sched: Implement a gentler fair-sleepers feature
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87 return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107 return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113 return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119 return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127 return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146 return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190 }
191
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196 return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201 return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se) 1
205
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211 return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225 return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230 return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239 return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244 return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279 {
280 return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310 * Enqueue an entity into the rb-tree:
311 */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389 {
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399 }
400 #endif
401
402 /*
403 * delta /= w
404 */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412 }
413
414 /*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433 }
434
435 /*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461 }
462
463 /*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480 {
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec);
518 }
519 }
520
521 static inline void
522 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 }
526
527 /*
528 * Task is being enqueued - update stats:
529 */
530 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
536 if (se != cfs_rq->curr)
537 update_stats_wait_start(cfs_rq, se);
538 }
539
540 static void
541 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
548 #ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553 #endif
554 schedstat_set(se->wait_start, 0);
555 }
556
557 static inline void
558 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_end(cfs_rq, se);
566 }
567
568 /*
569 * We are picking a new current task - update its stats:
570 */
571 static inline void
572 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 /*
575 * We are starting a new run period:
576 */
577 se->exec_start = rq_of(cfs_rq)->clock;
578 }
579
580 /**************************************************
581 * Scheduling class queueing methods:
582 */
583
584 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585 static void
586 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587 {
588 cfs_rq->task_weight += weight;
589 }
590 #else
591 static inline void
592 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593 {
594 }
595 #endif
596
597 static void
598 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600 update_load_add(&cfs_rq->load, se->load.weight);
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
603 if (entity_is_task(se)) {
604 add_cfs_task_weight(cfs_rq, se->load.weight);
605 list_add(&se->group_node, &cfs_rq->tasks);
606 }
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
609 }
610
611 static void
612 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614 update_load_sub(&cfs_rq->load, se->load.weight);
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
617 if (entity_is_task(se)) {
618 add_cfs_task_weight(cfs_rq, -se->load.weight);
619 list_del_init(&se->group_node);
620 }
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
623 }
624
625 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 {
627 #ifdef CONFIG_SCHEDSTATS
628 struct task_struct *tsk = NULL;
629
630 if (entity_is_task(se))
631 tsk = task_of(se);
632
633 if (se->sleep_start) {
634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
635
636 if ((s64)delta < 0)
637 delta = 0;
638
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
641
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
644
645 if (tsk) {
646 account_scheduler_latency(tsk, delta >> 10, 1);
647 trace_sched_stat_sleep(tsk, delta);
648 }
649 }
650 if (se->block_start) {
651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
658
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
661
662 if (tsk) {
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
666 trace_sched_stat_iowait(tsk, delta);
667 }
668
669 /*
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
673 */
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
678 }
679 account_scheduler_latency(tsk, delta >> 10, 0);
680 }
681 }
682 #endif
683 }
684
685 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 #ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690 if (d < 0)
691 d = -d;
692
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695 #endif
696 }
697
698 static void
699 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700 {
701 u64 vruntime = cfs_rq->min_vruntime;
702
703 /*
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
708 */
709 if (initial && sched_feat(START_DEBIT))
710 vruntime += sched_vslice(cfs_rq, se);
711
712 if (!initial) {
713 /* sleeps upto a single latency don't count. */
714 if (sched_feat(FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) &&
724 (!entity_is_task(se) ||
725 task_of(se)->policy != SCHED_IDLE))
726 thresh = calc_delta_fair(thresh, se);
727
728 /*
729 * Halve their sleep time's effect, to allow
730 * for a gentler effect of sleepers:
731 */
732 if (sched_feat(GENTLE_FAIR_SLEEPERS))
733 thresh >>= 1;
734
735 vruntime -= thresh;
736 }
737 }
738
739 /* ensure we never gain time by being placed backwards. */
740 vruntime = max_vruntime(se->vruntime, vruntime);
741
742 se->vruntime = vruntime;
743 }
744
745 static void
746 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
747 {
748 /*
749 * Update run-time statistics of the 'current'.
750 */
751 update_curr(cfs_rq);
752 account_entity_enqueue(cfs_rq, se);
753
754 if (wakeup) {
755 place_entity(cfs_rq, se, 0);
756 enqueue_sleeper(cfs_rq, se);
757 }
758
759 update_stats_enqueue(cfs_rq, se);
760 check_spread(cfs_rq, se);
761 if (se != cfs_rq->curr)
762 __enqueue_entity(cfs_rq, se);
763 }
764
765 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 if (cfs_rq->last == se)
768 cfs_rq->last = NULL;
769
770 if (cfs_rq->next == se)
771 cfs_rq->next = NULL;
772 }
773
774 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
775 {
776 for_each_sched_entity(se)
777 __clear_buddies(cfs_rq_of(se), se);
778 }
779
780 static void
781 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
782 {
783 /*
784 * Update run-time statistics of the 'current'.
785 */
786 update_curr(cfs_rq);
787
788 update_stats_dequeue(cfs_rq, se);
789 if (sleep) {
790 #ifdef CONFIG_SCHEDSTATS
791 if (entity_is_task(se)) {
792 struct task_struct *tsk = task_of(se);
793
794 if (tsk->state & TASK_INTERRUPTIBLE)
795 se->sleep_start = rq_of(cfs_rq)->clock;
796 if (tsk->state & TASK_UNINTERRUPTIBLE)
797 se->block_start = rq_of(cfs_rq)->clock;
798 }
799 #endif
800 }
801
802 clear_buddies(cfs_rq, se);
803
804 if (se != cfs_rq->curr)
805 __dequeue_entity(cfs_rq, se);
806 account_entity_dequeue(cfs_rq, se);
807 update_min_vruntime(cfs_rq);
808 }
809
810 /*
811 * Preempt the current task with a newly woken task if needed:
812 */
813 static void
814 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
815 {
816 unsigned long ideal_runtime, delta_exec;
817
818 ideal_runtime = sched_slice(cfs_rq, curr);
819 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
820 if (delta_exec > ideal_runtime) {
821 resched_task(rq_of(cfs_rq)->curr);
822 /*
823 * The current task ran long enough, ensure it doesn't get
824 * re-elected due to buddy favours.
825 */
826 clear_buddies(cfs_rq, curr);
827 }
828 }
829
830 static void
831 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 /* 'current' is not kept within the tree. */
834 if (se->on_rq) {
835 /*
836 * Any task has to be enqueued before it get to execute on
837 * a CPU. So account for the time it spent waiting on the
838 * runqueue.
839 */
840 update_stats_wait_end(cfs_rq, se);
841 __dequeue_entity(cfs_rq, se);
842 }
843
844 update_stats_curr_start(cfs_rq, se);
845 cfs_rq->curr = se;
846 #ifdef CONFIG_SCHEDSTATS
847 /*
848 * Track our maximum slice length, if the CPU's load is at
849 * least twice that of our own weight (i.e. dont track it
850 * when there are only lesser-weight tasks around):
851 */
852 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
853 se->slice_max = max(se->slice_max,
854 se->sum_exec_runtime - se->prev_sum_exec_runtime);
855 }
856 #endif
857 se->prev_sum_exec_runtime = se->sum_exec_runtime;
858 }
859
860 static int
861 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
862
863 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
864 {
865 struct sched_entity *se = __pick_next_entity(cfs_rq);
866
867 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
868 return cfs_rq->next;
869
870 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
871 return cfs_rq->last;
872
873 return se;
874 }
875
876 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
877 {
878 /*
879 * If still on the runqueue then deactivate_task()
880 * was not called and update_curr() has to be done:
881 */
882 if (prev->on_rq)
883 update_curr(cfs_rq);
884
885 check_spread(cfs_rq, prev);
886 if (prev->on_rq) {
887 update_stats_wait_start(cfs_rq, prev);
888 /* Put 'current' back into the tree. */
889 __enqueue_entity(cfs_rq, prev);
890 }
891 cfs_rq->curr = NULL;
892 }
893
894 static void
895 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
896 {
897 /*
898 * Update run-time statistics of the 'current'.
899 */
900 update_curr(cfs_rq);
901
902 #ifdef CONFIG_SCHED_HRTICK
903 /*
904 * queued ticks are scheduled to match the slice, so don't bother
905 * validating it and just reschedule.
906 */
907 if (queued) {
908 resched_task(rq_of(cfs_rq)->curr);
909 return;
910 }
911 /*
912 * don't let the period tick interfere with the hrtick preemption
913 */
914 if (!sched_feat(DOUBLE_TICK) &&
915 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
916 return;
917 #endif
918
919 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
920 check_preempt_tick(cfs_rq, curr);
921 }
922
923 /**************************************************
924 * CFS operations on tasks:
925 */
926
927 #ifdef CONFIG_SCHED_HRTICK
928 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
929 {
930 struct sched_entity *se = &p->se;
931 struct cfs_rq *cfs_rq = cfs_rq_of(se);
932
933 WARN_ON(task_rq(p) != rq);
934
935 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
936 u64 slice = sched_slice(cfs_rq, se);
937 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
938 s64 delta = slice - ran;
939
940 if (delta < 0) {
941 if (rq->curr == p)
942 resched_task(p);
943 return;
944 }
945
946 /*
947 * Don't schedule slices shorter than 10000ns, that just
948 * doesn't make sense. Rely on vruntime for fairness.
949 */
950 if (rq->curr != p)
951 delta = max_t(s64, 10000LL, delta);
952
953 hrtick_start(rq, delta);
954 }
955 }
956
957 /*
958 * called from enqueue/dequeue and updates the hrtick when the
959 * current task is from our class and nr_running is low enough
960 * to matter.
961 */
962 static void hrtick_update(struct rq *rq)
963 {
964 struct task_struct *curr = rq->curr;
965
966 if (curr->sched_class != &fair_sched_class)
967 return;
968
969 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
970 hrtick_start_fair(rq, curr);
971 }
972 #else /* !CONFIG_SCHED_HRTICK */
973 static inline void
974 hrtick_start_fair(struct rq *rq, struct task_struct *p)
975 {
976 }
977
978 static inline void hrtick_update(struct rq *rq)
979 {
980 }
981 #endif
982
983 /*
984 * The enqueue_task method is called before nr_running is
985 * increased. Here we update the fair scheduling stats and
986 * then put the task into the rbtree:
987 */
988 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
989 {
990 struct cfs_rq *cfs_rq;
991 struct sched_entity *se = &p->se;
992
993 for_each_sched_entity(se) {
994 if (se->on_rq)
995 break;
996 cfs_rq = cfs_rq_of(se);
997 enqueue_entity(cfs_rq, se, wakeup);
998 wakeup = 1;
999 }
1000
1001 hrtick_update(rq);
1002 }
1003
1004 /*
1005 * The dequeue_task method is called before nr_running is
1006 * decreased. We remove the task from the rbtree and
1007 * update the fair scheduling stats:
1008 */
1009 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1010 {
1011 struct cfs_rq *cfs_rq;
1012 struct sched_entity *se = &p->se;
1013
1014 for_each_sched_entity(se) {
1015 cfs_rq = cfs_rq_of(se);
1016 dequeue_entity(cfs_rq, se, sleep);
1017 /* Don't dequeue parent if it has other entities besides us */
1018 if (cfs_rq->load.weight)
1019 break;
1020 sleep = 1;
1021 }
1022
1023 hrtick_update(rq);
1024 }
1025
1026 /*
1027 * sched_yield() support is very simple - we dequeue and enqueue.
1028 *
1029 * If compat_yield is turned on then we requeue to the end of the tree.
1030 */
1031 static void yield_task_fair(struct rq *rq)
1032 {
1033 struct task_struct *curr = rq->curr;
1034 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1035 struct sched_entity *rightmost, *se = &curr->se;
1036
1037 /*
1038 * Are we the only task in the tree?
1039 */
1040 if (unlikely(cfs_rq->nr_running == 1))
1041 return;
1042
1043 clear_buddies(cfs_rq, se);
1044
1045 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1046 update_rq_clock(rq);
1047 /*
1048 * Update run-time statistics of the 'current'.
1049 */
1050 update_curr(cfs_rq);
1051
1052 return;
1053 }
1054 /*
1055 * Find the rightmost entry in the rbtree:
1056 */
1057 rightmost = __pick_last_entity(cfs_rq);
1058 /*
1059 * Already in the rightmost position?
1060 */
1061 if (unlikely(!rightmost || entity_before(rightmost, se)))
1062 return;
1063
1064 /*
1065 * Minimally necessary key value to be last in the tree:
1066 * Upon rescheduling, sched_class::put_prev_task() will place
1067 * 'current' within the tree based on its new key value.
1068 */
1069 se->vruntime = rightmost->vruntime + 1;
1070 }
1071
1072 #ifdef CONFIG_SMP
1073
1074 #ifdef CONFIG_FAIR_GROUP_SCHED
1075 /*
1076 * effective_load() calculates the load change as seen from the root_task_group
1077 *
1078 * Adding load to a group doesn't make a group heavier, but can cause movement
1079 * of group shares between cpus. Assuming the shares were perfectly aligned one
1080 * can calculate the shift in shares.
1081 *
1082 * The problem is that perfectly aligning the shares is rather expensive, hence
1083 * we try to avoid doing that too often - see update_shares(), which ratelimits
1084 * this change.
1085 *
1086 * We compensate this by not only taking the current delta into account, but
1087 * also considering the delta between when the shares were last adjusted and
1088 * now.
1089 *
1090 * We still saw a performance dip, some tracing learned us that between
1091 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1092 * significantly. Therefore try to bias the error in direction of failing
1093 * the affine wakeup.
1094 *
1095 */
1096 static long effective_load(struct task_group *tg, int cpu,
1097 long wl, long wg)
1098 {
1099 struct sched_entity *se = tg->se[cpu];
1100
1101 if (!tg->parent)
1102 return wl;
1103
1104 /*
1105 * By not taking the decrease of shares on the other cpu into
1106 * account our error leans towards reducing the affine wakeups.
1107 */
1108 if (!wl && sched_feat(ASYM_EFF_LOAD))
1109 return wl;
1110
1111 for_each_sched_entity(se) {
1112 long S, rw, s, a, b;
1113 long more_w;
1114
1115 /*
1116 * Instead of using this increment, also add the difference
1117 * between when the shares were last updated and now.
1118 */
1119 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1120 wl += more_w;
1121 wg += more_w;
1122
1123 S = se->my_q->tg->shares;
1124 s = se->my_q->shares;
1125 rw = se->my_q->rq_weight;
1126
1127 a = S*(rw + wl);
1128 b = S*rw + s*wg;
1129
1130 wl = s*(a-b);
1131
1132 if (likely(b))
1133 wl /= b;
1134
1135 /*
1136 * Assume the group is already running and will
1137 * thus already be accounted for in the weight.
1138 *
1139 * That is, moving shares between CPUs, does not
1140 * alter the group weight.
1141 */
1142 wg = 0;
1143 }
1144
1145 return wl;
1146 }
1147
1148 #else
1149
1150 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1151 unsigned long wl, unsigned long wg)
1152 {
1153 return wl;
1154 }
1155
1156 #endif
1157
1158 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1159 {
1160 struct task_struct *curr = current;
1161 unsigned long this_load, load;
1162 int idx, this_cpu, prev_cpu;
1163 unsigned long tl_per_task;
1164 unsigned int imbalance;
1165 struct task_group *tg;
1166 unsigned long weight;
1167 int balanced;
1168
1169 idx = sd->wake_idx;
1170 this_cpu = smp_processor_id();
1171 prev_cpu = task_cpu(p);
1172 load = source_load(prev_cpu, idx);
1173 this_load = target_load(this_cpu, idx);
1174
1175 if (sync) {
1176 if (sched_feat(SYNC_LESS) &&
1177 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1178 p->se.avg_overlap > sysctl_sched_migration_cost))
1179 sync = 0;
1180 } else {
1181 if (sched_feat(SYNC_MORE) &&
1182 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1183 p->se.avg_overlap < sysctl_sched_migration_cost))
1184 sync = 1;
1185 }
1186
1187 /*
1188 * If sync wakeup then subtract the (maximum possible)
1189 * effect of the currently running task from the load
1190 * of the current CPU:
1191 */
1192 if (sync) {
1193 tg = task_group(current);
1194 weight = current->se.load.weight;
1195
1196 this_load += effective_load(tg, this_cpu, -weight, -weight);
1197 load += effective_load(tg, prev_cpu, 0, -weight);
1198 }
1199
1200 tg = task_group(p);
1201 weight = p->se.load.weight;
1202
1203 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1204
1205 /*
1206 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1207 * due to the sync cause above having dropped this_load to 0, we'll
1208 * always have an imbalance, but there's really nothing you can do
1209 * about that, so that's good too.
1210 *
1211 * Otherwise check if either cpus are near enough in load to allow this
1212 * task to be woken on this_cpu.
1213 */
1214 balanced = !this_load ||
1215 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1216 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1217
1218 /*
1219 * If the currently running task will sleep within
1220 * a reasonable amount of time then attract this newly
1221 * woken task:
1222 */
1223 if (sync && balanced)
1224 return 1;
1225
1226 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1227 tl_per_task = cpu_avg_load_per_task(this_cpu);
1228
1229 if (balanced ||
1230 (this_load <= load &&
1231 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1232 /*
1233 * This domain has SD_WAKE_AFFINE and
1234 * p is cache cold in this domain, and
1235 * there is no bad imbalance.
1236 */
1237 schedstat_inc(sd, ttwu_move_affine);
1238 schedstat_inc(p, se.nr_wakeups_affine);
1239
1240 return 1;
1241 }
1242 return 0;
1243 }
1244
1245 /*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249 static struct sched_group *
1250 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1251 int this_cpu, int flag)
1252 {
1253 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1254 unsigned long min_load = ULONG_MAX, this_load = 0;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256 int load_idx = 0;
1257
1258 switch (flag) {
1259 case SD_BALANCE_FORK:
1260 case SD_BALANCE_EXEC:
1261 load_idx = sd->forkexec_idx;
1262 break;
1263
1264 case SD_BALANCE_WAKE:
1265 load_idx = sd->wake_idx;
1266 break;
1267
1268 default:
1269 break;
1270 }
1271
1272 do {
1273 unsigned long load, avg_load;
1274 int local_group;
1275 int i;
1276
1277 /* Skip over this group if it has no CPUs allowed */
1278 if (!cpumask_intersects(sched_group_cpus(group),
1279 &p->cpus_allowed))
1280 continue;
1281
1282 local_group = cpumask_test_cpu(this_cpu,
1283 sched_group_cpus(group));
1284
1285 /* Tally up the load of all CPUs in the group */
1286 avg_load = 0;
1287
1288 for_each_cpu(i, sched_group_cpus(group)) {
1289 /* Bias balancing toward cpus of our domain */
1290 if (local_group)
1291 load = source_load(i, load_idx);
1292 else
1293 load = target_load(i, load_idx);
1294
1295 avg_load += load;
1296 }
1297
1298 /* Adjust by relative CPU power of the group */
1299 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1300
1301 if (local_group) {
1302 this_load = avg_load;
1303 this = group;
1304 } else if (avg_load < min_load) {
1305 min_load = avg_load;
1306 idlest = group;
1307 }
1308 } while (group = group->next, group != sd->groups);
1309
1310 if (!idlest || 100*this_load < imbalance*min_load)
1311 return NULL;
1312 return idlest;
1313 }
1314
1315 /*
1316 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1317 */
1318 static int
1319 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1320 {
1321 unsigned long load, min_load = ULONG_MAX;
1322 int idlest = -1;
1323 int i;
1324
1325 /* Traverse only the allowed CPUs */
1326 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1327 load = weighted_cpuload(i);
1328
1329 if (load < min_load || (load == min_load && i == this_cpu)) {
1330 min_load = load;
1331 idlest = i;
1332 }
1333 }
1334
1335 return idlest;
1336 }
1337
1338 /*
1339 * sched_balance_self: balance the current task (running on cpu) in domains
1340 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1341 * SD_BALANCE_EXEC.
1342 *
1343 * Balance, ie. select the least loaded group.
1344 *
1345 * Returns the target CPU number, or the same CPU if no balancing is needed.
1346 *
1347 * preempt must be disabled.
1348 */
1349 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int flags)
1350 {
1351 struct sched_domain *tmp, *sd = NULL;
1352 int cpu = smp_processor_id();
1353 int prev_cpu = task_cpu(p);
1354 int new_cpu = cpu;
1355 int want_affine = 0;
1356 int sync = flags & WF_SYNC;
1357
1358 if (sd_flag & SD_BALANCE_WAKE) {
1359 if (sched_feat(AFFINE_WAKEUPS))
1360 want_affine = 1;
1361 new_cpu = prev_cpu;
1362 }
1363
1364 rcu_read_lock();
1365 for_each_domain(cpu, tmp) {
1366 /*
1367 * If power savings logic is enabled for a domain, see if we
1368 * are not overloaded, if so, don't balance wider.
1369 */
1370 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1371 unsigned long power = 0;
1372 unsigned long nr_running = 0;
1373 unsigned long capacity;
1374 int i;
1375
1376 for_each_cpu(i, sched_domain_span(tmp)) {
1377 power += power_of(i);
1378 nr_running += cpu_rq(i)->cfs.nr_running;
1379 }
1380
1381 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1382
1383 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1384 nr_running /= 2;
1385
1386 if (nr_running < capacity)
1387 break;
1388 }
1389
1390 switch (sd_flag) {
1391 case SD_BALANCE_WAKE:
1392 if (!sched_feat(LB_WAKEUP_UPDATE))
1393 break;
1394 case SD_BALANCE_FORK:
1395 case SD_BALANCE_EXEC:
1396 if (root_task_group_empty())
1397 break;
1398 update_shares(tmp);
1399 default:
1400 break;
1401 }
1402
1403 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1404 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1405
1406 if (wake_affine(tmp, p, sync)) {
1407 new_cpu = cpu;
1408 goto out;
1409 }
1410
1411 want_affine = 0;
1412 }
1413
1414 if (!(tmp->flags & sd_flag))
1415 continue;
1416
1417 sd = tmp;
1418 }
1419
1420 while (sd) {
1421 struct sched_group *group;
1422 int weight;
1423
1424 if (!(sd->flags & sd_flag)) {
1425 sd = sd->child;
1426 continue;
1427 }
1428
1429 group = find_idlest_group(sd, p, cpu, sd_flag);
1430 if (!group) {
1431 sd = sd->child;
1432 continue;
1433 }
1434
1435 new_cpu = find_idlest_cpu(group, p, cpu);
1436 if (new_cpu == -1 || new_cpu == cpu) {
1437 /* Now try balancing at a lower domain level of cpu */
1438 sd = sd->child;
1439 continue;
1440 }
1441
1442 /* Now try balancing at a lower domain level of new_cpu */
1443 cpu = new_cpu;
1444 weight = cpumask_weight(sched_domain_span(sd));
1445 sd = NULL;
1446 for_each_domain(cpu, tmp) {
1447 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1448 break;
1449 if (tmp->flags & sd_flag)
1450 sd = tmp;
1451 }
1452 /* while loop will break here if sd == NULL */
1453 }
1454
1455 out:
1456 rcu_read_unlock();
1457 return new_cpu;
1458 }
1459 #endif /* CONFIG_SMP */
1460
1461 /*
1462 * Adaptive granularity
1463 *
1464 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1465 * with the limit of wakeup_gran -- when it never does a wakeup.
1466 *
1467 * So the smaller avg_wakeup is the faster we want this task to preempt,
1468 * but we don't want to treat the preemptee unfairly and therefore allow it
1469 * to run for at least the amount of time we'd like to run.
1470 *
1471 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1472 *
1473 * NOTE: we use *nr_running to scale with load, this nicely matches the
1474 * degrading latency on load.
1475 */
1476 static unsigned long
1477 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1478 {
1479 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1480 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1481 u64 gran = 0;
1482
1483 if (this_run < expected_wakeup)
1484 gran = expected_wakeup - this_run;
1485
1486 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1487 }
1488
1489 static unsigned long
1490 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1491 {
1492 unsigned long gran = sysctl_sched_wakeup_granularity;
1493
1494 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1495 gran = adaptive_gran(curr, se);
1496
1497 /*
1498 * Since its curr running now, convert the gran from real-time
1499 * to virtual-time in his units.
1500 */
1501 if (sched_feat(ASYM_GRAN)) {
1502 /*
1503 * By using 'se' instead of 'curr' we penalize light tasks, so
1504 * they get preempted easier. That is, if 'se' < 'curr' then
1505 * the resulting gran will be larger, therefore penalizing the
1506 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1507 * be smaller, again penalizing the lighter task.
1508 *
1509 * This is especially important for buddies when the leftmost
1510 * task is higher priority than the buddy.
1511 */
1512 if (unlikely(se->load.weight != NICE_0_LOAD))
1513 gran = calc_delta_fair(gran, se);
1514 } else {
1515 if (unlikely(curr->load.weight != NICE_0_LOAD))
1516 gran = calc_delta_fair(gran, curr);
1517 }
1518
1519 return gran;
1520 }
1521
1522 /*
1523 * Should 'se' preempt 'curr'.
1524 *
1525 * |s1
1526 * |s2
1527 * |s3
1528 * g
1529 * |<--->|c
1530 *
1531 * w(c, s1) = -1
1532 * w(c, s2) = 0
1533 * w(c, s3) = 1
1534 *
1535 */
1536 static int
1537 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1538 {
1539 s64 gran, vdiff = curr->vruntime - se->vruntime;
1540
1541 if (vdiff <= 0)
1542 return -1;
1543
1544 gran = wakeup_gran(curr, se);
1545 if (vdiff > gran)
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 static void set_last_buddy(struct sched_entity *se)
1552 {
1553 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1554 for_each_sched_entity(se)
1555 cfs_rq_of(se)->last = se;
1556 }
1557 }
1558
1559 static void set_next_buddy(struct sched_entity *se)
1560 {
1561 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1562 for_each_sched_entity(se)
1563 cfs_rq_of(se)->next = se;
1564 }
1565 }
1566
1567 /*
1568 * Preempt the current task with a newly woken task if needed:
1569 */
1570 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int flags)
1571 {
1572 struct task_struct *curr = rq->curr;
1573 struct sched_entity *se = &curr->se, *pse = &p->se;
1574 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1575 int sync = flags & WF_SYNC;
1576
1577 update_curr(cfs_rq);
1578
1579 if (unlikely(rt_prio(p->prio))) {
1580 resched_task(curr);
1581 return;
1582 }
1583
1584 if (unlikely(p->sched_class != &fair_sched_class))
1585 return;
1586
1587 if (unlikely(se == pse))
1588 return;
1589
1590 /*
1591 * Only set the backward buddy when the current task is still on the
1592 * rq. This can happen when a wakeup gets interleaved with schedule on
1593 * the ->pre_schedule() or idle_balance() point, either of which can
1594 * drop the rq lock.
1595 *
1596 * Also, during early boot the idle thread is in the fair class, for
1597 * obvious reasons its a bad idea to schedule back to the idle thread.
1598 */
1599 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1600 set_last_buddy(se);
1601 if (sched_feat(NEXT_BUDDY) && !(flags & WF_FORK))
1602 set_next_buddy(pse);
1603
1604 /*
1605 * We can come here with TIF_NEED_RESCHED already set from new task
1606 * wake up path.
1607 */
1608 if (test_tsk_need_resched(curr))
1609 return;
1610
1611 /*
1612 * Batch and idle tasks do not preempt (their preemption is driven by
1613 * the tick):
1614 */
1615 if (unlikely(p->policy != SCHED_NORMAL))
1616 return;
1617
1618 /* Idle tasks are by definition preempted by everybody. */
1619 if (unlikely(curr->policy == SCHED_IDLE)) {
1620 resched_task(curr);
1621 return;
1622 }
1623
1624 if (!sched_feat(WAKEUP_PREEMPT))
1625 return;
1626
1627 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1628 (sched_feat(WAKEUP_OVERLAP) &&
1629 (se->avg_overlap < sysctl_sched_migration_cost &&
1630 pse->avg_overlap < sysctl_sched_migration_cost))) {
1631 resched_task(curr);
1632 return;
1633 }
1634
1635 find_matching_se(&se, &pse);
1636
1637 BUG_ON(!pse);
1638
1639 if (wakeup_preempt_entity(se, pse) == 1)
1640 resched_task(curr);
1641 }
1642
1643 static struct task_struct *pick_next_task_fair(struct rq *rq)
1644 {
1645 struct task_struct *p;
1646 struct cfs_rq *cfs_rq = &rq->cfs;
1647 struct sched_entity *se;
1648
1649 if (unlikely(!cfs_rq->nr_running))
1650 return NULL;
1651
1652 do {
1653 se = pick_next_entity(cfs_rq);
1654 /*
1655 * If se was a buddy, clear it so that it will have to earn
1656 * the favour again.
1657 */
1658 __clear_buddies(cfs_rq, se);
1659 set_next_entity(cfs_rq, se);
1660 cfs_rq = group_cfs_rq(se);
1661 } while (cfs_rq);
1662
1663 p = task_of(se);
1664 hrtick_start_fair(rq, p);
1665
1666 return p;
1667 }
1668
1669 /*
1670 * Account for a descheduled task:
1671 */
1672 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1673 {
1674 struct sched_entity *se = &prev->se;
1675 struct cfs_rq *cfs_rq;
1676
1677 for_each_sched_entity(se) {
1678 cfs_rq = cfs_rq_of(se);
1679 put_prev_entity(cfs_rq, se);
1680 }
1681 }
1682
1683 #ifdef CONFIG_SMP
1684 /**************************************************
1685 * Fair scheduling class load-balancing methods:
1686 */
1687
1688 /*
1689 * Load-balancing iterator. Note: while the runqueue stays locked
1690 * during the whole iteration, the current task might be
1691 * dequeued so the iterator has to be dequeue-safe. Here we
1692 * achieve that by always pre-iterating before returning
1693 * the current task:
1694 */
1695 static struct task_struct *
1696 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1697 {
1698 struct task_struct *p = NULL;
1699 struct sched_entity *se;
1700
1701 if (next == &cfs_rq->tasks)
1702 return NULL;
1703
1704 se = list_entry(next, struct sched_entity, group_node);
1705 p = task_of(se);
1706 cfs_rq->balance_iterator = next->next;
1707
1708 return p;
1709 }
1710
1711 static struct task_struct *load_balance_start_fair(void *arg)
1712 {
1713 struct cfs_rq *cfs_rq = arg;
1714
1715 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1716 }
1717
1718 static struct task_struct *load_balance_next_fair(void *arg)
1719 {
1720 struct cfs_rq *cfs_rq = arg;
1721
1722 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1723 }
1724
1725 static unsigned long
1726 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1727 unsigned long max_load_move, struct sched_domain *sd,
1728 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1729 struct cfs_rq *cfs_rq)
1730 {
1731 struct rq_iterator cfs_rq_iterator;
1732
1733 cfs_rq_iterator.start = load_balance_start_fair;
1734 cfs_rq_iterator.next = load_balance_next_fair;
1735 cfs_rq_iterator.arg = cfs_rq;
1736
1737 return balance_tasks(this_rq, this_cpu, busiest,
1738 max_load_move, sd, idle, all_pinned,
1739 this_best_prio, &cfs_rq_iterator);
1740 }
1741
1742 #ifdef CONFIG_FAIR_GROUP_SCHED
1743 static unsigned long
1744 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1745 unsigned long max_load_move,
1746 struct sched_domain *sd, enum cpu_idle_type idle,
1747 int *all_pinned, int *this_best_prio)
1748 {
1749 long rem_load_move = max_load_move;
1750 int busiest_cpu = cpu_of(busiest);
1751 struct task_group *tg;
1752
1753 rcu_read_lock();
1754 update_h_load(busiest_cpu);
1755
1756 list_for_each_entry_rcu(tg, &task_groups, list) {
1757 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1758 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1759 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1760 u64 rem_load, moved_load;
1761
1762 /*
1763 * empty group
1764 */
1765 if (!busiest_cfs_rq->task_weight)
1766 continue;
1767
1768 rem_load = (u64)rem_load_move * busiest_weight;
1769 rem_load = div_u64(rem_load, busiest_h_load + 1);
1770
1771 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1772 rem_load, sd, idle, all_pinned, this_best_prio,
1773 tg->cfs_rq[busiest_cpu]);
1774
1775 if (!moved_load)
1776 continue;
1777
1778 moved_load *= busiest_h_load;
1779 moved_load = div_u64(moved_load, busiest_weight + 1);
1780
1781 rem_load_move -= moved_load;
1782 if (rem_load_move < 0)
1783 break;
1784 }
1785 rcu_read_unlock();
1786
1787 return max_load_move - rem_load_move;
1788 }
1789 #else
1790 static unsigned long
1791 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1792 unsigned long max_load_move,
1793 struct sched_domain *sd, enum cpu_idle_type idle,
1794 int *all_pinned, int *this_best_prio)
1795 {
1796 return __load_balance_fair(this_rq, this_cpu, busiest,
1797 max_load_move, sd, idle, all_pinned,
1798 this_best_prio, &busiest->cfs);
1799 }
1800 #endif
1801
1802 static int
1803 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1804 struct sched_domain *sd, enum cpu_idle_type idle)
1805 {
1806 struct cfs_rq *busy_cfs_rq;
1807 struct rq_iterator cfs_rq_iterator;
1808
1809 cfs_rq_iterator.start = load_balance_start_fair;
1810 cfs_rq_iterator.next = load_balance_next_fair;
1811
1812 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1813 /*
1814 * pass busy_cfs_rq argument into
1815 * load_balance_[start|next]_fair iterators
1816 */
1817 cfs_rq_iterator.arg = busy_cfs_rq;
1818 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1819 &cfs_rq_iterator))
1820 return 1;
1821 }
1822
1823 return 0;
1824 }
1825 #endif /* CONFIG_SMP */
1826
1827 /*
1828 * scheduler tick hitting a task of our scheduling class:
1829 */
1830 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1831 {
1832 struct cfs_rq *cfs_rq;
1833 struct sched_entity *se = &curr->se;
1834
1835 for_each_sched_entity(se) {
1836 cfs_rq = cfs_rq_of(se);
1837 entity_tick(cfs_rq, se, queued);
1838 }
1839 }
1840
1841 /*
1842 * Share the fairness runtime between parent and child, thus the
1843 * total amount of pressure for CPU stays equal - new tasks
1844 * get a chance to run but frequent forkers are not allowed to
1845 * monopolize the CPU. Note: the parent runqueue is locked,
1846 * the child is not running yet.
1847 */
1848 static void task_new_fair(struct rq *rq, struct task_struct *p)
1849 {
1850 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1851 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1852 int this_cpu = smp_processor_id();
1853
1854 sched_info_queued(p);
1855
1856 update_curr(cfs_rq);
1857 if (curr)
1858 se->vruntime = curr->vruntime;
1859 place_entity(cfs_rq, se, 1);
1860
1861 /* 'curr' will be NULL if the child belongs to a different group */
1862 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1863 curr && entity_before(curr, se)) {
1864 /*
1865 * Upon rescheduling, sched_class::put_prev_task() will place
1866 * 'current' within the tree based on its new key value.
1867 */
1868 swap(curr->vruntime, se->vruntime);
1869 resched_task(rq->curr);
1870 }
1871
1872 enqueue_task_fair(rq, p, 0);
1873 }
1874
1875 /*
1876 * Priority of the task has changed. Check to see if we preempt
1877 * the current task.
1878 */
1879 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1880 int oldprio, int running)
1881 {
1882 /*
1883 * Reschedule if we are currently running on this runqueue and
1884 * our priority decreased, or if we are not currently running on
1885 * this runqueue and our priority is higher than the current's
1886 */
1887 if (running) {
1888 if (p->prio > oldprio)
1889 resched_task(rq->curr);
1890 } else
1891 check_preempt_curr(rq, p, 0);
1892 }
1893
1894 /*
1895 * We switched to the sched_fair class.
1896 */
1897 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1898 int running)
1899 {
1900 /*
1901 * We were most likely switched from sched_rt, so
1902 * kick off the schedule if running, otherwise just see
1903 * if we can still preempt the current task.
1904 */
1905 if (running)
1906 resched_task(rq->curr);
1907 else
1908 check_preempt_curr(rq, p, 0);
1909 }
1910
1911 /* Account for a task changing its policy or group.
1912 *
1913 * This routine is mostly called to set cfs_rq->curr field when a task
1914 * migrates between groups/classes.
1915 */
1916 static void set_curr_task_fair(struct rq *rq)
1917 {
1918 struct sched_entity *se = &rq->curr->se;
1919
1920 for_each_sched_entity(se)
1921 set_next_entity(cfs_rq_of(se), se);
1922 }
1923
1924 #ifdef CONFIG_FAIR_GROUP_SCHED
1925 static void moved_group_fair(struct task_struct *p)
1926 {
1927 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1928
1929 update_curr(cfs_rq);
1930 place_entity(cfs_rq, &p->se, 1);
1931 }
1932 #endif
1933
1934 /*
1935 * All the scheduling class methods:
1936 */
1937 static const struct sched_class fair_sched_class = {
1938 .next = &idle_sched_class,
1939 .enqueue_task = enqueue_task_fair,
1940 .dequeue_task = dequeue_task_fair,
1941 .yield_task = yield_task_fair,
1942
1943 .check_preempt_curr = check_preempt_wakeup,
1944
1945 .pick_next_task = pick_next_task_fair,
1946 .put_prev_task = put_prev_task_fair,
1947
1948 #ifdef CONFIG_SMP
1949 .select_task_rq = select_task_rq_fair,
1950
1951 .load_balance = load_balance_fair,
1952 .move_one_task = move_one_task_fair,
1953 #endif
1954
1955 .set_curr_task = set_curr_task_fair,
1956 .task_tick = task_tick_fair,
1957 .task_new = task_new_fair,
1958
1959 .prio_changed = prio_changed_fair,
1960 .switched_to = switched_to_fair,
1961
1962 #ifdef CONFIG_FAIR_GROUP_SCHED
1963 .moved_group = moved_group_fair,
1964 #endif
1965 };
1966
1967 #ifdef CONFIG_SCHED_DEBUG
1968 static void print_cfs_stats(struct seq_file *m, int cpu)
1969 {
1970 struct cfs_rq *cfs_rq;
1971
1972 rcu_read_lock();
1973 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1974 print_cfs_rq(m, cpu, cfs_rq);
1975 rcu_read_unlock();
1976 }
1977 #endif
This page took 0.138865 seconds and 5 git commands to generate.