Merge branches 'sched/urgent' and 'sched/rt' into sched/devel
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 static inline struct task_struct *task_of(struct sched_entity *se)
81 {
82 return container_of(se, struct task_struct, se);
83 }
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101 {
102 return p->se.cfs_rq;
103 }
104
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107 {
108 return se->cfs_rq;
109 }
110
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113 {
114 return grp->my_q;
115 }
116
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121 {
122 return cfs_rq->tg->cfs_rq[this_cpu];
123 }
124
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
132 {
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137 }
138
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
140 {
141 return se->parent;
142 }
143
144 #else /* CONFIG_FAIR_GROUP_SCHED */
145
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147 {
148 return container_of(cfs_rq, struct rq, cfs);
149 }
150
151 #define entity_is_task(se) 1
152
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
155
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157 {
158 return &task_rq(p)->cfs;
159 }
160
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162 {
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167 }
168
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171 {
172 return NULL;
173 }
174
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176 {
177 return &cpu_rq(this_cpu)->cfs;
178 }
179
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
185 {
186 return 1;
187 }
188
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
190 {
191 return NULL;
192 }
193
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
195
196
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202 {
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208 }
209
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
211 {
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217 }
218
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220 {
221 return se->vruntime - cfs_rq->min_vruntime;
222 }
223
224 /*
225 * Enqueue an entity into the rb-tree:
226 */
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 {
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
269 }
270
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 {
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
288
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
293 }
294
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296 {
297 return cfs_rq->rb_leftmost;
298 }
299
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301 {
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303 }
304
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306 {
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308
309 if (!last)
310 return NULL;
311
312 return rb_entry(last, struct sched_entity, run_node);
313 }
314
315 /**************************************************************
316 * Scheduling class statistics methods:
317 */
318
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323 {
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333 }
334 #endif
335
336 /*
337 * delta *= w / rw
338 */
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta, struct sched_entity *se)
341 {
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348 }
349
350 /*
351 * delta *= rw / w
352 */
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta, struct sched_entity *se)
355 {
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362 }
363
364 /*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
372 static u64 __sched_period(unsigned long nr_running)
373 {
374 u64 period = sysctl_sched_latency;
375 unsigned long nr_latency = sched_nr_latency;
376
377 if (unlikely(nr_running > nr_latency)) {
378 period = sysctl_sched_min_granularity;
379 period *= nr_running;
380 }
381
382 return period;
383 }
384
385 /*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
391 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392 {
393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 }
395
396 /*
397 * We calculate the vruntime slice of a to be inserted task
398 *
399 * vs = s*rw/w = p
400 */
401 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 unsigned long nr_running = cfs_rq->nr_running;
404
405 if (!se->on_rq)
406 nr_running++;
407
408 return __sched_period(nr_running);
409 }
410
411 /*
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
414 */
415 static inline void
416 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
417 unsigned long delta_exec)
418 {
419 unsigned long delta_exec_weighted;
420
421 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422
423 curr->sum_exec_runtime += delta_exec;
424 schedstat_add(cfs_rq, exec_clock, delta_exec);
425 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
426 curr->vruntime += delta_exec_weighted;
427 }
428
429 static void update_curr(struct cfs_rq *cfs_rq)
430 {
431 struct sched_entity *curr = cfs_rq->curr;
432 u64 now = rq_of(cfs_rq)->clock;
433 unsigned long delta_exec;
434
435 if (unlikely(!curr))
436 return;
437
438 /*
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
442 */
443 delta_exec = (unsigned long)(now - curr->exec_start);
444
445 __update_curr(cfs_rq, curr, delta_exec);
446 curr->exec_start = now;
447
448 if (entity_is_task(curr)) {
449 struct task_struct *curtask = task_of(curr);
450
451 cpuacct_charge(curtask, delta_exec);
452 }
453 }
454
455 static inline void
456 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
457 {
458 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
459 }
460
461 /*
462 * Task is being enqueued - update stats:
463 */
464 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
465 {
466 /*
467 * Are we enqueueing a waiting task? (for current tasks
468 * a dequeue/enqueue event is a NOP)
469 */
470 if (se != cfs_rq->curr)
471 update_stats_wait_start(cfs_rq, se);
472 }
473
474 static void
475 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
476 {
477 schedstat_set(se->wait_max, max(se->wait_max,
478 rq_of(cfs_rq)->clock - se->wait_start));
479 schedstat_set(se->wait_count, se->wait_count + 1);
480 schedstat_set(se->wait_sum, se->wait_sum +
481 rq_of(cfs_rq)->clock - se->wait_start);
482 schedstat_set(se->wait_start, 0);
483 }
484
485 static inline void
486 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 /*
489 * Mark the end of the wait period if dequeueing a
490 * waiting task:
491 */
492 if (se != cfs_rq->curr)
493 update_stats_wait_end(cfs_rq, se);
494 }
495
496 /*
497 * We are picking a new current task - update its stats:
498 */
499 static inline void
500 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 {
502 /*
503 * We are starting a new run period:
504 */
505 se->exec_start = rq_of(cfs_rq)->clock;
506 }
507
508 /**************************************************
509 * Scheduling class queueing methods:
510 */
511
512 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
513 static void
514 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
515 {
516 cfs_rq->task_weight += weight;
517 }
518 #else
519 static inline void
520 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
521 {
522 }
523 #endif
524
525 static void
526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 update_load_add(&cfs_rq->load, se->load.weight);
529 if (!parent_entity(se))
530 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
531 if (entity_is_task(se))
532 add_cfs_task_weight(cfs_rq, se->load.weight);
533 cfs_rq->nr_running++;
534 se->on_rq = 1;
535 list_add(&se->group_node, &cfs_rq->tasks);
536 }
537
538 static void
539 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
540 {
541 update_load_sub(&cfs_rq->load, se->load.weight);
542 if (!parent_entity(se))
543 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
544 if (entity_is_task(se))
545 add_cfs_task_weight(cfs_rq, -se->load.weight);
546 cfs_rq->nr_running--;
547 se->on_rq = 0;
548 list_del_init(&se->group_node);
549 }
550
551 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 {
553 #ifdef CONFIG_SCHEDSTATS
554 if (se->sleep_start) {
555 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
556 struct task_struct *tsk = task_of(se);
557
558 if ((s64)delta < 0)
559 delta = 0;
560
561 if (unlikely(delta > se->sleep_max))
562 se->sleep_max = delta;
563
564 se->sleep_start = 0;
565 se->sum_sleep_runtime += delta;
566
567 account_scheduler_latency(tsk, delta >> 10, 1);
568 }
569 if (se->block_start) {
570 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
571 struct task_struct *tsk = task_of(se);
572
573 if ((s64)delta < 0)
574 delta = 0;
575
576 if (unlikely(delta > se->block_max))
577 se->block_max = delta;
578
579 se->block_start = 0;
580 se->sum_sleep_runtime += delta;
581
582 /*
583 * Blocking time is in units of nanosecs, so shift by 20 to
584 * get a milliseconds-range estimation of the amount of
585 * time that the task spent sleeping:
586 */
587 if (unlikely(prof_on == SLEEP_PROFILING)) {
588
589 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
590 delta >> 20);
591 }
592 account_scheduler_latency(tsk, delta >> 10, 0);
593 }
594 #endif
595 }
596
597 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 #ifdef CONFIG_SCHED_DEBUG
600 s64 d = se->vruntime - cfs_rq->min_vruntime;
601
602 if (d < 0)
603 d = -d;
604
605 if (d > 3*sysctl_sched_latency)
606 schedstat_inc(cfs_rq, nr_spread_over);
607 #endif
608 }
609
610 static void
611 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
612 {
613 u64 vruntime;
614
615 if (first_fair(cfs_rq)) {
616 vruntime = min_vruntime(cfs_rq->min_vruntime,
617 __pick_next_entity(cfs_rq)->vruntime);
618 } else
619 vruntime = cfs_rq->min_vruntime;
620
621 /*
622 * The 'current' period is already promised to the current tasks,
623 * however the extra weight of the new task will slow them down a
624 * little, place the new task so that it fits in the slot that
625 * stays open at the end.
626 */
627 if (initial && sched_feat(START_DEBIT))
628 vruntime += sched_vslice_add(cfs_rq, se);
629
630 if (!initial) {
631 /* sleeps upto a single latency don't count. */
632 if (sched_feat(NEW_FAIR_SLEEPERS)) {
633 unsigned long thresh = sysctl_sched_latency;
634
635 /*
636 * convert the sleeper threshold into virtual time
637 */
638 if (sched_feat(NORMALIZED_SLEEPER))
639 thresh = calc_delta_fair(thresh, se);
640
641 vruntime -= thresh;
642 }
643
644 /* ensure we never gain time by being placed backwards. */
645 vruntime = max_vruntime(se->vruntime, vruntime);
646 }
647
648 se->vruntime = vruntime;
649 }
650
651 static void
652 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
653 {
654 /*
655 * Update run-time statistics of the 'current'.
656 */
657 update_curr(cfs_rq);
658 account_entity_enqueue(cfs_rq, se);
659
660 if (wakeup) {
661 place_entity(cfs_rq, se, 0);
662 enqueue_sleeper(cfs_rq, se);
663 }
664
665 update_stats_enqueue(cfs_rq, se);
666 check_spread(cfs_rq, se);
667 if (se != cfs_rq->curr)
668 __enqueue_entity(cfs_rq, se);
669 }
670
671 static void
672 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
673 {
674 /*
675 * Update run-time statistics of the 'current'.
676 */
677 update_curr(cfs_rq);
678
679 update_stats_dequeue(cfs_rq, se);
680 if (sleep) {
681 #ifdef CONFIG_SCHEDSTATS
682 if (entity_is_task(se)) {
683 struct task_struct *tsk = task_of(se);
684
685 if (tsk->state & TASK_INTERRUPTIBLE)
686 se->sleep_start = rq_of(cfs_rq)->clock;
687 if (tsk->state & TASK_UNINTERRUPTIBLE)
688 se->block_start = rq_of(cfs_rq)->clock;
689 }
690 #endif
691 }
692
693 if (se != cfs_rq->curr)
694 __dequeue_entity(cfs_rq, se);
695 account_entity_dequeue(cfs_rq, se);
696 }
697
698 /*
699 * Preempt the current task with a newly woken task if needed:
700 */
701 static void
702 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
703 {
704 unsigned long ideal_runtime, delta_exec;
705
706 ideal_runtime = sched_slice(cfs_rq, curr);
707 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
708 if (delta_exec > ideal_runtime)
709 resched_task(rq_of(cfs_rq)->curr);
710 }
711
712 static void
713 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 /* 'current' is not kept within the tree. */
716 if (se->on_rq) {
717 /*
718 * Any task has to be enqueued before it get to execute on
719 * a CPU. So account for the time it spent waiting on the
720 * runqueue.
721 */
722 update_stats_wait_end(cfs_rq, se);
723 __dequeue_entity(cfs_rq, se);
724 }
725
726 update_stats_curr_start(cfs_rq, se);
727 cfs_rq->curr = se;
728 #ifdef CONFIG_SCHEDSTATS
729 /*
730 * Track our maximum slice length, if the CPU's load is at
731 * least twice that of our own weight (i.e. dont track it
732 * when there are only lesser-weight tasks around):
733 */
734 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
735 se->slice_max = max(se->slice_max,
736 se->sum_exec_runtime - se->prev_sum_exec_runtime);
737 }
738 #endif
739 se->prev_sum_exec_runtime = se->sum_exec_runtime;
740 }
741
742 static struct sched_entity *
743 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 struct rq *rq = rq_of(cfs_rq);
746 u64 pair_slice = rq->clock - cfs_rq->pair_start;
747
748 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
749 cfs_rq->pair_start = rq->clock;
750 return se;
751 }
752
753 return cfs_rq->next;
754 }
755
756 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
757 {
758 struct sched_entity *se = NULL;
759
760 if (first_fair(cfs_rq)) {
761 se = __pick_next_entity(cfs_rq);
762 se = pick_next(cfs_rq, se);
763 set_next_entity(cfs_rq, se);
764 }
765
766 return se;
767 }
768
769 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
770 {
771 /*
772 * If still on the runqueue then deactivate_task()
773 * was not called and update_curr() has to be done:
774 */
775 if (prev->on_rq)
776 update_curr(cfs_rq);
777
778 check_spread(cfs_rq, prev);
779 if (prev->on_rq) {
780 update_stats_wait_start(cfs_rq, prev);
781 /* Put 'current' back into the tree. */
782 __enqueue_entity(cfs_rq, prev);
783 }
784 cfs_rq->curr = NULL;
785 }
786
787 static void
788 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
789 {
790 /*
791 * Update run-time statistics of the 'current'.
792 */
793 update_curr(cfs_rq);
794
795 #ifdef CONFIG_SCHED_HRTICK
796 /*
797 * queued ticks are scheduled to match the slice, so don't bother
798 * validating it and just reschedule.
799 */
800 if (queued) {
801 resched_task(rq_of(cfs_rq)->curr);
802 return;
803 }
804 /*
805 * don't let the period tick interfere with the hrtick preemption
806 */
807 if (!sched_feat(DOUBLE_TICK) &&
808 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
809 return;
810 #endif
811
812 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
813 check_preempt_tick(cfs_rq, curr);
814 }
815
816 /**************************************************
817 * CFS operations on tasks:
818 */
819
820 #ifdef CONFIG_SCHED_HRTICK
821 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
822 {
823 struct sched_entity *se = &p->se;
824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
825
826 WARN_ON(task_rq(p) != rq);
827
828 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
829 u64 slice = sched_slice(cfs_rq, se);
830 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
831 s64 delta = slice - ran;
832
833 if (delta < 0) {
834 if (rq->curr == p)
835 resched_task(p);
836 return;
837 }
838
839 /*
840 * Don't schedule slices shorter than 10000ns, that just
841 * doesn't make sense. Rely on vruntime for fairness.
842 */
843 if (rq->curr != p)
844 delta = max_t(s64, 10000LL, delta);
845
846 hrtick_start(rq, delta);
847 }
848 }
849 #else /* !CONFIG_SCHED_HRTICK */
850 static inline void
851 hrtick_start_fair(struct rq *rq, struct task_struct *p)
852 {
853 }
854 #endif
855
856 /*
857 * The enqueue_task method is called before nr_running is
858 * increased. Here we update the fair scheduling stats and
859 * then put the task into the rbtree:
860 */
861 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
862 {
863 struct cfs_rq *cfs_rq;
864 struct sched_entity *se = &p->se;
865
866 for_each_sched_entity(se) {
867 if (se->on_rq)
868 break;
869 cfs_rq = cfs_rq_of(se);
870 enqueue_entity(cfs_rq, se, wakeup);
871 wakeup = 1;
872 }
873
874 hrtick_start_fair(rq, rq->curr);
875 }
876
877 /*
878 * The dequeue_task method is called before nr_running is
879 * decreased. We remove the task from the rbtree and
880 * update the fair scheduling stats:
881 */
882 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
883 {
884 struct cfs_rq *cfs_rq;
885 struct sched_entity *se = &p->se;
886
887 for_each_sched_entity(se) {
888 cfs_rq = cfs_rq_of(se);
889 dequeue_entity(cfs_rq, se, sleep);
890 /* Don't dequeue parent if it has other entities besides us */
891 if (cfs_rq->load.weight)
892 break;
893 sleep = 1;
894 }
895
896 hrtick_start_fair(rq, rq->curr);
897 }
898
899 /*
900 * sched_yield() support is very simple - we dequeue and enqueue.
901 *
902 * If compat_yield is turned on then we requeue to the end of the tree.
903 */
904 static void yield_task_fair(struct rq *rq)
905 {
906 struct task_struct *curr = rq->curr;
907 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
908 struct sched_entity *rightmost, *se = &curr->se;
909
910 /*
911 * Are we the only task in the tree?
912 */
913 if (unlikely(cfs_rq->nr_running == 1))
914 return;
915
916 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
917 update_rq_clock(rq);
918 /*
919 * Update run-time statistics of the 'current'.
920 */
921 update_curr(cfs_rq);
922
923 return;
924 }
925 /*
926 * Find the rightmost entry in the rbtree:
927 */
928 rightmost = __pick_last_entity(cfs_rq);
929 /*
930 * Already in the rightmost position?
931 */
932 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
933 return;
934
935 /*
936 * Minimally necessary key value to be last in the tree:
937 * Upon rescheduling, sched_class::put_prev_task() will place
938 * 'current' within the tree based on its new key value.
939 */
940 se->vruntime = rightmost->vruntime + 1;
941 }
942
943 /*
944 * wake_idle() will wake a task on an idle cpu if task->cpu is
945 * not idle and an idle cpu is available. The span of cpus to
946 * search starts with cpus closest then further out as needed,
947 * so we always favor a closer, idle cpu.
948 * Domains may include CPUs that are not usable for migration,
949 * hence we need to mask them out (cpu_active_map)
950 *
951 * Returns the CPU we should wake onto.
952 */
953 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
954 static int wake_idle(int cpu, struct task_struct *p)
955 {
956 cpumask_t tmp;
957 struct sched_domain *sd;
958 int i;
959
960 /*
961 * If it is idle, then it is the best cpu to run this task.
962 *
963 * This cpu is also the best, if it has more than one task already.
964 * Siblings must be also busy(in most cases) as they didn't already
965 * pickup the extra load from this cpu and hence we need not check
966 * sibling runqueue info. This will avoid the checks and cache miss
967 * penalities associated with that.
968 */
969 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
970 return cpu;
971
972 for_each_domain(cpu, sd) {
973 if ((sd->flags & SD_WAKE_IDLE)
974 || ((sd->flags & SD_WAKE_IDLE_FAR)
975 && !task_hot(p, task_rq(p)->clock, sd))) {
976 cpus_and(tmp, sd->span, p->cpus_allowed);
977 cpus_and(tmp, tmp, cpu_active_map);
978 for_each_cpu_mask_nr(i, tmp) {
979 if (idle_cpu(i)) {
980 if (i != task_cpu(p)) {
981 schedstat_inc(p,
982 se.nr_wakeups_idle);
983 }
984 return i;
985 }
986 }
987 } else {
988 break;
989 }
990 }
991 return cpu;
992 }
993 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
994 static inline int wake_idle(int cpu, struct task_struct *p)
995 {
996 return cpu;
997 }
998 #endif
999
1000 #ifdef CONFIG_SMP
1001
1002 static const struct sched_class fair_sched_class;
1003
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 /*
1006 * effective_load() calculates the load change as seen from the root_task_group
1007 *
1008 * Adding load to a group doesn't make a group heavier, but can cause movement
1009 * of group shares between cpus. Assuming the shares were perfectly aligned one
1010 * can calculate the shift in shares.
1011 *
1012 * The problem is that perfectly aligning the shares is rather expensive, hence
1013 * we try to avoid doing that too often - see update_shares(), which ratelimits
1014 * this change.
1015 *
1016 * We compensate this by not only taking the current delta into account, but
1017 * also considering the delta between when the shares were last adjusted and
1018 * now.
1019 *
1020 * We still saw a performance dip, some tracing learned us that between
1021 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1022 * significantly. Therefore try to bias the error in direction of failing
1023 * the affine wakeup.
1024 *
1025 */
1026 static long effective_load(struct task_group *tg, int cpu,
1027 long wl, long wg)
1028 {
1029 struct sched_entity *se = tg->se[cpu];
1030 long more_w;
1031
1032 if (!tg->parent)
1033 return wl;
1034
1035 /*
1036 * By not taking the decrease of shares on the other cpu into
1037 * account our error leans towards reducing the affine wakeups.
1038 */
1039 if (!wl && sched_feat(ASYM_EFF_LOAD))
1040 return wl;
1041
1042 /*
1043 * Instead of using this increment, also add the difference
1044 * between when the shares were last updated and now.
1045 */
1046 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1047 wl += more_w;
1048 wg += more_w;
1049
1050 for_each_sched_entity(se) {
1051 #define D(n) (likely(n) ? (n) : 1)
1052
1053 long S, rw, s, a, b;
1054
1055 S = se->my_q->tg->shares;
1056 s = se->my_q->shares;
1057 rw = se->my_q->rq_weight;
1058
1059 a = S*(rw + wl);
1060 b = S*rw + s*wg;
1061
1062 wl = s*(a-b)/D(b);
1063 /*
1064 * Assume the group is already running and will
1065 * thus already be accounted for in the weight.
1066 *
1067 * That is, moving shares between CPUs, does not
1068 * alter the group weight.
1069 */
1070 wg = 0;
1071 #undef D
1072 }
1073
1074 return wl;
1075 }
1076
1077 #else
1078
1079 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1080 unsigned long wl, unsigned long wg)
1081 {
1082 return wl;
1083 }
1084
1085 #endif
1086
1087 static int
1088 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1089 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1090 int idx, unsigned long load, unsigned long this_load,
1091 unsigned int imbalance)
1092 {
1093 struct task_struct *curr = this_rq->curr;
1094 struct task_group *tg;
1095 unsigned long tl = this_load;
1096 unsigned long tl_per_task;
1097 unsigned long weight;
1098 int balanced;
1099
1100 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1101 return 0;
1102
1103 /*
1104 * If sync wakeup then subtract the (maximum possible)
1105 * effect of the currently running task from the load
1106 * of the current CPU:
1107 */
1108 if (sync) {
1109 tg = task_group(current);
1110 weight = current->se.load.weight;
1111
1112 tl += effective_load(tg, this_cpu, -weight, -weight);
1113 load += effective_load(tg, prev_cpu, 0, -weight);
1114 }
1115
1116 tg = task_group(p);
1117 weight = p->se.load.weight;
1118
1119 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1120 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1121
1122 /*
1123 * If the currently running task will sleep within
1124 * a reasonable amount of time then attract this newly
1125 * woken task:
1126 */
1127 if (sync && balanced) {
1128 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1129 p->se.avg_overlap < sysctl_sched_migration_cost)
1130 return 1;
1131 }
1132
1133 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1134 tl_per_task = cpu_avg_load_per_task(this_cpu);
1135
1136 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1137 balanced) {
1138 /*
1139 * This domain has SD_WAKE_AFFINE and
1140 * p is cache cold in this domain, and
1141 * there is no bad imbalance.
1142 */
1143 schedstat_inc(this_sd, ttwu_move_affine);
1144 schedstat_inc(p, se.nr_wakeups_affine);
1145
1146 return 1;
1147 }
1148 return 0;
1149 }
1150
1151 static int select_task_rq_fair(struct task_struct *p, int sync)
1152 {
1153 struct sched_domain *sd, *this_sd = NULL;
1154 int prev_cpu, this_cpu, new_cpu;
1155 unsigned long load, this_load;
1156 struct rq *rq, *this_rq;
1157 unsigned int imbalance;
1158 int idx;
1159
1160 prev_cpu = task_cpu(p);
1161 rq = task_rq(p);
1162 this_cpu = smp_processor_id();
1163 this_rq = cpu_rq(this_cpu);
1164 new_cpu = prev_cpu;
1165
1166 /*
1167 * 'this_sd' is the first domain that both
1168 * this_cpu and prev_cpu are present in:
1169 */
1170 for_each_domain(this_cpu, sd) {
1171 if (cpu_isset(prev_cpu, sd->span)) {
1172 this_sd = sd;
1173 break;
1174 }
1175 }
1176
1177 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1178 goto out;
1179
1180 /*
1181 * Check for affine wakeup and passive balancing possibilities.
1182 */
1183 if (!this_sd)
1184 goto out;
1185
1186 idx = this_sd->wake_idx;
1187
1188 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1189
1190 load = source_load(prev_cpu, idx);
1191 this_load = target_load(this_cpu, idx);
1192
1193 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1194 load, this_load, imbalance))
1195 return this_cpu;
1196
1197 if (prev_cpu == this_cpu)
1198 goto out;
1199
1200 /*
1201 * Start passive balancing when half the imbalance_pct
1202 * limit is reached.
1203 */
1204 if (this_sd->flags & SD_WAKE_BALANCE) {
1205 if (imbalance*this_load <= 100*load) {
1206 schedstat_inc(this_sd, ttwu_move_balance);
1207 schedstat_inc(p, se.nr_wakeups_passive);
1208 return this_cpu;
1209 }
1210 }
1211
1212 out:
1213 return wake_idle(new_cpu, p);
1214 }
1215 #endif /* CONFIG_SMP */
1216
1217 static unsigned long wakeup_gran(struct sched_entity *se)
1218 {
1219 unsigned long gran = sysctl_sched_wakeup_granularity;
1220
1221 /*
1222 * More easily preempt - nice tasks, while not making it harder for
1223 * + nice tasks.
1224 */
1225 if (sched_feat(ASYM_GRAN))
1226 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1227
1228 return gran;
1229 }
1230
1231 /*
1232 * Preempt the current task with a newly woken task if needed:
1233 */
1234 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1235 {
1236 struct task_struct *curr = rq->curr;
1237 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1238 struct sched_entity *se = &curr->se, *pse = &p->se;
1239 s64 delta_exec;
1240
1241 if (unlikely(rt_prio(p->prio))) {
1242 update_rq_clock(rq);
1243 update_curr(cfs_rq);
1244 resched_task(curr);
1245 return;
1246 }
1247
1248 if (unlikely(se == pse))
1249 return;
1250
1251 /*
1252 * We can come here with TIF_NEED_RESCHED already set from new task
1253 * wake up path.
1254 */
1255 if (test_tsk_need_resched(curr))
1256 return;
1257
1258 cfs_rq_of(pse)->next = pse;
1259
1260 /*
1261 * Batch tasks do not preempt (their preemption is driven by
1262 * the tick):
1263 */
1264 if (unlikely(p->policy == SCHED_BATCH))
1265 return;
1266
1267 if (!sched_feat(WAKEUP_PREEMPT))
1268 return;
1269
1270 if (sched_feat(WAKEUP_OVERLAP) && sync &&
1271 se->avg_overlap < sysctl_sched_migration_cost &&
1272 pse->avg_overlap < sysctl_sched_migration_cost) {
1273 resched_task(curr);
1274 return;
1275 }
1276
1277 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1278 if (delta_exec > wakeup_gran(pse))
1279 resched_task(curr);
1280 }
1281
1282 static struct task_struct *pick_next_task_fair(struct rq *rq)
1283 {
1284 struct task_struct *p;
1285 struct cfs_rq *cfs_rq = &rq->cfs;
1286 struct sched_entity *se;
1287
1288 if (unlikely(!cfs_rq->nr_running))
1289 return NULL;
1290
1291 do {
1292 se = pick_next_entity(cfs_rq);
1293 cfs_rq = group_cfs_rq(se);
1294 } while (cfs_rq);
1295
1296 p = task_of(se);
1297 hrtick_start_fair(rq, p);
1298
1299 return p;
1300 }
1301
1302 /*
1303 * Account for a descheduled task:
1304 */
1305 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1306 {
1307 struct sched_entity *se = &prev->se;
1308 struct cfs_rq *cfs_rq;
1309
1310 for_each_sched_entity(se) {
1311 cfs_rq = cfs_rq_of(se);
1312 put_prev_entity(cfs_rq, se);
1313 }
1314 }
1315
1316 #ifdef CONFIG_SMP
1317 /**************************************************
1318 * Fair scheduling class load-balancing methods:
1319 */
1320
1321 /*
1322 * Load-balancing iterator. Note: while the runqueue stays locked
1323 * during the whole iteration, the current task might be
1324 * dequeued so the iterator has to be dequeue-safe. Here we
1325 * achieve that by always pre-iterating before returning
1326 * the current task:
1327 */
1328 static struct task_struct *
1329 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1330 {
1331 struct task_struct *p = NULL;
1332 struct sched_entity *se;
1333
1334 if (next == &cfs_rq->tasks)
1335 return NULL;
1336
1337 /* Skip over entities that are not tasks */
1338 do {
1339 se = list_entry(next, struct sched_entity, group_node);
1340 next = next->next;
1341 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1342
1343 if (next == &cfs_rq->tasks && !entity_is_task(se))
1344 return NULL;
1345
1346 cfs_rq->balance_iterator = next;
1347
1348 if (entity_is_task(se))
1349 p = task_of(se);
1350
1351 return p;
1352 }
1353
1354 static struct task_struct *load_balance_start_fair(void *arg)
1355 {
1356 struct cfs_rq *cfs_rq = arg;
1357
1358 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1359 }
1360
1361 static struct task_struct *load_balance_next_fair(void *arg)
1362 {
1363 struct cfs_rq *cfs_rq = arg;
1364
1365 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1366 }
1367
1368 static unsigned long
1369 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1370 unsigned long max_load_move, struct sched_domain *sd,
1371 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1372 struct cfs_rq *cfs_rq)
1373 {
1374 struct rq_iterator cfs_rq_iterator;
1375
1376 cfs_rq_iterator.start = load_balance_start_fair;
1377 cfs_rq_iterator.next = load_balance_next_fair;
1378 cfs_rq_iterator.arg = cfs_rq;
1379
1380 return balance_tasks(this_rq, this_cpu, busiest,
1381 max_load_move, sd, idle, all_pinned,
1382 this_best_prio, &cfs_rq_iterator);
1383 }
1384
1385 #ifdef CONFIG_FAIR_GROUP_SCHED
1386 static unsigned long
1387 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1388 unsigned long max_load_move,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 int *all_pinned, int *this_best_prio)
1391 {
1392 long rem_load_move = max_load_move;
1393 int busiest_cpu = cpu_of(busiest);
1394 struct task_group *tg;
1395
1396 rcu_read_lock();
1397 update_h_load(busiest_cpu);
1398
1399 list_for_each_entry_rcu(tg, &task_groups, list) {
1400 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1401 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1402 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1403 u64 rem_load, moved_load;
1404
1405 /*
1406 * empty group
1407 */
1408 if (!busiest_cfs_rq->task_weight)
1409 continue;
1410
1411 rem_load = (u64)rem_load_move * busiest_weight;
1412 rem_load = div_u64(rem_load, busiest_h_load + 1);
1413
1414 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1415 rem_load, sd, idle, all_pinned, this_best_prio,
1416 tg->cfs_rq[busiest_cpu]);
1417
1418 if (!moved_load)
1419 continue;
1420
1421 moved_load *= busiest_h_load;
1422 moved_load = div_u64(moved_load, busiest_weight + 1);
1423
1424 rem_load_move -= moved_load;
1425 if (rem_load_move < 0)
1426 break;
1427 }
1428 rcu_read_unlock();
1429
1430 return max_load_move - rem_load_move;
1431 }
1432 #else
1433 static unsigned long
1434 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1435 unsigned long max_load_move,
1436 struct sched_domain *sd, enum cpu_idle_type idle,
1437 int *all_pinned, int *this_best_prio)
1438 {
1439 return __load_balance_fair(this_rq, this_cpu, busiest,
1440 max_load_move, sd, idle, all_pinned,
1441 this_best_prio, &busiest->cfs);
1442 }
1443 #endif
1444
1445 static int
1446 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1447 struct sched_domain *sd, enum cpu_idle_type idle)
1448 {
1449 struct cfs_rq *busy_cfs_rq;
1450 struct rq_iterator cfs_rq_iterator;
1451
1452 cfs_rq_iterator.start = load_balance_start_fair;
1453 cfs_rq_iterator.next = load_balance_next_fair;
1454
1455 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1456 /*
1457 * pass busy_cfs_rq argument into
1458 * load_balance_[start|next]_fair iterators
1459 */
1460 cfs_rq_iterator.arg = busy_cfs_rq;
1461 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1462 &cfs_rq_iterator))
1463 return 1;
1464 }
1465
1466 return 0;
1467 }
1468 #endif /* CONFIG_SMP */
1469
1470 /*
1471 * scheduler tick hitting a task of our scheduling class:
1472 */
1473 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1474 {
1475 struct cfs_rq *cfs_rq;
1476 struct sched_entity *se = &curr->se;
1477
1478 for_each_sched_entity(se) {
1479 cfs_rq = cfs_rq_of(se);
1480 entity_tick(cfs_rq, se, queued);
1481 }
1482 }
1483
1484 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1485
1486 /*
1487 * Share the fairness runtime between parent and child, thus the
1488 * total amount of pressure for CPU stays equal - new tasks
1489 * get a chance to run but frequent forkers are not allowed to
1490 * monopolize the CPU. Note: the parent runqueue is locked,
1491 * the child is not running yet.
1492 */
1493 static void task_new_fair(struct rq *rq, struct task_struct *p)
1494 {
1495 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1496 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1497 int this_cpu = smp_processor_id();
1498
1499 sched_info_queued(p);
1500
1501 update_curr(cfs_rq);
1502 place_entity(cfs_rq, se, 1);
1503
1504 /* 'curr' will be NULL if the child belongs to a different group */
1505 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1506 curr && curr->vruntime < se->vruntime) {
1507 /*
1508 * Upon rescheduling, sched_class::put_prev_task() will place
1509 * 'current' within the tree based on its new key value.
1510 */
1511 swap(curr->vruntime, se->vruntime);
1512 resched_task(rq->curr);
1513 }
1514
1515 enqueue_task_fair(rq, p, 0);
1516 }
1517
1518 /*
1519 * Priority of the task has changed. Check to see if we preempt
1520 * the current task.
1521 */
1522 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1523 int oldprio, int running)
1524 {
1525 /*
1526 * Reschedule if we are currently running on this runqueue and
1527 * our priority decreased, or if we are not currently running on
1528 * this runqueue and our priority is higher than the current's
1529 */
1530 if (running) {
1531 if (p->prio > oldprio)
1532 resched_task(rq->curr);
1533 } else
1534 check_preempt_curr(rq, p, 0);
1535 }
1536
1537 /*
1538 * We switched to the sched_fair class.
1539 */
1540 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1541 int running)
1542 {
1543 /*
1544 * We were most likely switched from sched_rt, so
1545 * kick off the schedule if running, otherwise just see
1546 * if we can still preempt the current task.
1547 */
1548 if (running)
1549 resched_task(rq->curr);
1550 else
1551 check_preempt_curr(rq, p, 0);
1552 }
1553
1554 /* Account for a task changing its policy or group.
1555 *
1556 * This routine is mostly called to set cfs_rq->curr field when a task
1557 * migrates between groups/classes.
1558 */
1559 static void set_curr_task_fair(struct rq *rq)
1560 {
1561 struct sched_entity *se = &rq->curr->se;
1562
1563 for_each_sched_entity(se)
1564 set_next_entity(cfs_rq_of(se), se);
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568 static void moved_group_fair(struct task_struct *p)
1569 {
1570 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1571
1572 update_curr(cfs_rq);
1573 place_entity(cfs_rq, &p->se, 1);
1574 }
1575 #endif
1576
1577 /*
1578 * All the scheduling class methods:
1579 */
1580 static const struct sched_class fair_sched_class = {
1581 .next = &idle_sched_class,
1582 .enqueue_task = enqueue_task_fair,
1583 .dequeue_task = dequeue_task_fair,
1584 .yield_task = yield_task_fair,
1585 #ifdef CONFIG_SMP
1586 .select_task_rq = select_task_rq_fair,
1587 #endif /* CONFIG_SMP */
1588
1589 .check_preempt_curr = check_preempt_wakeup,
1590
1591 .pick_next_task = pick_next_task_fair,
1592 .put_prev_task = put_prev_task_fair,
1593
1594 #ifdef CONFIG_SMP
1595 .load_balance = load_balance_fair,
1596 .move_one_task = move_one_task_fair,
1597 #endif
1598
1599 .set_curr_task = set_curr_task_fair,
1600 .task_tick = task_tick_fair,
1601 .task_new = task_new_fair,
1602
1603 .prio_changed = prio_changed_fair,
1604 .switched_to = switched_to_fair,
1605
1606 #ifdef CONFIG_FAIR_GROUP_SCHED
1607 .moved_group = moved_group_fair,
1608 #endif
1609 };
1610
1611 #ifdef CONFIG_SCHED_DEBUG
1612 static void print_cfs_stats(struct seq_file *m, int cpu)
1613 {
1614 struct cfs_rq *cfs_rq;
1615
1616 rcu_read_lock();
1617 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1618 print_cfs_rq(m, cpu, cfs_rq);
1619 rcu_read_unlock();
1620 }
1621 #endif
This page took 0.139185 seconds and 6 git commands to generate.