);
1028
1029 if (sysctl_sched_child_runs_first &&
1030 curr->vruntime < se->vruntime) {
1031 /*
1032 * Upon rescheduling, sched_class::put_prev_task() will place
1033 * 'current' within the tree based on its new key value.
1034 */
1035 swap(curr->vruntime, se->vruntime);
1036 }
1037
1038 update_stats_enqueue(cfs_rq, se);
1039 check_spread(cfs_rq, se);
1040 check_spread(cfs_rq, curr);
1041 __enqueue_entity(cfs_rq, se);
1042 account_entity_enqueue(cfs_rq, se);
1043 resched_task(rq->curr);
1044 }
1045
1046 /* Account for a task changing its policy or group.
1047 *
1048 * This routine is mostly called to set cfs_rq->curr field when a task
1049 * migrates between groups/classes.
1050 */
1051 static void set_curr_task_fair(struct rq *rq)
1052 {
1053 struct sched_entity *se = &rq->curr->se;
1054
1055 for_each_sched_entity(se)
1056 set_next_entity(cfs_rq_of(se), se);
1057 }
1058
1059 /*
1060 * All the scheduling class methods:
1061 */
1062 static const struct sched_class fair_sched_class = {
1063 .next = &idle_sched_class,
1064 .enqueue_task = enqueue_task_fair,
1065 .dequeue_task = dequeue_task_fair,
1066 .yield_task = yield_task_fair,
1067
1068 .check_preempt_curr = check_preempt_wakeup,
1069
1070 .pick_next_task = pick_next_task_fair,
1071 .put_prev_task = put_prev_task_fair,
1072
1073 .load_balance = load_balance_fair,
1074
1075 .set_curr_task = set_curr_task_fair,
1076 .task_tick = task_tick_fair,
1077 .task_new = task_new_fair,
1078 };
1079
1080 #ifdef CONFIG_SCHED_DEBUG
1081 static void print_cfs_stats(struct seq_file *m, int cpu)
1082 {
1083 struct cfs_rq *cfs_rq;
1084
1085 #ifdef CONFIG_FAIR_GROUP_SCHED
1086 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1087 #endif
1088 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1089 print_cfs_rq(m, cpu, cfs_rq);
1090 }
1091 #endif
This page took 0.098182 seconds and 5 git commands to generate.