ide/legacy/gayle.c: add MODULE_LICENSE
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73
74 /*
75 * SCHED_OTHER wake-up granularity.
76 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
83
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
100
101 #else /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104 {
105 return container_of(cfs_rq, struct rq, cfs);
106 }
107
108 #define entity_is_task(se) 1
109
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
111
112 static inline struct task_struct *task_of(struct sched_entity *se)
113 {
114 return container_of(se, struct task_struct, se);
115 }
116
117
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 {
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138 }
139
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 {
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
190 }
191
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
209
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
214 }
215
216 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217 {
218 return cfs_rq->rb_leftmost;
219 }
220
221 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222 {
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224 }
225
226 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227 {
228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
229
230 if (!last)
231 return NULL;
232
233 return rb_entry(last, struct sched_entity, run_node);
234 }
235
236 /**************************************************************
237 * Scheduling class statistics methods:
238 */
239
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254 }
255 #endif
256
257 /*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
265 static u64 __sched_period(unsigned long nr_running)
266 {
267 u64 period = sysctl_sched_latency;
268 unsigned long nr_latency = sched_nr_latency;
269
270 if (unlikely(nr_running > nr_latency)) {
271 period = sysctl_sched_min_granularity;
272 period *= nr_running;
273 }
274
275 return period;
276 }
277
278 /*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
284 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
285 {
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
288 }
289
290 /*
291 * We calculate the vruntime slice.
292 *
293 * vs = s/w = p/rw
294 */
295 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
296 {
297 u64 vslice = __sched_period(nr_running);
298
299 vslice *= NICE_0_LOAD;
300 do_div(vslice, rq_weight);
301
302 return vslice;
303 }
304
305 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
306 {
307 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
308 cfs_rq->nr_running + 1);
309 }
310
311 /*
312 * Update the current task's runtime statistics. Skip current tasks that
313 * are not in our scheduling class.
314 */
315 static inline void
316 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
317 unsigned long delta_exec)
318 {
319 unsigned long delta_exec_weighted;
320
321 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
322
323 curr->sum_exec_runtime += delta_exec;
324 schedstat_add(cfs_rq, exec_clock, delta_exec);
325 delta_exec_weighted = delta_exec;
326 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
327 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
328 &curr->load);
329 }
330 curr->vruntime += delta_exec_weighted;
331 }
332
333 static void update_curr(struct cfs_rq *cfs_rq)
334 {
335 struct sched_entity *curr = cfs_rq->curr;
336 u64 now = rq_of(cfs_rq)->clock;
337 unsigned long delta_exec;
338
339 if (unlikely(!curr))
340 return;
341
342 /*
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
346 */
347 delta_exec = (unsigned long)(now - curr->exec_start);
348
349 __update_curr(cfs_rq, curr, delta_exec);
350 curr->exec_start = now;
351
352 if (entity_is_task(curr)) {
353 struct task_struct *curtask = task_of(curr);
354
355 cpuacct_charge(curtask, delta_exec);
356 }
357 }
358
359 static inline void
360 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 {
362 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
363 }
364
365 /*
366 * Task is being enqueued - update stats:
367 */
368 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 {
370 /*
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
373 */
374 if (se != cfs_rq->curr)
375 update_stats_wait_start(cfs_rq, se);
376 }
377
378 static void
379 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
380 {
381 schedstat_set(se->wait_max, max(se->wait_max,
382 rq_of(cfs_rq)->clock - se->wait_start));
383 schedstat_set(se->wait_count, se->wait_count + 1);
384 schedstat_set(se->wait_sum, se->wait_sum +
385 rq_of(cfs_rq)->clock - se->wait_start);
386 schedstat_set(se->wait_start, 0);
387 }
388
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391 {
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
398 }
399
400 /*
401 * We are picking a new current task - update its stats:
402 */
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 /*
407 * We are starting a new run period:
408 */
409 se->exec_start = rq_of(cfs_rq)->clock;
410 }
411
412 /**************************************************
413 * Scheduling class queueing methods:
414 */
415
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418 {
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422 }
423
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426 {
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430 }
431
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
433 {
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437 struct task_struct *tsk = task_of(se);
438
439 if ((s64)delta < 0)
440 delta = 0;
441
442 if (unlikely(delta > se->sleep_max))
443 se->sleep_max = delta;
444
445 se->sleep_start = 0;
446 se->sum_sleep_runtime += delta;
447
448 account_scheduler_latency(tsk, delta >> 10, 1);
449 }
450 if (se->block_start) {
451 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
452 struct task_struct *tsk = task_of(se);
453
454 if ((s64)delta < 0)
455 delta = 0;
456
457 if (unlikely(delta > se->block_max))
458 se->block_max = delta;
459
460 se->block_start = 0;
461 se->sum_sleep_runtime += delta;
462
463 /*
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
467 */
468 if (unlikely(prof_on == SLEEP_PROFILING)) {
469
470 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
471 delta >> 20);
472 }
473 account_scheduler_latency(tsk, delta >> 10, 0);
474 }
475 #endif
476 }
477
478 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 #ifdef CONFIG_SCHED_DEBUG
481 s64 d = se->vruntime - cfs_rq->min_vruntime;
482
483 if (d < 0)
484 d = -d;
485
486 if (d > 3*sysctl_sched_latency)
487 schedstat_inc(cfs_rq, nr_spread_over);
488 #endif
489 }
490
491 static void
492 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
493 {
494 u64 vruntime;
495
496 if (first_fair(cfs_rq)) {
497 vruntime = min_vruntime(cfs_rq->min_vruntime,
498 __pick_next_entity(cfs_rq)->vruntime);
499 } else
500 vruntime = cfs_rq->min_vruntime;
501
502 /*
503 * The 'current' period is already promised to the current tasks,
504 * however the extra weight of the new task will slow them down a
505 * little, place the new task so that it fits in the slot that
506 * stays open at the end.
507 */
508 if (initial && sched_feat(START_DEBIT))
509 vruntime += sched_vslice_add(cfs_rq, se);
510
511 if (!initial) {
512 /* sleeps upto a single latency don't count. */
513 if (sched_feat(NEW_FAIR_SLEEPERS)) {
514 vruntime -= calc_delta_fair(sysctl_sched_latency,
515 &cfs_rq->load);
516 }
517
518 /* ensure we never gain time by being placed backwards. */
519 vruntime = max_vruntime(se->vruntime, vruntime);
520 }
521
522 se->vruntime = vruntime;
523 }
524
525 static void
526 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
527 {
528 /*
529 * Update run-time statistics of the 'current'.
530 */
531 update_curr(cfs_rq);
532
533 if (wakeup) {
534 place_entity(cfs_rq, se, 0);
535 enqueue_sleeper(cfs_rq, se);
536 }
537
538 update_stats_enqueue(cfs_rq, se);
539 check_spread(cfs_rq, se);
540 if (se != cfs_rq->curr)
541 __enqueue_entity(cfs_rq, se);
542 account_entity_enqueue(cfs_rq, se);
543 }
544
545 static void update_avg(u64 *avg, u64 sample)
546 {
547 s64 diff = sample - *avg;
548 *avg += diff >> 3;
549 }
550
551 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 {
553 if (!se->last_wakeup)
554 return;
555
556 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
557 se->last_wakeup = 0;
558 }
559
560 static void
561 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
562 {
563 /*
564 * Update run-time statistics of the 'current'.
565 */
566 update_curr(cfs_rq);
567
568 update_stats_dequeue(cfs_rq, se);
569 if (sleep) {
570 update_avg_stats(cfs_rq, se);
571 #ifdef CONFIG_SCHEDSTATS
572 if (entity_is_task(se)) {
573 struct task_struct *tsk = task_of(se);
574
575 if (tsk->state & TASK_INTERRUPTIBLE)
576 se->sleep_start = rq_of(cfs_rq)->clock;
577 if (tsk->state & TASK_UNINTERRUPTIBLE)
578 se->block_start = rq_of(cfs_rq)->clock;
579 }
580 #endif
581 }
582
583 if (se != cfs_rq->curr)
584 __dequeue_entity(cfs_rq, se);
585 account_entity_dequeue(cfs_rq, se);
586 }
587
588 /*
589 * Preempt the current task with a newly woken task if needed:
590 */
591 static void
592 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
593 {
594 unsigned long ideal_runtime, delta_exec;
595
596 ideal_runtime = sched_slice(cfs_rq, curr);
597 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
598 if (delta_exec > ideal_runtime)
599 resched_task(rq_of(cfs_rq)->curr);
600 }
601
602 static void
603 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
604 {
605 /* 'current' is not kept within the tree. */
606 if (se->on_rq) {
607 /*
608 * Any task has to be enqueued before it get to execute on
609 * a CPU. So account for the time it spent waiting on the
610 * runqueue.
611 */
612 update_stats_wait_end(cfs_rq, se);
613 __dequeue_entity(cfs_rq, se);
614 }
615
616 update_stats_curr_start(cfs_rq, se);
617 cfs_rq->curr = se;
618 #ifdef CONFIG_SCHEDSTATS
619 /*
620 * Track our maximum slice length, if the CPU's load is at
621 * least twice that of our own weight (i.e. dont track it
622 * when there are only lesser-weight tasks around):
623 */
624 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
625 se->slice_max = max(se->slice_max,
626 se->sum_exec_runtime - se->prev_sum_exec_runtime);
627 }
628 #endif
629 se->prev_sum_exec_runtime = se->sum_exec_runtime;
630 }
631
632 static struct sched_entity *
633 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 s64 diff, gran;
636
637 if (!cfs_rq->next)
638 return se;
639
640 diff = cfs_rq->next->vruntime - se->vruntime;
641 if (diff < 0)
642 return se;
643
644 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
645 if (diff > gran)
646 return se;
647
648 return cfs_rq->next;
649 }
650
651 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
652 {
653 struct sched_entity *se = NULL;
654
655 if (first_fair(cfs_rq)) {
656 se = __pick_next_entity(cfs_rq);
657 se = pick_next(cfs_rq, se);
658 set_next_entity(cfs_rq, se);
659 }
660
661 return se;
662 }
663
664 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
665 {
666 /*
667 * If still on the runqueue then deactivate_task()
668 * was not called and update_curr() has to be done:
669 */
670 if (prev->on_rq)
671 update_curr(cfs_rq);
672
673 check_spread(cfs_rq, prev);
674 if (prev->on_rq) {
675 update_stats_wait_start(cfs_rq, prev);
676 /* Put 'current' back into the tree. */
677 __enqueue_entity(cfs_rq, prev);
678 }
679 cfs_rq->curr = NULL;
680 }
681
682 static void
683 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
684 {
685 /*
686 * Update run-time statistics of the 'current'.
687 */
688 update_curr(cfs_rq);
689
690 #ifdef CONFIG_SCHED_HRTICK
691 /*
692 * queued ticks are scheduled to match the slice, so don't bother
693 * validating it and just reschedule.
694 */
695 if (queued)
696 return resched_task(rq_of(cfs_rq)->curr);
697 /*
698 * don't let the period tick interfere with the hrtick preemption
699 */
700 if (!sched_feat(DOUBLE_TICK) &&
701 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
702 return;
703 #endif
704
705 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
706 check_preempt_tick(cfs_rq, curr);
707 }
708
709 /**************************************************
710 * CFS operations on tasks:
711 */
712
713 #ifdef CONFIG_FAIR_GROUP_SCHED
714
715 /* Walk up scheduling entities hierarchy */
716 #define for_each_sched_entity(se) \
717 for (; se; se = se->parent)
718
719 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
720 {
721 return p->se.cfs_rq;
722 }
723
724 /* runqueue on which this entity is (to be) queued */
725 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
726 {
727 return se->cfs_rq;
728 }
729
730 /* runqueue "owned" by this group */
731 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
732 {
733 return grp->my_q;
734 }
735
736 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
737 * another cpu ('this_cpu')
738 */
739 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
740 {
741 return cfs_rq->tg->cfs_rq[this_cpu];
742 }
743
744 /* Iterate thr' all leaf cfs_rq's on a runqueue */
745 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
746 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
747
748 /* Do the two (enqueued) entities belong to the same group ? */
749 static inline int
750 is_same_group(struct sched_entity *se, struct sched_entity *pse)
751 {
752 if (se->cfs_rq == pse->cfs_rq)
753 return 1;
754
755 return 0;
756 }
757
758 static inline struct sched_entity *parent_entity(struct sched_entity *se)
759 {
760 return se->parent;
761 }
762
763 #else /* CONFIG_FAIR_GROUP_SCHED */
764
765 #define for_each_sched_entity(se) \
766 for (; se; se = NULL)
767
768 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
769 {
770 return &task_rq(p)->cfs;
771 }
772
773 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
774 {
775 struct task_struct *p = task_of(se);
776 struct rq *rq = task_rq(p);
777
778 return &rq->cfs;
779 }
780
781 /* runqueue "owned" by this group */
782 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
783 {
784 return NULL;
785 }
786
787 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
788 {
789 return &cpu_rq(this_cpu)->cfs;
790 }
791
792 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
793 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
794
795 static inline int
796 is_same_group(struct sched_entity *se, struct sched_entity *pse)
797 {
798 return 1;
799 }
800
801 static inline struct sched_entity *parent_entity(struct sched_entity *se)
802 {
803 return NULL;
804 }
805
806 #endif /* CONFIG_FAIR_GROUP_SCHED */
807
808 #ifdef CONFIG_SCHED_HRTICK
809 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
810 {
811 int requeue = rq->curr == p;
812 struct sched_entity *se = &p->se;
813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
814
815 WARN_ON(task_rq(p) != rq);
816
817 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
818 u64 slice = sched_slice(cfs_rq, se);
819 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
820 s64 delta = slice - ran;
821
822 if (delta < 0) {
823 if (rq->curr == p)
824 resched_task(p);
825 return;
826 }
827
828 /*
829 * Don't schedule slices shorter than 10000ns, that just
830 * doesn't make sense. Rely on vruntime for fairness.
831 */
832 if (!requeue)
833 delta = max(10000LL, delta);
834
835 hrtick_start(rq, delta, requeue);
836 }
837 }
838 #else
839 static inline void
840 hrtick_start_fair(struct rq *rq, struct task_struct *p)
841 {
842 }
843 #endif
844
845 /*
846 * The enqueue_task method is called before nr_running is
847 * increased. Here we update the fair scheduling stats and
848 * then put the task into the rbtree:
849 */
850 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
851 {
852 struct cfs_rq *cfs_rq;
853 struct sched_entity *se = &p->se;
854
855 for_each_sched_entity(se) {
856 if (se->on_rq)
857 break;
858 cfs_rq = cfs_rq_of(se);
859 enqueue_entity(cfs_rq, se, wakeup);
860 wakeup = 1;
861 }
862
863 hrtick_start_fair(rq, rq->curr);
864 }
865
866 /*
867 * The dequeue_task method is called before nr_running is
868 * decreased. We remove the task from the rbtree and
869 * update the fair scheduling stats:
870 */
871 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
872 {
873 struct cfs_rq *cfs_rq;
874 struct sched_entity *se = &p->se;
875
876 for_each_sched_entity(se) {
877 cfs_rq = cfs_rq_of(se);
878 dequeue_entity(cfs_rq, se, sleep);
879 /* Don't dequeue parent if it has other entities besides us */
880 if (cfs_rq->load.weight)
881 break;
882 sleep = 1;
883 }
884
885 hrtick_start_fair(rq, rq->curr);
886 }
887
888 /*
889 * sched_yield() support is very simple - we dequeue and enqueue.
890 *
891 * If compat_yield is turned on then we requeue to the end of the tree.
892 */
893 static void yield_task_fair(struct rq *rq)
894 {
895 struct task_struct *curr = rq->curr;
896 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
897 struct sched_entity *rightmost, *se = &curr->se;
898
899 /*
900 * Are we the only task in the tree?
901 */
902 if (unlikely(cfs_rq->nr_running == 1))
903 return;
904
905 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
906 __update_rq_clock(rq);
907 /*
908 * Update run-time statistics of the 'current'.
909 */
910 update_curr(cfs_rq);
911
912 return;
913 }
914 /*
915 * Find the rightmost entry in the rbtree:
916 */
917 rightmost = __pick_last_entity(cfs_rq);
918 /*
919 * Already in the rightmost position?
920 */
921 if (unlikely(rightmost->vruntime < se->vruntime))
922 return;
923
924 /*
925 * Minimally necessary key value to be last in the tree:
926 * Upon rescheduling, sched_class::put_prev_task() will place
927 * 'current' within the tree based on its new key value.
928 */
929 se->vruntime = rightmost->vruntime + 1;
930 }
931
932 /*
933 * wake_idle() will wake a task on an idle cpu if task->cpu is
934 * not idle and an idle cpu is available. The span of cpus to
935 * search starts with cpus closest then further out as needed,
936 * so we always favor a closer, idle cpu.
937 *
938 * Returns the CPU we should wake onto.
939 */
940 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
941 static int wake_idle(int cpu, struct task_struct *p)
942 {
943 cpumask_t tmp;
944 struct sched_domain *sd;
945 int i;
946
947 /*
948 * If it is idle, then it is the best cpu to run this task.
949 *
950 * This cpu is also the best, if it has more than one task already.
951 * Siblings must be also busy(in most cases) as they didn't already
952 * pickup the extra load from this cpu and hence we need not check
953 * sibling runqueue info. This will avoid the checks and cache miss
954 * penalities associated with that.
955 */
956 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
957 return cpu;
958
959 for_each_domain(cpu, sd) {
960 if (sd->flags & SD_WAKE_IDLE) {
961 cpus_and(tmp, sd->span, p->cpus_allowed);
962 for_each_cpu_mask(i, tmp) {
963 if (idle_cpu(i)) {
964 if (i != task_cpu(p)) {
965 schedstat_inc(p,
966 se.nr_wakeups_idle);
967 }
968 return i;
969 }
970 }
971 } else {
972 break;
973 }
974 }
975 return cpu;
976 }
977 #else
978 static inline int wake_idle(int cpu, struct task_struct *p)
979 {
980 return cpu;
981 }
982 #endif
983
984 #ifdef CONFIG_SMP
985
986 static const struct sched_class fair_sched_class;
987
988 static int
989 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
990 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
991 int idx, unsigned long load, unsigned long this_load,
992 unsigned int imbalance)
993 {
994 struct task_struct *curr = this_rq->curr;
995 unsigned long tl = this_load;
996 unsigned long tl_per_task;
997
998 if (!(this_sd->flags & SD_WAKE_AFFINE))
999 return 0;
1000
1001 /*
1002 * If the currently running task will sleep within
1003 * a reasonable amount of time then attract this newly
1004 * woken task:
1005 */
1006 if (sync && curr->sched_class == &fair_sched_class) {
1007 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1008 p->se.avg_overlap < sysctl_sched_migration_cost)
1009 return 1;
1010 }
1011
1012 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1013 tl_per_task = cpu_avg_load_per_task(this_cpu);
1014
1015 /*
1016 * If sync wakeup then subtract the (maximum possible)
1017 * effect of the currently running task from the load
1018 * of the current CPU:
1019 */
1020 if (sync)
1021 tl -= current->se.load.weight;
1022
1023 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1024 100*(tl + p->se.load.weight) <= imbalance*load) {
1025 /*
1026 * This domain has SD_WAKE_AFFINE and
1027 * p is cache cold in this domain, and
1028 * there is no bad imbalance.
1029 */
1030 schedstat_inc(this_sd, ttwu_move_affine);
1031 schedstat_inc(p, se.nr_wakeups_affine);
1032
1033 return 1;
1034 }
1035 return 0;
1036 }
1037
1038 static int select_task_rq_fair(struct task_struct *p, int sync)
1039 {
1040 struct sched_domain *sd, *this_sd = NULL;
1041 int prev_cpu, this_cpu, new_cpu;
1042 unsigned long load, this_load;
1043 struct rq *rq, *this_rq;
1044 unsigned int imbalance;
1045 int idx;
1046
1047 prev_cpu = task_cpu(p);
1048 rq = task_rq(p);
1049 this_cpu = smp_processor_id();
1050 this_rq = cpu_rq(this_cpu);
1051 new_cpu = prev_cpu;
1052
1053 /*
1054 * 'this_sd' is the first domain that both
1055 * this_cpu and prev_cpu are present in:
1056 */
1057 for_each_domain(this_cpu, sd) {
1058 if (cpu_isset(prev_cpu, sd->span)) {
1059 this_sd = sd;
1060 break;
1061 }
1062 }
1063
1064 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1065 goto out;
1066
1067 /*
1068 * Check for affine wakeup and passive balancing possibilities.
1069 */
1070 if (!this_sd)
1071 goto out;
1072
1073 idx = this_sd->wake_idx;
1074
1075 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1076
1077 load = source_load(prev_cpu, idx);
1078 this_load = target_load(this_cpu, idx);
1079
1080 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1081 load, this_load, imbalance))
1082 return this_cpu;
1083
1084 if (prev_cpu == this_cpu)
1085 goto out;
1086
1087 /*
1088 * Start passive balancing when half the imbalance_pct
1089 * limit is reached.
1090 */
1091 if (this_sd->flags & SD_WAKE_BALANCE) {
1092 if (imbalance*this_load <= 100*load) {
1093 schedstat_inc(this_sd, ttwu_move_balance);
1094 schedstat_inc(p, se.nr_wakeups_passive);
1095 return this_cpu;
1096 }
1097 }
1098
1099 out:
1100 return wake_idle(new_cpu, p);
1101 }
1102 #endif /* CONFIG_SMP */
1103
1104
1105 /*
1106 * Preempt the current task with a newly woken task if needed:
1107 */
1108 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1109 {
1110 struct task_struct *curr = rq->curr;
1111 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1112 struct sched_entity *se = &curr->se, *pse = &p->se;
1113 unsigned long gran;
1114
1115 if (unlikely(rt_prio(p->prio))) {
1116 update_rq_clock(rq);
1117 update_curr(cfs_rq);
1118 resched_task(curr);
1119 return;
1120 }
1121
1122 se->last_wakeup = se->sum_exec_runtime;
1123 if (unlikely(se == pse))
1124 return;
1125
1126 cfs_rq_of(pse)->next = pse;
1127
1128 /*
1129 * Batch tasks do not preempt (their preemption is driven by
1130 * the tick):
1131 */
1132 if (unlikely(p->policy == SCHED_BATCH))
1133 return;
1134
1135 if (!sched_feat(WAKEUP_PREEMPT))
1136 return;
1137
1138 while (!is_same_group(se, pse)) {
1139 se = parent_entity(se);
1140 pse = parent_entity(pse);
1141 }
1142
1143 gran = sysctl_sched_wakeup_granularity;
1144 /*
1145 * More easily preempt - nice tasks, while not making
1146 * it harder for + nice tasks.
1147 */
1148 if (unlikely(se->load.weight > NICE_0_LOAD))
1149 gran = calc_delta_fair(gran, &se->load);
1150
1151 if (pse->vruntime + gran < se->vruntime)
1152 resched_task(curr);
1153 }
1154
1155 static struct task_struct *pick_next_task_fair(struct rq *rq)
1156 {
1157 struct task_struct *p;
1158 struct cfs_rq *cfs_rq = &rq->cfs;
1159 struct sched_entity *se;
1160
1161 if (unlikely(!cfs_rq->nr_running))
1162 return NULL;
1163
1164 do {
1165 se = pick_next_entity(cfs_rq);
1166 cfs_rq = group_cfs_rq(se);
1167 } while (cfs_rq);
1168
1169 p = task_of(se);
1170 hrtick_start_fair(rq, p);
1171
1172 return p;
1173 }
1174
1175 /*
1176 * Account for a descheduled task:
1177 */
1178 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1179 {
1180 struct sched_entity *se = &prev->se;
1181 struct cfs_rq *cfs_rq;
1182
1183 for_each_sched_entity(se) {
1184 cfs_rq = cfs_rq_of(se);
1185 put_prev_entity(cfs_rq, se);
1186 }
1187 }
1188
1189 #ifdef CONFIG_SMP
1190 /**************************************************
1191 * Fair scheduling class load-balancing methods:
1192 */
1193
1194 /*
1195 * Load-balancing iterator. Note: while the runqueue stays locked
1196 * during the whole iteration, the current task might be
1197 * dequeued so the iterator has to be dequeue-safe. Here we
1198 * achieve that by always pre-iterating before returning
1199 * the current task:
1200 */
1201 static struct task_struct *
1202 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1203 {
1204 struct task_struct *p;
1205
1206 if (!curr)
1207 return NULL;
1208
1209 p = rb_entry(curr, struct task_struct, se.run_node);
1210 cfs_rq->rb_load_balance_curr = rb_next(curr);
1211
1212 return p;
1213 }
1214
1215 static struct task_struct *load_balance_start_fair(void *arg)
1216 {
1217 struct cfs_rq *cfs_rq = arg;
1218
1219 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1220 }
1221
1222 static struct task_struct *load_balance_next_fair(void *arg)
1223 {
1224 struct cfs_rq *cfs_rq = arg;
1225
1226 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1227 }
1228
1229 #ifdef CONFIG_FAIR_GROUP_SCHED
1230 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1231 {
1232 struct sched_entity *curr;
1233 struct task_struct *p;
1234
1235 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1236 return MAX_PRIO;
1237
1238 curr = cfs_rq->curr;
1239 if (!curr)
1240 curr = __pick_next_entity(cfs_rq);
1241
1242 p = task_of(curr);
1243
1244 return p->prio;
1245 }
1246 #endif
1247
1248 static unsigned long
1249 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1250 unsigned long max_load_move,
1251 struct sched_domain *sd, enum cpu_idle_type idle,
1252 int *all_pinned, int *this_best_prio)
1253 {
1254 struct cfs_rq *busy_cfs_rq;
1255 long rem_load_move = max_load_move;
1256 struct rq_iterator cfs_rq_iterator;
1257
1258 cfs_rq_iterator.start = load_balance_start_fair;
1259 cfs_rq_iterator.next = load_balance_next_fair;
1260
1261 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1262 #ifdef CONFIG_FAIR_GROUP_SCHED
1263 struct cfs_rq *this_cfs_rq;
1264 long imbalance;
1265 unsigned long maxload;
1266
1267 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1268
1269 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1270 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1271 if (imbalance <= 0)
1272 continue;
1273
1274 /* Don't pull more than imbalance/2 */
1275 imbalance /= 2;
1276 maxload = min(rem_load_move, imbalance);
1277
1278 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1279 #else
1280 # define maxload rem_load_move
1281 #endif
1282 /*
1283 * pass busy_cfs_rq argument into
1284 * load_balance_[start|next]_fair iterators
1285 */
1286 cfs_rq_iterator.arg = busy_cfs_rq;
1287 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1288 maxload, sd, idle, all_pinned,
1289 this_best_prio,
1290 &cfs_rq_iterator);
1291
1292 if (rem_load_move <= 0)
1293 break;
1294 }
1295
1296 return max_load_move - rem_load_move;
1297 }
1298
1299 static int
1300 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1301 struct sched_domain *sd, enum cpu_idle_type idle)
1302 {
1303 struct cfs_rq *busy_cfs_rq;
1304 struct rq_iterator cfs_rq_iterator;
1305
1306 cfs_rq_iterator.start = load_balance_start_fair;
1307 cfs_rq_iterator.next = load_balance_next_fair;
1308
1309 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1310 /*
1311 * pass busy_cfs_rq argument into
1312 * load_balance_[start|next]_fair iterators
1313 */
1314 cfs_rq_iterator.arg = busy_cfs_rq;
1315 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1316 &cfs_rq_iterator))
1317 return 1;
1318 }
1319
1320 return 0;
1321 }
1322 #endif
1323
1324 /*
1325 * scheduler tick hitting a task of our scheduling class:
1326 */
1327 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1328 {
1329 struct cfs_rq *cfs_rq;
1330 struct sched_entity *se = &curr->se;
1331
1332 for_each_sched_entity(se) {
1333 cfs_rq = cfs_rq_of(se);
1334 entity_tick(cfs_rq, se, queued);
1335 }
1336 }
1337
1338 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1339
1340 /*
1341 * Share the fairness runtime between parent and child, thus the
1342 * total amount of pressure for CPU stays equal - new tasks
1343 * get a chance to run but frequent forkers are not allowed to
1344 * monopolize the CPU. Note: the parent runqueue is locked,
1345 * the child is not running yet.
1346 */
1347 static void task_new_fair(struct rq *rq, struct task_struct *p)
1348 {
1349 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1350 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1351 int this_cpu = smp_processor_id();
1352
1353 sched_info_queued(p);
1354
1355 update_curr(cfs_rq);
1356 place_entity(cfs_rq, se, 1);
1357
1358 /* 'curr' will be NULL if the child belongs to a different group */
1359 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1360 curr && curr->vruntime < se->vruntime) {
1361 /*
1362 * Upon rescheduling, sched_class::put_prev_task() will place
1363 * 'current' within the tree based on its new key value.
1364 */
1365 swap(curr->vruntime, se->vruntime);
1366 }
1367
1368 enqueue_task_fair(rq, p, 0);
1369 resched_task(rq->curr);
1370 }
1371
1372 /*
1373 * Priority of the task has changed. Check to see if we preempt
1374 * the current task.
1375 */
1376 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1377 int oldprio, int running)
1378 {
1379 /*
1380 * Reschedule if we are currently running on this runqueue and
1381 * our priority decreased, or if we are not currently running on
1382 * this runqueue and our priority is higher than the current's
1383 */
1384 if (running) {
1385 if (p->prio > oldprio)
1386 resched_task(rq->curr);
1387 } else
1388 check_preempt_curr(rq, p);
1389 }
1390
1391 /*
1392 * We switched to the sched_fair class.
1393 */
1394 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1395 int running)
1396 {
1397 /*
1398 * We were most likely switched from sched_rt, so
1399 * kick off the schedule if running, otherwise just see
1400 * if we can still preempt the current task.
1401 */
1402 if (running)
1403 resched_task(rq->curr);
1404 else
1405 check_preempt_curr(rq, p);
1406 }
1407
1408 /* Account for a task changing its policy or group.
1409 *
1410 * This routine is mostly called to set cfs_rq->curr field when a task
1411 * migrates between groups/classes.
1412 */
1413 static void set_curr_task_fair(struct rq *rq)
1414 {
1415 struct sched_entity *se = &rq->curr->se;
1416
1417 for_each_sched_entity(se)
1418 set_next_entity(cfs_rq_of(se), se);
1419 }
1420
1421 #ifdef CONFIG_FAIR_GROUP_SCHED
1422 static void moved_group_fair(struct task_struct *p)
1423 {
1424 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1425
1426 update_curr(cfs_rq);
1427 place_entity(cfs_rq, &p->se, 1);
1428 }
1429 #endif
1430
1431 /*
1432 * All the scheduling class methods:
1433 */
1434 static const struct sched_class fair_sched_class = {
1435 .next = &idle_sched_class,
1436 .enqueue_task = enqueue_task_fair,
1437 .dequeue_task = dequeue_task_fair,
1438 .yield_task = yield_task_fair,
1439 #ifdef CONFIG_SMP
1440 .select_task_rq = select_task_rq_fair,
1441 #endif /* CONFIG_SMP */
1442
1443 .check_preempt_curr = check_preempt_wakeup,
1444
1445 .pick_next_task = pick_next_task_fair,
1446 .put_prev_task = put_prev_task_fair,
1447
1448 #ifdef CONFIG_SMP
1449 .load_balance = load_balance_fair,
1450 .move_one_task = move_one_task_fair,
1451 #endif
1452
1453 .set_curr_task = set_curr_task_fair,
1454 .task_tick = task_tick_fair,
1455 .task_new = task_new_fair,
1456
1457 .prio_changed = prio_changed_fair,
1458 .switched_to = switched_to_fair,
1459
1460 #ifdef CONFIG_FAIR_GROUP_SCHED
1461 .moved_group = moved_group_fair,
1462 #endif
1463 };
1464
1465 #ifdef CONFIG_SCHED_DEBUG
1466 static void print_cfs_stats(struct seq_file *m, int cpu)
1467 {
1468 struct cfs_rq *cfs_rq;
1469
1470 #ifdef CONFIG_FAIR_GROUP_SCHED
1471 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1472 #endif
1473 rcu_read_lock();
1474 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1475 print_cfs_rq(m, cpu, cfs_rq);
1476 rcu_read_unlock();
1477 }
1478 #endif
This page took 0.066712 seconds and 5 git commands to generate.