827a0636525a36e35ead96313235a54ba143021e
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81 extern struct sched_class fair_sched_class;
82
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 #else /* CONFIG_FAIR_GROUP_SCHED */
99
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101 {
102 return container_of(cfs_rq, struct rq, cfs);
103 }
104
105 #define entity_is_task(se) 1
106
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 return container_of(se, struct task_struct, se);
112 }
113
114
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119 static inline u64
120 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline void
130 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
131 {
132 struct sched_entity *se;
133
134 cfs_rq->rb_leftmost = leftmost;
135 if (leftmost)
136 se = rb_entry(leftmost, struct sched_entity, run_node);
137 }
138
139 static inline s64
140 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void
149 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 {
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
154 s64 key = entity_key(cfs_rq, se);
155 int leftmost = 1;
156
157 /*
158 * Find the right place in the rbtree:
159 */
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
163 /*
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
166 */
167 if (key < entity_key(cfs_rq, entry)) {
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
172 }
173 }
174
175 /*
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
178 */
179 if (leftmost)
180 set_leftmost(cfs_rq, &se->run_node);
181
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
184 }
185
186 static void
187 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
188 {
189 if (cfs_rq->rb_leftmost == &se->run_node)
190 set_leftmost(cfs_rq, rb_next(&se->run_node));
191
192 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 }
194
195 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196 {
197 return cfs_rq->rb_leftmost;
198 }
199
200 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201 {
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 }
204
205 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206 {
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218 }
219
220 /**************************************************************
221 * Scheduling class statistics methods:
222 */
223
224 static u64 __sched_period(unsigned long nr_running)
225 {
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236 }
237
238 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239 {
240 u64 period = __sched_period(cfs_rq->nr_running);
241
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
244
245 return period;
246 }
247
248 /*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252 static inline void
253 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
255 {
256 unsigned long delta_exec_weighted;
257 u64 next_vruntime, min_vruntime;
258
259 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
260
261 curr->sum_exec_runtime += delta_exec;
262 schedstat_add(cfs_rq, exec_clock, delta_exec);
263 delta_exec_weighted = delta_exec;
264 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
265 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
266 &curr->load);
267 }
268 curr->vruntime += delta_exec_weighted;
269
270 /*
271 * maintain cfs_rq->min_vruntime to be a monotonic increasing
272 * value tracking the leftmost vruntime in the tree.
273 */
274 if (first_fair(cfs_rq)) {
275 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
276
277 /* min_vruntime() := !max_vruntime() */
278 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
279 if (min_vruntime == next_vruntime)
280 min_vruntime = curr->vruntime;
281 else
282 min_vruntime = next_vruntime;
283 } else
284 min_vruntime = curr->vruntime;
285
286 cfs_rq->min_vruntime =
287 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
288 }
289
290 static void update_curr(struct cfs_rq *cfs_rq)
291 {
292 struct sched_entity *curr = cfs_rq->curr;
293 u64 now = rq_of(cfs_rq)->clock;
294 unsigned long delta_exec;
295
296 if (unlikely(!curr))
297 return;
298
299 /*
300 * Get the amount of time the current task was running
301 * since the last time we changed load (this cannot
302 * overflow on 32 bits):
303 */
304 delta_exec = (unsigned long)(now - curr->exec_start);
305
306 __update_curr(cfs_rq, curr, delta_exec);
307 curr->exec_start = now;
308 }
309
310 static inline void
311 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
312 {
313 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
314 }
315
316 static inline unsigned long
317 calc_weighted(unsigned long delta, struct sched_entity *se)
318 {
319 unsigned long weight = se->load.weight;
320
321 if (unlikely(weight != NICE_0_LOAD))
322 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
323 else
324 return delta;
325 }
326
327 /*
328 * Task is being enqueued - update stats:
329 */
330 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
331 {
332 /*
333 * Are we enqueueing a waiting task? (for current tasks
334 * a dequeue/enqueue event is a NOP)
335 */
336 if (se != cfs_rq->curr)
337 update_stats_wait_start(cfs_rq, se);
338 }
339
340 static void
341 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 {
343 schedstat_set(se->wait_max, max(se->wait_max,
344 rq_of(cfs_rq)->clock - se->wait_start));
345 schedstat_set(se->wait_start, 0);
346 }
347
348 static inline void
349 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 update_curr(cfs_rq);
352 /*
353 * Mark the end of the wait period if dequeueing a
354 * waiting task:
355 */
356 if (se != cfs_rq->curr)
357 update_stats_wait_end(cfs_rq, se);
358 }
359
360 /*
361 * We are picking a new current task - update its stats:
362 */
363 static inline void
364 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 {
366 /*
367 * We are starting a new run period:
368 */
369 se->exec_start = rq_of(cfs_rq)->clock;
370 }
371
372 /*
373 * We are descheduling a task - update its stats:
374 */
375 static inline void
376 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 {
378 se->exec_start = 0;
379 }
380
381 /**************************************************
382 * Scheduling class queueing methods:
383 */
384
385 static void
386 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
387 {
388 update_load_add(&cfs_rq->load, se->load.weight);
389 cfs_rq->nr_running++;
390 se->on_rq = 1;
391 }
392
393 static void
394 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 {
396 update_load_sub(&cfs_rq->load, se->load.weight);
397 cfs_rq->nr_running--;
398 se->on_rq = 0;
399 }
400
401 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 #ifdef CONFIG_SCHEDSTATS
404 if (se->sleep_start) {
405 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
406
407 if ((s64)delta < 0)
408 delta = 0;
409
410 if (unlikely(delta > se->sleep_max))
411 se->sleep_max = delta;
412
413 se->sleep_start = 0;
414 se->sum_sleep_runtime += delta;
415 }
416 if (se->block_start) {
417 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->block_max))
423 se->block_max = delta;
424
425 se->block_start = 0;
426 se->sum_sleep_runtime += delta;
427
428 /*
429 * Blocking time is in units of nanosecs, so shift by 20 to
430 * get a milliseconds-range estimation of the amount of
431 * time that the task spent sleeping:
432 */
433 if (unlikely(prof_on == SLEEP_PROFILING)) {
434 struct task_struct *tsk = task_of(se);
435
436 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
437 delta >> 20);
438 }
439 }
440 #endif
441 }
442
443 static void
444 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
445 {
446 u64 min_runtime, latency;
447
448 min_runtime = cfs_rq->min_vruntime;
449
450 if (sched_feat(USE_TREE_AVG)) {
451 struct sched_entity *last = __pick_last_entity(cfs_rq);
452 if (last) {
453 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
454 min_runtime += last->vruntime;
455 min_runtime >>= 1;
456 }
457 } else if (sched_feat(APPROX_AVG))
458 min_runtime += sysctl_sched_latency/2;
459
460 if (initial && sched_feat(START_DEBIT))
461 min_runtime += sched_slice(cfs_rq, se);
462
463 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
464 latency = sysctl_sched_latency;
465 if (min_runtime > latency)
466 min_runtime -= latency;
467 else
468 min_runtime = 0;
469 }
470
471 se->vruntime = max(se->vruntime, min_runtime);
472 }
473
474 static void
475 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
476 {
477 /*
478 * Update the fair clock.
479 */
480 update_curr(cfs_rq);
481
482 if (wakeup) {
483 place_entity(cfs_rq, se, 0);
484 enqueue_sleeper(cfs_rq, se);
485 }
486
487 update_stats_enqueue(cfs_rq, se);
488 if (se != cfs_rq->curr)
489 __enqueue_entity(cfs_rq, se);
490 account_entity_enqueue(cfs_rq, se);
491 }
492
493 static void
494 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
495 {
496 update_stats_dequeue(cfs_rq, se);
497 #ifdef CONFIG_SCHEDSTATS
498 if (sleep) {
499 if (entity_is_task(se)) {
500 struct task_struct *tsk = task_of(se);
501
502 if (tsk->state & TASK_INTERRUPTIBLE)
503 se->sleep_start = rq_of(cfs_rq)->clock;
504 if (tsk->state & TASK_UNINTERRUPTIBLE)
505 se->block_start = rq_of(cfs_rq)->clock;
506 }
507 }
508 #endif
509 if (se != cfs_rq->curr)
510 __dequeue_entity(cfs_rq, se);
511 account_entity_dequeue(cfs_rq, se);
512 }
513
514 /*
515 * Preempt the current task with a newly woken task if needed:
516 */
517 static void
518 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
519 {
520 unsigned long ideal_runtime, delta_exec;
521
522 ideal_runtime = sched_slice(cfs_rq, curr);
523 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
524 if (delta_exec > ideal_runtime)
525 resched_task(rq_of(cfs_rq)->curr);
526 }
527
528 static inline void
529 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
530 {
531 /*
532 * Any task has to be enqueued before it get to execute on
533 * a CPU. So account for the time it spent waiting on the
534 * runqueue.
535 */
536 update_stats_wait_end(cfs_rq, se);
537 update_stats_curr_start(cfs_rq, se);
538 cfs_rq->curr = se;
539 #ifdef CONFIG_SCHEDSTATS
540 /*
541 * Track our maximum slice length, if the CPU's load is at
542 * least twice that of our own weight (i.e. dont track it
543 * when there are only lesser-weight tasks around):
544 */
545 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
546 se->slice_max = max(se->slice_max,
547 se->sum_exec_runtime - se->prev_sum_exec_runtime);
548 }
549 #endif
550 se->prev_sum_exec_runtime = se->sum_exec_runtime;
551 }
552
553 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
554 {
555 struct sched_entity *se = __pick_next_entity(cfs_rq);
556
557 /* 'current' is not kept within the tree. */
558 if (se)
559 __dequeue_entity(cfs_rq, se);
560
561 set_next_entity(cfs_rq, se);
562
563 return se;
564 }
565
566 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
567 {
568 /*
569 * If still on the runqueue then deactivate_task()
570 * was not called and update_curr() has to be done:
571 */
572 if (prev->on_rq)
573 update_curr(cfs_rq);
574
575 update_stats_curr_end(cfs_rq, prev);
576
577 if (prev->on_rq) {
578 update_stats_wait_start(cfs_rq, prev);
579 /* Put 'current' back into the tree. */
580 __enqueue_entity(cfs_rq, prev);
581 }
582 cfs_rq->curr = NULL;
583 }
584
585 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
586 {
587 /*
588 * Update run-time statistics of the 'current'.
589 */
590 update_curr(cfs_rq);
591
592 if (cfs_rq->nr_running > 1)
593 check_preempt_tick(cfs_rq, curr);
594 }
595
596 /**************************************************
597 * CFS operations on tasks:
598 */
599
600 #ifdef CONFIG_FAIR_GROUP_SCHED
601
602 /* Walk up scheduling entities hierarchy */
603 #define for_each_sched_entity(se) \
604 for (; se; se = se->parent)
605
606 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
607 {
608 return p->se.cfs_rq;
609 }
610
611 /* runqueue on which this entity is (to be) queued */
612 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
613 {
614 return se->cfs_rq;
615 }
616
617 /* runqueue "owned" by this group */
618 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
619 {
620 return grp->my_q;
621 }
622
623 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
624 * another cpu ('this_cpu')
625 */
626 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
627 {
628 return cfs_rq->tg->cfs_rq[this_cpu];
629 }
630
631 /* Iterate thr' all leaf cfs_rq's on a runqueue */
632 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
633 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
634
635 /* Do the two (enqueued) tasks belong to the same group ? */
636 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
637 {
638 if (curr->se.cfs_rq == p->se.cfs_rq)
639 return 1;
640
641 return 0;
642 }
643
644 #else /* CONFIG_FAIR_GROUP_SCHED */
645
646 #define for_each_sched_entity(se) \
647 for (; se; se = NULL)
648
649 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
650 {
651 return &task_rq(p)->cfs;
652 }
653
654 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
655 {
656 struct task_struct *p = task_of(se);
657 struct rq *rq = task_rq(p);
658
659 return &rq->cfs;
660 }
661
662 /* runqueue "owned" by this group */
663 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
664 {
665 return NULL;
666 }
667
668 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
669 {
670 return &cpu_rq(this_cpu)->cfs;
671 }
672
673 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
674 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
675
676 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
677 {
678 return 1;
679 }
680
681 #endif /* CONFIG_FAIR_GROUP_SCHED */
682
683 /*
684 * The enqueue_task method is called before nr_running is
685 * increased. Here we update the fair scheduling stats and
686 * then put the task into the rbtree:
687 */
688 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
689 {
690 struct cfs_rq *cfs_rq;
691 struct sched_entity *se = &p->se;
692
693 for_each_sched_entity(se) {
694 if (se->on_rq)
695 break;
696 cfs_rq = cfs_rq_of(se);
697 enqueue_entity(cfs_rq, se, wakeup);
698 }
699 }
700
701 /*
702 * The dequeue_task method is called before nr_running is
703 * decreased. We remove the task from the rbtree and
704 * update the fair scheduling stats:
705 */
706 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
707 {
708 struct cfs_rq *cfs_rq;
709 struct sched_entity *se = &p->se;
710
711 for_each_sched_entity(se) {
712 cfs_rq = cfs_rq_of(se);
713 dequeue_entity(cfs_rq, se, sleep);
714 /* Don't dequeue parent if it has other entities besides us */
715 if (cfs_rq->load.weight)
716 break;
717 }
718 }
719
720 /*
721 * sched_yield() support is very simple - we dequeue and enqueue.
722 *
723 * If compat_yield is turned on then we requeue to the end of the tree.
724 */
725 static void yield_task_fair(struct rq *rq, struct task_struct *p)
726 {
727 struct cfs_rq *cfs_rq = task_cfs_rq(p);
728 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
729 struct sched_entity *rightmost, *se = &p->se;
730 struct rb_node *parent;
731
732 /*
733 * Are we the only task in the tree?
734 */
735 if (unlikely(cfs_rq->nr_running == 1))
736 return;
737
738 if (likely(!sysctl_sched_compat_yield)) {
739 __update_rq_clock(rq);
740 /*
741 * Dequeue and enqueue the task to update its
742 * position within the tree:
743 */
744 dequeue_entity(cfs_rq, &p->se, 0);
745 enqueue_entity(cfs_rq, &p->se, 0);
746
747 return;
748 }
749 /*
750 * Find the rightmost entry in the rbtree:
751 */
752 do {
753 parent = *link;
754 link = &parent->rb_right;
755 } while (*link);
756
757 rightmost = rb_entry(parent, struct sched_entity, run_node);
758 /*
759 * Already in the rightmost position?
760 */
761 if (unlikely(rightmost == se))
762 return;
763
764 /*
765 * Minimally necessary key value to be last in the tree:
766 */
767 se->vruntime = rightmost->vruntime + 1;
768
769 if (cfs_rq->rb_leftmost == &se->run_node)
770 cfs_rq->rb_leftmost = rb_next(&se->run_node);
771 /*
772 * Relink the task to the rightmost position:
773 */
774 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
775 rb_link_node(&se->run_node, parent, link);
776 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
777 }
778
779 /*
780 * Preempt the current task with a newly woken task if needed:
781 */
782 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
783 {
784 struct task_struct *curr = rq->curr;
785 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
786
787 if (unlikely(rt_prio(p->prio))) {
788 update_rq_clock(rq);
789 update_curr(cfs_rq);
790 resched_task(curr);
791 return;
792 }
793 if (is_same_group(curr, p)) {
794 s64 delta = curr->se.vruntime - p->se.vruntime;
795
796 if (delta > (s64)sysctl_sched_wakeup_granularity)
797 resched_task(curr);
798 }
799 }
800
801 static struct task_struct *pick_next_task_fair(struct rq *rq)
802 {
803 struct cfs_rq *cfs_rq = &rq->cfs;
804 struct sched_entity *se;
805
806 if (unlikely(!cfs_rq->nr_running))
807 return NULL;
808
809 do {
810 se = pick_next_entity(cfs_rq);
811 cfs_rq = group_cfs_rq(se);
812 } while (cfs_rq);
813
814 return task_of(se);
815 }
816
817 /*
818 * Account for a descheduled task:
819 */
820 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
821 {
822 struct sched_entity *se = &prev->se;
823 struct cfs_rq *cfs_rq;
824
825 for_each_sched_entity(se) {
826 cfs_rq = cfs_rq_of(se);
827 put_prev_entity(cfs_rq, se);
828 }
829 }
830
831 /**************************************************
832 * Fair scheduling class load-balancing methods:
833 */
834
835 /*
836 * Load-balancing iterator. Note: while the runqueue stays locked
837 * during the whole iteration, the current task might be
838 * dequeued so the iterator has to be dequeue-safe. Here we
839 * achieve that by always pre-iterating before returning
840 * the current task:
841 */
842 static inline struct task_struct *
843 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
844 {
845 struct task_struct *p;
846
847 if (!curr)
848 return NULL;
849
850 p = rb_entry(curr, struct task_struct, se.run_node);
851 cfs_rq->rb_load_balance_curr = rb_next(curr);
852
853 return p;
854 }
855
856 static struct task_struct *load_balance_start_fair(void *arg)
857 {
858 struct cfs_rq *cfs_rq = arg;
859
860 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
861 }
862
863 static struct task_struct *load_balance_next_fair(void *arg)
864 {
865 struct cfs_rq *cfs_rq = arg;
866
867 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
868 }
869
870 #ifdef CONFIG_FAIR_GROUP_SCHED
871 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
872 {
873 struct sched_entity *curr;
874 struct task_struct *p;
875
876 if (!cfs_rq->nr_running)
877 return MAX_PRIO;
878
879 curr = __pick_next_entity(cfs_rq);
880 p = task_of(curr);
881
882 return p->prio;
883 }
884 #endif
885
886 static unsigned long
887 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
888 unsigned long max_nr_move, unsigned long max_load_move,
889 struct sched_domain *sd, enum cpu_idle_type idle,
890 int *all_pinned, int *this_best_prio)
891 {
892 struct cfs_rq *busy_cfs_rq;
893 unsigned long load_moved, total_nr_moved = 0, nr_moved;
894 long rem_load_move = max_load_move;
895 struct rq_iterator cfs_rq_iterator;
896
897 cfs_rq_iterator.start = load_balance_start_fair;
898 cfs_rq_iterator.next = load_balance_next_fair;
899
900 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
901 #ifdef CONFIG_FAIR_GROUP_SCHED
902 struct cfs_rq *this_cfs_rq;
903 long imbalance;
904 unsigned long maxload;
905
906 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
907
908 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
909 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
910 if (imbalance <= 0)
911 continue;
912
913 /* Don't pull more than imbalance/2 */
914 imbalance /= 2;
915 maxload = min(rem_load_move, imbalance);
916
917 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
918 #else
919 # define maxload rem_load_move
920 #endif
921 /* pass busy_cfs_rq argument into
922 * load_balance_[start|next]_fair iterators
923 */
924 cfs_rq_iterator.arg = busy_cfs_rq;
925 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
926 max_nr_move, maxload, sd, idle, all_pinned,
927 &load_moved, this_best_prio, &cfs_rq_iterator);
928
929 total_nr_moved += nr_moved;
930 max_nr_move -= nr_moved;
931 rem_load_move -= load_moved;
932
933 if (max_nr_move <= 0 || rem_load_move <= 0)
934 break;
935 }
936
937 return max_load_move - rem_load_move;
938 }
939
940 /*
941 * scheduler tick hitting a task of our scheduling class:
942 */
943 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
944 {
945 struct cfs_rq *cfs_rq;
946 struct sched_entity *se = &curr->se;
947
948 for_each_sched_entity(se) {
949 cfs_rq = cfs_rq_of(se);
950 entity_tick(cfs_rq, se);
951 }
952 }
953
954 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
955
956 /*
957 * Share the fairness runtime between parent and child, thus the
958 * total amount of pressure for CPU stays equal - new tasks
959 * get a chance to run but frequent forkers are not allowed to
960 * monopolize the CPU. Note: the parent runqueue is locked,
961 * the child is not running yet.
962 */
963 static void task_new_fair(struct rq *rq, struct task_struct *p)
964 {
965 struct cfs_rq *cfs_rq = task_cfs_rq(p);
966 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
967
968 sched_info_queued(p);
969
970 update_curr(cfs_rq);
971 place_entity(cfs_rq, se, 1);
972
973 if (sysctl_sched_child_runs_first &&
974 curr->vruntime < se->vruntime) {
975 /*
976 * Upon rescheduling, sched_class::put_prev_task() will place
977 * 'current' within the tree based on its new key value.
978 */
979 swap(curr->vruntime, se->vruntime);
980 }
981
982 update_stats_enqueue(cfs_rq, se);
983 __enqueue_entity(cfs_rq, se);
984 account_entity_enqueue(cfs_rq, se);
985 resched_task(rq->curr);
986 }
987
988 #ifdef CONFIG_FAIR_GROUP_SCHED
989 /* Account for a task changing its policy or group.
990 *
991 * This routine is mostly called to set cfs_rq->curr field when a task
992 * migrates between groups/classes.
993 */
994 static void set_curr_task_fair(struct rq *rq)
995 {
996 struct sched_entity *se = &rq->curr->se;
997
998 for_each_sched_entity(se)
999 set_next_entity(cfs_rq_of(se), se);
1000 }
1001 #else
1002 static void set_curr_task_fair(struct rq *rq)
1003 {
1004 struct sched_entity *se = &rq->curr->se;
1005 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1006
1007 cfs_rq->curr = se;
1008 }
1009 #endif
1010
1011 /*
1012 * All the scheduling class methods:
1013 */
1014 struct sched_class fair_sched_class __read_mostly = {
1015 .enqueue_task = enqueue_task_fair,
1016 .dequeue_task = dequeue_task_fair,
1017 .yield_task = yield_task_fair,
1018
1019 .check_preempt_curr = check_preempt_wakeup,
1020
1021 .pick_next_task = pick_next_task_fair,
1022 .put_prev_task = put_prev_task_fair,
1023
1024 .load_balance = load_balance_fair,
1025
1026 .set_curr_task = set_curr_task_fair,
1027 .task_tick = task_tick_fair,
1028 .task_new = task_new_fair,
1029 };
1030
1031 #ifdef CONFIG_SCHED_DEBUG
1032 static void print_cfs_stats(struct seq_file *m, int cpu)
1033 {
1034 struct cfs_rq *cfs_rq;
1035
1036 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1037 print_cfs_rq(m, cpu, cfs_rq);
1038 }
1039 #endif
This page took 0.053913 seconds and 4 git commands to generate.