sched: Unify load_balance{,_newidle}()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 5;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
509
510 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec);
512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
513
514 curr->vruntime += delta_exec_weighted;
515 update_min_vruntime(cfs_rq);
516 }
517
518 static void update_curr(struct cfs_rq *cfs_rq)
519 {
520 struct sched_entity *curr = cfs_rq->curr;
521 u64 now = rq_of(cfs_rq)->clock;
522 unsigned long delta_exec;
523
524 if (unlikely(!curr))
525 return;
526
527 /*
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
531 */
532 delta_exec = (unsigned long)(now - curr->exec_start);
533 if (!delta_exec)
534 return;
535
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
538
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
541
542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
543 cpuacct_charge(curtask, delta_exec);
544 account_group_exec_runtime(curtask, delta_exec);
545 }
546 }
547
548 static inline void
549 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
550 {
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
552 }
553
554 /*
555 * Task is being enqueued - update stats:
556 */
557 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 /*
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
562 */
563 if (se != cfs_rq->curr)
564 update_stats_wait_start(cfs_rq, se);
565 }
566
567 static void
568 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
569 {
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
575 #ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
579 }
580 #endif
581 schedstat_set(se->wait_start, 0);
582 }
583
584 static inline void
585 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 {
587 /*
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
590 */
591 if (se != cfs_rq->curr)
592 update_stats_wait_end(cfs_rq, se);
593 }
594
595 /*
596 * We are picking a new current task - update its stats:
597 */
598 static inline void
599 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601 /*
602 * We are starting a new run period:
603 */
604 se->exec_start = rq_of(cfs_rq)->clock;
605 }
606
607 /**************************************************
608 * Scheduling class queueing methods:
609 */
610
611 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612 static void
613 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614 {
615 cfs_rq->task_weight += weight;
616 }
617 #else
618 static inline void
619 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
620 {
621 }
622 #endif
623
624 static void
625 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 {
627 update_load_add(&cfs_rq->load, se->load.weight);
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
630 if (entity_is_task(se)) {
631 add_cfs_task_weight(cfs_rq, se->load.weight);
632 list_add(&se->group_node, &cfs_rq->tasks);
633 }
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
636 }
637
638 static void
639 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 update_load_sub(&cfs_rq->load, se->load.weight);
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
644 if (entity_is_task(se)) {
645 add_cfs_task_weight(cfs_rq, -se->load.weight);
646 list_del_init(&se->group_node);
647 }
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
650 }
651
652 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 {
654 #ifdef CONFIG_SCHEDSTATS
655 struct task_struct *tsk = NULL;
656
657 if (entity_is_task(se))
658 tsk = task_of(se);
659
660 if (se->sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
662
663 if ((s64)delta < 0)
664 delta = 0;
665
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
668
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
671
672 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta);
675 }
676 }
677 if (se->block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
679
680 if ((s64)delta < 0)
681 delta = 0;
682
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
685
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
688
689 if (tsk) {
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
693 trace_sched_stat_iowait(tsk, delta);
694 }
695
696 /*
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
700 */
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
705 }
706 account_scheduler_latency(tsk, delta >> 10, 0);
707 }
708 }
709 #endif
710 }
711
712 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713 {
714 #ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
716
717 if (d < 0)
718 d = -d;
719
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722 #endif
723 }
724
725 static void
726 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727 {
728 u64 vruntime = cfs_rq->min_vruntime;
729
730 /*
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
735 */
736 if (initial && sched_feat(START_DEBIT))
737 vruntime += sched_vslice(cfs_rq, se);
738
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
742
743 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
752
753 /*
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
756 */
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
759
760 vruntime -= thresh;
761 }
762
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
765
766 se->vruntime = vruntime;
767 }
768
769 #define ENQUEUE_WAKEUP 1
770 #define ENQUEUE_MIGRATE 2
771
772 static void
773 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
774 {
775 /*
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
782 /*
783 * Update run-time statistics of the 'current'.
784 */
785 update_curr(cfs_rq);
786 account_entity_enqueue(cfs_rq, se);
787
788 if (flags & ENQUEUE_WAKEUP) {
789 place_entity(cfs_rq, se, 0);
790 enqueue_sleeper(cfs_rq, se);
791 }
792
793 update_stats_enqueue(cfs_rq, se);
794 check_spread(cfs_rq, se);
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
797 }
798
799 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
800 {
801 if (!se || cfs_rq->last == se)
802 cfs_rq->last = NULL;
803
804 if (!se || cfs_rq->next == se)
805 cfs_rq->next = NULL;
806 }
807
808 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
809 {
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
812 }
813
814 static void
815 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
816 {
817 /*
818 * Update run-time statistics of the 'current'.
819 */
820 update_curr(cfs_rq);
821
822 update_stats_dequeue(cfs_rq, se);
823 if (sleep) {
824 #ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
827
828 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock;
832 }
833 #endif
834 }
835
836 clear_buddies(cfs_rq, se);
837
838 if (se != cfs_rq->curr)
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
841 update_min_vruntime(cfs_rq);
842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
850 }
851
852 /*
853 * Preempt the current task with a newly woken task if needed:
854 */
855 static void
856 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
857 {
858 unsigned long ideal_runtime, delta_exec;
859
860 ideal_runtime = sched_slice(cfs_rq, curr);
861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
862 if (delta_exec > ideal_runtime) {
863 resched_task(rq_of(cfs_rq)->curr);
864 /*
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
867 */
868 clear_buddies(cfs_rq, curr);
869 return;
870 }
871
872 /*
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
876 */
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
879
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
882
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
886
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
889 }
890 }
891
892 static void
893 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
897 /*
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
901 */
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
904 }
905
906 update_stats_curr_start(cfs_rq, se);
907 cfs_rq->curr = se;
908 #ifdef CONFIG_SCHEDSTATS
909 /*
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
913 */
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 }
918 #endif
919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
920 }
921
922 static int
923 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
924
925 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
926 {
927 struct sched_entity *se = __pick_next_entity(cfs_rq);
928 struct sched_entity *left = se;
929
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
932
933 /*
934 * Prefer last buddy, try to return the CPU to a preempted task.
935 */
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
938
939 clear_buddies(cfs_rq, se);
940
941 return se;
942 }
943
944 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
945 {
946 /*
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
949 */
950 if (prev->on_rq)
951 update_curr(cfs_rq);
952
953 check_spread(cfs_rq, prev);
954 if (prev->on_rq) {
955 update_stats_wait_start(cfs_rq, prev);
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
958 }
959 cfs_rq->curr = NULL;
960 }
961
962 static void
963 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
964 {
965 /*
966 * Update run-time statistics of the 'current'.
967 */
968 update_curr(cfs_rq);
969
970 #ifdef CONFIG_SCHED_HRTICK
971 /*
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
974 */
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
978 }
979 /*
980 * don't let the period tick interfere with the hrtick preemption
981 */
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985 #endif
986
987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
988 check_preempt_tick(cfs_rq, curr);
989 }
990
991 /**************************************************
992 * CFS operations on tasks:
993 */
994
995 #ifdef CONFIG_SCHED_HRTICK
996 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
997 {
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1000
1001 WARN_ON(task_rq(p) != rq);
1002
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1007
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1012 }
1013
1014 /*
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1017 */
1018 if (rq->curr != p)
1019 delta = max_t(s64, 10000LL, delta);
1020
1021 hrtick_start(rq, delta);
1022 }
1023 }
1024
1025 /*
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1029 */
1030 static void hrtick_update(struct rq *rq)
1031 {
1032 struct task_struct *curr = rq->curr;
1033
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1036
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1039 }
1040 #else /* !CONFIG_SCHED_HRTICK */
1041 static inline void
1042 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1043 {
1044 }
1045
1046 static inline void hrtick_update(struct rq *rq)
1047 {
1048 }
1049 #endif
1050
1051 /*
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1055 */
1056 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1057 {
1058 struct cfs_rq *cfs_rq;
1059 struct sched_entity *se = &p->se;
1060 int flags = 0;
1061
1062 if (wakeup)
1063 flags |= ENQUEUE_WAKEUP;
1064 if (p->state == TASK_WAKING)
1065 flags |= ENQUEUE_MIGRATE;
1066
1067 for_each_sched_entity(se) {
1068 if (se->on_rq)
1069 break;
1070 cfs_rq = cfs_rq_of(se);
1071 enqueue_entity(cfs_rq, se, flags);
1072 flags = ENQUEUE_WAKEUP;
1073 }
1074
1075 hrtick_update(rq);
1076 }
1077
1078 /*
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1082 */
1083 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1084 {
1085 struct cfs_rq *cfs_rq;
1086 struct sched_entity *se = &p->se;
1087
1088 for_each_sched_entity(se) {
1089 cfs_rq = cfs_rq_of(se);
1090 dequeue_entity(cfs_rq, se, sleep);
1091 /* Don't dequeue parent if it has other entities besides us */
1092 if (cfs_rq->load.weight)
1093 break;
1094 sleep = 1;
1095 }
1096
1097 hrtick_update(rq);
1098 }
1099
1100 /*
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1102 *
1103 * If compat_yield is turned on then we requeue to the end of the tree.
1104 */
1105 static void yield_task_fair(struct rq *rq)
1106 {
1107 struct task_struct *curr = rq->curr;
1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1109 struct sched_entity *rightmost, *se = &curr->se;
1110
1111 /*
1112 * Are we the only task in the tree?
1113 */
1114 if (unlikely(cfs_rq->nr_running == 1))
1115 return;
1116
1117 clear_buddies(cfs_rq, se);
1118
1119 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1120 update_rq_clock(rq);
1121 /*
1122 * Update run-time statistics of the 'current'.
1123 */
1124 update_curr(cfs_rq);
1125
1126 return;
1127 }
1128 /*
1129 * Find the rightmost entry in the rbtree:
1130 */
1131 rightmost = __pick_last_entity(cfs_rq);
1132 /*
1133 * Already in the rightmost position?
1134 */
1135 if (unlikely(!rightmost || entity_before(rightmost, se)))
1136 return;
1137
1138 /*
1139 * Minimally necessary key value to be last in the tree:
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1142 */
1143 se->vruntime = rightmost->vruntime + 1;
1144 }
1145
1146 #ifdef CONFIG_SMP
1147
1148 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1149 {
1150 struct sched_entity *se = &p->se;
1151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1152
1153 se->vruntime -= cfs_rq->min_vruntime;
1154 }
1155
1156 #ifdef CONFIG_FAIR_GROUP_SCHED
1157 /*
1158 * effective_load() calculates the load change as seen from the root_task_group
1159 *
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1163 *
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1166 * this change.
1167 *
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1170 * now.
1171 *
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1176 *
1177 */
1178 static long effective_load(struct task_group *tg, int cpu,
1179 long wl, long wg)
1180 {
1181 struct sched_entity *se = tg->se[cpu];
1182
1183 if (!tg->parent)
1184 return wl;
1185
1186 /*
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1189 */
1190 if (!wl && sched_feat(ASYM_EFF_LOAD))
1191 return wl;
1192
1193 for_each_sched_entity(se) {
1194 long S, rw, s, a, b;
1195 long more_w;
1196
1197 /*
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1200 */
1201 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1202 wl += more_w;
1203 wg += more_w;
1204
1205 S = se->my_q->tg->shares;
1206 s = se->my_q->shares;
1207 rw = se->my_q->rq_weight;
1208
1209 a = S*(rw + wl);
1210 b = S*rw + s*wg;
1211
1212 wl = s*(a-b);
1213
1214 if (likely(b))
1215 wl /= b;
1216
1217 /*
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1220 *
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1223 */
1224 wg = 0;
1225 }
1226
1227 return wl;
1228 }
1229
1230 #else
1231
1232 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1233 unsigned long wl, unsigned long wg)
1234 {
1235 return wl;
1236 }
1237
1238 #endif
1239
1240 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1241 {
1242 struct task_struct *curr = current;
1243 unsigned long this_load, load;
1244 int idx, this_cpu, prev_cpu;
1245 unsigned long tl_per_task;
1246 unsigned int imbalance;
1247 struct task_group *tg;
1248 unsigned long weight;
1249 int balanced;
1250
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
1256
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1267 }
1268
1269 /*
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1273 */
1274 if (sync) {
1275 tg = task_group(current);
1276 weight = current->se.load.weight;
1277
1278 this_load += effective_load(tg, this_cpu, -weight, -weight);
1279 load += effective_load(tg, prev_cpu, 0, -weight);
1280 }
1281
1282 tg = task_group(p);
1283 weight = p->se.load.weight;
1284
1285 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1286
1287 /*
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
1292 *
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1295 */
1296 balanced = !this_load ||
1297 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1298 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1299
1300 /*
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1303 * woken task:
1304 */
1305 if (sync && balanced)
1306 return 1;
1307
1308 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1309 tl_per_task = cpu_avg_load_per_task(this_cpu);
1310
1311 if (balanced ||
1312 (this_load <= load &&
1313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1314 /*
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1318 */
1319 schedstat_inc(sd, ttwu_move_affine);
1320 schedstat_inc(p, se.nr_wakeups_affine);
1321
1322 return 1;
1323 }
1324 return 0;
1325 }
1326
1327 /*
1328 * find_idlest_group finds and returns the least busy CPU group within the
1329 * domain.
1330 */
1331 static struct sched_group *
1332 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1333 int this_cpu, int load_idx)
1334 {
1335 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1336 unsigned long min_load = ULONG_MAX, this_load = 0;
1337 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1338
1339 do {
1340 unsigned long load, avg_load;
1341 int local_group;
1342 int i;
1343
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group),
1346 &p->cpus_allowed))
1347 continue;
1348
1349 local_group = cpumask_test_cpu(this_cpu,
1350 sched_group_cpus(group));
1351
1352 /* Tally up the load of all CPUs in the group */
1353 avg_load = 0;
1354
1355 for_each_cpu(i, sched_group_cpus(group)) {
1356 /* Bias balancing toward cpus of our domain */
1357 if (local_group)
1358 load = source_load(i, load_idx);
1359 else
1360 load = target_load(i, load_idx);
1361
1362 avg_load += load;
1363 }
1364
1365 /* Adjust by relative CPU power of the group */
1366 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1367
1368 if (local_group) {
1369 this_load = avg_load;
1370 this = group;
1371 } else if (avg_load < min_load) {
1372 min_load = avg_load;
1373 idlest = group;
1374 }
1375 } while (group = group->next, group != sd->groups);
1376
1377 if (!idlest || 100*this_load < imbalance*min_load)
1378 return NULL;
1379 return idlest;
1380 }
1381
1382 /*
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1384 */
1385 static int
1386 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1387 {
1388 unsigned long load, min_load = ULONG_MAX;
1389 int idlest = -1;
1390 int i;
1391
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1394 load = weighted_cpuload(i);
1395
1396 if (load < min_load || (load == min_load && i == this_cpu)) {
1397 min_load = load;
1398 idlest = i;
1399 }
1400 }
1401
1402 return idlest;
1403 }
1404
1405 /*
1406 * Try and locate an idle CPU in the sched_domain.
1407 */
1408 static int
1409 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1410 {
1411 int cpu = smp_processor_id();
1412 int prev_cpu = task_cpu(p);
1413 int i;
1414
1415 /*
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1419 */
1420 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1421 return prev_cpu;
1422
1423 /*
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1425 */
1426 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1427 if (!cpu_rq(i)->cfs.nr_running) {
1428 target = i;
1429 break;
1430 }
1431 }
1432
1433 return target;
1434 }
1435
1436 /*
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1440 *
1441 * Balance, ie. select the least loaded group.
1442 *
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 *
1445 * preempt must be disabled.
1446 */
1447 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1448 {
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1456
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (sched_feat(AFFINE_WAKEUPS) &&
1459 cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1462 }
1463
1464 for_each_domain(cpu, tmp) {
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1467
1468 /*
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
1471 */
1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1477
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1481 }
1482
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1487
1488 if (nr_running < capacity)
1489 want_sd = 0;
1490 }
1491
1492 /*
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1496 */
1497 if (want_affine) {
1498 int target = -1;
1499
1500 /*
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1503 */
1504 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1505 target = cpu;
1506
1507 /*
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
1510 */
1511 if (tmp->flags & SD_PREFER_SIBLING)
1512 target = select_idle_sibling(p, tmp, target);
1513
1514 if (target >= 0) {
1515 if (tmp->flags & SD_WAKE_AFFINE) {
1516 affine_sd = tmp;
1517 want_affine = 0;
1518 }
1519 cpu = target;
1520 }
1521 }
1522
1523 if (!want_sd && !want_affine)
1524 break;
1525
1526 if (!(tmp->flags & sd_flag))
1527 continue;
1528
1529 if (want_sd)
1530 sd = tmp;
1531 }
1532
1533 if (sched_feat(LB_SHARES_UPDATE)) {
1534 /*
1535 * Pick the largest domain to update shares over
1536 */
1537 tmp = sd;
1538 if (affine_sd && (!tmp ||
1539 cpumask_weight(sched_domain_span(affine_sd)) >
1540 cpumask_weight(sched_domain_span(sd))))
1541 tmp = affine_sd;
1542
1543 if (tmp)
1544 update_shares(tmp);
1545 }
1546
1547 if (affine_sd && wake_affine(affine_sd, p, sync))
1548 return cpu;
1549
1550 while (sd) {
1551 int load_idx = sd->forkexec_idx;
1552 struct sched_group *group;
1553 int weight;
1554
1555 if (!(sd->flags & sd_flag)) {
1556 sd = sd->child;
1557 continue;
1558 }
1559
1560 if (sd_flag & SD_BALANCE_WAKE)
1561 load_idx = sd->wake_idx;
1562
1563 group = find_idlest_group(sd, p, cpu, load_idx);
1564 if (!group) {
1565 sd = sd->child;
1566 continue;
1567 }
1568
1569 new_cpu = find_idlest_cpu(group, p, cpu);
1570 if (new_cpu == -1 || new_cpu == cpu) {
1571 /* Now try balancing at a lower domain level of cpu */
1572 sd = sd->child;
1573 continue;
1574 }
1575
1576 /* Now try balancing at a lower domain level of new_cpu */
1577 cpu = new_cpu;
1578 weight = cpumask_weight(sched_domain_span(sd));
1579 sd = NULL;
1580 for_each_domain(cpu, tmp) {
1581 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1582 break;
1583 if (tmp->flags & sd_flag)
1584 sd = tmp;
1585 }
1586 /* while loop will break here if sd == NULL */
1587 }
1588
1589 return new_cpu;
1590 }
1591 #endif /* CONFIG_SMP */
1592
1593 /*
1594 * Adaptive granularity
1595 *
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1598 *
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1602 *
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1604 *
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1607 */
1608 static unsigned long
1609 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1610 {
1611 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1612 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1613 u64 gran = 0;
1614
1615 if (this_run < expected_wakeup)
1616 gran = expected_wakeup - this_run;
1617
1618 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1619 }
1620
1621 static unsigned long
1622 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1623 {
1624 unsigned long gran = sysctl_sched_wakeup_granularity;
1625
1626 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1627 gran = adaptive_gran(curr, se);
1628
1629 /*
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
1632 */
1633 if (sched_feat(ASYM_GRAN)) {
1634 /*
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1640 *
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1643 */
1644 if (unlikely(se->load.weight != NICE_0_LOAD))
1645 gran = calc_delta_fair(gran, se);
1646 } else {
1647 if (unlikely(curr->load.weight != NICE_0_LOAD))
1648 gran = calc_delta_fair(gran, curr);
1649 }
1650
1651 return gran;
1652 }
1653
1654 /*
1655 * Should 'se' preempt 'curr'.
1656 *
1657 * |s1
1658 * |s2
1659 * |s3
1660 * g
1661 * |<--->|c
1662 *
1663 * w(c, s1) = -1
1664 * w(c, s2) = 0
1665 * w(c, s3) = 1
1666 *
1667 */
1668 static int
1669 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1670 {
1671 s64 gran, vdiff = curr->vruntime - se->vruntime;
1672
1673 if (vdiff <= 0)
1674 return -1;
1675
1676 gran = wakeup_gran(curr, se);
1677 if (vdiff > gran)
1678 return 1;
1679
1680 return 0;
1681 }
1682
1683 static void set_last_buddy(struct sched_entity *se)
1684 {
1685 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1686 for_each_sched_entity(se)
1687 cfs_rq_of(se)->last = se;
1688 }
1689 }
1690
1691 static void set_next_buddy(struct sched_entity *se)
1692 {
1693 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1694 for_each_sched_entity(se)
1695 cfs_rq_of(se)->next = se;
1696 }
1697 }
1698
1699 /*
1700 * Preempt the current task with a newly woken task if needed:
1701 */
1702 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1703 {
1704 struct task_struct *curr = rq->curr;
1705 struct sched_entity *se = &curr->se, *pse = &p->se;
1706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1707 int sync = wake_flags & WF_SYNC;
1708 int scale = cfs_rq->nr_running >= sched_nr_latency;
1709
1710 if (unlikely(rt_prio(p->prio)))
1711 goto preempt;
1712
1713 if (unlikely(p->sched_class != &fair_sched_class))
1714 return;
1715
1716 if (unlikely(se == pse))
1717 return;
1718
1719 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1720 set_next_buddy(pse);
1721
1722 /*
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1724 * wake up path.
1725 */
1726 if (test_tsk_need_resched(curr))
1727 return;
1728
1729 /*
1730 * Batch and idle tasks do not preempt (their preemption is driven by
1731 * the tick):
1732 */
1733 if (unlikely(p->policy != SCHED_NORMAL))
1734 return;
1735
1736 /* Idle tasks are by definition preempted by everybody. */
1737 if (unlikely(curr->policy == SCHED_IDLE))
1738 goto preempt;
1739
1740 if (sched_feat(WAKEUP_SYNC) && sync)
1741 goto preempt;
1742
1743 if (sched_feat(WAKEUP_OVERLAP) &&
1744 se->avg_overlap < sysctl_sched_migration_cost &&
1745 pse->avg_overlap < sysctl_sched_migration_cost)
1746 goto preempt;
1747
1748 if (!sched_feat(WAKEUP_PREEMPT))
1749 return;
1750
1751 update_curr(cfs_rq);
1752 find_matching_se(&se, &pse);
1753 BUG_ON(!pse);
1754 if (wakeup_preempt_entity(se, pse) == 1)
1755 goto preempt;
1756
1757 return;
1758
1759 preempt:
1760 resched_task(curr);
1761 /*
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1766 *
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1769 */
1770 if (unlikely(!se->on_rq || curr == rq->idle))
1771 return;
1772
1773 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1774 set_last_buddy(se);
1775 }
1776
1777 static struct task_struct *pick_next_task_fair(struct rq *rq)
1778 {
1779 struct task_struct *p;
1780 struct cfs_rq *cfs_rq = &rq->cfs;
1781 struct sched_entity *se;
1782
1783 if (!cfs_rq->nr_running)
1784 return NULL;
1785
1786 do {
1787 se = pick_next_entity(cfs_rq);
1788 set_next_entity(cfs_rq, se);
1789 cfs_rq = group_cfs_rq(se);
1790 } while (cfs_rq);
1791
1792 p = task_of(se);
1793 hrtick_start_fair(rq, p);
1794
1795 return p;
1796 }
1797
1798 /*
1799 * Account for a descheduled task:
1800 */
1801 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1802 {
1803 struct sched_entity *se = &prev->se;
1804 struct cfs_rq *cfs_rq;
1805
1806 for_each_sched_entity(se) {
1807 cfs_rq = cfs_rq_of(se);
1808 put_prev_entity(cfs_rq, se);
1809 }
1810 }
1811
1812 #ifdef CONFIG_SMP
1813 /**************************************************
1814 * Fair scheduling class load-balancing methods:
1815 */
1816
1817 /*
1818 * pull_task - move a task from a remote runqueue to the local runqueue.
1819 * Both runqueues must be locked.
1820 */
1821 static void pull_task(struct rq *src_rq, struct task_struct *p,
1822 struct rq *this_rq, int this_cpu)
1823 {
1824 deactivate_task(src_rq, p, 0);
1825 set_task_cpu(p, this_cpu);
1826 activate_task(this_rq, p, 0);
1827 check_preempt_curr(this_rq, p, 0);
1828 }
1829
1830 /*
1831 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1832 */
1833 static
1834 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1835 struct sched_domain *sd, enum cpu_idle_type idle,
1836 int *all_pinned)
1837 {
1838 int tsk_cache_hot = 0;
1839 /*
1840 * We do not migrate tasks that are:
1841 * 1) running (obviously), or
1842 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1843 * 3) are cache-hot on their current CPU.
1844 */
1845 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1846 schedstat_inc(p, se.nr_failed_migrations_affine);
1847 return 0;
1848 }
1849 *all_pinned = 0;
1850
1851 if (task_running(rq, p)) {
1852 schedstat_inc(p, se.nr_failed_migrations_running);
1853 return 0;
1854 }
1855
1856 /*
1857 * Aggressive migration if:
1858 * 1) task is cache cold, or
1859 * 2) too many balance attempts have failed.
1860 */
1861
1862 tsk_cache_hot = task_hot(p, rq->clock, sd);
1863 if (!tsk_cache_hot ||
1864 sd->nr_balance_failed > sd->cache_nice_tries) {
1865 #ifdef CONFIG_SCHEDSTATS
1866 if (tsk_cache_hot) {
1867 schedstat_inc(sd, lb_hot_gained[idle]);
1868 schedstat_inc(p, se.nr_forced_migrations);
1869 }
1870 #endif
1871 return 1;
1872 }
1873
1874 if (tsk_cache_hot) {
1875 schedstat_inc(p, se.nr_failed_migrations_hot);
1876 return 0;
1877 }
1878 return 1;
1879 }
1880
1881 /*
1882 * move_one_task tries to move exactly one task from busiest to this_rq, as
1883 * part of active balancing operations within "domain".
1884 * Returns 1 if successful and 0 otherwise.
1885 *
1886 * Called with both runqueues locked.
1887 */
1888 static int
1889 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1890 struct sched_domain *sd, enum cpu_idle_type idle)
1891 {
1892 struct task_struct *p, *n;
1893 struct cfs_rq *cfs_rq;
1894 int pinned = 0;
1895
1896 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1897 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1898
1899 if (!can_migrate_task(p, busiest, this_cpu,
1900 sd, idle, &pinned))
1901 continue;
1902
1903 pull_task(busiest, p, this_rq, this_cpu);
1904 /*
1905 * Right now, this is only the second place pull_task()
1906 * is called, so we can safely collect pull_task()
1907 * stats here rather than inside pull_task().
1908 */
1909 schedstat_inc(sd, lb_gained[idle]);
1910 return 1;
1911 }
1912 }
1913
1914 return 0;
1915 }
1916
1917 static unsigned long
1918 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1919 unsigned long max_load_move, struct sched_domain *sd,
1920 enum cpu_idle_type idle, int *all_pinned,
1921 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1922 {
1923 int loops = 0, pulled = 0, pinned = 0;
1924 long rem_load_move = max_load_move;
1925 struct task_struct *p, *n;
1926
1927 if (max_load_move == 0)
1928 goto out;
1929
1930 pinned = 1;
1931
1932 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1933 if (loops++ > sysctl_sched_nr_migrate)
1934 break;
1935
1936 if ((p->se.load.weight >> 1) > rem_load_move ||
1937 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1938 continue;
1939
1940 pull_task(busiest, p, this_rq, this_cpu);
1941 pulled++;
1942 rem_load_move -= p->se.load.weight;
1943
1944 #ifdef CONFIG_PREEMPT
1945 /*
1946 * NEWIDLE balancing is a source of latency, so preemptible
1947 * kernels will stop after the first task is pulled to minimize
1948 * the critical section.
1949 */
1950 if (idle == CPU_NEWLY_IDLE)
1951 break;
1952 #endif
1953
1954 /*
1955 * We only want to steal up to the prescribed amount of
1956 * weighted load.
1957 */
1958 if (rem_load_move <= 0)
1959 break;
1960
1961 if (p->prio < *this_best_prio)
1962 *this_best_prio = p->prio;
1963 }
1964 out:
1965 /*
1966 * Right now, this is one of only two places pull_task() is called,
1967 * so we can safely collect pull_task() stats here rather than
1968 * inside pull_task().
1969 */
1970 schedstat_add(sd, lb_gained[idle], pulled);
1971
1972 if (all_pinned)
1973 *all_pinned = pinned;
1974
1975 return max_load_move - rem_load_move;
1976 }
1977
1978 #ifdef CONFIG_FAIR_GROUP_SCHED
1979 static unsigned long
1980 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1981 unsigned long max_load_move,
1982 struct sched_domain *sd, enum cpu_idle_type idle,
1983 int *all_pinned, int *this_best_prio)
1984 {
1985 long rem_load_move = max_load_move;
1986 int busiest_cpu = cpu_of(busiest);
1987 struct task_group *tg;
1988
1989 rcu_read_lock();
1990 update_h_load(busiest_cpu);
1991
1992 list_for_each_entry_rcu(tg, &task_groups, list) {
1993 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1994 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1995 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1996 u64 rem_load, moved_load;
1997
1998 /*
1999 * empty group
2000 */
2001 if (!busiest_cfs_rq->task_weight)
2002 continue;
2003
2004 rem_load = (u64)rem_load_move * busiest_weight;
2005 rem_load = div_u64(rem_load, busiest_h_load + 1);
2006
2007 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2008 rem_load, sd, idle, all_pinned, this_best_prio,
2009 busiest_cfs_rq);
2010
2011 if (!moved_load)
2012 continue;
2013
2014 moved_load *= busiest_h_load;
2015 moved_load = div_u64(moved_load, busiest_weight + 1);
2016
2017 rem_load_move -= moved_load;
2018 if (rem_load_move < 0)
2019 break;
2020 }
2021 rcu_read_unlock();
2022
2023 return max_load_move - rem_load_move;
2024 }
2025 #else
2026 static unsigned long
2027 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2028 unsigned long max_load_move,
2029 struct sched_domain *sd, enum cpu_idle_type idle,
2030 int *all_pinned, int *this_best_prio)
2031 {
2032 return balance_tasks(this_rq, this_cpu, busiest,
2033 max_load_move, sd, idle, all_pinned,
2034 this_best_prio, &busiest->cfs);
2035 }
2036 #endif
2037
2038 /*
2039 * move_tasks tries to move up to max_load_move weighted load from busiest to
2040 * this_rq, as part of a balancing operation within domain "sd".
2041 * Returns 1 if successful and 0 otherwise.
2042 *
2043 * Called with both runqueues locked.
2044 */
2045 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2046 unsigned long max_load_move,
2047 struct sched_domain *sd, enum cpu_idle_type idle,
2048 int *all_pinned)
2049 {
2050 unsigned long total_load_moved = 0, load_moved;
2051 int this_best_prio = this_rq->curr->prio;
2052
2053 do {
2054 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2055 max_load_move - total_load_moved,
2056 sd, idle, all_pinned, &this_best_prio);
2057
2058 total_load_moved += load_moved;
2059
2060 #ifdef CONFIG_PREEMPT
2061 /*
2062 * NEWIDLE balancing is a source of latency, so preemptible
2063 * kernels will stop after the first task is pulled to minimize
2064 * the critical section.
2065 */
2066 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2067 break;
2068
2069 if (raw_spin_is_contended(&this_rq->lock) ||
2070 raw_spin_is_contended(&busiest->lock))
2071 break;
2072 #endif
2073 } while (load_moved && max_load_move > total_load_moved);
2074
2075 return total_load_moved > 0;
2076 }
2077
2078 /********** Helpers for find_busiest_group ************************/
2079 /*
2080 * sd_lb_stats - Structure to store the statistics of a sched_domain
2081 * during load balancing.
2082 */
2083 struct sd_lb_stats {
2084 struct sched_group *busiest; /* Busiest group in this sd */
2085 struct sched_group *this; /* Local group in this sd */
2086 unsigned long total_load; /* Total load of all groups in sd */
2087 unsigned long total_pwr; /* Total power of all groups in sd */
2088 unsigned long avg_load; /* Average load across all groups in sd */
2089
2090 /** Statistics of this group */
2091 unsigned long this_load;
2092 unsigned long this_load_per_task;
2093 unsigned long this_nr_running;
2094
2095 /* Statistics of the busiest group */
2096 unsigned long max_load;
2097 unsigned long busiest_load_per_task;
2098 unsigned long busiest_nr_running;
2099
2100 int group_imb; /* Is there imbalance in this sd */
2101 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2102 int power_savings_balance; /* Is powersave balance needed for this sd */
2103 struct sched_group *group_min; /* Least loaded group in sd */
2104 struct sched_group *group_leader; /* Group which relieves group_min */
2105 unsigned long min_load_per_task; /* load_per_task in group_min */
2106 unsigned long leader_nr_running; /* Nr running of group_leader */
2107 unsigned long min_nr_running; /* Nr running of group_min */
2108 #endif
2109 };
2110
2111 /*
2112 * sg_lb_stats - stats of a sched_group required for load_balancing
2113 */
2114 struct sg_lb_stats {
2115 unsigned long avg_load; /*Avg load across the CPUs of the group */
2116 unsigned long group_load; /* Total load over the CPUs of the group */
2117 unsigned long sum_nr_running; /* Nr tasks running in the group */
2118 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2119 unsigned long group_capacity;
2120 int group_imb; /* Is there an imbalance in the group ? */
2121 };
2122
2123 /**
2124 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2125 * @group: The group whose first cpu is to be returned.
2126 */
2127 static inline unsigned int group_first_cpu(struct sched_group *group)
2128 {
2129 return cpumask_first(sched_group_cpus(group));
2130 }
2131
2132 /**
2133 * get_sd_load_idx - Obtain the load index for a given sched domain.
2134 * @sd: The sched_domain whose load_idx is to be obtained.
2135 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2136 */
2137 static inline int get_sd_load_idx(struct sched_domain *sd,
2138 enum cpu_idle_type idle)
2139 {
2140 int load_idx;
2141
2142 switch (idle) {
2143 case CPU_NOT_IDLE:
2144 load_idx = sd->busy_idx;
2145 break;
2146
2147 case CPU_NEWLY_IDLE:
2148 load_idx = sd->newidle_idx;
2149 break;
2150 default:
2151 load_idx = sd->idle_idx;
2152 break;
2153 }
2154
2155 return load_idx;
2156 }
2157
2158
2159 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2160 /**
2161 * init_sd_power_savings_stats - Initialize power savings statistics for
2162 * the given sched_domain, during load balancing.
2163 *
2164 * @sd: Sched domain whose power-savings statistics are to be initialized.
2165 * @sds: Variable containing the statistics for sd.
2166 * @idle: Idle status of the CPU at which we're performing load-balancing.
2167 */
2168 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2169 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2170 {
2171 /*
2172 * Busy processors will not participate in power savings
2173 * balance.
2174 */
2175 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2176 sds->power_savings_balance = 0;
2177 else {
2178 sds->power_savings_balance = 1;
2179 sds->min_nr_running = ULONG_MAX;
2180 sds->leader_nr_running = 0;
2181 }
2182 }
2183
2184 /**
2185 * update_sd_power_savings_stats - Update the power saving stats for a
2186 * sched_domain while performing load balancing.
2187 *
2188 * @group: sched_group belonging to the sched_domain under consideration.
2189 * @sds: Variable containing the statistics of the sched_domain
2190 * @local_group: Does group contain the CPU for which we're performing
2191 * load balancing ?
2192 * @sgs: Variable containing the statistics of the group.
2193 */
2194 static inline void update_sd_power_savings_stats(struct sched_group *group,
2195 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2196 {
2197
2198 if (!sds->power_savings_balance)
2199 return;
2200
2201 /*
2202 * If the local group is idle or completely loaded
2203 * no need to do power savings balance at this domain
2204 */
2205 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2206 !sds->this_nr_running))
2207 sds->power_savings_balance = 0;
2208
2209 /*
2210 * If a group is already running at full capacity or idle,
2211 * don't include that group in power savings calculations
2212 */
2213 if (!sds->power_savings_balance ||
2214 sgs->sum_nr_running >= sgs->group_capacity ||
2215 !sgs->sum_nr_running)
2216 return;
2217
2218 /*
2219 * Calculate the group which has the least non-idle load.
2220 * This is the group from where we need to pick up the load
2221 * for saving power
2222 */
2223 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2224 (sgs->sum_nr_running == sds->min_nr_running &&
2225 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2226 sds->group_min = group;
2227 sds->min_nr_running = sgs->sum_nr_running;
2228 sds->min_load_per_task = sgs->sum_weighted_load /
2229 sgs->sum_nr_running;
2230 }
2231
2232 /*
2233 * Calculate the group which is almost near its
2234 * capacity but still has some space to pick up some load
2235 * from other group and save more power
2236 */
2237 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2238 return;
2239
2240 if (sgs->sum_nr_running > sds->leader_nr_running ||
2241 (sgs->sum_nr_running == sds->leader_nr_running &&
2242 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2243 sds->group_leader = group;
2244 sds->leader_nr_running = sgs->sum_nr_running;
2245 }
2246 }
2247
2248 /**
2249 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2250 * @sds: Variable containing the statistics of the sched_domain
2251 * under consideration.
2252 * @this_cpu: Cpu at which we're currently performing load-balancing.
2253 * @imbalance: Variable to store the imbalance.
2254 *
2255 * Description:
2256 * Check if we have potential to perform some power-savings balance.
2257 * If yes, set the busiest group to be the least loaded group in the
2258 * sched_domain, so that it's CPUs can be put to idle.
2259 *
2260 * Returns 1 if there is potential to perform power-savings balance.
2261 * Else returns 0.
2262 */
2263 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2264 int this_cpu, unsigned long *imbalance)
2265 {
2266 if (!sds->power_savings_balance)
2267 return 0;
2268
2269 if (sds->this != sds->group_leader ||
2270 sds->group_leader == sds->group_min)
2271 return 0;
2272
2273 *imbalance = sds->min_load_per_task;
2274 sds->busiest = sds->group_min;
2275
2276 return 1;
2277
2278 }
2279 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2280 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2281 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2282 {
2283 return;
2284 }
2285
2286 static inline void update_sd_power_savings_stats(struct sched_group *group,
2287 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2288 {
2289 return;
2290 }
2291
2292 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2293 int this_cpu, unsigned long *imbalance)
2294 {
2295 return 0;
2296 }
2297 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2298
2299
2300 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2301 {
2302 return SCHED_LOAD_SCALE;
2303 }
2304
2305 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2306 {
2307 return default_scale_freq_power(sd, cpu);
2308 }
2309
2310 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2311 {
2312 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2313 unsigned long smt_gain = sd->smt_gain;
2314
2315 smt_gain /= weight;
2316
2317 return smt_gain;
2318 }
2319
2320 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2321 {
2322 return default_scale_smt_power(sd, cpu);
2323 }
2324
2325 unsigned long scale_rt_power(int cpu)
2326 {
2327 struct rq *rq = cpu_rq(cpu);
2328 u64 total, available;
2329
2330 sched_avg_update(rq);
2331
2332 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2333 available = total - rq->rt_avg;
2334
2335 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2336 total = SCHED_LOAD_SCALE;
2337
2338 total >>= SCHED_LOAD_SHIFT;
2339
2340 return div_u64(available, total);
2341 }
2342
2343 static void update_cpu_power(struct sched_domain *sd, int cpu)
2344 {
2345 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2346 unsigned long power = SCHED_LOAD_SCALE;
2347 struct sched_group *sdg = sd->groups;
2348
2349 if (sched_feat(ARCH_POWER))
2350 power *= arch_scale_freq_power(sd, cpu);
2351 else
2352 power *= default_scale_freq_power(sd, cpu);
2353
2354 power >>= SCHED_LOAD_SHIFT;
2355
2356 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2357 if (sched_feat(ARCH_POWER))
2358 power *= arch_scale_smt_power(sd, cpu);
2359 else
2360 power *= default_scale_smt_power(sd, cpu);
2361
2362 power >>= SCHED_LOAD_SHIFT;
2363 }
2364
2365 power *= scale_rt_power(cpu);
2366 power >>= SCHED_LOAD_SHIFT;
2367
2368 if (!power)
2369 power = 1;
2370
2371 sdg->cpu_power = power;
2372 }
2373
2374 static void update_group_power(struct sched_domain *sd, int cpu)
2375 {
2376 struct sched_domain *child = sd->child;
2377 struct sched_group *group, *sdg = sd->groups;
2378 unsigned long power;
2379
2380 if (!child) {
2381 update_cpu_power(sd, cpu);
2382 return;
2383 }
2384
2385 power = 0;
2386
2387 group = child->groups;
2388 do {
2389 power += group->cpu_power;
2390 group = group->next;
2391 } while (group != child->groups);
2392
2393 sdg->cpu_power = power;
2394 }
2395
2396 /**
2397 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2398 * @sd: The sched_domain whose statistics are to be updated.
2399 * @group: sched_group whose statistics are to be updated.
2400 * @this_cpu: Cpu for which load balance is currently performed.
2401 * @idle: Idle status of this_cpu
2402 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2403 * @sd_idle: Idle status of the sched_domain containing group.
2404 * @local_group: Does group contain this_cpu.
2405 * @cpus: Set of cpus considered for load balancing.
2406 * @balance: Should we balance.
2407 * @sgs: variable to hold the statistics for this group.
2408 */
2409 static inline void update_sg_lb_stats(struct sched_domain *sd,
2410 struct sched_group *group, int this_cpu,
2411 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2412 int local_group, const struct cpumask *cpus,
2413 int *balance, struct sg_lb_stats *sgs)
2414 {
2415 unsigned long load, max_cpu_load, min_cpu_load;
2416 int i;
2417 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2418 unsigned long sum_avg_load_per_task;
2419 unsigned long avg_load_per_task;
2420
2421 if (local_group) {
2422 balance_cpu = group_first_cpu(group);
2423 if (balance_cpu == this_cpu)
2424 update_group_power(sd, this_cpu);
2425 }
2426
2427 /* Tally up the load of all CPUs in the group */
2428 sum_avg_load_per_task = avg_load_per_task = 0;
2429 max_cpu_load = 0;
2430 min_cpu_load = ~0UL;
2431
2432 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2433 struct rq *rq = cpu_rq(i);
2434
2435 if (*sd_idle && rq->nr_running)
2436 *sd_idle = 0;
2437
2438 /* Bias balancing toward cpus of our domain */
2439 if (local_group) {
2440 if (idle_cpu(i) && !first_idle_cpu) {
2441 first_idle_cpu = 1;
2442 balance_cpu = i;
2443 }
2444
2445 load = target_load(i, load_idx);
2446 } else {
2447 load = source_load(i, load_idx);
2448 if (load > max_cpu_load)
2449 max_cpu_load = load;
2450 if (min_cpu_load > load)
2451 min_cpu_load = load;
2452 }
2453
2454 sgs->group_load += load;
2455 sgs->sum_nr_running += rq->nr_running;
2456 sgs->sum_weighted_load += weighted_cpuload(i);
2457
2458 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2459 }
2460
2461 /*
2462 * First idle cpu or the first cpu(busiest) in this sched group
2463 * is eligible for doing load balancing at this and above
2464 * domains. In the newly idle case, we will allow all the cpu's
2465 * to do the newly idle load balance.
2466 */
2467 if (idle != CPU_NEWLY_IDLE && local_group &&
2468 balance_cpu != this_cpu && balance) {
2469 *balance = 0;
2470 return;
2471 }
2472
2473 /* Adjust by relative CPU power of the group */
2474 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2475
2476
2477 /*
2478 * Consider the group unbalanced when the imbalance is larger
2479 * than the average weight of two tasks.
2480 *
2481 * APZ: with cgroup the avg task weight can vary wildly and
2482 * might not be a suitable number - should we keep a
2483 * normalized nr_running number somewhere that negates
2484 * the hierarchy?
2485 */
2486 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
2487 group->cpu_power;
2488
2489 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2490 sgs->group_imb = 1;
2491
2492 sgs->group_capacity =
2493 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2494 }
2495
2496 /**
2497 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2498 * @sd: sched_domain whose statistics are to be updated.
2499 * @this_cpu: Cpu for which load balance is currently performed.
2500 * @idle: Idle status of this_cpu
2501 * @sd_idle: Idle status of the sched_domain containing group.
2502 * @cpus: Set of cpus considered for load balancing.
2503 * @balance: Should we balance.
2504 * @sds: variable to hold the statistics for this sched_domain.
2505 */
2506 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2507 enum cpu_idle_type idle, int *sd_idle,
2508 const struct cpumask *cpus, int *balance,
2509 struct sd_lb_stats *sds)
2510 {
2511 struct sched_domain *child = sd->child;
2512 struct sched_group *group = sd->groups;
2513 struct sg_lb_stats sgs;
2514 int load_idx, prefer_sibling = 0;
2515
2516 if (child && child->flags & SD_PREFER_SIBLING)
2517 prefer_sibling = 1;
2518
2519 init_sd_power_savings_stats(sd, sds, idle);
2520 load_idx = get_sd_load_idx(sd, idle);
2521
2522 do {
2523 int local_group;
2524
2525 local_group = cpumask_test_cpu(this_cpu,
2526 sched_group_cpus(group));
2527 memset(&sgs, 0, sizeof(sgs));
2528 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2529 local_group, cpus, balance, &sgs);
2530
2531 if (local_group && balance && !(*balance))
2532 return;
2533
2534 sds->total_load += sgs.group_load;
2535 sds->total_pwr += group->cpu_power;
2536
2537 /*
2538 * In case the child domain prefers tasks go to siblings
2539 * first, lower the group capacity to one so that we'll try
2540 * and move all the excess tasks away.
2541 */
2542 if (prefer_sibling)
2543 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2544
2545 if (local_group) {
2546 sds->this_load = sgs.avg_load;
2547 sds->this = group;
2548 sds->this_nr_running = sgs.sum_nr_running;
2549 sds->this_load_per_task = sgs.sum_weighted_load;
2550 } else if (sgs.avg_load > sds->max_load &&
2551 (sgs.sum_nr_running > sgs.group_capacity ||
2552 sgs.group_imb)) {
2553 sds->max_load = sgs.avg_load;
2554 sds->busiest = group;
2555 sds->busiest_nr_running = sgs.sum_nr_running;
2556 sds->busiest_load_per_task = sgs.sum_weighted_load;
2557 sds->group_imb = sgs.group_imb;
2558 }
2559
2560 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2561 group = group->next;
2562 } while (group != sd->groups);
2563 }
2564
2565 /**
2566 * fix_small_imbalance - Calculate the minor imbalance that exists
2567 * amongst the groups of a sched_domain, during
2568 * load balancing.
2569 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2570 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2571 * @imbalance: Variable to store the imbalance.
2572 */
2573 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2574 int this_cpu, unsigned long *imbalance)
2575 {
2576 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2577 unsigned int imbn = 2;
2578
2579 if (sds->this_nr_running) {
2580 sds->this_load_per_task /= sds->this_nr_running;
2581 if (sds->busiest_load_per_task >
2582 sds->this_load_per_task)
2583 imbn = 1;
2584 } else
2585 sds->this_load_per_task =
2586 cpu_avg_load_per_task(this_cpu);
2587
2588 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
2589 sds->busiest_load_per_task * imbn) {
2590 *imbalance = sds->busiest_load_per_task;
2591 return;
2592 }
2593
2594 /*
2595 * OK, we don't have enough imbalance to justify moving tasks,
2596 * however we may be able to increase total CPU power used by
2597 * moving them.
2598 */
2599
2600 pwr_now += sds->busiest->cpu_power *
2601 min(sds->busiest_load_per_task, sds->max_load);
2602 pwr_now += sds->this->cpu_power *
2603 min(sds->this_load_per_task, sds->this_load);
2604 pwr_now /= SCHED_LOAD_SCALE;
2605
2606 /* Amount of load we'd subtract */
2607 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2608 sds->busiest->cpu_power;
2609 if (sds->max_load > tmp)
2610 pwr_move += sds->busiest->cpu_power *
2611 min(sds->busiest_load_per_task, sds->max_load - tmp);
2612
2613 /* Amount of load we'd add */
2614 if (sds->max_load * sds->busiest->cpu_power <
2615 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2616 tmp = (sds->max_load * sds->busiest->cpu_power) /
2617 sds->this->cpu_power;
2618 else
2619 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2620 sds->this->cpu_power;
2621 pwr_move += sds->this->cpu_power *
2622 min(sds->this_load_per_task, sds->this_load + tmp);
2623 pwr_move /= SCHED_LOAD_SCALE;
2624
2625 /* Move if we gain throughput */
2626 if (pwr_move > pwr_now)
2627 *imbalance = sds->busiest_load_per_task;
2628 }
2629
2630 /**
2631 * calculate_imbalance - Calculate the amount of imbalance present within the
2632 * groups of a given sched_domain during load balance.
2633 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2634 * @this_cpu: Cpu for which currently load balance is being performed.
2635 * @imbalance: The variable to store the imbalance.
2636 */
2637 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2638 unsigned long *imbalance)
2639 {
2640 unsigned long max_pull;
2641 /*
2642 * In the presence of smp nice balancing, certain scenarios can have
2643 * max load less than avg load(as we skip the groups at or below
2644 * its cpu_power, while calculating max_load..)
2645 */
2646 if (sds->max_load < sds->avg_load) {
2647 *imbalance = 0;
2648 return fix_small_imbalance(sds, this_cpu, imbalance);
2649 }
2650
2651 /* Don't want to pull so many tasks that a group would go idle */
2652 max_pull = min(sds->max_load - sds->avg_load,
2653 sds->max_load - sds->busiest_load_per_task);
2654
2655 /* How much load to actually move to equalise the imbalance */
2656 *imbalance = min(max_pull * sds->busiest->cpu_power,
2657 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2658 / SCHED_LOAD_SCALE;
2659
2660 /*
2661 * if *imbalance is less than the average load per runnable task
2662 * there is no gaurantee that any tasks will be moved so we'll have
2663 * a think about bumping its value to force at least one task to be
2664 * moved
2665 */
2666 if (*imbalance < sds->busiest_load_per_task)
2667 return fix_small_imbalance(sds, this_cpu, imbalance);
2668
2669 }
2670 /******* find_busiest_group() helpers end here *********************/
2671
2672 /**
2673 * find_busiest_group - Returns the busiest group within the sched_domain
2674 * if there is an imbalance. If there isn't an imbalance, and
2675 * the user has opted for power-savings, it returns a group whose
2676 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2677 * such a group exists.
2678 *
2679 * Also calculates the amount of weighted load which should be moved
2680 * to restore balance.
2681 *
2682 * @sd: The sched_domain whose busiest group is to be returned.
2683 * @this_cpu: The cpu for which load balancing is currently being performed.
2684 * @imbalance: Variable which stores amount of weighted load which should
2685 * be moved to restore balance/put a group to idle.
2686 * @idle: The idle status of this_cpu.
2687 * @sd_idle: The idleness of sd
2688 * @cpus: The set of CPUs under consideration for load-balancing.
2689 * @balance: Pointer to a variable indicating if this_cpu
2690 * is the appropriate cpu to perform load balancing at this_level.
2691 *
2692 * Returns: - the busiest group if imbalance exists.
2693 * - If no imbalance and user has opted for power-savings balance,
2694 * return the least loaded group whose CPUs can be
2695 * put to idle by rebalancing its tasks onto our group.
2696 */
2697 static struct sched_group *
2698 find_busiest_group(struct sched_domain *sd, int this_cpu,
2699 unsigned long *imbalance, enum cpu_idle_type idle,
2700 int *sd_idle, const struct cpumask *cpus, int *balance)
2701 {
2702 struct sd_lb_stats sds;
2703
2704 memset(&sds, 0, sizeof(sds));
2705
2706 /*
2707 * Compute the various statistics relavent for load balancing at
2708 * this level.
2709 */
2710 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2711 balance, &sds);
2712
2713 /* Cases where imbalance does not exist from POV of this_cpu */
2714 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2715 * at this level.
2716 * 2) There is no busy sibling group to pull from.
2717 * 3) This group is the busiest group.
2718 * 4) This group is more busy than the avg busieness at this
2719 * sched_domain.
2720 * 5) The imbalance is within the specified limit.
2721 * 6) Any rebalance would lead to ping-pong
2722 */
2723 if (balance && !(*balance))
2724 goto ret;
2725
2726 if (!sds.busiest || sds.busiest_nr_running == 0)
2727 goto out_balanced;
2728
2729 if (sds.this_load >= sds.max_load)
2730 goto out_balanced;
2731
2732 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2733
2734 if (sds.this_load >= sds.avg_load)
2735 goto out_balanced;
2736
2737 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2738 goto out_balanced;
2739
2740 sds.busiest_load_per_task /= sds.busiest_nr_running;
2741 if (sds.group_imb)
2742 sds.busiest_load_per_task =
2743 min(sds.busiest_load_per_task, sds.avg_load);
2744
2745 /*
2746 * We're trying to get all the cpus to the average_load, so we don't
2747 * want to push ourselves above the average load, nor do we wish to
2748 * reduce the max loaded cpu below the average load, as either of these
2749 * actions would just result in more rebalancing later, and ping-pong
2750 * tasks around. Thus we look for the minimum possible imbalance.
2751 * Negative imbalances (*we* are more loaded than anyone else) will
2752 * be counted as no imbalance for these purposes -- we can't fix that
2753 * by pulling tasks to us. Be careful of negative numbers as they'll
2754 * appear as very large values with unsigned longs.
2755 */
2756 if (sds.max_load <= sds.busiest_load_per_task)
2757 goto out_balanced;
2758
2759 /* Looks like there is an imbalance. Compute it */
2760 calculate_imbalance(&sds, this_cpu, imbalance);
2761 return sds.busiest;
2762
2763 out_balanced:
2764 /*
2765 * There is no obvious imbalance. But check if we can do some balancing
2766 * to save power.
2767 */
2768 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2769 return sds.busiest;
2770 ret:
2771 *imbalance = 0;
2772 return NULL;
2773 }
2774
2775 /*
2776 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2777 */
2778 static struct rq *
2779 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2780 unsigned long imbalance, const struct cpumask *cpus)
2781 {
2782 struct rq *busiest = NULL, *rq;
2783 unsigned long max_load = 0;
2784 int i;
2785
2786 for_each_cpu(i, sched_group_cpus(group)) {
2787 unsigned long power = power_of(i);
2788 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2789 unsigned long wl;
2790
2791 if (!cpumask_test_cpu(i, cpus))
2792 continue;
2793
2794 rq = cpu_rq(i);
2795 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
2796 wl /= power;
2797
2798 if (capacity && rq->nr_running == 1 && wl > imbalance)
2799 continue;
2800
2801 if (wl > max_load) {
2802 max_load = wl;
2803 busiest = rq;
2804 }
2805 }
2806
2807 return busiest;
2808 }
2809
2810 /*
2811 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2812 * so long as it is large enough.
2813 */
2814 #define MAX_PINNED_INTERVAL 512
2815
2816 /* Working cpumask for load_balance and load_balance_newidle. */
2817 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2818
2819 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2820 {
2821 if (idle == CPU_NEWLY_IDLE) {
2822 /*
2823 * The only task running in a non-idle cpu can be moved to this
2824 * cpu in an attempt to completely freeup the other CPU
2825 * package.
2826 *
2827 * The package power saving logic comes from
2828 * find_busiest_group(). If there are no imbalance, then
2829 * f_b_g() will return NULL. However when sched_mc={1,2} then
2830 * f_b_g() will select a group from which a running task may be
2831 * pulled to this cpu in order to make the other package idle.
2832 * If there is no opportunity to make a package idle and if
2833 * there are no imbalance, then f_b_g() will return NULL and no
2834 * action will be taken in load_balance_newidle().
2835 *
2836 * Under normal task pull operation due to imbalance, there
2837 * will be more than one task in the source run queue and
2838 * move_tasks() will succeed. ld_moved will be true and this
2839 * active balance code will not be triggered.
2840 */
2841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2843 return 0;
2844
2845 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2846 return 0;
2847 }
2848
2849 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2850 }
2851
2852 /*
2853 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2854 * tasks if there is an imbalance.
2855 */
2856 static int load_balance(int this_cpu, struct rq *this_rq,
2857 struct sched_domain *sd, enum cpu_idle_type idle,
2858 int *balance)
2859 {
2860 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2861 struct sched_group *group;
2862 unsigned long imbalance;
2863 struct rq *busiest;
2864 unsigned long flags;
2865 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2866
2867 cpumask_copy(cpus, cpu_active_mask);
2868
2869 /*
2870 * When power savings policy is enabled for the parent domain, idle
2871 * sibling can pick up load irrespective of busy siblings. In this case,
2872 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2873 * portraying it as CPU_NOT_IDLE.
2874 */
2875 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2876 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2877 sd_idle = 1;
2878
2879 schedstat_inc(sd, lb_count[idle]);
2880
2881 redo:
2882 update_shares(sd);
2883 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2884 cpus, balance);
2885
2886 if (*balance == 0)
2887 goto out_balanced;
2888
2889 if (!group) {
2890 schedstat_inc(sd, lb_nobusyg[idle]);
2891 goto out_balanced;
2892 }
2893
2894 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2895 if (!busiest) {
2896 schedstat_inc(sd, lb_nobusyq[idle]);
2897 goto out_balanced;
2898 }
2899
2900 BUG_ON(busiest == this_rq);
2901
2902 schedstat_add(sd, lb_imbalance[idle], imbalance);
2903
2904 ld_moved = 0;
2905 if (busiest->nr_running > 1) {
2906 /*
2907 * Attempt to move tasks. If find_busiest_group has found
2908 * an imbalance but busiest->nr_running <= 1, the group is
2909 * still unbalanced. ld_moved simply stays zero, so it is
2910 * correctly treated as an imbalance.
2911 */
2912 local_irq_save(flags);
2913 double_rq_lock(this_rq, busiest);
2914 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2915 imbalance, sd, idle, &all_pinned);
2916 double_rq_unlock(this_rq, busiest);
2917 local_irq_restore(flags);
2918
2919 /*
2920 * some other cpu did the load balance for us.
2921 */
2922 if (ld_moved && this_cpu != smp_processor_id())
2923 resched_cpu(this_cpu);
2924
2925 /* All tasks on this runqueue were pinned by CPU affinity */
2926 if (unlikely(all_pinned)) {
2927 cpumask_clear_cpu(cpu_of(busiest), cpus);
2928 if (!cpumask_empty(cpus))
2929 goto redo;
2930 goto out_balanced;
2931 }
2932 }
2933
2934 if (!ld_moved) {
2935 schedstat_inc(sd, lb_failed[idle]);
2936 sd->nr_balance_failed++;
2937
2938 if (need_active_balance(sd, sd_idle, idle)) {
2939 raw_spin_lock_irqsave(&busiest->lock, flags);
2940
2941 /* don't kick the migration_thread, if the curr
2942 * task on busiest cpu can't be moved to this_cpu
2943 */
2944 if (!cpumask_test_cpu(this_cpu,
2945 &busiest->curr->cpus_allowed)) {
2946 raw_spin_unlock_irqrestore(&busiest->lock,
2947 flags);
2948 all_pinned = 1;
2949 goto out_one_pinned;
2950 }
2951
2952 if (!busiest->active_balance) {
2953 busiest->active_balance = 1;
2954 busiest->push_cpu = this_cpu;
2955 active_balance = 1;
2956 }
2957 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2958 if (active_balance)
2959 wake_up_process(busiest->migration_thread);
2960
2961 /*
2962 * We've kicked active balancing, reset the failure
2963 * counter.
2964 */
2965 sd->nr_balance_failed = sd->cache_nice_tries+1;
2966 }
2967 } else
2968 sd->nr_balance_failed = 0;
2969
2970 if (likely(!active_balance)) {
2971 /* We were unbalanced, so reset the balancing interval */
2972 sd->balance_interval = sd->min_interval;
2973 } else {
2974 /*
2975 * If we've begun active balancing, start to back off. This
2976 * case may not be covered by the all_pinned logic if there
2977 * is only 1 task on the busy runqueue (because we don't call
2978 * move_tasks).
2979 */
2980 if (sd->balance_interval < sd->max_interval)
2981 sd->balance_interval *= 2;
2982 }
2983
2984 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2985 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2986 ld_moved = -1;
2987
2988 goto out;
2989
2990 out_balanced:
2991 schedstat_inc(sd, lb_balanced[idle]);
2992
2993 sd->nr_balance_failed = 0;
2994
2995 out_one_pinned:
2996 /* tune up the balancing interval */
2997 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2998 (sd->balance_interval < sd->max_interval))
2999 sd->balance_interval *= 2;
3000
3001 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3002 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3003 ld_moved = -1;
3004 else
3005 ld_moved = 0;
3006 out:
3007 if (ld_moved)
3008 update_shares(sd);
3009 return ld_moved;
3010 }
3011
3012 /*
3013 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3014 * tasks if there is an imbalance.
3015 *
3016 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3017 * this_rq is locked.
3018 */
3019 static int
3020 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3021 {
3022 struct sched_group *group;
3023 struct rq *busiest = NULL;
3024 unsigned long imbalance;
3025 int ld_moved = 0;
3026 int sd_idle = 0;
3027 int all_pinned = 0;
3028 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3029
3030 cpumask_copy(cpus, cpu_active_mask);
3031
3032 /*
3033 * When power savings policy is enabled for the parent domain, idle
3034 * sibling can pick up load irrespective of busy siblings. In this case,
3035 * let the state of idle sibling percolate up as IDLE, instead of
3036 * portraying it as CPU_NOT_IDLE.
3037 */
3038 if (sd->flags & SD_SHARE_CPUPOWER &&
3039 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3040 sd_idle = 1;
3041
3042 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3043 redo:
3044 update_shares_locked(this_rq, sd);
3045 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3046 &sd_idle, cpus, NULL);
3047 if (!group) {
3048 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3049 goto out_balanced;
3050 }
3051
3052 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3053 if (!busiest) {
3054 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3055 goto out_balanced;
3056 }
3057
3058 BUG_ON(busiest == this_rq);
3059
3060 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3061
3062 ld_moved = 0;
3063 if (busiest->nr_running > 1) {
3064 /* Attempt to move tasks */
3065 double_lock_balance(this_rq, busiest);
3066 /* this_rq->clock is already updated */
3067 update_rq_clock(busiest);
3068 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3069 imbalance, sd, CPU_NEWLY_IDLE,
3070 &all_pinned);
3071 double_unlock_balance(this_rq, busiest);
3072
3073 if (unlikely(all_pinned)) {
3074 cpumask_clear_cpu(cpu_of(busiest), cpus);
3075 if (!cpumask_empty(cpus))
3076 goto redo;
3077 }
3078 }
3079
3080 if (!ld_moved) {
3081 int active_balance = 0;
3082
3083 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3084 sd->nr_balance_failed++;
3085
3086 if (need_active_balance(sd, sd_idle, CPU_NEWLY_IDLE)) {
3087 double_lock_balance(this_rq, busiest);
3088
3089 /*
3090 * don't kick the migration_thread, if the curr
3091 * task on busiest cpu can't be moved to this_cpu
3092 */
3093 if (!cpumask_test_cpu(this_cpu,
3094 &busiest->curr->cpus_allowed)) {
3095 double_unlock_balance(this_rq, busiest);
3096 all_pinned = 1;
3097 return ld_moved;
3098 }
3099
3100 if (!busiest->active_balance) {
3101 busiest->active_balance = 1;
3102 busiest->push_cpu = this_cpu;
3103 active_balance = 1;
3104 }
3105
3106 double_unlock_balance(this_rq, busiest);
3107 /*
3108 * Should not call ttwu while holding a rq->lock
3109 */
3110 raw_spin_unlock(&this_rq->lock);
3111 if (active_balance)
3112 wake_up_process(busiest->migration_thread);
3113 raw_spin_lock(&this_rq->lock);
3114 }
3115 } else
3116 sd->nr_balance_failed = 0;
3117
3118 update_shares_locked(this_rq, sd);
3119 return ld_moved;
3120
3121 out_balanced:
3122 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3123 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3124 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3125 return -1;
3126 sd->nr_balance_failed = 0;
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * idle_balance is called by schedule() if this_cpu is about to become
3133 * idle. Attempts to pull tasks from other CPUs.
3134 */
3135 static void idle_balance(int this_cpu, struct rq *this_rq)
3136 {
3137 struct sched_domain *sd;
3138 int pulled_task = 0;
3139 unsigned long next_balance = jiffies + HZ;
3140
3141 this_rq->idle_stamp = this_rq->clock;
3142
3143 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3144 return;
3145
3146 for_each_domain(this_cpu, sd) {
3147 unsigned long interval;
3148
3149 if (!(sd->flags & SD_LOAD_BALANCE))
3150 continue;
3151
3152 if (sd->flags & SD_BALANCE_NEWIDLE)
3153 /* If we've pulled tasks over stop searching: */
3154 pulled_task = load_balance_newidle(this_cpu, this_rq,
3155 sd);
3156
3157 interval = msecs_to_jiffies(sd->balance_interval);
3158 if (time_after(next_balance, sd->last_balance + interval))
3159 next_balance = sd->last_balance + interval;
3160 if (pulled_task) {
3161 this_rq->idle_stamp = 0;
3162 break;
3163 }
3164 }
3165 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3166 /*
3167 * We are going idle. next_balance may be set based on
3168 * a busy processor. So reset next_balance.
3169 */
3170 this_rq->next_balance = next_balance;
3171 }
3172 }
3173
3174 /*
3175 * active_load_balance is run by migration threads. It pushes running tasks
3176 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3177 * running on each physical CPU where possible, and avoids physical /
3178 * logical imbalances.
3179 *
3180 * Called with busiest_rq locked.
3181 */
3182 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3183 {
3184 int target_cpu = busiest_rq->push_cpu;
3185 struct sched_domain *sd;
3186 struct rq *target_rq;
3187
3188 /* Is there any task to move? */
3189 if (busiest_rq->nr_running <= 1)
3190 return;
3191
3192 target_rq = cpu_rq(target_cpu);
3193
3194 /*
3195 * This condition is "impossible", if it occurs
3196 * we need to fix it. Originally reported by
3197 * Bjorn Helgaas on a 128-cpu setup.
3198 */
3199 BUG_ON(busiest_rq == target_rq);
3200
3201 /* move a task from busiest_rq to target_rq */
3202 double_lock_balance(busiest_rq, target_rq);
3203 update_rq_clock(busiest_rq);
3204 update_rq_clock(target_rq);
3205
3206 /* Search for an sd spanning us and the target CPU. */
3207 for_each_domain(target_cpu, sd) {
3208 if ((sd->flags & SD_LOAD_BALANCE) &&
3209 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3210 break;
3211 }
3212
3213 if (likely(sd)) {
3214 schedstat_inc(sd, alb_count);
3215
3216 if (move_one_task(target_rq, target_cpu, busiest_rq,
3217 sd, CPU_IDLE))
3218 schedstat_inc(sd, alb_pushed);
3219 else
3220 schedstat_inc(sd, alb_failed);
3221 }
3222 double_unlock_balance(busiest_rq, target_rq);
3223 }
3224
3225 #ifdef CONFIG_NO_HZ
3226 static struct {
3227 atomic_t load_balancer;
3228 cpumask_var_t cpu_mask;
3229 cpumask_var_t ilb_grp_nohz_mask;
3230 } nohz ____cacheline_aligned = {
3231 .load_balancer = ATOMIC_INIT(-1),
3232 };
3233
3234 int get_nohz_load_balancer(void)
3235 {
3236 return atomic_read(&nohz.load_balancer);
3237 }
3238
3239 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3240 /**
3241 * lowest_flag_domain - Return lowest sched_domain containing flag.
3242 * @cpu: The cpu whose lowest level of sched domain is to
3243 * be returned.
3244 * @flag: The flag to check for the lowest sched_domain
3245 * for the given cpu.
3246 *
3247 * Returns the lowest sched_domain of a cpu which contains the given flag.
3248 */
3249 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3250 {
3251 struct sched_domain *sd;
3252
3253 for_each_domain(cpu, sd)
3254 if (sd && (sd->flags & flag))
3255 break;
3256
3257 return sd;
3258 }
3259
3260 /**
3261 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3262 * @cpu: The cpu whose domains we're iterating over.
3263 * @sd: variable holding the value of the power_savings_sd
3264 * for cpu.
3265 * @flag: The flag to filter the sched_domains to be iterated.
3266 *
3267 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3268 * set, starting from the lowest sched_domain to the highest.
3269 */
3270 #define for_each_flag_domain(cpu, sd, flag) \
3271 for (sd = lowest_flag_domain(cpu, flag); \
3272 (sd && (sd->flags & flag)); sd = sd->parent)
3273
3274 /**
3275 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3276 * @ilb_group: group to be checked for semi-idleness
3277 *
3278 * Returns: 1 if the group is semi-idle. 0 otherwise.
3279 *
3280 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3281 * and atleast one non-idle CPU. This helper function checks if the given
3282 * sched_group is semi-idle or not.
3283 */
3284 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3285 {
3286 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3287 sched_group_cpus(ilb_group));
3288
3289 /*
3290 * A sched_group is semi-idle when it has atleast one busy cpu
3291 * and atleast one idle cpu.
3292 */
3293 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3294 return 0;
3295
3296 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3297 return 0;
3298
3299 return 1;
3300 }
3301 /**
3302 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3303 * @cpu: The cpu which is nominating a new idle_load_balancer.
3304 *
3305 * Returns: Returns the id of the idle load balancer if it exists,
3306 * Else, returns >= nr_cpu_ids.
3307 *
3308 * This algorithm picks the idle load balancer such that it belongs to a
3309 * semi-idle powersavings sched_domain. The idea is to try and avoid
3310 * completely idle packages/cores just for the purpose of idle load balancing
3311 * when there are other idle cpu's which are better suited for that job.
3312 */
3313 static int find_new_ilb(int cpu)
3314 {
3315 struct sched_domain *sd;
3316 struct sched_group *ilb_group;
3317
3318 /*
3319 * Have idle load balancer selection from semi-idle packages only
3320 * when power-aware load balancing is enabled
3321 */
3322 if (!(sched_smt_power_savings || sched_mc_power_savings))
3323 goto out_done;
3324
3325 /*
3326 * Optimize for the case when we have no idle CPUs or only one
3327 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3328 */
3329 if (cpumask_weight(nohz.cpu_mask) < 2)
3330 goto out_done;
3331
3332 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3333 ilb_group = sd->groups;
3334
3335 do {
3336 if (is_semi_idle_group(ilb_group))
3337 return cpumask_first(nohz.ilb_grp_nohz_mask);
3338
3339 ilb_group = ilb_group->next;
3340
3341 } while (ilb_group != sd->groups);
3342 }
3343
3344 out_done:
3345 return cpumask_first(nohz.cpu_mask);
3346 }
3347 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3348 static inline int find_new_ilb(int call_cpu)
3349 {
3350 return cpumask_first(nohz.cpu_mask);
3351 }
3352 #endif
3353
3354 /*
3355 * This routine will try to nominate the ilb (idle load balancing)
3356 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3357 * load balancing on behalf of all those cpus. If all the cpus in the system
3358 * go into this tickless mode, then there will be no ilb owner (as there is
3359 * no need for one) and all the cpus will sleep till the next wakeup event
3360 * arrives...
3361 *
3362 * For the ilb owner, tick is not stopped. And this tick will be used
3363 * for idle load balancing. ilb owner will still be part of
3364 * nohz.cpu_mask..
3365 *
3366 * While stopping the tick, this cpu will become the ilb owner if there
3367 * is no other owner. And will be the owner till that cpu becomes busy
3368 * or if all cpus in the system stop their ticks at which point
3369 * there is no need for ilb owner.
3370 *
3371 * When the ilb owner becomes busy, it nominates another owner, during the
3372 * next busy scheduler_tick()
3373 */
3374 int select_nohz_load_balancer(int stop_tick)
3375 {
3376 int cpu = smp_processor_id();
3377
3378 if (stop_tick) {
3379 cpu_rq(cpu)->in_nohz_recently = 1;
3380
3381 if (!cpu_active(cpu)) {
3382 if (atomic_read(&nohz.load_balancer) != cpu)
3383 return 0;
3384
3385 /*
3386 * If we are going offline and still the leader,
3387 * give up!
3388 */
3389 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3390 BUG();
3391
3392 return 0;
3393 }
3394
3395 cpumask_set_cpu(cpu, nohz.cpu_mask);
3396
3397 /* time for ilb owner also to sleep */
3398 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3399 if (atomic_read(&nohz.load_balancer) == cpu)
3400 atomic_set(&nohz.load_balancer, -1);
3401 return 0;
3402 }
3403
3404 if (atomic_read(&nohz.load_balancer) == -1) {
3405 /* make me the ilb owner */
3406 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3407 return 1;
3408 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3409 int new_ilb;
3410
3411 if (!(sched_smt_power_savings ||
3412 sched_mc_power_savings))
3413 return 1;
3414 /*
3415 * Check to see if there is a more power-efficient
3416 * ilb.
3417 */
3418 new_ilb = find_new_ilb(cpu);
3419 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3420 atomic_set(&nohz.load_balancer, -1);
3421 resched_cpu(new_ilb);
3422 return 0;
3423 }
3424 return 1;
3425 }
3426 } else {
3427 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3428 return 0;
3429
3430 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3431
3432 if (atomic_read(&nohz.load_balancer) == cpu)
3433 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3434 BUG();
3435 }
3436 return 0;
3437 }
3438 #endif
3439
3440 static DEFINE_SPINLOCK(balancing);
3441
3442 /*
3443 * It checks each scheduling domain to see if it is due to be balanced,
3444 * and initiates a balancing operation if so.
3445 *
3446 * Balancing parameters are set up in arch_init_sched_domains.
3447 */
3448 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3449 {
3450 int balance = 1;
3451 struct rq *rq = cpu_rq(cpu);
3452 unsigned long interval;
3453 struct sched_domain *sd;
3454 /* Earliest time when we have to do rebalance again */
3455 unsigned long next_balance = jiffies + 60*HZ;
3456 int update_next_balance = 0;
3457 int need_serialize;
3458
3459 for_each_domain(cpu, sd) {
3460 if (!(sd->flags & SD_LOAD_BALANCE))
3461 continue;
3462
3463 interval = sd->balance_interval;
3464 if (idle != CPU_IDLE)
3465 interval *= sd->busy_factor;
3466
3467 /* scale ms to jiffies */
3468 interval = msecs_to_jiffies(interval);
3469 if (unlikely(!interval))
3470 interval = 1;
3471 if (interval > HZ*NR_CPUS/10)
3472 interval = HZ*NR_CPUS/10;
3473
3474 need_serialize = sd->flags & SD_SERIALIZE;
3475
3476 if (need_serialize) {
3477 if (!spin_trylock(&balancing))
3478 goto out;
3479 }
3480
3481 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3482 if (load_balance(cpu, rq, sd, idle, &balance)) {
3483 /*
3484 * We've pulled tasks over so either we're no
3485 * longer idle, or one of our SMT siblings is
3486 * not idle.
3487 */
3488 idle = CPU_NOT_IDLE;
3489 }
3490 sd->last_balance = jiffies;
3491 }
3492 if (need_serialize)
3493 spin_unlock(&balancing);
3494 out:
3495 if (time_after(next_balance, sd->last_balance + interval)) {
3496 next_balance = sd->last_balance + interval;
3497 update_next_balance = 1;
3498 }
3499
3500 /*
3501 * Stop the load balance at this level. There is another
3502 * CPU in our sched group which is doing load balancing more
3503 * actively.
3504 */
3505 if (!balance)
3506 break;
3507 }
3508
3509 /*
3510 * next_balance will be updated only when there is a need.
3511 * When the cpu is attached to null domain for ex, it will not be
3512 * updated.
3513 */
3514 if (likely(update_next_balance))
3515 rq->next_balance = next_balance;
3516 }
3517
3518 /*
3519 * run_rebalance_domains is triggered when needed from the scheduler tick.
3520 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3521 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3522 */
3523 static void run_rebalance_domains(struct softirq_action *h)
3524 {
3525 int this_cpu = smp_processor_id();
3526 struct rq *this_rq = cpu_rq(this_cpu);
3527 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3528 CPU_IDLE : CPU_NOT_IDLE;
3529
3530 rebalance_domains(this_cpu, idle);
3531
3532 #ifdef CONFIG_NO_HZ
3533 /*
3534 * If this cpu is the owner for idle load balancing, then do the
3535 * balancing on behalf of the other idle cpus whose ticks are
3536 * stopped.
3537 */
3538 if (this_rq->idle_at_tick &&
3539 atomic_read(&nohz.load_balancer) == this_cpu) {
3540 struct rq *rq;
3541 int balance_cpu;
3542
3543 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3544 if (balance_cpu == this_cpu)
3545 continue;
3546
3547 /*
3548 * If this cpu gets work to do, stop the load balancing
3549 * work being done for other cpus. Next load
3550 * balancing owner will pick it up.
3551 */
3552 if (need_resched())
3553 break;
3554
3555 rebalance_domains(balance_cpu, CPU_IDLE);
3556
3557 rq = cpu_rq(balance_cpu);
3558 if (time_after(this_rq->next_balance, rq->next_balance))
3559 this_rq->next_balance = rq->next_balance;
3560 }
3561 }
3562 #endif
3563 }
3564
3565 static inline int on_null_domain(int cpu)
3566 {
3567 return !rcu_dereference(cpu_rq(cpu)->sd);
3568 }
3569
3570 /*
3571 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3572 *
3573 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3574 * idle load balancing owner or decide to stop the periodic load balancing,
3575 * if the whole system is idle.
3576 */
3577 static inline void trigger_load_balance(struct rq *rq, int cpu)
3578 {
3579 #ifdef CONFIG_NO_HZ
3580 /*
3581 * If we were in the nohz mode recently and busy at the current
3582 * scheduler tick, then check if we need to nominate new idle
3583 * load balancer.
3584 */
3585 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3586 rq->in_nohz_recently = 0;
3587
3588 if (atomic_read(&nohz.load_balancer) == cpu) {
3589 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3590 atomic_set(&nohz.load_balancer, -1);
3591 }
3592
3593 if (atomic_read(&nohz.load_balancer) == -1) {
3594 int ilb = find_new_ilb(cpu);
3595
3596 if (ilb < nr_cpu_ids)
3597 resched_cpu(ilb);
3598 }
3599 }
3600
3601 /*
3602 * If this cpu is idle and doing idle load balancing for all the
3603 * cpus with ticks stopped, is it time for that to stop?
3604 */
3605 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3606 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3607 resched_cpu(cpu);
3608 return;
3609 }
3610
3611 /*
3612 * If this cpu is idle and the idle load balancing is done by
3613 * someone else, then no need raise the SCHED_SOFTIRQ
3614 */
3615 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3616 cpumask_test_cpu(cpu, nohz.cpu_mask))
3617 return;
3618 #endif
3619 /* Don't need to rebalance while attached to NULL domain */
3620 if (time_after_eq(jiffies, rq->next_balance) &&
3621 likely(!on_null_domain(cpu)))
3622 raise_softirq(SCHED_SOFTIRQ);
3623 }
3624
3625 static void rq_online_fair(struct rq *rq)
3626 {
3627 update_sysctl();
3628 }
3629
3630 static void rq_offline_fair(struct rq *rq)
3631 {
3632 update_sysctl();
3633 }
3634
3635 #else /* CONFIG_SMP */
3636
3637 /*
3638 * on UP we do not need to balance between CPUs:
3639 */
3640 static inline void idle_balance(int cpu, struct rq *rq)
3641 {
3642 }
3643
3644 #endif /* CONFIG_SMP */
3645
3646 /*
3647 * scheduler tick hitting a task of our scheduling class:
3648 */
3649 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3650 {
3651 struct cfs_rq *cfs_rq;
3652 struct sched_entity *se = &curr->se;
3653
3654 for_each_sched_entity(se) {
3655 cfs_rq = cfs_rq_of(se);
3656 entity_tick(cfs_rq, se, queued);
3657 }
3658 }
3659
3660 /*
3661 * called on fork with the child task as argument from the parent's context
3662 * - child not yet on the tasklist
3663 * - preemption disabled
3664 */
3665 static void task_fork_fair(struct task_struct *p)
3666 {
3667 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3668 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3669 int this_cpu = smp_processor_id();
3670 struct rq *rq = this_rq();
3671 unsigned long flags;
3672
3673 raw_spin_lock_irqsave(&rq->lock, flags);
3674
3675 if (unlikely(task_cpu(p) != this_cpu))
3676 __set_task_cpu(p, this_cpu);
3677
3678 update_curr(cfs_rq);
3679
3680 if (curr)
3681 se->vruntime = curr->vruntime;
3682 place_entity(cfs_rq, se, 1);
3683
3684 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3685 /*
3686 * Upon rescheduling, sched_class::put_prev_task() will place
3687 * 'current' within the tree based on its new key value.
3688 */
3689 swap(curr->vruntime, se->vruntime);
3690 resched_task(rq->curr);
3691 }
3692
3693 se->vruntime -= cfs_rq->min_vruntime;
3694
3695 raw_spin_unlock_irqrestore(&rq->lock, flags);
3696 }
3697
3698 /*
3699 * Priority of the task has changed. Check to see if we preempt
3700 * the current task.
3701 */
3702 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3703 int oldprio, int running)
3704 {
3705 /*
3706 * Reschedule if we are currently running on this runqueue and
3707 * our priority decreased, or if we are not currently running on
3708 * this runqueue and our priority is higher than the current's
3709 */
3710 if (running) {
3711 if (p->prio > oldprio)
3712 resched_task(rq->curr);
3713 } else
3714 check_preempt_curr(rq, p, 0);
3715 }
3716
3717 /*
3718 * We switched to the sched_fair class.
3719 */
3720 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3721 int running)
3722 {
3723 /*
3724 * We were most likely switched from sched_rt, so
3725 * kick off the schedule if running, otherwise just see
3726 * if we can still preempt the current task.
3727 */
3728 if (running)
3729 resched_task(rq->curr);
3730 else
3731 check_preempt_curr(rq, p, 0);
3732 }
3733
3734 /* Account for a task changing its policy or group.
3735 *
3736 * This routine is mostly called to set cfs_rq->curr field when a task
3737 * migrates between groups/classes.
3738 */
3739 static void set_curr_task_fair(struct rq *rq)
3740 {
3741 struct sched_entity *se = &rq->curr->se;
3742
3743 for_each_sched_entity(se)
3744 set_next_entity(cfs_rq_of(se), se);
3745 }
3746
3747 #ifdef CONFIG_FAIR_GROUP_SCHED
3748 static void moved_group_fair(struct task_struct *p, int on_rq)
3749 {
3750 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3751
3752 update_curr(cfs_rq);
3753 if (!on_rq)
3754 place_entity(cfs_rq, &p->se, 1);
3755 }
3756 #endif
3757
3758 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3759 {
3760 struct sched_entity *se = &task->se;
3761 unsigned int rr_interval = 0;
3762
3763 /*
3764 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3765 * idle runqueue:
3766 */
3767 if (rq->cfs.load.weight)
3768 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3769
3770 return rr_interval;
3771 }
3772
3773 /*
3774 * All the scheduling class methods:
3775 */
3776 static const struct sched_class fair_sched_class = {
3777 .next = &idle_sched_class,
3778 .enqueue_task = enqueue_task_fair,
3779 .dequeue_task = dequeue_task_fair,
3780 .yield_task = yield_task_fair,
3781
3782 .check_preempt_curr = check_preempt_wakeup,
3783
3784 .pick_next_task = pick_next_task_fair,
3785 .put_prev_task = put_prev_task_fair,
3786
3787 #ifdef CONFIG_SMP
3788 .select_task_rq = select_task_rq_fair,
3789
3790 .rq_online = rq_online_fair,
3791 .rq_offline = rq_offline_fair,
3792
3793 .task_waking = task_waking_fair,
3794 #endif
3795
3796 .set_curr_task = set_curr_task_fair,
3797 .task_tick = task_tick_fair,
3798 .task_fork = task_fork_fair,
3799
3800 .prio_changed = prio_changed_fair,
3801 .switched_to = switched_to_fair,
3802
3803 .get_rr_interval = get_rr_interval_fair,
3804
3805 #ifdef CONFIG_FAIR_GROUP_SCHED
3806 .moved_group = moved_group_fair,
3807 #endif
3808 };
3809
3810 #ifdef CONFIG_SCHED_DEBUG
3811 static void print_cfs_stats(struct seq_file *m, int cpu)
3812 {
3813 struct cfs_rq *cfs_rq;
3814
3815 rcu_read_lock();
3816 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3817 print_cfs_rq(m, cpu, cfs_rq);
3818 rcu_read_unlock();
3819 }
3820 #endif
This page took 0.111267 seconds and 6 git commands to generate.