Merge branch 'nvs' into release
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 2000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 3;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
510
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
517 }
518
519 static void update_curr(struct cfs_rq *cfs_rq)
520 {
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock;
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
536
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
546 }
547 }
548
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 }
554
555 /*
556 * Task is being enqueued - update stats:
557 */
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
566 }
567
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 {
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 }
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
583 }
584
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
594 }
595
596 /*
597 * We are picking a new current task - update its stats:
598 */
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /*
603 * We are starting a new run period:
604 */
605 se->exec_start = rq_of(cfs_rq)->clock;
606 }
607
608 /**************************************************
609 * Scheduling class queueing methods:
610 */
611
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 {
616 cfs_rq->task_weight += weight;
617 }
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 {
622 }
623 #endif
624
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637 }
638
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
648 }
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651 }
652
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664 if ((s64)delta < 0)
665 delta = 0;
666
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
669
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
672
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
676 }
677 }
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681 if ((s64)delta < 0)
682 delta = 0;
683
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
686
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
689
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
695 }
696
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
708 }
709 }
710 #endif
711 }
712
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
724 }
725
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 {
729 u64 vruntime = cfs_rq->min_vruntime;
730
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
739
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
743
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
750
751 vruntime -= thresh;
752 }
753
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
757 se->vruntime = vruntime;
758 }
759
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762 {
763 /*
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
771 * Update run-time statistics of the 'current'.
772 */
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
775
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
779 }
780
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
785 }
786
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
791
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
794 }
795
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797 {
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800 }
801
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804 {
805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
820 }
821 #endif
822 }
823
824 clear_buddies(cfs_rq, se);
825
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
838 }
839
840 /*
841 * Preempt the current task with a newly woken task if needed:
842 */
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845 {
846 unsigned long ideal_runtime, delta_exec;
847
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
877 }
878 }
879
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
908 }
909
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914 {
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
917
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
920
921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
928
929 return se;
930 }
931
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933 {
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
939 update_curr(cfs_rq);
940
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
947 cfs_rq->curr = NULL;
948 }
949
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952 {
953 /*
954 * Update run-time statistics of the 'current'.
955 */
956 update_curr(cfs_rq);
957
958 #ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
974
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
977 }
978
979 /**************************************************
980 * CFS operations on tasks:
981 */
982
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985 {
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1008
1009 hrtick_start(rq, delta);
1010 }
1011 }
1012
1013 /*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018 static void hrtick_update(struct rq *rq)
1019 {
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027 }
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031 {
1032 }
1033
1034 static inline void hrtick_update(struct rq *rq)
1035 {
1036 }
1037 #endif
1038
1039 /*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046 {
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1049
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1056 }
1057
1058 hrtick_update(rq);
1059 }
1060
1061 /*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067 {
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1078 }
1079
1080 hrtick_update(rq);
1081 }
1082
1083 /*
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1087 */
1088 static void yield_task_fair(struct rq *rq)
1089 {
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1093
1094 /*
1095 * Are we the only task in the tree?
1096 */
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
1100 clear_buddies(cfs_rq, se);
1101
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1104 /*
1105 * Update run-time statistics of the 'current'.
1106 */
1107 update_curr(cfs_rq);
1108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
1114 rightmost = __pick_last_entity(cfs_rq);
1115 /*
1116 * Already in the rightmost position?
1117 */
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1125 */
1126 se->vruntime = rightmost->vruntime + 1;
1127 }
1128
1129 #ifdef CONFIG_SMP
1130
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132 {
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137 }
1138
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1140 /*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1163 {
1164 struct sched_entity *se = tg->se[cpu];
1165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1187
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1191
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1194
1195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
1200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
1207 wg = 0;
1208 }
1209
1210 return wl;
1211 }
1212
1213 #else
1214
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1217 {
1218 return wl;
1219 }
1220
1221 #endif
1222
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224 {
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1231
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1237
1238 /*
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1242 */
1243 rcu_read_lock();
1244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
1247
1248 this_load += effective_load(tg, this_cpu, -weight, -weight);
1249 load += effective_load(tg, prev_cpu, 0, -weight);
1250 }
1251
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1254
1255 /*
1256 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257 * due to the sync cause above having dropped this_load to 0, we'll
1258 * always have an imbalance, but there's really nothing you can do
1259 * about that, so that's good too.
1260 *
1261 * Otherwise check if either cpus are near enough in load to allow this
1262 * task to be woken on this_cpu.
1263 */
1264 if (this_load) {
1265 unsigned long this_eff_load, prev_eff_load;
1266
1267 this_eff_load = 100;
1268 this_eff_load *= power_of(prev_cpu);
1269 this_eff_load *= this_load +
1270 effective_load(tg, this_cpu, weight, weight);
1271
1272 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273 prev_eff_load *= power_of(this_cpu);
1274 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1275
1276 balanced = this_eff_load <= prev_eff_load;
1277 } else
1278 balanced = true;
1279 rcu_read_unlock();
1280
1281 /*
1282 * If the currently running task will sleep within
1283 * a reasonable amount of time then attract this newly
1284 * woken task:
1285 */
1286 if (sync && balanced)
1287 return 1;
1288
1289 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290 tl_per_task = cpu_avg_load_per_task(this_cpu);
1291
1292 if (balanced ||
1293 (this_load <= load &&
1294 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1295 /*
1296 * This domain has SD_WAKE_AFFINE and
1297 * p is cache cold in this domain, and
1298 * there is no bad imbalance.
1299 */
1300 schedstat_inc(sd, ttwu_move_affine);
1301 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1302
1303 return 1;
1304 }
1305 return 0;
1306 }
1307
1308 /*
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1311 */
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314 int this_cpu, int load_idx)
1315 {
1316 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1317 unsigned long min_load = ULONG_MAX, this_load = 0;
1318 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1319
1320 do {
1321 unsigned long load, avg_load;
1322 int local_group;
1323 int i;
1324
1325 /* Skip over this group if it has no CPUs allowed */
1326 if (!cpumask_intersects(sched_group_cpus(group),
1327 &p->cpus_allowed))
1328 continue;
1329
1330 local_group = cpumask_test_cpu(this_cpu,
1331 sched_group_cpus(group));
1332
1333 /* Tally up the load of all CPUs in the group */
1334 avg_load = 0;
1335
1336 for_each_cpu(i, sched_group_cpus(group)) {
1337 /* Bias balancing toward cpus of our domain */
1338 if (local_group)
1339 load = source_load(i, load_idx);
1340 else
1341 load = target_load(i, load_idx);
1342
1343 avg_load += load;
1344 }
1345
1346 /* Adjust by relative CPU power of the group */
1347 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1348
1349 if (local_group) {
1350 this_load = avg_load;
1351 this = group;
1352 } else if (avg_load < min_load) {
1353 min_load = avg_load;
1354 idlest = group;
1355 }
1356 } while (group = group->next, group != sd->groups);
1357
1358 if (!idlest || 100*this_load < imbalance*min_load)
1359 return NULL;
1360 return idlest;
1361 }
1362
1363 /*
1364 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1365 */
1366 static int
1367 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1368 {
1369 unsigned long load, min_load = ULONG_MAX;
1370 int idlest = -1;
1371 int i;
1372
1373 /* Traverse only the allowed CPUs */
1374 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1375 load = weighted_cpuload(i);
1376
1377 if (load < min_load || (load == min_load && i == this_cpu)) {
1378 min_load = load;
1379 idlest = i;
1380 }
1381 }
1382
1383 return idlest;
1384 }
1385
1386 /*
1387 * Try and locate an idle CPU in the sched_domain.
1388 */
1389 static int select_idle_sibling(struct task_struct *p, int target)
1390 {
1391 int cpu = smp_processor_id();
1392 int prev_cpu = task_cpu(p);
1393 struct sched_domain *sd;
1394 int i;
1395
1396 /*
1397 * If the task is going to be woken-up on this cpu and if it is
1398 * already idle, then it is the right target.
1399 */
1400 if (target == cpu && idle_cpu(cpu))
1401 return cpu;
1402
1403 /*
1404 * If the task is going to be woken-up on the cpu where it previously
1405 * ran and if it is currently idle, then it the right target.
1406 */
1407 if (target == prev_cpu && idle_cpu(prev_cpu))
1408 return prev_cpu;
1409
1410 /*
1411 * Otherwise, iterate the domains and find an elegible idle cpu.
1412 */
1413 for_each_domain(target, sd) {
1414 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1415 break;
1416
1417 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1418 if (idle_cpu(i)) {
1419 target = i;
1420 break;
1421 }
1422 }
1423
1424 /*
1425 * Lets stop looking for an idle sibling when we reached
1426 * the domain that spans the current cpu and prev_cpu.
1427 */
1428 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1429 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1430 break;
1431 }
1432
1433 return target;
1434 }
1435
1436 /*
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1440 *
1441 * Balance, ie. select the least loaded group.
1442 *
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 *
1445 * preempt must be disabled.
1446 */
1447 static int
1448 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1449 {
1450 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1451 int cpu = smp_processor_id();
1452 int prev_cpu = task_cpu(p);
1453 int new_cpu = cpu;
1454 int want_affine = 0;
1455 int want_sd = 1;
1456 int sync = wake_flags & WF_SYNC;
1457
1458 if (sd_flag & SD_BALANCE_WAKE) {
1459 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1462 }
1463
1464 for_each_domain(cpu, tmp) {
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1467
1468 /*
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
1471 */
1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1477
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1481 }
1482
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1487
1488 if (nr_running < capacity)
1489 want_sd = 0;
1490 }
1491
1492 /*
1493 * If both cpu and prev_cpu are part of this domain,
1494 * cpu is a valid SD_WAKE_AFFINE target.
1495 */
1496 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1497 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1498 affine_sd = tmp;
1499 want_affine = 0;
1500 }
1501
1502 if (!want_sd && !want_affine)
1503 break;
1504
1505 if (!(tmp->flags & sd_flag))
1506 continue;
1507
1508 if (want_sd)
1509 sd = tmp;
1510 }
1511
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1513 if (sched_feat(LB_SHARES_UPDATE)) {
1514 /*
1515 * Pick the largest domain to update shares over
1516 */
1517 tmp = sd;
1518 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1519 tmp = affine_sd;
1520
1521 if (tmp) {
1522 raw_spin_unlock(&rq->lock);
1523 update_shares(tmp);
1524 raw_spin_lock(&rq->lock);
1525 }
1526 }
1527 #endif
1528
1529 if (affine_sd) {
1530 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1531 return select_idle_sibling(p, cpu);
1532 else
1533 return select_idle_sibling(p, prev_cpu);
1534 }
1535
1536 while (sd) {
1537 int load_idx = sd->forkexec_idx;
1538 struct sched_group *group;
1539 int weight;
1540
1541 if (!(sd->flags & sd_flag)) {
1542 sd = sd->child;
1543 continue;
1544 }
1545
1546 if (sd_flag & SD_BALANCE_WAKE)
1547 load_idx = sd->wake_idx;
1548
1549 group = find_idlest_group(sd, p, cpu, load_idx);
1550 if (!group) {
1551 sd = sd->child;
1552 continue;
1553 }
1554
1555 new_cpu = find_idlest_cpu(group, p, cpu);
1556 if (new_cpu == -1 || new_cpu == cpu) {
1557 /* Now try balancing at a lower domain level of cpu */
1558 sd = sd->child;
1559 continue;
1560 }
1561
1562 /* Now try balancing at a lower domain level of new_cpu */
1563 cpu = new_cpu;
1564 weight = sd->span_weight;
1565 sd = NULL;
1566 for_each_domain(cpu, tmp) {
1567 if (weight <= tmp->span_weight)
1568 break;
1569 if (tmp->flags & sd_flag)
1570 sd = tmp;
1571 }
1572 /* while loop will break here if sd == NULL */
1573 }
1574
1575 return new_cpu;
1576 }
1577 #endif /* CONFIG_SMP */
1578
1579 static unsigned long
1580 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1581 {
1582 unsigned long gran = sysctl_sched_wakeup_granularity;
1583
1584 /*
1585 * Since its curr running now, convert the gran from real-time
1586 * to virtual-time in his units.
1587 *
1588 * By using 'se' instead of 'curr' we penalize light tasks, so
1589 * they get preempted easier. That is, if 'se' < 'curr' then
1590 * the resulting gran will be larger, therefore penalizing the
1591 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1592 * be smaller, again penalizing the lighter task.
1593 *
1594 * This is especially important for buddies when the leftmost
1595 * task is higher priority than the buddy.
1596 */
1597 if (unlikely(se->load.weight != NICE_0_LOAD))
1598 gran = calc_delta_fair(gran, se);
1599
1600 return gran;
1601 }
1602
1603 /*
1604 * Should 'se' preempt 'curr'.
1605 *
1606 * |s1
1607 * |s2
1608 * |s3
1609 * g
1610 * |<--->|c
1611 *
1612 * w(c, s1) = -1
1613 * w(c, s2) = 0
1614 * w(c, s3) = 1
1615 *
1616 */
1617 static int
1618 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1619 {
1620 s64 gran, vdiff = curr->vruntime - se->vruntime;
1621
1622 if (vdiff <= 0)
1623 return -1;
1624
1625 gran = wakeup_gran(curr, se);
1626 if (vdiff > gran)
1627 return 1;
1628
1629 return 0;
1630 }
1631
1632 static void set_last_buddy(struct sched_entity *se)
1633 {
1634 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1635 for_each_sched_entity(se)
1636 cfs_rq_of(se)->last = se;
1637 }
1638 }
1639
1640 static void set_next_buddy(struct sched_entity *se)
1641 {
1642 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1643 for_each_sched_entity(se)
1644 cfs_rq_of(se)->next = se;
1645 }
1646 }
1647
1648 /*
1649 * Preempt the current task with a newly woken task if needed:
1650 */
1651 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1652 {
1653 struct task_struct *curr = rq->curr;
1654 struct sched_entity *se = &curr->se, *pse = &p->se;
1655 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1656 int scale = cfs_rq->nr_running >= sched_nr_latency;
1657
1658 if (unlikely(rt_prio(p->prio)))
1659 goto preempt;
1660
1661 if (unlikely(p->sched_class != &fair_sched_class))
1662 return;
1663
1664 if (unlikely(se == pse))
1665 return;
1666
1667 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1668 set_next_buddy(pse);
1669
1670 /*
1671 * We can come here with TIF_NEED_RESCHED already set from new task
1672 * wake up path.
1673 */
1674 if (test_tsk_need_resched(curr))
1675 return;
1676
1677 /*
1678 * Batch and idle tasks do not preempt (their preemption is driven by
1679 * the tick):
1680 */
1681 if (unlikely(p->policy != SCHED_NORMAL))
1682 return;
1683
1684 /* Idle tasks are by definition preempted by everybody. */
1685 if (unlikely(curr->policy == SCHED_IDLE))
1686 goto preempt;
1687
1688 if (!sched_feat(WAKEUP_PREEMPT))
1689 return;
1690
1691 update_curr(cfs_rq);
1692 find_matching_se(&se, &pse);
1693 BUG_ON(!pse);
1694 if (wakeup_preempt_entity(se, pse) == 1)
1695 goto preempt;
1696
1697 return;
1698
1699 preempt:
1700 resched_task(curr);
1701 /*
1702 * Only set the backward buddy when the current task is still
1703 * on the rq. This can happen when a wakeup gets interleaved
1704 * with schedule on the ->pre_schedule() or idle_balance()
1705 * point, either of which can * drop the rq lock.
1706 *
1707 * Also, during early boot the idle thread is in the fair class,
1708 * for obvious reasons its a bad idea to schedule back to it.
1709 */
1710 if (unlikely(!se->on_rq || curr == rq->idle))
1711 return;
1712
1713 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1714 set_last_buddy(se);
1715 }
1716
1717 static struct task_struct *pick_next_task_fair(struct rq *rq)
1718 {
1719 struct task_struct *p;
1720 struct cfs_rq *cfs_rq = &rq->cfs;
1721 struct sched_entity *se;
1722
1723 if (!cfs_rq->nr_running)
1724 return NULL;
1725
1726 do {
1727 se = pick_next_entity(cfs_rq);
1728 set_next_entity(cfs_rq, se);
1729 cfs_rq = group_cfs_rq(se);
1730 } while (cfs_rq);
1731
1732 p = task_of(se);
1733 hrtick_start_fair(rq, p);
1734
1735 return p;
1736 }
1737
1738 /*
1739 * Account for a descheduled task:
1740 */
1741 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1742 {
1743 struct sched_entity *se = &prev->se;
1744 struct cfs_rq *cfs_rq;
1745
1746 for_each_sched_entity(se) {
1747 cfs_rq = cfs_rq_of(se);
1748 put_prev_entity(cfs_rq, se);
1749 }
1750 }
1751
1752 #ifdef CONFIG_SMP
1753 /**************************************************
1754 * Fair scheduling class load-balancing methods:
1755 */
1756
1757 /*
1758 * pull_task - move a task from a remote runqueue to the local runqueue.
1759 * Both runqueues must be locked.
1760 */
1761 static void pull_task(struct rq *src_rq, struct task_struct *p,
1762 struct rq *this_rq, int this_cpu)
1763 {
1764 deactivate_task(src_rq, p, 0);
1765 set_task_cpu(p, this_cpu);
1766 activate_task(this_rq, p, 0);
1767 check_preempt_curr(this_rq, p, 0);
1768 }
1769
1770 /*
1771 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1772 */
1773 static
1774 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1775 struct sched_domain *sd, enum cpu_idle_type idle,
1776 int *all_pinned)
1777 {
1778 int tsk_cache_hot = 0;
1779 /*
1780 * We do not migrate tasks that are:
1781 * 1) running (obviously), or
1782 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1783 * 3) are cache-hot on their current CPU.
1784 */
1785 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1786 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1787 return 0;
1788 }
1789 *all_pinned = 0;
1790
1791 if (task_running(rq, p)) {
1792 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1793 return 0;
1794 }
1795
1796 /*
1797 * Aggressive migration if:
1798 * 1) task is cache cold, or
1799 * 2) too many balance attempts have failed.
1800 */
1801
1802 tsk_cache_hot = task_hot(p, rq->clock, sd);
1803 if (!tsk_cache_hot ||
1804 sd->nr_balance_failed > sd->cache_nice_tries) {
1805 #ifdef CONFIG_SCHEDSTATS
1806 if (tsk_cache_hot) {
1807 schedstat_inc(sd, lb_hot_gained[idle]);
1808 schedstat_inc(p, se.statistics.nr_forced_migrations);
1809 }
1810 #endif
1811 return 1;
1812 }
1813
1814 if (tsk_cache_hot) {
1815 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1816 return 0;
1817 }
1818 return 1;
1819 }
1820
1821 /*
1822 * move_one_task tries to move exactly one task from busiest to this_rq, as
1823 * part of active balancing operations within "domain".
1824 * Returns 1 if successful and 0 otherwise.
1825 *
1826 * Called with both runqueues locked.
1827 */
1828 static int
1829 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1830 struct sched_domain *sd, enum cpu_idle_type idle)
1831 {
1832 struct task_struct *p, *n;
1833 struct cfs_rq *cfs_rq;
1834 int pinned = 0;
1835
1836 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1837 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1838
1839 if (!can_migrate_task(p, busiest, this_cpu,
1840 sd, idle, &pinned))
1841 continue;
1842
1843 pull_task(busiest, p, this_rq, this_cpu);
1844 /*
1845 * Right now, this is only the second place pull_task()
1846 * is called, so we can safely collect pull_task()
1847 * stats here rather than inside pull_task().
1848 */
1849 schedstat_inc(sd, lb_gained[idle]);
1850 return 1;
1851 }
1852 }
1853
1854 return 0;
1855 }
1856
1857 static unsigned long
1858 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1859 unsigned long max_load_move, struct sched_domain *sd,
1860 enum cpu_idle_type idle, int *all_pinned,
1861 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1862 {
1863 int loops = 0, pulled = 0, pinned = 0;
1864 long rem_load_move = max_load_move;
1865 struct task_struct *p, *n;
1866
1867 if (max_load_move == 0)
1868 goto out;
1869
1870 pinned = 1;
1871
1872 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1873 if (loops++ > sysctl_sched_nr_migrate)
1874 break;
1875
1876 if ((p->se.load.weight >> 1) > rem_load_move ||
1877 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1878 continue;
1879
1880 pull_task(busiest, p, this_rq, this_cpu);
1881 pulled++;
1882 rem_load_move -= p->se.load.weight;
1883
1884 #ifdef CONFIG_PREEMPT
1885 /*
1886 * NEWIDLE balancing is a source of latency, so preemptible
1887 * kernels will stop after the first task is pulled to minimize
1888 * the critical section.
1889 */
1890 if (idle == CPU_NEWLY_IDLE)
1891 break;
1892 #endif
1893
1894 /*
1895 * We only want to steal up to the prescribed amount of
1896 * weighted load.
1897 */
1898 if (rem_load_move <= 0)
1899 break;
1900
1901 if (p->prio < *this_best_prio)
1902 *this_best_prio = p->prio;
1903 }
1904 out:
1905 /*
1906 * Right now, this is one of only two places pull_task() is called,
1907 * so we can safely collect pull_task() stats here rather than
1908 * inside pull_task().
1909 */
1910 schedstat_add(sd, lb_gained[idle], pulled);
1911
1912 if (all_pinned)
1913 *all_pinned = pinned;
1914
1915 return max_load_move - rem_load_move;
1916 }
1917
1918 #ifdef CONFIG_FAIR_GROUP_SCHED
1919 static unsigned long
1920 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1921 unsigned long max_load_move,
1922 struct sched_domain *sd, enum cpu_idle_type idle,
1923 int *all_pinned, int *this_best_prio)
1924 {
1925 long rem_load_move = max_load_move;
1926 int busiest_cpu = cpu_of(busiest);
1927 struct task_group *tg;
1928
1929 rcu_read_lock();
1930 update_h_load(busiest_cpu);
1931
1932 list_for_each_entry_rcu(tg, &task_groups, list) {
1933 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1934 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1935 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1936 u64 rem_load, moved_load;
1937
1938 /*
1939 * empty group
1940 */
1941 if (!busiest_cfs_rq->task_weight)
1942 continue;
1943
1944 rem_load = (u64)rem_load_move * busiest_weight;
1945 rem_load = div_u64(rem_load, busiest_h_load + 1);
1946
1947 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1948 rem_load, sd, idle, all_pinned, this_best_prio,
1949 busiest_cfs_rq);
1950
1951 if (!moved_load)
1952 continue;
1953
1954 moved_load *= busiest_h_load;
1955 moved_load = div_u64(moved_load, busiest_weight + 1);
1956
1957 rem_load_move -= moved_load;
1958 if (rem_load_move < 0)
1959 break;
1960 }
1961 rcu_read_unlock();
1962
1963 return max_load_move - rem_load_move;
1964 }
1965 #else
1966 static unsigned long
1967 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1968 unsigned long max_load_move,
1969 struct sched_domain *sd, enum cpu_idle_type idle,
1970 int *all_pinned, int *this_best_prio)
1971 {
1972 return balance_tasks(this_rq, this_cpu, busiest,
1973 max_load_move, sd, idle, all_pinned,
1974 this_best_prio, &busiest->cfs);
1975 }
1976 #endif
1977
1978 /*
1979 * move_tasks tries to move up to max_load_move weighted load from busiest to
1980 * this_rq, as part of a balancing operation within domain "sd".
1981 * Returns 1 if successful and 0 otherwise.
1982 *
1983 * Called with both runqueues locked.
1984 */
1985 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1986 unsigned long max_load_move,
1987 struct sched_domain *sd, enum cpu_idle_type idle,
1988 int *all_pinned)
1989 {
1990 unsigned long total_load_moved = 0, load_moved;
1991 int this_best_prio = this_rq->curr->prio;
1992
1993 do {
1994 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1995 max_load_move - total_load_moved,
1996 sd, idle, all_pinned, &this_best_prio);
1997
1998 total_load_moved += load_moved;
1999
2000 #ifdef CONFIG_PREEMPT
2001 /*
2002 * NEWIDLE balancing is a source of latency, so preemptible
2003 * kernels will stop after the first task is pulled to minimize
2004 * the critical section.
2005 */
2006 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2007 break;
2008
2009 if (raw_spin_is_contended(&this_rq->lock) ||
2010 raw_spin_is_contended(&busiest->lock))
2011 break;
2012 #endif
2013 } while (load_moved && max_load_move > total_load_moved);
2014
2015 return total_load_moved > 0;
2016 }
2017
2018 /********** Helpers for find_busiest_group ************************/
2019 /*
2020 * sd_lb_stats - Structure to store the statistics of a sched_domain
2021 * during load balancing.
2022 */
2023 struct sd_lb_stats {
2024 struct sched_group *busiest; /* Busiest group in this sd */
2025 struct sched_group *this; /* Local group in this sd */
2026 unsigned long total_load; /* Total load of all groups in sd */
2027 unsigned long total_pwr; /* Total power of all groups in sd */
2028 unsigned long avg_load; /* Average load across all groups in sd */
2029
2030 /** Statistics of this group */
2031 unsigned long this_load;
2032 unsigned long this_load_per_task;
2033 unsigned long this_nr_running;
2034
2035 /* Statistics of the busiest group */
2036 unsigned long max_load;
2037 unsigned long busiest_load_per_task;
2038 unsigned long busiest_nr_running;
2039 unsigned long busiest_group_capacity;
2040
2041 int group_imb; /* Is there imbalance in this sd */
2042 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2043 int power_savings_balance; /* Is powersave balance needed for this sd */
2044 struct sched_group *group_min; /* Least loaded group in sd */
2045 struct sched_group *group_leader; /* Group which relieves group_min */
2046 unsigned long min_load_per_task; /* load_per_task in group_min */
2047 unsigned long leader_nr_running; /* Nr running of group_leader */
2048 unsigned long min_nr_running; /* Nr running of group_min */
2049 #endif
2050 };
2051
2052 /*
2053 * sg_lb_stats - stats of a sched_group required for load_balancing
2054 */
2055 struct sg_lb_stats {
2056 unsigned long avg_load; /*Avg load across the CPUs of the group */
2057 unsigned long group_load; /* Total load over the CPUs of the group */
2058 unsigned long sum_nr_running; /* Nr tasks running in the group */
2059 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2060 unsigned long group_capacity;
2061 int group_imb; /* Is there an imbalance in the group ? */
2062 };
2063
2064 /**
2065 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2066 * @group: The group whose first cpu is to be returned.
2067 */
2068 static inline unsigned int group_first_cpu(struct sched_group *group)
2069 {
2070 return cpumask_first(sched_group_cpus(group));
2071 }
2072
2073 /**
2074 * get_sd_load_idx - Obtain the load index for a given sched domain.
2075 * @sd: The sched_domain whose load_idx is to be obtained.
2076 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2077 */
2078 static inline int get_sd_load_idx(struct sched_domain *sd,
2079 enum cpu_idle_type idle)
2080 {
2081 int load_idx;
2082
2083 switch (idle) {
2084 case CPU_NOT_IDLE:
2085 load_idx = sd->busy_idx;
2086 break;
2087
2088 case CPU_NEWLY_IDLE:
2089 load_idx = sd->newidle_idx;
2090 break;
2091 default:
2092 load_idx = sd->idle_idx;
2093 break;
2094 }
2095
2096 return load_idx;
2097 }
2098
2099
2100 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2101 /**
2102 * init_sd_power_savings_stats - Initialize power savings statistics for
2103 * the given sched_domain, during load balancing.
2104 *
2105 * @sd: Sched domain whose power-savings statistics are to be initialized.
2106 * @sds: Variable containing the statistics for sd.
2107 * @idle: Idle status of the CPU at which we're performing load-balancing.
2108 */
2109 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2110 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2111 {
2112 /*
2113 * Busy processors will not participate in power savings
2114 * balance.
2115 */
2116 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2117 sds->power_savings_balance = 0;
2118 else {
2119 sds->power_savings_balance = 1;
2120 sds->min_nr_running = ULONG_MAX;
2121 sds->leader_nr_running = 0;
2122 }
2123 }
2124
2125 /**
2126 * update_sd_power_savings_stats - Update the power saving stats for a
2127 * sched_domain while performing load balancing.
2128 *
2129 * @group: sched_group belonging to the sched_domain under consideration.
2130 * @sds: Variable containing the statistics of the sched_domain
2131 * @local_group: Does group contain the CPU for which we're performing
2132 * load balancing ?
2133 * @sgs: Variable containing the statistics of the group.
2134 */
2135 static inline void update_sd_power_savings_stats(struct sched_group *group,
2136 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2137 {
2138
2139 if (!sds->power_savings_balance)
2140 return;
2141
2142 /*
2143 * If the local group is idle or completely loaded
2144 * no need to do power savings balance at this domain
2145 */
2146 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2147 !sds->this_nr_running))
2148 sds->power_savings_balance = 0;
2149
2150 /*
2151 * If a group is already running at full capacity or idle,
2152 * don't include that group in power savings calculations
2153 */
2154 if (!sds->power_savings_balance ||
2155 sgs->sum_nr_running >= sgs->group_capacity ||
2156 !sgs->sum_nr_running)
2157 return;
2158
2159 /*
2160 * Calculate the group which has the least non-idle load.
2161 * This is the group from where we need to pick up the load
2162 * for saving power
2163 */
2164 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2165 (sgs->sum_nr_running == sds->min_nr_running &&
2166 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2167 sds->group_min = group;
2168 sds->min_nr_running = sgs->sum_nr_running;
2169 sds->min_load_per_task = sgs->sum_weighted_load /
2170 sgs->sum_nr_running;
2171 }
2172
2173 /*
2174 * Calculate the group which is almost near its
2175 * capacity but still has some space to pick up some load
2176 * from other group and save more power
2177 */
2178 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2179 return;
2180
2181 if (sgs->sum_nr_running > sds->leader_nr_running ||
2182 (sgs->sum_nr_running == sds->leader_nr_running &&
2183 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2184 sds->group_leader = group;
2185 sds->leader_nr_running = sgs->sum_nr_running;
2186 }
2187 }
2188
2189 /**
2190 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2191 * @sds: Variable containing the statistics of the sched_domain
2192 * under consideration.
2193 * @this_cpu: Cpu at which we're currently performing load-balancing.
2194 * @imbalance: Variable to store the imbalance.
2195 *
2196 * Description:
2197 * Check if we have potential to perform some power-savings balance.
2198 * If yes, set the busiest group to be the least loaded group in the
2199 * sched_domain, so that it's CPUs can be put to idle.
2200 *
2201 * Returns 1 if there is potential to perform power-savings balance.
2202 * Else returns 0.
2203 */
2204 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2205 int this_cpu, unsigned long *imbalance)
2206 {
2207 if (!sds->power_savings_balance)
2208 return 0;
2209
2210 if (sds->this != sds->group_leader ||
2211 sds->group_leader == sds->group_min)
2212 return 0;
2213
2214 *imbalance = sds->min_load_per_task;
2215 sds->busiest = sds->group_min;
2216
2217 return 1;
2218
2219 }
2220 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2221 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2222 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2223 {
2224 return;
2225 }
2226
2227 static inline void update_sd_power_savings_stats(struct sched_group *group,
2228 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2229 {
2230 return;
2231 }
2232
2233 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2234 int this_cpu, unsigned long *imbalance)
2235 {
2236 return 0;
2237 }
2238 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2239
2240
2241 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2242 {
2243 return SCHED_LOAD_SCALE;
2244 }
2245
2246 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2247 {
2248 return default_scale_freq_power(sd, cpu);
2249 }
2250
2251 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2252 {
2253 unsigned long weight = sd->span_weight;
2254 unsigned long smt_gain = sd->smt_gain;
2255
2256 smt_gain /= weight;
2257
2258 return smt_gain;
2259 }
2260
2261 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2262 {
2263 return default_scale_smt_power(sd, cpu);
2264 }
2265
2266 unsigned long scale_rt_power(int cpu)
2267 {
2268 struct rq *rq = cpu_rq(cpu);
2269 u64 total, available;
2270
2271 sched_avg_update(rq);
2272
2273 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2274 available = total - rq->rt_avg;
2275
2276 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2277 total = SCHED_LOAD_SCALE;
2278
2279 total >>= SCHED_LOAD_SHIFT;
2280
2281 return div_u64(available, total);
2282 }
2283
2284 static void update_cpu_power(struct sched_domain *sd, int cpu)
2285 {
2286 unsigned long weight = sd->span_weight;
2287 unsigned long power = SCHED_LOAD_SCALE;
2288 struct sched_group *sdg = sd->groups;
2289
2290 if (sched_feat(ARCH_POWER))
2291 power *= arch_scale_freq_power(sd, cpu);
2292 else
2293 power *= default_scale_freq_power(sd, cpu);
2294
2295 power >>= SCHED_LOAD_SHIFT;
2296
2297 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2298 if (sched_feat(ARCH_POWER))
2299 power *= arch_scale_smt_power(sd, cpu);
2300 else
2301 power *= default_scale_smt_power(sd, cpu);
2302
2303 power >>= SCHED_LOAD_SHIFT;
2304 }
2305
2306 power *= scale_rt_power(cpu);
2307 power >>= SCHED_LOAD_SHIFT;
2308
2309 if (!power)
2310 power = 1;
2311
2312 cpu_rq(cpu)->cpu_power = power;
2313 sdg->cpu_power = power;
2314 }
2315
2316 static void update_group_power(struct sched_domain *sd, int cpu)
2317 {
2318 struct sched_domain *child = sd->child;
2319 struct sched_group *group, *sdg = sd->groups;
2320 unsigned long power;
2321
2322 if (!child) {
2323 update_cpu_power(sd, cpu);
2324 return;
2325 }
2326
2327 power = 0;
2328
2329 group = child->groups;
2330 do {
2331 power += group->cpu_power;
2332 group = group->next;
2333 } while (group != child->groups);
2334
2335 sdg->cpu_power = power;
2336 }
2337
2338 /**
2339 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2340 * @sd: The sched_domain whose statistics are to be updated.
2341 * @group: sched_group whose statistics are to be updated.
2342 * @this_cpu: Cpu for which load balance is currently performed.
2343 * @idle: Idle status of this_cpu
2344 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2345 * @sd_idle: Idle status of the sched_domain containing group.
2346 * @local_group: Does group contain this_cpu.
2347 * @cpus: Set of cpus considered for load balancing.
2348 * @balance: Should we balance.
2349 * @sgs: variable to hold the statistics for this group.
2350 */
2351 static inline void update_sg_lb_stats(struct sched_domain *sd,
2352 struct sched_group *group, int this_cpu,
2353 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2354 int local_group, const struct cpumask *cpus,
2355 int *balance, struct sg_lb_stats *sgs)
2356 {
2357 unsigned long load, max_cpu_load, min_cpu_load;
2358 int i;
2359 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2360 unsigned long avg_load_per_task = 0;
2361
2362 if (local_group)
2363 balance_cpu = group_first_cpu(group);
2364
2365 /* Tally up the load of all CPUs in the group */
2366 max_cpu_load = 0;
2367 min_cpu_load = ~0UL;
2368
2369 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2370 struct rq *rq = cpu_rq(i);
2371
2372 if (*sd_idle && rq->nr_running)
2373 *sd_idle = 0;
2374
2375 /* Bias balancing toward cpus of our domain */
2376 if (local_group) {
2377 if (idle_cpu(i) && !first_idle_cpu) {
2378 first_idle_cpu = 1;
2379 balance_cpu = i;
2380 }
2381
2382 load = target_load(i, load_idx);
2383 } else {
2384 load = source_load(i, load_idx);
2385 if (load > max_cpu_load)
2386 max_cpu_load = load;
2387 if (min_cpu_load > load)
2388 min_cpu_load = load;
2389 }
2390
2391 sgs->group_load += load;
2392 sgs->sum_nr_running += rq->nr_running;
2393 sgs->sum_weighted_load += weighted_cpuload(i);
2394
2395 }
2396
2397 /*
2398 * First idle cpu or the first cpu(busiest) in this sched group
2399 * is eligible for doing load balancing at this and above
2400 * domains. In the newly idle case, we will allow all the cpu's
2401 * to do the newly idle load balance.
2402 */
2403 if (idle != CPU_NEWLY_IDLE && local_group &&
2404 balance_cpu != this_cpu) {
2405 *balance = 0;
2406 return;
2407 }
2408
2409 update_group_power(sd, this_cpu);
2410
2411 /* Adjust by relative CPU power of the group */
2412 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2413
2414 /*
2415 * Consider the group unbalanced when the imbalance is larger
2416 * than the average weight of two tasks.
2417 *
2418 * APZ: with cgroup the avg task weight can vary wildly and
2419 * might not be a suitable number - should we keep a
2420 * normalized nr_running number somewhere that negates
2421 * the hierarchy?
2422 */
2423 if (sgs->sum_nr_running)
2424 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2425
2426 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2427 sgs->group_imb = 1;
2428
2429 sgs->group_capacity =
2430 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2431 }
2432
2433 /**
2434 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2435 * @sd: sched_domain whose statistics are to be updated.
2436 * @this_cpu: Cpu for which load balance is currently performed.
2437 * @idle: Idle status of this_cpu
2438 * @sd_idle: Idle status of the sched_domain containing group.
2439 * @cpus: Set of cpus considered for load balancing.
2440 * @balance: Should we balance.
2441 * @sds: variable to hold the statistics for this sched_domain.
2442 */
2443 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2444 enum cpu_idle_type idle, int *sd_idle,
2445 const struct cpumask *cpus, int *balance,
2446 struct sd_lb_stats *sds)
2447 {
2448 struct sched_domain *child = sd->child;
2449 struct sched_group *group = sd->groups;
2450 struct sg_lb_stats sgs;
2451 int load_idx, prefer_sibling = 0;
2452
2453 if (child && child->flags & SD_PREFER_SIBLING)
2454 prefer_sibling = 1;
2455
2456 init_sd_power_savings_stats(sd, sds, idle);
2457 load_idx = get_sd_load_idx(sd, idle);
2458
2459 do {
2460 int local_group;
2461
2462 local_group = cpumask_test_cpu(this_cpu,
2463 sched_group_cpus(group));
2464 memset(&sgs, 0, sizeof(sgs));
2465 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2466 local_group, cpus, balance, &sgs);
2467
2468 if (local_group && !(*balance))
2469 return;
2470
2471 sds->total_load += sgs.group_load;
2472 sds->total_pwr += group->cpu_power;
2473
2474 /*
2475 * In case the child domain prefers tasks go to siblings
2476 * first, lower the group capacity to one so that we'll try
2477 * and move all the excess tasks away.
2478 */
2479 if (prefer_sibling)
2480 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2481
2482 if (local_group) {
2483 sds->this_load = sgs.avg_load;
2484 sds->this = group;
2485 sds->this_nr_running = sgs.sum_nr_running;
2486 sds->this_load_per_task = sgs.sum_weighted_load;
2487 } else if (sgs.avg_load > sds->max_load &&
2488 (sgs.sum_nr_running > sgs.group_capacity ||
2489 sgs.group_imb)) {
2490 sds->max_load = sgs.avg_load;
2491 sds->busiest = group;
2492 sds->busiest_nr_running = sgs.sum_nr_running;
2493 sds->busiest_group_capacity = sgs.group_capacity;
2494 sds->busiest_load_per_task = sgs.sum_weighted_load;
2495 sds->group_imb = sgs.group_imb;
2496 }
2497
2498 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2499 group = group->next;
2500 } while (group != sd->groups);
2501 }
2502
2503 /**
2504 * fix_small_imbalance - Calculate the minor imbalance that exists
2505 * amongst the groups of a sched_domain, during
2506 * load balancing.
2507 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2508 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2509 * @imbalance: Variable to store the imbalance.
2510 */
2511 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2512 int this_cpu, unsigned long *imbalance)
2513 {
2514 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2515 unsigned int imbn = 2;
2516 unsigned long scaled_busy_load_per_task;
2517
2518 if (sds->this_nr_running) {
2519 sds->this_load_per_task /= sds->this_nr_running;
2520 if (sds->busiest_load_per_task >
2521 sds->this_load_per_task)
2522 imbn = 1;
2523 } else
2524 sds->this_load_per_task =
2525 cpu_avg_load_per_task(this_cpu);
2526
2527 scaled_busy_load_per_task = sds->busiest_load_per_task
2528 * SCHED_LOAD_SCALE;
2529 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2530
2531 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2532 (scaled_busy_load_per_task * imbn)) {
2533 *imbalance = sds->busiest_load_per_task;
2534 return;
2535 }
2536
2537 /*
2538 * OK, we don't have enough imbalance to justify moving tasks,
2539 * however we may be able to increase total CPU power used by
2540 * moving them.
2541 */
2542
2543 pwr_now += sds->busiest->cpu_power *
2544 min(sds->busiest_load_per_task, sds->max_load);
2545 pwr_now += sds->this->cpu_power *
2546 min(sds->this_load_per_task, sds->this_load);
2547 pwr_now /= SCHED_LOAD_SCALE;
2548
2549 /* Amount of load we'd subtract */
2550 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2551 sds->busiest->cpu_power;
2552 if (sds->max_load > tmp)
2553 pwr_move += sds->busiest->cpu_power *
2554 min(sds->busiest_load_per_task, sds->max_load - tmp);
2555
2556 /* Amount of load we'd add */
2557 if (sds->max_load * sds->busiest->cpu_power <
2558 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2559 tmp = (sds->max_load * sds->busiest->cpu_power) /
2560 sds->this->cpu_power;
2561 else
2562 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2563 sds->this->cpu_power;
2564 pwr_move += sds->this->cpu_power *
2565 min(sds->this_load_per_task, sds->this_load + tmp);
2566 pwr_move /= SCHED_LOAD_SCALE;
2567
2568 /* Move if we gain throughput */
2569 if (pwr_move > pwr_now)
2570 *imbalance = sds->busiest_load_per_task;
2571 }
2572
2573 /**
2574 * calculate_imbalance - Calculate the amount of imbalance present within the
2575 * groups of a given sched_domain during load balance.
2576 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2577 * @this_cpu: Cpu for which currently load balance is being performed.
2578 * @imbalance: The variable to store the imbalance.
2579 */
2580 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2581 unsigned long *imbalance)
2582 {
2583 unsigned long max_pull, load_above_capacity = ~0UL;
2584
2585 sds->busiest_load_per_task /= sds->busiest_nr_running;
2586 if (sds->group_imb) {
2587 sds->busiest_load_per_task =
2588 min(sds->busiest_load_per_task, sds->avg_load);
2589 }
2590
2591 /*
2592 * In the presence of smp nice balancing, certain scenarios can have
2593 * max load less than avg load(as we skip the groups at or below
2594 * its cpu_power, while calculating max_load..)
2595 */
2596 if (sds->max_load < sds->avg_load) {
2597 *imbalance = 0;
2598 return fix_small_imbalance(sds, this_cpu, imbalance);
2599 }
2600
2601 if (!sds->group_imb) {
2602 /*
2603 * Don't want to pull so many tasks that a group would go idle.
2604 */
2605 load_above_capacity = (sds->busiest_nr_running -
2606 sds->busiest_group_capacity);
2607
2608 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2609
2610 load_above_capacity /= sds->busiest->cpu_power;
2611 }
2612
2613 /*
2614 * We're trying to get all the cpus to the average_load, so we don't
2615 * want to push ourselves above the average load, nor do we wish to
2616 * reduce the max loaded cpu below the average load. At the same time,
2617 * we also don't want to reduce the group load below the group capacity
2618 * (so that we can implement power-savings policies etc). Thus we look
2619 * for the minimum possible imbalance.
2620 * Be careful of negative numbers as they'll appear as very large values
2621 * with unsigned longs.
2622 */
2623 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2624
2625 /* How much load to actually move to equalise the imbalance */
2626 *imbalance = min(max_pull * sds->busiest->cpu_power,
2627 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2628 / SCHED_LOAD_SCALE;
2629
2630 /*
2631 * if *imbalance is less than the average load per runnable task
2632 * there is no gaurantee that any tasks will be moved so we'll have
2633 * a think about bumping its value to force at least one task to be
2634 * moved
2635 */
2636 if (*imbalance < sds->busiest_load_per_task)
2637 return fix_small_imbalance(sds, this_cpu, imbalance);
2638
2639 }
2640 /******* find_busiest_group() helpers end here *********************/
2641
2642 /**
2643 * find_busiest_group - Returns the busiest group within the sched_domain
2644 * if there is an imbalance. If there isn't an imbalance, and
2645 * the user has opted for power-savings, it returns a group whose
2646 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2647 * such a group exists.
2648 *
2649 * Also calculates the amount of weighted load which should be moved
2650 * to restore balance.
2651 *
2652 * @sd: The sched_domain whose busiest group is to be returned.
2653 * @this_cpu: The cpu for which load balancing is currently being performed.
2654 * @imbalance: Variable which stores amount of weighted load which should
2655 * be moved to restore balance/put a group to idle.
2656 * @idle: The idle status of this_cpu.
2657 * @sd_idle: The idleness of sd
2658 * @cpus: The set of CPUs under consideration for load-balancing.
2659 * @balance: Pointer to a variable indicating if this_cpu
2660 * is the appropriate cpu to perform load balancing at this_level.
2661 *
2662 * Returns: - the busiest group if imbalance exists.
2663 * - If no imbalance and user has opted for power-savings balance,
2664 * return the least loaded group whose CPUs can be
2665 * put to idle by rebalancing its tasks onto our group.
2666 */
2667 static struct sched_group *
2668 find_busiest_group(struct sched_domain *sd, int this_cpu,
2669 unsigned long *imbalance, enum cpu_idle_type idle,
2670 int *sd_idle, const struct cpumask *cpus, int *balance)
2671 {
2672 struct sd_lb_stats sds;
2673
2674 memset(&sds, 0, sizeof(sds));
2675
2676 /*
2677 * Compute the various statistics relavent for load balancing at
2678 * this level.
2679 */
2680 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2681 balance, &sds);
2682
2683 /* Cases where imbalance does not exist from POV of this_cpu */
2684 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2685 * at this level.
2686 * 2) There is no busy sibling group to pull from.
2687 * 3) This group is the busiest group.
2688 * 4) This group is more busy than the avg busieness at this
2689 * sched_domain.
2690 * 5) The imbalance is within the specified limit.
2691 */
2692 if (!(*balance))
2693 goto ret;
2694
2695 if (!sds.busiest || sds.busiest_nr_running == 0)
2696 goto out_balanced;
2697
2698 if (sds.this_load >= sds.max_load)
2699 goto out_balanced;
2700
2701 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2702
2703 if (sds.this_load >= sds.avg_load)
2704 goto out_balanced;
2705
2706 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2707 goto out_balanced;
2708
2709 /* Looks like there is an imbalance. Compute it */
2710 calculate_imbalance(&sds, this_cpu, imbalance);
2711 return sds.busiest;
2712
2713 out_balanced:
2714 /*
2715 * There is no obvious imbalance. But check if we can do some balancing
2716 * to save power.
2717 */
2718 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2719 return sds.busiest;
2720 ret:
2721 *imbalance = 0;
2722 return NULL;
2723 }
2724
2725 /*
2726 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2727 */
2728 static struct rq *
2729 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2730 unsigned long imbalance, const struct cpumask *cpus)
2731 {
2732 struct rq *busiest = NULL, *rq;
2733 unsigned long max_load = 0;
2734 int i;
2735
2736 for_each_cpu(i, sched_group_cpus(group)) {
2737 unsigned long power = power_of(i);
2738 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2739 unsigned long wl;
2740
2741 if (!cpumask_test_cpu(i, cpus))
2742 continue;
2743
2744 rq = cpu_rq(i);
2745 wl = weighted_cpuload(i);
2746
2747 /*
2748 * When comparing with imbalance, use weighted_cpuload()
2749 * which is not scaled with the cpu power.
2750 */
2751 if (capacity && rq->nr_running == 1 && wl > imbalance)
2752 continue;
2753
2754 /*
2755 * For the load comparisons with the other cpu's, consider
2756 * the weighted_cpuload() scaled with the cpu power, so that
2757 * the load can be moved away from the cpu that is potentially
2758 * running at a lower capacity.
2759 */
2760 wl = (wl * SCHED_LOAD_SCALE) / power;
2761
2762 if (wl > max_load) {
2763 max_load = wl;
2764 busiest = rq;
2765 }
2766 }
2767
2768 return busiest;
2769 }
2770
2771 /*
2772 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2773 * so long as it is large enough.
2774 */
2775 #define MAX_PINNED_INTERVAL 512
2776
2777 /* Working cpumask for load_balance and load_balance_newidle. */
2778 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2779
2780 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2781 {
2782 if (idle == CPU_NEWLY_IDLE) {
2783 /*
2784 * The only task running in a non-idle cpu can be moved to this
2785 * cpu in an attempt to completely freeup the other CPU
2786 * package.
2787 *
2788 * The package power saving logic comes from
2789 * find_busiest_group(). If there are no imbalance, then
2790 * f_b_g() will return NULL. However when sched_mc={1,2} then
2791 * f_b_g() will select a group from which a running task may be
2792 * pulled to this cpu in order to make the other package idle.
2793 * If there is no opportunity to make a package idle and if
2794 * there are no imbalance, then f_b_g() will return NULL and no
2795 * action will be taken in load_balance_newidle().
2796 *
2797 * Under normal task pull operation due to imbalance, there
2798 * will be more than one task in the source run queue and
2799 * move_tasks() will succeed. ld_moved will be true and this
2800 * active balance code will not be triggered.
2801 */
2802 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2803 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2804 return 0;
2805
2806 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2807 return 0;
2808 }
2809
2810 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2811 }
2812
2813 static int active_load_balance_cpu_stop(void *data);
2814
2815 /*
2816 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2817 * tasks if there is an imbalance.
2818 */
2819 static int load_balance(int this_cpu, struct rq *this_rq,
2820 struct sched_domain *sd, enum cpu_idle_type idle,
2821 int *balance)
2822 {
2823 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2824 struct sched_group *group;
2825 unsigned long imbalance;
2826 struct rq *busiest;
2827 unsigned long flags;
2828 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2829
2830 cpumask_copy(cpus, cpu_active_mask);
2831
2832 /*
2833 * When power savings policy is enabled for the parent domain, idle
2834 * sibling can pick up load irrespective of busy siblings. In this case,
2835 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2836 * portraying it as CPU_NOT_IDLE.
2837 */
2838 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2839 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2840 sd_idle = 1;
2841
2842 schedstat_inc(sd, lb_count[idle]);
2843
2844 redo:
2845 update_shares(sd);
2846 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2847 cpus, balance);
2848
2849 if (*balance == 0)
2850 goto out_balanced;
2851
2852 if (!group) {
2853 schedstat_inc(sd, lb_nobusyg[idle]);
2854 goto out_balanced;
2855 }
2856
2857 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2858 if (!busiest) {
2859 schedstat_inc(sd, lb_nobusyq[idle]);
2860 goto out_balanced;
2861 }
2862
2863 BUG_ON(busiest == this_rq);
2864
2865 schedstat_add(sd, lb_imbalance[idle], imbalance);
2866
2867 ld_moved = 0;
2868 if (busiest->nr_running > 1) {
2869 /*
2870 * Attempt to move tasks. If find_busiest_group has found
2871 * an imbalance but busiest->nr_running <= 1, the group is
2872 * still unbalanced. ld_moved simply stays zero, so it is
2873 * correctly treated as an imbalance.
2874 */
2875 local_irq_save(flags);
2876 double_rq_lock(this_rq, busiest);
2877 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2878 imbalance, sd, idle, &all_pinned);
2879 double_rq_unlock(this_rq, busiest);
2880 local_irq_restore(flags);
2881
2882 /*
2883 * some other cpu did the load balance for us.
2884 */
2885 if (ld_moved && this_cpu != smp_processor_id())
2886 resched_cpu(this_cpu);
2887
2888 /* All tasks on this runqueue were pinned by CPU affinity */
2889 if (unlikely(all_pinned)) {
2890 cpumask_clear_cpu(cpu_of(busiest), cpus);
2891 if (!cpumask_empty(cpus))
2892 goto redo;
2893 goto out_balanced;
2894 }
2895 }
2896
2897 if (!ld_moved) {
2898 schedstat_inc(sd, lb_failed[idle]);
2899 sd->nr_balance_failed++;
2900
2901 if (need_active_balance(sd, sd_idle, idle)) {
2902 raw_spin_lock_irqsave(&busiest->lock, flags);
2903
2904 /* don't kick the active_load_balance_cpu_stop,
2905 * if the curr task on busiest cpu can't be
2906 * moved to this_cpu
2907 */
2908 if (!cpumask_test_cpu(this_cpu,
2909 &busiest->curr->cpus_allowed)) {
2910 raw_spin_unlock_irqrestore(&busiest->lock,
2911 flags);
2912 all_pinned = 1;
2913 goto out_one_pinned;
2914 }
2915
2916 /*
2917 * ->active_balance synchronizes accesses to
2918 * ->active_balance_work. Once set, it's cleared
2919 * only after active load balance is finished.
2920 */
2921 if (!busiest->active_balance) {
2922 busiest->active_balance = 1;
2923 busiest->push_cpu = this_cpu;
2924 active_balance = 1;
2925 }
2926 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2927
2928 if (active_balance)
2929 stop_one_cpu_nowait(cpu_of(busiest),
2930 active_load_balance_cpu_stop, busiest,
2931 &busiest->active_balance_work);
2932
2933 /*
2934 * We've kicked active balancing, reset the failure
2935 * counter.
2936 */
2937 sd->nr_balance_failed = sd->cache_nice_tries+1;
2938 }
2939 } else
2940 sd->nr_balance_failed = 0;
2941
2942 if (likely(!active_balance)) {
2943 /* We were unbalanced, so reset the balancing interval */
2944 sd->balance_interval = sd->min_interval;
2945 } else {
2946 /*
2947 * If we've begun active balancing, start to back off. This
2948 * case may not be covered by the all_pinned logic if there
2949 * is only 1 task on the busy runqueue (because we don't call
2950 * move_tasks).
2951 */
2952 if (sd->balance_interval < sd->max_interval)
2953 sd->balance_interval *= 2;
2954 }
2955
2956 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2957 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2958 ld_moved = -1;
2959
2960 goto out;
2961
2962 out_balanced:
2963 schedstat_inc(sd, lb_balanced[idle]);
2964
2965 sd->nr_balance_failed = 0;
2966
2967 out_one_pinned:
2968 /* tune up the balancing interval */
2969 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2970 (sd->balance_interval < sd->max_interval))
2971 sd->balance_interval *= 2;
2972
2973 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2974 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2975 ld_moved = -1;
2976 else
2977 ld_moved = 0;
2978 out:
2979 if (ld_moved)
2980 update_shares(sd);
2981 return ld_moved;
2982 }
2983
2984 /*
2985 * idle_balance is called by schedule() if this_cpu is about to become
2986 * idle. Attempts to pull tasks from other CPUs.
2987 */
2988 static void idle_balance(int this_cpu, struct rq *this_rq)
2989 {
2990 struct sched_domain *sd;
2991 int pulled_task = 0;
2992 unsigned long next_balance = jiffies + HZ;
2993
2994 this_rq->idle_stamp = this_rq->clock;
2995
2996 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2997 return;
2998
2999 /*
3000 * Drop the rq->lock, but keep IRQ/preempt disabled.
3001 */
3002 raw_spin_unlock(&this_rq->lock);
3003
3004 for_each_domain(this_cpu, sd) {
3005 unsigned long interval;
3006 int balance = 1;
3007
3008 if (!(sd->flags & SD_LOAD_BALANCE))
3009 continue;
3010
3011 if (sd->flags & SD_BALANCE_NEWIDLE) {
3012 /* If we've pulled tasks over stop searching: */
3013 pulled_task = load_balance(this_cpu, this_rq,
3014 sd, CPU_NEWLY_IDLE, &balance);
3015 }
3016
3017 interval = msecs_to_jiffies(sd->balance_interval);
3018 if (time_after(next_balance, sd->last_balance + interval))
3019 next_balance = sd->last_balance + interval;
3020 if (pulled_task) {
3021 this_rq->idle_stamp = 0;
3022 break;
3023 }
3024 }
3025
3026 raw_spin_lock(&this_rq->lock);
3027
3028 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3029 /*
3030 * We are going idle. next_balance may be set based on
3031 * a busy processor. So reset next_balance.
3032 */
3033 this_rq->next_balance = next_balance;
3034 }
3035 }
3036
3037 /*
3038 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3039 * running tasks off the busiest CPU onto idle CPUs. It requires at
3040 * least 1 task to be running on each physical CPU where possible, and
3041 * avoids physical / logical imbalances.
3042 */
3043 static int active_load_balance_cpu_stop(void *data)
3044 {
3045 struct rq *busiest_rq = data;
3046 int busiest_cpu = cpu_of(busiest_rq);
3047 int target_cpu = busiest_rq->push_cpu;
3048 struct rq *target_rq = cpu_rq(target_cpu);
3049 struct sched_domain *sd;
3050
3051 raw_spin_lock_irq(&busiest_rq->lock);
3052
3053 /* make sure the requested cpu hasn't gone down in the meantime */
3054 if (unlikely(busiest_cpu != smp_processor_id() ||
3055 !busiest_rq->active_balance))
3056 goto out_unlock;
3057
3058 /* Is there any task to move? */
3059 if (busiest_rq->nr_running <= 1)
3060 goto out_unlock;
3061
3062 /*
3063 * This condition is "impossible", if it occurs
3064 * we need to fix it. Originally reported by
3065 * Bjorn Helgaas on a 128-cpu setup.
3066 */
3067 BUG_ON(busiest_rq == target_rq);
3068
3069 /* move a task from busiest_rq to target_rq */
3070 double_lock_balance(busiest_rq, target_rq);
3071
3072 /* Search for an sd spanning us and the target CPU. */
3073 for_each_domain(target_cpu, sd) {
3074 if ((sd->flags & SD_LOAD_BALANCE) &&
3075 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3076 break;
3077 }
3078
3079 if (likely(sd)) {
3080 schedstat_inc(sd, alb_count);
3081
3082 if (move_one_task(target_rq, target_cpu, busiest_rq,
3083 sd, CPU_IDLE))
3084 schedstat_inc(sd, alb_pushed);
3085 else
3086 schedstat_inc(sd, alb_failed);
3087 }
3088 double_unlock_balance(busiest_rq, target_rq);
3089 out_unlock:
3090 busiest_rq->active_balance = 0;
3091 raw_spin_unlock_irq(&busiest_rq->lock);
3092 return 0;
3093 }
3094
3095 #ifdef CONFIG_NO_HZ
3096 static struct {
3097 atomic_t load_balancer;
3098 cpumask_var_t cpu_mask;
3099 cpumask_var_t ilb_grp_nohz_mask;
3100 } nohz ____cacheline_aligned = {
3101 .load_balancer = ATOMIC_INIT(-1),
3102 };
3103
3104 int get_nohz_load_balancer(void)
3105 {
3106 return atomic_read(&nohz.load_balancer);
3107 }
3108
3109 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3110 /**
3111 * lowest_flag_domain - Return lowest sched_domain containing flag.
3112 * @cpu: The cpu whose lowest level of sched domain is to
3113 * be returned.
3114 * @flag: The flag to check for the lowest sched_domain
3115 * for the given cpu.
3116 *
3117 * Returns the lowest sched_domain of a cpu which contains the given flag.
3118 */
3119 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3120 {
3121 struct sched_domain *sd;
3122
3123 for_each_domain(cpu, sd)
3124 if (sd && (sd->flags & flag))
3125 break;
3126
3127 return sd;
3128 }
3129
3130 /**
3131 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3132 * @cpu: The cpu whose domains we're iterating over.
3133 * @sd: variable holding the value of the power_savings_sd
3134 * for cpu.
3135 * @flag: The flag to filter the sched_domains to be iterated.
3136 *
3137 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3138 * set, starting from the lowest sched_domain to the highest.
3139 */
3140 #define for_each_flag_domain(cpu, sd, flag) \
3141 for (sd = lowest_flag_domain(cpu, flag); \
3142 (sd && (sd->flags & flag)); sd = sd->parent)
3143
3144 /**
3145 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3146 * @ilb_group: group to be checked for semi-idleness
3147 *
3148 * Returns: 1 if the group is semi-idle. 0 otherwise.
3149 *
3150 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3151 * and atleast one non-idle CPU. This helper function checks if the given
3152 * sched_group is semi-idle or not.
3153 */
3154 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3155 {
3156 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3157 sched_group_cpus(ilb_group));
3158
3159 /*
3160 * A sched_group is semi-idle when it has atleast one busy cpu
3161 * and atleast one idle cpu.
3162 */
3163 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3164 return 0;
3165
3166 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3167 return 0;
3168
3169 return 1;
3170 }
3171 /**
3172 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3173 * @cpu: The cpu which is nominating a new idle_load_balancer.
3174 *
3175 * Returns: Returns the id of the idle load balancer if it exists,
3176 * Else, returns >= nr_cpu_ids.
3177 *
3178 * This algorithm picks the idle load balancer such that it belongs to a
3179 * semi-idle powersavings sched_domain. The idea is to try and avoid
3180 * completely idle packages/cores just for the purpose of idle load balancing
3181 * when there are other idle cpu's which are better suited for that job.
3182 */
3183 static int find_new_ilb(int cpu)
3184 {
3185 struct sched_domain *sd;
3186 struct sched_group *ilb_group;
3187
3188 /*
3189 * Have idle load balancer selection from semi-idle packages only
3190 * when power-aware load balancing is enabled
3191 */
3192 if (!(sched_smt_power_savings || sched_mc_power_savings))
3193 goto out_done;
3194
3195 /*
3196 * Optimize for the case when we have no idle CPUs or only one
3197 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3198 */
3199 if (cpumask_weight(nohz.cpu_mask) < 2)
3200 goto out_done;
3201
3202 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3203 ilb_group = sd->groups;
3204
3205 do {
3206 if (is_semi_idle_group(ilb_group))
3207 return cpumask_first(nohz.ilb_grp_nohz_mask);
3208
3209 ilb_group = ilb_group->next;
3210
3211 } while (ilb_group != sd->groups);
3212 }
3213
3214 out_done:
3215 return cpumask_first(nohz.cpu_mask);
3216 }
3217 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3218 static inline int find_new_ilb(int call_cpu)
3219 {
3220 return cpumask_first(nohz.cpu_mask);
3221 }
3222 #endif
3223
3224 /*
3225 * This routine will try to nominate the ilb (idle load balancing)
3226 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3227 * load balancing on behalf of all those cpus. If all the cpus in the system
3228 * go into this tickless mode, then there will be no ilb owner (as there is
3229 * no need for one) and all the cpus will sleep till the next wakeup event
3230 * arrives...
3231 *
3232 * For the ilb owner, tick is not stopped. And this tick will be used
3233 * for idle load balancing. ilb owner will still be part of
3234 * nohz.cpu_mask..
3235 *
3236 * While stopping the tick, this cpu will become the ilb owner if there
3237 * is no other owner. And will be the owner till that cpu becomes busy
3238 * or if all cpus in the system stop their ticks at which point
3239 * there is no need for ilb owner.
3240 *
3241 * When the ilb owner becomes busy, it nominates another owner, during the
3242 * next busy scheduler_tick()
3243 */
3244 int select_nohz_load_balancer(int stop_tick)
3245 {
3246 int cpu = smp_processor_id();
3247
3248 if (stop_tick) {
3249 cpu_rq(cpu)->in_nohz_recently = 1;
3250
3251 if (!cpu_active(cpu)) {
3252 if (atomic_read(&nohz.load_balancer) != cpu)
3253 return 0;
3254
3255 /*
3256 * If we are going offline and still the leader,
3257 * give up!
3258 */
3259 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3260 BUG();
3261
3262 return 0;
3263 }
3264
3265 cpumask_set_cpu(cpu, nohz.cpu_mask);
3266
3267 /* time for ilb owner also to sleep */
3268 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3269 if (atomic_read(&nohz.load_balancer) == cpu)
3270 atomic_set(&nohz.load_balancer, -1);
3271 return 0;
3272 }
3273
3274 if (atomic_read(&nohz.load_balancer) == -1) {
3275 /* make me the ilb owner */
3276 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3277 return 1;
3278 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3279 int new_ilb;
3280
3281 if (!(sched_smt_power_savings ||
3282 sched_mc_power_savings))
3283 return 1;
3284 /*
3285 * Check to see if there is a more power-efficient
3286 * ilb.
3287 */
3288 new_ilb = find_new_ilb(cpu);
3289 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3290 atomic_set(&nohz.load_balancer, -1);
3291 resched_cpu(new_ilb);
3292 return 0;
3293 }
3294 return 1;
3295 }
3296 } else {
3297 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3298 return 0;
3299
3300 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3301
3302 if (atomic_read(&nohz.load_balancer) == cpu)
3303 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3304 BUG();
3305 }
3306 return 0;
3307 }
3308 #endif
3309
3310 static DEFINE_SPINLOCK(balancing);
3311
3312 /*
3313 * It checks each scheduling domain to see if it is due to be balanced,
3314 * and initiates a balancing operation if so.
3315 *
3316 * Balancing parameters are set up in arch_init_sched_domains.
3317 */
3318 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3319 {
3320 int balance = 1;
3321 struct rq *rq = cpu_rq(cpu);
3322 unsigned long interval;
3323 struct sched_domain *sd;
3324 /* Earliest time when we have to do rebalance again */
3325 unsigned long next_balance = jiffies + 60*HZ;
3326 int update_next_balance = 0;
3327 int need_serialize;
3328
3329 for_each_domain(cpu, sd) {
3330 if (!(sd->flags & SD_LOAD_BALANCE))
3331 continue;
3332
3333 interval = sd->balance_interval;
3334 if (idle != CPU_IDLE)
3335 interval *= sd->busy_factor;
3336
3337 /* scale ms to jiffies */
3338 interval = msecs_to_jiffies(interval);
3339 if (unlikely(!interval))
3340 interval = 1;
3341 if (interval > HZ*NR_CPUS/10)
3342 interval = HZ*NR_CPUS/10;
3343
3344 need_serialize = sd->flags & SD_SERIALIZE;
3345
3346 if (need_serialize) {
3347 if (!spin_trylock(&balancing))
3348 goto out;
3349 }
3350
3351 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3352 if (load_balance(cpu, rq, sd, idle, &balance)) {
3353 /*
3354 * We've pulled tasks over so either we're no
3355 * longer idle, or one of our SMT siblings is
3356 * not idle.
3357 */
3358 idle = CPU_NOT_IDLE;
3359 }
3360 sd->last_balance = jiffies;
3361 }
3362 if (need_serialize)
3363 spin_unlock(&balancing);
3364 out:
3365 if (time_after(next_balance, sd->last_balance + interval)) {
3366 next_balance = sd->last_balance + interval;
3367 update_next_balance = 1;
3368 }
3369
3370 /*
3371 * Stop the load balance at this level. There is another
3372 * CPU in our sched group which is doing load balancing more
3373 * actively.
3374 */
3375 if (!balance)
3376 break;
3377 }
3378
3379 /*
3380 * next_balance will be updated only when there is a need.
3381 * When the cpu is attached to null domain for ex, it will not be
3382 * updated.
3383 */
3384 if (likely(update_next_balance))
3385 rq->next_balance = next_balance;
3386 }
3387
3388 /*
3389 * run_rebalance_domains is triggered when needed from the scheduler tick.
3390 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3391 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3392 */
3393 static void run_rebalance_domains(struct softirq_action *h)
3394 {
3395 int this_cpu = smp_processor_id();
3396 struct rq *this_rq = cpu_rq(this_cpu);
3397 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3398 CPU_IDLE : CPU_NOT_IDLE;
3399
3400 rebalance_domains(this_cpu, idle);
3401
3402 #ifdef CONFIG_NO_HZ
3403 /*
3404 * If this cpu is the owner for idle load balancing, then do the
3405 * balancing on behalf of the other idle cpus whose ticks are
3406 * stopped.
3407 */
3408 if (this_rq->idle_at_tick &&
3409 atomic_read(&nohz.load_balancer) == this_cpu) {
3410 struct rq *rq;
3411 int balance_cpu;
3412
3413 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3414 if (balance_cpu == this_cpu)
3415 continue;
3416
3417 /*
3418 * If this cpu gets work to do, stop the load balancing
3419 * work being done for other cpus. Next load
3420 * balancing owner will pick it up.
3421 */
3422 if (need_resched())
3423 break;
3424
3425 rebalance_domains(balance_cpu, CPU_IDLE);
3426
3427 rq = cpu_rq(balance_cpu);
3428 if (time_after(this_rq->next_balance, rq->next_balance))
3429 this_rq->next_balance = rq->next_balance;
3430 }
3431 }
3432 #endif
3433 }
3434
3435 static inline int on_null_domain(int cpu)
3436 {
3437 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3438 }
3439
3440 /*
3441 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3442 *
3443 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3444 * idle load balancing owner or decide to stop the periodic load balancing,
3445 * if the whole system is idle.
3446 */
3447 static inline void trigger_load_balance(struct rq *rq, int cpu)
3448 {
3449 #ifdef CONFIG_NO_HZ
3450 /*
3451 * If we were in the nohz mode recently and busy at the current
3452 * scheduler tick, then check if we need to nominate new idle
3453 * load balancer.
3454 */
3455 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3456 rq->in_nohz_recently = 0;
3457
3458 if (atomic_read(&nohz.load_balancer) == cpu) {
3459 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3460 atomic_set(&nohz.load_balancer, -1);
3461 }
3462
3463 if (atomic_read(&nohz.load_balancer) == -1) {
3464 int ilb = find_new_ilb(cpu);
3465
3466 if (ilb < nr_cpu_ids)
3467 resched_cpu(ilb);
3468 }
3469 }
3470
3471 /*
3472 * If this cpu is idle and doing idle load balancing for all the
3473 * cpus with ticks stopped, is it time for that to stop?
3474 */
3475 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3476 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3477 resched_cpu(cpu);
3478 return;
3479 }
3480
3481 /*
3482 * If this cpu is idle and the idle load balancing is done by
3483 * someone else, then no need raise the SCHED_SOFTIRQ
3484 */
3485 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3486 cpumask_test_cpu(cpu, nohz.cpu_mask))
3487 return;
3488 #endif
3489 /* Don't need to rebalance while attached to NULL domain */
3490 if (time_after_eq(jiffies, rq->next_balance) &&
3491 likely(!on_null_domain(cpu)))
3492 raise_softirq(SCHED_SOFTIRQ);
3493 }
3494
3495 static void rq_online_fair(struct rq *rq)
3496 {
3497 update_sysctl();
3498 }
3499
3500 static void rq_offline_fair(struct rq *rq)
3501 {
3502 update_sysctl();
3503 }
3504
3505 #else /* CONFIG_SMP */
3506
3507 /*
3508 * on UP we do not need to balance between CPUs:
3509 */
3510 static inline void idle_balance(int cpu, struct rq *rq)
3511 {
3512 }
3513
3514 #endif /* CONFIG_SMP */
3515
3516 /*
3517 * scheduler tick hitting a task of our scheduling class:
3518 */
3519 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3520 {
3521 struct cfs_rq *cfs_rq;
3522 struct sched_entity *se = &curr->se;
3523
3524 for_each_sched_entity(se) {
3525 cfs_rq = cfs_rq_of(se);
3526 entity_tick(cfs_rq, se, queued);
3527 }
3528 }
3529
3530 /*
3531 * called on fork with the child task as argument from the parent's context
3532 * - child not yet on the tasklist
3533 * - preemption disabled
3534 */
3535 static void task_fork_fair(struct task_struct *p)
3536 {
3537 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3538 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3539 int this_cpu = smp_processor_id();
3540 struct rq *rq = this_rq();
3541 unsigned long flags;
3542
3543 raw_spin_lock_irqsave(&rq->lock, flags);
3544
3545 if (unlikely(task_cpu(p) != this_cpu))
3546 __set_task_cpu(p, this_cpu);
3547
3548 update_curr(cfs_rq);
3549
3550 if (curr)
3551 se->vruntime = curr->vruntime;
3552 place_entity(cfs_rq, se, 1);
3553
3554 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3555 /*
3556 * Upon rescheduling, sched_class::put_prev_task() will place
3557 * 'current' within the tree based on its new key value.
3558 */
3559 swap(curr->vruntime, se->vruntime);
3560 resched_task(rq->curr);
3561 }
3562
3563 se->vruntime -= cfs_rq->min_vruntime;
3564
3565 raw_spin_unlock_irqrestore(&rq->lock, flags);
3566 }
3567
3568 /*
3569 * Priority of the task has changed. Check to see if we preempt
3570 * the current task.
3571 */
3572 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3573 int oldprio, int running)
3574 {
3575 /*
3576 * Reschedule if we are currently running on this runqueue and
3577 * our priority decreased, or if we are not currently running on
3578 * this runqueue and our priority is higher than the current's
3579 */
3580 if (running) {
3581 if (p->prio > oldprio)
3582 resched_task(rq->curr);
3583 } else
3584 check_preempt_curr(rq, p, 0);
3585 }
3586
3587 /*
3588 * We switched to the sched_fair class.
3589 */
3590 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3591 int running)
3592 {
3593 /*
3594 * We were most likely switched from sched_rt, so
3595 * kick off the schedule if running, otherwise just see
3596 * if we can still preempt the current task.
3597 */
3598 if (running)
3599 resched_task(rq->curr);
3600 else
3601 check_preempt_curr(rq, p, 0);
3602 }
3603
3604 /* Account for a task changing its policy or group.
3605 *
3606 * This routine is mostly called to set cfs_rq->curr field when a task
3607 * migrates between groups/classes.
3608 */
3609 static void set_curr_task_fair(struct rq *rq)
3610 {
3611 struct sched_entity *se = &rq->curr->se;
3612
3613 for_each_sched_entity(se)
3614 set_next_entity(cfs_rq_of(se), se);
3615 }
3616
3617 #ifdef CONFIG_FAIR_GROUP_SCHED
3618 static void moved_group_fair(struct task_struct *p, int on_rq)
3619 {
3620 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3621
3622 update_curr(cfs_rq);
3623 if (!on_rq)
3624 place_entity(cfs_rq, &p->se, 1);
3625 }
3626 #endif
3627
3628 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3629 {
3630 struct sched_entity *se = &task->se;
3631 unsigned int rr_interval = 0;
3632
3633 /*
3634 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3635 * idle runqueue:
3636 */
3637 if (rq->cfs.load.weight)
3638 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3639
3640 return rr_interval;
3641 }
3642
3643 /*
3644 * All the scheduling class methods:
3645 */
3646 static const struct sched_class fair_sched_class = {
3647 .next = &idle_sched_class,
3648 .enqueue_task = enqueue_task_fair,
3649 .dequeue_task = dequeue_task_fair,
3650 .yield_task = yield_task_fair,
3651
3652 .check_preempt_curr = check_preempt_wakeup,
3653
3654 .pick_next_task = pick_next_task_fair,
3655 .put_prev_task = put_prev_task_fair,
3656
3657 #ifdef CONFIG_SMP
3658 .select_task_rq = select_task_rq_fair,
3659
3660 .rq_online = rq_online_fair,
3661 .rq_offline = rq_offline_fair,
3662
3663 .task_waking = task_waking_fair,
3664 #endif
3665
3666 .set_curr_task = set_curr_task_fair,
3667 .task_tick = task_tick_fair,
3668 .task_fork = task_fork_fair,
3669
3670 .prio_changed = prio_changed_fair,
3671 .switched_to = switched_to_fair,
3672
3673 .get_rr_interval = get_rr_interval_fair,
3674
3675 #ifdef CONFIG_FAIR_GROUP_SCHED
3676 .moved_group = moved_group_fair,
3677 #endif
3678 };
3679
3680 #ifdef CONFIG_SCHED_DEBUG
3681 static void print_cfs_stats(struct seq_file *m, int cpu)
3682 {
3683 struct cfs_rq *cfs_rq;
3684
3685 rcu_read_lock();
3686 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3687 print_cfs_rq(m, cpu, cfs_rq);
3688 rcu_read_unlock();
3689 }
3690 #endif
This page took 0.106722 seconds and 5 git commands to generate.