sched: cleanup, remove stale comment
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 extern struct sched_class fair_sched_class;
80
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
83 */
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 #else /* CONFIG_FAIR_GROUP_SCHED */
97
98 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
99 {
100 return container_of(cfs_rq, struct rq, cfs);
101 }
102
103 #define entity_is_task(se) 1
104
105 #endif /* CONFIG_FAIR_GROUP_SCHED */
106
107 static inline struct task_struct *task_of(struct sched_entity *se)
108 {
109 return container_of(se, struct task_struct, se);
110 }
111
112
113 /**************************************************************
114 * Scheduling class tree data structure manipulation methods:
115 */
116
117 static inline u64
118 max_vruntime(u64 min_vruntime, u64 vruntime)
119 {
120 s64 delta = (s64)(vruntime - min_vruntime);
121 if (delta > 0)
122 min_vruntime = vruntime;
123
124 return min_vruntime;
125 }
126
127 static inline u64
128 min_vruntime(u64 min_vruntime, u64 vruntime)
129 {
130 s64 delta = (s64)(vruntime - min_vruntime);
131 if (delta < 0)
132 min_vruntime = vruntime;
133
134 return min_vruntime;
135 }
136
137 static inline s64
138 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void
147 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148 {
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
152 s64 key = entity_key(cfs_rq, se);
153 int leftmost = 1;
154
155 /*
156 * Find the right place in the rbtree:
157 */
158 while (*link) {
159 parent = *link;
160 entry = rb_entry(parent, struct sched_entity, run_node);
161 /*
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
164 */
165 if (key < entity_key(cfs_rq, entry)) {
166 link = &parent->rb_left;
167 } else {
168 link = &parent->rb_right;
169 leftmost = 0;
170 }
171 }
172
173 /*
174 * Maintain a cache of leftmost tree entries (it is frequently
175 * used):
176 */
177 if (leftmost)
178 cfs_rq->rb_leftmost = &se->run_node;
179
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
182 }
183
184 static void
185 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 {
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
189
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 }
192
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194 {
195 return cfs_rq->rb_leftmost;
196 }
197
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199 {
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 }
202
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204 {
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216 }
217
218 /**************************************************************
219 * Scheduling class statistics methods:
220 */
221
222 static u64 __sched_period(unsigned long nr_running)
223 {
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency = sysctl_sched_nr_latency;
226
227 if (unlikely(nr_running > nr_latency)) {
228 period *= nr_running;
229 do_div(period, nr_latency);
230 }
231
232 return period;
233 }
234
235 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
236 {
237 u64 period = __sched_period(cfs_rq->nr_running);
238
239 period *= se->load.weight;
240 do_div(period, cfs_rq->load.weight);
241
242 return period;
243 }
244
245 static u64 __sched_vslice(unsigned long nr_running)
246 {
247 unsigned long period = sysctl_sched_latency;
248 unsigned long nr_latency = sysctl_sched_nr_latency;
249
250 if (unlikely(nr_running > nr_latency))
251 nr_running = nr_latency;
252
253 period /= nr_running;
254
255 return (u64)period;
256 }
257
258 /*
259 * Update the current task's runtime statistics. Skip current tasks that
260 * are not in our scheduling class.
261 */
262 static inline void
263 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
264 unsigned long delta_exec)
265 {
266 unsigned long delta_exec_weighted;
267 u64 vruntime;
268
269 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
270
271 curr->sum_exec_runtime += delta_exec;
272 schedstat_add(cfs_rq, exec_clock, delta_exec);
273 delta_exec_weighted = delta_exec;
274 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
275 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
276 &curr->load);
277 }
278 curr->vruntime += delta_exec_weighted;
279
280 /*
281 * maintain cfs_rq->min_vruntime to be a monotonic increasing
282 * value tracking the leftmost vruntime in the tree.
283 */
284 if (first_fair(cfs_rq)) {
285 vruntime = min_vruntime(curr->vruntime,
286 __pick_next_entity(cfs_rq)->vruntime);
287 } else
288 vruntime = curr->vruntime;
289
290 cfs_rq->min_vruntime =
291 max_vruntime(cfs_rq->min_vruntime, vruntime);
292 }
293
294 static void update_curr(struct cfs_rq *cfs_rq)
295 {
296 struct sched_entity *curr = cfs_rq->curr;
297 u64 now = rq_of(cfs_rq)->clock;
298 unsigned long delta_exec;
299
300 if (unlikely(!curr))
301 return;
302
303 /*
304 * Get the amount of time the current task was running
305 * since the last time we changed load (this cannot
306 * overflow on 32 bits):
307 */
308 delta_exec = (unsigned long)(now - curr->exec_start);
309
310 __update_curr(cfs_rq, curr, delta_exec);
311 curr->exec_start = now;
312 }
313
314 static inline void
315 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
316 {
317 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
318 }
319
320 static inline unsigned long
321 calc_weighted(unsigned long delta, struct sched_entity *se)
322 {
323 unsigned long weight = se->load.weight;
324
325 if (unlikely(weight != NICE_0_LOAD))
326 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
327 else
328 return delta;
329 }
330
331 /*
332 * Task is being enqueued - update stats:
333 */
334 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
335 {
336 /*
337 * Are we enqueueing a waiting task? (for current tasks
338 * a dequeue/enqueue event is a NOP)
339 */
340 if (se != cfs_rq->curr)
341 update_stats_wait_start(cfs_rq, se);
342 }
343
344 static void
345 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
346 {
347 schedstat_set(se->wait_max, max(se->wait_max,
348 rq_of(cfs_rq)->clock - se->wait_start));
349 schedstat_set(se->wait_start, 0);
350 }
351
352 static inline void
353 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
354 {
355 update_curr(cfs_rq);
356 /*
357 * Mark the end of the wait period if dequeueing a
358 * waiting task:
359 */
360 if (se != cfs_rq->curr)
361 update_stats_wait_end(cfs_rq, se);
362 }
363
364 /*
365 * We are picking a new current task - update its stats:
366 */
367 static inline void
368 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 {
370 /*
371 * We are starting a new run period:
372 */
373 se->exec_start = rq_of(cfs_rq)->clock;
374 }
375
376 /*
377 * We are descheduling a task - update its stats:
378 */
379 static inline void
380 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 {
382 se->exec_start = 0;
383 }
384
385 /**************************************************
386 * Scheduling class queueing methods:
387 */
388
389 static void
390 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391 {
392 update_load_add(&cfs_rq->load, se->load.weight);
393 cfs_rq->nr_running++;
394 se->on_rq = 1;
395 }
396
397 static void
398 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
399 {
400 update_load_sub(&cfs_rq->load, se->load.weight);
401 cfs_rq->nr_running--;
402 se->on_rq = 0;
403 }
404
405 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
406 {
407 #ifdef CONFIG_SCHEDSTATS
408 if (se->sleep_start) {
409 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
410
411 if ((s64)delta < 0)
412 delta = 0;
413
414 if (unlikely(delta > se->sleep_max))
415 se->sleep_max = delta;
416
417 se->sleep_start = 0;
418 se->sum_sleep_runtime += delta;
419 }
420 if (se->block_start) {
421 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
422
423 if ((s64)delta < 0)
424 delta = 0;
425
426 if (unlikely(delta > se->block_max))
427 se->block_max = delta;
428
429 se->block_start = 0;
430 se->sum_sleep_runtime += delta;
431
432 /*
433 * Blocking time is in units of nanosecs, so shift by 20 to
434 * get a milliseconds-range estimation of the amount of
435 * time that the task spent sleeping:
436 */
437 if (unlikely(prof_on == SLEEP_PROFILING)) {
438 struct task_struct *tsk = task_of(se);
439
440 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
441 delta >> 20);
442 }
443 }
444 #endif
445 }
446
447 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
448 {
449 #ifdef CONFIG_SCHED_DEBUG
450 s64 d = se->vruntime - cfs_rq->min_vruntime;
451
452 if (d < 0)
453 d = -d;
454
455 if (d > 3*sysctl_sched_latency)
456 schedstat_inc(cfs_rq, nr_spread_over);
457 #endif
458 }
459
460 static void
461 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
462 {
463 u64 vruntime;
464
465 vruntime = cfs_rq->min_vruntime;
466
467 if (sched_feat(USE_TREE_AVG)) {
468 struct sched_entity *last = __pick_last_entity(cfs_rq);
469 if (last) {
470 vruntime += last->vruntime;
471 vruntime >>= 1;
472 }
473 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
474 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
475
476 if (initial && sched_feat(START_DEBIT))
477 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
478
479 if (!initial) {
480 if (sched_feat(NEW_FAIR_SLEEPERS))
481 vruntime -= sysctl_sched_latency;
482
483 vruntime = max_t(s64, vruntime, se->vruntime);
484 }
485
486 se->vruntime = vruntime;
487
488 }
489
490 static void
491 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
492 {
493 /*
494 * Update the fair clock.
495 */
496 update_curr(cfs_rq);
497
498 if (wakeup) {
499 place_entity(cfs_rq, se, 0);
500 enqueue_sleeper(cfs_rq, se);
501 }
502
503 update_stats_enqueue(cfs_rq, se);
504 check_spread(cfs_rq, se);
505 if (se != cfs_rq->curr)
506 __enqueue_entity(cfs_rq, se);
507 account_entity_enqueue(cfs_rq, se);
508 }
509
510 static void
511 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
512 {
513 update_stats_dequeue(cfs_rq, se);
514 if (sleep) {
515 #ifdef CONFIG_SCHEDSTATS
516 if (entity_is_task(se)) {
517 struct task_struct *tsk = task_of(se);
518
519 if (tsk->state & TASK_INTERRUPTIBLE)
520 se->sleep_start = rq_of(cfs_rq)->clock;
521 if (tsk->state & TASK_UNINTERRUPTIBLE)
522 se->block_start = rq_of(cfs_rq)->clock;
523 }
524 #endif
525 }
526
527 if (se != cfs_rq->curr)
528 __dequeue_entity(cfs_rq, se);
529 account_entity_dequeue(cfs_rq, se);
530 }
531
532 /*
533 * Preempt the current task with a newly woken task if needed:
534 */
535 static void
536 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
537 {
538 unsigned long ideal_runtime, delta_exec;
539
540 ideal_runtime = sched_slice(cfs_rq, curr);
541 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
542 if (delta_exec > ideal_runtime)
543 resched_task(rq_of(cfs_rq)->curr);
544 }
545
546 static void
547 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549 /* 'current' is not kept within the tree. */
550 if (se->on_rq) {
551 /*
552 * Any task has to be enqueued before it get to execute on
553 * a CPU. So account for the time it spent waiting on the
554 * runqueue.
555 */
556 update_stats_wait_end(cfs_rq, se);
557 __dequeue_entity(cfs_rq, se);
558 }
559
560 update_stats_curr_start(cfs_rq, se);
561 cfs_rq->curr = se;
562 #ifdef CONFIG_SCHEDSTATS
563 /*
564 * Track our maximum slice length, if the CPU's load is at
565 * least twice that of our own weight (i.e. dont track it
566 * when there are only lesser-weight tasks around):
567 */
568 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
569 se->slice_max = max(se->slice_max,
570 se->sum_exec_runtime - se->prev_sum_exec_runtime);
571 }
572 #endif
573 se->prev_sum_exec_runtime = se->sum_exec_runtime;
574 }
575
576 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
577 {
578 struct sched_entity *se = __pick_next_entity(cfs_rq);
579
580 set_next_entity(cfs_rq, se);
581
582 return se;
583 }
584
585 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
586 {
587 /*
588 * If still on the runqueue then deactivate_task()
589 * was not called and update_curr() has to be done:
590 */
591 if (prev->on_rq)
592 update_curr(cfs_rq);
593
594 update_stats_curr_end(cfs_rq, prev);
595
596 check_spread(cfs_rq, prev);
597 if (prev->on_rq) {
598 update_stats_wait_start(cfs_rq, prev);
599 /* Put 'current' back into the tree. */
600 __enqueue_entity(cfs_rq, prev);
601 }
602 cfs_rq->curr = NULL;
603 }
604
605 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
606 {
607 /*
608 * Update run-time statistics of the 'current'.
609 */
610 update_curr(cfs_rq);
611
612 if (cfs_rq->nr_running > 1)
613 check_preempt_tick(cfs_rq, curr);
614 }
615
616 /**************************************************
617 * CFS operations on tasks:
618 */
619
620 #ifdef CONFIG_FAIR_GROUP_SCHED
621
622 /* Walk up scheduling entities hierarchy */
623 #define for_each_sched_entity(se) \
624 for (; se; se = se->parent)
625
626 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
627 {
628 return p->se.cfs_rq;
629 }
630
631 /* runqueue on which this entity is (to be) queued */
632 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
633 {
634 return se->cfs_rq;
635 }
636
637 /* runqueue "owned" by this group */
638 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
639 {
640 return grp->my_q;
641 }
642
643 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
644 * another cpu ('this_cpu')
645 */
646 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
647 {
648 return cfs_rq->tg->cfs_rq[this_cpu];
649 }
650
651 /* Iterate thr' all leaf cfs_rq's on a runqueue */
652 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
653 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
654
655 /* Do the two (enqueued) tasks belong to the same group ? */
656 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
657 {
658 if (curr->se.cfs_rq == p->se.cfs_rq)
659 return 1;
660
661 return 0;
662 }
663
664 #else /* CONFIG_FAIR_GROUP_SCHED */
665
666 #define for_each_sched_entity(se) \
667 for (; se; se = NULL)
668
669 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
670 {
671 return &task_rq(p)->cfs;
672 }
673
674 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
675 {
676 struct task_struct *p = task_of(se);
677 struct rq *rq = task_rq(p);
678
679 return &rq->cfs;
680 }
681
682 /* runqueue "owned" by this group */
683 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
684 {
685 return NULL;
686 }
687
688 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
689 {
690 return &cpu_rq(this_cpu)->cfs;
691 }
692
693 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
694 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
695
696 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
697 {
698 return 1;
699 }
700
701 #endif /* CONFIG_FAIR_GROUP_SCHED */
702
703 /*
704 * The enqueue_task method is called before nr_running is
705 * increased. Here we update the fair scheduling stats and
706 * then put the task into the rbtree:
707 */
708 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
709 {
710 struct cfs_rq *cfs_rq;
711 struct sched_entity *se = &p->se;
712
713 for_each_sched_entity(se) {
714 if (se->on_rq)
715 break;
716 cfs_rq = cfs_rq_of(se);
717 enqueue_entity(cfs_rq, se, wakeup);
718 }
719 }
720
721 /*
722 * The dequeue_task method is called before nr_running is
723 * decreased. We remove the task from the rbtree and
724 * update the fair scheduling stats:
725 */
726 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
727 {
728 struct cfs_rq *cfs_rq;
729 struct sched_entity *se = &p->se;
730
731 for_each_sched_entity(se) {
732 cfs_rq = cfs_rq_of(se);
733 dequeue_entity(cfs_rq, se, sleep);
734 /* Don't dequeue parent if it has other entities besides us */
735 if (cfs_rq->load.weight)
736 break;
737 }
738 }
739
740 /*
741 * sched_yield() support is very simple - we dequeue and enqueue.
742 *
743 * If compat_yield is turned on then we requeue to the end of the tree.
744 */
745 static void yield_task_fair(struct rq *rq)
746 {
747 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
748 struct sched_entity *rightmost, *se = &rq->curr->se;
749
750 /*
751 * Are we the only task in the tree?
752 */
753 if (unlikely(cfs_rq->nr_running == 1))
754 return;
755
756 if (likely(!sysctl_sched_compat_yield)) {
757 __update_rq_clock(rq);
758 /*
759 * Dequeue and enqueue the task to update its
760 * position within the tree:
761 */
762 update_curr(cfs_rq);
763
764 return;
765 }
766 /*
767 * Find the rightmost entry in the rbtree:
768 */
769 rightmost = __pick_last_entity(cfs_rq);
770 /*
771 * Already in the rightmost position?
772 */
773 if (unlikely(rightmost->vruntime < se->vruntime))
774 return;
775
776 /*
777 * Minimally necessary key value to be last in the tree:
778 * Upon rescheduling, sched_class::put_prev_task() will place
779 * 'current' within the tree based on its new key value.
780 */
781 se->vruntime = rightmost->vruntime + 1;
782 }
783
784 /*
785 * Preempt the current task with a newly woken task if needed:
786 */
787 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
788 {
789 struct task_struct *curr = rq->curr;
790 struct cfs_rq *cfs_rq = task_cfs_rq(curr), *pcfs_rq;
791 struct sched_entity *se = &curr->se, *pse = &p->se;
792
793 if (unlikely(rt_prio(p->prio))) {
794 update_rq_clock(rq);
795 update_curr(cfs_rq);
796 resched_task(curr);
797 return;
798 }
799
800 for_each_sched_entity(se) {
801 cfs_rq = cfs_rq_of(se);
802 pcfs_rq = cfs_rq_of(pse);
803
804 if (cfs_rq == pcfs_rq) {
805 s64 delta = se->vruntime - pse->vruntime;
806
807 if (delta > (s64)sysctl_sched_wakeup_granularity)
808 resched_task(curr);
809 break;
810 }
811 #ifdef CONFIG_FAIR_GROUP_SCHED
812 pse = pse->parent;
813 #endif
814 }
815 }
816
817 static struct task_struct *pick_next_task_fair(struct rq *rq)
818 {
819 struct cfs_rq *cfs_rq = &rq->cfs;
820 struct sched_entity *se;
821
822 if (unlikely(!cfs_rq->nr_running))
823 return NULL;
824
825 do {
826 se = pick_next_entity(cfs_rq);
827 cfs_rq = group_cfs_rq(se);
828 } while (cfs_rq);
829
830 return task_of(se);
831 }
832
833 /*
834 * Account for a descheduled task:
835 */
836 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
837 {
838 struct sched_entity *se = &prev->se;
839 struct cfs_rq *cfs_rq;
840
841 for_each_sched_entity(se) {
842 cfs_rq = cfs_rq_of(se);
843 put_prev_entity(cfs_rq, se);
844 }
845 }
846
847 /**************************************************
848 * Fair scheduling class load-balancing methods:
849 */
850
851 /*
852 * Load-balancing iterator. Note: while the runqueue stays locked
853 * during the whole iteration, the current task might be
854 * dequeued so the iterator has to be dequeue-safe. Here we
855 * achieve that by always pre-iterating before returning
856 * the current task:
857 */
858 static inline struct task_struct *
859 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
860 {
861 struct task_struct *p;
862
863 if (!curr)
864 return NULL;
865
866 p = rb_entry(curr, struct task_struct, se.run_node);
867 cfs_rq->rb_load_balance_curr = rb_next(curr);
868
869 return p;
870 }
871
872 static struct task_struct *load_balance_start_fair(void *arg)
873 {
874 struct cfs_rq *cfs_rq = arg;
875
876 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
877 }
878
879 static struct task_struct *load_balance_next_fair(void *arg)
880 {
881 struct cfs_rq *cfs_rq = arg;
882
883 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
884 }
885
886 #ifdef CONFIG_FAIR_GROUP_SCHED
887 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
888 {
889 struct sched_entity *curr;
890 struct task_struct *p;
891
892 if (!cfs_rq->nr_running)
893 return MAX_PRIO;
894
895 curr = cfs_rq->curr;
896 if (!curr)
897 curr = __pick_next_entity(cfs_rq);
898
899 p = task_of(curr);
900
901 return p->prio;
902 }
903 #endif
904
905 static unsigned long
906 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
907 unsigned long max_nr_move, unsigned long max_load_move,
908 struct sched_domain *sd, enum cpu_idle_type idle,
909 int *all_pinned, int *this_best_prio)
910 {
911 struct cfs_rq *busy_cfs_rq;
912 unsigned long load_moved, total_nr_moved = 0, nr_moved;
913 long rem_load_move = max_load_move;
914 struct rq_iterator cfs_rq_iterator;
915
916 cfs_rq_iterator.start = load_balance_start_fair;
917 cfs_rq_iterator.next = load_balance_next_fair;
918
919 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
920 #ifdef CONFIG_FAIR_GROUP_SCHED
921 struct cfs_rq *this_cfs_rq;
922 long imbalance;
923 unsigned long maxload;
924
925 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
926
927 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
928 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
929 if (imbalance <= 0)
930 continue;
931
932 /* Don't pull more than imbalance/2 */
933 imbalance /= 2;
934 maxload = min(rem_load_move, imbalance);
935
936 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
937 #else
938 # define maxload rem_load_move
939 #endif
940 /* pass busy_cfs_rq argument into
941 * load_balance_[start|next]_fair iterators
942 */
943 cfs_rq_iterator.arg = busy_cfs_rq;
944 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
945 max_nr_move, maxload, sd, idle, all_pinned,
946 &load_moved, this_best_prio, &cfs_rq_iterator);
947
948 total_nr_moved += nr_moved;
949 max_nr_move -= nr_moved;
950 rem_load_move -= load_moved;
951
952 if (max_nr_move <= 0 || rem_load_move <= 0)
953 break;
954 }
955
956 return max_load_move - rem_load_move;
957 }
958
959 /*
960 * scheduler tick hitting a task of our scheduling class:
961 */
962 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
963 {
964 struct cfs_rq *cfs_rq;
965 struct sched_entity *se = &curr->se;
966
967 for_each_sched_entity(se) {
968 cfs_rq = cfs_rq_of(se);
969 entity_tick(cfs_rq, se);
970 }
971 }
972
973 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
974
975 /*
976 * Share the fairness runtime between parent and child, thus the
977 * total amount of pressure for CPU stays equal - new tasks
978 * get a chance to run but frequent forkers are not allowed to
979 * monopolize the CPU. Note: the parent runqueue is locked,
980 * the child is not running yet.
981 */
982 static void task_new_fair(struct rq *rq, struct task_struct *p)
983 {
984 struct cfs_rq *cfs_rq = task_cfs_rq(p);
985 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
986
987 sched_info_queued(p);
988
989 update_curr(cfs_rq);
990 place_entity(cfs_rq, se, 1);
991
992 if (sysctl_sched_child_runs_first &&
993 curr->vruntime < se->vruntime) {
994 /*
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
997 */
998 swap(curr->vruntime, se->vruntime);
999 }
1000
1001 update_stats_enqueue(cfs_rq, se);
1002 check_spread(cfs_rq, se);
1003 check_spread(cfs_rq, curr);
1004 __enqueue_entity(cfs_rq, se);
1005 account_entity_enqueue(cfs_rq, se);
1006 resched_task(rq->curr);
1007 }
1008
1009 /* Account for a task changing its policy or group.
1010 *
1011 * This routine is mostly called to set cfs_rq->curr field when a task
1012 * migrates between groups/classes.
1013 */
1014 static void set_curr_task_fair(struct rq *rq)
1015 {
1016 struct sched_entity *se = &rq->curr->se;
1017
1018 for_each_sched_entity(se)
1019 set_next_entity(cfs_rq_of(se), se);
1020 }
1021
1022 /*
1023 * All the scheduling class methods:
1024 */
1025 struct sched_class fair_sched_class __read_mostly = {
1026 .enqueue_task = enqueue_task_fair,
1027 .dequeue_task = dequeue_task_fair,
1028 .yield_task = yield_task_fair,
1029
1030 .check_preempt_curr = check_preempt_wakeup,
1031
1032 .pick_next_task = pick_next_task_fair,
1033 .put_prev_task = put_prev_task_fair,
1034
1035 .load_balance = load_balance_fair,
1036
1037 .set_curr_task = set_curr_task_fair,
1038 .task_tick = task_tick_fair,
1039 .task_new = task_new_fair,
1040 };
1041
1042 #ifdef CONFIG_SCHED_DEBUG
1043 static void print_cfs_stats(struct seq_file *m, int cpu)
1044 {
1045 struct cfs_rq *cfs_rq;
1046
1047 #ifdef CONFIG_FAIR_GROUP_SCHED
1048 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1049 #endif
1050 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1051 print_cfs_rq(m, cpu, cfs_rq);
1052 }
1053 #endif
This page took 0.132149 seconds and 5 git commands to generate.