sctp: fix sctp to work with ipv6 source address routing
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 *
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
35 *
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
38 */
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41
42 /*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 */
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60
61 /*
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
64 static unsigned int sched_nr_latency = 8;
65
66 /*
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
69 */
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
85 /*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147 {
148 if (!cfs_rq->on_list) {
149 /*
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
154 */
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
162 }
163
164 cfs_rq->on_list = 1;
165 }
166 }
167
168 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169 {
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
173 }
174 }
175
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179
180 /* Do the two (enqueued) entities belong to the same group ? */
181 static inline int
182 is_same_group(struct sched_entity *se, struct sched_entity *pse)
183 {
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
186
187 return 0;
188 }
189
190 static inline struct sched_entity *parent_entity(struct sched_entity *se)
191 {
192 return se->parent;
193 }
194
195 /* return depth at which a sched entity is present in the hierarchy */
196 static inline int depth_se(struct sched_entity *se)
197 {
198 int depth = 0;
199
200 for_each_sched_entity(se)
201 depth++;
202
203 return depth;
204 }
205
206 static void
207 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208 {
209 int se_depth, pse_depth;
210
211 /*
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
216 */
217
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
221
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
225 }
226
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
230 }
231
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
235 }
236 }
237
238 #else /* !CONFIG_FAIR_GROUP_SCHED */
239
240 static inline struct task_struct *task_of(struct sched_entity *se)
241 {
242 return container_of(se, struct task_struct, se);
243 }
244
245 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246 {
247 return container_of(cfs_rq, struct rq, cfs);
248 }
249
250 #define entity_is_task(se) 1
251
252 #define for_each_sched_entity(se) \
253 for (; se; se = NULL)
254
255 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
256 {
257 return &task_rq(p)->cfs;
258 }
259
260 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261 {
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
264
265 return &rq->cfs;
266 }
267
268 /* runqueue "owned" by this group */
269 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270 {
271 return NULL;
272 }
273
274 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275 {
276 return &cpu_rq(this_cpu)->cfs;
277 }
278
279 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280 {
281 }
282
283 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284 {
285 }
286
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289
290 static inline int
291 is_same_group(struct sched_entity *se, struct sched_entity *pse)
292 {
293 return 1;
294 }
295
296 static inline struct sched_entity *parent_entity(struct sched_entity *se)
297 {
298 return NULL;
299 }
300
301 static inline void
302 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303 {
304 }
305
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
307
308
309 /**************************************************************
310 * Scheduling class tree data structure manipulation methods:
311 */
312
313 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
314 {
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
317 min_vruntime = vruntime;
318
319 return min_vruntime;
320 }
321
322 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
323 {
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
327
328 return min_vruntime;
329 }
330
331 static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
333 {
334 return (s64)(a->vruntime - b->vruntime) < 0;
335 }
336
337 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
338 {
339 return se->vruntime - cfs_rq->min_vruntime;
340 }
341
342 static void update_min_vruntime(struct cfs_rq *cfs_rq)
343 {
344 u64 vruntime = cfs_rq->min_vruntime;
345
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
348
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
353
354 if (!cfs_rq->curr)
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
358 }
359
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
361 }
362
363 /*
364 * Enqueue an entity into the rb-tree:
365 */
366 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 {
368 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
369 struct rb_node *parent = NULL;
370 struct sched_entity *entry;
371 s64 key = entity_key(cfs_rq, se);
372 int leftmost = 1;
373
374 /*
375 * Find the right place in the rbtree:
376 */
377 while (*link) {
378 parent = *link;
379 entry = rb_entry(parent, struct sched_entity, run_node);
380 /*
381 * We dont care about collisions. Nodes with
382 * the same key stay together.
383 */
384 if (key < entity_key(cfs_rq, entry)) {
385 link = &parent->rb_left;
386 } else {
387 link = &parent->rb_right;
388 leftmost = 0;
389 }
390 }
391
392 /*
393 * Maintain a cache of leftmost tree entries (it is frequently
394 * used):
395 */
396 if (leftmost)
397 cfs_rq->rb_leftmost = &se->run_node;
398
399 rb_link_node(&se->run_node, parent, link);
400 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
401 }
402
403 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
404 {
405 if (cfs_rq->rb_leftmost == &se->run_node) {
406 struct rb_node *next_node;
407
408 next_node = rb_next(&se->run_node);
409 cfs_rq->rb_leftmost = next_node;
410 }
411
412 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
413 }
414
415 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
416 {
417 struct rb_node *left = cfs_rq->rb_leftmost;
418
419 if (!left)
420 return NULL;
421
422 return rb_entry(left, struct sched_entity, run_node);
423 }
424
425 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
426 {
427 struct rb_node *next = rb_next(&se->run_node);
428
429 if (!next)
430 return NULL;
431
432 return rb_entry(next, struct sched_entity, run_node);
433 }
434
435 #ifdef CONFIG_SCHED_DEBUG
436 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
437 {
438 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
439
440 if (!last)
441 return NULL;
442
443 return rb_entry(last, struct sched_entity, run_node);
444 }
445
446 /**************************************************************
447 * Scheduling class statistics methods:
448 */
449
450 int sched_proc_update_handler(struct ctl_table *table, int write,
451 void __user *buffer, size_t *lenp,
452 loff_t *ppos)
453 {
454 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
455 int factor = get_update_sysctl_factor();
456
457 if (ret || !write)
458 return ret;
459
460 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
461 sysctl_sched_min_granularity);
462
463 #define WRT_SYSCTL(name) \
464 (normalized_sysctl_##name = sysctl_##name / (factor))
465 WRT_SYSCTL(sched_min_granularity);
466 WRT_SYSCTL(sched_latency);
467 WRT_SYSCTL(sched_wakeup_granularity);
468 #undef WRT_SYSCTL
469
470 return 0;
471 }
472 #endif
473
474 /*
475 * delta /= w
476 */
477 static inline unsigned long
478 calc_delta_fair(unsigned long delta, struct sched_entity *se)
479 {
480 if (unlikely(se->load.weight != NICE_0_LOAD))
481 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
482
483 return delta;
484 }
485
486 /*
487 * The idea is to set a period in which each task runs once.
488 *
489 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
490 * this period because otherwise the slices get too small.
491 *
492 * p = (nr <= nl) ? l : l*nr/nl
493 */
494 static u64 __sched_period(unsigned long nr_running)
495 {
496 u64 period = sysctl_sched_latency;
497 unsigned long nr_latency = sched_nr_latency;
498
499 if (unlikely(nr_running > nr_latency)) {
500 period = sysctl_sched_min_granularity;
501 period *= nr_running;
502 }
503
504 return period;
505 }
506
507 /*
508 * We calculate the wall-time slice from the period by taking a part
509 * proportional to the weight.
510 *
511 * s = p*P[w/rw]
512 */
513 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
514 {
515 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
516
517 for_each_sched_entity(se) {
518 struct load_weight *load;
519 struct load_weight lw;
520
521 cfs_rq = cfs_rq_of(se);
522 load = &cfs_rq->load;
523
524 if (unlikely(!se->on_rq)) {
525 lw = cfs_rq->load;
526
527 update_load_add(&lw, se->load.weight);
528 load = &lw;
529 }
530 slice = calc_delta_mine(slice, se->load.weight, load);
531 }
532 return slice;
533 }
534
535 /*
536 * We calculate the vruntime slice of a to be inserted task
537 *
538 * vs = s/w
539 */
540 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 {
542 return calc_delta_fair(sched_slice(cfs_rq, se), se);
543 }
544
545 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
546 static void update_cfs_shares(struct cfs_rq *cfs_rq);
547
548 /*
549 * Update the current task's runtime statistics. Skip current tasks that
550 * are not in our scheduling class.
551 */
552 static inline void
553 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
554 unsigned long delta_exec)
555 {
556 unsigned long delta_exec_weighted;
557
558 schedstat_set(curr->statistics.exec_max,
559 max((u64)delta_exec, curr->statistics.exec_max));
560
561 curr->sum_exec_runtime += delta_exec;
562 schedstat_add(cfs_rq, exec_clock, delta_exec);
563 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
564
565 curr->vruntime += delta_exec_weighted;
566 update_min_vruntime(cfs_rq);
567
568 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
569 cfs_rq->load_unacc_exec_time += delta_exec;
570 #endif
571 }
572
573 static void update_curr(struct cfs_rq *cfs_rq)
574 {
575 struct sched_entity *curr = cfs_rq->curr;
576 u64 now = rq_of(cfs_rq)->clock_task;
577 unsigned long delta_exec;
578
579 if (unlikely(!curr))
580 return;
581
582 /*
583 * Get the amount of time the current task was running
584 * since the last time we changed load (this cannot
585 * overflow on 32 bits):
586 */
587 delta_exec = (unsigned long)(now - curr->exec_start);
588 if (!delta_exec)
589 return;
590
591 __update_curr(cfs_rq, curr, delta_exec);
592 curr->exec_start = now;
593
594 if (entity_is_task(curr)) {
595 struct task_struct *curtask = task_of(curr);
596
597 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
598 cpuacct_charge(curtask, delta_exec);
599 account_group_exec_runtime(curtask, delta_exec);
600 }
601 }
602
603 static inline void
604 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
607 }
608
609 /*
610 * Task is being enqueued - update stats:
611 */
612 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614 /*
615 * Are we enqueueing a waiting task? (for current tasks
616 * a dequeue/enqueue event is a NOP)
617 */
618 if (se != cfs_rq->curr)
619 update_stats_wait_start(cfs_rq, se);
620 }
621
622 static void
623 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
624 {
625 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
626 rq_of(cfs_rq)->clock - se->statistics.wait_start));
627 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
628 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
629 rq_of(cfs_rq)->clock - se->statistics.wait_start);
630 #ifdef CONFIG_SCHEDSTATS
631 if (entity_is_task(se)) {
632 trace_sched_stat_wait(task_of(se),
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
634 }
635 #endif
636 schedstat_set(se->statistics.wait_start, 0);
637 }
638
639 static inline void
640 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 /*
643 * Mark the end of the wait period if dequeueing a
644 * waiting task:
645 */
646 if (se != cfs_rq->curr)
647 update_stats_wait_end(cfs_rq, se);
648 }
649
650 /*
651 * We are picking a new current task - update its stats:
652 */
653 static inline void
654 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 {
656 /*
657 * We are starting a new run period:
658 */
659 se->exec_start = rq_of(cfs_rq)->clock_task;
660 }
661
662 /**************************************************
663 * Scheduling class queueing methods:
664 */
665
666 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
667 static void
668 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
669 {
670 cfs_rq->task_weight += weight;
671 }
672 #else
673 static inline void
674 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
675 {
676 }
677 #endif
678
679 static void
680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 {
682 update_load_add(&cfs_rq->load, se->load.weight);
683 if (!parent_entity(se))
684 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
685 if (entity_is_task(se)) {
686 add_cfs_task_weight(cfs_rq, se->load.weight);
687 list_add(&se->group_node, &cfs_rq->tasks);
688 }
689 cfs_rq->nr_running++;
690 }
691
692 static void
693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 update_load_sub(&cfs_rq->load, se->load.weight);
696 if (!parent_entity(se))
697 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
698 if (entity_is_task(se)) {
699 add_cfs_task_weight(cfs_rq, -se->load.weight);
700 list_del_init(&se->group_node);
701 }
702 cfs_rq->nr_running--;
703 }
704
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 # ifdef CONFIG_SMP
707 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
708 int global_update)
709 {
710 struct task_group *tg = cfs_rq->tg;
711 long load_avg;
712
713 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
714 load_avg -= cfs_rq->load_contribution;
715
716 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
717 atomic_add(load_avg, &tg->load_weight);
718 cfs_rq->load_contribution += load_avg;
719 }
720 }
721
722 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
723 {
724 u64 period = sysctl_sched_shares_window;
725 u64 now, delta;
726 unsigned long load = cfs_rq->load.weight;
727
728 if (cfs_rq->tg == &root_task_group)
729 return;
730
731 now = rq_of(cfs_rq)->clock_task;
732 delta = now - cfs_rq->load_stamp;
733
734 /* truncate load history at 4 idle periods */
735 if (cfs_rq->load_stamp > cfs_rq->load_last &&
736 now - cfs_rq->load_last > 4 * period) {
737 cfs_rq->load_period = 0;
738 cfs_rq->load_avg = 0;
739 delta = period - 1;
740 }
741
742 cfs_rq->load_stamp = now;
743 cfs_rq->load_unacc_exec_time = 0;
744 cfs_rq->load_period += delta;
745 if (load) {
746 cfs_rq->load_last = now;
747 cfs_rq->load_avg += delta * load;
748 }
749
750 /* consider updating load contribution on each fold or truncate */
751 if (global_update || cfs_rq->load_period > period
752 || !cfs_rq->load_period)
753 update_cfs_rq_load_contribution(cfs_rq, global_update);
754
755 while (cfs_rq->load_period > period) {
756 /*
757 * Inline assembly required to prevent the compiler
758 * optimising this loop into a divmod call.
759 * See __iter_div_u64_rem() for another example of this.
760 */
761 asm("" : "+rm" (cfs_rq->load_period));
762 cfs_rq->load_period /= 2;
763 cfs_rq->load_avg /= 2;
764 }
765
766 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
767 list_del_leaf_cfs_rq(cfs_rq);
768 }
769
770 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
771 {
772 long load_weight, load, shares;
773
774 load = cfs_rq->load.weight;
775
776 load_weight = atomic_read(&tg->load_weight);
777 load_weight += load;
778 load_weight -= cfs_rq->load_contribution;
779
780 shares = (tg->shares * load);
781 if (load_weight)
782 shares /= load_weight;
783
784 if (shares < MIN_SHARES)
785 shares = MIN_SHARES;
786 if (shares > tg->shares)
787 shares = tg->shares;
788
789 return shares;
790 }
791
792 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
793 {
794 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
795 update_cfs_load(cfs_rq, 0);
796 update_cfs_shares(cfs_rq);
797 }
798 }
799 # else /* CONFIG_SMP */
800 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
801 {
802 }
803
804 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
805 {
806 return tg->shares;
807 }
808
809 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
810 {
811 }
812 # endif /* CONFIG_SMP */
813 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
814 unsigned long weight)
815 {
816 if (se->on_rq) {
817 /* commit outstanding execution time */
818 if (cfs_rq->curr == se)
819 update_curr(cfs_rq);
820 account_entity_dequeue(cfs_rq, se);
821 }
822
823 update_load_set(&se->load, weight);
824
825 if (se->on_rq)
826 account_entity_enqueue(cfs_rq, se);
827 }
828
829 static void update_cfs_shares(struct cfs_rq *cfs_rq)
830 {
831 struct task_group *tg;
832 struct sched_entity *se;
833 long shares;
834
835 tg = cfs_rq->tg;
836 se = tg->se[cpu_of(rq_of(cfs_rq))];
837 if (!se)
838 return;
839 #ifndef CONFIG_SMP
840 if (likely(se->load.weight == tg->shares))
841 return;
842 #endif
843 shares = calc_cfs_shares(cfs_rq, tg);
844
845 reweight_entity(cfs_rq_of(se), se, shares);
846 }
847 #else /* CONFIG_FAIR_GROUP_SCHED */
848 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
849 {
850 }
851
852 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
853 {
854 }
855
856 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
857 {
858 }
859 #endif /* CONFIG_FAIR_GROUP_SCHED */
860
861 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 #ifdef CONFIG_SCHEDSTATS
864 struct task_struct *tsk = NULL;
865
866 if (entity_is_task(se))
867 tsk = task_of(se);
868
869 if (se->statistics.sleep_start) {
870 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
871
872 if ((s64)delta < 0)
873 delta = 0;
874
875 if (unlikely(delta > se->statistics.sleep_max))
876 se->statistics.sleep_max = delta;
877
878 se->statistics.sleep_start = 0;
879 se->statistics.sum_sleep_runtime += delta;
880
881 if (tsk) {
882 account_scheduler_latency(tsk, delta >> 10, 1);
883 trace_sched_stat_sleep(tsk, delta);
884 }
885 }
886 if (se->statistics.block_start) {
887 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
888
889 if ((s64)delta < 0)
890 delta = 0;
891
892 if (unlikely(delta > se->statistics.block_max))
893 se->statistics.block_max = delta;
894
895 se->statistics.block_start = 0;
896 se->statistics.sum_sleep_runtime += delta;
897
898 if (tsk) {
899 if (tsk->in_iowait) {
900 se->statistics.iowait_sum += delta;
901 se->statistics.iowait_count++;
902 trace_sched_stat_iowait(tsk, delta);
903 }
904
905 /*
906 * Blocking time is in units of nanosecs, so shift by
907 * 20 to get a milliseconds-range estimation of the
908 * amount of time that the task spent sleeping:
909 */
910 if (unlikely(prof_on == SLEEP_PROFILING)) {
911 profile_hits(SLEEP_PROFILING,
912 (void *)get_wchan(tsk),
913 delta >> 20);
914 }
915 account_scheduler_latency(tsk, delta >> 10, 0);
916 }
917 }
918 #endif
919 }
920
921 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 #ifdef CONFIG_SCHED_DEBUG
924 s64 d = se->vruntime - cfs_rq->min_vruntime;
925
926 if (d < 0)
927 d = -d;
928
929 if (d > 3*sysctl_sched_latency)
930 schedstat_inc(cfs_rq, nr_spread_over);
931 #endif
932 }
933
934 static void
935 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
936 {
937 u64 vruntime = cfs_rq->min_vruntime;
938
939 /*
940 * The 'current' period is already promised to the current tasks,
941 * however the extra weight of the new task will slow them down a
942 * little, place the new task so that it fits in the slot that
943 * stays open at the end.
944 */
945 if (initial && sched_feat(START_DEBIT))
946 vruntime += sched_vslice(cfs_rq, se);
947
948 /* sleeps up to a single latency don't count. */
949 if (!initial) {
950 unsigned long thresh = sysctl_sched_latency;
951
952 /*
953 * Halve their sleep time's effect, to allow
954 * for a gentler effect of sleepers:
955 */
956 if (sched_feat(GENTLE_FAIR_SLEEPERS))
957 thresh >>= 1;
958
959 vruntime -= thresh;
960 }
961
962 /* ensure we never gain time by being placed backwards. */
963 vruntime = max_vruntime(se->vruntime, vruntime);
964
965 se->vruntime = vruntime;
966 }
967
968 static void
969 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
970 {
971 /*
972 * Update the normalized vruntime before updating min_vruntime
973 * through callig update_curr().
974 */
975 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
976 se->vruntime += cfs_rq->min_vruntime;
977
978 /*
979 * Update run-time statistics of the 'current'.
980 */
981 update_curr(cfs_rq);
982 update_cfs_load(cfs_rq, 0);
983 account_entity_enqueue(cfs_rq, se);
984 update_cfs_shares(cfs_rq);
985
986 if (flags & ENQUEUE_WAKEUP) {
987 place_entity(cfs_rq, se, 0);
988 enqueue_sleeper(cfs_rq, se);
989 }
990
991 update_stats_enqueue(cfs_rq, se);
992 check_spread(cfs_rq, se);
993 if (se != cfs_rq->curr)
994 __enqueue_entity(cfs_rq, se);
995 se->on_rq = 1;
996
997 if (cfs_rq->nr_running == 1)
998 list_add_leaf_cfs_rq(cfs_rq);
999 }
1000
1001 static void __clear_buddies_last(struct sched_entity *se)
1002 {
1003 for_each_sched_entity(se) {
1004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1005 if (cfs_rq->last == se)
1006 cfs_rq->last = NULL;
1007 else
1008 break;
1009 }
1010 }
1011
1012 static void __clear_buddies_next(struct sched_entity *se)
1013 {
1014 for_each_sched_entity(se) {
1015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1016 if (cfs_rq->next == se)
1017 cfs_rq->next = NULL;
1018 else
1019 break;
1020 }
1021 }
1022
1023 static void __clear_buddies_skip(struct sched_entity *se)
1024 {
1025 for_each_sched_entity(se) {
1026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 if (cfs_rq->skip == se)
1028 cfs_rq->skip = NULL;
1029 else
1030 break;
1031 }
1032 }
1033
1034 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 {
1036 if (cfs_rq->last == se)
1037 __clear_buddies_last(se);
1038
1039 if (cfs_rq->next == se)
1040 __clear_buddies_next(se);
1041
1042 if (cfs_rq->skip == se)
1043 __clear_buddies_skip(se);
1044 }
1045
1046 static void
1047 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1048 {
1049 /*
1050 * Update run-time statistics of the 'current'.
1051 */
1052 update_curr(cfs_rq);
1053
1054 update_stats_dequeue(cfs_rq, se);
1055 if (flags & DEQUEUE_SLEEP) {
1056 #ifdef CONFIG_SCHEDSTATS
1057 if (entity_is_task(se)) {
1058 struct task_struct *tsk = task_of(se);
1059
1060 if (tsk->state & TASK_INTERRUPTIBLE)
1061 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1062 if (tsk->state & TASK_UNINTERRUPTIBLE)
1063 se->statistics.block_start = rq_of(cfs_rq)->clock;
1064 }
1065 #endif
1066 }
1067
1068 clear_buddies(cfs_rq, se);
1069
1070 if (se != cfs_rq->curr)
1071 __dequeue_entity(cfs_rq, se);
1072 se->on_rq = 0;
1073 update_cfs_load(cfs_rq, 0);
1074 account_entity_dequeue(cfs_rq, se);
1075 update_min_vruntime(cfs_rq);
1076 update_cfs_shares(cfs_rq);
1077
1078 /*
1079 * Normalize the entity after updating the min_vruntime because the
1080 * update can refer to the ->curr item and we need to reflect this
1081 * movement in our normalized position.
1082 */
1083 if (!(flags & DEQUEUE_SLEEP))
1084 se->vruntime -= cfs_rq->min_vruntime;
1085 }
1086
1087 /*
1088 * Preempt the current task with a newly woken task if needed:
1089 */
1090 static void
1091 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1092 {
1093 unsigned long ideal_runtime, delta_exec;
1094
1095 ideal_runtime = sched_slice(cfs_rq, curr);
1096 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1097 if (delta_exec > ideal_runtime) {
1098 resched_task(rq_of(cfs_rq)->curr);
1099 /*
1100 * The current task ran long enough, ensure it doesn't get
1101 * re-elected due to buddy favours.
1102 */
1103 clear_buddies(cfs_rq, curr);
1104 return;
1105 }
1106
1107 /*
1108 * Ensure that a task that missed wakeup preemption by a
1109 * narrow margin doesn't have to wait for a full slice.
1110 * This also mitigates buddy induced latencies under load.
1111 */
1112 if (!sched_feat(WAKEUP_PREEMPT))
1113 return;
1114
1115 if (delta_exec < sysctl_sched_min_granularity)
1116 return;
1117
1118 if (cfs_rq->nr_running > 1) {
1119 struct sched_entity *se = __pick_first_entity(cfs_rq);
1120 s64 delta = curr->vruntime - se->vruntime;
1121
1122 if (delta < 0)
1123 return;
1124
1125 if (delta > ideal_runtime)
1126 resched_task(rq_of(cfs_rq)->curr);
1127 }
1128 }
1129
1130 static void
1131 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1132 {
1133 /* 'current' is not kept within the tree. */
1134 if (se->on_rq) {
1135 /*
1136 * Any task has to be enqueued before it get to execute on
1137 * a CPU. So account for the time it spent waiting on the
1138 * runqueue.
1139 */
1140 update_stats_wait_end(cfs_rq, se);
1141 __dequeue_entity(cfs_rq, se);
1142 }
1143
1144 update_stats_curr_start(cfs_rq, se);
1145 cfs_rq->curr = se;
1146 #ifdef CONFIG_SCHEDSTATS
1147 /*
1148 * Track our maximum slice length, if the CPU's load is at
1149 * least twice that of our own weight (i.e. dont track it
1150 * when there are only lesser-weight tasks around):
1151 */
1152 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1153 se->statistics.slice_max = max(se->statistics.slice_max,
1154 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1155 }
1156 #endif
1157 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1158 }
1159
1160 static int
1161 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1162
1163 /*
1164 * Pick the next process, keeping these things in mind, in this order:
1165 * 1) keep things fair between processes/task groups
1166 * 2) pick the "next" process, since someone really wants that to run
1167 * 3) pick the "last" process, for cache locality
1168 * 4) do not run the "skip" process, if something else is available
1169 */
1170 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1171 {
1172 struct sched_entity *se = __pick_first_entity(cfs_rq);
1173 struct sched_entity *left = se;
1174
1175 /*
1176 * Avoid running the skip buddy, if running something else can
1177 * be done without getting too unfair.
1178 */
1179 if (cfs_rq->skip == se) {
1180 struct sched_entity *second = __pick_next_entity(se);
1181 if (second && wakeup_preempt_entity(second, left) < 1)
1182 se = second;
1183 }
1184
1185 /*
1186 * Prefer last buddy, try to return the CPU to a preempted task.
1187 */
1188 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1189 se = cfs_rq->last;
1190
1191 /*
1192 * Someone really wants this to run. If it's not unfair, run it.
1193 */
1194 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1195 se = cfs_rq->next;
1196
1197 clear_buddies(cfs_rq, se);
1198
1199 return se;
1200 }
1201
1202 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1203 {
1204 /*
1205 * If still on the runqueue then deactivate_task()
1206 * was not called and update_curr() has to be done:
1207 */
1208 if (prev->on_rq)
1209 update_curr(cfs_rq);
1210
1211 check_spread(cfs_rq, prev);
1212 if (prev->on_rq) {
1213 update_stats_wait_start(cfs_rq, prev);
1214 /* Put 'current' back into the tree. */
1215 __enqueue_entity(cfs_rq, prev);
1216 }
1217 cfs_rq->curr = NULL;
1218 }
1219
1220 static void
1221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1222 {
1223 /*
1224 * Update run-time statistics of the 'current'.
1225 */
1226 update_curr(cfs_rq);
1227
1228 /*
1229 * Update share accounting for long-running entities.
1230 */
1231 update_entity_shares_tick(cfs_rq);
1232
1233 #ifdef CONFIG_SCHED_HRTICK
1234 /*
1235 * queued ticks are scheduled to match the slice, so don't bother
1236 * validating it and just reschedule.
1237 */
1238 if (queued) {
1239 resched_task(rq_of(cfs_rq)->curr);
1240 return;
1241 }
1242 /*
1243 * don't let the period tick interfere with the hrtick preemption
1244 */
1245 if (!sched_feat(DOUBLE_TICK) &&
1246 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1247 return;
1248 #endif
1249
1250 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1251 check_preempt_tick(cfs_rq, curr);
1252 }
1253
1254 /**************************************************
1255 * CFS operations on tasks:
1256 */
1257
1258 #ifdef CONFIG_SCHED_HRTICK
1259 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1260 {
1261 struct sched_entity *se = &p->se;
1262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1263
1264 WARN_ON(task_rq(p) != rq);
1265
1266 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1267 u64 slice = sched_slice(cfs_rq, se);
1268 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1269 s64 delta = slice - ran;
1270
1271 if (delta < 0) {
1272 if (rq->curr == p)
1273 resched_task(p);
1274 return;
1275 }
1276
1277 /*
1278 * Don't schedule slices shorter than 10000ns, that just
1279 * doesn't make sense. Rely on vruntime for fairness.
1280 */
1281 if (rq->curr != p)
1282 delta = max_t(s64, 10000LL, delta);
1283
1284 hrtick_start(rq, delta);
1285 }
1286 }
1287
1288 /*
1289 * called from enqueue/dequeue and updates the hrtick when the
1290 * current task is from our class and nr_running is low enough
1291 * to matter.
1292 */
1293 static void hrtick_update(struct rq *rq)
1294 {
1295 struct task_struct *curr = rq->curr;
1296
1297 if (curr->sched_class != &fair_sched_class)
1298 return;
1299
1300 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1301 hrtick_start_fair(rq, curr);
1302 }
1303 #else /* !CONFIG_SCHED_HRTICK */
1304 static inline void
1305 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1306 {
1307 }
1308
1309 static inline void hrtick_update(struct rq *rq)
1310 {
1311 }
1312 #endif
1313
1314 /*
1315 * The enqueue_task method is called before nr_running is
1316 * increased. Here we update the fair scheduling stats and
1317 * then put the task into the rbtree:
1318 */
1319 static void
1320 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1321 {
1322 struct cfs_rq *cfs_rq;
1323 struct sched_entity *se = &p->se;
1324
1325 for_each_sched_entity(se) {
1326 if (se->on_rq)
1327 break;
1328 cfs_rq = cfs_rq_of(se);
1329 enqueue_entity(cfs_rq, se, flags);
1330 flags = ENQUEUE_WAKEUP;
1331 }
1332
1333 for_each_sched_entity(se) {
1334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1335
1336 update_cfs_load(cfs_rq, 0);
1337 update_cfs_shares(cfs_rq);
1338 }
1339
1340 hrtick_update(rq);
1341 }
1342
1343 /*
1344 * The dequeue_task method is called before nr_running is
1345 * decreased. We remove the task from the rbtree and
1346 * update the fair scheduling stats:
1347 */
1348 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1349 {
1350 struct cfs_rq *cfs_rq;
1351 struct sched_entity *se = &p->se;
1352
1353 for_each_sched_entity(se) {
1354 cfs_rq = cfs_rq_of(se);
1355 dequeue_entity(cfs_rq, se, flags);
1356
1357 /* Don't dequeue parent if it has other entities besides us */
1358 if (cfs_rq->load.weight)
1359 break;
1360 flags |= DEQUEUE_SLEEP;
1361 }
1362
1363 for_each_sched_entity(se) {
1364 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1365
1366 update_cfs_load(cfs_rq, 0);
1367 update_cfs_shares(cfs_rq);
1368 }
1369
1370 hrtick_update(rq);
1371 }
1372
1373 #ifdef CONFIG_SMP
1374
1375 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1376 {
1377 struct sched_entity *se = &p->se;
1378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1379
1380 se->vruntime -= cfs_rq->min_vruntime;
1381 }
1382
1383 #ifdef CONFIG_FAIR_GROUP_SCHED
1384 /*
1385 * effective_load() calculates the load change as seen from the root_task_group
1386 *
1387 * Adding load to a group doesn't make a group heavier, but can cause movement
1388 * of group shares between cpus. Assuming the shares were perfectly aligned one
1389 * can calculate the shift in shares.
1390 */
1391 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1392 {
1393 struct sched_entity *se = tg->se[cpu];
1394
1395 if (!tg->parent)
1396 return wl;
1397
1398 for_each_sched_entity(se) {
1399 long lw, w;
1400
1401 tg = se->my_q->tg;
1402 w = se->my_q->load.weight;
1403
1404 /* use this cpu's instantaneous contribution */
1405 lw = atomic_read(&tg->load_weight);
1406 lw -= se->my_q->load_contribution;
1407 lw += w + wg;
1408
1409 wl += w;
1410
1411 if (lw > 0 && wl < lw)
1412 wl = (wl * tg->shares) / lw;
1413 else
1414 wl = tg->shares;
1415
1416 /* zero point is MIN_SHARES */
1417 if (wl < MIN_SHARES)
1418 wl = MIN_SHARES;
1419 wl -= se->load.weight;
1420 wg = 0;
1421 }
1422
1423 return wl;
1424 }
1425
1426 #else
1427
1428 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1429 unsigned long wl, unsigned long wg)
1430 {
1431 return wl;
1432 }
1433
1434 #endif
1435
1436 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1437 {
1438 s64 this_load, load;
1439 int idx, this_cpu, prev_cpu;
1440 unsigned long tl_per_task;
1441 struct task_group *tg;
1442 unsigned long weight;
1443 int balanced;
1444
1445 idx = sd->wake_idx;
1446 this_cpu = smp_processor_id();
1447 prev_cpu = task_cpu(p);
1448 load = source_load(prev_cpu, idx);
1449 this_load = target_load(this_cpu, idx);
1450
1451 /*
1452 * If sync wakeup then subtract the (maximum possible)
1453 * effect of the currently running task from the load
1454 * of the current CPU:
1455 */
1456 rcu_read_lock();
1457 if (sync) {
1458 tg = task_group(current);
1459 weight = current->se.load.weight;
1460
1461 this_load += effective_load(tg, this_cpu, -weight, -weight);
1462 load += effective_load(tg, prev_cpu, 0, -weight);
1463 }
1464
1465 tg = task_group(p);
1466 weight = p->se.load.weight;
1467
1468 /*
1469 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1470 * due to the sync cause above having dropped this_load to 0, we'll
1471 * always have an imbalance, but there's really nothing you can do
1472 * about that, so that's good too.
1473 *
1474 * Otherwise check if either cpus are near enough in load to allow this
1475 * task to be woken on this_cpu.
1476 */
1477 if (this_load > 0) {
1478 s64 this_eff_load, prev_eff_load;
1479
1480 this_eff_load = 100;
1481 this_eff_load *= power_of(prev_cpu);
1482 this_eff_load *= this_load +
1483 effective_load(tg, this_cpu, weight, weight);
1484
1485 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1486 prev_eff_load *= power_of(this_cpu);
1487 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1488
1489 balanced = this_eff_load <= prev_eff_load;
1490 } else
1491 balanced = true;
1492 rcu_read_unlock();
1493
1494 /*
1495 * If the currently running task will sleep within
1496 * a reasonable amount of time then attract this newly
1497 * woken task:
1498 */
1499 if (sync && balanced)
1500 return 1;
1501
1502 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1503 tl_per_task = cpu_avg_load_per_task(this_cpu);
1504
1505 if (balanced ||
1506 (this_load <= load &&
1507 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1508 /*
1509 * This domain has SD_WAKE_AFFINE and
1510 * p is cache cold in this domain, and
1511 * there is no bad imbalance.
1512 */
1513 schedstat_inc(sd, ttwu_move_affine);
1514 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1515
1516 return 1;
1517 }
1518 return 0;
1519 }
1520
1521 /*
1522 * find_idlest_group finds and returns the least busy CPU group within the
1523 * domain.
1524 */
1525 static struct sched_group *
1526 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1527 int this_cpu, int load_idx)
1528 {
1529 struct sched_group *idlest = NULL, *group = sd->groups;
1530 unsigned long min_load = ULONG_MAX, this_load = 0;
1531 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1532
1533 do {
1534 unsigned long load, avg_load;
1535 int local_group;
1536 int i;
1537
1538 /* Skip over this group if it has no CPUs allowed */
1539 if (!cpumask_intersects(sched_group_cpus(group),
1540 &p->cpus_allowed))
1541 continue;
1542
1543 local_group = cpumask_test_cpu(this_cpu,
1544 sched_group_cpus(group));
1545
1546 /* Tally up the load of all CPUs in the group */
1547 avg_load = 0;
1548
1549 for_each_cpu(i, sched_group_cpus(group)) {
1550 /* Bias balancing toward cpus of our domain */
1551 if (local_group)
1552 load = source_load(i, load_idx);
1553 else
1554 load = target_load(i, load_idx);
1555
1556 avg_load += load;
1557 }
1558
1559 /* Adjust by relative CPU power of the group */
1560 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1561
1562 if (local_group) {
1563 this_load = avg_load;
1564 } else if (avg_load < min_load) {
1565 min_load = avg_load;
1566 idlest = group;
1567 }
1568 } while (group = group->next, group != sd->groups);
1569
1570 if (!idlest || 100*this_load < imbalance*min_load)
1571 return NULL;
1572 return idlest;
1573 }
1574
1575 /*
1576 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1577 */
1578 static int
1579 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1580 {
1581 unsigned long load, min_load = ULONG_MAX;
1582 int idlest = -1;
1583 int i;
1584
1585 /* Traverse only the allowed CPUs */
1586 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1587 load = weighted_cpuload(i);
1588
1589 if (load < min_load || (load == min_load && i == this_cpu)) {
1590 min_load = load;
1591 idlest = i;
1592 }
1593 }
1594
1595 return idlest;
1596 }
1597
1598 /*
1599 * Try and locate an idle CPU in the sched_domain.
1600 */
1601 static int select_idle_sibling(struct task_struct *p, int target)
1602 {
1603 int cpu = smp_processor_id();
1604 int prev_cpu = task_cpu(p);
1605 struct sched_domain *sd;
1606 int i;
1607
1608 /*
1609 * If the task is going to be woken-up on this cpu and if it is
1610 * already idle, then it is the right target.
1611 */
1612 if (target == cpu && idle_cpu(cpu))
1613 return cpu;
1614
1615 /*
1616 * If the task is going to be woken-up on the cpu where it previously
1617 * ran and if it is currently idle, then it the right target.
1618 */
1619 if (target == prev_cpu && idle_cpu(prev_cpu))
1620 return prev_cpu;
1621
1622 /*
1623 * Otherwise, iterate the domains and find an elegible idle cpu.
1624 */
1625 for_each_domain(target, sd) {
1626 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1627 break;
1628
1629 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1630 if (idle_cpu(i)) {
1631 target = i;
1632 break;
1633 }
1634 }
1635
1636 /*
1637 * Lets stop looking for an idle sibling when we reached
1638 * the domain that spans the current cpu and prev_cpu.
1639 */
1640 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1641 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1642 break;
1643 }
1644
1645 return target;
1646 }
1647
1648 /*
1649 * sched_balance_self: balance the current task (running on cpu) in domains
1650 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1651 * SD_BALANCE_EXEC.
1652 *
1653 * Balance, ie. select the least loaded group.
1654 *
1655 * Returns the target CPU number, or the same CPU if no balancing is needed.
1656 *
1657 * preempt must be disabled.
1658 */
1659 static int
1660 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1661 {
1662 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1663 int cpu = smp_processor_id();
1664 int prev_cpu = task_cpu(p);
1665 int new_cpu = cpu;
1666 int want_affine = 0;
1667 int want_sd = 1;
1668 int sync = wake_flags & WF_SYNC;
1669
1670 if (sd_flag & SD_BALANCE_WAKE) {
1671 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1672 want_affine = 1;
1673 new_cpu = prev_cpu;
1674 }
1675
1676 for_each_domain(cpu, tmp) {
1677 if (!(tmp->flags & SD_LOAD_BALANCE))
1678 continue;
1679
1680 /*
1681 * If power savings logic is enabled for a domain, see if we
1682 * are not overloaded, if so, don't balance wider.
1683 */
1684 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1685 unsigned long power = 0;
1686 unsigned long nr_running = 0;
1687 unsigned long capacity;
1688 int i;
1689
1690 for_each_cpu(i, sched_domain_span(tmp)) {
1691 power += power_of(i);
1692 nr_running += cpu_rq(i)->cfs.nr_running;
1693 }
1694
1695 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1696
1697 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1698 nr_running /= 2;
1699
1700 if (nr_running < capacity)
1701 want_sd = 0;
1702 }
1703
1704 /*
1705 * If both cpu and prev_cpu are part of this domain,
1706 * cpu is a valid SD_WAKE_AFFINE target.
1707 */
1708 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1709 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1710 affine_sd = tmp;
1711 want_affine = 0;
1712 }
1713
1714 if (!want_sd && !want_affine)
1715 break;
1716
1717 if (!(tmp->flags & sd_flag))
1718 continue;
1719
1720 if (want_sd)
1721 sd = tmp;
1722 }
1723
1724 if (affine_sd) {
1725 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1726 return select_idle_sibling(p, cpu);
1727 else
1728 return select_idle_sibling(p, prev_cpu);
1729 }
1730
1731 while (sd) {
1732 int load_idx = sd->forkexec_idx;
1733 struct sched_group *group;
1734 int weight;
1735
1736 if (!(sd->flags & sd_flag)) {
1737 sd = sd->child;
1738 continue;
1739 }
1740
1741 if (sd_flag & SD_BALANCE_WAKE)
1742 load_idx = sd->wake_idx;
1743
1744 group = find_idlest_group(sd, p, cpu, load_idx);
1745 if (!group) {
1746 sd = sd->child;
1747 continue;
1748 }
1749
1750 new_cpu = find_idlest_cpu(group, p, cpu);
1751 if (new_cpu == -1 || new_cpu == cpu) {
1752 /* Now try balancing at a lower domain level of cpu */
1753 sd = sd->child;
1754 continue;
1755 }
1756
1757 /* Now try balancing at a lower domain level of new_cpu */
1758 cpu = new_cpu;
1759 weight = sd->span_weight;
1760 sd = NULL;
1761 for_each_domain(cpu, tmp) {
1762 if (weight <= tmp->span_weight)
1763 break;
1764 if (tmp->flags & sd_flag)
1765 sd = tmp;
1766 }
1767 /* while loop will break here if sd == NULL */
1768 }
1769
1770 return new_cpu;
1771 }
1772 #endif /* CONFIG_SMP */
1773
1774 static unsigned long
1775 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1776 {
1777 unsigned long gran = sysctl_sched_wakeup_granularity;
1778
1779 /*
1780 * Since its curr running now, convert the gran from real-time
1781 * to virtual-time in his units.
1782 *
1783 * By using 'se' instead of 'curr' we penalize light tasks, so
1784 * they get preempted easier. That is, if 'se' < 'curr' then
1785 * the resulting gran will be larger, therefore penalizing the
1786 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1787 * be smaller, again penalizing the lighter task.
1788 *
1789 * This is especially important for buddies when the leftmost
1790 * task is higher priority than the buddy.
1791 */
1792 if (unlikely(se->load.weight != NICE_0_LOAD))
1793 gran = calc_delta_fair(gran, se);
1794
1795 return gran;
1796 }
1797
1798 /*
1799 * Should 'se' preempt 'curr'.
1800 *
1801 * |s1
1802 * |s2
1803 * |s3
1804 * g
1805 * |<--->|c
1806 *
1807 * w(c, s1) = -1
1808 * w(c, s2) = 0
1809 * w(c, s3) = 1
1810 *
1811 */
1812 static int
1813 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1814 {
1815 s64 gran, vdiff = curr->vruntime - se->vruntime;
1816
1817 if (vdiff <= 0)
1818 return -1;
1819
1820 gran = wakeup_gran(curr, se);
1821 if (vdiff > gran)
1822 return 1;
1823
1824 return 0;
1825 }
1826
1827 static void set_last_buddy(struct sched_entity *se)
1828 {
1829 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1830 for_each_sched_entity(se)
1831 cfs_rq_of(se)->last = se;
1832 }
1833 }
1834
1835 static void set_next_buddy(struct sched_entity *se)
1836 {
1837 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1838 for_each_sched_entity(se)
1839 cfs_rq_of(se)->next = se;
1840 }
1841 }
1842
1843 static void set_skip_buddy(struct sched_entity *se)
1844 {
1845 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1846 for_each_sched_entity(se)
1847 cfs_rq_of(se)->skip = se;
1848 }
1849 }
1850
1851 /*
1852 * Preempt the current task with a newly woken task if needed:
1853 */
1854 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1855 {
1856 struct task_struct *curr = rq->curr;
1857 struct sched_entity *se = &curr->se, *pse = &p->se;
1858 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1859 int scale = cfs_rq->nr_running >= sched_nr_latency;
1860
1861 if (unlikely(se == pse))
1862 return;
1863
1864 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1865 set_next_buddy(pse);
1866
1867 /*
1868 * We can come here with TIF_NEED_RESCHED already set from new task
1869 * wake up path.
1870 */
1871 if (test_tsk_need_resched(curr))
1872 return;
1873
1874 /* Idle tasks are by definition preempted by non-idle tasks. */
1875 if (unlikely(curr->policy == SCHED_IDLE) &&
1876 likely(p->policy != SCHED_IDLE))
1877 goto preempt;
1878
1879 /*
1880 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1881 * is driven by the tick):
1882 */
1883 if (unlikely(p->policy != SCHED_NORMAL))
1884 return;
1885
1886
1887 if (!sched_feat(WAKEUP_PREEMPT))
1888 return;
1889
1890 update_curr(cfs_rq);
1891 find_matching_se(&se, &pse);
1892 BUG_ON(!pse);
1893 if (wakeup_preempt_entity(se, pse) == 1)
1894 goto preempt;
1895
1896 return;
1897
1898 preempt:
1899 resched_task(curr);
1900 /*
1901 * Only set the backward buddy when the current task is still
1902 * on the rq. This can happen when a wakeup gets interleaved
1903 * with schedule on the ->pre_schedule() or idle_balance()
1904 * point, either of which can * drop the rq lock.
1905 *
1906 * Also, during early boot the idle thread is in the fair class,
1907 * for obvious reasons its a bad idea to schedule back to it.
1908 */
1909 if (unlikely(!se->on_rq || curr == rq->idle))
1910 return;
1911
1912 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1913 set_last_buddy(se);
1914 }
1915
1916 static struct task_struct *pick_next_task_fair(struct rq *rq)
1917 {
1918 struct task_struct *p;
1919 struct cfs_rq *cfs_rq = &rq->cfs;
1920 struct sched_entity *se;
1921
1922 if (!cfs_rq->nr_running)
1923 return NULL;
1924
1925 do {
1926 se = pick_next_entity(cfs_rq);
1927 set_next_entity(cfs_rq, se);
1928 cfs_rq = group_cfs_rq(se);
1929 } while (cfs_rq);
1930
1931 p = task_of(se);
1932 hrtick_start_fair(rq, p);
1933
1934 return p;
1935 }
1936
1937 /*
1938 * Account for a descheduled task:
1939 */
1940 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1941 {
1942 struct sched_entity *se = &prev->se;
1943 struct cfs_rq *cfs_rq;
1944
1945 for_each_sched_entity(se) {
1946 cfs_rq = cfs_rq_of(se);
1947 put_prev_entity(cfs_rq, se);
1948 }
1949 }
1950
1951 /*
1952 * sched_yield() is very simple
1953 *
1954 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1955 */
1956 static void yield_task_fair(struct rq *rq)
1957 {
1958 struct task_struct *curr = rq->curr;
1959 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1960 struct sched_entity *se = &curr->se;
1961
1962 /*
1963 * Are we the only task in the tree?
1964 */
1965 if (unlikely(rq->nr_running == 1))
1966 return;
1967
1968 clear_buddies(cfs_rq, se);
1969
1970 if (curr->policy != SCHED_BATCH) {
1971 update_rq_clock(rq);
1972 /*
1973 * Update run-time statistics of the 'current'.
1974 */
1975 update_curr(cfs_rq);
1976 }
1977
1978 set_skip_buddy(se);
1979 }
1980
1981 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1982 {
1983 struct sched_entity *se = &p->se;
1984
1985 if (!se->on_rq)
1986 return false;
1987
1988 /* Tell the scheduler that we'd really like pse to run next. */
1989 set_next_buddy(se);
1990
1991 yield_task_fair(rq);
1992
1993 return true;
1994 }
1995
1996 #ifdef CONFIG_SMP
1997 /**************************************************
1998 * Fair scheduling class load-balancing methods:
1999 */
2000
2001 /*
2002 * pull_task - move a task from a remote runqueue to the local runqueue.
2003 * Both runqueues must be locked.
2004 */
2005 static void pull_task(struct rq *src_rq, struct task_struct *p,
2006 struct rq *this_rq, int this_cpu)
2007 {
2008 deactivate_task(src_rq, p, 0);
2009 set_task_cpu(p, this_cpu);
2010 activate_task(this_rq, p, 0);
2011 check_preempt_curr(this_rq, p, 0);
2012 }
2013
2014 /*
2015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2016 */
2017 static
2018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2019 struct sched_domain *sd, enum cpu_idle_type idle,
2020 int *all_pinned)
2021 {
2022 int tsk_cache_hot = 0;
2023 /*
2024 * We do not migrate tasks that are:
2025 * 1) running (obviously), or
2026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2027 * 3) are cache-hot on their current CPU.
2028 */
2029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2030 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2031 return 0;
2032 }
2033 *all_pinned = 0;
2034
2035 if (task_running(rq, p)) {
2036 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2037 return 0;
2038 }
2039
2040 /*
2041 * Aggressive migration if:
2042 * 1) task is cache cold, or
2043 * 2) too many balance attempts have failed.
2044 */
2045
2046 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2047 if (!tsk_cache_hot ||
2048 sd->nr_balance_failed > sd->cache_nice_tries) {
2049 #ifdef CONFIG_SCHEDSTATS
2050 if (tsk_cache_hot) {
2051 schedstat_inc(sd, lb_hot_gained[idle]);
2052 schedstat_inc(p, se.statistics.nr_forced_migrations);
2053 }
2054 #endif
2055 return 1;
2056 }
2057
2058 if (tsk_cache_hot) {
2059 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2060 return 0;
2061 }
2062 return 1;
2063 }
2064
2065 /*
2066 * move_one_task tries to move exactly one task from busiest to this_rq, as
2067 * part of active balancing operations within "domain".
2068 * Returns 1 if successful and 0 otherwise.
2069 *
2070 * Called with both runqueues locked.
2071 */
2072 static int
2073 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2074 struct sched_domain *sd, enum cpu_idle_type idle)
2075 {
2076 struct task_struct *p, *n;
2077 struct cfs_rq *cfs_rq;
2078 int pinned = 0;
2079
2080 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2081 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2082
2083 if (!can_migrate_task(p, busiest, this_cpu,
2084 sd, idle, &pinned))
2085 continue;
2086
2087 pull_task(busiest, p, this_rq, this_cpu);
2088 /*
2089 * Right now, this is only the second place pull_task()
2090 * is called, so we can safely collect pull_task()
2091 * stats here rather than inside pull_task().
2092 */
2093 schedstat_inc(sd, lb_gained[idle]);
2094 return 1;
2095 }
2096 }
2097
2098 return 0;
2099 }
2100
2101 static unsigned long
2102 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2103 unsigned long max_load_move, struct sched_domain *sd,
2104 enum cpu_idle_type idle, int *all_pinned,
2105 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2106 {
2107 int loops = 0, pulled = 0, pinned = 0;
2108 long rem_load_move = max_load_move;
2109 struct task_struct *p, *n;
2110
2111 if (max_load_move == 0)
2112 goto out;
2113
2114 pinned = 1;
2115
2116 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2117 if (loops++ > sysctl_sched_nr_migrate)
2118 break;
2119
2120 if ((p->se.load.weight >> 1) > rem_load_move ||
2121 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2122 continue;
2123
2124 pull_task(busiest, p, this_rq, this_cpu);
2125 pulled++;
2126 rem_load_move -= p->se.load.weight;
2127
2128 #ifdef CONFIG_PREEMPT
2129 /*
2130 * NEWIDLE balancing is a source of latency, so preemptible
2131 * kernels will stop after the first task is pulled to minimize
2132 * the critical section.
2133 */
2134 if (idle == CPU_NEWLY_IDLE)
2135 break;
2136 #endif
2137
2138 /*
2139 * We only want to steal up to the prescribed amount of
2140 * weighted load.
2141 */
2142 if (rem_load_move <= 0)
2143 break;
2144
2145 if (p->prio < *this_best_prio)
2146 *this_best_prio = p->prio;
2147 }
2148 out:
2149 /*
2150 * Right now, this is one of only two places pull_task() is called,
2151 * so we can safely collect pull_task() stats here rather than
2152 * inside pull_task().
2153 */
2154 schedstat_add(sd, lb_gained[idle], pulled);
2155
2156 if (all_pinned)
2157 *all_pinned = pinned;
2158
2159 return max_load_move - rem_load_move;
2160 }
2161
2162 #ifdef CONFIG_FAIR_GROUP_SCHED
2163 /*
2164 * update tg->load_weight by folding this cpu's load_avg
2165 */
2166 static int update_shares_cpu(struct task_group *tg, int cpu)
2167 {
2168 struct cfs_rq *cfs_rq;
2169 unsigned long flags;
2170 struct rq *rq;
2171
2172 if (!tg->se[cpu])
2173 return 0;
2174
2175 rq = cpu_rq(cpu);
2176 cfs_rq = tg->cfs_rq[cpu];
2177
2178 raw_spin_lock_irqsave(&rq->lock, flags);
2179
2180 update_rq_clock(rq);
2181 update_cfs_load(cfs_rq, 1);
2182
2183 /*
2184 * We need to update shares after updating tg->load_weight in
2185 * order to adjust the weight of groups with long running tasks.
2186 */
2187 update_cfs_shares(cfs_rq);
2188
2189 raw_spin_unlock_irqrestore(&rq->lock, flags);
2190
2191 return 0;
2192 }
2193
2194 static void update_shares(int cpu)
2195 {
2196 struct cfs_rq *cfs_rq;
2197 struct rq *rq = cpu_rq(cpu);
2198
2199 rcu_read_lock();
2200 for_each_leaf_cfs_rq(rq, cfs_rq)
2201 update_shares_cpu(cfs_rq->tg, cpu);
2202 rcu_read_unlock();
2203 }
2204
2205 static unsigned long
2206 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2207 unsigned long max_load_move,
2208 struct sched_domain *sd, enum cpu_idle_type idle,
2209 int *all_pinned, int *this_best_prio)
2210 {
2211 long rem_load_move = max_load_move;
2212 int busiest_cpu = cpu_of(busiest);
2213 struct task_group *tg;
2214
2215 rcu_read_lock();
2216 update_h_load(busiest_cpu);
2217
2218 list_for_each_entry_rcu(tg, &task_groups, list) {
2219 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2220 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2221 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2222 u64 rem_load, moved_load;
2223
2224 /*
2225 * empty group
2226 */
2227 if (!busiest_cfs_rq->task_weight)
2228 continue;
2229
2230 rem_load = (u64)rem_load_move * busiest_weight;
2231 rem_load = div_u64(rem_load, busiest_h_load + 1);
2232
2233 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2234 rem_load, sd, idle, all_pinned, this_best_prio,
2235 busiest_cfs_rq);
2236
2237 if (!moved_load)
2238 continue;
2239
2240 moved_load *= busiest_h_load;
2241 moved_load = div_u64(moved_load, busiest_weight + 1);
2242
2243 rem_load_move -= moved_load;
2244 if (rem_load_move < 0)
2245 break;
2246 }
2247 rcu_read_unlock();
2248
2249 return max_load_move - rem_load_move;
2250 }
2251 #else
2252 static inline void update_shares(int cpu)
2253 {
2254 }
2255
2256 static unsigned long
2257 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2258 unsigned long max_load_move,
2259 struct sched_domain *sd, enum cpu_idle_type idle,
2260 int *all_pinned, int *this_best_prio)
2261 {
2262 return balance_tasks(this_rq, this_cpu, busiest,
2263 max_load_move, sd, idle, all_pinned,
2264 this_best_prio, &busiest->cfs);
2265 }
2266 #endif
2267
2268 /*
2269 * move_tasks tries to move up to max_load_move weighted load from busiest to
2270 * this_rq, as part of a balancing operation within domain "sd".
2271 * Returns 1 if successful and 0 otherwise.
2272 *
2273 * Called with both runqueues locked.
2274 */
2275 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2276 unsigned long max_load_move,
2277 struct sched_domain *sd, enum cpu_idle_type idle,
2278 int *all_pinned)
2279 {
2280 unsigned long total_load_moved = 0, load_moved;
2281 int this_best_prio = this_rq->curr->prio;
2282
2283 do {
2284 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2285 max_load_move - total_load_moved,
2286 sd, idle, all_pinned, &this_best_prio);
2287
2288 total_load_moved += load_moved;
2289
2290 #ifdef CONFIG_PREEMPT
2291 /*
2292 * NEWIDLE balancing is a source of latency, so preemptible
2293 * kernels will stop after the first task is pulled to minimize
2294 * the critical section.
2295 */
2296 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2297 break;
2298
2299 if (raw_spin_is_contended(&this_rq->lock) ||
2300 raw_spin_is_contended(&busiest->lock))
2301 break;
2302 #endif
2303 } while (load_moved && max_load_move > total_load_moved);
2304
2305 return total_load_moved > 0;
2306 }
2307
2308 /********** Helpers for find_busiest_group ************************/
2309 /*
2310 * sd_lb_stats - Structure to store the statistics of a sched_domain
2311 * during load balancing.
2312 */
2313 struct sd_lb_stats {
2314 struct sched_group *busiest; /* Busiest group in this sd */
2315 struct sched_group *this; /* Local group in this sd */
2316 unsigned long total_load; /* Total load of all groups in sd */
2317 unsigned long total_pwr; /* Total power of all groups in sd */
2318 unsigned long avg_load; /* Average load across all groups in sd */
2319
2320 /** Statistics of this group */
2321 unsigned long this_load;
2322 unsigned long this_load_per_task;
2323 unsigned long this_nr_running;
2324 unsigned long this_has_capacity;
2325 unsigned int this_idle_cpus;
2326
2327 /* Statistics of the busiest group */
2328 unsigned int busiest_idle_cpus;
2329 unsigned long max_load;
2330 unsigned long busiest_load_per_task;
2331 unsigned long busiest_nr_running;
2332 unsigned long busiest_group_capacity;
2333 unsigned long busiest_has_capacity;
2334 unsigned int busiest_group_weight;
2335
2336 int group_imb; /* Is there imbalance in this sd */
2337 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338 int power_savings_balance; /* Is powersave balance needed for this sd */
2339 struct sched_group *group_min; /* Least loaded group in sd */
2340 struct sched_group *group_leader; /* Group which relieves group_min */
2341 unsigned long min_load_per_task; /* load_per_task in group_min */
2342 unsigned long leader_nr_running; /* Nr running of group_leader */
2343 unsigned long min_nr_running; /* Nr running of group_min */
2344 #endif
2345 };
2346
2347 /*
2348 * sg_lb_stats - stats of a sched_group required for load_balancing
2349 */
2350 struct sg_lb_stats {
2351 unsigned long avg_load; /*Avg load across the CPUs of the group */
2352 unsigned long group_load; /* Total load over the CPUs of the group */
2353 unsigned long sum_nr_running; /* Nr tasks running in the group */
2354 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2355 unsigned long group_capacity;
2356 unsigned long idle_cpus;
2357 unsigned long group_weight;
2358 int group_imb; /* Is there an imbalance in the group ? */
2359 int group_has_capacity; /* Is there extra capacity in the group? */
2360 };
2361
2362 /**
2363 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2364 * @group: The group whose first cpu is to be returned.
2365 */
2366 static inline unsigned int group_first_cpu(struct sched_group *group)
2367 {
2368 return cpumask_first(sched_group_cpus(group));
2369 }
2370
2371 /**
2372 * get_sd_load_idx - Obtain the load index for a given sched domain.
2373 * @sd: The sched_domain whose load_idx is to be obtained.
2374 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2375 */
2376 static inline int get_sd_load_idx(struct sched_domain *sd,
2377 enum cpu_idle_type idle)
2378 {
2379 int load_idx;
2380
2381 switch (idle) {
2382 case CPU_NOT_IDLE:
2383 load_idx = sd->busy_idx;
2384 break;
2385
2386 case CPU_NEWLY_IDLE:
2387 load_idx = sd->newidle_idx;
2388 break;
2389 default:
2390 load_idx = sd->idle_idx;
2391 break;
2392 }
2393
2394 return load_idx;
2395 }
2396
2397
2398 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2399 /**
2400 * init_sd_power_savings_stats - Initialize power savings statistics for
2401 * the given sched_domain, during load balancing.
2402 *
2403 * @sd: Sched domain whose power-savings statistics are to be initialized.
2404 * @sds: Variable containing the statistics for sd.
2405 * @idle: Idle status of the CPU at which we're performing load-balancing.
2406 */
2407 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2408 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2409 {
2410 /*
2411 * Busy processors will not participate in power savings
2412 * balance.
2413 */
2414 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2415 sds->power_savings_balance = 0;
2416 else {
2417 sds->power_savings_balance = 1;
2418 sds->min_nr_running = ULONG_MAX;
2419 sds->leader_nr_running = 0;
2420 }
2421 }
2422
2423 /**
2424 * update_sd_power_savings_stats - Update the power saving stats for a
2425 * sched_domain while performing load balancing.
2426 *
2427 * @group: sched_group belonging to the sched_domain under consideration.
2428 * @sds: Variable containing the statistics of the sched_domain
2429 * @local_group: Does group contain the CPU for which we're performing
2430 * load balancing ?
2431 * @sgs: Variable containing the statistics of the group.
2432 */
2433 static inline void update_sd_power_savings_stats(struct sched_group *group,
2434 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2435 {
2436
2437 if (!sds->power_savings_balance)
2438 return;
2439
2440 /*
2441 * If the local group is idle or completely loaded
2442 * no need to do power savings balance at this domain
2443 */
2444 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2445 !sds->this_nr_running))
2446 sds->power_savings_balance = 0;
2447
2448 /*
2449 * If a group is already running at full capacity or idle,
2450 * don't include that group in power savings calculations
2451 */
2452 if (!sds->power_savings_balance ||
2453 sgs->sum_nr_running >= sgs->group_capacity ||
2454 !sgs->sum_nr_running)
2455 return;
2456
2457 /*
2458 * Calculate the group which has the least non-idle load.
2459 * This is the group from where we need to pick up the load
2460 * for saving power
2461 */
2462 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2463 (sgs->sum_nr_running == sds->min_nr_running &&
2464 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2465 sds->group_min = group;
2466 sds->min_nr_running = sgs->sum_nr_running;
2467 sds->min_load_per_task = sgs->sum_weighted_load /
2468 sgs->sum_nr_running;
2469 }
2470
2471 /*
2472 * Calculate the group which is almost near its
2473 * capacity but still has some space to pick up some load
2474 * from other group and save more power
2475 */
2476 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2477 return;
2478
2479 if (sgs->sum_nr_running > sds->leader_nr_running ||
2480 (sgs->sum_nr_running == sds->leader_nr_running &&
2481 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2482 sds->group_leader = group;
2483 sds->leader_nr_running = sgs->sum_nr_running;
2484 }
2485 }
2486
2487 /**
2488 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2489 * @sds: Variable containing the statistics of the sched_domain
2490 * under consideration.
2491 * @this_cpu: Cpu at which we're currently performing load-balancing.
2492 * @imbalance: Variable to store the imbalance.
2493 *
2494 * Description:
2495 * Check if we have potential to perform some power-savings balance.
2496 * If yes, set the busiest group to be the least loaded group in the
2497 * sched_domain, so that it's CPUs can be put to idle.
2498 *
2499 * Returns 1 if there is potential to perform power-savings balance.
2500 * Else returns 0.
2501 */
2502 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2503 int this_cpu, unsigned long *imbalance)
2504 {
2505 if (!sds->power_savings_balance)
2506 return 0;
2507
2508 if (sds->this != sds->group_leader ||
2509 sds->group_leader == sds->group_min)
2510 return 0;
2511
2512 *imbalance = sds->min_load_per_task;
2513 sds->busiest = sds->group_min;
2514
2515 return 1;
2516
2517 }
2518 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2519 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2520 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2521 {
2522 return;
2523 }
2524
2525 static inline void update_sd_power_savings_stats(struct sched_group *group,
2526 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2527 {
2528 return;
2529 }
2530
2531 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2532 int this_cpu, unsigned long *imbalance)
2533 {
2534 return 0;
2535 }
2536 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2537
2538
2539 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2540 {
2541 return SCHED_LOAD_SCALE;
2542 }
2543
2544 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2545 {
2546 return default_scale_freq_power(sd, cpu);
2547 }
2548
2549 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2550 {
2551 unsigned long weight = sd->span_weight;
2552 unsigned long smt_gain = sd->smt_gain;
2553
2554 smt_gain /= weight;
2555
2556 return smt_gain;
2557 }
2558
2559 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2560 {
2561 return default_scale_smt_power(sd, cpu);
2562 }
2563
2564 unsigned long scale_rt_power(int cpu)
2565 {
2566 struct rq *rq = cpu_rq(cpu);
2567 u64 total, available;
2568
2569 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2570
2571 if (unlikely(total < rq->rt_avg)) {
2572 /* Ensures that power won't end up being negative */
2573 available = 0;
2574 } else {
2575 available = total - rq->rt_avg;
2576 }
2577
2578 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2579 total = SCHED_LOAD_SCALE;
2580
2581 total >>= SCHED_LOAD_SHIFT;
2582
2583 return div_u64(available, total);
2584 }
2585
2586 static void update_cpu_power(struct sched_domain *sd, int cpu)
2587 {
2588 unsigned long weight = sd->span_weight;
2589 unsigned long power = SCHED_LOAD_SCALE;
2590 struct sched_group *sdg = sd->groups;
2591
2592 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2593 if (sched_feat(ARCH_POWER))
2594 power *= arch_scale_smt_power(sd, cpu);
2595 else
2596 power *= default_scale_smt_power(sd, cpu);
2597
2598 power >>= SCHED_LOAD_SHIFT;
2599 }
2600
2601 sdg->cpu_power_orig = power;
2602
2603 if (sched_feat(ARCH_POWER))
2604 power *= arch_scale_freq_power(sd, cpu);
2605 else
2606 power *= default_scale_freq_power(sd, cpu);
2607
2608 power >>= SCHED_LOAD_SHIFT;
2609
2610 power *= scale_rt_power(cpu);
2611 power >>= SCHED_LOAD_SHIFT;
2612
2613 if (!power)
2614 power = 1;
2615
2616 cpu_rq(cpu)->cpu_power = power;
2617 sdg->cpu_power = power;
2618 }
2619
2620 static void update_group_power(struct sched_domain *sd, int cpu)
2621 {
2622 struct sched_domain *child = sd->child;
2623 struct sched_group *group, *sdg = sd->groups;
2624 unsigned long power;
2625
2626 if (!child) {
2627 update_cpu_power(sd, cpu);
2628 return;
2629 }
2630
2631 power = 0;
2632
2633 group = child->groups;
2634 do {
2635 power += group->cpu_power;
2636 group = group->next;
2637 } while (group != child->groups);
2638
2639 sdg->cpu_power = power;
2640 }
2641
2642 /*
2643 * Try and fix up capacity for tiny siblings, this is needed when
2644 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2645 * which on its own isn't powerful enough.
2646 *
2647 * See update_sd_pick_busiest() and check_asym_packing().
2648 */
2649 static inline int
2650 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2651 {
2652 /*
2653 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2654 */
2655 if (sd->level != SD_LV_SIBLING)
2656 return 0;
2657
2658 /*
2659 * If ~90% of the cpu_power is still there, we're good.
2660 */
2661 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2662 return 1;
2663
2664 return 0;
2665 }
2666
2667 /**
2668 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2669 * @sd: The sched_domain whose statistics are to be updated.
2670 * @group: sched_group whose statistics are to be updated.
2671 * @this_cpu: Cpu for which load balance is currently performed.
2672 * @idle: Idle status of this_cpu
2673 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2674 * @local_group: Does group contain this_cpu.
2675 * @cpus: Set of cpus considered for load balancing.
2676 * @balance: Should we balance.
2677 * @sgs: variable to hold the statistics for this group.
2678 */
2679 static inline void update_sg_lb_stats(struct sched_domain *sd,
2680 struct sched_group *group, int this_cpu,
2681 enum cpu_idle_type idle, int load_idx,
2682 int local_group, const struct cpumask *cpus,
2683 int *balance, struct sg_lb_stats *sgs)
2684 {
2685 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2686 int i;
2687 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2688 unsigned long avg_load_per_task = 0;
2689
2690 if (local_group)
2691 balance_cpu = group_first_cpu(group);
2692
2693 /* Tally up the load of all CPUs in the group */
2694 max_cpu_load = 0;
2695 min_cpu_load = ~0UL;
2696 max_nr_running = 0;
2697
2698 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2699 struct rq *rq = cpu_rq(i);
2700
2701 /* Bias balancing toward cpus of our domain */
2702 if (local_group) {
2703 if (idle_cpu(i) && !first_idle_cpu) {
2704 first_idle_cpu = 1;
2705 balance_cpu = i;
2706 }
2707
2708 load = target_load(i, load_idx);
2709 } else {
2710 load = source_load(i, load_idx);
2711 if (load > max_cpu_load) {
2712 max_cpu_load = load;
2713 max_nr_running = rq->nr_running;
2714 }
2715 if (min_cpu_load > load)
2716 min_cpu_load = load;
2717 }
2718
2719 sgs->group_load += load;
2720 sgs->sum_nr_running += rq->nr_running;
2721 sgs->sum_weighted_load += weighted_cpuload(i);
2722 if (idle_cpu(i))
2723 sgs->idle_cpus++;
2724 }
2725
2726 /*
2727 * First idle cpu or the first cpu(busiest) in this sched group
2728 * is eligible for doing load balancing at this and above
2729 * domains. In the newly idle case, we will allow all the cpu's
2730 * to do the newly idle load balance.
2731 */
2732 if (idle != CPU_NEWLY_IDLE && local_group) {
2733 if (balance_cpu != this_cpu) {
2734 *balance = 0;
2735 return;
2736 }
2737 update_group_power(sd, this_cpu);
2738 }
2739
2740 /* Adjust by relative CPU power of the group */
2741 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2742
2743 /*
2744 * Consider the group unbalanced when the imbalance is larger
2745 * than the average weight of a task.
2746 *
2747 * APZ: with cgroup the avg task weight can vary wildly and
2748 * might not be a suitable number - should we keep a
2749 * normalized nr_running number somewhere that negates
2750 * the hierarchy?
2751 */
2752 if (sgs->sum_nr_running)
2753 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2754
2755 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2756 sgs->group_imb = 1;
2757
2758 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2759 if (!sgs->group_capacity)
2760 sgs->group_capacity = fix_small_capacity(sd, group);
2761 sgs->group_weight = group->group_weight;
2762
2763 if (sgs->group_capacity > sgs->sum_nr_running)
2764 sgs->group_has_capacity = 1;
2765 }
2766
2767 /**
2768 * update_sd_pick_busiest - return 1 on busiest group
2769 * @sd: sched_domain whose statistics are to be checked
2770 * @sds: sched_domain statistics
2771 * @sg: sched_group candidate to be checked for being the busiest
2772 * @sgs: sched_group statistics
2773 * @this_cpu: the current cpu
2774 *
2775 * Determine if @sg is a busier group than the previously selected
2776 * busiest group.
2777 */
2778 static bool update_sd_pick_busiest(struct sched_domain *sd,
2779 struct sd_lb_stats *sds,
2780 struct sched_group *sg,
2781 struct sg_lb_stats *sgs,
2782 int this_cpu)
2783 {
2784 if (sgs->avg_load <= sds->max_load)
2785 return false;
2786
2787 if (sgs->sum_nr_running > sgs->group_capacity)
2788 return true;
2789
2790 if (sgs->group_imb)
2791 return true;
2792
2793 /*
2794 * ASYM_PACKING needs to move all the work to the lowest
2795 * numbered CPUs in the group, therefore mark all groups
2796 * higher than ourself as busy.
2797 */
2798 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2799 this_cpu < group_first_cpu(sg)) {
2800 if (!sds->busiest)
2801 return true;
2802
2803 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2804 return true;
2805 }
2806
2807 return false;
2808 }
2809
2810 /**
2811 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2812 * @sd: sched_domain whose statistics are to be updated.
2813 * @this_cpu: Cpu for which load balance is currently performed.
2814 * @idle: Idle status of this_cpu
2815 * @cpus: Set of cpus considered for load balancing.
2816 * @balance: Should we balance.
2817 * @sds: variable to hold the statistics for this sched_domain.
2818 */
2819 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2820 enum cpu_idle_type idle, const struct cpumask *cpus,
2821 int *balance, struct sd_lb_stats *sds)
2822 {
2823 struct sched_domain *child = sd->child;
2824 struct sched_group *sg = sd->groups;
2825 struct sg_lb_stats sgs;
2826 int load_idx, prefer_sibling = 0;
2827
2828 if (child && child->flags & SD_PREFER_SIBLING)
2829 prefer_sibling = 1;
2830
2831 init_sd_power_savings_stats(sd, sds, idle);
2832 load_idx = get_sd_load_idx(sd, idle);
2833
2834 do {
2835 int local_group;
2836
2837 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2838 memset(&sgs, 0, sizeof(sgs));
2839 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2840 local_group, cpus, balance, &sgs);
2841
2842 if (local_group && !(*balance))
2843 return;
2844
2845 sds->total_load += sgs.group_load;
2846 sds->total_pwr += sg->cpu_power;
2847
2848 /*
2849 * In case the child domain prefers tasks go to siblings
2850 * first, lower the sg capacity to one so that we'll try
2851 * and move all the excess tasks away. We lower the capacity
2852 * of a group only if the local group has the capacity to fit
2853 * these excess tasks, i.e. nr_running < group_capacity. The
2854 * extra check prevents the case where you always pull from the
2855 * heaviest group when it is already under-utilized (possible
2856 * with a large weight task outweighs the tasks on the system).
2857 */
2858 if (prefer_sibling && !local_group && sds->this_has_capacity)
2859 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2860
2861 if (local_group) {
2862 sds->this_load = sgs.avg_load;
2863 sds->this = sg;
2864 sds->this_nr_running = sgs.sum_nr_running;
2865 sds->this_load_per_task = sgs.sum_weighted_load;
2866 sds->this_has_capacity = sgs.group_has_capacity;
2867 sds->this_idle_cpus = sgs.idle_cpus;
2868 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2869 sds->max_load = sgs.avg_load;
2870 sds->busiest = sg;
2871 sds->busiest_nr_running = sgs.sum_nr_running;
2872 sds->busiest_idle_cpus = sgs.idle_cpus;
2873 sds->busiest_group_capacity = sgs.group_capacity;
2874 sds->busiest_load_per_task = sgs.sum_weighted_load;
2875 sds->busiest_has_capacity = sgs.group_has_capacity;
2876 sds->busiest_group_weight = sgs.group_weight;
2877 sds->group_imb = sgs.group_imb;
2878 }
2879
2880 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2881 sg = sg->next;
2882 } while (sg != sd->groups);
2883 }
2884
2885 int __weak arch_sd_sibling_asym_packing(void)
2886 {
2887 return 0*SD_ASYM_PACKING;
2888 }
2889
2890 /**
2891 * check_asym_packing - Check to see if the group is packed into the
2892 * sched doman.
2893 *
2894 * This is primarily intended to used at the sibling level. Some
2895 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2896 * case of POWER7, it can move to lower SMT modes only when higher
2897 * threads are idle. When in lower SMT modes, the threads will
2898 * perform better since they share less core resources. Hence when we
2899 * have idle threads, we want them to be the higher ones.
2900 *
2901 * This packing function is run on idle threads. It checks to see if
2902 * the busiest CPU in this domain (core in the P7 case) has a higher
2903 * CPU number than the packing function is being run on. Here we are
2904 * assuming lower CPU number will be equivalent to lower a SMT thread
2905 * number.
2906 *
2907 * Returns 1 when packing is required and a task should be moved to
2908 * this CPU. The amount of the imbalance is returned in *imbalance.
2909 *
2910 * @sd: The sched_domain whose packing is to be checked.
2911 * @sds: Statistics of the sched_domain which is to be packed
2912 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2913 * @imbalance: returns amount of imbalanced due to packing.
2914 */
2915 static int check_asym_packing(struct sched_domain *sd,
2916 struct sd_lb_stats *sds,
2917 int this_cpu, unsigned long *imbalance)
2918 {
2919 int busiest_cpu;
2920
2921 if (!(sd->flags & SD_ASYM_PACKING))
2922 return 0;
2923
2924 if (!sds->busiest)
2925 return 0;
2926
2927 busiest_cpu = group_first_cpu(sds->busiest);
2928 if (this_cpu > busiest_cpu)
2929 return 0;
2930
2931 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2932 SCHED_LOAD_SCALE);
2933 return 1;
2934 }
2935
2936 /**
2937 * fix_small_imbalance - Calculate the minor imbalance that exists
2938 * amongst the groups of a sched_domain, during
2939 * load balancing.
2940 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2941 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2942 * @imbalance: Variable to store the imbalance.
2943 */
2944 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2945 int this_cpu, unsigned long *imbalance)
2946 {
2947 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2948 unsigned int imbn = 2;
2949 unsigned long scaled_busy_load_per_task;
2950
2951 if (sds->this_nr_running) {
2952 sds->this_load_per_task /= sds->this_nr_running;
2953 if (sds->busiest_load_per_task >
2954 sds->this_load_per_task)
2955 imbn = 1;
2956 } else
2957 sds->this_load_per_task =
2958 cpu_avg_load_per_task(this_cpu);
2959
2960 scaled_busy_load_per_task = sds->busiest_load_per_task
2961 * SCHED_LOAD_SCALE;
2962 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2963
2964 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2965 (scaled_busy_load_per_task * imbn)) {
2966 *imbalance = sds->busiest_load_per_task;
2967 return;
2968 }
2969
2970 /*
2971 * OK, we don't have enough imbalance to justify moving tasks,
2972 * however we may be able to increase total CPU power used by
2973 * moving them.
2974 */
2975
2976 pwr_now += sds->busiest->cpu_power *
2977 min(sds->busiest_load_per_task, sds->max_load);
2978 pwr_now += sds->this->cpu_power *
2979 min(sds->this_load_per_task, sds->this_load);
2980 pwr_now /= SCHED_LOAD_SCALE;
2981
2982 /* Amount of load we'd subtract */
2983 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2984 sds->busiest->cpu_power;
2985 if (sds->max_load > tmp)
2986 pwr_move += sds->busiest->cpu_power *
2987 min(sds->busiest_load_per_task, sds->max_load - tmp);
2988
2989 /* Amount of load we'd add */
2990 if (sds->max_load * sds->busiest->cpu_power <
2991 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2992 tmp = (sds->max_load * sds->busiest->cpu_power) /
2993 sds->this->cpu_power;
2994 else
2995 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2996 sds->this->cpu_power;
2997 pwr_move += sds->this->cpu_power *
2998 min(sds->this_load_per_task, sds->this_load + tmp);
2999 pwr_move /= SCHED_LOAD_SCALE;
3000
3001 /* Move if we gain throughput */
3002 if (pwr_move > pwr_now)
3003 *imbalance = sds->busiest_load_per_task;
3004 }
3005
3006 /**
3007 * calculate_imbalance - Calculate the amount of imbalance present within the
3008 * groups of a given sched_domain during load balance.
3009 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3010 * @this_cpu: Cpu for which currently load balance is being performed.
3011 * @imbalance: The variable to store the imbalance.
3012 */
3013 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3014 unsigned long *imbalance)
3015 {
3016 unsigned long max_pull, load_above_capacity = ~0UL;
3017
3018 sds->busiest_load_per_task /= sds->busiest_nr_running;
3019 if (sds->group_imb) {
3020 sds->busiest_load_per_task =
3021 min(sds->busiest_load_per_task, sds->avg_load);
3022 }
3023
3024 /*
3025 * In the presence of smp nice balancing, certain scenarios can have
3026 * max load less than avg load(as we skip the groups at or below
3027 * its cpu_power, while calculating max_load..)
3028 */
3029 if (sds->max_load < sds->avg_load) {
3030 *imbalance = 0;
3031 return fix_small_imbalance(sds, this_cpu, imbalance);
3032 }
3033
3034 if (!sds->group_imb) {
3035 /*
3036 * Don't want to pull so many tasks that a group would go idle.
3037 */
3038 load_above_capacity = (sds->busiest_nr_running -
3039 sds->busiest_group_capacity);
3040
3041 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3042
3043 load_above_capacity /= sds->busiest->cpu_power;
3044 }
3045
3046 /*
3047 * We're trying to get all the cpus to the average_load, so we don't
3048 * want to push ourselves above the average load, nor do we wish to
3049 * reduce the max loaded cpu below the average load. At the same time,
3050 * we also don't want to reduce the group load below the group capacity
3051 * (so that we can implement power-savings policies etc). Thus we look
3052 * for the minimum possible imbalance.
3053 * Be careful of negative numbers as they'll appear as very large values
3054 * with unsigned longs.
3055 */
3056 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3057
3058 /* How much load to actually move to equalise the imbalance */
3059 *imbalance = min(max_pull * sds->busiest->cpu_power,
3060 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3061 / SCHED_LOAD_SCALE;
3062
3063 /*
3064 * if *imbalance is less than the average load per runnable task
3065 * there is no guarantee that any tasks will be moved so we'll have
3066 * a think about bumping its value to force at least one task to be
3067 * moved
3068 */
3069 if (*imbalance < sds->busiest_load_per_task)
3070 return fix_small_imbalance(sds, this_cpu, imbalance);
3071
3072 }
3073
3074 /******* find_busiest_group() helpers end here *********************/
3075
3076 /**
3077 * find_busiest_group - Returns the busiest group within the sched_domain
3078 * if there is an imbalance. If there isn't an imbalance, and
3079 * the user has opted for power-savings, it returns a group whose
3080 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3081 * such a group exists.
3082 *
3083 * Also calculates the amount of weighted load which should be moved
3084 * to restore balance.
3085 *
3086 * @sd: The sched_domain whose busiest group is to be returned.
3087 * @this_cpu: The cpu for which load balancing is currently being performed.
3088 * @imbalance: Variable which stores amount of weighted load which should
3089 * be moved to restore balance/put a group to idle.
3090 * @idle: The idle status of this_cpu.
3091 * @cpus: The set of CPUs under consideration for load-balancing.
3092 * @balance: Pointer to a variable indicating if this_cpu
3093 * is the appropriate cpu to perform load balancing at this_level.
3094 *
3095 * Returns: - the busiest group if imbalance exists.
3096 * - If no imbalance and user has opted for power-savings balance,
3097 * return the least loaded group whose CPUs can be
3098 * put to idle by rebalancing its tasks onto our group.
3099 */
3100 static struct sched_group *
3101 find_busiest_group(struct sched_domain *sd, int this_cpu,
3102 unsigned long *imbalance, enum cpu_idle_type idle,
3103 const struct cpumask *cpus, int *balance)
3104 {
3105 struct sd_lb_stats sds;
3106
3107 memset(&sds, 0, sizeof(sds));
3108
3109 /*
3110 * Compute the various statistics relavent for load balancing at
3111 * this level.
3112 */
3113 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3114
3115 /*
3116 * this_cpu is not the appropriate cpu to perform load balancing at
3117 * this level.
3118 */
3119 if (!(*balance))
3120 goto ret;
3121
3122 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3123 check_asym_packing(sd, &sds, this_cpu, imbalance))
3124 return sds.busiest;
3125
3126 /* There is no busy sibling group to pull tasks from */
3127 if (!sds.busiest || sds.busiest_nr_running == 0)
3128 goto out_balanced;
3129
3130 /*
3131 * If the busiest group is imbalanced the below checks don't
3132 * work because they assumes all things are equal, which typically
3133 * isn't true due to cpus_allowed constraints and the like.
3134 */
3135 if (sds.group_imb)
3136 goto force_balance;
3137
3138 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3139 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3140 !sds.busiest_has_capacity)
3141 goto force_balance;
3142
3143 /*
3144 * If the local group is more busy than the selected busiest group
3145 * don't try and pull any tasks.
3146 */
3147 if (sds.this_load >= sds.max_load)
3148 goto out_balanced;
3149
3150 /*
3151 * Don't pull any tasks if this group is already above the domain
3152 * average load.
3153 */
3154 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3155 if (sds.this_load >= sds.avg_load)
3156 goto out_balanced;
3157
3158 if (idle == CPU_IDLE) {
3159 /*
3160 * This cpu is idle. If the busiest group load doesn't
3161 * have more tasks than the number of available cpu's and
3162 * there is no imbalance between this and busiest group
3163 * wrt to idle cpu's, it is balanced.
3164 */
3165 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3166 sds.busiest_nr_running <= sds.busiest_group_weight)
3167 goto out_balanced;
3168 } else {
3169 /*
3170 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3171 * imbalance_pct to be conservative.
3172 */
3173 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3174 goto out_balanced;
3175 }
3176
3177 force_balance:
3178 /* Looks like there is an imbalance. Compute it */
3179 calculate_imbalance(&sds, this_cpu, imbalance);
3180 return sds.busiest;
3181
3182 out_balanced:
3183 /*
3184 * There is no obvious imbalance. But check if we can do some balancing
3185 * to save power.
3186 */
3187 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3188 return sds.busiest;
3189 ret:
3190 *imbalance = 0;
3191 return NULL;
3192 }
3193
3194 /*
3195 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3196 */
3197 static struct rq *
3198 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3199 enum cpu_idle_type idle, unsigned long imbalance,
3200 const struct cpumask *cpus)
3201 {
3202 struct rq *busiest = NULL, *rq;
3203 unsigned long max_load = 0;
3204 int i;
3205
3206 for_each_cpu(i, sched_group_cpus(group)) {
3207 unsigned long power = power_of(i);
3208 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3209 unsigned long wl;
3210
3211 if (!capacity)
3212 capacity = fix_small_capacity(sd, group);
3213
3214 if (!cpumask_test_cpu(i, cpus))
3215 continue;
3216
3217 rq = cpu_rq(i);
3218 wl = weighted_cpuload(i);
3219
3220 /*
3221 * When comparing with imbalance, use weighted_cpuload()
3222 * which is not scaled with the cpu power.
3223 */
3224 if (capacity && rq->nr_running == 1 && wl > imbalance)
3225 continue;
3226
3227 /*
3228 * For the load comparisons with the other cpu's, consider
3229 * the weighted_cpuload() scaled with the cpu power, so that
3230 * the load can be moved away from the cpu that is potentially
3231 * running at a lower capacity.
3232 */
3233 wl = (wl * SCHED_LOAD_SCALE) / power;
3234
3235 if (wl > max_load) {
3236 max_load = wl;
3237 busiest = rq;
3238 }
3239 }
3240
3241 return busiest;
3242 }
3243
3244 /*
3245 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3246 * so long as it is large enough.
3247 */
3248 #define MAX_PINNED_INTERVAL 512
3249
3250 /* Working cpumask for load_balance and load_balance_newidle. */
3251 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3252
3253 static int need_active_balance(struct sched_domain *sd, int idle,
3254 int busiest_cpu, int this_cpu)
3255 {
3256 if (idle == CPU_NEWLY_IDLE) {
3257
3258 /*
3259 * ASYM_PACKING needs to force migrate tasks from busy but
3260 * higher numbered CPUs in order to pack all tasks in the
3261 * lowest numbered CPUs.
3262 */
3263 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3264 return 1;
3265
3266 /*
3267 * The only task running in a non-idle cpu can be moved to this
3268 * cpu in an attempt to completely freeup the other CPU
3269 * package.
3270 *
3271 * The package power saving logic comes from
3272 * find_busiest_group(). If there are no imbalance, then
3273 * f_b_g() will return NULL. However when sched_mc={1,2} then
3274 * f_b_g() will select a group from which a running task may be
3275 * pulled to this cpu in order to make the other package idle.
3276 * If there is no opportunity to make a package idle and if
3277 * there are no imbalance, then f_b_g() will return NULL and no
3278 * action will be taken in load_balance_newidle().
3279 *
3280 * Under normal task pull operation due to imbalance, there
3281 * will be more than one task in the source run queue and
3282 * move_tasks() will succeed. ld_moved will be true and this
3283 * active balance code will not be triggered.
3284 */
3285 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3286 return 0;
3287 }
3288
3289 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3290 }
3291
3292 static int active_load_balance_cpu_stop(void *data);
3293
3294 /*
3295 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3296 * tasks if there is an imbalance.
3297 */
3298 static int load_balance(int this_cpu, struct rq *this_rq,
3299 struct sched_domain *sd, enum cpu_idle_type idle,
3300 int *balance)
3301 {
3302 int ld_moved, all_pinned = 0, active_balance = 0;
3303 struct sched_group *group;
3304 unsigned long imbalance;
3305 struct rq *busiest;
3306 unsigned long flags;
3307 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3308
3309 cpumask_copy(cpus, cpu_active_mask);
3310
3311 schedstat_inc(sd, lb_count[idle]);
3312
3313 redo:
3314 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3315 cpus, balance);
3316
3317 if (*balance == 0)
3318 goto out_balanced;
3319
3320 if (!group) {
3321 schedstat_inc(sd, lb_nobusyg[idle]);
3322 goto out_balanced;
3323 }
3324
3325 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3326 if (!busiest) {
3327 schedstat_inc(sd, lb_nobusyq[idle]);
3328 goto out_balanced;
3329 }
3330
3331 BUG_ON(busiest == this_rq);
3332
3333 schedstat_add(sd, lb_imbalance[idle], imbalance);
3334
3335 ld_moved = 0;
3336 if (busiest->nr_running > 1) {
3337 /*
3338 * Attempt to move tasks. If find_busiest_group has found
3339 * an imbalance but busiest->nr_running <= 1, the group is
3340 * still unbalanced. ld_moved simply stays zero, so it is
3341 * correctly treated as an imbalance.
3342 */
3343 local_irq_save(flags);
3344 double_rq_lock(this_rq, busiest);
3345 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3346 imbalance, sd, idle, &all_pinned);
3347 double_rq_unlock(this_rq, busiest);
3348 local_irq_restore(flags);
3349
3350 /*
3351 * some other cpu did the load balance for us.
3352 */
3353 if (ld_moved && this_cpu != smp_processor_id())
3354 resched_cpu(this_cpu);
3355
3356 /* All tasks on this runqueue were pinned by CPU affinity */
3357 if (unlikely(all_pinned)) {
3358 cpumask_clear_cpu(cpu_of(busiest), cpus);
3359 if (!cpumask_empty(cpus))
3360 goto redo;
3361 goto out_balanced;
3362 }
3363 }
3364
3365 if (!ld_moved) {
3366 schedstat_inc(sd, lb_failed[idle]);
3367 /*
3368 * Increment the failure counter only on periodic balance.
3369 * We do not want newidle balance, which can be very
3370 * frequent, pollute the failure counter causing
3371 * excessive cache_hot migrations and active balances.
3372 */
3373 if (idle != CPU_NEWLY_IDLE)
3374 sd->nr_balance_failed++;
3375
3376 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3377 raw_spin_lock_irqsave(&busiest->lock, flags);
3378
3379 /* don't kick the active_load_balance_cpu_stop,
3380 * if the curr task on busiest cpu can't be
3381 * moved to this_cpu
3382 */
3383 if (!cpumask_test_cpu(this_cpu,
3384 &busiest->curr->cpus_allowed)) {
3385 raw_spin_unlock_irqrestore(&busiest->lock,
3386 flags);
3387 all_pinned = 1;
3388 goto out_one_pinned;
3389 }
3390
3391 /*
3392 * ->active_balance synchronizes accesses to
3393 * ->active_balance_work. Once set, it's cleared
3394 * only after active load balance is finished.
3395 */
3396 if (!busiest->active_balance) {
3397 busiest->active_balance = 1;
3398 busiest->push_cpu = this_cpu;
3399 active_balance = 1;
3400 }
3401 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3402
3403 if (active_balance)
3404 stop_one_cpu_nowait(cpu_of(busiest),
3405 active_load_balance_cpu_stop, busiest,
3406 &busiest->active_balance_work);
3407
3408 /*
3409 * We've kicked active balancing, reset the failure
3410 * counter.
3411 */
3412 sd->nr_balance_failed = sd->cache_nice_tries+1;
3413 }
3414 } else
3415 sd->nr_balance_failed = 0;
3416
3417 if (likely(!active_balance)) {
3418 /* We were unbalanced, so reset the balancing interval */
3419 sd->balance_interval = sd->min_interval;
3420 } else {
3421 /*
3422 * If we've begun active balancing, start to back off. This
3423 * case may not be covered by the all_pinned logic if there
3424 * is only 1 task on the busy runqueue (because we don't call
3425 * move_tasks).
3426 */
3427 if (sd->balance_interval < sd->max_interval)
3428 sd->balance_interval *= 2;
3429 }
3430
3431 goto out;
3432
3433 out_balanced:
3434 schedstat_inc(sd, lb_balanced[idle]);
3435
3436 sd->nr_balance_failed = 0;
3437
3438 out_one_pinned:
3439 /* tune up the balancing interval */
3440 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3441 (sd->balance_interval < sd->max_interval))
3442 sd->balance_interval *= 2;
3443
3444 ld_moved = 0;
3445 out:
3446 return ld_moved;
3447 }
3448
3449 /*
3450 * idle_balance is called by schedule() if this_cpu is about to become
3451 * idle. Attempts to pull tasks from other CPUs.
3452 */
3453 static void idle_balance(int this_cpu, struct rq *this_rq)
3454 {
3455 struct sched_domain *sd;
3456 int pulled_task = 0;
3457 unsigned long next_balance = jiffies + HZ;
3458
3459 this_rq->idle_stamp = this_rq->clock;
3460
3461 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3462 return;
3463
3464 /*
3465 * Drop the rq->lock, but keep IRQ/preempt disabled.
3466 */
3467 raw_spin_unlock(&this_rq->lock);
3468
3469 update_shares(this_cpu);
3470 for_each_domain(this_cpu, sd) {
3471 unsigned long interval;
3472 int balance = 1;
3473
3474 if (!(sd->flags & SD_LOAD_BALANCE))
3475 continue;
3476
3477 if (sd->flags & SD_BALANCE_NEWIDLE) {
3478 /* If we've pulled tasks over stop searching: */
3479 pulled_task = load_balance(this_cpu, this_rq,
3480 sd, CPU_NEWLY_IDLE, &balance);
3481 }
3482
3483 interval = msecs_to_jiffies(sd->balance_interval);
3484 if (time_after(next_balance, sd->last_balance + interval))
3485 next_balance = sd->last_balance + interval;
3486 if (pulled_task) {
3487 this_rq->idle_stamp = 0;
3488 break;
3489 }
3490 }
3491
3492 raw_spin_lock(&this_rq->lock);
3493
3494 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3495 /*
3496 * We are going idle. next_balance may be set based on
3497 * a busy processor. So reset next_balance.
3498 */
3499 this_rq->next_balance = next_balance;
3500 }
3501 }
3502
3503 /*
3504 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3505 * running tasks off the busiest CPU onto idle CPUs. It requires at
3506 * least 1 task to be running on each physical CPU where possible, and
3507 * avoids physical / logical imbalances.
3508 */
3509 static int active_load_balance_cpu_stop(void *data)
3510 {
3511 struct rq *busiest_rq = data;
3512 int busiest_cpu = cpu_of(busiest_rq);
3513 int target_cpu = busiest_rq->push_cpu;
3514 struct rq *target_rq = cpu_rq(target_cpu);
3515 struct sched_domain *sd;
3516
3517 raw_spin_lock_irq(&busiest_rq->lock);
3518
3519 /* make sure the requested cpu hasn't gone down in the meantime */
3520 if (unlikely(busiest_cpu != smp_processor_id() ||
3521 !busiest_rq->active_balance))
3522 goto out_unlock;
3523
3524 /* Is there any task to move? */
3525 if (busiest_rq->nr_running <= 1)
3526 goto out_unlock;
3527
3528 /*
3529 * This condition is "impossible", if it occurs
3530 * we need to fix it. Originally reported by
3531 * Bjorn Helgaas on a 128-cpu setup.
3532 */
3533 BUG_ON(busiest_rq == target_rq);
3534
3535 /* move a task from busiest_rq to target_rq */
3536 double_lock_balance(busiest_rq, target_rq);
3537
3538 /* Search for an sd spanning us and the target CPU. */
3539 for_each_domain(target_cpu, sd) {
3540 if ((sd->flags & SD_LOAD_BALANCE) &&
3541 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3542 break;
3543 }
3544
3545 if (likely(sd)) {
3546 schedstat_inc(sd, alb_count);
3547
3548 if (move_one_task(target_rq, target_cpu, busiest_rq,
3549 sd, CPU_IDLE))
3550 schedstat_inc(sd, alb_pushed);
3551 else
3552 schedstat_inc(sd, alb_failed);
3553 }
3554 double_unlock_balance(busiest_rq, target_rq);
3555 out_unlock:
3556 busiest_rq->active_balance = 0;
3557 raw_spin_unlock_irq(&busiest_rq->lock);
3558 return 0;
3559 }
3560
3561 #ifdef CONFIG_NO_HZ
3562
3563 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3564
3565 static void trigger_sched_softirq(void *data)
3566 {
3567 raise_softirq_irqoff(SCHED_SOFTIRQ);
3568 }
3569
3570 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3571 {
3572 csd->func = trigger_sched_softirq;
3573 csd->info = NULL;
3574 csd->flags = 0;
3575 csd->priv = 0;
3576 }
3577
3578 /*
3579 * idle load balancing details
3580 * - One of the idle CPUs nominates itself as idle load_balancer, while
3581 * entering idle.
3582 * - This idle load balancer CPU will also go into tickless mode when
3583 * it is idle, just like all other idle CPUs
3584 * - When one of the busy CPUs notice that there may be an idle rebalancing
3585 * needed, they will kick the idle load balancer, which then does idle
3586 * load balancing for all the idle CPUs.
3587 */
3588 static struct {
3589 atomic_t load_balancer;
3590 atomic_t first_pick_cpu;
3591 atomic_t second_pick_cpu;
3592 cpumask_var_t idle_cpus_mask;
3593 cpumask_var_t grp_idle_mask;
3594 unsigned long next_balance; /* in jiffy units */
3595 } nohz ____cacheline_aligned;
3596
3597 int get_nohz_load_balancer(void)
3598 {
3599 return atomic_read(&nohz.load_balancer);
3600 }
3601
3602 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3603 /**
3604 * lowest_flag_domain - Return lowest sched_domain containing flag.
3605 * @cpu: The cpu whose lowest level of sched domain is to
3606 * be returned.
3607 * @flag: The flag to check for the lowest sched_domain
3608 * for the given cpu.
3609 *
3610 * Returns the lowest sched_domain of a cpu which contains the given flag.
3611 */
3612 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3613 {
3614 struct sched_domain *sd;
3615
3616 for_each_domain(cpu, sd)
3617 if (sd && (sd->flags & flag))
3618 break;
3619
3620 return sd;
3621 }
3622
3623 /**
3624 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3625 * @cpu: The cpu whose domains we're iterating over.
3626 * @sd: variable holding the value of the power_savings_sd
3627 * for cpu.
3628 * @flag: The flag to filter the sched_domains to be iterated.
3629 *
3630 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3631 * set, starting from the lowest sched_domain to the highest.
3632 */
3633 #define for_each_flag_domain(cpu, sd, flag) \
3634 for (sd = lowest_flag_domain(cpu, flag); \
3635 (sd && (sd->flags & flag)); sd = sd->parent)
3636
3637 /**
3638 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3639 * @ilb_group: group to be checked for semi-idleness
3640 *
3641 * Returns: 1 if the group is semi-idle. 0 otherwise.
3642 *
3643 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3644 * and atleast one non-idle CPU. This helper function checks if the given
3645 * sched_group is semi-idle or not.
3646 */
3647 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3648 {
3649 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3650 sched_group_cpus(ilb_group));
3651
3652 /*
3653 * A sched_group is semi-idle when it has atleast one busy cpu
3654 * and atleast one idle cpu.
3655 */
3656 if (cpumask_empty(nohz.grp_idle_mask))
3657 return 0;
3658
3659 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3660 return 0;
3661
3662 return 1;
3663 }
3664 /**
3665 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3666 * @cpu: The cpu which is nominating a new idle_load_balancer.
3667 *
3668 * Returns: Returns the id of the idle load balancer if it exists,
3669 * Else, returns >= nr_cpu_ids.
3670 *
3671 * This algorithm picks the idle load balancer such that it belongs to a
3672 * semi-idle powersavings sched_domain. The idea is to try and avoid
3673 * completely idle packages/cores just for the purpose of idle load balancing
3674 * when there are other idle cpu's which are better suited for that job.
3675 */
3676 static int find_new_ilb(int cpu)
3677 {
3678 struct sched_domain *sd;
3679 struct sched_group *ilb_group;
3680
3681 /*
3682 * Have idle load balancer selection from semi-idle packages only
3683 * when power-aware load balancing is enabled
3684 */
3685 if (!(sched_smt_power_savings || sched_mc_power_savings))
3686 goto out_done;
3687
3688 /*
3689 * Optimize for the case when we have no idle CPUs or only one
3690 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3691 */
3692 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3693 goto out_done;
3694
3695 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3696 ilb_group = sd->groups;
3697
3698 do {
3699 if (is_semi_idle_group(ilb_group))
3700 return cpumask_first(nohz.grp_idle_mask);
3701
3702 ilb_group = ilb_group->next;
3703
3704 } while (ilb_group != sd->groups);
3705 }
3706
3707 out_done:
3708 return nr_cpu_ids;
3709 }
3710 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3711 static inline int find_new_ilb(int call_cpu)
3712 {
3713 return nr_cpu_ids;
3714 }
3715 #endif
3716
3717 /*
3718 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3719 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3720 * CPU (if there is one).
3721 */
3722 static void nohz_balancer_kick(int cpu)
3723 {
3724 int ilb_cpu;
3725
3726 nohz.next_balance++;
3727
3728 ilb_cpu = get_nohz_load_balancer();
3729
3730 if (ilb_cpu >= nr_cpu_ids) {
3731 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3732 if (ilb_cpu >= nr_cpu_ids)
3733 return;
3734 }
3735
3736 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3737 struct call_single_data *cp;
3738
3739 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3740 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3741 __smp_call_function_single(ilb_cpu, cp, 0);
3742 }
3743 return;
3744 }
3745
3746 /*
3747 * This routine will try to nominate the ilb (idle load balancing)
3748 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3749 * load balancing on behalf of all those cpus.
3750 *
3751 * When the ilb owner becomes busy, we will not have new ilb owner until some
3752 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3753 * idle load balancing by kicking one of the idle CPUs.
3754 *
3755 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3756 * ilb owner CPU in future (when there is a need for idle load balancing on
3757 * behalf of all idle CPUs).
3758 */
3759 void select_nohz_load_balancer(int stop_tick)
3760 {
3761 int cpu = smp_processor_id();
3762
3763 if (stop_tick) {
3764 if (!cpu_active(cpu)) {
3765 if (atomic_read(&nohz.load_balancer) != cpu)
3766 return;
3767
3768 /*
3769 * If we are going offline and still the leader,
3770 * give up!
3771 */
3772 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3773 nr_cpu_ids) != cpu)
3774 BUG();
3775
3776 return;
3777 }
3778
3779 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3780
3781 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3782 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3783 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3784 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3785
3786 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3787 int new_ilb;
3788
3789 /* make me the ilb owner */
3790 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3791 cpu) != nr_cpu_ids)
3792 return;
3793
3794 /*
3795 * Check to see if there is a more power-efficient
3796 * ilb.
3797 */
3798 new_ilb = find_new_ilb(cpu);
3799 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3800 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3801 resched_cpu(new_ilb);
3802 return;
3803 }
3804 return;
3805 }
3806 } else {
3807 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3808 return;
3809
3810 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3811
3812 if (atomic_read(&nohz.load_balancer) == cpu)
3813 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3814 nr_cpu_ids) != cpu)
3815 BUG();
3816 }
3817 return;
3818 }
3819 #endif
3820
3821 static DEFINE_SPINLOCK(balancing);
3822
3823 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3824
3825 /*
3826 * Scale the max load_balance interval with the number of CPUs in the system.
3827 * This trades load-balance latency on larger machines for less cross talk.
3828 */
3829 static void update_max_interval(void)
3830 {
3831 max_load_balance_interval = HZ*num_online_cpus()/10;
3832 }
3833
3834 /*
3835 * It checks each scheduling domain to see if it is due to be balanced,
3836 * and initiates a balancing operation if so.
3837 *
3838 * Balancing parameters are set up in arch_init_sched_domains.
3839 */
3840 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3841 {
3842 int balance = 1;
3843 struct rq *rq = cpu_rq(cpu);
3844 unsigned long interval;
3845 struct sched_domain *sd;
3846 /* Earliest time when we have to do rebalance again */
3847 unsigned long next_balance = jiffies + 60*HZ;
3848 int update_next_balance = 0;
3849 int need_serialize;
3850
3851 update_shares(cpu);
3852
3853 for_each_domain(cpu, sd) {
3854 if (!(sd->flags & SD_LOAD_BALANCE))
3855 continue;
3856
3857 interval = sd->balance_interval;
3858 if (idle != CPU_IDLE)
3859 interval *= sd->busy_factor;
3860
3861 /* scale ms to jiffies */
3862 interval = msecs_to_jiffies(interval);
3863 interval = clamp(interval, 1UL, max_load_balance_interval);
3864
3865 need_serialize = sd->flags & SD_SERIALIZE;
3866
3867 if (need_serialize) {
3868 if (!spin_trylock(&balancing))
3869 goto out;
3870 }
3871
3872 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3873 if (load_balance(cpu, rq, sd, idle, &balance)) {
3874 /*
3875 * We've pulled tasks over so either we're no
3876 * longer idle.
3877 */
3878 idle = CPU_NOT_IDLE;
3879 }
3880 sd->last_balance = jiffies;
3881 }
3882 if (need_serialize)
3883 spin_unlock(&balancing);
3884 out:
3885 if (time_after(next_balance, sd->last_balance + interval)) {
3886 next_balance = sd->last_balance + interval;
3887 update_next_balance = 1;
3888 }
3889
3890 /*
3891 * Stop the load balance at this level. There is another
3892 * CPU in our sched group which is doing load balancing more
3893 * actively.
3894 */
3895 if (!balance)
3896 break;
3897 }
3898
3899 /*
3900 * next_balance will be updated only when there is a need.
3901 * When the cpu is attached to null domain for ex, it will not be
3902 * updated.
3903 */
3904 if (likely(update_next_balance))
3905 rq->next_balance = next_balance;
3906 }
3907
3908 #ifdef CONFIG_NO_HZ
3909 /*
3910 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3911 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3912 */
3913 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3914 {
3915 struct rq *this_rq = cpu_rq(this_cpu);
3916 struct rq *rq;
3917 int balance_cpu;
3918
3919 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3920 return;
3921
3922 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3923 if (balance_cpu == this_cpu)
3924 continue;
3925
3926 /*
3927 * If this cpu gets work to do, stop the load balancing
3928 * work being done for other cpus. Next load
3929 * balancing owner will pick it up.
3930 */
3931 if (need_resched()) {
3932 this_rq->nohz_balance_kick = 0;
3933 break;
3934 }
3935
3936 raw_spin_lock_irq(&this_rq->lock);
3937 update_rq_clock(this_rq);
3938 update_cpu_load(this_rq);
3939 raw_spin_unlock_irq(&this_rq->lock);
3940
3941 rebalance_domains(balance_cpu, CPU_IDLE);
3942
3943 rq = cpu_rq(balance_cpu);
3944 if (time_after(this_rq->next_balance, rq->next_balance))
3945 this_rq->next_balance = rq->next_balance;
3946 }
3947 nohz.next_balance = this_rq->next_balance;
3948 this_rq->nohz_balance_kick = 0;
3949 }
3950
3951 /*
3952 * Current heuristic for kicking the idle load balancer
3953 * - first_pick_cpu is the one of the busy CPUs. It will kick
3954 * idle load balancer when it has more than one process active. This
3955 * eliminates the need for idle load balancing altogether when we have
3956 * only one running process in the system (common case).
3957 * - If there are more than one busy CPU, idle load balancer may have
3958 * to run for active_load_balance to happen (i.e., two busy CPUs are
3959 * SMT or core siblings and can run better if they move to different
3960 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3961 * which will kick idle load balancer as soon as it has any load.
3962 */
3963 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3964 {
3965 unsigned long now = jiffies;
3966 int ret;
3967 int first_pick_cpu, second_pick_cpu;
3968
3969 if (time_before(now, nohz.next_balance))
3970 return 0;
3971
3972 if (rq->idle_at_tick)
3973 return 0;
3974
3975 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3976 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3977
3978 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3979 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3980 return 0;
3981
3982 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3983 if (ret == nr_cpu_ids || ret == cpu) {
3984 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3985 if (rq->nr_running > 1)
3986 return 1;
3987 } else {
3988 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3989 if (ret == nr_cpu_ids || ret == cpu) {
3990 if (rq->nr_running)
3991 return 1;
3992 }
3993 }
3994 return 0;
3995 }
3996 #else
3997 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3998 #endif
3999
4000 /*
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4003 */
4004 static void run_rebalance_domains(struct softirq_action *h)
4005 {
4006 int this_cpu = smp_processor_id();
4007 struct rq *this_rq = cpu_rq(this_cpu);
4008 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4009 CPU_IDLE : CPU_NOT_IDLE;
4010
4011 rebalance_domains(this_cpu, idle);
4012
4013 /*
4014 * If this cpu has a pending nohz_balance_kick, then do the
4015 * balancing on behalf of the other idle cpus whose ticks are
4016 * stopped.
4017 */
4018 nohz_idle_balance(this_cpu, idle);
4019 }
4020
4021 static inline int on_null_domain(int cpu)
4022 {
4023 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4024 }
4025
4026 /*
4027 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4028 */
4029 static inline void trigger_load_balance(struct rq *rq, int cpu)
4030 {
4031 /* Don't need to rebalance while attached to NULL domain */
4032 if (time_after_eq(jiffies, rq->next_balance) &&
4033 likely(!on_null_domain(cpu)))
4034 raise_softirq(SCHED_SOFTIRQ);
4035 #ifdef CONFIG_NO_HZ
4036 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4037 nohz_balancer_kick(cpu);
4038 #endif
4039 }
4040
4041 static void rq_online_fair(struct rq *rq)
4042 {
4043 update_sysctl();
4044 }
4045
4046 static void rq_offline_fair(struct rq *rq)
4047 {
4048 update_sysctl();
4049 }
4050
4051 #else /* CONFIG_SMP */
4052
4053 /*
4054 * on UP we do not need to balance between CPUs:
4055 */
4056 static inline void idle_balance(int cpu, struct rq *rq)
4057 {
4058 }
4059
4060 #endif /* CONFIG_SMP */
4061
4062 /*
4063 * scheduler tick hitting a task of our scheduling class:
4064 */
4065 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4066 {
4067 struct cfs_rq *cfs_rq;
4068 struct sched_entity *se = &curr->se;
4069
4070 for_each_sched_entity(se) {
4071 cfs_rq = cfs_rq_of(se);
4072 entity_tick(cfs_rq, se, queued);
4073 }
4074 }
4075
4076 /*
4077 * called on fork with the child task as argument from the parent's context
4078 * - child not yet on the tasklist
4079 * - preemption disabled
4080 */
4081 static void task_fork_fair(struct task_struct *p)
4082 {
4083 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4084 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4085 int this_cpu = smp_processor_id();
4086 struct rq *rq = this_rq();
4087 unsigned long flags;
4088
4089 raw_spin_lock_irqsave(&rq->lock, flags);
4090
4091 update_rq_clock(rq);
4092
4093 if (unlikely(task_cpu(p) != this_cpu)) {
4094 rcu_read_lock();
4095 __set_task_cpu(p, this_cpu);
4096 rcu_read_unlock();
4097 }
4098
4099 update_curr(cfs_rq);
4100
4101 if (curr)
4102 se->vruntime = curr->vruntime;
4103 place_entity(cfs_rq, se, 1);
4104
4105 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4106 /*
4107 * Upon rescheduling, sched_class::put_prev_task() will place
4108 * 'current' within the tree based on its new key value.
4109 */
4110 swap(curr->vruntime, se->vruntime);
4111 resched_task(rq->curr);
4112 }
4113
4114 se->vruntime -= cfs_rq->min_vruntime;
4115
4116 raw_spin_unlock_irqrestore(&rq->lock, flags);
4117 }
4118
4119 /*
4120 * Priority of the task has changed. Check to see if we preempt
4121 * the current task.
4122 */
4123 static void
4124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4125 {
4126 if (!p->se.on_rq)
4127 return;
4128
4129 /*
4130 * Reschedule if we are currently running on this runqueue and
4131 * our priority decreased, or if we are not currently running on
4132 * this runqueue and our priority is higher than the current's
4133 */
4134 if (rq->curr == p) {
4135 if (p->prio > oldprio)
4136 resched_task(rq->curr);
4137 } else
4138 check_preempt_curr(rq, p, 0);
4139 }
4140
4141 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4142 {
4143 struct sched_entity *se = &p->se;
4144 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4145
4146 /*
4147 * Ensure the task's vruntime is normalized, so that when its
4148 * switched back to the fair class the enqueue_entity(.flags=0) will
4149 * do the right thing.
4150 *
4151 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4152 * have normalized the vruntime, if it was !on_rq, then only when
4153 * the task is sleeping will it still have non-normalized vruntime.
4154 */
4155 if (!se->on_rq && p->state != TASK_RUNNING) {
4156 /*
4157 * Fix up our vruntime so that the current sleep doesn't
4158 * cause 'unlimited' sleep bonus.
4159 */
4160 place_entity(cfs_rq, se, 0);
4161 se->vruntime -= cfs_rq->min_vruntime;
4162 }
4163 }
4164
4165 /*
4166 * We switched to the sched_fair class.
4167 */
4168 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4169 {
4170 if (!p->se.on_rq)
4171 return;
4172
4173 /*
4174 * We were most likely switched from sched_rt, so
4175 * kick off the schedule if running, otherwise just see
4176 * if we can still preempt the current task.
4177 */
4178 if (rq->curr == p)
4179 resched_task(rq->curr);
4180 else
4181 check_preempt_curr(rq, p, 0);
4182 }
4183
4184 /* Account for a task changing its policy or group.
4185 *
4186 * This routine is mostly called to set cfs_rq->curr field when a task
4187 * migrates between groups/classes.
4188 */
4189 static void set_curr_task_fair(struct rq *rq)
4190 {
4191 struct sched_entity *se = &rq->curr->se;
4192
4193 for_each_sched_entity(se)
4194 set_next_entity(cfs_rq_of(se), se);
4195 }
4196
4197 #ifdef CONFIG_FAIR_GROUP_SCHED
4198 static void task_move_group_fair(struct task_struct *p, int on_rq)
4199 {
4200 /*
4201 * If the task was not on the rq at the time of this cgroup movement
4202 * it must have been asleep, sleeping tasks keep their ->vruntime
4203 * absolute on their old rq until wakeup (needed for the fair sleeper
4204 * bonus in place_entity()).
4205 *
4206 * If it was on the rq, we've just 'preempted' it, which does convert
4207 * ->vruntime to a relative base.
4208 *
4209 * Make sure both cases convert their relative position when migrating
4210 * to another cgroup's rq. This does somewhat interfere with the
4211 * fair sleeper stuff for the first placement, but who cares.
4212 */
4213 if (!on_rq)
4214 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4215 set_task_rq(p, task_cpu(p));
4216 if (!on_rq)
4217 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4218 }
4219 #endif
4220
4221 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4222 {
4223 struct sched_entity *se = &task->se;
4224 unsigned int rr_interval = 0;
4225
4226 /*
4227 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4228 * idle runqueue:
4229 */
4230 if (rq->cfs.load.weight)
4231 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4232
4233 return rr_interval;
4234 }
4235
4236 /*
4237 * All the scheduling class methods:
4238 */
4239 static const struct sched_class fair_sched_class = {
4240 .next = &idle_sched_class,
4241 .enqueue_task = enqueue_task_fair,
4242 .dequeue_task = dequeue_task_fair,
4243 .yield_task = yield_task_fair,
4244 .yield_to_task = yield_to_task_fair,
4245
4246 .check_preempt_curr = check_preempt_wakeup,
4247
4248 .pick_next_task = pick_next_task_fair,
4249 .put_prev_task = put_prev_task_fair,
4250
4251 #ifdef CONFIG_SMP
4252 .select_task_rq = select_task_rq_fair,
4253
4254 .rq_online = rq_online_fair,
4255 .rq_offline = rq_offline_fair,
4256
4257 .task_waking = task_waking_fair,
4258 #endif
4259
4260 .set_curr_task = set_curr_task_fair,
4261 .task_tick = task_tick_fair,
4262 .task_fork = task_fork_fair,
4263
4264 .prio_changed = prio_changed_fair,
4265 .switched_from = switched_from_fair,
4266 .switched_to = switched_to_fair,
4267
4268 .get_rr_interval = get_rr_interval_fair,
4269
4270 #ifdef CONFIG_FAIR_GROUP_SCHED
4271 .task_move_group = task_move_group_fair,
4272 #endif
4273 };
4274
4275 #ifdef CONFIG_SCHED_DEBUG
4276 static void print_cfs_stats(struct seq_file *m, int cpu)
4277 {
4278 struct cfs_rq *cfs_rq;
4279
4280 rcu_read_lock();
4281 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4282 print_cfs_rq(m, cpu, cfs_rq);
4283 rcu_read_unlock();
4284 }
4285 #endif
This page took 0.157449 seconds and 5 git commands to generate.