sched: fix: move the CPU check into ->task_new_fair()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 10 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 10 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
78
79 /**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
83 #ifdef CONFIG_FAIR_GROUP_SCHED
84
85 /* cpu runqueue to which this cfs_rq is attached */
86 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87 {
88 return cfs_rq->rq;
89 }
90
91 /* An entity is a task if it doesn't "own" a runqueue */
92 #define entity_is_task(se) (!se->my_q)
93
94 #else /* CONFIG_FAIR_GROUP_SCHED */
95
96 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97 {
98 return container_of(cfs_rq, struct rq, cfs);
99 }
100
101 #define entity_is_task(se) 1
102
103 #endif /* CONFIG_FAIR_GROUP_SCHED */
104
105 static inline struct task_struct *task_of(struct sched_entity *se)
106 {
107 return container_of(se, struct task_struct, se);
108 }
109
110
111 /**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
115 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
116 {
117 s64 delta = (s64)(vruntime - min_vruntime);
118 if (delta > 0)
119 min_vruntime = vruntime;
120
121 return min_vruntime;
122 }
123
124 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
125 {
126 s64 delta = (s64)(vruntime - min_vruntime);
127 if (delta < 0)
128 min_vruntime = vruntime;
129
130 return min_vruntime;
131 }
132
133 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
134 {
135 return se->vruntime - cfs_rq->min_vruntime;
136 }
137
138 /*
139 * Enqueue an entity into the rb-tree:
140 */
141 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 {
143 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
144 struct rb_node *parent = NULL;
145 struct sched_entity *entry;
146 s64 key = entity_key(cfs_rq, se);
147 int leftmost = 1;
148
149 /*
150 * Find the right place in the rbtree:
151 */
152 while (*link) {
153 parent = *link;
154 entry = rb_entry(parent, struct sched_entity, run_node);
155 /*
156 * We dont care about collisions. Nodes with
157 * the same key stay together.
158 */
159 if (key < entity_key(cfs_rq, entry)) {
160 link = &parent->rb_left;
161 } else {
162 link = &parent->rb_right;
163 leftmost = 0;
164 }
165 }
166
167 /*
168 * Maintain a cache of leftmost tree entries (it is frequently
169 * used):
170 */
171 if (leftmost)
172 cfs_rq->rb_leftmost = &se->run_node;
173
174 rb_link_node(&se->run_node, parent, link);
175 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
176 }
177
178 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
179 {
180 if (cfs_rq->rb_leftmost == &se->run_node)
181 cfs_rq->rb_leftmost = rb_next(&se->run_node);
182
183 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
184 }
185
186 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
187 {
188 return cfs_rq->rb_leftmost;
189 }
190
191 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
192 {
193 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
194 }
195
196 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
197 {
198 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
199 struct sched_entity *se = NULL;
200 struct rb_node *parent;
201
202 while (*link) {
203 parent = *link;
204 se = rb_entry(parent, struct sched_entity, run_node);
205 link = &parent->rb_right;
206 }
207
208 return se;
209 }
210
211 /**************************************************************
212 * Scheduling class statistics methods:
213 */
214
215
216 /*
217 * The idea is to set a period in which each task runs once.
218 *
219 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
220 * this period because otherwise the slices get too small.
221 *
222 * p = (nr <= nl) ? l : l*nr/nl
223 */
224 static u64 __sched_period(unsigned long nr_running)
225 {
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency = sysctl_sched_nr_latency;
228
229 if (unlikely(nr_running > nr_latency)) {
230 period *= nr_running;
231 do_div(period, nr_latency);
232 }
233
234 return period;
235 }
236
237 /*
238 * We calculate the wall-time slice from the period by taking a part
239 * proportional to the weight.
240 *
241 * s = p*w/rw
242 */
243 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
244 {
245 u64 slice = __sched_period(cfs_rq->nr_running);
246
247 slice *= se->load.weight;
248 do_div(slice, cfs_rq->load.weight);
249
250 return slice;
251 }
252
253 /*
254 * We calculate the vruntime slice.
255 *
256 * vs = s/w = p/rw
257 */
258 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
259 {
260 u64 vslice = __sched_period(nr_running);
261
262 do_div(vslice, rq_weight);
263
264 return vslice;
265 }
266
267 static u64 sched_vslice(struct cfs_rq *cfs_rq)
268 {
269 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
270 }
271
272 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
273 {
274 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
275 cfs_rq->nr_running + 1);
276 }
277
278 /*
279 * Update the current task's runtime statistics. Skip current tasks that
280 * are not in our scheduling class.
281 */
282 static inline void
283 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
284 unsigned long delta_exec)
285 {
286 unsigned long delta_exec_weighted;
287 u64 vruntime;
288
289 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
290
291 curr->sum_exec_runtime += delta_exec;
292 schedstat_add(cfs_rq, exec_clock, delta_exec);
293 delta_exec_weighted = delta_exec;
294 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
295 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
296 &curr->load);
297 }
298 curr->vruntime += delta_exec_weighted;
299
300 /*
301 * maintain cfs_rq->min_vruntime to be a monotonic increasing
302 * value tracking the leftmost vruntime in the tree.
303 */
304 if (first_fair(cfs_rq)) {
305 vruntime = min_vruntime(curr->vruntime,
306 __pick_next_entity(cfs_rq)->vruntime);
307 } else
308 vruntime = curr->vruntime;
309
310 cfs_rq->min_vruntime =
311 max_vruntime(cfs_rq->min_vruntime, vruntime);
312 }
313
314 static void update_curr(struct cfs_rq *cfs_rq)
315 {
316 struct sched_entity *curr = cfs_rq->curr;
317 u64 now = rq_of(cfs_rq)->clock;
318 unsigned long delta_exec;
319
320 if (unlikely(!curr))
321 return;
322
323 /*
324 * Get the amount of time the current task was running
325 * since the last time we changed load (this cannot
326 * overflow on 32 bits):
327 */
328 delta_exec = (unsigned long)(now - curr->exec_start);
329
330 __update_curr(cfs_rq, curr, delta_exec);
331 curr->exec_start = now;
332 }
333
334 static inline void
335 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
338 }
339
340 /*
341 * Task is being enqueued - update stats:
342 */
343 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
344 {
345 /*
346 * Are we enqueueing a waiting task? (for current tasks
347 * a dequeue/enqueue event is a NOP)
348 */
349 if (se != cfs_rq->curr)
350 update_stats_wait_start(cfs_rq, se);
351 }
352
353 static void
354 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
355 {
356 schedstat_set(se->wait_max, max(se->wait_max,
357 rq_of(cfs_rq)->clock - se->wait_start));
358 schedstat_set(se->wait_start, 0);
359 }
360
361 static inline void
362 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
363 {
364 /*
365 * Mark the end of the wait period if dequeueing a
366 * waiting task:
367 */
368 if (se != cfs_rq->curr)
369 update_stats_wait_end(cfs_rq, se);
370 }
371
372 /*
373 * We are picking a new current task - update its stats:
374 */
375 static inline void
376 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 {
378 /*
379 * We are starting a new run period:
380 */
381 se->exec_start = rq_of(cfs_rq)->clock;
382 }
383
384 /*
385 * We are descheduling a task - update its stats:
386 */
387 static inline void
388 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
389 {
390 se->exec_start = 0;
391 }
392
393 /**************************************************
394 * Scheduling class queueing methods:
395 */
396
397 static void
398 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
399 {
400 update_load_add(&cfs_rq->load, se->load.weight);
401 cfs_rq->nr_running++;
402 se->on_rq = 1;
403 }
404
405 static void
406 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 {
408 update_load_sub(&cfs_rq->load, se->load.weight);
409 cfs_rq->nr_running--;
410 se->on_rq = 0;
411 }
412
413 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
414 {
415 #ifdef CONFIG_SCHEDSTATS
416 if (se->sleep_start) {
417 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->sleep_max))
423 se->sleep_max = delta;
424
425 se->sleep_start = 0;
426 se->sum_sleep_runtime += delta;
427 }
428 if (se->block_start) {
429 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
430
431 if ((s64)delta < 0)
432 delta = 0;
433
434 if (unlikely(delta > se->block_max))
435 se->block_max = delta;
436
437 se->block_start = 0;
438 se->sum_sleep_runtime += delta;
439
440 /*
441 * Blocking time is in units of nanosecs, so shift by 20 to
442 * get a milliseconds-range estimation of the amount of
443 * time that the task spent sleeping:
444 */
445 if (unlikely(prof_on == SLEEP_PROFILING)) {
446 struct task_struct *tsk = task_of(se);
447
448 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
449 delta >> 20);
450 }
451 }
452 #endif
453 }
454
455 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
456 {
457 #ifdef CONFIG_SCHED_DEBUG
458 s64 d = se->vruntime - cfs_rq->min_vruntime;
459
460 if (d < 0)
461 d = -d;
462
463 if (d > 3*sysctl_sched_latency)
464 schedstat_inc(cfs_rq, nr_spread_over);
465 #endif
466 }
467
468 static void
469 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
470 {
471 u64 vruntime;
472
473 vruntime = cfs_rq->min_vruntime;
474
475 if (sched_feat(TREE_AVG)) {
476 struct sched_entity *last = __pick_last_entity(cfs_rq);
477 if (last) {
478 vruntime += last->vruntime;
479 vruntime >>= 1;
480 }
481 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
482 vruntime += sched_vslice(cfs_rq)/2;
483
484 if (initial && sched_feat(START_DEBIT))
485 vruntime += sched_vslice_add(cfs_rq, se);
486
487 if (!initial) {
488 if (sched_feat(NEW_FAIR_SLEEPERS))
489 vruntime -= sysctl_sched_latency;
490
491 vruntime = max_t(s64, vruntime, se->vruntime);
492 }
493
494 se->vruntime = vruntime;
495
496 }
497
498 static void
499 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
500 {
501 /*
502 * Update run-time statistics of the 'current'.
503 */
504 update_curr(cfs_rq);
505
506 if (wakeup) {
507 place_entity(cfs_rq, se, 0);
508 enqueue_sleeper(cfs_rq, se);
509 }
510
511 update_stats_enqueue(cfs_rq, se);
512 check_spread(cfs_rq, se);
513 if (se != cfs_rq->curr)
514 __enqueue_entity(cfs_rq, se);
515 account_entity_enqueue(cfs_rq, se);
516 }
517
518 static void
519 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
520 {
521 /*
522 * Update run-time statistics of the 'current'.
523 */
524 update_curr(cfs_rq);
525
526 update_stats_dequeue(cfs_rq, se);
527 if (sleep) {
528 #ifdef CONFIG_SCHEDSTATS
529 if (entity_is_task(se)) {
530 struct task_struct *tsk = task_of(se);
531
532 if (tsk->state & TASK_INTERRUPTIBLE)
533 se->sleep_start = rq_of(cfs_rq)->clock;
534 if (tsk->state & TASK_UNINTERRUPTIBLE)
535 se->block_start = rq_of(cfs_rq)->clock;
536 }
537 #endif
538 }
539
540 if (se != cfs_rq->curr)
541 __dequeue_entity(cfs_rq, se);
542 account_entity_dequeue(cfs_rq, se);
543 }
544
545 /*
546 * Preempt the current task with a newly woken task if needed:
547 */
548 static void
549 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
550 {
551 unsigned long ideal_runtime, delta_exec;
552
553 ideal_runtime = sched_slice(cfs_rq, curr);
554 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
555 if (delta_exec > ideal_runtime)
556 resched_task(rq_of(cfs_rq)->curr);
557 }
558
559 static void
560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 {
562 /* 'current' is not kept within the tree. */
563 if (se->on_rq) {
564 /*
565 * Any task has to be enqueued before it get to execute on
566 * a CPU. So account for the time it spent waiting on the
567 * runqueue.
568 */
569 update_stats_wait_end(cfs_rq, se);
570 __dequeue_entity(cfs_rq, se);
571 }
572
573 update_stats_curr_start(cfs_rq, se);
574 cfs_rq->curr = se;
575 #ifdef CONFIG_SCHEDSTATS
576 /*
577 * Track our maximum slice length, if the CPU's load is at
578 * least twice that of our own weight (i.e. dont track it
579 * when there are only lesser-weight tasks around):
580 */
581 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
582 se->slice_max = max(se->slice_max,
583 se->sum_exec_runtime - se->prev_sum_exec_runtime);
584 }
585 #endif
586 se->prev_sum_exec_runtime = se->sum_exec_runtime;
587 }
588
589 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
590 {
591 struct sched_entity *se = NULL;
592
593 if (first_fair(cfs_rq)) {
594 se = __pick_next_entity(cfs_rq);
595 set_next_entity(cfs_rq, se);
596 }
597
598 return se;
599 }
600
601 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
602 {
603 /*
604 * If still on the runqueue then deactivate_task()
605 * was not called and update_curr() has to be done:
606 */
607 if (prev->on_rq)
608 update_curr(cfs_rq);
609
610 update_stats_curr_end(cfs_rq, prev);
611
612 check_spread(cfs_rq, prev);
613 if (prev->on_rq) {
614 update_stats_wait_start(cfs_rq, prev);
615 /* Put 'current' back into the tree. */
616 __enqueue_entity(cfs_rq, prev);
617 }
618 cfs_rq->curr = NULL;
619 }
620
621 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
622 {
623 /*
624 * Update run-time statistics of the 'current'.
625 */
626 update_curr(cfs_rq);
627
628 if (cfs_rq->nr_running > 1)
629 check_preempt_tick(cfs_rq, curr);
630 }
631
632 /**************************************************
633 * CFS operations on tasks:
634 */
635
636 #ifdef CONFIG_FAIR_GROUP_SCHED
637
638 /* Walk up scheduling entities hierarchy */
639 #define for_each_sched_entity(se) \
640 for (; se; se = se->parent)
641
642 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
643 {
644 return p->se.cfs_rq;
645 }
646
647 /* runqueue on which this entity is (to be) queued */
648 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
649 {
650 return se->cfs_rq;
651 }
652
653 /* runqueue "owned" by this group */
654 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
655 {
656 return grp->my_q;
657 }
658
659 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
660 * another cpu ('this_cpu')
661 */
662 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
663 {
664 return cfs_rq->tg->cfs_rq[this_cpu];
665 }
666
667 /* Iterate thr' all leaf cfs_rq's on a runqueue */
668 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
669 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
670
671 /* Do the two (enqueued) entities belong to the same group ? */
672 static inline int
673 is_same_group(struct sched_entity *se, struct sched_entity *pse)
674 {
675 if (se->cfs_rq == pse->cfs_rq)
676 return 1;
677
678 return 0;
679 }
680
681 static inline struct sched_entity *parent_entity(struct sched_entity *se)
682 {
683 return se->parent;
684 }
685
686 #else /* CONFIG_FAIR_GROUP_SCHED */
687
688 #define for_each_sched_entity(se) \
689 for (; se; se = NULL)
690
691 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
692 {
693 return &task_rq(p)->cfs;
694 }
695
696 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
697 {
698 struct task_struct *p = task_of(se);
699 struct rq *rq = task_rq(p);
700
701 return &rq->cfs;
702 }
703
704 /* runqueue "owned" by this group */
705 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
706 {
707 return NULL;
708 }
709
710 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
711 {
712 return &cpu_rq(this_cpu)->cfs;
713 }
714
715 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
716 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
717
718 static inline int
719 is_same_group(struct sched_entity *se, struct sched_entity *pse)
720 {
721 return 1;
722 }
723
724 static inline struct sched_entity *parent_entity(struct sched_entity *se)
725 {
726 return NULL;
727 }
728
729 #endif /* CONFIG_FAIR_GROUP_SCHED */
730
731 /*
732 * The enqueue_task method is called before nr_running is
733 * increased. Here we update the fair scheduling stats and
734 * then put the task into the rbtree:
735 */
736 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
737 {
738 struct cfs_rq *cfs_rq;
739 struct sched_entity *se = &p->se;
740
741 for_each_sched_entity(se) {
742 if (se->on_rq)
743 break;
744 cfs_rq = cfs_rq_of(se);
745 enqueue_entity(cfs_rq, se, wakeup);
746 wakeup = 1;
747 }
748 }
749
750 /*
751 * The dequeue_task method is called before nr_running is
752 * decreased. We remove the task from the rbtree and
753 * update the fair scheduling stats:
754 */
755 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
756 {
757 struct cfs_rq *cfs_rq;
758 struct sched_entity *se = &p->se;
759
760 for_each_sched_entity(se) {
761 cfs_rq = cfs_rq_of(se);
762 dequeue_entity(cfs_rq, se, sleep);
763 /* Don't dequeue parent if it has other entities besides us */
764 if (cfs_rq->load.weight)
765 break;
766 sleep = 1;
767 }
768 }
769
770 /*
771 * sched_yield() support is very simple - we dequeue and enqueue.
772 *
773 * If compat_yield is turned on then we requeue to the end of the tree.
774 */
775 static void yield_task_fair(struct rq *rq)
776 {
777 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
778 struct sched_entity *rightmost, *se = &rq->curr->se;
779
780 /*
781 * Are we the only task in the tree?
782 */
783 if (unlikely(cfs_rq->nr_running == 1))
784 return;
785
786 if (likely(!sysctl_sched_compat_yield)) {
787 __update_rq_clock(rq);
788 /*
789 * Update run-time statistics of the 'current'.
790 */
791 update_curr(cfs_rq);
792
793 return;
794 }
795 /*
796 * Find the rightmost entry in the rbtree:
797 */
798 rightmost = __pick_last_entity(cfs_rq);
799 /*
800 * Already in the rightmost position?
801 */
802 if (unlikely(rightmost->vruntime < se->vruntime))
803 return;
804
805 /*
806 * Minimally necessary key value to be last in the tree:
807 * Upon rescheduling, sched_class::put_prev_task() will place
808 * 'current' within the tree based on its new key value.
809 */
810 se->vruntime = rightmost->vruntime + 1;
811 }
812
813 /*
814 * Preempt the current task with a newly woken task if needed:
815 */
816 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
817 {
818 struct task_struct *curr = rq->curr;
819 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
820 struct sched_entity *se = &curr->se, *pse = &p->se;
821 s64 delta;
822
823 if (unlikely(rt_prio(p->prio))) {
824 update_rq_clock(rq);
825 update_curr(cfs_rq);
826 resched_task(curr);
827 return;
828 }
829
830 while (!is_same_group(se, pse)) {
831 se = parent_entity(se);
832 pse = parent_entity(pse);
833 }
834
835 delta = se->vruntime - pse->vruntime;
836
837 if (delta > (s64)sysctl_sched_wakeup_granularity)
838 resched_task(curr);
839 }
840
841 static struct task_struct *pick_next_task_fair(struct rq *rq)
842 {
843 struct cfs_rq *cfs_rq = &rq->cfs;
844 struct sched_entity *se;
845
846 if (unlikely(!cfs_rq->nr_running))
847 return NULL;
848
849 do {
850 se = pick_next_entity(cfs_rq);
851 cfs_rq = group_cfs_rq(se);
852 } while (cfs_rq);
853
854 return task_of(se);
855 }
856
857 /*
858 * Account for a descheduled task:
859 */
860 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
861 {
862 struct sched_entity *se = &prev->se;
863 struct cfs_rq *cfs_rq;
864
865 for_each_sched_entity(se) {
866 cfs_rq = cfs_rq_of(se);
867 put_prev_entity(cfs_rq, se);
868 }
869 }
870
871 /**************************************************
872 * Fair scheduling class load-balancing methods:
873 */
874
875 /*
876 * Load-balancing iterator. Note: while the runqueue stays locked
877 * during the whole iteration, the current task might be
878 * dequeued so the iterator has to be dequeue-safe. Here we
879 * achieve that by always pre-iterating before returning
880 * the current task:
881 */
882 static struct task_struct *
883 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
884 {
885 struct task_struct *p;
886
887 if (!curr)
888 return NULL;
889
890 p = rb_entry(curr, struct task_struct, se.run_node);
891 cfs_rq->rb_load_balance_curr = rb_next(curr);
892
893 return p;
894 }
895
896 static struct task_struct *load_balance_start_fair(void *arg)
897 {
898 struct cfs_rq *cfs_rq = arg;
899
900 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
901 }
902
903 static struct task_struct *load_balance_next_fair(void *arg)
904 {
905 struct cfs_rq *cfs_rq = arg;
906
907 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
908 }
909
910 #ifdef CONFIG_FAIR_GROUP_SCHED
911 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
912 {
913 struct sched_entity *curr;
914 struct task_struct *p;
915
916 if (!cfs_rq->nr_running)
917 return MAX_PRIO;
918
919 curr = cfs_rq->curr;
920 if (!curr)
921 curr = __pick_next_entity(cfs_rq);
922
923 p = task_of(curr);
924
925 return p->prio;
926 }
927 #endif
928
929 static unsigned long
930 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
931 unsigned long max_nr_move, unsigned long max_load_move,
932 struct sched_domain *sd, enum cpu_idle_type idle,
933 int *all_pinned, int *this_best_prio)
934 {
935 struct cfs_rq *busy_cfs_rq;
936 unsigned long load_moved, total_nr_moved = 0, nr_moved;
937 long rem_load_move = max_load_move;
938 struct rq_iterator cfs_rq_iterator;
939
940 cfs_rq_iterator.start = load_balance_start_fair;
941 cfs_rq_iterator.next = load_balance_next_fair;
942
943 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
944 #ifdef CONFIG_FAIR_GROUP_SCHED
945 struct cfs_rq *this_cfs_rq;
946 long imbalance;
947 unsigned long maxload;
948
949 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
950
951 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
952 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
953 if (imbalance <= 0)
954 continue;
955
956 /* Don't pull more than imbalance/2 */
957 imbalance /= 2;
958 maxload = min(rem_load_move, imbalance);
959
960 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
961 #else
962 # define maxload rem_load_move
963 #endif
964 /* pass busy_cfs_rq argument into
965 * load_balance_[start|next]_fair iterators
966 */
967 cfs_rq_iterator.arg = busy_cfs_rq;
968 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
969 max_nr_move, maxload, sd, idle, all_pinned,
970 &load_moved, this_best_prio, &cfs_rq_iterator);
971
972 total_nr_moved += nr_moved;
973 max_nr_move -= nr_moved;
974 rem_load_move -= load_moved;
975
976 if (max_nr_move <= 0 || rem_load_move <= 0)
977 break;
978 }
979
980 return max_load_move - rem_load_move;
981 }
982
983 /*
984 * scheduler tick hitting a task of our scheduling class:
985 */
986 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
987 {
988 struct cfs_rq *cfs_rq;
989 struct sched_entity *se = &curr->se;
990
991 for_each_sched_entity(se) {
992 cfs_rq = cfs_rq_of(se);
993 entity_tick(cfs_rq, se);
994 }
995 }
996
997 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
998
999 /*
1000 * Share the fairness runtime between parent and child, thus the
1001 * total amount of pressure for CPU stays equal - new tasks
1002 * get a chance to run but frequent forkers are not allowed to
1003 * monopolize the CPU. Note: the parent runqueue is locked,
1004 * the child is not running yet.
1005 */
1006 static void task_new_fair(struct rq *rq, struct task_struct *p)
1007 {
1008 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1009 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1010 int this_cpu = smp_processor_id();
1011
1012 sched_info_queued(p);
1013
1014 update_curr(cfs_rq);
1015 place_entity(cfs_rq, se, 1);
1016
1017 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1018 curr->vruntime < se->vruntime) {
1019 /*
1020 * Upon rescheduling, sched_class::put_prev_task() will place
1021 * 'current' within the tree based on its new key value.
1022 */
1023 swap(curr->vruntime, se->vruntime);
1024 }
1025
1026 update_stats_enqueue(cfs_rq, se);
1027 check_spread(cfs_rq, se);
1028 check_spread(cfs_rq, curr);
1029 __enqueue_entity(cfs_rq, se);
1030 account_entity_enqueue(cfs_rq, se);
1031 resched_task(rq->curr);
1032 }
1033
1034 /* Account for a task changing its policy or group.
1035 *
1036 * This routine is mostly called to set cfs_rq->curr field when a task
1037 * migrates between groups/classes.
1038 */
1039 static void set_curr_task_fair(struct rq *rq)
1040 {
1041 struct sched_entity *se = &rq->curr->se;
1042
1043 for_each_sched_entity(se)
1044 set_next_entity(cfs_rq_of(se), se);
1045 }
1046
1047 /*
1048 * All the scheduling class methods:
1049 */
1050 static const struct sched_class fair_sched_class = {
1051 .next = &idle_sched_class,
1052 .enqueue_task = enqueue_task_fair,
1053 .dequeue_task = dequeue_task_fair,
1054 .yield_task = yield_task_fair,
1055
1056 .check_preempt_curr = check_preempt_wakeup,
1057
1058 .pick_next_task = pick_next_task_fair,
1059 .put_prev_task = put_prev_task_fair,
1060
1061 .load_balance = load_balance_fair,
1062
1063 .set_curr_task = set_curr_task_fair,
1064 .task_tick = task_tick_fair,
1065 .task_new = task_new_fair,
1066 };
1067
1068 #ifdef CONFIG_SCHED_DEBUG
1069 static void print_cfs_stats(struct seq_file *m, int cpu)
1070 {
1071 struct cfs_rq *cfs_rq;
1072
1073 #ifdef CONFIG_FAIR_GROUP_SCHED
1074 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1075 #endif
1076 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1077 print_cfs_rq(m, cpu, cfs_rq);
1078 }
1079 #endif
This page took 0.066366 seconds and 5 git commands to generate.