Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 2000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 3;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
510
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
517 }
518
519 static void update_curr(struct cfs_rq *cfs_rq)
520 {
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock;
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
536
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
546 }
547 }
548
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 }
554
555 /*
556 * Task is being enqueued - update stats:
557 */
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
566 }
567
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 {
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 }
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
583 }
584
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
594 }
595
596 /*
597 * We are picking a new current task - update its stats:
598 */
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /*
603 * We are starting a new run period:
604 */
605 se->exec_start = rq_of(cfs_rq)->clock;
606 }
607
608 /**************************************************
609 * Scheduling class queueing methods:
610 */
611
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 {
616 cfs_rq->task_weight += weight;
617 }
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 {
622 }
623 #endif
624
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637 }
638
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
648 }
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651 }
652
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664 if ((s64)delta < 0)
665 delta = 0;
666
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
669
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
672
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
676 }
677 }
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681 if ((s64)delta < 0)
682 delta = 0;
683
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
686
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
689
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
695 }
696
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
708 }
709 }
710 #endif
711 }
712
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
724 }
725
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 {
729 u64 vruntime = cfs_rq->min_vruntime;
730
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
739
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
743
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
750
751 vruntime -= thresh;
752 }
753
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
757 se->vruntime = vruntime;
758 }
759
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762 {
763 /*
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
771 * Update run-time statistics of the 'current'.
772 */
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
775
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
779 }
780
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
785 }
786
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
791
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
794 }
795
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797 {
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800 }
801
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804 {
805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
820 }
821 #endif
822 }
823
824 clear_buddies(cfs_rq, se);
825
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
838 }
839
840 /*
841 * Preempt the current task with a newly woken task if needed:
842 */
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845 {
846 unsigned long ideal_runtime, delta_exec;
847
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
877 }
878 }
879
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
908 }
909
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914 {
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
917
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
920
921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
928
929 return se;
930 }
931
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933 {
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
939 update_curr(cfs_rq);
940
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
947 cfs_rq->curr = NULL;
948 }
949
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952 {
953 /*
954 * Update run-time statistics of the 'current'.
955 */
956 update_curr(cfs_rq);
957
958 #ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
974
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
977 }
978
979 /**************************************************
980 * CFS operations on tasks:
981 */
982
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985 {
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1008
1009 hrtick_start(rq, delta);
1010 }
1011 }
1012
1013 /*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018 static void hrtick_update(struct rq *rq)
1019 {
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027 }
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031 {
1032 }
1033
1034 static inline void hrtick_update(struct rq *rq)
1035 {
1036 }
1037 #endif
1038
1039 /*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046 {
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1049
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1056 }
1057
1058 hrtick_update(rq);
1059 }
1060
1061 /*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067 {
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1078 }
1079
1080 hrtick_update(rq);
1081 }
1082
1083 /*
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1087 */
1088 static void yield_task_fair(struct rq *rq)
1089 {
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1093
1094 /*
1095 * Are we the only task in the tree?
1096 */
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
1100 clear_buddies(cfs_rq, se);
1101
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1104 /*
1105 * Update run-time statistics of the 'current'.
1106 */
1107 update_curr(cfs_rq);
1108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
1114 rightmost = __pick_last_entity(cfs_rq);
1115 /*
1116 * Already in the rightmost position?
1117 */
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1125 */
1126 se->vruntime = rightmost->vruntime + 1;
1127 }
1128
1129 #ifdef CONFIG_SMP
1130
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132 {
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137 }
1138
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1140 /*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1163 {
1164 struct sched_entity *se = tg->se[cpu];
1165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1187
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1191
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1194
1195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
1200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
1207 wg = 0;
1208 }
1209
1210 return wl;
1211 }
1212
1213 #else
1214
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1217 {
1218 return wl;
1219 }
1220
1221 #endif
1222
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224 {
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1231
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1237
1238 /*
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1242 */
1243 if (sync) {
1244 tg = task_group(current);
1245 weight = current->se.load.weight;
1246
1247 this_load += effective_load(tg, this_cpu, -weight, -weight);
1248 load += effective_load(tg, prev_cpu, 0, -weight);
1249 }
1250
1251 tg = task_group(p);
1252 weight = p->se.load.weight;
1253
1254 /*
1255 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 * due to the sync cause above having dropped this_load to 0, we'll
1257 * always have an imbalance, but there's really nothing you can do
1258 * about that, so that's good too.
1259 *
1260 * Otherwise check if either cpus are near enough in load to allow this
1261 * task to be woken on this_cpu.
1262 */
1263 if (this_load) {
1264 unsigned long this_eff_load, prev_eff_load;
1265
1266 this_eff_load = 100;
1267 this_eff_load *= power_of(prev_cpu);
1268 this_eff_load *= this_load +
1269 effective_load(tg, this_cpu, weight, weight);
1270
1271 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1272 prev_eff_load *= power_of(this_cpu);
1273 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1274
1275 balanced = this_eff_load <= prev_eff_load;
1276 } else
1277 balanced = true;
1278
1279 /*
1280 * If the currently running task will sleep within
1281 * a reasonable amount of time then attract this newly
1282 * woken task:
1283 */
1284 if (sync && balanced)
1285 return 1;
1286
1287 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1288 tl_per_task = cpu_avg_load_per_task(this_cpu);
1289
1290 if (balanced ||
1291 (this_load <= load &&
1292 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1293 /*
1294 * This domain has SD_WAKE_AFFINE and
1295 * p is cache cold in this domain, and
1296 * there is no bad imbalance.
1297 */
1298 schedstat_inc(sd, ttwu_move_affine);
1299 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1300
1301 return 1;
1302 }
1303 return 0;
1304 }
1305
1306 /*
1307 * find_idlest_group finds and returns the least busy CPU group within the
1308 * domain.
1309 */
1310 static struct sched_group *
1311 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1312 int this_cpu, int load_idx)
1313 {
1314 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1315 unsigned long min_load = ULONG_MAX, this_load = 0;
1316 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1317
1318 do {
1319 unsigned long load, avg_load;
1320 int local_group;
1321 int i;
1322
1323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpumask_intersects(sched_group_cpus(group),
1325 &p->cpus_allowed))
1326 continue;
1327
1328 local_group = cpumask_test_cpu(this_cpu,
1329 sched_group_cpus(group));
1330
1331 /* Tally up the load of all CPUs in the group */
1332 avg_load = 0;
1333
1334 for_each_cpu(i, sched_group_cpus(group)) {
1335 /* Bias balancing toward cpus of our domain */
1336 if (local_group)
1337 load = source_load(i, load_idx);
1338 else
1339 load = target_load(i, load_idx);
1340
1341 avg_load += load;
1342 }
1343
1344 /* Adjust by relative CPU power of the group */
1345 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1346
1347 if (local_group) {
1348 this_load = avg_load;
1349 this = group;
1350 } else if (avg_load < min_load) {
1351 min_load = avg_load;
1352 idlest = group;
1353 }
1354 } while (group = group->next, group != sd->groups);
1355
1356 if (!idlest || 100*this_load < imbalance*min_load)
1357 return NULL;
1358 return idlest;
1359 }
1360
1361 /*
1362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1363 */
1364 static int
1365 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1366 {
1367 unsigned long load, min_load = ULONG_MAX;
1368 int idlest = -1;
1369 int i;
1370
1371 /* Traverse only the allowed CPUs */
1372 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1373 load = weighted_cpuload(i);
1374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
1378 }
1379 }
1380
1381 return idlest;
1382 }
1383
1384 /*
1385 * Try and locate an idle CPU in the sched_domain.
1386 */
1387 static int select_idle_sibling(struct task_struct *p, int target)
1388 {
1389 int cpu = smp_processor_id();
1390 int prev_cpu = task_cpu(p);
1391 struct sched_domain *sd;
1392 int i;
1393
1394 /*
1395 * If the task is going to be woken-up on this cpu and if it is
1396 * already idle, then it is the right target.
1397 */
1398 if (target == cpu && idle_cpu(cpu))
1399 return cpu;
1400
1401 /*
1402 * If the task is going to be woken-up on the cpu where it previously
1403 * ran and if it is currently idle, then it the right target.
1404 */
1405 if (target == prev_cpu && idle_cpu(prev_cpu))
1406 return prev_cpu;
1407
1408 /*
1409 * Otherwise, iterate the domains and find an elegible idle cpu.
1410 */
1411 for_each_domain(target, sd) {
1412 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1413 break;
1414
1415 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1416 if (idle_cpu(i)) {
1417 target = i;
1418 break;
1419 }
1420 }
1421
1422 /*
1423 * Lets stop looking for an idle sibling when we reached
1424 * the domain that spans the current cpu and prev_cpu.
1425 */
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1427 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1428 break;
1429 }
1430
1431 return target;
1432 }
1433
1434 /*
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1438 *
1439 * Balance, ie. select the least loaded group.
1440 *
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1442 *
1443 * preempt must be disabled.
1444 */
1445 static int
1446 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1447 {
1448 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1449 int cpu = smp_processor_id();
1450 int prev_cpu = task_cpu(p);
1451 int new_cpu = cpu;
1452 int want_affine = 0;
1453 int want_sd = 1;
1454 int sync = wake_flags & WF_SYNC;
1455
1456 if (sd_flag & SD_BALANCE_WAKE) {
1457 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1458 want_affine = 1;
1459 new_cpu = prev_cpu;
1460 }
1461
1462 for_each_domain(cpu, tmp) {
1463 if (!(tmp->flags & SD_LOAD_BALANCE))
1464 continue;
1465
1466 /*
1467 * If power savings logic is enabled for a domain, see if we
1468 * are not overloaded, if so, don't balance wider.
1469 */
1470 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1471 unsigned long power = 0;
1472 unsigned long nr_running = 0;
1473 unsigned long capacity;
1474 int i;
1475
1476 for_each_cpu(i, sched_domain_span(tmp)) {
1477 power += power_of(i);
1478 nr_running += cpu_rq(i)->cfs.nr_running;
1479 }
1480
1481 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1482
1483 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1484 nr_running /= 2;
1485
1486 if (nr_running < capacity)
1487 want_sd = 0;
1488 }
1489
1490 /*
1491 * If both cpu and prev_cpu are part of this domain,
1492 * cpu is a valid SD_WAKE_AFFINE target.
1493 */
1494 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1495 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1496 affine_sd = tmp;
1497 want_affine = 0;
1498 }
1499
1500 if (!want_sd && !want_affine)
1501 break;
1502
1503 if (!(tmp->flags & sd_flag))
1504 continue;
1505
1506 if (want_sd)
1507 sd = tmp;
1508 }
1509
1510 #ifdef CONFIG_FAIR_GROUP_SCHED
1511 if (sched_feat(LB_SHARES_UPDATE)) {
1512 /*
1513 * Pick the largest domain to update shares over
1514 */
1515 tmp = sd;
1516 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1517 tmp = affine_sd;
1518
1519 if (tmp) {
1520 raw_spin_unlock(&rq->lock);
1521 update_shares(tmp);
1522 raw_spin_lock(&rq->lock);
1523 }
1524 }
1525 #endif
1526
1527 if (affine_sd) {
1528 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1529 return select_idle_sibling(p, cpu);
1530 else
1531 return select_idle_sibling(p, prev_cpu);
1532 }
1533
1534 while (sd) {
1535 int load_idx = sd->forkexec_idx;
1536 struct sched_group *group;
1537 int weight;
1538
1539 if (!(sd->flags & sd_flag)) {
1540 sd = sd->child;
1541 continue;
1542 }
1543
1544 if (sd_flag & SD_BALANCE_WAKE)
1545 load_idx = sd->wake_idx;
1546
1547 group = find_idlest_group(sd, p, cpu, load_idx);
1548 if (!group) {
1549 sd = sd->child;
1550 continue;
1551 }
1552
1553 new_cpu = find_idlest_cpu(group, p, cpu);
1554 if (new_cpu == -1 || new_cpu == cpu) {
1555 /* Now try balancing at a lower domain level of cpu */
1556 sd = sd->child;
1557 continue;
1558 }
1559
1560 /* Now try balancing at a lower domain level of new_cpu */
1561 cpu = new_cpu;
1562 weight = sd->span_weight;
1563 sd = NULL;
1564 for_each_domain(cpu, tmp) {
1565 if (weight <= tmp->span_weight)
1566 break;
1567 if (tmp->flags & sd_flag)
1568 sd = tmp;
1569 }
1570 /* while loop will break here if sd == NULL */
1571 }
1572
1573 return new_cpu;
1574 }
1575 #endif /* CONFIG_SMP */
1576
1577 static unsigned long
1578 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1579 {
1580 unsigned long gran = sysctl_sched_wakeup_granularity;
1581
1582 /*
1583 * Since its curr running now, convert the gran from real-time
1584 * to virtual-time in his units.
1585 *
1586 * By using 'se' instead of 'curr' we penalize light tasks, so
1587 * they get preempted easier. That is, if 'se' < 'curr' then
1588 * the resulting gran will be larger, therefore penalizing the
1589 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1590 * be smaller, again penalizing the lighter task.
1591 *
1592 * This is especially important for buddies when the leftmost
1593 * task is higher priority than the buddy.
1594 */
1595 if (unlikely(se->load.weight != NICE_0_LOAD))
1596 gran = calc_delta_fair(gran, se);
1597
1598 return gran;
1599 }
1600
1601 /*
1602 * Should 'se' preempt 'curr'.
1603 *
1604 * |s1
1605 * |s2
1606 * |s3
1607 * g
1608 * |<--->|c
1609 *
1610 * w(c, s1) = -1
1611 * w(c, s2) = 0
1612 * w(c, s3) = 1
1613 *
1614 */
1615 static int
1616 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1617 {
1618 s64 gran, vdiff = curr->vruntime - se->vruntime;
1619
1620 if (vdiff <= 0)
1621 return -1;
1622
1623 gran = wakeup_gran(curr, se);
1624 if (vdiff > gran)
1625 return 1;
1626
1627 return 0;
1628 }
1629
1630 static void set_last_buddy(struct sched_entity *se)
1631 {
1632 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1633 for_each_sched_entity(se)
1634 cfs_rq_of(se)->last = se;
1635 }
1636 }
1637
1638 static void set_next_buddy(struct sched_entity *se)
1639 {
1640 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1641 for_each_sched_entity(se)
1642 cfs_rq_of(se)->next = se;
1643 }
1644 }
1645
1646 /*
1647 * Preempt the current task with a newly woken task if needed:
1648 */
1649 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1650 {
1651 struct task_struct *curr = rq->curr;
1652 struct sched_entity *se = &curr->se, *pse = &p->se;
1653 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1654 int scale = cfs_rq->nr_running >= sched_nr_latency;
1655
1656 if (unlikely(rt_prio(p->prio)))
1657 goto preempt;
1658
1659 if (unlikely(p->sched_class != &fair_sched_class))
1660 return;
1661
1662 if (unlikely(se == pse))
1663 return;
1664
1665 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1666 set_next_buddy(pse);
1667
1668 /*
1669 * We can come here with TIF_NEED_RESCHED already set from new task
1670 * wake up path.
1671 */
1672 if (test_tsk_need_resched(curr))
1673 return;
1674
1675 /*
1676 * Batch and idle tasks do not preempt (their preemption is driven by
1677 * the tick):
1678 */
1679 if (unlikely(p->policy != SCHED_NORMAL))
1680 return;
1681
1682 /* Idle tasks are by definition preempted by everybody. */
1683 if (unlikely(curr->policy == SCHED_IDLE))
1684 goto preempt;
1685
1686 if (!sched_feat(WAKEUP_PREEMPT))
1687 return;
1688
1689 update_curr(cfs_rq);
1690 find_matching_se(&se, &pse);
1691 BUG_ON(!pse);
1692 if (wakeup_preempt_entity(se, pse) == 1)
1693 goto preempt;
1694
1695 return;
1696
1697 preempt:
1698 resched_task(curr);
1699 /*
1700 * Only set the backward buddy when the current task is still
1701 * on the rq. This can happen when a wakeup gets interleaved
1702 * with schedule on the ->pre_schedule() or idle_balance()
1703 * point, either of which can * drop the rq lock.
1704 *
1705 * Also, during early boot the idle thread is in the fair class,
1706 * for obvious reasons its a bad idea to schedule back to it.
1707 */
1708 if (unlikely(!se->on_rq || curr == rq->idle))
1709 return;
1710
1711 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1712 set_last_buddy(se);
1713 }
1714
1715 static struct task_struct *pick_next_task_fair(struct rq *rq)
1716 {
1717 struct task_struct *p;
1718 struct cfs_rq *cfs_rq = &rq->cfs;
1719 struct sched_entity *se;
1720
1721 if (!cfs_rq->nr_running)
1722 return NULL;
1723
1724 do {
1725 se = pick_next_entity(cfs_rq);
1726 set_next_entity(cfs_rq, se);
1727 cfs_rq = group_cfs_rq(se);
1728 } while (cfs_rq);
1729
1730 p = task_of(se);
1731 hrtick_start_fair(rq, p);
1732
1733 return p;
1734 }
1735
1736 /*
1737 * Account for a descheduled task:
1738 */
1739 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1740 {
1741 struct sched_entity *se = &prev->se;
1742 struct cfs_rq *cfs_rq;
1743
1744 for_each_sched_entity(se) {
1745 cfs_rq = cfs_rq_of(se);
1746 put_prev_entity(cfs_rq, se);
1747 }
1748 }
1749
1750 #ifdef CONFIG_SMP
1751 /**************************************************
1752 * Fair scheduling class load-balancing methods:
1753 */
1754
1755 /*
1756 * pull_task - move a task from a remote runqueue to the local runqueue.
1757 * Both runqueues must be locked.
1758 */
1759 static void pull_task(struct rq *src_rq, struct task_struct *p,
1760 struct rq *this_rq, int this_cpu)
1761 {
1762 deactivate_task(src_rq, p, 0);
1763 set_task_cpu(p, this_cpu);
1764 activate_task(this_rq, p, 0);
1765 check_preempt_curr(this_rq, p, 0);
1766 }
1767
1768 /*
1769 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1770 */
1771 static
1772 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1773 struct sched_domain *sd, enum cpu_idle_type idle,
1774 int *all_pinned)
1775 {
1776 int tsk_cache_hot = 0;
1777 /*
1778 * We do not migrate tasks that are:
1779 * 1) running (obviously), or
1780 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1781 * 3) are cache-hot on their current CPU.
1782 */
1783 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1784 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1785 return 0;
1786 }
1787 *all_pinned = 0;
1788
1789 if (task_running(rq, p)) {
1790 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1791 return 0;
1792 }
1793
1794 /*
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1798 */
1799
1800 tsk_cache_hot = task_hot(p, rq->clock, sd);
1801 if (!tsk_cache_hot ||
1802 sd->nr_balance_failed > sd->cache_nice_tries) {
1803 #ifdef CONFIG_SCHEDSTATS
1804 if (tsk_cache_hot) {
1805 schedstat_inc(sd, lb_hot_gained[idle]);
1806 schedstat_inc(p, se.statistics.nr_forced_migrations);
1807 }
1808 #endif
1809 return 1;
1810 }
1811
1812 if (tsk_cache_hot) {
1813 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1814 return 0;
1815 }
1816 return 1;
1817 }
1818
1819 /*
1820 * move_one_task tries to move exactly one task from busiest to this_rq, as
1821 * part of active balancing operations within "domain".
1822 * Returns 1 if successful and 0 otherwise.
1823 *
1824 * Called with both runqueues locked.
1825 */
1826 static int
1827 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1828 struct sched_domain *sd, enum cpu_idle_type idle)
1829 {
1830 struct task_struct *p, *n;
1831 struct cfs_rq *cfs_rq;
1832 int pinned = 0;
1833
1834 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1835 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1836
1837 if (!can_migrate_task(p, busiest, this_cpu,
1838 sd, idle, &pinned))
1839 continue;
1840
1841 pull_task(busiest, p, this_rq, this_cpu);
1842 /*
1843 * Right now, this is only the second place pull_task()
1844 * is called, so we can safely collect pull_task()
1845 * stats here rather than inside pull_task().
1846 */
1847 schedstat_inc(sd, lb_gained[idle]);
1848 return 1;
1849 }
1850 }
1851
1852 return 0;
1853 }
1854
1855 static unsigned long
1856 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1857 unsigned long max_load_move, struct sched_domain *sd,
1858 enum cpu_idle_type idle, int *all_pinned,
1859 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1860 {
1861 int loops = 0, pulled = 0, pinned = 0;
1862 long rem_load_move = max_load_move;
1863 struct task_struct *p, *n;
1864
1865 if (max_load_move == 0)
1866 goto out;
1867
1868 pinned = 1;
1869
1870 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1871 if (loops++ > sysctl_sched_nr_migrate)
1872 break;
1873
1874 if ((p->se.load.weight >> 1) > rem_load_move ||
1875 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1876 continue;
1877
1878 pull_task(busiest, p, this_rq, this_cpu);
1879 pulled++;
1880 rem_load_move -= p->se.load.weight;
1881
1882 #ifdef CONFIG_PREEMPT
1883 /*
1884 * NEWIDLE balancing is a source of latency, so preemptible
1885 * kernels will stop after the first task is pulled to minimize
1886 * the critical section.
1887 */
1888 if (idle == CPU_NEWLY_IDLE)
1889 break;
1890 #endif
1891
1892 /*
1893 * We only want to steal up to the prescribed amount of
1894 * weighted load.
1895 */
1896 if (rem_load_move <= 0)
1897 break;
1898
1899 if (p->prio < *this_best_prio)
1900 *this_best_prio = p->prio;
1901 }
1902 out:
1903 /*
1904 * Right now, this is one of only two places pull_task() is called,
1905 * so we can safely collect pull_task() stats here rather than
1906 * inside pull_task().
1907 */
1908 schedstat_add(sd, lb_gained[idle], pulled);
1909
1910 if (all_pinned)
1911 *all_pinned = pinned;
1912
1913 return max_load_move - rem_load_move;
1914 }
1915
1916 #ifdef CONFIG_FAIR_GROUP_SCHED
1917 static unsigned long
1918 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1919 unsigned long max_load_move,
1920 struct sched_domain *sd, enum cpu_idle_type idle,
1921 int *all_pinned, int *this_best_prio)
1922 {
1923 long rem_load_move = max_load_move;
1924 int busiest_cpu = cpu_of(busiest);
1925 struct task_group *tg;
1926
1927 rcu_read_lock();
1928 update_h_load(busiest_cpu);
1929
1930 list_for_each_entry_rcu(tg, &task_groups, list) {
1931 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1932 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1933 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1934 u64 rem_load, moved_load;
1935
1936 /*
1937 * empty group
1938 */
1939 if (!busiest_cfs_rq->task_weight)
1940 continue;
1941
1942 rem_load = (u64)rem_load_move * busiest_weight;
1943 rem_load = div_u64(rem_load, busiest_h_load + 1);
1944
1945 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1946 rem_load, sd, idle, all_pinned, this_best_prio,
1947 busiest_cfs_rq);
1948
1949 if (!moved_load)
1950 continue;
1951
1952 moved_load *= busiest_h_load;
1953 moved_load = div_u64(moved_load, busiest_weight + 1);
1954
1955 rem_load_move -= moved_load;
1956 if (rem_load_move < 0)
1957 break;
1958 }
1959 rcu_read_unlock();
1960
1961 return max_load_move - rem_load_move;
1962 }
1963 #else
1964 static unsigned long
1965 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1966 unsigned long max_load_move,
1967 struct sched_domain *sd, enum cpu_idle_type idle,
1968 int *all_pinned, int *this_best_prio)
1969 {
1970 return balance_tasks(this_rq, this_cpu, busiest,
1971 max_load_move, sd, idle, all_pinned,
1972 this_best_prio, &busiest->cfs);
1973 }
1974 #endif
1975
1976 /*
1977 * move_tasks tries to move up to max_load_move weighted load from busiest to
1978 * this_rq, as part of a balancing operation within domain "sd".
1979 * Returns 1 if successful and 0 otherwise.
1980 *
1981 * Called with both runqueues locked.
1982 */
1983 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1984 unsigned long max_load_move,
1985 struct sched_domain *sd, enum cpu_idle_type idle,
1986 int *all_pinned)
1987 {
1988 unsigned long total_load_moved = 0, load_moved;
1989 int this_best_prio = this_rq->curr->prio;
1990
1991 do {
1992 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1993 max_load_move - total_load_moved,
1994 sd, idle, all_pinned, &this_best_prio);
1995
1996 total_load_moved += load_moved;
1997
1998 #ifdef CONFIG_PREEMPT
1999 /*
2000 * NEWIDLE balancing is a source of latency, so preemptible
2001 * kernels will stop after the first task is pulled to minimize
2002 * the critical section.
2003 */
2004 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2005 break;
2006
2007 if (raw_spin_is_contended(&this_rq->lock) ||
2008 raw_spin_is_contended(&busiest->lock))
2009 break;
2010 #endif
2011 } while (load_moved && max_load_move > total_load_moved);
2012
2013 return total_load_moved > 0;
2014 }
2015
2016 /********** Helpers for find_busiest_group ************************/
2017 /*
2018 * sd_lb_stats - Structure to store the statistics of a sched_domain
2019 * during load balancing.
2020 */
2021 struct sd_lb_stats {
2022 struct sched_group *busiest; /* Busiest group in this sd */
2023 struct sched_group *this; /* Local group in this sd */
2024 unsigned long total_load; /* Total load of all groups in sd */
2025 unsigned long total_pwr; /* Total power of all groups in sd */
2026 unsigned long avg_load; /* Average load across all groups in sd */
2027
2028 /** Statistics of this group */
2029 unsigned long this_load;
2030 unsigned long this_load_per_task;
2031 unsigned long this_nr_running;
2032
2033 /* Statistics of the busiest group */
2034 unsigned long max_load;
2035 unsigned long busiest_load_per_task;
2036 unsigned long busiest_nr_running;
2037 unsigned long busiest_group_capacity;
2038
2039 int group_imb; /* Is there imbalance in this sd */
2040 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2041 int power_savings_balance; /* Is powersave balance needed for this sd */
2042 struct sched_group *group_min; /* Least loaded group in sd */
2043 struct sched_group *group_leader; /* Group which relieves group_min */
2044 unsigned long min_load_per_task; /* load_per_task in group_min */
2045 unsigned long leader_nr_running; /* Nr running of group_leader */
2046 unsigned long min_nr_running; /* Nr running of group_min */
2047 #endif
2048 };
2049
2050 /*
2051 * sg_lb_stats - stats of a sched_group required for load_balancing
2052 */
2053 struct sg_lb_stats {
2054 unsigned long avg_load; /*Avg load across the CPUs of the group */
2055 unsigned long group_load; /* Total load over the CPUs of the group */
2056 unsigned long sum_nr_running; /* Nr tasks running in the group */
2057 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2058 unsigned long group_capacity;
2059 int group_imb; /* Is there an imbalance in the group ? */
2060 };
2061
2062 /**
2063 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2064 * @group: The group whose first cpu is to be returned.
2065 */
2066 static inline unsigned int group_first_cpu(struct sched_group *group)
2067 {
2068 return cpumask_first(sched_group_cpus(group));
2069 }
2070
2071 /**
2072 * get_sd_load_idx - Obtain the load index for a given sched domain.
2073 * @sd: The sched_domain whose load_idx is to be obtained.
2074 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2075 */
2076 static inline int get_sd_load_idx(struct sched_domain *sd,
2077 enum cpu_idle_type idle)
2078 {
2079 int load_idx;
2080
2081 switch (idle) {
2082 case CPU_NOT_IDLE:
2083 load_idx = sd->busy_idx;
2084 break;
2085
2086 case CPU_NEWLY_IDLE:
2087 load_idx = sd->newidle_idx;
2088 break;
2089 default:
2090 load_idx = sd->idle_idx;
2091 break;
2092 }
2093
2094 return load_idx;
2095 }
2096
2097
2098 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2099 /**
2100 * init_sd_power_savings_stats - Initialize power savings statistics for
2101 * the given sched_domain, during load balancing.
2102 *
2103 * @sd: Sched domain whose power-savings statistics are to be initialized.
2104 * @sds: Variable containing the statistics for sd.
2105 * @idle: Idle status of the CPU at which we're performing load-balancing.
2106 */
2107 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2108 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2109 {
2110 /*
2111 * Busy processors will not participate in power savings
2112 * balance.
2113 */
2114 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2115 sds->power_savings_balance = 0;
2116 else {
2117 sds->power_savings_balance = 1;
2118 sds->min_nr_running = ULONG_MAX;
2119 sds->leader_nr_running = 0;
2120 }
2121 }
2122
2123 /**
2124 * update_sd_power_savings_stats - Update the power saving stats for a
2125 * sched_domain while performing load balancing.
2126 *
2127 * @group: sched_group belonging to the sched_domain under consideration.
2128 * @sds: Variable containing the statistics of the sched_domain
2129 * @local_group: Does group contain the CPU for which we're performing
2130 * load balancing ?
2131 * @sgs: Variable containing the statistics of the group.
2132 */
2133 static inline void update_sd_power_savings_stats(struct sched_group *group,
2134 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2135 {
2136
2137 if (!sds->power_savings_balance)
2138 return;
2139
2140 /*
2141 * If the local group is idle or completely loaded
2142 * no need to do power savings balance at this domain
2143 */
2144 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2145 !sds->this_nr_running))
2146 sds->power_savings_balance = 0;
2147
2148 /*
2149 * If a group is already running at full capacity or idle,
2150 * don't include that group in power savings calculations
2151 */
2152 if (!sds->power_savings_balance ||
2153 sgs->sum_nr_running >= sgs->group_capacity ||
2154 !sgs->sum_nr_running)
2155 return;
2156
2157 /*
2158 * Calculate the group which has the least non-idle load.
2159 * This is the group from where we need to pick up the load
2160 * for saving power
2161 */
2162 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2163 (sgs->sum_nr_running == sds->min_nr_running &&
2164 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2165 sds->group_min = group;
2166 sds->min_nr_running = sgs->sum_nr_running;
2167 sds->min_load_per_task = sgs->sum_weighted_load /
2168 sgs->sum_nr_running;
2169 }
2170
2171 /*
2172 * Calculate the group which is almost near its
2173 * capacity but still has some space to pick up some load
2174 * from other group and save more power
2175 */
2176 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2177 return;
2178
2179 if (sgs->sum_nr_running > sds->leader_nr_running ||
2180 (sgs->sum_nr_running == sds->leader_nr_running &&
2181 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2182 sds->group_leader = group;
2183 sds->leader_nr_running = sgs->sum_nr_running;
2184 }
2185 }
2186
2187 /**
2188 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2189 * @sds: Variable containing the statistics of the sched_domain
2190 * under consideration.
2191 * @this_cpu: Cpu at which we're currently performing load-balancing.
2192 * @imbalance: Variable to store the imbalance.
2193 *
2194 * Description:
2195 * Check if we have potential to perform some power-savings balance.
2196 * If yes, set the busiest group to be the least loaded group in the
2197 * sched_domain, so that it's CPUs can be put to idle.
2198 *
2199 * Returns 1 if there is potential to perform power-savings balance.
2200 * Else returns 0.
2201 */
2202 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2203 int this_cpu, unsigned long *imbalance)
2204 {
2205 if (!sds->power_savings_balance)
2206 return 0;
2207
2208 if (sds->this != sds->group_leader ||
2209 sds->group_leader == sds->group_min)
2210 return 0;
2211
2212 *imbalance = sds->min_load_per_task;
2213 sds->busiest = sds->group_min;
2214
2215 return 1;
2216
2217 }
2218 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2219 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2220 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2221 {
2222 return;
2223 }
2224
2225 static inline void update_sd_power_savings_stats(struct sched_group *group,
2226 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2227 {
2228 return;
2229 }
2230
2231 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2232 int this_cpu, unsigned long *imbalance)
2233 {
2234 return 0;
2235 }
2236 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2237
2238
2239 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2240 {
2241 return SCHED_LOAD_SCALE;
2242 }
2243
2244 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2245 {
2246 return default_scale_freq_power(sd, cpu);
2247 }
2248
2249 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2250 {
2251 unsigned long weight = sd->span_weight;
2252 unsigned long smt_gain = sd->smt_gain;
2253
2254 smt_gain /= weight;
2255
2256 return smt_gain;
2257 }
2258
2259 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2260 {
2261 return default_scale_smt_power(sd, cpu);
2262 }
2263
2264 unsigned long scale_rt_power(int cpu)
2265 {
2266 struct rq *rq = cpu_rq(cpu);
2267 u64 total, available;
2268
2269 sched_avg_update(rq);
2270
2271 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2272 available = total - rq->rt_avg;
2273
2274 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2275 total = SCHED_LOAD_SCALE;
2276
2277 total >>= SCHED_LOAD_SHIFT;
2278
2279 return div_u64(available, total);
2280 }
2281
2282 static void update_cpu_power(struct sched_domain *sd, int cpu)
2283 {
2284 unsigned long weight = sd->span_weight;
2285 unsigned long power = SCHED_LOAD_SCALE;
2286 struct sched_group *sdg = sd->groups;
2287
2288 if (sched_feat(ARCH_POWER))
2289 power *= arch_scale_freq_power(sd, cpu);
2290 else
2291 power *= default_scale_freq_power(sd, cpu);
2292
2293 power >>= SCHED_LOAD_SHIFT;
2294
2295 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2296 if (sched_feat(ARCH_POWER))
2297 power *= arch_scale_smt_power(sd, cpu);
2298 else
2299 power *= default_scale_smt_power(sd, cpu);
2300
2301 power >>= SCHED_LOAD_SHIFT;
2302 }
2303
2304 power *= scale_rt_power(cpu);
2305 power >>= SCHED_LOAD_SHIFT;
2306
2307 if (!power)
2308 power = 1;
2309
2310 cpu_rq(cpu)->cpu_power = power;
2311 sdg->cpu_power = power;
2312 }
2313
2314 static void update_group_power(struct sched_domain *sd, int cpu)
2315 {
2316 struct sched_domain *child = sd->child;
2317 struct sched_group *group, *sdg = sd->groups;
2318 unsigned long power;
2319
2320 if (!child) {
2321 update_cpu_power(sd, cpu);
2322 return;
2323 }
2324
2325 power = 0;
2326
2327 group = child->groups;
2328 do {
2329 power += group->cpu_power;
2330 group = group->next;
2331 } while (group != child->groups);
2332
2333 sdg->cpu_power = power;
2334 }
2335
2336 /**
2337 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2338 * @sd: The sched_domain whose statistics are to be updated.
2339 * @group: sched_group whose statistics are to be updated.
2340 * @this_cpu: Cpu for which load balance is currently performed.
2341 * @idle: Idle status of this_cpu
2342 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2343 * @sd_idle: Idle status of the sched_domain containing group.
2344 * @local_group: Does group contain this_cpu.
2345 * @cpus: Set of cpus considered for load balancing.
2346 * @balance: Should we balance.
2347 * @sgs: variable to hold the statistics for this group.
2348 */
2349 static inline void update_sg_lb_stats(struct sched_domain *sd,
2350 struct sched_group *group, int this_cpu,
2351 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2352 int local_group, const struct cpumask *cpus,
2353 int *balance, struct sg_lb_stats *sgs)
2354 {
2355 unsigned long load, max_cpu_load, min_cpu_load;
2356 int i;
2357 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2358 unsigned long avg_load_per_task = 0;
2359
2360 if (local_group)
2361 balance_cpu = group_first_cpu(group);
2362
2363 /* Tally up the load of all CPUs in the group */
2364 max_cpu_load = 0;
2365 min_cpu_load = ~0UL;
2366
2367 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2368 struct rq *rq = cpu_rq(i);
2369
2370 if (*sd_idle && rq->nr_running)
2371 *sd_idle = 0;
2372
2373 /* Bias balancing toward cpus of our domain */
2374 if (local_group) {
2375 if (idle_cpu(i) && !first_idle_cpu) {
2376 first_idle_cpu = 1;
2377 balance_cpu = i;
2378 }
2379
2380 load = target_load(i, load_idx);
2381 } else {
2382 load = source_load(i, load_idx);
2383 if (load > max_cpu_load)
2384 max_cpu_load = load;
2385 if (min_cpu_load > load)
2386 min_cpu_load = load;
2387 }
2388
2389 sgs->group_load += load;
2390 sgs->sum_nr_running += rq->nr_running;
2391 sgs->sum_weighted_load += weighted_cpuload(i);
2392
2393 }
2394
2395 /*
2396 * First idle cpu or the first cpu(busiest) in this sched group
2397 * is eligible for doing load balancing at this and above
2398 * domains. In the newly idle case, we will allow all the cpu's
2399 * to do the newly idle load balance.
2400 */
2401 if (idle != CPU_NEWLY_IDLE && local_group &&
2402 balance_cpu != this_cpu) {
2403 *balance = 0;
2404 return;
2405 }
2406
2407 update_group_power(sd, this_cpu);
2408
2409 /* Adjust by relative CPU power of the group */
2410 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2411
2412 /*
2413 * Consider the group unbalanced when the imbalance is larger
2414 * than the average weight of two tasks.
2415 *
2416 * APZ: with cgroup the avg task weight can vary wildly and
2417 * might not be a suitable number - should we keep a
2418 * normalized nr_running number somewhere that negates
2419 * the hierarchy?
2420 */
2421 if (sgs->sum_nr_running)
2422 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2423
2424 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2425 sgs->group_imb = 1;
2426
2427 sgs->group_capacity =
2428 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2429 }
2430
2431 /**
2432 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2433 * @sd: sched_domain whose statistics are to be updated.
2434 * @this_cpu: Cpu for which load balance is currently performed.
2435 * @idle: Idle status of this_cpu
2436 * @sd_idle: Idle status of the sched_domain containing group.
2437 * @cpus: Set of cpus considered for load balancing.
2438 * @balance: Should we balance.
2439 * @sds: variable to hold the statistics for this sched_domain.
2440 */
2441 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2442 enum cpu_idle_type idle, int *sd_idle,
2443 const struct cpumask *cpus, int *balance,
2444 struct sd_lb_stats *sds)
2445 {
2446 struct sched_domain *child = sd->child;
2447 struct sched_group *group = sd->groups;
2448 struct sg_lb_stats sgs;
2449 int load_idx, prefer_sibling = 0;
2450
2451 if (child && child->flags & SD_PREFER_SIBLING)
2452 prefer_sibling = 1;
2453
2454 init_sd_power_savings_stats(sd, sds, idle);
2455 load_idx = get_sd_load_idx(sd, idle);
2456
2457 do {
2458 int local_group;
2459
2460 local_group = cpumask_test_cpu(this_cpu,
2461 sched_group_cpus(group));
2462 memset(&sgs, 0, sizeof(sgs));
2463 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2464 local_group, cpus, balance, &sgs);
2465
2466 if (local_group && !(*balance))
2467 return;
2468
2469 sds->total_load += sgs.group_load;
2470 sds->total_pwr += group->cpu_power;
2471
2472 /*
2473 * In case the child domain prefers tasks go to siblings
2474 * first, lower the group capacity to one so that we'll try
2475 * and move all the excess tasks away.
2476 */
2477 if (prefer_sibling)
2478 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2479
2480 if (local_group) {
2481 sds->this_load = sgs.avg_load;
2482 sds->this = group;
2483 sds->this_nr_running = sgs.sum_nr_running;
2484 sds->this_load_per_task = sgs.sum_weighted_load;
2485 } else if (sgs.avg_load > sds->max_load &&
2486 (sgs.sum_nr_running > sgs.group_capacity ||
2487 sgs.group_imb)) {
2488 sds->max_load = sgs.avg_load;
2489 sds->busiest = group;
2490 sds->busiest_nr_running = sgs.sum_nr_running;
2491 sds->busiest_group_capacity = sgs.group_capacity;
2492 sds->busiest_load_per_task = sgs.sum_weighted_load;
2493 sds->group_imb = sgs.group_imb;
2494 }
2495
2496 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2497 group = group->next;
2498 } while (group != sd->groups);
2499 }
2500
2501 /**
2502 * fix_small_imbalance - Calculate the minor imbalance that exists
2503 * amongst the groups of a sched_domain, during
2504 * load balancing.
2505 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2506 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2507 * @imbalance: Variable to store the imbalance.
2508 */
2509 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2510 int this_cpu, unsigned long *imbalance)
2511 {
2512 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2513 unsigned int imbn = 2;
2514 unsigned long scaled_busy_load_per_task;
2515
2516 if (sds->this_nr_running) {
2517 sds->this_load_per_task /= sds->this_nr_running;
2518 if (sds->busiest_load_per_task >
2519 sds->this_load_per_task)
2520 imbn = 1;
2521 } else
2522 sds->this_load_per_task =
2523 cpu_avg_load_per_task(this_cpu);
2524
2525 scaled_busy_load_per_task = sds->busiest_load_per_task
2526 * SCHED_LOAD_SCALE;
2527 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2528
2529 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2530 (scaled_busy_load_per_task * imbn)) {
2531 *imbalance = sds->busiest_load_per_task;
2532 return;
2533 }
2534
2535 /*
2536 * OK, we don't have enough imbalance to justify moving tasks,
2537 * however we may be able to increase total CPU power used by
2538 * moving them.
2539 */
2540
2541 pwr_now += sds->busiest->cpu_power *
2542 min(sds->busiest_load_per_task, sds->max_load);
2543 pwr_now += sds->this->cpu_power *
2544 min(sds->this_load_per_task, sds->this_load);
2545 pwr_now /= SCHED_LOAD_SCALE;
2546
2547 /* Amount of load we'd subtract */
2548 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2549 sds->busiest->cpu_power;
2550 if (sds->max_load > tmp)
2551 pwr_move += sds->busiest->cpu_power *
2552 min(sds->busiest_load_per_task, sds->max_load - tmp);
2553
2554 /* Amount of load we'd add */
2555 if (sds->max_load * sds->busiest->cpu_power <
2556 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2557 tmp = (sds->max_load * sds->busiest->cpu_power) /
2558 sds->this->cpu_power;
2559 else
2560 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2561 sds->this->cpu_power;
2562 pwr_move += sds->this->cpu_power *
2563 min(sds->this_load_per_task, sds->this_load + tmp);
2564 pwr_move /= SCHED_LOAD_SCALE;
2565
2566 /* Move if we gain throughput */
2567 if (pwr_move > pwr_now)
2568 *imbalance = sds->busiest_load_per_task;
2569 }
2570
2571 /**
2572 * calculate_imbalance - Calculate the amount of imbalance present within the
2573 * groups of a given sched_domain during load balance.
2574 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2575 * @this_cpu: Cpu for which currently load balance is being performed.
2576 * @imbalance: The variable to store the imbalance.
2577 */
2578 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2579 unsigned long *imbalance)
2580 {
2581 unsigned long max_pull, load_above_capacity = ~0UL;
2582
2583 sds->busiest_load_per_task /= sds->busiest_nr_running;
2584 if (sds->group_imb) {
2585 sds->busiest_load_per_task =
2586 min(sds->busiest_load_per_task, sds->avg_load);
2587 }
2588
2589 /*
2590 * In the presence of smp nice balancing, certain scenarios can have
2591 * max load less than avg load(as we skip the groups at or below
2592 * its cpu_power, while calculating max_load..)
2593 */
2594 if (sds->max_load < sds->avg_load) {
2595 *imbalance = 0;
2596 return fix_small_imbalance(sds, this_cpu, imbalance);
2597 }
2598
2599 if (!sds->group_imb) {
2600 /*
2601 * Don't want to pull so many tasks that a group would go idle.
2602 */
2603 load_above_capacity = (sds->busiest_nr_running -
2604 sds->busiest_group_capacity);
2605
2606 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2607
2608 load_above_capacity /= sds->busiest->cpu_power;
2609 }
2610
2611 /*
2612 * We're trying to get all the cpus to the average_load, so we don't
2613 * want to push ourselves above the average load, nor do we wish to
2614 * reduce the max loaded cpu below the average load. At the same time,
2615 * we also don't want to reduce the group load below the group capacity
2616 * (so that we can implement power-savings policies etc). Thus we look
2617 * for the minimum possible imbalance.
2618 * Be careful of negative numbers as they'll appear as very large values
2619 * with unsigned longs.
2620 */
2621 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2622
2623 /* How much load to actually move to equalise the imbalance */
2624 *imbalance = min(max_pull * sds->busiest->cpu_power,
2625 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2626 / SCHED_LOAD_SCALE;
2627
2628 /*
2629 * if *imbalance is less than the average load per runnable task
2630 * there is no gaurantee that any tasks will be moved so we'll have
2631 * a think about bumping its value to force at least one task to be
2632 * moved
2633 */
2634 if (*imbalance < sds->busiest_load_per_task)
2635 return fix_small_imbalance(sds, this_cpu, imbalance);
2636
2637 }
2638 /******* find_busiest_group() helpers end here *********************/
2639
2640 /**
2641 * find_busiest_group - Returns the busiest group within the sched_domain
2642 * if there is an imbalance. If there isn't an imbalance, and
2643 * the user has opted for power-savings, it returns a group whose
2644 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2645 * such a group exists.
2646 *
2647 * Also calculates the amount of weighted load which should be moved
2648 * to restore balance.
2649 *
2650 * @sd: The sched_domain whose busiest group is to be returned.
2651 * @this_cpu: The cpu for which load balancing is currently being performed.
2652 * @imbalance: Variable which stores amount of weighted load which should
2653 * be moved to restore balance/put a group to idle.
2654 * @idle: The idle status of this_cpu.
2655 * @sd_idle: The idleness of sd
2656 * @cpus: The set of CPUs under consideration for load-balancing.
2657 * @balance: Pointer to a variable indicating if this_cpu
2658 * is the appropriate cpu to perform load balancing at this_level.
2659 *
2660 * Returns: - the busiest group if imbalance exists.
2661 * - If no imbalance and user has opted for power-savings balance,
2662 * return the least loaded group whose CPUs can be
2663 * put to idle by rebalancing its tasks onto our group.
2664 */
2665 static struct sched_group *
2666 find_busiest_group(struct sched_domain *sd, int this_cpu,
2667 unsigned long *imbalance, enum cpu_idle_type idle,
2668 int *sd_idle, const struct cpumask *cpus, int *balance)
2669 {
2670 struct sd_lb_stats sds;
2671
2672 memset(&sds, 0, sizeof(sds));
2673
2674 /*
2675 * Compute the various statistics relavent for load balancing at
2676 * this level.
2677 */
2678 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2679 balance, &sds);
2680
2681 /* Cases where imbalance does not exist from POV of this_cpu */
2682 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2683 * at this level.
2684 * 2) There is no busy sibling group to pull from.
2685 * 3) This group is the busiest group.
2686 * 4) This group is more busy than the avg busieness at this
2687 * sched_domain.
2688 * 5) The imbalance is within the specified limit.
2689 */
2690 if (!(*balance))
2691 goto ret;
2692
2693 if (!sds.busiest || sds.busiest_nr_running == 0)
2694 goto out_balanced;
2695
2696 if (sds.this_load >= sds.max_load)
2697 goto out_balanced;
2698
2699 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2700
2701 if (sds.this_load >= sds.avg_load)
2702 goto out_balanced;
2703
2704 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2705 goto out_balanced;
2706
2707 /* Looks like there is an imbalance. Compute it */
2708 calculate_imbalance(&sds, this_cpu, imbalance);
2709 return sds.busiest;
2710
2711 out_balanced:
2712 /*
2713 * There is no obvious imbalance. But check if we can do some balancing
2714 * to save power.
2715 */
2716 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2717 return sds.busiest;
2718 ret:
2719 *imbalance = 0;
2720 return NULL;
2721 }
2722
2723 /*
2724 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2725 */
2726 static struct rq *
2727 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2728 unsigned long imbalance, const struct cpumask *cpus)
2729 {
2730 struct rq *busiest = NULL, *rq;
2731 unsigned long max_load = 0;
2732 int i;
2733
2734 for_each_cpu(i, sched_group_cpus(group)) {
2735 unsigned long power = power_of(i);
2736 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2737 unsigned long wl;
2738
2739 if (!cpumask_test_cpu(i, cpus))
2740 continue;
2741
2742 rq = cpu_rq(i);
2743 wl = weighted_cpuload(i);
2744
2745 /*
2746 * When comparing with imbalance, use weighted_cpuload()
2747 * which is not scaled with the cpu power.
2748 */
2749 if (capacity && rq->nr_running == 1 && wl > imbalance)
2750 continue;
2751
2752 /*
2753 * For the load comparisons with the other cpu's, consider
2754 * the weighted_cpuload() scaled with the cpu power, so that
2755 * the load can be moved away from the cpu that is potentially
2756 * running at a lower capacity.
2757 */
2758 wl = (wl * SCHED_LOAD_SCALE) / power;
2759
2760 if (wl > max_load) {
2761 max_load = wl;
2762 busiest = rq;
2763 }
2764 }
2765
2766 return busiest;
2767 }
2768
2769 /*
2770 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2771 * so long as it is large enough.
2772 */
2773 #define MAX_PINNED_INTERVAL 512
2774
2775 /* Working cpumask for load_balance and load_balance_newidle. */
2776 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2777
2778 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2779 {
2780 if (idle == CPU_NEWLY_IDLE) {
2781 /*
2782 * The only task running in a non-idle cpu can be moved to this
2783 * cpu in an attempt to completely freeup the other CPU
2784 * package.
2785 *
2786 * The package power saving logic comes from
2787 * find_busiest_group(). If there are no imbalance, then
2788 * f_b_g() will return NULL. However when sched_mc={1,2} then
2789 * f_b_g() will select a group from which a running task may be
2790 * pulled to this cpu in order to make the other package idle.
2791 * If there is no opportunity to make a package idle and if
2792 * there are no imbalance, then f_b_g() will return NULL and no
2793 * action will be taken in load_balance_newidle().
2794 *
2795 * Under normal task pull operation due to imbalance, there
2796 * will be more than one task in the source run queue and
2797 * move_tasks() will succeed. ld_moved will be true and this
2798 * active balance code will not be triggered.
2799 */
2800 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2802 return 0;
2803
2804 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2805 return 0;
2806 }
2807
2808 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2809 }
2810
2811 static int active_load_balance_cpu_stop(void *data);
2812
2813 /*
2814 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2815 * tasks if there is an imbalance.
2816 */
2817 static int load_balance(int this_cpu, struct rq *this_rq,
2818 struct sched_domain *sd, enum cpu_idle_type idle,
2819 int *balance)
2820 {
2821 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2822 struct sched_group *group;
2823 unsigned long imbalance;
2824 struct rq *busiest;
2825 unsigned long flags;
2826 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2827
2828 cpumask_copy(cpus, cpu_active_mask);
2829
2830 /*
2831 * When power savings policy is enabled for the parent domain, idle
2832 * sibling can pick up load irrespective of busy siblings. In this case,
2833 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2834 * portraying it as CPU_NOT_IDLE.
2835 */
2836 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2838 sd_idle = 1;
2839
2840 schedstat_inc(sd, lb_count[idle]);
2841
2842 redo:
2843 update_shares(sd);
2844 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2845 cpus, balance);
2846
2847 if (*balance == 0)
2848 goto out_balanced;
2849
2850 if (!group) {
2851 schedstat_inc(sd, lb_nobusyg[idle]);
2852 goto out_balanced;
2853 }
2854
2855 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2856 if (!busiest) {
2857 schedstat_inc(sd, lb_nobusyq[idle]);
2858 goto out_balanced;
2859 }
2860
2861 BUG_ON(busiest == this_rq);
2862
2863 schedstat_add(sd, lb_imbalance[idle], imbalance);
2864
2865 ld_moved = 0;
2866 if (busiest->nr_running > 1) {
2867 /*
2868 * Attempt to move tasks. If find_busiest_group has found
2869 * an imbalance but busiest->nr_running <= 1, the group is
2870 * still unbalanced. ld_moved simply stays zero, so it is
2871 * correctly treated as an imbalance.
2872 */
2873 local_irq_save(flags);
2874 double_rq_lock(this_rq, busiest);
2875 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2876 imbalance, sd, idle, &all_pinned);
2877 double_rq_unlock(this_rq, busiest);
2878 local_irq_restore(flags);
2879
2880 /*
2881 * some other cpu did the load balance for us.
2882 */
2883 if (ld_moved && this_cpu != smp_processor_id())
2884 resched_cpu(this_cpu);
2885
2886 /* All tasks on this runqueue were pinned by CPU affinity */
2887 if (unlikely(all_pinned)) {
2888 cpumask_clear_cpu(cpu_of(busiest), cpus);
2889 if (!cpumask_empty(cpus))
2890 goto redo;
2891 goto out_balanced;
2892 }
2893 }
2894
2895 if (!ld_moved) {
2896 schedstat_inc(sd, lb_failed[idle]);
2897 sd->nr_balance_failed++;
2898
2899 if (need_active_balance(sd, sd_idle, idle)) {
2900 raw_spin_lock_irqsave(&busiest->lock, flags);
2901
2902 /* don't kick the active_load_balance_cpu_stop,
2903 * if the curr task on busiest cpu can't be
2904 * moved to this_cpu
2905 */
2906 if (!cpumask_test_cpu(this_cpu,
2907 &busiest->curr->cpus_allowed)) {
2908 raw_spin_unlock_irqrestore(&busiest->lock,
2909 flags);
2910 all_pinned = 1;
2911 goto out_one_pinned;
2912 }
2913
2914 /*
2915 * ->active_balance synchronizes accesses to
2916 * ->active_balance_work. Once set, it's cleared
2917 * only after active load balance is finished.
2918 */
2919 if (!busiest->active_balance) {
2920 busiest->active_balance = 1;
2921 busiest->push_cpu = this_cpu;
2922 active_balance = 1;
2923 }
2924 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2925
2926 if (active_balance)
2927 stop_one_cpu_nowait(cpu_of(busiest),
2928 active_load_balance_cpu_stop, busiest,
2929 &busiest->active_balance_work);
2930
2931 /*
2932 * We've kicked active balancing, reset the failure
2933 * counter.
2934 */
2935 sd->nr_balance_failed = sd->cache_nice_tries+1;
2936 }
2937 } else
2938 sd->nr_balance_failed = 0;
2939
2940 if (likely(!active_balance)) {
2941 /* We were unbalanced, so reset the balancing interval */
2942 sd->balance_interval = sd->min_interval;
2943 } else {
2944 /*
2945 * If we've begun active balancing, start to back off. This
2946 * case may not be covered by the all_pinned logic if there
2947 * is only 1 task on the busy runqueue (because we don't call
2948 * move_tasks).
2949 */
2950 if (sd->balance_interval < sd->max_interval)
2951 sd->balance_interval *= 2;
2952 }
2953
2954 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2955 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2956 ld_moved = -1;
2957
2958 goto out;
2959
2960 out_balanced:
2961 schedstat_inc(sd, lb_balanced[idle]);
2962
2963 sd->nr_balance_failed = 0;
2964
2965 out_one_pinned:
2966 /* tune up the balancing interval */
2967 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2968 (sd->balance_interval < sd->max_interval))
2969 sd->balance_interval *= 2;
2970
2971 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2972 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2973 ld_moved = -1;
2974 else
2975 ld_moved = 0;
2976 out:
2977 if (ld_moved)
2978 update_shares(sd);
2979 return ld_moved;
2980 }
2981
2982 /*
2983 * idle_balance is called by schedule() if this_cpu is about to become
2984 * idle. Attempts to pull tasks from other CPUs.
2985 */
2986 static void idle_balance(int this_cpu, struct rq *this_rq)
2987 {
2988 struct sched_domain *sd;
2989 int pulled_task = 0;
2990 unsigned long next_balance = jiffies + HZ;
2991
2992 this_rq->idle_stamp = this_rq->clock;
2993
2994 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2995 return;
2996
2997 /*
2998 * Drop the rq->lock, but keep IRQ/preempt disabled.
2999 */
3000 raw_spin_unlock(&this_rq->lock);
3001
3002 for_each_domain(this_cpu, sd) {
3003 unsigned long interval;
3004 int balance = 1;
3005
3006 if (!(sd->flags & SD_LOAD_BALANCE))
3007 continue;
3008
3009 if (sd->flags & SD_BALANCE_NEWIDLE) {
3010 /* If we've pulled tasks over stop searching: */
3011 pulled_task = load_balance(this_cpu, this_rq,
3012 sd, CPU_NEWLY_IDLE, &balance);
3013 }
3014
3015 interval = msecs_to_jiffies(sd->balance_interval);
3016 if (time_after(next_balance, sd->last_balance + interval))
3017 next_balance = sd->last_balance + interval;
3018 if (pulled_task) {
3019 this_rq->idle_stamp = 0;
3020 break;
3021 }
3022 }
3023
3024 raw_spin_lock(&this_rq->lock);
3025
3026 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3027 /*
3028 * We are going idle. next_balance may be set based on
3029 * a busy processor. So reset next_balance.
3030 */
3031 this_rq->next_balance = next_balance;
3032 }
3033 }
3034
3035 /*
3036 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3037 * running tasks off the busiest CPU onto idle CPUs. It requires at
3038 * least 1 task to be running on each physical CPU where possible, and
3039 * avoids physical / logical imbalances.
3040 */
3041 static int active_load_balance_cpu_stop(void *data)
3042 {
3043 struct rq *busiest_rq = data;
3044 int busiest_cpu = cpu_of(busiest_rq);
3045 int target_cpu = busiest_rq->push_cpu;
3046 struct rq *target_rq = cpu_rq(target_cpu);
3047 struct sched_domain *sd;
3048
3049 raw_spin_lock_irq(&busiest_rq->lock);
3050
3051 /* make sure the requested cpu hasn't gone down in the meantime */
3052 if (unlikely(busiest_cpu != smp_processor_id() ||
3053 !busiest_rq->active_balance))
3054 goto out_unlock;
3055
3056 /* Is there any task to move? */
3057 if (busiest_rq->nr_running <= 1)
3058 goto out_unlock;
3059
3060 /*
3061 * This condition is "impossible", if it occurs
3062 * we need to fix it. Originally reported by
3063 * Bjorn Helgaas on a 128-cpu setup.
3064 */
3065 BUG_ON(busiest_rq == target_rq);
3066
3067 /* move a task from busiest_rq to target_rq */
3068 double_lock_balance(busiest_rq, target_rq);
3069
3070 /* Search for an sd spanning us and the target CPU. */
3071 for_each_domain(target_cpu, sd) {
3072 if ((sd->flags & SD_LOAD_BALANCE) &&
3073 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3074 break;
3075 }
3076
3077 if (likely(sd)) {
3078 schedstat_inc(sd, alb_count);
3079
3080 if (move_one_task(target_rq, target_cpu, busiest_rq,
3081 sd, CPU_IDLE))
3082 schedstat_inc(sd, alb_pushed);
3083 else
3084 schedstat_inc(sd, alb_failed);
3085 }
3086 double_unlock_balance(busiest_rq, target_rq);
3087 out_unlock:
3088 busiest_rq->active_balance = 0;
3089 raw_spin_unlock_irq(&busiest_rq->lock);
3090 return 0;
3091 }
3092
3093 #ifdef CONFIG_NO_HZ
3094 static struct {
3095 atomic_t load_balancer;
3096 cpumask_var_t cpu_mask;
3097 cpumask_var_t ilb_grp_nohz_mask;
3098 } nohz ____cacheline_aligned = {
3099 .load_balancer = ATOMIC_INIT(-1),
3100 };
3101
3102 int get_nohz_load_balancer(void)
3103 {
3104 return atomic_read(&nohz.load_balancer);
3105 }
3106
3107 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3108 /**
3109 * lowest_flag_domain - Return lowest sched_domain containing flag.
3110 * @cpu: The cpu whose lowest level of sched domain is to
3111 * be returned.
3112 * @flag: The flag to check for the lowest sched_domain
3113 * for the given cpu.
3114 *
3115 * Returns the lowest sched_domain of a cpu which contains the given flag.
3116 */
3117 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3118 {
3119 struct sched_domain *sd;
3120
3121 for_each_domain(cpu, sd)
3122 if (sd && (sd->flags & flag))
3123 break;
3124
3125 return sd;
3126 }
3127
3128 /**
3129 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3130 * @cpu: The cpu whose domains we're iterating over.
3131 * @sd: variable holding the value of the power_savings_sd
3132 * for cpu.
3133 * @flag: The flag to filter the sched_domains to be iterated.
3134 *
3135 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3136 * set, starting from the lowest sched_domain to the highest.
3137 */
3138 #define for_each_flag_domain(cpu, sd, flag) \
3139 for (sd = lowest_flag_domain(cpu, flag); \
3140 (sd && (sd->flags & flag)); sd = sd->parent)
3141
3142 /**
3143 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3144 * @ilb_group: group to be checked for semi-idleness
3145 *
3146 * Returns: 1 if the group is semi-idle. 0 otherwise.
3147 *
3148 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3149 * and atleast one non-idle CPU. This helper function checks if the given
3150 * sched_group is semi-idle or not.
3151 */
3152 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3153 {
3154 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3155 sched_group_cpus(ilb_group));
3156
3157 /*
3158 * A sched_group is semi-idle when it has atleast one busy cpu
3159 * and atleast one idle cpu.
3160 */
3161 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3162 return 0;
3163
3164 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3165 return 0;
3166
3167 return 1;
3168 }
3169 /**
3170 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3171 * @cpu: The cpu which is nominating a new idle_load_balancer.
3172 *
3173 * Returns: Returns the id of the idle load balancer if it exists,
3174 * Else, returns >= nr_cpu_ids.
3175 *
3176 * This algorithm picks the idle load balancer such that it belongs to a
3177 * semi-idle powersavings sched_domain. The idea is to try and avoid
3178 * completely idle packages/cores just for the purpose of idle load balancing
3179 * when there are other idle cpu's which are better suited for that job.
3180 */
3181 static int find_new_ilb(int cpu)
3182 {
3183 struct sched_domain *sd;
3184 struct sched_group *ilb_group;
3185
3186 /*
3187 * Have idle load balancer selection from semi-idle packages only
3188 * when power-aware load balancing is enabled
3189 */
3190 if (!(sched_smt_power_savings || sched_mc_power_savings))
3191 goto out_done;
3192
3193 /*
3194 * Optimize for the case when we have no idle CPUs or only one
3195 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3196 */
3197 if (cpumask_weight(nohz.cpu_mask) < 2)
3198 goto out_done;
3199
3200 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3201 ilb_group = sd->groups;
3202
3203 do {
3204 if (is_semi_idle_group(ilb_group))
3205 return cpumask_first(nohz.ilb_grp_nohz_mask);
3206
3207 ilb_group = ilb_group->next;
3208
3209 } while (ilb_group != sd->groups);
3210 }
3211
3212 out_done:
3213 return cpumask_first(nohz.cpu_mask);
3214 }
3215 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3216 static inline int find_new_ilb(int call_cpu)
3217 {
3218 return cpumask_first(nohz.cpu_mask);
3219 }
3220 #endif
3221
3222 /*
3223 * This routine will try to nominate the ilb (idle load balancing)
3224 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3225 * load balancing on behalf of all those cpus. If all the cpus in the system
3226 * go into this tickless mode, then there will be no ilb owner (as there is
3227 * no need for one) and all the cpus will sleep till the next wakeup event
3228 * arrives...
3229 *
3230 * For the ilb owner, tick is not stopped. And this tick will be used
3231 * for idle load balancing. ilb owner will still be part of
3232 * nohz.cpu_mask..
3233 *
3234 * While stopping the tick, this cpu will become the ilb owner if there
3235 * is no other owner. And will be the owner till that cpu becomes busy
3236 * or if all cpus in the system stop their ticks at which point
3237 * there is no need for ilb owner.
3238 *
3239 * When the ilb owner becomes busy, it nominates another owner, during the
3240 * next busy scheduler_tick()
3241 */
3242 int select_nohz_load_balancer(int stop_tick)
3243 {
3244 int cpu = smp_processor_id();
3245
3246 if (stop_tick) {
3247 cpu_rq(cpu)->in_nohz_recently = 1;
3248
3249 if (!cpu_active(cpu)) {
3250 if (atomic_read(&nohz.load_balancer) != cpu)
3251 return 0;
3252
3253 /*
3254 * If we are going offline and still the leader,
3255 * give up!
3256 */
3257 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3258 BUG();
3259
3260 return 0;
3261 }
3262
3263 cpumask_set_cpu(cpu, nohz.cpu_mask);
3264
3265 /* time for ilb owner also to sleep */
3266 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3267 if (atomic_read(&nohz.load_balancer) == cpu)
3268 atomic_set(&nohz.load_balancer, -1);
3269 return 0;
3270 }
3271
3272 if (atomic_read(&nohz.load_balancer) == -1) {
3273 /* make me the ilb owner */
3274 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3275 return 1;
3276 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3277 int new_ilb;
3278
3279 if (!(sched_smt_power_savings ||
3280 sched_mc_power_savings))
3281 return 1;
3282 /*
3283 * Check to see if there is a more power-efficient
3284 * ilb.
3285 */
3286 new_ilb = find_new_ilb(cpu);
3287 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3288 atomic_set(&nohz.load_balancer, -1);
3289 resched_cpu(new_ilb);
3290 return 0;
3291 }
3292 return 1;
3293 }
3294 } else {
3295 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3296 return 0;
3297
3298 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3299
3300 if (atomic_read(&nohz.load_balancer) == cpu)
3301 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3302 BUG();
3303 }
3304 return 0;
3305 }
3306 #endif
3307
3308 static DEFINE_SPINLOCK(balancing);
3309
3310 /*
3311 * It checks each scheduling domain to see if it is due to be balanced,
3312 * and initiates a balancing operation if so.
3313 *
3314 * Balancing parameters are set up in arch_init_sched_domains.
3315 */
3316 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3317 {
3318 int balance = 1;
3319 struct rq *rq = cpu_rq(cpu);
3320 unsigned long interval;
3321 struct sched_domain *sd;
3322 /* Earliest time when we have to do rebalance again */
3323 unsigned long next_balance = jiffies + 60*HZ;
3324 int update_next_balance = 0;
3325 int need_serialize;
3326
3327 for_each_domain(cpu, sd) {
3328 if (!(sd->flags & SD_LOAD_BALANCE))
3329 continue;
3330
3331 interval = sd->balance_interval;
3332 if (idle != CPU_IDLE)
3333 interval *= sd->busy_factor;
3334
3335 /* scale ms to jiffies */
3336 interval = msecs_to_jiffies(interval);
3337 if (unlikely(!interval))
3338 interval = 1;
3339 if (interval > HZ*NR_CPUS/10)
3340 interval = HZ*NR_CPUS/10;
3341
3342 need_serialize = sd->flags & SD_SERIALIZE;
3343
3344 if (need_serialize) {
3345 if (!spin_trylock(&balancing))
3346 goto out;
3347 }
3348
3349 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3350 if (load_balance(cpu, rq, sd, idle, &balance)) {
3351 /*
3352 * We've pulled tasks over so either we're no
3353 * longer idle, or one of our SMT siblings is
3354 * not idle.
3355 */
3356 idle = CPU_NOT_IDLE;
3357 }
3358 sd->last_balance = jiffies;
3359 }
3360 if (need_serialize)
3361 spin_unlock(&balancing);
3362 out:
3363 if (time_after(next_balance, sd->last_balance + interval)) {
3364 next_balance = sd->last_balance + interval;
3365 update_next_balance = 1;
3366 }
3367
3368 /*
3369 * Stop the load balance at this level. There is another
3370 * CPU in our sched group which is doing load balancing more
3371 * actively.
3372 */
3373 if (!balance)
3374 break;
3375 }
3376
3377 /*
3378 * next_balance will be updated only when there is a need.
3379 * When the cpu is attached to null domain for ex, it will not be
3380 * updated.
3381 */
3382 if (likely(update_next_balance))
3383 rq->next_balance = next_balance;
3384 }
3385
3386 /*
3387 * run_rebalance_domains is triggered when needed from the scheduler tick.
3388 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3389 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3390 */
3391 static void run_rebalance_domains(struct softirq_action *h)
3392 {
3393 int this_cpu = smp_processor_id();
3394 struct rq *this_rq = cpu_rq(this_cpu);
3395 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3396 CPU_IDLE : CPU_NOT_IDLE;
3397
3398 rebalance_domains(this_cpu, idle);
3399
3400 #ifdef CONFIG_NO_HZ
3401 /*
3402 * If this cpu is the owner for idle load balancing, then do the
3403 * balancing on behalf of the other idle cpus whose ticks are
3404 * stopped.
3405 */
3406 if (this_rq->idle_at_tick &&
3407 atomic_read(&nohz.load_balancer) == this_cpu) {
3408 struct rq *rq;
3409 int balance_cpu;
3410
3411 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3412 if (balance_cpu == this_cpu)
3413 continue;
3414
3415 /*
3416 * If this cpu gets work to do, stop the load balancing
3417 * work being done for other cpus. Next load
3418 * balancing owner will pick it up.
3419 */
3420 if (need_resched())
3421 break;
3422
3423 rebalance_domains(balance_cpu, CPU_IDLE);
3424
3425 rq = cpu_rq(balance_cpu);
3426 if (time_after(this_rq->next_balance, rq->next_balance))
3427 this_rq->next_balance = rq->next_balance;
3428 }
3429 }
3430 #endif
3431 }
3432
3433 static inline int on_null_domain(int cpu)
3434 {
3435 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3436 }
3437
3438 /*
3439 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3440 *
3441 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3442 * idle load balancing owner or decide to stop the periodic load balancing,
3443 * if the whole system is idle.
3444 */
3445 static inline void trigger_load_balance(struct rq *rq, int cpu)
3446 {
3447 #ifdef CONFIG_NO_HZ
3448 /*
3449 * If we were in the nohz mode recently and busy at the current
3450 * scheduler tick, then check if we need to nominate new idle
3451 * load balancer.
3452 */
3453 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3454 rq->in_nohz_recently = 0;
3455
3456 if (atomic_read(&nohz.load_balancer) == cpu) {
3457 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3458 atomic_set(&nohz.load_balancer, -1);
3459 }
3460
3461 if (atomic_read(&nohz.load_balancer) == -1) {
3462 int ilb = find_new_ilb(cpu);
3463
3464 if (ilb < nr_cpu_ids)
3465 resched_cpu(ilb);
3466 }
3467 }
3468
3469 /*
3470 * If this cpu is idle and doing idle load balancing for all the
3471 * cpus with ticks stopped, is it time for that to stop?
3472 */
3473 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3474 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3475 resched_cpu(cpu);
3476 return;
3477 }
3478
3479 /*
3480 * If this cpu is idle and the idle load balancing is done by
3481 * someone else, then no need raise the SCHED_SOFTIRQ
3482 */
3483 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3484 cpumask_test_cpu(cpu, nohz.cpu_mask))
3485 return;
3486 #endif
3487 /* Don't need to rebalance while attached to NULL domain */
3488 if (time_after_eq(jiffies, rq->next_balance) &&
3489 likely(!on_null_domain(cpu)))
3490 raise_softirq(SCHED_SOFTIRQ);
3491 }
3492
3493 static void rq_online_fair(struct rq *rq)
3494 {
3495 update_sysctl();
3496 }
3497
3498 static void rq_offline_fair(struct rq *rq)
3499 {
3500 update_sysctl();
3501 }
3502
3503 #else /* CONFIG_SMP */
3504
3505 /*
3506 * on UP we do not need to balance between CPUs:
3507 */
3508 static inline void idle_balance(int cpu, struct rq *rq)
3509 {
3510 }
3511
3512 #endif /* CONFIG_SMP */
3513
3514 /*
3515 * scheduler tick hitting a task of our scheduling class:
3516 */
3517 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3518 {
3519 struct cfs_rq *cfs_rq;
3520 struct sched_entity *se = &curr->se;
3521
3522 for_each_sched_entity(se) {
3523 cfs_rq = cfs_rq_of(se);
3524 entity_tick(cfs_rq, se, queued);
3525 }
3526 }
3527
3528 /*
3529 * called on fork with the child task as argument from the parent's context
3530 * - child not yet on the tasklist
3531 * - preemption disabled
3532 */
3533 static void task_fork_fair(struct task_struct *p)
3534 {
3535 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3536 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3537 int this_cpu = smp_processor_id();
3538 struct rq *rq = this_rq();
3539 unsigned long flags;
3540
3541 raw_spin_lock_irqsave(&rq->lock, flags);
3542
3543 if (unlikely(task_cpu(p) != this_cpu))
3544 __set_task_cpu(p, this_cpu);
3545
3546 update_curr(cfs_rq);
3547
3548 if (curr)
3549 se->vruntime = curr->vruntime;
3550 place_entity(cfs_rq, se, 1);
3551
3552 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3553 /*
3554 * Upon rescheduling, sched_class::put_prev_task() will place
3555 * 'current' within the tree based on its new key value.
3556 */
3557 swap(curr->vruntime, se->vruntime);
3558 resched_task(rq->curr);
3559 }
3560
3561 se->vruntime -= cfs_rq->min_vruntime;
3562
3563 raw_spin_unlock_irqrestore(&rq->lock, flags);
3564 }
3565
3566 /*
3567 * Priority of the task has changed. Check to see if we preempt
3568 * the current task.
3569 */
3570 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3571 int oldprio, int running)
3572 {
3573 /*
3574 * Reschedule if we are currently running on this runqueue and
3575 * our priority decreased, or if we are not currently running on
3576 * this runqueue and our priority is higher than the current's
3577 */
3578 if (running) {
3579 if (p->prio > oldprio)
3580 resched_task(rq->curr);
3581 } else
3582 check_preempt_curr(rq, p, 0);
3583 }
3584
3585 /*
3586 * We switched to the sched_fair class.
3587 */
3588 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3589 int running)
3590 {
3591 /*
3592 * We were most likely switched from sched_rt, so
3593 * kick off the schedule if running, otherwise just see
3594 * if we can still preempt the current task.
3595 */
3596 if (running)
3597 resched_task(rq->curr);
3598 else
3599 check_preempt_curr(rq, p, 0);
3600 }
3601
3602 /* Account for a task changing its policy or group.
3603 *
3604 * This routine is mostly called to set cfs_rq->curr field when a task
3605 * migrates between groups/classes.
3606 */
3607 static void set_curr_task_fair(struct rq *rq)
3608 {
3609 struct sched_entity *se = &rq->curr->se;
3610
3611 for_each_sched_entity(se)
3612 set_next_entity(cfs_rq_of(se), se);
3613 }
3614
3615 #ifdef CONFIG_FAIR_GROUP_SCHED
3616 static void moved_group_fair(struct task_struct *p, int on_rq)
3617 {
3618 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3619
3620 update_curr(cfs_rq);
3621 if (!on_rq)
3622 place_entity(cfs_rq, &p->se, 1);
3623 }
3624 #endif
3625
3626 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3627 {
3628 struct sched_entity *se = &task->se;
3629 unsigned int rr_interval = 0;
3630
3631 /*
3632 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3633 * idle runqueue:
3634 */
3635 if (rq->cfs.load.weight)
3636 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3637
3638 return rr_interval;
3639 }
3640
3641 /*
3642 * All the scheduling class methods:
3643 */
3644 static const struct sched_class fair_sched_class = {
3645 .next = &idle_sched_class,
3646 .enqueue_task = enqueue_task_fair,
3647 .dequeue_task = dequeue_task_fair,
3648 .yield_task = yield_task_fair,
3649
3650 .check_preempt_curr = check_preempt_wakeup,
3651
3652 .pick_next_task = pick_next_task_fair,
3653 .put_prev_task = put_prev_task_fair,
3654
3655 #ifdef CONFIG_SMP
3656 .select_task_rq = select_task_rq_fair,
3657
3658 .rq_online = rq_online_fair,
3659 .rq_offline = rq_offline_fair,
3660
3661 .task_waking = task_waking_fair,
3662 #endif
3663
3664 .set_curr_task = set_curr_task_fair,
3665 .task_tick = task_tick_fair,
3666 .task_fork = task_fork_fair,
3667
3668 .prio_changed = prio_changed_fair,
3669 .switched_to = switched_to_fair,
3670
3671 .get_rr_interval = get_rr_interval_fair,
3672
3673 #ifdef CONFIG_FAIR_GROUP_SCHED
3674 .moved_group = moved_group_fair,
3675 #endif
3676 };
3677
3678 #ifdef CONFIG_SCHED_DEBUG
3679 static void print_cfs_stats(struct seq_file *m, int cpu)
3680 {
3681 struct cfs_rq *cfs_rq;
3682
3683 rcu_read_lock();
3684 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3685 print_cfs_rq(m, cpu, cfs_rq);
3686 rcu_read_unlock();
3687 }
3688 #endif
This page took 0.164273 seconds and 6 git commands to generate.