a785e08202cf5623f19bd58644b30539bf40b283
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 8;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 static const struct sched_class fair_sched_class;
100
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
105 #ifdef CONFIG_FAIR_GROUP_SCHED
106
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109 {
110 return cfs_rq->rq;
111 }
112
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
115
116 static inline struct task_struct *task_of(struct sched_entity *se)
117 {
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120 #endif
121 return container_of(se, struct task_struct, se);
122 }
123
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129 {
130 return p->se.cfs_rq;
131 }
132
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135 {
136 return se->cfs_rq;
137 }
138
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141 {
142 return grp->my_q;
143 }
144
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149 {
150 return cfs_rq->tg->cfs_rq[this_cpu];
151 }
152
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154 {
155 if (!cfs_rq->on_list) {
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
169 }
170
171 cfs_rq->on_list = 1;
172 }
173 }
174
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176 {
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181 }
182
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187 /* Do the two (enqueued) entities belong to the same group ? */
188 static inline int
189 is_same_group(struct sched_entity *se, struct sched_entity *pse)
190 {
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195 }
196
197 static inline struct sched_entity *parent_entity(struct sched_entity *se)
198 {
199 return se->parent;
200 }
201
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity *se)
204 {
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211 }
212
213 static void
214 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215 {
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243 }
244
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
246
247 static inline struct task_struct *task_of(struct sched_entity *se)
248 {
249 return container_of(se, struct task_struct, se);
250 }
251
252 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 {
254 return container_of(cfs_rq, struct rq, cfs);
255 }
256
257 #define entity_is_task(se) 1
258
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
261
262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263 {
264 return &task_rq(p)->cfs;
265 }
266
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273 }
274
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277 {
278 return NULL;
279 }
280
281 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282 {
283 return &cpu_rq(this_cpu)->cfs;
284 }
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 }
289
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 }
293
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 return 1;
301 }
302
303 static inline struct sched_entity *parent_entity(struct sched_entity *se)
304 {
305 return NULL;
306 }
307
308 static inline void
309 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310 {
311 }
312
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
314
315
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
320 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
321 {
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327 }
328
329 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
330 {
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336 }
337
338 static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340 {
341 return (s64)(a->vruntime - b->vruntime) < 0;
342 }
343
344 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
345 {
346 return se->vruntime - cfs_rq->min_vruntime;
347 }
348
349 static void update_min_vruntime(struct cfs_rq *cfs_rq)
350 {
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
361 if (!cfs_rq->curr)
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368 }
369
370 /*
371 * Enqueue an entity into the rb-tree:
372 */
373 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 {
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
378 s64 key = entity_key(cfs_rq, se);
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
391 if (key < entity_key(cfs_rq, entry)) {
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
403 if (leftmost)
404 cfs_rq->rb_leftmost = &se->run_node;
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
408 }
409
410 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
411 {
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
417 }
418
419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
420 }
421
422 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423 {
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
430 }
431
432 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
433 {
434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
435
436 if (!last)
437 return NULL;
438
439 return rb_entry(last, struct sched_entity, run_node);
440 }
441
442 /**************************************************************
443 * Scheduling class statistics methods:
444 */
445
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp,
449 loff_t *ppos)
450 {
451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 int factor = get_update_sysctl_factor();
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
465 #undef WRT_SYSCTL
466
467 return 0;
468 }
469 #endif
470
471 /*
472 * delta /= w
473 */
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta, struct sched_entity *se)
476 {
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
479
480 return delta;
481 }
482
483 /*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
491 static u64 __sched_period(unsigned long nr_running)
492 {
493 u64 period = sysctl_sched_latency;
494 unsigned long nr_latency = sched_nr_latency;
495
496 if (unlikely(nr_running > nr_latency)) {
497 period = sysctl_sched_min_granularity;
498 period *= nr_running;
499 }
500
501 return period;
502 }
503
504 /*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
508 * s = p*P[w/rw]
509 */
510 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
511 {
512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
513
514 for_each_sched_entity(se) {
515 struct load_weight *load;
516 struct load_weight lw;
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
520
521 if (unlikely(!se->on_rq)) {
522 lw = cfs_rq->load;
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
530 }
531
532 /*
533 * We calculate the vruntime slice of a to be inserted task
534 *
535 * vs = s/w
536 */
537 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
538 {
539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
540 }
541
542 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 static void update_cfs_shares(struct cfs_rq *cfs_rq);
544
545 /*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549 static inline void
550 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
552 {
553 unsigned long delta_exec_weighted;
554
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
557
558 curr->sum_exec_runtime += delta_exec;
559 schedstat_add(cfs_rq, exec_clock, delta_exec);
560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
561
562 curr->vruntime += delta_exec_weighted;
563 update_min_vruntime(cfs_rq);
564
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 #endif
568 }
569
570 static void update_curr(struct cfs_rq *cfs_rq)
571 {
572 struct sched_entity *curr = cfs_rq->curr;
573 u64 now = rq_of(cfs_rq)->clock_task;
574 unsigned long delta_exec;
575
576 if (unlikely(!curr))
577 return;
578
579 /*
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
583 */
584 delta_exec = (unsigned long)(now - curr->exec_start);
585 if (!delta_exec)
586 return;
587
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
590
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
593
594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595 cpuacct_charge(curtask, delta_exec);
596 account_group_exec_runtime(curtask, delta_exec);
597 }
598 }
599
600 static inline void
601 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 {
603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
604 }
605
606 /*
607 * Task is being enqueued - update stats:
608 */
609 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 {
611 /*
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
614 */
615 if (se != cfs_rq->curr)
616 update_stats_wait_start(cfs_rq, se);
617 }
618
619 static void
620 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
621 {
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
631 }
632 #endif
633 schedstat_set(se->statistics.wait_start, 0);
634 }
635
636 static inline void
637 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 {
639 /*
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
642 */
643 if (se != cfs_rq->curr)
644 update_stats_wait_end(cfs_rq, se);
645 }
646
647 /*
648 * We are picking a new current task - update its stats:
649 */
650 static inline void
651 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 /*
654 * We are starting a new run period:
655 */
656 se->exec_start = rq_of(cfs_rq)->clock_task;
657 }
658
659 /**************************************************
660 * Scheduling class queueing methods:
661 */
662
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664 static void
665 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666 {
667 cfs_rq->task_weight += weight;
668 }
669 #else
670 static inline void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672 {
673 }
674 #endif
675
676 static void
677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678 {
679 update_load_add(&cfs_rq->load, se->load.weight);
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682 if (entity_is_task(se)) {
683 add_cfs_task_weight(cfs_rq, se->load.weight);
684 list_add(&se->group_node, &cfs_rq->tasks);
685 }
686 cfs_rq->nr_running++;
687 }
688
689 static void
690 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691 {
692 update_load_sub(&cfs_rq->load, se->load.weight);
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695 if (entity_is_task(se)) {
696 add_cfs_task_weight(cfs_rq, -se->load.weight);
697 list_del_init(&se->group_node);
698 }
699 cfs_rq->nr_running--;
700 }
701
702 #ifdef CONFIG_FAIR_GROUP_SCHED
703 # ifdef CONFIG_SMP
704 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705 int global_update)
706 {
707 struct task_group *tg = cfs_rq->tg;
708 long load_avg;
709
710 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711 load_avg -= cfs_rq->load_contribution;
712
713 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714 atomic_add(load_avg, &tg->load_weight);
715 cfs_rq->load_contribution += load_avg;
716 }
717 }
718
719 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
720 {
721 u64 period = sysctl_sched_shares_window;
722 u64 now, delta;
723 unsigned long load = cfs_rq->load.weight;
724
725 if (cfs_rq->tg == &root_task_group)
726 return;
727
728 now = rq_of(cfs_rq)->clock_task;
729 delta = now - cfs_rq->load_stamp;
730
731 /* truncate load history at 4 idle periods */
732 if (cfs_rq->load_stamp > cfs_rq->load_last &&
733 now - cfs_rq->load_last > 4 * period) {
734 cfs_rq->load_period = 0;
735 cfs_rq->load_avg = 0;
736 delta = period - 1;
737 }
738
739 cfs_rq->load_stamp = now;
740 cfs_rq->load_unacc_exec_time = 0;
741 cfs_rq->load_period += delta;
742 if (load) {
743 cfs_rq->load_last = now;
744 cfs_rq->load_avg += delta * load;
745 }
746
747 /* consider updating load contribution on each fold or truncate */
748 if (global_update || cfs_rq->load_period > period
749 || !cfs_rq->load_period)
750 update_cfs_rq_load_contribution(cfs_rq, global_update);
751
752 while (cfs_rq->load_period > period) {
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (cfs_rq->load_period));
759 cfs_rq->load_period /= 2;
760 cfs_rq->load_avg /= 2;
761 }
762
763 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
764 list_del_leaf_cfs_rq(cfs_rq);
765 }
766
767 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
768 {
769 long load_weight, load, shares;
770
771 load = cfs_rq->load.weight;
772
773 load_weight = atomic_read(&tg->load_weight);
774 load_weight += load;
775 load_weight -= cfs_rq->load_contribution;
776
777 shares = (tg->shares * load);
778 if (load_weight)
779 shares /= load_weight;
780
781 if (shares < MIN_SHARES)
782 shares = MIN_SHARES;
783 if (shares > tg->shares)
784 shares = tg->shares;
785
786 return shares;
787 }
788
789 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
790 {
791 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792 update_cfs_load(cfs_rq, 0);
793 update_cfs_shares(cfs_rq);
794 }
795 }
796 # else /* CONFIG_SMP */
797 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
798 {
799 }
800
801 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
802 {
803 return tg->shares;
804 }
805
806 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
807 {
808 }
809 # endif /* CONFIG_SMP */
810 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
811 unsigned long weight)
812 {
813 if (se->on_rq) {
814 /* commit outstanding execution time */
815 if (cfs_rq->curr == se)
816 update_curr(cfs_rq);
817 account_entity_dequeue(cfs_rq, se);
818 }
819
820 update_load_set(&se->load, weight);
821
822 if (se->on_rq)
823 account_entity_enqueue(cfs_rq, se);
824 }
825
826 static void update_cfs_shares(struct cfs_rq *cfs_rq)
827 {
828 struct task_group *tg;
829 struct sched_entity *se;
830 long shares;
831
832 tg = cfs_rq->tg;
833 se = tg->se[cpu_of(rq_of(cfs_rq))];
834 if (!se)
835 return;
836 #ifndef CONFIG_SMP
837 if (likely(se->load.weight == tg->shares))
838 return;
839 #endif
840 shares = calc_cfs_shares(cfs_rq, tg);
841
842 reweight_entity(cfs_rq_of(se), se, shares);
843 }
844 #else /* CONFIG_FAIR_GROUP_SCHED */
845 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
846 {
847 }
848
849 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
850 {
851 }
852
853 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
854 {
855 }
856 #endif /* CONFIG_FAIR_GROUP_SCHED */
857
858 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
859 {
860 #ifdef CONFIG_SCHEDSTATS
861 struct task_struct *tsk = NULL;
862
863 if (entity_is_task(se))
864 tsk = task_of(se);
865
866 if (se->statistics.sleep_start) {
867 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
868
869 if ((s64)delta < 0)
870 delta = 0;
871
872 if (unlikely(delta > se->statistics.sleep_max))
873 se->statistics.sleep_max = delta;
874
875 se->statistics.sleep_start = 0;
876 se->statistics.sum_sleep_runtime += delta;
877
878 if (tsk) {
879 account_scheduler_latency(tsk, delta >> 10, 1);
880 trace_sched_stat_sleep(tsk, delta);
881 }
882 }
883 if (se->statistics.block_start) {
884 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
885
886 if ((s64)delta < 0)
887 delta = 0;
888
889 if (unlikely(delta > se->statistics.block_max))
890 se->statistics.block_max = delta;
891
892 se->statistics.block_start = 0;
893 se->statistics.sum_sleep_runtime += delta;
894
895 if (tsk) {
896 if (tsk->in_iowait) {
897 se->statistics.iowait_sum += delta;
898 se->statistics.iowait_count++;
899 trace_sched_stat_iowait(tsk, delta);
900 }
901
902 /*
903 * Blocking time is in units of nanosecs, so shift by
904 * 20 to get a milliseconds-range estimation of the
905 * amount of time that the task spent sleeping:
906 */
907 if (unlikely(prof_on == SLEEP_PROFILING)) {
908 profile_hits(SLEEP_PROFILING,
909 (void *)get_wchan(tsk),
910 delta >> 20);
911 }
912 account_scheduler_latency(tsk, delta >> 10, 0);
913 }
914 }
915 #endif
916 }
917
918 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
919 {
920 #ifdef CONFIG_SCHED_DEBUG
921 s64 d = se->vruntime - cfs_rq->min_vruntime;
922
923 if (d < 0)
924 d = -d;
925
926 if (d > 3*sysctl_sched_latency)
927 schedstat_inc(cfs_rq, nr_spread_over);
928 #endif
929 }
930
931 static void
932 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
933 {
934 u64 vruntime = cfs_rq->min_vruntime;
935
936 /*
937 * The 'current' period is already promised to the current tasks,
938 * however the extra weight of the new task will slow them down a
939 * little, place the new task so that it fits in the slot that
940 * stays open at the end.
941 */
942 if (initial && sched_feat(START_DEBIT))
943 vruntime += sched_vslice(cfs_rq, se);
944
945 /* sleeps up to a single latency don't count. */
946 if (!initial) {
947 unsigned long thresh = sysctl_sched_latency;
948
949 /*
950 * Halve their sleep time's effect, to allow
951 * for a gentler effect of sleepers:
952 */
953 if (sched_feat(GENTLE_FAIR_SLEEPERS))
954 thresh >>= 1;
955
956 vruntime -= thresh;
957 }
958
959 /* ensure we never gain time by being placed backwards. */
960 vruntime = max_vruntime(se->vruntime, vruntime);
961
962 se->vruntime = vruntime;
963 }
964
965 static void
966 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967 {
968 /*
969 * Update the normalized vruntime before updating min_vruntime
970 * through callig update_curr().
971 */
972 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
973 se->vruntime += cfs_rq->min_vruntime;
974
975 /*
976 * Update run-time statistics of the 'current'.
977 */
978 update_curr(cfs_rq);
979 update_cfs_load(cfs_rq, 0);
980 account_entity_enqueue(cfs_rq, se);
981 update_cfs_shares(cfs_rq);
982
983 if (flags & ENQUEUE_WAKEUP) {
984 place_entity(cfs_rq, se, 0);
985 enqueue_sleeper(cfs_rq, se);
986 }
987
988 update_stats_enqueue(cfs_rq, se);
989 check_spread(cfs_rq, se);
990 if (se != cfs_rq->curr)
991 __enqueue_entity(cfs_rq, se);
992 se->on_rq = 1;
993
994 if (cfs_rq->nr_running == 1)
995 list_add_leaf_cfs_rq(cfs_rq);
996 }
997
998 static void __clear_buddies_last(struct sched_entity *se)
999 {
1000 for_each_sched_entity(se) {
1001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1002 if (cfs_rq->last == se)
1003 cfs_rq->last = NULL;
1004 else
1005 break;
1006 }
1007 }
1008
1009 static void __clear_buddies_next(struct sched_entity *se)
1010 {
1011 for_each_sched_entity(se) {
1012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1013 if (cfs_rq->next == se)
1014 cfs_rq->next = NULL;
1015 else
1016 break;
1017 }
1018 }
1019
1020 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1021 {
1022 if (cfs_rq->last == se)
1023 __clear_buddies_last(se);
1024
1025 if (cfs_rq->next == se)
1026 __clear_buddies_next(se);
1027 }
1028
1029 static void
1030 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1031 {
1032 /*
1033 * Update run-time statistics of the 'current'.
1034 */
1035 update_curr(cfs_rq);
1036
1037 update_stats_dequeue(cfs_rq, se);
1038 if (flags & DEQUEUE_SLEEP) {
1039 #ifdef CONFIG_SCHEDSTATS
1040 if (entity_is_task(se)) {
1041 struct task_struct *tsk = task_of(se);
1042
1043 if (tsk->state & TASK_INTERRUPTIBLE)
1044 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1045 if (tsk->state & TASK_UNINTERRUPTIBLE)
1046 se->statistics.block_start = rq_of(cfs_rq)->clock;
1047 }
1048 #endif
1049 }
1050
1051 clear_buddies(cfs_rq, se);
1052
1053 if (se != cfs_rq->curr)
1054 __dequeue_entity(cfs_rq, se);
1055 se->on_rq = 0;
1056 update_cfs_load(cfs_rq, 0);
1057 account_entity_dequeue(cfs_rq, se);
1058 update_min_vruntime(cfs_rq);
1059 update_cfs_shares(cfs_rq);
1060
1061 /*
1062 * Normalize the entity after updating the min_vruntime because the
1063 * update can refer to the ->curr item and we need to reflect this
1064 * movement in our normalized position.
1065 */
1066 if (!(flags & DEQUEUE_SLEEP))
1067 se->vruntime -= cfs_rq->min_vruntime;
1068 }
1069
1070 /*
1071 * Preempt the current task with a newly woken task if needed:
1072 */
1073 static void
1074 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1075 {
1076 unsigned long ideal_runtime, delta_exec;
1077
1078 ideal_runtime = sched_slice(cfs_rq, curr);
1079 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1080 if (delta_exec > ideal_runtime) {
1081 resched_task(rq_of(cfs_rq)->curr);
1082 /*
1083 * The current task ran long enough, ensure it doesn't get
1084 * re-elected due to buddy favours.
1085 */
1086 clear_buddies(cfs_rq, curr);
1087 return;
1088 }
1089
1090 /*
1091 * Ensure that a task that missed wakeup preemption by a
1092 * narrow margin doesn't have to wait for a full slice.
1093 * This also mitigates buddy induced latencies under load.
1094 */
1095 if (!sched_feat(WAKEUP_PREEMPT))
1096 return;
1097
1098 if (delta_exec < sysctl_sched_min_granularity)
1099 return;
1100
1101 if (cfs_rq->nr_running > 1) {
1102 struct sched_entity *se = __pick_next_entity(cfs_rq);
1103 s64 delta = curr->vruntime - se->vruntime;
1104
1105 if (delta < 0)
1106 return;
1107
1108 if (delta > ideal_runtime)
1109 resched_task(rq_of(cfs_rq)->curr);
1110 }
1111 }
1112
1113 static void
1114 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1115 {
1116 /* 'current' is not kept within the tree. */
1117 if (se->on_rq) {
1118 /*
1119 * Any task has to be enqueued before it get to execute on
1120 * a CPU. So account for the time it spent waiting on the
1121 * runqueue.
1122 */
1123 update_stats_wait_end(cfs_rq, se);
1124 __dequeue_entity(cfs_rq, se);
1125 }
1126
1127 update_stats_curr_start(cfs_rq, se);
1128 cfs_rq->curr = se;
1129 #ifdef CONFIG_SCHEDSTATS
1130 /*
1131 * Track our maximum slice length, if the CPU's load is at
1132 * least twice that of our own weight (i.e. dont track it
1133 * when there are only lesser-weight tasks around):
1134 */
1135 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1136 se->statistics.slice_max = max(se->statistics.slice_max,
1137 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1138 }
1139 #endif
1140 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1141 }
1142
1143 static int
1144 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1145
1146 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1147 {
1148 struct sched_entity *se = __pick_next_entity(cfs_rq);
1149 struct sched_entity *left = se;
1150
1151 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1152 se = cfs_rq->next;
1153
1154 /*
1155 * Prefer last buddy, try to return the CPU to a preempted task.
1156 */
1157 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1158 se = cfs_rq->last;
1159
1160 clear_buddies(cfs_rq, se);
1161
1162 return se;
1163 }
1164
1165 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1166 {
1167 /*
1168 * If still on the runqueue then deactivate_task()
1169 * was not called and update_curr() has to be done:
1170 */
1171 if (prev->on_rq)
1172 update_curr(cfs_rq);
1173
1174 check_spread(cfs_rq, prev);
1175 if (prev->on_rq) {
1176 update_stats_wait_start(cfs_rq, prev);
1177 /* Put 'current' back into the tree. */
1178 __enqueue_entity(cfs_rq, prev);
1179 }
1180 cfs_rq->curr = NULL;
1181 }
1182
1183 static void
1184 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1185 {
1186 /*
1187 * Update run-time statistics of the 'current'.
1188 */
1189 update_curr(cfs_rq);
1190
1191 /*
1192 * Update share accounting for long-running entities.
1193 */
1194 update_entity_shares_tick(cfs_rq);
1195
1196 #ifdef CONFIG_SCHED_HRTICK
1197 /*
1198 * queued ticks are scheduled to match the slice, so don't bother
1199 * validating it and just reschedule.
1200 */
1201 if (queued) {
1202 resched_task(rq_of(cfs_rq)->curr);
1203 return;
1204 }
1205 /*
1206 * don't let the period tick interfere with the hrtick preemption
1207 */
1208 if (!sched_feat(DOUBLE_TICK) &&
1209 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1210 return;
1211 #endif
1212
1213 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1214 check_preempt_tick(cfs_rq, curr);
1215 }
1216
1217 /**************************************************
1218 * CFS operations on tasks:
1219 */
1220
1221 #ifdef CONFIG_SCHED_HRTICK
1222 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1223 {
1224 struct sched_entity *se = &p->se;
1225 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1226
1227 WARN_ON(task_rq(p) != rq);
1228
1229 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1230 u64 slice = sched_slice(cfs_rq, se);
1231 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1232 s64 delta = slice - ran;
1233
1234 if (delta < 0) {
1235 if (rq->curr == p)
1236 resched_task(p);
1237 return;
1238 }
1239
1240 /*
1241 * Don't schedule slices shorter than 10000ns, that just
1242 * doesn't make sense. Rely on vruntime for fairness.
1243 */
1244 if (rq->curr != p)
1245 delta = max_t(s64, 10000LL, delta);
1246
1247 hrtick_start(rq, delta);
1248 }
1249 }
1250
1251 /*
1252 * called from enqueue/dequeue and updates the hrtick when the
1253 * current task is from our class and nr_running is low enough
1254 * to matter.
1255 */
1256 static void hrtick_update(struct rq *rq)
1257 {
1258 struct task_struct *curr = rq->curr;
1259
1260 if (curr->sched_class != &fair_sched_class)
1261 return;
1262
1263 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1264 hrtick_start_fair(rq, curr);
1265 }
1266 #else /* !CONFIG_SCHED_HRTICK */
1267 static inline void
1268 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1269 {
1270 }
1271
1272 static inline void hrtick_update(struct rq *rq)
1273 {
1274 }
1275 #endif
1276
1277 /*
1278 * The enqueue_task method is called before nr_running is
1279 * increased. Here we update the fair scheduling stats and
1280 * then put the task into the rbtree:
1281 */
1282 static void
1283 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1284 {
1285 struct cfs_rq *cfs_rq;
1286 struct sched_entity *se = &p->se;
1287
1288 for_each_sched_entity(se) {
1289 if (se->on_rq)
1290 break;
1291 cfs_rq = cfs_rq_of(se);
1292 enqueue_entity(cfs_rq, se, flags);
1293 flags = ENQUEUE_WAKEUP;
1294 }
1295
1296 for_each_sched_entity(se) {
1297 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1298
1299 update_cfs_load(cfs_rq, 0);
1300 update_cfs_shares(cfs_rq);
1301 }
1302
1303 hrtick_update(rq);
1304 }
1305
1306 /*
1307 * The dequeue_task method is called before nr_running is
1308 * decreased. We remove the task from the rbtree and
1309 * update the fair scheduling stats:
1310 */
1311 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1312 {
1313 struct cfs_rq *cfs_rq;
1314 struct sched_entity *se = &p->se;
1315
1316 for_each_sched_entity(se) {
1317 cfs_rq = cfs_rq_of(se);
1318 dequeue_entity(cfs_rq, se, flags);
1319
1320 /* Don't dequeue parent if it has other entities besides us */
1321 if (cfs_rq->load.weight)
1322 break;
1323 flags |= DEQUEUE_SLEEP;
1324 }
1325
1326 for_each_sched_entity(se) {
1327 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1328
1329 update_cfs_load(cfs_rq, 0);
1330 update_cfs_shares(cfs_rq);
1331 }
1332
1333 hrtick_update(rq);
1334 }
1335
1336 /*
1337 * sched_yield() support is very simple - we dequeue and enqueue.
1338 *
1339 * If compat_yield is turned on then we requeue to the end of the tree.
1340 */
1341 static void yield_task_fair(struct rq *rq)
1342 {
1343 struct task_struct *curr = rq->curr;
1344 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1345 struct sched_entity *rightmost, *se = &curr->se;
1346
1347 /*
1348 * Are we the only task in the tree?
1349 */
1350 if (unlikely(rq->nr_running == 1))
1351 return;
1352
1353 clear_buddies(cfs_rq, se);
1354
1355 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1356 update_rq_clock(rq);
1357 /*
1358 * Update run-time statistics of the 'current'.
1359 */
1360 update_curr(cfs_rq);
1361
1362 return;
1363 }
1364 /*
1365 * Find the rightmost entry in the rbtree:
1366 */
1367 rightmost = __pick_last_entity(cfs_rq);
1368 /*
1369 * Already in the rightmost position?
1370 */
1371 if (unlikely(!rightmost || entity_before(rightmost, se)))
1372 return;
1373
1374 /*
1375 * Minimally necessary key value to be last in the tree:
1376 * Upon rescheduling, sched_class::put_prev_task() will place
1377 * 'current' within the tree based on its new key value.
1378 */
1379 se->vruntime = rightmost->vruntime + 1;
1380 }
1381
1382 #ifdef CONFIG_SMP
1383
1384 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1385 {
1386 struct sched_entity *se = &p->se;
1387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1388
1389 se->vruntime -= cfs_rq->min_vruntime;
1390 }
1391
1392 #ifdef CONFIG_FAIR_GROUP_SCHED
1393 /*
1394 * effective_load() calculates the load change as seen from the root_task_group
1395 *
1396 * Adding load to a group doesn't make a group heavier, but can cause movement
1397 * of group shares between cpus. Assuming the shares were perfectly aligned one
1398 * can calculate the shift in shares.
1399 */
1400 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1401 {
1402 struct sched_entity *se = tg->se[cpu];
1403
1404 if (!tg->parent)
1405 return wl;
1406
1407 for_each_sched_entity(se) {
1408 long lw, w;
1409
1410 tg = se->my_q->tg;
1411 w = se->my_q->load.weight;
1412
1413 /* use this cpu's instantaneous contribution */
1414 lw = atomic_read(&tg->load_weight);
1415 lw -= se->my_q->load_contribution;
1416 lw += w + wg;
1417
1418 wl += w;
1419
1420 if (lw > 0 && wl < lw)
1421 wl = (wl * tg->shares) / lw;
1422 else
1423 wl = tg->shares;
1424
1425 /* zero point is MIN_SHARES */
1426 if (wl < MIN_SHARES)
1427 wl = MIN_SHARES;
1428 wl -= se->load.weight;
1429 wg = 0;
1430 }
1431
1432 return wl;
1433 }
1434
1435 #else
1436
1437 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1438 unsigned long wl, unsigned long wg)
1439 {
1440 return wl;
1441 }
1442
1443 #endif
1444
1445 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1446 {
1447 s64 this_load, load;
1448 int idx, this_cpu, prev_cpu;
1449 unsigned long tl_per_task;
1450 struct task_group *tg;
1451 unsigned long weight;
1452 int balanced;
1453
1454 idx = sd->wake_idx;
1455 this_cpu = smp_processor_id();
1456 prev_cpu = task_cpu(p);
1457 load = source_load(prev_cpu, idx);
1458 this_load = target_load(this_cpu, idx);
1459
1460 /*
1461 * If sync wakeup then subtract the (maximum possible)
1462 * effect of the currently running task from the load
1463 * of the current CPU:
1464 */
1465 rcu_read_lock();
1466 if (sync) {
1467 tg = task_group(current);
1468 weight = current->se.load.weight;
1469
1470 this_load += effective_load(tg, this_cpu, -weight, -weight);
1471 load += effective_load(tg, prev_cpu, 0, -weight);
1472 }
1473
1474 tg = task_group(p);
1475 weight = p->se.load.weight;
1476
1477 /*
1478 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1479 * due to the sync cause above having dropped this_load to 0, we'll
1480 * always have an imbalance, but there's really nothing you can do
1481 * about that, so that's good too.
1482 *
1483 * Otherwise check if either cpus are near enough in load to allow this
1484 * task to be woken on this_cpu.
1485 */
1486 if (this_load > 0) {
1487 s64 this_eff_load, prev_eff_load;
1488
1489 this_eff_load = 100;
1490 this_eff_load *= power_of(prev_cpu);
1491 this_eff_load *= this_load +
1492 effective_load(tg, this_cpu, weight, weight);
1493
1494 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1495 prev_eff_load *= power_of(this_cpu);
1496 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1497
1498 balanced = this_eff_load <= prev_eff_load;
1499 } else
1500 balanced = true;
1501 rcu_read_unlock();
1502
1503 /*
1504 * If the currently running task will sleep within
1505 * a reasonable amount of time then attract this newly
1506 * woken task:
1507 */
1508 if (sync && balanced)
1509 return 1;
1510
1511 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1512 tl_per_task = cpu_avg_load_per_task(this_cpu);
1513
1514 if (balanced ||
1515 (this_load <= load &&
1516 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1517 /*
1518 * This domain has SD_WAKE_AFFINE and
1519 * p is cache cold in this domain, and
1520 * there is no bad imbalance.
1521 */
1522 schedstat_inc(sd, ttwu_move_affine);
1523 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1524
1525 return 1;
1526 }
1527 return 0;
1528 }
1529
1530 /*
1531 * find_idlest_group finds and returns the least busy CPU group within the
1532 * domain.
1533 */
1534 static struct sched_group *
1535 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1536 int this_cpu, int load_idx)
1537 {
1538 struct sched_group *idlest = NULL, *group = sd->groups;
1539 unsigned long min_load = ULONG_MAX, this_load = 0;
1540 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1541
1542 do {
1543 unsigned long load, avg_load;
1544 int local_group;
1545 int i;
1546
1547 /* Skip over this group if it has no CPUs allowed */
1548 if (!cpumask_intersects(sched_group_cpus(group),
1549 &p->cpus_allowed))
1550 continue;
1551
1552 local_group = cpumask_test_cpu(this_cpu,
1553 sched_group_cpus(group));
1554
1555 /* Tally up the load of all CPUs in the group */
1556 avg_load = 0;
1557
1558 for_each_cpu(i, sched_group_cpus(group)) {
1559 /* Bias balancing toward cpus of our domain */
1560 if (local_group)
1561 load = source_load(i, load_idx);
1562 else
1563 load = target_load(i, load_idx);
1564
1565 avg_load += load;
1566 }
1567
1568 /* Adjust by relative CPU power of the group */
1569 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1570
1571 if (local_group) {
1572 this_load = avg_load;
1573 } else if (avg_load < min_load) {
1574 min_load = avg_load;
1575 idlest = group;
1576 }
1577 } while (group = group->next, group != sd->groups);
1578
1579 if (!idlest || 100*this_load < imbalance*min_load)
1580 return NULL;
1581 return idlest;
1582 }
1583
1584 /*
1585 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1586 */
1587 static int
1588 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1589 {
1590 unsigned long load, min_load = ULONG_MAX;
1591 int idlest = -1;
1592 int i;
1593
1594 /* Traverse only the allowed CPUs */
1595 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1596 load = weighted_cpuload(i);
1597
1598 if (load < min_load || (load == min_load && i == this_cpu)) {
1599 min_load = load;
1600 idlest = i;
1601 }
1602 }
1603
1604 return idlest;
1605 }
1606
1607 /*
1608 * Try and locate an idle CPU in the sched_domain.
1609 */
1610 static int select_idle_sibling(struct task_struct *p, int target)
1611 {
1612 int cpu = smp_processor_id();
1613 int prev_cpu = task_cpu(p);
1614 struct sched_domain *sd;
1615 int i;
1616
1617 /*
1618 * If the task is going to be woken-up on this cpu and if it is
1619 * already idle, then it is the right target.
1620 */
1621 if (target == cpu && idle_cpu(cpu))
1622 return cpu;
1623
1624 /*
1625 * If the task is going to be woken-up on the cpu where it previously
1626 * ran and if it is currently idle, then it the right target.
1627 */
1628 if (target == prev_cpu && idle_cpu(prev_cpu))
1629 return prev_cpu;
1630
1631 /*
1632 * Otherwise, iterate the domains and find an elegible idle cpu.
1633 */
1634 for_each_domain(target, sd) {
1635 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1636 break;
1637
1638 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1639 if (idle_cpu(i)) {
1640 target = i;
1641 break;
1642 }
1643 }
1644
1645 /*
1646 * Lets stop looking for an idle sibling when we reached
1647 * the domain that spans the current cpu and prev_cpu.
1648 */
1649 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1650 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1651 break;
1652 }
1653
1654 return target;
1655 }
1656
1657 /*
1658 * sched_balance_self: balance the current task (running on cpu) in domains
1659 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1660 * SD_BALANCE_EXEC.
1661 *
1662 * Balance, ie. select the least loaded group.
1663 *
1664 * Returns the target CPU number, or the same CPU if no balancing is needed.
1665 *
1666 * preempt must be disabled.
1667 */
1668 static int
1669 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1670 {
1671 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1672 int cpu = smp_processor_id();
1673 int prev_cpu = task_cpu(p);
1674 int new_cpu = cpu;
1675 int want_affine = 0;
1676 int want_sd = 1;
1677 int sync = wake_flags & WF_SYNC;
1678
1679 if (sd_flag & SD_BALANCE_WAKE) {
1680 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1681 want_affine = 1;
1682 new_cpu = prev_cpu;
1683 }
1684
1685 for_each_domain(cpu, tmp) {
1686 if (!(tmp->flags & SD_LOAD_BALANCE))
1687 continue;
1688
1689 /*
1690 * If power savings logic is enabled for a domain, see if we
1691 * are not overloaded, if so, don't balance wider.
1692 */
1693 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1694 unsigned long power = 0;
1695 unsigned long nr_running = 0;
1696 unsigned long capacity;
1697 int i;
1698
1699 for_each_cpu(i, sched_domain_span(tmp)) {
1700 power += power_of(i);
1701 nr_running += cpu_rq(i)->cfs.nr_running;
1702 }
1703
1704 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1705
1706 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1707 nr_running /= 2;
1708
1709 if (nr_running < capacity)
1710 want_sd = 0;
1711 }
1712
1713 /*
1714 * If both cpu and prev_cpu are part of this domain,
1715 * cpu is a valid SD_WAKE_AFFINE target.
1716 */
1717 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1718 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1719 affine_sd = tmp;
1720 want_affine = 0;
1721 }
1722
1723 if (!want_sd && !want_affine)
1724 break;
1725
1726 if (!(tmp->flags & sd_flag))
1727 continue;
1728
1729 if (want_sd)
1730 sd = tmp;
1731 }
1732
1733 if (affine_sd) {
1734 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1735 return select_idle_sibling(p, cpu);
1736 else
1737 return select_idle_sibling(p, prev_cpu);
1738 }
1739
1740 while (sd) {
1741 int load_idx = sd->forkexec_idx;
1742 struct sched_group *group;
1743 int weight;
1744
1745 if (!(sd->flags & sd_flag)) {
1746 sd = sd->child;
1747 continue;
1748 }
1749
1750 if (sd_flag & SD_BALANCE_WAKE)
1751 load_idx = sd->wake_idx;
1752
1753 group = find_idlest_group(sd, p, cpu, load_idx);
1754 if (!group) {
1755 sd = sd->child;
1756 continue;
1757 }
1758
1759 new_cpu = find_idlest_cpu(group, p, cpu);
1760 if (new_cpu == -1 || new_cpu == cpu) {
1761 /* Now try balancing at a lower domain level of cpu */
1762 sd = sd->child;
1763 continue;
1764 }
1765
1766 /* Now try balancing at a lower domain level of new_cpu */
1767 cpu = new_cpu;
1768 weight = sd->span_weight;
1769 sd = NULL;
1770 for_each_domain(cpu, tmp) {
1771 if (weight <= tmp->span_weight)
1772 break;
1773 if (tmp->flags & sd_flag)
1774 sd = tmp;
1775 }
1776 /* while loop will break here if sd == NULL */
1777 }
1778
1779 return new_cpu;
1780 }
1781 #endif /* CONFIG_SMP */
1782
1783 static unsigned long
1784 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1785 {
1786 unsigned long gran = sysctl_sched_wakeup_granularity;
1787
1788 /*
1789 * Since its curr running now, convert the gran from real-time
1790 * to virtual-time in his units.
1791 *
1792 * By using 'se' instead of 'curr' we penalize light tasks, so
1793 * they get preempted easier. That is, if 'se' < 'curr' then
1794 * the resulting gran will be larger, therefore penalizing the
1795 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1796 * be smaller, again penalizing the lighter task.
1797 *
1798 * This is especially important for buddies when the leftmost
1799 * task is higher priority than the buddy.
1800 */
1801 if (unlikely(se->load.weight != NICE_0_LOAD))
1802 gran = calc_delta_fair(gran, se);
1803
1804 return gran;
1805 }
1806
1807 /*
1808 * Should 'se' preempt 'curr'.
1809 *
1810 * |s1
1811 * |s2
1812 * |s3
1813 * g
1814 * |<--->|c
1815 *
1816 * w(c, s1) = -1
1817 * w(c, s2) = 0
1818 * w(c, s3) = 1
1819 *
1820 */
1821 static int
1822 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1823 {
1824 s64 gran, vdiff = curr->vruntime - se->vruntime;
1825
1826 if (vdiff <= 0)
1827 return -1;
1828
1829 gran = wakeup_gran(curr, se);
1830 if (vdiff > gran)
1831 return 1;
1832
1833 return 0;
1834 }
1835
1836 static void set_last_buddy(struct sched_entity *se)
1837 {
1838 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1839 for_each_sched_entity(se)
1840 cfs_rq_of(se)->last = se;
1841 }
1842 }
1843
1844 static void set_next_buddy(struct sched_entity *se)
1845 {
1846 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1847 for_each_sched_entity(se)
1848 cfs_rq_of(se)->next = se;
1849 }
1850 }
1851
1852 /*
1853 * Preempt the current task with a newly woken task if needed:
1854 */
1855 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1856 {
1857 struct task_struct *curr = rq->curr;
1858 struct sched_entity *se = &curr->se, *pse = &p->se;
1859 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1860 int scale = cfs_rq->nr_running >= sched_nr_latency;
1861
1862 if (unlikely(se == pse))
1863 return;
1864
1865 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1866 set_next_buddy(pse);
1867
1868 /*
1869 * We can come here with TIF_NEED_RESCHED already set from new task
1870 * wake up path.
1871 */
1872 if (test_tsk_need_resched(curr))
1873 return;
1874
1875 /*
1876 * Batch and idle tasks do not preempt (their preemption is driven by
1877 * the tick):
1878 */
1879 if (unlikely(p->policy != SCHED_NORMAL))
1880 return;
1881
1882 /* Idle tasks are by definition preempted by everybody. */
1883 if (unlikely(curr->policy == SCHED_IDLE))
1884 goto preempt;
1885
1886 if (!sched_feat(WAKEUP_PREEMPT))
1887 return;
1888
1889 update_curr(cfs_rq);
1890 find_matching_se(&se, &pse);
1891 BUG_ON(!pse);
1892 if (wakeup_preempt_entity(se, pse) == 1)
1893 goto preempt;
1894
1895 return;
1896
1897 preempt:
1898 resched_task(curr);
1899 /*
1900 * Only set the backward buddy when the current task is still
1901 * on the rq. This can happen when a wakeup gets interleaved
1902 * with schedule on the ->pre_schedule() or idle_balance()
1903 * point, either of which can * drop the rq lock.
1904 *
1905 * Also, during early boot the idle thread is in the fair class,
1906 * for obvious reasons its a bad idea to schedule back to it.
1907 */
1908 if (unlikely(!se->on_rq || curr == rq->idle))
1909 return;
1910
1911 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1912 set_last_buddy(se);
1913 }
1914
1915 static struct task_struct *pick_next_task_fair(struct rq *rq)
1916 {
1917 struct task_struct *p;
1918 struct cfs_rq *cfs_rq = &rq->cfs;
1919 struct sched_entity *se;
1920
1921 if (!cfs_rq->nr_running)
1922 return NULL;
1923
1924 do {
1925 se = pick_next_entity(cfs_rq);
1926 set_next_entity(cfs_rq, se);
1927 cfs_rq = group_cfs_rq(se);
1928 } while (cfs_rq);
1929
1930 p = task_of(se);
1931 hrtick_start_fair(rq, p);
1932
1933 return p;
1934 }
1935
1936 /*
1937 * Account for a descheduled task:
1938 */
1939 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1940 {
1941 struct sched_entity *se = &prev->se;
1942 struct cfs_rq *cfs_rq;
1943
1944 for_each_sched_entity(se) {
1945 cfs_rq = cfs_rq_of(se);
1946 put_prev_entity(cfs_rq, se);
1947 }
1948 }
1949
1950 #ifdef CONFIG_SMP
1951 /**************************************************
1952 * Fair scheduling class load-balancing methods:
1953 */
1954
1955 /*
1956 * pull_task - move a task from a remote runqueue to the local runqueue.
1957 * Both runqueues must be locked.
1958 */
1959 static void pull_task(struct rq *src_rq, struct task_struct *p,
1960 struct rq *this_rq, int this_cpu)
1961 {
1962 deactivate_task(src_rq, p, 0);
1963 set_task_cpu(p, this_cpu);
1964 activate_task(this_rq, p, 0);
1965 check_preempt_curr(this_rq, p, 0);
1966 }
1967
1968 /*
1969 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1970 */
1971 static
1972 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1973 struct sched_domain *sd, enum cpu_idle_type idle,
1974 int *all_pinned)
1975 {
1976 int tsk_cache_hot = 0;
1977 /*
1978 * We do not migrate tasks that are:
1979 * 1) running (obviously), or
1980 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1981 * 3) are cache-hot on their current CPU.
1982 */
1983 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1984 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1985 return 0;
1986 }
1987 *all_pinned = 0;
1988
1989 if (task_running(rq, p)) {
1990 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1991 return 0;
1992 }
1993
1994 /*
1995 * Aggressive migration if:
1996 * 1) task is cache cold, or
1997 * 2) too many balance attempts have failed.
1998 */
1999
2000 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2001 if (!tsk_cache_hot ||
2002 sd->nr_balance_failed > sd->cache_nice_tries) {
2003 #ifdef CONFIG_SCHEDSTATS
2004 if (tsk_cache_hot) {
2005 schedstat_inc(sd, lb_hot_gained[idle]);
2006 schedstat_inc(p, se.statistics.nr_forced_migrations);
2007 }
2008 #endif
2009 return 1;
2010 }
2011
2012 if (tsk_cache_hot) {
2013 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2014 return 0;
2015 }
2016 return 1;
2017 }
2018
2019 /*
2020 * move_one_task tries to move exactly one task from busiest to this_rq, as
2021 * part of active balancing operations within "domain".
2022 * Returns 1 if successful and 0 otherwise.
2023 *
2024 * Called with both runqueues locked.
2025 */
2026 static int
2027 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2028 struct sched_domain *sd, enum cpu_idle_type idle)
2029 {
2030 struct task_struct *p, *n;
2031 struct cfs_rq *cfs_rq;
2032 int pinned = 0;
2033
2034 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2035 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2036
2037 if (!can_migrate_task(p, busiest, this_cpu,
2038 sd, idle, &pinned))
2039 continue;
2040
2041 pull_task(busiest, p, this_rq, this_cpu);
2042 /*
2043 * Right now, this is only the second place pull_task()
2044 * is called, so we can safely collect pull_task()
2045 * stats here rather than inside pull_task().
2046 */
2047 schedstat_inc(sd, lb_gained[idle]);
2048 return 1;
2049 }
2050 }
2051
2052 return 0;
2053 }
2054
2055 static unsigned long
2056 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2057 unsigned long max_load_move, struct sched_domain *sd,
2058 enum cpu_idle_type idle, int *all_pinned,
2059 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2060 {
2061 int loops = 0, pulled = 0, pinned = 0;
2062 long rem_load_move = max_load_move;
2063 struct task_struct *p, *n;
2064
2065 if (max_load_move == 0)
2066 goto out;
2067
2068 pinned = 1;
2069
2070 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2071 if (loops++ > sysctl_sched_nr_migrate)
2072 break;
2073
2074 if ((p->se.load.weight >> 1) > rem_load_move ||
2075 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2076 continue;
2077
2078 pull_task(busiest, p, this_rq, this_cpu);
2079 pulled++;
2080 rem_load_move -= p->se.load.weight;
2081
2082 #ifdef CONFIG_PREEMPT
2083 /*
2084 * NEWIDLE balancing is a source of latency, so preemptible
2085 * kernels will stop after the first task is pulled to minimize
2086 * the critical section.
2087 */
2088 if (idle == CPU_NEWLY_IDLE)
2089 break;
2090 #endif
2091
2092 /*
2093 * We only want to steal up to the prescribed amount of
2094 * weighted load.
2095 */
2096 if (rem_load_move <= 0)
2097 break;
2098
2099 if (p->prio < *this_best_prio)
2100 *this_best_prio = p->prio;
2101 }
2102 out:
2103 /*
2104 * Right now, this is one of only two places pull_task() is called,
2105 * so we can safely collect pull_task() stats here rather than
2106 * inside pull_task().
2107 */
2108 schedstat_add(sd, lb_gained[idle], pulled);
2109
2110 if (all_pinned)
2111 *all_pinned = pinned;
2112
2113 return max_load_move - rem_load_move;
2114 }
2115
2116 #ifdef CONFIG_FAIR_GROUP_SCHED
2117 /*
2118 * update tg->load_weight by folding this cpu's load_avg
2119 */
2120 static int update_shares_cpu(struct task_group *tg, int cpu)
2121 {
2122 struct cfs_rq *cfs_rq;
2123 unsigned long flags;
2124 struct rq *rq;
2125
2126 if (!tg->se[cpu])
2127 return 0;
2128
2129 rq = cpu_rq(cpu);
2130 cfs_rq = tg->cfs_rq[cpu];
2131
2132 raw_spin_lock_irqsave(&rq->lock, flags);
2133
2134 update_rq_clock(rq);
2135 update_cfs_load(cfs_rq, 1);
2136
2137 /*
2138 * We need to update shares after updating tg->load_weight in
2139 * order to adjust the weight of groups with long running tasks.
2140 */
2141 update_cfs_shares(cfs_rq);
2142
2143 raw_spin_unlock_irqrestore(&rq->lock, flags);
2144
2145 return 0;
2146 }
2147
2148 static void update_shares(int cpu)
2149 {
2150 struct cfs_rq *cfs_rq;
2151 struct rq *rq = cpu_rq(cpu);
2152
2153 rcu_read_lock();
2154 for_each_leaf_cfs_rq(rq, cfs_rq)
2155 update_shares_cpu(cfs_rq->tg, cpu);
2156 rcu_read_unlock();
2157 }
2158
2159 static unsigned long
2160 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2161 unsigned long max_load_move,
2162 struct sched_domain *sd, enum cpu_idle_type idle,
2163 int *all_pinned, int *this_best_prio)
2164 {
2165 long rem_load_move = max_load_move;
2166 int busiest_cpu = cpu_of(busiest);
2167 struct task_group *tg;
2168
2169 rcu_read_lock();
2170 update_h_load(busiest_cpu);
2171
2172 list_for_each_entry_rcu(tg, &task_groups, list) {
2173 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2174 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2175 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2176 u64 rem_load, moved_load;
2177
2178 /*
2179 * empty group
2180 */
2181 if (!busiest_cfs_rq->task_weight)
2182 continue;
2183
2184 rem_load = (u64)rem_load_move * busiest_weight;
2185 rem_load = div_u64(rem_load, busiest_h_load + 1);
2186
2187 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2188 rem_load, sd, idle, all_pinned, this_best_prio,
2189 busiest_cfs_rq);
2190
2191 if (!moved_load)
2192 continue;
2193
2194 moved_load *= busiest_h_load;
2195 moved_load = div_u64(moved_load, busiest_weight + 1);
2196
2197 rem_load_move -= moved_load;
2198 if (rem_load_move < 0)
2199 break;
2200 }
2201 rcu_read_unlock();
2202
2203 return max_load_move - rem_load_move;
2204 }
2205 #else
2206 static inline void update_shares(int cpu)
2207 {
2208 }
2209
2210 static unsigned long
2211 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2212 unsigned long max_load_move,
2213 struct sched_domain *sd, enum cpu_idle_type idle,
2214 int *all_pinned, int *this_best_prio)
2215 {
2216 return balance_tasks(this_rq, this_cpu, busiest,
2217 max_load_move, sd, idle, all_pinned,
2218 this_best_prio, &busiest->cfs);
2219 }
2220 #endif
2221
2222 /*
2223 * move_tasks tries to move up to max_load_move weighted load from busiest to
2224 * this_rq, as part of a balancing operation within domain "sd".
2225 * Returns 1 if successful and 0 otherwise.
2226 *
2227 * Called with both runqueues locked.
2228 */
2229 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2230 unsigned long max_load_move,
2231 struct sched_domain *sd, enum cpu_idle_type idle,
2232 int *all_pinned)
2233 {
2234 unsigned long total_load_moved = 0, load_moved;
2235 int this_best_prio = this_rq->curr->prio;
2236
2237 do {
2238 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2239 max_load_move - total_load_moved,
2240 sd, idle, all_pinned, &this_best_prio);
2241
2242 total_load_moved += load_moved;
2243
2244 #ifdef CONFIG_PREEMPT
2245 /*
2246 * NEWIDLE balancing is a source of latency, so preemptible
2247 * kernels will stop after the first task is pulled to minimize
2248 * the critical section.
2249 */
2250 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2251 break;
2252
2253 if (raw_spin_is_contended(&this_rq->lock) ||
2254 raw_spin_is_contended(&busiest->lock))
2255 break;
2256 #endif
2257 } while (load_moved && max_load_move > total_load_moved);
2258
2259 return total_load_moved > 0;
2260 }
2261
2262 /********** Helpers for find_busiest_group ************************/
2263 /*
2264 * sd_lb_stats - Structure to store the statistics of a sched_domain
2265 * during load balancing.
2266 */
2267 struct sd_lb_stats {
2268 struct sched_group *busiest; /* Busiest group in this sd */
2269 struct sched_group *this; /* Local group in this sd */
2270 unsigned long total_load; /* Total load of all groups in sd */
2271 unsigned long total_pwr; /* Total power of all groups in sd */
2272 unsigned long avg_load; /* Average load across all groups in sd */
2273
2274 /** Statistics of this group */
2275 unsigned long this_load;
2276 unsigned long this_load_per_task;
2277 unsigned long this_nr_running;
2278 unsigned long this_has_capacity;
2279 unsigned int this_idle_cpus;
2280
2281 /* Statistics of the busiest group */
2282 unsigned int busiest_idle_cpus;
2283 unsigned long max_load;
2284 unsigned long busiest_load_per_task;
2285 unsigned long busiest_nr_running;
2286 unsigned long busiest_group_capacity;
2287 unsigned long busiest_has_capacity;
2288 unsigned int busiest_group_weight;
2289
2290 int group_imb; /* Is there imbalance in this sd */
2291 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2292 int power_savings_balance; /* Is powersave balance needed for this sd */
2293 struct sched_group *group_min; /* Least loaded group in sd */
2294 struct sched_group *group_leader; /* Group which relieves group_min */
2295 unsigned long min_load_per_task; /* load_per_task in group_min */
2296 unsigned long leader_nr_running; /* Nr running of group_leader */
2297 unsigned long min_nr_running; /* Nr running of group_min */
2298 #endif
2299 };
2300
2301 /*
2302 * sg_lb_stats - stats of a sched_group required for load_balancing
2303 */
2304 struct sg_lb_stats {
2305 unsigned long avg_load; /*Avg load across the CPUs of the group */
2306 unsigned long group_load; /* Total load over the CPUs of the group */
2307 unsigned long sum_nr_running; /* Nr tasks running in the group */
2308 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2309 unsigned long group_capacity;
2310 unsigned long idle_cpus;
2311 unsigned long group_weight;
2312 int group_imb; /* Is there an imbalance in the group ? */
2313 int group_has_capacity; /* Is there extra capacity in the group? */
2314 };
2315
2316 /**
2317 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2318 * @group: The group whose first cpu is to be returned.
2319 */
2320 static inline unsigned int group_first_cpu(struct sched_group *group)
2321 {
2322 return cpumask_first(sched_group_cpus(group));
2323 }
2324
2325 /**
2326 * get_sd_load_idx - Obtain the load index for a given sched domain.
2327 * @sd: The sched_domain whose load_idx is to be obtained.
2328 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2329 */
2330 static inline int get_sd_load_idx(struct sched_domain *sd,
2331 enum cpu_idle_type idle)
2332 {
2333 int load_idx;
2334
2335 switch (idle) {
2336 case CPU_NOT_IDLE:
2337 load_idx = sd->busy_idx;
2338 break;
2339
2340 case CPU_NEWLY_IDLE:
2341 load_idx = sd->newidle_idx;
2342 break;
2343 default:
2344 load_idx = sd->idle_idx;
2345 break;
2346 }
2347
2348 return load_idx;
2349 }
2350
2351
2352 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2353 /**
2354 * init_sd_power_savings_stats - Initialize power savings statistics for
2355 * the given sched_domain, during load balancing.
2356 *
2357 * @sd: Sched domain whose power-savings statistics are to be initialized.
2358 * @sds: Variable containing the statistics for sd.
2359 * @idle: Idle status of the CPU at which we're performing load-balancing.
2360 */
2361 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2362 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2363 {
2364 /*
2365 * Busy processors will not participate in power savings
2366 * balance.
2367 */
2368 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2369 sds->power_savings_balance = 0;
2370 else {
2371 sds->power_savings_balance = 1;
2372 sds->min_nr_running = ULONG_MAX;
2373 sds->leader_nr_running = 0;
2374 }
2375 }
2376
2377 /**
2378 * update_sd_power_savings_stats - Update the power saving stats for a
2379 * sched_domain while performing load balancing.
2380 *
2381 * @group: sched_group belonging to the sched_domain under consideration.
2382 * @sds: Variable containing the statistics of the sched_domain
2383 * @local_group: Does group contain the CPU for which we're performing
2384 * load balancing ?
2385 * @sgs: Variable containing the statistics of the group.
2386 */
2387 static inline void update_sd_power_savings_stats(struct sched_group *group,
2388 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2389 {
2390
2391 if (!sds->power_savings_balance)
2392 return;
2393
2394 /*
2395 * If the local group is idle or completely loaded
2396 * no need to do power savings balance at this domain
2397 */
2398 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2399 !sds->this_nr_running))
2400 sds->power_savings_balance = 0;
2401
2402 /*
2403 * If a group is already running at full capacity or idle,
2404 * don't include that group in power savings calculations
2405 */
2406 if (!sds->power_savings_balance ||
2407 sgs->sum_nr_running >= sgs->group_capacity ||
2408 !sgs->sum_nr_running)
2409 return;
2410
2411 /*
2412 * Calculate the group which has the least non-idle load.
2413 * This is the group from where we need to pick up the load
2414 * for saving power
2415 */
2416 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2417 (sgs->sum_nr_running == sds->min_nr_running &&
2418 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2419 sds->group_min = group;
2420 sds->min_nr_running = sgs->sum_nr_running;
2421 sds->min_load_per_task = sgs->sum_weighted_load /
2422 sgs->sum_nr_running;
2423 }
2424
2425 /*
2426 * Calculate the group which is almost near its
2427 * capacity but still has some space to pick up some load
2428 * from other group and save more power
2429 */
2430 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2431 return;
2432
2433 if (sgs->sum_nr_running > sds->leader_nr_running ||
2434 (sgs->sum_nr_running == sds->leader_nr_running &&
2435 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2436 sds->group_leader = group;
2437 sds->leader_nr_running = sgs->sum_nr_running;
2438 }
2439 }
2440
2441 /**
2442 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2443 * @sds: Variable containing the statistics of the sched_domain
2444 * under consideration.
2445 * @this_cpu: Cpu at which we're currently performing load-balancing.
2446 * @imbalance: Variable to store the imbalance.
2447 *
2448 * Description:
2449 * Check if we have potential to perform some power-savings balance.
2450 * If yes, set the busiest group to be the least loaded group in the
2451 * sched_domain, so that it's CPUs can be put to idle.
2452 *
2453 * Returns 1 if there is potential to perform power-savings balance.
2454 * Else returns 0.
2455 */
2456 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2457 int this_cpu, unsigned long *imbalance)
2458 {
2459 if (!sds->power_savings_balance)
2460 return 0;
2461
2462 if (sds->this != sds->group_leader ||
2463 sds->group_leader == sds->group_min)
2464 return 0;
2465
2466 *imbalance = sds->min_load_per_task;
2467 sds->busiest = sds->group_min;
2468
2469 return 1;
2470
2471 }
2472 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2473 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2474 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2475 {
2476 return;
2477 }
2478
2479 static inline void update_sd_power_savings_stats(struct sched_group *group,
2480 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2481 {
2482 return;
2483 }
2484
2485 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2486 int this_cpu, unsigned long *imbalance)
2487 {
2488 return 0;
2489 }
2490 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2491
2492
2493 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2494 {
2495 return SCHED_LOAD_SCALE;
2496 }
2497
2498 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2499 {
2500 return default_scale_freq_power(sd, cpu);
2501 }
2502
2503 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2504 {
2505 unsigned long weight = sd->span_weight;
2506 unsigned long smt_gain = sd->smt_gain;
2507
2508 smt_gain /= weight;
2509
2510 return smt_gain;
2511 }
2512
2513 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2514 {
2515 return default_scale_smt_power(sd, cpu);
2516 }
2517
2518 unsigned long scale_rt_power(int cpu)
2519 {
2520 struct rq *rq = cpu_rq(cpu);
2521 u64 total, available;
2522
2523 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2524
2525 if (unlikely(total < rq->rt_avg)) {
2526 /* Ensures that power won't end up being negative */
2527 available = 0;
2528 } else {
2529 available = total - rq->rt_avg;
2530 }
2531
2532 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2533 total = SCHED_LOAD_SCALE;
2534
2535 total >>= SCHED_LOAD_SHIFT;
2536
2537 return div_u64(available, total);
2538 }
2539
2540 static void update_cpu_power(struct sched_domain *sd, int cpu)
2541 {
2542 unsigned long weight = sd->span_weight;
2543 unsigned long power = SCHED_LOAD_SCALE;
2544 struct sched_group *sdg = sd->groups;
2545
2546 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2547 if (sched_feat(ARCH_POWER))
2548 power *= arch_scale_smt_power(sd, cpu);
2549 else
2550 power *= default_scale_smt_power(sd, cpu);
2551
2552 power >>= SCHED_LOAD_SHIFT;
2553 }
2554
2555 sdg->cpu_power_orig = power;
2556
2557 if (sched_feat(ARCH_POWER))
2558 power *= arch_scale_freq_power(sd, cpu);
2559 else
2560 power *= default_scale_freq_power(sd, cpu);
2561
2562 power >>= SCHED_LOAD_SHIFT;
2563
2564 power *= scale_rt_power(cpu);
2565 power >>= SCHED_LOAD_SHIFT;
2566
2567 if (!power)
2568 power = 1;
2569
2570 cpu_rq(cpu)->cpu_power = power;
2571 sdg->cpu_power = power;
2572 }
2573
2574 static void update_group_power(struct sched_domain *sd, int cpu)
2575 {
2576 struct sched_domain *child = sd->child;
2577 struct sched_group *group, *sdg = sd->groups;
2578 unsigned long power;
2579
2580 if (!child) {
2581 update_cpu_power(sd, cpu);
2582 return;
2583 }
2584
2585 power = 0;
2586
2587 group = child->groups;
2588 do {
2589 power += group->cpu_power;
2590 group = group->next;
2591 } while (group != child->groups);
2592
2593 sdg->cpu_power = power;
2594 }
2595
2596 /*
2597 * Try and fix up capacity for tiny siblings, this is needed when
2598 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2599 * which on its own isn't powerful enough.
2600 *
2601 * See update_sd_pick_busiest() and check_asym_packing().
2602 */
2603 static inline int
2604 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2605 {
2606 /*
2607 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2608 */
2609 if (sd->level != SD_LV_SIBLING)
2610 return 0;
2611
2612 /*
2613 * If ~90% of the cpu_power is still there, we're good.
2614 */
2615 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2616 return 1;
2617
2618 return 0;
2619 }
2620
2621 /**
2622 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2623 * @sd: The sched_domain whose statistics are to be updated.
2624 * @group: sched_group whose statistics are to be updated.
2625 * @this_cpu: Cpu for which load balance is currently performed.
2626 * @idle: Idle status of this_cpu
2627 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2628 * @sd_idle: Idle status of the sched_domain containing group.
2629 * @local_group: Does group contain this_cpu.
2630 * @cpus: Set of cpus considered for load balancing.
2631 * @balance: Should we balance.
2632 * @sgs: variable to hold the statistics for this group.
2633 */
2634 static inline void update_sg_lb_stats(struct sched_domain *sd,
2635 struct sched_group *group, int this_cpu,
2636 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2637 int local_group, const struct cpumask *cpus,
2638 int *balance, struct sg_lb_stats *sgs)
2639 {
2640 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2641 int i;
2642 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2643 unsigned long avg_load_per_task = 0;
2644
2645 if (local_group)
2646 balance_cpu = group_first_cpu(group);
2647
2648 /* Tally up the load of all CPUs in the group */
2649 max_cpu_load = 0;
2650 min_cpu_load = ~0UL;
2651 max_nr_running = 0;
2652
2653 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2654 struct rq *rq = cpu_rq(i);
2655
2656 if (*sd_idle && rq->nr_running)
2657 *sd_idle = 0;
2658
2659 /* Bias balancing toward cpus of our domain */
2660 if (local_group) {
2661 if (idle_cpu(i) && !first_idle_cpu) {
2662 first_idle_cpu = 1;
2663 balance_cpu = i;
2664 }
2665
2666 load = target_load(i, load_idx);
2667 } else {
2668 load = source_load(i, load_idx);
2669 if (load > max_cpu_load) {
2670 max_cpu_load = load;
2671 max_nr_running = rq->nr_running;
2672 }
2673 if (min_cpu_load > load)
2674 min_cpu_load = load;
2675 }
2676
2677 sgs->group_load += load;
2678 sgs->sum_nr_running += rq->nr_running;
2679 sgs->sum_weighted_load += weighted_cpuload(i);
2680 if (idle_cpu(i))
2681 sgs->idle_cpus++;
2682 }
2683
2684 /*
2685 * First idle cpu or the first cpu(busiest) in this sched group
2686 * is eligible for doing load balancing at this and above
2687 * domains. In the newly idle case, we will allow all the cpu's
2688 * to do the newly idle load balance.
2689 */
2690 if (idle != CPU_NEWLY_IDLE && local_group) {
2691 if (balance_cpu != this_cpu) {
2692 *balance = 0;
2693 return;
2694 }
2695 update_group_power(sd, this_cpu);
2696 }
2697
2698 /* Adjust by relative CPU power of the group */
2699 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2700
2701 /*
2702 * Consider the group unbalanced when the imbalance is larger
2703 * than the average weight of two tasks.
2704 *
2705 * APZ: with cgroup the avg task weight can vary wildly and
2706 * might not be a suitable number - should we keep a
2707 * normalized nr_running number somewhere that negates
2708 * the hierarchy?
2709 */
2710 if (sgs->sum_nr_running)
2711 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2712
2713 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2714 sgs->group_imb = 1;
2715
2716 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2717 if (!sgs->group_capacity)
2718 sgs->group_capacity = fix_small_capacity(sd, group);
2719 sgs->group_weight = group->group_weight;
2720
2721 if (sgs->group_capacity > sgs->sum_nr_running)
2722 sgs->group_has_capacity = 1;
2723 }
2724
2725 /**
2726 * update_sd_pick_busiest - return 1 on busiest group
2727 * @sd: sched_domain whose statistics are to be checked
2728 * @sds: sched_domain statistics
2729 * @sg: sched_group candidate to be checked for being the busiest
2730 * @sgs: sched_group statistics
2731 * @this_cpu: the current cpu
2732 *
2733 * Determine if @sg is a busier group than the previously selected
2734 * busiest group.
2735 */
2736 static bool update_sd_pick_busiest(struct sched_domain *sd,
2737 struct sd_lb_stats *sds,
2738 struct sched_group *sg,
2739 struct sg_lb_stats *sgs,
2740 int this_cpu)
2741 {
2742 if (sgs->avg_load <= sds->max_load)
2743 return false;
2744
2745 if (sgs->sum_nr_running > sgs->group_capacity)
2746 return true;
2747
2748 if (sgs->group_imb)
2749 return true;
2750
2751 /*
2752 * ASYM_PACKING needs to move all the work to the lowest
2753 * numbered CPUs in the group, therefore mark all groups
2754 * higher than ourself as busy.
2755 */
2756 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2757 this_cpu < group_first_cpu(sg)) {
2758 if (!sds->busiest)
2759 return true;
2760
2761 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2762 return true;
2763 }
2764
2765 return false;
2766 }
2767
2768 /**
2769 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2770 * @sd: sched_domain whose statistics are to be updated.
2771 * @this_cpu: Cpu for which load balance is currently performed.
2772 * @idle: Idle status of this_cpu
2773 * @sd_idle: Idle status of the sched_domain containing sg.
2774 * @cpus: Set of cpus considered for load balancing.
2775 * @balance: Should we balance.
2776 * @sds: variable to hold the statistics for this sched_domain.
2777 */
2778 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2779 enum cpu_idle_type idle, int *sd_idle,
2780 const struct cpumask *cpus, int *balance,
2781 struct sd_lb_stats *sds)
2782 {
2783 struct sched_domain *child = sd->child;
2784 struct sched_group *sg = sd->groups;
2785 struct sg_lb_stats sgs;
2786 int load_idx, prefer_sibling = 0;
2787
2788 if (child && child->flags & SD_PREFER_SIBLING)
2789 prefer_sibling = 1;
2790
2791 init_sd_power_savings_stats(sd, sds, idle);
2792 load_idx = get_sd_load_idx(sd, idle);
2793
2794 do {
2795 int local_group;
2796
2797 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2798 memset(&sgs, 0, sizeof(sgs));
2799 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2800 local_group, cpus, balance, &sgs);
2801
2802 if (local_group && !(*balance))
2803 return;
2804
2805 sds->total_load += sgs.group_load;
2806 sds->total_pwr += sg->cpu_power;
2807
2808 /*
2809 * In case the child domain prefers tasks go to siblings
2810 * first, lower the sg capacity to one so that we'll try
2811 * and move all the excess tasks away. We lower the capacity
2812 * of a group only if the local group has the capacity to fit
2813 * these excess tasks, i.e. nr_running < group_capacity. The
2814 * extra check prevents the case where you always pull from the
2815 * heaviest group when it is already under-utilized (possible
2816 * with a large weight task outweighs the tasks on the system).
2817 */
2818 if (prefer_sibling && !local_group && sds->this_has_capacity)
2819 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2820
2821 if (local_group) {
2822 sds->this_load = sgs.avg_load;
2823 sds->this = sg;
2824 sds->this_nr_running = sgs.sum_nr_running;
2825 sds->this_load_per_task = sgs.sum_weighted_load;
2826 sds->this_has_capacity = sgs.group_has_capacity;
2827 sds->this_idle_cpus = sgs.idle_cpus;
2828 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2829 sds->max_load = sgs.avg_load;
2830 sds->busiest = sg;
2831 sds->busiest_nr_running = sgs.sum_nr_running;
2832 sds->busiest_idle_cpus = sgs.idle_cpus;
2833 sds->busiest_group_capacity = sgs.group_capacity;
2834 sds->busiest_load_per_task = sgs.sum_weighted_load;
2835 sds->busiest_has_capacity = sgs.group_has_capacity;
2836 sds->busiest_group_weight = sgs.group_weight;
2837 sds->group_imb = sgs.group_imb;
2838 }
2839
2840 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2841 sg = sg->next;
2842 } while (sg != sd->groups);
2843 }
2844
2845 int __weak arch_sd_sibling_asym_packing(void)
2846 {
2847 return 0*SD_ASYM_PACKING;
2848 }
2849
2850 /**
2851 * check_asym_packing - Check to see if the group is packed into the
2852 * sched doman.
2853 *
2854 * This is primarily intended to used at the sibling level. Some
2855 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2856 * case of POWER7, it can move to lower SMT modes only when higher
2857 * threads are idle. When in lower SMT modes, the threads will
2858 * perform better since they share less core resources. Hence when we
2859 * have idle threads, we want them to be the higher ones.
2860 *
2861 * This packing function is run on idle threads. It checks to see if
2862 * the busiest CPU in this domain (core in the P7 case) has a higher
2863 * CPU number than the packing function is being run on. Here we are
2864 * assuming lower CPU number will be equivalent to lower a SMT thread
2865 * number.
2866 *
2867 * Returns 1 when packing is required and a task should be moved to
2868 * this CPU. The amount of the imbalance is returned in *imbalance.
2869 *
2870 * @sd: The sched_domain whose packing is to be checked.
2871 * @sds: Statistics of the sched_domain which is to be packed
2872 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2873 * @imbalance: returns amount of imbalanced due to packing.
2874 */
2875 static int check_asym_packing(struct sched_domain *sd,
2876 struct sd_lb_stats *sds,
2877 int this_cpu, unsigned long *imbalance)
2878 {
2879 int busiest_cpu;
2880
2881 if (!(sd->flags & SD_ASYM_PACKING))
2882 return 0;
2883
2884 if (!sds->busiest)
2885 return 0;
2886
2887 busiest_cpu = group_first_cpu(sds->busiest);
2888 if (this_cpu > busiest_cpu)
2889 return 0;
2890
2891 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2892 SCHED_LOAD_SCALE);
2893 return 1;
2894 }
2895
2896 /**
2897 * fix_small_imbalance - Calculate the minor imbalance that exists
2898 * amongst the groups of a sched_domain, during
2899 * load balancing.
2900 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2901 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2902 * @imbalance: Variable to store the imbalance.
2903 */
2904 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2905 int this_cpu, unsigned long *imbalance)
2906 {
2907 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2908 unsigned int imbn = 2;
2909 unsigned long scaled_busy_load_per_task;
2910
2911 if (sds->this_nr_running) {
2912 sds->this_load_per_task /= sds->this_nr_running;
2913 if (sds->busiest_load_per_task >
2914 sds->this_load_per_task)
2915 imbn = 1;
2916 } else
2917 sds->this_load_per_task =
2918 cpu_avg_load_per_task(this_cpu);
2919
2920 scaled_busy_load_per_task = sds->busiest_load_per_task
2921 * SCHED_LOAD_SCALE;
2922 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2923
2924 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2925 (scaled_busy_load_per_task * imbn)) {
2926 *imbalance = sds->busiest_load_per_task;
2927 return;
2928 }
2929
2930 /*
2931 * OK, we don't have enough imbalance to justify moving tasks,
2932 * however we may be able to increase total CPU power used by
2933 * moving them.
2934 */
2935
2936 pwr_now += sds->busiest->cpu_power *
2937 min(sds->busiest_load_per_task, sds->max_load);
2938 pwr_now += sds->this->cpu_power *
2939 min(sds->this_load_per_task, sds->this_load);
2940 pwr_now /= SCHED_LOAD_SCALE;
2941
2942 /* Amount of load we'd subtract */
2943 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2944 sds->busiest->cpu_power;
2945 if (sds->max_load > tmp)
2946 pwr_move += sds->busiest->cpu_power *
2947 min(sds->busiest_load_per_task, sds->max_load - tmp);
2948
2949 /* Amount of load we'd add */
2950 if (sds->max_load * sds->busiest->cpu_power <
2951 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2952 tmp = (sds->max_load * sds->busiest->cpu_power) /
2953 sds->this->cpu_power;
2954 else
2955 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2956 sds->this->cpu_power;
2957 pwr_move += sds->this->cpu_power *
2958 min(sds->this_load_per_task, sds->this_load + tmp);
2959 pwr_move /= SCHED_LOAD_SCALE;
2960
2961 /* Move if we gain throughput */
2962 if (pwr_move > pwr_now)
2963 *imbalance = sds->busiest_load_per_task;
2964 }
2965
2966 /**
2967 * calculate_imbalance - Calculate the amount of imbalance present within the
2968 * groups of a given sched_domain during load balance.
2969 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2970 * @this_cpu: Cpu for which currently load balance is being performed.
2971 * @imbalance: The variable to store the imbalance.
2972 */
2973 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2974 unsigned long *imbalance)
2975 {
2976 unsigned long max_pull, load_above_capacity = ~0UL;
2977
2978 sds->busiest_load_per_task /= sds->busiest_nr_running;
2979 if (sds->group_imb) {
2980 sds->busiest_load_per_task =
2981 min(sds->busiest_load_per_task, sds->avg_load);
2982 }
2983
2984 /*
2985 * In the presence of smp nice balancing, certain scenarios can have
2986 * max load less than avg load(as we skip the groups at or below
2987 * its cpu_power, while calculating max_load..)
2988 */
2989 if (sds->max_load < sds->avg_load) {
2990 *imbalance = 0;
2991 return fix_small_imbalance(sds, this_cpu, imbalance);
2992 }
2993
2994 if (!sds->group_imb) {
2995 /*
2996 * Don't want to pull so many tasks that a group would go idle.
2997 */
2998 load_above_capacity = (sds->busiest_nr_running -
2999 sds->busiest_group_capacity);
3000
3001 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3002
3003 load_above_capacity /= sds->busiest->cpu_power;
3004 }
3005
3006 /*
3007 * We're trying to get all the cpus to the average_load, so we don't
3008 * want to push ourselves above the average load, nor do we wish to
3009 * reduce the max loaded cpu below the average load. At the same time,
3010 * we also don't want to reduce the group load below the group capacity
3011 * (so that we can implement power-savings policies etc). Thus we look
3012 * for the minimum possible imbalance.
3013 * Be careful of negative numbers as they'll appear as very large values
3014 * with unsigned longs.
3015 */
3016 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3017
3018 /* How much load to actually move to equalise the imbalance */
3019 *imbalance = min(max_pull * sds->busiest->cpu_power,
3020 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3021 / SCHED_LOAD_SCALE;
3022
3023 /*
3024 * if *imbalance is less than the average load per runnable task
3025 * there is no gaurantee that any tasks will be moved so we'll have
3026 * a think about bumping its value to force at least one task to be
3027 * moved
3028 */
3029 if (*imbalance < sds->busiest_load_per_task)
3030 return fix_small_imbalance(sds, this_cpu, imbalance);
3031
3032 }
3033
3034 /******* find_busiest_group() helpers end here *********************/
3035
3036 /**
3037 * find_busiest_group - Returns the busiest group within the sched_domain
3038 * if there is an imbalance. If there isn't an imbalance, and
3039 * the user has opted for power-savings, it returns a group whose
3040 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3041 * such a group exists.
3042 *
3043 * Also calculates the amount of weighted load which should be moved
3044 * to restore balance.
3045 *
3046 * @sd: The sched_domain whose busiest group is to be returned.
3047 * @this_cpu: The cpu for which load balancing is currently being performed.
3048 * @imbalance: Variable which stores amount of weighted load which should
3049 * be moved to restore balance/put a group to idle.
3050 * @idle: The idle status of this_cpu.
3051 * @sd_idle: The idleness of sd
3052 * @cpus: The set of CPUs under consideration for load-balancing.
3053 * @balance: Pointer to a variable indicating if this_cpu
3054 * is the appropriate cpu to perform load balancing at this_level.
3055 *
3056 * Returns: - the busiest group if imbalance exists.
3057 * - If no imbalance and user has opted for power-savings balance,
3058 * return the least loaded group whose CPUs can be
3059 * put to idle by rebalancing its tasks onto our group.
3060 */
3061 static struct sched_group *
3062 find_busiest_group(struct sched_domain *sd, int this_cpu,
3063 unsigned long *imbalance, enum cpu_idle_type idle,
3064 int *sd_idle, const struct cpumask *cpus, int *balance)
3065 {
3066 struct sd_lb_stats sds;
3067
3068 memset(&sds, 0, sizeof(sds));
3069
3070 /*
3071 * Compute the various statistics relavent for load balancing at
3072 * this level.
3073 */
3074 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3075 balance, &sds);
3076
3077 /* Cases where imbalance does not exist from POV of this_cpu */
3078 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3079 * at this level.
3080 * 2) There is no busy sibling group to pull from.
3081 * 3) This group is the busiest group.
3082 * 4) This group is more busy than the avg busieness at this
3083 * sched_domain.
3084 * 5) The imbalance is within the specified limit.
3085 *
3086 * Note: when doing newidle balance, if the local group has excess
3087 * capacity (i.e. nr_running < group_capacity) and the busiest group
3088 * does not have any capacity, we force a load balance to pull tasks
3089 * to the local group. In this case, we skip past checks 3, 4 and 5.
3090 */
3091 if (!(*balance))
3092 goto ret;
3093
3094 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3095 check_asym_packing(sd, &sds, this_cpu, imbalance))
3096 return sds.busiest;
3097
3098 if (!sds.busiest || sds.busiest_nr_running == 0)
3099 goto out_balanced;
3100
3101 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3102 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3103 !sds.busiest_has_capacity)
3104 goto force_balance;
3105
3106 if (sds.this_load >= sds.max_load)
3107 goto out_balanced;
3108
3109 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3110
3111 if (sds.this_load >= sds.avg_load)
3112 goto out_balanced;
3113
3114 /*
3115 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3116 * And to check for busy balance use !idle_cpu instead of
3117 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3118 * even when they are idle.
3119 */
3120 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3121 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3122 goto out_balanced;
3123 } else {
3124 /*
3125 * This cpu is idle. If the busiest group load doesn't
3126 * have more tasks than the number of available cpu's and
3127 * there is no imbalance between this and busiest group
3128 * wrt to idle cpu's, it is balanced.
3129 */
3130 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3131 sds.busiest_nr_running <= sds.busiest_group_weight)
3132 goto out_balanced;
3133 }
3134
3135 force_balance:
3136 /* Looks like there is an imbalance. Compute it */
3137 calculate_imbalance(&sds, this_cpu, imbalance);
3138 return sds.busiest;
3139
3140 out_balanced:
3141 /*
3142 * There is no obvious imbalance. But check if we can do some balancing
3143 * to save power.
3144 */
3145 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3146 return sds.busiest;
3147 ret:
3148 *imbalance = 0;
3149 return NULL;
3150 }
3151
3152 /*
3153 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3154 */
3155 static struct rq *
3156 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3157 enum cpu_idle_type idle, unsigned long imbalance,
3158 const struct cpumask *cpus)
3159 {
3160 struct rq *busiest = NULL, *rq;
3161 unsigned long max_load = 0;
3162 int i;
3163
3164 for_each_cpu(i, sched_group_cpus(group)) {
3165 unsigned long power = power_of(i);
3166 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3167 unsigned long wl;
3168
3169 if (!capacity)
3170 capacity = fix_small_capacity(sd, group);
3171
3172 if (!cpumask_test_cpu(i, cpus))
3173 continue;
3174
3175 rq = cpu_rq(i);
3176 wl = weighted_cpuload(i);
3177
3178 /*
3179 * When comparing with imbalance, use weighted_cpuload()
3180 * which is not scaled with the cpu power.
3181 */
3182 if (capacity && rq->nr_running == 1 && wl > imbalance)
3183 continue;
3184
3185 /*
3186 * For the load comparisons with the other cpu's, consider
3187 * the weighted_cpuload() scaled with the cpu power, so that
3188 * the load can be moved away from the cpu that is potentially
3189 * running at a lower capacity.
3190 */
3191 wl = (wl * SCHED_LOAD_SCALE) / power;
3192
3193 if (wl > max_load) {
3194 max_load = wl;
3195 busiest = rq;
3196 }
3197 }
3198
3199 return busiest;
3200 }
3201
3202 /*
3203 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3204 * so long as it is large enough.
3205 */
3206 #define MAX_PINNED_INTERVAL 512
3207
3208 /* Working cpumask for load_balance and load_balance_newidle. */
3209 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3210
3211 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3212 int busiest_cpu, int this_cpu)
3213 {
3214 if (idle == CPU_NEWLY_IDLE) {
3215
3216 /*
3217 * ASYM_PACKING needs to force migrate tasks from busy but
3218 * higher numbered CPUs in order to pack all tasks in the
3219 * lowest numbered CPUs.
3220 */
3221 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3222 return 1;
3223
3224 /*
3225 * The only task running in a non-idle cpu can be moved to this
3226 * cpu in an attempt to completely freeup the other CPU
3227 * package.
3228 *
3229 * The package power saving logic comes from
3230 * find_busiest_group(). If there are no imbalance, then
3231 * f_b_g() will return NULL. However when sched_mc={1,2} then
3232 * f_b_g() will select a group from which a running task may be
3233 * pulled to this cpu in order to make the other package idle.
3234 * If there is no opportunity to make a package idle and if
3235 * there are no imbalance, then f_b_g() will return NULL and no
3236 * action will be taken in load_balance_newidle().
3237 *
3238 * Under normal task pull operation due to imbalance, there
3239 * will be more than one task in the source run queue and
3240 * move_tasks() will succeed. ld_moved will be true and this
3241 * active balance code will not be triggered.
3242 */
3243 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3244 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3245 return 0;
3246
3247 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3248 return 0;
3249 }
3250
3251 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3252 }
3253
3254 static int active_load_balance_cpu_stop(void *data);
3255
3256 /*
3257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3258 * tasks if there is an imbalance.
3259 */
3260 static int load_balance(int this_cpu, struct rq *this_rq,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *balance)
3263 {
3264 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3265 struct sched_group *group;
3266 unsigned long imbalance;
3267 struct rq *busiest;
3268 unsigned long flags;
3269 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3270
3271 cpumask_copy(cpus, cpu_active_mask);
3272
3273 /*
3274 * When power savings policy is enabled for the parent domain, idle
3275 * sibling can pick up load irrespective of busy siblings. In this case,
3276 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3277 * portraying it as CPU_NOT_IDLE.
3278 */
3279 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3280 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3281 sd_idle = 1;
3282
3283 schedstat_inc(sd, lb_count[idle]);
3284
3285 redo:
3286 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3287 cpus, balance);
3288
3289 if (*balance == 0)
3290 goto out_balanced;
3291
3292 if (!group) {
3293 schedstat_inc(sd, lb_nobusyg[idle]);
3294 goto out_balanced;
3295 }
3296
3297 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3298 if (!busiest) {
3299 schedstat_inc(sd, lb_nobusyq[idle]);
3300 goto out_balanced;
3301 }
3302
3303 BUG_ON(busiest == this_rq);
3304
3305 schedstat_add(sd, lb_imbalance[idle], imbalance);
3306
3307 ld_moved = 0;
3308 if (busiest->nr_running > 1) {
3309 /*
3310 * Attempt to move tasks. If find_busiest_group has found
3311 * an imbalance but busiest->nr_running <= 1, the group is
3312 * still unbalanced. ld_moved simply stays zero, so it is
3313 * correctly treated as an imbalance.
3314 */
3315 local_irq_save(flags);
3316 double_rq_lock(this_rq, busiest);
3317 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3318 imbalance, sd, idle, &all_pinned);
3319 double_rq_unlock(this_rq, busiest);
3320 local_irq_restore(flags);
3321
3322 /*
3323 * some other cpu did the load balance for us.
3324 */
3325 if (ld_moved && this_cpu != smp_processor_id())
3326 resched_cpu(this_cpu);
3327
3328 /* All tasks on this runqueue were pinned by CPU affinity */
3329 if (unlikely(all_pinned)) {
3330 cpumask_clear_cpu(cpu_of(busiest), cpus);
3331 if (!cpumask_empty(cpus))
3332 goto redo;
3333 goto out_balanced;
3334 }
3335 }
3336
3337 if (!ld_moved) {
3338 schedstat_inc(sd, lb_failed[idle]);
3339 /*
3340 * Increment the failure counter only on periodic balance.
3341 * We do not want newidle balance, which can be very
3342 * frequent, pollute the failure counter causing
3343 * excessive cache_hot migrations and active balances.
3344 */
3345 if (idle != CPU_NEWLY_IDLE)
3346 sd->nr_balance_failed++;
3347
3348 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3349 this_cpu)) {
3350 raw_spin_lock_irqsave(&busiest->lock, flags);
3351
3352 /* don't kick the active_load_balance_cpu_stop,
3353 * if the curr task on busiest cpu can't be
3354 * moved to this_cpu
3355 */
3356 if (!cpumask_test_cpu(this_cpu,
3357 &busiest->curr->cpus_allowed)) {
3358 raw_spin_unlock_irqrestore(&busiest->lock,
3359 flags);
3360 all_pinned = 1;
3361 goto out_one_pinned;
3362 }
3363
3364 /*
3365 * ->active_balance synchronizes accesses to
3366 * ->active_balance_work. Once set, it's cleared
3367 * only after active load balance is finished.
3368 */
3369 if (!busiest->active_balance) {
3370 busiest->active_balance = 1;
3371 busiest->push_cpu = this_cpu;
3372 active_balance = 1;
3373 }
3374 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3375
3376 if (active_balance)
3377 stop_one_cpu_nowait(cpu_of(busiest),
3378 active_load_balance_cpu_stop, busiest,
3379 &busiest->active_balance_work);
3380
3381 /*
3382 * We've kicked active balancing, reset the failure
3383 * counter.
3384 */
3385 sd->nr_balance_failed = sd->cache_nice_tries+1;
3386 }
3387 } else
3388 sd->nr_balance_failed = 0;
3389
3390 if (likely(!active_balance)) {
3391 /* We were unbalanced, so reset the balancing interval */
3392 sd->balance_interval = sd->min_interval;
3393 } else {
3394 /*
3395 * If we've begun active balancing, start to back off. This
3396 * case may not be covered by the all_pinned logic if there
3397 * is only 1 task on the busy runqueue (because we don't call
3398 * move_tasks).
3399 */
3400 if (sd->balance_interval < sd->max_interval)
3401 sd->balance_interval *= 2;
3402 }
3403
3404 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3406 ld_moved = -1;
3407
3408 goto out;
3409
3410 out_balanced:
3411 schedstat_inc(sd, lb_balanced[idle]);
3412
3413 sd->nr_balance_failed = 0;
3414
3415 out_one_pinned:
3416 /* tune up the balancing interval */
3417 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3418 (sd->balance_interval < sd->max_interval))
3419 sd->balance_interval *= 2;
3420
3421 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3422 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3423 ld_moved = -1;
3424 else
3425 ld_moved = 0;
3426 out:
3427 return ld_moved;
3428 }
3429
3430 /*
3431 * idle_balance is called by schedule() if this_cpu is about to become
3432 * idle. Attempts to pull tasks from other CPUs.
3433 */
3434 static void idle_balance(int this_cpu, struct rq *this_rq)
3435 {
3436 struct sched_domain *sd;
3437 int pulled_task = 0;
3438 unsigned long next_balance = jiffies + HZ;
3439
3440 this_rq->idle_stamp = this_rq->clock;
3441
3442 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3443 return;
3444
3445 /*
3446 * Drop the rq->lock, but keep IRQ/preempt disabled.
3447 */
3448 raw_spin_unlock(&this_rq->lock);
3449
3450 update_shares(this_cpu);
3451 for_each_domain(this_cpu, sd) {
3452 unsigned long interval;
3453 int balance = 1;
3454
3455 if (!(sd->flags & SD_LOAD_BALANCE))
3456 continue;
3457
3458 if (sd->flags & SD_BALANCE_NEWIDLE) {
3459 /* If we've pulled tasks over stop searching: */
3460 pulled_task = load_balance(this_cpu, this_rq,
3461 sd, CPU_NEWLY_IDLE, &balance);
3462 }
3463
3464 interval = msecs_to_jiffies(sd->balance_interval);
3465 if (time_after(next_balance, sd->last_balance + interval))
3466 next_balance = sd->last_balance + interval;
3467 if (pulled_task) {
3468 this_rq->idle_stamp = 0;
3469 break;
3470 }
3471 }
3472
3473 raw_spin_lock(&this_rq->lock);
3474
3475 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3476 /*
3477 * We are going idle. next_balance may be set based on
3478 * a busy processor. So reset next_balance.
3479 */
3480 this_rq->next_balance = next_balance;
3481 }
3482 }
3483
3484 /*
3485 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3486 * running tasks off the busiest CPU onto idle CPUs. It requires at
3487 * least 1 task to be running on each physical CPU where possible, and
3488 * avoids physical / logical imbalances.
3489 */
3490 static int active_load_balance_cpu_stop(void *data)
3491 {
3492 struct rq *busiest_rq = data;
3493 int busiest_cpu = cpu_of(busiest_rq);
3494 int target_cpu = busiest_rq->push_cpu;
3495 struct rq *target_rq = cpu_rq(target_cpu);
3496 struct sched_domain *sd;
3497
3498 raw_spin_lock_irq(&busiest_rq->lock);
3499
3500 /* make sure the requested cpu hasn't gone down in the meantime */
3501 if (unlikely(busiest_cpu != smp_processor_id() ||
3502 !busiest_rq->active_balance))
3503 goto out_unlock;
3504
3505 /* Is there any task to move? */
3506 if (busiest_rq->nr_running <= 1)
3507 goto out_unlock;
3508
3509 /*
3510 * This condition is "impossible", if it occurs
3511 * we need to fix it. Originally reported by
3512 * Bjorn Helgaas on a 128-cpu setup.
3513 */
3514 BUG_ON(busiest_rq == target_rq);
3515
3516 /* move a task from busiest_rq to target_rq */
3517 double_lock_balance(busiest_rq, target_rq);
3518
3519 /* Search for an sd spanning us and the target CPU. */
3520 for_each_domain(target_cpu, sd) {
3521 if ((sd->flags & SD_LOAD_BALANCE) &&
3522 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3523 break;
3524 }
3525
3526 if (likely(sd)) {
3527 schedstat_inc(sd, alb_count);
3528
3529 if (move_one_task(target_rq, target_cpu, busiest_rq,
3530 sd, CPU_IDLE))
3531 schedstat_inc(sd, alb_pushed);
3532 else
3533 schedstat_inc(sd, alb_failed);
3534 }
3535 double_unlock_balance(busiest_rq, target_rq);
3536 out_unlock:
3537 busiest_rq->active_balance = 0;
3538 raw_spin_unlock_irq(&busiest_rq->lock);
3539 return 0;
3540 }
3541
3542 #ifdef CONFIG_NO_HZ
3543
3544 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3545
3546 static void trigger_sched_softirq(void *data)
3547 {
3548 raise_softirq_irqoff(SCHED_SOFTIRQ);
3549 }
3550
3551 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3552 {
3553 csd->func = trigger_sched_softirq;
3554 csd->info = NULL;
3555 csd->flags = 0;
3556 csd->priv = 0;
3557 }
3558
3559 /*
3560 * idle load balancing details
3561 * - One of the idle CPUs nominates itself as idle load_balancer, while
3562 * entering idle.
3563 * - This idle load balancer CPU will also go into tickless mode when
3564 * it is idle, just like all other idle CPUs
3565 * - When one of the busy CPUs notice that there may be an idle rebalancing
3566 * needed, they will kick the idle load balancer, which then does idle
3567 * load balancing for all the idle CPUs.
3568 */
3569 static struct {
3570 atomic_t load_balancer;
3571 atomic_t first_pick_cpu;
3572 atomic_t second_pick_cpu;
3573 cpumask_var_t idle_cpus_mask;
3574 cpumask_var_t grp_idle_mask;
3575 unsigned long next_balance; /* in jiffy units */
3576 } nohz ____cacheline_aligned;
3577
3578 int get_nohz_load_balancer(void)
3579 {
3580 return atomic_read(&nohz.load_balancer);
3581 }
3582
3583 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3584 /**
3585 * lowest_flag_domain - Return lowest sched_domain containing flag.
3586 * @cpu: The cpu whose lowest level of sched domain is to
3587 * be returned.
3588 * @flag: The flag to check for the lowest sched_domain
3589 * for the given cpu.
3590 *
3591 * Returns the lowest sched_domain of a cpu which contains the given flag.
3592 */
3593 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3594 {
3595 struct sched_domain *sd;
3596
3597 for_each_domain(cpu, sd)
3598 if (sd && (sd->flags & flag))
3599 break;
3600
3601 return sd;
3602 }
3603
3604 /**
3605 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3606 * @cpu: The cpu whose domains we're iterating over.
3607 * @sd: variable holding the value of the power_savings_sd
3608 * for cpu.
3609 * @flag: The flag to filter the sched_domains to be iterated.
3610 *
3611 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3612 * set, starting from the lowest sched_domain to the highest.
3613 */
3614 #define for_each_flag_domain(cpu, sd, flag) \
3615 for (sd = lowest_flag_domain(cpu, flag); \
3616 (sd && (sd->flags & flag)); sd = sd->parent)
3617
3618 /**
3619 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3620 * @ilb_group: group to be checked for semi-idleness
3621 *
3622 * Returns: 1 if the group is semi-idle. 0 otherwise.
3623 *
3624 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3625 * and atleast one non-idle CPU. This helper function checks if the given
3626 * sched_group is semi-idle or not.
3627 */
3628 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3629 {
3630 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3631 sched_group_cpus(ilb_group));
3632
3633 /*
3634 * A sched_group is semi-idle when it has atleast one busy cpu
3635 * and atleast one idle cpu.
3636 */
3637 if (cpumask_empty(nohz.grp_idle_mask))
3638 return 0;
3639
3640 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3641 return 0;
3642
3643 return 1;
3644 }
3645 /**
3646 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3647 * @cpu: The cpu which is nominating a new idle_load_balancer.
3648 *
3649 * Returns: Returns the id of the idle load balancer if it exists,
3650 * Else, returns >= nr_cpu_ids.
3651 *
3652 * This algorithm picks the idle load balancer such that it belongs to a
3653 * semi-idle powersavings sched_domain. The idea is to try and avoid
3654 * completely idle packages/cores just for the purpose of idle load balancing
3655 * when there are other idle cpu's which are better suited for that job.
3656 */
3657 static int find_new_ilb(int cpu)
3658 {
3659 struct sched_domain *sd;
3660 struct sched_group *ilb_group;
3661
3662 /*
3663 * Have idle load balancer selection from semi-idle packages only
3664 * when power-aware load balancing is enabled
3665 */
3666 if (!(sched_smt_power_savings || sched_mc_power_savings))
3667 goto out_done;
3668
3669 /*
3670 * Optimize for the case when we have no idle CPUs or only one
3671 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3672 */
3673 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3674 goto out_done;
3675
3676 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3677 ilb_group = sd->groups;
3678
3679 do {
3680 if (is_semi_idle_group(ilb_group))
3681 return cpumask_first(nohz.grp_idle_mask);
3682
3683 ilb_group = ilb_group->next;
3684
3685 } while (ilb_group != sd->groups);
3686 }
3687
3688 out_done:
3689 return nr_cpu_ids;
3690 }
3691 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3692 static inline int find_new_ilb(int call_cpu)
3693 {
3694 return nr_cpu_ids;
3695 }
3696 #endif
3697
3698 /*
3699 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3700 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3701 * CPU (if there is one).
3702 */
3703 static void nohz_balancer_kick(int cpu)
3704 {
3705 int ilb_cpu;
3706
3707 nohz.next_balance++;
3708
3709 ilb_cpu = get_nohz_load_balancer();
3710
3711 if (ilb_cpu >= nr_cpu_ids) {
3712 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3713 if (ilb_cpu >= nr_cpu_ids)
3714 return;
3715 }
3716
3717 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3718 struct call_single_data *cp;
3719
3720 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3721 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3722 __smp_call_function_single(ilb_cpu, cp, 0);
3723 }
3724 return;
3725 }
3726
3727 /*
3728 * This routine will try to nominate the ilb (idle load balancing)
3729 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3730 * load balancing on behalf of all those cpus.
3731 *
3732 * When the ilb owner becomes busy, we will not have new ilb owner until some
3733 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3734 * idle load balancing by kicking one of the idle CPUs.
3735 *
3736 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3737 * ilb owner CPU in future (when there is a need for idle load balancing on
3738 * behalf of all idle CPUs).
3739 */
3740 void select_nohz_load_balancer(int stop_tick)
3741 {
3742 int cpu = smp_processor_id();
3743
3744 if (stop_tick) {
3745 if (!cpu_active(cpu)) {
3746 if (atomic_read(&nohz.load_balancer) != cpu)
3747 return;
3748
3749 /*
3750 * If we are going offline and still the leader,
3751 * give up!
3752 */
3753 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3754 nr_cpu_ids) != cpu)
3755 BUG();
3756
3757 return;
3758 }
3759
3760 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3761
3762 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3763 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3764 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3765 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3766
3767 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3768 int new_ilb;
3769
3770 /* make me the ilb owner */
3771 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3772 cpu) != nr_cpu_ids)
3773 return;
3774
3775 /*
3776 * Check to see if there is a more power-efficient
3777 * ilb.
3778 */
3779 new_ilb = find_new_ilb(cpu);
3780 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3781 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3782 resched_cpu(new_ilb);
3783 return;
3784 }
3785 return;
3786 }
3787 } else {
3788 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3789 return;
3790
3791 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3792
3793 if (atomic_read(&nohz.load_balancer) == cpu)
3794 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3795 nr_cpu_ids) != cpu)
3796 BUG();
3797 }
3798 return;
3799 }
3800 #endif
3801
3802 static DEFINE_SPINLOCK(balancing);
3803
3804 /*
3805 * It checks each scheduling domain to see if it is due to be balanced,
3806 * and initiates a balancing operation if so.
3807 *
3808 * Balancing parameters are set up in arch_init_sched_domains.
3809 */
3810 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3811 {
3812 int balance = 1;
3813 struct rq *rq = cpu_rq(cpu);
3814 unsigned long interval;
3815 struct sched_domain *sd;
3816 /* Earliest time when we have to do rebalance again */
3817 unsigned long next_balance = jiffies + 60*HZ;
3818 int update_next_balance = 0;
3819 int need_serialize;
3820
3821 update_shares(cpu);
3822
3823 for_each_domain(cpu, sd) {
3824 if (!(sd->flags & SD_LOAD_BALANCE))
3825 continue;
3826
3827 interval = sd->balance_interval;
3828 if (idle != CPU_IDLE)
3829 interval *= sd->busy_factor;
3830
3831 /* scale ms to jiffies */
3832 interval = msecs_to_jiffies(interval);
3833 if (unlikely(!interval))
3834 interval = 1;
3835 if (interval > HZ*NR_CPUS/10)
3836 interval = HZ*NR_CPUS/10;
3837
3838 need_serialize = sd->flags & SD_SERIALIZE;
3839
3840 if (need_serialize) {
3841 if (!spin_trylock(&balancing))
3842 goto out;
3843 }
3844
3845 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3846 if (load_balance(cpu, rq, sd, idle, &balance)) {
3847 /*
3848 * We've pulled tasks over so either we're no
3849 * longer idle, or one of our SMT siblings is
3850 * not idle.
3851 */
3852 idle = CPU_NOT_IDLE;
3853 }
3854 sd->last_balance = jiffies;
3855 }
3856 if (need_serialize)
3857 spin_unlock(&balancing);
3858 out:
3859 if (time_after(next_balance, sd->last_balance + interval)) {
3860 next_balance = sd->last_balance + interval;
3861 update_next_balance = 1;
3862 }
3863
3864 /*
3865 * Stop the load balance at this level. There is another
3866 * CPU in our sched group which is doing load balancing more
3867 * actively.
3868 */
3869 if (!balance)
3870 break;
3871 }
3872
3873 /*
3874 * next_balance will be updated only when there is a need.
3875 * When the cpu is attached to null domain for ex, it will not be
3876 * updated.
3877 */
3878 if (likely(update_next_balance))
3879 rq->next_balance = next_balance;
3880 }
3881
3882 #ifdef CONFIG_NO_HZ
3883 /*
3884 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3885 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3886 */
3887 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3888 {
3889 struct rq *this_rq = cpu_rq(this_cpu);
3890 struct rq *rq;
3891 int balance_cpu;
3892
3893 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3894 return;
3895
3896 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3897 if (balance_cpu == this_cpu)
3898 continue;
3899
3900 /*
3901 * If this cpu gets work to do, stop the load balancing
3902 * work being done for other cpus. Next load
3903 * balancing owner will pick it up.
3904 */
3905 if (need_resched()) {
3906 this_rq->nohz_balance_kick = 0;
3907 break;
3908 }
3909
3910 raw_spin_lock_irq(&this_rq->lock);
3911 update_rq_clock(this_rq);
3912 update_cpu_load(this_rq);
3913 raw_spin_unlock_irq(&this_rq->lock);
3914
3915 rebalance_domains(balance_cpu, CPU_IDLE);
3916
3917 rq = cpu_rq(balance_cpu);
3918 if (time_after(this_rq->next_balance, rq->next_balance))
3919 this_rq->next_balance = rq->next_balance;
3920 }
3921 nohz.next_balance = this_rq->next_balance;
3922 this_rq->nohz_balance_kick = 0;
3923 }
3924
3925 /*
3926 * Current heuristic for kicking the idle load balancer
3927 * - first_pick_cpu is the one of the busy CPUs. It will kick
3928 * idle load balancer when it has more than one process active. This
3929 * eliminates the need for idle load balancing altogether when we have
3930 * only one running process in the system (common case).
3931 * - If there are more than one busy CPU, idle load balancer may have
3932 * to run for active_load_balance to happen (i.e., two busy CPUs are
3933 * SMT or core siblings and can run better if they move to different
3934 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3935 * which will kick idle load balancer as soon as it has any load.
3936 */
3937 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3938 {
3939 unsigned long now = jiffies;
3940 int ret;
3941 int first_pick_cpu, second_pick_cpu;
3942
3943 if (time_before(now, nohz.next_balance))
3944 return 0;
3945
3946 if (rq->idle_at_tick)
3947 return 0;
3948
3949 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3950 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3951
3952 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3953 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3954 return 0;
3955
3956 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3957 if (ret == nr_cpu_ids || ret == cpu) {
3958 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3959 if (rq->nr_running > 1)
3960 return 1;
3961 } else {
3962 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3963 if (ret == nr_cpu_ids || ret == cpu) {
3964 if (rq->nr_running)
3965 return 1;
3966 }
3967 }
3968 return 0;
3969 }
3970 #else
3971 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3972 #endif
3973
3974 /*
3975 * run_rebalance_domains is triggered when needed from the scheduler tick.
3976 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3977 */
3978 static void run_rebalance_domains(struct softirq_action *h)
3979 {
3980 int this_cpu = smp_processor_id();
3981 struct rq *this_rq = cpu_rq(this_cpu);
3982 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3983 CPU_IDLE : CPU_NOT_IDLE;
3984
3985 rebalance_domains(this_cpu, idle);
3986
3987 /*
3988 * If this cpu has a pending nohz_balance_kick, then do the
3989 * balancing on behalf of the other idle cpus whose ticks are
3990 * stopped.
3991 */
3992 nohz_idle_balance(this_cpu, idle);
3993 }
3994
3995 static inline int on_null_domain(int cpu)
3996 {
3997 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3998 }
3999
4000 /*
4001 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4002 */
4003 static inline void trigger_load_balance(struct rq *rq, int cpu)
4004 {
4005 /* Don't need to rebalance while attached to NULL domain */
4006 if (time_after_eq(jiffies, rq->next_balance) &&
4007 likely(!on_null_domain(cpu)))
4008 raise_softirq(SCHED_SOFTIRQ);
4009 #ifdef CONFIG_NO_HZ
4010 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4011 nohz_balancer_kick(cpu);
4012 #endif
4013 }
4014
4015 static void rq_online_fair(struct rq *rq)
4016 {
4017 update_sysctl();
4018 }
4019
4020 static void rq_offline_fair(struct rq *rq)
4021 {
4022 update_sysctl();
4023 }
4024
4025 #else /* CONFIG_SMP */
4026
4027 /*
4028 * on UP we do not need to balance between CPUs:
4029 */
4030 static inline void idle_balance(int cpu, struct rq *rq)
4031 {
4032 }
4033
4034 #endif /* CONFIG_SMP */
4035
4036 /*
4037 * scheduler tick hitting a task of our scheduling class:
4038 */
4039 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4040 {
4041 struct cfs_rq *cfs_rq;
4042 struct sched_entity *se = &curr->se;
4043
4044 for_each_sched_entity(se) {
4045 cfs_rq = cfs_rq_of(se);
4046 entity_tick(cfs_rq, se, queued);
4047 }
4048 }
4049
4050 /*
4051 * called on fork with the child task as argument from the parent's context
4052 * - child not yet on the tasklist
4053 * - preemption disabled
4054 */
4055 static void task_fork_fair(struct task_struct *p)
4056 {
4057 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4058 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4059 int this_cpu = smp_processor_id();
4060 struct rq *rq = this_rq();
4061 unsigned long flags;
4062
4063 raw_spin_lock_irqsave(&rq->lock, flags);
4064
4065 update_rq_clock(rq);
4066
4067 if (unlikely(task_cpu(p) != this_cpu)) {
4068 rcu_read_lock();
4069 __set_task_cpu(p, this_cpu);
4070 rcu_read_unlock();
4071 }
4072
4073 update_curr(cfs_rq);
4074
4075 if (curr)
4076 se->vruntime = curr->vruntime;
4077 place_entity(cfs_rq, se, 1);
4078
4079 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4080 /*
4081 * Upon rescheduling, sched_class::put_prev_task() will place
4082 * 'current' within the tree based on its new key value.
4083 */
4084 swap(curr->vruntime, se->vruntime);
4085 resched_task(rq->curr);
4086 }
4087
4088 se->vruntime -= cfs_rq->min_vruntime;
4089
4090 raw_spin_unlock_irqrestore(&rq->lock, flags);
4091 }
4092
4093 /*
4094 * Priority of the task has changed. Check to see if we preempt
4095 * the current task.
4096 */
4097 static void
4098 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4099 {
4100 if (!p->se.on_rq)
4101 return;
4102
4103 /*
4104 * Reschedule if we are currently running on this runqueue and
4105 * our priority decreased, or if we are not currently running on
4106 * this runqueue and our priority is higher than the current's
4107 */
4108 if (rq->curr == p) {
4109 if (p->prio > oldprio)
4110 resched_task(rq->curr);
4111 } else
4112 check_preempt_curr(rq, p, 0);
4113 }
4114
4115 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4116 {
4117 struct sched_entity *se = &p->se;
4118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4119
4120 /*
4121 * Ensure the task's vruntime is normalized, so that when its
4122 * switched back to the fair class the enqueue_entity(.flags=0) will
4123 * do the right thing.
4124 *
4125 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4126 * have normalized the vruntime, if it was !on_rq, then only when
4127 * the task is sleeping will it still have non-normalized vruntime.
4128 */
4129 if (!se->on_rq && p->state != TASK_RUNNING) {
4130 /*
4131 * Fix up our vruntime so that the current sleep doesn't
4132 * cause 'unlimited' sleep bonus.
4133 */
4134 place_entity(cfs_rq, se, 0);
4135 se->vruntime -= cfs_rq->min_vruntime;
4136 }
4137 }
4138
4139 /*
4140 * We switched to the sched_fair class.
4141 */
4142 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4143 {
4144 if (!p->se.on_rq)
4145 return;
4146
4147 /*
4148 * We were most likely switched from sched_rt, so
4149 * kick off the schedule if running, otherwise just see
4150 * if we can still preempt the current task.
4151 */
4152 if (rq->curr == p)
4153 resched_task(rq->curr);
4154 else
4155 check_preempt_curr(rq, p, 0);
4156 }
4157
4158 /* Account for a task changing its policy or group.
4159 *
4160 * This routine is mostly called to set cfs_rq->curr field when a task
4161 * migrates between groups/classes.
4162 */
4163 static void set_curr_task_fair(struct rq *rq)
4164 {
4165 struct sched_entity *se = &rq->curr->se;
4166
4167 for_each_sched_entity(se)
4168 set_next_entity(cfs_rq_of(se), se);
4169 }
4170
4171 #ifdef CONFIG_FAIR_GROUP_SCHED
4172 static void task_move_group_fair(struct task_struct *p, int on_rq)
4173 {
4174 /*
4175 * If the task was not on the rq at the time of this cgroup movement
4176 * it must have been asleep, sleeping tasks keep their ->vruntime
4177 * absolute on their old rq until wakeup (needed for the fair sleeper
4178 * bonus in place_entity()).
4179 *
4180 * If it was on the rq, we've just 'preempted' it, which does convert
4181 * ->vruntime to a relative base.
4182 *
4183 * Make sure both cases convert their relative position when migrating
4184 * to another cgroup's rq. This does somewhat interfere with the
4185 * fair sleeper stuff for the first placement, but who cares.
4186 */
4187 if (!on_rq)
4188 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4189 set_task_rq(p, task_cpu(p));
4190 if (!on_rq)
4191 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4192 }
4193 #endif
4194
4195 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4196 {
4197 struct sched_entity *se = &task->se;
4198 unsigned int rr_interval = 0;
4199
4200 /*
4201 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4202 * idle runqueue:
4203 */
4204 if (rq->cfs.load.weight)
4205 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4206
4207 return rr_interval;
4208 }
4209
4210 /*
4211 * All the scheduling class methods:
4212 */
4213 static const struct sched_class fair_sched_class = {
4214 .next = &idle_sched_class,
4215 .enqueue_task = enqueue_task_fair,
4216 .dequeue_task = dequeue_task_fair,
4217 .yield_task = yield_task_fair,
4218
4219 .check_preempt_curr = check_preempt_wakeup,
4220
4221 .pick_next_task = pick_next_task_fair,
4222 .put_prev_task = put_prev_task_fair,
4223
4224 #ifdef CONFIG_SMP
4225 .select_task_rq = select_task_rq_fair,
4226
4227 .rq_online = rq_online_fair,
4228 .rq_offline = rq_offline_fair,
4229
4230 .task_waking = task_waking_fair,
4231 #endif
4232
4233 .set_curr_task = set_curr_task_fair,
4234 .task_tick = task_tick_fair,
4235 .task_fork = task_fork_fair,
4236
4237 .prio_changed = prio_changed_fair,
4238 .switched_from = switched_from_fair,
4239 .switched_to = switched_to_fair,
4240
4241 .get_rr_interval = get_rr_interval_fair,
4242
4243 #ifdef CONFIG_FAIR_GROUP_SCHED
4244 .task_move_group = task_move_group_fair,
4245 #endif
4246 };
4247
4248 #ifdef CONFIG_SCHED_DEBUG
4249 static void print_cfs_stats(struct seq_file *m, int cpu)
4250 {
4251 struct cfs_rq *cfs_rq;
4252
4253 rcu_read_lock();
4254 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4255 print_cfs_rq(m, cpu, cfs_rq);
4256 rcu_read_unlock();
4257 }
4258 #endif
This page took 0.172461 seconds and 4 git commands to generate.