Merge branch 'media_fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 8;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 static const struct sched_class fair_sched_class;
100
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
105 #ifdef CONFIG_FAIR_GROUP_SCHED
106
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109 {
110 return cfs_rq->rq;
111 }
112
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
115
116 static inline struct task_struct *task_of(struct sched_entity *se)
117 {
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120 #endif
121 return container_of(se, struct task_struct, se);
122 }
123
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129 {
130 return p->se.cfs_rq;
131 }
132
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135 {
136 return se->cfs_rq;
137 }
138
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141 {
142 return grp->my_q;
143 }
144
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149 {
150 return cfs_rq->tg->cfs_rq[this_cpu];
151 }
152
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154 {
155 if (!cfs_rq->on_list) {
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
169 }
170
171 cfs_rq->on_list = 1;
172 }
173 }
174
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176 {
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181 }
182
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187 /* Do the two (enqueued) entities belong to the same group ? */
188 static inline int
189 is_same_group(struct sched_entity *se, struct sched_entity *pse)
190 {
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195 }
196
197 static inline struct sched_entity *parent_entity(struct sched_entity *se)
198 {
199 return se->parent;
200 }
201
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity *se)
204 {
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211 }
212
213 static void
214 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215 {
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243 }
244
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
246
247 static inline struct task_struct *task_of(struct sched_entity *se)
248 {
249 return container_of(se, struct task_struct, se);
250 }
251
252 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 {
254 return container_of(cfs_rq, struct rq, cfs);
255 }
256
257 #define entity_is_task(se) 1
258
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
261
262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263 {
264 return &task_rq(p)->cfs;
265 }
266
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273 }
274
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277 {
278 return NULL;
279 }
280
281 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282 {
283 return &cpu_rq(this_cpu)->cfs;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 }
289
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 }
293
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 return 1;
301 }
302
303 static inline struct sched_entity *parent_entity(struct sched_entity *se)
304 {
305 return NULL;
306 }
307
308 static inline void
309 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310 {
311 }
312
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
314
315
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
320 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
321 {
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327 }
328
329 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
330 {
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336 }
337
338 static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340 {
341 return (s64)(a->vruntime - b->vruntime) < 0;
342 }
343
344 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
345 {
346 return se->vruntime - cfs_rq->min_vruntime;
347 }
348
349 static void update_min_vruntime(struct cfs_rq *cfs_rq)
350 {
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
361 if (!cfs_rq->curr)
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368 }
369
370 /*
371 * Enqueue an entity into the rb-tree:
372 */
373 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 {
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
378 s64 key = entity_key(cfs_rq, se);
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
391 if (key < entity_key(cfs_rq, entry)) {
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
403 if (leftmost)
404 cfs_rq->rb_leftmost = &se->run_node;
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
408 }
409
410 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
411 {
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
417 }
418
419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
420 }
421
422 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423 {
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
430 }
431
432 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
433 {
434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
435
436 if (!last)
437 return NULL;
438
439 return rb_entry(last, struct sched_entity, run_node);
440 }
441
442 /**************************************************************
443 * Scheduling class statistics methods:
444 */
445
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp,
449 loff_t *ppos)
450 {
451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 int factor = get_update_sysctl_factor();
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
465 #undef WRT_SYSCTL
466
467 return 0;
468 }
469 #endif
470
471 /*
472 * delta /= w
473 */
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta, struct sched_entity *se)
476 {
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
479
480 return delta;
481 }
482
483 /*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
491 static u64 __sched_period(unsigned long nr_running)
492 {
493 u64 period = sysctl_sched_latency;
494 unsigned long nr_latency = sched_nr_latency;
495
496 if (unlikely(nr_running > nr_latency)) {
497 period = sysctl_sched_min_granularity;
498 period *= nr_running;
499 }
500
501 return period;
502 }
503
504 /*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
508 * s = p*P[w/rw]
509 */
510 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
511 {
512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
513
514 for_each_sched_entity(se) {
515 struct load_weight *load;
516 struct load_weight lw;
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
520
521 if (unlikely(!se->on_rq)) {
522 lw = cfs_rq->load;
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
530 }
531
532 /*
533 * We calculate the vruntime slice of a to be inserted task
534 *
535 * vs = s/w
536 */
537 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
538 {
539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
540 }
541
542 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
545 /*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549 static inline void
550 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
552 {
553 unsigned long delta_exec_weighted;
554
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
557
558 curr->sum_exec_runtime += delta_exec;
559 schedstat_add(cfs_rq, exec_clock, delta_exec);
560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
561
562 curr->vruntime += delta_exec_weighted;
563 update_min_vruntime(cfs_rq);
564
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 #endif
568 }
569
570 static void update_curr(struct cfs_rq *cfs_rq)
571 {
572 struct sched_entity *curr = cfs_rq->curr;
573 u64 now = rq_of(cfs_rq)->clock_task;
574 unsigned long delta_exec;
575
576 if (unlikely(!curr))
577 return;
578
579 /*
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
583 */
584 delta_exec = (unsigned long)(now - curr->exec_start);
585 if (!delta_exec)
586 return;
587
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
590
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
593
594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595 cpuacct_charge(curtask, delta_exec);
596 account_group_exec_runtime(curtask, delta_exec);
597 }
598 }
599
600 static inline void
601 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 {
603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
604 }
605
606 /*
607 * Task is being enqueued - update stats:
608 */
609 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 {
611 /*
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
614 */
615 if (se != cfs_rq->curr)
616 update_stats_wait_start(cfs_rq, se);
617 }
618
619 static void
620 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
621 {
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
631 }
632 #endif
633 schedstat_set(se->statistics.wait_start, 0);
634 }
635
636 static inline void
637 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 {
639 /*
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
642 */
643 if (se != cfs_rq->curr)
644 update_stats_wait_end(cfs_rq, se);
645 }
646
647 /*
648 * We are picking a new current task - update its stats:
649 */
650 static inline void
651 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 /*
654 * We are starting a new run period:
655 */
656 se->exec_start = rq_of(cfs_rq)->clock_task;
657 }
658
659 /**************************************************
660 * Scheduling class queueing methods:
661 */
662
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664 static void
665 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666 {
667 cfs_rq->task_weight += weight;
668 }
669 #else
670 static inline void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672 {
673 }
674 #endif
675
676 static void
677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678 {
679 update_load_add(&cfs_rq->load, se->load.weight);
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682 if (entity_is_task(se)) {
683 add_cfs_task_weight(cfs_rq, se->load.weight);
684 list_add(&se->group_node, &cfs_rq->tasks);
685 }
686 cfs_rq->nr_running++;
687 }
688
689 static void
690 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691 {
692 update_load_sub(&cfs_rq->load, se->load.weight);
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695 if (entity_is_task(se)) {
696 add_cfs_task_weight(cfs_rq, -se->load.weight);
697 list_del_init(&se->group_node);
698 }
699 cfs_rq->nr_running--;
700 }
701
702 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
703 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
704 int global_update)
705 {
706 struct task_group *tg = cfs_rq->tg;
707 long load_avg;
708
709 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
710 load_avg -= cfs_rq->load_contribution;
711
712 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
713 atomic_add(load_avg, &tg->load_weight);
714 cfs_rq->load_contribution += load_avg;
715 }
716 }
717
718 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
719 {
720 u64 period = sysctl_sched_shares_window;
721 u64 now, delta;
722 unsigned long load = cfs_rq->load.weight;
723
724 if (!cfs_rq)
725 return;
726
727 now = rq_of(cfs_rq)->clock;
728 delta = now - cfs_rq->load_stamp;
729
730 /* truncate load history at 4 idle periods */
731 if (cfs_rq->load_stamp > cfs_rq->load_last &&
732 now - cfs_rq->load_last > 4 * period) {
733 cfs_rq->load_period = 0;
734 cfs_rq->load_avg = 0;
735 }
736
737 cfs_rq->load_stamp = now;
738 cfs_rq->load_unacc_exec_time = 0;
739 cfs_rq->load_period += delta;
740 if (load) {
741 cfs_rq->load_last = now;
742 cfs_rq->load_avg += delta * load;
743 }
744
745 /* consider updating load contribution on each fold or truncate */
746 if (global_update || cfs_rq->load_period > period
747 || !cfs_rq->load_period)
748 update_cfs_rq_load_contribution(cfs_rq, global_update);
749
750 while (cfs_rq->load_period > period) {
751 /*
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
755 */
756 asm("" : "+rm" (cfs_rq->load_period));
757 cfs_rq->load_period /= 2;
758 cfs_rq->load_avg /= 2;
759 }
760
761 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
762 list_del_leaf_cfs_rq(cfs_rq);
763 }
764
765 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
766 unsigned long weight)
767 {
768 if (se->on_rq) {
769 /* commit outstanding execution time */
770 if (cfs_rq->curr == se)
771 update_curr(cfs_rq);
772 account_entity_dequeue(cfs_rq, se);
773 }
774
775 update_load_set(&se->load, weight);
776
777 if (se->on_rq)
778 account_entity_enqueue(cfs_rq, se);
779 }
780
781 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
782 {
783 struct task_group *tg;
784 struct sched_entity *se;
785 long load_weight, load, shares;
786
787 if (!cfs_rq)
788 return;
789
790 tg = cfs_rq->tg;
791 se = tg->se[cpu_of(rq_of(cfs_rq))];
792 if (!se)
793 return;
794
795 load = cfs_rq->load.weight + weight_delta;
796
797 load_weight = atomic_read(&tg->load_weight);
798 load_weight -= cfs_rq->load_contribution;
799 load_weight += load;
800
801 shares = (tg->shares * load);
802 if (load_weight)
803 shares /= load_weight;
804
805 if (shares < MIN_SHARES)
806 shares = MIN_SHARES;
807 if (shares > tg->shares)
808 shares = tg->shares;
809
810 reweight_entity(cfs_rq_of(se), se, shares);
811 }
812
813 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
814 {
815 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
816 update_cfs_load(cfs_rq, 0);
817 update_cfs_shares(cfs_rq, 0);
818 }
819 }
820 #else /* CONFIG_FAIR_GROUP_SCHED */
821 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
822 {
823 }
824
825 static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
826 {
827 }
828
829 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
830 {
831 }
832 #endif /* CONFIG_FAIR_GROUP_SCHED */
833
834 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
835 {
836 #ifdef CONFIG_SCHEDSTATS
837 struct task_struct *tsk = NULL;
838
839 if (entity_is_task(se))
840 tsk = task_of(se);
841
842 if (se->statistics.sleep_start) {
843 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
844
845 if ((s64)delta < 0)
846 delta = 0;
847
848 if (unlikely(delta > se->statistics.sleep_max))
849 se->statistics.sleep_max = delta;
850
851 se->statistics.sleep_start = 0;
852 se->statistics.sum_sleep_runtime += delta;
853
854 if (tsk) {
855 account_scheduler_latency(tsk, delta >> 10, 1);
856 trace_sched_stat_sleep(tsk, delta);
857 }
858 }
859 if (se->statistics.block_start) {
860 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
861
862 if ((s64)delta < 0)
863 delta = 0;
864
865 if (unlikely(delta > se->statistics.block_max))
866 se->statistics.block_max = delta;
867
868 se->statistics.block_start = 0;
869 se->statistics.sum_sleep_runtime += delta;
870
871 if (tsk) {
872 if (tsk->in_iowait) {
873 se->statistics.iowait_sum += delta;
874 se->statistics.iowait_count++;
875 trace_sched_stat_iowait(tsk, delta);
876 }
877
878 /*
879 * Blocking time is in units of nanosecs, so shift by
880 * 20 to get a milliseconds-range estimation of the
881 * amount of time that the task spent sleeping:
882 */
883 if (unlikely(prof_on == SLEEP_PROFILING)) {
884 profile_hits(SLEEP_PROFILING,
885 (void *)get_wchan(tsk),
886 delta >> 20);
887 }
888 account_scheduler_latency(tsk, delta >> 10, 0);
889 }
890 }
891 #endif
892 }
893
894 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 {
896 #ifdef CONFIG_SCHED_DEBUG
897 s64 d = se->vruntime - cfs_rq->min_vruntime;
898
899 if (d < 0)
900 d = -d;
901
902 if (d > 3*sysctl_sched_latency)
903 schedstat_inc(cfs_rq, nr_spread_over);
904 #endif
905 }
906
907 static void
908 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
909 {
910 u64 vruntime = cfs_rq->min_vruntime;
911
912 /*
913 * The 'current' period is already promised to the current tasks,
914 * however the extra weight of the new task will slow them down a
915 * little, place the new task so that it fits in the slot that
916 * stays open at the end.
917 */
918 if (initial && sched_feat(START_DEBIT))
919 vruntime += sched_vslice(cfs_rq, se);
920
921 /* sleeps up to a single latency don't count. */
922 if (!initial) {
923 unsigned long thresh = sysctl_sched_latency;
924
925 /*
926 * Halve their sleep time's effect, to allow
927 * for a gentler effect of sleepers:
928 */
929 if (sched_feat(GENTLE_FAIR_SLEEPERS))
930 thresh >>= 1;
931
932 vruntime -= thresh;
933 }
934
935 /* ensure we never gain time by being placed backwards. */
936 vruntime = max_vruntime(se->vruntime, vruntime);
937
938 se->vruntime = vruntime;
939 }
940
941 static void
942 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
943 {
944 /*
945 * Update the normalized vruntime before updating min_vruntime
946 * through callig update_curr().
947 */
948 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
949 se->vruntime += cfs_rq->min_vruntime;
950
951 /*
952 * Update run-time statistics of the 'current'.
953 */
954 update_curr(cfs_rq);
955 update_cfs_load(cfs_rq, 0);
956 update_cfs_shares(cfs_rq, se->load.weight);
957 account_entity_enqueue(cfs_rq, se);
958
959 if (flags & ENQUEUE_WAKEUP) {
960 place_entity(cfs_rq, se, 0);
961 enqueue_sleeper(cfs_rq, se);
962 }
963
964 update_stats_enqueue(cfs_rq, se);
965 check_spread(cfs_rq, se);
966 if (se != cfs_rq->curr)
967 __enqueue_entity(cfs_rq, se);
968 se->on_rq = 1;
969
970 if (cfs_rq->nr_running == 1)
971 list_add_leaf_cfs_rq(cfs_rq);
972 }
973
974 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 if (!se || cfs_rq->last == se)
977 cfs_rq->last = NULL;
978
979 if (!se || cfs_rq->next == se)
980 cfs_rq->next = NULL;
981 }
982
983 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
984 {
985 for_each_sched_entity(se)
986 __clear_buddies(cfs_rq_of(se), se);
987 }
988
989 static void
990 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
991 {
992 /*
993 * Update run-time statistics of the 'current'.
994 */
995 update_curr(cfs_rq);
996
997 update_stats_dequeue(cfs_rq, se);
998 if (flags & DEQUEUE_SLEEP) {
999 #ifdef CONFIG_SCHEDSTATS
1000 if (entity_is_task(se)) {
1001 struct task_struct *tsk = task_of(se);
1002
1003 if (tsk->state & TASK_INTERRUPTIBLE)
1004 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1005 if (tsk->state & TASK_UNINTERRUPTIBLE)
1006 se->statistics.block_start = rq_of(cfs_rq)->clock;
1007 }
1008 #endif
1009 }
1010
1011 clear_buddies(cfs_rq, se);
1012
1013 if (se != cfs_rq->curr)
1014 __dequeue_entity(cfs_rq, se);
1015 se->on_rq = 0;
1016 update_cfs_load(cfs_rq, 0);
1017 account_entity_dequeue(cfs_rq, se);
1018 update_min_vruntime(cfs_rq);
1019 update_cfs_shares(cfs_rq, 0);
1020
1021 /*
1022 * Normalize the entity after updating the min_vruntime because the
1023 * update can refer to the ->curr item and we need to reflect this
1024 * movement in our normalized position.
1025 */
1026 if (!(flags & DEQUEUE_SLEEP))
1027 se->vruntime -= cfs_rq->min_vruntime;
1028 }
1029
1030 /*
1031 * Preempt the current task with a newly woken task if needed:
1032 */
1033 static void
1034 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1035 {
1036 unsigned long ideal_runtime, delta_exec;
1037
1038 ideal_runtime = sched_slice(cfs_rq, curr);
1039 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1040 if (delta_exec > ideal_runtime) {
1041 resched_task(rq_of(cfs_rq)->curr);
1042 /*
1043 * The current task ran long enough, ensure it doesn't get
1044 * re-elected due to buddy favours.
1045 */
1046 clear_buddies(cfs_rq, curr);
1047 return;
1048 }
1049
1050 /*
1051 * Ensure that a task that missed wakeup preemption by a
1052 * narrow margin doesn't have to wait for a full slice.
1053 * This also mitigates buddy induced latencies under load.
1054 */
1055 if (!sched_feat(WAKEUP_PREEMPT))
1056 return;
1057
1058 if (delta_exec < sysctl_sched_min_granularity)
1059 return;
1060
1061 if (cfs_rq->nr_running > 1) {
1062 struct sched_entity *se = __pick_next_entity(cfs_rq);
1063 s64 delta = curr->vruntime - se->vruntime;
1064
1065 if (delta < 0)
1066 return;
1067
1068 if (delta > ideal_runtime)
1069 resched_task(rq_of(cfs_rq)->curr);
1070 }
1071 }
1072
1073 static void
1074 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1075 {
1076 /* 'current' is not kept within the tree. */
1077 if (se->on_rq) {
1078 /*
1079 * Any task has to be enqueued before it get to execute on
1080 * a CPU. So account for the time it spent waiting on the
1081 * runqueue.
1082 */
1083 update_stats_wait_end(cfs_rq, se);
1084 __dequeue_entity(cfs_rq, se);
1085 }
1086
1087 update_stats_curr_start(cfs_rq, se);
1088 cfs_rq->curr = se;
1089 #ifdef CONFIG_SCHEDSTATS
1090 /*
1091 * Track our maximum slice length, if the CPU's load is at
1092 * least twice that of our own weight (i.e. dont track it
1093 * when there are only lesser-weight tasks around):
1094 */
1095 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1096 se->statistics.slice_max = max(se->statistics.slice_max,
1097 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1098 }
1099 #endif
1100 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1101 }
1102
1103 static int
1104 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1105
1106 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1107 {
1108 struct sched_entity *se = __pick_next_entity(cfs_rq);
1109 struct sched_entity *left = se;
1110
1111 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1112 se = cfs_rq->next;
1113
1114 /*
1115 * Prefer last buddy, try to return the CPU to a preempted task.
1116 */
1117 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1118 se = cfs_rq->last;
1119
1120 clear_buddies(cfs_rq, se);
1121
1122 return se;
1123 }
1124
1125 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1126 {
1127 /*
1128 * If still on the runqueue then deactivate_task()
1129 * was not called and update_curr() has to be done:
1130 */
1131 if (prev->on_rq)
1132 update_curr(cfs_rq);
1133
1134 check_spread(cfs_rq, prev);
1135 if (prev->on_rq) {
1136 update_stats_wait_start(cfs_rq, prev);
1137 /* Put 'current' back into the tree. */
1138 __enqueue_entity(cfs_rq, prev);
1139 }
1140 cfs_rq->curr = NULL;
1141 }
1142
1143 static void
1144 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1145 {
1146 /*
1147 * Update run-time statistics of the 'current'.
1148 */
1149 update_curr(cfs_rq);
1150
1151 /*
1152 * Update share accounting for long-running entities.
1153 */
1154 update_entity_shares_tick(cfs_rq);
1155
1156 #ifdef CONFIG_SCHED_HRTICK
1157 /*
1158 * queued ticks are scheduled to match the slice, so don't bother
1159 * validating it and just reschedule.
1160 */
1161 if (queued) {
1162 resched_task(rq_of(cfs_rq)->curr);
1163 return;
1164 }
1165 /*
1166 * don't let the period tick interfere with the hrtick preemption
1167 */
1168 if (!sched_feat(DOUBLE_TICK) &&
1169 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1170 return;
1171 #endif
1172
1173 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1174 check_preempt_tick(cfs_rq, curr);
1175 }
1176
1177 /**************************************************
1178 * CFS operations on tasks:
1179 */
1180
1181 #ifdef CONFIG_SCHED_HRTICK
1182 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1183 {
1184 struct sched_entity *se = &p->se;
1185 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1186
1187 WARN_ON(task_rq(p) != rq);
1188
1189 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1190 u64 slice = sched_slice(cfs_rq, se);
1191 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1192 s64 delta = slice - ran;
1193
1194 if (delta < 0) {
1195 if (rq->curr == p)
1196 resched_task(p);
1197 return;
1198 }
1199
1200 /*
1201 * Don't schedule slices shorter than 10000ns, that just
1202 * doesn't make sense. Rely on vruntime for fairness.
1203 */
1204 if (rq->curr != p)
1205 delta = max_t(s64, 10000LL, delta);
1206
1207 hrtick_start(rq, delta);
1208 }
1209 }
1210
1211 /*
1212 * called from enqueue/dequeue and updates the hrtick when the
1213 * current task is from our class and nr_running is low enough
1214 * to matter.
1215 */
1216 static void hrtick_update(struct rq *rq)
1217 {
1218 struct task_struct *curr = rq->curr;
1219
1220 if (curr->sched_class != &fair_sched_class)
1221 return;
1222
1223 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1224 hrtick_start_fair(rq, curr);
1225 }
1226 #else /* !CONFIG_SCHED_HRTICK */
1227 static inline void
1228 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1229 {
1230 }
1231
1232 static inline void hrtick_update(struct rq *rq)
1233 {
1234 }
1235 #endif
1236
1237 /*
1238 * The enqueue_task method is called before nr_running is
1239 * increased. Here we update the fair scheduling stats and
1240 * then put the task into the rbtree:
1241 */
1242 static void
1243 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1244 {
1245 struct cfs_rq *cfs_rq;
1246 struct sched_entity *se = &p->se;
1247
1248 for_each_sched_entity(se) {
1249 if (se->on_rq)
1250 break;
1251 cfs_rq = cfs_rq_of(se);
1252 enqueue_entity(cfs_rq, se, flags);
1253 flags = ENQUEUE_WAKEUP;
1254 }
1255
1256 for_each_sched_entity(se) {
1257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1258
1259 update_cfs_load(cfs_rq, 0);
1260 update_cfs_shares(cfs_rq, 0);
1261 }
1262
1263 hrtick_update(rq);
1264 }
1265
1266 /*
1267 * The dequeue_task method is called before nr_running is
1268 * decreased. We remove the task from the rbtree and
1269 * update the fair scheduling stats:
1270 */
1271 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1272 {
1273 struct cfs_rq *cfs_rq;
1274 struct sched_entity *se = &p->se;
1275
1276 for_each_sched_entity(se) {
1277 cfs_rq = cfs_rq_of(se);
1278 dequeue_entity(cfs_rq, se, flags);
1279
1280 /* Don't dequeue parent if it has other entities besides us */
1281 if (cfs_rq->load.weight)
1282 break;
1283 flags |= DEQUEUE_SLEEP;
1284 }
1285
1286 for_each_sched_entity(se) {
1287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1288
1289 update_cfs_load(cfs_rq, 0);
1290 update_cfs_shares(cfs_rq, 0);
1291 }
1292
1293 hrtick_update(rq);
1294 }
1295
1296 /*
1297 * sched_yield() support is very simple - we dequeue and enqueue.
1298 *
1299 * If compat_yield is turned on then we requeue to the end of the tree.
1300 */
1301 static void yield_task_fair(struct rq *rq)
1302 {
1303 struct task_struct *curr = rq->curr;
1304 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1305 struct sched_entity *rightmost, *se = &curr->se;
1306
1307 /*
1308 * Are we the only task in the tree?
1309 */
1310 if (unlikely(cfs_rq->nr_running == 1))
1311 return;
1312
1313 clear_buddies(cfs_rq, se);
1314
1315 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1316 update_rq_clock(rq);
1317 /*
1318 * Update run-time statistics of the 'current'.
1319 */
1320 update_curr(cfs_rq);
1321
1322 return;
1323 }
1324 /*
1325 * Find the rightmost entry in the rbtree:
1326 */
1327 rightmost = __pick_last_entity(cfs_rq);
1328 /*
1329 * Already in the rightmost position?
1330 */
1331 if (unlikely(!rightmost || entity_before(rightmost, se)))
1332 return;
1333
1334 /*
1335 * Minimally necessary key value to be last in the tree:
1336 * Upon rescheduling, sched_class::put_prev_task() will place
1337 * 'current' within the tree based on its new key value.
1338 */
1339 se->vruntime = rightmost->vruntime + 1;
1340 }
1341
1342 #ifdef CONFIG_SMP
1343
1344 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1345 {
1346 struct sched_entity *se = &p->se;
1347 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1348
1349 se->vruntime -= cfs_rq->min_vruntime;
1350 }
1351
1352 #ifdef CONFIG_FAIR_GROUP_SCHED
1353 /*
1354 * effective_load() calculates the load change as seen from the root_task_group
1355 *
1356 * Adding load to a group doesn't make a group heavier, but can cause movement
1357 * of group shares between cpus. Assuming the shares were perfectly aligned one
1358 * can calculate the shift in shares.
1359 */
1360 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1361 {
1362 struct sched_entity *se = tg->se[cpu];
1363
1364 if (!tg->parent)
1365 return wl;
1366
1367 for_each_sched_entity(se) {
1368 long lw, w;
1369
1370 tg = se->my_q->tg;
1371 w = se->my_q->load.weight;
1372
1373 /* use this cpu's instantaneous contribution */
1374 lw = atomic_read(&tg->load_weight);
1375 lw -= se->my_q->load_contribution;
1376 lw += w + wg;
1377
1378 wl += w;
1379
1380 if (lw > 0 && wl < lw)
1381 wl = (wl * tg->shares) / lw;
1382 else
1383 wl = tg->shares;
1384
1385 /* zero point is MIN_SHARES */
1386 if (wl < MIN_SHARES)
1387 wl = MIN_SHARES;
1388 wl -= se->load.weight;
1389 wg = 0;
1390 }
1391
1392 return wl;
1393 }
1394
1395 #else
1396
1397 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1398 unsigned long wl, unsigned long wg)
1399 {
1400 return wl;
1401 }
1402
1403 #endif
1404
1405 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1406 {
1407 unsigned long this_load, load;
1408 int idx, this_cpu, prev_cpu;
1409 unsigned long tl_per_task;
1410 struct task_group *tg;
1411 unsigned long weight;
1412 int balanced;
1413
1414 idx = sd->wake_idx;
1415 this_cpu = smp_processor_id();
1416 prev_cpu = task_cpu(p);
1417 load = source_load(prev_cpu, idx);
1418 this_load = target_load(this_cpu, idx);
1419
1420 /*
1421 * If sync wakeup then subtract the (maximum possible)
1422 * effect of the currently running task from the load
1423 * of the current CPU:
1424 */
1425 rcu_read_lock();
1426 if (sync) {
1427 tg = task_group(current);
1428 weight = current->se.load.weight;
1429
1430 this_load += effective_load(tg, this_cpu, -weight, -weight);
1431 load += effective_load(tg, prev_cpu, 0, -weight);
1432 }
1433
1434 tg = task_group(p);
1435 weight = p->se.load.weight;
1436
1437 /*
1438 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1439 * due to the sync cause above having dropped this_load to 0, we'll
1440 * always have an imbalance, but there's really nothing you can do
1441 * about that, so that's good too.
1442 *
1443 * Otherwise check if either cpus are near enough in load to allow this
1444 * task to be woken on this_cpu.
1445 */
1446 if (this_load) {
1447 unsigned long this_eff_load, prev_eff_load;
1448
1449 this_eff_load = 100;
1450 this_eff_load *= power_of(prev_cpu);
1451 this_eff_load *= this_load +
1452 effective_load(tg, this_cpu, weight, weight);
1453
1454 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1455 prev_eff_load *= power_of(this_cpu);
1456 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1457
1458 balanced = this_eff_load <= prev_eff_load;
1459 } else
1460 balanced = true;
1461 rcu_read_unlock();
1462
1463 /*
1464 * If the currently running task will sleep within
1465 * a reasonable amount of time then attract this newly
1466 * woken task:
1467 */
1468 if (sync && balanced)
1469 return 1;
1470
1471 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1472 tl_per_task = cpu_avg_load_per_task(this_cpu);
1473
1474 if (balanced ||
1475 (this_load <= load &&
1476 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1477 /*
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1481 */
1482 schedstat_inc(sd, ttwu_move_affine);
1483 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1484
1485 return 1;
1486 }
1487 return 0;
1488 }
1489
1490 /*
1491 * find_idlest_group finds and returns the least busy CPU group within the
1492 * domain.
1493 */
1494 static struct sched_group *
1495 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1496 int this_cpu, int load_idx)
1497 {
1498 struct sched_group *idlest = NULL, *group = sd->groups;
1499 unsigned long min_load = ULONG_MAX, this_load = 0;
1500 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1501
1502 do {
1503 unsigned long load, avg_load;
1504 int local_group;
1505 int i;
1506
1507 /* Skip over this group if it has no CPUs allowed */
1508 if (!cpumask_intersects(sched_group_cpus(group),
1509 &p->cpus_allowed))
1510 continue;
1511
1512 local_group = cpumask_test_cpu(this_cpu,
1513 sched_group_cpus(group));
1514
1515 /* Tally up the load of all CPUs in the group */
1516 avg_load = 0;
1517
1518 for_each_cpu(i, sched_group_cpus(group)) {
1519 /* Bias balancing toward cpus of our domain */
1520 if (local_group)
1521 load = source_load(i, load_idx);
1522 else
1523 load = target_load(i, load_idx);
1524
1525 avg_load += load;
1526 }
1527
1528 /* Adjust by relative CPU power of the group */
1529 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1530
1531 if (local_group) {
1532 this_load = avg_load;
1533 } else if (avg_load < min_load) {
1534 min_load = avg_load;
1535 idlest = group;
1536 }
1537 } while (group = group->next, group != sd->groups);
1538
1539 if (!idlest || 100*this_load < imbalance*min_load)
1540 return NULL;
1541 return idlest;
1542 }
1543
1544 /*
1545 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1546 */
1547 static int
1548 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1549 {
1550 unsigned long load, min_load = ULONG_MAX;
1551 int idlest = -1;
1552 int i;
1553
1554 /* Traverse only the allowed CPUs */
1555 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1556 load = weighted_cpuload(i);
1557
1558 if (load < min_load || (load == min_load && i == this_cpu)) {
1559 min_load = load;
1560 idlest = i;
1561 }
1562 }
1563
1564 return idlest;
1565 }
1566
1567 /*
1568 * Try and locate an idle CPU in the sched_domain.
1569 */
1570 static int select_idle_sibling(struct task_struct *p, int target)
1571 {
1572 int cpu = smp_processor_id();
1573 int prev_cpu = task_cpu(p);
1574 struct sched_domain *sd;
1575 int i;
1576
1577 /*
1578 * If the task is going to be woken-up on this cpu and if it is
1579 * already idle, then it is the right target.
1580 */
1581 if (target == cpu && idle_cpu(cpu))
1582 return cpu;
1583
1584 /*
1585 * If the task is going to be woken-up on the cpu where it previously
1586 * ran and if it is currently idle, then it the right target.
1587 */
1588 if (target == prev_cpu && idle_cpu(prev_cpu))
1589 return prev_cpu;
1590
1591 /*
1592 * Otherwise, iterate the domains and find an elegible idle cpu.
1593 */
1594 for_each_domain(target, sd) {
1595 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1596 break;
1597
1598 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1599 if (idle_cpu(i)) {
1600 target = i;
1601 break;
1602 }
1603 }
1604
1605 /*
1606 * Lets stop looking for an idle sibling when we reached
1607 * the domain that spans the current cpu and prev_cpu.
1608 */
1609 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1610 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1611 break;
1612 }
1613
1614 return target;
1615 }
1616
1617 /*
1618 * sched_balance_self: balance the current task (running on cpu) in domains
1619 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1620 * SD_BALANCE_EXEC.
1621 *
1622 * Balance, ie. select the least loaded group.
1623 *
1624 * Returns the target CPU number, or the same CPU if no balancing is needed.
1625 *
1626 * preempt must be disabled.
1627 */
1628 static int
1629 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1630 {
1631 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1632 int cpu = smp_processor_id();
1633 int prev_cpu = task_cpu(p);
1634 int new_cpu = cpu;
1635 int want_affine = 0;
1636 int want_sd = 1;
1637 int sync = wake_flags & WF_SYNC;
1638
1639 if (sd_flag & SD_BALANCE_WAKE) {
1640 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1641 want_affine = 1;
1642 new_cpu = prev_cpu;
1643 }
1644
1645 for_each_domain(cpu, tmp) {
1646 if (!(tmp->flags & SD_LOAD_BALANCE))
1647 continue;
1648
1649 /*
1650 * If power savings logic is enabled for a domain, see if we
1651 * are not overloaded, if so, don't balance wider.
1652 */
1653 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1654 unsigned long power = 0;
1655 unsigned long nr_running = 0;
1656 unsigned long capacity;
1657 int i;
1658
1659 for_each_cpu(i, sched_domain_span(tmp)) {
1660 power += power_of(i);
1661 nr_running += cpu_rq(i)->cfs.nr_running;
1662 }
1663
1664 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1665
1666 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1667 nr_running /= 2;
1668
1669 if (nr_running < capacity)
1670 want_sd = 0;
1671 }
1672
1673 /*
1674 * If both cpu and prev_cpu are part of this domain,
1675 * cpu is a valid SD_WAKE_AFFINE target.
1676 */
1677 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1678 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1679 affine_sd = tmp;
1680 want_affine = 0;
1681 }
1682
1683 if (!want_sd && !want_affine)
1684 break;
1685
1686 if (!(tmp->flags & sd_flag))
1687 continue;
1688
1689 if (want_sd)
1690 sd = tmp;
1691 }
1692
1693 if (affine_sd) {
1694 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1695 return select_idle_sibling(p, cpu);
1696 else
1697 return select_idle_sibling(p, prev_cpu);
1698 }
1699
1700 while (sd) {
1701 int load_idx = sd->forkexec_idx;
1702 struct sched_group *group;
1703 int weight;
1704
1705 if (!(sd->flags & sd_flag)) {
1706 sd = sd->child;
1707 continue;
1708 }
1709
1710 if (sd_flag & SD_BALANCE_WAKE)
1711 load_idx = sd->wake_idx;
1712
1713 group = find_idlest_group(sd, p, cpu, load_idx);
1714 if (!group) {
1715 sd = sd->child;
1716 continue;
1717 }
1718
1719 new_cpu = find_idlest_cpu(group, p, cpu);
1720 if (new_cpu == -1 || new_cpu == cpu) {
1721 /* Now try balancing at a lower domain level of cpu */
1722 sd = sd->child;
1723 continue;
1724 }
1725
1726 /* Now try balancing at a lower domain level of new_cpu */
1727 cpu = new_cpu;
1728 weight = sd->span_weight;
1729 sd = NULL;
1730 for_each_domain(cpu, tmp) {
1731 if (weight <= tmp->span_weight)
1732 break;
1733 if (tmp->flags & sd_flag)
1734 sd = tmp;
1735 }
1736 /* while loop will break here if sd == NULL */
1737 }
1738
1739 return new_cpu;
1740 }
1741 #endif /* CONFIG_SMP */
1742
1743 static unsigned long
1744 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1745 {
1746 unsigned long gran = sysctl_sched_wakeup_granularity;
1747
1748 /*
1749 * Since its curr running now, convert the gran from real-time
1750 * to virtual-time in his units.
1751 *
1752 * By using 'se' instead of 'curr' we penalize light tasks, so
1753 * they get preempted easier. That is, if 'se' < 'curr' then
1754 * the resulting gran will be larger, therefore penalizing the
1755 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1756 * be smaller, again penalizing the lighter task.
1757 *
1758 * This is especially important for buddies when the leftmost
1759 * task is higher priority than the buddy.
1760 */
1761 if (unlikely(se->load.weight != NICE_0_LOAD))
1762 gran = calc_delta_fair(gran, se);
1763
1764 return gran;
1765 }
1766
1767 /*
1768 * Should 'se' preempt 'curr'.
1769 *
1770 * |s1
1771 * |s2
1772 * |s3
1773 * g
1774 * |<--->|c
1775 *
1776 * w(c, s1) = -1
1777 * w(c, s2) = 0
1778 * w(c, s3) = 1
1779 *
1780 */
1781 static int
1782 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1783 {
1784 s64 gran, vdiff = curr->vruntime - se->vruntime;
1785
1786 if (vdiff <= 0)
1787 return -1;
1788
1789 gran = wakeup_gran(curr, se);
1790 if (vdiff > gran)
1791 return 1;
1792
1793 return 0;
1794 }
1795
1796 static void set_last_buddy(struct sched_entity *se)
1797 {
1798 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1799 for_each_sched_entity(se)
1800 cfs_rq_of(se)->last = se;
1801 }
1802 }
1803
1804 static void set_next_buddy(struct sched_entity *se)
1805 {
1806 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1807 for_each_sched_entity(se)
1808 cfs_rq_of(se)->next = se;
1809 }
1810 }
1811
1812 /*
1813 * Preempt the current task with a newly woken task if needed:
1814 */
1815 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1816 {
1817 struct task_struct *curr = rq->curr;
1818 struct sched_entity *se = &curr->se, *pse = &p->se;
1819 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1820 int scale = cfs_rq->nr_running >= sched_nr_latency;
1821
1822 if (unlikely(se == pse))
1823 return;
1824
1825 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1826 set_next_buddy(pse);
1827
1828 /*
1829 * We can come here with TIF_NEED_RESCHED already set from new task
1830 * wake up path.
1831 */
1832 if (test_tsk_need_resched(curr))
1833 return;
1834
1835 /*
1836 * Batch and idle tasks do not preempt (their preemption is driven by
1837 * the tick):
1838 */
1839 if (unlikely(p->policy != SCHED_NORMAL))
1840 return;
1841
1842 /* Idle tasks are by definition preempted by everybody. */
1843 if (unlikely(curr->policy == SCHED_IDLE))
1844 goto preempt;
1845
1846 if (!sched_feat(WAKEUP_PREEMPT))
1847 return;
1848
1849 update_curr(cfs_rq);
1850 find_matching_se(&se, &pse);
1851 BUG_ON(!pse);
1852 if (wakeup_preempt_entity(se, pse) == 1)
1853 goto preempt;
1854
1855 return;
1856
1857 preempt:
1858 resched_task(curr);
1859 /*
1860 * Only set the backward buddy when the current task is still
1861 * on the rq. This can happen when a wakeup gets interleaved
1862 * with schedule on the ->pre_schedule() or idle_balance()
1863 * point, either of which can * drop the rq lock.
1864 *
1865 * Also, during early boot the idle thread is in the fair class,
1866 * for obvious reasons its a bad idea to schedule back to it.
1867 */
1868 if (unlikely(!se->on_rq || curr == rq->idle))
1869 return;
1870
1871 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1872 set_last_buddy(se);
1873 }
1874
1875 static struct task_struct *pick_next_task_fair(struct rq *rq)
1876 {
1877 struct task_struct *p;
1878 struct cfs_rq *cfs_rq = &rq->cfs;
1879 struct sched_entity *se;
1880
1881 if (!cfs_rq->nr_running)
1882 return NULL;
1883
1884 do {
1885 se = pick_next_entity(cfs_rq);
1886 set_next_entity(cfs_rq, se);
1887 cfs_rq = group_cfs_rq(se);
1888 } while (cfs_rq);
1889
1890 p = task_of(se);
1891 hrtick_start_fair(rq, p);
1892
1893 return p;
1894 }
1895
1896 /*
1897 * Account for a descheduled task:
1898 */
1899 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1900 {
1901 struct sched_entity *se = &prev->se;
1902 struct cfs_rq *cfs_rq;
1903
1904 for_each_sched_entity(se) {
1905 cfs_rq = cfs_rq_of(se);
1906 put_prev_entity(cfs_rq, se);
1907 }
1908 }
1909
1910 #ifdef CONFIG_SMP
1911 /**************************************************
1912 * Fair scheduling class load-balancing methods:
1913 */
1914
1915 /*
1916 * pull_task - move a task from a remote runqueue to the local runqueue.
1917 * Both runqueues must be locked.
1918 */
1919 static void pull_task(struct rq *src_rq, struct task_struct *p,
1920 struct rq *this_rq, int this_cpu)
1921 {
1922 deactivate_task(src_rq, p, 0);
1923 set_task_cpu(p, this_cpu);
1924 activate_task(this_rq, p, 0);
1925 check_preempt_curr(this_rq, p, 0);
1926 }
1927
1928 /*
1929 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1930 */
1931 static
1932 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1933 struct sched_domain *sd, enum cpu_idle_type idle,
1934 int *all_pinned)
1935 {
1936 int tsk_cache_hot = 0;
1937 /*
1938 * We do not migrate tasks that are:
1939 * 1) running (obviously), or
1940 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1941 * 3) are cache-hot on their current CPU.
1942 */
1943 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1944 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1945 return 0;
1946 }
1947 *all_pinned = 0;
1948
1949 if (task_running(rq, p)) {
1950 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1951 return 0;
1952 }
1953
1954 /*
1955 * Aggressive migration if:
1956 * 1) task is cache cold, or
1957 * 2) too many balance attempts have failed.
1958 */
1959
1960 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1961 if (!tsk_cache_hot ||
1962 sd->nr_balance_failed > sd->cache_nice_tries) {
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (tsk_cache_hot) {
1965 schedstat_inc(sd, lb_hot_gained[idle]);
1966 schedstat_inc(p, se.statistics.nr_forced_migrations);
1967 }
1968 #endif
1969 return 1;
1970 }
1971
1972 if (tsk_cache_hot) {
1973 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1974 return 0;
1975 }
1976 return 1;
1977 }
1978
1979 /*
1980 * move_one_task tries to move exactly one task from busiest to this_rq, as
1981 * part of active balancing operations within "domain".
1982 * Returns 1 if successful and 0 otherwise.
1983 *
1984 * Called with both runqueues locked.
1985 */
1986 static int
1987 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1988 struct sched_domain *sd, enum cpu_idle_type idle)
1989 {
1990 struct task_struct *p, *n;
1991 struct cfs_rq *cfs_rq;
1992 int pinned = 0;
1993
1994 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1995 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1996
1997 if (!can_migrate_task(p, busiest, this_cpu,
1998 sd, idle, &pinned))
1999 continue;
2000
2001 pull_task(busiest, p, this_rq, this_cpu);
2002 /*
2003 * Right now, this is only the second place pull_task()
2004 * is called, so we can safely collect pull_task()
2005 * stats here rather than inside pull_task().
2006 */
2007 schedstat_inc(sd, lb_gained[idle]);
2008 return 1;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 static unsigned long
2016 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2017 unsigned long max_load_move, struct sched_domain *sd,
2018 enum cpu_idle_type idle, int *all_pinned,
2019 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2020 {
2021 int loops = 0, pulled = 0, pinned = 0;
2022 long rem_load_move = max_load_move;
2023 struct task_struct *p, *n;
2024
2025 if (max_load_move == 0)
2026 goto out;
2027
2028 pinned = 1;
2029
2030 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2031 if (loops++ > sysctl_sched_nr_migrate)
2032 break;
2033
2034 if ((p->se.load.weight >> 1) > rem_load_move ||
2035 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2036 continue;
2037
2038 pull_task(busiest, p, this_rq, this_cpu);
2039 pulled++;
2040 rem_load_move -= p->se.load.weight;
2041
2042 #ifdef CONFIG_PREEMPT
2043 /*
2044 * NEWIDLE balancing is a source of latency, so preemptible
2045 * kernels will stop after the first task is pulled to minimize
2046 * the critical section.
2047 */
2048 if (idle == CPU_NEWLY_IDLE)
2049 break;
2050 #endif
2051
2052 /*
2053 * We only want to steal up to the prescribed amount of
2054 * weighted load.
2055 */
2056 if (rem_load_move <= 0)
2057 break;
2058
2059 if (p->prio < *this_best_prio)
2060 *this_best_prio = p->prio;
2061 }
2062 out:
2063 /*
2064 * Right now, this is one of only two places pull_task() is called,
2065 * so we can safely collect pull_task() stats here rather than
2066 * inside pull_task().
2067 */
2068 schedstat_add(sd, lb_gained[idle], pulled);
2069
2070 if (all_pinned)
2071 *all_pinned = pinned;
2072
2073 return max_load_move - rem_load_move;
2074 }
2075
2076 #ifdef CONFIG_FAIR_GROUP_SCHED
2077 /*
2078 * update tg->load_weight by folding this cpu's load_avg
2079 */
2080 static int update_shares_cpu(struct task_group *tg, int cpu)
2081 {
2082 struct cfs_rq *cfs_rq;
2083 unsigned long flags;
2084 struct rq *rq;
2085
2086 if (!tg->se[cpu])
2087 return 0;
2088
2089 rq = cpu_rq(cpu);
2090 cfs_rq = tg->cfs_rq[cpu];
2091
2092 raw_spin_lock_irqsave(&rq->lock, flags);
2093
2094 update_rq_clock(rq);
2095 update_cfs_load(cfs_rq, 1);
2096
2097 /*
2098 * We need to update shares after updating tg->load_weight in
2099 * order to adjust the weight of groups with long running tasks.
2100 */
2101 update_cfs_shares(cfs_rq, 0);
2102
2103 raw_spin_unlock_irqrestore(&rq->lock, flags);
2104
2105 return 0;
2106 }
2107
2108 static void update_shares(int cpu)
2109 {
2110 struct cfs_rq *cfs_rq;
2111 struct rq *rq = cpu_rq(cpu);
2112
2113 rcu_read_lock();
2114 for_each_leaf_cfs_rq(rq, cfs_rq)
2115 update_shares_cpu(cfs_rq->tg, cpu);
2116 rcu_read_unlock();
2117 }
2118
2119 static unsigned long
2120 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2121 unsigned long max_load_move,
2122 struct sched_domain *sd, enum cpu_idle_type idle,
2123 int *all_pinned, int *this_best_prio)
2124 {
2125 long rem_load_move = max_load_move;
2126 int busiest_cpu = cpu_of(busiest);
2127 struct task_group *tg;
2128
2129 rcu_read_lock();
2130 update_h_load(busiest_cpu);
2131
2132 list_for_each_entry_rcu(tg, &task_groups, list) {
2133 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2134 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2135 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2136 u64 rem_load, moved_load;
2137
2138 /*
2139 * empty group
2140 */
2141 if (!busiest_cfs_rq->task_weight)
2142 continue;
2143
2144 rem_load = (u64)rem_load_move * busiest_weight;
2145 rem_load = div_u64(rem_load, busiest_h_load + 1);
2146
2147 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2148 rem_load, sd, idle, all_pinned, this_best_prio,
2149 busiest_cfs_rq);
2150
2151 if (!moved_load)
2152 continue;
2153
2154 moved_load *= busiest_h_load;
2155 moved_load = div_u64(moved_load, busiest_weight + 1);
2156
2157 rem_load_move -= moved_load;
2158 if (rem_load_move < 0)
2159 break;
2160 }
2161 rcu_read_unlock();
2162
2163 return max_load_move - rem_load_move;
2164 }
2165 #else
2166 static inline void update_shares(int cpu)
2167 {
2168 }
2169
2170 static unsigned long
2171 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2172 unsigned long max_load_move,
2173 struct sched_domain *sd, enum cpu_idle_type idle,
2174 int *all_pinned, int *this_best_prio)
2175 {
2176 return balance_tasks(this_rq, this_cpu, busiest,
2177 max_load_move, sd, idle, all_pinned,
2178 this_best_prio, &busiest->cfs);
2179 }
2180 #endif
2181
2182 /*
2183 * move_tasks tries to move up to max_load_move weighted load from busiest to
2184 * this_rq, as part of a balancing operation within domain "sd".
2185 * Returns 1 if successful and 0 otherwise.
2186 *
2187 * Called with both runqueues locked.
2188 */
2189 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2190 unsigned long max_load_move,
2191 struct sched_domain *sd, enum cpu_idle_type idle,
2192 int *all_pinned)
2193 {
2194 unsigned long total_load_moved = 0, load_moved;
2195 int this_best_prio = this_rq->curr->prio;
2196
2197 do {
2198 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2199 max_load_move - total_load_moved,
2200 sd, idle, all_pinned, &this_best_prio);
2201
2202 total_load_moved += load_moved;
2203
2204 #ifdef CONFIG_PREEMPT
2205 /*
2206 * NEWIDLE balancing is a source of latency, so preemptible
2207 * kernels will stop after the first task is pulled to minimize
2208 * the critical section.
2209 */
2210 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2211 break;
2212
2213 if (raw_spin_is_contended(&this_rq->lock) ||
2214 raw_spin_is_contended(&busiest->lock))
2215 break;
2216 #endif
2217 } while (load_moved && max_load_move > total_load_moved);
2218
2219 return total_load_moved > 0;
2220 }
2221
2222 /********** Helpers for find_busiest_group ************************/
2223 /*
2224 * sd_lb_stats - Structure to store the statistics of a sched_domain
2225 * during load balancing.
2226 */
2227 struct sd_lb_stats {
2228 struct sched_group *busiest; /* Busiest group in this sd */
2229 struct sched_group *this; /* Local group in this sd */
2230 unsigned long total_load; /* Total load of all groups in sd */
2231 unsigned long total_pwr; /* Total power of all groups in sd */
2232 unsigned long avg_load; /* Average load across all groups in sd */
2233
2234 /** Statistics of this group */
2235 unsigned long this_load;
2236 unsigned long this_load_per_task;
2237 unsigned long this_nr_running;
2238 unsigned long this_has_capacity;
2239 unsigned int this_idle_cpus;
2240
2241 /* Statistics of the busiest group */
2242 unsigned int busiest_idle_cpus;
2243 unsigned long max_load;
2244 unsigned long busiest_load_per_task;
2245 unsigned long busiest_nr_running;
2246 unsigned long busiest_group_capacity;
2247 unsigned long busiest_has_capacity;
2248 unsigned int busiest_group_weight;
2249
2250 int group_imb; /* Is there imbalance in this sd */
2251 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2252 int power_savings_balance; /* Is powersave balance needed for this sd */
2253 struct sched_group *group_min; /* Least loaded group in sd */
2254 struct sched_group *group_leader; /* Group which relieves group_min */
2255 unsigned long min_load_per_task; /* load_per_task in group_min */
2256 unsigned long leader_nr_running; /* Nr running of group_leader */
2257 unsigned long min_nr_running; /* Nr running of group_min */
2258 #endif
2259 };
2260
2261 /*
2262 * sg_lb_stats - stats of a sched_group required for load_balancing
2263 */
2264 struct sg_lb_stats {
2265 unsigned long avg_load; /*Avg load across the CPUs of the group */
2266 unsigned long group_load; /* Total load over the CPUs of the group */
2267 unsigned long sum_nr_running; /* Nr tasks running in the group */
2268 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2269 unsigned long group_capacity;
2270 unsigned long idle_cpus;
2271 unsigned long group_weight;
2272 int group_imb; /* Is there an imbalance in the group ? */
2273 int group_has_capacity; /* Is there extra capacity in the group? */
2274 };
2275
2276 /**
2277 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2278 * @group: The group whose first cpu is to be returned.
2279 */
2280 static inline unsigned int group_first_cpu(struct sched_group *group)
2281 {
2282 return cpumask_first(sched_group_cpus(group));
2283 }
2284
2285 /**
2286 * get_sd_load_idx - Obtain the load index for a given sched domain.
2287 * @sd: The sched_domain whose load_idx is to be obtained.
2288 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2289 */
2290 static inline int get_sd_load_idx(struct sched_domain *sd,
2291 enum cpu_idle_type idle)
2292 {
2293 int load_idx;
2294
2295 switch (idle) {
2296 case CPU_NOT_IDLE:
2297 load_idx = sd->busy_idx;
2298 break;
2299
2300 case CPU_NEWLY_IDLE:
2301 load_idx = sd->newidle_idx;
2302 break;
2303 default:
2304 load_idx = sd->idle_idx;
2305 break;
2306 }
2307
2308 return load_idx;
2309 }
2310
2311
2312 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2313 /**
2314 * init_sd_power_savings_stats - Initialize power savings statistics for
2315 * the given sched_domain, during load balancing.
2316 *
2317 * @sd: Sched domain whose power-savings statistics are to be initialized.
2318 * @sds: Variable containing the statistics for sd.
2319 * @idle: Idle status of the CPU at which we're performing load-balancing.
2320 */
2321 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2322 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2323 {
2324 /*
2325 * Busy processors will not participate in power savings
2326 * balance.
2327 */
2328 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2329 sds->power_savings_balance = 0;
2330 else {
2331 sds->power_savings_balance = 1;
2332 sds->min_nr_running = ULONG_MAX;
2333 sds->leader_nr_running = 0;
2334 }
2335 }
2336
2337 /**
2338 * update_sd_power_savings_stats - Update the power saving stats for a
2339 * sched_domain while performing load balancing.
2340 *
2341 * @group: sched_group belonging to the sched_domain under consideration.
2342 * @sds: Variable containing the statistics of the sched_domain
2343 * @local_group: Does group contain the CPU for which we're performing
2344 * load balancing ?
2345 * @sgs: Variable containing the statistics of the group.
2346 */
2347 static inline void update_sd_power_savings_stats(struct sched_group *group,
2348 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2349 {
2350
2351 if (!sds->power_savings_balance)
2352 return;
2353
2354 /*
2355 * If the local group is idle or completely loaded
2356 * no need to do power savings balance at this domain
2357 */
2358 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2359 !sds->this_nr_running))
2360 sds->power_savings_balance = 0;
2361
2362 /*
2363 * If a group is already running at full capacity or idle,
2364 * don't include that group in power savings calculations
2365 */
2366 if (!sds->power_savings_balance ||
2367 sgs->sum_nr_running >= sgs->group_capacity ||
2368 !sgs->sum_nr_running)
2369 return;
2370
2371 /*
2372 * Calculate the group which has the least non-idle load.
2373 * This is the group from where we need to pick up the load
2374 * for saving power
2375 */
2376 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2377 (sgs->sum_nr_running == sds->min_nr_running &&
2378 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2379 sds->group_min = group;
2380 sds->min_nr_running = sgs->sum_nr_running;
2381 sds->min_load_per_task = sgs->sum_weighted_load /
2382 sgs->sum_nr_running;
2383 }
2384
2385 /*
2386 * Calculate the group which is almost near its
2387 * capacity but still has some space to pick up some load
2388 * from other group and save more power
2389 */
2390 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2391 return;
2392
2393 if (sgs->sum_nr_running > sds->leader_nr_running ||
2394 (sgs->sum_nr_running == sds->leader_nr_running &&
2395 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2396 sds->group_leader = group;
2397 sds->leader_nr_running = sgs->sum_nr_running;
2398 }
2399 }
2400
2401 /**
2402 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2403 * @sds: Variable containing the statistics of the sched_domain
2404 * under consideration.
2405 * @this_cpu: Cpu at which we're currently performing load-balancing.
2406 * @imbalance: Variable to store the imbalance.
2407 *
2408 * Description:
2409 * Check if we have potential to perform some power-savings balance.
2410 * If yes, set the busiest group to be the least loaded group in the
2411 * sched_domain, so that it's CPUs can be put to idle.
2412 *
2413 * Returns 1 if there is potential to perform power-savings balance.
2414 * Else returns 0.
2415 */
2416 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2417 int this_cpu, unsigned long *imbalance)
2418 {
2419 if (!sds->power_savings_balance)
2420 return 0;
2421
2422 if (sds->this != sds->group_leader ||
2423 sds->group_leader == sds->group_min)
2424 return 0;
2425
2426 *imbalance = sds->min_load_per_task;
2427 sds->busiest = sds->group_min;
2428
2429 return 1;
2430
2431 }
2432 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2433 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2434 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2435 {
2436 return;
2437 }
2438
2439 static inline void update_sd_power_savings_stats(struct sched_group *group,
2440 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2441 {
2442 return;
2443 }
2444
2445 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2446 int this_cpu, unsigned long *imbalance)
2447 {
2448 return 0;
2449 }
2450 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2451
2452
2453 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2454 {
2455 return SCHED_LOAD_SCALE;
2456 }
2457
2458 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2459 {
2460 return default_scale_freq_power(sd, cpu);
2461 }
2462
2463 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2464 {
2465 unsigned long weight = sd->span_weight;
2466 unsigned long smt_gain = sd->smt_gain;
2467
2468 smt_gain /= weight;
2469
2470 return smt_gain;
2471 }
2472
2473 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2474 {
2475 return default_scale_smt_power(sd, cpu);
2476 }
2477
2478 unsigned long scale_rt_power(int cpu)
2479 {
2480 struct rq *rq = cpu_rq(cpu);
2481 u64 total, available;
2482
2483 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2484
2485 if (unlikely(total < rq->rt_avg)) {
2486 /* Ensures that power won't end up being negative */
2487 available = 0;
2488 } else {
2489 available = total - rq->rt_avg;
2490 }
2491
2492 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2493 total = SCHED_LOAD_SCALE;
2494
2495 total >>= SCHED_LOAD_SHIFT;
2496
2497 return div_u64(available, total);
2498 }
2499
2500 static void update_cpu_power(struct sched_domain *sd, int cpu)
2501 {
2502 unsigned long weight = sd->span_weight;
2503 unsigned long power = SCHED_LOAD_SCALE;
2504 struct sched_group *sdg = sd->groups;
2505
2506 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2507 if (sched_feat(ARCH_POWER))
2508 power *= arch_scale_smt_power(sd, cpu);
2509 else
2510 power *= default_scale_smt_power(sd, cpu);
2511
2512 power >>= SCHED_LOAD_SHIFT;
2513 }
2514
2515 sdg->cpu_power_orig = power;
2516
2517 if (sched_feat(ARCH_POWER))
2518 power *= arch_scale_freq_power(sd, cpu);
2519 else
2520 power *= default_scale_freq_power(sd, cpu);
2521
2522 power >>= SCHED_LOAD_SHIFT;
2523
2524 power *= scale_rt_power(cpu);
2525 power >>= SCHED_LOAD_SHIFT;
2526
2527 if (!power)
2528 power = 1;
2529
2530 cpu_rq(cpu)->cpu_power = power;
2531 sdg->cpu_power = power;
2532 }
2533
2534 static void update_group_power(struct sched_domain *sd, int cpu)
2535 {
2536 struct sched_domain *child = sd->child;
2537 struct sched_group *group, *sdg = sd->groups;
2538 unsigned long power;
2539
2540 if (!child) {
2541 update_cpu_power(sd, cpu);
2542 return;
2543 }
2544
2545 power = 0;
2546
2547 group = child->groups;
2548 do {
2549 power += group->cpu_power;
2550 group = group->next;
2551 } while (group != child->groups);
2552
2553 sdg->cpu_power = power;
2554 }
2555
2556 /*
2557 * Try and fix up capacity for tiny siblings, this is needed when
2558 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2559 * which on its own isn't powerful enough.
2560 *
2561 * See update_sd_pick_busiest() and check_asym_packing().
2562 */
2563 static inline int
2564 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2565 {
2566 /*
2567 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2568 */
2569 if (sd->level != SD_LV_SIBLING)
2570 return 0;
2571
2572 /*
2573 * If ~90% of the cpu_power is still there, we're good.
2574 */
2575 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2576 return 1;
2577
2578 return 0;
2579 }
2580
2581 /**
2582 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2583 * @sd: The sched_domain whose statistics are to be updated.
2584 * @group: sched_group whose statistics are to be updated.
2585 * @this_cpu: Cpu for which load balance is currently performed.
2586 * @idle: Idle status of this_cpu
2587 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2588 * @sd_idle: Idle status of the sched_domain containing group.
2589 * @local_group: Does group contain this_cpu.
2590 * @cpus: Set of cpus considered for load balancing.
2591 * @balance: Should we balance.
2592 * @sgs: variable to hold the statistics for this group.
2593 */
2594 static inline void update_sg_lb_stats(struct sched_domain *sd,
2595 struct sched_group *group, int this_cpu,
2596 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2597 int local_group, const struct cpumask *cpus,
2598 int *balance, struct sg_lb_stats *sgs)
2599 {
2600 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2601 int i;
2602 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2603 unsigned long avg_load_per_task = 0;
2604
2605 if (local_group)
2606 balance_cpu = group_first_cpu(group);
2607
2608 /* Tally up the load of all CPUs in the group */
2609 max_cpu_load = 0;
2610 min_cpu_load = ~0UL;
2611 max_nr_running = 0;
2612
2613 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2614 struct rq *rq = cpu_rq(i);
2615
2616 if (*sd_idle && rq->nr_running)
2617 *sd_idle = 0;
2618
2619 /* Bias balancing toward cpus of our domain */
2620 if (local_group) {
2621 if (idle_cpu(i) && !first_idle_cpu) {
2622 first_idle_cpu = 1;
2623 balance_cpu = i;
2624 }
2625
2626 load = target_load(i, load_idx);
2627 } else {
2628 load = source_load(i, load_idx);
2629 if (load > max_cpu_load) {
2630 max_cpu_load = load;
2631 max_nr_running = rq->nr_running;
2632 }
2633 if (min_cpu_load > load)
2634 min_cpu_load = load;
2635 }
2636
2637 sgs->group_load += load;
2638 sgs->sum_nr_running += rq->nr_running;
2639 sgs->sum_weighted_load += weighted_cpuload(i);
2640 if (idle_cpu(i))
2641 sgs->idle_cpus++;
2642 }
2643
2644 /*
2645 * First idle cpu or the first cpu(busiest) in this sched group
2646 * is eligible for doing load balancing at this and above
2647 * domains. In the newly idle case, we will allow all the cpu's
2648 * to do the newly idle load balance.
2649 */
2650 if (idle != CPU_NEWLY_IDLE && local_group) {
2651 if (balance_cpu != this_cpu) {
2652 *balance = 0;
2653 return;
2654 }
2655 update_group_power(sd, this_cpu);
2656 }
2657
2658 /* Adjust by relative CPU power of the group */
2659 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2660
2661 /*
2662 * Consider the group unbalanced when the imbalance is larger
2663 * than the average weight of two tasks.
2664 *
2665 * APZ: with cgroup the avg task weight can vary wildly and
2666 * might not be a suitable number - should we keep a
2667 * normalized nr_running number somewhere that negates
2668 * the hierarchy?
2669 */
2670 if (sgs->sum_nr_running)
2671 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2672
2673 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2674 sgs->group_imb = 1;
2675
2676 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2677 if (!sgs->group_capacity)
2678 sgs->group_capacity = fix_small_capacity(sd, group);
2679 sgs->group_weight = group->group_weight;
2680
2681 if (sgs->group_capacity > sgs->sum_nr_running)
2682 sgs->group_has_capacity = 1;
2683 }
2684
2685 /**
2686 * update_sd_pick_busiest - return 1 on busiest group
2687 * @sd: sched_domain whose statistics are to be checked
2688 * @sds: sched_domain statistics
2689 * @sg: sched_group candidate to be checked for being the busiest
2690 * @sgs: sched_group statistics
2691 * @this_cpu: the current cpu
2692 *
2693 * Determine if @sg is a busier group than the previously selected
2694 * busiest group.
2695 */
2696 static bool update_sd_pick_busiest(struct sched_domain *sd,
2697 struct sd_lb_stats *sds,
2698 struct sched_group *sg,
2699 struct sg_lb_stats *sgs,
2700 int this_cpu)
2701 {
2702 if (sgs->avg_load <= sds->max_load)
2703 return false;
2704
2705 if (sgs->sum_nr_running > sgs->group_capacity)
2706 return true;
2707
2708 if (sgs->group_imb)
2709 return true;
2710
2711 /*
2712 * ASYM_PACKING needs to move all the work to the lowest
2713 * numbered CPUs in the group, therefore mark all groups
2714 * higher than ourself as busy.
2715 */
2716 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2717 this_cpu < group_first_cpu(sg)) {
2718 if (!sds->busiest)
2719 return true;
2720
2721 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2722 return true;
2723 }
2724
2725 return false;
2726 }
2727
2728 /**
2729 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2730 * @sd: sched_domain whose statistics are to be updated.
2731 * @this_cpu: Cpu for which load balance is currently performed.
2732 * @idle: Idle status of this_cpu
2733 * @sd_idle: Idle status of the sched_domain containing sg.
2734 * @cpus: Set of cpus considered for load balancing.
2735 * @balance: Should we balance.
2736 * @sds: variable to hold the statistics for this sched_domain.
2737 */
2738 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2739 enum cpu_idle_type idle, int *sd_idle,
2740 const struct cpumask *cpus, int *balance,
2741 struct sd_lb_stats *sds)
2742 {
2743 struct sched_domain *child = sd->child;
2744 struct sched_group *sg = sd->groups;
2745 struct sg_lb_stats sgs;
2746 int load_idx, prefer_sibling = 0;
2747
2748 if (child && child->flags & SD_PREFER_SIBLING)
2749 prefer_sibling = 1;
2750
2751 init_sd_power_savings_stats(sd, sds, idle);
2752 load_idx = get_sd_load_idx(sd, idle);
2753
2754 do {
2755 int local_group;
2756
2757 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2758 memset(&sgs, 0, sizeof(sgs));
2759 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2760 local_group, cpus, balance, &sgs);
2761
2762 if (local_group && !(*balance))
2763 return;
2764
2765 sds->total_load += sgs.group_load;
2766 sds->total_pwr += sg->cpu_power;
2767
2768 /*
2769 * In case the child domain prefers tasks go to siblings
2770 * first, lower the sg capacity to one so that we'll try
2771 * and move all the excess tasks away. We lower the capacity
2772 * of a group only if the local group has the capacity to fit
2773 * these excess tasks, i.e. nr_running < group_capacity. The
2774 * extra check prevents the case where you always pull from the
2775 * heaviest group when it is already under-utilized (possible
2776 * with a large weight task outweighs the tasks on the system).
2777 */
2778 if (prefer_sibling && !local_group && sds->this_has_capacity)
2779 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2780
2781 if (local_group) {
2782 sds->this_load = sgs.avg_load;
2783 sds->this = sg;
2784 sds->this_nr_running = sgs.sum_nr_running;
2785 sds->this_load_per_task = sgs.sum_weighted_load;
2786 sds->this_has_capacity = sgs.group_has_capacity;
2787 sds->this_idle_cpus = sgs.idle_cpus;
2788 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2789 sds->max_load = sgs.avg_load;
2790 sds->busiest = sg;
2791 sds->busiest_nr_running = sgs.sum_nr_running;
2792 sds->busiest_idle_cpus = sgs.idle_cpus;
2793 sds->busiest_group_capacity = sgs.group_capacity;
2794 sds->busiest_load_per_task = sgs.sum_weighted_load;
2795 sds->busiest_has_capacity = sgs.group_has_capacity;
2796 sds->busiest_group_weight = sgs.group_weight;
2797 sds->group_imb = sgs.group_imb;
2798 }
2799
2800 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2801 sg = sg->next;
2802 } while (sg != sd->groups);
2803 }
2804
2805 int __weak arch_sd_sibling_asym_packing(void)
2806 {
2807 return 0*SD_ASYM_PACKING;
2808 }
2809
2810 /**
2811 * check_asym_packing - Check to see if the group is packed into the
2812 * sched doman.
2813 *
2814 * This is primarily intended to used at the sibling level. Some
2815 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2816 * case of POWER7, it can move to lower SMT modes only when higher
2817 * threads are idle. When in lower SMT modes, the threads will
2818 * perform better since they share less core resources. Hence when we
2819 * have idle threads, we want them to be the higher ones.
2820 *
2821 * This packing function is run on idle threads. It checks to see if
2822 * the busiest CPU in this domain (core in the P7 case) has a higher
2823 * CPU number than the packing function is being run on. Here we are
2824 * assuming lower CPU number will be equivalent to lower a SMT thread
2825 * number.
2826 *
2827 * Returns 1 when packing is required and a task should be moved to
2828 * this CPU. The amount of the imbalance is returned in *imbalance.
2829 *
2830 * @sd: The sched_domain whose packing is to be checked.
2831 * @sds: Statistics of the sched_domain which is to be packed
2832 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2833 * @imbalance: returns amount of imbalanced due to packing.
2834 */
2835 static int check_asym_packing(struct sched_domain *sd,
2836 struct sd_lb_stats *sds,
2837 int this_cpu, unsigned long *imbalance)
2838 {
2839 int busiest_cpu;
2840
2841 if (!(sd->flags & SD_ASYM_PACKING))
2842 return 0;
2843
2844 if (!sds->busiest)
2845 return 0;
2846
2847 busiest_cpu = group_first_cpu(sds->busiest);
2848 if (this_cpu > busiest_cpu)
2849 return 0;
2850
2851 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2852 SCHED_LOAD_SCALE);
2853 return 1;
2854 }
2855
2856 /**
2857 * fix_small_imbalance - Calculate the minor imbalance that exists
2858 * amongst the groups of a sched_domain, during
2859 * load balancing.
2860 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2861 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2862 * @imbalance: Variable to store the imbalance.
2863 */
2864 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2865 int this_cpu, unsigned long *imbalance)
2866 {
2867 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2868 unsigned int imbn = 2;
2869 unsigned long scaled_busy_load_per_task;
2870
2871 if (sds->this_nr_running) {
2872 sds->this_load_per_task /= sds->this_nr_running;
2873 if (sds->busiest_load_per_task >
2874 sds->this_load_per_task)
2875 imbn = 1;
2876 } else
2877 sds->this_load_per_task =
2878 cpu_avg_load_per_task(this_cpu);
2879
2880 scaled_busy_load_per_task = sds->busiest_load_per_task
2881 * SCHED_LOAD_SCALE;
2882 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2883
2884 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2885 (scaled_busy_load_per_task * imbn)) {
2886 *imbalance = sds->busiest_load_per_task;
2887 return;
2888 }
2889
2890 /*
2891 * OK, we don't have enough imbalance to justify moving tasks,
2892 * however we may be able to increase total CPU power used by
2893 * moving them.
2894 */
2895
2896 pwr_now += sds->busiest->cpu_power *
2897 min(sds->busiest_load_per_task, sds->max_load);
2898 pwr_now += sds->this->cpu_power *
2899 min(sds->this_load_per_task, sds->this_load);
2900 pwr_now /= SCHED_LOAD_SCALE;
2901
2902 /* Amount of load we'd subtract */
2903 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2904 sds->busiest->cpu_power;
2905 if (sds->max_load > tmp)
2906 pwr_move += sds->busiest->cpu_power *
2907 min(sds->busiest_load_per_task, sds->max_load - tmp);
2908
2909 /* Amount of load we'd add */
2910 if (sds->max_load * sds->busiest->cpu_power <
2911 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2912 tmp = (sds->max_load * sds->busiest->cpu_power) /
2913 sds->this->cpu_power;
2914 else
2915 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2916 sds->this->cpu_power;
2917 pwr_move += sds->this->cpu_power *
2918 min(sds->this_load_per_task, sds->this_load + tmp);
2919 pwr_move /= SCHED_LOAD_SCALE;
2920
2921 /* Move if we gain throughput */
2922 if (pwr_move > pwr_now)
2923 *imbalance = sds->busiest_load_per_task;
2924 }
2925
2926 /**
2927 * calculate_imbalance - Calculate the amount of imbalance present within the
2928 * groups of a given sched_domain during load balance.
2929 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2930 * @this_cpu: Cpu for which currently load balance is being performed.
2931 * @imbalance: The variable to store the imbalance.
2932 */
2933 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2934 unsigned long *imbalance)
2935 {
2936 unsigned long max_pull, load_above_capacity = ~0UL;
2937
2938 sds->busiest_load_per_task /= sds->busiest_nr_running;
2939 if (sds->group_imb) {
2940 sds->busiest_load_per_task =
2941 min(sds->busiest_load_per_task, sds->avg_load);
2942 }
2943
2944 /*
2945 * In the presence of smp nice balancing, certain scenarios can have
2946 * max load less than avg load(as we skip the groups at or below
2947 * its cpu_power, while calculating max_load..)
2948 */
2949 if (sds->max_load < sds->avg_load) {
2950 *imbalance = 0;
2951 return fix_small_imbalance(sds, this_cpu, imbalance);
2952 }
2953
2954 if (!sds->group_imb) {
2955 /*
2956 * Don't want to pull so many tasks that a group would go idle.
2957 */
2958 load_above_capacity = (sds->busiest_nr_running -
2959 sds->busiest_group_capacity);
2960
2961 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2962
2963 load_above_capacity /= sds->busiest->cpu_power;
2964 }
2965
2966 /*
2967 * We're trying to get all the cpus to the average_load, so we don't
2968 * want to push ourselves above the average load, nor do we wish to
2969 * reduce the max loaded cpu below the average load. At the same time,
2970 * we also don't want to reduce the group load below the group capacity
2971 * (so that we can implement power-savings policies etc). Thus we look
2972 * for the minimum possible imbalance.
2973 * Be careful of negative numbers as they'll appear as very large values
2974 * with unsigned longs.
2975 */
2976 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2977
2978 /* How much load to actually move to equalise the imbalance */
2979 *imbalance = min(max_pull * sds->busiest->cpu_power,
2980 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2981 / SCHED_LOAD_SCALE;
2982
2983 /*
2984 * if *imbalance is less than the average load per runnable task
2985 * there is no gaurantee that any tasks will be moved so we'll have
2986 * a think about bumping its value to force at least one task to be
2987 * moved
2988 */
2989 if (*imbalance < sds->busiest_load_per_task)
2990 return fix_small_imbalance(sds, this_cpu, imbalance);
2991
2992 }
2993
2994 /******* find_busiest_group() helpers end here *********************/
2995
2996 /**
2997 * find_busiest_group - Returns the busiest group within the sched_domain
2998 * if there is an imbalance. If there isn't an imbalance, and
2999 * the user has opted for power-savings, it returns a group whose
3000 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3001 * such a group exists.
3002 *
3003 * Also calculates the amount of weighted load which should be moved
3004 * to restore balance.
3005 *
3006 * @sd: The sched_domain whose busiest group is to be returned.
3007 * @this_cpu: The cpu for which load balancing is currently being performed.
3008 * @imbalance: Variable which stores amount of weighted load which should
3009 * be moved to restore balance/put a group to idle.
3010 * @idle: The idle status of this_cpu.
3011 * @sd_idle: The idleness of sd
3012 * @cpus: The set of CPUs under consideration for load-balancing.
3013 * @balance: Pointer to a variable indicating if this_cpu
3014 * is the appropriate cpu to perform load balancing at this_level.
3015 *
3016 * Returns: - the busiest group if imbalance exists.
3017 * - If no imbalance and user has opted for power-savings balance,
3018 * return the least loaded group whose CPUs can be
3019 * put to idle by rebalancing its tasks onto our group.
3020 */
3021 static struct sched_group *
3022 find_busiest_group(struct sched_domain *sd, int this_cpu,
3023 unsigned long *imbalance, enum cpu_idle_type idle,
3024 int *sd_idle, const struct cpumask *cpus, int *balance)
3025 {
3026 struct sd_lb_stats sds;
3027
3028 memset(&sds, 0, sizeof(sds));
3029
3030 /*
3031 * Compute the various statistics relavent for load balancing at
3032 * this level.
3033 */
3034 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3035 balance, &sds);
3036
3037 /* Cases where imbalance does not exist from POV of this_cpu */
3038 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3039 * at this level.
3040 * 2) There is no busy sibling group to pull from.
3041 * 3) This group is the busiest group.
3042 * 4) This group is more busy than the avg busieness at this
3043 * sched_domain.
3044 * 5) The imbalance is within the specified limit.
3045 *
3046 * Note: when doing newidle balance, if the local group has excess
3047 * capacity (i.e. nr_running < group_capacity) and the busiest group
3048 * does not have any capacity, we force a load balance to pull tasks
3049 * to the local group. In this case, we skip past checks 3, 4 and 5.
3050 */
3051 if (!(*balance))
3052 goto ret;
3053
3054 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3055 check_asym_packing(sd, &sds, this_cpu, imbalance))
3056 return sds.busiest;
3057
3058 if (!sds.busiest || sds.busiest_nr_running == 0)
3059 goto out_balanced;
3060
3061 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3062 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3063 !sds.busiest_has_capacity)
3064 goto force_balance;
3065
3066 if (sds.this_load >= sds.max_load)
3067 goto out_balanced;
3068
3069 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3070
3071 if (sds.this_load >= sds.avg_load)
3072 goto out_balanced;
3073
3074 /*
3075 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3076 * And to check for busy balance use !idle_cpu instead of
3077 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3078 * even when they are idle.
3079 */
3080 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3081 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3082 goto out_balanced;
3083 } else {
3084 /*
3085 * This cpu is idle. If the busiest group load doesn't
3086 * have more tasks than the number of available cpu's and
3087 * there is no imbalance between this and busiest group
3088 * wrt to idle cpu's, it is balanced.
3089 */
3090 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3091 sds.busiest_nr_running <= sds.busiest_group_weight)
3092 goto out_balanced;
3093 }
3094
3095 force_balance:
3096 /* Looks like there is an imbalance. Compute it */
3097 calculate_imbalance(&sds, this_cpu, imbalance);
3098 return sds.busiest;
3099
3100 out_balanced:
3101 /*
3102 * There is no obvious imbalance. But check if we can do some balancing
3103 * to save power.
3104 */
3105 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3106 return sds.busiest;
3107 ret:
3108 *imbalance = 0;
3109 return NULL;
3110 }
3111
3112 /*
3113 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3114 */
3115 static struct rq *
3116 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3117 enum cpu_idle_type idle, unsigned long imbalance,
3118 const struct cpumask *cpus)
3119 {
3120 struct rq *busiest = NULL, *rq;
3121 unsigned long max_load = 0;
3122 int i;
3123
3124 for_each_cpu(i, sched_group_cpus(group)) {
3125 unsigned long power = power_of(i);
3126 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3127 unsigned long wl;
3128
3129 if (!capacity)
3130 capacity = fix_small_capacity(sd, group);
3131
3132 if (!cpumask_test_cpu(i, cpus))
3133 continue;
3134
3135 rq = cpu_rq(i);
3136 wl = weighted_cpuload(i);
3137
3138 /*
3139 * When comparing with imbalance, use weighted_cpuload()
3140 * which is not scaled with the cpu power.
3141 */
3142 if (capacity && rq->nr_running == 1 && wl > imbalance)
3143 continue;
3144
3145 /*
3146 * For the load comparisons with the other cpu's, consider
3147 * the weighted_cpuload() scaled with the cpu power, so that
3148 * the load can be moved away from the cpu that is potentially
3149 * running at a lower capacity.
3150 */
3151 wl = (wl * SCHED_LOAD_SCALE) / power;
3152
3153 if (wl > max_load) {
3154 max_load = wl;
3155 busiest = rq;
3156 }
3157 }
3158
3159 return busiest;
3160 }
3161
3162 /*
3163 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3164 * so long as it is large enough.
3165 */
3166 #define MAX_PINNED_INTERVAL 512
3167
3168 /* Working cpumask for load_balance and load_balance_newidle. */
3169 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3170
3171 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3172 int busiest_cpu, int this_cpu)
3173 {
3174 if (idle == CPU_NEWLY_IDLE) {
3175
3176 /*
3177 * ASYM_PACKING needs to force migrate tasks from busy but
3178 * higher numbered CPUs in order to pack all tasks in the
3179 * lowest numbered CPUs.
3180 */
3181 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3182 return 1;
3183
3184 /*
3185 * The only task running in a non-idle cpu can be moved to this
3186 * cpu in an attempt to completely freeup the other CPU
3187 * package.
3188 *
3189 * The package power saving logic comes from
3190 * find_busiest_group(). If there are no imbalance, then
3191 * f_b_g() will return NULL. However when sched_mc={1,2} then
3192 * f_b_g() will select a group from which a running task may be
3193 * pulled to this cpu in order to make the other package idle.
3194 * If there is no opportunity to make a package idle and if
3195 * there are no imbalance, then f_b_g() will return NULL and no
3196 * action will be taken in load_balance_newidle().
3197 *
3198 * Under normal task pull operation due to imbalance, there
3199 * will be more than one task in the source run queue and
3200 * move_tasks() will succeed. ld_moved will be true and this
3201 * active balance code will not be triggered.
3202 */
3203 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3204 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3205 return 0;
3206
3207 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3208 return 0;
3209 }
3210
3211 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3212 }
3213
3214 static int active_load_balance_cpu_stop(void *data);
3215
3216 /*
3217 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3218 * tasks if there is an imbalance.
3219 */
3220 static int load_balance(int this_cpu, struct rq *this_rq,
3221 struct sched_domain *sd, enum cpu_idle_type idle,
3222 int *balance)
3223 {
3224 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3225 struct sched_group *group;
3226 unsigned long imbalance;
3227 struct rq *busiest;
3228 unsigned long flags;
3229 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3230
3231 cpumask_copy(cpus, cpu_active_mask);
3232
3233 /*
3234 * When power savings policy is enabled for the parent domain, idle
3235 * sibling can pick up load irrespective of busy siblings. In this case,
3236 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3237 * portraying it as CPU_NOT_IDLE.
3238 */
3239 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3240 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3241 sd_idle = 1;
3242
3243 schedstat_inc(sd, lb_count[idle]);
3244
3245 redo:
3246 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3247 cpus, balance);
3248
3249 if (*balance == 0)
3250 goto out_balanced;
3251
3252 if (!group) {
3253 schedstat_inc(sd, lb_nobusyg[idle]);
3254 goto out_balanced;
3255 }
3256
3257 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3258 if (!busiest) {
3259 schedstat_inc(sd, lb_nobusyq[idle]);
3260 goto out_balanced;
3261 }
3262
3263 BUG_ON(busiest == this_rq);
3264
3265 schedstat_add(sd, lb_imbalance[idle], imbalance);
3266
3267 ld_moved = 0;
3268 if (busiest->nr_running > 1) {
3269 /*
3270 * Attempt to move tasks. If find_busiest_group has found
3271 * an imbalance but busiest->nr_running <= 1, the group is
3272 * still unbalanced. ld_moved simply stays zero, so it is
3273 * correctly treated as an imbalance.
3274 */
3275 local_irq_save(flags);
3276 double_rq_lock(this_rq, busiest);
3277 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3278 imbalance, sd, idle, &all_pinned);
3279 double_rq_unlock(this_rq, busiest);
3280 local_irq_restore(flags);
3281
3282 /*
3283 * some other cpu did the load balance for us.
3284 */
3285 if (ld_moved && this_cpu != smp_processor_id())
3286 resched_cpu(this_cpu);
3287
3288 /* All tasks on this runqueue were pinned by CPU affinity */
3289 if (unlikely(all_pinned)) {
3290 cpumask_clear_cpu(cpu_of(busiest), cpus);
3291 if (!cpumask_empty(cpus))
3292 goto redo;
3293 goto out_balanced;
3294 }
3295 }
3296
3297 if (!ld_moved) {
3298 schedstat_inc(sd, lb_failed[idle]);
3299 /*
3300 * Increment the failure counter only on periodic balance.
3301 * We do not want newidle balance, which can be very
3302 * frequent, pollute the failure counter causing
3303 * excessive cache_hot migrations and active balances.
3304 */
3305 if (idle != CPU_NEWLY_IDLE)
3306 sd->nr_balance_failed++;
3307
3308 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3309 this_cpu)) {
3310 raw_spin_lock_irqsave(&busiest->lock, flags);
3311
3312 /* don't kick the active_load_balance_cpu_stop,
3313 * if the curr task on busiest cpu can't be
3314 * moved to this_cpu
3315 */
3316 if (!cpumask_test_cpu(this_cpu,
3317 &busiest->curr->cpus_allowed)) {
3318 raw_spin_unlock_irqrestore(&busiest->lock,
3319 flags);
3320 all_pinned = 1;
3321 goto out_one_pinned;
3322 }
3323
3324 /*
3325 * ->active_balance synchronizes accesses to
3326 * ->active_balance_work. Once set, it's cleared
3327 * only after active load balance is finished.
3328 */
3329 if (!busiest->active_balance) {
3330 busiest->active_balance = 1;
3331 busiest->push_cpu = this_cpu;
3332 active_balance = 1;
3333 }
3334 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3335
3336 if (active_balance)
3337 stop_one_cpu_nowait(cpu_of(busiest),
3338 active_load_balance_cpu_stop, busiest,
3339 &busiest->active_balance_work);
3340
3341 /*
3342 * We've kicked active balancing, reset the failure
3343 * counter.
3344 */
3345 sd->nr_balance_failed = sd->cache_nice_tries+1;
3346 }
3347 } else
3348 sd->nr_balance_failed = 0;
3349
3350 if (likely(!active_balance)) {
3351 /* We were unbalanced, so reset the balancing interval */
3352 sd->balance_interval = sd->min_interval;
3353 } else {
3354 /*
3355 * If we've begun active balancing, start to back off. This
3356 * case may not be covered by the all_pinned logic if there
3357 * is only 1 task on the busy runqueue (because we don't call
3358 * move_tasks).
3359 */
3360 if (sd->balance_interval < sd->max_interval)
3361 sd->balance_interval *= 2;
3362 }
3363
3364 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3365 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3366 ld_moved = -1;
3367
3368 goto out;
3369
3370 out_balanced:
3371 schedstat_inc(sd, lb_balanced[idle]);
3372
3373 sd->nr_balance_failed = 0;
3374
3375 out_one_pinned:
3376 /* tune up the balancing interval */
3377 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3378 (sd->balance_interval < sd->max_interval))
3379 sd->balance_interval *= 2;
3380
3381 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3382 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3383 ld_moved = -1;
3384 else
3385 ld_moved = 0;
3386 out:
3387 return ld_moved;
3388 }
3389
3390 /*
3391 * idle_balance is called by schedule() if this_cpu is about to become
3392 * idle. Attempts to pull tasks from other CPUs.
3393 */
3394 static void idle_balance(int this_cpu, struct rq *this_rq)
3395 {
3396 struct sched_domain *sd;
3397 int pulled_task = 0;
3398 unsigned long next_balance = jiffies + HZ;
3399
3400 this_rq->idle_stamp = this_rq->clock;
3401
3402 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3403 return;
3404
3405 /*
3406 * Drop the rq->lock, but keep IRQ/preempt disabled.
3407 */
3408 raw_spin_unlock(&this_rq->lock);
3409
3410 update_shares(this_cpu);
3411 for_each_domain(this_cpu, sd) {
3412 unsigned long interval;
3413 int balance = 1;
3414
3415 if (!(sd->flags & SD_LOAD_BALANCE))
3416 continue;
3417
3418 if (sd->flags & SD_BALANCE_NEWIDLE) {
3419 /* If we've pulled tasks over stop searching: */
3420 pulled_task = load_balance(this_cpu, this_rq,
3421 sd, CPU_NEWLY_IDLE, &balance);
3422 }
3423
3424 interval = msecs_to_jiffies(sd->balance_interval);
3425 if (time_after(next_balance, sd->last_balance + interval))
3426 next_balance = sd->last_balance + interval;
3427 if (pulled_task) {
3428 this_rq->idle_stamp = 0;
3429 break;
3430 }
3431 }
3432
3433 raw_spin_lock(&this_rq->lock);
3434
3435 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3436 /*
3437 * We are going idle. next_balance may be set based on
3438 * a busy processor. So reset next_balance.
3439 */
3440 this_rq->next_balance = next_balance;
3441 }
3442 }
3443
3444 /*
3445 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3446 * running tasks off the busiest CPU onto idle CPUs. It requires at
3447 * least 1 task to be running on each physical CPU where possible, and
3448 * avoids physical / logical imbalances.
3449 */
3450 static int active_load_balance_cpu_stop(void *data)
3451 {
3452 struct rq *busiest_rq = data;
3453 int busiest_cpu = cpu_of(busiest_rq);
3454 int target_cpu = busiest_rq->push_cpu;
3455 struct rq *target_rq = cpu_rq(target_cpu);
3456 struct sched_domain *sd;
3457
3458 raw_spin_lock_irq(&busiest_rq->lock);
3459
3460 /* make sure the requested cpu hasn't gone down in the meantime */
3461 if (unlikely(busiest_cpu != smp_processor_id() ||
3462 !busiest_rq->active_balance))
3463 goto out_unlock;
3464
3465 /* Is there any task to move? */
3466 if (busiest_rq->nr_running <= 1)
3467 goto out_unlock;
3468
3469 /*
3470 * This condition is "impossible", if it occurs
3471 * we need to fix it. Originally reported by
3472 * Bjorn Helgaas on a 128-cpu setup.
3473 */
3474 BUG_ON(busiest_rq == target_rq);
3475
3476 /* move a task from busiest_rq to target_rq */
3477 double_lock_balance(busiest_rq, target_rq);
3478
3479 /* Search for an sd spanning us and the target CPU. */
3480 for_each_domain(target_cpu, sd) {
3481 if ((sd->flags & SD_LOAD_BALANCE) &&
3482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3483 break;
3484 }
3485
3486 if (likely(sd)) {
3487 schedstat_inc(sd, alb_count);
3488
3489 if (move_one_task(target_rq, target_cpu, busiest_rq,
3490 sd, CPU_IDLE))
3491 schedstat_inc(sd, alb_pushed);
3492 else
3493 schedstat_inc(sd, alb_failed);
3494 }
3495 double_unlock_balance(busiest_rq, target_rq);
3496 out_unlock:
3497 busiest_rq->active_balance = 0;
3498 raw_spin_unlock_irq(&busiest_rq->lock);
3499 return 0;
3500 }
3501
3502 #ifdef CONFIG_NO_HZ
3503
3504 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3505
3506 static void trigger_sched_softirq(void *data)
3507 {
3508 raise_softirq_irqoff(SCHED_SOFTIRQ);
3509 }
3510
3511 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3512 {
3513 csd->func = trigger_sched_softirq;
3514 csd->info = NULL;
3515 csd->flags = 0;
3516 csd->priv = 0;
3517 }
3518
3519 /*
3520 * idle load balancing details
3521 * - One of the idle CPUs nominates itself as idle load_balancer, while
3522 * entering idle.
3523 * - This idle load balancer CPU will also go into tickless mode when
3524 * it is idle, just like all other idle CPUs
3525 * - When one of the busy CPUs notice that there may be an idle rebalancing
3526 * needed, they will kick the idle load balancer, which then does idle
3527 * load balancing for all the idle CPUs.
3528 */
3529 static struct {
3530 atomic_t load_balancer;
3531 atomic_t first_pick_cpu;
3532 atomic_t second_pick_cpu;
3533 cpumask_var_t idle_cpus_mask;
3534 cpumask_var_t grp_idle_mask;
3535 unsigned long next_balance; /* in jiffy units */
3536 } nohz ____cacheline_aligned;
3537
3538 int get_nohz_load_balancer(void)
3539 {
3540 return atomic_read(&nohz.load_balancer);
3541 }
3542
3543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3544 /**
3545 * lowest_flag_domain - Return lowest sched_domain containing flag.
3546 * @cpu: The cpu whose lowest level of sched domain is to
3547 * be returned.
3548 * @flag: The flag to check for the lowest sched_domain
3549 * for the given cpu.
3550 *
3551 * Returns the lowest sched_domain of a cpu which contains the given flag.
3552 */
3553 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3554 {
3555 struct sched_domain *sd;
3556
3557 for_each_domain(cpu, sd)
3558 if (sd && (sd->flags & flag))
3559 break;
3560
3561 return sd;
3562 }
3563
3564 /**
3565 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3566 * @cpu: The cpu whose domains we're iterating over.
3567 * @sd: variable holding the value of the power_savings_sd
3568 * for cpu.
3569 * @flag: The flag to filter the sched_domains to be iterated.
3570 *
3571 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3572 * set, starting from the lowest sched_domain to the highest.
3573 */
3574 #define for_each_flag_domain(cpu, sd, flag) \
3575 for (sd = lowest_flag_domain(cpu, flag); \
3576 (sd && (sd->flags & flag)); sd = sd->parent)
3577
3578 /**
3579 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3580 * @ilb_group: group to be checked for semi-idleness
3581 *
3582 * Returns: 1 if the group is semi-idle. 0 otherwise.
3583 *
3584 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3585 * and atleast one non-idle CPU. This helper function checks if the given
3586 * sched_group is semi-idle or not.
3587 */
3588 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3589 {
3590 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3591 sched_group_cpus(ilb_group));
3592
3593 /*
3594 * A sched_group is semi-idle when it has atleast one busy cpu
3595 * and atleast one idle cpu.
3596 */
3597 if (cpumask_empty(nohz.grp_idle_mask))
3598 return 0;
3599
3600 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3601 return 0;
3602
3603 return 1;
3604 }
3605 /**
3606 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3607 * @cpu: The cpu which is nominating a new idle_load_balancer.
3608 *
3609 * Returns: Returns the id of the idle load balancer if it exists,
3610 * Else, returns >= nr_cpu_ids.
3611 *
3612 * This algorithm picks the idle load balancer such that it belongs to a
3613 * semi-idle powersavings sched_domain. The idea is to try and avoid
3614 * completely idle packages/cores just for the purpose of idle load balancing
3615 * when there are other idle cpu's which are better suited for that job.
3616 */
3617 static int find_new_ilb(int cpu)
3618 {
3619 struct sched_domain *sd;
3620 struct sched_group *ilb_group;
3621
3622 /*
3623 * Have idle load balancer selection from semi-idle packages only
3624 * when power-aware load balancing is enabled
3625 */
3626 if (!(sched_smt_power_savings || sched_mc_power_savings))
3627 goto out_done;
3628
3629 /*
3630 * Optimize for the case when we have no idle CPUs or only one
3631 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3632 */
3633 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3634 goto out_done;
3635
3636 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3637 ilb_group = sd->groups;
3638
3639 do {
3640 if (is_semi_idle_group(ilb_group))
3641 return cpumask_first(nohz.grp_idle_mask);
3642
3643 ilb_group = ilb_group->next;
3644
3645 } while (ilb_group != sd->groups);
3646 }
3647
3648 out_done:
3649 return nr_cpu_ids;
3650 }
3651 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3652 static inline int find_new_ilb(int call_cpu)
3653 {
3654 return nr_cpu_ids;
3655 }
3656 #endif
3657
3658 /*
3659 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3660 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3661 * CPU (if there is one).
3662 */
3663 static void nohz_balancer_kick(int cpu)
3664 {
3665 int ilb_cpu;
3666
3667 nohz.next_balance++;
3668
3669 ilb_cpu = get_nohz_load_balancer();
3670
3671 if (ilb_cpu >= nr_cpu_ids) {
3672 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3673 if (ilb_cpu >= nr_cpu_ids)
3674 return;
3675 }
3676
3677 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3678 struct call_single_data *cp;
3679
3680 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3681 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3682 __smp_call_function_single(ilb_cpu, cp, 0);
3683 }
3684 return;
3685 }
3686
3687 /*
3688 * This routine will try to nominate the ilb (idle load balancing)
3689 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3690 * load balancing on behalf of all those cpus.
3691 *
3692 * When the ilb owner becomes busy, we will not have new ilb owner until some
3693 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3694 * idle load balancing by kicking one of the idle CPUs.
3695 *
3696 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3697 * ilb owner CPU in future (when there is a need for idle load balancing on
3698 * behalf of all idle CPUs).
3699 */
3700 void select_nohz_load_balancer(int stop_tick)
3701 {
3702 int cpu = smp_processor_id();
3703
3704 if (stop_tick) {
3705 if (!cpu_active(cpu)) {
3706 if (atomic_read(&nohz.load_balancer) != cpu)
3707 return;
3708
3709 /*
3710 * If we are going offline and still the leader,
3711 * give up!
3712 */
3713 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3714 nr_cpu_ids) != cpu)
3715 BUG();
3716
3717 return;
3718 }
3719
3720 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3721
3722 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3723 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3724 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3725 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3726
3727 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3728 int new_ilb;
3729
3730 /* make me the ilb owner */
3731 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3732 cpu) != nr_cpu_ids)
3733 return;
3734
3735 /*
3736 * Check to see if there is a more power-efficient
3737 * ilb.
3738 */
3739 new_ilb = find_new_ilb(cpu);
3740 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3741 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3742 resched_cpu(new_ilb);
3743 return;
3744 }
3745 return;
3746 }
3747 } else {
3748 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3749 return;
3750
3751 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3752
3753 if (atomic_read(&nohz.load_balancer) == cpu)
3754 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3755 nr_cpu_ids) != cpu)
3756 BUG();
3757 }
3758 return;
3759 }
3760 #endif
3761
3762 static DEFINE_SPINLOCK(balancing);
3763
3764 /*
3765 * It checks each scheduling domain to see if it is due to be balanced,
3766 * and initiates a balancing operation if so.
3767 *
3768 * Balancing parameters are set up in arch_init_sched_domains.
3769 */
3770 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3771 {
3772 int balance = 1;
3773 struct rq *rq = cpu_rq(cpu);
3774 unsigned long interval;
3775 struct sched_domain *sd;
3776 /* Earliest time when we have to do rebalance again */
3777 unsigned long next_balance = jiffies + 60*HZ;
3778 int update_next_balance = 0;
3779 int need_serialize;
3780
3781 update_shares(cpu);
3782
3783 for_each_domain(cpu, sd) {
3784 if (!(sd->flags & SD_LOAD_BALANCE))
3785 continue;
3786
3787 interval = sd->balance_interval;
3788 if (idle != CPU_IDLE)
3789 interval *= sd->busy_factor;
3790
3791 /* scale ms to jiffies */
3792 interval = msecs_to_jiffies(interval);
3793 if (unlikely(!interval))
3794 interval = 1;
3795 if (interval > HZ*NR_CPUS/10)
3796 interval = HZ*NR_CPUS/10;
3797
3798 need_serialize = sd->flags & SD_SERIALIZE;
3799
3800 if (need_serialize) {
3801 if (!spin_trylock(&balancing))
3802 goto out;
3803 }
3804
3805 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3806 if (load_balance(cpu, rq, sd, idle, &balance)) {
3807 /*
3808 * We've pulled tasks over so either we're no
3809 * longer idle, or one of our SMT siblings is
3810 * not idle.
3811 */
3812 idle = CPU_NOT_IDLE;
3813 }
3814 sd->last_balance = jiffies;
3815 }
3816 if (need_serialize)
3817 spin_unlock(&balancing);
3818 out:
3819 if (time_after(next_balance, sd->last_balance + interval)) {
3820 next_balance = sd->last_balance + interval;
3821 update_next_balance = 1;
3822 }
3823
3824 /*
3825 * Stop the load balance at this level. There is another
3826 * CPU in our sched group which is doing load balancing more
3827 * actively.
3828 */
3829 if (!balance)
3830 break;
3831 }
3832
3833 /*
3834 * next_balance will be updated only when there is a need.
3835 * When the cpu is attached to null domain for ex, it will not be
3836 * updated.
3837 */
3838 if (likely(update_next_balance))
3839 rq->next_balance = next_balance;
3840 }
3841
3842 #ifdef CONFIG_NO_HZ
3843 /*
3844 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3846 */
3847 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3848 {
3849 struct rq *this_rq = cpu_rq(this_cpu);
3850 struct rq *rq;
3851 int balance_cpu;
3852
3853 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3854 return;
3855
3856 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3857 if (balance_cpu == this_cpu)
3858 continue;
3859
3860 /*
3861 * If this cpu gets work to do, stop the load balancing
3862 * work being done for other cpus. Next load
3863 * balancing owner will pick it up.
3864 */
3865 if (need_resched()) {
3866 this_rq->nohz_balance_kick = 0;
3867 break;
3868 }
3869
3870 raw_spin_lock_irq(&this_rq->lock);
3871 update_rq_clock(this_rq);
3872 update_cpu_load(this_rq);
3873 raw_spin_unlock_irq(&this_rq->lock);
3874
3875 rebalance_domains(balance_cpu, CPU_IDLE);
3876
3877 rq = cpu_rq(balance_cpu);
3878 if (time_after(this_rq->next_balance, rq->next_balance))
3879 this_rq->next_balance = rq->next_balance;
3880 }
3881 nohz.next_balance = this_rq->next_balance;
3882 this_rq->nohz_balance_kick = 0;
3883 }
3884
3885 /*
3886 * Current heuristic for kicking the idle load balancer
3887 * - first_pick_cpu is the one of the busy CPUs. It will kick
3888 * idle load balancer when it has more than one process active. This
3889 * eliminates the need for idle load balancing altogether when we have
3890 * only one running process in the system (common case).
3891 * - If there are more than one busy CPU, idle load balancer may have
3892 * to run for active_load_balance to happen (i.e., two busy CPUs are
3893 * SMT or core siblings and can run better if they move to different
3894 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3895 * which will kick idle load balancer as soon as it has any load.
3896 */
3897 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3898 {
3899 unsigned long now = jiffies;
3900 int ret;
3901 int first_pick_cpu, second_pick_cpu;
3902
3903 if (time_before(now, nohz.next_balance))
3904 return 0;
3905
3906 if (rq->idle_at_tick)
3907 return 0;
3908
3909 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3910 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3911
3912 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3913 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3914 return 0;
3915
3916 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3917 if (ret == nr_cpu_ids || ret == cpu) {
3918 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3919 if (rq->nr_running > 1)
3920 return 1;
3921 } else {
3922 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3923 if (ret == nr_cpu_ids || ret == cpu) {
3924 if (rq->nr_running)
3925 return 1;
3926 }
3927 }
3928 return 0;
3929 }
3930 #else
3931 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3932 #endif
3933
3934 /*
3935 * run_rebalance_domains is triggered when needed from the scheduler tick.
3936 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3937 */
3938 static void run_rebalance_domains(struct softirq_action *h)
3939 {
3940 int this_cpu = smp_processor_id();
3941 struct rq *this_rq = cpu_rq(this_cpu);
3942 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3943 CPU_IDLE : CPU_NOT_IDLE;
3944
3945 rebalance_domains(this_cpu, idle);
3946
3947 /*
3948 * If this cpu has a pending nohz_balance_kick, then do the
3949 * balancing on behalf of the other idle cpus whose ticks are
3950 * stopped.
3951 */
3952 nohz_idle_balance(this_cpu, idle);
3953 }
3954
3955 static inline int on_null_domain(int cpu)
3956 {
3957 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3958 }
3959
3960 /*
3961 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3962 */
3963 static inline void trigger_load_balance(struct rq *rq, int cpu)
3964 {
3965 /* Don't need to rebalance while attached to NULL domain */
3966 if (time_after_eq(jiffies, rq->next_balance) &&
3967 likely(!on_null_domain(cpu)))
3968 raise_softirq(SCHED_SOFTIRQ);
3969 #ifdef CONFIG_NO_HZ
3970 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3971 nohz_balancer_kick(cpu);
3972 #endif
3973 }
3974
3975 static void rq_online_fair(struct rq *rq)
3976 {
3977 update_sysctl();
3978 }
3979
3980 static void rq_offline_fair(struct rq *rq)
3981 {
3982 update_sysctl();
3983 }
3984
3985 #else /* CONFIG_SMP */
3986
3987 /*
3988 * on UP we do not need to balance between CPUs:
3989 */
3990 static inline void idle_balance(int cpu, struct rq *rq)
3991 {
3992 }
3993
3994 #endif /* CONFIG_SMP */
3995
3996 /*
3997 * scheduler tick hitting a task of our scheduling class:
3998 */
3999 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4000 {
4001 struct cfs_rq *cfs_rq;
4002 struct sched_entity *se = &curr->se;
4003
4004 for_each_sched_entity(se) {
4005 cfs_rq = cfs_rq_of(se);
4006 entity_tick(cfs_rq, se, queued);
4007 }
4008 }
4009
4010 /*
4011 * called on fork with the child task as argument from the parent's context
4012 * - child not yet on the tasklist
4013 * - preemption disabled
4014 */
4015 static void task_fork_fair(struct task_struct *p)
4016 {
4017 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4018 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4019 int this_cpu = smp_processor_id();
4020 struct rq *rq = this_rq();
4021 unsigned long flags;
4022
4023 raw_spin_lock_irqsave(&rq->lock, flags);
4024
4025 update_rq_clock(rq);
4026
4027 if (unlikely(task_cpu(p) != this_cpu)) {
4028 rcu_read_lock();
4029 __set_task_cpu(p, this_cpu);
4030 rcu_read_unlock();
4031 }
4032
4033 update_curr(cfs_rq);
4034
4035 if (curr)
4036 se->vruntime = curr->vruntime;
4037 place_entity(cfs_rq, se, 1);
4038
4039 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4040 /*
4041 * Upon rescheduling, sched_class::put_prev_task() will place
4042 * 'current' within the tree based on its new key value.
4043 */
4044 swap(curr->vruntime, se->vruntime);
4045 resched_task(rq->curr);
4046 }
4047
4048 se->vruntime -= cfs_rq->min_vruntime;
4049
4050 raw_spin_unlock_irqrestore(&rq->lock, flags);
4051 }
4052
4053 /*
4054 * Priority of the task has changed. Check to see if we preempt
4055 * the current task.
4056 */
4057 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4058 int oldprio, int running)
4059 {
4060 /*
4061 * Reschedule if we are currently running on this runqueue and
4062 * our priority decreased, or if we are not currently running on
4063 * this runqueue and our priority is higher than the current's
4064 */
4065 if (running) {
4066 if (p->prio > oldprio)
4067 resched_task(rq->curr);
4068 } else
4069 check_preempt_curr(rq, p, 0);
4070 }
4071
4072 /*
4073 * We switched to the sched_fair class.
4074 */
4075 static void switched_to_fair(struct rq *rq, struct task_struct *p,
4076 int running)
4077 {
4078 /*
4079 * We were most likely switched from sched_rt, so
4080 * kick off the schedule if running, otherwise just see
4081 * if we can still preempt the current task.
4082 */
4083 if (running)
4084 resched_task(rq->curr);
4085 else
4086 check_preempt_curr(rq, p, 0);
4087 }
4088
4089 /* Account for a task changing its policy or group.
4090 *
4091 * This routine is mostly called to set cfs_rq->curr field when a task
4092 * migrates between groups/classes.
4093 */
4094 static void set_curr_task_fair(struct rq *rq)
4095 {
4096 struct sched_entity *se = &rq->curr->se;
4097
4098 for_each_sched_entity(se)
4099 set_next_entity(cfs_rq_of(se), se);
4100 }
4101
4102 #ifdef CONFIG_FAIR_GROUP_SCHED
4103 static void task_move_group_fair(struct task_struct *p, int on_rq)
4104 {
4105 /*
4106 * If the task was not on the rq at the time of this cgroup movement
4107 * it must have been asleep, sleeping tasks keep their ->vruntime
4108 * absolute on their old rq until wakeup (needed for the fair sleeper
4109 * bonus in place_entity()).
4110 *
4111 * If it was on the rq, we've just 'preempted' it, which does convert
4112 * ->vruntime to a relative base.
4113 *
4114 * Make sure both cases convert their relative position when migrating
4115 * to another cgroup's rq. This does somewhat interfere with the
4116 * fair sleeper stuff for the first placement, but who cares.
4117 */
4118 if (!on_rq)
4119 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4120 set_task_rq(p, task_cpu(p));
4121 if (!on_rq)
4122 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4123 }
4124 #endif
4125
4126 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4127 {
4128 struct sched_entity *se = &task->se;
4129 unsigned int rr_interval = 0;
4130
4131 /*
4132 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4133 * idle runqueue:
4134 */
4135 if (rq->cfs.load.weight)
4136 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4137
4138 return rr_interval;
4139 }
4140
4141 /*
4142 * All the scheduling class methods:
4143 */
4144 static const struct sched_class fair_sched_class = {
4145 .next = &idle_sched_class,
4146 .enqueue_task = enqueue_task_fair,
4147 .dequeue_task = dequeue_task_fair,
4148 .yield_task = yield_task_fair,
4149
4150 .check_preempt_curr = check_preempt_wakeup,
4151
4152 .pick_next_task = pick_next_task_fair,
4153 .put_prev_task = put_prev_task_fair,
4154
4155 #ifdef CONFIG_SMP
4156 .select_task_rq = select_task_rq_fair,
4157
4158 .rq_online = rq_online_fair,
4159 .rq_offline = rq_offline_fair,
4160
4161 .task_waking = task_waking_fair,
4162 #endif
4163
4164 .set_curr_task = set_curr_task_fair,
4165 .task_tick = task_tick_fair,
4166 .task_fork = task_fork_fair,
4167
4168 .prio_changed = prio_changed_fair,
4169 .switched_to = switched_to_fair,
4170
4171 .get_rr_interval = get_rr_interval_fair,
4172
4173 #ifdef CONFIG_FAIR_GROUP_SCHED
4174 .task_move_group = task_move_group_fair,
4175 #endif
4176 };
4177
4178 #ifdef CONFIG_SCHED_DEBUG
4179 static void print_cfs_stats(struct seq_file *m, int cpu)
4180 {
4181 struct cfs_rq *cfs_rq;
4182
4183 rcu_read_lock();
4184 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4185 print_cfs_rq(m, cpu, cfs_rq);
4186 rcu_read_unlock();
4187 }
4188 #endif
This page took 0.158339 seconds and 5 git commands to generate.