sched: Remove noop in lowest_flag_domain()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 *
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
35 *
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
38 */
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41
42 /*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 */
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60
61 /*
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
64 static unsigned int sched_nr_latency = 8;
65
66 /*
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
69 */
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
85 /*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
139 {
140 if (!cfs_rq->on_list) {
141 /*
142 * Ensure we either appear before our parent (if already
143 * enqueued) or force our parent to appear after us when it is
144 * enqueued. The fact that we always enqueue bottom-up
145 * reduces this to two cases.
146 */
147 if (cfs_rq->tg->parent &&
148 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
149 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
150 &rq_of(cfs_rq)->leaf_cfs_rq_list);
151 } else {
152 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
153 &rq_of(cfs_rq)->leaf_cfs_rq_list);
154 }
155
156 cfs_rq->on_list = 1;
157 }
158 }
159
160 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
161 {
162 if (cfs_rq->on_list) {
163 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
164 cfs_rq->on_list = 0;
165 }
166 }
167
168 /* Iterate thr' all leaf cfs_rq's on a runqueue */
169 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
170 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
171
172 /* Do the two (enqueued) entities belong to the same group ? */
173 static inline int
174 is_same_group(struct sched_entity *se, struct sched_entity *pse)
175 {
176 if (se->cfs_rq == pse->cfs_rq)
177 return 1;
178
179 return 0;
180 }
181
182 static inline struct sched_entity *parent_entity(struct sched_entity *se)
183 {
184 return se->parent;
185 }
186
187 /* return depth at which a sched entity is present in the hierarchy */
188 static inline int depth_se(struct sched_entity *se)
189 {
190 int depth = 0;
191
192 for_each_sched_entity(se)
193 depth++;
194
195 return depth;
196 }
197
198 static void
199 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
200 {
201 int se_depth, pse_depth;
202
203 /*
204 * preemption test can be made between sibling entities who are in the
205 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
206 * both tasks until we find their ancestors who are siblings of common
207 * parent.
208 */
209
210 /* First walk up until both entities are at same depth */
211 se_depth = depth_se(*se);
212 pse_depth = depth_se(*pse);
213
214 while (se_depth > pse_depth) {
215 se_depth--;
216 *se = parent_entity(*se);
217 }
218
219 while (pse_depth > se_depth) {
220 pse_depth--;
221 *pse = parent_entity(*pse);
222 }
223
224 while (!is_same_group(*se, *pse)) {
225 *se = parent_entity(*se);
226 *pse = parent_entity(*pse);
227 }
228 }
229
230 #else /* !CONFIG_FAIR_GROUP_SCHED */
231
232 static inline struct task_struct *task_of(struct sched_entity *se)
233 {
234 return container_of(se, struct task_struct, se);
235 }
236
237 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
238 {
239 return container_of(cfs_rq, struct rq, cfs);
240 }
241
242 #define entity_is_task(se) 1
243
244 #define for_each_sched_entity(se) \
245 for (; se; se = NULL)
246
247 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
248 {
249 return &task_rq(p)->cfs;
250 }
251
252 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
253 {
254 struct task_struct *p = task_of(se);
255 struct rq *rq = task_rq(p);
256
257 return &rq->cfs;
258 }
259
260 /* runqueue "owned" by this group */
261 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
262 {
263 return NULL;
264 }
265
266 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
267 {
268 }
269
270 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
271 {
272 }
273
274 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
275 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
276
277 static inline int
278 is_same_group(struct sched_entity *se, struct sched_entity *pse)
279 {
280 return 1;
281 }
282
283 static inline struct sched_entity *parent_entity(struct sched_entity *se)
284 {
285 return NULL;
286 }
287
288 static inline void
289 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
290 {
291 }
292
293 #endif /* CONFIG_FAIR_GROUP_SCHED */
294
295
296 /**************************************************************
297 * Scheduling class tree data structure manipulation methods:
298 */
299
300 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
301 {
302 s64 delta = (s64)(vruntime - min_vruntime);
303 if (delta > 0)
304 min_vruntime = vruntime;
305
306 return min_vruntime;
307 }
308
309 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
310 {
311 s64 delta = (s64)(vruntime - min_vruntime);
312 if (delta < 0)
313 min_vruntime = vruntime;
314
315 return min_vruntime;
316 }
317
318 static inline int entity_before(struct sched_entity *a,
319 struct sched_entity *b)
320 {
321 return (s64)(a->vruntime - b->vruntime) < 0;
322 }
323
324 static void update_min_vruntime(struct cfs_rq *cfs_rq)
325 {
326 u64 vruntime = cfs_rq->min_vruntime;
327
328 if (cfs_rq->curr)
329 vruntime = cfs_rq->curr->vruntime;
330
331 if (cfs_rq->rb_leftmost) {
332 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
333 struct sched_entity,
334 run_node);
335
336 if (!cfs_rq->curr)
337 vruntime = se->vruntime;
338 else
339 vruntime = min_vruntime(vruntime, se->vruntime);
340 }
341
342 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
343 #ifndef CONFIG_64BIT
344 smp_wmb();
345 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
346 #endif
347 }
348
349 /*
350 * Enqueue an entity into the rb-tree:
351 */
352 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
353 {
354 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
355 struct rb_node *parent = NULL;
356 struct sched_entity *entry;
357 int leftmost = 1;
358
359 /*
360 * Find the right place in the rbtree:
361 */
362 while (*link) {
363 parent = *link;
364 entry = rb_entry(parent, struct sched_entity, run_node);
365 /*
366 * We dont care about collisions. Nodes with
367 * the same key stay together.
368 */
369 if (entity_before(se, entry)) {
370 link = &parent->rb_left;
371 } else {
372 link = &parent->rb_right;
373 leftmost = 0;
374 }
375 }
376
377 /*
378 * Maintain a cache of leftmost tree entries (it is frequently
379 * used):
380 */
381 if (leftmost)
382 cfs_rq->rb_leftmost = &se->run_node;
383
384 rb_link_node(&se->run_node, parent, link);
385 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
386 }
387
388 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
389 {
390 if (cfs_rq->rb_leftmost == &se->run_node) {
391 struct rb_node *next_node;
392
393 next_node = rb_next(&se->run_node);
394 cfs_rq->rb_leftmost = next_node;
395 }
396
397 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
398 }
399
400 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
401 {
402 struct rb_node *left = cfs_rq->rb_leftmost;
403
404 if (!left)
405 return NULL;
406
407 return rb_entry(left, struct sched_entity, run_node);
408 }
409
410 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
411 {
412 struct rb_node *next = rb_next(&se->run_node);
413
414 if (!next)
415 return NULL;
416
417 return rb_entry(next, struct sched_entity, run_node);
418 }
419
420 #ifdef CONFIG_SCHED_DEBUG
421 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
422 {
423 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
424
425 if (!last)
426 return NULL;
427
428 return rb_entry(last, struct sched_entity, run_node);
429 }
430
431 /**************************************************************
432 * Scheduling class statistics methods:
433 */
434
435 int sched_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 int factor = get_update_sysctl_factor();
441
442 if (ret || !write)
443 return ret;
444
445 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
446 sysctl_sched_min_granularity);
447
448 #define WRT_SYSCTL(name) \
449 (normalized_sysctl_##name = sysctl_##name / (factor))
450 WRT_SYSCTL(sched_min_granularity);
451 WRT_SYSCTL(sched_latency);
452 WRT_SYSCTL(sched_wakeup_granularity);
453 #undef WRT_SYSCTL
454
455 return 0;
456 }
457 #endif
458
459 /*
460 * delta /= w
461 */
462 static inline unsigned long
463 calc_delta_fair(unsigned long delta, struct sched_entity *se)
464 {
465 if (unlikely(se->load.weight != NICE_0_LOAD))
466 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
467
468 return delta;
469 }
470
471 /*
472 * The idea is to set a period in which each task runs once.
473 *
474 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
475 * this period because otherwise the slices get too small.
476 *
477 * p = (nr <= nl) ? l : l*nr/nl
478 */
479 static u64 __sched_period(unsigned long nr_running)
480 {
481 u64 period = sysctl_sched_latency;
482 unsigned long nr_latency = sched_nr_latency;
483
484 if (unlikely(nr_running > nr_latency)) {
485 period = sysctl_sched_min_granularity;
486 period *= nr_running;
487 }
488
489 return period;
490 }
491
492 /*
493 * We calculate the wall-time slice from the period by taking a part
494 * proportional to the weight.
495 *
496 * s = p*P[w/rw]
497 */
498 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
499 {
500 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
501
502 for_each_sched_entity(se) {
503 struct load_weight *load;
504 struct load_weight lw;
505
506 cfs_rq = cfs_rq_of(se);
507 load = &cfs_rq->load;
508
509 if (unlikely(!se->on_rq)) {
510 lw = cfs_rq->load;
511
512 update_load_add(&lw, se->load.weight);
513 load = &lw;
514 }
515 slice = calc_delta_mine(slice, se->load.weight, load);
516 }
517 return slice;
518 }
519
520 /*
521 * We calculate the vruntime slice of a to be inserted task
522 *
523 * vs = s/w
524 */
525 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
526 {
527 return calc_delta_fair(sched_slice(cfs_rq, se), se);
528 }
529
530 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
531 static void update_cfs_shares(struct cfs_rq *cfs_rq);
532
533 /*
534 * Update the current task's runtime statistics. Skip current tasks that
535 * are not in our scheduling class.
536 */
537 static inline void
538 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
539 unsigned long delta_exec)
540 {
541 unsigned long delta_exec_weighted;
542
543 schedstat_set(curr->statistics.exec_max,
544 max((u64)delta_exec, curr->statistics.exec_max));
545
546 curr->sum_exec_runtime += delta_exec;
547 schedstat_add(cfs_rq, exec_clock, delta_exec);
548 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
549
550 curr->vruntime += delta_exec_weighted;
551 update_min_vruntime(cfs_rq);
552
553 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
554 cfs_rq->load_unacc_exec_time += delta_exec;
555 #endif
556 }
557
558 static void update_curr(struct cfs_rq *cfs_rq)
559 {
560 struct sched_entity *curr = cfs_rq->curr;
561 u64 now = rq_of(cfs_rq)->clock_task;
562 unsigned long delta_exec;
563
564 if (unlikely(!curr))
565 return;
566
567 /*
568 * Get the amount of time the current task was running
569 * since the last time we changed load (this cannot
570 * overflow on 32 bits):
571 */
572 delta_exec = (unsigned long)(now - curr->exec_start);
573 if (!delta_exec)
574 return;
575
576 __update_curr(cfs_rq, curr, delta_exec);
577 curr->exec_start = now;
578
579 if (entity_is_task(curr)) {
580 struct task_struct *curtask = task_of(curr);
581
582 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
583 cpuacct_charge(curtask, delta_exec);
584 account_group_exec_runtime(curtask, delta_exec);
585 }
586 }
587
588 static inline void
589 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
590 {
591 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
592 }
593
594 /*
595 * Task is being enqueued - update stats:
596 */
597 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 /*
600 * Are we enqueueing a waiting task? (for current tasks
601 * a dequeue/enqueue event is a NOP)
602 */
603 if (se != cfs_rq->curr)
604 update_stats_wait_start(cfs_rq, se);
605 }
606
607 static void
608 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 {
610 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
611 rq_of(cfs_rq)->clock - se->statistics.wait_start));
612 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
613 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
614 rq_of(cfs_rq)->clock - se->statistics.wait_start);
615 #ifdef CONFIG_SCHEDSTATS
616 if (entity_is_task(se)) {
617 trace_sched_stat_wait(task_of(se),
618 rq_of(cfs_rq)->clock - se->statistics.wait_start);
619 }
620 #endif
621 schedstat_set(se->statistics.wait_start, 0);
622 }
623
624 static inline void
625 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 {
627 /*
628 * Mark the end of the wait period if dequeueing a
629 * waiting task:
630 */
631 if (se != cfs_rq->curr)
632 update_stats_wait_end(cfs_rq, se);
633 }
634
635 /*
636 * We are picking a new current task - update its stats:
637 */
638 static inline void
639 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 /*
642 * We are starting a new run period:
643 */
644 se->exec_start = rq_of(cfs_rq)->clock_task;
645 }
646
647 /**************************************************
648 * Scheduling class queueing methods:
649 */
650
651 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
652 static void
653 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
654 {
655 cfs_rq->task_weight += weight;
656 }
657 #else
658 static inline void
659 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
660 {
661 }
662 #endif
663
664 static void
665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
666 {
667 update_load_add(&cfs_rq->load, se->load.weight);
668 if (!parent_entity(se))
669 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
670 if (entity_is_task(se)) {
671 add_cfs_task_weight(cfs_rq, se->load.weight);
672 list_add(&se->group_node, &cfs_rq->tasks);
673 }
674 cfs_rq->nr_running++;
675 }
676
677 static void
678 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 update_load_sub(&cfs_rq->load, se->load.weight);
681 if (!parent_entity(se))
682 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
683 if (entity_is_task(se)) {
684 add_cfs_task_weight(cfs_rq, -se->load.weight);
685 list_del_init(&se->group_node);
686 }
687 cfs_rq->nr_running--;
688 }
689
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691 # ifdef CONFIG_SMP
692 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
693 int global_update)
694 {
695 struct task_group *tg = cfs_rq->tg;
696 long load_avg;
697
698 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
699 load_avg -= cfs_rq->load_contribution;
700
701 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
702 atomic_add(load_avg, &tg->load_weight);
703 cfs_rq->load_contribution += load_avg;
704 }
705 }
706
707 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
708 {
709 u64 period = sysctl_sched_shares_window;
710 u64 now, delta;
711 unsigned long load = cfs_rq->load.weight;
712
713 if (cfs_rq->tg == &root_task_group)
714 return;
715
716 now = rq_of(cfs_rq)->clock_task;
717 delta = now - cfs_rq->load_stamp;
718
719 /* truncate load history at 4 idle periods */
720 if (cfs_rq->load_stamp > cfs_rq->load_last &&
721 now - cfs_rq->load_last > 4 * period) {
722 cfs_rq->load_period = 0;
723 cfs_rq->load_avg = 0;
724 delta = period - 1;
725 }
726
727 cfs_rq->load_stamp = now;
728 cfs_rq->load_unacc_exec_time = 0;
729 cfs_rq->load_period += delta;
730 if (load) {
731 cfs_rq->load_last = now;
732 cfs_rq->load_avg += delta * load;
733 }
734
735 /* consider updating load contribution on each fold or truncate */
736 if (global_update || cfs_rq->load_period > period
737 || !cfs_rq->load_period)
738 update_cfs_rq_load_contribution(cfs_rq, global_update);
739
740 while (cfs_rq->load_period > period) {
741 /*
742 * Inline assembly required to prevent the compiler
743 * optimising this loop into a divmod call.
744 * See __iter_div_u64_rem() for another example of this.
745 */
746 asm("" : "+rm" (cfs_rq->load_period));
747 cfs_rq->load_period /= 2;
748 cfs_rq->load_avg /= 2;
749 }
750
751 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
752 list_del_leaf_cfs_rq(cfs_rq);
753 }
754
755 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
756 {
757 long load_weight, load, shares;
758
759 load = cfs_rq->load.weight;
760
761 load_weight = atomic_read(&tg->load_weight);
762 load_weight += load;
763 load_weight -= cfs_rq->load_contribution;
764
765 shares = (tg->shares * load);
766 if (load_weight)
767 shares /= load_weight;
768
769 if (shares < MIN_SHARES)
770 shares = MIN_SHARES;
771 if (shares > tg->shares)
772 shares = tg->shares;
773
774 return shares;
775 }
776
777 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
778 {
779 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
780 update_cfs_load(cfs_rq, 0);
781 update_cfs_shares(cfs_rq);
782 }
783 }
784 # else /* CONFIG_SMP */
785 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
786 {
787 }
788
789 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
790 {
791 return tg->shares;
792 }
793
794 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
795 {
796 }
797 # endif /* CONFIG_SMP */
798 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
799 unsigned long weight)
800 {
801 if (se->on_rq) {
802 /* commit outstanding execution time */
803 if (cfs_rq->curr == se)
804 update_curr(cfs_rq);
805 account_entity_dequeue(cfs_rq, se);
806 }
807
808 update_load_set(&se->load, weight);
809
810 if (se->on_rq)
811 account_entity_enqueue(cfs_rq, se);
812 }
813
814 static void update_cfs_shares(struct cfs_rq *cfs_rq)
815 {
816 struct task_group *tg;
817 struct sched_entity *se;
818 long shares;
819
820 tg = cfs_rq->tg;
821 se = tg->se[cpu_of(rq_of(cfs_rq))];
822 if (!se)
823 return;
824 #ifndef CONFIG_SMP
825 if (likely(se->load.weight == tg->shares))
826 return;
827 #endif
828 shares = calc_cfs_shares(cfs_rq, tg);
829
830 reweight_entity(cfs_rq_of(se), se, shares);
831 }
832 #else /* CONFIG_FAIR_GROUP_SCHED */
833 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
834 {
835 }
836
837 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
838 {
839 }
840
841 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
842 {
843 }
844 #endif /* CONFIG_FAIR_GROUP_SCHED */
845
846 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
847 {
848 #ifdef CONFIG_SCHEDSTATS
849 struct task_struct *tsk = NULL;
850
851 if (entity_is_task(se))
852 tsk = task_of(se);
853
854 if (se->statistics.sleep_start) {
855 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
856
857 if ((s64)delta < 0)
858 delta = 0;
859
860 if (unlikely(delta > se->statistics.sleep_max))
861 se->statistics.sleep_max = delta;
862
863 se->statistics.sleep_start = 0;
864 se->statistics.sum_sleep_runtime += delta;
865
866 if (tsk) {
867 account_scheduler_latency(tsk, delta >> 10, 1);
868 trace_sched_stat_sleep(tsk, delta);
869 }
870 }
871 if (se->statistics.block_start) {
872 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
873
874 if ((s64)delta < 0)
875 delta = 0;
876
877 if (unlikely(delta > se->statistics.block_max))
878 se->statistics.block_max = delta;
879
880 se->statistics.block_start = 0;
881 se->statistics.sum_sleep_runtime += delta;
882
883 if (tsk) {
884 if (tsk->in_iowait) {
885 se->statistics.iowait_sum += delta;
886 se->statistics.iowait_count++;
887 trace_sched_stat_iowait(tsk, delta);
888 }
889
890 /*
891 * Blocking time is in units of nanosecs, so shift by
892 * 20 to get a milliseconds-range estimation of the
893 * amount of time that the task spent sleeping:
894 */
895 if (unlikely(prof_on == SLEEP_PROFILING)) {
896 profile_hits(SLEEP_PROFILING,
897 (void *)get_wchan(tsk),
898 delta >> 20);
899 }
900 account_scheduler_latency(tsk, delta >> 10, 0);
901 }
902 }
903 #endif
904 }
905
906 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 {
908 #ifdef CONFIG_SCHED_DEBUG
909 s64 d = se->vruntime - cfs_rq->min_vruntime;
910
911 if (d < 0)
912 d = -d;
913
914 if (d > 3*sysctl_sched_latency)
915 schedstat_inc(cfs_rq, nr_spread_over);
916 #endif
917 }
918
919 static void
920 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
921 {
922 u64 vruntime = cfs_rq->min_vruntime;
923
924 /*
925 * The 'current' period is already promised to the current tasks,
926 * however the extra weight of the new task will slow them down a
927 * little, place the new task so that it fits in the slot that
928 * stays open at the end.
929 */
930 if (initial && sched_feat(START_DEBIT))
931 vruntime += sched_vslice(cfs_rq, se);
932
933 /* sleeps up to a single latency don't count. */
934 if (!initial) {
935 unsigned long thresh = sysctl_sched_latency;
936
937 /*
938 * Halve their sleep time's effect, to allow
939 * for a gentler effect of sleepers:
940 */
941 if (sched_feat(GENTLE_FAIR_SLEEPERS))
942 thresh >>= 1;
943
944 vruntime -= thresh;
945 }
946
947 /* ensure we never gain time by being placed backwards. */
948 vruntime = max_vruntime(se->vruntime, vruntime);
949
950 se->vruntime = vruntime;
951 }
952
953 static void
954 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
955 {
956 /*
957 * Update the normalized vruntime before updating min_vruntime
958 * through callig update_curr().
959 */
960 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
961 se->vruntime += cfs_rq->min_vruntime;
962
963 /*
964 * Update run-time statistics of the 'current'.
965 */
966 update_curr(cfs_rq);
967 update_cfs_load(cfs_rq, 0);
968 account_entity_enqueue(cfs_rq, se);
969 update_cfs_shares(cfs_rq);
970
971 if (flags & ENQUEUE_WAKEUP) {
972 place_entity(cfs_rq, se, 0);
973 enqueue_sleeper(cfs_rq, se);
974 }
975
976 update_stats_enqueue(cfs_rq, se);
977 check_spread(cfs_rq, se);
978 if (se != cfs_rq->curr)
979 __enqueue_entity(cfs_rq, se);
980 se->on_rq = 1;
981
982 if (cfs_rq->nr_running == 1)
983 list_add_leaf_cfs_rq(cfs_rq);
984 }
985
986 static void __clear_buddies_last(struct sched_entity *se)
987 {
988 for_each_sched_entity(se) {
989 struct cfs_rq *cfs_rq = cfs_rq_of(se);
990 if (cfs_rq->last == se)
991 cfs_rq->last = NULL;
992 else
993 break;
994 }
995 }
996
997 static void __clear_buddies_next(struct sched_entity *se)
998 {
999 for_each_sched_entity(se) {
1000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001 if (cfs_rq->next == se)
1002 cfs_rq->next = NULL;
1003 else
1004 break;
1005 }
1006 }
1007
1008 static void __clear_buddies_skip(struct sched_entity *se)
1009 {
1010 for_each_sched_entity(se) {
1011 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1012 if (cfs_rq->skip == se)
1013 cfs_rq->skip = NULL;
1014 else
1015 break;
1016 }
1017 }
1018
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 if (cfs_rq->last == se)
1022 __clear_buddies_last(se);
1023
1024 if (cfs_rq->next == se)
1025 __clear_buddies_next(se);
1026
1027 if (cfs_rq->skip == se)
1028 __clear_buddies_skip(se);
1029 }
1030
1031 static void
1032 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1033 {
1034 /*
1035 * Update run-time statistics of the 'current'.
1036 */
1037 update_curr(cfs_rq);
1038
1039 update_stats_dequeue(cfs_rq, se);
1040 if (flags & DEQUEUE_SLEEP) {
1041 #ifdef CONFIG_SCHEDSTATS
1042 if (entity_is_task(se)) {
1043 struct task_struct *tsk = task_of(se);
1044
1045 if (tsk->state & TASK_INTERRUPTIBLE)
1046 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1047 if (tsk->state & TASK_UNINTERRUPTIBLE)
1048 se->statistics.block_start = rq_of(cfs_rq)->clock;
1049 }
1050 #endif
1051 }
1052
1053 clear_buddies(cfs_rq, se);
1054
1055 if (se != cfs_rq->curr)
1056 __dequeue_entity(cfs_rq, se);
1057 se->on_rq = 0;
1058 update_cfs_load(cfs_rq, 0);
1059 account_entity_dequeue(cfs_rq, se);
1060
1061 /*
1062 * Normalize the entity after updating the min_vruntime because the
1063 * update can refer to the ->curr item and we need to reflect this
1064 * movement in our normalized position.
1065 */
1066 if (!(flags & DEQUEUE_SLEEP))
1067 se->vruntime -= cfs_rq->min_vruntime;
1068
1069 update_min_vruntime(cfs_rq);
1070 update_cfs_shares(cfs_rq);
1071 }
1072
1073 /*
1074 * Preempt the current task with a newly woken task if needed:
1075 */
1076 static void
1077 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1078 {
1079 unsigned long ideal_runtime, delta_exec;
1080
1081 ideal_runtime = sched_slice(cfs_rq, curr);
1082 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1083 if (delta_exec > ideal_runtime) {
1084 resched_task(rq_of(cfs_rq)->curr);
1085 /*
1086 * The current task ran long enough, ensure it doesn't get
1087 * re-elected due to buddy favours.
1088 */
1089 clear_buddies(cfs_rq, curr);
1090 return;
1091 }
1092
1093 /*
1094 * Ensure that a task that missed wakeup preemption by a
1095 * narrow margin doesn't have to wait for a full slice.
1096 * This also mitigates buddy induced latencies under load.
1097 */
1098 if (delta_exec < sysctl_sched_min_granularity)
1099 return;
1100
1101 if (cfs_rq->nr_running > 1) {
1102 struct sched_entity *se = __pick_first_entity(cfs_rq);
1103 s64 delta = curr->vruntime - se->vruntime;
1104
1105 if (delta < 0)
1106 return;
1107
1108 if (delta > ideal_runtime)
1109 resched_task(rq_of(cfs_rq)->curr);
1110 }
1111 }
1112
1113 static void
1114 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1115 {
1116 /* 'current' is not kept within the tree. */
1117 if (se->on_rq) {
1118 /*
1119 * Any task has to be enqueued before it get to execute on
1120 * a CPU. So account for the time it spent waiting on the
1121 * runqueue.
1122 */
1123 update_stats_wait_end(cfs_rq, se);
1124 __dequeue_entity(cfs_rq, se);
1125 }
1126
1127 update_stats_curr_start(cfs_rq, se);
1128 cfs_rq->curr = se;
1129 #ifdef CONFIG_SCHEDSTATS
1130 /*
1131 * Track our maximum slice length, if the CPU's load is at
1132 * least twice that of our own weight (i.e. dont track it
1133 * when there are only lesser-weight tasks around):
1134 */
1135 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1136 se->statistics.slice_max = max(se->statistics.slice_max,
1137 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1138 }
1139 #endif
1140 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1141 }
1142
1143 static int
1144 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1145
1146 /*
1147 * Pick the next process, keeping these things in mind, in this order:
1148 * 1) keep things fair between processes/task groups
1149 * 2) pick the "next" process, since someone really wants that to run
1150 * 3) pick the "last" process, for cache locality
1151 * 4) do not run the "skip" process, if something else is available
1152 */
1153 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1154 {
1155 struct sched_entity *se = __pick_first_entity(cfs_rq);
1156 struct sched_entity *left = se;
1157
1158 /*
1159 * Avoid running the skip buddy, if running something else can
1160 * be done without getting too unfair.
1161 */
1162 if (cfs_rq->skip == se) {
1163 struct sched_entity *second = __pick_next_entity(se);
1164 if (second && wakeup_preempt_entity(second, left) < 1)
1165 se = second;
1166 }
1167
1168 /*
1169 * Prefer last buddy, try to return the CPU to a preempted task.
1170 */
1171 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1172 se = cfs_rq->last;
1173
1174 /*
1175 * Someone really wants this to run. If it's not unfair, run it.
1176 */
1177 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1178 se = cfs_rq->next;
1179
1180 clear_buddies(cfs_rq, se);
1181
1182 return se;
1183 }
1184
1185 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1186 {
1187 /*
1188 * If still on the runqueue then deactivate_task()
1189 * was not called and update_curr() has to be done:
1190 */
1191 if (prev->on_rq)
1192 update_curr(cfs_rq);
1193
1194 check_spread(cfs_rq, prev);
1195 if (prev->on_rq) {
1196 update_stats_wait_start(cfs_rq, prev);
1197 /* Put 'current' back into the tree. */
1198 __enqueue_entity(cfs_rq, prev);
1199 }
1200 cfs_rq->curr = NULL;
1201 }
1202
1203 static void
1204 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1205 {
1206 /*
1207 * Update run-time statistics of the 'current'.
1208 */
1209 update_curr(cfs_rq);
1210
1211 /*
1212 * Update share accounting for long-running entities.
1213 */
1214 update_entity_shares_tick(cfs_rq);
1215
1216 #ifdef CONFIG_SCHED_HRTICK
1217 /*
1218 * queued ticks are scheduled to match the slice, so don't bother
1219 * validating it and just reschedule.
1220 */
1221 if (queued) {
1222 resched_task(rq_of(cfs_rq)->curr);
1223 return;
1224 }
1225 /*
1226 * don't let the period tick interfere with the hrtick preemption
1227 */
1228 if (!sched_feat(DOUBLE_TICK) &&
1229 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1230 return;
1231 #endif
1232
1233 if (cfs_rq->nr_running > 1)
1234 check_preempt_tick(cfs_rq, curr);
1235 }
1236
1237 /**************************************************
1238 * CFS operations on tasks:
1239 */
1240
1241 #ifdef CONFIG_SCHED_HRTICK
1242 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1243 {
1244 struct sched_entity *se = &p->se;
1245 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1246
1247 WARN_ON(task_rq(p) != rq);
1248
1249 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1250 u64 slice = sched_slice(cfs_rq, se);
1251 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1252 s64 delta = slice - ran;
1253
1254 if (delta < 0) {
1255 if (rq->curr == p)
1256 resched_task(p);
1257 return;
1258 }
1259
1260 /*
1261 * Don't schedule slices shorter than 10000ns, that just
1262 * doesn't make sense. Rely on vruntime for fairness.
1263 */
1264 if (rq->curr != p)
1265 delta = max_t(s64, 10000LL, delta);
1266
1267 hrtick_start(rq, delta);
1268 }
1269 }
1270
1271 /*
1272 * called from enqueue/dequeue and updates the hrtick when the
1273 * current task is from our class and nr_running is low enough
1274 * to matter.
1275 */
1276 static void hrtick_update(struct rq *rq)
1277 {
1278 struct task_struct *curr = rq->curr;
1279
1280 if (curr->sched_class != &fair_sched_class)
1281 return;
1282
1283 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1284 hrtick_start_fair(rq, curr);
1285 }
1286 #else /* !CONFIG_SCHED_HRTICK */
1287 static inline void
1288 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1289 {
1290 }
1291
1292 static inline void hrtick_update(struct rq *rq)
1293 {
1294 }
1295 #endif
1296
1297 /*
1298 * The enqueue_task method is called before nr_running is
1299 * increased. Here we update the fair scheduling stats and
1300 * then put the task into the rbtree:
1301 */
1302 static void
1303 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 struct cfs_rq *cfs_rq;
1306 struct sched_entity *se = &p->se;
1307
1308 for_each_sched_entity(se) {
1309 if (se->on_rq)
1310 break;
1311 cfs_rq = cfs_rq_of(se);
1312 enqueue_entity(cfs_rq, se, flags);
1313 flags = ENQUEUE_WAKEUP;
1314 }
1315
1316 for_each_sched_entity(se) {
1317 cfs_rq = cfs_rq_of(se);
1318
1319 update_cfs_load(cfs_rq, 0);
1320 update_cfs_shares(cfs_rq);
1321 }
1322
1323 hrtick_update(rq);
1324 }
1325
1326 static void set_next_buddy(struct sched_entity *se);
1327
1328 /*
1329 * The dequeue_task method is called before nr_running is
1330 * decreased. We remove the task from the rbtree and
1331 * update the fair scheduling stats:
1332 */
1333 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1334 {
1335 struct cfs_rq *cfs_rq;
1336 struct sched_entity *se = &p->se;
1337 int task_sleep = flags & DEQUEUE_SLEEP;
1338
1339 for_each_sched_entity(se) {
1340 cfs_rq = cfs_rq_of(se);
1341 dequeue_entity(cfs_rq, se, flags);
1342
1343 /* Don't dequeue parent if it has other entities besides us */
1344 if (cfs_rq->load.weight) {
1345 /*
1346 * Bias pick_next to pick a task from this cfs_rq, as
1347 * p is sleeping when it is within its sched_slice.
1348 */
1349 if (task_sleep && parent_entity(se))
1350 set_next_buddy(parent_entity(se));
1351
1352 /* avoid re-evaluating load for this entity */
1353 se = parent_entity(se);
1354 break;
1355 }
1356 flags |= DEQUEUE_SLEEP;
1357 }
1358
1359 for_each_sched_entity(se) {
1360 cfs_rq = cfs_rq_of(se);
1361
1362 update_cfs_load(cfs_rq, 0);
1363 update_cfs_shares(cfs_rq);
1364 }
1365
1366 hrtick_update(rq);
1367 }
1368
1369 #ifdef CONFIG_SMP
1370
1371 static void task_waking_fair(struct task_struct *p)
1372 {
1373 struct sched_entity *se = &p->se;
1374 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1375 u64 min_vruntime;
1376
1377 #ifndef CONFIG_64BIT
1378 u64 min_vruntime_copy;
1379
1380 do {
1381 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1382 smp_rmb();
1383 min_vruntime = cfs_rq->min_vruntime;
1384 } while (min_vruntime != min_vruntime_copy);
1385 #else
1386 min_vruntime = cfs_rq->min_vruntime;
1387 #endif
1388
1389 se->vruntime -= min_vruntime;
1390 }
1391
1392 #ifdef CONFIG_FAIR_GROUP_SCHED
1393 /*
1394 * effective_load() calculates the load change as seen from the root_task_group
1395 *
1396 * Adding load to a group doesn't make a group heavier, but can cause movement
1397 * of group shares between cpus. Assuming the shares were perfectly aligned one
1398 * can calculate the shift in shares.
1399 */
1400 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1401 {
1402 struct sched_entity *se = tg->se[cpu];
1403
1404 if (!tg->parent)
1405 return wl;
1406
1407 for_each_sched_entity(se) {
1408 long lw, w;
1409
1410 tg = se->my_q->tg;
1411 w = se->my_q->load.weight;
1412
1413 /* use this cpu's instantaneous contribution */
1414 lw = atomic_read(&tg->load_weight);
1415 lw -= se->my_q->load_contribution;
1416 lw += w + wg;
1417
1418 wl += w;
1419
1420 if (lw > 0 && wl < lw)
1421 wl = (wl * tg->shares) / lw;
1422 else
1423 wl = tg->shares;
1424
1425 /* zero point is MIN_SHARES */
1426 if (wl < MIN_SHARES)
1427 wl = MIN_SHARES;
1428 wl -= se->load.weight;
1429 wg = 0;
1430 }
1431
1432 return wl;
1433 }
1434
1435 #else
1436
1437 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1438 unsigned long wl, unsigned long wg)
1439 {
1440 return wl;
1441 }
1442
1443 #endif
1444
1445 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1446 {
1447 s64 this_load, load;
1448 int idx, this_cpu, prev_cpu;
1449 unsigned long tl_per_task;
1450 struct task_group *tg;
1451 unsigned long weight;
1452 int balanced;
1453
1454 idx = sd->wake_idx;
1455 this_cpu = smp_processor_id();
1456 prev_cpu = task_cpu(p);
1457 load = source_load(prev_cpu, idx);
1458 this_load = target_load(this_cpu, idx);
1459
1460 /*
1461 * If sync wakeup then subtract the (maximum possible)
1462 * effect of the currently running task from the load
1463 * of the current CPU:
1464 */
1465 if (sync) {
1466 tg = task_group(current);
1467 weight = current->se.load.weight;
1468
1469 this_load += effective_load(tg, this_cpu, -weight, -weight);
1470 load += effective_load(tg, prev_cpu, 0, -weight);
1471 }
1472
1473 tg = task_group(p);
1474 weight = p->se.load.weight;
1475
1476 /*
1477 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1478 * due to the sync cause above having dropped this_load to 0, we'll
1479 * always have an imbalance, but there's really nothing you can do
1480 * about that, so that's good too.
1481 *
1482 * Otherwise check if either cpus are near enough in load to allow this
1483 * task to be woken on this_cpu.
1484 */
1485 if (this_load > 0) {
1486 s64 this_eff_load, prev_eff_load;
1487
1488 this_eff_load = 100;
1489 this_eff_load *= power_of(prev_cpu);
1490 this_eff_load *= this_load +
1491 effective_load(tg, this_cpu, weight, weight);
1492
1493 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1494 prev_eff_load *= power_of(this_cpu);
1495 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1496
1497 balanced = this_eff_load <= prev_eff_load;
1498 } else
1499 balanced = true;
1500
1501 /*
1502 * If the currently running task will sleep within
1503 * a reasonable amount of time then attract this newly
1504 * woken task:
1505 */
1506 if (sync && balanced)
1507 return 1;
1508
1509 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1510 tl_per_task = cpu_avg_load_per_task(this_cpu);
1511
1512 if (balanced ||
1513 (this_load <= load &&
1514 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1515 /*
1516 * This domain has SD_WAKE_AFFINE and
1517 * p is cache cold in this domain, and
1518 * there is no bad imbalance.
1519 */
1520 schedstat_inc(sd, ttwu_move_affine);
1521 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1522
1523 return 1;
1524 }
1525 return 0;
1526 }
1527
1528 /*
1529 * find_idlest_group finds and returns the least busy CPU group within the
1530 * domain.
1531 */
1532 static struct sched_group *
1533 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1534 int this_cpu, int load_idx)
1535 {
1536 struct sched_group *idlest = NULL, *group = sd->groups;
1537 unsigned long min_load = ULONG_MAX, this_load = 0;
1538 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1539
1540 do {
1541 unsigned long load, avg_load;
1542 int local_group;
1543 int i;
1544
1545 /* Skip over this group if it has no CPUs allowed */
1546 if (!cpumask_intersects(sched_group_cpus(group),
1547 &p->cpus_allowed))
1548 continue;
1549
1550 local_group = cpumask_test_cpu(this_cpu,
1551 sched_group_cpus(group));
1552
1553 /* Tally up the load of all CPUs in the group */
1554 avg_load = 0;
1555
1556 for_each_cpu(i, sched_group_cpus(group)) {
1557 /* Bias balancing toward cpus of our domain */
1558 if (local_group)
1559 load = source_load(i, load_idx);
1560 else
1561 load = target_load(i, load_idx);
1562
1563 avg_load += load;
1564 }
1565
1566 /* Adjust by relative CPU power of the group */
1567 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1568
1569 if (local_group) {
1570 this_load = avg_load;
1571 } else if (avg_load < min_load) {
1572 min_load = avg_load;
1573 idlest = group;
1574 }
1575 } while (group = group->next, group != sd->groups);
1576
1577 if (!idlest || 100*this_load < imbalance*min_load)
1578 return NULL;
1579 return idlest;
1580 }
1581
1582 /*
1583 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1584 */
1585 static int
1586 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1587 {
1588 unsigned long load, min_load = ULONG_MAX;
1589 int idlest = -1;
1590 int i;
1591
1592 /* Traverse only the allowed CPUs */
1593 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1594 load = weighted_cpuload(i);
1595
1596 if (load < min_load || (load == min_load && i == this_cpu)) {
1597 min_load = load;
1598 idlest = i;
1599 }
1600 }
1601
1602 return idlest;
1603 }
1604
1605 /*
1606 * Try and locate an idle CPU in the sched_domain.
1607 */
1608 static int select_idle_sibling(struct task_struct *p, int target)
1609 {
1610 int cpu = smp_processor_id();
1611 int prev_cpu = task_cpu(p);
1612 struct sched_domain *sd;
1613 int i;
1614
1615 /*
1616 * If the task is going to be woken-up on this cpu and if it is
1617 * already idle, then it is the right target.
1618 */
1619 if (target == cpu && idle_cpu(cpu))
1620 return cpu;
1621
1622 /*
1623 * If the task is going to be woken-up on the cpu where it previously
1624 * ran and if it is currently idle, then it the right target.
1625 */
1626 if (target == prev_cpu && idle_cpu(prev_cpu))
1627 return prev_cpu;
1628
1629 /*
1630 * Otherwise, iterate the domains and find an elegible idle cpu.
1631 */
1632 rcu_read_lock();
1633 for_each_domain(target, sd) {
1634 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1635 break;
1636
1637 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1638 if (idle_cpu(i)) {
1639 target = i;
1640 break;
1641 }
1642 }
1643
1644 /*
1645 * Lets stop looking for an idle sibling when we reached
1646 * the domain that spans the current cpu and prev_cpu.
1647 */
1648 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1649 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1650 break;
1651 }
1652 rcu_read_unlock();
1653
1654 return target;
1655 }
1656
1657 /*
1658 * sched_balance_self: balance the current task (running on cpu) in domains
1659 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1660 * SD_BALANCE_EXEC.
1661 *
1662 * Balance, ie. select the least loaded group.
1663 *
1664 * Returns the target CPU number, or the same CPU if no balancing is needed.
1665 *
1666 * preempt must be disabled.
1667 */
1668 static int
1669 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1670 {
1671 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1672 int cpu = smp_processor_id();
1673 int prev_cpu = task_cpu(p);
1674 int new_cpu = cpu;
1675 int want_affine = 0;
1676 int want_sd = 1;
1677 int sync = wake_flags & WF_SYNC;
1678
1679 if (sd_flag & SD_BALANCE_WAKE) {
1680 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1681 want_affine = 1;
1682 new_cpu = prev_cpu;
1683 }
1684
1685 rcu_read_lock();
1686 for_each_domain(cpu, tmp) {
1687 if (!(tmp->flags & SD_LOAD_BALANCE))
1688 continue;
1689
1690 /*
1691 * If power savings logic is enabled for a domain, see if we
1692 * are not overloaded, if so, don't balance wider.
1693 */
1694 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1695 unsigned long power = 0;
1696 unsigned long nr_running = 0;
1697 unsigned long capacity;
1698 int i;
1699
1700 for_each_cpu(i, sched_domain_span(tmp)) {
1701 power += power_of(i);
1702 nr_running += cpu_rq(i)->cfs.nr_running;
1703 }
1704
1705 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
1706
1707 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1708 nr_running /= 2;
1709
1710 if (nr_running < capacity)
1711 want_sd = 0;
1712 }
1713
1714 /*
1715 * If both cpu and prev_cpu are part of this domain,
1716 * cpu is a valid SD_WAKE_AFFINE target.
1717 */
1718 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1719 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1720 affine_sd = tmp;
1721 want_affine = 0;
1722 }
1723
1724 if (!want_sd && !want_affine)
1725 break;
1726
1727 if (!(tmp->flags & sd_flag))
1728 continue;
1729
1730 if (want_sd)
1731 sd = tmp;
1732 }
1733
1734 if (affine_sd) {
1735 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1736 prev_cpu = cpu;
1737
1738 new_cpu = select_idle_sibling(p, prev_cpu);
1739 goto unlock;
1740 }
1741
1742 while (sd) {
1743 int load_idx = sd->forkexec_idx;
1744 struct sched_group *group;
1745 int weight;
1746
1747 if (!(sd->flags & sd_flag)) {
1748 sd = sd->child;
1749 continue;
1750 }
1751
1752 if (sd_flag & SD_BALANCE_WAKE)
1753 load_idx = sd->wake_idx;
1754
1755 group = find_idlest_group(sd, p, cpu, load_idx);
1756 if (!group) {
1757 sd = sd->child;
1758 continue;
1759 }
1760
1761 new_cpu = find_idlest_cpu(group, p, cpu);
1762 if (new_cpu == -1 || new_cpu == cpu) {
1763 /* Now try balancing at a lower domain level of cpu */
1764 sd = sd->child;
1765 continue;
1766 }
1767
1768 /* Now try balancing at a lower domain level of new_cpu */
1769 cpu = new_cpu;
1770 weight = sd->span_weight;
1771 sd = NULL;
1772 for_each_domain(cpu, tmp) {
1773 if (weight <= tmp->span_weight)
1774 break;
1775 if (tmp->flags & sd_flag)
1776 sd = tmp;
1777 }
1778 /* while loop will break here if sd == NULL */
1779 }
1780 unlock:
1781 rcu_read_unlock();
1782
1783 return new_cpu;
1784 }
1785 #endif /* CONFIG_SMP */
1786
1787 static unsigned long
1788 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1789 {
1790 unsigned long gran = sysctl_sched_wakeup_granularity;
1791
1792 /*
1793 * Since its curr running now, convert the gran from real-time
1794 * to virtual-time in his units.
1795 *
1796 * By using 'se' instead of 'curr' we penalize light tasks, so
1797 * they get preempted easier. That is, if 'se' < 'curr' then
1798 * the resulting gran will be larger, therefore penalizing the
1799 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1800 * be smaller, again penalizing the lighter task.
1801 *
1802 * This is especially important for buddies when the leftmost
1803 * task is higher priority than the buddy.
1804 */
1805 return calc_delta_fair(gran, se);
1806 }
1807
1808 /*
1809 * Should 'se' preempt 'curr'.
1810 *
1811 * |s1
1812 * |s2
1813 * |s3
1814 * g
1815 * |<--->|c
1816 *
1817 * w(c, s1) = -1
1818 * w(c, s2) = 0
1819 * w(c, s3) = 1
1820 *
1821 */
1822 static int
1823 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1824 {
1825 s64 gran, vdiff = curr->vruntime - se->vruntime;
1826
1827 if (vdiff <= 0)
1828 return -1;
1829
1830 gran = wakeup_gran(curr, se);
1831 if (vdiff > gran)
1832 return 1;
1833
1834 return 0;
1835 }
1836
1837 static void set_last_buddy(struct sched_entity *se)
1838 {
1839 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1840 return;
1841
1842 for_each_sched_entity(se)
1843 cfs_rq_of(se)->last = se;
1844 }
1845
1846 static void set_next_buddy(struct sched_entity *se)
1847 {
1848 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1849 return;
1850
1851 for_each_sched_entity(se)
1852 cfs_rq_of(se)->next = se;
1853 }
1854
1855 static void set_skip_buddy(struct sched_entity *se)
1856 {
1857 for_each_sched_entity(se)
1858 cfs_rq_of(se)->skip = se;
1859 }
1860
1861 /*
1862 * Preempt the current task with a newly woken task if needed:
1863 */
1864 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1865 {
1866 struct task_struct *curr = rq->curr;
1867 struct sched_entity *se = &curr->se, *pse = &p->se;
1868 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1869 int scale = cfs_rq->nr_running >= sched_nr_latency;
1870 int next_buddy_marked = 0;
1871
1872 if (unlikely(se == pse))
1873 return;
1874
1875 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
1876 set_next_buddy(pse);
1877 next_buddy_marked = 1;
1878 }
1879
1880 /*
1881 * We can come here with TIF_NEED_RESCHED already set from new task
1882 * wake up path.
1883 */
1884 if (test_tsk_need_resched(curr))
1885 return;
1886
1887 /* Idle tasks are by definition preempted by non-idle tasks. */
1888 if (unlikely(curr->policy == SCHED_IDLE) &&
1889 likely(p->policy != SCHED_IDLE))
1890 goto preempt;
1891
1892 /*
1893 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1894 * is driven by the tick):
1895 */
1896 if (unlikely(p->policy != SCHED_NORMAL))
1897 return;
1898
1899 find_matching_se(&se, &pse);
1900 update_curr(cfs_rq_of(se));
1901 BUG_ON(!pse);
1902 if (wakeup_preempt_entity(se, pse) == 1) {
1903 /*
1904 * Bias pick_next to pick the sched entity that is
1905 * triggering this preemption.
1906 */
1907 if (!next_buddy_marked)
1908 set_next_buddy(pse);
1909 goto preempt;
1910 }
1911
1912 return;
1913
1914 preempt:
1915 resched_task(curr);
1916 /*
1917 * Only set the backward buddy when the current task is still
1918 * on the rq. This can happen when a wakeup gets interleaved
1919 * with schedule on the ->pre_schedule() or idle_balance()
1920 * point, either of which can * drop the rq lock.
1921 *
1922 * Also, during early boot the idle thread is in the fair class,
1923 * for obvious reasons its a bad idea to schedule back to it.
1924 */
1925 if (unlikely(!se->on_rq || curr == rq->idle))
1926 return;
1927
1928 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1929 set_last_buddy(se);
1930 }
1931
1932 static struct task_struct *pick_next_task_fair(struct rq *rq)
1933 {
1934 struct task_struct *p;
1935 struct cfs_rq *cfs_rq = &rq->cfs;
1936 struct sched_entity *se;
1937
1938 if (!cfs_rq->nr_running)
1939 return NULL;
1940
1941 do {
1942 se = pick_next_entity(cfs_rq);
1943 set_next_entity(cfs_rq, se);
1944 cfs_rq = group_cfs_rq(se);
1945 } while (cfs_rq);
1946
1947 p = task_of(se);
1948 hrtick_start_fair(rq, p);
1949
1950 return p;
1951 }
1952
1953 /*
1954 * Account for a descheduled task:
1955 */
1956 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1957 {
1958 struct sched_entity *se = &prev->se;
1959 struct cfs_rq *cfs_rq;
1960
1961 for_each_sched_entity(se) {
1962 cfs_rq = cfs_rq_of(se);
1963 put_prev_entity(cfs_rq, se);
1964 }
1965 }
1966
1967 /*
1968 * sched_yield() is very simple
1969 *
1970 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1971 */
1972 static void yield_task_fair(struct rq *rq)
1973 {
1974 struct task_struct *curr = rq->curr;
1975 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1976 struct sched_entity *se = &curr->se;
1977
1978 /*
1979 * Are we the only task in the tree?
1980 */
1981 if (unlikely(rq->nr_running == 1))
1982 return;
1983
1984 clear_buddies(cfs_rq, se);
1985
1986 if (curr->policy != SCHED_BATCH) {
1987 update_rq_clock(rq);
1988 /*
1989 * Update run-time statistics of the 'current'.
1990 */
1991 update_curr(cfs_rq);
1992 }
1993
1994 set_skip_buddy(se);
1995 }
1996
1997 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1998 {
1999 struct sched_entity *se = &p->se;
2000
2001 if (!se->on_rq)
2002 return false;
2003
2004 /* Tell the scheduler that we'd really like pse to run next. */
2005 set_next_buddy(se);
2006
2007 yield_task_fair(rq);
2008
2009 return true;
2010 }
2011
2012 #ifdef CONFIG_SMP
2013 /**************************************************
2014 * Fair scheduling class load-balancing methods:
2015 */
2016
2017 /*
2018 * pull_task - move a task from a remote runqueue to the local runqueue.
2019 * Both runqueues must be locked.
2020 */
2021 static void pull_task(struct rq *src_rq, struct task_struct *p,
2022 struct rq *this_rq, int this_cpu)
2023 {
2024 deactivate_task(src_rq, p, 0);
2025 set_task_cpu(p, this_cpu);
2026 activate_task(this_rq, p, 0);
2027 check_preempt_curr(this_rq, p, 0);
2028 }
2029
2030 /*
2031 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2032 */
2033 static
2034 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2035 struct sched_domain *sd, enum cpu_idle_type idle,
2036 int *all_pinned)
2037 {
2038 int tsk_cache_hot = 0;
2039 /*
2040 * We do not migrate tasks that are:
2041 * 1) running (obviously), or
2042 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2043 * 3) are cache-hot on their current CPU.
2044 */
2045 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2046 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2047 return 0;
2048 }
2049 *all_pinned = 0;
2050
2051 if (task_running(rq, p)) {
2052 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2053 return 0;
2054 }
2055
2056 /*
2057 * Aggressive migration if:
2058 * 1) task is cache cold, or
2059 * 2) too many balance attempts have failed.
2060 */
2061
2062 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2063 if (!tsk_cache_hot ||
2064 sd->nr_balance_failed > sd->cache_nice_tries) {
2065 #ifdef CONFIG_SCHEDSTATS
2066 if (tsk_cache_hot) {
2067 schedstat_inc(sd, lb_hot_gained[idle]);
2068 schedstat_inc(p, se.statistics.nr_forced_migrations);
2069 }
2070 #endif
2071 return 1;
2072 }
2073
2074 if (tsk_cache_hot) {
2075 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2076 return 0;
2077 }
2078 return 1;
2079 }
2080
2081 /*
2082 * move_one_task tries to move exactly one task from busiest to this_rq, as
2083 * part of active balancing operations within "domain".
2084 * Returns 1 if successful and 0 otherwise.
2085 *
2086 * Called with both runqueues locked.
2087 */
2088 static int
2089 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2090 struct sched_domain *sd, enum cpu_idle_type idle)
2091 {
2092 struct task_struct *p, *n;
2093 struct cfs_rq *cfs_rq;
2094 int pinned = 0;
2095
2096 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2097 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2098
2099 if (!can_migrate_task(p, busiest, this_cpu,
2100 sd, idle, &pinned))
2101 continue;
2102
2103 pull_task(busiest, p, this_rq, this_cpu);
2104 /*
2105 * Right now, this is only the second place pull_task()
2106 * is called, so we can safely collect pull_task()
2107 * stats here rather than inside pull_task().
2108 */
2109 schedstat_inc(sd, lb_gained[idle]);
2110 return 1;
2111 }
2112 }
2113
2114 return 0;
2115 }
2116
2117 static unsigned long
2118 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2119 unsigned long max_load_move, struct sched_domain *sd,
2120 enum cpu_idle_type idle, int *all_pinned,
2121 struct cfs_rq *busiest_cfs_rq)
2122 {
2123 int loops = 0, pulled = 0;
2124 long rem_load_move = max_load_move;
2125 struct task_struct *p, *n;
2126
2127 if (max_load_move == 0)
2128 goto out;
2129
2130 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2131 if (loops++ > sysctl_sched_nr_migrate)
2132 break;
2133
2134 if ((p->se.load.weight >> 1) > rem_load_move ||
2135 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2136 all_pinned))
2137 continue;
2138
2139 pull_task(busiest, p, this_rq, this_cpu);
2140 pulled++;
2141 rem_load_move -= p->se.load.weight;
2142
2143 #ifdef CONFIG_PREEMPT
2144 /*
2145 * NEWIDLE balancing is a source of latency, so preemptible
2146 * kernels will stop after the first task is pulled to minimize
2147 * the critical section.
2148 */
2149 if (idle == CPU_NEWLY_IDLE)
2150 break;
2151 #endif
2152
2153 /*
2154 * We only want to steal up to the prescribed amount of
2155 * weighted load.
2156 */
2157 if (rem_load_move <= 0)
2158 break;
2159 }
2160 out:
2161 /*
2162 * Right now, this is one of only two places pull_task() is called,
2163 * so we can safely collect pull_task() stats here rather than
2164 * inside pull_task().
2165 */
2166 schedstat_add(sd, lb_gained[idle], pulled);
2167
2168 return max_load_move - rem_load_move;
2169 }
2170
2171 #ifdef CONFIG_FAIR_GROUP_SCHED
2172 /*
2173 * update tg->load_weight by folding this cpu's load_avg
2174 */
2175 static int update_shares_cpu(struct task_group *tg, int cpu)
2176 {
2177 struct cfs_rq *cfs_rq;
2178 unsigned long flags;
2179 struct rq *rq;
2180
2181 if (!tg->se[cpu])
2182 return 0;
2183
2184 rq = cpu_rq(cpu);
2185 cfs_rq = tg->cfs_rq[cpu];
2186
2187 raw_spin_lock_irqsave(&rq->lock, flags);
2188
2189 update_rq_clock(rq);
2190 update_cfs_load(cfs_rq, 1);
2191
2192 /*
2193 * We need to update shares after updating tg->load_weight in
2194 * order to adjust the weight of groups with long running tasks.
2195 */
2196 update_cfs_shares(cfs_rq);
2197
2198 raw_spin_unlock_irqrestore(&rq->lock, flags);
2199
2200 return 0;
2201 }
2202
2203 static void update_shares(int cpu)
2204 {
2205 struct cfs_rq *cfs_rq;
2206 struct rq *rq = cpu_rq(cpu);
2207
2208 rcu_read_lock();
2209 /*
2210 * Iterates the task_group tree in a bottom up fashion, see
2211 * list_add_leaf_cfs_rq() for details.
2212 */
2213 for_each_leaf_cfs_rq(rq, cfs_rq)
2214 update_shares_cpu(cfs_rq->tg, cpu);
2215 rcu_read_unlock();
2216 }
2217
2218 /*
2219 * Compute the cpu's hierarchical load factor for each task group.
2220 * This needs to be done in a top-down fashion because the load of a child
2221 * group is a fraction of its parents load.
2222 */
2223 static int tg_load_down(struct task_group *tg, void *data)
2224 {
2225 unsigned long load;
2226 long cpu = (long)data;
2227
2228 if (!tg->parent) {
2229 load = cpu_rq(cpu)->load.weight;
2230 } else {
2231 load = tg->parent->cfs_rq[cpu]->h_load;
2232 load *= tg->se[cpu]->load.weight;
2233 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2234 }
2235
2236 tg->cfs_rq[cpu]->h_load = load;
2237
2238 return 0;
2239 }
2240
2241 static void update_h_load(long cpu)
2242 {
2243 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2244 }
2245
2246 static unsigned long
2247 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2248 unsigned long max_load_move,
2249 struct sched_domain *sd, enum cpu_idle_type idle,
2250 int *all_pinned)
2251 {
2252 long rem_load_move = max_load_move;
2253 struct cfs_rq *busiest_cfs_rq;
2254
2255 rcu_read_lock();
2256 update_h_load(cpu_of(busiest));
2257
2258 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
2259 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2260 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2261 u64 rem_load, moved_load;
2262
2263 /*
2264 * empty group
2265 */
2266 if (!busiest_cfs_rq->task_weight)
2267 continue;
2268
2269 rem_load = (u64)rem_load_move * busiest_weight;
2270 rem_load = div_u64(rem_load, busiest_h_load + 1);
2271
2272 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2273 rem_load, sd, idle, all_pinned,
2274 busiest_cfs_rq);
2275
2276 if (!moved_load)
2277 continue;
2278
2279 moved_load *= busiest_h_load;
2280 moved_load = div_u64(moved_load, busiest_weight + 1);
2281
2282 rem_load_move -= moved_load;
2283 if (rem_load_move < 0)
2284 break;
2285 }
2286 rcu_read_unlock();
2287
2288 return max_load_move - rem_load_move;
2289 }
2290 #else
2291 static inline void update_shares(int cpu)
2292 {
2293 }
2294
2295 static unsigned long
2296 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2297 unsigned long max_load_move,
2298 struct sched_domain *sd, enum cpu_idle_type idle,
2299 int *all_pinned)
2300 {
2301 return balance_tasks(this_rq, this_cpu, busiest,
2302 max_load_move, sd, idle, all_pinned,
2303 &busiest->cfs);
2304 }
2305 #endif
2306
2307 /*
2308 * move_tasks tries to move up to max_load_move weighted load from busiest to
2309 * this_rq, as part of a balancing operation within domain "sd".
2310 * Returns 1 if successful and 0 otherwise.
2311 *
2312 * Called with both runqueues locked.
2313 */
2314 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2315 unsigned long max_load_move,
2316 struct sched_domain *sd, enum cpu_idle_type idle,
2317 int *all_pinned)
2318 {
2319 unsigned long total_load_moved = 0, load_moved;
2320
2321 do {
2322 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2323 max_load_move - total_load_moved,
2324 sd, idle, all_pinned);
2325
2326 total_load_moved += load_moved;
2327
2328 #ifdef CONFIG_PREEMPT
2329 /*
2330 * NEWIDLE balancing is a source of latency, so preemptible
2331 * kernels will stop after the first task is pulled to minimize
2332 * the critical section.
2333 */
2334 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2335 break;
2336
2337 if (raw_spin_is_contended(&this_rq->lock) ||
2338 raw_spin_is_contended(&busiest->lock))
2339 break;
2340 #endif
2341 } while (load_moved && max_load_move > total_load_moved);
2342
2343 return total_load_moved > 0;
2344 }
2345
2346 /********** Helpers for find_busiest_group ************************/
2347 /*
2348 * sd_lb_stats - Structure to store the statistics of a sched_domain
2349 * during load balancing.
2350 */
2351 struct sd_lb_stats {
2352 struct sched_group *busiest; /* Busiest group in this sd */
2353 struct sched_group *this; /* Local group in this sd */
2354 unsigned long total_load; /* Total load of all groups in sd */
2355 unsigned long total_pwr; /* Total power of all groups in sd */
2356 unsigned long avg_load; /* Average load across all groups in sd */
2357
2358 /** Statistics of this group */
2359 unsigned long this_load;
2360 unsigned long this_load_per_task;
2361 unsigned long this_nr_running;
2362 unsigned long this_has_capacity;
2363 unsigned int this_idle_cpus;
2364
2365 /* Statistics of the busiest group */
2366 unsigned int busiest_idle_cpus;
2367 unsigned long max_load;
2368 unsigned long busiest_load_per_task;
2369 unsigned long busiest_nr_running;
2370 unsigned long busiest_group_capacity;
2371 unsigned long busiest_has_capacity;
2372 unsigned int busiest_group_weight;
2373
2374 int group_imb; /* Is there imbalance in this sd */
2375 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2376 int power_savings_balance; /* Is powersave balance needed for this sd */
2377 struct sched_group *group_min; /* Least loaded group in sd */
2378 struct sched_group *group_leader; /* Group which relieves group_min */
2379 unsigned long min_load_per_task; /* load_per_task in group_min */
2380 unsigned long leader_nr_running; /* Nr running of group_leader */
2381 unsigned long min_nr_running; /* Nr running of group_min */
2382 #endif
2383 };
2384
2385 /*
2386 * sg_lb_stats - stats of a sched_group required for load_balancing
2387 */
2388 struct sg_lb_stats {
2389 unsigned long avg_load; /*Avg load across the CPUs of the group */
2390 unsigned long group_load; /* Total load over the CPUs of the group */
2391 unsigned long sum_nr_running; /* Nr tasks running in the group */
2392 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2393 unsigned long group_capacity;
2394 unsigned long idle_cpus;
2395 unsigned long group_weight;
2396 int group_imb; /* Is there an imbalance in the group ? */
2397 int group_has_capacity; /* Is there extra capacity in the group? */
2398 };
2399
2400 /**
2401 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2402 * @group: The group whose first cpu is to be returned.
2403 */
2404 static inline unsigned int group_first_cpu(struct sched_group *group)
2405 {
2406 return cpumask_first(sched_group_cpus(group));
2407 }
2408
2409 /**
2410 * get_sd_load_idx - Obtain the load index for a given sched domain.
2411 * @sd: The sched_domain whose load_idx is to be obtained.
2412 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2413 */
2414 static inline int get_sd_load_idx(struct sched_domain *sd,
2415 enum cpu_idle_type idle)
2416 {
2417 int load_idx;
2418
2419 switch (idle) {
2420 case CPU_NOT_IDLE:
2421 load_idx = sd->busy_idx;
2422 break;
2423
2424 case CPU_NEWLY_IDLE:
2425 load_idx = sd->newidle_idx;
2426 break;
2427 default:
2428 load_idx = sd->idle_idx;
2429 break;
2430 }
2431
2432 return load_idx;
2433 }
2434
2435
2436 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2437 /**
2438 * init_sd_power_savings_stats - Initialize power savings statistics for
2439 * the given sched_domain, during load balancing.
2440 *
2441 * @sd: Sched domain whose power-savings statistics are to be initialized.
2442 * @sds: Variable containing the statistics for sd.
2443 * @idle: Idle status of the CPU at which we're performing load-balancing.
2444 */
2445 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2446 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2447 {
2448 /*
2449 * Busy processors will not participate in power savings
2450 * balance.
2451 */
2452 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2453 sds->power_savings_balance = 0;
2454 else {
2455 sds->power_savings_balance = 1;
2456 sds->min_nr_running = ULONG_MAX;
2457 sds->leader_nr_running = 0;
2458 }
2459 }
2460
2461 /**
2462 * update_sd_power_savings_stats - Update the power saving stats for a
2463 * sched_domain while performing load balancing.
2464 *
2465 * @group: sched_group belonging to the sched_domain under consideration.
2466 * @sds: Variable containing the statistics of the sched_domain
2467 * @local_group: Does group contain the CPU for which we're performing
2468 * load balancing ?
2469 * @sgs: Variable containing the statistics of the group.
2470 */
2471 static inline void update_sd_power_savings_stats(struct sched_group *group,
2472 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2473 {
2474
2475 if (!sds->power_savings_balance)
2476 return;
2477
2478 /*
2479 * If the local group is idle or completely loaded
2480 * no need to do power savings balance at this domain
2481 */
2482 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2483 !sds->this_nr_running))
2484 sds->power_savings_balance = 0;
2485
2486 /*
2487 * If a group is already running at full capacity or idle,
2488 * don't include that group in power savings calculations
2489 */
2490 if (!sds->power_savings_balance ||
2491 sgs->sum_nr_running >= sgs->group_capacity ||
2492 !sgs->sum_nr_running)
2493 return;
2494
2495 /*
2496 * Calculate the group which has the least non-idle load.
2497 * This is the group from where we need to pick up the load
2498 * for saving power
2499 */
2500 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2501 (sgs->sum_nr_running == sds->min_nr_running &&
2502 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2503 sds->group_min = group;
2504 sds->min_nr_running = sgs->sum_nr_running;
2505 sds->min_load_per_task = sgs->sum_weighted_load /
2506 sgs->sum_nr_running;
2507 }
2508
2509 /*
2510 * Calculate the group which is almost near its
2511 * capacity but still has some space to pick up some load
2512 * from other group and save more power
2513 */
2514 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2515 return;
2516
2517 if (sgs->sum_nr_running > sds->leader_nr_running ||
2518 (sgs->sum_nr_running == sds->leader_nr_running &&
2519 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2520 sds->group_leader = group;
2521 sds->leader_nr_running = sgs->sum_nr_running;
2522 }
2523 }
2524
2525 /**
2526 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2527 * @sds: Variable containing the statistics of the sched_domain
2528 * under consideration.
2529 * @this_cpu: Cpu at which we're currently performing load-balancing.
2530 * @imbalance: Variable to store the imbalance.
2531 *
2532 * Description:
2533 * Check if we have potential to perform some power-savings balance.
2534 * If yes, set the busiest group to be the least loaded group in the
2535 * sched_domain, so that it's CPUs can be put to idle.
2536 *
2537 * Returns 1 if there is potential to perform power-savings balance.
2538 * Else returns 0.
2539 */
2540 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2541 int this_cpu, unsigned long *imbalance)
2542 {
2543 if (!sds->power_savings_balance)
2544 return 0;
2545
2546 if (sds->this != sds->group_leader ||
2547 sds->group_leader == sds->group_min)
2548 return 0;
2549
2550 *imbalance = sds->min_load_per_task;
2551 sds->busiest = sds->group_min;
2552
2553 return 1;
2554
2555 }
2556 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2557 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2558 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2559 {
2560 return;
2561 }
2562
2563 static inline void update_sd_power_savings_stats(struct sched_group *group,
2564 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2565 {
2566 return;
2567 }
2568
2569 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2570 int this_cpu, unsigned long *imbalance)
2571 {
2572 return 0;
2573 }
2574 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2575
2576
2577 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2578 {
2579 return SCHED_POWER_SCALE;
2580 }
2581
2582 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2583 {
2584 return default_scale_freq_power(sd, cpu);
2585 }
2586
2587 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2588 {
2589 unsigned long weight = sd->span_weight;
2590 unsigned long smt_gain = sd->smt_gain;
2591
2592 smt_gain /= weight;
2593
2594 return smt_gain;
2595 }
2596
2597 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2598 {
2599 return default_scale_smt_power(sd, cpu);
2600 }
2601
2602 unsigned long scale_rt_power(int cpu)
2603 {
2604 struct rq *rq = cpu_rq(cpu);
2605 u64 total, available;
2606
2607 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2608
2609 if (unlikely(total < rq->rt_avg)) {
2610 /* Ensures that power won't end up being negative */
2611 available = 0;
2612 } else {
2613 available = total - rq->rt_avg;
2614 }
2615
2616 if (unlikely((s64)total < SCHED_POWER_SCALE))
2617 total = SCHED_POWER_SCALE;
2618
2619 total >>= SCHED_POWER_SHIFT;
2620
2621 return div_u64(available, total);
2622 }
2623
2624 static void update_cpu_power(struct sched_domain *sd, int cpu)
2625 {
2626 unsigned long weight = sd->span_weight;
2627 unsigned long power = SCHED_POWER_SCALE;
2628 struct sched_group *sdg = sd->groups;
2629
2630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2631 if (sched_feat(ARCH_POWER))
2632 power *= arch_scale_smt_power(sd, cpu);
2633 else
2634 power *= default_scale_smt_power(sd, cpu);
2635
2636 power >>= SCHED_POWER_SHIFT;
2637 }
2638
2639 sdg->sgp->power_orig = power;
2640
2641 if (sched_feat(ARCH_POWER))
2642 power *= arch_scale_freq_power(sd, cpu);
2643 else
2644 power *= default_scale_freq_power(sd, cpu);
2645
2646 power >>= SCHED_POWER_SHIFT;
2647
2648 power *= scale_rt_power(cpu);
2649 power >>= SCHED_POWER_SHIFT;
2650
2651 if (!power)
2652 power = 1;
2653
2654 cpu_rq(cpu)->cpu_power = power;
2655 sdg->sgp->power = power;
2656 }
2657
2658 static void update_group_power(struct sched_domain *sd, int cpu)
2659 {
2660 struct sched_domain *child = sd->child;
2661 struct sched_group *group, *sdg = sd->groups;
2662 unsigned long power;
2663
2664 if (!child) {
2665 update_cpu_power(sd, cpu);
2666 return;
2667 }
2668
2669 power = 0;
2670
2671 group = child->groups;
2672 do {
2673 power += group->sgp->power;
2674 group = group->next;
2675 } while (group != child->groups);
2676
2677 sdg->sgp->power = power;
2678 }
2679
2680 /*
2681 * Try and fix up capacity for tiny siblings, this is needed when
2682 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2683 * which on its own isn't powerful enough.
2684 *
2685 * See update_sd_pick_busiest() and check_asym_packing().
2686 */
2687 static inline int
2688 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2689 {
2690 /*
2691 * Only siblings can have significantly less than SCHED_POWER_SCALE
2692 */
2693 if (!(sd->flags & SD_SHARE_CPUPOWER))
2694 return 0;
2695
2696 /*
2697 * If ~90% of the cpu_power is still there, we're good.
2698 */
2699 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
2700 return 1;
2701
2702 return 0;
2703 }
2704
2705 /**
2706 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2707 * @sd: The sched_domain whose statistics are to be updated.
2708 * @group: sched_group whose statistics are to be updated.
2709 * @this_cpu: Cpu for which load balance is currently performed.
2710 * @idle: Idle status of this_cpu
2711 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2712 * @local_group: Does group contain this_cpu.
2713 * @cpus: Set of cpus considered for load balancing.
2714 * @balance: Should we balance.
2715 * @sgs: variable to hold the statistics for this group.
2716 */
2717 static inline void update_sg_lb_stats(struct sched_domain *sd,
2718 struct sched_group *group, int this_cpu,
2719 enum cpu_idle_type idle, int load_idx,
2720 int local_group, const struct cpumask *cpus,
2721 int *balance, struct sg_lb_stats *sgs)
2722 {
2723 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2724 int i;
2725 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2726 unsigned long avg_load_per_task = 0;
2727
2728 if (local_group)
2729 balance_cpu = group_first_cpu(group);
2730
2731 /* Tally up the load of all CPUs in the group */
2732 max_cpu_load = 0;
2733 min_cpu_load = ~0UL;
2734 max_nr_running = 0;
2735
2736 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2737 struct rq *rq = cpu_rq(i);
2738
2739 /* Bias balancing toward cpus of our domain */
2740 if (local_group) {
2741 if (idle_cpu(i) && !first_idle_cpu) {
2742 first_idle_cpu = 1;
2743 balance_cpu = i;
2744 }
2745
2746 load = target_load(i, load_idx);
2747 } else {
2748 load = source_load(i, load_idx);
2749 if (load > max_cpu_load) {
2750 max_cpu_load = load;
2751 max_nr_running = rq->nr_running;
2752 }
2753 if (min_cpu_load > load)
2754 min_cpu_load = load;
2755 }
2756
2757 sgs->group_load += load;
2758 sgs->sum_nr_running += rq->nr_running;
2759 sgs->sum_weighted_load += weighted_cpuload(i);
2760 if (idle_cpu(i))
2761 sgs->idle_cpus++;
2762 }
2763
2764 /*
2765 * First idle cpu or the first cpu(busiest) in this sched group
2766 * is eligible for doing load balancing at this and above
2767 * domains. In the newly idle case, we will allow all the cpu's
2768 * to do the newly idle load balance.
2769 */
2770 if (idle != CPU_NEWLY_IDLE && local_group) {
2771 if (balance_cpu != this_cpu) {
2772 *balance = 0;
2773 return;
2774 }
2775 update_group_power(sd, this_cpu);
2776 }
2777
2778 /* Adjust by relative CPU power of the group */
2779 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
2780
2781 /*
2782 * Consider the group unbalanced when the imbalance is larger
2783 * than the average weight of a task.
2784 *
2785 * APZ: with cgroup the avg task weight can vary wildly and
2786 * might not be a suitable number - should we keep a
2787 * normalized nr_running number somewhere that negates
2788 * the hierarchy?
2789 */
2790 if (sgs->sum_nr_running)
2791 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2792
2793 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2794 sgs->group_imb = 1;
2795
2796 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
2797 SCHED_POWER_SCALE);
2798 if (!sgs->group_capacity)
2799 sgs->group_capacity = fix_small_capacity(sd, group);
2800 sgs->group_weight = group->group_weight;
2801
2802 if (sgs->group_capacity > sgs->sum_nr_running)
2803 sgs->group_has_capacity = 1;
2804 }
2805
2806 /**
2807 * update_sd_pick_busiest - return 1 on busiest group
2808 * @sd: sched_domain whose statistics are to be checked
2809 * @sds: sched_domain statistics
2810 * @sg: sched_group candidate to be checked for being the busiest
2811 * @sgs: sched_group statistics
2812 * @this_cpu: the current cpu
2813 *
2814 * Determine if @sg is a busier group than the previously selected
2815 * busiest group.
2816 */
2817 static bool update_sd_pick_busiest(struct sched_domain *sd,
2818 struct sd_lb_stats *sds,
2819 struct sched_group *sg,
2820 struct sg_lb_stats *sgs,
2821 int this_cpu)
2822 {
2823 if (sgs->avg_load <= sds->max_load)
2824 return false;
2825
2826 if (sgs->sum_nr_running > sgs->group_capacity)
2827 return true;
2828
2829 if (sgs->group_imb)
2830 return true;
2831
2832 /*
2833 * ASYM_PACKING needs to move all the work to the lowest
2834 * numbered CPUs in the group, therefore mark all groups
2835 * higher than ourself as busy.
2836 */
2837 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2838 this_cpu < group_first_cpu(sg)) {
2839 if (!sds->busiest)
2840 return true;
2841
2842 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2843 return true;
2844 }
2845
2846 return false;
2847 }
2848
2849 /**
2850 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2851 * @sd: sched_domain whose statistics are to be updated.
2852 * @this_cpu: Cpu for which load balance is currently performed.
2853 * @idle: Idle status of this_cpu
2854 * @cpus: Set of cpus considered for load balancing.
2855 * @balance: Should we balance.
2856 * @sds: variable to hold the statistics for this sched_domain.
2857 */
2858 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2859 enum cpu_idle_type idle, const struct cpumask *cpus,
2860 int *balance, struct sd_lb_stats *sds)
2861 {
2862 struct sched_domain *child = sd->child;
2863 struct sched_group *sg = sd->groups;
2864 struct sg_lb_stats sgs;
2865 int load_idx, prefer_sibling = 0;
2866
2867 if (child && child->flags & SD_PREFER_SIBLING)
2868 prefer_sibling = 1;
2869
2870 init_sd_power_savings_stats(sd, sds, idle);
2871 load_idx = get_sd_load_idx(sd, idle);
2872
2873 do {
2874 int local_group;
2875
2876 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2877 memset(&sgs, 0, sizeof(sgs));
2878 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2879 local_group, cpus, balance, &sgs);
2880
2881 if (local_group && !(*balance))
2882 return;
2883
2884 sds->total_load += sgs.group_load;
2885 sds->total_pwr += sg->sgp->power;
2886
2887 /*
2888 * In case the child domain prefers tasks go to siblings
2889 * first, lower the sg capacity to one so that we'll try
2890 * and move all the excess tasks away. We lower the capacity
2891 * of a group only if the local group has the capacity to fit
2892 * these excess tasks, i.e. nr_running < group_capacity. The
2893 * extra check prevents the case where you always pull from the
2894 * heaviest group when it is already under-utilized (possible
2895 * with a large weight task outweighs the tasks on the system).
2896 */
2897 if (prefer_sibling && !local_group && sds->this_has_capacity)
2898 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2899
2900 if (local_group) {
2901 sds->this_load = sgs.avg_load;
2902 sds->this = sg;
2903 sds->this_nr_running = sgs.sum_nr_running;
2904 sds->this_load_per_task = sgs.sum_weighted_load;
2905 sds->this_has_capacity = sgs.group_has_capacity;
2906 sds->this_idle_cpus = sgs.idle_cpus;
2907 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2908 sds->max_load = sgs.avg_load;
2909 sds->busiest = sg;
2910 sds->busiest_nr_running = sgs.sum_nr_running;
2911 sds->busiest_idle_cpus = sgs.idle_cpus;
2912 sds->busiest_group_capacity = sgs.group_capacity;
2913 sds->busiest_load_per_task = sgs.sum_weighted_load;
2914 sds->busiest_has_capacity = sgs.group_has_capacity;
2915 sds->busiest_group_weight = sgs.group_weight;
2916 sds->group_imb = sgs.group_imb;
2917 }
2918
2919 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2920 sg = sg->next;
2921 } while (sg != sd->groups);
2922 }
2923
2924 int __weak arch_sd_sibling_asym_packing(void)
2925 {
2926 return 0*SD_ASYM_PACKING;
2927 }
2928
2929 /**
2930 * check_asym_packing - Check to see if the group is packed into the
2931 * sched doman.
2932 *
2933 * This is primarily intended to used at the sibling level. Some
2934 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2935 * case of POWER7, it can move to lower SMT modes only when higher
2936 * threads are idle. When in lower SMT modes, the threads will
2937 * perform better since they share less core resources. Hence when we
2938 * have idle threads, we want them to be the higher ones.
2939 *
2940 * This packing function is run on idle threads. It checks to see if
2941 * the busiest CPU in this domain (core in the P7 case) has a higher
2942 * CPU number than the packing function is being run on. Here we are
2943 * assuming lower CPU number will be equivalent to lower a SMT thread
2944 * number.
2945 *
2946 * Returns 1 when packing is required and a task should be moved to
2947 * this CPU. The amount of the imbalance is returned in *imbalance.
2948 *
2949 * @sd: The sched_domain whose packing is to be checked.
2950 * @sds: Statistics of the sched_domain which is to be packed
2951 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2952 * @imbalance: returns amount of imbalanced due to packing.
2953 */
2954 static int check_asym_packing(struct sched_domain *sd,
2955 struct sd_lb_stats *sds,
2956 int this_cpu, unsigned long *imbalance)
2957 {
2958 int busiest_cpu;
2959
2960 if (!(sd->flags & SD_ASYM_PACKING))
2961 return 0;
2962
2963 if (!sds->busiest)
2964 return 0;
2965
2966 busiest_cpu = group_first_cpu(sds->busiest);
2967 if (this_cpu > busiest_cpu)
2968 return 0;
2969
2970 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
2971 SCHED_POWER_SCALE);
2972 return 1;
2973 }
2974
2975 /**
2976 * fix_small_imbalance - Calculate the minor imbalance that exists
2977 * amongst the groups of a sched_domain, during
2978 * load balancing.
2979 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2980 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2981 * @imbalance: Variable to store the imbalance.
2982 */
2983 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2984 int this_cpu, unsigned long *imbalance)
2985 {
2986 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2987 unsigned int imbn = 2;
2988 unsigned long scaled_busy_load_per_task;
2989
2990 if (sds->this_nr_running) {
2991 sds->this_load_per_task /= sds->this_nr_running;
2992 if (sds->busiest_load_per_task >
2993 sds->this_load_per_task)
2994 imbn = 1;
2995 } else
2996 sds->this_load_per_task =
2997 cpu_avg_load_per_task(this_cpu);
2998
2999 scaled_busy_load_per_task = sds->busiest_load_per_task
3000 * SCHED_POWER_SCALE;
3001 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3002
3003 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3004 (scaled_busy_load_per_task * imbn)) {
3005 *imbalance = sds->busiest_load_per_task;
3006 return;
3007 }
3008
3009 /*
3010 * OK, we don't have enough imbalance to justify moving tasks,
3011 * however we may be able to increase total CPU power used by
3012 * moving them.
3013 */
3014
3015 pwr_now += sds->busiest->sgp->power *
3016 min(sds->busiest_load_per_task, sds->max_load);
3017 pwr_now += sds->this->sgp->power *
3018 min(sds->this_load_per_task, sds->this_load);
3019 pwr_now /= SCHED_POWER_SCALE;
3020
3021 /* Amount of load we'd subtract */
3022 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3023 sds->busiest->sgp->power;
3024 if (sds->max_load > tmp)
3025 pwr_move += sds->busiest->sgp->power *
3026 min(sds->busiest_load_per_task, sds->max_load - tmp);
3027
3028 /* Amount of load we'd add */
3029 if (sds->max_load * sds->busiest->sgp->power <
3030 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3031 tmp = (sds->max_load * sds->busiest->sgp->power) /
3032 sds->this->sgp->power;
3033 else
3034 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3035 sds->this->sgp->power;
3036 pwr_move += sds->this->sgp->power *
3037 min(sds->this_load_per_task, sds->this_load + tmp);
3038 pwr_move /= SCHED_POWER_SCALE;
3039
3040 /* Move if we gain throughput */
3041 if (pwr_move > pwr_now)
3042 *imbalance = sds->busiest_load_per_task;
3043 }
3044
3045 /**
3046 * calculate_imbalance - Calculate the amount of imbalance present within the
3047 * groups of a given sched_domain during load balance.
3048 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3049 * @this_cpu: Cpu for which currently load balance is being performed.
3050 * @imbalance: The variable to store the imbalance.
3051 */
3052 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3053 unsigned long *imbalance)
3054 {
3055 unsigned long max_pull, load_above_capacity = ~0UL;
3056
3057 sds->busiest_load_per_task /= sds->busiest_nr_running;
3058 if (sds->group_imb) {
3059 sds->busiest_load_per_task =
3060 min(sds->busiest_load_per_task, sds->avg_load);
3061 }
3062
3063 /*
3064 * In the presence of smp nice balancing, certain scenarios can have
3065 * max load less than avg load(as we skip the groups at or below
3066 * its cpu_power, while calculating max_load..)
3067 */
3068 if (sds->max_load < sds->avg_load) {
3069 *imbalance = 0;
3070 return fix_small_imbalance(sds, this_cpu, imbalance);
3071 }
3072
3073 if (!sds->group_imb) {
3074 /*
3075 * Don't want to pull so many tasks that a group would go idle.
3076 */
3077 load_above_capacity = (sds->busiest_nr_running -
3078 sds->busiest_group_capacity);
3079
3080 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3081
3082 load_above_capacity /= sds->busiest->sgp->power;
3083 }
3084
3085 /*
3086 * We're trying to get all the cpus to the average_load, so we don't
3087 * want to push ourselves above the average load, nor do we wish to
3088 * reduce the max loaded cpu below the average load. At the same time,
3089 * we also don't want to reduce the group load below the group capacity
3090 * (so that we can implement power-savings policies etc). Thus we look
3091 * for the minimum possible imbalance.
3092 * Be careful of negative numbers as they'll appear as very large values
3093 * with unsigned longs.
3094 */
3095 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3096
3097 /* How much load to actually move to equalise the imbalance */
3098 *imbalance = min(max_pull * sds->busiest->sgp->power,
3099 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3100 / SCHED_POWER_SCALE;
3101
3102 /*
3103 * if *imbalance is less than the average load per runnable task
3104 * there is no guarantee that any tasks will be moved so we'll have
3105 * a think about bumping its value to force at least one task to be
3106 * moved
3107 */
3108 if (*imbalance < sds->busiest_load_per_task)
3109 return fix_small_imbalance(sds, this_cpu, imbalance);
3110
3111 }
3112
3113 /******* find_busiest_group() helpers end here *********************/
3114
3115 /**
3116 * find_busiest_group - Returns the busiest group within the sched_domain
3117 * if there is an imbalance. If there isn't an imbalance, and
3118 * the user has opted for power-savings, it returns a group whose
3119 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3120 * such a group exists.
3121 *
3122 * Also calculates the amount of weighted load which should be moved
3123 * to restore balance.
3124 *
3125 * @sd: The sched_domain whose busiest group is to be returned.
3126 * @this_cpu: The cpu for which load balancing is currently being performed.
3127 * @imbalance: Variable which stores amount of weighted load which should
3128 * be moved to restore balance/put a group to idle.
3129 * @idle: The idle status of this_cpu.
3130 * @cpus: The set of CPUs under consideration for load-balancing.
3131 * @balance: Pointer to a variable indicating if this_cpu
3132 * is the appropriate cpu to perform load balancing at this_level.
3133 *
3134 * Returns: - the busiest group if imbalance exists.
3135 * - If no imbalance and user has opted for power-savings balance,
3136 * return the least loaded group whose CPUs can be
3137 * put to idle by rebalancing its tasks onto our group.
3138 */
3139 static struct sched_group *
3140 find_busiest_group(struct sched_domain *sd, int this_cpu,
3141 unsigned long *imbalance, enum cpu_idle_type idle,
3142 const struct cpumask *cpus, int *balance)
3143 {
3144 struct sd_lb_stats sds;
3145
3146 memset(&sds, 0, sizeof(sds));
3147
3148 /*
3149 * Compute the various statistics relavent for load balancing at
3150 * this level.
3151 */
3152 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3153
3154 /*
3155 * this_cpu is not the appropriate cpu to perform load balancing at
3156 * this level.
3157 */
3158 if (!(*balance))
3159 goto ret;
3160
3161 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3162 check_asym_packing(sd, &sds, this_cpu, imbalance))
3163 return sds.busiest;
3164
3165 /* There is no busy sibling group to pull tasks from */
3166 if (!sds.busiest || sds.busiest_nr_running == 0)
3167 goto out_balanced;
3168
3169 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3170
3171 /*
3172 * If the busiest group is imbalanced the below checks don't
3173 * work because they assumes all things are equal, which typically
3174 * isn't true due to cpus_allowed constraints and the like.
3175 */
3176 if (sds.group_imb)
3177 goto force_balance;
3178
3179 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3180 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3181 !sds.busiest_has_capacity)
3182 goto force_balance;
3183
3184 /*
3185 * If the local group is more busy than the selected busiest group
3186 * don't try and pull any tasks.
3187 */
3188 if (sds.this_load >= sds.max_load)
3189 goto out_balanced;
3190
3191 /*
3192 * Don't pull any tasks if this group is already above the domain
3193 * average load.
3194 */
3195 if (sds.this_load >= sds.avg_load)
3196 goto out_balanced;
3197
3198 if (idle == CPU_IDLE) {
3199 /*
3200 * This cpu is idle. If the busiest group load doesn't
3201 * have more tasks than the number of available cpu's and
3202 * there is no imbalance between this and busiest group
3203 * wrt to idle cpu's, it is balanced.
3204 */
3205 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3206 sds.busiest_nr_running <= sds.busiest_group_weight)
3207 goto out_balanced;
3208 } else {
3209 /*
3210 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3211 * imbalance_pct to be conservative.
3212 */
3213 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3214 goto out_balanced;
3215 }
3216
3217 force_balance:
3218 /* Looks like there is an imbalance. Compute it */
3219 calculate_imbalance(&sds, this_cpu, imbalance);
3220 return sds.busiest;
3221
3222 out_balanced:
3223 /*
3224 * There is no obvious imbalance. But check if we can do some balancing
3225 * to save power.
3226 */
3227 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3228 return sds.busiest;
3229 ret:
3230 *imbalance = 0;
3231 return NULL;
3232 }
3233
3234 /*
3235 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3236 */
3237 static struct rq *
3238 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3239 enum cpu_idle_type idle, unsigned long imbalance,
3240 const struct cpumask *cpus)
3241 {
3242 struct rq *busiest = NULL, *rq;
3243 unsigned long max_load = 0;
3244 int i;
3245
3246 for_each_cpu(i, sched_group_cpus(group)) {
3247 unsigned long power = power_of(i);
3248 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3249 SCHED_POWER_SCALE);
3250 unsigned long wl;
3251
3252 if (!capacity)
3253 capacity = fix_small_capacity(sd, group);
3254
3255 if (!cpumask_test_cpu(i, cpus))
3256 continue;
3257
3258 rq = cpu_rq(i);
3259 wl = weighted_cpuload(i);
3260
3261 /*
3262 * When comparing with imbalance, use weighted_cpuload()
3263 * which is not scaled with the cpu power.
3264 */
3265 if (capacity && rq->nr_running == 1 && wl > imbalance)
3266 continue;
3267
3268 /*
3269 * For the load comparisons with the other cpu's, consider
3270 * the weighted_cpuload() scaled with the cpu power, so that
3271 * the load can be moved away from the cpu that is potentially
3272 * running at a lower capacity.
3273 */
3274 wl = (wl * SCHED_POWER_SCALE) / power;
3275
3276 if (wl > max_load) {
3277 max_load = wl;
3278 busiest = rq;
3279 }
3280 }
3281
3282 return busiest;
3283 }
3284
3285 /*
3286 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3287 * so long as it is large enough.
3288 */
3289 #define MAX_PINNED_INTERVAL 512
3290
3291 /* Working cpumask for load_balance and load_balance_newidle. */
3292 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3293
3294 static int need_active_balance(struct sched_domain *sd, int idle,
3295 int busiest_cpu, int this_cpu)
3296 {
3297 if (idle == CPU_NEWLY_IDLE) {
3298
3299 /*
3300 * ASYM_PACKING needs to force migrate tasks from busy but
3301 * higher numbered CPUs in order to pack all tasks in the
3302 * lowest numbered CPUs.
3303 */
3304 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3305 return 1;
3306
3307 /*
3308 * The only task running in a non-idle cpu can be moved to this
3309 * cpu in an attempt to completely freeup the other CPU
3310 * package.
3311 *
3312 * The package power saving logic comes from
3313 * find_busiest_group(). If there are no imbalance, then
3314 * f_b_g() will return NULL. However when sched_mc={1,2} then
3315 * f_b_g() will select a group from which a running task may be
3316 * pulled to this cpu in order to make the other package idle.
3317 * If there is no opportunity to make a package idle and if
3318 * there are no imbalance, then f_b_g() will return NULL and no
3319 * action will be taken in load_balance_newidle().
3320 *
3321 * Under normal task pull operation due to imbalance, there
3322 * will be more than one task in the source run queue and
3323 * move_tasks() will succeed. ld_moved will be true and this
3324 * active balance code will not be triggered.
3325 */
3326 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3327 return 0;
3328 }
3329
3330 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3331 }
3332
3333 static int active_load_balance_cpu_stop(void *data);
3334
3335 /*
3336 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3337 * tasks if there is an imbalance.
3338 */
3339 static int load_balance(int this_cpu, struct rq *this_rq,
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 int *balance)
3342 {
3343 int ld_moved, all_pinned = 0, active_balance = 0;
3344 struct sched_group *group;
3345 unsigned long imbalance;
3346 struct rq *busiest;
3347 unsigned long flags;
3348 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3349
3350 cpumask_copy(cpus, cpu_active_mask);
3351
3352 schedstat_inc(sd, lb_count[idle]);
3353
3354 redo:
3355 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3356 cpus, balance);
3357
3358 if (*balance == 0)
3359 goto out_balanced;
3360
3361 if (!group) {
3362 schedstat_inc(sd, lb_nobusyg[idle]);
3363 goto out_balanced;
3364 }
3365
3366 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3367 if (!busiest) {
3368 schedstat_inc(sd, lb_nobusyq[idle]);
3369 goto out_balanced;
3370 }
3371
3372 BUG_ON(busiest == this_rq);
3373
3374 schedstat_add(sd, lb_imbalance[idle], imbalance);
3375
3376 ld_moved = 0;
3377 if (busiest->nr_running > 1) {
3378 /*
3379 * Attempt to move tasks. If find_busiest_group has found
3380 * an imbalance but busiest->nr_running <= 1, the group is
3381 * still unbalanced. ld_moved simply stays zero, so it is
3382 * correctly treated as an imbalance.
3383 */
3384 all_pinned = 1;
3385 local_irq_save(flags);
3386 double_rq_lock(this_rq, busiest);
3387 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3388 imbalance, sd, idle, &all_pinned);
3389 double_rq_unlock(this_rq, busiest);
3390 local_irq_restore(flags);
3391
3392 /*
3393 * some other cpu did the load balance for us.
3394 */
3395 if (ld_moved && this_cpu != smp_processor_id())
3396 resched_cpu(this_cpu);
3397
3398 /* All tasks on this runqueue were pinned by CPU affinity */
3399 if (unlikely(all_pinned)) {
3400 cpumask_clear_cpu(cpu_of(busiest), cpus);
3401 if (!cpumask_empty(cpus))
3402 goto redo;
3403 goto out_balanced;
3404 }
3405 }
3406
3407 if (!ld_moved) {
3408 schedstat_inc(sd, lb_failed[idle]);
3409 /*
3410 * Increment the failure counter only on periodic balance.
3411 * We do not want newidle balance, which can be very
3412 * frequent, pollute the failure counter causing
3413 * excessive cache_hot migrations and active balances.
3414 */
3415 if (idle != CPU_NEWLY_IDLE)
3416 sd->nr_balance_failed++;
3417
3418 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3419 raw_spin_lock_irqsave(&busiest->lock, flags);
3420
3421 /* don't kick the active_load_balance_cpu_stop,
3422 * if the curr task on busiest cpu can't be
3423 * moved to this_cpu
3424 */
3425 if (!cpumask_test_cpu(this_cpu,
3426 &busiest->curr->cpus_allowed)) {
3427 raw_spin_unlock_irqrestore(&busiest->lock,
3428 flags);
3429 all_pinned = 1;
3430 goto out_one_pinned;
3431 }
3432
3433 /*
3434 * ->active_balance synchronizes accesses to
3435 * ->active_balance_work. Once set, it's cleared
3436 * only after active load balance is finished.
3437 */
3438 if (!busiest->active_balance) {
3439 busiest->active_balance = 1;
3440 busiest->push_cpu = this_cpu;
3441 active_balance = 1;
3442 }
3443 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3444
3445 if (active_balance)
3446 stop_one_cpu_nowait(cpu_of(busiest),
3447 active_load_balance_cpu_stop, busiest,
3448 &busiest->active_balance_work);
3449
3450 /*
3451 * We've kicked active balancing, reset the failure
3452 * counter.
3453 */
3454 sd->nr_balance_failed = sd->cache_nice_tries+1;
3455 }
3456 } else
3457 sd->nr_balance_failed = 0;
3458
3459 if (likely(!active_balance)) {
3460 /* We were unbalanced, so reset the balancing interval */
3461 sd->balance_interval = sd->min_interval;
3462 } else {
3463 /*
3464 * If we've begun active balancing, start to back off. This
3465 * case may not be covered by the all_pinned logic if there
3466 * is only 1 task on the busy runqueue (because we don't call
3467 * move_tasks).
3468 */
3469 if (sd->balance_interval < sd->max_interval)
3470 sd->balance_interval *= 2;
3471 }
3472
3473 goto out;
3474
3475 out_balanced:
3476 schedstat_inc(sd, lb_balanced[idle]);
3477
3478 sd->nr_balance_failed = 0;
3479
3480 out_one_pinned:
3481 /* tune up the balancing interval */
3482 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3483 (sd->balance_interval < sd->max_interval))
3484 sd->balance_interval *= 2;
3485
3486 ld_moved = 0;
3487 out:
3488 return ld_moved;
3489 }
3490
3491 /*
3492 * idle_balance is called by schedule() if this_cpu is about to become
3493 * idle. Attempts to pull tasks from other CPUs.
3494 */
3495 static void idle_balance(int this_cpu, struct rq *this_rq)
3496 {
3497 struct sched_domain *sd;
3498 int pulled_task = 0;
3499 unsigned long next_balance = jiffies + HZ;
3500
3501 this_rq->idle_stamp = this_rq->clock;
3502
3503 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3504 return;
3505
3506 /*
3507 * Drop the rq->lock, but keep IRQ/preempt disabled.
3508 */
3509 raw_spin_unlock(&this_rq->lock);
3510
3511 update_shares(this_cpu);
3512 rcu_read_lock();
3513 for_each_domain(this_cpu, sd) {
3514 unsigned long interval;
3515 int balance = 1;
3516
3517 if (!(sd->flags & SD_LOAD_BALANCE))
3518 continue;
3519
3520 if (sd->flags & SD_BALANCE_NEWIDLE) {
3521 /* If we've pulled tasks over stop searching: */
3522 pulled_task = load_balance(this_cpu, this_rq,
3523 sd, CPU_NEWLY_IDLE, &balance);
3524 }
3525
3526 interval = msecs_to_jiffies(sd->balance_interval);
3527 if (time_after(next_balance, sd->last_balance + interval))
3528 next_balance = sd->last_balance + interval;
3529 if (pulled_task) {
3530 this_rq->idle_stamp = 0;
3531 break;
3532 }
3533 }
3534 rcu_read_unlock();
3535
3536 raw_spin_lock(&this_rq->lock);
3537
3538 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3539 /*
3540 * We are going idle. next_balance may be set based on
3541 * a busy processor. So reset next_balance.
3542 */
3543 this_rq->next_balance = next_balance;
3544 }
3545 }
3546
3547 /*
3548 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3549 * running tasks off the busiest CPU onto idle CPUs. It requires at
3550 * least 1 task to be running on each physical CPU where possible, and
3551 * avoids physical / logical imbalances.
3552 */
3553 static int active_load_balance_cpu_stop(void *data)
3554 {
3555 struct rq *busiest_rq = data;
3556 int busiest_cpu = cpu_of(busiest_rq);
3557 int target_cpu = busiest_rq->push_cpu;
3558 struct rq *target_rq = cpu_rq(target_cpu);
3559 struct sched_domain *sd;
3560
3561 raw_spin_lock_irq(&busiest_rq->lock);
3562
3563 /* make sure the requested cpu hasn't gone down in the meantime */
3564 if (unlikely(busiest_cpu != smp_processor_id() ||
3565 !busiest_rq->active_balance))
3566 goto out_unlock;
3567
3568 /* Is there any task to move? */
3569 if (busiest_rq->nr_running <= 1)
3570 goto out_unlock;
3571
3572 /*
3573 * This condition is "impossible", if it occurs
3574 * we need to fix it. Originally reported by
3575 * Bjorn Helgaas on a 128-cpu setup.
3576 */
3577 BUG_ON(busiest_rq == target_rq);
3578
3579 /* move a task from busiest_rq to target_rq */
3580 double_lock_balance(busiest_rq, target_rq);
3581
3582 /* Search for an sd spanning us and the target CPU. */
3583 rcu_read_lock();
3584 for_each_domain(target_cpu, sd) {
3585 if ((sd->flags & SD_LOAD_BALANCE) &&
3586 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3587 break;
3588 }
3589
3590 if (likely(sd)) {
3591 schedstat_inc(sd, alb_count);
3592
3593 if (move_one_task(target_rq, target_cpu, busiest_rq,
3594 sd, CPU_IDLE))
3595 schedstat_inc(sd, alb_pushed);
3596 else
3597 schedstat_inc(sd, alb_failed);
3598 }
3599 rcu_read_unlock();
3600 double_unlock_balance(busiest_rq, target_rq);
3601 out_unlock:
3602 busiest_rq->active_balance = 0;
3603 raw_spin_unlock_irq(&busiest_rq->lock);
3604 return 0;
3605 }
3606
3607 #ifdef CONFIG_NO_HZ
3608
3609 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3610
3611 static void trigger_sched_softirq(void *data)
3612 {
3613 raise_softirq_irqoff(SCHED_SOFTIRQ);
3614 }
3615
3616 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3617 {
3618 csd->func = trigger_sched_softirq;
3619 csd->info = NULL;
3620 csd->flags = 0;
3621 csd->priv = 0;
3622 }
3623
3624 /*
3625 * idle load balancing details
3626 * - One of the idle CPUs nominates itself as idle load_balancer, while
3627 * entering idle.
3628 * - This idle load balancer CPU will also go into tickless mode when
3629 * it is idle, just like all other idle CPUs
3630 * - When one of the busy CPUs notice that there may be an idle rebalancing
3631 * needed, they will kick the idle load balancer, which then does idle
3632 * load balancing for all the idle CPUs.
3633 */
3634 static struct {
3635 atomic_t load_balancer;
3636 atomic_t first_pick_cpu;
3637 atomic_t second_pick_cpu;
3638 cpumask_var_t idle_cpus_mask;
3639 cpumask_var_t grp_idle_mask;
3640 unsigned long next_balance; /* in jiffy units */
3641 } nohz ____cacheline_aligned;
3642
3643 int get_nohz_load_balancer(void)
3644 {
3645 return atomic_read(&nohz.load_balancer);
3646 }
3647
3648 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3649 /**
3650 * lowest_flag_domain - Return lowest sched_domain containing flag.
3651 * @cpu: The cpu whose lowest level of sched domain is to
3652 * be returned.
3653 * @flag: The flag to check for the lowest sched_domain
3654 * for the given cpu.
3655 *
3656 * Returns the lowest sched_domain of a cpu which contains the given flag.
3657 */
3658 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3659 {
3660 struct sched_domain *sd;
3661
3662 for_each_domain(cpu, sd)
3663 if (sd->flags & flag)
3664 break;
3665
3666 return sd;
3667 }
3668
3669 /**
3670 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3671 * @cpu: The cpu whose domains we're iterating over.
3672 * @sd: variable holding the value of the power_savings_sd
3673 * for cpu.
3674 * @flag: The flag to filter the sched_domains to be iterated.
3675 *
3676 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3677 * set, starting from the lowest sched_domain to the highest.
3678 */
3679 #define for_each_flag_domain(cpu, sd, flag) \
3680 for (sd = lowest_flag_domain(cpu, flag); \
3681 (sd && (sd->flags & flag)); sd = sd->parent)
3682
3683 /**
3684 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3685 * @ilb_group: group to be checked for semi-idleness
3686 *
3687 * Returns: 1 if the group is semi-idle. 0 otherwise.
3688 *
3689 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3690 * and atleast one non-idle CPU. This helper function checks if the given
3691 * sched_group is semi-idle or not.
3692 */
3693 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3694 {
3695 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3696 sched_group_cpus(ilb_group));
3697
3698 /*
3699 * A sched_group is semi-idle when it has atleast one busy cpu
3700 * and atleast one idle cpu.
3701 */
3702 if (cpumask_empty(nohz.grp_idle_mask))
3703 return 0;
3704
3705 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3706 return 0;
3707
3708 return 1;
3709 }
3710 /**
3711 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3712 * @cpu: The cpu which is nominating a new idle_load_balancer.
3713 *
3714 * Returns: Returns the id of the idle load balancer if it exists,
3715 * Else, returns >= nr_cpu_ids.
3716 *
3717 * This algorithm picks the idle load balancer such that it belongs to a
3718 * semi-idle powersavings sched_domain. The idea is to try and avoid
3719 * completely idle packages/cores just for the purpose of idle load balancing
3720 * when there are other idle cpu's which are better suited for that job.
3721 */
3722 static int find_new_ilb(int cpu)
3723 {
3724 struct sched_domain *sd;
3725 struct sched_group *ilb_group;
3726 int ilb = nr_cpu_ids;
3727
3728 /*
3729 * Have idle load balancer selection from semi-idle packages only
3730 * when power-aware load balancing is enabled
3731 */
3732 if (!(sched_smt_power_savings || sched_mc_power_savings))
3733 goto out_done;
3734
3735 /*
3736 * Optimize for the case when we have no idle CPUs or only one
3737 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3738 */
3739 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3740 goto out_done;
3741
3742 rcu_read_lock();
3743 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3744 ilb_group = sd->groups;
3745
3746 do {
3747 if (is_semi_idle_group(ilb_group)) {
3748 ilb = cpumask_first(nohz.grp_idle_mask);
3749 goto unlock;
3750 }
3751
3752 ilb_group = ilb_group->next;
3753
3754 } while (ilb_group != sd->groups);
3755 }
3756 unlock:
3757 rcu_read_unlock();
3758
3759 out_done:
3760 return ilb;
3761 }
3762 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3763 static inline int find_new_ilb(int call_cpu)
3764 {
3765 return nr_cpu_ids;
3766 }
3767 #endif
3768
3769 /*
3770 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3771 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3772 * CPU (if there is one).
3773 */
3774 static void nohz_balancer_kick(int cpu)
3775 {
3776 int ilb_cpu;
3777
3778 nohz.next_balance++;
3779
3780 ilb_cpu = get_nohz_load_balancer();
3781
3782 if (ilb_cpu >= nr_cpu_ids) {
3783 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3784 if (ilb_cpu >= nr_cpu_ids)
3785 return;
3786 }
3787
3788 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3789 struct call_single_data *cp;
3790
3791 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3792 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3793 __smp_call_function_single(ilb_cpu, cp, 0);
3794 }
3795 return;
3796 }
3797
3798 /*
3799 * This routine will try to nominate the ilb (idle load balancing)
3800 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3801 * load balancing on behalf of all those cpus.
3802 *
3803 * When the ilb owner becomes busy, we will not have new ilb owner until some
3804 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3805 * idle load balancing by kicking one of the idle CPUs.
3806 *
3807 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3808 * ilb owner CPU in future (when there is a need for idle load balancing on
3809 * behalf of all idle CPUs).
3810 */
3811 void select_nohz_load_balancer(int stop_tick)
3812 {
3813 int cpu = smp_processor_id();
3814
3815 if (stop_tick) {
3816 if (!cpu_active(cpu)) {
3817 if (atomic_read(&nohz.load_balancer) != cpu)
3818 return;
3819
3820 /*
3821 * If we are going offline and still the leader,
3822 * give up!
3823 */
3824 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3825 nr_cpu_ids) != cpu)
3826 BUG();
3827
3828 return;
3829 }
3830
3831 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3832
3833 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3834 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3835 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3836 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3837
3838 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3839 int new_ilb;
3840
3841 /* make me the ilb owner */
3842 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3843 cpu) != nr_cpu_ids)
3844 return;
3845
3846 /*
3847 * Check to see if there is a more power-efficient
3848 * ilb.
3849 */
3850 new_ilb = find_new_ilb(cpu);
3851 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3852 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3853 resched_cpu(new_ilb);
3854 return;
3855 }
3856 return;
3857 }
3858 } else {
3859 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3860 return;
3861
3862 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3863
3864 if (atomic_read(&nohz.load_balancer) == cpu)
3865 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3866 nr_cpu_ids) != cpu)
3867 BUG();
3868 }
3869 return;
3870 }
3871 #endif
3872
3873 static DEFINE_SPINLOCK(balancing);
3874
3875 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3876
3877 /*
3878 * Scale the max load_balance interval with the number of CPUs in the system.
3879 * This trades load-balance latency on larger machines for less cross talk.
3880 */
3881 static void update_max_interval(void)
3882 {
3883 max_load_balance_interval = HZ*num_online_cpus()/10;
3884 }
3885
3886 /*
3887 * It checks each scheduling domain to see if it is due to be balanced,
3888 * and initiates a balancing operation if so.
3889 *
3890 * Balancing parameters are set up in arch_init_sched_domains.
3891 */
3892 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3893 {
3894 int balance = 1;
3895 struct rq *rq = cpu_rq(cpu);
3896 unsigned long interval;
3897 struct sched_domain *sd;
3898 /* Earliest time when we have to do rebalance again */
3899 unsigned long next_balance = jiffies + 60*HZ;
3900 int update_next_balance = 0;
3901 int need_serialize;
3902
3903 update_shares(cpu);
3904
3905 rcu_read_lock();
3906 for_each_domain(cpu, sd) {
3907 if (!(sd->flags & SD_LOAD_BALANCE))
3908 continue;
3909
3910 interval = sd->balance_interval;
3911 if (idle != CPU_IDLE)
3912 interval *= sd->busy_factor;
3913
3914 /* scale ms to jiffies */
3915 interval = msecs_to_jiffies(interval);
3916 interval = clamp(interval, 1UL, max_load_balance_interval);
3917
3918 need_serialize = sd->flags & SD_SERIALIZE;
3919
3920 if (need_serialize) {
3921 if (!spin_trylock(&balancing))
3922 goto out;
3923 }
3924
3925 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3926 if (load_balance(cpu, rq, sd, idle, &balance)) {
3927 /*
3928 * We've pulled tasks over so either we're no
3929 * longer idle.
3930 */
3931 idle = CPU_NOT_IDLE;
3932 }
3933 sd->last_balance = jiffies;
3934 }
3935 if (need_serialize)
3936 spin_unlock(&balancing);
3937 out:
3938 if (time_after(next_balance, sd->last_balance + interval)) {
3939 next_balance = sd->last_balance + interval;
3940 update_next_balance = 1;
3941 }
3942
3943 /*
3944 * Stop the load balance at this level. There is another
3945 * CPU in our sched group which is doing load balancing more
3946 * actively.
3947 */
3948 if (!balance)
3949 break;
3950 }
3951 rcu_read_unlock();
3952
3953 /*
3954 * next_balance will be updated only when there is a need.
3955 * When the cpu is attached to null domain for ex, it will not be
3956 * updated.
3957 */
3958 if (likely(update_next_balance))
3959 rq->next_balance = next_balance;
3960 }
3961
3962 #ifdef CONFIG_NO_HZ
3963 /*
3964 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3965 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3966 */
3967 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3968 {
3969 struct rq *this_rq = cpu_rq(this_cpu);
3970 struct rq *rq;
3971 int balance_cpu;
3972
3973 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3974 return;
3975
3976 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3977 if (balance_cpu == this_cpu)
3978 continue;
3979
3980 /*
3981 * If this cpu gets work to do, stop the load balancing
3982 * work being done for other cpus. Next load
3983 * balancing owner will pick it up.
3984 */
3985 if (need_resched()) {
3986 this_rq->nohz_balance_kick = 0;
3987 break;
3988 }
3989
3990 raw_spin_lock_irq(&this_rq->lock);
3991 update_rq_clock(this_rq);
3992 update_cpu_load(this_rq);
3993 raw_spin_unlock_irq(&this_rq->lock);
3994
3995 rebalance_domains(balance_cpu, CPU_IDLE);
3996
3997 rq = cpu_rq(balance_cpu);
3998 if (time_after(this_rq->next_balance, rq->next_balance))
3999 this_rq->next_balance = rq->next_balance;
4000 }
4001 nohz.next_balance = this_rq->next_balance;
4002 this_rq->nohz_balance_kick = 0;
4003 }
4004
4005 /*
4006 * Current heuristic for kicking the idle load balancer
4007 * - first_pick_cpu is the one of the busy CPUs. It will kick
4008 * idle load balancer when it has more than one process active. This
4009 * eliminates the need for idle load balancing altogether when we have
4010 * only one running process in the system (common case).
4011 * - If there are more than one busy CPU, idle load balancer may have
4012 * to run for active_load_balance to happen (i.e., two busy CPUs are
4013 * SMT or core siblings and can run better if they move to different
4014 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4015 * which will kick idle load balancer as soon as it has any load.
4016 */
4017 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4018 {
4019 unsigned long now = jiffies;
4020 int ret;
4021 int first_pick_cpu, second_pick_cpu;
4022
4023 if (time_before(now, nohz.next_balance))
4024 return 0;
4025
4026 if (rq->idle_at_tick)
4027 return 0;
4028
4029 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4030 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4031
4032 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4033 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4034 return 0;
4035
4036 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4037 if (ret == nr_cpu_ids || ret == cpu) {
4038 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4039 if (rq->nr_running > 1)
4040 return 1;
4041 } else {
4042 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4043 if (ret == nr_cpu_ids || ret == cpu) {
4044 if (rq->nr_running)
4045 return 1;
4046 }
4047 }
4048 return 0;
4049 }
4050 #else
4051 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4052 #endif
4053
4054 /*
4055 * run_rebalance_domains is triggered when needed from the scheduler tick.
4056 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4057 */
4058 static void run_rebalance_domains(struct softirq_action *h)
4059 {
4060 int this_cpu = smp_processor_id();
4061 struct rq *this_rq = cpu_rq(this_cpu);
4062 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4063 CPU_IDLE : CPU_NOT_IDLE;
4064
4065 rebalance_domains(this_cpu, idle);
4066
4067 /*
4068 * If this cpu has a pending nohz_balance_kick, then do the
4069 * balancing on behalf of the other idle cpus whose ticks are
4070 * stopped.
4071 */
4072 nohz_idle_balance(this_cpu, idle);
4073 }
4074
4075 static inline int on_null_domain(int cpu)
4076 {
4077 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4078 }
4079
4080 /*
4081 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4082 */
4083 static inline void trigger_load_balance(struct rq *rq, int cpu)
4084 {
4085 /* Don't need to rebalance while attached to NULL domain */
4086 if (time_after_eq(jiffies, rq->next_balance) &&
4087 likely(!on_null_domain(cpu)))
4088 raise_softirq(SCHED_SOFTIRQ);
4089 #ifdef CONFIG_NO_HZ
4090 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4091 nohz_balancer_kick(cpu);
4092 #endif
4093 }
4094
4095 static void rq_online_fair(struct rq *rq)
4096 {
4097 update_sysctl();
4098 }
4099
4100 static void rq_offline_fair(struct rq *rq)
4101 {
4102 update_sysctl();
4103 }
4104
4105 #else /* CONFIG_SMP */
4106
4107 /*
4108 * on UP we do not need to balance between CPUs:
4109 */
4110 static inline void idle_balance(int cpu, struct rq *rq)
4111 {
4112 }
4113
4114 #endif /* CONFIG_SMP */
4115
4116 /*
4117 * scheduler tick hitting a task of our scheduling class:
4118 */
4119 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4120 {
4121 struct cfs_rq *cfs_rq;
4122 struct sched_entity *se = &curr->se;
4123
4124 for_each_sched_entity(se) {
4125 cfs_rq = cfs_rq_of(se);
4126 entity_tick(cfs_rq, se, queued);
4127 }
4128 }
4129
4130 /*
4131 * called on fork with the child task as argument from the parent's context
4132 * - child not yet on the tasklist
4133 * - preemption disabled
4134 */
4135 static void task_fork_fair(struct task_struct *p)
4136 {
4137 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4138 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4139 int this_cpu = smp_processor_id();
4140 struct rq *rq = this_rq();
4141 unsigned long flags;
4142
4143 raw_spin_lock_irqsave(&rq->lock, flags);
4144
4145 update_rq_clock(rq);
4146
4147 if (unlikely(task_cpu(p) != this_cpu)) {
4148 rcu_read_lock();
4149 __set_task_cpu(p, this_cpu);
4150 rcu_read_unlock();
4151 }
4152
4153 update_curr(cfs_rq);
4154
4155 if (curr)
4156 se->vruntime = curr->vruntime;
4157 place_entity(cfs_rq, se, 1);
4158
4159 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4160 /*
4161 * Upon rescheduling, sched_class::put_prev_task() will place
4162 * 'current' within the tree based on its new key value.
4163 */
4164 swap(curr->vruntime, se->vruntime);
4165 resched_task(rq->curr);
4166 }
4167
4168 se->vruntime -= cfs_rq->min_vruntime;
4169
4170 raw_spin_unlock_irqrestore(&rq->lock, flags);
4171 }
4172
4173 /*
4174 * Priority of the task has changed. Check to see if we preempt
4175 * the current task.
4176 */
4177 static void
4178 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4179 {
4180 if (!p->se.on_rq)
4181 return;
4182
4183 /*
4184 * Reschedule if we are currently running on this runqueue and
4185 * our priority decreased, or if we are not currently running on
4186 * this runqueue and our priority is higher than the current's
4187 */
4188 if (rq->curr == p) {
4189 if (p->prio > oldprio)
4190 resched_task(rq->curr);
4191 } else
4192 check_preempt_curr(rq, p, 0);
4193 }
4194
4195 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4196 {
4197 struct sched_entity *se = &p->se;
4198 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4199
4200 /*
4201 * Ensure the task's vruntime is normalized, so that when its
4202 * switched back to the fair class the enqueue_entity(.flags=0) will
4203 * do the right thing.
4204 *
4205 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4206 * have normalized the vruntime, if it was !on_rq, then only when
4207 * the task is sleeping will it still have non-normalized vruntime.
4208 */
4209 if (!se->on_rq && p->state != TASK_RUNNING) {
4210 /*
4211 * Fix up our vruntime so that the current sleep doesn't
4212 * cause 'unlimited' sleep bonus.
4213 */
4214 place_entity(cfs_rq, se, 0);
4215 se->vruntime -= cfs_rq->min_vruntime;
4216 }
4217 }
4218
4219 /*
4220 * We switched to the sched_fair class.
4221 */
4222 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4223 {
4224 if (!p->se.on_rq)
4225 return;
4226
4227 /*
4228 * We were most likely switched from sched_rt, so
4229 * kick off the schedule if running, otherwise just see
4230 * if we can still preempt the current task.
4231 */
4232 if (rq->curr == p)
4233 resched_task(rq->curr);
4234 else
4235 check_preempt_curr(rq, p, 0);
4236 }
4237
4238 /* Account for a task changing its policy or group.
4239 *
4240 * This routine is mostly called to set cfs_rq->curr field when a task
4241 * migrates between groups/classes.
4242 */
4243 static void set_curr_task_fair(struct rq *rq)
4244 {
4245 struct sched_entity *se = &rq->curr->se;
4246
4247 for_each_sched_entity(se)
4248 set_next_entity(cfs_rq_of(se), se);
4249 }
4250
4251 #ifdef CONFIG_FAIR_GROUP_SCHED
4252 static void task_move_group_fair(struct task_struct *p, int on_rq)
4253 {
4254 /*
4255 * If the task was not on the rq at the time of this cgroup movement
4256 * it must have been asleep, sleeping tasks keep their ->vruntime
4257 * absolute on their old rq until wakeup (needed for the fair sleeper
4258 * bonus in place_entity()).
4259 *
4260 * If it was on the rq, we've just 'preempted' it, which does convert
4261 * ->vruntime to a relative base.
4262 *
4263 * Make sure both cases convert their relative position when migrating
4264 * to another cgroup's rq. This does somewhat interfere with the
4265 * fair sleeper stuff for the first placement, but who cares.
4266 */
4267 if (!on_rq)
4268 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4269 set_task_rq(p, task_cpu(p));
4270 if (!on_rq)
4271 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4272 }
4273 #endif
4274
4275 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4276 {
4277 struct sched_entity *se = &task->se;
4278 unsigned int rr_interval = 0;
4279
4280 /*
4281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4282 * idle runqueue:
4283 */
4284 if (rq->cfs.load.weight)
4285 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4286
4287 return rr_interval;
4288 }
4289
4290 /*
4291 * All the scheduling class methods:
4292 */
4293 static const struct sched_class fair_sched_class = {
4294 .next = &idle_sched_class,
4295 .enqueue_task = enqueue_task_fair,
4296 .dequeue_task = dequeue_task_fair,
4297 .yield_task = yield_task_fair,
4298 .yield_to_task = yield_to_task_fair,
4299
4300 .check_preempt_curr = check_preempt_wakeup,
4301
4302 .pick_next_task = pick_next_task_fair,
4303 .put_prev_task = put_prev_task_fair,
4304
4305 #ifdef CONFIG_SMP
4306 .select_task_rq = select_task_rq_fair,
4307
4308 .rq_online = rq_online_fair,
4309 .rq_offline = rq_offline_fair,
4310
4311 .task_waking = task_waking_fair,
4312 #endif
4313
4314 .set_curr_task = set_curr_task_fair,
4315 .task_tick = task_tick_fair,
4316 .task_fork = task_fork_fair,
4317
4318 .prio_changed = prio_changed_fair,
4319 .switched_from = switched_from_fair,
4320 .switched_to = switched_to_fair,
4321
4322 .get_rr_interval = get_rr_interval_fair,
4323
4324 #ifdef CONFIG_FAIR_GROUP_SCHED
4325 .task_move_group = task_move_group_fair,
4326 #endif
4327 };
4328
4329 #ifdef CONFIG_SCHED_DEBUG
4330 static void print_cfs_stats(struct seq_file *m, int cpu)
4331 {
4332 struct cfs_rq *cfs_rq;
4333
4334 rcu_read_lock();
4335 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4336 print_cfs_rq(m, cpu, cfs_rq);
4337 rcu_read_unlock();
4338 }
4339 #endif
This page took 0.189347 seconds and 6 git commands to generate.