sched: Add support for unthrottling group entities
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 *
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
35 *
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
38 */
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41
42 /*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 */
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60
61 /*
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
64 static unsigned int sched_nr_latency = 8;
65
66 /*
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
69 */
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
85 /*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
92 #ifdef CONFIG_CFS_BANDWIDTH
93 /*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104 #endif
105
106 static const struct sched_class fair_sched_class;
107
108 /**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
112 #ifdef CONFIG_FAIR_GROUP_SCHED
113
114 /* cpu runqueue to which this cfs_rq is attached */
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116 {
117 return cfs_rq->rq;
118 }
119
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
122
123 static inline struct task_struct *task_of(struct sched_entity *se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127 #endif
128 return container_of(se, struct task_struct, se);
129 }
130
131 /* Walk up scheduling entities hierarchy */
132 #define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136 {
137 return p->se.cfs_rq;
138 }
139
140 /* runqueue on which this entity is (to be) queued */
141 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142 {
143 return se->cfs_rq;
144 }
145
146 /* runqueue "owned" by this group */
147 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148 {
149 return grp->my_q;
150 }
151
152 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153 {
154 if (!cfs_rq->on_list) {
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
168 }
169
170 cfs_rq->on_list = 1;
171 }
172 }
173
174 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175 {
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180 }
181
182 /* Iterate thr' all leaf cfs_rq's on a runqueue */
183 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186 /* Do the two (enqueued) entities belong to the same group ? */
187 static inline int
188 is_same_group(struct sched_entity *se, struct sched_entity *pse)
189 {
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194 }
195
196 static inline struct sched_entity *parent_entity(struct sched_entity *se)
197 {
198 return se->parent;
199 }
200
201 /* return depth at which a sched entity is present in the hierarchy */
202 static inline int depth_se(struct sched_entity *se)
203 {
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210 }
211
212 static void
213 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214 {
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242 }
243
244 #else /* !CONFIG_FAIR_GROUP_SCHED */
245
246 static inline struct task_struct *task_of(struct sched_entity *se)
247 {
248 return container_of(se, struct task_struct, se);
249 }
250
251 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252 {
253 return container_of(cfs_rq, struct rq, cfs);
254 }
255
256 #define entity_is_task(se) 1
257
258 #define for_each_sched_entity(se) \
259 for (; se; se = NULL)
260
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 return &task_rq(p)->cfs;
264 }
265
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267 {
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272 }
273
274 /* runqueue "owned" by this group */
275 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276 {
277 return NULL;
278 }
279
280 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281 {
282 }
283
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 }
287
288 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291 static inline int
292 is_same_group(struct sched_entity *se, struct sched_entity *pse)
293 {
294 return 1;
295 }
296
297 static inline struct sched_entity *parent_entity(struct sched_entity *se)
298 {
299 return NULL;
300 }
301
302 static inline void
303 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304 {
305 }
306
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
308
309 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
311
312 /**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
316 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
317 {
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323 }
324
325 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
326 {
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332 }
333
334 static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336 {
337 return (s64)(a->vruntime - b->vruntime) < 0;
338 }
339
340 static void update_min_vruntime(struct cfs_rq *cfs_rq)
341 {
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
352 if (!cfs_rq->curr)
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
359 #ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362 #endif
363 }
364
365 /*
366 * Enqueue an entity into the rb-tree:
367 */
368 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 {
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
385 if (entity_before(se, entry)) {
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
397 if (leftmost)
398 cfs_rq->rb_leftmost = &se->run_node;
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
402 }
403
404 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
411 }
412
413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
414 }
415
416 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
417 {
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
424 }
425
426 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427 {
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434 }
435
436 #ifdef CONFIG_SCHED_DEBUG
437 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
438 {
439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
440
441 if (!last)
442 return NULL;
443
444 return rb_entry(last, struct sched_entity, run_node);
445 }
446
447 /**************************************************************
448 * Scheduling class statistics methods:
449 */
450
451 int sched_proc_update_handler(struct ctl_table *table, int write,
452 void __user *buffer, size_t *lenp,
453 loff_t *ppos)
454 {
455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
456 int factor = get_update_sysctl_factor();
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
464 #define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
469 #undef WRT_SYSCTL
470
471 return 0;
472 }
473 #endif
474
475 /*
476 * delta /= w
477 */
478 static inline unsigned long
479 calc_delta_fair(unsigned long delta, struct sched_entity *se)
480 {
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
483
484 return delta;
485 }
486
487 /*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
495 static u64 __sched_period(unsigned long nr_running)
496 {
497 u64 period = sysctl_sched_latency;
498 unsigned long nr_latency = sched_nr_latency;
499
500 if (unlikely(nr_running > nr_latency)) {
501 period = sysctl_sched_min_granularity;
502 period *= nr_running;
503 }
504
505 return period;
506 }
507
508 /*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
512 * s = p*P[w/rw]
513 */
514 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
517
518 for_each_sched_entity(se) {
519 struct load_weight *load;
520 struct load_weight lw;
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
524
525 if (unlikely(!se->on_rq)) {
526 lw = cfs_rq->load;
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
534 }
535
536 /*
537 * We calculate the vruntime slice of a to be inserted task
538 *
539 * vs = s/w
540 */
541 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
544 }
545
546 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
547 static void update_cfs_shares(struct cfs_rq *cfs_rq);
548
549 /*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553 static inline void
554 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
556 {
557 unsigned long delta_exec_weighted;
558
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
561
562 curr->sum_exec_runtime += delta_exec;
563 schedstat_add(cfs_rq, exec_clock, delta_exec);
564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
565
566 curr->vruntime += delta_exec_weighted;
567 update_min_vruntime(cfs_rq);
568
569 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
570 cfs_rq->load_unacc_exec_time += delta_exec;
571 #endif
572 }
573
574 static void update_curr(struct cfs_rq *cfs_rq)
575 {
576 struct sched_entity *curr = cfs_rq->curr;
577 u64 now = rq_of(cfs_rq)->clock_task;
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
588 delta_exec = (unsigned long)(now - curr->exec_start);
589 if (!delta_exec)
590 return;
591
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
599 cpuacct_charge(curtask, delta_exec);
600 account_group_exec_runtime(curtask, delta_exec);
601 }
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
604 }
605
606 static inline void
607 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
610 }
611
612 /*
613 * Task is being enqueued - update stats:
614 */
615 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
616 {
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
621 if (se != cfs_rq->curr)
622 update_stats_wait_start(cfs_rq, se);
623 }
624
625 static void
626 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
633 #ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
637 }
638 #endif
639 schedstat_set(se->statistics.wait_start, 0);
640 }
641
642 static inline void
643 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 {
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
649 if (se != cfs_rq->curr)
650 update_stats_wait_end(cfs_rq, se);
651 }
652
653 /*
654 * We are picking a new current task - update its stats:
655 */
656 static inline void
657 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
658 {
659 /*
660 * We are starting a new run period:
661 */
662 se->exec_start = rq_of(cfs_rq)->clock_task;
663 }
664
665 /**************************************************
666 * Scheduling class queueing methods:
667 */
668
669 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670 static void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672 {
673 cfs_rq->task_weight += weight;
674 }
675 #else
676 static inline void
677 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678 {
679 }
680 #endif
681
682 static void
683 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684 {
685 update_load_add(&cfs_rq->load, se->load.weight);
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
688 if (entity_is_task(se)) {
689 add_cfs_task_weight(cfs_rq, se->load.weight);
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
692 cfs_rq->nr_running++;
693 }
694
695 static void
696 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697 {
698 update_load_sub(&cfs_rq->load, se->load.weight);
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
701 if (entity_is_task(se)) {
702 add_cfs_task_weight(cfs_rq, -se->load.weight);
703 list_del_init(&se->group_node);
704 }
705 cfs_rq->nr_running--;
706 }
707
708 #ifdef CONFIG_FAIR_GROUP_SCHED
709 # ifdef CONFIG_SMP
710 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
711 int global_update)
712 {
713 struct task_group *tg = cfs_rq->tg;
714 long load_avg;
715
716 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
717 load_avg -= cfs_rq->load_contribution;
718
719 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
720 atomic_add(load_avg, &tg->load_weight);
721 cfs_rq->load_contribution += load_avg;
722 }
723 }
724
725 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
726 {
727 u64 period = sysctl_sched_shares_window;
728 u64 now, delta;
729 unsigned long load = cfs_rq->load.weight;
730
731 if (cfs_rq->tg == &root_task_group)
732 return;
733
734 now = rq_of(cfs_rq)->clock_task;
735 delta = now - cfs_rq->load_stamp;
736
737 /* truncate load history at 4 idle periods */
738 if (cfs_rq->load_stamp > cfs_rq->load_last &&
739 now - cfs_rq->load_last > 4 * period) {
740 cfs_rq->load_period = 0;
741 cfs_rq->load_avg = 0;
742 delta = period - 1;
743 }
744
745 cfs_rq->load_stamp = now;
746 cfs_rq->load_unacc_exec_time = 0;
747 cfs_rq->load_period += delta;
748 if (load) {
749 cfs_rq->load_last = now;
750 cfs_rq->load_avg += delta * load;
751 }
752
753 /* consider updating load contribution on each fold or truncate */
754 if (global_update || cfs_rq->load_period > period
755 || !cfs_rq->load_period)
756 update_cfs_rq_load_contribution(cfs_rq, global_update);
757
758 while (cfs_rq->load_period > period) {
759 /*
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
763 */
764 asm("" : "+rm" (cfs_rq->load_period));
765 cfs_rq->load_period /= 2;
766 cfs_rq->load_avg /= 2;
767 }
768
769 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
770 list_del_leaf_cfs_rq(cfs_rq);
771 }
772
773 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
774 {
775 long load_weight, load, shares;
776
777 load = cfs_rq->load.weight;
778
779 load_weight = atomic_read(&tg->load_weight);
780 load_weight += load;
781 load_weight -= cfs_rq->load_contribution;
782
783 shares = (tg->shares * load);
784 if (load_weight)
785 shares /= load_weight;
786
787 if (shares < MIN_SHARES)
788 shares = MIN_SHARES;
789 if (shares > tg->shares)
790 shares = tg->shares;
791
792 return shares;
793 }
794
795 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
796 {
797 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
798 update_cfs_load(cfs_rq, 0);
799 update_cfs_shares(cfs_rq);
800 }
801 }
802 # else /* CONFIG_SMP */
803 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
804 {
805 }
806
807 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
808 {
809 return tg->shares;
810 }
811
812 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
813 {
814 }
815 # endif /* CONFIG_SMP */
816 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
817 unsigned long weight)
818 {
819 if (se->on_rq) {
820 /* commit outstanding execution time */
821 if (cfs_rq->curr == se)
822 update_curr(cfs_rq);
823 account_entity_dequeue(cfs_rq, se);
824 }
825
826 update_load_set(&se->load, weight);
827
828 if (se->on_rq)
829 account_entity_enqueue(cfs_rq, se);
830 }
831
832 static void update_cfs_shares(struct cfs_rq *cfs_rq)
833 {
834 struct task_group *tg;
835 struct sched_entity *se;
836 long shares;
837
838 tg = cfs_rq->tg;
839 se = tg->se[cpu_of(rq_of(cfs_rq))];
840 if (!se)
841 return;
842 #ifndef CONFIG_SMP
843 if (likely(se->load.weight == tg->shares))
844 return;
845 #endif
846 shares = calc_cfs_shares(cfs_rq, tg);
847
848 reweight_entity(cfs_rq_of(se), se, shares);
849 }
850 #else /* CONFIG_FAIR_GROUP_SCHED */
851 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
852 {
853 }
854
855 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
856 {
857 }
858
859 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
860 {
861 }
862 #endif /* CONFIG_FAIR_GROUP_SCHED */
863
864 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
865 {
866 #ifdef CONFIG_SCHEDSTATS
867 struct task_struct *tsk = NULL;
868
869 if (entity_is_task(se))
870 tsk = task_of(se);
871
872 if (se->statistics.sleep_start) {
873 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
874
875 if ((s64)delta < 0)
876 delta = 0;
877
878 if (unlikely(delta > se->statistics.sleep_max))
879 se->statistics.sleep_max = delta;
880
881 se->statistics.sleep_start = 0;
882 se->statistics.sum_sleep_runtime += delta;
883
884 if (tsk) {
885 account_scheduler_latency(tsk, delta >> 10, 1);
886 trace_sched_stat_sleep(tsk, delta);
887 }
888 }
889 if (se->statistics.block_start) {
890 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
891
892 if ((s64)delta < 0)
893 delta = 0;
894
895 if (unlikely(delta > se->statistics.block_max))
896 se->statistics.block_max = delta;
897
898 se->statistics.block_start = 0;
899 se->statistics.sum_sleep_runtime += delta;
900
901 if (tsk) {
902 if (tsk->in_iowait) {
903 se->statistics.iowait_sum += delta;
904 se->statistics.iowait_count++;
905 trace_sched_stat_iowait(tsk, delta);
906 }
907
908 /*
909 * Blocking time is in units of nanosecs, so shift by
910 * 20 to get a milliseconds-range estimation of the
911 * amount of time that the task spent sleeping:
912 */
913 if (unlikely(prof_on == SLEEP_PROFILING)) {
914 profile_hits(SLEEP_PROFILING,
915 (void *)get_wchan(tsk),
916 delta >> 20);
917 }
918 account_scheduler_latency(tsk, delta >> 10, 0);
919 }
920 }
921 #endif
922 }
923
924 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
925 {
926 #ifdef CONFIG_SCHED_DEBUG
927 s64 d = se->vruntime - cfs_rq->min_vruntime;
928
929 if (d < 0)
930 d = -d;
931
932 if (d > 3*sysctl_sched_latency)
933 schedstat_inc(cfs_rq, nr_spread_over);
934 #endif
935 }
936
937 static void
938 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
939 {
940 u64 vruntime = cfs_rq->min_vruntime;
941
942 /*
943 * The 'current' period is already promised to the current tasks,
944 * however the extra weight of the new task will slow them down a
945 * little, place the new task so that it fits in the slot that
946 * stays open at the end.
947 */
948 if (initial && sched_feat(START_DEBIT))
949 vruntime += sched_vslice(cfs_rq, se);
950
951 /* sleeps up to a single latency don't count. */
952 if (!initial) {
953 unsigned long thresh = sysctl_sched_latency;
954
955 /*
956 * Halve their sleep time's effect, to allow
957 * for a gentler effect of sleepers:
958 */
959 if (sched_feat(GENTLE_FAIR_SLEEPERS))
960 thresh >>= 1;
961
962 vruntime -= thresh;
963 }
964
965 /* ensure we never gain time by being placed backwards. */
966 vruntime = max_vruntime(se->vruntime, vruntime);
967
968 se->vruntime = vruntime;
969 }
970
971 static void
972 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
973 {
974 /*
975 * Update the normalized vruntime before updating min_vruntime
976 * through callig update_curr().
977 */
978 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
979 se->vruntime += cfs_rq->min_vruntime;
980
981 /*
982 * Update run-time statistics of the 'current'.
983 */
984 update_curr(cfs_rq);
985 update_cfs_load(cfs_rq, 0);
986 account_entity_enqueue(cfs_rq, se);
987 update_cfs_shares(cfs_rq);
988
989 if (flags & ENQUEUE_WAKEUP) {
990 place_entity(cfs_rq, se, 0);
991 enqueue_sleeper(cfs_rq, se);
992 }
993
994 update_stats_enqueue(cfs_rq, se);
995 check_spread(cfs_rq, se);
996 if (se != cfs_rq->curr)
997 __enqueue_entity(cfs_rq, se);
998 se->on_rq = 1;
999
1000 if (cfs_rq->nr_running == 1)
1001 list_add_leaf_cfs_rq(cfs_rq);
1002 }
1003
1004 static void __clear_buddies_last(struct sched_entity *se)
1005 {
1006 for_each_sched_entity(se) {
1007 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1008 if (cfs_rq->last == se)
1009 cfs_rq->last = NULL;
1010 else
1011 break;
1012 }
1013 }
1014
1015 static void __clear_buddies_next(struct sched_entity *se)
1016 {
1017 for_each_sched_entity(se) {
1018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1019 if (cfs_rq->next == se)
1020 cfs_rq->next = NULL;
1021 else
1022 break;
1023 }
1024 }
1025
1026 static void __clear_buddies_skip(struct sched_entity *se)
1027 {
1028 for_each_sched_entity(se) {
1029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1030 if (cfs_rq->skip == se)
1031 cfs_rq->skip = NULL;
1032 else
1033 break;
1034 }
1035 }
1036
1037 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038 {
1039 if (cfs_rq->last == se)
1040 __clear_buddies_last(se);
1041
1042 if (cfs_rq->next == se)
1043 __clear_buddies_next(se);
1044
1045 if (cfs_rq->skip == se)
1046 __clear_buddies_skip(se);
1047 }
1048
1049 static void
1050 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1051 {
1052 /*
1053 * Update run-time statistics of the 'current'.
1054 */
1055 update_curr(cfs_rq);
1056
1057 update_stats_dequeue(cfs_rq, se);
1058 if (flags & DEQUEUE_SLEEP) {
1059 #ifdef CONFIG_SCHEDSTATS
1060 if (entity_is_task(se)) {
1061 struct task_struct *tsk = task_of(se);
1062
1063 if (tsk->state & TASK_INTERRUPTIBLE)
1064 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1065 if (tsk->state & TASK_UNINTERRUPTIBLE)
1066 se->statistics.block_start = rq_of(cfs_rq)->clock;
1067 }
1068 #endif
1069 }
1070
1071 clear_buddies(cfs_rq, se);
1072
1073 if (se != cfs_rq->curr)
1074 __dequeue_entity(cfs_rq, se);
1075 se->on_rq = 0;
1076 update_cfs_load(cfs_rq, 0);
1077 account_entity_dequeue(cfs_rq, se);
1078
1079 /*
1080 * Normalize the entity after updating the min_vruntime because the
1081 * update can refer to the ->curr item and we need to reflect this
1082 * movement in our normalized position.
1083 */
1084 if (!(flags & DEQUEUE_SLEEP))
1085 se->vruntime -= cfs_rq->min_vruntime;
1086
1087 update_min_vruntime(cfs_rq);
1088 update_cfs_shares(cfs_rq);
1089 }
1090
1091 /*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
1094 static void
1095 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1096 {
1097 unsigned long ideal_runtime, delta_exec;
1098
1099 ideal_runtime = sched_slice(cfs_rq, curr);
1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1101 if (delta_exec > ideal_runtime) {
1102 resched_task(rq_of(cfs_rq)->curr);
1103 /*
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1106 */
1107 clear_buddies(cfs_rq, curr);
1108 return;
1109 }
1110
1111 /*
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1115 */
1116 if (delta_exec < sysctl_sched_min_granularity)
1117 return;
1118
1119 if (cfs_rq->nr_running > 1) {
1120 struct sched_entity *se = __pick_first_entity(cfs_rq);
1121 s64 delta = curr->vruntime - se->vruntime;
1122
1123 if (delta < 0)
1124 return;
1125
1126 if (delta > ideal_runtime)
1127 resched_task(rq_of(cfs_rq)->curr);
1128 }
1129 }
1130
1131 static void
1132 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1133 {
1134 /* 'current' is not kept within the tree. */
1135 if (se->on_rq) {
1136 /*
1137 * Any task has to be enqueued before it get to execute on
1138 * a CPU. So account for the time it spent waiting on the
1139 * runqueue.
1140 */
1141 update_stats_wait_end(cfs_rq, se);
1142 __dequeue_entity(cfs_rq, se);
1143 }
1144
1145 update_stats_curr_start(cfs_rq, se);
1146 cfs_rq->curr = se;
1147 #ifdef CONFIG_SCHEDSTATS
1148 /*
1149 * Track our maximum slice length, if the CPU's load is at
1150 * least twice that of our own weight (i.e. dont track it
1151 * when there are only lesser-weight tasks around):
1152 */
1153 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1154 se->statistics.slice_max = max(se->statistics.slice_max,
1155 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1156 }
1157 #endif
1158 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1159 }
1160
1161 static int
1162 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1163
1164 /*
1165 * Pick the next process, keeping these things in mind, in this order:
1166 * 1) keep things fair between processes/task groups
1167 * 2) pick the "next" process, since someone really wants that to run
1168 * 3) pick the "last" process, for cache locality
1169 * 4) do not run the "skip" process, if something else is available
1170 */
1171 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1172 {
1173 struct sched_entity *se = __pick_first_entity(cfs_rq);
1174 struct sched_entity *left = se;
1175
1176 /*
1177 * Avoid running the skip buddy, if running something else can
1178 * be done without getting too unfair.
1179 */
1180 if (cfs_rq->skip == se) {
1181 struct sched_entity *second = __pick_next_entity(se);
1182 if (second && wakeup_preempt_entity(second, left) < 1)
1183 se = second;
1184 }
1185
1186 /*
1187 * Prefer last buddy, try to return the CPU to a preempted task.
1188 */
1189 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1190 se = cfs_rq->last;
1191
1192 /*
1193 * Someone really wants this to run. If it's not unfair, run it.
1194 */
1195 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1196 se = cfs_rq->next;
1197
1198 clear_buddies(cfs_rq, se);
1199
1200 return se;
1201 }
1202
1203 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1204 {
1205 /*
1206 * If still on the runqueue then deactivate_task()
1207 * was not called and update_curr() has to be done:
1208 */
1209 if (prev->on_rq)
1210 update_curr(cfs_rq);
1211
1212 check_spread(cfs_rq, prev);
1213 if (prev->on_rq) {
1214 update_stats_wait_start(cfs_rq, prev);
1215 /* Put 'current' back into the tree. */
1216 __enqueue_entity(cfs_rq, prev);
1217 }
1218 cfs_rq->curr = NULL;
1219 }
1220
1221 static void
1222 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1223 {
1224 /*
1225 * Update run-time statistics of the 'current'.
1226 */
1227 update_curr(cfs_rq);
1228
1229 /*
1230 * Update share accounting for long-running entities.
1231 */
1232 update_entity_shares_tick(cfs_rq);
1233
1234 #ifdef CONFIG_SCHED_HRTICK
1235 /*
1236 * queued ticks are scheduled to match the slice, so don't bother
1237 * validating it and just reschedule.
1238 */
1239 if (queued) {
1240 resched_task(rq_of(cfs_rq)->curr);
1241 return;
1242 }
1243 /*
1244 * don't let the period tick interfere with the hrtick preemption
1245 */
1246 if (!sched_feat(DOUBLE_TICK) &&
1247 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1248 return;
1249 #endif
1250
1251 if (cfs_rq->nr_running > 1)
1252 check_preempt_tick(cfs_rq, curr);
1253 }
1254
1255
1256 /**************************************************
1257 * CFS bandwidth control machinery
1258 */
1259
1260 #ifdef CONFIG_CFS_BANDWIDTH
1261 /*
1262 * default period for cfs group bandwidth.
1263 * default: 0.1s, units: nanoseconds
1264 */
1265 static inline u64 default_cfs_period(void)
1266 {
1267 return 100000000ULL;
1268 }
1269
1270 static inline u64 sched_cfs_bandwidth_slice(void)
1271 {
1272 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1273 }
1274
1275 /*
1276 * Replenish runtime according to assigned quota and update expiration time.
1277 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1278 * additional synchronization around rq->lock.
1279 *
1280 * requires cfs_b->lock
1281 */
1282 static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1283 {
1284 u64 now;
1285
1286 if (cfs_b->quota == RUNTIME_INF)
1287 return;
1288
1289 now = sched_clock_cpu(smp_processor_id());
1290 cfs_b->runtime = cfs_b->quota;
1291 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1292 }
1293
1294 /* returns 0 on failure to allocate runtime */
1295 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1296 {
1297 struct task_group *tg = cfs_rq->tg;
1298 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1299 u64 amount = 0, min_amount, expires;
1300
1301 /* note: this is a positive sum as runtime_remaining <= 0 */
1302 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1303
1304 raw_spin_lock(&cfs_b->lock);
1305 if (cfs_b->quota == RUNTIME_INF)
1306 amount = min_amount;
1307 else {
1308 /*
1309 * If the bandwidth pool has become inactive, then at least one
1310 * period must have elapsed since the last consumption.
1311 * Refresh the global state and ensure bandwidth timer becomes
1312 * active.
1313 */
1314 if (!cfs_b->timer_active) {
1315 __refill_cfs_bandwidth_runtime(cfs_b);
1316 __start_cfs_bandwidth(cfs_b);
1317 }
1318
1319 if (cfs_b->runtime > 0) {
1320 amount = min(cfs_b->runtime, min_amount);
1321 cfs_b->runtime -= amount;
1322 cfs_b->idle = 0;
1323 }
1324 }
1325 expires = cfs_b->runtime_expires;
1326 raw_spin_unlock(&cfs_b->lock);
1327
1328 cfs_rq->runtime_remaining += amount;
1329 /*
1330 * we may have advanced our local expiration to account for allowed
1331 * spread between our sched_clock and the one on which runtime was
1332 * issued.
1333 */
1334 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1335 cfs_rq->runtime_expires = expires;
1336
1337 return cfs_rq->runtime_remaining > 0;
1338 }
1339
1340 /*
1341 * Note: This depends on the synchronization provided by sched_clock and the
1342 * fact that rq->clock snapshots this value.
1343 */
1344 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1345 {
1346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1347 struct rq *rq = rq_of(cfs_rq);
1348
1349 /* if the deadline is ahead of our clock, nothing to do */
1350 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1351 return;
1352
1353 if (cfs_rq->runtime_remaining < 0)
1354 return;
1355
1356 /*
1357 * If the local deadline has passed we have to consider the
1358 * possibility that our sched_clock is 'fast' and the global deadline
1359 * has not truly expired.
1360 *
1361 * Fortunately we can check determine whether this the case by checking
1362 * whether the global deadline has advanced.
1363 */
1364
1365 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1366 /* extend local deadline, drift is bounded above by 2 ticks */
1367 cfs_rq->runtime_expires += TICK_NSEC;
1368 } else {
1369 /* global deadline is ahead, expiration has passed */
1370 cfs_rq->runtime_remaining = 0;
1371 }
1372 }
1373
1374 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1375 unsigned long delta_exec)
1376 {
1377 /* dock delta_exec before expiring quota (as it could span periods) */
1378 cfs_rq->runtime_remaining -= delta_exec;
1379 expire_cfs_rq_runtime(cfs_rq);
1380
1381 if (likely(cfs_rq->runtime_remaining > 0))
1382 return;
1383
1384 /*
1385 * if we're unable to extend our runtime we resched so that the active
1386 * hierarchy can be throttled
1387 */
1388 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1389 resched_task(rq_of(cfs_rq)->curr);
1390 }
1391
1392 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1393 unsigned long delta_exec)
1394 {
1395 if (!cfs_rq->runtime_enabled)
1396 return;
1397
1398 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1399 }
1400
1401 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1402 {
1403 return cfs_rq->throttled;
1404 }
1405
1406 static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1407 {
1408 struct rq *rq = rq_of(cfs_rq);
1409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1410 struct sched_entity *se;
1411 long task_delta, dequeue = 1;
1412
1413 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1414
1415 /* account load preceding throttle */
1416 update_cfs_load(cfs_rq, 0);
1417
1418 task_delta = cfs_rq->h_nr_running;
1419 for_each_sched_entity(se) {
1420 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1421 /* throttled entity or throttle-on-deactivate */
1422 if (!se->on_rq)
1423 break;
1424
1425 if (dequeue)
1426 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1427 qcfs_rq->h_nr_running -= task_delta;
1428
1429 if (qcfs_rq->load.weight)
1430 dequeue = 0;
1431 }
1432
1433 if (!se)
1434 rq->nr_running -= task_delta;
1435
1436 cfs_rq->throttled = 1;
1437 raw_spin_lock(&cfs_b->lock);
1438 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1439 raw_spin_unlock(&cfs_b->lock);
1440 }
1441
1442 static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1443 {
1444 struct rq *rq = rq_of(cfs_rq);
1445 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1446 struct sched_entity *se;
1447 int enqueue = 1;
1448 long task_delta;
1449
1450 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1451
1452 cfs_rq->throttled = 0;
1453 raw_spin_lock(&cfs_b->lock);
1454 list_del_rcu(&cfs_rq->throttled_list);
1455 raw_spin_unlock(&cfs_b->lock);
1456
1457 if (!cfs_rq->load.weight)
1458 return;
1459
1460 task_delta = cfs_rq->h_nr_running;
1461 for_each_sched_entity(se) {
1462 if (se->on_rq)
1463 enqueue = 0;
1464
1465 cfs_rq = cfs_rq_of(se);
1466 if (enqueue)
1467 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1468 cfs_rq->h_nr_running += task_delta;
1469
1470 if (cfs_rq_throttled(cfs_rq))
1471 break;
1472 }
1473
1474 if (!se)
1475 rq->nr_running += task_delta;
1476
1477 /* determine whether we need to wake up potentially idle cpu */
1478 if (rq->curr == rq->idle && rq->cfs.nr_running)
1479 resched_task(rq->curr);
1480 }
1481
1482 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1483 u64 remaining, u64 expires)
1484 {
1485 struct cfs_rq *cfs_rq;
1486 u64 runtime = remaining;
1487
1488 rcu_read_lock();
1489 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1490 throttled_list) {
1491 struct rq *rq = rq_of(cfs_rq);
1492
1493 raw_spin_lock(&rq->lock);
1494 if (!cfs_rq_throttled(cfs_rq))
1495 goto next;
1496
1497 runtime = -cfs_rq->runtime_remaining + 1;
1498 if (runtime > remaining)
1499 runtime = remaining;
1500 remaining -= runtime;
1501
1502 cfs_rq->runtime_remaining += runtime;
1503 cfs_rq->runtime_expires = expires;
1504
1505 /* we check whether we're throttled above */
1506 if (cfs_rq->runtime_remaining > 0)
1507 unthrottle_cfs_rq(cfs_rq);
1508
1509 next:
1510 raw_spin_unlock(&rq->lock);
1511
1512 if (!remaining)
1513 break;
1514 }
1515 rcu_read_unlock();
1516
1517 return remaining;
1518 }
1519
1520 /*
1521 * Responsible for refilling a task_group's bandwidth and unthrottling its
1522 * cfs_rqs as appropriate. If there has been no activity within the last
1523 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1524 * used to track this state.
1525 */
1526 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1527 {
1528 u64 runtime, runtime_expires;
1529 int idle = 1, throttled;
1530
1531 raw_spin_lock(&cfs_b->lock);
1532 /* no need to continue the timer with no bandwidth constraint */
1533 if (cfs_b->quota == RUNTIME_INF)
1534 goto out_unlock;
1535
1536 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1537 /* idle depends on !throttled (for the case of a large deficit) */
1538 idle = cfs_b->idle && !throttled;
1539
1540 /* if we're going inactive then everything else can be deferred */
1541 if (idle)
1542 goto out_unlock;
1543
1544 __refill_cfs_bandwidth_runtime(cfs_b);
1545
1546 if (!throttled) {
1547 /* mark as potentially idle for the upcoming period */
1548 cfs_b->idle = 1;
1549 goto out_unlock;
1550 }
1551
1552 /*
1553 * There are throttled entities so we must first use the new bandwidth
1554 * to unthrottle them before making it generally available. This
1555 * ensures that all existing debts will be paid before a new cfs_rq is
1556 * allowed to run.
1557 */
1558 runtime = cfs_b->runtime;
1559 runtime_expires = cfs_b->runtime_expires;
1560 cfs_b->runtime = 0;
1561
1562 /*
1563 * This check is repeated as we are holding onto the new bandwidth
1564 * while we unthrottle. This can potentially race with an unthrottled
1565 * group trying to acquire new bandwidth from the global pool.
1566 */
1567 while (throttled && runtime > 0) {
1568 raw_spin_unlock(&cfs_b->lock);
1569 /* we can't nest cfs_b->lock while distributing bandwidth */
1570 runtime = distribute_cfs_runtime(cfs_b, runtime,
1571 runtime_expires);
1572 raw_spin_lock(&cfs_b->lock);
1573
1574 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1575 }
1576
1577 /* return (any) remaining runtime */
1578 cfs_b->runtime = runtime;
1579 /*
1580 * While we are ensured activity in the period following an
1581 * unthrottle, this also covers the case in which the new bandwidth is
1582 * insufficient to cover the existing bandwidth deficit. (Forcing the
1583 * timer to remain active while there are any throttled entities.)
1584 */
1585 cfs_b->idle = 0;
1586 out_unlock:
1587 if (idle)
1588 cfs_b->timer_active = 0;
1589 raw_spin_unlock(&cfs_b->lock);
1590
1591 return idle;
1592 }
1593 #else
1594 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1595 unsigned long delta_exec) {}
1596
1597 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1598 {
1599 return 0;
1600 }
1601 #endif
1602
1603 /**************************************************
1604 * CFS operations on tasks:
1605 */
1606
1607 #ifdef CONFIG_SCHED_HRTICK
1608 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1609 {
1610 struct sched_entity *se = &p->se;
1611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1612
1613 WARN_ON(task_rq(p) != rq);
1614
1615 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1616 u64 slice = sched_slice(cfs_rq, se);
1617 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1618 s64 delta = slice - ran;
1619
1620 if (delta < 0) {
1621 if (rq->curr == p)
1622 resched_task(p);
1623 return;
1624 }
1625
1626 /*
1627 * Don't schedule slices shorter than 10000ns, that just
1628 * doesn't make sense. Rely on vruntime for fairness.
1629 */
1630 if (rq->curr != p)
1631 delta = max_t(s64, 10000LL, delta);
1632
1633 hrtick_start(rq, delta);
1634 }
1635 }
1636
1637 /*
1638 * called from enqueue/dequeue and updates the hrtick when the
1639 * current task is from our class and nr_running is low enough
1640 * to matter.
1641 */
1642 static void hrtick_update(struct rq *rq)
1643 {
1644 struct task_struct *curr = rq->curr;
1645
1646 if (curr->sched_class != &fair_sched_class)
1647 return;
1648
1649 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1650 hrtick_start_fair(rq, curr);
1651 }
1652 #else /* !CONFIG_SCHED_HRTICK */
1653 static inline void
1654 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1655 {
1656 }
1657
1658 static inline void hrtick_update(struct rq *rq)
1659 {
1660 }
1661 #endif
1662
1663 /*
1664 * The enqueue_task method is called before nr_running is
1665 * increased. Here we update the fair scheduling stats and
1666 * then put the task into the rbtree:
1667 */
1668 static void
1669 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1670 {
1671 struct cfs_rq *cfs_rq;
1672 struct sched_entity *se = &p->se;
1673
1674 for_each_sched_entity(se) {
1675 if (se->on_rq)
1676 break;
1677 cfs_rq = cfs_rq_of(se);
1678 enqueue_entity(cfs_rq, se, flags);
1679
1680 /*
1681 * end evaluation on encountering a throttled cfs_rq
1682 *
1683 * note: in the case of encountering a throttled cfs_rq we will
1684 * post the final h_nr_running increment below.
1685 */
1686 if (cfs_rq_throttled(cfs_rq))
1687 break;
1688 cfs_rq->h_nr_running++;
1689
1690 flags = ENQUEUE_WAKEUP;
1691 }
1692
1693 for_each_sched_entity(se) {
1694 cfs_rq = cfs_rq_of(se);
1695 cfs_rq->h_nr_running++;
1696
1697 if (cfs_rq_throttled(cfs_rq))
1698 break;
1699
1700 update_cfs_load(cfs_rq, 0);
1701 update_cfs_shares(cfs_rq);
1702 }
1703
1704 if (!se)
1705 inc_nr_running(rq);
1706 hrtick_update(rq);
1707 }
1708
1709 static void set_next_buddy(struct sched_entity *se);
1710
1711 /*
1712 * The dequeue_task method is called before nr_running is
1713 * decreased. We remove the task from the rbtree and
1714 * update the fair scheduling stats:
1715 */
1716 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1717 {
1718 struct cfs_rq *cfs_rq;
1719 struct sched_entity *se = &p->se;
1720 int task_sleep = flags & DEQUEUE_SLEEP;
1721
1722 for_each_sched_entity(se) {
1723 cfs_rq = cfs_rq_of(se);
1724 dequeue_entity(cfs_rq, se, flags);
1725
1726 /*
1727 * end evaluation on encountering a throttled cfs_rq
1728 *
1729 * note: in the case of encountering a throttled cfs_rq we will
1730 * post the final h_nr_running decrement below.
1731 */
1732 if (cfs_rq_throttled(cfs_rq))
1733 break;
1734 cfs_rq->h_nr_running--;
1735
1736 /* Don't dequeue parent if it has other entities besides us */
1737 if (cfs_rq->load.weight) {
1738 /*
1739 * Bias pick_next to pick a task from this cfs_rq, as
1740 * p is sleeping when it is within its sched_slice.
1741 */
1742 if (task_sleep && parent_entity(se))
1743 set_next_buddy(parent_entity(se));
1744
1745 /* avoid re-evaluating load for this entity */
1746 se = parent_entity(se);
1747 break;
1748 }
1749 flags |= DEQUEUE_SLEEP;
1750 }
1751
1752 for_each_sched_entity(se) {
1753 cfs_rq = cfs_rq_of(se);
1754 cfs_rq->h_nr_running--;
1755
1756 if (cfs_rq_throttled(cfs_rq))
1757 break;
1758
1759 update_cfs_load(cfs_rq, 0);
1760 update_cfs_shares(cfs_rq);
1761 }
1762
1763 if (!se)
1764 dec_nr_running(rq);
1765 hrtick_update(rq);
1766 }
1767
1768 #ifdef CONFIG_SMP
1769
1770 static void task_waking_fair(struct task_struct *p)
1771 {
1772 struct sched_entity *se = &p->se;
1773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1774 u64 min_vruntime;
1775
1776 #ifndef CONFIG_64BIT
1777 u64 min_vruntime_copy;
1778
1779 do {
1780 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1781 smp_rmb();
1782 min_vruntime = cfs_rq->min_vruntime;
1783 } while (min_vruntime != min_vruntime_copy);
1784 #else
1785 min_vruntime = cfs_rq->min_vruntime;
1786 #endif
1787
1788 se->vruntime -= min_vruntime;
1789 }
1790
1791 #ifdef CONFIG_FAIR_GROUP_SCHED
1792 /*
1793 * effective_load() calculates the load change as seen from the root_task_group
1794 *
1795 * Adding load to a group doesn't make a group heavier, but can cause movement
1796 * of group shares between cpus. Assuming the shares were perfectly aligned one
1797 * can calculate the shift in shares.
1798 */
1799 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1800 {
1801 struct sched_entity *se = tg->se[cpu];
1802
1803 if (!tg->parent)
1804 return wl;
1805
1806 for_each_sched_entity(se) {
1807 long lw, w;
1808
1809 tg = se->my_q->tg;
1810 w = se->my_q->load.weight;
1811
1812 /* use this cpu's instantaneous contribution */
1813 lw = atomic_read(&tg->load_weight);
1814 lw -= se->my_q->load_contribution;
1815 lw += w + wg;
1816
1817 wl += w;
1818
1819 if (lw > 0 && wl < lw)
1820 wl = (wl * tg->shares) / lw;
1821 else
1822 wl = tg->shares;
1823
1824 /* zero point is MIN_SHARES */
1825 if (wl < MIN_SHARES)
1826 wl = MIN_SHARES;
1827 wl -= se->load.weight;
1828 wg = 0;
1829 }
1830
1831 return wl;
1832 }
1833 #else
1834
1835 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1836 unsigned long wl, unsigned long wg)
1837 {
1838 return wl;
1839 }
1840
1841 #endif
1842
1843 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1844 {
1845 s64 this_load, load;
1846 int idx, this_cpu, prev_cpu;
1847 unsigned long tl_per_task;
1848 struct task_group *tg;
1849 unsigned long weight;
1850 int balanced;
1851
1852 idx = sd->wake_idx;
1853 this_cpu = smp_processor_id();
1854 prev_cpu = task_cpu(p);
1855 load = source_load(prev_cpu, idx);
1856 this_load = target_load(this_cpu, idx);
1857
1858 /*
1859 * If sync wakeup then subtract the (maximum possible)
1860 * effect of the currently running task from the load
1861 * of the current CPU:
1862 */
1863 if (sync) {
1864 tg = task_group(current);
1865 weight = current->se.load.weight;
1866
1867 this_load += effective_load(tg, this_cpu, -weight, -weight);
1868 load += effective_load(tg, prev_cpu, 0, -weight);
1869 }
1870
1871 tg = task_group(p);
1872 weight = p->se.load.weight;
1873
1874 /*
1875 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1876 * due to the sync cause above having dropped this_load to 0, we'll
1877 * always have an imbalance, but there's really nothing you can do
1878 * about that, so that's good too.
1879 *
1880 * Otherwise check if either cpus are near enough in load to allow this
1881 * task to be woken on this_cpu.
1882 */
1883 if (this_load > 0) {
1884 s64 this_eff_load, prev_eff_load;
1885
1886 this_eff_load = 100;
1887 this_eff_load *= power_of(prev_cpu);
1888 this_eff_load *= this_load +
1889 effective_load(tg, this_cpu, weight, weight);
1890
1891 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1892 prev_eff_load *= power_of(this_cpu);
1893 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1894
1895 balanced = this_eff_load <= prev_eff_load;
1896 } else
1897 balanced = true;
1898
1899 /*
1900 * If the currently running task will sleep within
1901 * a reasonable amount of time then attract this newly
1902 * woken task:
1903 */
1904 if (sync && balanced)
1905 return 1;
1906
1907 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1908 tl_per_task = cpu_avg_load_per_task(this_cpu);
1909
1910 if (balanced ||
1911 (this_load <= load &&
1912 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1913 /*
1914 * This domain has SD_WAKE_AFFINE and
1915 * p is cache cold in this domain, and
1916 * there is no bad imbalance.
1917 */
1918 schedstat_inc(sd, ttwu_move_affine);
1919 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1920
1921 return 1;
1922 }
1923 return 0;
1924 }
1925
1926 /*
1927 * find_idlest_group finds and returns the least busy CPU group within the
1928 * domain.
1929 */
1930 static struct sched_group *
1931 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1932 int this_cpu, int load_idx)
1933 {
1934 struct sched_group *idlest = NULL, *group = sd->groups;
1935 unsigned long min_load = ULONG_MAX, this_load = 0;
1936 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1937
1938 do {
1939 unsigned long load, avg_load;
1940 int local_group;
1941 int i;
1942
1943 /* Skip over this group if it has no CPUs allowed */
1944 if (!cpumask_intersects(sched_group_cpus(group),
1945 &p->cpus_allowed))
1946 continue;
1947
1948 local_group = cpumask_test_cpu(this_cpu,
1949 sched_group_cpus(group));
1950
1951 /* Tally up the load of all CPUs in the group */
1952 avg_load = 0;
1953
1954 for_each_cpu(i, sched_group_cpus(group)) {
1955 /* Bias balancing toward cpus of our domain */
1956 if (local_group)
1957 load = source_load(i, load_idx);
1958 else
1959 load = target_load(i, load_idx);
1960
1961 avg_load += load;
1962 }
1963
1964 /* Adjust by relative CPU power of the group */
1965 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1966
1967 if (local_group) {
1968 this_load = avg_load;
1969 } else if (avg_load < min_load) {
1970 min_load = avg_load;
1971 idlest = group;
1972 }
1973 } while (group = group->next, group != sd->groups);
1974
1975 if (!idlest || 100*this_load < imbalance*min_load)
1976 return NULL;
1977 return idlest;
1978 }
1979
1980 /*
1981 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1982 */
1983 static int
1984 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1985 {
1986 unsigned long load, min_load = ULONG_MAX;
1987 int idlest = -1;
1988 int i;
1989
1990 /* Traverse only the allowed CPUs */
1991 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1992 load = weighted_cpuload(i);
1993
1994 if (load < min_load || (load == min_load && i == this_cpu)) {
1995 min_load = load;
1996 idlest = i;
1997 }
1998 }
1999
2000 return idlest;
2001 }
2002
2003 /*
2004 * Try and locate an idle CPU in the sched_domain.
2005 */
2006 static int select_idle_sibling(struct task_struct *p, int target)
2007 {
2008 int cpu = smp_processor_id();
2009 int prev_cpu = task_cpu(p);
2010 struct sched_domain *sd;
2011 int i;
2012
2013 /*
2014 * If the task is going to be woken-up on this cpu and if it is
2015 * already idle, then it is the right target.
2016 */
2017 if (target == cpu && idle_cpu(cpu))
2018 return cpu;
2019
2020 /*
2021 * If the task is going to be woken-up on the cpu where it previously
2022 * ran and if it is currently idle, then it the right target.
2023 */
2024 if (target == prev_cpu && idle_cpu(prev_cpu))
2025 return prev_cpu;
2026
2027 /*
2028 * Otherwise, iterate the domains and find an elegible idle cpu.
2029 */
2030 rcu_read_lock();
2031 for_each_domain(target, sd) {
2032 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
2033 break;
2034
2035 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
2036 if (idle_cpu(i)) {
2037 target = i;
2038 break;
2039 }
2040 }
2041
2042 /*
2043 * Lets stop looking for an idle sibling when we reached
2044 * the domain that spans the current cpu and prev_cpu.
2045 */
2046 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
2047 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
2048 break;
2049 }
2050 rcu_read_unlock();
2051
2052 return target;
2053 }
2054
2055 /*
2056 * sched_balance_self: balance the current task (running on cpu) in domains
2057 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2058 * SD_BALANCE_EXEC.
2059 *
2060 * Balance, ie. select the least loaded group.
2061 *
2062 * Returns the target CPU number, or the same CPU if no balancing is needed.
2063 *
2064 * preempt must be disabled.
2065 */
2066 static int
2067 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2068 {
2069 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2070 int cpu = smp_processor_id();
2071 int prev_cpu = task_cpu(p);
2072 int new_cpu = cpu;
2073 int want_affine = 0;
2074 int want_sd = 1;
2075 int sync = wake_flags & WF_SYNC;
2076
2077 if (sd_flag & SD_BALANCE_WAKE) {
2078 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
2079 want_affine = 1;
2080 new_cpu = prev_cpu;
2081 }
2082
2083 rcu_read_lock();
2084 for_each_domain(cpu, tmp) {
2085 if (!(tmp->flags & SD_LOAD_BALANCE))
2086 continue;
2087
2088 /*
2089 * If power savings logic is enabled for a domain, see if we
2090 * are not overloaded, if so, don't balance wider.
2091 */
2092 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2093 unsigned long power = 0;
2094 unsigned long nr_running = 0;
2095 unsigned long capacity;
2096 int i;
2097
2098 for_each_cpu(i, sched_domain_span(tmp)) {
2099 power += power_of(i);
2100 nr_running += cpu_rq(i)->cfs.nr_running;
2101 }
2102
2103 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2104
2105 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2106 nr_running /= 2;
2107
2108 if (nr_running < capacity)
2109 want_sd = 0;
2110 }
2111
2112 /*
2113 * If both cpu and prev_cpu are part of this domain,
2114 * cpu is a valid SD_WAKE_AFFINE target.
2115 */
2116 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2117 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2118 affine_sd = tmp;
2119 want_affine = 0;
2120 }
2121
2122 if (!want_sd && !want_affine)
2123 break;
2124
2125 if (!(tmp->flags & sd_flag))
2126 continue;
2127
2128 if (want_sd)
2129 sd = tmp;
2130 }
2131
2132 if (affine_sd) {
2133 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2134 prev_cpu = cpu;
2135
2136 new_cpu = select_idle_sibling(p, prev_cpu);
2137 goto unlock;
2138 }
2139
2140 while (sd) {
2141 int load_idx = sd->forkexec_idx;
2142 struct sched_group *group;
2143 int weight;
2144
2145 if (!(sd->flags & sd_flag)) {
2146 sd = sd->child;
2147 continue;
2148 }
2149
2150 if (sd_flag & SD_BALANCE_WAKE)
2151 load_idx = sd->wake_idx;
2152
2153 group = find_idlest_group(sd, p, cpu, load_idx);
2154 if (!group) {
2155 sd = sd->child;
2156 continue;
2157 }
2158
2159 new_cpu = find_idlest_cpu(group, p, cpu);
2160 if (new_cpu == -1 || new_cpu == cpu) {
2161 /* Now try balancing at a lower domain level of cpu */
2162 sd = sd->child;
2163 continue;
2164 }
2165
2166 /* Now try balancing at a lower domain level of new_cpu */
2167 cpu = new_cpu;
2168 weight = sd->span_weight;
2169 sd = NULL;
2170 for_each_domain(cpu, tmp) {
2171 if (weight <= tmp->span_weight)
2172 break;
2173 if (tmp->flags & sd_flag)
2174 sd = tmp;
2175 }
2176 /* while loop will break here if sd == NULL */
2177 }
2178 unlock:
2179 rcu_read_unlock();
2180
2181 return new_cpu;
2182 }
2183 #endif /* CONFIG_SMP */
2184
2185 static unsigned long
2186 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2187 {
2188 unsigned long gran = sysctl_sched_wakeup_granularity;
2189
2190 /*
2191 * Since its curr running now, convert the gran from real-time
2192 * to virtual-time in his units.
2193 *
2194 * By using 'se' instead of 'curr' we penalize light tasks, so
2195 * they get preempted easier. That is, if 'se' < 'curr' then
2196 * the resulting gran will be larger, therefore penalizing the
2197 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2198 * be smaller, again penalizing the lighter task.
2199 *
2200 * This is especially important for buddies when the leftmost
2201 * task is higher priority than the buddy.
2202 */
2203 return calc_delta_fair(gran, se);
2204 }
2205
2206 /*
2207 * Should 'se' preempt 'curr'.
2208 *
2209 * |s1
2210 * |s2
2211 * |s3
2212 * g
2213 * |<--->|c
2214 *
2215 * w(c, s1) = -1
2216 * w(c, s2) = 0
2217 * w(c, s3) = 1
2218 *
2219 */
2220 static int
2221 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2222 {
2223 s64 gran, vdiff = curr->vruntime - se->vruntime;
2224
2225 if (vdiff <= 0)
2226 return -1;
2227
2228 gran = wakeup_gran(curr, se);
2229 if (vdiff > gran)
2230 return 1;
2231
2232 return 0;
2233 }
2234
2235 static void set_last_buddy(struct sched_entity *se)
2236 {
2237 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2238 return;
2239
2240 for_each_sched_entity(se)
2241 cfs_rq_of(se)->last = se;
2242 }
2243
2244 static void set_next_buddy(struct sched_entity *se)
2245 {
2246 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2247 return;
2248
2249 for_each_sched_entity(se)
2250 cfs_rq_of(se)->next = se;
2251 }
2252
2253 static void set_skip_buddy(struct sched_entity *se)
2254 {
2255 for_each_sched_entity(se)
2256 cfs_rq_of(se)->skip = se;
2257 }
2258
2259 /*
2260 * Preempt the current task with a newly woken task if needed:
2261 */
2262 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2263 {
2264 struct task_struct *curr = rq->curr;
2265 struct sched_entity *se = &curr->se, *pse = &p->se;
2266 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2267 int scale = cfs_rq->nr_running >= sched_nr_latency;
2268 int next_buddy_marked = 0;
2269
2270 if (unlikely(se == pse))
2271 return;
2272
2273 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2274 set_next_buddy(pse);
2275 next_buddy_marked = 1;
2276 }
2277
2278 /*
2279 * We can come here with TIF_NEED_RESCHED already set from new task
2280 * wake up path.
2281 */
2282 if (test_tsk_need_resched(curr))
2283 return;
2284
2285 /* Idle tasks are by definition preempted by non-idle tasks. */
2286 if (unlikely(curr->policy == SCHED_IDLE) &&
2287 likely(p->policy != SCHED_IDLE))
2288 goto preempt;
2289
2290 /*
2291 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2292 * is driven by the tick):
2293 */
2294 if (unlikely(p->policy != SCHED_NORMAL))
2295 return;
2296
2297 find_matching_se(&se, &pse);
2298 update_curr(cfs_rq_of(se));
2299 BUG_ON(!pse);
2300 if (wakeup_preempt_entity(se, pse) == 1) {
2301 /*
2302 * Bias pick_next to pick the sched entity that is
2303 * triggering this preemption.
2304 */
2305 if (!next_buddy_marked)
2306 set_next_buddy(pse);
2307 goto preempt;
2308 }
2309
2310 return;
2311
2312 preempt:
2313 resched_task(curr);
2314 /*
2315 * Only set the backward buddy when the current task is still
2316 * on the rq. This can happen when a wakeup gets interleaved
2317 * with schedule on the ->pre_schedule() or idle_balance()
2318 * point, either of which can * drop the rq lock.
2319 *
2320 * Also, during early boot the idle thread is in the fair class,
2321 * for obvious reasons its a bad idea to schedule back to it.
2322 */
2323 if (unlikely(!se->on_rq || curr == rq->idle))
2324 return;
2325
2326 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2327 set_last_buddy(se);
2328 }
2329
2330 static struct task_struct *pick_next_task_fair(struct rq *rq)
2331 {
2332 struct task_struct *p;
2333 struct cfs_rq *cfs_rq = &rq->cfs;
2334 struct sched_entity *se;
2335
2336 if (!cfs_rq->nr_running)
2337 return NULL;
2338
2339 do {
2340 se = pick_next_entity(cfs_rq);
2341 set_next_entity(cfs_rq, se);
2342 cfs_rq = group_cfs_rq(se);
2343 } while (cfs_rq);
2344
2345 p = task_of(se);
2346 hrtick_start_fair(rq, p);
2347
2348 return p;
2349 }
2350
2351 /*
2352 * Account for a descheduled task:
2353 */
2354 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2355 {
2356 struct sched_entity *se = &prev->se;
2357 struct cfs_rq *cfs_rq;
2358
2359 for_each_sched_entity(se) {
2360 cfs_rq = cfs_rq_of(se);
2361 put_prev_entity(cfs_rq, se);
2362 }
2363 }
2364
2365 /*
2366 * sched_yield() is very simple
2367 *
2368 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2369 */
2370 static void yield_task_fair(struct rq *rq)
2371 {
2372 struct task_struct *curr = rq->curr;
2373 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2374 struct sched_entity *se = &curr->se;
2375
2376 /*
2377 * Are we the only task in the tree?
2378 */
2379 if (unlikely(rq->nr_running == 1))
2380 return;
2381
2382 clear_buddies(cfs_rq, se);
2383
2384 if (curr->policy != SCHED_BATCH) {
2385 update_rq_clock(rq);
2386 /*
2387 * Update run-time statistics of the 'current'.
2388 */
2389 update_curr(cfs_rq);
2390 }
2391
2392 set_skip_buddy(se);
2393 }
2394
2395 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2396 {
2397 struct sched_entity *se = &p->se;
2398
2399 if (!se->on_rq)
2400 return false;
2401
2402 /* Tell the scheduler that we'd really like pse to run next. */
2403 set_next_buddy(se);
2404
2405 yield_task_fair(rq);
2406
2407 return true;
2408 }
2409
2410 #ifdef CONFIG_SMP
2411 /**************************************************
2412 * Fair scheduling class load-balancing methods:
2413 */
2414
2415 /*
2416 * pull_task - move a task from a remote runqueue to the local runqueue.
2417 * Both runqueues must be locked.
2418 */
2419 static void pull_task(struct rq *src_rq, struct task_struct *p,
2420 struct rq *this_rq, int this_cpu)
2421 {
2422 deactivate_task(src_rq, p, 0);
2423 set_task_cpu(p, this_cpu);
2424 activate_task(this_rq, p, 0);
2425 check_preempt_curr(this_rq, p, 0);
2426 }
2427
2428 /*
2429 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2430 */
2431 static
2432 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2433 struct sched_domain *sd, enum cpu_idle_type idle,
2434 int *all_pinned)
2435 {
2436 int tsk_cache_hot = 0;
2437 /*
2438 * We do not migrate tasks that are:
2439 * 1) running (obviously), or
2440 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2441 * 3) are cache-hot on their current CPU.
2442 */
2443 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2444 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2445 return 0;
2446 }
2447 *all_pinned = 0;
2448
2449 if (task_running(rq, p)) {
2450 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2451 return 0;
2452 }
2453
2454 /*
2455 * Aggressive migration if:
2456 * 1) task is cache cold, or
2457 * 2) too many balance attempts have failed.
2458 */
2459
2460 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2461 if (!tsk_cache_hot ||
2462 sd->nr_balance_failed > sd->cache_nice_tries) {
2463 #ifdef CONFIG_SCHEDSTATS
2464 if (tsk_cache_hot) {
2465 schedstat_inc(sd, lb_hot_gained[idle]);
2466 schedstat_inc(p, se.statistics.nr_forced_migrations);
2467 }
2468 #endif
2469 return 1;
2470 }
2471
2472 if (tsk_cache_hot) {
2473 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2474 return 0;
2475 }
2476 return 1;
2477 }
2478
2479 /*
2480 * move_one_task tries to move exactly one task from busiest to this_rq, as
2481 * part of active balancing operations within "domain".
2482 * Returns 1 if successful and 0 otherwise.
2483 *
2484 * Called with both runqueues locked.
2485 */
2486 static int
2487 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2488 struct sched_domain *sd, enum cpu_idle_type idle)
2489 {
2490 struct task_struct *p, *n;
2491 struct cfs_rq *cfs_rq;
2492 int pinned = 0;
2493
2494 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2495 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2496
2497 if (!can_migrate_task(p, busiest, this_cpu,
2498 sd, idle, &pinned))
2499 continue;
2500
2501 pull_task(busiest, p, this_rq, this_cpu);
2502 /*
2503 * Right now, this is only the second place pull_task()
2504 * is called, so we can safely collect pull_task()
2505 * stats here rather than inside pull_task().
2506 */
2507 schedstat_inc(sd, lb_gained[idle]);
2508 return 1;
2509 }
2510 }
2511
2512 return 0;
2513 }
2514
2515 static unsigned long
2516 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2517 unsigned long max_load_move, struct sched_domain *sd,
2518 enum cpu_idle_type idle, int *all_pinned,
2519 struct cfs_rq *busiest_cfs_rq)
2520 {
2521 int loops = 0, pulled = 0;
2522 long rem_load_move = max_load_move;
2523 struct task_struct *p, *n;
2524
2525 if (max_load_move == 0)
2526 goto out;
2527
2528 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2529 if (loops++ > sysctl_sched_nr_migrate)
2530 break;
2531
2532 if ((p->se.load.weight >> 1) > rem_load_move ||
2533 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2534 all_pinned))
2535 continue;
2536
2537 pull_task(busiest, p, this_rq, this_cpu);
2538 pulled++;
2539 rem_load_move -= p->se.load.weight;
2540
2541 #ifdef CONFIG_PREEMPT
2542 /*
2543 * NEWIDLE balancing is a source of latency, so preemptible
2544 * kernels will stop after the first task is pulled to minimize
2545 * the critical section.
2546 */
2547 if (idle == CPU_NEWLY_IDLE)
2548 break;
2549 #endif
2550
2551 /*
2552 * We only want to steal up to the prescribed amount of
2553 * weighted load.
2554 */
2555 if (rem_load_move <= 0)
2556 break;
2557 }
2558 out:
2559 /*
2560 * Right now, this is one of only two places pull_task() is called,
2561 * so we can safely collect pull_task() stats here rather than
2562 * inside pull_task().
2563 */
2564 schedstat_add(sd, lb_gained[idle], pulled);
2565
2566 return max_load_move - rem_load_move;
2567 }
2568
2569 #ifdef CONFIG_FAIR_GROUP_SCHED
2570 /*
2571 * update tg->load_weight by folding this cpu's load_avg
2572 */
2573 static int update_shares_cpu(struct task_group *tg, int cpu)
2574 {
2575 struct cfs_rq *cfs_rq;
2576 unsigned long flags;
2577 struct rq *rq;
2578
2579 if (!tg->se[cpu])
2580 return 0;
2581
2582 rq = cpu_rq(cpu);
2583 cfs_rq = tg->cfs_rq[cpu];
2584
2585 raw_spin_lock_irqsave(&rq->lock, flags);
2586
2587 update_rq_clock(rq);
2588 update_cfs_load(cfs_rq, 1);
2589
2590 /*
2591 * We need to update shares after updating tg->load_weight in
2592 * order to adjust the weight of groups with long running tasks.
2593 */
2594 update_cfs_shares(cfs_rq);
2595
2596 raw_spin_unlock_irqrestore(&rq->lock, flags);
2597
2598 return 0;
2599 }
2600
2601 static void update_shares(int cpu)
2602 {
2603 struct cfs_rq *cfs_rq;
2604 struct rq *rq = cpu_rq(cpu);
2605
2606 rcu_read_lock();
2607 /*
2608 * Iterates the task_group tree in a bottom up fashion, see
2609 * list_add_leaf_cfs_rq() for details.
2610 */
2611 for_each_leaf_cfs_rq(rq, cfs_rq)
2612 update_shares_cpu(cfs_rq->tg, cpu);
2613 rcu_read_unlock();
2614 }
2615
2616 /*
2617 * Compute the cpu's hierarchical load factor for each task group.
2618 * This needs to be done in a top-down fashion because the load of a child
2619 * group is a fraction of its parents load.
2620 */
2621 static int tg_load_down(struct task_group *tg, void *data)
2622 {
2623 unsigned long load;
2624 long cpu = (long)data;
2625
2626 if (!tg->parent) {
2627 load = cpu_rq(cpu)->load.weight;
2628 } else {
2629 load = tg->parent->cfs_rq[cpu]->h_load;
2630 load *= tg->se[cpu]->load.weight;
2631 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2632 }
2633
2634 tg->cfs_rq[cpu]->h_load = load;
2635
2636 return 0;
2637 }
2638
2639 static void update_h_load(long cpu)
2640 {
2641 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2642 }
2643
2644 static unsigned long
2645 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2646 unsigned long max_load_move,
2647 struct sched_domain *sd, enum cpu_idle_type idle,
2648 int *all_pinned)
2649 {
2650 long rem_load_move = max_load_move;
2651 struct cfs_rq *busiest_cfs_rq;
2652
2653 rcu_read_lock();
2654 update_h_load(cpu_of(busiest));
2655
2656 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
2657 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2658 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2659 u64 rem_load, moved_load;
2660
2661 /*
2662 * empty group
2663 */
2664 if (!busiest_cfs_rq->task_weight)
2665 continue;
2666
2667 rem_load = (u64)rem_load_move * busiest_weight;
2668 rem_load = div_u64(rem_load, busiest_h_load + 1);
2669
2670 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2671 rem_load, sd, idle, all_pinned,
2672 busiest_cfs_rq);
2673
2674 if (!moved_load)
2675 continue;
2676
2677 moved_load *= busiest_h_load;
2678 moved_load = div_u64(moved_load, busiest_weight + 1);
2679
2680 rem_load_move -= moved_load;
2681 if (rem_load_move < 0)
2682 break;
2683 }
2684 rcu_read_unlock();
2685
2686 return max_load_move - rem_load_move;
2687 }
2688 #else
2689 static inline void update_shares(int cpu)
2690 {
2691 }
2692
2693 static unsigned long
2694 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2695 unsigned long max_load_move,
2696 struct sched_domain *sd, enum cpu_idle_type idle,
2697 int *all_pinned)
2698 {
2699 return balance_tasks(this_rq, this_cpu, busiest,
2700 max_load_move, sd, idle, all_pinned,
2701 &busiest->cfs);
2702 }
2703 #endif
2704
2705 /*
2706 * move_tasks tries to move up to max_load_move weighted load from busiest to
2707 * this_rq, as part of a balancing operation within domain "sd".
2708 * Returns 1 if successful and 0 otherwise.
2709 *
2710 * Called with both runqueues locked.
2711 */
2712 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2713 unsigned long max_load_move,
2714 struct sched_domain *sd, enum cpu_idle_type idle,
2715 int *all_pinned)
2716 {
2717 unsigned long total_load_moved = 0, load_moved;
2718
2719 do {
2720 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2721 max_load_move - total_load_moved,
2722 sd, idle, all_pinned);
2723
2724 total_load_moved += load_moved;
2725
2726 #ifdef CONFIG_PREEMPT
2727 /*
2728 * NEWIDLE balancing is a source of latency, so preemptible
2729 * kernels will stop after the first task is pulled to minimize
2730 * the critical section.
2731 */
2732 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2733 break;
2734
2735 if (raw_spin_is_contended(&this_rq->lock) ||
2736 raw_spin_is_contended(&busiest->lock))
2737 break;
2738 #endif
2739 } while (load_moved && max_load_move > total_load_moved);
2740
2741 return total_load_moved > 0;
2742 }
2743
2744 /********** Helpers for find_busiest_group ************************/
2745 /*
2746 * sd_lb_stats - Structure to store the statistics of a sched_domain
2747 * during load balancing.
2748 */
2749 struct sd_lb_stats {
2750 struct sched_group *busiest; /* Busiest group in this sd */
2751 struct sched_group *this; /* Local group in this sd */
2752 unsigned long total_load; /* Total load of all groups in sd */
2753 unsigned long total_pwr; /* Total power of all groups in sd */
2754 unsigned long avg_load; /* Average load across all groups in sd */
2755
2756 /** Statistics of this group */
2757 unsigned long this_load;
2758 unsigned long this_load_per_task;
2759 unsigned long this_nr_running;
2760 unsigned long this_has_capacity;
2761 unsigned int this_idle_cpus;
2762
2763 /* Statistics of the busiest group */
2764 unsigned int busiest_idle_cpus;
2765 unsigned long max_load;
2766 unsigned long busiest_load_per_task;
2767 unsigned long busiest_nr_running;
2768 unsigned long busiest_group_capacity;
2769 unsigned long busiest_has_capacity;
2770 unsigned int busiest_group_weight;
2771
2772 int group_imb; /* Is there imbalance in this sd */
2773 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2774 int power_savings_balance; /* Is powersave balance needed for this sd */
2775 struct sched_group *group_min; /* Least loaded group in sd */
2776 struct sched_group *group_leader; /* Group which relieves group_min */
2777 unsigned long min_load_per_task; /* load_per_task in group_min */
2778 unsigned long leader_nr_running; /* Nr running of group_leader */
2779 unsigned long min_nr_running; /* Nr running of group_min */
2780 #endif
2781 };
2782
2783 /*
2784 * sg_lb_stats - stats of a sched_group required for load_balancing
2785 */
2786 struct sg_lb_stats {
2787 unsigned long avg_load; /*Avg load across the CPUs of the group */
2788 unsigned long group_load; /* Total load over the CPUs of the group */
2789 unsigned long sum_nr_running; /* Nr tasks running in the group */
2790 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2791 unsigned long group_capacity;
2792 unsigned long idle_cpus;
2793 unsigned long group_weight;
2794 int group_imb; /* Is there an imbalance in the group ? */
2795 int group_has_capacity; /* Is there extra capacity in the group? */
2796 };
2797
2798 /**
2799 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2800 * @group: The group whose first cpu is to be returned.
2801 */
2802 static inline unsigned int group_first_cpu(struct sched_group *group)
2803 {
2804 return cpumask_first(sched_group_cpus(group));
2805 }
2806
2807 /**
2808 * get_sd_load_idx - Obtain the load index for a given sched domain.
2809 * @sd: The sched_domain whose load_idx is to be obtained.
2810 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2811 */
2812 static inline int get_sd_load_idx(struct sched_domain *sd,
2813 enum cpu_idle_type idle)
2814 {
2815 int load_idx;
2816
2817 switch (idle) {
2818 case CPU_NOT_IDLE:
2819 load_idx = sd->busy_idx;
2820 break;
2821
2822 case CPU_NEWLY_IDLE:
2823 load_idx = sd->newidle_idx;
2824 break;
2825 default:
2826 load_idx = sd->idle_idx;
2827 break;
2828 }
2829
2830 return load_idx;
2831 }
2832
2833
2834 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2835 /**
2836 * init_sd_power_savings_stats - Initialize power savings statistics for
2837 * the given sched_domain, during load balancing.
2838 *
2839 * @sd: Sched domain whose power-savings statistics are to be initialized.
2840 * @sds: Variable containing the statistics for sd.
2841 * @idle: Idle status of the CPU at which we're performing load-balancing.
2842 */
2843 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2844 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2845 {
2846 /*
2847 * Busy processors will not participate in power savings
2848 * balance.
2849 */
2850 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2851 sds->power_savings_balance = 0;
2852 else {
2853 sds->power_savings_balance = 1;
2854 sds->min_nr_running = ULONG_MAX;
2855 sds->leader_nr_running = 0;
2856 }
2857 }
2858
2859 /**
2860 * update_sd_power_savings_stats - Update the power saving stats for a
2861 * sched_domain while performing load balancing.
2862 *
2863 * @group: sched_group belonging to the sched_domain under consideration.
2864 * @sds: Variable containing the statistics of the sched_domain
2865 * @local_group: Does group contain the CPU for which we're performing
2866 * load balancing ?
2867 * @sgs: Variable containing the statistics of the group.
2868 */
2869 static inline void update_sd_power_savings_stats(struct sched_group *group,
2870 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2871 {
2872
2873 if (!sds->power_savings_balance)
2874 return;
2875
2876 /*
2877 * If the local group is idle or completely loaded
2878 * no need to do power savings balance at this domain
2879 */
2880 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2881 !sds->this_nr_running))
2882 sds->power_savings_balance = 0;
2883
2884 /*
2885 * If a group is already running at full capacity or idle,
2886 * don't include that group in power savings calculations
2887 */
2888 if (!sds->power_savings_balance ||
2889 sgs->sum_nr_running >= sgs->group_capacity ||
2890 !sgs->sum_nr_running)
2891 return;
2892
2893 /*
2894 * Calculate the group which has the least non-idle load.
2895 * This is the group from where we need to pick up the load
2896 * for saving power
2897 */
2898 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2899 (sgs->sum_nr_running == sds->min_nr_running &&
2900 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2901 sds->group_min = group;
2902 sds->min_nr_running = sgs->sum_nr_running;
2903 sds->min_load_per_task = sgs->sum_weighted_load /
2904 sgs->sum_nr_running;
2905 }
2906
2907 /*
2908 * Calculate the group which is almost near its
2909 * capacity but still has some space to pick up some load
2910 * from other group and save more power
2911 */
2912 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2913 return;
2914
2915 if (sgs->sum_nr_running > sds->leader_nr_running ||
2916 (sgs->sum_nr_running == sds->leader_nr_running &&
2917 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2918 sds->group_leader = group;
2919 sds->leader_nr_running = sgs->sum_nr_running;
2920 }
2921 }
2922
2923 /**
2924 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2925 * @sds: Variable containing the statistics of the sched_domain
2926 * under consideration.
2927 * @this_cpu: Cpu at which we're currently performing load-balancing.
2928 * @imbalance: Variable to store the imbalance.
2929 *
2930 * Description:
2931 * Check if we have potential to perform some power-savings balance.
2932 * If yes, set the busiest group to be the least loaded group in the
2933 * sched_domain, so that it's CPUs can be put to idle.
2934 *
2935 * Returns 1 if there is potential to perform power-savings balance.
2936 * Else returns 0.
2937 */
2938 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2939 int this_cpu, unsigned long *imbalance)
2940 {
2941 if (!sds->power_savings_balance)
2942 return 0;
2943
2944 if (sds->this != sds->group_leader ||
2945 sds->group_leader == sds->group_min)
2946 return 0;
2947
2948 *imbalance = sds->min_load_per_task;
2949 sds->busiest = sds->group_min;
2950
2951 return 1;
2952
2953 }
2954 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2955 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2956 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2957 {
2958 return;
2959 }
2960
2961 static inline void update_sd_power_savings_stats(struct sched_group *group,
2962 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2963 {
2964 return;
2965 }
2966
2967 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2968 int this_cpu, unsigned long *imbalance)
2969 {
2970 return 0;
2971 }
2972 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2973
2974
2975 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2976 {
2977 return SCHED_POWER_SCALE;
2978 }
2979
2980 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2981 {
2982 return default_scale_freq_power(sd, cpu);
2983 }
2984
2985 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2986 {
2987 unsigned long weight = sd->span_weight;
2988 unsigned long smt_gain = sd->smt_gain;
2989
2990 smt_gain /= weight;
2991
2992 return smt_gain;
2993 }
2994
2995 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2996 {
2997 return default_scale_smt_power(sd, cpu);
2998 }
2999
3000 unsigned long scale_rt_power(int cpu)
3001 {
3002 struct rq *rq = cpu_rq(cpu);
3003 u64 total, available;
3004
3005 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3006
3007 if (unlikely(total < rq->rt_avg)) {
3008 /* Ensures that power won't end up being negative */
3009 available = 0;
3010 } else {
3011 available = total - rq->rt_avg;
3012 }
3013
3014 if (unlikely((s64)total < SCHED_POWER_SCALE))
3015 total = SCHED_POWER_SCALE;
3016
3017 total >>= SCHED_POWER_SHIFT;
3018
3019 return div_u64(available, total);
3020 }
3021
3022 static void update_cpu_power(struct sched_domain *sd, int cpu)
3023 {
3024 unsigned long weight = sd->span_weight;
3025 unsigned long power = SCHED_POWER_SCALE;
3026 struct sched_group *sdg = sd->groups;
3027
3028 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3029 if (sched_feat(ARCH_POWER))
3030 power *= arch_scale_smt_power(sd, cpu);
3031 else
3032 power *= default_scale_smt_power(sd, cpu);
3033
3034 power >>= SCHED_POWER_SHIFT;
3035 }
3036
3037 sdg->sgp->power_orig = power;
3038
3039 if (sched_feat(ARCH_POWER))
3040 power *= arch_scale_freq_power(sd, cpu);
3041 else
3042 power *= default_scale_freq_power(sd, cpu);
3043
3044 power >>= SCHED_POWER_SHIFT;
3045
3046 power *= scale_rt_power(cpu);
3047 power >>= SCHED_POWER_SHIFT;
3048
3049 if (!power)
3050 power = 1;
3051
3052 cpu_rq(cpu)->cpu_power = power;
3053 sdg->sgp->power = power;
3054 }
3055
3056 static void update_group_power(struct sched_domain *sd, int cpu)
3057 {
3058 struct sched_domain *child = sd->child;
3059 struct sched_group *group, *sdg = sd->groups;
3060 unsigned long power;
3061
3062 if (!child) {
3063 update_cpu_power(sd, cpu);
3064 return;
3065 }
3066
3067 power = 0;
3068
3069 group = child->groups;
3070 do {
3071 power += group->sgp->power;
3072 group = group->next;
3073 } while (group != child->groups);
3074
3075 sdg->sgp->power = power;
3076 }
3077
3078 /*
3079 * Try and fix up capacity for tiny siblings, this is needed when
3080 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3081 * which on its own isn't powerful enough.
3082 *
3083 * See update_sd_pick_busiest() and check_asym_packing().
3084 */
3085 static inline int
3086 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3087 {
3088 /*
3089 * Only siblings can have significantly less than SCHED_POWER_SCALE
3090 */
3091 if (!(sd->flags & SD_SHARE_CPUPOWER))
3092 return 0;
3093
3094 /*
3095 * If ~90% of the cpu_power is still there, we're good.
3096 */
3097 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3098 return 1;
3099
3100 return 0;
3101 }
3102
3103 /**
3104 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3105 * @sd: The sched_domain whose statistics are to be updated.
3106 * @group: sched_group whose statistics are to be updated.
3107 * @this_cpu: Cpu for which load balance is currently performed.
3108 * @idle: Idle status of this_cpu
3109 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3110 * @local_group: Does group contain this_cpu.
3111 * @cpus: Set of cpus considered for load balancing.
3112 * @balance: Should we balance.
3113 * @sgs: variable to hold the statistics for this group.
3114 */
3115 static inline void update_sg_lb_stats(struct sched_domain *sd,
3116 struct sched_group *group, int this_cpu,
3117 enum cpu_idle_type idle, int load_idx,
3118 int local_group, const struct cpumask *cpus,
3119 int *balance, struct sg_lb_stats *sgs)
3120 {
3121 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3122 int i;
3123 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3124 unsigned long avg_load_per_task = 0;
3125
3126 if (local_group)
3127 balance_cpu = group_first_cpu(group);
3128
3129 /* Tally up the load of all CPUs in the group */
3130 max_cpu_load = 0;
3131 min_cpu_load = ~0UL;
3132 max_nr_running = 0;
3133
3134 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3135 struct rq *rq = cpu_rq(i);
3136
3137 /* Bias balancing toward cpus of our domain */
3138 if (local_group) {
3139 if (idle_cpu(i) && !first_idle_cpu) {
3140 first_idle_cpu = 1;
3141 balance_cpu = i;
3142 }
3143
3144 load = target_load(i, load_idx);
3145 } else {
3146 load = source_load(i, load_idx);
3147 if (load > max_cpu_load) {
3148 max_cpu_load = load;
3149 max_nr_running = rq->nr_running;
3150 }
3151 if (min_cpu_load > load)
3152 min_cpu_load = load;
3153 }
3154
3155 sgs->group_load += load;
3156 sgs->sum_nr_running += rq->nr_running;
3157 sgs->sum_weighted_load += weighted_cpuload(i);
3158 if (idle_cpu(i))
3159 sgs->idle_cpus++;
3160 }
3161
3162 /*
3163 * First idle cpu or the first cpu(busiest) in this sched group
3164 * is eligible for doing load balancing at this and above
3165 * domains. In the newly idle case, we will allow all the cpu's
3166 * to do the newly idle load balance.
3167 */
3168 if (idle != CPU_NEWLY_IDLE && local_group) {
3169 if (balance_cpu != this_cpu) {
3170 *balance = 0;
3171 return;
3172 }
3173 update_group_power(sd, this_cpu);
3174 }
3175
3176 /* Adjust by relative CPU power of the group */
3177 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3178
3179 /*
3180 * Consider the group unbalanced when the imbalance is larger
3181 * than the average weight of a task.
3182 *
3183 * APZ: with cgroup the avg task weight can vary wildly and
3184 * might not be a suitable number - should we keep a
3185 * normalized nr_running number somewhere that negates
3186 * the hierarchy?
3187 */
3188 if (sgs->sum_nr_running)
3189 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3190
3191 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3192 sgs->group_imb = 1;
3193
3194 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3195 SCHED_POWER_SCALE);
3196 if (!sgs->group_capacity)
3197 sgs->group_capacity = fix_small_capacity(sd, group);
3198 sgs->group_weight = group->group_weight;
3199
3200 if (sgs->group_capacity > sgs->sum_nr_running)
3201 sgs->group_has_capacity = 1;
3202 }
3203
3204 /**
3205 * update_sd_pick_busiest - return 1 on busiest group
3206 * @sd: sched_domain whose statistics are to be checked
3207 * @sds: sched_domain statistics
3208 * @sg: sched_group candidate to be checked for being the busiest
3209 * @sgs: sched_group statistics
3210 * @this_cpu: the current cpu
3211 *
3212 * Determine if @sg is a busier group than the previously selected
3213 * busiest group.
3214 */
3215 static bool update_sd_pick_busiest(struct sched_domain *sd,
3216 struct sd_lb_stats *sds,
3217 struct sched_group *sg,
3218 struct sg_lb_stats *sgs,
3219 int this_cpu)
3220 {
3221 if (sgs->avg_load <= sds->max_load)
3222 return false;
3223
3224 if (sgs->sum_nr_running > sgs->group_capacity)
3225 return true;
3226
3227 if (sgs->group_imb)
3228 return true;
3229
3230 /*
3231 * ASYM_PACKING needs to move all the work to the lowest
3232 * numbered CPUs in the group, therefore mark all groups
3233 * higher than ourself as busy.
3234 */
3235 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3236 this_cpu < group_first_cpu(sg)) {
3237 if (!sds->busiest)
3238 return true;
3239
3240 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3241 return true;
3242 }
3243
3244 return false;
3245 }
3246
3247 /**
3248 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3249 * @sd: sched_domain whose statistics are to be updated.
3250 * @this_cpu: Cpu for which load balance is currently performed.
3251 * @idle: Idle status of this_cpu
3252 * @cpus: Set of cpus considered for load balancing.
3253 * @balance: Should we balance.
3254 * @sds: variable to hold the statistics for this sched_domain.
3255 */
3256 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3257 enum cpu_idle_type idle, const struct cpumask *cpus,
3258 int *balance, struct sd_lb_stats *sds)
3259 {
3260 struct sched_domain *child = sd->child;
3261 struct sched_group *sg = sd->groups;
3262 struct sg_lb_stats sgs;
3263 int load_idx, prefer_sibling = 0;
3264
3265 if (child && child->flags & SD_PREFER_SIBLING)
3266 prefer_sibling = 1;
3267
3268 init_sd_power_savings_stats(sd, sds, idle);
3269 load_idx = get_sd_load_idx(sd, idle);
3270
3271 do {
3272 int local_group;
3273
3274 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3275 memset(&sgs, 0, sizeof(sgs));
3276 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3277 local_group, cpus, balance, &sgs);
3278
3279 if (local_group && !(*balance))
3280 return;
3281
3282 sds->total_load += sgs.group_load;
3283 sds->total_pwr += sg->sgp->power;
3284
3285 /*
3286 * In case the child domain prefers tasks go to siblings
3287 * first, lower the sg capacity to one so that we'll try
3288 * and move all the excess tasks away. We lower the capacity
3289 * of a group only if the local group has the capacity to fit
3290 * these excess tasks, i.e. nr_running < group_capacity. The
3291 * extra check prevents the case where you always pull from the
3292 * heaviest group when it is already under-utilized (possible
3293 * with a large weight task outweighs the tasks on the system).
3294 */
3295 if (prefer_sibling && !local_group && sds->this_has_capacity)
3296 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3297
3298 if (local_group) {
3299 sds->this_load = sgs.avg_load;
3300 sds->this = sg;
3301 sds->this_nr_running = sgs.sum_nr_running;
3302 sds->this_load_per_task = sgs.sum_weighted_load;
3303 sds->this_has_capacity = sgs.group_has_capacity;
3304 sds->this_idle_cpus = sgs.idle_cpus;
3305 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3306 sds->max_load = sgs.avg_load;
3307 sds->busiest = sg;
3308 sds->busiest_nr_running = sgs.sum_nr_running;
3309 sds->busiest_idle_cpus = sgs.idle_cpus;
3310 sds->busiest_group_capacity = sgs.group_capacity;
3311 sds->busiest_load_per_task = sgs.sum_weighted_load;
3312 sds->busiest_has_capacity = sgs.group_has_capacity;
3313 sds->busiest_group_weight = sgs.group_weight;
3314 sds->group_imb = sgs.group_imb;
3315 }
3316
3317 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3318 sg = sg->next;
3319 } while (sg != sd->groups);
3320 }
3321
3322 int __weak arch_sd_sibling_asym_packing(void)
3323 {
3324 return 0*SD_ASYM_PACKING;
3325 }
3326
3327 /**
3328 * check_asym_packing - Check to see if the group is packed into the
3329 * sched doman.
3330 *
3331 * This is primarily intended to used at the sibling level. Some
3332 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3333 * case of POWER7, it can move to lower SMT modes only when higher
3334 * threads are idle. When in lower SMT modes, the threads will
3335 * perform better since they share less core resources. Hence when we
3336 * have idle threads, we want them to be the higher ones.
3337 *
3338 * This packing function is run on idle threads. It checks to see if
3339 * the busiest CPU in this domain (core in the P7 case) has a higher
3340 * CPU number than the packing function is being run on. Here we are
3341 * assuming lower CPU number will be equivalent to lower a SMT thread
3342 * number.
3343 *
3344 * Returns 1 when packing is required and a task should be moved to
3345 * this CPU. The amount of the imbalance is returned in *imbalance.
3346 *
3347 * @sd: The sched_domain whose packing is to be checked.
3348 * @sds: Statistics of the sched_domain which is to be packed
3349 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3350 * @imbalance: returns amount of imbalanced due to packing.
3351 */
3352 static int check_asym_packing(struct sched_domain *sd,
3353 struct sd_lb_stats *sds,
3354 int this_cpu, unsigned long *imbalance)
3355 {
3356 int busiest_cpu;
3357
3358 if (!(sd->flags & SD_ASYM_PACKING))
3359 return 0;
3360
3361 if (!sds->busiest)
3362 return 0;
3363
3364 busiest_cpu = group_first_cpu(sds->busiest);
3365 if (this_cpu > busiest_cpu)
3366 return 0;
3367
3368 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
3369 SCHED_POWER_SCALE);
3370 return 1;
3371 }
3372
3373 /**
3374 * fix_small_imbalance - Calculate the minor imbalance that exists
3375 * amongst the groups of a sched_domain, during
3376 * load balancing.
3377 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3378 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3379 * @imbalance: Variable to store the imbalance.
3380 */
3381 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3382 int this_cpu, unsigned long *imbalance)
3383 {
3384 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3385 unsigned int imbn = 2;
3386 unsigned long scaled_busy_load_per_task;
3387
3388 if (sds->this_nr_running) {
3389 sds->this_load_per_task /= sds->this_nr_running;
3390 if (sds->busiest_load_per_task >
3391 sds->this_load_per_task)
3392 imbn = 1;
3393 } else
3394 sds->this_load_per_task =
3395 cpu_avg_load_per_task(this_cpu);
3396
3397 scaled_busy_load_per_task = sds->busiest_load_per_task
3398 * SCHED_POWER_SCALE;
3399 scaled_busy_load_per_task /= sds->busiest->sgp->power;
3400
3401 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3402 (scaled_busy_load_per_task * imbn)) {
3403 *imbalance = sds->busiest_load_per_task;
3404 return;
3405 }
3406
3407 /*
3408 * OK, we don't have enough imbalance to justify moving tasks,
3409 * however we may be able to increase total CPU power used by
3410 * moving them.
3411 */
3412
3413 pwr_now += sds->busiest->sgp->power *
3414 min(sds->busiest_load_per_task, sds->max_load);
3415 pwr_now += sds->this->sgp->power *
3416 min(sds->this_load_per_task, sds->this_load);
3417 pwr_now /= SCHED_POWER_SCALE;
3418
3419 /* Amount of load we'd subtract */
3420 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3421 sds->busiest->sgp->power;
3422 if (sds->max_load > tmp)
3423 pwr_move += sds->busiest->sgp->power *
3424 min(sds->busiest_load_per_task, sds->max_load - tmp);
3425
3426 /* Amount of load we'd add */
3427 if (sds->max_load * sds->busiest->sgp->power <
3428 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3429 tmp = (sds->max_load * sds->busiest->sgp->power) /
3430 sds->this->sgp->power;
3431 else
3432 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3433 sds->this->sgp->power;
3434 pwr_move += sds->this->sgp->power *
3435 min(sds->this_load_per_task, sds->this_load + tmp);
3436 pwr_move /= SCHED_POWER_SCALE;
3437
3438 /* Move if we gain throughput */
3439 if (pwr_move > pwr_now)
3440 *imbalance = sds->busiest_load_per_task;
3441 }
3442
3443 /**
3444 * calculate_imbalance - Calculate the amount of imbalance present within the
3445 * groups of a given sched_domain during load balance.
3446 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3447 * @this_cpu: Cpu for which currently load balance is being performed.
3448 * @imbalance: The variable to store the imbalance.
3449 */
3450 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3451 unsigned long *imbalance)
3452 {
3453 unsigned long max_pull, load_above_capacity = ~0UL;
3454
3455 sds->busiest_load_per_task /= sds->busiest_nr_running;
3456 if (sds->group_imb) {
3457 sds->busiest_load_per_task =
3458 min(sds->busiest_load_per_task, sds->avg_load);
3459 }
3460
3461 /*
3462 * In the presence of smp nice balancing, certain scenarios can have
3463 * max load less than avg load(as we skip the groups at or below
3464 * its cpu_power, while calculating max_load..)
3465 */
3466 if (sds->max_load < sds->avg_load) {
3467 *imbalance = 0;
3468 return fix_small_imbalance(sds, this_cpu, imbalance);
3469 }
3470
3471 if (!sds->group_imb) {
3472 /*
3473 * Don't want to pull so many tasks that a group would go idle.
3474 */
3475 load_above_capacity = (sds->busiest_nr_running -
3476 sds->busiest_group_capacity);
3477
3478 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3479
3480 load_above_capacity /= sds->busiest->sgp->power;
3481 }
3482
3483 /*
3484 * We're trying to get all the cpus to the average_load, so we don't
3485 * want to push ourselves above the average load, nor do we wish to
3486 * reduce the max loaded cpu below the average load. At the same time,
3487 * we also don't want to reduce the group load below the group capacity
3488 * (so that we can implement power-savings policies etc). Thus we look
3489 * for the minimum possible imbalance.
3490 * Be careful of negative numbers as they'll appear as very large values
3491 * with unsigned longs.
3492 */
3493 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3494
3495 /* How much load to actually move to equalise the imbalance */
3496 *imbalance = min(max_pull * sds->busiest->sgp->power,
3497 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3498 / SCHED_POWER_SCALE;
3499
3500 /*
3501 * if *imbalance is less than the average load per runnable task
3502 * there is no guarantee that any tasks will be moved so we'll have
3503 * a think about bumping its value to force at least one task to be
3504 * moved
3505 */
3506 if (*imbalance < sds->busiest_load_per_task)
3507 return fix_small_imbalance(sds, this_cpu, imbalance);
3508
3509 }
3510
3511 /******* find_busiest_group() helpers end here *********************/
3512
3513 /**
3514 * find_busiest_group - Returns the busiest group within the sched_domain
3515 * if there is an imbalance. If there isn't an imbalance, and
3516 * the user has opted for power-savings, it returns a group whose
3517 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3518 * such a group exists.
3519 *
3520 * Also calculates the amount of weighted load which should be moved
3521 * to restore balance.
3522 *
3523 * @sd: The sched_domain whose busiest group is to be returned.
3524 * @this_cpu: The cpu for which load balancing is currently being performed.
3525 * @imbalance: Variable which stores amount of weighted load which should
3526 * be moved to restore balance/put a group to idle.
3527 * @idle: The idle status of this_cpu.
3528 * @cpus: The set of CPUs under consideration for load-balancing.
3529 * @balance: Pointer to a variable indicating if this_cpu
3530 * is the appropriate cpu to perform load balancing at this_level.
3531 *
3532 * Returns: - the busiest group if imbalance exists.
3533 * - If no imbalance and user has opted for power-savings balance,
3534 * return the least loaded group whose CPUs can be
3535 * put to idle by rebalancing its tasks onto our group.
3536 */
3537 static struct sched_group *
3538 find_busiest_group(struct sched_domain *sd, int this_cpu,
3539 unsigned long *imbalance, enum cpu_idle_type idle,
3540 const struct cpumask *cpus, int *balance)
3541 {
3542 struct sd_lb_stats sds;
3543
3544 memset(&sds, 0, sizeof(sds));
3545
3546 /*
3547 * Compute the various statistics relavent for load balancing at
3548 * this level.
3549 */
3550 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3551
3552 /*
3553 * this_cpu is not the appropriate cpu to perform load balancing at
3554 * this level.
3555 */
3556 if (!(*balance))
3557 goto ret;
3558
3559 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3560 check_asym_packing(sd, &sds, this_cpu, imbalance))
3561 return sds.busiest;
3562
3563 /* There is no busy sibling group to pull tasks from */
3564 if (!sds.busiest || sds.busiest_nr_running == 0)
3565 goto out_balanced;
3566
3567 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3568
3569 /*
3570 * If the busiest group is imbalanced the below checks don't
3571 * work because they assumes all things are equal, which typically
3572 * isn't true due to cpus_allowed constraints and the like.
3573 */
3574 if (sds.group_imb)
3575 goto force_balance;
3576
3577 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3578 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3579 !sds.busiest_has_capacity)
3580 goto force_balance;
3581
3582 /*
3583 * If the local group is more busy than the selected busiest group
3584 * don't try and pull any tasks.
3585 */
3586 if (sds.this_load >= sds.max_load)
3587 goto out_balanced;
3588
3589 /*
3590 * Don't pull any tasks if this group is already above the domain
3591 * average load.
3592 */
3593 if (sds.this_load >= sds.avg_load)
3594 goto out_balanced;
3595
3596 if (idle == CPU_IDLE) {
3597 /*
3598 * This cpu is idle. If the busiest group load doesn't
3599 * have more tasks than the number of available cpu's and
3600 * there is no imbalance between this and busiest group
3601 * wrt to idle cpu's, it is balanced.
3602 */
3603 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3604 sds.busiest_nr_running <= sds.busiest_group_weight)
3605 goto out_balanced;
3606 } else {
3607 /*
3608 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3609 * imbalance_pct to be conservative.
3610 */
3611 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3612 goto out_balanced;
3613 }
3614
3615 force_balance:
3616 /* Looks like there is an imbalance. Compute it */
3617 calculate_imbalance(&sds, this_cpu, imbalance);
3618 return sds.busiest;
3619
3620 out_balanced:
3621 /*
3622 * There is no obvious imbalance. But check if we can do some balancing
3623 * to save power.
3624 */
3625 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3626 return sds.busiest;
3627 ret:
3628 *imbalance = 0;
3629 return NULL;
3630 }
3631
3632 /*
3633 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3634 */
3635 static struct rq *
3636 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3637 enum cpu_idle_type idle, unsigned long imbalance,
3638 const struct cpumask *cpus)
3639 {
3640 struct rq *busiest = NULL, *rq;
3641 unsigned long max_load = 0;
3642 int i;
3643
3644 for_each_cpu(i, sched_group_cpus(group)) {
3645 unsigned long power = power_of(i);
3646 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3647 SCHED_POWER_SCALE);
3648 unsigned long wl;
3649
3650 if (!capacity)
3651 capacity = fix_small_capacity(sd, group);
3652
3653 if (!cpumask_test_cpu(i, cpus))
3654 continue;
3655
3656 rq = cpu_rq(i);
3657 wl = weighted_cpuload(i);
3658
3659 /*
3660 * When comparing with imbalance, use weighted_cpuload()
3661 * which is not scaled with the cpu power.
3662 */
3663 if (capacity && rq->nr_running == 1 && wl > imbalance)
3664 continue;
3665
3666 /*
3667 * For the load comparisons with the other cpu's, consider
3668 * the weighted_cpuload() scaled with the cpu power, so that
3669 * the load can be moved away from the cpu that is potentially
3670 * running at a lower capacity.
3671 */
3672 wl = (wl * SCHED_POWER_SCALE) / power;
3673
3674 if (wl > max_load) {
3675 max_load = wl;
3676 busiest = rq;
3677 }
3678 }
3679
3680 return busiest;
3681 }
3682
3683 /*
3684 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3685 * so long as it is large enough.
3686 */
3687 #define MAX_PINNED_INTERVAL 512
3688
3689 /* Working cpumask for load_balance and load_balance_newidle. */
3690 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3691
3692 static int need_active_balance(struct sched_domain *sd, int idle,
3693 int busiest_cpu, int this_cpu)
3694 {
3695 if (idle == CPU_NEWLY_IDLE) {
3696
3697 /*
3698 * ASYM_PACKING needs to force migrate tasks from busy but
3699 * higher numbered CPUs in order to pack all tasks in the
3700 * lowest numbered CPUs.
3701 */
3702 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3703 return 1;
3704
3705 /*
3706 * The only task running in a non-idle cpu can be moved to this
3707 * cpu in an attempt to completely freeup the other CPU
3708 * package.
3709 *
3710 * The package power saving logic comes from
3711 * find_busiest_group(). If there are no imbalance, then
3712 * f_b_g() will return NULL. However when sched_mc={1,2} then
3713 * f_b_g() will select a group from which a running task may be
3714 * pulled to this cpu in order to make the other package idle.
3715 * If there is no opportunity to make a package idle and if
3716 * there are no imbalance, then f_b_g() will return NULL and no
3717 * action will be taken in load_balance_newidle().
3718 *
3719 * Under normal task pull operation due to imbalance, there
3720 * will be more than one task in the source run queue and
3721 * move_tasks() will succeed. ld_moved will be true and this
3722 * active balance code will not be triggered.
3723 */
3724 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3725 return 0;
3726 }
3727
3728 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3729 }
3730
3731 static int active_load_balance_cpu_stop(void *data);
3732
3733 /*
3734 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3735 * tasks if there is an imbalance.
3736 */
3737 static int load_balance(int this_cpu, struct rq *this_rq,
3738 struct sched_domain *sd, enum cpu_idle_type idle,
3739 int *balance)
3740 {
3741 int ld_moved, all_pinned = 0, active_balance = 0;
3742 struct sched_group *group;
3743 unsigned long imbalance;
3744 struct rq *busiest;
3745 unsigned long flags;
3746 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3747
3748 cpumask_copy(cpus, cpu_active_mask);
3749
3750 schedstat_inc(sd, lb_count[idle]);
3751
3752 redo:
3753 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3754 cpus, balance);
3755
3756 if (*balance == 0)
3757 goto out_balanced;
3758
3759 if (!group) {
3760 schedstat_inc(sd, lb_nobusyg[idle]);
3761 goto out_balanced;
3762 }
3763
3764 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3765 if (!busiest) {
3766 schedstat_inc(sd, lb_nobusyq[idle]);
3767 goto out_balanced;
3768 }
3769
3770 BUG_ON(busiest == this_rq);
3771
3772 schedstat_add(sd, lb_imbalance[idle], imbalance);
3773
3774 ld_moved = 0;
3775 if (busiest->nr_running > 1) {
3776 /*
3777 * Attempt to move tasks. If find_busiest_group has found
3778 * an imbalance but busiest->nr_running <= 1, the group is
3779 * still unbalanced. ld_moved simply stays zero, so it is
3780 * correctly treated as an imbalance.
3781 */
3782 all_pinned = 1;
3783 local_irq_save(flags);
3784 double_rq_lock(this_rq, busiest);
3785 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3786 imbalance, sd, idle, &all_pinned);
3787 double_rq_unlock(this_rq, busiest);
3788 local_irq_restore(flags);
3789
3790 /*
3791 * some other cpu did the load balance for us.
3792 */
3793 if (ld_moved && this_cpu != smp_processor_id())
3794 resched_cpu(this_cpu);
3795
3796 /* All tasks on this runqueue were pinned by CPU affinity */
3797 if (unlikely(all_pinned)) {
3798 cpumask_clear_cpu(cpu_of(busiest), cpus);
3799 if (!cpumask_empty(cpus))
3800 goto redo;
3801 goto out_balanced;
3802 }
3803 }
3804
3805 if (!ld_moved) {
3806 schedstat_inc(sd, lb_failed[idle]);
3807 /*
3808 * Increment the failure counter only on periodic balance.
3809 * We do not want newidle balance, which can be very
3810 * frequent, pollute the failure counter causing
3811 * excessive cache_hot migrations and active balances.
3812 */
3813 if (idle != CPU_NEWLY_IDLE)
3814 sd->nr_balance_failed++;
3815
3816 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3817 raw_spin_lock_irqsave(&busiest->lock, flags);
3818
3819 /* don't kick the active_load_balance_cpu_stop,
3820 * if the curr task on busiest cpu can't be
3821 * moved to this_cpu
3822 */
3823 if (!cpumask_test_cpu(this_cpu,
3824 &busiest->curr->cpus_allowed)) {
3825 raw_spin_unlock_irqrestore(&busiest->lock,
3826 flags);
3827 all_pinned = 1;
3828 goto out_one_pinned;
3829 }
3830
3831 /*
3832 * ->active_balance synchronizes accesses to
3833 * ->active_balance_work. Once set, it's cleared
3834 * only after active load balance is finished.
3835 */
3836 if (!busiest->active_balance) {
3837 busiest->active_balance = 1;
3838 busiest->push_cpu = this_cpu;
3839 active_balance = 1;
3840 }
3841 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3842
3843 if (active_balance)
3844 stop_one_cpu_nowait(cpu_of(busiest),
3845 active_load_balance_cpu_stop, busiest,
3846 &busiest->active_balance_work);
3847
3848 /*
3849 * We've kicked active balancing, reset the failure
3850 * counter.
3851 */
3852 sd->nr_balance_failed = sd->cache_nice_tries+1;
3853 }
3854 } else
3855 sd->nr_balance_failed = 0;
3856
3857 if (likely(!active_balance)) {
3858 /* We were unbalanced, so reset the balancing interval */
3859 sd->balance_interval = sd->min_interval;
3860 } else {
3861 /*
3862 * If we've begun active balancing, start to back off. This
3863 * case may not be covered by the all_pinned logic if there
3864 * is only 1 task on the busy runqueue (because we don't call
3865 * move_tasks).
3866 */
3867 if (sd->balance_interval < sd->max_interval)
3868 sd->balance_interval *= 2;
3869 }
3870
3871 goto out;
3872
3873 out_balanced:
3874 schedstat_inc(sd, lb_balanced[idle]);
3875
3876 sd->nr_balance_failed = 0;
3877
3878 out_one_pinned:
3879 /* tune up the balancing interval */
3880 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3881 (sd->balance_interval < sd->max_interval))
3882 sd->balance_interval *= 2;
3883
3884 ld_moved = 0;
3885 out:
3886 return ld_moved;
3887 }
3888
3889 /*
3890 * idle_balance is called by schedule() if this_cpu is about to become
3891 * idle. Attempts to pull tasks from other CPUs.
3892 */
3893 static void idle_balance(int this_cpu, struct rq *this_rq)
3894 {
3895 struct sched_domain *sd;
3896 int pulled_task = 0;
3897 unsigned long next_balance = jiffies + HZ;
3898
3899 this_rq->idle_stamp = this_rq->clock;
3900
3901 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3902 return;
3903
3904 /*
3905 * Drop the rq->lock, but keep IRQ/preempt disabled.
3906 */
3907 raw_spin_unlock(&this_rq->lock);
3908
3909 update_shares(this_cpu);
3910 rcu_read_lock();
3911 for_each_domain(this_cpu, sd) {
3912 unsigned long interval;
3913 int balance = 1;
3914
3915 if (!(sd->flags & SD_LOAD_BALANCE))
3916 continue;
3917
3918 if (sd->flags & SD_BALANCE_NEWIDLE) {
3919 /* If we've pulled tasks over stop searching: */
3920 pulled_task = load_balance(this_cpu, this_rq,
3921 sd, CPU_NEWLY_IDLE, &balance);
3922 }
3923
3924 interval = msecs_to_jiffies(sd->balance_interval);
3925 if (time_after(next_balance, sd->last_balance + interval))
3926 next_balance = sd->last_balance + interval;
3927 if (pulled_task) {
3928 this_rq->idle_stamp = 0;
3929 break;
3930 }
3931 }
3932 rcu_read_unlock();
3933
3934 raw_spin_lock(&this_rq->lock);
3935
3936 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3937 /*
3938 * We are going idle. next_balance may be set based on
3939 * a busy processor. So reset next_balance.
3940 */
3941 this_rq->next_balance = next_balance;
3942 }
3943 }
3944
3945 /*
3946 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3947 * running tasks off the busiest CPU onto idle CPUs. It requires at
3948 * least 1 task to be running on each physical CPU where possible, and
3949 * avoids physical / logical imbalances.
3950 */
3951 static int active_load_balance_cpu_stop(void *data)
3952 {
3953 struct rq *busiest_rq = data;
3954 int busiest_cpu = cpu_of(busiest_rq);
3955 int target_cpu = busiest_rq->push_cpu;
3956 struct rq *target_rq = cpu_rq(target_cpu);
3957 struct sched_domain *sd;
3958
3959 raw_spin_lock_irq(&busiest_rq->lock);
3960
3961 /* make sure the requested cpu hasn't gone down in the meantime */
3962 if (unlikely(busiest_cpu != smp_processor_id() ||
3963 !busiest_rq->active_balance))
3964 goto out_unlock;
3965
3966 /* Is there any task to move? */
3967 if (busiest_rq->nr_running <= 1)
3968 goto out_unlock;
3969
3970 /*
3971 * This condition is "impossible", if it occurs
3972 * we need to fix it. Originally reported by
3973 * Bjorn Helgaas on a 128-cpu setup.
3974 */
3975 BUG_ON(busiest_rq == target_rq);
3976
3977 /* move a task from busiest_rq to target_rq */
3978 double_lock_balance(busiest_rq, target_rq);
3979
3980 /* Search for an sd spanning us and the target CPU. */
3981 rcu_read_lock();
3982 for_each_domain(target_cpu, sd) {
3983 if ((sd->flags & SD_LOAD_BALANCE) &&
3984 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3985 break;
3986 }
3987
3988 if (likely(sd)) {
3989 schedstat_inc(sd, alb_count);
3990
3991 if (move_one_task(target_rq, target_cpu, busiest_rq,
3992 sd, CPU_IDLE))
3993 schedstat_inc(sd, alb_pushed);
3994 else
3995 schedstat_inc(sd, alb_failed);
3996 }
3997 rcu_read_unlock();
3998 double_unlock_balance(busiest_rq, target_rq);
3999 out_unlock:
4000 busiest_rq->active_balance = 0;
4001 raw_spin_unlock_irq(&busiest_rq->lock);
4002 return 0;
4003 }
4004
4005 #ifdef CONFIG_NO_HZ
4006
4007 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
4008
4009 static void trigger_sched_softirq(void *data)
4010 {
4011 raise_softirq_irqoff(SCHED_SOFTIRQ);
4012 }
4013
4014 static inline void init_sched_softirq_csd(struct call_single_data *csd)
4015 {
4016 csd->func = trigger_sched_softirq;
4017 csd->info = NULL;
4018 csd->flags = 0;
4019 csd->priv = 0;
4020 }
4021
4022 /*
4023 * idle load balancing details
4024 * - One of the idle CPUs nominates itself as idle load_balancer, while
4025 * entering idle.
4026 * - This idle load balancer CPU will also go into tickless mode when
4027 * it is idle, just like all other idle CPUs
4028 * - When one of the busy CPUs notice that there may be an idle rebalancing
4029 * needed, they will kick the idle load balancer, which then does idle
4030 * load balancing for all the idle CPUs.
4031 */
4032 static struct {
4033 atomic_t load_balancer;
4034 atomic_t first_pick_cpu;
4035 atomic_t second_pick_cpu;
4036 cpumask_var_t idle_cpus_mask;
4037 cpumask_var_t grp_idle_mask;
4038 unsigned long next_balance; /* in jiffy units */
4039 } nohz ____cacheline_aligned;
4040
4041 int get_nohz_load_balancer(void)
4042 {
4043 return atomic_read(&nohz.load_balancer);
4044 }
4045
4046 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4047 /**
4048 * lowest_flag_domain - Return lowest sched_domain containing flag.
4049 * @cpu: The cpu whose lowest level of sched domain is to
4050 * be returned.
4051 * @flag: The flag to check for the lowest sched_domain
4052 * for the given cpu.
4053 *
4054 * Returns the lowest sched_domain of a cpu which contains the given flag.
4055 */
4056 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4057 {
4058 struct sched_domain *sd;
4059
4060 for_each_domain(cpu, sd)
4061 if (sd->flags & flag)
4062 break;
4063
4064 return sd;
4065 }
4066
4067 /**
4068 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4069 * @cpu: The cpu whose domains we're iterating over.
4070 * @sd: variable holding the value of the power_savings_sd
4071 * for cpu.
4072 * @flag: The flag to filter the sched_domains to be iterated.
4073 *
4074 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4075 * set, starting from the lowest sched_domain to the highest.
4076 */
4077 #define for_each_flag_domain(cpu, sd, flag) \
4078 for (sd = lowest_flag_domain(cpu, flag); \
4079 (sd && (sd->flags & flag)); sd = sd->parent)
4080
4081 /**
4082 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4083 * @ilb_group: group to be checked for semi-idleness
4084 *
4085 * Returns: 1 if the group is semi-idle. 0 otherwise.
4086 *
4087 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4088 * and atleast one non-idle CPU. This helper function checks if the given
4089 * sched_group is semi-idle or not.
4090 */
4091 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4092 {
4093 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
4094 sched_group_cpus(ilb_group));
4095
4096 /*
4097 * A sched_group is semi-idle when it has atleast one busy cpu
4098 * and atleast one idle cpu.
4099 */
4100 if (cpumask_empty(nohz.grp_idle_mask))
4101 return 0;
4102
4103 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
4104 return 0;
4105
4106 return 1;
4107 }
4108 /**
4109 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4110 * @cpu: The cpu which is nominating a new idle_load_balancer.
4111 *
4112 * Returns: Returns the id of the idle load balancer if it exists,
4113 * Else, returns >= nr_cpu_ids.
4114 *
4115 * This algorithm picks the idle load balancer such that it belongs to a
4116 * semi-idle powersavings sched_domain. The idea is to try and avoid
4117 * completely idle packages/cores just for the purpose of idle load balancing
4118 * when there are other idle cpu's which are better suited for that job.
4119 */
4120 static int find_new_ilb(int cpu)
4121 {
4122 struct sched_domain *sd;
4123 struct sched_group *ilb_group;
4124 int ilb = nr_cpu_ids;
4125
4126 /*
4127 * Have idle load balancer selection from semi-idle packages only
4128 * when power-aware load balancing is enabled
4129 */
4130 if (!(sched_smt_power_savings || sched_mc_power_savings))
4131 goto out_done;
4132
4133 /*
4134 * Optimize for the case when we have no idle CPUs or only one
4135 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4136 */
4137 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4138 goto out_done;
4139
4140 rcu_read_lock();
4141 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4142 ilb_group = sd->groups;
4143
4144 do {
4145 if (is_semi_idle_group(ilb_group)) {
4146 ilb = cpumask_first(nohz.grp_idle_mask);
4147 goto unlock;
4148 }
4149
4150 ilb_group = ilb_group->next;
4151
4152 } while (ilb_group != sd->groups);
4153 }
4154 unlock:
4155 rcu_read_unlock();
4156
4157 out_done:
4158 return ilb;
4159 }
4160 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4161 static inline int find_new_ilb(int call_cpu)
4162 {
4163 return nr_cpu_ids;
4164 }
4165 #endif
4166
4167 /*
4168 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4169 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4170 * CPU (if there is one).
4171 */
4172 static void nohz_balancer_kick(int cpu)
4173 {
4174 int ilb_cpu;
4175
4176 nohz.next_balance++;
4177
4178 ilb_cpu = get_nohz_load_balancer();
4179
4180 if (ilb_cpu >= nr_cpu_ids) {
4181 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4182 if (ilb_cpu >= nr_cpu_ids)
4183 return;
4184 }
4185
4186 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4187 struct call_single_data *cp;
4188
4189 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4190 cp = &per_cpu(remote_sched_softirq_cb, cpu);
4191 __smp_call_function_single(ilb_cpu, cp, 0);
4192 }
4193 return;
4194 }
4195
4196 /*
4197 * This routine will try to nominate the ilb (idle load balancing)
4198 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4199 * load balancing on behalf of all those cpus.
4200 *
4201 * When the ilb owner becomes busy, we will not have new ilb owner until some
4202 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4203 * idle load balancing by kicking one of the idle CPUs.
4204 *
4205 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4206 * ilb owner CPU in future (when there is a need for idle load balancing on
4207 * behalf of all idle CPUs).
4208 */
4209 void select_nohz_load_balancer(int stop_tick)
4210 {
4211 int cpu = smp_processor_id();
4212
4213 if (stop_tick) {
4214 if (!cpu_active(cpu)) {
4215 if (atomic_read(&nohz.load_balancer) != cpu)
4216 return;
4217
4218 /*
4219 * If we are going offline and still the leader,
4220 * give up!
4221 */
4222 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4223 nr_cpu_ids) != cpu)
4224 BUG();
4225
4226 return;
4227 }
4228
4229 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4230
4231 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4232 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4233 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4234 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4235
4236 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
4237 int new_ilb;
4238
4239 /* make me the ilb owner */
4240 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4241 cpu) != nr_cpu_ids)
4242 return;
4243
4244 /*
4245 * Check to see if there is a more power-efficient
4246 * ilb.
4247 */
4248 new_ilb = find_new_ilb(cpu);
4249 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4250 atomic_set(&nohz.load_balancer, nr_cpu_ids);
4251 resched_cpu(new_ilb);
4252 return;
4253 }
4254 return;
4255 }
4256 } else {
4257 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4258 return;
4259
4260 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4261
4262 if (atomic_read(&nohz.load_balancer) == cpu)
4263 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4264 nr_cpu_ids) != cpu)
4265 BUG();
4266 }
4267 return;
4268 }
4269 #endif
4270
4271 static DEFINE_SPINLOCK(balancing);
4272
4273 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4274
4275 /*
4276 * Scale the max load_balance interval with the number of CPUs in the system.
4277 * This trades load-balance latency on larger machines for less cross talk.
4278 */
4279 static void update_max_interval(void)
4280 {
4281 max_load_balance_interval = HZ*num_online_cpus()/10;
4282 }
4283
4284 /*
4285 * It checks each scheduling domain to see if it is due to be balanced,
4286 * and initiates a balancing operation if so.
4287 *
4288 * Balancing parameters are set up in arch_init_sched_domains.
4289 */
4290 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4291 {
4292 int balance = 1;
4293 struct rq *rq = cpu_rq(cpu);
4294 unsigned long interval;
4295 struct sched_domain *sd;
4296 /* Earliest time when we have to do rebalance again */
4297 unsigned long next_balance = jiffies + 60*HZ;
4298 int update_next_balance = 0;
4299 int need_serialize;
4300
4301 update_shares(cpu);
4302
4303 rcu_read_lock();
4304 for_each_domain(cpu, sd) {
4305 if (!(sd->flags & SD_LOAD_BALANCE))
4306 continue;
4307
4308 interval = sd->balance_interval;
4309 if (idle != CPU_IDLE)
4310 interval *= sd->busy_factor;
4311
4312 /* scale ms to jiffies */
4313 interval = msecs_to_jiffies(interval);
4314 interval = clamp(interval, 1UL, max_load_balance_interval);
4315
4316 need_serialize = sd->flags & SD_SERIALIZE;
4317
4318 if (need_serialize) {
4319 if (!spin_trylock(&balancing))
4320 goto out;
4321 }
4322
4323 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4324 if (load_balance(cpu, rq, sd, idle, &balance)) {
4325 /*
4326 * We've pulled tasks over so either we're no
4327 * longer idle.
4328 */
4329 idle = CPU_NOT_IDLE;
4330 }
4331 sd->last_balance = jiffies;
4332 }
4333 if (need_serialize)
4334 spin_unlock(&balancing);
4335 out:
4336 if (time_after(next_balance, sd->last_balance + interval)) {
4337 next_balance = sd->last_balance + interval;
4338 update_next_balance = 1;
4339 }
4340
4341 /*
4342 * Stop the load balance at this level. There is another
4343 * CPU in our sched group which is doing load balancing more
4344 * actively.
4345 */
4346 if (!balance)
4347 break;
4348 }
4349 rcu_read_unlock();
4350
4351 /*
4352 * next_balance will be updated only when there is a need.
4353 * When the cpu is attached to null domain for ex, it will not be
4354 * updated.
4355 */
4356 if (likely(update_next_balance))
4357 rq->next_balance = next_balance;
4358 }
4359
4360 #ifdef CONFIG_NO_HZ
4361 /*
4362 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4363 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4364 */
4365 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4366 {
4367 struct rq *this_rq = cpu_rq(this_cpu);
4368 struct rq *rq;
4369 int balance_cpu;
4370
4371 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4372 return;
4373
4374 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4375 if (balance_cpu == this_cpu)
4376 continue;
4377
4378 /*
4379 * If this cpu gets work to do, stop the load balancing
4380 * work being done for other cpus. Next load
4381 * balancing owner will pick it up.
4382 */
4383 if (need_resched()) {
4384 this_rq->nohz_balance_kick = 0;
4385 break;
4386 }
4387
4388 raw_spin_lock_irq(&this_rq->lock);
4389 update_rq_clock(this_rq);
4390 update_cpu_load(this_rq);
4391 raw_spin_unlock_irq(&this_rq->lock);
4392
4393 rebalance_domains(balance_cpu, CPU_IDLE);
4394
4395 rq = cpu_rq(balance_cpu);
4396 if (time_after(this_rq->next_balance, rq->next_balance))
4397 this_rq->next_balance = rq->next_balance;
4398 }
4399 nohz.next_balance = this_rq->next_balance;
4400 this_rq->nohz_balance_kick = 0;
4401 }
4402
4403 /*
4404 * Current heuristic for kicking the idle load balancer
4405 * - first_pick_cpu is the one of the busy CPUs. It will kick
4406 * idle load balancer when it has more than one process active. This
4407 * eliminates the need for idle load balancing altogether when we have
4408 * only one running process in the system (common case).
4409 * - If there are more than one busy CPU, idle load balancer may have
4410 * to run for active_load_balance to happen (i.e., two busy CPUs are
4411 * SMT or core siblings and can run better if they move to different
4412 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4413 * which will kick idle load balancer as soon as it has any load.
4414 */
4415 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4416 {
4417 unsigned long now = jiffies;
4418 int ret;
4419 int first_pick_cpu, second_pick_cpu;
4420
4421 if (time_before(now, nohz.next_balance))
4422 return 0;
4423
4424 if (rq->idle_at_tick)
4425 return 0;
4426
4427 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4428 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4429
4430 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4431 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4432 return 0;
4433
4434 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4435 if (ret == nr_cpu_ids || ret == cpu) {
4436 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4437 if (rq->nr_running > 1)
4438 return 1;
4439 } else {
4440 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4441 if (ret == nr_cpu_ids || ret == cpu) {
4442 if (rq->nr_running)
4443 return 1;
4444 }
4445 }
4446 return 0;
4447 }
4448 #else
4449 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4450 #endif
4451
4452 /*
4453 * run_rebalance_domains is triggered when needed from the scheduler tick.
4454 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4455 */
4456 static void run_rebalance_domains(struct softirq_action *h)
4457 {
4458 int this_cpu = smp_processor_id();
4459 struct rq *this_rq = cpu_rq(this_cpu);
4460 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4461 CPU_IDLE : CPU_NOT_IDLE;
4462
4463 rebalance_domains(this_cpu, idle);
4464
4465 /*
4466 * If this cpu has a pending nohz_balance_kick, then do the
4467 * balancing on behalf of the other idle cpus whose ticks are
4468 * stopped.
4469 */
4470 nohz_idle_balance(this_cpu, idle);
4471 }
4472
4473 static inline int on_null_domain(int cpu)
4474 {
4475 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4476 }
4477
4478 /*
4479 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4480 */
4481 static inline void trigger_load_balance(struct rq *rq, int cpu)
4482 {
4483 /* Don't need to rebalance while attached to NULL domain */
4484 if (time_after_eq(jiffies, rq->next_balance) &&
4485 likely(!on_null_domain(cpu)))
4486 raise_softirq(SCHED_SOFTIRQ);
4487 #ifdef CONFIG_NO_HZ
4488 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4489 nohz_balancer_kick(cpu);
4490 #endif
4491 }
4492
4493 static void rq_online_fair(struct rq *rq)
4494 {
4495 update_sysctl();
4496 }
4497
4498 static void rq_offline_fair(struct rq *rq)
4499 {
4500 update_sysctl();
4501 }
4502
4503 #else /* CONFIG_SMP */
4504
4505 /*
4506 * on UP we do not need to balance between CPUs:
4507 */
4508 static inline void idle_balance(int cpu, struct rq *rq)
4509 {
4510 }
4511
4512 #endif /* CONFIG_SMP */
4513
4514 /*
4515 * scheduler tick hitting a task of our scheduling class:
4516 */
4517 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4518 {
4519 struct cfs_rq *cfs_rq;
4520 struct sched_entity *se = &curr->se;
4521
4522 for_each_sched_entity(se) {
4523 cfs_rq = cfs_rq_of(se);
4524 entity_tick(cfs_rq, se, queued);
4525 }
4526 }
4527
4528 /*
4529 * called on fork with the child task as argument from the parent's context
4530 * - child not yet on the tasklist
4531 * - preemption disabled
4532 */
4533 static void task_fork_fair(struct task_struct *p)
4534 {
4535 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4536 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4537 int this_cpu = smp_processor_id();
4538 struct rq *rq = this_rq();
4539 unsigned long flags;
4540
4541 raw_spin_lock_irqsave(&rq->lock, flags);
4542
4543 update_rq_clock(rq);
4544
4545 if (unlikely(task_cpu(p) != this_cpu)) {
4546 rcu_read_lock();
4547 __set_task_cpu(p, this_cpu);
4548 rcu_read_unlock();
4549 }
4550
4551 update_curr(cfs_rq);
4552
4553 if (curr)
4554 se->vruntime = curr->vruntime;
4555 place_entity(cfs_rq, se, 1);
4556
4557 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4558 /*
4559 * Upon rescheduling, sched_class::put_prev_task() will place
4560 * 'current' within the tree based on its new key value.
4561 */
4562 swap(curr->vruntime, se->vruntime);
4563 resched_task(rq->curr);
4564 }
4565
4566 se->vruntime -= cfs_rq->min_vruntime;
4567
4568 raw_spin_unlock_irqrestore(&rq->lock, flags);
4569 }
4570
4571 /*
4572 * Priority of the task has changed. Check to see if we preempt
4573 * the current task.
4574 */
4575 static void
4576 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4577 {
4578 if (!p->se.on_rq)
4579 return;
4580
4581 /*
4582 * Reschedule if we are currently running on this runqueue and
4583 * our priority decreased, or if we are not currently running on
4584 * this runqueue and our priority is higher than the current's
4585 */
4586 if (rq->curr == p) {
4587 if (p->prio > oldprio)
4588 resched_task(rq->curr);
4589 } else
4590 check_preempt_curr(rq, p, 0);
4591 }
4592
4593 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4594 {
4595 struct sched_entity *se = &p->se;
4596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4597
4598 /*
4599 * Ensure the task's vruntime is normalized, so that when its
4600 * switched back to the fair class the enqueue_entity(.flags=0) will
4601 * do the right thing.
4602 *
4603 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4604 * have normalized the vruntime, if it was !on_rq, then only when
4605 * the task is sleeping will it still have non-normalized vruntime.
4606 */
4607 if (!se->on_rq && p->state != TASK_RUNNING) {
4608 /*
4609 * Fix up our vruntime so that the current sleep doesn't
4610 * cause 'unlimited' sleep bonus.
4611 */
4612 place_entity(cfs_rq, se, 0);
4613 se->vruntime -= cfs_rq->min_vruntime;
4614 }
4615 }
4616
4617 /*
4618 * We switched to the sched_fair class.
4619 */
4620 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4621 {
4622 if (!p->se.on_rq)
4623 return;
4624
4625 /*
4626 * We were most likely switched from sched_rt, so
4627 * kick off the schedule if running, otherwise just see
4628 * if we can still preempt the current task.
4629 */
4630 if (rq->curr == p)
4631 resched_task(rq->curr);
4632 else
4633 check_preempt_curr(rq, p, 0);
4634 }
4635
4636 /* Account for a task changing its policy or group.
4637 *
4638 * This routine is mostly called to set cfs_rq->curr field when a task
4639 * migrates between groups/classes.
4640 */
4641 static void set_curr_task_fair(struct rq *rq)
4642 {
4643 struct sched_entity *se = &rq->curr->se;
4644
4645 for_each_sched_entity(se) {
4646 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4647
4648 set_next_entity(cfs_rq, se);
4649 /* ensure bandwidth has been allocated on our new cfs_rq */
4650 account_cfs_rq_runtime(cfs_rq, 0);
4651 }
4652 }
4653
4654 #ifdef CONFIG_FAIR_GROUP_SCHED
4655 static void task_move_group_fair(struct task_struct *p, int on_rq)
4656 {
4657 /*
4658 * If the task was not on the rq at the time of this cgroup movement
4659 * it must have been asleep, sleeping tasks keep their ->vruntime
4660 * absolute on their old rq until wakeup (needed for the fair sleeper
4661 * bonus in place_entity()).
4662 *
4663 * If it was on the rq, we've just 'preempted' it, which does convert
4664 * ->vruntime to a relative base.
4665 *
4666 * Make sure both cases convert their relative position when migrating
4667 * to another cgroup's rq. This does somewhat interfere with the
4668 * fair sleeper stuff for the first placement, but who cares.
4669 */
4670 if (!on_rq)
4671 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4672 set_task_rq(p, task_cpu(p));
4673 if (!on_rq)
4674 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4675 }
4676 #endif
4677
4678 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4679 {
4680 struct sched_entity *se = &task->se;
4681 unsigned int rr_interval = 0;
4682
4683 /*
4684 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4685 * idle runqueue:
4686 */
4687 if (rq->cfs.load.weight)
4688 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4689
4690 return rr_interval;
4691 }
4692
4693 /*
4694 * All the scheduling class methods:
4695 */
4696 static const struct sched_class fair_sched_class = {
4697 .next = &idle_sched_class,
4698 .enqueue_task = enqueue_task_fair,
4699 .dequeue_task = dequeue_task_fair,
4700 .yield_task = yield_task_fair,
4701 .yield_to_task = yield_to_task_fair,
4702
4703 .check_preempt_curr = check_preempt_wakeup,
4704
4705 .pick_next_task = pick_next_task_fair,
4706 .put_prev_task = put_prev_task_fair,
4707
4708 #ifdef CONFIG_SMP
4709 .select_task_rq = select_task_rq_fair,
4710
4711 .rq_online = rq_online_fair,
4712 .rq_offline = rq_offline_fair,
4713
4714 .task_waking = task_waking_fair,
4715 #endif
4716
4717 .set_curr_task = set_curr_task_fair,
4718 .task_tick = task_tick_fair,
4719 .task_fork = task_fork_fair,
4720
4721 .prio_changed = prio_changed_fair,
4722 .switched_from = switched_from_fair,
4723 .switched_to = switched_to_fair,
4724
4725 .get_rr_interval = get_rr_interval_fair,
4726
4727 #ifdef CONFIG_FAIR_GROUP_SCHED
4728 .task_move_group = task_move_group_fair,
4729 #endif
4730 };
4731
4732 #ifdef CONFIG_SCHED_DEBUG
4733 static void print_cfs_stats(struct seq_file *m, int cpu)
4734 {
4735 struct cfs_rq *cfs_rq;
4736
4737 rcu_read_lock();
4738 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4739 print_cfs_rq(m, cpu, cfs_rq);
4740 rcu_read_unlock();
4741 }
4742 #endif
This page took 0.122795 seconds and 6 git commands to generate.